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Preface

Generalized Method of Moments (GMM) has become one of the main statis-
tical tools for the analysis of economic and financial data. Accompanying this
empirical interest, there is a growing literature in econometrics on GMM-based
inference techniques. In fact, in many ways, GMM is becoming the common
language of econometric dialogue because the framework subsumes many other
statistical methods of interest, such as Least Squares, Maximum Likelihood and
Instrumental Variables.

This book provides a comprehensive treatment of GMM estimation and
inference in time series models. Building from the instrumental variables es-
timator in static linear models, the book presents the asymptotic statistical
theory of GMM in nonlinear dynamic models. This framework covers classical
results on estimation, such as consistency and asymptotic normality, and also
inference techniques, such as the overidentifying restrictions test and tests of
structural stability. The finite sample performance of these inference methods
is also reviewed. Additionally, there is detailed discussion of recent develop-
ments on covariance matrix estimation, the impact of model misspecification,
moment selection, the use of the bootstrap, and weak instrument asymptotics.
There is also a brief exploration of the connections between GMM and other
moment-based estimation methods such as Simulated Method of Moments, In-
direct Inference and Empirical Likelihood.

The computer scientist Jan van de Snepscheut once admonished that “in
theory, there is no difference between theory and practice. But, in practice,
there is.” Arguably a universal truth, this statement is certainly true about
econometrics. Therefore, throughout the text, we focus not only on the theo-
retical arguments but also on issues that arise in implementing the statistical
methods in practice. All the inference techniques are illustrated using empirical
examples in macroeconomics and finance.

The text assumes a knowledge of econometrics, statistics and matrix algebra
at the level of a course based on text such as William Greene’s Econometric
Analysis. All the main statistical results are discussed intuitively and proved
formally. The presentation is designed to be accessible to a first- or second-year
student in a graduate economics program at an American university.

This book developed out of lectures given at North Carolina State University.
Parts of the material was also used as a basis for short courses at: the Division
of Research and Statistics at the Board of Governors of the Federal Reserve
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System in Washington D.C.; the Netherlands Graduate School of Economics;
the Mansholt Graduate School of Social Sciences at Wageningen University in
the Netherlands; the Department of Economics and Management at Wageningen
University. Earlier drafts of the book were used by Eric Ghysels in a graduate
econometrics course taught at Pennsylvania State University. I am very grateful
to the participants in these courses for many useful comments and suggestions
that have improved the book.

I made considerable progress in translating these lecture notes into the chap-
ters of this book during my tenure of a research fellowship at the Department
of Economics at the University of Birmingham. I am indebted to this depart-
ment for both this support and also the colleagial atmosphere that made my
visit both productive and pleasurable. I also worked on the book while a short-
term visitor at the Department of Economics and Management at Wageningen
University and gratefully acknowledge this support. The rest of the work was
undertaken at the Department of Economics at North Carolina State University,
and I happy to have this opportunity to record my gratitude to the department
and university for their support over the years of both my own work and also
econometrics more generally.

In the course of preparing the manuscript, a number of questions arose for
which I had to turn to others for help. I would like to record my sincere grat-
itude to the following for generously sharing their time in order to provide me
with the answers: John Aldrich, Anil Bera, Ron Gallant, Eric Ghysels, Atsushi
Inoue, Essie Maasoumi, Louis Maccini, Angelo Melino, Benedikt Pötscher, Bob
Rossana, Steve Satchell, Wally Thurman, Ken West, Ken Vetzal, and Tim
Vogelsang. A number of people have read various drafts of this work and pro-
vided comments. This feedback was invaluable and I wish to thank particularly
Ron Gallant, Eric Ghysels, Sanggohn Han, Atsushi Inoue, Kalidas Jana, Alan
Ker, Kostas Kyriakoulis, Fernanda Peixe, Barbara Rossi, Amit Sen and Aris
Spanos.

This book took far longer to complete than I ever imagined at the outset of
the project. Over the years, I have accumulated a considerable debt of grati-
tude to: Lee Craig, who provided sagacious advice on various aspects of book
authorship and literary style; Andrew Schuller, the editor, who provided con-
tinual encouragement; and Jason Pearce who patiently answered my questions
about LATEX. I have pleasure in thanking all three for their help.

However, my greatest debt is to my family. My wife Ada provided unfailing
support throughout, and I dedicate this book to her and our son, Marten, as a
token of my heartfelt gratitude.

Raleigh, NC
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1

Introduction

1.1 Generalized Method of Moments in

Econometrics

Generalized Method of Moments (GMM) was first introduced into the econo-
metrics literature by Lars Hansen in 1982. Since then it has been widely applied
to analyze economic and financial data. This interest has both stimulated and
been facilitated by the development of numerous statistical inference techniques
based on GMM estimators. These applications have been in very diverse ar-
eas spanning macroeconomics, finance, agricultural economics, environmental
economics and labour economics. Depending on the context, GMM has been
applied to time series, cross sectional, and panel data. In this book we focus
on the use of GMM estimation with time series data and illustrate the various
inference procedures using examples from macroeconomics and finance.1 These
areas are arguably the ones in which GMM has been most widely applied and,
consequently, has had the biggest impact. Table 1.1 gives a list of various areas
of economics to which GMM has been applied; inevitably this list is not exhaus-
tive. Many of the studies have been published in top economic journals, which
is one measure of the importance of the technique. Nearly all the studies have
been published since the early 1990s and this testifies to the increasing impact
of GMM on empirical analysis in economics.

It is natural to wonder why Hansen’s 1982 paper had such an impact. After
all, Maximum Likelihood estimation (MLE) has been around since the early part
of twentieth century and it is the best available estimator within the Classical
statistics paradigm. The optimality of MLE stems from its basis on the joint
probability distribution of the data, which in this context becomes known as
the likelihood function. However, in some circumstances, this dependence on
the probability distribution can become a weakness. In the models in Table 1.1,
two particular problems are present and these have motivated the use of GMM.

1 For discussions of GMM with panel data, see Baltagi (2001) or Wooldridge (2002).
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2 Introduction

These are as follows.

1. Sensitivity of statistical properties to the distributional assumption
The desirable statistical properties of MLE are only attained if the dis-
tribution is correctly specified. Unfortunately, economic theory rarely
provides the complete specification of the probability distribution of the
data. One solution is to choose a distribution arbitrarily. However, unless
this guess coincides with the truth, the resulting estimator is no longer
optimal and, worse still, its use may lead to biased inferences.

2. Computational burden
For many of the models in Table 1.1, Maximum Likelihood estimation
would be computationally very burdensome. Two types of problem tend
to occur. In some cases, the economic model coincides with the joint
probability distribution of the data but the implied likelihood function is
extremely difficult to evaluate numerically with available computer tech-
nology. In other cases, the economic model only involves some aspects of
the probability distribution and the completion of the specification intro-
duces many additional parameters which must also be estimated. Often
in these latter cases, the likelihood function must be maximized subject
to a set of nonlinear constraints implied by the economic model, which
further adds to the computational burden.

In contrast, the GMM framework provides a computationally convenient method
of performing inference in these models without the need to specify the likelihood
function.

The cornerstone of GMM estimation is a set of population moment condi-
tions which are deduced from the assumptions of the econometric model. The
exact nature of these conditions varies from application to application but, what-
ever they are, their validity is crucial for the properties of the resulting estima-
tor. The potential of moment conditions for estimation has been recognized
since the 1890s when a technique known as Method of Moments was first pro-
posed. In fact, many estimation techniques familiar in econometrics are based
either explicitly or implicitly on the information in population moment condi-
tions. However, prior to Hansen’s work, the statistical theory of these estimators
tended to be restricted to the moment conditions of a particular functional form.
One of the main contributions of Hansen’s paper was to emphasize the common
underlying structure of these previous analyses and to develop a statistical the-
ory which can be applied to any set of moment conditions. Inevitably, GMM
builds on these earlier analyses and so to help put GMM in perspective, it is
useful to understand its statistical antecedents. Therefore, we start by briefly
summarizing in Section 1.2 how the use of moment conditions has evolved in
statistics and econometrics. This provides a first illustration of how moment
conditions can be used as a basis for estimation. It also links GMM to a num-
ber of estimators familiar in econometrics. After this historical review, a set
of contemporary examples from Table 1.1 are provided in Section 1.3. At this
stage, the focus is on showing how the population moment conditions arise in
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Table 1.1
Applications of GMM

Agriculture Thijssen (1996), Chavas and Thomas (1999), Bourgeon
and Le Roux (2001)

Business cycles Singleton (1988), Christiano and Eichenbaum (1992),
Burnside, Eichenbaum, and Rebelo (1993), Braun
(1994), Boldrin, Christiano, and Fisher (2001)

Commodity
markets

Deaton and Laroque (1992), Bjornson and Carter
(1997), Considine and Heo (2000), Haile (2001)

Consumption Miron (1986), English, Miron, and Wilcox (1989),
Campbell and Mankiw (1990), Runkle (1991), Blundell,
Pashardes, and Weber (1993), Blundell, Browning, and
Meghir (1994) Attanasio and Browning (1995), Attanasio
and Weber (1995), Ni (1995), Meghir and Weber (1996),
Dynan (2000), Fuhrer (2000), Weber (2000)

Cost/Production
frontiers/functions

Kopp and Mullahy (1990), Blundell and Bond (2000),
Ahn, Good, and Sickles (2000)

Development Jalan and Ravallion (1999), Hansen and Tarp (2001),
Ogaki and Zhang (2001)

Economic growth Caselli, Esquivel, and Lefort (1996)
Education/human

capital
Angrist and Krueger (1992), Palacios-Huerta (2003)

Environmental
economics

Smith and Pattanayak (2002)

Equity pricing Hansen and Singleton (1982), Singleton (1985), Finn,
Hoffman, and Schlagenhauf (1990), Ghysels and Hall
(1990a,b) Ferson (1990), Bodurtha and Mark (1991),
Epstein and Zin (1991), Ferson and Constantinides
(1991), Harvey (1991), MacKinlay and Richardson
(1991), Snow (1991), Bessembinder and Chan (1992),
Ferson and Harvey (1992), Ilmanen (1992), Marshall
(1992), Bansal, Hsieh, and Viswanathan (1993), Bansal
and Viswanathan (1993), Cecchetti, Lam, and Mark
(1993), Ferson, Foerster, and Keim (1993), Fisher
(1994), Zhou (1994), Campbell (1996), Cochrane
(1996), Hansen and Singleton (1996), He, Kan, Ng,
and Zhang (1996), Ho, Perraudin, and Sørensen
(1996), Hagiwara and Herce (1997), Hansen and
Jaganathan (1997), Ghysels (1998), Garcia and Bonomo
(2001), Timmerman (2001), Jiang and Knight (2002),
Vissing-Jørgenson and Attanasio (2003)

Exchange rates Hansen and Hodrick (1980), Mark (1985), Melino
and Turnbull (1990), Modjtahedi (1991), Bekaert and
Hodrick (1992), Cumby and Huizinga (1992), Backus,
Gregory, and Telmer (1993), Imrohoroglus (1994),
Dumas and Solnik (1995), Hartmann (1999), Bekaert
and Hodrick (2001), Groen and Kleibergen (2003)

continued over



4 Introduction

Table 1.1 (continued)
Applications of GMM

Health care Windmeijer and Silva (1997), Schellhorn (2001), Silva and
Windmeijer (2001)

Import demand de la Croix and Urbain (1998)
Interest rates Dunn and Singleton (1986), Diba and Oh (1991), Lee

(1991), Chan, Karolyi, Longstaff, and Sanders (1992),
Longstaff and Schwartz (1991), Cushing and Ackert
(1994), Vetzal (1997), Green and Odegaard (1997)

Inventories Miron and Zeldes (1988), Eichenbaum (1989), Kayshap
and Wilcox (1993), Durlauf and Maccini (1995), Fuhrer,
Moore, and Schuh (1995a), Bils and Kahn (2000)

Investment Gordon (1992), Hubbard and Kayshap (1992), Whited
(1992), Bond and Meghir (1994), Gilchrist and
Himmelberg (1995), Oliner, Rudebusch, and Sichel
(1996), Chirinko and Schaller (1996), Ogawa and Suzuki
(1998), Chirinko and Schaller (2001)

Labour demand Pindyck and Rotemberg (1983), Arellano and Bond
(1991), Pfann and Palm (1993)

Labour market Yashiv (2000), Yuan and Li (2000)
Labour supply Mankiw, Rotemberg, and Summers (1985), Eichenbaum,

Hansen, and Singleton (1988), Kahn and Lang (1991),
Angrist (2001)

Macroeconomic
forecasts

Keane and Runkle (1990), Bonham and Cohen (1995,
2001)

Microstructures
in finance

Madhavan and Smidt (1993), Huang and Stoll (1997),
Madhavan, Richardson, and Roomans (1997), Biasis,
Hillion, and Spatt (1999), Grammig and Wellner (2002)

Money Eckstein and Leiderman (1992), Dutkowsky (1993),
Holman (1998), Clarida, Gali, and Gertler (2000)

Mutual fund
performance

Chen and Knez (1996), Bekaert and Urias (1996)

Product demand Berry, Levinsohn, and Pakes (1995)
Productivity Bernstein (1994), Atkinson, Cornwell, and Honerkamp

(2003)
R & D spending Himmelberg and Petersen (1994)
Resources Young (1991, 1992), Green and Mork (1991), Popp (2001)
Technological

innovation
Blundell, Griffith, and Vanreenen (1995)

Trading volume of
financial assets

Foster and Viswanathan (1993), Bessembinder, Chan, and
Seguin (1996)

Transportation Nevo (2003)

in these models. Later in the book, we return to these models to illustrate
the various estimation and inference procedures discussed. The development of
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these procedures requires certain statistical concepts and results. Section 1.4
provides a review of some background statistical theory which is needed for the
introduction of the basic GMM framework in Chapters 2 and 3. More advanced
statistical theory is developed as necessary in subsequent chapters. Section 1.5
concludes the chapter with an overview of the remainder of the book.

1.2 Population Moment Conditions and the

Statistical Antecedents of GMM

The term population moment was originally used in statistics to denote the
expectation of the polynomial powers of a random variable. So if vt is a discrete
random variable with probability mass function P (vt = v) defined on a sample
space V then its rth population moment is given by

E[vr
t ] =

∑

{v∈V}

vrP (vt = v) = νr

where the summation is over all values in V and r is a positive integer. If vt is a
continuous random variable with probability density function p(v) then its rth

moment is given by

E[vr
t ] =

∫ ∞

−∞

vrp(v)dv = νr

From these definitions it is easily recognized that the population mean is just
the first population moment and the population variance is ν2 − ν2

1 . The term
(population) moment has been in the statistical lexicon since at least the work
of A. Quetelet who lived from 1796 to 1874 and was inspired by the concept of
moments in physics, see Stuart and Ord (1987, p.53).2

Karl Pearson3 (1893, 1894, 1895) was the first person to recognize the po-
tential of population moments as a basis for estimation. In this series of articles,
he introduced Method of Moments estimation. To understand his original mo-
tivation, it is necessary to consider briefly the state of statistical analysis in the
late nineteenth century. During that century, a lot of natural phenomena were
thought to be well summarized by a normal distribution. This belief can be at-
tributed to at least two reasons. First, the actual evidence was limited, because
only a few data sets had been collected. Secondly, the available diagnostic tests
were very rudimentary and could only detect very dramatic departures from
normality; see Stigler (1986, p.330) . However, as interest in statistics – and

2 Adolphe Quetelet was a Belgian with far ranging interests. He wrote the libretto of an
opera, a historical survey of romance and poetry as well as his scientific work in astronomy,
sociology and statistics. Pearson (1895) described him as a man “who often foreshadowed sta-
tistical advances without providing the method by which they might be dealt with” (Pearson,
1895, p.381). For an interesting discussion of Quetelet’s contributions see Stigler (1986).

3 Karl Pearson (1857–1936) was an Englishman trained as a mathematician whose inter-
ests also included physics, German history, folklore and philosophy. Apart from Method of
Moments, his numerous contributions to statistics included chi-squared goodness of fit tests,
correlation and the Pearson family of distributions.
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science – grew, more datasets were collected. With this growing body of empir-
ical evidence, researchers became aware that many natural phenomena showed
departures from normality and in particular exhibited skewness. This raised the
challenge of finding theoretical probability distributions which could adequately
capture this behaviour. Karl Pearson was in the forefront of this research and
developed what has become known as the Pearson family of distributions, e.g.
see Stuart and Ord (1987, pp.210–20). This family is characterized by a proba-
bility density function which is indexed by a vector of four parameters. Different
values of the parameters can yield a wide variety of distributions, including the
normal, beta and gamma.

The practical problem was to find the most appropriate member of this
family for the data set in hand – or in other words, to estimate the parameter
vector. The existing techniques for fitting normal distributions were not suited
to these more general types of distribution. Instead, Pearson suggested calcu-
lating estimates based on moments. The idea is simple. Population moments
implied by the family of distributions are functions of the unknown parameter
vector. Pearson proposed estimating the parameter vector by the value implied
by the corresponding sample moments. His approach is best understood by
considering a simple example. For the purposes of our discussion we can ab-
stract from the generality of the Pearson family and just focus attention on a
particular member, the normal distribution. This distribution depends on just
two parameters:4 the population mean, µ0, and the population variance, σ2

0 .
These two parameters satisfy the population moment conditions

E[vt] − µ0 = 0

E[v2
t ] − (σ2

0 + µ2
0) = 0

(1.1)

Pearson’s method involves estimating (µ0, σ
2
0) by the values (µ̂T , σ̂2

T ) which
satisfy the analogous sample moment conditions and we have indexed the esti-
mators by the sample size T . Therefore (µ̂T , σ̂2

T ) are the solutions to

T−1
T
∑

t=1

vt − µ̂T = 0

T−1
T
∑

t=1

v2
t − (σ̂2

T + µ̂2
T ) = 0

and so, with some rearrangement, it follows that

4 The normal distribution is obtained from the generic form of the Pearson family by
setting two of the four parameters to zero.
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µ̂T = T−1
T
∑

t=1

vt

σ̂2
T = T−1

T
∑

t=1

(vt − µ̂T )2
(1.2)

Pearson called this approach the “Method of Moments” for obvious reasons.
Pearson (1895) demonstrated the power of this technique with an analysis of
the distributions of such diverse phenomena as barometric pressures, the sizes
of the carapace of crabs, the heights of recruits to the U.S. army, the valuation
of house prices and the number of divorces granted.

This approach is very intuitive but not without its weaknesses. For exam-
ple, all the higher moments of the normal distribution depend on (µ0, σ

2
0); e.g.

see Stuart and Ord (1987, p.78). Therefore, this technique could have been
applied equally well to the third and fourth moments, say, of the distribution.
The problem is that the resulting estimators of (µ0, σ

2
0) would be different from

those given in (1.2). Which estimators should be used? This question is hard
to address within the Method of Moments framework. In fact, it was this ques-
tion which led R. A. Fisher5 to analyze how information from a probability
distribution can be channeled most effectively into parameter estimation. The
result was the Maximum Likelihood principle; see Fisher (1912, 1922, 1925).
In fact, MLE can also be interpreted as a special case of GMM based on a
population moment condition whose derivation requires the specification of the
probability distribution of the data. However, it is pedagogically most conve-
nient to postpone further discussion of this interpretation until the complete
GMM framework has been introduced in Chapter 3.6 For our purposes here, it
is more relevant to consider another weakness inherent in the Method of Mo-
ments framework. Suppose that it is desired to base estimation of (µ0, σ

2
0) on

the first three moments of vt, that is (1.1) plus

E[v3
t ] − 3E[v2

t ]µ0 + 3E[vt]µ
2
0 − µ3

0 = 0 (1.3)

In this case, the sample analogs to (1.1)–(1.3) form a system of three equations
in two unknowns, and such a system typically has no solution. Therefore, the
Method of Moments is infeasible. It is easily recognized that this problem is
not specific to this example. Clearly, some modification is needed in order to

5 Ronald Fisher (1890–1962) was an English scientist who made fundamental contributions
to statistics, probability, genetics and the design of experiments. He is regarded by many as
the founder of mathematical statistics. Apart from Maximum Likelihood, he developed the
general framework of estimation theory including the concepts of consistency, information,
sufficiency, efficiency, ancillarity and pivotal statistics. His other famous contributions include
the analysis of variance method and the F-distribution.

6 For completeness, we note that if it is assumed in our simple example that {vt, t =
1, 2..., T} are also independently distributed then (µ̂T , σ̂2

T ) are the MLE’s ; e.g. see Stuart
and Ord (1987, p.287). However, this coincidence is the exception rather than the rule. In
general, ML estimation does not involve matching these type of simple population moment
conditions; see Section 3.6 for further discussion.
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produce estimates of p parameters based on more than p population moment
conditions. This brings us to the second important statistical antecedent of
GMM, namely the method of Minimum Chi-Square.

In a series of articles in the late 1920s and the 1930s, Neyman and Pearson
laid the foundations for the framework of “classical” hypothesis testing.7 One
side product of this research was the Minimum Chi-Square method of estima-
tion. The method was originally proposed to facilitate inference about whether
or not an observed sample was generated from a particular distribution, but the
basic idea can be applied to estimation in a wide variety of problems includ-
ing the estimation of (µ0, σ

2
0) based on (1.1)–(1.3). However, it is instructive

to introduce the method in the context of the specific example considered by
Neyman and Pearson.

Neyman and Pearson (1928) considered the particular case in which a re-
searcher wishes to model the probability that the outcome of an experiment lies
in one of k mutually exclusive and exhaustive groups. If pi is used to denote the
probability the outcome lies in the ith group then the null hypothesis of interest
is that

pi = h(i, θ0) (1.4)

where h(.) is some specified functional form indexed by an unknown parameter
vector θ0. The question was how to test this hypothesis. In 1928, the challenging
feature of this problem was that the null hypothesis only specified the form of
the probability function up to some unknown parameter vector. At that stage,
the problem had only been solved if the null specified a particular value of θ0

as well. In the latter case, Karl Pearson (1900) had shown that inference could
be based on the goodness of fit statistic,

GFT (θ0) =

k
∑

i=1

[Ti − Th(i; θ0)]
2

Ti
(1.5)

where Ti is the frequency of outcomes in the ith group in a sample of size T .
Pearson (1900) showed that this statistic was approximately distributed χ2

k−1

under the null hypothesis.8 Neyman and Pearson (1928) recognized that if θ0 is
unknown then the goodness of fit statistic can provide the basis for estimation
of θ0 as well as inference about the null hypothesis. Their idea was to estimate
θ0 by θ̂T , the value of θ which minimizes the goodness of fit statistic.9 In view
of Pearson’s (1900) aforementioned distributional result, Neyman and Pearson

7 Jerzy Neyman (1894–1981) was born in Russia but came from a Polish family. Egon
S. Pearson (1895–1980) was the son of Karl Pearson. Their collaboration began in the mid-
1920s when Neyman held a post doctoral fellowship to study under Karl Pearson at University
College of London where Egon Pearson was also on the faculty. Apart from their seminal work
together, both made numerous other contributions to statistics including Neyman’s work on
the theory of survey sampling, estimation by confidence sets and best asymptotically normal
estimators, and Pearson’s work on quality control and operations research.

8 Notice that the degree of freedom of the distribution is only k − 1 and not k because
once the frequencies in k − 1 groups are known then the frequency in the kth group is auto-
matically determined by Tk = T −

∑k−1
i=1 Ti.

9 This insight was not completely new even in 1928. Smith (1916) discussed the idea of
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(1928) refered to θ̂T as a “Minimum Chi-Square estimator”. Furthermore, they

showed that under the null hypothesis in (1.4), GFT (θ̂T ) is approximately dis-
tributed χ2 with k − 1 − p degrees of freedom where p denotes the dimension of
θ0.

At first glance, it may not be readily apparent that there is any connection
between the estimation problem considered by Neyman and Pearson (1928) and
the problem of how to estimate (µ0, σ

2
0) based on the first three moments of the

normal distribution. However, both problems actually have the same underlying
structure. To uncover this connection, it is necessary to view Neyman and
Pearson’s (1928) method from a slightly different perspective. To develop this
new interpretation, it is necessary to rewrite the goodness of fit statistic and
introduce a set of indicator variables. First, note the goodness of fit statistic
can be written as

GFT (θ0) = T

k
∑

i=1

[p̂i − h(i; θ0)]
2

p̂i
(1.6)

where p̂i = Ti/T , the relative frequency in the sample of outcomes in the ith

group. Now consider the set of indicator variables {Dt(i); i = 1, 2, . . . k; t =
1, 2, . . . T} which take the value one if the tth outcome of the experiment lies in
the ith group and takes the value zero otherwise. Notice that if (1.4) is true then
it follows that P (Dt(i) = 1) = h(i; θ0), and hence that E[Dt(i)] = h(i; θ0). So,
using these indicator variables, it can be seen that (1.4) implies the following
vector of k population moment conditions

E

⎡

⎢

⎢

⎢

⎢

⎣

Dt(1) − h(1; θ0)
Dt(2) − h(2; θ0)

.

.
Dt(k) − h(k; θ0)

⎤

⎥

⎥

⎥

⎥

⎦

= 0 (1.7)

Since
∑k

i=1{Dt(i) − h(i; θ0)} = 0 by definition, only k − 1 of the population
moment conditions actually provide unique information about θ0. However, we
retain all k to elicit the connection with the goodness of fit statistic. If k−1 ≥ p
– which we have assumed implicitly all along – then these population moment
equations can be used to estimate θ0. The sample analogs to (1.7) are given by

⎡

⎢

⎢

⎢

⎢

⎣

p̂1 − h(1; θ)
p̂2 − h(2; θ)

.

.
p̂k − h(k; θ)

⎤

⎥

⎥

⎥

⎥

⎦

= 0 (1.8)

choosing estimators to minimize the goodness of fit statistic. However, her focus was on trying
to uncover a sense in which Method of Moments estimators could be considered optimal. In
fact, she found that Method of Moments estimators gave a good approximation to the values
which minimized the goodness of fit statistic in the examples considered in her paper. This
finding may explain why this alternative method of estimation was not explored more fully
until twelve years later. See Bera and Bilias (2002) for further discussion of the origins of
Minimum Chi-Square.
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The elements on the left hand side of (1.8) can be recognized as the same
terms which appear inside the square in the numerator of the version of the
goodness of fit statistic in (1.6). We are now in a position to establish the
connection between Minimum Chi-Square estimation of θ0 and estimation based
on the population moment conditions in (1.7). First consider the case in which
there are as many unique moment conditions as unknown parameters, that is
k − 1 = p. By definition, the Method of Moments estimator, θ̂T say, satisfies
p̂i − h(i, θ̂T ) = 0 for i = 1, 2 . . . p.10 This property implies that GFT (θ̂T ) = 0,

and since GFT (θ) ≥ 0, it must follow that θ̂T also minimizes GFT (θ). So
if k − 1 = p then the Minimum Chi-Square estimator is just the Method of
Moments estimator based on (1.7). Now consider the case in which there are
more unique moment conditions than parameters, that is k−1 > p. In this case,
the principle of Method of Moments estimation does not work, but Minimum
Chi-Square is still valid. The key difference is that Method of Moments is defined
as the solution to a set of moment conditions and this solution only exists if
k − 1 = p, whereas Minimum Chi-Square is defined in terms of a minimization,
which can be performed for any k − 1 ≥ p. This suggests that to estimate
(µ0, σ

2
0) from the first three moments of the normal distribution, it is necessary

to formulate the estimation in terms of a minimization. To implement such
a strategy, it is necessary to specify an appropriate minimand. Once again,
Minimum Chi-Square provides the answer. It is easily verified that

GFT (θ) = T

⎡

⎢

⎢

⎢

⎢

⎣

p̂1 − h(1; θ)
p̂2 − h(2; θ)

.

.
p̂k − h(k; θ)

⎤

⎥

⎥

⎥

⎥

⎦

′ ⎡

⎢

⎢

⎢

⎢

⎣

p̂−1
1 0 . . 0
0 p̂−1

2 . . 0
. . . . .
. . . . .
0 0 . . p̂−1

k

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

p̂1 − h(1; θ)
p̂2 − h(2; θ)

.

.
p̂k − h(k; θ)

⎤

⎥

⎥

⎥

⎥

⎦

(1.9)
and so GFT (θ) can be interpreted as a quadratic form in the sample moment
condition (1.8). Notice that the matrix in the centre of (1.9) is positive defi-
nite11 by construction and so ensures that GFT (θ) ≥ 0. This structure leads to
the following intuitively appealing interpretation of the Minimum Chi-Square
estimator: it is the value of θ which is closest to solving the sample moment
conditions in the metric of GFT (θ).

It takes only a little reflection to realize that the same approach can be
applied to the estimation of any problem in which there are more moments
than parameters to be estimated. To illustrate how, let us return to estimation
of (µ0, σ

2
0) based on (1.1)-(1.3). For this problem, the minimand takes the form

MCT (µ, σ2) =

⎡

⎣

mv(1) − µ
mv(2) − (σ2 + µ2)

mv(3) − 3mv(2)µ + 3mv(1)µ2 − µ3

⎤

⎦

′

MT ×

10 Note that we can obtain θ̂T by solving any k − 1 of the sample moment conditions
in (1.8), and that the estimator must satisfy the remaining sample moment condition be-

cause
∑k

i=1{p̂i − h(i; θ̂T )} = 0 by construction.
11 The goodness of fit statistic is undefined unless p̂i > 0 for all i.
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⎡

⎣

mv(1) − µ
mv(2) − (σ2 + µ2)

mv(3) − 3mv(2)µ + 3mv(1)µ2 − µ3

⎤

⎦ (1.10)

where MT is a positive definite matrix which may depend on T , and mv(i) =

T−1
∑T

t=1 vi
t. Notice that this minimand embodies two modifications of (1.9)

beyond the choice of sample moments. First, the scaling factor, T , has been
omitted, because it has no impact on the minimization. Secondly, we have not
specified an exact form for the matrix in the quadratic form; it can be any
positive definite matrix. The Minimum Chi-Square estimators of (µ0, σ

2
0) are

the values of (µ, σ2) which minimize MCT (µ, σ2).

This connection between Minimum Chi-Square and moment based estima-
tion seems to have been made first during the late 1940s and the 1950s. It was
certainly at this time that researchers began to realize the potential generality
of the method, although their perspective was limited inevitably by the com-
putational constraints of that time. Ferguson (1958) developed the statistical
theory for the estimator in the case where the population moment condition
takes the form E[g(vt)] − h(θ) = 0 and vt is an i.i.d. process.12 However,
for some reason, his contribution appears not to have impacted on economet-
rics – perhaps because the functional form of the moment condition was not
particularly appropriate for econometric applications of that time. However,
with hindsight, it can be recognized that the statistical framework developed by
Ferguson (1958) contains many of the elements which reappeared in the GMM
literature twenty-five years later albeit in a far more general context.

The third important antecedent of GMM is the method of Instrumental Vari-
ables (IV) estimation. Unlike Method of Moments and Minimum Chi-Square,
IV was specifically developed to exploit the information in moment conditions
for the estimation of structural economic models. This method appears to have
been first applied in an analysis of demand and supply of agricultural commodi-
ties in the 1920s. In both an U.S. Department of Agriculture Bulletin (Wright,
1925), and also in the appendix to his father’s book, The Tariff on Animal and
Vegetable Oils (Wright 1928), Sewall Wright showed how Method of Moments
could be used to estimate the parameters of supply and demand equations.13

He presented these estimators using a technique known as “Path Analysis”, but
it is most convenient to adopt an alternative approach which has become the
standard derivation in econometric textbooks. To illustrate we consider the sys-
tem of equations

12 Ferguson (1958) also considers a number of variations on this estimation problem, some
of which had been analyzed earlier by Barankin and Gurland (1951). Also see Neyman (1949).

13 Sewall Wright (1889–1988) was an American who is best known for his work on popu-
lation genetics. Following his position at the USDA, he became Professor of Zoology at the
University of Chicago and is considered to be of the three founders of modern theoretical
population genetics.
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qD
t = α0pt + uD

t

qS
t = β

′

0,1nt + β0,2pt + uS
t

qD
t = qS

t = qt

(1.11)

where qD
t , qS

t represent demand and supply in year t, pt is the price of the
commodity in that year and nt is a vector containing factors that affect supply.
The market is assumed to clear and the total quantity produced is denoted qt.
For our purposes here, it suffices to consider the problem of how to estimate
α0 given a sample of T observations on qt and pt. An Ordinary Least Squares
(OLS) regression of qt on pt runs into problems here because price and out-
put are simultaneously determined and this causes OLS estimates to be biased,
e.g. see Judge, Griffiths, Hill, Lutkepohl, and Lee (1985, p.570). Sewall Wright
solved these problems as follows. Suppose there is an observable variable zD

t

which is related to price but whose covariance with uD
t , Cov[zD

t , uD
t ], is zero.

An example would be any of the factors that affect supply, such as an input
price or yield per acre. Then by taking the covariance of zD

t with both sides of
the demand equation in (1.11) it follows that

Cov[zD
t , qt] − α0Cov[zD

t , pt] = 0 (1.12)

It is convenient to simplify this moment condition using other properties of the
model. Typically, it is assumed that E[uD

t ] = 0 and so E[qt] = α0E[pt]. Using
this identity in (1.12), the moment condition can be rewritten as14

E[zD
t qt] − α0E[zD

t pt] = 0 (1.13)

Equation (1.13) provides a population moment condition involving the observ-
able variables and the unknown parameter, α0, which can be used as a basis
for estimation. Pearson’s Method of Moments principle leads to the estimation
of the parameters by the values which solve the analogous sample moments,
namely

α̂T =

T
∑

t=1

zD
t qt/

T
∑

t=1

zD
t pt (1.14)

This equation can be recognized as what is known today as an Instrumental
Variables estimator with zD

t being refered to as the “instrument”. However this
term was not coined until the 1940s when IV was rediscovered and came to stay
in econometrics. In fact, Wright’s work was largely ignored by economists until
Goldberger (1970) returned it to its rightful place in the history of econometrics.

A similar Method of Moments reasoning was used in the 1940s. However,
this time, IV was proposed as a solution for the problems caused by errors in
variables. To illustrate, consider the case in which

yt = γ0x
0
t + u1,t (1.15)

14 Recall that for any two random variables a and b, Cov[a, b] = E[ab] − E[a]E[b].



1.2 Population Moment Conditions 13

but x0
t is only observed with error,

xt = x0
t + u2,t

Since the regressor is unobserved, equation (1.15) cannot be estimated directly.
Instead inference is based on

yt = γ0xt + ut (1.16)

Ordinary Least Squares estimation of (1.16) is biased because xt and ut =
u1,t − γ0u2,t are correlated; e.g. see Judge, Griffiths, Hill, Lutkepohl, and Lee
(1985, p.705–8). Reiersøl (1941) and Geary (1942, 1943) independently proposed
solving this problem by introducing a variable zt which is correlated with xt but
uncorrelated with ut.

15 Using the same intuition as Wright, Reierosol and Geary
deduced the moment condition

Cov[zt, yt] − γ0Cov[zt, xt] = 0

The Method of Moments estimation principle leads to the analogous formula to
(1.14) for the IV estimator of γ0.

Reiersøl (1945) introduced the term “instrumental variables” and Geary
(1949) derived certain statistical properties of the estimator in the context of the
errors in variables model. Durbin (1954) extended the method to simultaneous
equation models, and Sargan(1958, 1959) provided the first complete theoreti-
cal analyses of the estimator.16 Building from this basis, the IV framework has
become so developed that, prior to the introduction of GMM, it was typically
treated in econometrics as an estimation technique in its own right rather than
being perceived as an example of the Method of Moments.17 Within this lit-
erature on IV, Amemiya (1974) and Jorgenson and Laffont (1974) played an
important role in extending the method to nonlinear models, and the statistical
theory employed in these papers is an important precursor to the arguments
used to analyze the properties of GMM.

The above discussion has illustrated some of the problems to which mo-
ment based estimation has been applied. Over the years, considerable attention
has been focused on analyzing the properties of these estimators and various
associated inference techniques. However, this theory has tended to place re-
strictions on the functional form of the population moment condition. One of

15 See Morgan (1990, p.220–8) and Aldrich (1993) for more detailed discussions of the
emergence of IV in the 1940s. Olav Reiersøl (1908– ) is a Norwegian statistician who made
a number of important contributions to econometrics, most notably through his work on IV
and identification. He also contributed to other areas of statistics as well as genetics. Robert
(Roy) Geary (1896–1983) was an Irishman who worked as a government statistician in Dublin
for most of his career. Apart form his work in mathematical statistics, he is also known for
being one of the pioneers in the field of national income accounting.

16 See Arellano (2002) for an appraisal of the connection between Sargan’s work and GMM.
17 There are some exceptions. For instance, Burguette, Gallant, and Souza (1982) use the

term “Method of Moments” to denote a class of estimators of the parameters of nonlinear
static simultaneous equation model which includes IV estimators.
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the main contributions of GMM is to provide a framework for the statistical
analysis based on essentially any population moment condition. Accordingly, it
is necessary to adopt a broad definition of a population moment condition.

Definition 1.1 Population Moment Condition
Let θ0 be a vector of unknown parameters which are to be estimated, vt be a
vector of random variables and f(.) a vector of functions then a population
moment condition takes the form

E[f(vt, θ0)] = 0 (1.17)

for all t.

This definition encompasses the examples discussed above. For instance, the
moment condition in (1.1) can be obtained from (1.17) by putting

f(vt, θ) =

[

vt − µ0

v2
t − (σ2

0 + µ2
0)

]

where θ0 = (µ0, σ
2
0)′. Wright’s example in (1.13) is obtained by putting

f(vt, θ) = zD
t qt − α0z

D
t pt

where vt = (zD
t , qt, pt)

′ and θ0 = α0.
Just as in Minimum Chi-Square, GMM involves choosing parameter estima-

tors to minimize a quadratic form in a weighting matrix, WT , and the sample
moment T−1

∑T
t=1 f(vt, θ).

Definition 1.2 Generalized Method of Moments Estimator
The Generalized Method of Moments estimator based on (1.17) is the value of
θ which minimizes:

QT (θ) = T−1
T
∑

t=1

f(vt, θ)
′WT T−1

T
∑

t=1

f(vt, θ) (1.18)

where WT is a positive semi-definite matrix which may depend on the data but
converges in probability to a positive definite matrix of constants.

The restrictions on the weighting matrix are required to ensure that QT (θ)
is a meaningful measure of distance. Notice that the positive semi-definiteness
of WT ensures both that QT (θ) ≥ 0 for any θ, and also that QT (θ̂T ) = 0

if T−1
∑T

t=1 f(vt, θ̂T ) = 0. However, positive semi-definiteness leaves open the

possibility that QT (θ̂T ) is zero at a value of θ̂T which does not satisfy the sample
moment conditions. Since all our analysis is based on asymptotic theory, it is
only necessary to rule out this eventuality in the limit as T → ∞.

A comparison of (1.10) and (1.18) indicates that Minimum Chi-Square and
GMM are essentially the same method. With hindsight, it might be argued
that a new terminology was not really needed. However, Hansen (1982) refered
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to the estimator in Definition 1.2 as “Generalized Method of Moments”, and
that is the name by which the method is known in econometrics.18 We shall,
therefore, follow this practice.

The next section presents five examples of moment conditions from models
in Table 1.1. These models have been carefully selected because they provide
convenient illustrations of many of the issues discussed in this book. Here,
the focus is on showing how the population moment conditions arise and the
potential problems encountered with maximum likelihood estimation in these
models.

1.3 Five Examples of Moment Conditions in

Economic Models

1.3.1 Consumption-Based Asset Pricing Model

The consumption-based asset pricing model is used by financial economists to
explain how assets are priced and by macroeconomists to explain the evolution
of consumption spending. To see how this can be done, it is necessary first
to present the model formally and derive the population moment conditions
which are the basis for GMM estimation. The ultimate aim of the model is
to explain aggregate movements. This is done using a framework in which
aggregate outcomes are assumed to be the result of the decisions made by a single
“representative” agent. This representative agent approach is certainly open to
criticism, e.g. see Kirman (1992), but nevertheless has received considerable
attention in the literature. The general theoretical structure was first developed
by Lucas (1978). However, Hansen and Singleton (1982) were first to highlight
and exploit the potential of GMM in these types of models.

Consider the case where a representative agent makes decisions about con-
sumption expenditures and investment to maximize his/her expected discounted
utility

E[

∞
∑

i=0

δi
0U(ct+i)|Ωt]

where ct is consumption in period t, U(.) is a strictly concave utility function,
δ0 is a constant discount factor and Ωt is the information set available to the
agent at time t. In any period the agent can choose to spend his/her income
on either goods for consumption or investments in a collection of N assets with
maturities mj , j = 1, 2, . . . N . Let qj,t be the quantity of asset j held at the end

18 In fact, this terminology originates from a set of unpublished lecture notes produced
by Christopher Sims for his graduate econometrics course at the University of Minnesota.
Interestingly, Sims used the term to denote an estimator which is obtained by solving a linear
combination of moment conditions rather than via the minimization in Definition 1.2. Hansen
developed certain statistical results for Sim’s estimator as part of his Ph.D. thesis submitted
to the University of Minnesota in 1978. Hansen and Sims provide interesting background on
the genesis of the method in interviews published in the October 2002 issue of the Journal of

Business and Economic Statistics.
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of period t, pj,t be the price of asset j at time t, rj,t be the period t payoff from
a unit of the jth asset purchased in period t−mj , and wt be real labour income
in period t. All prices are denominated in terms of the consumption good.19

The budget constraint is

ct +

N
∑

j=1

pj,tqj,t =

N
∑

j=1

rj,tqj,t−mj
+ wt

for all t. The optimal path of consumption and investment satisfies

pj,tU
′(ct) = δ

mj

0 E[rj,t+mj
U ′(ct+mj

)|Ωt] (1.19)

for all t and j = 1, 2, . . . , N , where U ′(c) denotes the marginal utility of con-
sumption. This condition states that the utility lost by foregoing consumption
in period t to purchase a unit of asset j, pj,tU

′(ct), must equal the value in period
t of the expected utility gained from consuming the return on the investment in
period t + mj , δ

mj

0 E[rj,t+mj
U ′(ct+mj

)|Ωt]. Equation (1.19) can be rewritten as

E[δ
mj

0 (rj,t+mj
/pj,t){U ′(ct+mj

)/U ′(ct)}|Ωt] − 1 = 0 (1.20)

for j=1,2,...N. Equation (1.20) is refered to as the Euler equation of the system,
after the mathematician Leonhard Euler (1707–83) who derived an analogous
equation to characterize the solution path in the calculus of variations problem.
The Euler equation places a restriction on the co-movements of consumption and
asset prices and so can be used by macroeconomists and financial economists to
learn about these variables.

So far, the analysis has been in terms of a general utility function, but to
make (1.20) operational it is necessary to specify a particular functional form.
At this stage it is most convenient to follow Hansen and Singleton (1982) and
define

U(ct) =
cγ0

t − 1

γ0
(1.21)

The parameter γ0 must be less than one for the utility function to be concave.
This functional form is known as the constant relative risk aversion (CRRA)
utility function because the relative risk aversion of the representative agent is
(1 − γ0) at any level of consumption. Differentiating (1.21) and making the
appropriate substitutions into (1.20), the Euler equation becomes

E[δ
mj

0 (rj,t+mj
/pj,t)(ct+mj

/ct)
γ0−1|Ωt] − 1 = 0 (1.22)

Clearly with this specification there are two parameters to be estimated, namely
(γ0, δ0). Taking unconditional expectations of the Euler equation provides one
population moment condition involving these parameters, but, in fact, (1.22)
implies many more moment conditions. If we set

uj,t(γ0, δ0) = δ
mj

0 (rj,t+mj
/pj,t)(ct+mj

/ct)
γ0−1 − 1

19 In other words, pjt is the price of the asset in dollars divided by the price of the con-
sumption good in dollars.
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then an iterated conditional expectations argument can be used in conjunction
with the Euler condition in (1.22) to show that

E[uj,t(γ0, δ0) zt] = E [ E[uj,t(γ0, δ0) |Ωt] zt] = 0 (1.23)

for any vector zt ∈ Ωt. In this context, zt might include a constant, which
amounts to taking the unconditional expectation of the Euler equation, and vari-
ables such as rj,t/pj,t−mj

, ct/ct−mj
or indeed any other macroeconomic variables

contained in the representative agent’s information set. The moment conditions
in (1.23) provide the basis for GMM estimation of the parameters (γ0, δ0).

In contrast, Maximum Likelihood estimation would involve specifying the
conditional distribution for {(rj,t+mj

/pj,t, ct+mj
/ct); j = 1, 2, . . . N} and maxi-

mizing the likelihood subject to the constraint in (1.22) for each t. The latter
would involve numerical integration in most cases and is consequently computa-
tionally very burdensome.20 Furthermore, due to the inherent nonlinearlity of
the model, Hansen and Singleton (1982) show that MLE is unlikely to yield un-
biased inferences unless the distribution its correctly specified.21 The potential
for this bias can be reduced by using a flexible functional form which is capable
of approximating a wide class of probability density functions; e.g. see Gallant
and Tauchen (1989). However this further adds to the computational burden.

1.3.2 Evaluation of Mutual Fund Performance

Mutual funds consist of a portfolio of financial assets administered by a fund
manager.22 The role of the manager is to vary the composition of this portfolio
in response to any relevant economic or financial information to meet some spec-
ified criterion. An investor can purchase shares in the fund and thereby acquire
an asset whose rate of return is that of the portfolio. The incentive for invest-
ing in the fund stems from the ability of the manager to acquire and efficiently
process market information. However, in practice managers may misread their
information or simply be the victims of unpredictable events. In this case the
average investor may have received a better return by constructing his/her own
portfolio based on a more restricted information set. Naturally there is consider-
able interest in identifying which funds have yielded superior returns compared
to some suitably chosen benchmark. This topic received some attention in the
1970s, but interest has increased recently in response to the massive growth in
assets managed by such funds in the U.S. In this section we describe a measure
of fund performance proposed by Chen and Knez (1996). These authors actu-
ally propose a number of related measures but at this time it is sufficient to
focus on the simplest because it illustrates how the moment condition arises.

20 One exception is the model studied by Hansen and Singleton (1983). They estimate
the CRRA model described above by Maximum Likelihood under the assumption that
({rj,t+mj

/pj,t}, ct+mj
/ct) have a lognormal distribution.

21 See Section 3.8.
22 In practice funds may be administered by a team of managers, but for expositional

convenience we refer to a single manager.
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To begin with, it is useful to review two very fundamental results from
finance. The “Law of One Price” states that any two investments with the
same payoff in every state of the world must have the same price (e.g. see
Ingersoll, 1987, p.59). The second fundamental result is deduced from this law.
Chamberlain and Rothschild (1983) show that the Law of One Price implies
a useful characterization of the relationship between the price and return of
a financial asset. To flesh out this asset pricing equation, it is necessary to
introduce some notation. Let Xt be a vector of (N × 1) payoffs on N traded
assets with nth element xn,t which is the time t return per time t − 1 dollar
invested in asset n. Notice that each payoff , xn,t, can be interpreted as an asset
with a price of $1. Chamberlain and Rothschild (1983) show that the Law of
One Price implies there exists a unique scalar random variable dt = X ′

tδ0 such
that

E[Xtdt] = 1N (1.24)

where 1N is a N × 1 vector of ones and δ0 is an N × 1 vector of constants. The
variable dt is known as the stochastic discount factor.23 As we shall see, this
asset pricing equation is central to Chen and Knez’s method.

To evaluate the performance of a mutual fund it is necessary to have some
benchmark. Since managers are essentially selling their ability to gather and
process information, it is natural to compare the fund’s return to that achievable
by an investor with no such information. This “uninformed” investor is taken
to be an individual who holds a constant composition portfolio and hence never
buys or sells assets in response to new information. Let the weights of this
portfolio be collected into an N × 1 vector α whose nth element is αn. The
return on such a passively held portfolio in period t is given by

Rt(α) =
N
∑

n=1

αnxn,t, for
N
∑

n=1

αn = 1 (1.25)

Notice the weights have been normalized to sum to one and so Rt(α) can be
interpreted as the payoff achievable from an initial investment of $1. Also, the
weight on xn,t can be positive indicating a long position in the asset or it can be
negative indicating a short position.24 In contrast to the uninformed investor,
the fund manager has the option of updating the composition of the fund’s
portfolio and this is reflected by making the weights in his/her portfolio time
dependent. Accordingly, the return on the fund is

rm
t =

N
∑

n=1

θn,txn,t, for

N
∑

n=1

θn,t = 1 (1.26)

23 It is also known as the “pricing operator” or the “pricing kernel”.
24 An investor holds a long position in an asset if he/she owns units of the asset. An investor

holds a short position in an asset if he/she has sold units of an asset that they did not own,
say by borrowing it from a broker, and must return the borrowed units at some point in the
future.
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where the superscript m represents “mutual fund”. Again the weights, {θn,t}
this time, sum to one and so rm

t represents the return on a $1 investment.
Clearly, the manager has the option to leave the weights unchanged over time.
However, if he/she follows this strategy then the fund does not increase the
opportunity set for investors. In this case, Chen and Knez argue the manager
has provided no service and so should receive a performance measure of zero.
Furthermore, they argue that the manager should receive the same evaluation
if he/she changes the weights of the fund’s portfolio but this only leads to a
return which could have been earned by some passively held portfolio over the
same period. A positive performance measure is only earned if the fund return
exceeds that on any passively held portfolio over the same period.

It is clearly desirable to identify which funds have positive performance mea-
sures. It turns out to be most convenient to address this issue by reversing the
question and seeking to identify funds with a zero performance measure. Chen
and Knez (1996) show that the fund has a zero performance measure relative
to the benchmark set of passively held portfolios in (1.25) if

λ(rm
t , dt) = E[rm

t X ′
tδ0] − 1 = 0 (1.27)

To assess whether (1.27) is true, an estimate of δ0 is needed. Chen and Knez
solve this problem by combining (1.24) and (1.27) into the augmented popula-
tion moment condition

E[QtX
′
tδ0] − 1N+1 = 0 (1.28)

where Qt = (X ′
t, r

m
t )′. These equations provide a basis for the estimation of δ0.

At first glance this appears to impose the very hypothesis that we wish to test.
However, (1.28) is a vector of N + 1 moment conditions in N parameters and
so the sample moments are not zero when evaluated at the estimated value of
δ0. As we shall see, this leaves scope for testing whether the data are actually
consistent with (1.28) and hence the hypothesis that the fund has a performance
measure of zero.

This problem could be approached using Maximum Likelihood estimation. It
would involve specifying the conditional distribution of Qt given the information
available at time t-1 and assessing whether the estimated distribution satisfied
the moment restriction in (1.27). However, this approach encounters both the
types of problem described in Section 1.1. First, it is necessary to make a
distributional assumption. A natural choice is normality but, unfortunately,
this is not appropriate for stock return data; see Richardson and Smith (1993).
To date there is no consensus on the appropriate choice; see Fama (1976, p.26)
and Bollerslev, Engle, and Nelson (1994) for discussions of common features of
the distribution of asset return data. Of course, unless the true distribution
is used there is no guarantee that MLE yields more precise estimators than
those obtained by GMM. Second, such estimation will involve significantly more
parameters than the N involved in Chen and Knez’s approach and so will be
more computationally intensive.
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1.3.3 Conditional Capital Asset Pricing Model

Harvey (1991) investigates whether the conditional Capital Asset Pricing Model
(conditional CAPM hereafter) can explain the differences in the average returns
across financial markets in industrialized countries. The original, or uncondi-
tional, CAPM is one of the main models in finance and has received a lot of
academic and non-academic attention; e.g. see Malkiel (1987). Its importance
stems from its provision of an explicit relationship between the expected rate
of return on an asset and the sytematic risk of holding that asset. In this con-
text risk is measured by the variance of the asset return and derives from two
sources. There is systematic risk which derives from the inherent uncertainties
in the macroeconomy and there is unsystematic risk which is specific to the
stock in question.25 Systematic risk is measured as the variance of the so-called
“market portfolio”. This portfolio consists of all the assets in the market and
so represents the most diversified portfolio it is possible to hold. By holding
a suitably large portfolio the investor can diversify away the unsystematic risk
and so he/she is only compensated for bearing the systematic risk in holding
an asset. Systematic risk is present in all risky assets but to different degrees
depending on the nature of the asset. Another attractive feature of CAPM is
that it provides a measure of the degree of the systematic risk present in an
asset; this measure is known as the investment beta.

One weakness of the original CAPM is its implicit assumption that the level
of systematic risk in an asset stays constant over time. Intuition suggests this
risk should vary in response to changes in the macroeconomy and decisions
made by the firm issuing the asset. This type of behaviour can be incorporated
into the theory and yields the conditional CAPM. To introduce the model it is
necessary to define first some notation. Let Ri,t be the return in period t on
investing $1 in the asset in question in period t − 1, Rm,t be the corresponding
return on investing $1 in the market portfolio in period t − 1 and Rf,t be the
return in period t from investing $1 in the the risk free asset in period t − 1.26

The excess returns on the asset and the market portfolio are defined respectively
as ri,t = Ri,t − Rf,t and rm,t = Rm,t − Rf,t. The conditional CAPM implies

E[ri,t|Ωt−1] = βi,tE[rm,t|Ωt−1] (1.29)

where the conditional investment beta is

βi,t = Cov[ri,t, rm,t|Ωt−1]/V ar[rm,t|Ωt−1] (1.30)

and E[.|Ωt−1], V ar[.|Ωt−1] and Cov[.|Ωt−1] denote respectively the expectation,
variance and covariance conditional on an information set Ωt−1.

27

We can now return to the specifics of Harvey’s (1991) study. He examines
whether the model in (1.29)–(1.30) can explain the variation in the returns

25 Systematic and unsystematic risk are also refered to as market and idiosyncratic risk
respectively.

26 A risk-free asset is one whose return is known at the time of purchase.
27 The original CAPM can be obtained from (1.29)–(1.30) by replacing the conditional

expectations, variance and covariance by their unconditional counterparts.
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across seventeen international stock markets. In this context ri,t becomes the
excess return on holding the market portfolio for country i. The variable rm,t

is the excess return from holding a “world market” portfolio that is weighted
combination of the returns on a variety of world-wide investments; see Harvey
(1991) for details. To make the model operational it is necessary to specify the
conditional means of the excess returns. To this end, let zt−1 be the vector of
relevant economic and financial variables contained in Ωt−1. Harvey assumes
that

E[ri,t|Ωt−1] = z′
t−1δi,0

E[rm,t|Ωt−1] = z′
t−1δm,0

(1.31)

where δm,0, {δi,0} are unknown vectors of constants. The parameters to be
estimated are δm,0 and {δi,0; i = 1, 2, ...17}. The estimation is based on two
types of moment conditions: those implied by the specification of the conditional
means, (1.31), and those implied by the conditional CAPM, (1.29)–(1.30). To
present the moment conditions it is convenient to define

ui,t = ri,t − z′
t−1δi,0

um,t = rm,t − z′
t−1δm,0

(1.32)

The first set of moments comes from using iterated conditional expectations and
E[ui,t|Ωt−1] = 0 to show that

E[ui,tzt−1] = E[E[ui,tzt−1|Ωt−1]] = E[E[ui,t|Ωt−1]zt−1]] = 0 (1.33)

Using a similar argument for um,t and substituting from (1.32) yields the mo-
ment conditions

E[(ri,t − z′
t−1δi,0)zt−1] = 0

E[(rm,t − z′
t−1δm,0)zt−1] = 0

(1.34)

for i=1,2,...,17. The second set of moment conditions comes directly from the
conditional CAPM structure. The substitution of (1.30) into (1.29) plus some
rearrangement yields

V ar[rm,t|Ωt−1]E[ri,t|Ωt−1] − Cov[ri,t, rm,t|Ωt−1]E[rm,t|Ωt−1] = 0 (1.35)

Employing a similar iterated conditional expectations argument as in (1.33) and
substituting from (1.31), it can be deduced that

E[{(rm,t − z′
t−1δm,0)

2z′
t−1δi,0 − (rm,t − z′

t−1δm,0) ×
(ri,t − z′

t−1δi,0)z
′
t−1δm,0}zt−1] = 0 (1.36)

for i=1,2,...17, which constitute the second set of moment conditions used in
estimation.

This model can be estimated by Maximum Likelihood but, again, this ap-
proach will encounter the problems mentioned in Section 1.1. The endogenous
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variables are rt = (r1,t, r2,t, ..., r17,t, rm,t)
′. To implement MLE the conditional

distribution for rt must be specified so that it satisfies both the conditional mean
specification in (1.31) and the relationship between the conditional means, con-
ditional variances and covariances in (1.35). Once again, the normal distribution
is a natural first choice, but just as in the mutual fund example, these asset re-
turns do not possess this distribution. Therefore, MLE under the assumption
of normality is not necessarily more precise than GMM although it should lead
to unbiased inferences provided the variances are correctly calculated.28 MLE
would be also slightly more computationally burdensome than GMM due to
the imposition on the likelihood of the restrictions between first and second
moments implied by the conditional CAPM.

1.3.4 Inventory Holdings by Firms

A firm can choose to use its output to meet current demand or hold it as in-
ventory. There is a considerable literature in macroeconomics which seeks to
explain the level of inventory holdings in the aggregate economy; e.g. see the
survey by Blinder and Maccini (1991). These studies typically proceed by mod-
elling the sales and inventories of a particular industry as if they are the outcome
of decisions made by a single representative firm. One popular line of theory is
based on the assumption that the representative firm uses inventories to smooth
production levels. Although intuitively reasonable, the production smoothing
model has had mixed success in explaining aggregate inventory behaviour; see
Blinder and Maccini (1991). One response to this evidence has been to argue
that firms smooth production costs and not levels. To test if either of these
hypotheses can explain the data it is desirable to perform inference within a
model which allows both types of behaviour. Eichenbaum (1989) presents such
a model and uses it to analyze the inventory holdings in a number of two digit
SIC industries in the U.S. This section outlines Eichenbaum’s model.

The representative firm is assumed to face two types of costs: production
costs and inventory holding costs. The production costs are assumed to be:

CQ,t = νtQt + (α0/2)Q2
t (1.37)

where Qt is the firm’s output at time t and νt is a random variable captur-
ing stochastic shocks to the marginal cost of production. Since νt is random,
marginal costs are a random function and so there is an incentive for holding
inventories to smooth production costs. However, if νt = 0 then marginal cost
is a deterministic function of output and so the only incentive for holding in-
ventories is to smooth the level of production. The constant α0 controls the
slope of the marginal cost schedule: if α0 is positive then the marginal costs
are increasing with output and if α0 is negative then the marginal costs are

28 If the distribution is misspecified then in general the information matrix identity does
not hold. This affects the formulae for the variances of the estimators; see White (1982) and
Section 3.8.
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decreasing with output. The inventory holding costs are assumed to be

CI,t = (δ0/2)(It − γ0St)
2 + (η0/2)I2

t (1.38)

where It, St are the inventories and sales of the firm at time t respectively.29 The
constants γ0, δ0 and, η0 are all nonnegative. The first term in (1.38) captures the
cost to the firm of inventories deviating from the desired fraction of sales, γ0St.
The second term in (1.38) captures the storage costs associated with holding
inventories. The combination of the production and inventory costs yields the
total cost function of the firm:

Ct = CQ,t + CI,t (1.39)

By definition, sales, inventories and production are fundamentally related
by: Qt = St +It −It−1. Using this identity Qt can be explicitly eliminated from
the model. Therefore, the firm is assumed to choose It+1 and St+1 to maximize
future discounted profits, denoted

E[

∞
∑

j=0

βj
0(pt+jSt+j − Ct+j)|Ωt] (1.40)

where pt is the price in period t of the good produced by the firm, β0 is the
discount factor and Ωt is the firm’s information set at time t.

To characterize the optimal path for inventories and sales it is necessary
to make some assumption about the random variable νt. Eichenbaum (1989)
assumes that

νt = ρ0νt−1 + ǫt (1.41)

where E[ǫt|Ωt−1] = 0, V ar[ǫt|Ωt−1] < ∞ and |ρ0| < 1. In this case the Euler
equation implies the following condition:

E[ht+2(ψ0) − ρ0ht+1(ψ0)|Ωt] = 0 (1.42)

where

ht+1(ψ0) = It+1 − {λ0 + (λ0β0)
−1}It + β−1

0 It−1 + St+1 − φ0β
−1
0 St (1.43)

and the parameters of the system are ρ0 and the cost function parameters ψ0 =
(λ0, β0, φ0)

′ where φ0 = (1 − δ0γ0/α0) and λ0 is a root from the second order
autoregressive polynomial governing the time series properties of the inventory
series; see Eichenbaum (1989) for details. Using a similar iterated expectations
argument as in (1.23), it can be shown that

E[{ht+2(ψ0) − ρ0ht+1(ψ0)}zt] = 0 (1.44)

29 Eichenbaum includes a term η1tIt where η1t is a parameter which depends on t. However
this parameter is argued to be eliminated by a data transformation prior to estimation. So
for expositional simplicity this parameter has been set to zero.



24 Introduction

for any vector zt ∈ Ωt. For example, Eichenbaum estimates the parameters
using the lagged values of inventories and sales, {St−i, It−i; i = 1, 2, . . . k}, in zt.

Maximum Likelihood would involve estimation of the bivariate vector autore-
gressive system for (St, It) subject to the nonlinear cross equation restrictions on
the parameters implied by the model. This is likely to be more computationally
burdensome with the exact degree depending on the choice of distribution. Un-
fortunately, economic theory provides no guidance on this choice. Once again,
unless the chosen distribution is correct then the resulting MLE’s are unlikely
to have the anticipated optimal properties.

1.3.5 Stochastic Volatility Models of Exchange Rates

The preceding models have all been developed from economic theory. In some
circumstances, it may be desired to capture the time series properties of an
economic variable using a purely statistical model. An example of such a model
would be the autoregressive integrated moving average (ARIMA) class devel-
oped by Box and Jenkins (1976). However, ARIMA models are not particularly
appropriate for many financial assets because they do not allow the conditional
variance to change over time. This has led to considerable interest in statistical
models which can capture this type of behaviour. The most prominent of these
models are the autoregressive conditional heteroscedasticity (ARCH) models
introduced by Engle (1982), which have been applied very widely in finance,
see the survey by Bollerslev, Chou, and Kroner (1992). More recently, a sec-
ond class is receiving considerable attention and these are known as stochastic
volatility models; see the survey by Ghysels, Harvey, and Renault (1996).

In this section we describe the stochastic volatility model used by Melino and
Turnbull (1990) to analyze daily exchange rates. The model has its origins in a
stochastic differential equation for the evolution of the exchange rate over time.
However, we focus directly on the discrete time stochastic process which is used
to approximate this underlying continuous time process. Let y(τ) denote the
exchange rate at time τ and assume that the exchange rate is observed at times
{τ1, τ2, . . . τT }. These observations are not at evenly spaced intervals because
there are days on which no trading occurs, such as weekends and holidays. To
accomodate these effects, it is useful to denote the distance between observations
by dt = τt − τt−1, and the minimum distance by d = mint(dt). The discrete
time approximation takes the form

y(τt) = α0dt + (1 + β0dt)y(τt−1)

+ x(τt−1)y(τt−1)
γ0/2d

1/2
t e(τt)

(1.45)

where the latent process x(τt) is generated by

ln[x(τt)] = δ0d + (1 + η0d)ln[x(τt − d)] + ζ0d
1/2u(τt) (1.46)

and
[

e(τt)
u(τt)

]

∼ IN

([

0
0

] [

1 ρ0

ρ0 1

])

(1.47)
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Given that the model includes a distributional assumption, it is natural to use
Maximum Likelihood. However, the evaluation of the conditional likelihood at
time t involves a T-dimensional numerical integration which is computationally
extremely burdensome – if not infeasible – on many currently available computer
systems. However the normality assumption implies various population moment
conditions which can form the basis of GMM estimation of the parameter vector
θ0 = (α0, β0, δ0, η0, ζ0, ρ0).

30 For example, Melino and Turnbull (1990) show
that the following population moment conditions hold:31

E[wt(θ0)] = 0

E[w2
t (θ0)] − exp[2µx + 2σ2

x] = 0

E[w3
t (θ0)] = 0

E[w4
t (θ0)] − 3exp[4µx + 8σ2

x] = 0

E[|wt(θ0)|] − (2/π)1/2exp[µx + 0.5σ2
x] = 0

E[|wt(θ0)|3] − 2(2/π)1/2exp[3µx + 4.5σ2
x] = 0

E[|wt(θ0)|wt(θ0)] = 0

E[wt(θ0)wt−j(θ0)] = 0

E[|wt(θ0)wt−j(θ0)|] − ℓ1,j(θ0) + ℓ2,j(θ0) = 0

E[|wt(θ0)|wt−j(θ0)] − mj(θ0) = 0

E[w2
t (θ0)w

2
t−j(θ0)] − nj(θ0) = 0

(1.48)

for j = 1, 2, . . . where

wt(θ0) =
y(τt) − α0dt − (1 + β0dt)y(τt−1)

[dt{y(τt−1)}γ0 ]1/2
(1.49)

and

ℓ1,j(θ0) = (2/π)1/2exp[2µx + σ2
x(1 + (1 + η0d)j) − 0.5ρ2

0ζ
2
0d(1 + η0d)2(j−1)]

ℓ2,j(θ0) = (2/π)1/2ρ0ζ0d
1/2(1 + η0d)j−1(1 − 2Φ(ρ0ζ0d

1/2(1 + η0d)j−1)

× exp[2µx + σ2
x(1 + (1 + η0d)j)]

mj(θ0) = (2/π)1/2ρ0ζ0d
1/2(1 + η0d)j−1exp[2µx + σ2

x(1 + (1 + η0d)j)]

nj(θ0) = {4ρ2
0ζ

2
0d(1 + η0d)2(j−1) + 1}exp[4µx + 4σ2

x(1 + (1 + η0d)j)]

µx = −δ0/η0

σ2
x = ζ2

0d/[1 − (1 + η0d)2]

and Φ(.) denotes the cumulative distribution function of a standard normal
random variable.

30 In their estimations, Melino and Turnbull (1990) fix the value of γ0 and so we omit this
term from θ0. See Section 9.4 for further discussion of this issue.

31 These expressions are not actually presented in the published version of Melino and
Turnbull’s paper but are contained in an unpublished appendix by Ken Vetzal which was
kindly sent to the author by Angelo Melino.
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1.4 Review of Statistical Theory

To develop the theory of GMM estimators it is necessary to appeal to various
statistical concepts and results. This section briefly reviews some basic ideas
which are used throughout the text; other results are explained as they be-
come needed. A more thorough review of these topics can be found in many
econometric or statistical texts such as Davidson and MacKinnon (1993), Fuller
(1976), Judge, Griffiths, Hill, Lutkepohl, and Lee (1985), and, for more rigorous
treatments, Davidson (1994) and White (1984). All the results are based on
asymptotic, or in other words, large sample theory. In the majority of our anal-
ysis, this type of analysis involves an examination of what happens to various
statistics as the sample size, T, tends to infinity. Asymptotic is the adjective
derived from “asymptote”, the noun for the line which acts as a limit for a
curve. According to the American Heritage Dictionary, asymptote comes from
the Greek “asumptotos” in which “a” means not, “sun” means together and,
“ptotos” means likely to fall. In spite of these unpromising origins, asymptotic
analysis is used to approximate the behaviour of statistics in large, but finite,
samples. An important secondary issue is the accuracy of this approximation
and this is discussed in detail in Chapter 6.

Before reviewing this theory, it is useful to emphasize an item of notation. In
the preceeding sections, it has been shown that statistical or economic models
imply a set of population moment conditions involving the parameters and the
data. It is important to realize that these moment conditions only hold at the
true value of the parameters. A zero subscript is used to emphasize the true
value of the parameter vector. This notation is neccessary to avoid ambiguity in
the formal discussion of statistical estimation. As we have seen in Section 1.2,
GMM estimation involves finding the value of the parameters which minimize
QT (θ) given in (1.18). Formally, this will involve considering the behaviour of
QT (θ) over a set of possible values for θ, known as the parameter space and
denoted Θ. The notation θ is reserved to refer to an arbitrary element of Θ.
As above, the notation θ̂T is used to denote the parameter estimator based on
a sample of size T . Both θ0 and θ̂T are individual elements of Θ.

The IV estimator in (1.14), α̂T , can be used to illustrate several key features
of asymptotic analysis of GMM estimators. It is of interest to analyze what
happens to α̂T as T → ∞ and for this we require the concept of convergence in
probability. This analysis is facilitated by analyzing the limiting behaviour of
the sums in the numerator and denominator separately using the Weak Law of
Large Numbers and then taking the ratio of these limits to deduce the limiting
behaviour of α̂T . This last step can be justified using Slutsky’s Theorem. In
particular, it is of interest to examine whether the estimator converges in prob-
ability to the true population value of that coefficient; if so, then it is said to be
consistent. For the purposes of constructing confidence intervals and hypothesis
tests about α0, it is necessary to find some transformation of α̂T which con-
verges in distribution to a known probability distribution. For our purposes the
appropriate transformation is T 1/2(α̂T − α0) and this statistic can be shown to
converge to a normal distribution as T → ∞ using the Central Limit Theorem.
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In the remainder of this section these and certain other statistical concepts are
defined more formally. It is most convenient to split the discussion into two
parts. The first part deals with the properties of random sequences such as
convergence in probability or distribution which can be discussed in abstract.
The second part deals with results such as the Weak Law of Large Numbers
and Central Limit Theorem for which it is neccessary to place restrictions on
the nature of the random variables in the model.

1.4.1 Properties of Random Sequences

To fix ideas, consider the case where the sequence is deterministic and so not
random. Let {hT ; T = 1, 2, . . .} be a sequence of real numbers. If this sequence
has a limit, h, then this is denoted by

lim
T→∞

hT = h

This implies that for every ǫ > 0 there is a positive, finite integer Tǫ such that

|hT − h| < ǫ for T > Tǫ (1.50)

Note (1.50) does not imply |hT − h| becomes monotonically smaller as T in-
creases. However, it does tell us that |hT − h| is smaller than ǫ for all T > Tǫ,
and so conveys a sense in which hT is becoming closer to h as T tends to infinity.
Often, it is useful to characterize the behaviour of a sequence with respect to
T regardless of whether it converges or not. This can be achieved using large
and small orders of magnitude. The sequence is said to be of large order of
magnitude cT if there exists a real number m such that |hT |/cT < m for all
T . This is denoted by hT = O(cT ). The sequence is said to be of small order
of magnitude cT if the limit of hT /cT is zero as T → ∞. This is denoted by
hT = o(cT ).

In these definitions, the deterministic nature of the sequence is reflected in
the way it can be stated with certainty that hT satisfies the property in question.
With sequences of random variables it is necessary to attach a probability to
such events occuring. This leads us to the concept of convergence in probability.
For notational convenience the results are also stated in terms of “hT ” but this
is now a random variable.

Definition 1.3 Convergence in Probability
The sequence of random variables {hT } converges in probability to the random
variable h if for all ǫ > 0

lim
T→∞

P [|hT − h| < ǫ] = 1

In this case h is known as the probability limit or plim of hT and is denoted by

plim hT = h or hT
p→ h.
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The definition of convergence in probability implies that for each ǫ > 0 there
exists a finite Tǫ such that the probability of |hT − h| < ǫ is arbitrarily close
to one for all T > Tǫ. So convergence in probability can be recognized as the
natural extension of the concept of of convergence for deterministic sequences.
The concepts of order of magnitude can be similarly extended to sequences of
random variables.

Definition 1.4 Orders in Probability

1. The sequence of random variables {hT } is said to be of large order in
probability cT if for every ǫ > 0 there exists positive real numbers mǫ and
Tǫ such that P [|hT |/cT > mǫ] ≤ ǫ for all T ≥ Tǫ. This is denoted by
hT = Op(cT ).

2. The sequence of random variables {hT } is said to be of small order in
probability cT if plim(hT /cT ) = 0. This is denoted by hT = op(cT ).

Both types of order in probability are very useful in asymptotic analysis because
they can be linked to consistency and convergence in distribution as will be
shown below. However, first it is necessary to extend the notion of convergence
in probability to vectors and matrices. A vector (or matrix), hT , is said to
converge in probability to h if the ith (or (i, j)th) element of hT converges in
probability to the ith (or (i, j)th) element of h for all i (or (i, j)). The extension
of orders in probability is a little more tricky because in general there is no
guarantee that all elements of a random vector or matrix are of the same order.
However, in the majority of our analysis this will be the case and so we use the
notation hT = Op(cT ) or hT = op(cT ) to indicate that all the elements of the
vector or matrix individually satisfy the stated order in probability.

In many cases, our analysis involves the probability limits of functions of
random vectors and so the following result is going to be very useful. For
convenience the result is stated in terms of random vectors; however, the same
result applies for random variables and random matrices.

Lemma 1.1 Slutsky’s Theorem32

Let {hT } be a sequence of random vectors which converges in probability to
the random vector h and let f(.) be a vector of continuous functions then
plimf(hT ) = f(h).

In many cases hT = θ̂T , a GMM estimator of some unknown parameter vector
θ0, and so it is of interest to characterize the limiting relationship between
estimator and estimand.

Definition 1.5 Consistency of an Estimator
Let {θ̂T } be a sequence of estimators of the unknown parameter vector of con-

stants θ0 then θ̂T is said to be a consistent estimator of θ0 if plim θ̂T = θ0.

32 This theorem is named after Evgenii Slutsky (1880–1948), a Russian mathematician
who first proved a version of this result. He made numerous other contributions to statistics
including early work which helped to lay the foundations of stationary time series theory. He
also made contributions to economics particularly in the area of demand analysis including
the eponymous Slutsky effect and Slutsky matrix.
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If plim θ̂T �= θ0 then the estimator is said to be inconsistent. Notice that the
consistency of θ̂T for θ0 implies θ̂T − θ0 = op(1). Consistency is a rather weak
property because it merely states that as T → ∞ the estimator converges in
probability to the true value. It is perfectly reasonable to question how much
comfort can be drawn from this property since it implies the true value is only
recovered in the limit. However, earlier it was observed that convergence also
implies a sense in which θ̂T becomes closer to θ0 as T increases. This is a more
intuitively appealing property; certainly we would be concerned if the estimator
is inconsistent and so not converging in probability to the true value!

Convergence in probability implies that the difference between θ̂T and θ0

disappears with probability one as T → ∞. Therefore in the limit θ̂T and θ0

are essentially identical. In deriving the asymptotic distribution of the GMM
estimator, it will be convenient to appeal to the weaker notion of convergence in
distribution. For this definition we revert to the more general notation because
this concept is not just applied to estimators in our analysis.

Definition 1.6 Convergence in Distribution
The sequence of random vectors {hT } with corresponding distribution functions
{FT (c)} converges in distribution to the random vector h with distribution func-
tion F (c) if and only if there exists Tǫ for every ǫ such that |FT (c) − F (c)| < ǫ

for T > Tǫ at all points of continuity {c}. This is denoted by hT
d→ h

The distribution of h is known as the limiting (or asymptotic) distribution of
hT . If hT converges in distribution then hT = Op(1). However, in practice,
our focus is not just on establishing that hT converges in distribution, but also
on characterizing the exact nature of its limiting distribution. We now turn to
various results which facilitate this type of analysis as well as the other aspects
of asymptotic behaviour described above.

1.4.2 Stationary Time Series, the Weak Law of Large Num-

bers and the Central Limit Theorem

The asymptotic theory in this book revolves around analyses of the limiting
behaviour of sums of random variables using the Weak Law of Large Numbers
and Central Limit Theorem. For these results to apply, it is necessary to place
restrictions on the nature of the random variables in the model. Various ap-
proaches can be taken but, throughout this book, we follow Hansen’s (1982)
original treatment involving stationary time series. In passing we note that this
assumption is employed in nearly all the studies listed in Table 1.1.33

Definition 1.7 Strictly Stationary Processes
Let N (T ) = {1, 2, . . . T} and {vt; t ∈N (T )} be a set of random vectors. Define
{t1, t2, . . . , tn} to be a subset of N (T ). The set of random vectors are said to

33 See Appendix A for a brief discussion of the GMM framework under alternative assump-
tions about the data generation process.
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be strictly stationary if the joint probability distribution function, F(.), of any
subset of {vt} satisfies:

F (vt1 , vt2 , . . . , vtn
) = F (vt1+c, vt2+c, . . . vtn+c)

for any integer n and integer constant c such that {t1 + c, t2 + c, . . . tn + c} is a
subset of N (T ).

One consequence of this definition is that all moments of the process are
constant over time, provided they exist. The imposition of strict stationarity
is insufficient by itself to permit the proof of Weak Law of Large Numbers and
the Central Limit Theorem. In addition restrictions need to be placed on the
dependence structure and certain higher moments of the series. Examples of
such conditions on the dependency are ergodicity or various types of mixing
condition. Both involve rather sophisticated mathematical ideas and so for the
present, we just add the caveat “subject to certain regularity conditions” in the
statement of the following results. However, we return to these conditions in
Chapter 3.

Lemma 1.2 Weak Law of Large Numbers (WLLN)
Let {vt; t = 1, 2, . . . , T} be a sequence of strictly stationary random vectors with
E[vt] = µ then subject to certain regularity conditions

T−1
T
∑

t=1

vt
p→ µ

Lemma 1.3 Central Limit Theorem (CLT)
Let {vt; t = 1, 2, . . . , T} be a sequence of strictly stationary (s×1) random vectors
with E[vt] = µ then subject to certain regularity conditions

T−1/2
T
∑

t=1

(vt − µ)
d→ N(0,Σ)

where N(0,Σ) denotes the s dimensional multivariate normal distribution with
mean 0 and positive definite covariance matrix

Σ = lim
T→∞

V ar[T−1/2
T
∑

t=1

(vt − µ)]

The matrix Σ is known as the long run covariance matrix of vt to distinguish it
from the the contemporaneous covariance matrix E[(vt − µ)(vt − µ)′].

To conclude this section, it is useful to present one final result which is
invoked frequently.34

34 This result is proved in Fuller (1976, p.199).
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Lemma 1.4 The Limiting Distribution of Random Linear Functions
of Vectors Converging to a Normal Distribution
Let {MT ; t = 1, 2 . . . , T} be a sequence of random matrices which converges in
probability to M , a matrix of constants, and {hT , ; t = 1, 2 . . . T} be a sequence
of random vectors which converges to a N(0,Σ) distribution then

MT hT
d→ N(0, MΣM ′)

1.5 Overview of Later Chapters

This chapter has provided the flavour of GMM and placed the technique in the
context of both the econometrics and statistics literatures. In the next chapter,
we introduce the key elements of the GMM framework using the IV estima-
tor in the static linear model. This approach keeps the technical details to a
minimum and allows the reader to appreciate more readily the main ideas and
intuitions. The issues addressed here are: identification; the asymptotic proper-
ties of the estimator; the iterated GMM estimator; and a decomposition of the
population moment conditions into identifying and over-identifying restrictions
which leads to the overidentifying restrictions test amongst other things. The
following chapters build from these foundations to present the GMM framework
for estimation and inference which encompasses the majority of the models in
Table 1.1.

Chapter 3 addresses GMM estimation and the asymptotic properties of the
estimator in correctly specified nonlinear dynamic models. The topics cov-
ered are: identification, calculation of the estimator by numerical optimization
routines, consistency, asymptotic normality, covariance matrix estimation and
iterated GMM estimators. Formal proofs are presented for the main statistical
results. However, the issues are also illustrated using the consumption based as-
set pricing model to provide guidance on the practical implementation of GMM
as well. All this discussion takes the data, parameter vector and population
moment condition as given. In some cases, the researcher may desire to impose
a normalization on any one of these three features. Therefore, the impact of
normalization is also discussed and this motivates a variant of GMM known as
the continuous updating estimator. This chapter concludes with a more formal
presentation of how many seemingly different estimators can be regarded as
special cases of GMM.

Chapter 4 explores the consequence of misspecification for the statistical
properties of the GMM estimator. Particular attention is focused on convergence
in probability of the estimator, covariance matrix estimation and the the limiting
distribution of the estimator. A comparison with the results in the previous
chapter reveals that misspecification has a fundamental impact on the large
sample behaviour of the GMM estimator and its associated statistics. These
differences motivate the use of the model specification tests.

Chapter 5 examines a wide variety of hypothesis tests which have been pro-
posed within the GMM framework. The main focus is on the following: the
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overidentifying restrictions test, tests for the validity of a subset of population
moment conditions, tests of whether the parameter vector satisfies a set of re-
strictions, and structural stability tests. However there is also some discussion
of Hausman-type tests, non-nested hypothesis tests and conditional moment
tests.

All the preceding analysis is based on asymptotic theory. Chapter 6 ex-
plores how well this theory approximates finite sample behaviour. If attention
is reduced to a very specific class of models then it is possible to examine this
question analytically. However, for more general specifications, it is necessary to
resort to computer based simulation studies. Both approaches are reviewed in
Chapter 6, and the results from each are synthesized to indicate what aspects of
the specification appear to effect the quality of the asymptotic approximation to
finite sample behaviour. This chapter begins with a discussion of the available
asymptotic results on the consequences of increasing the number of the moment
conditions upon which the estimation is based.

The asymptotic theory in Chapters 3 and 5 takes the population moment
condition as given. However, the evidence reviewed in Chapter 6 indicates
that the quality of the asymptotic approximation can be sensitive to the choice
of moment condition. Chapter 7 reviews the literature on moment selection.
The discussion falls into two parts. The first part summarizes available results
on the optimal choice of instrument in the special case of GMM known as
generalized instrumental variables (GIV). The second part describes a number
of information criteria that have been proposed as a basis for moment selection.

In the face of evidence that the asymptotic theory from Chapters 3 and 5 can
provide a poor approximation, it is natural to seek alternative approximations
that permit more reliable inference. Three such approximations are reviewed in
Chapter 8. These are: the use of the bootstrap, an asymptotic theory derived
under the assumption that the population moment condition provides weak
identification, and an asymptotic theory for the case in which the long run
variance is estimated by a class of estimators that are random in the limit.

All the methods and issues described above are illustrated empirically using
the consumption based asset pricing model in Section 1.3.1. Chapter 9 presents
empirical results for the other four examples in Section 1.3 that illustrate various
aspects of the GMM inference framework.

Finally, Chapter 10 briefly reviews some other estimation techniques that
are closely related to GMM. These are Simulated Method of Moments, Indirect
Inference, Efficient Method of Moments and the method of Empirical Likelihood.



2

The Instrumental Variable

Estimator in the Linear

Regression Model

One of the main advantages of GMM is that it can be used to perform inference
about the parameters in nonlinear dynamic models. However, as might be
anticipated, both nonlinearity and dynamics create a number of technical issues
which need to be addressed in the statistical analysis. These issues can obscure
the essential structure of the method for those readers less familiar with this
type of analysis. Therefore, in this chapter, we introduce the key elements of
the GMM framework using the IV estimator in the static linear model. This
approach enables us to keep the technical details to a minimum and allows the
reader to appreciate more readily the main ideas and intuitions. Those readers
already familiar with the basic GMM framework may prefer to pass over this
chapter.

Section 2.1 specifies the model and discusses the connections between the
population moment condition and the condition for parameter identification.
Section 2.2 derives the estimator and describes a fundamental decomposition of
the population moment condition into “identifying” and “overidentifying” re-
strictions. Section 2.3 considers the asymptotic properties of the estimator and
the estimated sample moment. In the course of this discussion, it emerges that
a consistent estimator of the long run variance of the sample moment is required
for inference procedures based on the parameters or estimated moments. There-
fore, Section 2.3 also contains a brief discussion of how such a covariance matrix
estimator can be constructed in this simple model. Section 2.4 examines the
optimal way in which to use the information in the population moment condi-
tions, and introduces the “two step” and iterated GMM estimators. Section 2.5
discusses the consequences of specification error, and introduces the overiden-
tifying restrictions test statistic which is the standard diagnostic for the model

33
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specification within the GMM framework. Section 2.6 contains a summary of
the chapter.

2.1 The Population Moment Condition and

Parameter Identification

Consider the linear regression model

yt = x′
tθ0 + ut, t = 1, 2, . . . T (2.1)

in which xt is a (p×1) vector of observed explanatory variables for the observed
variable yt, and ut is the unobserved error term. The (p × 1) vector θ0 is an
element of the parameter space, Θ, a subset of the p-dimensional Euclidean
space ℜp. The instruments are contained in the (q × 1) vector zt. To facilitate
the discussion, it is useful to define: ut(θ) = yt − x′

tθ. Notice that ut(θ0) = ut.
As the analysis progresses, certain restrictions need to be placed on the variables
but these will only be imposed as they become necessary to emphasize their role.
At this stage, we only require the following.

Assumption 2.1 Strict Stationarity
The random vector vt = (x′

t, z
′
t, ut)

′ is a strictly stationary process.

This assumption implies that any population moments of vt are independent of
t.

Estimation of θ0 is based on the following population moment condition.

Assumption 2.2 Population Moment Condition
The (q × 1) vector zt satisfies: E[ztut(θ0)] = 0.

This type of condition is sometimes refered to as an “orthogonality condition”
because it states that zt is statistically orthogonal to ut. At this stage, it may be
useful to relate this structure back to one of the models encountered in Chapter
1.

Example: Wright’s (1925) Demand Equation
It can be recalled from Section 1.2 that Wright (1925) proposed IV as a method
for estimating the parameters of demand and supply equations. His original
derivation was based on the Method of Moments principle and so its implemen-
tation only required the researcher to find one instrument zD

t which satisfied the
moment condition in (1.13). Two candidates were suggested: an input price,
now denoted zD

1t, and yield per acre, zD
2t. However, rather than choose between

these two instruments arbitrarily, intuition suggests that a far more appealing
strategy is to base estimation on both. This leads to the (2 × 1) population
moment condition

E[zt(qt − α0pt)] = 0
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where zt = (zD
1t, z

D
2t)

′. It can be recognized that this population moment condi-
tion fits within the framework of Assumption 2.2 once qt, pt and α0 are substi-
tuted for yt, xt and θ0 respectively in (2.1). ⋄

While Assumption 2.2 specifies the information upon which estimation is
based, the resulting estimation is only going to be successful if this population
moment condition provides enough information to determine θ0 uniquely. In
reality, this is not guaranteed to be the case. The parameter vector θ0 is only
uniquely determined by the moment condition if E[ztut(θ)] �= 0 at all other
values of θ. In this case θ0 is said to be identified by the population moment
condition. This condition is easily stated but, in this form, provides little guid-
ance about the circumstances under which it holds. Fortunately, it is possible to
obtain a more transparent version. With some simple rearrangement, it follows
that

E[ztut(θ)] = E[ztut(θ0)] + E[ztx
′
t](θ0 − θ) (2.2)

and this combined with the population moment condition implies

E[ztut(θ)] = E[ztx
′
t](θ0 − θ) (2.3)

Therefore θ0 is identified if E[ztx
′
t](θ0 − θ) �= 0 for all θ �= θ0. Equation (2.3)

is a system of linear equations in θ0 − θ and so this property is guaranteed if
the rank of E[ztx

′
t] is p; for example see Strang (1988, p.96). This gives the

following condition for identification.

Assumption 2.3 Identification Condition
rank{E[ztx

′
t]} = p.

The population moment and identification conditions provide the essential
information upon which estimation of θ0 is based. In view of its fundamental
importance, it is worth briefly pausing to reflect on the exact nature of this
information. Assumptions 2.2 and 2.3 imply there is a unique value in the
parameter space at which E[ztut(θ)] equals zero. In our discussion we have
denoted this value by θ0 – however, nothing has been said about this value
beyond its uniqueness.

Before proceeding to define the GMM estimator, it is worth briefly con-
sidering how parameter identification can fail. There are two basic scenarios.
First, failure can occur because there are fewer moment conditions than param-
eters. In terms of the mathematics, this implies that rank(E[ztx

′
t]) ≤ q < p.

Intuitively, the problem here is that it is impossible to extract the p pieces of in-
formation needed to determine θ0 uniquely from less than p population moment
conditions. Secondly, failure can occur even when q ≥ p because collectively
the population moment conditions still do not provide enough information to
uniquely determine θ0. This second scenario is best understood by considering
a simple example. Suppose p = q = 2; let xt = (x1,t, x2,t)

′, zt = (z1,t, z2,t)
′ and

θi, θ0,i denote the ith elements of θ, θ0 respectively. In this case,

E[ztut(θ)] =

[

E[z1,tx1,t] E[z1,tx2,t]
E[z2,tx1,t] E[z2,tx2,t]

] [

θ0,1 − θ1

θ0,2 − θ2

]

(2.4)
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For this model, identification requires the rank of E[ztx
′
t] to be two. Failure

can occur because either E[ztx
′
t] contains a row of zeros or because the first row

is a multiple of the second. Each of these can be interpreted in terms of the
statistical model as follows.

• Case 1: E[ztx
′
t] contains a row of zeros

Suppose E[z1,tx
′
t] = (0, 0) and E[z2,tx

′
t] = (m1, m2). In this case E[z1,t

ut(θ)] = 0 regardless of the value of θ0−θ, and so it provides no information
on θ0. The other moment condition provides some information but not
enough to uniquely determine θ0. For example if mi �= 0 for i = 1, 2 then
E[z2,tut(θ)] = 0 for any θ0 − θ of the form (c,−m1c/m2). Identification
fails because an insufficient number of elements of E[ztut(θ0)] = 0 provide
information about θ0.

• Case 2: One row of E[ztx
′
t] is a multiple of the other

Suppose E[z1,tx
′
t] = kE[z2,tx

′
t] = (m1, m2) for some constant k and for

the sake of argument mi �= 0 for i = 1, 2. In this case E[ztut(θ)] = (0, 0)′

for any θ0−θ of the form (c,−m1c/m2) and, once again, θ0 is not uniquely
determined by the population moment condition. So identification fails
because both elements of E[ztut(θ0)] = 0 provide exactly the same infor-
mation about θ0.

From this discussion, it is clear that parameter identification and the rela-
tionship between p and q are important. It is therefore useful to introduce the
following terminology. If the identification condition fails then the parameter
vector θ0 is said to be under-identified (or unidentified) by the population mo-
ment condition. If the parameters are identified and q = p then the parameters
are said to be just-identified by the population moment condition. Notice in this
case there are just p sources of the p pieces of information needed to identify
θ0. Finally, if the parameters are identified and q > p then θ0 is said to be
over-identified by the population moment condition. In this case there are more
than p sources of the p pieces of information needed to identify θ0.

For the remainder of this chapter, it is assumed that the parameters are
either just- or over-identified. In Section 8.2, we examine the kind of problems
which can occur if the parameters are under-identified or close to being so, a
scenario termed “weak identification”.

2.2 The Estimator and a Fundamental

Decomposition

Section 1.2 introduced the generic definition of the GMM estimator. To spe-
cialize this definition to our current context, it is most convenient to work with
matrix notation rather than summations. Therefore we start by introducing the
following definitions. Let y be the (T × 1) vector whose tth element is yt; X
be the (T × p) matrix whose tth row is x′

t; Z be the (T × q) matrix whose tth

row is z′
t; u be the (T × 1) vector whose tth element is ut; and u(θ) = y − Xθ.
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Using this notation to make the appropriate substitutions into (1.18), the GMM
minimand for this model is:

QT (θ) = {T−1u(θ)′Z}WT {T−1Z ′u(θ)} (2.5)

Following Definition 1.2, the GMM estimator of θ0 is defined as

θ̂T = argminθ∈Θ QT (θ) (2.6)

where the notation “argmin” is a mathematical shorthand for the value of the
argument – θ – which minimizes the function – QT (θ). Since,

QT (θ) = T−2{y′ZWT Z ′y + θ′X ′ZWT Z ′Xθ − 2y′ZWT Z ′Xθ}
the first order conditions for the minimization in (2.6) are1

(T−1X ′Z)WT (T−1Z ′y) = (T−1X ′Z)WT (T−1Z ′X)θ̂T (2.7)

So provided (T−1X ′Z)WT (T−1Z ′X) is nonsingular, the estimator is given by

θ̂T = {(T−1X ′Z)WT (T−1Z ′X)}−1(T−1X ′Z)WT (T−1Z ′y) (2.8)

It can be recalled from Section 1.2 that GMM (or Minimum Chi-Square)
were introduced to circumvent the problems encountered with Method of Mo-
ments. That earlier discussion emphasized the way in which GMM generalized
the Method of Moments principle. However, the relationship between the two
estimation principles is far more subtle. Although the GMM estimator is defined
via the minimization in (2.6), it is actually the solution to the first order condi-
tions in (2.7). With a simple rearrangement, these conditions can be rewritten
as

(T−1X ′Z)WT T−1Z ′u(θ̂T ) = 0 (2.9)

This characterization of the first order conditions reveals that θ̂T is identical to
the Method of Moments estimator based on,

E[xtz
′
t]WE[ztut(θ0)] = 0 (2.10)

This Method of Moments interpretation is useful because it makes explicit the
relationship between the estimator and the population moment condition in
Assumption 2.2. Minimization of QT (θ) with respect to θ amounts to estimation
based on the information that the p linear combinations of E[ztut(θ0)] given
in (2.10) are zero. Notice that this interpretation implies that if q = p then
Method of Moments and GMM are equivalent because in this case E[xtz

′
t]W is

nonsingular and so (2.10) implies E[ztut(θ0)] = 0.2 In this case, the weighting
matrix plays no role and the GMM estimator is given by,3

θ̂ = (T−1Z ′X)−1(T−1Z ′y) (2.11)

1 See Dhrymes (1984)[Proposition 95 and Corollary 28, p.110–111].
2 Recall that a similar observation is made in Section 1.2 regarding the equivalence of

Method of Moments and Minimum Chi-Square.
3 Notice that this solution is consistent with (2.8) because if p = q then

{(T −1X′Z)WT (T −1Z′X)}−1 = (T −1Z′X)−1W −1
T (T −1X′Z)−1 - subject to the existence

of the stated inverses.
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However if q > p then no such reduction is possible, and the choice of weight-
ing matrix is important because it determines the exact nature of the linear
combinations of E[ztut(θ0)] set to zero in (2.10).

This Method of Moments interpretation also indicates that if q > p then
there is a difference between the information with which we began, Assumption
2.2, and the information actually used in estimation, equation (2.10). To charac-
terize the relationship between the two, it is useful to develop an alternative rep-
resentation for (2.10) which has the same dimension as the population moment
condition. For this part of the analysis, it is more convenient to work with a non-
singular tranformation of the population moment condition, W 1/2E[ztut(θ0)],

where W 1/2 satisfies W = W 1/2′
W 1/2.4 So we begin by rewriting (2.10) as

F ′W 1/2E[ztut(θ0)] = 0 (2.12)

where F ′ = E[xtz
′
t]W

1/2′
. Equation (2.12) indicates that GMM estimation is

based on the information that W 1/2E[ztut(θ0)] lies in the null space of the (p×q)
matrix F ′. Sowell (1996) observes that this condition is identical to the restric-
tion that the least squares projection of W 1/2E[ztut] onto the column space of
F is zero. By this logic, we obtain the following alternative representation of
the information used in GMM estimation,

F (F ′F )−1F ′W 1/2E[ztut(θ0)] = 0 (2.13)

While (2.13) consists of q equations in E[ztut(θ0)], not all of them are linearly
independent because rank{F (F ′F )−1F ′} = rank{F} ≤ p. Notice that we have
already assumed this rank equals p to ensure identification. The re-emergence
of this quantity here provides an alternative perspective on the fundamental
connection between identification and estimation: the p parameters are only
identified if the estimation is based on p linearly independent equations. In
view of this connection, Sowell (1996) refers to the elements of (2.13) as the
identifying restrictions associated with GMM estimation. It follows immediately
from (2.13) that the part of W 1/2E[ztut(θ0)] unused in estimation is given by

(Iq − F (F ′F )−1F ′)W 1/2E[ztut(θ0)] = 0 (2.14)

Equation (2.14) constitute a set of rank{Iq − F (F ′F )−1F ′} = q − p linearly in-
dependent equations in W 1/2E[ztut(θ0)]. Hansen (1982) refered to the elements
of (2.14) as the overidentifying restrictions.

This decomposition is fundamental to the analysis of GMM estimators of
overidentified parameter vectors and so it is worth emphasizing its structure.
The (q × 1) vector of population moment conditions is decomposed into p iden-
tifying restrictions and q − p overidentifying restrictions. The identifying re-
strictions represent the part of the population moment condition used in es-
timation and the overidentifying restrictions are the remainder. Most impor-
tantly, these two components are linearly unrelated because F (F ′F )−1F ′{Iq −
F (F ′F )−1F ′} = 0.

4 There must be a (q × q) nonsingular matrix W 1/2 which satisfies this identity because
W is positive definite from Definition 1.2; see Dhrymes (1984) [Corollary 14, p.73].
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So far, these components have been defined in terms of population quantities.
We now consider the extent to which this behaviour is mirrored by their sample
counterparts. Since the identifying restrictions represent the information upon
which estimation is based, it would be anticipated that their sample analog holds
at θ̂T . This is easily verified to be the case because the first order conditions in
(2.9) imply

FT (F ′
T FT )−1F ′

T W
1/2
T T−1Z ′u(θ̂T ) = 0 (2.15)

where F ′
T = (T−1X ′Z) W

1/2
T

′
and WT = W

1/2′

T W
1/2
T . In contrast, the overi-

dentifying restrictions are ignored in estimation and so it would be anticipated
that they do not generally hold in the sample. Again, this is the case. However,
they do play a similar remainder role in the sample. From (2.15) it follows that

(Iq − FT (F ′
T FT )−1F ′

T )W
1/2
T T−1Z ′u(θ̂T ) = W

1/2
T T−1Z ′u(θ̂T ) (2.16)

and so the estimated transformed sample moment is just the sample analog to
the function of the data in the overidentifying restrictions. This leads to a useful
interpretation of the GMM minimand. In Section 1.2, QT (θ) was introduced as
a measure of how far the sample moment is from its expectation of zero. The
substitution of (2.16) into (2.5) indicates that the minimized value, QT (θ̂T ),
measures how far the sample is from satisfying the overidentifying restrictions.
This interpretation proves useful in the development of statistics for testing
whether the model is correctly specified. However, before we can discuss such
methods, it is necessary to consider the asymptotic properties of the parameter
estimator and the estimated sample moment. So, we delay further discussion of
methods for assessing the model specification until Section 2.5.

2.3 Asymptotic Properties

GMM estimation generates two important statistics which play a central role in
inference about the underlying model; these are the parameter estimator and
the estimated sample moment. Since the latter depends on the former, it makes
most sense to begin our discussion of their asymptotic properties with the pa-
rameter estimator, and then to use these results to analyze the behaviour of the
estimated sample moment. The asymptotic analysis of the parameter estimator
focuses on the twin properties of consistency and asymptotic normality. The
latter facilitates the construction of large sample confidence intervals for the
elements of θ0. As will emerge, these intervals involve a consistent estimator
of the long run variance of the sample moment, and so we briefly consider how
such an estimator can be calculated in our simple model. As mentioned in the
previous section, the estimated sample moment plays an important role in the
construction of hypothesis tests. In this capacity, it is the asymptotic normality
of T−1/2Z ′u(θ̂T ) which is important, and so it is this aspect of the statistic’s
behaviour upon which we concentrate.

The asymptotic analysis rests on applications of the Weak Law of Large
Numbers (WLLN) and Central Limit Theorem (CLT) in Lemmas 1.2 and 1.3
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respectively. It was noted in Section 1.4.2 that the assumption of strict sta-
tionarity is insufficient by itself for these theorems and so we must introduce an
additional restriction. Our purpose here is to illustrate the basic ideas and so
it is convenient to assume away any dependence structure in the data for the
time being.

Assumption 2.4 Independence
The vector vt = (x′

t, z
′
t, ut)

′ is independent of vt+s for all s �= 0.

Together, assumptions 2.1 and 2.4 imply vt is an independently and identically
distributed process.

To begin with, it is most convenient to substitute for y in (2.8). Equation
(2.1) implies y = Xθ0 + u and using this identity in (2.8) yields

θ̂T = θ0 + {(T−1X ′Z)WT (T−1Z ′X)}−1(T−1X ′Z)WT (T−1Z ′u) (2.17)

The consistency and asymptotic normality of θ̂T can be deduced directly from
(2.17). We start with consistency.

From (2.17), it follows that

plim θ̂T = θ0 + plim
[

{(T−1X ′Z)WT (T−1Z ′X)}−1(T−1X ′Z)WT (T−1Z ′u)
]

(2.18)
Using Slutsky’s Theorem (see Lemma 1.1), (2.18) can be rewritten as

plim θ̂T = θ0 + {plim(T−1X ′Z)plim(WT )plim(T−1Z ′X)}−1

plim(T−1X ′Z)plim(WT )plim(T−1Z ′u)
(2.19)

From Definition 1.2, it follows immediately that plim(WT ) = W , a positive
definite symmetric matrix. The limiting behaviour of the other matrices in
(2.19) can be deduced from the WLLN. Since ztx

′
t and ztut are contemporaneous

functions of independent processes, they are themselves independent processes.
Therefore the WLLN yields5

T−1Z ′X = T−1
∑T

t=1 ztx
′
t

p→ E[ztx
′
t] (2.20)

T−1Z ′u = T−1
∑T

t=1 ztut
p→ E[ztut] (2.21)

It is at this point that the population moment and identification conditions
become important. The identification condition states that E[ztx

′
t] is of rank p

and so the inverse of E[xtz
′
t] W E[ztx

′
t] exists. The population moment condition

states that E[ztut] = 0. Using these two results in (2.19) yields

plim θ̂T = θ0 + M E[ztut] = θ0 (2.22)

where M = (F ′F )−1F ′W 1/2 and we have again put F = W 1/2E[ztx
′
t]. There-

fore, θ̂T is consistent for θ0.

5 Strictly, it must be assumed that all stated expectations exist. However, since the
purpose of this chapter is purely expository, we suppress such details here.
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The asymptotic distribution6 of the estimator is derived by rewriting (2.17)
as

T 1/2(θ̂T − θ0) = {(T−1X ′Z)WT (T−1Z ′X)}−1(T−1X ′Z)WT (T−1/2Z ′u) (2.23)

and analyzing the behaviour of the components on the right hand side of (2.23).
Since ztut is an independent process, the CLT can be invoked to deduce that

T−1/2Z ′u = T−1/2
T
∑

t=1

ztut
d→ N(0, S) (2.24)

where S = limT→∞ V ar[T−1/2
∑T

t=1 ztut] and the mean of this distribution

follows from the population moment condition. Therefore, T 1/2(θ̂T − θ0) =
MT nT where MT converges in probability to the matrix of constants M and
nT converges in distribution to a normal random vector. Using Lemma 1.4, it
follows that

T 1/2(θ̂T − θ0)
d→ N(0, MSM ′) (2.25)

where, as a reminder, M = {E[xtz
′
t]W E[ztx

′
t]}−1E[xtz

′
t]W . In the case where

p = q then M reduces to E[ztx
′
t] and so MSM ′ = {E[ztx

′
t]}−1S{E[xtz

′
t]}−1.

Equation (2.25) implies that an approximate large sample 100(1−α)% con-
fidence interval for θ0,i is

θ̂T,i ± zα/2

√

V̂T,ii/T (2.26)

where V̂T,ii is the (i, i) element of a consistent estimator of MSM ′ and zα/2 is the
100(1−α/2) percentile of the standard normal distribution. A consistent estima-
tor of MSM ′ can be obtained from consistent estimators of its components be-

cause by Slutsky’s Theorem if M̂T
p→ M and ŜT

p→ S then M̂T ŜT M̂ ′
T

p→ MSM ′.

The obvious choice of M̂T is {(T−1X ′Z)WT (T−1Z ′X)}−1(T−1X ′Z)WT because
it has already been shown this matrix converges in probability to M . To con-
struct ŜT it is necessary to be more specific about the form of the long run
covariance matrix, S. Under our assumptions ztut is an independently and
identically distributed process with a mean of zero. Together these restrictions
imply

E[utusztz
′
s] = E[u2zz′], say for t = s

= 0 for t �= s

and so

S = lim
T→∞

T−1
T
∑

t=1

T
∑

s=1

E[utusztz
′
s] = E[u2zz′] (2.27)

6 There has been a vast literature on the finite sample properties of IV estimators in the
linear model. Unfortunately, these results do not generalize to the nonlinear dynamic models
which are the ultimate focus of this book. Therefore we concentrate on asymptotic results
here. However, this finite sample theory is briefly reviewed in Section 6.2.
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White (1984, Chapter 6) demonstrates that S can be consistently estimated by

ŜT = T−1
T
∑

t=1

û2
t ztz

′
t (2.28)

where ût = yt − x′
tθ̂T . In certain circumstances, more structure can be placed

on E[u2zz′] which can be exploited in the construction of ŜT . For example, in
most econometric textbooks IV is first encountered in the “classical” model in
which ut possesses the properties:

Assumption 2.5 Classical Assumptions about ut

(i)E[ut] = 0; (ii) E[u2
t ] = σ2

0; (iii) ut and zt are independent.

Under these assumptions E[u2zz′] = σ2
0E[ztz

′
t] and this can be consistently

estimated by
ŜCIV = σ̂2

T T−1Z ′Z (2.29)

where σ̂2
T = T−1u(θ̂T )′u(θ̂T ) and we have used the “CIV” subscript to emphasize

the imposition of the Classical assumptions about ut but suppressed the T
subscript for notational simpicity.

Finally, we derive the asymptotic distribution of the estimated sample mo-
ment. For reasons that will become apparent, it is most convenient to consider
the transformed version of this statistic obtained by premultiplying the original

by W
1/2
T . First notice that

W
1/2
T T−1/2Z ′u(θ̂T ) = W

1/2
T T−1/2Z ′u − W

1/2
T T−1Z ′X T 1/2(θ̂T − θ0) (2.30)

and so it follows from (2.23) that

W
1/2
T T−1/2Z ′u(θ̂T ) = (Iq − PT )W

1/2
T (T−1/2Z ′u) (2.31)

where PT = FT (F ′
T FT )−1F

′

T and – as in Section 2.3 – FT = W
1/2
T (T−1Z ′X). In-

spection of (2.31) reveals that T−1/2Z ′u(θ̂T ) has a similar structure to T 1/2(θ̂T −
θ0) – that is, it takes the form NT nT where NT converges in probability to a
matrix of constants and nT converges to a vector of normal random variables.
Therefore, we can once again use Lemma 1.4 to deduce the limiting distribution,
namely

W
1/2
T T−1/2Z ′u(θ̂T )

d→ N(0, NSN ′) (2.32)

where N = [Iq − P ]W 1/2. In Section 2.3, it is noted that the estimated sample
moment is closely related to the overidentifying restrictions, and this connection
also manifests itself in the asymptotic distribution. Equation (2.31) implies that

W
1/2
T T−1/2Z ′u(θ̂T ) = (Iq − P )W 1/2T−1/2Z ′u + op(1) (2.33)

and so the asymptotic behaviour of W
1/2
T T−1/2Z ′u(θ̂T ) is governed by the func-

tion of the data which appears in the overidentifying restrictions. Once this
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relationship is recognized then it becomes apparent that the limiting distribu-
tion in (2.32) only has mean zero if the overidentifying restrictions are satisfied
at θ0. One other aspect of the limiting distribution should also be noted. The
covariance matrix is

NSN ′ = (Iq − P )W 1/2SW 1/2′
(Iq − P ) (2.34)

Since W 1/2 and S are nonsingular, it follows7 from (2.34) that rank(NSN ′) =
rank(Iq − P ) = q − p, and hence that NSN ′ is singular.8 Notice that this rank
equals the degree of overidentification and so further emphasizes the connection
between the estimated sample moment and the overidentifying restrictions.

2.4 The Optimal Choice of Weighting Matrix

So far, the analysis has taken the weighting matrix as given and only placed
fairly mild restrictions on its composition in Definition 1.2. At the same time,
it has been seen that this matrix plays a crucial role in the analysis because it
determines the exact nature of the minimand. In this section, we characterize
the optimal choice of weighting matrix and this leads us to a discussion of the
two step or iterated GMM estimator.

To begin, we must consider what is meant by “optimality” in this context.
An inspection of the previous analysis indicates that the weighting matrix only
affects the asymptotic properties of the estimator via the covariance matrix in
(2.25). This can be anticipated from the role of WT in the estimation. The es-
timator will converge in probability to the true value as long as the population
moment and identification conditions hold. Essentially, these conditions ensure
there is sufficient information from which to estimate θ0 and that this informa-
tion is correct. The choice of weighting matrix determines how this information
is used and so impacts directly upon the precision of the estimation. It is this
feature which is captured by the variance of the asymptotic distribution. There-
fore the optimal weighting matrix is defined to be the value which minimizes
the asymptotic variance.

Inspection of (2.25) reveals that it is the probability limit of WT , W , which

affects the asymptotic variance of θ̂T . Therefore, we begin by characterizing
the optimal value of W and then consider the issues involved in constructing a
matrix which converges to this limit. For this discussion it is useful to introduce
the following notation for the asymptotic variance of θ̂T given in (2.25),

V (W ) = {E[xtz
′
t]WE[ztx

′
t]}−1 E[xtz

′
t]W S W E[ztx

′
t]{E[xtz

′
t]WE[ztx

′
t]}−1

(2.35)
The optimal value of W , W 0 say, is the value which minimizes V (W ) in a

matrix sense and so satisfies

V (W̃ ) − V (W 0) = a positive semi-definite matrix

7 See Dhrymes (1984) [p.17].
8 See Rao (1973) [Chapter 8] for a discussion of the singular normal distribution.
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for any other valid choice of weighting matrix, W̃ . Hansen (1982) shows that
W 0 = S−1. Substituting this value into (2.35) yields

V (S−1) = {E[xtz
′
t]S

−1 E[ztx
′
t]}−1 (2.36)

This matrix V (S−1) represents an efficiency bound for GMM estimation of θ0

based on the population moment condition E[ztut(θ0)] = 0 because all other
choices of W result in a variance which is at least as large.

To construct a GMM estimator which reaches this bound, it suffices to put
WT equal to Ŝ−1

T , where ŜT is a consistent estimator of S. This appears to

create a circularity because (2.28) indicates that ŜT depends on θ̂T ; this is
easily resolved, however. For the consistency of ŜT , it is only necessary that
this matrix is constructed using a consistent estimator of θ0 and not the optimal
estimator. This leads us to Hansen’s (1982) two step procedure for optimal
GMM estimation. On the first step, a consistent estimator of θ0 is obtained
using GMM with a sub-optimal weighting matrix such as WT = Iq or WT =

(T−1Z ′Z)−1. This estimator is used to construct ŜT . On the the second step,
the model is re-estimated using WT = Ŝ−1

T . These two steps are sufficient
to obtain an estimator with asymptotic covariance matrix equal to V (S−1).
However, the estimator of S used in the second step estimation is based on a sub-
optimal estimator of θ0 and so there may be gains in finite sample performance
from iterating this procedure. In some cases, iteration may be unnecessary. For
example, in the Classical regression model setting (Assumptions 2.1-2.5) the
optimal estimator can be constructed by setting WT just equal to (T−1Z ′Z)−1

instead of Ŝ−1
CIV because the factors involving σ̂2

T , and so θ̂T , cancel out. In this
case the optimal estimator can be calculated in one step, and can be recognized
as the Two Stage Least Squares (2SLS) estimator. In practice, this type of
convenient cancellation is rare and so iteration is required in most cases of
interest.

Finally, a matter of terminology should be addressed. The estimator de-
scribed in this subsection is typically refered to as “the optimal two step (or
iterated) GMM estimator”. It is important to remember that this optimality
only refers to the choice of weighting matrix and there is no implication that the
population moment condition is optimal in any sense. It is possible to character-
ize the optimal set of population moment conditions to use in GMM estimation.
However, this is an extremely complicated problem for the types of model in
Table 1.1. Therefore, it serves no useful pedagogic value to explore this issue
here but we return to it in Chapter 7.

2.5 Specification Error: Consequences and

Detection

So far, it has been assumed that the underlying economic/statistical model is
correctly specified. Unfortunately, this need not be the case, and so it is im-
portant to consider how specification error would impact on the asymptotic



2.5 Specification Error: Consequences and Detection 45

properties of the estimator and the estimated sample moment. Intuition sug-
gests that such an error renders all inferences suspect at best and completely
invalid at worse. This is born out by the discussion below, and so motivates
the development of statistical procedures to assess whether the model is cor-
rectly specified. In this section we introduce the overidentifying restrictions test
which has become the standard diagnostic for model specification within the
GMM framework. Other diagnostics are discussed in Chapter 5.

To facilitate the discussion, it is useful to recap briefly what aspects of the
model impact on θ̂T and T−1Z ′u(θ̂T ). To this end, it is useful to introduce the
notation M to denote the underlying economic/statistical model. As we have
seen, this model has the property

M =⇒ E[ztut(θ0)] = 0, ∀t for some unique θ0 ∈ Θ (2.37)

The population moment condition in (2.37) implies the identifying restrictions

are satisfied at θ0 and so θ̂T both converges in probability to θ0 and T 1/2(θ̂T −
θ0) converges to a mean zero normal distribution. The population moment
condition also implies the overidentifying restrictions are satisfied at θ0 and so
T−1/2Z ′u(θ̂T ) converges to a mean zero normal distribution.

If M is no longer considered to be the truth, then there are two natural,
alternative scenarios. First, the true model, MA say, although different from
M, shares the property in (2.37) – that is

MA =⇒ E[ztut(θ+)] = 0, ∀t for some unique θ+ ∈ Θ (2.38)

Secondly, the true model, MB say, implies the property in (2.37) does not hold
– that is

MB =⇒ � ∃ θ ∈ Θ such that E[ztut(θ)] = 0, ∀t (2.39)

Notice that (2.38) can hold for any q ≥ p but (2.39) can only hold for q > p. This
follows because if q = p then E[ztut(θ)] = 0 represents a set of p equations in
p unknowns which must perforce have a solution – subject to the identification
condition in Assumption 2.3. We now consider the behaviour of the estimator
and estimated sample moment under MA and MB .

First, consider the case where the true model is MA. Since M and MA are
different by definition, they must have different implications for some aspect of
the distribution of vt. However, a comparison of (2.37) and (2.38) indicates that
M and MA have the same implications for E[ztut(θ)] – the only potential dif-
ference being in the parameter value at which the moment condition is satisfied.
The population moment condition in (2.38) implies the identifying restrictions
are satisfied at θ+, and so the analysis in Section 2.3 can be replicated to show
that θ̂T converges in probability to θ+. Furthermore, this analysis can be con-
tinued as before to show that T 1/2(θ̂T − θ+) converges to a mean zero normal
distribution. Equation (2.38) also implies the overidentifying restrictions are
satisfied at θ+ and so this in turn implies that the estimated sample moment
converges to a mean zero normal random vector. So the only potential difference
between M and MA is in the value to which θ̂T converges. However, as stated
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above, neither model implies anything about the value of θ which satisfies the
population moment condition beyond its uniqueness. Therefore, M and MA

are observationally equivalent on the basis of E[ztut(θ)] alone.
In contrast, M and MB have very different implications for E[ztut(θ)].

Equation (2.39) states that there is no value of θ at which the population mo-
ment condition is satsified. In spite of this, there must be a solution to the
identifying restrictions because they constitute a set of p equations in p un-
knowns.9 If this solution is denoted θ∗, then it follows by the same logic as
before that θ̂T converges in probability to θ∗. It is also possible to develop an
asymptotic distribution theory for the estimator in this case, but the analysis
is more complicated than under M. However the most important difference
emerges in the behaviour of the estimated sample moment. The analysis in
Section 2.3 can be replicated to show that

W
1/2
T T−1/2Z ′u(θ̂T ) = (Iq − P )W 1/2T−1/2Z ′u(θ∗) + op(1) (2.40)

It is apparent from (2.40) that the asymptotic behaviour of W
1/2
T T−1/2Z ′u(θ̂T )

is determined by whether or not the overidentifying restrictions are satisfied
at θ∗. The answer to this question can be deduced from the properties of θ∗.
By definition, θ∗ satisfies the identifying restrictions and (2.39) implies that
E[ztut(θ∗)] �= 0. Since,

W 1/2E[ztut(θ∗)] = PW 1/2E[ztut(θ∗)] + (Iq − P )W 1/2E[ztut(θ∗)]

it must follow that
(Iq − P )W 1/2E[ztut(θ∗)] �= 0 (2.41)

Equations (2.40) and (2.41) imply that W
1/2
T T−1/2Z ′u(θ̂T ) is not Op(1) – as it

is under M or MA – but diverges at rate T 1/2 and, in consequence, does not
converge in distribution.10

Regardless of whether MA or MB is the truth, it is desirable to develop sta-
tistical tests which can indicate that the assumed model is incorrect. Clearly, it
is impossible to discriminate between M and MA on the basis of T−1/2Z ′u(θ̂T ).
This can only be achieved by deducing a different set of moment conditions from
M and testing whether they are corroborated by the data.11 On the other hand,
M and MB have different implications for the overidentifying restrictions and
so it would be anticipated that it is possible to discriminate between these two
models based on the estimated sample moment.

Sargan (1958) was the first person to introduce the idea of testing the overi-
dentifying restrictions in a linear model estimated by IV, and Hansen (1982)
extended the statistic to the GMM framework. It is natural to base the test on
the GMM minimand, QT (θ̂T ), since it is shown in Section 2.3 that this statistic
measures how far the sample is from satisfying the overidentifying restrictions.

9 Again, subject to the identification condition in Assumption 2.3.
10 See Chapter 4.
11 However, the same problem recurs because there is always more than one probability

distribution which can generate a finite set of population moment conditions.
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To develop the distribution theory, it is most convenient to focus on the opti-
mal GMM estimator, and so we set WT = Ŝ−1

T . Therefore, the overidentifying
restrictions test statistic12 is given by

JT = TQT (θ̂T ) = T−1/2u(θ̂T )′Z Ŝ−1
T T−1/2Z ′u(θ̂T ) (2.42)

Under the null hypotheses,

H0 : E[ztut(θ0)] = 0

JT converges in distribution to a χ2
q−p.

13 Notice that the degrees of freedom
equal the number of overidentifying restrictions. Intuition suggests that JT can
detect when the true model is actually MB , and this is verified in Chapter 5.

2.6 Summary

The purpose of this chapter is to introduce the main elements of the GMM
framework using the example of the IV estimator in the static linear regression
model. This approach is feasible because the intrinsic information in IV esti-
mation takes the form of a population moment condition. Specifically, IV rests
crucially on the existence of a vector of instruments, zt, that are uncorrelated
with the regression error, ut(θ0), or equivalently that the instruments satisfy
E[ztut(θ0)] = 0. If this population moment condition is used as a basis for
GMM estimation then the resulting GMM estimator is the IV estimator. The
advantage of deriving IV in this way is that it enables us to highlight seven key
features of the GMM framework:

• Identification: For the estimation to be succesful, the population moment
condition must not only be valid but also provide sufficient information
to identify the parameter vector.

• Identifying and overidentifying restrictions: GMM estimation in overiden-
tified models involves a fundamental decomposition of the moment con-
dition into identifying restrictions and overidentifying restrictions. The
identifying restrictions contain the information that goes into the estima-
tion, and the overidentifying restrictions are a remainder that manifests
itself in the estimated sample moment.

• Asymptotic properties: The GMM estimator is consistent and, when ap-
propriately scaled, has a limiting distribution that is normal.

12 This is also sometimes refered to as the J–test.
13 It can be recognized that the overidentifying restrictions test is a direct extension of

Neyman and Pearson (1928) statistic GF (θ̂T ) discussed in Section 1.2. At first glance, the
degrees of freedom appear to be in conflict; however, there is a logical explanation. Only k−1
of the population moment conditions in (1.7) are free: the kth condition, say, is implied by

first k − 1 plus the constraints
∑k

i=1[Dt(i) − h(i; θ0)] = 0 which must hold because of the
definitions of Dt(i) and h(i; θ0).
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• Estimated sample moment: The estimated sample moment is shown to
have a limiting normal distribution whose attributes depend directly on
the function of the data in the overidentifying restrictions.

• Long run covariance estimation: To translate this asymptotic normality
into practical inference procedures, it is necessary to estimate the long run
variance of the sample moment consistently.

• Optimal choice of weighting matrix : The optimal choice of weighting ma-
trix depends on the long run variance of the sample moment and so its
use typically involves a two step or iterated estimation.

• Model diagnostics: The overidentifying restrictions provide a basis for
testing the validity of the model specification via the estimated sample
moment.

Subsequent chapters build from this foundation to present the GMM framework
in nonlinear dynamic models. Chapter 3 focuses on estimation and, in its course,
extends the discussion of the first five aspects highlighted above to the general
setting. The statistical properties derived in Chapter 3 are premised on the
assumption that the model is correctly specified. Chapter 4 considers the impact
of misspecification on the limiting properties of the GMM estimator. Chapter 5
derives the large sample properties of both the overidentifying restrictions test
and also a number of other hypothesis tests which have been proposed within
the GMM framework.



3

GMM Estimation in

Correctly Specified Models

The previous chapter has provided an introduction to the GMM framework and
the types of inference issues which arise within it. Although many of the details
reflected the static, linear nature of the model, the underlying intuition did
not. The essential feature of the estimation is the minimization of a quadratic
form in the sample analog to a population moment condition which provided
sufficient information to identify the unknown parameters. In this chapter, we
show this strategy can be successfully extended to nonlinear dynamic models.
The focus here is on the estimator and the derivation of its statistical properties
in correctly specified models. The impact of misspecification on these properties
is examined in Chapter 4. Matters of inference are postponed until Chapter 5
when a variety of hypothesis testing procedures are reviewed. The level of the
discussion is more rigorous than the previous chapter, and the main results are
formally proved. However, the issues are also illustrated throughout with an
empirical example to provide guidance on the practical implementation of the
estimator as well. Here, we focus on Hansen and Singleton’s (1982) consumption
based asset pricing model which was described in Section 1.3.1. Chapter 9
reports empirical results for the other four models in Section 1.3.

Section 3.1 defines the population moment condition and presents condi-
tions for parameter identification. Section 3.2 discusses the calculation of the
estimator in practice and includes a brief review of numerical optimization tech-
niques. Section 3.3 extends the fundamental decomposition of the population
moment condition into identifying and overidentifying restrictions to the nonlin-
ear model. Section 3.4 derives the asymptotic properties of the estimator and
the estimated sample moment. Section 3.4.1 presents a proof of consistency
and Section 3.4.2 derives the asymptotic distribution of the estimator, and also
uses this analysis to provide further insights into the form of the identifying
and overidentifying restrictions. Section 3.4.3 derives the asymptotic distribu-
tion of the estimated sample moment. Section 3.5 describes the construction
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of consistent estimators of the long run variance under three scenarios for the
dynamic structure of the sample moment. Section 3.5.1 covers the case where
f(vt, θ0) is a serially uncorrelated process; Section 3.5.2 considers the case where
f(vt, θ0) is generated by a vector autoregressive moving average process; and fi-
nally Section 3.5.3 considers the class of heteroscedasticity and autocorrelation
covariance (HAC) matrix estimators whose properties only require the depen-
dence structure to satisfy very mild restrictions. Section 3.6 derives the optimal
choice of weighting matrix and this leads to a discussion of the two step and
iterated GMM estimators. Section 3.7 examines the consequences of various
transformations and normalizations on the GMM estimator, and this leads to a
discussion of both the continuous updating GMM estimator and also the con-
struction of confidence intervals based directly on the GMM minimand. The
chapter concludes with a slight detour. In Chapter 1, it is stated that many
estimators can be viewed as special cases of GMM. Although some simple ex-
amples were provided, it was not possible to elaborate on the point at that
stage. However, this is possible after the material in the first five sections of
this chapter. Section 3.8 shows formally how other estimators can be fit within
the GMM framework. Section 3.9 contains a summary of the chapter.

3.1 Population Moment Condition and

Parameter Identification

In Chapter 1, it was shown that a wide variety of econometric models lead to
population moment conditions which involve nonlinear functions of the data and
parameters. It is therefore desirable to adopt a very general framework which
encompasses all these cases. This means that the analysis in this chapter begins
with the population moment condition and no attempt is made to character-
ize the specific data generation process which lays behind it. This population
moment condition involves a function f(., .) of the observable vector of random
variables vt and the unknown (p×1) parameter vector, θ0. As before the param-
eter space is denoted by Θ ⊆ ℜp. However, before we introduce the population
moment and identification conditions, certain restrictions need to be placed on
vt and f(., .).

Assumption 3.1 Strict Stationarity
The (r×1) random vectors {vt;−∞ < t < ∞} form a strictly stationary process
with sample space V ⊆ ℜr.

Recall that this assumption implies all expectations of functions of vt are inde-
pendent of time.

Assumption 3.2 Regularity Conditions for f(., .)
The function f : V × Θ → ℜq, where q < ∞, satisfies: (i) it is continuous on
Θ for each vt ∈ V; (ii) E[f(vt, θ)] exists and is finite for every θ ∈ Θ; (iii)
E[f(vt, θ)] is continuous on Θ.
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Formally, it is necessary to assume that f(., θ) is a measurable function but we
suppress this type of condition throughout the text. All functions considered
are assumed to be measurable; see Newey and McFadden (1994) for a discussion
of circumstances in which this may not hold. Assumption 3.2 holds in most,
if not all, of the models behind the studies listed in Table 1.1. However, this
assumption excludes some cases of interest, such as step functions which are
by their nature discontinuous. One further aspect of Assumption 3.2 should be
noted. The function f(.) is assumed to be finite dimensional. This assumption
is standard and satisfied in all the applications listed in Table 1.1. However,
there are circumstances in which it may be desirable to relax this assumption.
In Section 6.1.3, we consider the limiting behaviour of the estimator when q
tends to infinity with the sample size. It is also possible to generalize the
GMM framework to a continuum of moment conditions but we do not pursue
this extension. For the latter, the interested reader is refered to Carrasco and
Florens (2000).

The analysis centers on the following population moment condition.

Assumption 3.3 Population Moment Condition
The random vector vt and the parameter vector θ0 satisfy the (q × 1) population
moment condition: E[f(vt, θ0)] = 0.

Just as in the linear model, the population moment condition can only be used
as a basis for estimation if it provides enough information to uniquely identify
the parameter vector θ0. In the linear model, it is possible to relate parameter
identification to a simple condition which only involved the data. In nonlinear
models, the situation is more complicated. Identification can fail due to the
properties of the data, vt, or due to the properties of f(.) as a function of θ or
due to an interaction of the two. To characterize how these types of failure can
occur in nonlinear models, it is necessary to introduce the concepts of global and
local identification. The need for this distinction will become apparent below.

The basic condition for parameter identification is given by:

Assumption 3.4 Global Identification
E[f(vt, θ̄)] �= 0 for all θ̄ ∈ Θ such that θ̄ �= θ0.

The adjective “global” emphasizes that the population moment condition
only holds at one value in the entire parameter space. This can be recognized
as the concept of identification used in our discussion of the linear model in the
previous chapter. Within that context, it was possible to derive a convenient
condition for global identification. Unfortunately, this is rarely possible in non-
linear models. However, there is one type of identification failure in nonlinear
models which can be diagnosed using the condition in Assumption 3.4. This is
the case when failure occurs due to the nature of f(.) as a function of θ. This
type of problem is best understood by considering two examples: in the the first
there are just two values of θ0 which satisfy the population moment condition;
in the second, there are an infinite number of values which do so.
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Example: The Partial Adjustment Model
Suppose the data are generated by the model1

yt − yt−1 = β0(y
∗ − yt−1) + ut

ut = ρ0ut−1 + et

where y∗ represents the desired level of the process yt and et is an i.i.d. process
with mean zero. Simple rearrangement yields

yt = β0(1 − ρ0)y
∗ + (1 + ρ0 − β0)yt−1 + (β0 − 1)ρ0yt−2 + et (3.1)

Now suppose there exists a set of variables zt which satisfy the population
moment condition E[ztet(θ0)] = 0 where et(θ) = yt − β(1 − ρ)y∗ − (1 + ρ −
β)yt−1 − (β − 1)ρyt−2 and θ = (β, ρ, y∗)′. Although this is very similar to the
population moment condition in Chapter 2, it is outside that framework because
et(θ) is a nonlinear function of θ. Using the condition in Assumption 3.4, the
parameter vector is identified if E[ztet(θ)] = 0 at only θ = θ0. To see if this
holds, it is useful to introduce the notation

et(µ) = yt − µ0 − µ1yt−1 − µ2yt−2 (3.2)

where µ = (µ0, µ1, µ2)
′. Equation (3.2) can be viewed as a type of “reduced

form” version of et(θ) because any value of θ implies a value for µ via the rela-
tionship,

µ0 = β(1 − ρ)y∗

µ1 = 1 + ρ − β

µ2 = (β − 1)ρ

(3.3)

Using these definitions, the condition for identification can be restated as the
requirement that each value of µ is implied by only one value of θ. However, in-
spection of (3.3) reveals this is not the case here. The problems arise because the
bottom two equations imply a quadratic equation for ρ, namely ρ2−ρµ1−µ2 = 0,
to which there are two solutions. Denote these by ρ1 and ρ2. Each of these so-
lutions implies a value of β which satisfies the bottom two equations as well;
denote these by βi = 1 + µ2/ρi for i = 1, 2. Finally let y∗

i = µ0/{βi(1 − ρi)}.
Clearly θi = (βi, ρi, y

∗
i )′ yields the same value of µ for both i = 1, 2 and so

Assumption 3.4 is violated. ⋄

Example: Eichenbaum’s (1989) Model for Inventory Holdings by
Firms

1 This type of model has been used to analyze a wide variety of economic series including
money demand and inventory holdings. In these applications exogenous regressors are also
included and formally this removes the identification problem. However, if the regressors only
play a very marginal role then the same type of identification problems can emerge; see Blinder
(1986), Hall and Rossana (1991).
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It is shown in Section 1.3.4 that Eichenbaum’s (1989) model for inventory hold-
ings implies that the following population moment condition holds

E[{ht+2(ψ0) − ρ0ht+1(ψ0)}zt] = 0 (3.4)

where ht+1(ψ) = It+1 − {λ + (λβ)−1}It + β−1It−1 + St+1 − φβ−1St and ψ =
(λ, β, φ)′. In our earlier discussion of this model, φ is treated as a parameter
to be estimated rather than the three underlying parameters of which it is a
function. It may have been wondered why (δ, γ, α) are not estimated directly
and the answer is that they are not identified by the population moment condi-
tion. The problem arises because the elements of (δ, γ, α) only appear in a ratio
form via φ = 1 − δγ/α. Therefore, for any non-zero constant k, both (δ̄, γ̄, ᾱ)
and (kδ̄, γ̄, kᾱ) yield the same value of φ. This would clearly cause a violation
of Assumption 3.4. However, there is no such problem if only φ is estimated
instead. ⋄

In both these examples, the identification failure arises because of the na-
ture of f(.) as a function of θ. As mentioned above, identification can fail for
other reasons but these are harder, if not impossible, to diagnose by examining
E[f(vt, θ)] directly. In the linear model of the previous chapter, it is possible
to deduce a relatively simple condition for global identification and it would
clearly be desirable to develop something similar for nonlinear models. Unfor-
tunately, this cannot be done because it is typically impossible to find a useful
alternative representation for f(vt, θ) which holds over all θ ∈ Θ. However such
a representation can be found if attention is limited to some suitably defined
neighbourhood of θ0. The price of this approach is that we are now deriving con-
ditions for identification only within this neighbourhood and these are refered to
as conditions for local identification. As the names suggest, local identification
does not guarantee global identification but global identification cannot hold
without local identification. Therefore, a more transparent condition for local
identification is useful because it provides insights into when identification can
fail.

To derive the condition for local identification, it is necessary to introduce
the following definition and assumption. An ǫ–neighbourhood of θ0 is defined
to be the set Nǫ which satisfies Nǫ = {θ; ||θ − θ0|| < ǫ}. The aforementioned
alternative representation of f(.) is based on a first order Taylor Series approx-
imation for f(vt, θ) over a neighbourhood of the form Nǫ. For this to be valid,
it is necessary that Nǫ ⊂ Θ and so θ0 must be an interior point of Θ.2 So this
condition is included with certain other regularity conditions in the following
assumption.

Assumption 3.5 Regularity Conditions on ∂f(vt, θ)/∂θ′

(i) The derivative matrix ∂f(vt, θ)/∂θ′ exists and is continuous on Θ for each
vt ∈ V; (ii) θ0 is an interior point of Θ; (iii) E[∂f(vt, θ0)/∂θ′] exists and is
finite.

2 In other words θ0 must not lie on the boundary of Θ. See Apostol (1974) [p.49] for
definition of the interior of a set.
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Part (i) of this condition is satisfied by most, but not all, of the models behind
the studies listed in Table 1.1. If violations occur they tend to stem from the
presence of absolute values for which the derivative is not defined everywhere
on Θ. For example, the stochastic volatility model in Section 1.3.5 leads to
population moment conditions which involve absolute values.3 It is possible
to develop local identification conditions in these situations but the analysis
becomes more complicated.4 Since these cases tend to be the exception rather
than the rule, we work here within the framework of Assumption 3.5. Notice
that the other four models in Section 1.3 satisfy Assumption 3.5(i) and the other
two parts of the assumption can reasonably be expected to hold as well.

The condition for local identification is derived by restricting attention to
sufficiently small ǫ so that f(.) is equal to the following first order Taylor series
expansion 5 in Nǫ

f(vt, θ) = f(vt, θ0) + {∂f(vt, θ0)/∂θ′}(θ − θ0) (3.5)

The advantage of this approach is that (3.5) implies f(vt, θ) is a a linear function
of θ − θ0 in this neighbourhood. Taking expectations on both sides of (3.5) and
using Assumptions 3.3 and 3.5 yields

E[f(vt, θ)] = {E[∂f(vt, θ0)/∂θ′]}(θ − θ0) (3.6)

Equation (3.6) is essentially the same structure as (2.3) and so we can appeal
to our earlier analysis of the the linear model to deduce the following condition
for local identification.

Assumption 3.6 Local Identification
rank{E[∂f(vt, θ0)/∂θ′]} = p.

This condition can be recognized as the generalization of the identification
condition for the linear model given in Assumption 2.3.6 Notice the form of
the condition immediately implies identification fails if there are fewer moment
conditions than parameters, i.e. q < p. While this is no surprise given the
discussion in Chapter 2, this restriction was not immediately apparent from
the global identification condition in Assumption 3.4. As in the linear model,
this type of condition can also fail if q ≥ p. However, one important difference
is that identification in nonlinear models may be sensitive to the value of θ0

via ∂f(vt, θ)/∂θ′. This opens up the possibility that the population moment
condition may provide enough information to identify the parameters at some
values of θ0 but not at others.

3 Another example is encountered in Section 9.1 when we consider an extension of the
mutual fund evaluation method described in Section 1.3.2.

4 The interested reader is refered to Newey and McFadden (1994)[Section 7].
5 See Apostol (1974)[p.361].
6 In the linear model, f(vt, θ) = ztut(θ) and so ∂f(vt, θ0)/∂θ′ = −ztx′

t. The condition
implies global identification in the linear model because (3.5) is then an identity which holds
for all θ and not just in a neighbourhood of θ0.
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Clearly, the exact nature of the condition in Assumption 3.6 depends on
the f(.) in question. To illustrate the types of condition which can arise in
practice, we now examine local identification in three examples. We begin with
continuations of our earlier examples to illustrate the difference between global
and local identification. We then derive the local identification condition for the
consumption based asset pricing model in Section 1.3.1. Further examples can
be found in Chapter 9.

Example: Partial Adjustment Model (Continued)
Recall that f(vt, θ) = ztet(θ) and so ∂f(vt, θ0)/∂θ′ = zt∂et(θ0)/∂θ′. From the
definition of et(θ) and θ it follows that

E[∂f(vt, θ0)/∂θ′] = E[ztx̃
′
t]M(θ0) (3.7)

where x̃t = (1, yt−1, yt−2)
′ and

M(θ) =

⎡

⎣

−(1 − ρ)y∗ βy∗ −β(1 − ρ)
1 −1 0

−ρ −(β − 1) 0

⎤

⎦

Given this structure, it follows that7

rank{E[∂f(vt, θ0)/∂θ′]} ≤ min{rank(E[ztx̃
′
t]), rank(M(θ0))}

Inspection of M(θ0) indicates that in general this matrix is of full rank and so
rank{E[∂f(vt, θ0)/∂θ′]} = rank(E[ztx̃

′
t]).

8 Therefore local identification rests
on the relationship between the instruments and x̃t in a similar way to our
earlier analysis of the linear regression model. Assuming this rank condition
holds, θ0 is locally identified.

It is informative to relate this conclusion back to our earlier analysis of this
model. It was shown there that the parameter vector is globally unidentified
because there are two values of θ which satisfy the population moment condition.
This failure arose because the solutions for ρ satisfy a quadratic equation to
which the roots are

ρ = µ1 ± (
√

µ2
1 + 4µ2)/2

Notice that this structure suggests the two solutions are distinct values of θ0

and not within an ǫ neighbourhood of each other for some suitably small value
of ǫ. It is therefore consistent with the finding that the two solutions are locally
identified even though θ0 is globally unidentified. ⋄

Example: Eichenbaum’s (1989) Model for Inventory Holdings by
Firms (Continued)
We again reconsider the problem of estimating the augmented parameter vector

7 See Dhrymes (1984) [Proposition 7, p.17].
8 See Ibid [Proposition 6, p.16].
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in which (δ, γ, α) are included in ψ instead of φ. To simplify the analysis it is
convenient to set ρ = 0 but this does not effect the essence of the argument.
This case maps into our generic notation with f(vt, θ0) = ht+2(ψ0)zt where
θ = (λ, β, δ, γ, α)′. As in the previous example the nonlinearity only arises
through the parameters and so the derivative matrix has a similar structure

E[∂f(vt, θ0)/∂θ′] = E[ztx̃
′
t]M(θ0) (3.8)

except this time x̃t = (It+1, It, St+1)
′ and

M(θ) =

⎡

⎣

(λ2β)−1 − 1 (λβ2)−1 0 0 0
0 −β−2 0 0 0
0 (1 − δγ/α)β−2 γβ−1/α δβ−1/α −δγβ−1/α2

⎤

⎦

However this time it is immediately apparent that rank{M(θ)} ≤ 3 and so
rank{E[∂f(vt, θ0)/∂θ′]} ≤ 3 < p. Therefore θ0 is locally unidentified in this
model. Again this result ties in with our previous analysis of global identifica-
tion. It was shown before that (δ̄, γ̄, ᾱ) and (kδ̄, γ̄, kᾱ) yield the same value of φ
for any nonzero constant k. Since k can be arbitrarily close to one, it follows that
if θ0 = (λ0, β0, δ0, γ0, α0)

′ satisfies the population moment condition then there
is always another value θ∗ = (λ0, β0, kδ0, γ0, kα0)

′ within an ǫ neighbourhood of
θ0 which also satisfies the population moment condition for any ǫ > 0.

Finally, it should be noted that this problem disappears if φ is treated as
a parameter to be estimated instead of (δ, γ, α). To see this, redefine the pa-
rameter vector to be θ = (λ, β, φ)′. In this case, ∂f(vt, θ0)/∂θ′ is given by (3.8)
with

M(θ) =

⎡

⎣

(λ2β)−1 − 1 (λβ2)−1 0
0 −β−2 0
0 φβ−2 −β−1

⎤

⎦

It is immediately apparent that rank{M(θ)} = 3 and so local identification
depends on whether rank{E[ztx̃

′
t]} = 3. ⋄

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model
It is shown in Section 1.3.1 that if the representative agent possesses a CRRA
utility function then the data and parameter vector, θ = (γ, δ)′, satisfy the
population moment condition in (1.23). For our purposes here, it is convenient
to restrict attention to the case in which there is only one asset with a maturity
of one period. The population moment condition is then E[ztut(θ0)] = 0 where
ut(θ) = δxγ−1

1,t+1x2,t+1 − 1, and we have set x1,t+1 = ct+1/ct, x2,t+1 = rt+1/pt

with the j subscript being dropped as there is only one asset. In this model, we
have

E[∂f(vt, θ)/∂θ′] = E[ztδlog(x1,t+1)x
γ−1
1,t+1x2,t+1 , ztx

γ−1
1,t+1x2,t+1] (3.9)

For local identification this matrix must have rank two when evaluated at θ0.
Apart form requiring zt to contain at least two elements, it is not easy to deduce
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from (3.9) when this rank condition holds. ⋄

These three examples illustrate how the rank condition can highlight what
aspects of the model are important for identification. However, as we have
also seen, it may be difficult to determine a priori whether these conditions are
satisfied for the data in hand. In practice, failures in identification may only
become apparent when estimation is attempted and so we return to this topic
in that context in the next section.9

3.2 The Estimator and Numerical

Optimization

It can be recalled from Definition 1.2 that the GMM minimand takes the form,

QT (θ) = {T−1
T
∑

t=1

f(vt, θ)}′WT {T−1
T
∑

t=1

f(vt, θ)} (3.10)

For completeness we restate the properties of the weighting matrix here.

Assumption 3.7 Properties of the Weighting Matrix
WT is a positive semi-definite matrix which converges in probability to the pos-
itive definite matrix of constants W .

By definition, the GMM estimator of θ0 is

θ̂T = argminθ∈Θ QT (θ) (3.11)

where “argmin” stands for value of the argument – θ – which minimizes the
function – QT (θ). If Assumption 3.5 holds, and in most cases of interest it will,

then the first order conditions for this minimization imply ∂QT (θ̂T )/∂θ = 0.
This condition yields10

0 = {T−1
T
∑

t=1

∂f(vt, θ̂T )

∂θ′
}′WT {T−1

T
∑

t=1

f(vt, θ̂T )} (3.12)

In the linear model of Chapter 2, these conditions could be solved to obtain a
closed form solution for θ̂T as a function of the data. Unfortunately, in nonlinear
models this is typically impossible. For example, the first order conditions for
Hansen and Singleton’s (1982) consumption based asset pricing model are

0 = {T−1
T
∑

t=1

[ztδ̂T log(x1,t+1)x
γ̂T −1
1,t+1x2,t+1 , ztx

γ̂T −1
1,t+1x2,t+1]}′WT

×{T−1
T
∑

t=1

zt(δ̂T xγ̂T −1
1,t+1x2,t+1 − 1)} (3.13)

9 Also see Section 3.6.
10 See Dhrymes (1984) [Proposition 92, p.111].
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Only a little trial and error is needed to verify that these cannot be solved to
produce a closed form solution for θ̂T .

Back in the days of Karl Pearson, the story would have stopped here. Fortu-
nately, the advance of computer technology over the last forty years has enabled
the development of a vast array of numerical optimization routines which can be
used to calculate θ̂T . These days, such optimization procedures can be imple-
mented with just a few lines of code in most econometric or statistical software
packages. In view of this, we do not provide a comprehensive review of these
procedures here.11 Instead we briefly discuss certain issues involved in their
implementation.

These types of computer based routines essentially perform an “informed
version” of trial and error to find the value of θ which minimizes QT (θ). The
procedure begins with some trial value of θ, θ̄(0) say. If this is the value which
minimizes QT (θ) then it should not be possible to find a value of θ for which
the minimand is smaller. So the computer uses some rule to see if it can find
a value of θ, θ̄(1) say, which satisfies QT (θ̄(1)) < QT (θ̄(0)). If it can, then θ̄(1)

becomes the new candidate value for θ̂T and the computer searches again to see
it can find a value θ̄(2) such that QT (θ̄(2)) < QT (θ̄(1)). This updating process
continues until it is judged that the value of θ which minimizes QT (θ) has been
found. It is useful to distinguish three important aspects of such routines.

• The starting value for θ, θ̄(0).

• The iterative search method by which the candidate value of θ̂T is updated
on the ith step.

• The convergence criterion used to judge when the minimum has been
reached.

The various numerical optimization routines differ in how the iterative search
method is performed. In most problems it is computationally infeasible to per-
form a search over the entire parameter space12 and so some rule is used to limit
the calculations involved. For example, in a class known as Gradient Methods13

the value of θ is updated on the ith step by

θ̄(i) = θ̄(i − 1) + λiD(θ̄(i − 1))

where λi is a scalar known as the step size and D(.) is a (p × 1) vector known
as the step direction. The step direction vector is a function of the gradient,
∂QT (θ̄(i − 1))/∂θ, and hence reflects the curvature of the function at θ̄(i − 1).
As the names suggest, D(θ̄(i − 1)) determines the direction in which to update
θ̄(i − 1) and λi determines how far to go in that direction.

11 Many excellent surveys already exist in the econometrics literature e.g. Quandt (1983),
Judge, Griffiths, Hill, Lutkepohl, and Lee (1985)[Appendix B] Gallant (1987)[Chapter 2].

12 Such a strategy is known as a grid search.
13 For example, see Judge, Griffiths, Hill, Lutkepohl, and Lee (1985) [p.953].
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Convergence can be assessed in a number of ways. For example, if θ̄(i) is
the value which minimizes QT (θ) then the updating routine should not move
away from this point. This suggests that the minimum has been found if

||θ̄(i + 1) − θ̄(i)|| < ǫ (3.14)

where ǫ is an arbitrarily small positive constant. A typical value for ǫ is 10−6 or
less. This rule allows for the fact that the update λi+1D(θ̄(i)) is unlikely to be
exactly zero even if θ̄(i) is the minimum due to rounding errors in calculation.
As stated in (3.14), the convergence criterion is independent of the magnitude
of θ. In practice, this may be a problem if the latter is very small. Ideally, ǫ
should be replaced by η(||θ̄(i)|| + τ) where η and τ are small positive constants
in the order of 10−5 and 10−3 respectively. However, in some commercially
available computer packages the rule is of the form in (3.14). If this is the
case then the user must be sensitive to the order of magnitude of of θ when
choosing ǫ. Alternatively, convergence can be assessed by examining the first
order conditions. Once the minimum is reached then (3.12) should be satisfied
and this leads to the criterion

||∂QT (θ̄(i))/∂θ|| < ǫ (3.15)

where again allowance is made for rounding errors. Finally, if the minimum has
been reached then the updating should not alter the value of the minimand and
so

|QT (θ̄(i + 1)) − QT (θ̄(i))| < ǫ (3.16)

Once again, it is desirable for the convergence criterion to reflect the size of the
objective function and so a better version of the rule is obtained by substituting
η(QT (θ̄(i)) + τ) for ǫ in (3.16). However, as above, the convergence criterion
in some commercially available packages takes the form in (3.16) and if it does
then the user must be sensitive to the values of the minimand in choosing
ǫ. Which rule should be used? It is often prudent to check all three because
anyone can be satisfied by itself without the minimum being reached; see Quandt
(1983) [p.737–8], Gallant (1987) [p.29].

The choice of starting values is also important. Ideally, θ̄(0) should be as
close as possible to the value which minimizes QT (θ) because this reduces the
number of iterations and hence the computational burden. Sometimes a pre-
liminary estimate of θ0 is available and this can be used as a starting value.14

Whether this is the case or not, it is a wise precaution to run the routine with
more than one set of starting values. In nonlinear models, the minimand may
exhibit a less regular topology than in the linear model with the result that the
numerical routine can have problems finding the minimum. The use of multiple
starting values provides some safeguard against this problem because the rou-
tine can be restarted outside of the problem areas. However, if these problems

14 This would be the case when calculating the two step or iterated GMM estimator; see
Section 2.4 and 3.6. In other cases, various rules have been suggested for the calculation
of starting values. We do not describe these here but refer the interested reader to Gallant
(1987) [pp.29–30] and the references therein.
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persist from different starting values then this may indicate the parameter vec-
tor is unidentified by the population moment condition upon which estimation
is based.

To conclude this section, we provide an illustration of these issues.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model
Hansen and Singleton (1982) estimate their model with various choices of assets.
We concentrate here on just two of these choices; both are portfolios constructed
from all the stocks on the New York Stock Exchange and the difference between
them derives from the weights used in the portfolio. In one, all the assets
receive an equal weight; this choice is refered to as “equally weighted returns”
and denoted EWR. In the other, the weights on the assets reflect their relative
values; this choice is refered to as “value weighted returns” and denoted VWR.
In principle, the population moment condition in (1.23) holds jointly for both
choices of assets but it is pedagogically more convenient to estimate the model
separately for each choice of asset. Each asset has maturity m = 1 and so (1.23)
implies each of the assets satisfies

E[zt(δ0x
γ0−1
1,t+1x2,t+1 − 1)] = 0 (3.17)

where x1,t+1 = ct+1/ct, x2,t+1 = rt+1/pt and zt is the vector of instruments.

To implement the model, it is necessary to specify zt. In Section 1.3.1
it is shown that this moment condition holds for any zt ∈ Ωt, and so the
economic model leaves open a lot of possibilities. Our identification analysis
indicated θ0 = (γ0, δ0)

′ is locally identified by (3.17) if the rank of the matrix
in (3.9) is two. As remarked above, this is not particularly illuminating apart
from the requirement that zt has at least two elements. With so many options
available, Hansen and Singleton (1982) estimate the model with a number of
different choices of instrument. However, here we will focus on just one to
simplify the presentation; this choice is zt = (1, x1,t, x1,t−1, x2,t, x2,t−1)

′. It is
also necessary to choose a value for the weighting matrix. We use two common
choices (T−1

∑T
t=1 ztz

′
t)

−1 and cI5 where c is a constant that is discussed below.

Hansen and Singleton (1982) estimate the model using monthly U.S. data
for the period 1959:2–1978:12, but we take advantage of the march of time to
use an extended sample covering 1959:1–1997:12. Once allowance is made for
the two conditioning observations needed to construct zt, this leaves a sample
of size T = 465. The consumption of the representative agent in period t, ct, is
defined to be aggregate real consumption of nondurables and services in period
t divided by total population in period t. Both consumption and population
series are compiled by the U.S. Department of Commerce, and obtained from
the FRED database constructed by the Federal Reserve Bank of St. Louis. The
consumption figures are seasonally adjusted and expressed in billions of chained
1992 dollars. The nominal return on the assets is obtained from the CRSP
tapes, and transformed into a real return using the implicit deflator associated
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with the measure of consumption. Specifically, this gives

x2,t+1 = (1 + nominal return at time t + 1)
deflator at time t

deflator at time t + 1

where the deflator at time t is the ratio of aggregate real consumption of non-
durables and services at time t to its nominal counterpart in period t. The latter
is also seasonally adjusted and has the same source as the real data.

The estimations are performed by minimizing TQT (θ) using routines in the
MATLAB version 6.0 Optimization Toolbox (Mathworks, 2000). This package
provides a number of optimization procedures. All our estimations employ the
procedure fminu which is a variant of the gradient method described above.15

This estimation routine allows the researcher to specify constants which control
the convergence criterion for the parameters and the minimand. In our estima-
tion these two numbers are set equal and denoted ǫM . To illustrate their impact
on the results, we perform the estimations using ǫM = 10−4, 10−5 and 10−6.

We begin with the estimation of the model for EWR. The results are pre-
sented in Table 3.1. Consider first the results for the case in which WT = 105I5.
The scaling factor of 105 is included because if WT = I5 then the value of the
minimand is of the order 10−5 for parts of the parameter space and this made it
difficult for fminu to find the minimum.16 Even with this scaling, the minimand
appears ill behaved. When ǫM = 10−4, all four starting values do not initiate
procedures which converge to the same point. This behaviour could arise for
two reasons. First, the minimand may have a well-defined local minimum at
each of the two points to which the algorithm converged. In this case the param-
eters are locally identified at each point but obviously not globally identified.
Secondly, the convergence criterion may be insufficiently tight and the iterative
procedure is stopping before it reaches a local minimum. To assess which is
the case here, we re–estimate with ǫM = 10−5 and then with ǫM = 10−6. As
can be seen, this refinement causes the iterative procedure to converge to the
same point for all the starting values. This diagnosis is confirmed by a plot of
the minimands. Figures 3.1 contains a plot the minimand for the case in which
WT = 105I5. As can be seen, QT (θ) is very flat in the dimension of γ.

15 See Section 9.1 for an empirical example in which this method does not work well and
so an alternative routine is employed.

16 This is an example of the problem noted above. The value of the objective function was
of a lower order of magnitude than the convergence criteria.
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Table 3.1
First step estimation results for the consumption-based asset

pricing model with equally weighted returns

WT = 105I5 :

Starting values ǫM (γ̂, δ̂) TQT (θ̂)

( 0.5, 0.5) 10−4, 10−5, 10−6 ( -3.145, 0.999) 5.974
( -0.5, -0.5) 10−4 ( -0.334, 0.994) 6.064

10−5, 10−6 ( -3.145, 0.999) 5.974
( 5.5, 5.5) 10−4, 10−5, 10−6 ( -3.145, 0.999) 5.974
(-5.5, -5.5) 10−4, 10−5, 10−6 ( -3.145, 0.999) 5.974

WT = (T−1
∑T

t=1 ztz
′
t)

−1 :

Starting values ǫM (γ̂, δ̂) TQT (θ̂)

( 0.5, 0.5) 10−4 ( 0.500, 0.993) 0.031
10−5, 10−6 ( 0.398, 0.993) 0.031

(-0.5,-0.5) 10−4, 10−5, 10−6 ( 0.398, 0.993) 0.031
( 5.5, 5.5) 10−4, 10−5, 10−6 ( 0.398, 0.993) 0.031
(-5.5,-5.5) 10−4, 10−5, 10−6 ( 0.398, 0.993) 0.031
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Figure 3.1: Minimand with WT = 105I5 for the consumption-based asset
pricing model with equally weighted returns
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A similar problem emerges when WT = (T−1
∑T

t=1 ztz
′
t)

−1, but again it disap-
pears when the convergence criterion is tightened. The shape of the minimand
is qualitatively similar to that in Figure 3.1 and so the plot is omitted. Al-
though, we have convergence for each choice of weighting matrix, the parameter
estimates are clearly very sensitive to this choice. In one case the estimated
relative risk aversion of the representative agent (1 − γ̂) is 0.602 and in the
other it is 4.145. This discrepancy illustrates the motivation for estimation with
the optimal weighting matrix. However, we must delay a presentation of those
results until Section 3.6.

We now consider the estimation of the model with VWR. The results are
presented in Table 3.2. From Table 3.2, it is clear that the same problems are
encountered as before with WT = 105I5. It can be seen from Figure 3.2 that
the minimand has qualitatively the same shape with VWR as it did with EWR.
Once again, the results are sensitive to the choice of weighting matrix.

Table 3.2
First step estimation results for the consumption-based asset

pricing model with value weighted returns

WT = 105I5 :

Starting values ǫM (γ̂, δ̂) TQT (θ̂)

( 0.5, 0.5) 10−4 ( 0.503, 0.994) 0.388
10−5, 10−6 (-1.871, 0.998) 0.338

(-0.5,-0.5) 10−4, 10−5 (-0.348, 0.996) 0.359
10−6 (-1.871, 0.998) 0.338

( 5.5, 5.5) 10−4, 10−5,10−6 (-1.871, 0.998) 0.338
(-5.5,-5.5) 10−4, 10−5, 10−6 (-1.871, 0.998) 0.338

WT = (T−1
∑T

t=1 ztz
′
t)

−1 :

Starting values ǫM (γ̂, δ̂) TQT (θ̂)

all * 10−4, 10−5, 10−6 ( 0.698, 0.994) 0.003

Notes: * all = ( 0.5, 0.5), (-0.5,-0.5), (5.5,5.5), (-5.5,-5.5)
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Figure 3.2: Minimand with WT = 105I5 for the consumption-based asset
pricing model with value weighted returns

3.3 The Identifying and Overidentifying

Restrictions

The definition of the GMM estimator in (3.11) does not require f(.) to be dif-
ferentiable with respect to θ. In some cases this generality is useful, but it is
unnecessary in nearly all the models in Table 1.1. When f(.) is differentiable
then the estimator can be defined equivalently as the solution to the first order
equations in (3.12). This might appear a minor difference but it is important
because it facilitates a Method of Moments interpretation for GMM. Just as
in the linear model, this interpretation leads to a decomposition of the popu-
lation moment condition into identifying and overidentifying restrictions. As
shown in Chapter 2, this decomposition can be very useful for understanding
the properties of GMM and it also plays an important role in the construction
of diagnostics for the adequacy of the model specification. Similar dividends are
reaped in the nonlinear model and so now we extend this decomposition to any
models which satisfy the differentiablity conditions of Assumption 3.5.

An inspection of (3.12) reveals that the GMM estimator based on E[f(vt,
θ0)]= 0 can be interpreted as a Method of Moments estimator based on

F (θ0)
′W 1/2E[f(vt, θ0)] = 0 (3.18)
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where F (θ0) = W 1/2E[∂f(vt, θ0)/∂θ′]. Equation (3.18) states that
W 1/2E[f(vt, θ0)] lies in the null space of F (θ0)

′, and implies rank{F (θ0)} linear
combinations of the transformed moment condition are set to zero. Assumption
3.6 guarantees this rank equals p and so, as in the linear model, the Method of
Moments interpretation emphasizes the fundamental connection between iden-
tification and estimation. However, this time there is a slight difference. In the
linear model, the concepts of local and global identification are identical but this
is not the case in nonlinear models as seen in Section 3.1. The form of (3.18) in-
dicates that it is the local version which is important here. The p parameters are
only locally identified if the estimation is based on p linearly independent equa-
tions. The nature of this connection coincides with the our earlier definitions of
the two types of identification. Local identification implies the population mo-
ment condition is satisfied uniquely at θ0 in a suitably defined neighbourhood.
In this case, (3.18) has a well-defined solution at θ0. However, there may be
other points in the parameter space at which (3.18) has well-defined solutions –
this eventuality is only ruled out if θ0 is globally identified.

If p = q then (3.18) is equivalent to E[f(vt, θ0)] = 0, and we note paren-
thetically that this means the weighting matrix plays no role in the analysis.
However, if q > p then there is a difference between information used in esti-
mation and the original population moment condition. Since (3.18) is essen-
tially the same structure as (2.10), we can repeat the same arguments here to
show the population moment condition can be decomposed into identifying and
overidentifying restrictions associated with GMM estimation. The identifying
restrictions are17

F (θ0)[F (θ0)
′F (θ0)]

−1F (θ0)
′W 1/2E[f(vt, θ0)] = 0 (3.19)

These restrictions characterize the part of the transformed population moment
condition used in estimation. Formally, (3.19) states that the least squares pro-
jection of W 1/2E[f(vt, θ0)] onto the column space of F (θ0) is zero, and thereby
places rank{F (θ0)[F (θ0)

′F (θ0)]
−1F (θ0)

′} = p restrictions on the transformed
population moment condition. The overidentifying restrictions represent the
remainder and so by definition are18

{Iq − F (θ0)[F (θ0)
′F (θ0)]

−1F (θ0)
′}W 1/2E[f(vt, θ0)] = 0 (3.20)

Equation (3.20) states that the projection of W 1/2E[f(vt, θ0)] on to the or-
thogonal complement of F (θ0) is zero, and thereby places q − p restrictions on
the transformed population moment condition. Notice that the identifying and
overidentifying matrices have the same projection matrix structure encountered
in the linear model, and so are orthogonal in nonlinear models as well.

The roles of the two sets of restrictions are reflected in their sample counter-
parts. Since the identifying restrictions represent the information used in esti-
mation, their sample analogs are satisfied at θ̂T by construction. In contrast, the

17 This terminology is introduced by Sowell (1996) who first characterized the identifying
restrictions.

18 This terminology is introduced by Hansen (1982) who first characterized the overidenti-
fying restrictions in this context.
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overidentifying restrictions are ignored in estimation and so their sample analog
is not satisfied. However, they can be used to give a useful interpretation to the
GMM minimand. From (3.12), it follows that

W
1/2
T T−1

T
∑

t=1

f(vt, θ̂T ) = {Iq − FT (θ̂T )[FT (θ̂T )′FT (θ̂T )]−1FT (θ̂T )′} ×

W
1/2
T T−1

T
∑

t=1

f(vt, θ̂T )
(3.21)

where FT (θ) = W
1/2
T T−1

∑T
t=1 ∂f(vt, θ)/∂θ

′

, and so the transformed estimated
sample moment is the sample analog to the function of the data appearing
in the overidentifying restrictions.19 Therefore, QT (θ̂T ) can be interpreted as a
measure of how far the sample is from satisfying the overidentifying restrictions.

3.4 Asymptotic Properties

In the linear model, the asymptotic analysis rested crucially on a closed form
expression for θ̂T . However, as discussed in Section 3.2, such a representation
typically does not exist in nonlinear models and so it is necessary to develop
a different strategy of proof. As it turns out, the difference is most marked in
the proof of consistency. Once consistency is established then it is possible to
invoke the Mean Value Theorem to obtain a representation for θ̂T − θ0 which
facilitates the derivation of asymptotic normality along very similar lines to the
argument used in the linear model. Hansen (1982) establishes these properties
in his original article. Newey and McFadden (1994) and Wooldridge (1994)
provide very useful treatments of the asymptotic analysis of a wide variety of
econometric estimators. Our discussion takes advantage of their results and the
reader is refered to these sources for some of the more technical details.

Before developing the asymptotic analysis it is necessary to place a further
restriction on vt. Recall from Section 1.4.2 that stationarity, by itself, is insuf-
ficient to allow the application of Laws of Large Numbers and Central Limit
Theorem. Therefore we now impose the following.

Assumption 3.8 Ergodicity
The random process {vt;−∞ < t < ∞} is ergodic.

A formal definition of ergodicity involves rather sophisticated mathematical
ideas and is beyond the scope of this book. Instead we refer the interested
reader to Davidson (1994) [pp.199–203] or Spanos (1999) [pp.424–6]. It is suf-
ficient for ergodicity that the dependence between vt and vt−m decreases at a
certain rate to zero as m → ∞. If vt exhibits this behaviour then it is called a
mixing process. This type of assumption has received a lot of attention in the
econometrics literature because it can be used to underpin asymptotic analysis

19 This assumes WT is positive definite.
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in either stationary or nonstationary environments, and so is more general than
ergodicity which can only be used for stationary series. Further discussion of
these issues here would constitute a major detour and would distract us from the
main purpose of this chapter. Therefore, we provide a heuristic introduction to
mixing processes in Appendix A. This appendix also contains a brief summary
of the literature on GMM in a nonstationary environment.

3.4.1 Consistency of the Parameter Estimator

Even though there is no closed form expression for θ̂T , it is clearly defined by
(3.11). The key to a proof of consistency is the consideration of what happens
if we perform a similar minimization on the population analog to QT (θ),

Q0(θ) = {E[f(vt, θ)]}′ W {E[f(vt, θ)]} (3.22)

The answer follows directly from our earlier assumptions. The population mo-
ment condition implies Q0(θ0) = 0. The global identification condition and the
positive definiteness of W , imply Q0(θ) > 0 for all θ �= θ0. Taken together these
two properties imply Q0(θ) has a unique minimum at θ = θ0. Intuition suggests

that if: (i) θ̂T minimizes QT (θ); and (ii) QT (θ) converges in probability to a

function, Q0(θ), whose unique minimum is at θ0; then θ̂T must converge in prob-
ability to θ0. In essence this intuition is correct but there is one mathematical
detail which needs to be taken into account. It is not necessarily the case that
the minimum of a sequence of functions converges to the minimum of the limit of
the sequence of functions. For this to be the case, it is sufficient that QT (θ) con-
verges uniformly to Q0(θ).

20 This property is not guaranteed by Assumptions
3.1–3.8 and we must impose the following two additional restrictions.

Assumption 3.9 Compactness of Θ
Θ is a compact set.

This compactness assumption strictly requires the knowledge of bounds on θ0

which is typically unavailable. However, this is often ignored in practice be-
cause these bounds can be assumed to be sufficiently large not to impact on the
construction of the estimator.21 The only other additional assumption is the re-
quirement that f(vt, θ) is bounded by a function with finite expectation for all θ.

Assumption 3.10 Domination of f(vt, θ)
E[supθ∈Θ||f(vt, θ)||] < ∞
With these assumptions imposed, it is possible to deduce uniform convergence.22

20 This property is not guaranteed by pointwise convergence of QT (θ). See Apostol
(1974) [Chapter 9] for a useful discussion of the difference between pointwise and uniform
convergence.

21 Recall that a compact set is closed and bounded; see Apostol (1974) [Chapter 3]. Newey
and McFadden (1994) discuss the potential for proving consistency without the imposition of
compactness. Also see Pötscher and Prucha (1997) [Chapters 3 and 4].

22 For example, see Newey and McFadden (1994) [Theorem 2.6], Wooldridge (1994) [The-
orem 4.1] and the references therein.
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Lemma 3.1 Uniform Convergence in Probability of QT (θ)

If Assumptions 3.1, 3.2, 3.7-3.10 hold then supθ∈Θ |QT (θ) − Q0(θ)| p→ 0.

Once uniform convergence is guaranteed, then consistency can be estab-
lished.

Theorem 3.1 Consistency of the Parameter Estimator

If Assumptions 3.1–3.4 and 3.7–3.10 hold then θ̂T
p→ θ0.

For completeness we now provide a more formal proof of this theorem. It is
most convenient to break the proof down into two parts. First, it is shown that
the conditions of the theorem imply:

lim
T→∞

P [ 0 ≤ Q0(θ̂T ) < ǫ ] = 1 for any ǫ > 0 (3.23)

This equation states that θ̂T minimizes Q0(θ) with probability one as T →
∞. The second part of the proof shows formally that this property implies
consistency.

Part (i): Proof of (3.23).
This result is deduced from the following three statements about QT (.) and

Q0(.) implied by uniform convergence and the definition of the estimator.

(a): Lemma 3.1 states that the difference between QT (θ) and Q0(θ) disappears
with probability one as T → ∞ at any value of θ ∈ Θ. Now, by definition
θ̂T ∈ Θ, and so Lemma 3.1 implies limT→∞ P [| Q0(θ̂T ) − QT (θ̂T ) | <
ǫ/3] = 1 for any constant ǫ > 0.23 This implies in turn that

lim
T→∞

P [Q0(θ̂T ) < QT (θ̂T ) + ǫ/3] = 1 .

(b): Since θ̂T minimizes QT (θ) it follows that

lim
T→∞

P [QT (θ̂T ) < QT (θ0) + ǫ/3] = 1 .

(c): By similar reasoning to part (a), it follows that

lim
T→∞

P [QT (θ0) < Q0(θ0) + ǫ/3] = 1 .

A combination of the probability statements in (a) and (b) yields

lim
T→∞

P [Q0(θ̂T ) < QT (θ0) + 2ǫ/3] = 1

and this statement can be combined with (c) to deduce

lim
T→∞

P [Q0(θ̂T ) < Q0(θ0) + ǫ] = 1

23 The division of ǫ by three is for notational convenience below and has no substantive
impact on the argument.
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Equation (3.23) then follows immediately because Assumption 3.3 implies
Q0(θ0) = 0 and the positive definiteness of W implies Q0(θ) ≥ 0.

Part (ii): (3.23) ⇒ θ̂T
p→ θ0.

Let N be an open subset of Θ which contains θ0 and Nc be the complement
of N relative to Θ. By definition Nc is a closed subset of a compact set and so
is itself compact.24 Since Nc is compact and Q0(θ) is a continuous function it
follows that Q0(θ) has an infimum on Nc, which we denote by infθ∈Nc Q0(θ).
From Assumption 3.4, it follows that this infimum is strictly positive. Therefore
we can substitute ǫ = infθ∈Nc Q0(θ) in (3.23) to deduce

lim
T→∞

P [Q0(θ̂T ) < inf
θ∈Nc

Q0(θ)] = 1

This implies limT→∞ P [θ̂T /∈ Nc] = 1 and hence that limT→∞ P [θ̂T ∈ N] = 1.
Finally, since the above argument holds for any choice of N no matter how
“small”, it must follow that limT→∞ P [θ̂T = θ0] = 1 which is the desired result.
⋄

Notice that the conditions for Theorem 3.1 placed no restrictions on the
derivative matrix ∂f(vt, θ)/∂θ′. It is true that we have refered to this derivative
matrix in previous sections but its role has not been crucial. It was used to
obtain a condition for local identification in models which satisfied Assumption
3.5; however the concept of global identification did not require its existence.
The derivative matrix also played a role in the discussion of numerical opti-
mization. However, as mentioned above, QT (θ) can be minimized by search
methods which do not require the calculation of the gradient. As we shall see
in the next sub-section, the derivative matrix plays a more central role in the
proof of asymptotic normality of the estimator.

3.4.2 Asymptotic Normality of the Parameter Estimator

To develop the asymptotic distribution of the estimator, we require an asymp-
totically valid closed form representation for T 1/2(θ̂T − θ0). This representation
comes from an application of the Mean Value Theorem.25 This theorem relates
f(.) to its first derivatives ∂f(vt, θ)/∂θ′ and so it is necessary to impose As-

sumption 3.5.26 To simplify the presentation, define gT (θ) = T−1
∑T

t=1 f(vt, θ)

and GT (θ) = T−1
∑T

t=1 ∂f(vt, θ)/∂θ′. The Mean Value Theorem implies that

gT (θ̂T ) = gT (θ0) + GT (θ̂T , θ0, λT )(θ̂T − θ0) (3.24)

where GT (θ̂T , θ0, λT ) is the (q × p) matrix whose ith row is the corresponding

row of GT (θ̄
(i)
T ) where θ̄

(i)
T = λT,iθ0 + (1 − λT,i)θ̂T for some 0 ≤ λT,i ≤ 1, and

24 See Apostol (1974) [pp.50–3].
25 See Apostol (1974) [p.355].
26 Similar results can be developed for non-differentiable f(vt, θ) in cases where E[f(vt, θ)]

is differentiable; see Newey and McFadden (1994) [Section 7].
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λT is the (q × 1) vector with ith element λT,i. Premultiplication of (3.24) by

GT (θ̂T )′WT yields

GT (θ̂T )′WT gT (θ̂T ) = GT (θ̂T )′WT gT (θ0) + GT (θ̂T )′WT GT (θ̂T , θ0, λT )(θ̂T − θ0)
(3.25)

Now the first order conditions in (3.12) imply the left hand side of (3.25) is zero
and so with some rearrangement it follows from (3.25) that

T 1/2(θ̂T − θ0) = −[GT (θ̂T )′WT GT (θ̂T , θ0, λT )]−1GT (θ̂T )′WT T 1/2gT (θ0)

= −M̄T T 1/2gT (θ0), say. (3.26)

Notice that this equation has the same basic structure as arose in the linear
model at this stage: a random matrix, −M̄T , times a random vector, T 1/2gT (θ0).
Just as in Section 2.3, we start by analyzing the limiting behaviour of these
two components separately and then combine them to deduce the asymptotic
distribution of the estimator. The asymptotic behaviour of T 1/2gT (θ0) is given
by a version of the Central Limit Theorem. To apply the Central Limit Theorem,
it is necessary to assume the second moment matrices of the sample moment
satisfy certain restrictions.27

Assumption 3.11 Properties of the Variance of the Sample Moment
(i) E[f(vt, θ0)f(vt, θ0)

′] exists and is finite; (ii) limT→∞V ar[T 1/2gT (θ0)] = S
exists and is a finite valued positive definite matrix.

The Central Limit Theorem is as follows.

Lemma 3.2 Central Limit Theorem for T 1/2gT (θ0)

If Assumptions 3.1, 3.3, 3.8 and 3.11 hold then T 1/2gT (θ0)
d→ N(0, S).

The analysis of M̄T is more complicated than in the linear model because it

depends on GT (θ̂T ) and GT (θ̂T , θ0, λT ). Since θ̂T
p→ θ0 and θ̄

(i)
T lies on the line

segment between θ̂T and θ0, then it follows that θ̄
(i)
T

p→ θ0 for i = 1, 2 . . . p. Intu-

ition suggests that this should imply both GT (θ̂T ) and GT (θ̂T , θ0, λT ) converge
in probability to G0 = E[∂f(vt, θ0)/∂θ′] . In essence this is correct, but the
argument can only be formally justified if we impose two further restrictions on
∂f(vt, θ)/∂θ′.28

Assumption 3.12 Continuity of E[∂f(vt, θ)/∂θ′]
E[∂f(vt, θ)/∂θ′] is continuous on some neighbourhood Nǫ of θ0.

Assumption 3.13 Uniform Convergence of GT (θ)

supθ∈Nǫ
||GT (θ) − E[∂f(vt, θ)/∂θ′]|| p→ 0.29

27 See Hansen (1982) for more primitive conditions for such an S to exist. We do not give
these conditions here because they are superseded in the next section by the more restrictive
conditions under which S can be consistently estimated.

28 See Newey and McFadden (1994)[p.2145].
29 For any matrix A, we define ‖A‖ = [tr(A′A)]1/2.
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With these assumptions imposed – and, of course, the conditions for the con-
sistency of θ̂T – it is possible to deduce the following.

Lemma 3.3 Convergence of GT (θ̂T ) and GT (θ̂T , θ0, λT )

If Assumptions 3.1–3.5, 3.7–3.10, 3.12 and 3.13 hold then GT (θ̂T )
p→ G0 and

GT (θ̂T , θ0, λT )
p→ G0.

Lemma 3.3 can be combined with Assumption 3.7 and Slutsky’s Theorem

to deduce that M̄T
p→ (G′

0WG0)
−1G′

0W . Therefore just as in the linear model,

T 1/2(θ̂T −θ0) is asymptotically the product of a random matrix which converges
in probability to a constant, and a random vector which converges to a normal
distribution. Therefore, the desired result follows once again from Lemma 1.4.

Theorem 3.2 Asymptotic Normality of the Parameter Estimator

If Assumptions 3.1–3.5 and 3.7–3.13 hold30 then: T 1/2(θ̂T −θ0)
d→ N(0, MSM ′)

where M = (G′
0WG0)

−1G′
0W .

Theorem 3.2 implies that an approximate 100(1 − α)% confidence interval for
θ0,i in large samples is given by

θ̂T,i ± zα/2

√

V̂T,ii/T (3.27)

where V̂T,ii is the i − ith element of a consistent estimator of MSM ′. As in
the linear model, a natural candidate is based on consistent estimators of the
component matrices M and S. Notice that this time the matrix M̄T cannot

be used because although consistent, the values of {θ̄
(i)
T , i = 1, 2 . . . p} are un-

known. However this problem is easily circumvented by replacing θ̄
(i)
T with θ̂T

and using M̂T = [GT (θ̂T )′WT GT (θ̂T )]−1GT (θ̂T )′WT to estimate M . However,
the consistent estimation of S is more complicated and is the topic of Section
3.5.

As we have seen, Theorem 3.2 rests on an application of the Mean Value
Theorem. The latter can only be applied if θ0 is an interior point of Θ. It
should be noted that if θ0 is on the boundary then the limiting distribution
theory is different. Since this situation is not common, we do not pursue it
further here but refer the interested reader to Andrews (2002a).

To conclude this sub-section, we briefly return to the decomposition of the
population moment condition into identifying and overidentifying restrictions.
In Section 3.3, these components are defined and their role explained, but no
intuition is offered for why they take these particular forms. It is now possi-
ble to remedy this omission because an intuition can be developed from the
relationships used to deduce the asymptotic distribution.

The derivation of asymptotic normality began with (3.24). This equation is

formally justified from the Mean Value Theorem and holds for any θ̂T . How-
ever, an inspection of the subsequent analysis indicates that we would have

30 Assumption 3.6 is only omitted because it is implied by Assumption 3.5.
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obtained the same asymptotic distribution if instead we had confined attention
to a sufficiently small neighbourhood around θ0 for which

T 1/2gT (θ) = T 1/2gT (θ0) + GT (θ0)T
1/2(θ − θ0) (3.28)

In other words, for the purposes of the asymptotic distribution theory it is
sufficient to concentrate on the behaviour of the sample moment in the neigh-
bourhood of θ0 for which T 1/2gT (θ) is a linear function of T 1/2(θ−θ0). If we con-
centrate on this neighbourhood for the analysis of the minimization of TQT (θ)
as well, then the identifying restrictions emerge naturally from the structure of
the problem. Using (3.28), the GMM minimand in this neighbourhood can be
rewritten as

TQT (θ) = ||W 1/2
T T 1/2gT (θ)||2 = ||W 1/2

T T 1/2gT (θ0) + FT (θ0)T
1/2(θ − θ0)||2

(3.29)

where, as before, FT (θ) = W
1/2
T T−1

∑T
t=1 ∂f(vt, θ)/∂θ

′

. Therefore if θ̂T mini-

mizes QT (θ) in this neighbourhood then T 1/2(θ̂T − θ0) must also be the least
squares solution to

W
1/2
T T 1/2gT (θ0) + FT (θ0)T

1/2(θ − θ0) = 0 (3.30)

The least squares solution to the inconsistent set of equations in (3.30) is found
by solving the consistent set of equations31

PT (θ0)W
1/2
T T 1/2gT (θ0) + FT (θ0)T

1/2(θ − θ0) = 0 (3.31)

where PT (θ) = FT (θ)[FT (θ)
′

FT (θ)]−1FT (θ)
′

. Since the properties of the pro-
jection matrix and (3.28) in turn imply

PT (θ0)W
1/2
T T 1/2gT (θ0) + FT (θ0)T

1/2(θ − θ0) = PT (θ0){W
1/2
T T 1/2gT (θ0)

+FT (θ0)T
1/2(θ − θ0)}

= PT (θ0)W
1/2
T T 1/2gT (θ)

it follows that the least squares solution to (3.30) must also set

||PT (θ0)W
1/2
T T 1/2gT (θ)||2 (3.32)

to zero. Equations (3.28)–(3.32) show that the identifying restrictions possess
their projection matrix form because, for the purposes of asymptotic distribution
theory, the estimation can be considered as being based on a linearization of
the sample moment condition in the neighbourhood of θ0. Finally, note that
the least squares solution to (3.30) is

T 1/2(θ̂T − θ0) = −[FT (θ0)
′FT (θ0)]

−1FT (θ0)
′W

1/2
T T 1/2gT (θ0) (3.33)

Equation (3.33) is easily verified to be asymptotically equivalent to the formula
in (3.26) from which we deduced the asymptotic normality of the estimator.

31 For example, see Strang (1988) [p.156].
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3.4.3 Asymptotic Normality of the Estimated Sample

Moment

It is shown in Section 3.3 that the estimated sample moment represents a source
of information about whether the overidentifying restrictions are satisfied in
the population. This property is exploited elsewhere to develop a test of the
hypothesis that the model is correctly specified.32 At this stage, we confine our

attention to deriving the asymptotic distribution of W
1/2
T T 1/2gT (θ̂T ) in correctly

specified models.
Equation (3.24) implies

W
1/2
T T 1/2gT (θ̂T ) = W

1/2
T T 1/2gT (θ0) + W

1/2
T GT (θ̂T , θ0, λT )T 1/2(θ̂T − θ0)

(3.34)

If we substsitute for T 1/2(θ̂T − θ0) from (3.26) then (3.34) can be written as

W
1/2
T T 1/2gT (θ̂T ) = NT (θ̂T )W

1/2
T T 1/2gT (θ0) (3.35)

where

NT (θ̂T )=Iq − W
1/2
T GT (θ̂T , θ0, λT )[GT (θ̂T )′WT GT (θ̂T , θ0, λT )]−1GT (θ̂T )′W

1/2
T

′

Equation (3.35) implies W
1/2
T T 1/2gT (θ̂T ) has the same generic structure as the

expression for T 1/2(θ̂T −θ0) in (3.26) namely: a random matrix times the random
vector, T 1/2gT (θ0). Therefore we can use the same arguments as Section 3.4.2
to deduce the following result.

Theorem 3.3 Asymptotic Normality of the Estimated Sample
Moment
If Assumptions 3.1–3.5 and 3.7–3.13 hold then: W

1/2
T T 1/2gT (θ̂T )

d→N(0, NW 1/2

SW 1/2′

N ′) where N = [Iq − P (θ0)] and P (θ0) = F (θ0)[F (θ0)
′F (θ0)]

−1F (θ0)
′.

The connection between the estimated sample moment and the overidentify-
ing restrictions manifests itself in the asymptotic distribution. Equation (3.35)
implies that

W
1/2
T T 1/2gT (θ̂T ) = [Iq − P (θ0)]W

1/2T 1/2gT (θ0) + op(1) (3.36)

Inspection of (3.36) reveals that the asymptotic behaviour of the estimated
sample moment is governed by the function of the data which appears in the
overidentifying restrictions. Therefore, the mean of the asymptotic distribution
in Theorem 3.3 is zero because the overidentifying restrictions are satisfied at
θ0. This relationship also has an impact on the properties of the variance of
the limiting distribution. Since W 1/2 and S are nonsingular, it follows that33

rank{NSN ′} = rank{Iq − P (θ0)} = q − p, and so the covariance matrix is
singular.34 This rank is easily recognized to be the number of overidentifying
restrictions.

32 See Section 2.5 and Chapter 5.
33 See Dhrymes (1984) [p.17].
34 See Rao (1973) [Chapter 8] for a discussion of the singular normal distribution.
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3.5 Long Run Covariance Matrix Estimation

So far, very little has been said about S except that it exists and is positive
definite. The latter is the matrix generalization of the requirement that a scalar
variance be positive. It is important that the estimator also exhibits this prop-
erty or is positive semi-definite at the very least; otherwise the estimated vari-
ances of the individual coefficient estimators can be negative. This is not always
such a trivial property to impose and is one aspect of the various estimators
upon which we focus below.

To understand more about the structure of S, it is useful to rewrite its
definition as follows,

S = lim
T→∞

V ar[T−1/2
T
∑

t=1

ft]

= lim
T→∞

E

[(

T−1/2
T
∑

t=1

ft − E[T−1/2
T
∑

t=1

ft]

)

×

(

T−1/2
T
∑

t=1

ft − E[T−1/2
T
∑

t=1

ft]

)′
⎤

⎦

where to simplify notation we have set ft = f(vt, θ0). Since

T−1/2
T
∑

t=1

ft − E[T−1/2
T
∑

t=1

ft] = T−1/2
T
∑

t=1

(ft − E[ft])

it follows that

S = lim
T→∞

E[{T−1/2
T
∑

t=1

(ft − E[ft])}{T−1/2
T
∑

t=1

(ft − E[ft])}′]

= lim
T→∞

E[T−1
T
∑

t=1

T
∑

s=1

(ft − E[ft])(fs − E[fs])
′]

(3.37)

The stationarity assumption implies that E[(ft − E[ft])(ft−j − E[ft−j ])
′] = Γj ,

say, for every t and so35

S = Γ0 + lim
T→∞

{
T−1
∑

j=1

(

T − j

T

)

(Γj + Γ′
j)} = Γ0 +

∞
∑

i=1

(Γi + Γ′
i) (3.38)

The matrix Γj is known as the jth autocovariance matrix of ft.
36 From (3.38)

it is clear that estimation of S is going to require assumptions about these
autocovariance matrices.

35 For example, see Hamilton (1994) [pp. 279–80].
36 See Hamilton (1994) [pp.261–2] for a discussion of the properties of autocovariance

matrices.



3.5 Long Run Covariance Matrix Estimation 75

The long run covariance matrix estimation literature has focused on the ways
to avoid any potential inconsistency caused by inappropriate assumptions about
the dynamic specification of {f(vt, θ0)}. Therefore, nearly all the contributions
to this literature develop the properties of the estimator in question under the
assumption that the model is correctly specified and so E[f(vt, θ0)] = 0. We
maintain this assumption throughout the section. However, it should be noted
that if this assumption is inappropriate then all the estimators discussed below
are inconsistent. In other words, the consistency of a covariance matrix estima-
tor depends on the validity of the assumptions about both the mean and dynamic
structure of {f(vt, θ0)}. It might be felt that little concern need be attached
to any inconsistency caused by E[f(vt, θ0)] �= 0 because once it is recognized
that the model is misspecified then there is typically no interest in construct-
ing confidence intervals for θ0. However, the use of an inconsistent covariance
matrix estimator has a detrimental effect on the properties of certain tests for
misspecification, and may in turn affect the properties of moment selection pro-
cedures based upon these tests.37 This motivates the use of covariance matrix
estimators which are consistent even if the model is misspecified. Fortunately,
there is a simple way to modify the estimators discussed here to achieve that
end. However, we delay further discussion of this topic until Section 4.3.

In this section we describe estimators which have been proposed under three
different sets of assumptions about the dynamic structure of ft. The first is
where {ft} forms a serially uncorrelated sequence. This type of restriction oc-
curs in some of the models listed in Table 1.1 and so this case is treated sepa-
rately in Section 3.5.1. The remainder of the section considers the more general
case in which ft is serially correlated. Two main approaches have been taken.
The first assumes that ft is generated by a vector autoregressive moving average
(VARMA) process and is reviewed in Section 3.5.2. This approach has the ad-
vantage that the autocovariances can be estimated straightforwardly from the
parameters of the VARMA model. The potential disadvantage is that if this
model for ft is incorrect then the resulting estimator of S may be inconsis-
tent. The second approach uses a member of the class of heteroscedasticity and
autocorrelation covariance (HAC) matrix estimators and these are described in
Section 3.5.3. These estimators are consistent under the much weaker conditions
on {ft}. Unfortunately, these more general estimators can exhibit poor finite
sample performance and this prompted the construction of prewhitened and re-
coloured HAC estimators. Initial evidence suggests this latter version performs
better and so it is also described in Section 3.5.3.

Our discussion of covariance matrix estimation is less rigorous than the
analysis in the previous sections. Instead we focus on the intuition behind
the various methods and describing both their strengths and weaknesses. All
the estimators can be established to be consistent under appropriate conditions
but the reproduction of these very technical results is beyond the scope of this
text. Instead, we refer the interested reader to the appropriate sources for a
catalogue of the required regularity conditions and rigorous proofs of the stated

37 See Chapters 5 and 7 respectively.
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results. As we shall see, there is plenty to discuss even without this more formal
analysis!

3.5.1 Serially Uncorrelated Sequences

If {ft} is a serially uncorrelated sequence then Γj = 0 for j �= 0 and so it follows
from (3.38) that S is given by

S = SSU = E[ftf
′
t ] (3.39)

where we have used the SU subscript to distinguish this S from the cases con-
sidered below. The form of SSU is essentially the same as the S matrix in (2.27)
and a similar logic leads to the estimator38

ŜSU = T−1
T
∑

t=1

f̂tf̂
′
t (3.40)

where f̂t = f(vt, θ̂T ). It can be shown that ŜSU
p→ SSU ; e.g. see White

(1994) [Theorem 8.27, p.193]. Notice that this estimator is positive semi-definite
by construction because

ŜSU = T−1H ′H (3.41)

where H is the (T × q) matrix with tth row f̂
′

t .
In the types of models in Table 1.1, this type of behaviour occurs because the

underlying theory implies {ft} is a martingale difference sequence with respect
to the information set Ωt−1 = {ft−1, ft−2, . . . f1}. Such a process satisfies both
E[ft] = 0 for all t and also

E[ft|Ωt−1] = 0 for t = 2, 3 . . . (3.42)

Consequently, for t > s, we have E[ftf
′

s|Ωt−1] = E[ft|Ωt−1]f
′

s = 0 which implies

E[ftf
′
s] = E[E[ft|Ωt−1]f

′
s] = 0 (3.43)

3.5.2 VARMA Processes

If ft is generated by a stationary and invertible vector autoregressive moving
average (VARMA) model of order (m,n) and E[ft] = 0, then it has the following
representation39

Ψ(L)ft = Φ(L)et (3.44)

in which {et} is a sequence of independently and identically distributed random
vectors with E[et] = 0 and V ar[et] = Σ. The (q × q) matrix polynomials, Ψ(L)

38 Also see Section 4.3.
39 See Hamilton (1994) [Chapters 10 and 11] for an introduction to vector time series models

and Reinsel (1993) for a more elaborate discussion of VARMA models.
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and Φ(L) are respectively of orders m and n; Ψ(L) contains the autoregressive
parameters of the system and Φ(L), the moving average parameters. The re-
strictions on the parameters implied by the terms “stationary and invertible”
are important for our discussion and so worth a brief explanation. A VARMA
process is stationary if the roots, {si, i = 1, 2, . . . m}, of the characteristic equa-
tion det{Ψ(s)} = 0 are all outside the unit circle. This implies that ft has a
VMA(∞) representation,40

ft = {Ψ(L)}−1Φ(L)et (3.45)

The process is invertible if the roots, {s∗
i , i = 1, 2, . . . n}, of the characteristic

equation det{Φ(s∗)} = 0 are all outside the unit circle. This implies ft has a
VAR(∞) representation,41

{Φ(L)}−1Ψ(L)ft = A(L)ft = et (3.46)

where A(L) = Iq − A1L − A2L
2 − . . . is a (q × q) matrix polynomial of infinite

order.
Now let us return to the construction of a consistent estimator for S. From

(3.45) it follows that42

S = SV ARMA = {Ψ(1)}−1Φ(1) Σ Φ(1)′{Ψ(1)′}−1 (3.47)

where Ψ(1) = Iq +
∑m

i=1 Ψi and Φ(1) = Iq +
∑n

i=1 Φi. This matrix can be
consistently estimated by

ŜV ARMA = {Ψ̂(1)}−1Φ̂(1)Σ̂Φ̂(1)′{Ψ̂(1)′}−1 (3.48)

where Ψ̂(1) = Iq +
∑m

i=1 Ψ̂i, Φ̂(1) = Iq +
∑n

i=1 Φ̂i and {Σ̂, Ψ̂i, Φ̂j ; i = 1, 2, . . . m;
j = 1, 2, . . . n} are consistent estimators of {Σ,Ψi,Φj ; i = 1, 2, . . . m; j =
1, 2, . . . n}. Since ft is unobserved, these parameter estimates are obtained by

estimating a VARMA model for f̂t. The estimator of Σ is of the form Σ̂ =
T−1

∑T
t=1 êtê

′
t and so ŜV ARMA is positive semi-definite by construction. The

estimation of VARMA models can be performed using generalized least squares
or maximum likelihood; see Reinsel (1993) [Chapter 5]. However, it is compu-
tationally burdensome due to the presence of the MA terms. Various methods
have been proposed for circumventing this problem in the context of covariance
matrix estimation. Eichenbaum, Hansen, and Singleton (1988) and West (1997)
suggest methods which can be employed if ft follows a VARMA(0,n) process.
Although, the absence of the autoregressive component can be justified in some
of the models listed in Table 1.1, we do not review these procedures here. In-
stead, we focus on a more general method proposed by den Haan and Levin
(1996) which can be applied when ft follows a V ARMA(m, n) process.43

40 See Hamilton (1994) [pp. 259–61].
41 Ibid. [p. 263].
42 Ibid. [pp. 276–84].
43 Also see den Haan and Levin (1997).
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To motivate den Haan and Levin’s method, it is useful to rewrite SV ARMA

in terms of the coefficients in the VAR(∞) representation. From (3.46) it follows
that

SV ARMA = {A(1)}−1 Σ {A(1)′}−1 (3.49)

This suggests an alternative approach is to estimate S using the coefficients
from the VAR(∞) representation and thereby avoid the computational prob-
lems associated with the estimation of MA terms. There is just one snag: it
is impossible to estimate an infinite order autoregressive model from a finite
sample. To circumvent this problem, den Haan and Levin (1996) propose ap-
proximating (3.46) by a finite order VAR model whose order increases with the
sample size. To implement this method in practice, it is necessary to choose the
order of this approximation. Den Haan and Levin (1996) recommend this choice
is made via a data-based model selection criterion. Specifically, they propose
the following method for the estimation of SV ARMA.44

Den Haan and Levin’s Method

1. Calculate Σ̂(0) = T−1
∑T

t=1 f̂tf̂
′
t.

2. Estimate the model

f̂t = A1(k)f̂t−1 + . . . + Ak(k)f̂t−k + et(k) (3.50)

for k = 1, 2, . . . K and t = K + 1, K + 2 . . . T by least squares where
f̂t = f(vt, θ̂T ). These estimates are given by

Â(k) =

T
∑

t=K+1

f̂tr
′
t{

T
∑

t=K+1

rtr
′
t}−1

where A(k) = (A1(k), A2(k), . . . Ak(k)) and r′
t = (f̂ ′

t−1, f̂
′
t−2, . . . f̂

′
t−k) .

Construct the forecast error êt(k) = f̂t − Â(k)rt and

Σ̂(k) = T−1
∑T

t=K+1 êt(k)êt(k)′.

3. Let k̂ be the value of k which minimizes Schwarz’s (1978) information
criterion

SIC(k) = log{det[Σ̂(k)]} +
log(T )kq2

T
(3.51)

over k = 0, 1, . . . K.

4. Estimate SV ARMA by

ŜV ARMA = {Iq −
k̂
∑

i=1

Âi(k̂)}−1Σ̂(k̂){Iq −
k̂
∑

i=1

Âi(k̂)}−1′

(3.52)

44 Also see Section 4.2
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To implement this method, it is necessary to choose K. Den Haan and Levin
(1996) show ŜV ARMA is consistent provided K → ∞ as T → ∞ and K =
O(T 1/3) but an appropriate rule for picking K in finite samples remains an
open question.45 This choice has the advantage the lag selection procedure is
consistent because if n > 0 then k̂ tends in probability to ∞ as T → ∞, but

if n = 0 then k̂
p→ m.46 Finally, notice that once again this covariance matrix

estimator is positive semi-definite by construction.
We have motivated this estimator by assuming ft satisfies a VARMA model.

However, inspection of den Haan and Levin’s method indicates that it is con-
sistent provided the autocovariance structure of ft is equivalent to that of some
infinite order autoregression. For this, it is only sufficient and not necessary that
ft be a VARMA process. Den Haan and Levin provide a set of more general
conditions under which the estimator is consistent. These conditions are very
similar to those employed in the next section and certain parallels will emerge
between ŜV ARMA and some of the methods to which we now turn.

3.5.3 Heteroscedasticity and Autocorrelation Covariance

Matrix Estimators

Unfortunately, VARMA processes may not be sufficiently general to capture the
dependence structure of ft in all cases of interest. This has prompted the devel-
opment of the class of heteroscedasticity and autocorrelation covariance (HAC)
matrices which are consistent under relatively weak assumptions on the depen-
dence structure of the process. However, it is necessary to impose some further
restrictions beyond those already assumed in Section 3.4 for the asymptotic
analysis. The discussion in this section rests mostly on the work of Andrews
(1991) and Newey and West (1994), and these authors catalogue the required
regularity conditions.47

To motivate these estimators, it is useful to return to the definition of S given
in (3.38), namely S = Γ0 +

∑∞
i=1(Γi + Γ′

i). Given this structure, it is natural to
estimate S by truncating this infinite sum and using the sample autocovariances,
Γ̂j = T−1

∑T
t=j+1 f̂tf̂

′

t−j , as estimates of their population analogs. This leads
to the estimator

ŜTR = Γ̂0 +

ℓT
∑

i=1

(Γ̂i + Γ̂′
i) (3.53)

where “TR” stands for truncated. White and Domowitz (1984) first proposed

45 The asymptotic theory is satisfied by the closest integer to cT 1/3 for any finite positive
constant c.

46 Den Haan and Levin (1996) also consider using Akaike’s (1973) information criterion,

AIC(k) = log{det[Ω̂(k)]}+
2kq
T

to pick the lag length. Their theoretical analysis suggests that
SIC is a better choice because AIC is not a consistent method of lag selection; however their
limited simulation evidence suggests that the two criteria perform comparably in this context.

47 These include the conditions: (i) supθ∈Nǫ
E[|∂2f(vt, θ)/∂θi∂θj |] < ∞ for i, , j = 1, 2, . . . p

and Nǫ is some neighbourhood of θ0; (ii) (f(vt, θ0)′, vec(∂f(vt, θ0)/∂θ′ − E[∂f(vt, θ0)/∂θ′])′)
has l–summable autocovariances and absolutely summable fourth order cumulants, where l is
some positive constant.
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this type of estimator and showed its consistency in certain least squares settings
provided ℓT → ∞ as T → ∞ and ℓT = o(T 1/3). This would appear to solve
the problem, but does not. While ŜTR converges in probability to a positive
definite matrix, it may be indefinite in finite samples.

The source of the trouble is not the truncation but the weights given to
the sample autocovariances in (3.53). This is most readily seen by restricting
attention to the case where ft is a ℓ–dependent process so that Γi = 0 for all
i > ℓ, and ℓT = ℓ. In this case, the correct order of the process is being used in
the estimator but the estimator is still not positive semi-definite. This failure
is uncovered by rewriting ŜTR as

ŜTR = T−1H ′DH

where H is the same matrix as in (3.41) and D is the (T × T ) matrix whose
only non-zero elements are Di,j = 1 for j = s1(i), . . . s2(i) for i = 1, 2, . . . T
and s1(i) = max(i − ℓ, 1), s2(i) = min(i + ℓ, T ). Since D is not positive semi-
definite, neither is ŜTR. It is important to realize that the failure of positive
semi-definiteness does not always imply negative sample variances. Rather it
means that negative variances can occur for certain realizations of H. In the
limit, the problem disappears because all realizations from the process must

satisfy ŜTR
p→ Γ0 +

∑ℓ
i=1(Γi + Γ′

i) which is positive definite by definition. One
other important aspect of the problem can be learnt from this example. If ℓ = 0
then ŜTR = ŜSU and this estimator is positive semi-definite by construction.
So the problem stems from the inclusion of the sample autocovariance matrices
{Γ̂i; i = 1, 2, . . . ℓ}.

The solution is to construct an estimator in which the contribution of the
sample autocovariances matrices are weighted to downgrade their role suffi-
ciently in finite samples to ensure positive semi-definiteness but have the weights
tend to one as T → ∞ to ensure consistency. This is the intuition behind the
class of heteroscedasticity autocorrelation covariance (HAC) matrices. This class
consists of estimators of the form

ŜHAC = Γ̂0 +

T−1
∑

i=1

ωi,T (Γ̂i + Γ̂′
i) (3.54)

where ωi,T is known as the kernel (or weight). The kernel must be carefully cho-
sen to ensure the twin properties of consistency and positive semi-definiteness.
The three most popular choices in the econometrics literature are given in Table
3.3.
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Table 3.3
Kernels for three common HAC estimators

Name Author(s) Kernel, ωi,T

Bartlett Newey and West (1987a) 1 − ai for ai ≤ 1
0 for ai > 1

Parzen Gallant (1987) 1 − 6a2
i + 6a3

i for 0 ≤ ai ≤ 0.5
2(1 − ai)

3 for 0.5 ≤ ai ≤ 1
0 for ai > 1

Quadratic Andrews(1991) 25
12π2d2

i

[

Sin(mi)
mi

− Cos(mi)

]

Spectral

Note: ai = i/(bT + 1); di = i/bT ; mi = 6πdi/5.

Here “name” refers to the term by which the particular choice of kernel is most
commonly known, and is a reference back to an earlier literature on the estima-
tion of the spectral density at frequency zero in which these types of problems
were first solved.48 The parameter bT is known as the bandwidth, and must
be non-negative. Notice that this parameter controls the number of autocovari-
ances included in the HAC estimator when either the Bartlett or Parzen kernels
are used. In these two cases, bT must be an integer, but no such restriction is
required for the quadratic spectral kernel. Which set of weights should be used?
Andrews (1991) shows that the Quadratic Spectral weights are optimal in the
sense that they minimize an asymptotic mean squared error criterion for the
estimation of S. His results imply that this choice only marginally dominates
the Parzen weights, but both should be much better than the Bartlett weights.
This is mirrored to some extent by his simulation results for a linear model
with some simple forms of autocorrelation and heteroscedasticity. However, al-
though the Quadratic Spectral weights perform slightly better than the Parzen
weights, neither dominate the Bartlett weights to the extent predicted by the
theory. Newey and West (1994) report simulation evidence from two more gen-
eral linear models; in one, their results corroborate Andrews’s but in the other
they find no clear ranking is possible. Newey and West (1994) conclude that
the choice between the kernels is not particularly important; a view for which
there is some precedent in the earlier spectral density estimation literature.49

The bandwidth is a much more important determinant of the finite sam-
ple properties of ŜHAC . For consistency, bT must tend to infinity with T .50

Andrews (1991) shows that the asymptotic mean square error is minimized by
setting bT equal to O(T 1/3) for the Bartlett weights and O(T 1/5) for both the

48 See Priestley (1981) for a review of this earlier literature.
49 See Priestley (1981) [p.574].
50 Newey and West (1987a) and Gallant (1987) prove the consistency of their particular

estimators under the assumption bT = o(T 1/4). Andrews (1991) and Hansen (1992) prove
the consistency of this general class of estimators under the assumption bT = o(T 1/2).
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Parzen and Quadratic Spectral weights. However, again, this type of condition
provides little practical guidance because it only restricts the optimal band-
width for the Bartlett weights, say, to be of the form cT 1/3 for any choice of
finite c > 0. Andrews (1991) develops some procedures for picking the optimal c
based on the assumption that ft follows certain VARMA models. However, we
do not pursue these here because if this specification is adopted then it seems
more reasonable to use the ŜV ARMA described in the previous section.51 Newey
and West (1994) propose a nonparametric method for selecting the bandwidth
and show it minimizes the asymptotic mean square error criterion. The me-
chanics of this approach are as follows; the parameters (h, n, cγ , ν) are defined
afterwards.

Newey and West’s Method of Bandwidth Selection

1. Use the (q × 1) vector h to construct the scalar random variable ct = h′f̂t.

2. Construct σ̂j = T−1
∑T

t=j+1 ctct−j for j = 0, 1, . . . n.

3. Calculate ŝ(ν) = 2
∑n

j=1 jν σ̂j and ŝ(0) = σ̂0 + 2
∑n

j=1 σ̂j.

4. Calculate γ̂ = cγ{{ŝ(ν)/ŝ(0)}2}1/(2ν+1).

5. For the Bartlett and Parzen kernels, set bT = int{γ̂T 1/(2ν+1)} where
int{.} denotes the integer part of the number inside the brackets; for the
Quadratic Spectral kernel, set bT = γ̂T 1/(2ν+1).

It would be anticipated that the bandwidth depends on the autocovariances of
f̂t and close inspection of the above reveals this to be the case. However, there
is no simple intuition for the exact nature of the calculations. The parameters
(n, cγ , ν) are given in Table 3.4.

Table 3.4

Parameter values for Newey and West’s (1994)

bandwidth selection method
Weight ν n cγ

Bartlett 1 O(T 2/9) 1.4117
Parzen 2 O(T 4/25) 2.6614
Quadratic Spectral 2 O(T 2/25) 1.3221

Notice that the exact choice of n is not specified and so Newey and West’s pro-
cedure does not completely solve the problem. They recommend that the calcu-
lations be repeated for different choices of n to ensure the resulting confidence
intervals or hypothesis tests are not sensitive to the choice of this parameter.

51 If ft follows a VARMA process and so S = SV ARMA then ŜV ARMA converges to this
limit faster than ŜHAC ; see Andrews (1991) and den Haan and Levin (1996).
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To implement the method, the vector h must also be chosen. Newey and West
(1994) focus on the case where ft = ztut and suggest that if the first element
of zt is a constant then h can be set equal to (0, 1, 1, . . . 1). More generally,
the choice of h can be data dependent subject to certain conditions; see Newey
and West (1994) [p.636]. However to date, no further guidance is available
about either how this choice should be made or its impact on the finite sample
properties of the covariance matrix estimator.

In theory, the HAC estimators have solved the problem of constructing a
consistent, positive semi-definite estimator of S under very weak conditions on
ft. However, in practice, they often do not work well in cases of interest. Sim-
ulation evidence suggets their use can lead to the confidence intervals in (3.27)
which do not possess the anticipated coverage rates in finite samples; see An-
drews (1991), Andrews and Monahan (1992) and Newey and West (1994). An
examination of the estimation error indicates the types of circumstance in which
this problem may be present. For ease of exposition, we restrict attention to
HAC estimators for which ωi,T = 0 for i > bT . From (3.38) and (3.54), the
estimation error is

S − ŜHAC = Γ0 − Γ̂0 +

bT
∑

i=1

ωi,T {(Γi − Γ̂i) + (Γ′
i − Γ̂′

i)}

+

bT
∑

i=1

(1 − ωi,T )(Γi + Γ′
i) +

∞
∑

i=bT +1

(Γi + Γ′
i)

(3.55)

So there are three sources of error: (i) error from the estimation of the auto-
covariances, {Γi − Γ̂i}; (ii) error due the weights on the estimated autocovari-
ances, 1 − ωi,T ; (iii) approximation error due to the truncation of the sum,
∑∞

i=bT +1(Γi + Γ′
i). The best way to appreciate when these errors are large is to

start by describing a situation in which they should be relatively small. Suppose
ft is a ℓ–dependent process and ℓ is small relative to bT . In this case it follows
that: (i) the weights on the Γ̂i for i ≤ ℓ are very close to one; (ii) for i > ℓ the
weights help to shrink the estimated covariance matrices towards their limiting
value of zero; (iii) there is no approximation error. These three effects combine
to produce an estimator that is reasonably accurate in finite samples. Now
consider what happens as ℓ increases. Estimation error creeps in because the
weights are substantially different from one for the longer lags less than or equal
to ℓ and then once bT < ℓ, there is approximation error as well. This suggests
that ŜHAC is unlikely to perform well in finite samples if the population auto-
covariance matrices of ft die out too slowly. Such behaviour would be observed
if ft is generated by a process with a substantial autoregressive component.

Autoregressive behaviour is a common feature of economic time series and
so these problems motivated Andrews and Monahan (1992) to propose a mod-
ification to the HAC estimator based on a technique called prewhitening and
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recolouring.52 The basic idea is to filter f̂t to reduce the size of its autoregres-
sive component and hence to produce a series for which an HAC estimator works
better. This is known as the “prewhitening” phase. The long run variance of
the filtered series is estimated using a member of the class of HAC. Then in the
“recolouring” phase, the long run variance of f̂t is estimated from the HAC and
the properties of the filter. Andrews and Monahan (1992) recommend using a
VAR(m) process to filter the data and so their procedure is as follows.

Andrews and Monahan’s Procedure

1. Estimate the VAR(m) model for f̂t,

f̂t = A1(m)f̂t−1 + . . . + Am(m)f̂t−m + et(m) (3.56)

by least squares. These estimates are given by

Â(m) =

T
∑

t=m+1

f̂tr
′
t{

T
∑

t=m+1

rtr
′
t}−1

where A(m) = (A1(m), A2(m), . . . Am(m)) and r′
t = (f̂ ′

t−1, f̂
′
t−2, . . . f̂

′
t−m).

Construct the forecast error êt(m) = f̂t − Â(m)rt.

2. Construct the estimator Σ̂ = Γ̂0 +
∑T−1

i=1 ωi,T (Γ̂i + Γ̂′
i) where

Γ̂i = T−1
∑T

t=m+i+1 êt(m)êt−i(m)′.

3. The estimator of S is

ŜPWRC = {Iq −
m
∑

i=1

Âi(m)}−1Σ̂{Iq −
m
∑

i=1

Âi(m)}−1′

(3.57)

Any value of m can be used; however, Newey and West (1994) recommend
using ŜPWRC with m = 1 and their method of bandwidth selection in step
2. This estimator is positive semi-definite by construction and Andrews and
Monahan (1992) prove its consistency. There are clearly close parallels with
den Haan and Levin’s (1996) method: the main difference is that Andrews and
Monahan use the autoregressive filter to remove some of the autocorrelation
structure; whereas in den Haan and Levin’s method the autoregressive filter
must remove all the autocorrelation structure with the autoregression. This
difference manifests itself in the consistency proofs. The consistency of ŜPWRC

depends mostly on the use of the HAC estimator in step 2, but the filter must
also satisfy certain properties. In particular, if we write plimT→∞Âi(m) =
Ai(m), then A(L) = Iq−∑m

i=1 Ai(m) must satisfy the conditions for stationarity
presented in the previous section. Since den Haan and Levin’s method is based

52 Like the HAC estimators, this technique has its origins in the literature on spectral
density estimation where it was first proposed by Press and Tukey (1956).
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essentially on the AR(∞) representation, this property is guaranteed in that
case.53 However, it may not hold if the AR polynomial is arbitrarily truncated
at some finite lag as is done in Andrews and Monahan’s procedure. However,
since the AR filter is just a device to reduce the autocorrelation, and not to
remove it, Andrews and Monahan propose modifying the filter as follows to
ensure it satisfies the required “stationarity” condition.

To describe this modification, it is most convenient to set m = 1, which is
the choice recommended by Newey and West (1994). Since there is now only
one coefficient matrix, Â1(1), we denote this matrix by Â. Notice that in this
case, the condition for stationarity reduces to the requirement that the eigen-
values of plimT→∞Â = A are less than one in absolute value.54 In practice,
problems may occur if the eigenvalues of Â satisfy this condition but are close to
one. Therefore, Andrews and Monahan (1992) propose modifying Â to ensure
its eigenvalues are less than 0.97 in absolute value. Their procedure is based
on the Singular Value Decomposition of Â. This decomposition is Â = B̂∆̂Ĉ ′

where ∆̂ is a diagonal matrix whose elements are all non-negative.55 Andrews
and Monahan (1992) show that the eigenvalues of Â are guaranteed to satisfy
the required constraint if all the elements of ∆̂ are less than or equal to 0.97.
If this is not the case, then Andrews and Monahan (1992) recommend the of-
fending elements of ∆̂ are replaced by 0.97 to give a new matrix ∆̃ and Â is
replaced by Ã = B̂∆̃Ĉ ′. Simulation evidence in Andrews and Monahan (1992)
and Newey and West (1994) suggests the use of prewhitening and recolouring
improves the finite sample performance of the asymptotic confidence intervals
in (3.27). So for completeness, we conclude this section by bringing together all
these recommendations into a single procedure. Although, this was originally
proposed by Newey and West (1994), we shall give it a more general name since
it represents the synthesis of results and simulation evidence reported in all the
papers cited above.56

Estimation of S when ft is Stationary and Ergodic

1. Estimate the model f̂t = Af̂t−1 + et by least squares to give Â. Let Â =
B̂∆̂Ĉ ′ be the Singular Value Decomposition of Â. Define ∆̃ to be the
diagonal matrix whose (i, i)th element is given by ∆̃ii = min{∆̂ii, 0.97}
and Ã = B̂∆̃Ĉ ′. Construct ẽt = f̂t − Ãf̂t−1.

53 Of course, this statement is subject to certain regularity conditions being satisfied; see
den Haan and Levin (1996).

54 See Hamilton (1994) [p.259].
55 This decomposition can be calculated straightforwardly in most computer packages for

matrix analysis. It is defined as follows. First, note that Â′Â and ÂÂ′ have exactly the
same set of nonzero eigenvalues, which we denote by {δi; i = 1, 2, . . . r}. It is reasonable to

assume in our context that r = q and so both Â′Â and Â′Â are of full rank. The ith diagonal
element of ∆̂ is δi. The matrix B̂ is the (q × q) matrix whose ith column is the eigenvector

of ÂÂ′ associated with the δi. The matrix Ĉ is the (q × q) matrix whose ith column is the

the eigenvector of Â′Â associated with δi. For example, see Dhrymes (1984) [p.78] or Strang
(1988) [Appendix A] for a more detailed discussion.

56 Also see Section 4.3.
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2. Use an HAC estimator in conjunction with Newey and West’s method of
bandwidth selection given above to construct the matrix

Σ̂ = Γ̂0 +
T−1
∑

i=1

ωi,T (Γ̂i + Γ̂′
i)

where Γ̂i = T−1
∑T

t=i+1 ẽtẽ
′
t−i.

3. The estimator of S is

ŜSE = {Iq − Ã}−1Σ̂{Iq − Ã}−1′

(3.58)

where the subscript “SE” stands for “stationary and ergodic”.

The choice between the covariance matrix estimators ŜSU , ŜV ARMA and
ŜSE depends on the model in question. Whichever estimator is appropriate, it
can be used to calculate the approximate large sample confidence intervals for
θ0,i given in (3.27). This section concludes with an illustration of the various
methods in the context of Hansen and Singleton’s (1982) consumption based
asset pricing model.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model
Since zt ∈ Ωt, it follows from (1.22) that f(vt, θ0) = zt(δ0x

γ0−1
1,t+1x2,t+1 − 1) is

martingale difference sequence. Therefore the economic model implies S can be
consistently estimated by ŜSU given in (3.40). In spite of this structure, we shall
use this example to illustrate all the various methods discussed in this section.
For den Haan and Levin’s (1996) method K is set equal to int{T 1/3} = 7 but in

each case the Schwarz criteria chooses k̂ = 0 and so indicates that ft is serially
uncorrelated. In this case, ŜV ARMA equals ŜSU . Three versions of ŜHAC are
calculated: one for each kernel in Table 3.3. In each case, we fix the bandwidth
to bT = 7. Finally, three versions of ŜSE are calculated; again one for each
kernel. The bandwidth for each is calculated using the parameters in Table 3.4,
and so n equals int{T 2/9} = 3, int{T 4/25} = 2, int{T 2/25} = 1 respectively for
the Bartlett, Parzen and Quadratic Spectral kernel. We arbitrarily chose to set
h = (1, 1, 1, 1, 1)′. Clearly the width of the confidence intervals is determined
by the standard error of the estimates,

s.e.(θ̂i) =

√

V̂T,ii/T (3.59)

where V̂T,ii is the ith main diagonal element of V̂T = M̂T ŜT M̂
′

T and M̂T =

[GT (θ̂)′WT GT (θ̂)]−1GT (θ̂)′WT . So, for brevity, only the standard errors of γ̂T

and δ̂T are reported. Table 3.5 contains these statistics for the case in which
the model is estimated with equally weighted returns (EWR), and Table 3.6
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presents the results for the case in which the model is estimated with value
weighted returns (VWR).57

Certain features stand out. First, the different choice of covariance matrix
estimator has some impact on the calculated standard errors. In principle, all
the versions of ŜT are consistent if the model is correctly specified because then
f(vt, θ0) is a martingale difference sequence. Since den Haan and Levin’s (1996)
method confirms the absence of serial correlation in f(vt, θ0), these differences
reflect inherent randomness or finite sample bias. Secondly, the estimates based
on WT = (T−1

∑T
t=1 ztz

′
t)

−1 give much smaller standard errors. Finally, no
matter what the choice of asset or weighting matrix, δ0 is far more precisely
estimated than γ0.

Table 3.5

Standard errors of the first step estimators for the
consumption-based asset pricing model with EWR

WT ŜT s.e.(γ̂T ) s.e.(δ̂T )

105I5 SU, VARMA 6.844 1.210 × 10−2

HAC(B,7) 5.893 1.036 × 10−2

HAC(P,7) 6.458 1.132 × 10−2

HAC(Q,7) 5.549 9.720 × 10−3

SE(B,1) 7.670 1.360 × 10−2

SE(P,4) 7.148 1.254 × 10−2

SE(Q,2.2) 7.340 1.293 × 10−2

(T−1
∑T

t=1 ztz
′
t)

−1 SU, VARMA 2.263 4.393 × 10−3

HAC(B,7) 2.134 4.544 × 10−3

HAC(P,7) 2.148 4.540 × 10−3

HAC(Q,7) 2.091 4.502 × 10−3

SE(B,0) 2.430 4.916 × 10−3

SE(P,1) 2.420 4.894 × 10−3

SE(Q,2.49) 2.308 4.726 × 10−3

Notes: B, P, Q denote the Bartlett, Parzen, Quadratic Spectral kernel. For
K=B,P or Q: HAC(K,7) denotes an HAC estimator kernel with K kernel

and bT = 7; SE(K,b) denotes ŜSE with K kernel and estimated bandwidth b.

57 It should be noted that evidence reported below indicates the model is misspecified for
EWR and this renders the standard errors in (3.59) invalid. See Section 5.1.4 and Section 4.2
respectively.
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Table 3.6

Standard errors of the first step estimators for the
consumption-based asset pricing model with VWR

WT ŜT s.e.(γ̂T ) s.e.(δ̂T )

105I5 SU, VARMA 5.840 1.063 × 10−2

HAC(B,7) 4.559 8.447 × 10−3

HAC(P,7) 4.827 8.852 × 10−3

HAC(Q,7) 4.342 8.059 × 10−3

SE(B,1) 5.593 1.032 × 10−2

SE(P,5) 5.073 9.315 × 10−3

SE(Q,0.78) 5.632 1.038 × 10−2

(T−1
∑T

t=1 ztz
′
t)

−1 SU, VARMA 1.867 3.761 × 10−3

HAC(B,7) 1.699 3.523 × 10−3

HAC(P,7) 1.722 3.548 × 10−3

HAC(Q,7) 1.674 3.489 × 10−3

SE(B,0) 1.850 3.765 × 10−3

SE(P,4) 1.761 3.626 × 10−3

SE(Q,1.62) 1.812 3.727 × 10−3

Notes: See Table 3.5 for definitions.

3.6 The Optimal Choice of Weighting Matrix

In Section 3.3 it is shown that if q = p then GMM is equivalent to the Method
of Moments estimator based on E[f(vt, θ0)] = 0 and so does not depend on the
weighting matrix. However if q > p then no such reduction is possible and it
is clear from Theorem 3.2 that the asymptotic variance of θ̂T depends on WT

via W .58 This opens up the possibility that inferences may be sensitive to W .
Just as in the linear model, it is desirable to base inference on the most precise
estimator and so the optimal choice of W is the one which yields the minimum
variance in a matrix sense. Once again, this choice is S−1; however this time
we state the result more formally. Hansen (1982) proves this result but we note
parenthetically that his argument is different from the one employed below.

Theorem 3.4 Optimal Choice of Weighting Matrix
If Assumptions 3.1–3.5, 3.7–3.13 hold then the minimum asymptotic variance
of θ̂T is (G′

0S
−1G0)

−1 and this can be obtained by setting W = S−1.

Note that the regularity conditions are imposed to ensure that θ̂T has the asymp-
totic distribution given in Theorem 3.2.

Proof of Theorem 3.4:
Let θ̂T (W ) be the GMM estimator based on Assumption 3.3 with weighting ma-
trix WT . It can be recalled from Section 2.4 that the result is established if it

58 If p = q then the asymptotic variance of θ̂T is MSM ′ = (G′

0S−1G0)−1.
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can be shown that V (W )−V (S−1) equals a positive semi-definite matrix, where

V (W ) denotes the variance of the limiting distribution of T 1/2[θ̂T (W ) − θ0].

To begin the proof, it is useful to relate T 1/2[θ̂T (W ) − θ0] to T 1/2[θ̂T (S−1) −
θ0]. This is done quite simply by noting that

T 1/2[θ̂T (W ) − θ0] = T 1/2[θ̂T (S−1) − θ0] + T 1/2[θ̂T (W ) − θ̂T (S−1)] (3.60)

Now, from (3.33) it follows that

T 1/2[θ̂T (W ) − θ0] = − M(W )T 1/2gT (θ0) + op(1) (3.61)

where M(W ) = (G
′

0WG0)
−1G

′

0W , and so that

T 1/2[θ̂T (W ) − θ̂T (S−1)] = −[M(W ) − M(S−1)]T 1/2gT (θ0) + op(1) (3.62)

Therefore, if we substitute (3.61) and (3.62) into (3.60) and calculate the
limiting variance of each side then it follows that

V (W ) = V (S−1) + V1 + C + C ′ (3.63)

where V1 = limT→∞ V ar[{M(W ) − M(S−1)}T 1/2gT (θ0)] and

C = lim
T→∞

Cov
[

{M(W ) − M(S−1)}T 1/2gT (θ0), M(S−1)T 1/2gT (θ0)
]

(3.64)

Equation (3.63) is easily rearranged to give

V (W ) − V (S−1) = V1 + C + C ′ (3.65)

Now V1 is positive semi-definite by construction, and so we focus attention on
C. By definition, it follows that

C = lim
T→∞

E
[

{M(W ) − M(S−1)}T 1/2gT (θ0)T
1/2gT (θ0)

′M(S−1)′
]

= {M(W ) − M(S−1)} lim
T→∞

E
[

T 1/2gT (θ0)T
1/2gT (θ0)

′
]

M(S−1)′

= M(W )SM(S−1)′ − M(S−1)SM(S−1)′ = 0 (3.66)

Equations (3.65)–(3.66) and the definition of V1 establish the desired result.
⋄

The proof is derived by showing that C = 0. It can be recognized that C
is the asymptotic covariance between T 1/2[θ̂T (S−1) − θ0] and T 1/2[θ̂T (W ) −
θ̂T (S−1)]. Therefore, C = 0 implies that T 1/2[θ̂T (S−1) − θ0] is asymptotically

uncorrelated with T 1/2[θ̂T (W ) − θ̂T (S−1)] for any W .
Theorem 3.4 implies the optimal choice of WT is Ŝ−1

T where ŜT is a consis-
tent estimator of S. As in the linear model, the construction of this estimator
requires at least two steps. On the first step a sub-optimal choice of WT is used
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to obtain a preliminary estimator, θ̂T (1). This estimator is used to obtain a
consistent estimator of S, which is denoted ŜT (1). On the second step θ0 is

re-estimated with WT = ŜT (1)−1. The resulting estimator, θ̂T (2), has the min-
imum asymptotic covariance matrix given in Theorem 3.4.59 However, this two
step estimator is based on a version of the optimal weighting matrix constructed
using a sub-optimal estimator of θ0. This suggests there may be finite sample
gains from using θ̂T (2) to construct a new estimator of S, ŜT (2) say, and then

re-estimating θ0 with WT = ŜT (2)−1. The resulting estimator, θ̂T (3), also has

the same asymptotic distribution as θ̂T (2) but it is anticipated to be more ef-
ficient in finite samples. This potential finite sample gain in efficiency provides
a justification for updating the estimate of S again and re-estimating θ0. This
process can be continued iteratively until the estimates converge; if this is done
then it yields what has become known as the iterated GMM estimator. The ith

step of such an iterative procedure is as follows.

The ith Step of Iterated GMM Estimation

• If i = 1: Estimate θ0 using GMM based on the population moment con-
dition in Assumption 3.3 with a sub-optimal weighting matrix, such as
WT = Iq. Denote this estimator by θ̂T (1). Use this estimator to construct
a consistent estimator of S by one of the methods described in Section
3.5.60 Denote this estimator by ŜT (1).

• If i > 1: Estimate θ0 using GMM based on the population moment con-
dition in Assumption 3.3 with WT = ŜT (i − 1)−1 where ŜT (i − 1) is a

consistent estimator of S based on θ̂T (i − 1), the estimator of θ0 from the

(i−1)th step. If ‖θ̂T (i)− θ̂T (i−1)‖ < ǫθ then the procedure has converged

and the iterated GMM estimator is θ̂T = θ̂T (i). If ‖θ̂T (i)− θ̂T (i−1)‖ ≥ ǫθ

and i < Imax then go to the (i + 1)th step.

Typically ǫθ is set equal to some small positive number such as 10−6. Notice
that a ceiling of Imax has been placed on the number of steps. This is needed
because in practice there is no guarantee that this iterative procedure converges
and so limiting the number of steps is a safeguard against putting the com-
puter into an infinite loop! Regardless of whether convergence occurs before the
chosen Imax, all {θ̂T (i), i > 1} have the same asymptotic distribution with the
covariance matrix given in Theorem 3.4.

The choice of W = S−1 has a second important implication for the asymp-
totic behaviour of the estimator which is presented in the following theorem.

Theorem 3.5 Asymptotic Independence of T 1/2(θ̂T − θ0) and

S−1/2T 1/2gT (θ̂T )

If (i) Assumptions 3.1–3.5, and 3.7–3.13 hold; (ii) W = S−1; then T 1/2(θ̂T −θ0)

and S−1/2T 1/2gT (θ̂T ) are asymptotically independent.

59This estimator is sometimes refered to as Hansen’s two step estimator because it is pro-
posed in Hansen (1982).

60 Also see Section 4.3.
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Proof :
First recall that Theorems 3.2 and 3.3 establish that both statistics converge to
normal distributions, and so a necessary and sufficient condition for asymptotic
independence is that these two statistics are asymptotically uncorrelated. The
latter can be deduced from (3.26) and (3.36). Using Lemma 3.3 and putting
W = S−1, it follows from (3.26) and (3.36) that

T 1/2(θ̂T − θ0) = H1,T + op(1) (3.67)

W
1/2
T T 1/2gT (θ̂T ) = H2,T + op(1) (3.68)

where

H1,T = − [F (θ0)
′F (θ0)]

−1F (θ0)
′S−1/2T 1/2gT (θ0)

H2,T = [Iq − P (θ0)]S
−1/2T 1/2gT (θ0)

If we let C = limT→∞ Cov[H1,T , H2,T ] then it follows from Theorems 3.2 and
3.3 that

C = lim
T→∞

E[H1,T H
′

2,T ] (3.69)

Using (3.67) and (3.68) in (3.69), we obtain

C = lim
T→∞

E
[

− [F (θ0)
′F (θ0)]

−1F (θ0)
′S−1/2T 1/2gT (θ0)T

1/2gT (θ0)
′S−1/2′ ×

[Iq − P (θ0)]
]

= −[F (θ0)
′F (θ0)]

−1F (θ0)
′S−1/2

{

lim
T→∞

V ar[T 1/2gT (θ0)]
}

S−1/2′ ×
[Iq − P (θ0)]

= −[F (θ0)
′F (θ0)]

−1F (θ0)
′S−1/2 S S−1/2′

[Iq − P (θ0)]

Now, by definition, we have S = S1/2′
S1/2 and S−1 = S−1/2′

S−1/2 which

together imply S−1/2 = (S1/2′

)−1. It therefore follows that S−1/2SS−1/2′
= Iq.

Using this identity C reduces to

C = −[F (θ0)
′F (θ0)]

−1F (θ0)
′[Iq − P (θ0)] = 0 ⋄

This independence property is exploited in the construction of certain test
statistics described in Chapter 5. However, in our present context, it provides an
interesting perspective on why this choice of W leads to an efficient estimator.
First, notice that if we repeat the sequence of steps in the proof of Theorem 3.5
with any other choice of W then the end result is that C �= 0. Therefore, W =
S−1 is the only choice of weighting matrix for which the estimator is statistically
independent of the part of the moment condition unused in estimation. In other
words, by making this choice of W , we have extracted all possible information
about the parameters contained in the sample moment.

The estimators described in this section are often described as “the optimal
two step GMM” or “optimal iterated GMM” estimator. It is important to re-
alize that this optimality only refers to the choice of weighting matrix. These
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are the most precise GMM estimators which can be constructed from the given
population moment condition E[f(vt, θ0)] = 0. It does not imply that there is
anything optimal about the population moment condition itself. The optimal
choice of moment condition is discussed in Chapter 7. We conclude this section
with an empirical illustration of the two–step and iterated estimator.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model
Table 3.7 contains the two step and iterated GMM estimation results for both
equally weighted returns (EWR) and value weighted returns (VWR). Since the
economic model implies f(vt, θ0) is a martingale difference sequence, the covari-
ance matrix is estimated by ŜSU at each step. The convergence criteria for the
GMM iterative procedure is ǫθ = 10−6. Convergence only took four iterations
with VWR and five with EWR. After two steps the impact of the first-step
weighting matrix is clearly diminishing. With iteration, the impact disappears
completely.

Table 3.7

Two step and iterated GMM estimators for the consumption
based asset pricing model with EWR and VWR

EWR:

W
(1)
T (γ̂T , δ̂T ) for i = 1 (γ̂T , δ̂T ) for i = 2 (γ̂T , δ̂T ) after iteration

A (−3.145, 0.999) (−0.328, 0.999) (−0.343, 0.992)
B (0.398, 0.993) (−0.317, 0.992) (−0.343, 0.992)

VWR:

W
(1)
T (γ̂T , δ̂T ) for i = 1 (γ̂T , δ̂T ) for i = 2 (γ̂T , δ̂T ) after iteration

A (−1.871, 0.998) (0.706, 0.994) (0.666, 0.994)
B (0.698, 0.994) (0.666, 0.994) (0.666, 0.994)

Notes: W
(1)
T denotes the first-step weighting matrix, A denotes W

(1)
T = 105I5 and B

denotes W
(1)
T = (T −1

∑T
t=1 ztz

′

t)
−1.

Table 3.8 reports the standard errors and 95% confidence intervals for the pa-
rameters. A comparison with the first step standard errors in Tables 3.5 and
3.6 indicates that iteration has increased the precision. As before, the discount
factor is very precisely estimated, but the coefficient of relative risk aversion is
not. In fact, the confidence intervals for γ0 include values which exceed one. It
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may be recalled from Section 1.3.1 that γ0 < 1 was a necessary restriction for
the representative agent to possess a concave utility function. However, this is
not necessarily a concern since the confidence intervals are also consistent with
the representative agent’s utility function being concave.

Table 3.8

Approximate standard errors and 95% confidence intervals for the
iterated GMM Estimators in the consumption based asset pricing model

Asset s.e.(γ̂T ) c.i.(γ̂T ) s.e.(δ̂T ) c.i.(δ̂T )

EWR 2.215 (−4.863, 4.000) 0.004 (0.983, 1.000)
VWR 1.823 (−2.916, 4.249) 0.004 (0.987, 1.001)

Notes: s.e.(.) denotes the standard error calculated using (3.59) with WT = Ŝ−1
SU , ŜT = ŜSU

and ŜSU is defined in (3.40). c.i.(.) denotes the 95% confidence interval calculated using
(3.27).

The imprecision of the estimates is a concern, however. The source of the
problem can be traced to an interaction of the properties of the data and the
nature of the nonlinearity in f(vt, θ). The mean and standard deviations of real
per capita consumption growth, x1,t+1, are 1.002 and 0.004 respectively. The
mean and standard deviation of the asset series, x2,t+1, are 1.008 and 0.050
respectively for EWR and 1.006 and 0.042 for VWR. So clearly all the series
fluctuate approximately around one; most importantly consumption growth de-
viates very little from this value. The nonlinearity enters through the Euler
equation residual

ut(θ) = δxγ−1
1,t+1x2,t+1 − 1 (3.70)

Now, if we replace x1,t+1 and x2,t+1 in (3.70) by their approximate means of
one then we have

ut(θ) ≈ δ1γ−1 − 1

This approximation can be set to zero by putting δ = 1 regardless of the value of
γ. Of course, the data exhibit some variation so that the approximation does not
hold exactly. However it is close enough to give the flavour of the problem here:
the population moment condition provides very good information about δ0 but
poor information about γ0. This is an example of the case in which a parameter
is weakly identified by the population moment condition. This situation occurs
sufficiently frequently to have generated its own branch of GMM theory, and
this is reviewed in Section 8.2.

Although we return to this model to illustrate other aspects of the GMM
framework, this nevertheless seems the most appropriate place to mention briefly
subsequent developments in the empirical literature on this topic. Since Hansen
and Singleton’s (1982) study there have been a number of papers which have
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estimated the consumption based asset pricing model with more sophisticated
utility functions; see Kocherlakota (1996) for a survey. However, empirical suc-
cess has been limited. Many studies encounter the same problem as we did
above: aggregate consumption data exhibits far less variation than asset re-
turns and so cannot possibly explain how these assets are priced. This could
mean the economic model is fundamentally wrong or that we have the wrong
measure of consumption. The latter explanation has recently received some
attention. Mankiw and Zeldes (1991) document that stocks are owned by ap-
proximately only thirty percent of the U.S. population and therefore aggregate
consumption is unlikely to be a good proxy for the consumption of asset holders.
Unfortunately, aggregate data for stockholders are unavailable. Hagiwara and
Herce (1997) circumvent this problem by using aggregate dividends to proxy
the consumption of asset holders and find this subsitution leads to far more
reasonable empirical results. ⋄

3.7 Transformations, Normalizations and the

Continuous Updating GMM Estimator

So far in this chapter, we have treated the data and parameter vector as given.
However, in practice, a researcher may have to make decisions about the scale
of the data or the parameterization of the model or whether to transform f(.)
in some fashion. In this section, we consider the extent to which the GMM
estimator is invariant to such decisions. It emerges that the estimator can be
sensitive to these types of transformations, and this motivates both a variant
of GMM known as the continuous updating estimator and also an alternative
method for the calculation of confidence intervals. Both these extensions are
discussed in this section.

To begin, it is useful to distinguish five types of transformation which are
considered below.

• Units of measurement for vt: In some cases a researcher must decide what
units in which to measure the data. For example, any nominal value can
be measured in $’s, 1000$’s or 1,000,000$’s. The choice between them
determines whether a price of one thousand dollars is recorded as 1000, 1
or 0.001, and so determines the scale of the data.

• Reparameterization: Suppose θ0 is globally identified and θ0 = h(γ0)
where h : ℜp → ℜp is a continuous, differentiable bijective mapping.
In this case, the population moment condition can be reparameterized as
E[f(vt, h(γ0))] = E[fγ(vt, γ0)] = 0, and GMM can be used to estimate γ0

based on E[fγ(vt, γ0)] = 0 instead of θ0 based on E[f(vt, θ0)] = 0.

• Normalization of the parameter vector : In some cases, θ0 may only be
identified up to some scaling factor and so it is necessary to impose some
normalization on θ0, such as θ0,1 = 1, in order to achieve identification.
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• Curvature altering transformations of the population moment condition:61

In some cases, the objective function may be ill-behaved and researchers
have found it advantageous to scale the population moment condition by
some function of the θ0. In other words, estimation of θ0 is based on
c(θ0)E[f(vt, θ0)] = 0.

• Stationarity inducing transformations: In some cases, the underlying model
may imply E[h(ṽt, θ0)] = 0 in which ṽt is a vector of nonstationary vari-
ables. Such a specification is outside our framework because Assumption
3.1 is violated. However, it may be possible to find a nonsingular ma-
trix H(ṽt−1, θ0) say, such that H(ṽt−1, θ0)h(ṽt, θ0) = f(vt, θ0) where vt

is a vector of stationary random variables, and E[f(vt, θ0)] = 0. In this
case, GMM estimation can be based on the population moment condition
E[f(vt, θ0)] = 0.

Below we consider the impact of each type of transformation on the GMM
estimator in turn.

The GMM Estimator and the Units of Measurement for vt

In general, the GMM estimator is not invariant to changes in the units of mea-
surement of vt. A simple example illustrates. Let vt be a scalar random variable
with unknown population mean θ0. This definition implies that,

E[vt] − θ0 = 0 (3.71)

Since θ0 is just identified by (3.71), the GMM estimator is just the Method

of Moments estimator which, in turn, is θ̂T = T−1
∑T

t=1 vt. Now suppose vt is
replaced by xt = cvt in (3.71) for some non–zero, finite constant c. The resulting

GMM estimator of θ0 is θ̃T = T−1
∑T

t=1 xt. It is easily verified that θ̃T = cθ̂T ,
and so the GMM estimator is not invariant to changes in the scale of the data.
However, this lack of invariance is a strength rather than a weakness because
the scaling of the data has changed the interpretation of the parameter θ0. In
one case, it is the population mean of vt and in the other, it is the population
mean of xt = cvt.

It is important to realize that the lack of invariance applies to scale changes
in vt, that is to the random variables which appear in the population moment
condition. In some cases, vt may itself be a function of a set of underlying
variables and changes in the units of these variables may or may not have
an impact on the scale of vt. For example in Hansen and Singleton’s (1982)
consumption based asset pricing model, vt is defined to be (ct+1/ct, rt+1/pt). In
this case, since the elements of vt are ratios, changes in the units of ct or asset
prices (with commensurate changes in the returns) have no impact on vt, and
hence no impact on the GMM estimator. ⋄

61 This type of transformation is sometimes refered to as “normalization” of the population
moment condition. However, we eschew this terminology to avoid confusion with the concept
of normalization of the parameter vector.
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The GMM Estimator and Reparameterization
The GMM estimator is invariant to reparameterization in the sense that the two
parameterizations yield logically consistent estimators. However, a similar result
does not extend to the estimated asymptotic standard errors, and so inferences
may be sensitive to the choice of parameterization. These two statements are
now justified in turn.

Let Qγ,T (γ) be the GMM minimand associated with the reparameterized
model, that is Qγ,T (γ) = QT (h(γ)), and γ̂T = argmin Qγ,T (γ). Given the
properties of h(.) stated above, it is possible to calculate γ̂T as follows. First,

QT (h(γ)) can be minimized with respect to h(γ) to yield ĥT , say. Then, ĥT =
h(γ̂T ) can be solved to yield a unique value for γ̂T . It is easily recognized that

ĥT = θ̂T and so by construction

θ̂T = h(γ̂T ) (3.72)

Therefore the two estimators are logically consistent. However, the same cannot
be said for inferences based on the estimator, as we now show.

It can be recalled from the discussion following (3.27) that the estimated

asymptotic standard errors of θ̂T are the square roots of the diagonal elements
of the matrix,

V̂θ,T = [GT (θ̂T )′WT GT (θ̂T )]−1GT (θ̂T )′WT ŜT WT GT (θ̂T )

×[GT (θ̂T )′WT GT (θ̂T )]−1 (3.73)

Similar arguments imply that the corresponding matrix for γ̂T is given by

V̂γ,T = [Gγ,T (γ̂T )′WT Gγ,T (γ̂T )]−1Gγ,T (γ̂T )′WT Ŝγ,T WT Gγ,T (γ̂T )

×[Gγ,T (γ̂T )′WT Gγ,T (γ̂T )]−1 (3.74)

where Gγ,T (.), and Sγ,T are the analogs of GT (.), ŜT only defined in terms
of fγ(.) instead of f(.). Intuition suggests that these two matrices should be

related, and they are. To see how, note that (3.72) implies f(vt, θ̂T ) = fγ(vt, γ̂T ),

and hence that ŜT = Ŝγ,T – assuming the same generic covariance matrix
estimator is used in each case, of course. Furthermore, by the Chain rule

∂fγ(.)/∂γ′ = {∂f(.)/∂θ′} ∂h(.)/∂γ′

and so, using (3.72), it follows that

Gγ,T (γ̂T ) = GT (θ̂T )H(γ̂T ) (3.75)

where H(.) = ∂h(.)/∂γ′. Collecting these results together and making the
appropriate substitutions into (3.74), it can be shown that

V̂γ,T = [H(γ̂T )]−1V̂θ,T [H(γ̂T )′]−1 (3.76)

To illustrate how reparameterization may affect inferences, it suffices to take
a simple example. Suppose p = 1 and h(γ) = γ3. The asymptotic confidence
interval for γ0 is

γ̂T ± zα/2

√

V̂γ,T /T (3.77)
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Since θ = γ3 and (3.76) holds with H(γ̂T ) = 3γ̂2
T , it follows that (3.77) implies

the following interval for θ0
(

{

γ̂T − zα/2(3γ̂2
T )−1

√

V̂θ,T /T

}3

,

{

γ̂T + zα/2(3γ̂2
T )−1

√

V̂θ,T /T

}3
)

(3.78)

In contrast, the asymptotic confidence interval based upon θ̂T directly is

θ̂T ± zα/2

√

V̂θ,T /T (3.79)

In general, there is no reason why the intervals in (3.78) and (3.79) should be
equal.

This sensitivity is a potential source of concern, and motivates an alternative
method for the construction of confidence intervals that is discussed later in this
section. However, it is worth noting one defence of the intervals described above.
It can be argued that many economic models imply a “natural parameterization”
and so this is the only parameterization of interest. For example, in Hansen and
Singleton’s (1982) consumption based asset pricing model, there are two aspects
of the agents behaviour which are crucial for the model: his/her discount factor
and coefficient of relative risk aversion. In our presentation in Section 1.3.1,
these two aspects of the model are captured directly by unknown parameters
(δ0, γ0). Alternatively, the model could have been parameterized so that the
discount factor and risk aversion are captured by h1(η1) and h2(η2) say, for
some prespecified functions hi(.) of unknown parameters (η1, η2). However, in
this second approach the unknown parameters have no meaningful economic
interpretation. So the first parameterization is argued to be the “natural” one
for this model and the second, by implication, to be “unnatural”. While this
argument may not find universal favour, it is certainly the case that published
studies tend to employ the natural parameterization. ⋄

The GMM Estimator and Normalization of the Parameter Vector
In general, the GMM estimators associated with different normalizations of the
parameter vector do not exhibit a logical consistency in finite samples. However,
they do exhibit a logical consistency in the limit.

This particular issue has been the focus of some attention in the literature
on the use of the linear quadratic model for inventory holdings, and this set-
ting provides a convenient framework for our discussion. Several papers have
contributed to this part of the literature but our discussion is based on Fuhrer,
Moore, and Schuh (1995).62 The model has essentially the same structure as
the one described in Section 1.3.4 except that now the cost functions take the
form,

CQt
= (θ0,1/2)Q2

t + (θ0,2/2)(Qt − Qt−1)
2

CIt
= (θ0,3/2)(It − ω0It−1)

2

62 The interested reader is refered to Fuhrer, Moore, and Schuh (1995) or Blinder and
Maccini (1991) for the appropriate references.
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With these definitions, the Euler equation becomes

E[θ0,1(Qt − β0Qt+1) + θ0,2(∆Qt − 2β0∆Qt+1 + β2
0∆Qt+2)

+ θ0,3It + θ0,4St |Ωt] = 0 (3.80)

where β0 and Ωt denote the discount factor and information set at time t respec-
tively (as in Section 1.3.4), ∆ denotes the difference operator,63 and we have
set θ0,4 = θ0,3ω0. It is common in the literature on this model to fix the value
for β0 a priori because then the Euler equation is linear in both the parameters
and variables. We follow this practice, and so the Euler equation can be written
more compactly as,

E[et(θ0) |Ωt] = 0 (3.81)

where
et(θ) = θ1R1,t + θ2R2,t + θ3It + θ4St (3.82)

and we have set R1,t = (Qt − β0Qt+1), R2,t = (∆Qt − 2β0∆Qt+1 + β2
0∆Qt+2),

and θ0 = (θ0,1, θ0,2, θ0,3, θ0,4). Using similar argument to (1.23), it follows from
(3.81) that

E[ztet(θ0)] = 0 (3.83)

for any zt ∈ Ωt.
Ideally (3.83) would form the basis for GMM estimation of θ0. However,

inspection of (3.82) reveals that θ0 is not identified by this population moment
condition: if (3.83) holds then so does E[ztet(θ̄)] = 0 for θ̄ = cθ0 and any finite
constant c. In other words, θ0 is only identified up to a scaling factor. In the
absence of any additional information about the parameters from the underlying
economic theory, it is necessary to impose some arbitrary normalization on θ0

in order to facilitate the estimation. For the purposes of exposition, we consider
two such normalizations. First, suppose the elements of et(θ0) are divided by
θ0,1 to yield

ẽt(ψ0) = R1,t + ψ0,1R2,t + ψ0,2It + ψ0,3St (3.84)

where ψ0,i = θ0,i+1/θ0,1. Secondly, suppose the elements of et(θ0) are divided
by θ0,4 to yield

ēt(φ0) = φ0,1R1,t + φ0,2R2,t + φ0,3It + St (3.85)

where φ0,i = θ0,i/θ0,4. Notice that both these normalizations of θ0 are logically
consistent in the sense that given ψ0 it is possible to solve uniquely for φ0 and
vice versa.64

These normalizations lead to two different population moment conditions
upon which estimation can be based,

E[ztẽt(ψ0)] = 0 (3.86)

E[ztēt(φ0)] = 0 (3.87)

63 That is ∆Qt = Qt − Qt−1.
64 Specifically, the mapping between them is given by φ1 = 1/ψ3, φ2 = ψ1/ψ3, φ3 = ψ2/ψ3

where it is assumed for simplicity that all coefficients are non-zero.
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Since both population moment conditions have the linear structure considered
in Chapter 2, we can appeal to that earlier analysis to deduce that ψ0 is identi-
fied by (3.86) provided rank{E[ztx

′

1,t]} = 3 where x1,t = (−R2,t,−It, −St)
′,

and φ0 is identified by (3.87) provided rank{E[ztx
′

2,t]} = 3 where x2,t =
(−R1,t,−R2,t, −It)

′. The form of the estimators is given by (2.8), that is

ψ̂T =

[

(T−1
T
∑

t=1

x1,tz
′

t)WT (T−1
T
∑

t=1

ztx
′

1,t)

]−1

× (T−1
T
∑

t=1

x1,tz
′

t)WT (T−1
T
∑

t=1

ztR1,t) (3.88)

φ̂T =

[

(T−1
T
∑

t=1

x2,tz
′

t)WT (T−1
T
∑

t=1

ztx
′

2,t)

]−1

× (T−1
T
∑

t=1

x2,tz
′

t)WT (T−1
T
∑

t=1

ztSt) (3.89)

It is remarked above that the two normalizations of θ0 are logically consistent.

Since ψ̂T
p→ ψ0 and φ̂T

p→ φ0, the estimators must exhibit a similar logical
consistency in the limit. However, there is no reason for ψ̂T and φ̂T to exhibit
this property in finite samples. For example, even though the model implies
ψ0,1/ψ0,2 = φ0,2/φ0,3, the corresponding estimators in (3.88)–(3.89) do not ex-

hibit this property, that is ψ̂T,1/ψ̂T,2 �= φ̂T,2/φ̂T,3 in general. Fuhrer, Moore,
and Schuh (1995) provide empirical evidence that the estimators of inventory
models can be very sensitive to the choice of normalization. Further evidence
is provided by the simulation study reported in West and Wilcox (1994). ⋄

The GMM Estimator and Curvature Altering Transformations of the
Population Moment Condition
The GMM estimator is invariant to curvature altering transformations of the
population moment condition if the parameter vector is just identified; however,
if the parameter vector is overidentified then it only exhibits this property in
the limit.

We begin with the just identified case, that is p = q. Suppose that GMM
estimation is to be based upon the transformed population moment condition,

c(θ0)E[f(vt, θ0)] = 0 (3.90)

where c(θ0) is a finite non–zero scalar.65 Since p = q, the GMM estimator is just

the Method of Moments estimator θ̂T obtained by solving the sample analog to

65 For simplicity, we take c(.) to be a scalar, but the same arguments go through if c(θ0) is
a (p × p) nonsingular matrix.
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(3.90),

c(θ̂T )T−1
T
∑

t=1

f(vt, θ̂T ) = 0 (3.91)

However, provided c(θ̂T ) is finite and non-zero, (3.91) implies

T−1
T
∑

t=1

f(vt, θ̂T ) = 0 (3.92)

and so θ̂T is also the Method of Moments, and hence GMM, estimator of θ0

based on E[f(vt, θ0)] = 0.66

However, if q > p then the above argument does not go through because the
first order conditions do not set the sample moment to zero. Specifically, the
GMM estimator based on (3.90) is now the solution to

{[

∂c(θ̂T )

∂θ

]

T−1
T
∑

t=1

f(vt, θ̂T )′ + c(θ̂T )GT (θ̂T )′

}

WT T−1
T
∑

t=1

f(vt, θ̂T ) = 0

(3.93)
In general, the solution to (3.93) does not satisfy the first order conditions asso-
ciated with GMM estimation based on the untransformed population moment
condition given in (3.12).67 However, since (3.90) holds, the estimator is con-
sistent for θ0 and so the transformation does not affect the probability limit of
the estimator.

As mentioned above, this type of transformation is employed when the min-
imand is ill-behaved making estimation difficult. Such a problem occurs in
Eichenbaum’s (1989) inventory model described in Section 1.3.3. and we illus-
trate this type of transformation in Section 9.3 as part of our empirical investi-
gation of this model. ⋄

Stationarity Inducing Transformations
If it is possible to find one stationarity inducing transformation of f(.) then
there are infinitely many such transformations. In general, the GMM estimator
is sensitive to the choice of transformation in finite samples, but is consistent
no matter which transformation is used.

These statements are most easily substantiated in the context of a specific
example. To this end, we consider the consumption based asset pricing model
described in Section 1.3.1 and, to simplify the discussion, focus on the specifi-
cation used in our empirical implementation.68

66 Note that if the entire population moment condition in (3.71) is scaled by c, instead of
just scaling vt, then the resulting GMM estimator is invariant to the choice of c.

67 The reader should be alerted to an abuse of notation in making the comparison between
these two equations. In Section 3.2, θ̂T is defined to be the solution to (3.12). In the current

paragraph, θ̂T has been used to denote the solution to (3.93).
68 That is with only one asset with a maturity of one period, and the constant relative risk

aversion utility function given in (1.21).
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To begin, it is useful to revisit the derivation of the population moment
condition in Section 1.3.1 because the steps taken involve the implicit use of a
stationarity inducing transformation. It can be recalled from this earlier dis-
cussion that the derivation of the population moment condition began with
a characterization of the optimal path for consumption in (1.19). Under the
conditions given above, this equation reduces to

ptc
γ0−1
t = δ0E[rt+1c

γ0−1
t+1 |Ωt] (3.94)

From this starting point, we proceeded as follows. Since ptc
γ0−1
t ∈ Ωt, both

sides of this equation were divided by ptc
γ0−1
t to give

E[δ0(rt+1/pt)(ct+1/ct)
γ0−1 − 1|Ωt] = 0 (3.95)

and then the population moment condition is deduced from (3.95) using an iter-
ated expectations argument. However, we could have taken another approach.
Equation (3.94) can be rewritten as

E[δ0rt+1c
γ0−1
t+1 − ptc

γ0−1
t |Ωt] = 0 (3.96)

It is then possible to use the same iterated expectations argument to deduce
population moment conditions based (3.96). Why use the first approach and
not the second? The answer is simple. Population moment conditions based
on (3.95) involve x1,t+1 = ct+1/ct and x2,t+1 = rt+1/pt, both of which are
stationary random variables. Whereas moment conditions deduced from (3.96)
involve functions of the nonstationary variables (ct, rt, pt).

While the choice between (3.95) and (3.96) may be clear cut. It should be
noted that the stationarity inducing transformation used in (3.95) is not unique.
For example, let wt ∈ Ωt be a stationary random variable, then division of (3.94)
by wtptc

γ0−1
t yields

E[δ0w
−1
t (rt+1/pt)(ct+1/ct)

γ0−1 − w−1
t |Ωt] = 0 (3.97)

which can also form the basis for population moment conditions involving sta-
tionary random variables. It follows, therefore, that there are an infinite num-
ber of stationarity inducing transformations. The impact of the choice of wt

is most easily understood by considering the moment condition upon which
estimation is ultimately based. It can be recalled from Section 1.3.1 that
an iterated expectations argument is used to deduce E[ut(θ0)zt] = 0 where
ut(θ0) = δ0(x2,t+1x

γ0−1
1,t+1 − 1). If the same argument is used starting from (3.97)

then the resulting moment condition is simply E[ut(θ0)z̃t] = 0 where z̃t = w−1
t zt.

Therefore, the components in the stationarity inducing transformation play dif-
ferent roles: division by ptc

γ0−1
t actually induces stationarity and wt simply

scales the instrument vector. From this perspective, it is immediately apparent
that the resulting estimator is not invariant in finite samples to the choice of
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stationarity inducing transformation, but is nevertheless consistent for θ0 for
any suitable choice of wt.

69 ⋄

It is clear that either the estimator or subsequent inferences can be sensitive
to the types of transformation considered above. The sensitivity of the estima-
tor is particularly unappealing in the last three cases because there is clearly an
arbitrariness to the specific normalization or transformation chosen. It is possi-
ble to modify the GMM minimand to produce an estimator which is invariant
to curvature altering transformations. This version is known as the continuous
updating GMM estimator and is considered below. The sensitivity of inferences
to reparameterization may be viewed as a less serious problem because of the
“natural parameterization” argument. However, the latter view is not univer-
sally accepted and so we explore an alternative method for the construction of
confidence intervals. We now describe both these remedies in turn.

The continuous updating GMM estimator was introduced by Hansen, Heaton,
and Yaron (1996). The motivation for this estimator is best understood by con-
sidering the population analog to the GMM minimand with the optimal weight-
ing matrix. It can be recalled from Theorem 3.4 that the optimal choice of W is
S−1. For our purposes here, it is important to note that this choice of weighting
matrix depends on θ0 because S = limT→∞ V ar[T 1/2gT (θ0)], and to emphasize
this dependence we now write S = S(θ0). Using this notation, the population
analog to the GMM minimand is

Qpop(θ) = E[f(vt, θ)]
′S(θ)−1E[f(vt, θ)] (3.98)

Notice that both the population moment condition and weighting matrix de-
pend on θ0. However, since the consistency of the estimator depends crucially
on E[f(vt, θ0)] = 0 and not on S(θ0)

−1, we have treated the dependencies of
f(.) and S(.) on θ differently so far. In the iterated estimation, a preliminary
estimator of θ0 is used to construct the weighting matrix and hence to eliminate
the argument from the weighting matrix so that the minimand takes the form

Qiter,T (θ) = gT (θ)′ŜT (i − 1)−1gT (θ) (3.99)

While this is approach is perfectly reasonable, it is not the only one possible.
An alternative is to acknowlege the dependence of S on θ in the minimization
and hence define the minmand to be

Qcont,T (θ) = gT (θ)′ST (θ)−1gT (θ) (3.100)

where

ST (θ) = Γ0,T (θ) +
T−1
∑

i=1

ωi,T [ Γi,T (θ) + Γi,T (θ)
′

] (3.101)

69 If the Euler equation is linear in the variables then it is possible to argue that an analogous
conditional moment restriction is satisfied by the detrended variables. See Section 9.3 for
further discussion of this approach to inducing stationarity.
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where Γi,T (θ) = T−1
∑T

t=i+1 f(vt, θ)f(vt−i, θ)
′

. Notice that ST (θ) has the

generic form of the HAC estimators discussed in Section 3.5.3 and so ST (θ0)
p→ S

under appropriate conditions upon the dynamic structure of f(vt, θ0) and kernel,
ωi,T . The continuous updating GMM estimator is defined to be,

θ̂cont,T = argminθ∈Θ Qcont,T (θ) (3.102)

Intuition suggests that the continuous updating estimator exhibits the same
asymptotic properties as the two step or iterated estimator, and this is the case.
This can be established using similar arguments to the proofs of Theorems 3.1
and 3.2 and is left to the reader. Although the iterated and continuous updating
estimators have the same asymptotic distributions, they are typically different
in finite samples. The first order conditions for the iterated estimation are given
by (3.12) with WT = ŜT (i − 1)−1, those for the continuous updating estimator
are given by,70

2GT (θ̂T )′ST (θ̂T )−1gT (θ̂T ) −
{

∂vec[ST (θ̂T )]

∂θ′

}′

[ST (θ̂T )−1 ⊗ ST (θ̂T )−1]

× vec[gT (θ̂T )gT (θ̂T )′] = 0 (3.103)

A comparison of the two sets of equations indicates that the first order con-
ditions for the continuous updating estimator contain an additional term due
to the presence of the argument in the weighting matrix. To make this sec-
ond term explicit, it is necessary to substitute in the appropriate formula for
∂S(θ)/∂θ

′

. For our purposes here, it is sufficient to restrict attention to the case
in which ωi,T = 0, that is in which the long run variance is estimated under the
assumption that f(vt, θ0) is a serially uncorrelated process. In this case, it can
be shown that

∂vec[ST (θ)]

∂θ′
= T−1

T
∑

t=1

{[Iq ⊗ f(vt, θ)] + [f(vt, θ) ⊗ Iq]}
∂f(vt, θ)

∂θ′
(3.104)

In general, there is no reason why the solutions to (3.12) and (3.103) should
coincide for finite T . However, it can be verified that both sets of equations are
satisfied by θ0 in the limit.

The chief advantage of the continuous updating estimator is that it is in-
variant to curvature altering transformations of f(vt, θ). To illustrate, consider
again the situation described above in which the population moment condition
is multiplied by c(θ0), and so estimation is based on (3.90). The key difference
now is that Qcont,T (θ) depends on θ via both the sample moment and the in-
verse of the covariance matrix. After the transformation the sample moment is
c(θ)gT (θ) and the inverse of the covariance matrix is c(θ)−2ST (θ)−1. Once these
terms are substituted into the minimand in (3.100), it is easily verified that the

70 These equations can be derived using Dhrymes (1984) [Proposition 99, p.115; Proposition
106, p.124].
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factors involving c(θ) cancel out, and so the estimator is unaffected by this type
of transformation. In some cases, different elements of the population moment
may be transformed by different functions of θ, and the previous argument is
easily extended to cover this case and also the more general scenario in which
f(vt, θ) is premultiplied by any nonsingular matrix C(θ).

It is important to realize that the invariance of the continuous updating esti-
mator is only with respect to curvature altering transformations of the popula-
tion moment condition. However, there are cases in which the net effect of one
of the other types of transformation is to premultiply the population moment
by some nonsingular matrix C(θ), and so the continuous updating estimator is
invariant to these types of transformation in such cases as well.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model
Table 3.9 contains the continuous updating estimates, their standard errors and
95% confidence intervals for the parameters for both choices of assets. The
starting values for the estimations are the iterated estimates reported in Table
3.7. This choice is made for two reasons. First, if the model is correctly spec-
ified, then the iterated estimator is consistent for θ0 which is a solution to the
first order conditions in (3.103) in the limit. Secondly, in this example, this
choice of starting value initiates the minimization in an area within which the
minimand is reasonably well behaved. In contrast to our experience with the
iterated estimator, the results are very sensitive to the choice of starting value.
In particular, for certain starting values, the numerical optimization routine di-
verges into parts of the parameter space clearly not in the neighbourhood of the
global minimum of TQcont,T (θ). A similar experience is reported by Hansen,
Heaton, and Yaron (1996) in the context of slightly more sophisticated versions
of the consumption based asset pricing model. These differing experiences can
be explained by considering the surface of the minimands with the VWR data.
Figure 3.3 plots the second step minimand based on the first step estimates
calculated using WT = 105I5 with the VWR data. A comparison with Figure
3.2 indicates the minimand has the same valley like shape on both first and
second steps. In contrast, the surface of the continuous updating minimand has
a ravine in which the minimum is located as shown in Figure 3.4. The minimum
is far harder to locate in the latter case particularly as the surface is relatively
flat around the ravine.

With VWR, the results are very similar, although not identical, to those
reported for the iterated estimator. With EWR, the only noticable difference
between the estimation results is in the estimate of γ0: continuous updating
GMM yields 0.515 for this parameter, as opposed to −0.343 with iterated GMM.
Notwithstanding this difference, the results are qualitatively the same from
the iterated and continuous GMM estimations. In both cases, δ0 is precisely
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Figure 3.3: Second-step GMM minimand for the consumption based asset
pricing model with value weighted returns
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Figure 3.4: Continuous Updating GMM minimand for the consumption based
asset pricing model with value weighted returns
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estimated but γ0 is not. Furthermore, the source of this imprecision is the same
here as it is in the iterated estimation: γ0 is weakly identified by the population
moment condition associated with continuous updating GMM. ⋄

Table 3.9

Continuous Updating GMM estimation results for the
consumption based asset pricing model

EWR :

(γ̂T , δ̂T ) s.e.(γ̂T ) c.i.(γ̂T ) s.e.(δ̂T ) c.i.(δ̂T )

(0.515, 0.990) 2.229 (−3.853, 4.884) 0.004 (0.981, 0.998)

VWR :

(γ̂T , δ̂T ) s.e.(γ̂T ) c.i.(γ̂T ) s.e.(δ̂T ) c.i.(δ̂T )

(0.785, 0.993) 1.829 (−2.801, 4.370) 0.004 (0.986, 1.000)

Notes: s.e.(.) denotes the standard error calculated using (3.59) with WT = Ŝ−1
SU , ŜT = Ŝ−1

SU

and ŜSU is defined in (3.40). c.i.(.) denotes the 95% confidence interval calculated using
(3.27).

It is the form of the minimand that gives the continuous updating estima-
tor its invariance to normalization of the population moment condition. It is
this minimand which also provides the key to the construction of asymptotic
confidence sets which are invariant to reparameterization. We use the term
“confidence set” because the approach described below is based on a proba-
bility statement involving θ0 rather than statements involving its individual
elements. This approach was first introduced into the GMM literature by Stock
and Wright (1995, 2000) although in the context of a different problem. Stock
and Wright are concerned with the problem of inference in the presence of
weakly identified parameters, and we discuss this approach to inference in that
context in Section 8.2. For the present, we focus purely on the construction of
confidence sets which are invariant to reparameterization.71

To derive these confidence sets, it is necessary to consider the limiting dis-
tribution of TQcont,T (θ0). This distribution follows straightforwardly from the
limiting behaviour of its components, T 1/2gT (θ0) and ST (θ0)

−1. Under the

conditions of Lemma 3.2, it follows that T 1/2gT (θ0)
d→ N(0, S). If it is also

71 In the weak identification literature, these confidence sets are sometimes refered as S-sets,
a terminology inpsired by the notation used by Stock and Wright (2000).
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assumed that ST (θ0)
p→ S, then ST (θ0)

−1 p→ S−1.72 Combining these two
results, it follows that

TQcont,T (θ0)
d→ χ2

q (3.105)

An asymptotically valid 100(1 − α)% confidence set for θ0 is then given by

{ θ : TQcont,T (θ) < cq(α) } (3.106)

where cq(α) is the 100(1−α)% percentile of the χ2
q distribution. In other words,

the confidence sets in (3.106) consist of all values of θ for which the minimand
of the continuous updating GMM estimator does not exceed the appropriate
percentile of the limiting distribution of TQcont,T (θ0). It is easily recognized
that our earlier arguments about the invariance of the estimator to reparame-
terization can be applied here to show that the confidence sets in (3.106) ex-
hibit the same invariance property. This confidence set is illustrated below for
our running example. In that particular case, the calculations are relatively
straightforward because θ0 is only a (2×1) vector. However, the computational
burden increases rapidly with p and quickly becomes prohibitive. Therefore, this
method of calculating confidence sets can be infeasible in many cases of interest.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model
It can be recalled that the model has been estimated for two types of asset,
VWR and EWR. As it turns out, these two cases provide a good illustration
of a fundamental difference between the confidence sets and marginal intervals
reported earlier. By construction the marginal intervals in (3.27) are non-empty.
However, it is entirely possible for the confidence set in (3.106) to contain no
elements, and this is exactly what happens when the model is estimated with
EWR. Such a phenomenon provides evidence that the model is misspecified.
We come to the same conclusion using model specification tests in Section 5.1,
and delay further discussion of this outcome until then. Instead we focus here
on the case in which the model is estimated with VWR. For this case, the
95% confidence set for (δ0, γ0) consists of all points within the ellipse plotted in
Figure 3.5. This confidence set is clearly more informative than the marginal
intervals reported in Tables 3.8 and 3.9 because it reveals a connection between
the plausible values for γ0 and δ0. In general terms, higher values of γ0 in
the set are associated with smaller values of δ0 and vice versa. However, in one
sense the confidence set and marginal confidence intervals are similar: they both
imply δ0 is estimated very precisely but γ0 is not. ⋄

72 The reader is refered to the references given in Section 3.5.3 for appropriate regularity
conditions for this result to hold.
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Figure 3.5: 95% confidence set for θ0 in the consumption based asset
pricing model with value weighted returns

3.8 GMM as a Unifying Principle of

Estimation

It is stated in Chapter 1 that GMM provided a unifying framework for the
analysis of many econometric estimators. At that point it was only possible
to provide a few illustrations of this thesis but we are now in a position to
elaborate further. So we conclude this chapter by describing how the GMM
framework encompasses many other estimators derived using a seemingly dif-
ferent approach. This section covers material which is irrelevant to many of the
applications listed in Table 1.1, and so some readers may wish to proceed to
Chapter 4.

It is convenient to divide the discussion into two parts. First, we consider the
case in which all the elements of θ0 are estimated simultaneously. For reasons
that will become apparent, we refer to such estimators as single step. This is
the case upon which we have focused in the book so far. Then we consider the
case of sequential estimators in which the elements of the parameter vector are
estimated in stages.
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3.8.1 Single Step Estimators

Many econometric estimators are obtained by optimizing a scalar of the form

T
∑

t=1

Nt(θ) (3.107)

Two leading examples are least squares and maximum likelihood, both of which
we discuss in more detail below. If Nt(θ) is differentiable then the estimator, θ̃,
is the value which solves the associated first order conditions

T
∑

t=1

∂Nt(θ̃)/∂θ = 0 (3.108)

Equation (3.108) implies that θ̃ is equivalent to the Method of Moments esti-
mator based on the population moment condition

E[∂Nt(θ0)/∂θ] = 0 (3.109)

Since ∂Nt(θ)/∂θ is a (p × 1) vector it can be recalled from Section 3.3 that θ̃ is
also the GMM estimator based on (3.109).

As illustrations, we now derive the population moment condition implicit in
the GMM interpretation of least squares and maximum likelihood estimation.
A further example can be found in the next sub-section.

Example: Ordinary Least Squares Estimation in the Linear Regres-
sion Model
Suppose the static, linear regression model from Chapter 2 is estimated by or-
dinary least squares. Typically, this estimator is derived as the value of θ which
minimizes the residual sum of squares. Within the terms of our discussion here,
this involves

Nt(θ) = (yt − x′
tθ)

2

Therefore, the OLS estimator can be interpreted as a GMM estimator based on
the population moment condition

E[xt(yt − x′
tθ)] = 0 (3.110)

This condition states that the regressors and error are uncorrelated and is, of
course, one of the assumptions of the “Classical regression model”. ⋄

Example: Maximum Likelihood Estimation
Suppose the conditional probability density function of the continuous station-
ary random vector vt given {vt−1, vt−2, . . .} is p(vt; θ0, Vt−1) where Vt−1 =
(v′

t−1, v
′
t−2, . . . v

′
t−k). The maximum likelihood estimator (MLE) of θ0 based

on the conditional log likelihood function is the value of θ which maximizes,

LT (θ) =

T
∑

t=1

ln{p(vt; θ, Vt−1)} (3.111)
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This fits within our framework with Nt(θ) = ln{p(vt; θ, Vt−1)} and so the MLE
can be interpreted as a GMM estimator based on the population moment con-
dition

E [∂ln{ p(vt; θ, Vt−1) }/∂θ] = 0 (3.112)

⋄

Since both OLS and MLE are derived from perfectly valid estimation prin-
ciples in their own right, it is reasonable to question whether there is any value
to this GMM interpretation. In fact there are two main advantages. First, the
GMM interpretation focuses attention specifically on the information used in
estimation; whereas this is often not apparent from the original derivation of
the estimators. For example, the importance of (3.110) for OLS estimation only
emerges in proofs of unbiasedness or consistency of the estimator. Secondly,
this interpretation allows the asymptotic properties of a variety of seemingly
different estimators to be deduced using the framework discussed in the previ-
ous sections. It is in this sense that we refer to GMM as a unifying principle
of estimation. To illustrate both these advantages, we return to the case of
Maximum Likelihood estimation.

Example: Maximum Likelihood Estimation (Continued)
It is argued in Chapter 1 that the dependence of MLE on the probability distri-
bution was a major weakness in the types of nonlinear dynamic models in Table
1.1. This problem is more readily appreciated using the GMM interpretation
of MLE. The above analysis indicates that the MLE is consistent if (3.112) is
satisfied. In fact, this population moment condition is automatically satisfied
if the distribution is correctly specified. It is useful to prove this result here
because it provides a natural starting point for considering the consequences of
misspecification.

By definition, a probability density function satisfies

∫

V

p(vt; θ0, Vt−1)dv′
t = 1 (3.113)

where
∫

V
(.)dv′

t denotes integration with respect to vt over the sample space V.
Differentiation of (3.113) yields

∂

∂θ

[ ∫

V

p(vt; θ0, Vt−1)dv′
t

]

= 0 (3.114)

If p(.) satisfies the relatively mild conditions for the reversal of the orders of
differentiation and integration then (3.114) implies

∫

V

{∂p(vt; θ0, Vt−1)/∂θ}dv′
t = 0
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This equation can be rewritten as

∫

V

1

p(vt; θ0, Vt−1)
{∂p(vt; θ0, Vt−1)/∂θ} p(vt; θ0, Vt−1) }dv′

t = 0 (3.115)

If the probability density function is correctly specified then (3.115) is identical
to (3.112) because ∂ln{p(θ)}/∂θ = {1/p(θ)}∂p(θ)/∂θ, for any scalar function
p(.). However, notice that if p(.) is no longer the true probability density func-
tion of vt then (3.115) cannot be interpreted as an expectation and so does not
imply (3.112).

Does this mean that (3.112) never holds if the distribution is misspecified?
The answer is no, but once the possibility of misspecification is admitted then
its theoretical justification disappears. This issue is best understood using an
example. Consider again the consumption based asset pricing model we have
used throughout this chapter. As mentioned in Section 1.3.1 the conditional
distribution of x̃t+1 = (x̃1,t+1, x̃2,t+1)

′ = (ln(x1,t+1), ln(x2,t+1))
′ is unknown

but let us suppose it is assumed to be normal. To be consistent with the
economic model, the likelihood must be maximized subject to the restriction
E[δxγ−1

1,t+1x2,t+1 |Ωt] = 1. Hansen and Singleton (1982) show that for this model
one element of (3.112) is equivalent to the population moment condition

E
[ {

ln(δ0) + (γ0 − 1)x̃1,t + x̃2,t + 0.5{(γ0 − 1)2σ11 + σ22 + 2(γ0 − 1)σ12}
}]

= 0
(3.116)

where σij is the i − jth element the conditional variance of x̃t+1. Equation
(3.116) holds if the conditional distribution of x̃t+1 is normal. However, if the
distribution has been misspecified then this condition can no longer be justified
by the line of argument in (3.113)–(3.115). Furthermore, a comparison with
(1.22) indicates that (3.116) is not implied by the Euler equation of the economic
model. Therefore, if the distribution has been incorrectly specified then there
is neither a statistical nor an economic justification for the moment condition
upon which this Maximum Likelihood estimation is based. This motivates the
use of GMM estimation based on population moment conditions implied by the
economic model.

The problems here stem from the presence of nonlinear functions of endoge-
nous variables in the population moment condition.73 If this feature is not
present, then (3.112) may hold for a wide class of plausible true probability
distributions. So there are circumstances in which Maximum Likelihood is un-
dertaken even though the distribution is unknown. In this case, it is refered to
as Quasi Maximum Likelihood estimation (White, 1982) or Pseudo Maximum
Likelihood estimation (Gourieroux, Monfort, and Trognon, 1984). Both these
sets of authors derive the asymptotic distribution of the estimator. However,
it can also be derived directly using the GMM framework. If it is assumed
that (3.112) holds then Theorem 3.2 implies the suitably normalized Quasi–
MLE converges to a normal distribution with mean zero and covariance matrix

73 See Amemiya (1977) and Phillips (1982) for further discussion of this issue.
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(G′
0S

−1G0)
−1 where74

G0 = E[∂2 ln{ p(vt; θ0, Vt−1) }/∂θ∂θ′]

S = E[{∂ln[p(vt; θ0, Vt−1)]/∂θ}{∂ln[p(vt; θ0, Vt−1)]/∂θ}′]

If the distribution of vt is misspecified then no further reduction of the asymp-
totic covariance matrix is possible. However, if the distribution is correctly
specified then the information matrix identity75 implies (G′

0S
−1G0)

−1 equals
S−1 and so the GMM framework yields the familiar result from Maximum Like-
lihood theory. ⋄

3.8.2 Sequential Estimators

So far we have concentrated on the case in which all elements of θ0 are esti-
mated simultaneously. However, in some cases it is convenient to estimate θ0

sequentially. In this section, it is shown that a class of sequential estimators are
also special cases of GMM. We start with the general case and then illustrate
the ideas using a model with generated regressors.

To introduce the basic idea, it is sufficient to focus on two step sequential
estimation procedures. Accordingly, we partition the parameter vector into
θ′
0 = (θ′

0,1, θ
′
0,2) where θ0,i is (pi×1) vector. Suppose that in the first step, θ0,1 is

estimated by GMM based on the population moment condition E[f1(vt, θ0,1)] =

0 with weighting matrix W1,T . Let this estimator be θ̂1,T . Now suppose that
in the second step, θ0,2 is estimated by GMM based on the (p2 × 1) population

moment condition E[f2(vt, θ0)] = 0 with θ̂1,T substituted for θ0,1. Notice that
θ0,2 is just identified by E[f2(vt, θ0)] = 0 conditional on θ0,1 and so the weighting
matrix plays no role in this estimation. Newey and McFadden (1994) show that
this sequential estimation procedure is identical to the single step estimation of
θ0 via GMM based on E[f(vt, θ0)] = 0 where

f(vt, θ0) =

[

f1(vt, θ0,1)
f2(vt, θ0)

]

(3.117)

and the weighting matrix

WT =

[

W1,T 0
0 W2,T

]

(3.118)

for any positive definite matrix W2,T . At first glance this may seem surprising
but there is a simple intuition behind the result. From (3.117) and (3.118) it
follows that the minimand for the simultaneous estimation can be written as

QT (θ) = Q1,T (θ1) + Q2,T (θ1, θ2)

= g1,T (θ1)
′W1,T g1,T (θ1) + g2,T (θ1, θ2)

′W2,T g2,T (θ1, θ2)

74 Notice that (3.115) implies ∂ln[p(vt; θ0, Vt−1)]/∂θ is a martingale difference sequence
with respect to Vt−1.

75 For example, see White (1982).
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where g1,T (θ1) = T−1
∑T

t=1 f1(vt, θ1) and g2,T (θ1, θ2) = T−1
∑T

t=1 f2(vt, θ).
Since f2(.) is (p2 × 1), there always exists a value of θ2 which sets Q2,T (θ1, θ2)
to zero regardless of the value of θ1. So the minimization of QT (θ) can be

performed by first finding the value θ̂1 which minimizes Q1,T (θ1) and then find-

ing the value of θ2 which sets Q2,T (θ̂1,T , θ2) to zero. Clearly, this is just the
sequential procedure described above.

It is important to notice that this argument only works for situations in which
f2(.) is the same dimension as θ0,2. To illustrate what happens if this is violated,
it is useful to denote the dimension of f2(.) by q2. First consider the case where
q2 < p2. This implies θ0,2 is unidentified by E[f2(vt, θ0)] = 0 conditional on θ0,1

and so θ0 is unidentified. Now consider the case where q2 > p2. This time θ0,2

is over-identified by E[f2(vt, θ0)] = 0 conditional on θ0,1. Consequently, there
is not generally a value of θ2 which sets Q2,T (θ1, θ2) to zero for any value of θ1.
This means the value of θ1 which minimizes QT (θ) is no longer the same as the
value which minimizes Q1,T (θ1) alone.

In spite of this limitation, many sequential estimators are covered by these
conditions. The main advantage of this GMM interpretation comes in the cal-
culation of the correct asymptotic variance for θ̂2,T . Since θ̂2,T is calculated

conditional on θ̂1,T , its asymptotic distribution must take account of the uncer-
tainty inherent in the estimation of θ0,1. The correct distribution is typically
not obvious when the estimator is viewed in its original sequential form. How-
ever, the GMM perspective allows the correct form of the distribution to be
deduced immediately from Theorem 3.2. As an illustration, we consider a more
general version of the partial adjustment model discussed in Section 3.1. Other
examples can be found in Newey (1984) and Newey and McFadden (1994).

Example: A Partial Adjustment Model for Inventory Holdings
Hall and Rossana (1991) consider the following model for inventories

∆yt = γ0,0 + γ1,0yt−1 + γ′
2,0xt−1 + γ3,0w

e
1,t + γ4,0w

e
2,t + ut

ut = ρ0ut−1 + et

where yt are inventory holdings in period t, ∆yt = yt − yt−1, xt−1 is a vector
containing the number of workers, the hours per production worker, materials,
work in progress and unfilled orders in period t − 1, we

1,t is the expected new
orders, and we

2,t is expected material prices. All variables are in logs. The error
term et is assumed to be independently and identically distributed with mean
zero. If all the regressors are observed then the parameters can be estimated by
nonlinear least squares. These estimators are defined to be

(γ̂′
T , ρ̂T ) = argmin(γ′,ρ)∈Γ×R T−1

T
∑

t=1

{et(γ, ρ)}2 (3.119)

where et(γ, ρ) = ut(γ)−ρut−1(γ), ut(γ) = ∆yt − (1, yt−1, x
′
t−1, w

e
1,t, w

e
2,t)

′γ and
γ is the (9 × 1) vector of regression parameters. Unfortunately, neither of the
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expected values are known at time t. To circumvent this problem, Hall and
Rossana (1991) estimate these variables by their least squares predictions from
the AR(12) models

wi,t = w̃′
i,tβi,0 + ei,t

where w̃′
i,t = (1, wi,t−1, wi,t−2, . . . wi,t−12) and βi,0 are the vector of regression

parameters. These predictions are known as “generated regressors” because
they are generated from a separate model. The need to predict we

i,t creates a

sequential estimation.76 In the first step θ0,1 = (β′
1,0, β

′
2,0) are estimated. In

the second step, θ0,2 = (γ
′

0, ρ0) are estimated conditional on θ̂1,T . However, it
is not obvious exactly how this structure would affect inference about the pa-
rameters of the inventory equation. As suggested above, the answer is found by
interpreting the estimation from a GMM perspective. To achieve this, we must
derive the population moment conditions which are being implicitly exploited
in each step of the estimation. Since the univariate AR(12) models are linear

regression models, it follows from the previous subsection77 that β̂i,T are the
GMM estimators based on

E[f1(vt, θ1,0)] = E

[

w̃1,t(w1,t − w̃′
1,tβ1,0)

w̃2,t(w2,t − w̃′
2,tβ2,0)

]

= 0

The minimand for nonlinear least squares estimation also fits within the frame-
work discussed in the previous sub-section. The minimand in (3.119) can be
obtained from (3.107) by putting Nt(θ) = et(γ, ρ)2. Therefore it follows from
(3.109) that the GMM interpretation of Hall and Rossana’s (1991) estimator is
completed by

E[f2(vt, θ0)] = E[
∂ẽt(θ0)

∂θ2
ẽt(θ0)] = 0

where

ẽt(θ) = ũt(γ, θ2) − ρũt−1(γ, θ1)

ut(γ, θ1) = ∆yt − (1, yt−1, x
′
t−1, w̃

′
1,tβ1, w̃2,tβ2)

′γ

The correct form of the asymptotic distribution of the inventory equations can
be deduced from Theorem 3.2. ⋄

3.9 Summary

This chapter provides a comprehensive treatment of GMM estimation in cor-
rectly specified models. Building from the discussion in the previous chapter,
it is shown that the basic approach to estimation employed in the linear static

76 Pagan (1984) presents an in depth analysis of the problems caused by generated regres-
sors. However, he does not exploit the GMM perspective described here. This approach was
taken first by Newey (1984).

77 Notice that the static nature of the variables in our earlier example played no role in the
discussion.
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model translates readily to nonlinear, dynamic models. The basic statistical
framework also translates; although, inevitably, the presence of nonlinearity and
dynamics complicates the analysis at various points. Seven key features emerge.

• Identification: For the estimation to be successful, the population moment
condition must not only be valid but also provide sufficient information
to identify the parameter vector. The intuition behind parameter iden-
tification is identical to the linear model, but nonlinearity considerably
complicates its verification within a particular model. As a result, it is
necessary to introduce the concepts of local and global identification.

• Calculation of the estimator : The presence of nonlinearity and, to a lesser
extent, the dynamics means that the first order conditions do not yield
a closed form solution for the estimator in general. Instead, the solution
must be found via numerical optimization techniques.

• Identifying and overidentifying restrictions: GMM estimation in overi-
dentified models involves a fundamental decomposition of the population
moment condition into identifying and overidentifying restrictions. The
identifiying restrictions contain the information that goes into the estima-
tion, and the overidentifying restrictions are a remainder that manifests
itself in the estimated sample moment.

• Asymptotic properties: The GMM estimator is consistent and, when ap-
propriately scaled, has a limiting normal distribution. Here too, the ab-
sence of a closed form solution for the estimator, necessitates a different
approach. This difference is most marked in the proof of consistency.
However, once consistency is established, the Mean Value Theorem can
be used to linearize the sample moment, and the proof of asymptotic nor-
mality can be viewed as a direct generalization of the arguments used in
the linear model.

• Estimated sample moment: The estimated sample moment is shown to
have a limiting normal distribution whose attributes depend directly on
the function of the data in the overidentifying restrictions.

• Long run covariance matrix estimation: To translate the asymptotic nor-
mality into practical inference procedures, it is necessary to estimate the
long run variance of the sample moment consistently. To construct a suit-
able estimator, it is necessary to make certain assumptions about the de-
pendence structure of f(vt, θ0), the function of the data which appears in
the population moment condition. Three cases are considered: f(vt, θ0) is
a serially uncorrelated process; f(vt, θ0) is generated by a vector autore-
gressive moving average process; the class of heteroscedasticity and au-
tocorrelation covariance (HAC) matrix estimators whose properties only
require the dependence structure to satisfy very mild restrictions.

• Optimal choice of weighting matrix : The optimal choice of weighting ma-
trix converges to the inverse of the long run covariance matrix of the
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sample moment. Therefore, in general, its use necessitates a two step or
iterated estimation.

In addition to the standard GMM estimation framework, this chapter also
discusses certain important extensions. It is shown that both the estimator
and/or subsequent inferences are sensitive to certain transformations of either
the data, parameter vector or moment condition. These sensitivities motivate
the discussion of the continuous updating GMM estimator and also an alter-
native method for the construction of confidence sets based on inverting the
minimand.

It is also shown that GMM can be viewed as a unifying principle of estimation
because it encompasses other methods such as Maximum Likelihood, Ordinary
Least Sqares and certain Sequential estimation techniques.

A key assumption throughout is that the model is correctly specified. In the
next chapter, we consider the consequences of misspecification for the asymp-
totic properties of the estimator and estimated sample moment. As would be
anticipated, these consequences are not good and this motivates the use of spec-
ification tests, such as the overidentifying restrictions test. Such diagnostic tests
are examined in Chapter 5 as part of a more general review of hypothesis testing
within the GMM framework.



4

GMM Estimation in

Misspecified Models

The previous chapter establishes the large sample properties of the estimator
and its various associated statistics in correctly specified models. In practice,
a researcher never knows whether his/her assumptions correspond to the real
world, and so it is important to consider the impact of misspecification on the
statistical properties derived in Chapter 3. Intuition suggests misspecification
has a detrimental effect, and this is borne out by the analysis presented in
this chapter.1 In particular, it is shown that misspecification contaminates
inferences about the parameter vector, and this pessimistic conclusion motivates
the model specification tests presented in the next chapter. However, there
is a secondary purpose to the presentation of a formal analysis of the GMM
estimator under misspecification. Inspection of the empirical literature reveals
that it is not uncommon to find cases in which the sample evidence suggests that
the model is misspecified but inference about the parameters is still performed
– either implicitly or explicitly – using the asymptotic theory appropriate for
correctly specified models. The results presented here provide guidance on the
interpretation of such inferences, and suggest that this approach to inference in
misspecified models is invalid in general.

Before we proceed further, it is useful to consider exactly what is meant
by the term “misspecification” in our context. As seen in Chapter 1, an eco-
nomic/statistical model consists of a set of assumptions about the data gener-
ation process for vt. For expositional convenience, we now denote this model
by M. This model implies a set of population moment conditions which can
be used as a basis for GMM estimation of θ0. This logical sequence can be
represented by

M =⇒ E[f(vt, θ0)] = 0, ∀ t, for some unique θ0 ∈ Θ (4.1)

1 Also see Section 2.5 for a heuristic discussion of the consequences of misspecification in
the static linear model.

117
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If M is no longer considered to be the truth, then there are two natural, alter-
native scenarios. First, the true model, MA, although different from M, shares
the property in (4.1); that is

MA =⇒ E[f(vt, θ+)] = 0, ∀ t, for some unique θ+ ∈ Θ (4.2)

Secondly, the true model, MB , implies the property in (4.1) does not hold; that
is

MB =⇒ � ∃ θ ∈ Θ such that E[f(vt, θ)] = 0, ∀ t. (4.3)

Clearly, M and MA are observationally equivalent on the basis of E[f(vt, θ)]
alone.2 Therefore, the estimator and the estimated sample moment have essen-
tially the same large sample properties under M and MA – the only difference
is in the use of θ0 or θ+ to denote the value at which the population moment
condition and other regularity conditions are satisfied. In contrast, M and MB

have different implications for E[f(vt, θ)], and these manifest themselves in the
behaviour of the estimator and the estimated sample moment. It is convenient
to reserve the term “misspecification” to denote only this second situation. As
it stands, (4.3) states only that E[f(vt, θ)] is non-zero. For the analysis in this
chapter, it is most convenient to retain the assumption that vt is a stationary
process, and so E[f(vt, θ)] is independent of t. Therefore, we restrict attention
to the following class of misspecified models.

Assumption 4.1 The Nature of the Misspecification
E[f(vt, θ)] = µ(θ) for all t and ||µ(θ)|| > 0 for all θ ∈ Θ.3

One immediate consequence of this assumption is that it excludes misspecifica-
tion characterized by structural instability – that is, cases in which E[f(vt, θ)] =
µt. While this obviously limits the generality of the analysis, the price is worth
paying because Assumption 4.1 smooths the passage from correctly to incor-
rectly specified models, and so enables us to highlight more simply the main
differences between the two scenarios. However, in Section 5.4, we do return to
the topic of structural instability in the context of hypothesis testing. There
is one further consequence of Assumption 4.1 which should be noted. Taken
together, Assumptions 4.1 and 3.1 (the stationarity of vt) imply that q > p.
This follows because if p = q then the value which satisfies the identifying re-
strictions in (3.19), θ+ say, must also satisfy the population moment condition.4

In other words, if the parameter vector is just-identified then the true model
must exhibit the properties of MA above.5

2 Notice this definition of observational equivalence depends crucially on f(.). Since M
and MA are different models they will have different implications for other aspects of the
distribution of vt.

3 For any vector a, ||a|| = (a′a)1/2.
4 See Hall and Inoue (2003).
5 This does not hold if vt is non-stationary.
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In practice, inference is typically based on the two step or iterated esti-
mator. The key feature of such estimators is that the ith step estimation
employs a weighting matrix equal to the inverse of a covariance matrix esti-
mator calculated using θ̂T (i − 1). This structure means that the population
analog to the minimand on the ith step depends on the probability limit of
θ̂T (i − 1) via the weighting matrix. This construction provides a mechanism
through which the consequences of misspecification are transmitted from one
step to the next. This means that to deduce the impact of this misspecifica-
tion on the iterated estimator, it is necessary to consider each step sequentially.
Therefore, we begin our discussion with the first step estimator: Section 4.1
derives its probability limit, and Section 4.2 derives its limiting distribution.
It emerges that misspecification considerably complicates the analysis of the
limiting distribution. Specifically, the rate of convergence of θ̂T (1) to θ∗(1) de-
pends on the rate of convergence of WT to W . This means that in some cases
T 1/2[θ̂T (1) − θ∗(1)] does not converge in distribution. However, it is shown
that this statistic has a limiting normal distribution under certain conditions
which plausibly cover the most common choices of weighting matrix in practice.
Section 4.3 considers the impact of misspecification on the long run covariance
matrix estimators presented in Section 3.5. It is shown that none of these es-
timators are consistent if the model is misspecified. However, it is also shown
that there is a simple way to modify all the estimators to ensure consistency
regardless of whether or not the model is correctly specified. There are cer-
tain advantages to using one of these modified estimators in the construction
of moment selection procedures. A formal justification of this statement is left
until Chapter 7. Section 4.4 examines the limiting behaviour of the second-
step estimator. Here too, the method of covariance matrix estimation is im-
portant because it determines the rate of convergence of the weighting matrix
to its limit and hence the rate of convergence of the estimator. We concen-
trate on two cases. Section 4.4.1 presents the analysis when the covariance
matrix estimator is constructed under the assumption that f(vt, θ∗) is a serially
uncorrelated process. Section 4.4.2 presents the same analysis when an HAC
estimator is used. Section 4.5 considers the limiting behaviour of the estimated
sample moment. Unlike the estimator, T 1/2gT (θ̂T (i)) diverges at rate T 1/2 re-
gardless of the rate of convergence of the weighting matrix. Finally, Section
4.6 provides a summary of the consequences of misspecification on the GMM
estimator.

Before we begin the analysis, it is necessary to address an item of notation. In
the course of our discussion, it emerges that the p limT→∞ θ̂T (i) may be different
for each i, and consequently, we use θ∗(i) to denote this limit. However, to avoid
excessive repetition, we express assumptions in terms of θ∗, and then define θ∗

in the appropriate theorem. In spite of the aforementioned dependence on i,
there are times in which the analysis is generic to all steps and so we adopt
the more economical notation of θ̂T for the estimator and θ∗ for its probability
limit.
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4.1 Probability Limit of the First Step

Estimator

By definition, the first step GMM estimator can be constructed with any weight-
ing matrix which satisfies Assumption 3.7. In Section 3.4.1, it is shown that
such an estimator converges in probability to θ0 in correctly specified models
provided certain regularity conditions are satisfied. So this earlier analysis pro-
vides the natural place to start our search for conditions under which the first
step estimator converges in misspecified models. It can be recalled that the
proof of Theorem 3.1 is broken down into two parts. Part (i) uses the uniform

convergence property in Lemma 3.1 to establish that θ̂T minimizes Q0(θ) with
probability one as T → ∞. Then part (ii) uses the population moment and
identification conditions in Assumptions 3.3–3.4 to show that part (i) implies
consistency. This overview suggests similar arguments can be used to establish
the convergence of θ̂T in misspecified models provided a suitable replacement is
found for Assumptions 3.3 and 3.4 in part (ii). To this end, we now introduce
the following assumption.

Assumption 4.2 Identification Condition
There exists θ∗ ∈ Θ such that Q0(θ∗) < Q0(θ) for all θ ∈ Θ \ {θ∗}.

Assumption 4.2 states that the population analog to the first step GMM
minimand has a unique minimum at θ∗. This property defines θ∗ = θ∗(1) as the

probability limit of θ̂T (1) in Theorem 4.1 below. Before we present that result, it
is worth noting two ways in which Assumption 4.2 differs from the combination
of Assumptions 3.3 and 3.4. First, Assumption 4.2 does imply a specific value
for E[f(vt, θ∗)] – although it does imply that ‖ E[f(vt, θ∗)] ‖< ∞. Secondly, in
misspecified models, there is no reason why the same parameter value should
minimize Q0(θ) for two different choices of W . Therefore, in general, θ∗ is
determined in part by W .6

Theorem 4.1 Convergence of θ̂T (1)
If Assumptions 3.1–3.2, 3.7–3.10, 4.1 hold and 4.2 holds for θ∗ = θ∗(1) then

θ̂T (1)
p→ θ∗(1).

As anticipated above, the proof is split into two parts along similar lines
to the proof of Theorem 3.1. Part (i) uses the definition of the estimator and
Lemma 3.1 to deduce that

lim
T→∞

P [0 ≤ Q0(θ̂T (1)) < Q0(θ∗(1)) + ǫ] = 1 for any ǫ > 0 (4.4)

Part (ii) uses (4.4) and Assumption 4.1 to deduce that θ̂T (1)
p→ θ∗(1). The

details are left to the reader.

6 See Section 4.4 for futher discussion of this issue in the context of the two step or iterated
estimator.
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4.2 Asymptotic Distribution Theory for the

First Step Estimator

In Section 3.4.2 it is shown that T 1/2(θ̂T − θ0) converges to a normal distribu-
tion if the model is correctly specified. In this section, we develop an analogous
limiting distribution theory for the first step estimator when the model is mis-
specified. It emerges that the weighting matrix plays a far more fundamental
role in misspecified models, and this complicates the analysis. This dependence
is present at each step of the GMM estimation, and so the first part of the anal-
ysis is not specific to the first step estimator. Therefore, we adopt the generic
notation of θ̂T for the estimator and θ∗ for its probability limit for most of this
analysis and then specialize the results to θ̂T (1) at the end. This section is based
on results in Hall and Inoue (2003) to which the reader is refered for rigorous
proofs of the main results.7

As in the previous section, we need to determine appropriate conditions un-
der which to perform the analysis. Once again, the logical starting place is the
corresponding analysis in correctly specified models. Inspection of the regularity
conditions in Theorem 3.2 reveals that many of them do not involve the specifica-
tion of the model per se. In particular, Assumptions 3.1, 3.2, 3.7–3.10, 3.12–3.13
impose regularity conditions on vt, Θ or the behaviour of f(.), ∂f(.)/∂θ

′

over
Θ. Therefore, we can equally well impose those assumptions here. Obviously,
Assumptions 3.3–3.4 depend on the model specification, and, as in the previous
section, we replace them with Assumption 4.2. Once this is done, we can invoke

Theorem 4.1 to deduce that θ̂T
p→ θ∗. The nature of this limit will have an

impact on our analysis. It can be recalled from Section 3.4.2 that the analysis
started with the Mean Value Theorem applied to gT (θ̂T ) around θ0. We use a
similar starting point below but take the linearization around θ∗. So we must
replace Assumptions 3.5, 3.12 and 3.13 by the following assumption.8

Assumption 4.3 Regularity Conditions on ∂f(vt, θ)/∂θ′

(i) The derivative matrix ∂f(v, θ)/∂θ′ exists and is continuous on Θ for each
v ∈ V; (ii) θ∗ is an interior point of Θ; (iii) E[∂f(vt, θ∗)/∂θ′] exists and is
finite; (iv) E[∂f(vt, θ)/∂θ′] is continuous on some ǫ-neighbourhood Nǫ of θ∗;

(v) supθ∈Nǫ
||GT (θ) − E[∂f(vt, θ)/∂θ′]|| p→ 0.

Once the linearization is taken around θ∗, it is the behaviour of T 1/2gT (θ∗)
which becomes relevant. Accordingly, we define

E[f(vt, θ∗)] = µ∗ (4.5)

Notice that Assumption 4.1 implies µ∗ �= 0. We must also replace Assumption
3.11 and Lemma 3.2 by:

7 Hall and Inoue’s (2003) results subsume earlier work by Maasoumi and Phillips (1982);
the latter paper presents the limiting distribution of the IV estimator in the linear regression
model with WT set equal to the inverse of the instrument cross product matrix.

8 Part (i) is identical to Assumption 3.5(i). It is repeated here to simplify the presentation.
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Assumption 4.4 Properties of the Variance of the Sample Moment
(i) E[(f(vt, θ∗) − µ∗) (f(vt, θ∗) − µ∗)

′
] exists and is finite;

(ii) limT→∞V ar[T 1/2gT (θ∗)] = S∗ exists and is a finite valued positive definite
matrix.

Lemma 4.1 Central Limit Theorem for T−1/2
∑T

t=1[f(vt, θ∗) − µ∗]

If Assumptions 3.1, 3.8, 4.1, and 4.4 hold then T−1/2
∑T

t=1[f(vt, θ∗) − µ∗]
d→

N(0, S∗).

With all these assumptions imposed, we can now proceed to the analysis. As
mentioned above, we begin by using the Mean Value Theorem to deduce that

gT (θ̂T ) = gT (θ∗) + GT (θ̂T , θ∗, λT )(θ̂T − θ∗) (4.6)

where GT (θ̂T , θ∗, λT ) is (q × p) matrix whose ith row is equal to the ith row

of GT (θ̄
(i)
T ) where θ̄

(i)
T = λ

(i)
T θ∗ + (1 − λ

(i)
T )θ̂T for some 0 ≤ λ

(i)
T ≤ 1, and

i = 1, 2, . . . q. It is then possible to apply the same sequence of arguments as in
Section 3.4.2 to show that (4.6) leads to

T 1/2(θ̂T − θ∗) = −[GT (θ̂T )
′

WT GT (θ̂T , θ∗, λT )]−1GT (θ̂T )
′

WT T 1/2gT (θ∗) (4.7)

It is convenient to rewrite (4.7) as

T 1/2(θ̂T − θ∗) = H0,T { H1,T + H2,T } (4.8)

where

H0,T = −[GT (θ̂T )
′

WT GT (θ̂T , θ∗, λT )]−1 (4.9)

H1,T = GT (θ̂T )
′

WT T−1/2
T
∑

t=1

[f(vt, θ∗) − µ∗] (4.10)

H2,T = T 1/2GT (θ̂T )
′

WT µ∗ (4.11)

It is instructive to compare (4.8) with the corresponding equation in our analysis
of correctly specified models, (3.26). The term H0,T H1,T can be recognized as
the analog to the right hand side of (3.26), and so misspecification has introduced
a second term, H0,T H2,T , into the equation.9 To proceed further, it is useful to
decompose H2,T as follows:

H2,T = H2,T (1) + H2,T (2) + H2,T (3) + H2,T (4) (4.12)

where

H2,T (1) = T 1/2[GT (θ̂T ) − GT (θ∗)]
′

WT µ∗ (4.13)

H2,T (2) = T 1/2[GT (θ∗) − G∗]
′

WT µ∗ (4.14)

H2,T (3) = G
′

∗T
1/2(WT − W )µ∗ (4.15)

H2,T (4) = T 1/2G
′

∗Wµ∗ (4.16)

9 Notice that if the model is correctly specified then µ∗ = 0 and so H2,T = 0.
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At this stage, we can take advantage of two simplifications. First, the population
analog to the first order conditions imply H2,T (4) = 0. Secondly, H2,T (1) can
be written as10

H2,T (1) = (µ
′

∗WT ⊗ Ip)vec{T 1/2[GT (θ̂T ) − GT (θ∗)]}
= (µ

′

∗WT ⊗ Ip)G
(2)
T (θ̂T , θ∗, φT )T 1/2(θ̂T − θ∗)

= MT T 1/2(θ̂T − θ∗), say

where G
(2)
T (θ̂T , θ∗, φT ) is the pq × p matrix whose ith row is the corresponding

row of (∂/∂θ
′

)vec{∂f(vt, θ̃
(i)
T )/∂θ

′} with θ̃
(i)
T = φ

(i)
T θ̂T +(1−φ

(i)
T )θ∗, 0 ≤ φ

(i)
T ≤ 1,

and φT is the pq × 1 vector with ith element φ
(i)
T .

Taking advantage of these two simplifications, (4.8)–(4.16) can be used to
deduce that

T 1/2(θ̂T − θ∗) = [Ip − H0,T MT ]−1H0,T {H1,T + H2,T (2) + H2,T (3) } (4.17)

Intuition suggests that [Ip − H0,T MT ]−1H0,T converges in probability to some
matrix of constants and H1,T converges in distribution to normal vector under
our conditions. It is also reasonable to assume that T 1/2[GT (θ∗)−G∗] converges
to a normal limiting distribution under certain conditions, and so H2,T (2) ex-
hibits the same property. The key question is the limiting behaviour of H2,T (3).
From (4.15), it is clear that the limiting behaviour of H2,T (3) depends on that

of T 1/2(WT − W ). In order for T 1/2(θ̂T − θ∗) to converge in distribution, it is

a necessary condition that T 1/2(θ̂T − θ∗) = Op(1). From (4.17), it is clear that
such a condition can only be satisfied if T 1/2(WT − W ) = Op(1). Therefore, if

WT converges to W at a slower rate than T 1/2 then T 1/2(θ̂T −θ∗) must diverge.

This dependence of T 1/2(θ̂T − θ∗) on T 1/2(WT − W ) is in marked contrast to
what is found in correctly specified models, and is directly attributable to the
presence of H2,T in (4.8).

To make further progress, it is clearly necessary to make some assumption
about the nature of the convergence of WT to W . We focus on two particular
scenarios which both satisfy T 1/2(WT − W ) = Op(1) and together cover the
choices of first step estimator used in our empirical example in Chapter 3. The
first scenario is where WT = W , which obviously covers WT = Iq, and the second
is where T 1/2(WT − W )µ∗ converges to a normal distribution, which we show

below covers WT = [T−1
∑T

t=1 ztz
′

t]
−1 under plausible assumptions. However,

before we present these results certain other conditions must be imposed. To

ensure that G
(2)
T (θ̂T , θ∗, φT ) converges to a well-defined limit, we impose:

Assumption 4.5 Regularity Conditions for G
(2)
T (θ)

(i) (∂/∂θ′)vec{∂f(vt, θ)/∂θ′} exists and is continuous on Θ for each v ∈ V;
(ii) E[(∂/∂θ′)vec{∂f(vt, θ)/∂θ′}] exists and is continuous on Θ;

10 Dhrymes (1984)[Corollary 25, p.103] and the Mean Value Theorem applied to the i− jth

element of GT (θ̂T ).
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(iii) supθ∈Nǫ
||G(2)

T (θ) − E[(∂/∂θ′)vec{∂f(vt, θ)/∂θ′}]|| p→ 0 where Nǫ is an ǫ
neighbourhood of θ∗.

It is also necessary to ensure that the the inverse matrix in (4.17) is well defined
in the limit. Therefore, we impose:

Assumption 4.6 Regularity Conditions on H∗

The p × p matrix H∗ = G′
∗WG∗ + (µ′

∗W ⊗ Ip)G
(2)
∗ is nonsingular where G∗ =

E[∂f(vt, θ∗)/∂θ′] and G
(2)
∗ = E[(∂/∂θ′)vec{∂f(vt, θ∗)/∂θ′}].

Assumption 4.6 is satisfied if Q0(θ) satisfies the second-order sufficient condition
for minimization at θ∗. It is also necessary to impose certain conditions in order
for H2,T (2) to converge to a normal distribution. For ease of exposition, we
impose those conditions implicitly in the statement of the following theorem.

Theorem 4.2 Limiting Distribution of the First Step Estimator
Let Assumptions 3.1, 3.2, 3.7–3.10, 4.1-4.6 (with θ∗ = θ∗(1)) hold.

(i) If WT = W and

[

T−1/2
∑T

t=1 [f(vt, θ∗) − µ∗]
T 1/2[GT (θ∗) − G∗]

′Wµ∗

]

d→ N

(

0,

(

S∗ V1,2

V2,1 V2,2

))

.

then it follows that

T 1/2(θ̂T − θ∗)
d→ N(0,Σ1)

where

Σ1 = H−1
∗ (G′

∗WS∗WG∗ + G′
∗WV1,2 + V2,1WG∗ + V2,2)H

′−1
∗

(ii) If

⎛

⎝

T−1/2
∑T

t=1[f(vt, θ∗) − µ∗]
T 1/2[GT (θ∗) − G∗]

′Wµ∗

T
1

2 (WT − W )µ∗

⎞

⎠

d→ N

⎛

⎝0,

⎛

⎝

S∗ V1,2 V1,3

V2,1 V2,2 V2,3

V3,1 V3,2 V3,3

⎞

⎠

⎞

⎠

then

T 1/2(θ̂T − θ∗)
d→ N(0, H−1

∗ Σ2H
′−1
∗ ),

where

Σ2 = G′
∗WS∗WG∗ + V2,2 + G′

∗V3,3G∗ + G′
∗WV1,2

+G′
∗WV1,3G∗ + V2,1WG∗ + G′

∗V3,1WG∗ + V2,3G∗ + G′
∗V3,2

It is interesting to compare the results in parts (i)–(ii). First recall that θ∗(1)
depends on W . Secondly, the structure of covariance matrices is different. So,
in general, the limiting distributions in (i) and (ii) are different. However, there
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is one obvious exception: if µ∗ = 0 – i.e. the model is correctly specified – then
θ∗(1) = θ0 and both variances reduce to11

VC = (G′
∗WG∗)

−1(G′
∗WS∗WG∗)(G

′
∗WG∗)

−1 (4.18)

which can be recognized as the variance in Theorem 3.2 (if we put θ∗ = θ0). This
comment also implies that, in general, the first step estimator has a different
distribution in correctly specified and misspecified models.

It is remarked above that Theorem 4.2 covers the case in which the weight-
ing matrix is the inverse of the instrument cross product matrix under plau-
sible assumptions. To uncover the nature of these conditions, we let WT =
[T−1

∑T
t=1 ztz

′

t]
−1, W = M−1

zz = {E[ztz
′
t]}−1, and rewrite T 1/2(WT − W ) as

follows

T 1/2(WT − W ) = −M−1
zz T−1/2[

T
∑

t=1

(ztz
′
t − Mzz)][T

−1
T
∑

t=1

ztz
′

t]
−1 (4.19)

From (4.19), it can be seen that this case is covered by Theorem 4.2(ii) provided

that vech{T−1/2[
∑T

t=1 ztz
′
t − Mzz]} converges to a mean zero normal distribu-

tion.12

4.3 Long Run Covariance Matrix Estimation

Section 3.5 described various estimators of the long run variance of the sample
moment. These estimators were grouped into three classes according to the
assumption made about the dynamic structure of f(vt, θ∗). However, all the
estimators have one feature in common: they are constructed under the as-
sumption that the model is correctly specified. Once we move into the world
of misspecified models, none of the proposed estimators are consistent even if
they are based on a correct assumption about the dynamic structure. This
section describes the impact of misspecification on each of the covariance ma-
trix estimators, and explains how they can be modified to ensure consistency in
misspecified models. Gallant and White (1988)[Chapter 6] consider the impact
of model misspecification on covariance matrix estimation under very general
conditions, and some of our discussion represents a specialization of their results
to stationary processes.

It is shown below that the exact impact of misspecification on each covariance
matrix estimator is different. However, it is possible to gain a sense of both the
problem and the solution by examining a single autocovariance matrix. By
definition, the jth autocovariance matrix of f(vt, θ∗) is

Γj = E[{f(vt, θ∗) − µ∗}{f(vt−j , θ∗) − µ∗}
′

]

= E[f(vt, θ∗)f(vt−j , θ∗)
′] − µ∗µ

′

∗ (4.20)

11 Notice that µ∗ = 0 implies Vi,j = 0.
12 vech{.} denotes the operator which stacks the lower triangular elements of a matrix into

a vector.
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Suppose we estimate Γj by

Γ̂j = T−1
T
∑

t=j+1

f(vt, θ̂T )f(vt−j , θ̂T )
′

(4.21)

This statistic is a consistent estimator of the first term on the right-hand side
of (4.20) but therefore an inconsistent estimator of Γj because µ∗ �= 0. Given
(4.20), the obvious solution is to estimate Γj by

Γ̃j = T−1
T
∑

t=j+1

[f(vt, θ̂T ) − gT (θ̂T )][f(vt−j , θ̂T ) − gT (θ̂T )]
′

(4.22)

As would be anticipated, this estimator is consistent for Γj . Also notice that

if the model is correctly specifed then Γ̂j = Γ̃j + op(1), and so there is no cost
asymptotically to using the mean correction when it is unnecessary.

It is useful to introduce a terminology to capture the difference between Γ̂j

and Γ̃j . The key difference between them is that the data, {f(vt, θ̂T )} are “cen-

tred” about their mean gT (θ̂T ) in Γ̃j but they are “uncentred” in Γ̂j . Therefore,

we refer to Γ̃j as the centred version of the sample autocovariance and Γ̂j as the
uncentred version. These adjectives are similarly used to distinguish covariance
matrices based on uncentred or centred autocovariances. We now examine the
behaviour of each of the covariance matrix estimators from Section 3.5 in turn.

If {f(vt, θ∗)} forms a serially uncorrelated sequence then S∗ = Γ0. Since
ŜSU = Γ̂0, it follows from (4.20) that

ŜSU
p→ S∗ + µ∗µ

′

∗ (4.23)

Equation (4.23) indicates that ŜSU converges to a positive definite matrix of
constants – but obviously not S∗. However, given the discussion above, it is
clear that a consistent estimator for S∗ is given by:

ŜSU,µ = T−1
T
∑

t=1

[f(vt, θ̂T ) − gT (θ̂T )][f(vt, θ̂T ) − gT (θ̂T )]
′

(4.24)

Now consider the impact of misspecification on den Haan and Levin’s (1996)
estimator. For this discussion, it is convenient to focus on the case where ft is
actually generated by

Ψ(L)(ft − µ∗) = Φ(L)et (4.25)

where the matrix polynomials satisfy the conditions for stationarity and in-
vertibility in Section 3.5.2 and et satisfies the properties listed there as well.
Starting from (4.25), it can be deduced along similar lines to Section 3.5.2 that
ft satisfies the autoregressive model

A(L)(ft − µ∗) = et (4.26)
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A comparison of (4.26) with (3.50) indicates that there are now two sources
of misspecification in the autoregressive model used in Step 2 of den Haan and
Levin’s (1996) method. Apart from the truncation error, there is the omission of
the intercept. Unlike the truncation error, the problems caused by the omission
of the intercept cannot be removed by letting the autoregressive lag length tend
to infinity with the sample size. Intuition suggests this type of misspecification
causes ŜV ARMA to be an inconsistent estimator of S∗. Unfortunately, a formal
investigation of this question is complicated by the presence of the lag selection
criterion in Step 3 of den Haan and Levin’s (1996) method. However, once again,
consistency is restored by applying a mean correction. This time, the correction
is implemented by applying den Haan and Levin’s method to f(vt, θ̂T ) in mean
deviation form.

Finally, we consider the impact of misspecification on the class of HAC
estimators – both with and without the use of prewhitening and recolouring.
We begin with the uncentred HAC estimator

ŜHAC = Γ̂0 +
T−1
∑

i=1

ωi,T

(

Γ̂i + Γ̂
′

i

)

(4.27)

In Section 3.5.3 it is observed that the kernel, ωi,T , and bandwidth, bT , must be
carefully chosen to ensure the estimator is consistent. However, this comment
is conditional on the assumption that Γ̂j is a consistent estimator of Γj . As we
have seen, this premise is only valid if the model is correctly specified. This
means inevitably that ŜHAC is itself no longer a consistent estimator. While
the source of the inconsistency is the same as with ŜSU , the consequences are
more drastic because of the increasing bandwidth. Using results in Gallant and
White (1988)[Chapter 6], it can be shown that

ŜHAC = S∗ + BT µ∗µ
′

∗ + op(1) (4.28)

where BT = 1 + 2
∑T−1

i=1 ωi,T . It can be shown that BT increases at rate bT

for either the Bartlett, Parzen or Quadratic Spectral kernels. So in these cases,
ŜHAC is asymptotically equivalent to the sum of two matrices: S∗, a positive
definite matrix of constants, and BT µ∗µ

′

∗, a rank one matrix of O(bT ). While
S∗ +BT µ∗µ

′

∗ is positive definite for finite T , it is clear that the rank one matrix
dominates in the limit as T → ∞. In the next section, it is shown that (4.28)
has an important implication for the limiting behaviour of Ŝ−1

HAC which in turn
affects the limiting behaviour of the two step GMM estimator. For the present,
we focus instead on how to modify the estimator to ensure consistency even if
the model is misspecified. Once again, the answer is straightforward: replace
Γ̂i in (4.27) by Γ̃j from (4.22). This yields the centred HAC estimator,13

ŜHAC,µ = Γ̃0 +

T−1
∑

i=1

ωi,T

(

Γ̃i + Γ̃
′

i

)

(4.29)

13 Hall (2000) proves this estimator is consistent with either the Bartlett, Parzen or
Quadratic Spectral kernel and bT → ∞ with T but bT = o(T 1/2).
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4.4 The Two Step or Iterated GMM Estimator

In this section, we consider the implications of misspecification for the prob-
ability limit of the two step or iterated estimator. The exact nature of this
transmission mechanism depends on which covariance matrix estimator is used.
For reasons that emerge below, we split the analysis into two parts. Section 4.4.1
considers the case in which f(vt, θ∗) − µ∗ is a serially uncorrelated process, and
either ŜSU or ŜSU,µ is used to construct the weighting matrix. Section 4.4.2 con-
siders the case in which either an uncentred or centred HAC estimator is used
to construct the weighting matrix.14 It emerges that the behaviour in these
two cases is very different, and also very different from the behaviour of the first
step estimator. In this discussion, it is necessary to distinguish various functions
of the parameter vector evaluated at different steps of the estimation. There-
fore, we define µ∗(i) = µ(θ∗(i)), S∗(i) = limT→∞ V ar[T−1/2

∑T
t=1 f(vt, θ∗(i))],

Γ0(i) = V ar[f(vt, θ∗(i))], and let Γ̂0(i), Γ̃0(i) denote respectively the uncentred

and centred zero order sample autocovariance matrices evaluated at θ̂T (i).

4.4.1 Estimation with WT = Ŝ−1
SU or WT = Ŝ−1

SU,µ

It is most convenient to develop the analysis under the assumption that f(vt, θ∗)
is a serially uncorrelated sequence and so S∗(1) = Γ0(1). In this case, the
inconsistency of ŜSU stems solely from µ∗ �= 0, and not from an incorrect
assumption about the dynamic structure of f(vt, θ∗) − µ∗. However, some of
the results hold more generally and so we relax this assumption briefly at the
end to consider the impact of dynamic misspecification.

We begin our discussion with the second step estimator, θ̂T (2). Recall from

Section 3.6, that θ̂T (2) is calculated using WT = ŜT (1)−1 where ŜT (1) is an

estimator of the long run variance based on θ̂T (1). Therefore, the population
analog to the second step minimand is given by:

Q
(2)
0 (θ) = E[f(vt, θ)]

′W (2)E[f(vt, θ)] (4.30)

where W (2) = {p limT→∞ ŜT (1)}−1. Then from Theorem 4.1, (4.21) and (4.22)
it follows that

ŜSU = Γ̂0
p→ S∗(1) + µ∗(1)µ∗(1)

′

(4.31)

ŜSU,µ = Γ̃0
p→ S∗(1) (4.32)

and so15

Ŝ−1
SU

p→ S∗(1)−1 − c∗(1)S∗(1)−1µ∗(1)µ∗(1)
′

S∗(1)−1 (4.33)

= Su(1)−1, say

Ŝ−1
SU,µ

p→ S∗(1)−1 (4.34)

14 We do not explicitly consider the case in which den Haan and Levin’s (1996) estimator
is used because, as mentioned above, the presence of the lag selection method complicates the
analysis.

15 For example see Morrison (1976) [p.69].
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where c∗(1) = [1 + µ∗(1)
′

S∗(1)−1µ∗(1)]−1. Inspection of (4.33)–(4.34) reveals
that both Ŝ−1

SU and Ŝ−1
SU,µ converge in probability to positive definite matrices

of constants and so satisfy the conditions for a weighting matrix specified in
Assumption 3.7. It is also apparent that W (2) is different in each case, and
intuition suggests this difference should also manifest itself in the probability
limits of the associated two step estimators. It is hard to confirm or disprove this

intuition by looking at Q
(2)
0 . However, more progress can be made by turning to

the population analog of the first order conditions. To this end, let θ
(u)
∗ denote

the unique minimizer of Q
(2)
0 (θ) when W (2) = Su(1)−1, and θ

(c)
∗ be the unique

minimizer of Q
(2)
0 (θ) when W (2) = S∗(1)−1.16 In order to characterize these

values by the first order conditions, it is necessary to assume that Assumption

4.3(ii)–(iii) hold at both θ
(u)
∗ and θ

(c)
∗ . Once these conditions are imposed, it

follows that θ
(u)
∗ is the solution to the first order conditions

G(θ)
′

S∗(1)−1E[f(vt, θ)] − c∗(1)G(θ)
′

S∗(1)−1µ∗(1)µ∗(1)
′

S∗(1)−1E[f(vt, θ)] = 0
(4.35)

and θ
(c)
∗ is the solution to

G(θ)′S∗(1)−1E[f(vt, θ)] = 0 (4.36)

Inspection of (4.35) and (4.36) reveals two features of the probability limits: in

general, θ
(u)
∗ �= θ

(c)
∗ , and neither equals θ∗(1), the probability limit of θ̂T (1).17

However, there is one exception which should be noted. If θ∗(1) satisfies (4.36),

then it also satisfies (4.35), and so θ
(u)
∗ = θ

(c)
∗ = θ∗(1). Such a coincidence

would occur if the first step weighting matrix is of the form kS∗(1)−1 for some
constant k, but this is unlikely to be the case in general. The equality between
the two probability limits can also occur if the estimation is iterated beyond
two steps. If both the iterated estimator based on WT = Ŝ−1

SU and the iterated

estimator based on WT = Ŝ−1
SU,µ individually converge then it can be shown

using appropriately modified versions of (4.35) and (4.36) that both estimators
have the same probability limit.

Now consider the limiting distribution of the second step estimator. Regard-
less of whether WT = Ŝ−1

SU or WT = Ŝ−1
SU,µ, it is possible to establish that the

second step estimator has a limiting normal distribution under plausible con-
ditions. For brevity, we focus on the case in which WT = Ŝ−1

SU,µ but a similar

argument applies for the case in which WT = Ŝ−1
SU . The argument is based on

an appeal to Theorem 4.2(ii). Using the same trick as (4.19), it can be shown

that the limiting distribution of θ̂T (2) is given by Theorem 4.2(ii) provided
vech{T 1/2(Γ̃0(1) − Γ0(1))} converges to a normal distribution. However, this
appeal to Theorem 4.2(ii) is not so benign as it at first appears. Using the Mean

16 The superscript on θ∗ reflects whether the covariance matrix is uncentred or centred,
and the ‘(2)’ argument is suppressed for ease of notation.

17 Recall that if the model is correctly specified then the probability limit of all three
estimators is θ0.
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Value Theorem, it can be shown that

vech{T 1/2[Γ̃0(1) − Γ0(1)]} = vech{T 1/2[Γ0,T (1) − Γ0(1)]}
(∂/∂θ′)vech{Γ0,T (θ∗(1))}T 1/2[θ̂T (1) − θ∗(1)]

+ op(1) (4.37)

where Γ0,T (θ) = T−1
∑T

t=1[f(vt, θ)−µ(θ)][f(vt, θ)−µ(θ)]′. Therefore, the large

sample behaviour of T 1/2[θ̂T (2)−θ∗(2)] depends on the large sample behaviour of

T 1/2[θ̂T (1)−θ∗(1)] unless (∂/∂θ′)vech{Γ0,T (θ∗(1))} p→ 0. In general, there is no
reason to suppose that this condition holds. A similar argument can be applied
to the iterated versions of these estimators to deduce that the limiting distri-
bution of T 1/2[θ̂T (i)−θ∗(i)] depends on {T 1/2[θ̂T (j) − θ∗(j)], j = 1, 2, . . . i − 1}
in general. Needless to say, this recursive structure must be taken into account
in the calculation of the asymptotic variance of the estimator. However, we do
not pursue the form of this asymptotic variance further here.

So far, it has been assumed that f(vt, θ∗) is a serially uncorrelated sequence.
If this assumption is relaxed then S∗(1) must be replaced by Γ0(1) in (4.35) and
(4.36). However, this substitution has no qualitative impact on the foregoing
analysis of the probability limits of the estimators, and so all the conclusions
remain valid in this more general case. The assumption of no serial correlation
also has no qualitative impact on the appeal to Theorem 4.2(ii) to deduce the
asymptotic normality. However, its relaxation introduces a dynamic structure
in f(vt, θ∗) − µ∗ which must be accounted for in the definitions, and also the
estimation, of the covariance matrices Vi,j in Theorem 4.2(ii).

To conclude, this sub-section we examine the impact of using Ŝ−1
SU,µ in our

empirical example.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model
Table 3.7 in Section 3.6 reports the results from the two step and iterated esti-
mations with Ŝ−1

SU used as weighting matrix. Table 4.1 contains the analogous

results when Ŝ−1
SU,µ is used. With equally weighted returns (EWR), conver-

gence takes 5 and 4 iterations respectively with W
(1)
T = 105I5 and W

(1)
T =

(T−1
∑T

t=1 ztz
′

t)
−1. With value weighted returns (VWR), one less iteration is

needed in each case. If the model is correctly specified, then the probability
limit of the estimator is the same on all steps. The results in Table 3.7 indicate
the iterated estimator converges to the same values for a given asset irrespective
of the the first step weighting matrix. Our analysis in this sub-section indicates
that if convergence occurs then the probability limits of the iterated estimators
should be the same regardless of whether the weighting matrix is either Ŝ−1

SU or

Ŝ−1
SU,µ even if the model is misspecified. These arguments lead us to expect that

the corresponding estimates should be close in large finite samples irrespective
of whether the model ultimately proves to be correctly or incorrectly specified.
A comparison of Tables 3.7 and 4.1 indicates the iterated estimates are iden-
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tical to three decimal places for VWR and to two decimal places for EWR. ⋄

Table 4.1

Two step and iterated GMM estimators for the consumption based

asset pricing model with EWR and VWR

EWR:

W
(1)
T (γ̂, δ̂) for i = 1 (γ̂, δ̂) for i = 2 (γ̂, δ̂) after iteration

105I5 (−3.145, 0.999) (−0.253, 0.992) (−0.344, 0.992)

(T−1
∑T

t=1 ztz
′

t)
−1 (0.398, 0.993) (−0.335, 0.992) (−0.344, 0.992)

VWR:

W
(1)
T (γ̂, δ̂) for i = 1 (γ̂, δ̂) for i = 2 (γ̂, δ̂) after iteration

105I5 (−1.871, 0.998) (0.716, 0.993) (0.666, 0.994)

(T−1
∑T

t=1 ztz
′

t)
−1 (0.698, 0.994) (0.666, 0.994) (0.666, 0.994)

Note: W
(1)
T denotes the first-step weighting matrix.

4.4.2 Estimation with WT = Ŝ−1
HAC or WT = Ŝ−1

HAC,µ

Now let us consider the same questions in the cases where either an uncentred
or centred HAC estimator is used to construct the weighting matrix. Although
there are some similarities between the two cases, there are sufficient differences
to necessitate a separate treatment for each. It emerges that the distribution
theory is very different from the cases considered above and non-standard in the
sense that the estimator no longer converges at rate T−1/2. In this sub-section,
we concentrate on explaining the sources of these differences and so only provide
heuristic arguments to justify the stated results. A more rigorous treatment can
be found in Hall (2000) and Hall and Inoue (2003).

4.4.2.1 Estimation with WT = Ŝ−1
HAC,µ

First notice that Ŝ−1
HAC,µ satisfies the conditions for a valid weighting matrix

given in Assumption 3.7 because by construction, ŜHAC,µ is positive semi-
definite for finite T and converges in probability to the positive definite matrix
S∗. This suggests that we can appeal to similar arguments as in the proof of
Theorem 4.1 in order to deduce that θ̂T (2) converges in probability to some
value.
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Corollary 4.1 Probability Limit of θ̂T (2)

Let WT = Ŝ−1
HAC,µ and ŜHAC,µ

p→ S∗(1), a positive definite matrix. If Assump-
tions 3.1–3.2, 3.8–3.10, 4.1 hold and Assumption 4.2 holds at θ∗ = θ∗(2) then

θ̂T (2)
p→ θ∗(2).

Notice that in general θ∗(2) �= θ∗(1), the probability limit of the first step
estimator, unless the weighting matrix on the first step, WT (1), is proportional
to S∗(1)−1. In practice, there is no reason to suppose that WT (1) = kS∗(1)−1

except by coincidence and so the probability limits of the first and second step
estimators are different in most circumstances.

Now let us consider the limiting distribution of θ̂T (2). In the previous sec-
tion, it is shown that Theorem 4.2 can be invoked to deduce the asymptotic
normality of the second step estimator when WT equals Ŝ−1

SU or Ŝ−1
SU,µ. However,

such a strategy does not work here. The key difference is in the rate of conver-
gence of WT to W . While Ŝ−1

SU,µ converges to Γ0(1)−1 at rate T−1/2, Ŝ−1
HAC,µ

converges to S∗(1)−1 at a slower rate. This means that T 1/2[Ŝ−1
HAC,µ −S∗(1)−1]

diverges as T → ∞, and hence T 1/2[θ̂T (2)− θ∗(2)] does the same. Therefore, in

order to derive the limiting distribution, we must scale θ̂T (2) − θ∗(2) by some
other function of T which increases at a slower rate than T 1/2.

Since a similar story is going to emerge when WT = Ŝ−1
HAC – albeit with

a different rate of convergence – it is more convenient to develop the analysis
at a general level and then specialize the derived result to deduce the limiting
distribution when WT = Ŝ−1

HAC,µ. Accordingly, we consider the case in which

WT converges to W at rate c−1
T where cT is a sequence of constants with the

properties cT → ∞ with T → ∞ and cT = o(T 1/2). We also return to the generic

notation of θ̂T for the estimator and θ∗ for its plim to facilitate comparsion with
Section 4.2. Our starting point is (4.8) with cT substituted for T 1/2, that is

cT (θ̂T − θ∗) = (cT /T 1/2)H0,T { H1,T + H2,T }
= (cT /T 1/2)H0,T H1,T + (cT /T 1/2)H0,T H2,T (4.38)

where H0,T , H1,T and H2,T are defined in (4.9)–(4.11). We now consider the
behaviour of the two terms on the right-hand side of (4.38) in turn. In Section
4.2 it is shown that H0,T H1,T = Op(1), and an inspection of the argument
reveals that this conclusion did not depend on the rate at which WT converges
to W . Therefore, the same arguments can be used here. However, since this
term is multiplied by cT /T 1/2 and cT = o(T 1/2), it follows that

(cT /T 1/2)H0,T H1,T
p→ 0 (4.39)

Now consider (cT /T 1/2)H0,T H2,T . Using (4.12)–(4.16) and H2,T (4) = 0, it
follows that

(cT /T 1/2)H0,T H2,T = (cT /T 1/2)H0,T { H2,T (1) + H2,T (2) + H2,T (3) } (4.40)
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Using similar arguments to Section 4.2 to analyse H0,T H2,T (i), i = 1, 2, it can
be shown that

(cT /T 1/2)H0,T [H2,T (1) + H2,T (2)] = H0,T MT cT (θ̂T − θ∗) + op(1) (4.41)

Therefore, combining (4.38)–(4.41), it follows that

cT (θ̂T − θ∗) = [Ip − H0,T MT ]−1H0,T (cT /T 1/2)H2,T (3) + op(1) (4.42)

Just as in Section 4.2, H0,T and MT converge in probability to matrices of
constants (under certain conditions) and so (4.42) implies the limiting behaviour

of cT (θ̂T − θ∗) is driven by

(cT /T 1/2)H2,T (3) = G
′

∗cT (WT − W )µ∗ (4.43)

To proceed further, we must make some assumption about cT (WT −W ) and
so we return to the specific example of interest here. Using a similar argument
to (4.19),

cT [Ŝ−1
HAC,µ − S∗(1)−1] = − Ŝ−1

HAC,µ{ cT [ŜHAC,µ − S∗(1)] }S∗(1)−1 (4.44)

and so it suffices to consider cT [ŜHAC,µ − S∗(1)] because S∗(1)−1 = O(1) and

Ŝ−1
HAC,µ = Op(1). To this end, it is useful to introduce the following notation.

We define

S̄∗,T = Γ0,T +

T−1
∑

i=1

ωi,T

(

Γi,T + Γ
′

i,T

)

S∗,T = Γ0 +

T−1
∑

i=1

ωi,T

(

Γi + Γ
′

i

)

where Γi,T = T−1
∑T

t=i+1[f(vt, θ∗) − gT (θ∗)][f(vt−i, θ∗) − gT (θ∗)]
′. Using these

definitions, cT (ŜHAC,µ − S∗(1)) can be decomposed into the sum of three terms
as follows,

cT (ŜHAC,µ −S∗(1)) = cT (ŜHAC,µ − S̄∗,T ) + cT (S̄∗,T −S∗,T ) + cT (S∗,T − S∗(1))
(4.45)

Notice that the first component, ŜHAC,µ − S̄∗,T , represents the difference be-

tween the HAC evaluated at θ̂T (1) and θ∗(1); the second component, S̄∗,T − S∗,T

is the difference between the HAC evaluated at θ∗(1) and the corresponding
function evaluated at population instead of sample autocovariances; and the
third component, S∗,T − S∗(1) is the difference between the population analog
to the HAC and the long run covariance matrix. Notice that the sum of the
first two components is ŜHAC,µ − S∗,T , and so can be interpreted as the error
inherent in using the HAC estimator to estimate its population analog. The
third component can then be interpreted as the bias induced by estimating S∗,T

instead of S∗(1).
Hall and Inoue (2003) verify that under a set of plausible regularity condi-

tions the three components in (4.45) behave as follows.
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Assumption 4.7 Limiting Behaviour of the Components of ŜHAC,µ −
S∗(1)

1. (T/bT )1/2vech(ŜHAC,µ − S̄∗,T ) = op(1).

2. (T/bT )1/2vech(S̄∗,T − S∗,T )
d→ N(0, Ωω) where Ωω is a positive definite

matrix depending on the kernel ω(.).

3. limT→∞ bk
T (S∗,T −S∗(1)) = C where k > 0 is known as the characteristic

exponent of the kernel ω(.),18 and

C = − lim
x→0

(

1 − ω(x)

|x|k
) ∞
∑

j=−∞

|j|kΓj < ∞.

Before proceeding, it is worth briefly commenting on certain aspects of this
assumption. In all our previous invocations of asymptotic normality, such as
Lemma 4.1, the rate of convergence has been T−1/2. The key difference here is
in the form of ŜHAC,µ − S∗(1). Recall that ŜHAC,µ is itself a weighted sum of
T − 1 autocovariances (and their transposes). While we can apply the Central
Limit Theorem to deduce T 1/2vech{Γ̃i−Γi} converges to normal distribution for
fixed i, the rate of increase in the number of autocovariances included in ŜHAC,µ

slows down the rate of convergence.19 Notice also that the rate of convergence
of all three components depends on the bandwidth, and the behaviour of the
second and third components also depends on the kernel.

Using equation (4.45) and Assumption 4.7, it follows that the limiting be-
haviour of cT (ŜHAC,µ − S∗(1)) depends on the bandwidth and the kernel:

• if limT→∞ T 1/2/b
1/2+k
T = 0 then (T/bT )1/2(ŜHAC,µ − S∗(1))

d→ N(0,Ωω);

• if limT→∞ T 1/2/b
1/2+k
T = φ ∈ (0,∞) then (T/bT )1/2(ŜHAC,µ − S∗(1))

d→
N(φC,Ωω);

• if limT→∞ T 1/2/b
1/2+k
T = ∞ then plimT→∞bk

T (ŜHAC,µ − S∗(1)) = C.

Notice that neither the rate of convergence nor the nature of the limiting be-

haviour is the same in all three cases. In particular, if limT→∞ T 1/2/b
1/2+k
T = ∞

then the bias term, S∗,T − S∗(1), becomes dominant and this causes bk
T (ŜHAC,µ−

S∗(1)) to converge to a constant. As would be anticipated, these differences also
manifest themselves in the limiting behaviour of the estimator. Using (4.42)-
(4.45) and Assumption 4.7, the following three possibilities emerge for the lim-

iting behaviour of θ̂T (2).

18 Anderson (1994)[Section 9.3.2] defines the characteristic exponent and discusses its prop-
erties.

19 For further discussion see Andrews (1991) or Hall and Inoue (2003).



4.4 The Two Step or Iterated GMM Estimator 135

Lemma 4.2 Limiting Behaviour of θ̂T (2) When WT = Ŝ−1
HAC,µ

Assume that: (i) WT = Ŝ−1
HAC,µ and ŜHAC,µ

p→ S∗(1), a positive definite matrix;

(ii) Assumptions 3.1, 3.8 and 4.7, and certain other regularity conditions hold.20

The limiting distribution is as follows:

• if limT→∞T 1/2/b
1/2+k
T = 0 then (T/bT )1/2[θ̂T (2) − θ∗(2)]

d→ N(0,Σ3);

• if limT→∞T 1/2/b
1/2+k
T = φ ∈ (0,∞) then (T/bT )1/2[θ̂T (2) − θ∗(2)]

d→
N(φH−1

∗∗ G′
∗∗Cµ∗∗,Σ3);

• if limT→∞T 1/2/b
1/2+k
T = ∞ then bk

T [θ̂T (2) − θ∗(2)]
p→ H−1

∗∗ G′
∗∗Cµ∗∗;

where Σ3 = H−1
∗∗ D′BΩB

′

DH
′−1
∗∗ , D = −(µ∗(2)′S∗(1)−1⊗G′

∗∗S∗(1)−1), B is the
selection matrix defined by vec{S∗} = Bvech{S∗}, H∗∗ and G∗∗ are respectively
H∗ and G∗ in Assumption 4.6 evaluated at θ∗ = θ∗(2) instead of θ∗(1).

It is interesting to contrast this result with the corresponding discussion in
the case where WT = Ŝ−1

SU or Ŝ−1
SU,µ. Notice that unlike those previous cases,

the asymptotic distribution of the second step estimator does not depend on the
first step estimator. The reason is that one of the regularity conditions behind
Assumption 4.7 is the restriction that θ̂T (1)−θ∗(1) = Op(T

−1/2).21 This means

that (T/bT )1/2[θ̂T (1) − θ∗(1)] = op(1), and so can have no effect on the large

sample behaviour of (T/bT )1/2[θ̂T (2) − θ∗(2)].

We now consider the iterated estimator. It is straightforward to extend
Corollary 4.1 to θ̂T (i). However, the limiting distribution of the iterated esti-
mator is going to be very complicated in general. Using a similar argument to

(4.37), it follows that if limT→∞T 1/2/b
1/2+k
T ∈ [0,∞) the limiting distribution of

(T/bT )1/2[θ̂T (i)−θ∗(i)] depends on {(T/bT )1/2[θ̂T (j)−θ∗(j)], j = 2, 3, . . . i−1}
in general. Notice that, this time, the dependence only goes back to the second
step for the reasons discussed above.

4.4.2.2 Estimation with WT = Ŝ−1
HAC

We now consider the case in which the second step estimator is calculated using
the uncentred HAC estimator based on θ̂T (1). To begin, we must consider
whether Ŝ−1

HAC satisfies the conditions for a valid weighting matrix given in
Assumption 3.7. Since this part of the analysis is generic to all steps, we return
to our more general notation of θ̂T for the estimator and θ∗ for its limit. In
Section 4.3.3, it is shown that the large sample behaviour of ŜHAC is identical
to S∗ + BT µ∗µ

′

∗. The following lemma characterizes the implications of this
structure for the large sample behaviour of Ŝ−1

HAC .

20 These include θ̂T (1) − θ∗(1) = Op(T −1/2). See Hall and Inoue (2003) [Theorem 3] for a
complete list of regularity conditions and also a rigorous proof.

21 This condition is “plausible” because it is implied by Theorem 4.2.
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Lemma 4.3 Limiting Behaviour of Ŝ−1
HAC

If ŜHAC = S∗ +BT µ∗µ
′

∗ +op(1) where BT = 1+2
∑T−1

i=1 ωi,T , BT = O(bT ) and

the bandwidth satisfies bT → ∞, bT = o(T 1/2) then: Ŝ−1
HAC

p→ S+ where

S+ = S−1
∗ − 1

µ′

∗S
−1
∗ µ∗

S−1
∗ µ∗µ

′

∗S
−1
∗ (4.46)

Since the structure of this inverse is non-standard and also important below, we
present a heuristic proof.22 Since

ŜHAC = S∗ + BT µ∗µ
′

∗ + op(1) (4.47)

and S∗ +BT µ∗µ
′

∗ is nonsingular for any finite T , it follows that the large sample
behaviour of Ŝ−1

HAC can be deduced from (S∗ + BT µ∗µ
′

∗)
−1. For any T , we

have23

(S∗ + BT µ∗µ
′

∗)
−1 = S−1

∗ − BT

1 + BT µ′

∗S
−1
∗ µ∗

S−1
∗ µ∗µ

′

∗S
−1
∗ (4.48)

recall that bT → ∞ as T → ∞, and so it follows from (4.47)–(4.48) that

Ŝ−1
HAC

p→ lim
T→∞

(S∗ + BT µ∗µ
′

∗)
−1 = S−1

∗ − 1

µ′

∗S
−1
∗ µ∗

S−1
∗ µ∗µ

′

∗S
−1
∗ = S+

The matrix S+ has two properties which play an important role in the
analysis.

Corollary 4.2 Properties of S+

(i) rank(S+) = q − 1; (ii) the nullspace of S+ is spanned by µ∗.

Notice that part (i) implies that Ŝ−1
HAC converges to a singular matrix and so

does not satisfy the conditions for a weighting matrix laid down in Assumption
3.7.

With this in mind, now consider the population analog to the second-step
minimand when WT = Ŝ−1

HAC . From Lemma 4.3, this minimand is given by

Q
(2)
0 (θ) = E[f(vt, θ)]

′S+E[f(vt, θ)] (4.49)

Using Corollary 4.2(ii), it can be seen that Q
(2)
0 (θ) attains its minimum possible

value of zero at θ = θ∗. To explore the implications of this structure for the
estimator, we must impose some form of identification condition. The simplest
such condition is to assume that this minimum is unique or, in other words, that
there is no other value of θ which generates a value of µ(θ) in the nullspace of S∗.

Assumption 4.8 Identification Condition
S+E[f(vt, θ)] �= 0 for any θ ∈ Θ \ {θ∗}.

22 See Hall (2000) for a rigorous proof.
23 See the matrix inversion result in (4.33).
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In some cases it is possible to verify that this assumption holds, but in other
models its imposition is more an article of faith. Once identification is assumed
we can use the same sequence of arguments as in Theorem 4.1 to deduce the
following result.

Corollary 4.3 Probability Limit of θ̂T (2)
Let WT = Ŝ−1

HAC . If (i) Assumptions 3.1,3.2, 3.8–3.10, 4.1 and 4.8 hold; (ii)

θ̂T (1)
p→ θ∗(1); (iii) Ŝ−1

HAC

p→ S+; then: θ̂T (2)
p→ θ∗(1).

Corollary 4.3 states that the GMM estimator converges to the same proba-
bility limit in both the first- and second-step estimations. It is straightforward
to extend this result to the iterated estimator as well. Therefore if WT = Ŝ−1

HAC

then the probability limits of the estimators exhibit the same type of behaviour
as they would in a correctly specified model. This also implies that the iterated
estimation converges after just two steps with probability one. Therefore, the
second step and iterated estimators are asymptotically identical. One other con-
sequence of Corollary 4.3 is that there is no need to index population quantities,
such as µ∗ or S∗, by i, and so we drop this index for the rest of this section.

Now consider the limiting distribution of θ̂T (2). As mentioned in the previ-
ous section, the rate of convergence is slower than T 1/2, and so we must return
to (4.42) in order to start the analysis. However, this time there are some ad-
ditional simplications of which we can take advantage. Corollary 4.2(ii) implies
S+µ∗ = 0 and so both p limT→∞ MT = 0 and (WT −W )µ∗ = WT µ∗. Therefore,
(4.42) reduces to

cT (θ̂T − θ∗) = H0,T G
′

∗cT Ŝ−1
HACµ∗ + op(1) (4.50)

The key question is what is the appropriate choice of cT . To answer this ques-
tion, it is convenient to rewrite (4.50) as

cT (θ̂T − θ∗) = H0,T G
′

∗cT S−1
T µ∗ + H0,T G

′

∗cT (Ŝ−1
HAC − S−1

T )µ∗ + op(1) (4.51)

where ST = S∗ + BT µ∗µ
′

∗. Hall and Inoue (2003) establish that the following
results hold under plausible regularity conditions.

H0,T G
′

∗ = −(G
′

∗S
+G∗)

−1G
′

∗ = O(1) (4.52)

bT S−1
T µ∗ =

bT

1 + BT µ′

∗S
−1
∗ µ∗

S−1
∗ µ∗ = O(1) (4.53)

(Ŝ−1
HAC − S−1

T )µ∗ = Ŝ−1
HAC(ST − ŜHAC)S−1

T µ∗ (4.54)

= Op(1)Op(bT /T 1/2)Op(b
−1
T ) = Op(T

−1/2) (4.55)

If these results are used in conjunction with (4.51) then a two-part answer
emerges to our question.

Lemma 4.4 Rate of Convergence for θ̂T (2)

Let WT = Ŝ−1
HAC . If (a) Assumptions 3.1, 3.8,and 4.8 hold; (b) Ŝ−1

HAC

p→ S+;
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(c) Equations (4.52)–(4.55) hold; (d) certain other regularity conditions hold.24

Then (i) bT [θ̂T (2) − θ∗]
p→ β(G

′

∗S
+G∗)

−1G
′

∗S
−1
∗ µ∗ if G

′

∗S
−1
∗ µ∗ �= 0 where β =

− limT→∞(bT /BT )/(µ
′

∗S
−1
∗ µ∗); (ii) T 1/2[θ̂T (2) − θ∗] = Op(1) if G

′

∗S
−1
∗ µ∗ = 0.

Notice that G
′

∗S
−1
∗ µ∗ = 0 implies that p limT→∞ θ̂T (1) = θ∗ is the solution

to the population analog to the first order conditions when WT = Ŝ−1
HAC,µ.

Therefore part (ii) is only relevant in the unlikely eventuality that the probability
limit of the first step weighting matrix is proportional to the long run variance
S∗.

25 So the most relevant part of the lemma in practice is likely to be part (i).

Lemma 4.4(i) states that bT [θ̂T (2) − θ∗] converges to a degenerate distribution,
or in other words a constant vector. This behaviour is similar to the case when
WT = Ŝ−1

HAC,µ and limT→∞T 1/2/b
1/2+k
T = ∞, and has a correspondingly similar

explanation. However, this time it is the bias induced by the use of uncentred
autocovariance matrices in the HAC that is dominant.

4.5 The Estimated Sample Moment

We now consider the large sample behaviour of the estimated sample moment.
In contrast to the results derived for the estimator, this analysis is uncomplicated
and independent of the weighting matrix.

The analysis rests in part on an application of the Weak Law of Large Num-
bers. This law has not yet been invoked in our discussion of the nonlinear
dynamic model, and so we now state it formally.26

Lemma 4.5 Weak Law of Large Numbers
Let θ̄ ∈ Θ, E[f(vt, θ̄)] = µ(θ̄) and Assumptions 3.1, 3.2, 3.8 and 3.10 hold then

T−1
∑T

t=1 f(vt, θ̄)
p→ µ(θ̄).

Let θ̂T be a GMM estimator and assume it converges to some point in
the parameter space, θ∗. Notice that this definition is sufficiently broad to
include all the choices of weighting matrix considered above. In this case, it is
straightforward to establish the following result.

Theorem 4.3 Large Sample Behaviour of the Estimated Sample Mo-
ment
Let (i) Assumptions 3.1, 3.2, 3.8–3.10, 4.1 and 4.3 hold; (ii) θ̂T

p→ θ∗ for some

θ∗ ∈ Θ. Then gT (θ̂T )
p→ µ(θ∗) where ||µ(θ∗)|| > 0.

Proof:
Using the Mean Value Theorem, it follows that

gT (θ̂T ) = gT (θ∗) + GT (θ̂T , θ∗, λT )(θ̂T − θ∗)

24 See Hall and Inoue (2003) [Theorem 4].
25 It is for this reason that we do not characterize the nature of the limiting behaviour

beyond the given order in probability statement.
26 See Wooldridge (1994) for discussion of Laws of Large Numbers in dynamic models.
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The result then follows directly because under the stated conditions

GT (θ̂T , θ∗, λT )
p→ G∗ = O(1), θ̂T − θ∗

p→ 0, gT (θ∗)
p→ µ(θ∗) and ‖µ(θ)‖ > 0 for

all θ ∈ Θ. ⋄

The important consequence of Theorem 4.3 is that ‖T 1/2gT (θ̂T )‖ diverges
to infinity at rate T 1/2. Therefore, taken together, Theorems 3.3 and 4.3 imply
that T 1/2gT (θ̂T ) converges to a mean zero normal distribution if the model is
correctly specified but diverges to infinity if the model is misspecified. This
property is exploited in the construction of the model specification tests which
are reviewed in the next chapter.

4.6 Summary of Consequences of

Misspecification for GMM Estimation

It is useful to begin by recalling the properties of the GMM estimator in cor-
rectly specified models. Since Assumptions 4.1 and 3.1 imply q > p, we confine
our attention here to the case in which the parameter vector is overidentified.

Properties of GMM in correctly specified models:

• θ̂T converges in probability to θ0 for any choice of WT which satisfies
Assumption 3.7.

• T 1/2(θ̂T −θ0) converges to a normal distribution and the choice of weight-
ing matrix only affects this distribution in the variance via W .

• The two step and iterated estimators have the same asymptotic properties.

• T 1/2gT (θ̂T ) converges to a mean zero normal distribution.

In contrast, it has been shown in this chapter that the following properties hold
in misspecified models.

Properties of GMM in misspecified models:

• The probability limit of θ̂T depends on W in general.

• The rate of convergence of θ̂T to its limit, θ∗, depends on the rate of
convergence of WT to W , and the limiting distribution of cT (θ̂T − θ∗)
depends on that of cT (WT − W ).

• The two step and iterated estimators have different asymptotic properties,
and the asymptotic distribution of θ̂T (i) depends on the estimators from
the previous steps.27

27 This statement excludes the case in which WT = Ŝ−1
HAC .
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• T 1/2gT (θ̂T ) diverges.

So, basically, everything is different. Most importantly, misspecification
means that in most cases we have not estimated what we anticipated. This is
sufficient by itself to make all subsequent inferences misleading, and so provides
a motivation for the model specification tests described in the next chapter.



5

Hypothesis Testing

The previous two chapters describe the behaviour of the estimator and its asso-
ciated statistics in both correctly specified and misspecified models. The next
step is to develop inference procedures through which the estimation results can
be used to learn about the underlying model. There are three broad questions
which naturally arise in this context – Is the model correctly specified? Does the
model satisfy restrictions implied by economic/statistical theory? Which of two
competing models is correct? Within the GMM framework, all these questions
are addressed via hypothesis tests concerning either population moment condi-
tions or the parameter vector or both. In practice, these inferences are most
often – if not always – based on the two step or iterated estimator. Therefore,
we focus attention exclusively on this case throughout the chapter.

Misspecification has the potential to make the estimator inconsistent, and
so to render all subsequent inferences misleading. Therefore, it is prudent to
begin by testing whether the model is correctly specified. Within our frame-
work, the economic/statistical model implies that vt satisfies the population
moment condition E[f(vt, θ0)] = 0. Since this is the starting point for our es-
timation, it is clearly desirable to test whether the sample are consistent with
the hypothesis that this condition holds in the population. In most of the appli-
cations in Table 1.1, q is greater than p and so the overidentifying restrictions
are available to form the basis for a test of the model specification. Section 5.1
extends the earlier discussion of the overidentifying restrictions test to nonlinear
dynamic models. It also presents a formal analysis of the statistic’s behaviour
in both correctly and misspecified models. The latter involves two forms of
misspecification: “non-local” and “local”. It is most common in the literature
to analyze the power properties of various statistics using local misspecification
framework. This approach is particularly attractive in cases where more than
one statistic is available to test a hypotheses because it facilitates a meaning-
ful comparison of the candidates’ power properties. However we include both
here because it is only via a non-local analysis that it becomes possible to un-
cover the dependence of the limiting behaviour of the statistic on the method
of covariance matrix estimation. This issue is only illustrated explicitly for the

141
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overidentifying restrictions test but equally applies to the other tests of model
specification described below.

In some cases, a priori information may indicate that the potential misspec-
ification is confined to certain elements of the population moment condition.
In certain circumstances, it is possible to exploit this information to construct
a more powerful test than the overidentifying restrictions test. Section 5.2 de-
scribes when this is possible and presents statistics for testing so-called hypothe-
ses about a subset of the moment conditions. If the model is validated by the
previous test statistics, then it is reasonable to use the estimation results as
a basis for inference about the phenomena captured by the model. In many
economic models, these inferences reduce to hypotheses about restrictions on
the parameter vector. Section 5.3 discusses methods for testing the hypothesis
that the parameter vector satisfies a set of nonlinear restrictions of the form
r(θ0) = 0. These types of restrictions naturally arise in many economic mod-
els and so test results can often provide useful insights about the underlying
economic structure.

One of the main assumptions behind GMM is that the population moment
condition holds throughout the entire sample; in other words the model is as-
sumed to be “structurally stable”. A natural concern is whether the popula-
tion moment condition is only true for part of the sample in which case the
model exhibits “structural instability”. Section 5.4 describes various methods
for testing structural stability. The differences between the tests are most eas-
ily understood by considering their sensitivity to instability of identifying and
overidentifying restrictions separately. It is also shown how this decomposition
can be exploited to develop tests which can distinguish between instability in
the parameters alone and instability of a more general form.

The foregoing hypothesis tests are by far the most common in the types of
applications in Table 1.1, and so merit detailed discussion. Section 5.5 provides
a brief summary of certain other inference techniques which have been proposed
in the literature. Section 5.5.1 discusses non-nested hypothesis tests, which have
been proposed as a method of choosing between two competing specifications.
In some cases, one competing model can be nested within the other and so it
is possible to assess which is more appropriate using the types of procedure
described in Sections 5.1 through 5.3. However, in other cases the competing
models are not nested in this fashion, and so alternative procedures must be
developed. As will be seen, this type of question is much harder to address
within the majority of models listed in Table 1.1 without further restrictions.
Section 5.5.2 describes so-called “Hausman” tests which involve the compari-
son of two estimators based on different sets of population moment conditions.
Section 5.5.3 concludes the chapter with a discussion of “conditional moment”
tests. These tests are commonly employed in models estimated by Maximum
Likelihood to assess whether the assumed distribution is correct. Although
Maximum Likelihood is not a focus of this book, these tests are included here
because they have some important similarities and differences with the other
procedures discussed above. Section 5.6 concludes with a brief summary of the
chapter.
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Finally, two omissions should be noted. First, this chapter focuses exclu-
sively on the asymptotic properties of these tests. In most cases, the original
articles did not provide simulation evidence on the finite sample properties of
their proposed tests. Instead this type of evidence tends to be found in studies
which sought to examine the finite sample behaviour of all aspects of GMM
in the context of a particular model. We believe that it is more instructive to
review these studies in a similar spirit, and so further discussion of this aspect
of hypothesis testing can be found in Chapter 6. Secondly, it is beyond the
scope of this book to provide an introduction to the general theory of statistical
hypothesis testing; this material can be found in many other sources such as
Lehmann (1959) or Cox and Hinckley (1974).

5.1 The Overidentifying Restrictions Test

Section 2.5 introduced the idea of using the overidentifying restrictions to test
whether the model is correctly specified. Although this earlier discussion is
in the context of the linear model, the underlying intuition is not specific to
this structure. In this section we extend the overidentifying restrictions test
to nonlinear dynamic models and formally analyse its properties in correctly
specified and misspecified models. There are two main approaches to this type
of analysis in misspecified models. The first employs the framework in Chapter
4, which it is now useful to refer to as non-local misspecification. The second
is based on a local form of misspecification. The distinction between them is
best motivated by briefly reconsidering the nature of Assumption 4.1. This
assumption has two important implications. First, there is no value of θ for
which E[f(vt, θ)] = 0 – that is, the model is misspecified. Secondly, E[f(vt, θ)] =
µ(θ) – that is, the “size” of the misspecification, µ(θ), is the same for all t,
regardless of the sample size. In other words, the model is wrong and the
situation does not change as the sample size increases. This scenario contrasts
with local misspecification in which the model is misspecified for finite T , but
the size of the misspecification decreases with T so that in the limit the model is
correct. This misspecification is “local” in the sense that the data are generated
by a sequence of processes which become closer and closer to satisfying H0 as
T increases and in the limit do satisfy this hypothesis. As might be imagined,
a different analysis is required for each type of misspecification. Therefore, we
break our discussion down into three parts. Section 5.1.1 introduces the test
statistic and derives its asymptotic distribution in correctly specified models.
Section 5.1.2 considers the behaviour of the statistic in non-locally misspecified
models, and Section 5.1.3 presents its local counterpart. As will be seen, the
conclusions from these two types of analysis are couched in very different terms.
Section 5.1.4 concludes the discussion with a demonstration that each form of
analysis leads to the same qualitative conclusions about the properties of the
test.
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5.1.1 The Statistic and its Asymptotic Distribution in

Correctly Specified Models

Section 2.5 introduces the idea of using the overidentifying restrictions test
statistic to assess the adequacy of the model specification. It can be recalled
that the idea behind the test is simple: if E[ztut(θ0)] = 0 then the estimated

sample moment, T−1Z ′u(θ̂T ), should be zero once allowance is made for sam-
pling error. The same logic can be applied equally in nonlinear dynamic models:
if E[f(vt, θ0)] = 0 then gT (θ̂T ) should be approximately zero. This insight mo-
tivated Hansen (1982) to propose testing the null hypothesis

H0 : E[f(vt, θ0)] = 0 (5.1)

using the overidentifying restrictions test statistic

JT = T gT (θ̂T )
′

Ŝ−1
T gT (θ̂T ) (5.2)

where, as a reminder, θ̂T is the second step (or iterated) estimator. This statistic
is easily recognized to be the generalization of Sargan’s (1958) statistic (equa-
tion (2.42) above) to nonlinear dynamic models. Hansen (1982, Lemma 4.2)
derived its limiting distribution under H0, and this result is given in the follow-
ing theorem.

Theorem 5.1 The Asymptotic Distribution of the Overidentifying Re-
strictions Test Statistic
If (i) Assumptions 3.1–3.5, 3.8–3.13 hold; (ii) ŜT is positive semi-definite and

converges in probability to S; then JT
d→ χ2

q−p.

Proof:
Since plim ŜT = S it follows from Slutsky’s Theorem (Lemma 1.1) that JT −
J̃T

p→ 0 where
J̃T = TgT (θ̂T )′S−1gT (θ̂T ) (5.3)

Therefore, the theorem can be established by proving that J̃T has the stated
limiting distribution. Using Theorem 3.3 evaluated at W = S−1, we obtain

J̃T
d→ ‖[Iq − P (θ0)]nq‖2 = n

′

q[Iq − P (θ0)]nq (5.4)

where nq denotes a (q × 1) random vector with a standard normal distribution.
Now Iq − P (θ0) is a projection matrix whose rank is q − p by Assumption 3.4.1

The desired result then follows from (5.4) and Rao (1973, p.186). ⋄

Notice that Theorem 4.1 holds for any choice of covariance matrix estimator
which is both positive semi-definite and consistent for S under the assumption
that the model is correctly specified. This class includes any estimators in Sec-
tions 3.5 and 4.3 which adequately capture the dynamic structure of f(vt, θ0).

1 Recall that Assumption 3.4 implies Assumption 3.6 and hence that rank[F (θ0)] = p.
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Although we have stated Theorem 5.1 in terms of the two step or iterated
GMM estimator, intuition suggests a similar result holds for minimand of the
continuous updating estimator.2 In fact, the proof of Theorem 5.1 is easily
adapted to show that under H0

Jcont,T = TQcont,T (θ̂T )
d→ χ2

q−p (5.5)

where - with an abuse of notation - θ̂T is the now the continuous updating esti-
mator.3 However, while the asymptotic distributions of Jcont,T and JT are the
same, the numerical values differ in a predicatable way under certain circum-
stances. Specifically, if JT is based on the iterated estimator and these iterations
converge, then it follows from the definition of the continuous updating estima-
tor that Jcont,T cannot exceed JT .4

This statistic has become a standard diagnostic for models estimated by
GMM and is routinely calculated in most computer packages. In Section 2.5, we
discussed the interpretation of this test in general terms. We now complement
those earlier remarks with a more formal analysis of the statistic’s behaviour in
misspecified models in Sections 5.1.2 and 5.1.3.

5.1.2 Non-Local Misspecification

Our analysis of GMM in misspecified models is premised on Assumption 4.1.5

As mentioned above, this misspecification is refered to as “non-local” because
the “size” of the misspecification, µ(θ), is the same for all observations and
sample sizes. Intuition suggests that if the model is wrong for every observation
then the evidence against it must mount up as the sample increases with the
result that the model is rejected with probability one in the limit. In essence this
intuition is correct, but there is an important caveat concerning the calculation
of the covariance matrix. The analysis in this section is based on Hall (2000).

Before, we present the more formal analysis, it is useful to develop a heuristic
understanding of the way in which the covariance matrix estimator can play such
a crucial role. Recall that the overidentifying restrictions test is a quadratic form
in T 1/2gT (θ̂T ) and Ŝ−1

T . Theorem 4.3 indicates that T 1/2gT (θ̂T ) diverges under
non-local specification. Intuition suggests that this behaviour is inherited by JT

provided Ŝ−1
T converges in probability to a positive definite matrix. However,

it can be recalled from Section 4.4 that the inverse of certain covariance matrix
estimators – Ŝ−1

HAC in particular – only converge to a positive semi-definite
matrix in misspecified models and in these cases it is no longer so obvious that
JT diverges. For this reason, it is most convenient to separate our analysis into
two parts depending on the limiting behaviour of Ŝ−1

T . There is one other aspect
of this heuristic discussion, which should be noted. We have made no mention

2 See Section 3.7.
3 We omit the details for brevity. See Hansen, Heaton, and Yaron (1996) for further

discussion.
4 See Section 6.3 for further discussion.
5 See Chapter 4.
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of whether ŜT is a consistent estimator of S∗. The key issue is only whether or
not p limT→∞ Ŝ−1

T is positive definite for which consistency is sufficient but not
necessary.

We begin with the more standard case in which Ŝ−1
T converges to a positive

definite limit. Inspection of Section 4.3 reveals that this case covers the estima-
tors: ŜSU , and the versions of the covariance matrices based on f(vt, θ)−gT (θ).6

For this analysis, we require the second step estimator to converge in probability
to some constant limit. Below we impose this condition directly for simplicity
because more primitive conditions depend in part on the covariance matrix es-
timator; see Chapter 4.7

Theorem 5.2 Large Sample Behaviour of JT : Part (i)
If (i) Assumptions 3.1, 3.2, 3.8–3.10, 4.1 and 4.3 hold; (ii) Ŝ−1

T satisfies As-

sumption 3.7; (iii) θ̂T
p→ θ∗ for some θ∗ ∈ Θ; then: T−1JT

p→ c where
0 < c < ∞ and so limT→∞ P [JT > cα] = 1, where cα is the 100(1 − α)th

percentile of the χ2
q−p distribution.

The basic outline of the proof has been anticipated above, but for completeness
we now fill in the details.

Proof:
Let W denote the probability limit of Ŝ−1

T and µ∗ = E[f(vt, θ∗)]. From Theorem
4.3 and Slutsky’s Theorem (Lemma 1.1) it follows that

T−1JT = µ
′

∗Wµ∗ + op(1) (5.6)

Since W is positive definite and µ∗ �= 0 by Assumption 4.1, it follows from (5.6)

that T−1JT
p→ c = µ

′

∗Wµ∗ > 0. Therefore, JT = Tc + op(T ) increases at rate
T and so tends to ∞ in probability as T → ∞, which gives the desired result.
⋄

In statistical parlance, Theorem 5.2 states that JT is a consistent test of
H0 : E[f(vt, θ0)] = 0 against the alternative that the data satisfy Assumption
4.1.8

We now consider what happens if Ŝ−1
HAC is used as the weighting matrix on

the second step. It can be recalled from Lemma 4.3 that Ŝ−1
HAC converges in

probability to a positive semi-definite matrix and that the form of this limit
has important implications for the two step estimator. We now establish that
this limiting behaviour also has important consequences for the behaviour of
the overidentifying restrictions test.

6 ŜV ARMA is omitted from this list because, at time of writing, its limiting behaviour in
misspecified models is unknown; see the discussion in Section 4.3.

7 For the purposes of comparison with Chapter 4, note that here we suppress the (2) index

on both θ̂T and θ∗ for ease of notation.
8 This is a somewhat unfortunate terminology since we have already used the term con-

sistency to refer to a property of an estimator. However, the meaning should be obvious from
the context.
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Theorem 5.3 Large Sample Behaviour of JT : Part (ii)
If: (i) Assumptions 3.1, 3.2, 3.8–3.10, 4.1, 4.3 and 4.4 hold; (ii) ŜT = ŜHAC =

S∗+BT µ∗µ
′

∗+op(1) where BT = 1+2
∑T−1

i=1 ωi,T , BT = O(bT ), limT→∞ BT /bT �=
0 and the bandwidth satisfies bT → ∞, bT = o(T 1/2); then: JT = Op(T/bT ).

Proof:

Let the minimand on the second step GMM estimation be Q
(2)
T (θ). By definition

QT (θ̂T (2)) ≤ QT (θ∗), and so it is sufficient to prove that TQT (θ∗) = Op(T/bT ).
By the Cauchy–Schwarz inequality9 and condition (ii), we have

TQ
(2)
T (θ∗) ≤ |T/bT ||bT /BT ||BT Q

(2)
T (θ∗)| (5.7)

Since T/bT = O(T/bT ) and condition (ii) implies bT /BT = O(1) we concentrate

here on showing that BT Q
(2)
T (θ∗) = Op(1). Since

BT Q
(2)
T (θ∗) = B

1/2
T gT (θ∗)

′Ŝ−1
T B

1/2
T gT (θ∗)

we first consider B
1/2
T gT (θ∗). By definition, we have

B
1/2
T gT (θ∗) = B

1/2
T µ∗ + (BT /T )1/2T−1/2

T
∑

t=1

[f(vt, θ∗) − µ∗] (5.8)

Now Lemma 4.1 implies that T−1/2
∑T

t=1[f(vt, θ∗) − µ∗] = Op(1). Furthermore

we have assumed that bT = o(T 1/2), and so (5.8) implies B
1/2
T gT (θ∗) = B

1/2
T µ∗+

op(1). Therefore, it follows that

BT QT (θ∗) = BT µ
′

∗Ŝ
−1
T µ∗ + op(1) (5.9)

= BT µ
′

∗S
−1
T µ∗ + BT µ

′

∗(Ŝ
−1
T − S−1

T )µ∗ + op(1) (5.10)

Using (4.53) it can be shown that

BT µ
′

∗S
−1
T µ∗ =

BT µ
′

∗S
−1
∗ µ∗

1 + BT µ′

∗S
−1
∗ µ∗

= O(1) (5.11)

Now consider the second term in (5.10), that is

BT µ
′

∗(Ŝ
−1
T − S−1

T )µ∗ = BT µ
′

∗Ŝ
−1
T (ST − ŜT )S−1

T µ∗ = n2,T , say

From (4.54)–(4.55), it follows that n2,T = op(1), and so, using this result with
(5.11) in (5.10), we have BT QT (θ∗) = Op(1). The desired result then follows
from (5.7). ⋄

Theorem 5.3 indicates that JT cannot increase at a faster rate than T/bT

when WT = Ŝ−1
HAC . By itself, this result does not imply JT increases at that

9 See Apostol (1974) [p.294].
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rate, although this is in fact the case. Therefore, the overidentifying restrictions
test is still consistent.

Together Theorems 5.2 and 5.3 indicate there is a difference in the rate
at which JT diverges depending on how the HAC is calculated. If a centred
HAC estimator is used then JT increases at rate T , but if an uncentred HAC
estimator is used then JT increases at rate T/bT . Notice if we use an uncentred
HAC with the optimal bandwidth then there is also a difference in the rate of
increase of JT between the kernels.10 With the Bartlett, JT increases at rate
T 2/3, whereas with the Parzen and Quadratic Spectral kernels, JT increases at
rate T 4/5. Hall (2000) provides simulation evidence which illustrates that the
failure to centre the HAC can have a substantial impact on the magnitude of
the statistic in finite samples as well. It is less clear whether this difference
in rates also manifests itself in differing power properties for the two versions
of the test. For power calculations at a fixed significance level, it is only the
magnitude of the statistic relative to the critical point which matters. Intuition
suggests that there may be circumstances in which the two versions of the tests
have different finite sample power properties but this remains an open research
question. However, the rate of increase is important for the construction of
moment selection procedures based on the overidentifying restrictions test; see
Section 7.3.1.

5.1.3 Local Misspecification

So far our analysis has considered the scenarios in which the model is either
correctly specified or subject to non-local misspecification. The contrast be-
tween these two is stark. If the model is correct then the following holds: (a)
the population moment condition is true for all t; (b) the parameter estimator

is consistent; (c) T 1/2gT (θ̂T ) converges to a mean zero normal distribution; and
(d) it is only necessary to capture the dynamic structure of ft to construct a
consistent estimator of the long run variance. In contrast if there is non-local
misspecification then: (a) the population moment condition is invalid for all t;

(b) the parameter estimator is likely to be inconsistent; (c) T 1/2gT (θ̂T ) diverges;
and (d) the construction of a consistent covariance matrix estimator must ac-
count for both the non-zero mean and the dynamic structure of ft. In this
section, we move to a third scenario which lies between these two extremes. Lo-
cal misspecification captures the case where the population moment condition is
invalid for any finite T but the size of the violation is O(T−1/2) and so disappears
in the limit. This rate of decrease ensures the misspecification does not affect
the probability limits of either the parameter or covariance matrix estimators,
but does manifest itself in the mean of the limiting distribution of T 1/2gT (θ0)
and consequently the asymptotic distributions of the estimator and estimated
sample moment as well. Newey (1985a) was the first paper to present an analy-
sis of the overidentifying restrictions test under local alternatives. However, we
take a different approach to the construction of local misspecification which was

10 See Table 3.4.
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first exploited in this context by Hall (1999). The qualitative conclusions are
the same as Newey’s (1985a) but the route to them is slightly different.

To introduce the local misspecification framework, it is most convenient to
begin with the transformed population moment condition introduced in Section
3.3. Since two–step estimation involves W = S−1 on the final step, we express
the hypothesis that Assumption 3.3 holds by

H0 : S−1/2 E[f(vt, θ0)] = 0 (5.12)

The advantage of this approach is that it allows H0 to be decomposed into hy-
potheses about the identifying and overidentifying restrictions. To this end, we
once again set P (θ) = F (θ)[F (θ)

′

F (θ)]−1F (θ)
′

where F (θ) = S−1/2E[∂f(vt, θ)/
∂θ

′

]. It then follows from (3.19)-(3.20) that

H0 : HI
0 & HO

0

HI
0 : P (θ0) S−1/2E[f(vt, θ0)] = 0

HO
0 : [Iq − P (θ0)]S

−1/2E[f(vt, θ0)] = 0

where HI
0 , HO

0 are respectively the hypotheses that the identifying and overi-
dentifying restrictions hold at θ0. Since the transformed population moment
can always be decomposed into

S−1/2 E[f(vt, θ)] = P (θ) S−1/2E[f(vt, θ)] + [Iq − P (θ)]S−1/2E[f(vt, θ)]
(5.13)

we can characterize the local misspecification in terms of violations of the iden-
tifying and overidentifying restrictions. To this end, we introduce the following
sequences of local alternatives to HI

0 and HO
0

HI
A,T : P (θ0) S−1/2ET [f(vt, θ0)] = T−1/2P (θ0) ηI = T−1/2µI

HO
A,T : [ Iq − P (θ0) ]S−1/2ET [f(vt, θ0)] = T−1/2[ Iq − P (θ0) ]ηO = T−1/2µO

in which µI �= 0, µO �= 0 and ET [.] denotes expectations with respect to the joint
probability distribution of {vt; t = 1, 2, . . . T}. The reason for this subscript
on the expectation operator is discussed below, but first we briefly consider
the nature of these two alternatives. Notice that under HI

A,T the identifying
restrictions are violated for finite T , but the “size” of this violation decreases
as T increases and disappears in the limit as T → ∞. Clearly, HO

A,T implies a
similar pattern of violations of the overidentifying restrictions. This technical
device for constructing local alternative hypotheses is known as Pitman drift
after Pitman (1949) who first introduced it.11 As mentioned above, equation
(5.13) can be used to combine these two sequences into a sequence of local
alternatives to H0, that is HA,T = HI

A,T &HO
A,T .

11 Edwin Pitman (1897–1993) was an Australian statistician who made a number of con-
tributions to statistics including the eponymous efficiency measure. The 1949 reference is to
a set of lecture notes prepared for a lecture series given at the University of North Carolina,
Chapel Hill and also elsewhere in the U.S. Although not published at that time, the notes
were widely circulated and played an influential role in the development of statistical theory.
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One immediate consequence of local misspecification is that the data vt

cannot be a realization from a strictly stationary process because the value of
E[f(vt, θ0)] changes with T . This means the probability distribution of the data
depends on T , and so the sample is now a realization from a doubly indexed
process {vt,T , t = 1, . . . T ; T = 1, 2, . . .}12 and it is for this reason that we in-
troduced above the subscript T for the expectation operator. It is possible to
develop characterizations of the probability distribution of the data which lead
to HA,T ; for example, see Newey (1985a). However we do not pursue that route
here and choose instead to characterize the data generation process implicitly
via the properties which play a part in the analysis. Intuition suggests that
HA,T causes a relatively modest perturbation from stationarity, and it is rea-
sonable to assume there are data generation processes which satisfy the following
assumption.

Assumption 5.1 Data Generation Process under HA,T

The observed data are assumed to be a realization from a stochastic process

{vt; t = 1, 2, . . .} which satisfies the following conditions: (i) θ̂T
p→ θ0; (ii)

gT (θ̂T )
p→ 0; (iii) GT (θ̂T )

p→ G0, GT (θ̂T , θ0, λT )
p→ G0; (iv) ŜT

p→ S, a positive

definite matrix; (v) S−1/2T 1/2gT (θ0)
d→ N( µI + µO, Iq ).

So for our purposes, the only effective difference between the data generation
processes under H0 and HA,T is in the mean of the limiting distribution for
T 1/2gT (θ0).

Before we analyze the behaviour of the overidentifying restrictions test, it
is instructive to consider the impact of local misspecification on the asymptotic

distribution of the parameter estimator. Since θ̂T
p→ θ0, we can use (3.24)–(3.26)

in order to establish the following result.

Lemma 5.1 The Asymptotic Behaviour of T 1/2(θ̂T − θ0) under HA,T

If Assumption 5.1 holds then:

T 1/2(θ̂T − θ0)
d→ N

(

−(G′
0S

−1G0)
−1G′

0S
−1/2′

ηI , (G
′
0S

−1G0)
−1
)

There are two aspects of this distributional result which should be noted.
First, a comparison with Theorem 3.2 reveals that local misspecification only
impacts on the mean of the distribution. Secondly, this impact derives from
HI

A,T alone. This conforms to our earlier comments about the different roles of

these two sets of restrictions.13 A local violation of the identifying restrictions
causes a bias in the asymptotic distribution of θ̂T away from θ0, but a local
violation of the overidentifying restrictions has no impact.

With this in mind, we now characterize the behaviour of the overidentifying
restrictions test under HA,T .

12 Such a process is called a triangular array; see Davidson (1994) [pp.34, 178]. However,
for notational simplicity, we suppress the additional subscript on v.

13 See Section 3.3.
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Theorem 5.4 Large Sample Behaviour of JT under HA,T

If Assumption 5.1 holds then: JT
d→ χ2

q−p(µ
′
OµO) where χ2

a(b) denotes a χ2

distribution with degrees of freedom a and non–centrality parameter b.14

Proof:
Once again, it suffices to consider the statistic J̃T = TgT (θ̂T )

′

S−1gT (θ̂T ). The

first few steps of the argument are identical to the analysis of T 1/2gT (θ̂T ) in the
proof of Theorem 5.1. The Mean Value Theorem can be used to deduce (3.34)
and this in turn leads to (3.35). Since Assumption 5.1 implies the matrices
in (3.35) converge to the same limits under H0 and HA,T , equation (3.35) is
equivalent to

S−1/2T 1/2gT (θ̂T ) = [Iq − P (θ0)]S
−1/2T 1/2gT (θ0) + op(1) (5.14)

Using (5.14) and Assumption 5.1, it follows that

J̃T
d→ ‖[Iq −P (θ0)](nq +µI +µO)‖2 = (nq +µI +µO)

′

[Iq −P (θ0)](nq +µI +µO)
(5.15)

where nq ∼ N(0, Iq). Equation (5.15) implies J̃T converges to a χ2
q−p(b) distri-

bution where b = (µI +µO)
′

[Iq −P (θ0)](µI +µO). However, since µI = P (θ0)ηI

and µO = [Iq − P (θ0)]ηO, the non-centrality parameter reduces to b = µ
′

OµO.
⋄

Theorem 5.4 reveals that the non–centrality parameter depends on µO alone,
and so the test only has power against local violations of the overidentifying
restrictions. This implies that if the local misspecification is confined to the
identifying restrictions then JT converges to a central χ2

q−p distribution. There-

fore, the test has the same distribution under both H0 and HI
A,T &HO

0 , and so
cannot be used to discriminate between these two states of the world.

5.1.4 The Parallels Between Non-Local and Local

Analysis

As we have just seen, very different techniques are required for the analysis of
the test’s behaviour in the presence of local and non–local misspecification. At
first glance, it is not immediately obvious that they lead to the same conclusions
about the interpretation of a significant statistic – but they do! Since the test
is the standard diagnostic within the GMM framework, it is worthwhile briefly
explaining the parallels between the two types of analysis.

In the preamble to Chapter 4, we introduced three models: the assumed
model M, and two alternative candidates for the true model MA and MB .
These models have the following properties:

M =⇒ E[f(vt, θ0)] = 0 for some unique θ0 ∈ Θ

14 See Johnson and Kotz (1970) [Chapter 28] for a review of the properties of the non-central
χ2 distribution.
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MA =⇒ E[f(vt, θ+)] = 0 for some unique θ+ ∈ Θ

MB =⇒ � ∃ θ ∈ Θ such that E[f(vt, θ)] = 0

If M is misspecified then whether or not we can detect this fact using JT de-
pends on whether MA or MB represents the truth. If MB is true then the
assumed population moment condition is subject to non-local misspecification.
In this case, JT is consistent against this alternative, and so leads to rejection
of the model with probability one in the limit. Now suppose MA represents the
truth. Thus far, we have not explicitly considered this case, but it is easy to see
what happens. Both M and MA imply there is a unique value of θ at which
the population moment condition is satisfied. Since neither model places any
further restrictions on this unique value of θ, they are observationally equivalent
on the basis of E[f(vt, θ)]. Therefore, the estimator and all its associated statis-
tics behave exactly the same under both M and MA. So this type of model
misspecification cannot be detected – for the good reason that the part of the
model used in estimation is actually correct!

This behaviour is mirrored in the analysis under local misspecification. The
local alternative HI

A,T & HO
0 corresponds to a local version of MA. To bring

out this connection, it is necessary to consider a local alternative to H0 in which
the population moment condition is satisfied at a sequence of parameter values
that converges to θ0, that is

HP
A,T : S−1/2ET [f(vt, θT )] = 0 (5.16)

where θT = θ0+T−1/2ηP . Given the local nature of the alternative, it is possible
to use a first order Taylor expansion in (5.16) to deduce that HP

A,T implies

S−1/2ET [f(vt, θ0)] + T−1/2F (θ0)ηP = 0 (5.17)

Since F (θ0) = P (θ0)F (θ0), equation (5.17) can be rewritten as

S−1/2ET [f(vt, θ0)] = −T−1/2F (θ0)ηP = T−1/2P (θ0)ηI

where ηI = −F (θ0)ηP . It is then immediately apparent that HP
A,T = HI

A,T &HO
0 .

In other words, HI
A,T & HO

0 can be characterized as a sequence of alternatives
in which the population moment condition is satisfied at a unique parameter
value for each T , and so each member of the sequence satisfies the definition
of MA. Theorem 5.4 states that JT has the same distribution under both H0

and HI
A,T &HO

0 , and so can now be recognized as the precursor to our com-

ments above about the statistic’s behaviour under MA. Since HP
A,T implies

that S−1/2ET [f(vt, θ0)] lies in the column space of F (θ0), it follows that HO
A,T

implies the data are generated by a sequence of models with the properties of
MB . So, Theorems 5.2 and 5.4 represent two ways of saying that the test can
be used to discriminate between M and MB .

To conclude this discussion, it is useful to bring one implicit assumption into
the light. Throughout, it has been assumed that the estimation really did locate
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the global maximum of QT (θ). While, this is a reasonable assumption to make
for the theoretical analysis, it may not be such a trivial issue in practice as we
discussed in Section 3.2. Andrews (1997) observes that a significant statistic
may be attributable to the failure of the estimation routine to locate the global
minimum. In fact, Andrews (1997) proposes a method based on JT to determine
whether the global minimum has been reached. However, we do not pursue the
details here, because this approach confounds issues of numerical convergence
and model specification. However, Andrews’s observation does re-emphasize the
importance of locating the global maximum.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model
Table 5.1 reports the overidentifying restrictions test statistics based on both
the two step and iterated GMM estimators. For brevity, we only report re-
sults for the case in which the first step weighting matrix is the inverse of the
instrument cross product matrix. Two choices of covariance matrix estimator
are used: ŜSU and ŜSU,µ. However, in this case, the conclusions are affected
by neither iteration nor the choice of covariance matrix estimator. The model
is rejected with equally weighted returns (EWR) but cannot be rejected with
value weighted returns (VWR). For the record, we also note that the same con-
clusions are drawn using the continuous updating estimator described in Section
3.7. In each case, the J–statistic based on the continuous GMM estimator is only
marginally smaller than its counterpart based on the iterated estimator. ⋄

Table 5.1
Overidentifying restriction test statistics

Asset ŜT Statistic Two-step Iterated

EWR ŜSU JT 11.645 11.810
p − value 0.009 0.008

ŜSU,µ JT 11.945 12.116
p − value 0.008 0.007

VWR ŜSU JT 1.747 1.748
p − value 0.626 0.626

ŜSU,µ JT 1.754 1.755
p − value 0.625 0.625

Notes: ŜSU , ŜSU,µ are given in (3.40) and (4.24) respectively, JT denotes the overidentifying
restrictions test in (5.2) and p-value denotes the observed significance level of JT .

5.2 Testing Hypotheses about Subsets of

E[f(vt, θ0)]

The vector of population moment conditions can often be partitioned into a set
of sub-vectors each of which refer to a different aspect of the model. In some
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cases, a priori information may indicate that if there is misspecification then it
is confined to a particular part of the population moment condition so that the
true model, MB,S , would have the property,

MB,S =⇒ E[f1(vt, θ0)] = 0 for some unique θ0 ∈ Θ but E[f2(vt, θ0)] �= 0
(5.18)

for some partition f(vt, θ) = [f1(vt, θ)
′, f2(vt, θ)

′]′. Since MB,S ⊂ MB , the
overidentifying restrictions test is consistent against this type of misspecifica-
tion. However, it is possible to construct a more powerful test of the model
specification by taking advantage of the a priori information on the likely source
of the misspecification. In this section, we present this test and analyze its prop-
erties under local forms of misspecification.

To begin, it is necessary to define the partition of f(.) more formally and
also introduce a partition of θ0. Let θ′

0 = (θ′
0,1, θ

′
0,2) where θ0,i is (pi × 1),

and f(vt, θ0)
′ = [f1(vt, θ0,1)

′, f2(vt, θ0)
′] where fi(.) is (qi × 1). Without loss of

generality we focus on the case in which it is desired to test the null hypothesis

HS
0 : E[f1(vt, θ0,1)] = 0 and E[f2(vt, θ0)] = 0 (5.19)

against the alternative that

HS
A : E[f1(vt, θ0,1)] = 0 and E[f2(vt, θ0)] �= 0 (5.20)

Two features of this specification should be noted. First, the veracity of
E[f1(vt, θ0,1)] = 0 is maintained under both null and alternative; so the poten-
tial misspecification is confined to E[f2(vt, θ0)]. Secondly, this framework allows
for the possibility that the maintained moment conditions, E[f1(vt, θ0,1)] = 0,
only depend on part of the parameter vector.

Both Newey (1985a) and Eichenbaum, Hansen, and Singleton (1988) have
proposed methods for discriminating between these two hypotheses. Although
these authors take very different approaches, Ahn (1995) shows their resulting
statistics are asymptotically equivalent under both HS

0 and local versions of
HS

A. From a practical perspective, Eichenbaum, Hansen, and Singleton’s (1988)
statistic is far easier to calculate, and so we concentrate exclusively on this test.
Readers interested in the approach taken by Newey (1985a) are refered to his
original paper or the discussion in the review article by Hall (1999).

Eichenbaum, Hansen, and Singleton’s (1988) statistic is so convenient be-
cause it is simply the difference between two overidentifying restrictions tests.
The first is the overidentifying restrictions test from GMM estimation based on
the full set of population moment conditions, JT in (5.2). The second is the
overidentifying restrictions test associated with GMM estimation of θ0,1 based
on the moment conditions maintained under both HS

0 and HS
A, that is

J1,T = Tg1,T (θ̃1,T )′S̃−1
1,1g1,T (θ̃1,T ) (5.21)

where θ̃1,T is the two step (or iterated) GMM estimator of θ0,1 based on E[f(vt,

θ0,1)] = 0, g1,T (θ1) = T−1
∑T

t=1 f1(vt, θ1), and S̃1,1 is a consistent estimator of
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S1,1 = limT→∞ V ar[T−1/2
∑T

t=1 f1(vt, θ0,1)]. Eichenbaum, Hansen, and Single-
ton’s (1988) statistic is then given by,

CT = JT − J1,T (5.22)

The intuition behind the test’s construction is most readily appreciated after an
exploration of its properties, and so we now proceed to the statistical analysis,
but return to the intuition at the end of this section.

We begin with its limiting distribution under H0. It is clear from the struc-
ture of the statistic that most of the regularity conditions are going to be the
same as for the corresponding result for the overidentifying restrictions test in
Theorem 5.1. However, CT also depends on a second GMM estimation us-
ing E[f1(vt, θ0,1)] = 0 alone, and so it is necessary to introduce the following
identification condition.15

Assumption 5.2 Identification Condition for θ0,1

E[∂f1(vt, θ0,1)/∂θ
′

1] has rank p1.

Notice that this assumption implies q1 ≥ p1. Clearly, if q1 = p1 then J1,T = 0
and CT reduces to JT ; therefore it is assumed below that q1 > p1. It must also
be the case that q2 > p2 otherwise there be a value of θ0,2 which sets E[f(vt, θ0)]
equal to zero for any given value of θ0,1.

16

Theorem 5.5 The Asymptotic Distribution of Eichenbaum, Hansen,
and Singleton’s (1988) Statistic under HS

0

If (i) Assumptions 3.1–3.5, 3.8–3.13 and 5.2 hold; (ii) q1 > p1, q2 > p2; (iii)
S̃1,1 is positive semi-definite and converges in probability to S1,1; (iv) ŜT is

positive semi-definite and converges in probability to S; then CT
d→ χ2

q2−p2
.

The proof is somewhat involved and so is relegated to the technical details
sub-section at the end of this section.

There is an interesting pattern to the degrees of freedom of JT , J1,T and
CT . Theorem 5.1 implies that JT and J1,T have q − p and q1 − p1 degrees
of freedom respectively. Theorem 5.5 implies that CT has q2 − p2 degrees of
freedom. Therefore, the subtraction of J1,T from JT has created a statistic,
CT , with (q1 − p1) fewer degrees of freedom. Notice that the resulting degrees
of freedom equal the degree to which θ0,2 is overidentified by E[f2(vt, θ0)] = 0
given θ0,1.

At the beginning of this section, it is stated that it is possible to use in-
formation on the nature of the misspecification to construct a more powerful
test than JT . It is now time to show that CT fulfils this promise. To do this,
it is necessary to move into a setting in which the true model satisfies HS

A.
In Section 5.1, we introduced two frameworks for analyzing the behaviour of
test statistics in misspecified models: a non-local and a local analysis. In that

15 See Section 3.1 for a discussion of identification.
16 This follows from the assumption of stationarity by the same logic used to deduce that

Assumption 4.1 implies q > p; see the preamble to Chapter 4.
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context, it is shown that either framework can be used to delineate the class of
alternatives against which JT has power. However, the non-local framework is
not well suited to the question at hand here because the end result is that CT ,
like JT , rejects HS

0 with probability one in the limit.17 While useful to know,
this does not help us to characterize which is more powerful. In contrast, the
local framework is carefully constructed so that the test statistics converge in
distribution. Since the end product is a distribution, it is possible to compare
the power properties of two statistics within this framework, and so this is the
approach we take.

Section 5.1.3 presents a local power analysis of the overidentifying restric-
tions test. In that earlier context, it is instructive to set up local alternatives
using the identifying and overidentifying restrictions. However, that approach
is less convenient here. Instead, we consider the following sequence of local
alternatives to HS

0 ,

HS
A,T : ET

[

f1(vt, θ0,1)
f2(vt, θ0)

]

=

[

0q1×1

T−1/2µ2

]

= T−1/2µS (5.23)

For brevity, we confine ourselves to a heuristic comparison of the distributions
of JT and CT under HS

A,T . First, recall from Section 5.1.3 that for our purposes
there is only one important difference between the data generation processes
under the null and local alternatives and that is in the limiting distribution of
sample moment. Under HS

A,T , we have

S−1/2T 1/2gT (θ0)
d→ N( S−1/2µS , Iq ) (5.24)

and it is shown in the technical details sub-section at the end of this section
that this behaviour translates into

JT
d→ χ2

q−p(νJ) (5.25)

CT
d→ χ2

q2−p2
(νJ) (5.26)

where νJ = µ
′

SS−1/2′
[Iq − P (θ0)]S

−1/2µS . Therefore, the only difference be-
tween the limiting distributions is in the degrees of freedom. If νJ > 0 then CT

is the more powerful test because it has fewer degrees of freedom.18 19

The foregoing discussion gives a useful perspective on the construction of the
test. We can think of the overidentifying restrictions based on E[f(vt, θ0)] =
0 as being built up of two components. The first component is the set of

17 CT is a consistent test of HS
0 against HS

A. The essence of the proof is quite simple.

Since MB,S ⊂ MB it follows from Theorem 5.2 that T −1JT
p→ cS > 0 under HS

A. Also,

E[f1(vt, θ0,1)] = 0 under HS
A and so from Theorem 5.1 that J1,T = Op(1). Taken together

these two properties imply: T −1CT
p→ cS , and hence is consistent.

18 From the analysis in Section 5.1.3, it follows that νJ > 0 if the data are generated by a
sequence of processes which satisfies both HS

A,T and HO
A,T .

19 See Johnson and Kotz (1970) [Chapter 28] for a discussion of the properties of the non-
central χ2 distribution.
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q1 − p1 overidentifying restrictions for θ0,1 based on E[f1(vt, θ0,1)] = 0; the
second component is the set of q2 − p2 overidentifying restrictions for θ0,2 based
on E[f2(vt, θ0)] = 0 given θ0,1. Each component contributes to the degrees
of freedom of the test, but it is only the second which contributes to the non-
centrality parameter under HS

A,T . This structure is exploited in the construction
of CT because the statistic is effectively calculated by subtracting from JT the
part which is insensitive to the misspecification under HA,T .

Although the statistic has been motivated as a test of a subset of the popula-
tion moment condition, the null hypothesis, HS

0 , involves both E[f1(vt, θ0,1)] =
0 and E[f2(vt, θ0)] = 0. Therefore, the test is potentially sensitive to misspecifi-
cation of any part of the population moment condition. Therefore, the veracity
of the a priori information is crucially important in the interpretation of a sig-
nificant statistic.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model
In Section 5.1 it is shown that the use of the overidentifying restrictions test
leads to rejection of the model with equally weighted returns (EWR) but not
with value weighted returns (VWR). We now investigate the specification of the
model with VWR further using Eichenbaum, Hansen, and Singleton’s (1988)
statistic. It can be recalled that our estimation employs an instrument vector
which contains an intercept and lagged values of both consumption growth and
the asset return. It may be possible that the moment conditions associated with
either of the latter two variables are incompatible with the data but this was not
detected with the overidentifying restrictions for the types of reason described
above. This possibility leads us to consider two versions of Eichenbaum, Hansen,
and Singleton’s (1988) statistic. To introduce the associated null and alterna-
tive, we set z

′

1,t = (ct/ct−1, ct−1/ct−2) and z
′

2,t = (rt/pt−1, rt−1/pt−2). The first
version tests whether the moments associated with consumption growth are
compatible with the data and so the null and alternative are given by (5.19)–
(5.20) with

f1(vt, θ0) =

[

1
z2,t

]

ut(θ0)

f2(vt, θ0) = z1,tut(θ0)

The second version tests whether the moment conditions associated with the
asset return are compatible with data, that is HS

0 and HS
A in (5.19)-(5.20) with

f1(vt, θ0) =

[

1
z1,t

]

ut(θ0)

f2(vt, θ0) = z2,tut(θ0)

The results are given in Table 5.2. In each case the long run variance is estimated
using ŜSU and the statistics are based on the iterated estimator. Clearly, neither
test offers evidence against the specification in this case.
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Table 5.2

Eichenbaum, Hansen, and Singleton’s (1988) statistics for the
consumption based asset pricing model

Statistic d.f. z1 z2

J1,T 1 1.241 0.384
p − value 0.265 0.536

CT 2 0.503 1.363
p − value 0.778 0.506

Notes: zi denotes the choice of instrument in f2(vt, θ), J1,T denotes the overidentifying re-
strictions test in (5.21) CT denotes the overidentifying restrictions test in (5.22) d.f. denotes
degrees of freedom and p-value denotes the observed significance level.

5.2.1 Technical Details

I: Proof of Theorem 5.5:
Before we begin, it is useful to introduce the following partition of G(θ) =
E[∂f(vt, θ)/∂θ′] into four blocks conforming to the partitions of f(.) and θ,

G(θ) =

[

G1(θ)
G2(θ)

]

=

[

G1,1(θ) G1,2(θ)
G2,1(θ) G2,2(θ)

]

where Gi,j = E[∂fi(vt, θ)/∂θ
′

j ].
In view of conditions (iii) − (iv) of the the theorem, it suffices to consider

C̄T = T { gT (θ̂T )′S−1gT (θ̂T ) − g1,T (θ̃1,T )′S−1
1,1g1,T (θ̃1,T ) } (5.27)

Since the proof is quite long, it is useful to present an overview of the proof
strategy. There are three main steps.
Step 1: It is shown that

S−1/2T 1/2gT (θ̂T ) = A1S
−1/2T 1/2gT (θ0) + op(1) (5.28)

S
−1/2
1,1 T 1/2g1,T (θ̃1,T ) = A2S

−1/2T 1/2gT (θ0) + op(1) (5.29)

for certain matrices of constants A1 and A2, and hence that

C̄T = TgT (θ0)
′S−1/2[A

′

1A1 − A
′

2A2]S
−1/2gT (θ0) + op(1) (5.30)

Step 2: It is shown that A
′

1A1 − A
′

2A2 is idempotent with rank q2 − p2.
Step 3: Steps 1 and 2 can be combined with the Central Limit Theorem to
derive the stated result along similar lines to the proof of Theorem 5.1.

Since Step 3 is straightforward, we concentrate purely on Steps 1 and 2
below.
Proof of Step 1: The definition of A1 in (5.28) is straightforward because (3.36)
implies

S−1/2T 1/2gT (θ̂T ) = [Iq − P (θ0)]S
−1/2T 1/2gT (θ0) + op(1) (5.31)
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and so A1 = [Iq − P (θ0)]. The definition of A2 in (5.29) requires a little more

work. Since T 1/2g1,T (θ̃1,T ) is also an estimated sample moment – this time from
the estimation of θ0,1 based on E[f1(vt, θ0,1)] = 0 – we can appeal once again
to (3.36) and deduce that

S
−1/2
1,1 T 1/2g1,T (θ̃1,T ) = [Iq1

− P1(θ0,1)]S
−1/2
1,1 T 1/2g1,T (θ0,1) + op(1) (5.32)

where P1(θ0,1) = F1,1(θ0,1)[F1,1(θ0,1)
′

F1,1(θ0,1)]
−1F1,1(θ0,1)

′

and F1,1(θ0,1) =

S
−1/2
1,1 G1,1(θ0,1). Now, since

S
−1/2
1,1 T 1/2g1,T (θ0,1) = S

−1/2
1,1 [Iq1

: 0q1×q2
]S1/2S−1/2T 1/2gT (θ0) (5.33)

where 0q1×q2
is a (q1 × q2) null matrix, it follows that (5.32) can be rewritten as

S
−1/2
1,1 T 1/2g1,T (θ̃1,T ) = [Iq1

− P1(θ0,1)]ΞS−1/2T 1/2gT (θ0) + op(1) (5.34)

where Ξ = S
−1/2
1,1 [Iq1

: 0q1×q2
]S1/2. A comparison of (5.29) and (5.34) indicates

that A2 = [Iq1
− P1(θ0,1)]Ξ.

Proof of Step 2: First notice that A1 is idempotent and

A
′

2A2 = Ξ
′

[Iq1
− P1(θ0,1)]Ξ = B, say. (5.35)

So to complete this step of the proof, it is necessary to show that (i) A1 − B is
idempotent, and (ii) rank(A1 − B) = q2 − p2.

Consider (i) first. Using the idempotency of A1, it follows that

(A1 − B)(A1 − B) = A1 − BA1 − A1B + BB (5.36)

We now show that BA1 = A1B = BB = B, and so that the right hand side of
(5.36) reduces to A1 −B which is the desired result. First, notice that from the
definition of A1 we have that

BA1 = B[Iq − P (θ0)] = B − BP (θ0)

So BA1 = B if BP (θ0) = 0. This latter result is established by observing that,

BP (θ0) = BF (θ0)[F (θ0)
′F (θ0)]

−1F (θ0)
′

and

BF (θ0) = Ξ
′

[Iq1
− P1(θ0,1)]ΞF (θ0)

= Ξ
′

[Iq1
− P1(θ0,1)]F1,1(θ0,1)

= 0

A similar argument can be used for A1B = B, and so we now consider BB. By
definition, it follows that

BB = Ξ
′

[Iq1
− P1(θ0,1)]ΞΞ

′

[Iq1
− P1(θ0,1)]Ξ (5.37)
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Since Iq1
− P1(θ0,1) is idempotent, and

ΞΞ′ = S
−1/2
1,1 S1,1S

−1/2
1,1

′
= Iq1

, (5.38)

it follows from (5.37) that BB = B.
Now consider (ii). Since A1 − B is idempotent, it follows that rank(A1 −

B) = trace(A1 − B).20 Furthermore, it can be shown that trace(A1 − B) =
trace(A1) − trace(B).21 These two traces can be deduced as follows22:

trace(A1) = trace(Iq) − trace{P (θ0)}
= q − trace{F (θ0)

′F (θ0)[F (θ0)
′F (θ0)]

−1}
= q − trace(Ip) = q − p

and23

trace(B) = trace{Ξ[Iq1
− P1(θ0)]Ξ

′}
= trace{Ξ

′

Ξ[Iq1
− P1(θ0)]}

= trace[Iq1
− P1(θ0)] = q1 − p1

Taken together, these two results imply

rank(A1 − B) = trace(A1) − trace(B) = q − p − (q1 − p1) = q2 − p2

which completes Step 2 of the proof. The theorem then follows by combining
Steps 1 – 3 in the manner described above. ⋄

II: Derivation of Noncentrality Parameters for JT and CT

Equation (5.24) can be combined with (5.14) to show that

JT
d→ ‖[Iq − P (θ0)](nq + S−1/2µS)‖2 (5.39)

where once again nq denotes a random vector with a N(0, Iq) distribution.
Equation (5.39) implies

JT
d→ χ2

q−p(νJ) (5.40)

where νJ = µ
′

SS−1/2′
[Iq − P (θ0)]S

−1/2µS . Equation (5.24) can be combined
with (5.30) and Step 2 of the proof of Theorem 5.5 to show that

C̄T
d→ ‖[A1 − B](nq + S−1/2µS)‖2

20 See Dhrymes (1984) [Proposition 55, p.66].
21 See Dhrymes (1984) [Proposition 16, p.24].
22 The arguments below use the property that trace(D1D2) = trace(D2D1) for any con-

formable matrices D1, D2; see Dhrymes (1984) [Proposition 16, p.24].
23 For the third step, note that(5.38) implies Ξ

′

= Ξ−1.



5.3 Testing Hypotheses About the Parameter Vector 161

and hence that
CT

d→ χ2
q2−p2

(νS) (5.41)

where νS = µ
′

SS−1/2′
[A1 − B]S−1/2µS . At first glance, νJ and νS appear

different, but closer inspection reveals that they are identical. This follows
because: (i) A1 = [Iq − P (θ0)]; and (ii) equations (5.35) and (5.23) can be
combined to show that BS−1/2µS = 0. ⋄

5.3 Testing Hypotheses About the Parameter

Vector

There are many cases in which a particular economic theory implies a set of
restrictions on the parameter vector of the econometric model. This means it is
possible to assess the veracity of the theory by testing whether the restrictions
in question are satisfied by the data. This section describes various methods for
performing this type of inference.

The structure of this testing problem is different from those described in the
previous two sections. We now move into a world where the data are assumed
to be generated by a model from the set MA defined by24

MA =⇒ E[f(vt, θ0)] = 0 for some unique θ0 ∈ Θ

The question of interest is whether the data are generated by the subset of MA

which satisfy

MA,R =⇒ E[f(vt, θ0)] = 0 for some unique θ0 ∈ Θr = {θ : r(θ) = 0} (5.42)

where r(θ0) is a vector of nonlinear functions of θ0. Notice that by definition
Θr ⊂ Θ. Therefore, the issue is whether θ0 lies in Θr or its complement in Θ,
Θc

r. This type of problem is often refered to as a nested hypothesis test because
Θr can be “nested” in Θ in the sense that Θr is a subset of Θ.

The vector r(.) must satisfy certain conditions if the restrictions are to be
meaningful.

Assumption 5.3 Regularity Conditions for r(.)
Let r : ℜp → ℜs be a (s × 1) vector of real valued functions which satisfies:
(i) r(.) is a vector of continuous differentiable functions; (ii) rank{R(θ0)} = s
where R(θ) = ∂r(θ)/∂θ′.

This assumption ensures that r(θ0) form a coherent set of equations – that is,
given p − s elements of θ0, it is possible to solve uniquely for the remaining s
values using r(θ0) = 0.25 Notice that this property automatically excludes re-
dundant restrictions, and also that the rank condition necessarily implies s ≤ p.

24 Previously we used θ+ to characterize MA but we use θ0 here for consistency with the
specification of the hypotheses below.

25 These conditions derive from the Implicit Function Theorem; for example, see Apostol
(1974) [p.374].
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Newey and West (1987b) develop the theory for testing

HR
0 : r(θ0) = 0 versus HR

A : r(θ0) �= 0

based on GMM estimators. They propose three main statistics which can be
viewed as extensions to the GMM framework of the Wald, Lagrange Multiplier
(LM) and Likelihood Ratio (LR) tests from Maximum Likelihood theory.26 To
facilitate the presentation, it is useful to define unrestricted and restricted esti-
mators of θ0. The unrestricted estimator is just θ̂T defined earlier. The restricted
estimator is the value of θ which minimizes QT (θ) subject to r(θ) = 0; this is
denoted θ̃T . The asymptotic properties of the restricted estimator are derived
in the technical details sub-section at the end of this section. It is assumed that
both these minimizations use the weighting matrix Ŝ−1

T . We now introduce the
three statistics in turn.

The Wald test examines whether the unrestricted estimator, θ̂T , satisfies the
restrictions with due allowance for sampling error. The statistic is

WT = T r(θ̂T )′
[

R(θ̂T ) [GT (θ̂T )′Ŝ−1
T GT (θ̂T )]−1R(θ̂T )′

]−1

r(θ̂T ) (5.43)

The LM test examines whether the restricted estimator, θ̃T , satisfies the first
order conditions from the unrestricted estimation. This statistic is:

LMT = T gT (θ̃T )′Ŝ−1
T GT (θ̃T )[GT (θ̃T )′Ŝ−1

T GT (θ̃T )]−1GT (θ̃T )′Ŝ−1
T gT (θ̃T )

(5.44)
Finally, the D or LR-type test examines the impact on the GMM minimand of
the imposition of the restrictions. This statistic is

DT = T [QT (θ̃T ) − QT (θ̂T )] (5.45)

In the context of Maximum Likelihood theory, it is well known that these
three statistics are asymptotically equivalent under the null hypothesis. Newey
and West (1987b) [Theorem 2] show that this equivalence extends to the GMM
setting.

Theorem 5.6 Asymptotic Equivalence of WT , LMT and DT under HR
0

If (i) Assumptions 3.1–3.5, 3.7–3.13, and 5.3 hold; (ii) Ŝ−1
T

p→ S−1; then under
HR

0 : (a) WT = NT + op(1); (b) LMT = NT + op(1); (c) DT = NT + op(1);
where NT = n′

T V −1
n nT , nT = R(G′

0S
−1G0)

−1G′
0S

−1T 1/2gT (θ0), and Vn =

R(G
′

0S
−1G0)

−1R′.

The proof is relegated to the technical details sub-section. One immediate
consequence of Theorem 5.6 is that all three statistics share the limiting distri-
bution of NT under HR

0 . This distribution is easily deduced from the definition

of NT because under our conditions it follows that nT
d→ N( 0, Vn ). Therefore

we obtain the following distributional result.

26 It should be noted that there are a number of asymptotically equivalent versions of these
tests. Our presentation focuses exclusively on the versions proposed by Newey and West
(1987b). See Newey and McFadden (1994) [p.2222] for a discussion of the alternative versions.
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Theorem 5.7 The Limiting Distribution of WT , LMT and DT under
HR

0

If (i) Assumptions 3.1–3.5, 3.7–3.13, and 5.3 hold; (ii) Ŝ−1
T

p→ S−1; then under

HR
0 : WT

d→ χ2
s, LMT

d→ χ2
s and DT

d→ χ2
s as T → ∞.

There is one other consequence of Theorem 5.6 which should be noted. Using
similar arguments to Theorem 3.5, it is possible to show that nT is asymp-
totically independent of S−1/2T 1/2gT (θ̂T ) under the conditions of the theo-
rem. Since the large sample behaviour of WT , LMT and DT are governed
by nT , it follows that these three statistics are also asymptotically independent
of S−1/2T 1/2gT (θ̂T ). This, in turn, implies that WT , LMT and DT are asymp-
totically independent of the overidentifying restrictions test statistic, JT , under
the composite null hypothesis that E[f(vt, θ0)] = 0 and r(θ0) = 0.

Newey and West (1987b) show that the asymptotic equivalence of the statis-
tics extends to local alternatives characterized by

HR
A,T : r(θ0) = T−1/2µR

Furthermore, they show that the statistics converge to a χ2
s(δR) where

δR = µ′
R

[

R(θ0)(G
′
0S

−1G0)
−1 R(θ0)

′
]−1

µR > 0

So the statistics have power against the alternative for which they are designed.
In view of their equivalence, some other criteria must be used to choose between
the three. One such criterion is computational burden, although this is less of
a concern now than it once was. The D statistic is more burdensome because it
requires two estimations, whereas the Wald and LM only require one. Sometimes
the unrestricted estimation is easier and sometimes not – it all depends on
the model in question and the nature of r(.). However, the Wald test has
two disadvantages which should be mentioned. First, it is not invariant to
a reparameterization of the model or the restrictions. This means that it is
possible to rewrite the model and restrictions in a logically consistent way, but
end up with a different Wald statistic.27 Neither of the other two tests have this
problem.28 The second disadvantage is that the Wald statistic tends to be less
well approximated by the χ2

s distribution in finite samples than the other two
statistics; for example, see the simulation evidence reported in Gallant (1987).

At this stage, it is useful to bring into the light one assumption that has been
lurking in the shadows. Throughout the analysis in this section, it has been
assumed that Assumption 3.3 holds and so E[f(vt, θ0)] = 0. It is important to
realize that a violation of this assumption can also lead to a significant statistic.
In other words, HR

0 may be rejected because either Assumption 3.3 holds but
r(θ0) �= 0 – or it may be rejected because the model is misspecified. Hall and

27 For example, the restriction θ0,i = θ̄i can also be rewritten as θk
0,i = θ̄k

i for any finite
positive integer k. This sensitivity of the Wald statistic derives from the sensitivity of the
asymptotic standard errors to reparameterization; see Section 3.7.

28 Davidson and MacKinnon (1993) [p.467–9] provide a useful discussion of this issue and
some examples. Also see Critchley, Marriott, and Salmon (1996).
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Inoue (2003) provide a formal justification for this statement within the frame-
work of non-local misspecification employed in Chapter 4. Their results indicate
that Wald, LM and D tests do not converge to limiting χ2

s distributions in mis-
specified models even if the restrictions are satisfied. Furthermore, the limiting
behaviour of the three test statistics depends crucially on the covariance matrix
estimator employed. For example, Hall and Inoue (2003) show that WT , LMT

and DT diverge to infinity in the case where either a centred or uncentred HAC
estimator is used. These results emphasize the importance of using the model
specification tests, JT or CT , before undertaking inference about the parameters.

To conclude our discussion, it is useful to explore briefly a different per-
spective on HR

0 involving the identifying restrictions. It can be recalled from
Section 3.3 that the identifying restrictions can be interpreted as the restric-
tion that the projection of S−1/2E[f(vt, θ0)] onto the column space of F (θ0),
C[F (θ0)], is zero.29 We now show that the restrictions can be interpreted as
a statement about the structure of C[F (θ0)]. To do this, notice that if HR

0 is
true then the Implicit Function Theorem implies that the population moment
condition can be written as

E[f(vt, g(ψ0))] = 0 (5.46)

where ψ0 is a p − s vector which satisfies θ0 = g(ψ0). Now, if (5.46) is treated
as a basis for GMM estimation of ψ0 then the associated identifying restrictions
imply the projection of S−1/2E[f(vt, θ0)] onto the column space of F (ψ0) is zero
where F (ψ0) = S−1/2E[∂f(vt, g(ψ0))/∂ψ′]. However, since

F (ψ0) = F (θ0) { ∂g(ψ0)/∂ψ′ }

it follows that the column space of F (ψ0), C[F (ψ0)], is of dimension p − s and
C[F (ψ0)] ⊂ C[F (θ0)].

It is interesting to contrast this perspective on HR
0 with what we learned about

testingH0 : E[f(vt, θ0)] = 0 in the course of our earlier analysis of the overidentify-
ing restrictions test. The analyses in Sections 5.1.2 and 5.1.3 indicate that tests of
thevalidity of thepopulationmoment condition revolve around theoveridentifying
restrictions which, it can be recalled from Section 3.3, involve the orthogonal com-
plement of F (θ0). Therefore, the fundamental decomposition inherent in GMM
estimation reverberates into hypothesis testing based on the estimator: hypothe-
ses about the parameters are equivalent to hypotheses about the columnspace of
F (θ0), and hypotheses about the population moment condition are equivalent to
hypotheses about the orthogonal complement of F (θ0).

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model

It can be recalled from Section 5.1 that the overidentifying restrictions test is
significant when the asset is the index with equally weighted returns (EWR). We
interpret this rejection as being indicative of misspecification, and so, in view

29 Recall that in this chapter we focus exclusively on the two step or iterated estimator and
so S−1 must be substituted for W in the Section 3.3.
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of the remarks above, do not consider that version of the model here. Instead
we concentrate purely on the value weighted returns (VWR) case for which the
overidentifying restrictions test is insignificant.

Using L’Hopital’s rule it can be shown that limγ→0(c
γ − 1)/γ = ln(c).30

Therefore the restriction γ0 = 0 reduces CRRA utility function to the log utility
function. This restriction can be expressed in our general notation by putting
r(θ0) = γ0. If we define θ0 = [γ0, δ0]

′ then R(θ0) is given by

R(θ0) = [ 1, 0 ]

It is immediately apparent that this choice of r(.) satisfies the regularity condi-
tions in Assumption 5.3. The restricted estimation is performed using the pro-
cedure constr in the MATLAB version 6.0 Optimization Toolbox (Mathworks,
2000).

Table 5.3 contains the WT , LMT and DT statistics for the test of HR
0 : γ0 =

0. All three statistics are calculated using ŜT = ŜSU . From Theorem 5.7, all
three test statistics converge to a χ2

1 under this null. Notice that for this case

the Wald test has a very simple form. Since r(θ̂T ) = γ̂T and R(θ̂T ) = [1, 0]
(5.43) reduces to

WT = T
γ̂2

T

V̂11

where V̂11 is the 1 − 1 element of [GT (θ̂T )′Ŝ−1
T GT (θ̂T )]−1. In other words, the

Wald statistic is just the square of the “t–statistic” for γ0 = 0.
In this particular example, the choice between the three statistics is of no

consequence because they are identical to three decimal places. As can be seen,
we fail to reject HR

0 : γ0 = 0 at conventional levels of significance.

Table 5.3

Test statistics for HR
0 : γ0 = 0

Test Statistic p-value
WT 0.133 0.715

LMT 0.133 0.715
DT 0.133 0.715

Note: WT , LMT and DT are defined in (5.43)–(5.45).

5.3.1 GMM Estimation Subject to Nonlinear Restrictions

on θ0 and Other Technical Details

I. The Asymptotic Properties of the Restricted GMM Estimator
The restricted two step GMM estimator is defined by

θ̃T = argminθ∈Θr
QT (θ) (5.47)

where Θr = { θ s.t. θ ∈ Θ and r(θ) = 0 } and QT = gT (θ)′Ŝ−1
T gT (θ).

Throughout, it is assumed that θ0 satisfies the restrictions.

30 See Rudin (1976) [p.109].



166 Hypothesis Testing

Assumption 5.4 Restrictions on θ0

r(θ0) = 0.

The analysis is split into two parts: the consistency of θ̃T and the asymptotic
distribution of T 1/2(θ̃T − θ0). As in Chapter 3, the logical sequence is to begin
with consistency.

A comparison of (3.11) and (5.47) indicates that the only difference between
the restricted and unrestricted estimations stems from the set over which the
minimization is taken. It is therefore straightforward to modify the proof of
Theorem 3.1 to establish the following.

Lemma 5.2 Consistency of θ̃T

If Assumptions 3.1 – 3.4, 3.7 – 3.10, 5.3 and 5.4 hold then: θ̃T
p→ θ0

While the characterization in (5.47) can be used to establish consistency, it
does not lend itself to the derivation of the asymptotic distribution of T 1/2(θ̃T −
θ0). For this question, it is more fruitful to define θ̃T using Lagrange’s method for
constrained optimization. Accordingly, we introduce the Lagrangean function

LT (θ, ρ) = QT (θ) − 2r(θ)′ρ (5.48)

where 2ρ is the (s × 1) vector of Lagrange multipliers.31 Subject to certain
regularity conditions,32 θ̃T and the associated estimator of ρ, denoted ρ̃T , satisfy
the first order conditions, ∂L(θ̃T , ρ̃T )/∂θ = 0 and ∂L(θ̃T , ρ̃T )/∂ρ = 0. In this
case, these conditions yield

GT (θ̃T )′Ŝ−1
T gT (θ̃T ) − R(θ̃T )′ρ̃T = 0 (5.49)

− r(θ̃T ) = 0 (5.50)

To derive the asymptotic distribution of T 1/2(θ̃T − θ0), it is necessary to know
the probability limits of θ̃T and ρ̃T ; the former limit is provided by Lemma 5.2
above, and the latter is given in the following lemma.

Lemma 5.3 Probability Limit of ρ̃T

If Assumptions 3.1 – 3.5, 3.7 – 3.10, 3.12–3.13, 5.3 and 5.4 hold then: ρ̃T
p→ 0.

This result can be derived by considering the limiting behaviour of (5.49) as
T → ∞, however we leave the details to the reader.33

The asymptotic distribution of T 1/2(θ̃T − θ0) is deduced from (5.49)–(5.50).
However, before this can be done, each equation requires a certain amount
of manipulation, and so we start by considering each equation individually.
Equation (5.49) implies that

GT (θ̃T )′Ŝ−1
T T 1/2gT (θ̃T ) − R(θ̃T )′T 1/2ρ̃T = 0 (5.51)

31 The factor of 2 is introduced for ease of presentation below.
32 See Intrilligator (1971) [Chapter 3].
33 Or see Newey and McFadden (1994) [p.2218].
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Under our conditions, GT (θ̃T )
p→ G0, and if we assume ŜT

p→ S then (5.51) can
be rewritten as

G′
0S

−1T 1/2gT (θ̃T ) − R(θ0)
′T 1/2ρ̃T + op(1) = 0 (5.52)

The next step involves the use of the Mean Value Theorem to linearize T 1/2gT (θ̃T )
around T 1/2gT (θ0). Under our assumptions, this linearized version implies

T 1/2gT (θ̃T ) = T 1/2gT (θ0) + G0T
1/2(θ̃T − θ0) + op(1) (5.53)

Finally, if (5.53) is substituted into (5.52) then we obtain

G′
0S

−1T 1/2gT (θ0) + G′
0S

−1G0T
1/2(θ̃T − θ0) − R(θ0)

′T 1/2ρ̃T + op(1) = 0
(5.54)

Now consider (5.50). The Mean Value Theorem and Lemma 5.2 can be used to
deduce that

T 1/2r(θ̃T ) = T 1/2r(θ0) + R(θ0)T
1/2(θ̃T − θ0) + op(1) (5.55)

Using (5.55) and Assumption 5.4, it can be seen that (5.50) implies

R(θ0)T
1/2(θ̃T − θ0) + op(1) = 0 (5.56)

Taken together, equations (5.54) and (5.56) imply that T 1/2(θ̃T −θ0) satisfies
the following set of equations,

[

0
0

]

=

[

G′
0S

−1T 1/2gT (θ0)
0

]

+

[

G′
0S

−1G0 −R
′

0

−R0 0

] [

T 1/2(θ̃T − θ0)
T 1/2ρ̃T

]

+ op(1)(5.57)

where for brevity we set R0 = R(θ0). Using the formulae for the inversion of a
partitioned matrix,34 it can be shown that (5.57) implies

T 1/2(θ̃T − θ0) = − {VU − VUR′[RVUR′]−1RVU}G′
0S

−1T 1/2gT (θ0) + op(1)
(5.58)

where to simplify the formulae we have set VU = (G′
0S

−1G0)
−1 – this notation

reflects the fact this matrix is the variance of the asymptotic distribution for
the unrestricted estimator; see Theorem 3.2. Notice that (5.58) has essentially
the same structure as appeared at this stage in the analysis of the unrestricted
estimator in Section 3.4.2: a matrix of constants times the vector, T 1/2gT (θ0).
So once again, the limiting distribution is normal.

Lemma 5.4 Asymptotic distribution of T 1/2(θ̃T − θ0)

If (i) Assumptions 3.1–3.5, 3.7–3.13, 5.3 and 5.4 hold; (ii) ŜT
p→ S; then:

T 1/2(θ̃T − θ0)
d→ N( 0, VR ) where VR = VU − VUR′(RVUR′)−1RVU .

34 See Magnus and Neudecker (1991) [p.11].
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Notice that VU − VR is a positive semi-definite matrix and so the restricted
estimator is at least as efficient as the unrestricted estimator – in other words,
we are never worse off for imposing valid restrictions on the parameters, as
would be anticipated.

A comparison of Lemma 5.4 and Theorem 3.2 suggests the limiting dis-
tributions of the unrestricted and restricted estimator have much in common.
However, there is one key difference which needs to be brought into the light.
The matrix VR has rank p − s and so the normal distribution in Lemma 5.4 is
singular. Whereas, the limiting covariance matrix for the unrestricted estima-
tor is nonsingular. This difference reflects the nature of the estimators. In the
unrestricted estimation all the elements of θ̂T are “free”. In contrast, only p− s
elements of θ̃T are “free” because the remaining s elements are tied down by
the restrictions.

This analysis has concentrated on the estimator under HR
0 . In Section 5.3,

certain comments are made about the behaviour of the restricted estimator un-
der local alternatives HR

A,T . Newey and McFadden (1994) [p.2218–20] present a
more general version of our analysis under this more general class of processes.
Just as in Section 5.1.3, the only effective difference between HR

0 and HR
A,T

appears in the mean of the asymptotic distribution. Therefore, both Lemmas
5.2 and 5.3 continue to hold under local alternatives.

II. Proof of Theorem 5.6
Part (a): Under the assumptions listed in condition (i) of the theorem, it follows

that: R(θ̂T )
p→ R(θ0) and GT (θ̂T )

p→ G0. These two results combined with
condition (ii) of the theorem imply that

W̃T = T 1/2r(θ̂T )′V −1
n T 1/2r(θ̂T ) + op(1)

Therefore, the result will be established if we can show that T 1/2r(θ̂T ) = ±nT +
op(1). To this end, we use the Mean Value Theorem to deduce that

T 1/2r(θ̂T ) = T 1/2r(θ0) + R(θ̂T , θ0, λT )T 1/2(θ̂T − θ0) (5.59)

where R(θ̂T , θ0, λT ) is an (s × p) matrix whose ith row is the ith row of R(θ̄
(i)
T )

where θ̄
(i)
T = λT,iθ0 + (1 − λT,i)θ̂

(i)
T for some 0 ≤ λT,i ≤ 1, and λT is the (s × 1)

vector with ith element λT,i. Since θ̂T
p→ θ0, it follows that θ̄

(i)
T

p→ θ0 and so

R(θ̂T , θ0, λT )
p→ R(θ0). Using this result and r(θ0) = 0 in (5.59), it follows that

T 1/2r(θ̂T ) = R(θ0)T
1/2(θ̂T − θ0) + op(1) (5.60)

Equation (3.26) implies that

T 1/2(θ̂T − θ0) = −(G′
0S

−1G0)
−1G′

0S
−1T 1/2gT (θ0) + op(1) (5.61)

Finally, the substitution of (5.61) into (5.60) yields T 1/2r(θ̂T ) = −nT + op(1),
which completes the proof of (a).
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Part (b): Lemma 5.2 establishes that θ̃T
p→ θ0, and under the stated conditions

GT (θ̃T )
p→ G0. The second of these results can be combined with the consistency

of ŜT to deduce that LMT = ˜LMT + op(1) where

˜LMT = T 1/2gT (θ̃T )′S−1G0VUG
′

0S
−1T 1/2gT (θ̃T ) + op(1) (5.62)

where VU = (G′
0S

−1G0)
−1. So the desired result will be established if we can

show that ˜LMT = NT + op(1). To this end, we now consider the limiting

behaviour of G′
0S

−1T 1/2gT (θ̃T ). Using (5.53), it follows that

G′
0S

−1T 1/2gT (θ̃T ) = G′
0S

−1T 1/2gT (θ0) + G′
0S

−1G0T
1/2(θ̃T − θ0) + op(1)

(5.63)
Equation (5.58) provides an asymptotically equivalent expression for T 1/2(θ̃T −
θ0), and if this expression is subsitituted into (5.63) then we obtain

G′
0S

−1T 1/2gT (θ̃T ) = R′[RVUR′]−1RVUG′
0S

−1T 1/2gT (θ0) + op(1) (5.64)

If (5.64) is substituted into (5.63) then – with appropriate cancellations – we
obtain ˜LMT = NT + op(1).
Part (c): Once again, the proof rests in part on an application of the Mean

Value theorem to T 1/2gT (θ̃T ) but this time it is taken around T 1/2gT (θ̂T ) to
yield

T 1/2gT (θ̃T ) = T 1/2gT (θ̂T ) + GT (θ̃T , θ̂T , λT )T 1/2(θ̃T − θ̂T ) (5.65)

where GT (θ̃T , θ̂T , λT ) is the (q×p) matrix whose ith row is the ith row of GT (θ̄
(i)
T )

where (this time) θ̄
(i)
T = λT,iθ̃T + (1 − λT,i)θ̂T for some 0 ≤ λT,i ≤ 1 and λT is

the (q × 1) vector with ith element λT,i. Since both θ̂T and θ̃T are consistent, it

follows that θ̄
(i)
T must also converge in probability to θ0 for i = 1, 2, . . . q. This

property can then be combined with Assumptions 3.5, 3.12–3.13 to deduce that

GT (θ̃T , θ̂T , λT )
p→ G0 and so that (5.65) implies

T 1/2gT (θ̃T ) = T 1/2gT (θ̂T ) + G0T
1/2(θ̃T − θ̂T ) + op(1) (5.66)

If (5.66) is used to substitute for T 1/2gT (θ̃T ) in (5.45) then it emerges after a
little rearrangement that

DT = 2T 1/2(θ̃T − θ̂T )′G′
0Ŝ

−1
T T 1/2gT (θ̂T )

+T 1/2(θ̃T − θ̂T )′G
′

0Ŝ
−1
T G0T

1/2(θ̃T − θ̂T ) + op(1) (5.67)

Clearly to proceed further, we need an expression for T 1/2(θ̃T − θ̂T ). Since

T 1/2(θ̃T − θ̂T ) = T 1/2(θ̃T − θ0) − T 1/2(θ̂T − θ0)

it follows from (5.61) and (5.58) that

T 1/2(θ̃T − θ̂T ) = VUR′[RVUR′]−1RVUG
′

0S
−1T 1/2gT (θ0) + op(1) (5.68)
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We note parenthetically that under our conditions (5.68) implies that

T 1/2(θ̃T − θ̂T )
d→ N( 0, VUR′[RVUR′]−1RVU )

Using (5.68), we can now deduce the limiting behaviour of the terms on the
right hand side of (5.67) in turn. First consider

D1,T = 2T 1/2(θ̃T − θ̂T )′G′
0Ŝ

−1
T T 1/2gT (θ̂T )

The first order conditions for the unrestricted estimation, (3.12), imply that

GT (θ̂T )′Ŝ−1
T T 1/2gT (θ̂T ) = 0 (5.69)

Since GT (θ̂T )
p→ G0, it follows from (5.69) that G′

0Ŝ
−1
T T 1/2gT (θ̂T ) = op(1).

Furthermore, (5.68) implies T 1/2(θ̃T − θ̂T ) = Op(1). Therefore we can com-
bine combine these two order in probability statements to deduce D1,T =
Op(1)op(1) = op(1). Now consider the second term on the right hand side
of (5.67), namely

D2,T = T 1/2(θ̃T − θ̂T )′G
′

0Ŝ
−1
T G0T

1/2(θ̃T − θ̂T ) (5.70)

It follow from the consistency of ŜT and (5.68) that D2,T = NT + op(1). There-
fore DT = D1,T + D2,T = NT + op(1). ⋄

5.4 Testing Hypotheses About Structural

Stability

So far, it has been assumed that if Assumption 3.3 is violated then the value
of E[f(vt, θ0)] is the same for all t (albeit for a given T in the case of local
misspecification). This property is refered to as structural stability. However,
Assumption 3.3 is also violated if E[f(vt, θ0)] �= 0 for only part of the sample;
such behaviour is termed structural instability. This section reviews various
methods for testing structural stability based on GMM estimators.

The null hypothesis for structural stability tests is very simple: it states that
Assumption 3.3 holds throughout the sample. The alternative is more difficult,
however, because it must specify how the model changes. In the GMM litera-
ture, attention has focused almost exclusively on the case where the instability
involves a discrete change at a single point in the sample known as the “break
point”. So this scenario receives the most attention here. However, we briefly
discuss other forms of instability at the end of the section. To present the null
and alternative hypotheses, it is necessary to introduce the following notation.
Let π be a constant defined on (0, 1) and let πT denote the potential break
point at which some aspect of the model changes. For our purposes here, it is
convenient to divide the original sample into two sub-samples. Sub-sample 1
consists of the observations before the break point, namely T1 = {1, 2, . . . [πT ]},
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where [.] denotes the integer part, and sub-sample 2 consists of the observations
after the break point, T2 = {[πT ] + 1, . . . T}. This break point may be treated
as known or unknown in the construction of the tests. If it is known, then the
break point is specified a priori by the researcher and it is only desired to test for
instability at this point alone. For example, we investigate below whether the
change in operating procedures by the Federal Reserve in October 1979 caused
instability in Hansen and Singleton’s (1982) consumption based asset pricing
models. If the break point is unknown, then the null is the broader hypothesis
that there is no instability at any point in the sample. It is easily imagined that
tests for the two cases are closely related. We begin our discussion with the
simpler case in which the break point is known because this provides a more
convenient setting for introducing the null hypotheses and the test statistics.
We then consider the extension of these techniques to the unknown break point
case.

5.4.1 Known Break Point Case

As remarked above, the basic null hypothesis of structural stability is very
straightforward, namely

HSS
0 (π) : E[f(vt, θ0)] = 0 for all t ∈ T1&T2

However, rather than work directly with HSS
0 (π), it is useful to decompose this

hypothesis into statements about the stability of the identifying and overidenti-
fying restrictions. It can be recalled from Section 3.3 that these two sets of
restrictions play different roles in the estimation, and we have already seen in
this chapter that these roles are reflected in the types of inference question for
which each is used. The identifying restrictions are imposed in estimation, and
so underlie hypotheses about θ0. The overidentifying restrictions are ignored
in estimation, and so can form the basis for inference about the validity of
the model specification. It emerges below that similar connections arise in the
context of structural stability testing, and this leads to valuable model building
information. It is therefore useful to decompose HSS

0 (π) to reflect these two
possible sources of instability, and develop a test for each.

To introduce these component null hypotheses, it is necessary to allow for
the possibility that the data generation process for vt is different in T1 and
T2. Accordingly, let Ei[.] and V ari[.] denote the expectation and variance
operators relative to the data generation process for vt in Ti. Furthermore,
we define the following sub-sample analogs to P (θ), F (θ) and S: Pi(θ, π) =
Fi(θ, π)[Fi(θ, π)

′

Fi(θ, π)]−1Fi(θ, π)′, Fi(θ, π) = Si(θ, π)−1/2Ei[∂f(vt, θi)/∂θ′],

S1(θ1, π) = lim
T→∞

V ar1[[πT ]−1/2

[πT ]
∑

t=1

f(vt, θ1)]

S2(θ2, π) = lim
T→∞

V ar2[(T − [πT ])−1/2
T
∑

t=[πT ]+1

f(vt, θ2)]
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Since the identifying restrictions are imposed in estimation, there are always
parameter values which satisfy them in each of the two sub-samples. Therefore,
the identifying restrictions are said to be structurally stable if they are satisfied
by the same parameter value in each sub-sample. This null is formally stated
as

HI
0 (π) : P1(θ0, π) {S1(θ0, π)}−1/2E1[f(vt, θ0)] = 0, t ∈ T1

P2(θ0, π) {S2(θ0, π)}−1/2E2[f(vt, θ0)] = 0, t ∈ T2

In contrast, the overidentifying restrictions are ignored in estimation and so we
can examine their stability directly. The overidentifying restrictions are said to
be stable if they hold before and after the break point. This is formally stated
as

HO
0 (π) = HO1

0 (π) &HO2
0 (π)

where

HO1
0 (π) : [Iq − P1(θ1, π)] {S1(θ1, π)}−1/2E1[f(vt, θ1)] = 0, t ∈ T1

HO2
0 (π) : [Iq − P2(θ2, π)] {S2(θ2, π)}−1/2E2[f(vt, θ2)] = 0, t ∈ T2

Notice that HO1
0 (π) and HO2

0 (π) allow for the possibility that the overidentifying
restrictions are satisfied at different values in each sub-sample.

By the very nature of the decomposition, it is clear that any instability must
be reflected in a violation of at least one of the hypotheses HI

0 (π) and HO
0 (π).

Therefore it follows that

HSS
0 (π) = HI

0 (π) &HO
0 (π)

The value of this decomposition is that it allows the researcher to discriminate
between two scenarios of empirical interest. The first is one in which the insta-
bility is confined to the parameters alone; this case is consistent with a violation
of HI

0 (π) but the validity of HO
0 (π). The second scenario is one in which the

instability is not confined to the parameters alone but effects other aspects of
the model; this would imply a violation of HO

0 (π) and most likely HI
0 (π) as well.

We now describe test statistics for each component, and then present their
asymptotic properties. To this end, we introduce the following notation and an
additional assumption. Let the sample moment in each sub-sample be

g1,T (θ;π) = [πT ]−1

[πT ]
∑

t=1

f(vt, θ)

g2,T (θ;π) = (T − [πT ])−1
T
∑

t=[πT ]+1

f(vt, θ)

and Ŝ1,T (π), Ŝ2,T (π) be consistent estimators of S1(θ1, π), S2(θ2, π) respectively.
With these definitions, the sub-sample two step GMM estimators are

θ̂i,T (π) = argminθ∈Θ gi,T (θ;π)
′

Ŝi,T (π)−1gi,T (θ;π) (5.71)
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for i = 1, 2. We also need the sub-sample derivative matrices,

G1,T (θ;π) = [πT ]−1

[πT ]
∑

t=1

∂f(vt, θ)/∂θ′

G2,T (θ;π) = (T − [πT ])−1
T
∑

t=[πT ]+1

∂f(vt, θ)/∂θ′

The additional assumption governs the dependence – or, more appropriately,
the lack of it – between the two sub-samples. Throughout the discussion we
impose the following condition.

Assumption 5.5 Zero Covariance of Partial Sums
limT→∞ Cov[T 1/2g1,T (θ0;π), T 1/2g2,T (θ0; π)] = 0.

This assumption is not guaranteed under ergodicity but can be justified under
certain mixing conditions; see Andrews (1993).

From our earlier discussion, it can be recognized that HI
0 (π) is equivalent

to a null hypothesis of no parameter variation. Andrews and Fair (1988) derive
test statistics for the latter hypothesis and it is most convenient to follow their
approach here. Therefore, we introduce the augmented population moment
condition:

E[g(vt, φ0)] =

[

dt(π)f(vt, θ1)
(1 − dt(π))f(vt, θ2)

]

= 0 (5.72)

where dt(π) is a dummy variable which equals one when t ≤ πT and φ0 =
(θ

′

1, θ
′

2)
′

. Notice that this population moment condition is more general than
Assumption 3.3 because it allows for the possibility that E[f(vt, θ)] = 0 is
satisfied at different parameter values before and after the break point. However,
if φ0 satisfies the restrictions

[Ip,−Ip]φ0 = 0p (5.73)

then θ1 = θ2 and so the moment condition is satisfied at the same param-
eter value throughout the sample. This structure suggests a straightforward
method for testing HI

0 (π): estimate φ0 by GMM based on (5.72) and then use
the Wald, LM or LR-type statistic from the previous section to test the re-
strictions in (5.73). This approach requires calculation of the unrestricted and

restricted estimators of φ0 denoted by φ̂U,T and φ̂R,T respectively. The un-

restricted estimator is φ̂U,T = [θ̂1,T (π)
′

, θ̂2,T (π)
′

]
′

. The restricted estimator is

φ̂R,T = [θ̃T (π)
′

, θ̃T (π)
′

]
′

where

θ̃T (π) = argminθ∈Θ

2
∑

i=1

gi,T (θ; π)
′

Ŝi,T (π)−1gi,T (θ; π) (5.74)

However, Andrews (1993) shows that supπ∈(0,1)‖T 1/2(θ̂T − θ̃T )‖ = op(1) under

the null hypothesis, where θ̂T is the “full sample” GMM estimator defined in
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(3.11). As a consequence, the limiting distribution theory is unaffected by the
use of the full sample GMM estimator in place of the restricted estimator.
Since the full sample estimator has almost certainly been calculated prior to
the implementation of the structural stability tests, there is some convenience to
making this substitution. Therefore, Andrews proposes versions of the LM and
D tests that are based on the full sample estimator and we follow this practice in
our presentation as these versions have become common in practice. However,
we note in passing that this substitution may have a considerable impact on
the value of the statistic in practice; see Section 9.2 for further discussion in the
context of an empirical example.

The Wald statistic is given by

WT (π) = T
[

θ̂1,T (π) − θ̂2,T (π)
]′

V̂W (π)−1
[

θ̂1,T (π) − θ̂2,T (π)
]

(5.75)

where

V̂W (π) =
1

π
[G1,T (θ̂1,T (π);π)′Ŝ1,T (π)−1G1,T (θ̂1,T (π);π)]−1 +

1

1 − π
[G2,T (θ̂2,T (π);π)′Ŝ2,T (π)−1G2,T (θ̂2,T (π);π)]−1 (5.76)

and Ŝi,T (π) denotes a consistent estimator of Si(π) based on the unrestricted

estimator θ̂i,T (π). The LM statistic is given by

LMT (π) =
Tπ

(1 − π)
g1,T (θ̂T ;π)Ŝ−1

T GT (θ̂T )[GT (θ̂T )′Ŝ−1
T GT (θ̂T )]−1 ×

GT (θ̂T )′Ŝ−1
T g1,T (θ̂T ; π) (5.77)

The D statistic is given by,

DT (π) = T [J(θ̂T , θ̂T ; π) − J(θ̂1,T (π), θ̂2,T (π);π)] (5.78)

where

J(θ1, θ2, π) = π g1,T (θ1; π)′Ŝ1,T (π)−1g1,T (θ1;π) +

(1 − π) g2,T (θ2;π)′Ŝ2,T (π)−1g2,T (θ2;π) (5.79)

To test HO
0 (π), Hall and Sen (1999) propose the statistic

OT (π) = O1,T (π) + O2,T (π) (5.80)

where O1,T (π) and O2,T (π) are the overidentifying restrictions tests based on
the sub–samples T1 and T2 respectively, that is

O1,T (π) = [πT ]g1,T (θ̂1,T (π);π)′Ŝ1,T (π)−1g1,T (θ̂1,T (π);π) (5.81)

O2,T (π) = (T − [πT ])g2,T (θ̂2,T (π);π)′Ŝ2,T (π)−1g2,T (θ̂2,T (π);π) (5.82)

The following theorem gives the limiting distribution of these statistics. For
brevity, we state the result in terms of the Wald test but the same results apply
to either the LM or D statistics. For convenience, we also state the distributional
results under the composite null HSS

0 (π).
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Theorem 5.8 Limiting Distributions of WT (π) and OT (π) under HSS
0 (π)

If Assumptions 3.1–3.5, 3.8–3.13 and 5.5 hold then: (i) WT (π)
p→ χ2

p; (ii)

OT (π)
p→ χ2

2(q−p); (iii) WT (π) and OT (π) are asymptotically independent.

Part (i) is first presented in Andrews and Fair (1988)[Theorem 4], and its
proof has been anticipated in the derivation of the test statistic above. Parts
(ii)–(iii) are presented in Hall and Sen (1999)[Theorem 2.1]. There is a simple
intuition behind part (ii): Theorem 5.1 can be used to justify that O1T (π) and
O2,T (π) are individually χ2

q−p and then Assumption 5.5 implies their asymptotic
independence which gives the stated result. Part (iii) derives from Assumption
5.5 as well as the arguments which underlie Theorm 3.5.35

It can be recalled that the decomposition of HSS
0 (π) was motivated by the

potential to uncover useful information about the source of the instability. To
assess whether this potential is realized, we must explore the behaviour of the
test statistics under an alternative hypothesis which allows for instability. Hall
and Sen (1999) show that WT (π) has power against local alternatives to HI

0 (π),
denoted HI

A(π), but none against local alternatives to HO
0 (π), denoted HO

A (π).
Whereas, OT (π) has power against HO

A (π) but none against HI
A(π). Further-

more these two statistics are also asymptotically independent under the compos-
ite local alternative HI

A(π)&HO
A (π). These results suggest that the two statistics

can be combined to discriminate between local instability which is due solely to
parameter variation and local instability of a more general nature. Interestingly,
Hall and Sen (1999) show that this conclusion holds even if the wrong break
point is used in the calculation of the tests.36 However, the same conclusion
only holds for non-local alternatives if the correct break point is used. We return
to this issue when we describe the extension of these statistics to the unknown
break point case in the next sub-section.

At the conclusion of this sub-section, we illustrate the tests for the Hansen
and Singleton’s (1982) consumption based asset pricing model. However, before
that, we briefly describe two other statistics which could be used to test for
instability. These are the overidentifying restrictions test and the Predictive
test.

Since the overidentifying restrictions test is the standard diagnostic for model
specification, it is interesting to consider its properties against structural insta-
bility. Ghysels and Hall (1990a) show that JT is insensitive to HI

0 (π) and Sen
(1997) shows that it has power against HO

0 (π). The arguments behind each are
essentially the same as those used to establish that JT has power against HO

A

but none against HI
A in Section 5.1.3. Hall, Inoue, and Peixe (2003) consider

the limiting behaviour of JT in the presence of non-local misspecification due
to neglected structural instability. They provide conditions for the test to be
consistent but show that these are not guaranteed to hold in all circumstances.

35 It should be noted that Theorem 5.8 (i) only requires HI
0 (π) to hold, and part (ii)

only requires HO
0 (π) to hold – provided also that the other regularity conditions are suitably

modified; see Hall and Sen (1999).
36 In other words, the test is calculated with π = π∗, say, but the true break point is [π0T ].
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This is because while there may be no single value of θ that satisfies the pop-
ulation moment condition for every observation, there can be a value of θ that
sets the average of these population moment conditions to zero. While note-
worthy, such a scenario is likely to be the exception rather than the rule. So
for practical purposes, it is reasonable to conclude that the overidentifying re-
strictions test can detect neglected structural instability in many settings. In
spite of these properties, intuition suggests that WT (π) and OT (π) are likely to
be more powerful tests than JT against structural instability because they are
specifically designed for that alternative. Simulation evidence reported in Sen
(1997) supports this view.

Ghysels and Hall (1990c) proposed the Predictive test to discriminate be-
tween HSS

0 (π) and the alternative hypothesis

HPR
A (π) : E1[f(vt, θ0)] = 0, t ∈ T1 and E2[f(vt, θ0)] �= 0, t ∈ T2

The statistic is based on evaluating the sample moments from T2 at θ̂1,T (π).
Under HSS

0 (π), this estimated sample moment should converge in probablity to
zero. This approach leads to the Predictive test statistic

PRT (π) = Tg2,T (θ̂1,T (π);π)′ V̂ −1
PR g2,T (θ̂1,T (π);π)

where V̂PR is a covariance matrix defined in Ghysels and Hall (1990c). Ghysels
and Hall (1990c) show that this statistic converges to a χ2

q distribution under

HSS
0 (π).37 Ghysels, Guay, and Hall (1997) show that

HPR
A (π) = HI

A(π)&HO1
0 (π)&HO2

A (π)

In other words, the Predictive test has no power against violations of HO1
0 (π).

This feature renders the Predictive test less attractive than the combined use
of WT (π) – or LMT (π), DT (π) – and OT (π) described above and so we do not
pursue it further here.38

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model
Since our sample spans five decades there are many events which may have
caused structural instability in an asset pricing model. To illustrate the tests
described above, we pick one such event: the change in the operating procedures
of the Federal Reserve in October, 1979. During the 1960s and most of the 1970s,
the Federal Reserve used the federal funds rate as its primary operating target
for monetary policy.39 In October 1979, it was decided to change this practice to
one in which the level of non-borrowed reserves became the primary operating

37 Ghysels and Hall (1990a) propose a structural stability test based along a similar princi-
ple to the Eichenbaum, Hansen, and Singleton (1988) statistic in Section 5.2, but Ahn (1995)
shows this is asymptotically equivalent to the Predictive test – their finite sample properties
may be different, however.

38 Ghysels, Guay, and Hall (1997) also extend the Predictive test to the unknown break
point case.

39 The federal funds rate is the interest rate on funds loaned overnight between banks.
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target.40 It has been argued in the literature that this change in Fed policy may
have had sufficient impact on the financial environment to cause instability in
asset pricing models.41

The evidence from the overidentifying restrictions test suggests that this
model may be correctly specified for value weighted returns (VWR), but mis-
specified for equally weighted returns (EWR). Both conclusions leave scope for
the use of structural stability tests although for different reasons. It can be
recalled above that the overidentifying restrictions test has power against struc-
tural instability but is anticipated to be less powerful than tests specifically
designed for this alternative. So for VWR, the motivation is that the failure to
reject with the overidentifying restrictions test may simply reflect the low power
of the test against structural instability. Whereas for EWR, the motivation is
to assess whether the significance of the overidentifying restrictions test can be
attributed to structural instability. Table 5.4 reports the structural stability
test statistics associated with the October 1979 break point. For brevity, we

only report results based on W
(1)
T = (T−1

∑T
t=1 ztz

′

t)
−1 and ŜT = ŜSU given in

(3.40).

For VWR, the overidentifying restrictions based tests are all insignificant
at the 10% level. However, the evidence from the parameter variation tests is
mixed. The Wald and LM tests are insignificant but the D test is just signifi-
cant at the 10% level. Unfortunately, there is no obvious way to interpret this
discrepancy between the tests of parameter variation. Statistical theory tells us
only that WT (π), LMT (π) and DT (π) are asymptotically equivalent under the
null and local alternatives but this does not imply the tests need be numerically
identical in finite samples. However, one possible explanation is that the DT (π)
is calculated using the full sample GMM estimator as the “restricted estimator”.
While this substitution is asymptotically valid, it may inflate the value of the
statistic because it follows from (5.74) that J(θ̂T , θ̂T ;π) ≥ J(θ̃T , θ̃T ;π).42

For EWR, the evidence is more clear cut. All the parameter variation tests
are insignificant at the 10% level, but the overidentifying restrictions based tests
indicate instability. Both OT (π) and O2,T (π) are significant at the 10% level,
but O1,T (π) is insignificant. This pattern of results suggests the model spec-
ification is correct prior to 1979:9, but misspecified thereafter.43 Provided we
accept the general framework of the consumption based asset pricing model, the
most logical source of this misspecification is the representative agent’s utility
function. So with this proviso, the evidence is consistent with the following sce-
nario. The representative agent possesses a CRRA utility function for the period
1959:3–1979:9, but then the functional form of this utility function changes as

40 See Mishkin (1995) for a historical review of the Federal Reserve’s monetary policy.
41 See inter alia Ghysels and Hall (1990a).
42 See Section 9.2.
43 This conclusion appears at odds with the results reported in Hansen and Singleton (1984)

who report a significant overidentifying restrictions test for the model with EWR. However,
the overidentifying restrictions test based on the pre break sample is sensitive to the choice
of break point; see Section 5.4.2 for further details.
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a result of some event in 1979.10.44 However, there is one important caveat.
Although we have selected this break point for a reason, all these results may be
sensitive to the choice of break point and so it is important to conduct a more
thorough investigation before drawing any definitive conclusions about the im-
portance of this date. This is undertaken at the end of the next subsection.

Table 5.4
Structural stability tests associated with October 1979

Asset : VWR EWR

Test Statistic p-value Statistic p-value

WT (π) 2.640 0.267 1.810 0.405
LMT (π) 3.382 0.184 0.888 0.641
DT (π) 5.040 0.080 2.543 0.280
OT (π) 4.135 0.658 12.031 0.061
O1T (π) 1.535 0.674 4.288 0.232
O2T (π) 2.601 0.457 7.743 0.052

Note: WT (π), LMT (π) and DT (π) are defined in (5.75), (5.77) and (5.78), OT (π), O1T (π)
and O2T (π) are defined in (5.80), (5.81) and (5.82).

5.4.2 Unknown Break Point Case

If the break point is unknown, then it is desired to test whether there is evidence
of instability at any point in the sample. However, in practice, it is necessary
to limit attention to the null hypothesis:

HSS
0 (Π) = HSS

0 (π), for all π ∈ Π ⊂ (0, 1) (5.83)

On one hand, it is desirable for Π to be as wide as possible so that the null is as
broad as possible. On the other hand, it must not be so wide that asymptotic
theory is a poor approximation in the sub-samples. In applications to models
of economic time series, it has become customary to use Π = [0.15, 0.85]. As
in the fixed break point case, we decompose the null into components involving
the stability of the identifying and overidentifying restrictions, that is

HSS
0 (Π) = HI

0 (Π) & HO
0 (Π) (5.84)

where

HI
0 (Π) = HI

0 (π), for all π ∈ Π (5.85)

HO
0 (Π) = HO

0 (π), for all π ∈ Π (5.86)

44 See Sen and Hall (1999) for further discussion.
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We begin by describing statistics for testing HI
0 (Π). The construction is

a natural extension of the fixed break point methods. Now WT (π), say, is
calculated for each possible π to produce a sequence of statistics indexed by π,
and inference is based on some function of this sequence. This function is chosen
to maximize power against a local alternative in which a weighting distribution
is used to indicate the relative importance of departures from HI

0 (π) in different
directions at different break points. A general framework for the derivation of
these optimal tests is provided by Andrews and Ploberger (1994) in the context
of Maximum Likelihood estimators and this is extended to the GMM framework
by Sowell (1996). One drawback with this approach is that a different choice
of weighting distribution leads to a different optimal statistic; however, three
choices have received particular attention. To facilitate their presentation, we
define the following local alternative to HI

0 (π),

HI
A,T (π) : P1(θ0;π){S1(θ0, π)}−1/2E1,T [f(vt, θ0)] = T−1/2µI,1, t ∈ T1

P2(θ0;π){S2(θ0, π)}−1/2E2,T [f(vt, θ0)] = T−1/2µI,2, t ∈ T2

It is assumed that µI,1 = 0 and a weighting distribution is specified for (µI,2, π).45

The aforementioned three choices are as follows:
Choice 1:
If the conditional weighting distribution of µI,2 given π is of the form rL(π)U
where r is a scalar, L(π) is a particular matrix and U is the uniform distribution
on the unit sphere in ℜp then Andrews and Ploberger (1995) show that for r
sufficiently large the optimal statistic is

SupWT = sup
π∈Π

{ WT (π) }

Choices 2 and 3:
If the conditional weighting distribution of µI,2 given π as N(0, cΣπ), for some
constant c. Andrews and Ploberger (1994) and Sowell (1996) show that for a
particular choice of Σπ, the optimal statistic only depends on c and not Σπ.
So, for convenience, this choice is made and then attention has focused on two
values of c. If c = 0 then the optimal statistic takes the form

AvWT =

∫

Π

WT (π)dJ(π)

where J(π) defines the weighting distribution over π. If c = ∞ then the optimal
statistic takes the form

ExpWT = log

{∫

Π

exp[0.5WT (π)]dJ(π)

}

In principle, AvWT and ExpWT can be calculated with any choice of marginal
distribution for π. However, it has become customary to assume this distribution
is uniform over Π.

45 For these tests of parameter variation, the roles of µI,1, µI,2 can be interchanged.
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As they stand these statistics are not operational because we have treated π
as continuous, whereas in practice it is discrete. For a given sample size, the set
of possible break points are Tb = {i/T ; i = [πLT ], [πLT ] + 1, . . . , [πUT ]} where
πL and πU are respectively the lower and upper endpoints of the closed interval
Π. So in practice, inference is based on the discrete analogs to SupWT , AvWT

and ExpWT , that is

SupWT = sup
i∈Tb

{ WT (i/T ) } (5.87)

AvWT = d(πL, πU , T )−1

[πU T ]
∑

i=[πLT ]

WT (i/T ) (5.88)

ExpWT = log

⎧

⎨

⎩

d(πL, πU , T )−1

[πU T ]
∑

i=[πLT ]

exp[0.5WT (i/T )]

⎫

⎬

⎭

(5.89)

where the last two statistics are specialized to the case in which the weighting
distribution for π is uniform on Π, and d(πL, πU , T ) = [πUT ] − [πLT ] + 1.

Andrews (1993, 2003) and Andrews and Ploberger (1994) derive and tabulate
the limiting ditributions of SupWT , AvT and ExpWT under H0(Π). We delay a
discussion of the theoretical arguments to the end of this section. Critical points
for these distributions are reproduced here for Π = [.15, .85] in Table 5.5.46

These enable the researcher to ascertain whether the statistic is significant at
preascribed level. Hansen (1997) reports response surfaces which can be used
to calculate p-values for all three versions of these tests. As a reminder, all the
previous remarks equally apply to the corresponding functionals of LMT (π) or
DT (π).

46 Table 5.5 only contains parts of the tabulations reported by Andrews (1993) and Andrews
and Ploberger (1994). They report critical points for p = 1, 2, . . . 20 and other choices of Π.
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Table 5.5
Critical points for SupWT , AvWT and ExpWT

Statistic: SupWT

p 10% 5% 1%

1 7.12 8.68 12.16
2 10.00 11.72 15.56
3 12.28 14.13 18.07
4 14.34 16.36 20.47
5 16.30 18.32 22.66
6 18.11 20.24 24.74
7 19.87 22.06 26.72
8 21.55 23.82 28.55
9 23.20 25.54 30.42

10 24.80 27.13 32.31
11 26.38 28.81 33.96
12 27.90 30.43 35.67

Statistic: AvWT

p 10% 5% 1%

1 2.16 2.88 4.72
2 3.75 4.61 6.73
3 5.10 6.07 8.21
4 6.50 7.67 10.18
5 7.76 9.01 11.32
6 9.02 10.19 12.93
7 10.28 11.47 14.34
8 11.54 12.94 16.14
9 12.71 14.16 17.30

10 13.77 15.29 18.72
11 15.00 16.46 19.44
12 16.31 17.85 21.03

Statistic: ExpWT

p 10% 5% 1%

1 1.51 2.06 3.41
2 2.59 3.22 4.76
3 3.49 4.22 5.77
4 4.37 5.23 7.13
5 5.22 6.13 7.91
6 6.01 6.92 8.96
7 6.70 7.66 9.53
8 7.58 8.60 10.96
9 8.31 9.35 11.67

10 9.00 10.04 12.61
11 9.69 10.75 13.21
12 10.45 11.55 13.83

Source: Andrews (2003)[Table 1] and Andrews and Ploberger (1994) [Tables 1 and 2]. Copy-
right: The Econometric Society. Reproduced with permission.
Notes: the figures represent the critical points for the three tests at the 10%, 5% and 1%
significance level for Π = [0.15, 0.85].
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The same ideas can be used to construct tests of the null hypothesis that
HO

0 (π) holds for all π ∈ Π against the alternative that

HO
A,T (Π) = HO1

A,T (π) & HO2
A,T (π) for all π ∈ Π

where

HO1
A,T (π) : [Iq − P1(θ1, π)] {S1(θ1, π)}−1/2E1,T [f(vt, θ1)]

= T−1/2µO1, t ∈ T1

HO2
A,T (π) : [Iq − P2(θ2, π)] {S2(θ2, π)}−1/2E2,T [f(vt, θ2)]

= T−1/2µO2, t ∈ T2

Hall and Sen (1999) propose using the following statistics:

SupOT = sup
i∈Tb

{ OT (i/T ) } (5.90)

AvOT = d(πL, πU , T )−1

[πU T ]
∑

i=[πLT ]

OT (i/T ) (5.91)

ExpOT = log

⎧

⎨

⎩

d(πL, πU , T )−1

[πU T ]
∑

i=[πLT ]

exp[0.5OT (i/T )]

⎫

⎬

⎭

(5.92)

However, although the functionals are the same it has proved impossible to
date to deduce any optimality properties for the resulting tests along the lines
described above.47 Hall and Sen (1999) derive and tabulate the limiting dis-
tributions of these three statistics under HO

0 (Π). Once again, we postpone a
discussion of the derivation until the end of this sub-section. Critical points for
these distributions are reproduced here in Table 5.6. Sen and Hall (1999) report
response surfaces which can be used to calculate p-values for all three versions
of these tests.

47 It is possible to derive optimal tests against the more restrictive alternatives
HO1

0 (π)&HO2
A,T (π) for all π ∈ Π or HO1

A,T (π)&HO2
0 (π) for all π ∈ Π but the statistics are

different in each case; see the discussion in Hall and Sen (1999). However, notice that both
these alternatives restrict the violation of the population moment condition to occur either
after or before the break point. Whereas, in practice, a researcher typically lacks that kind of
a priori information, and so we do not pursue those tests here.
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Table 5.6
Critical points for SupOT , AvOT and ExpOT

Statistic: SupOT

q − p 10% 5% 1%

1 8.70 10.39 14.13
2 12.78 14.75 18.53
3 16.33 18.53 23.19
4 19.65 21.99 26.99
5 22.81 25.31 30.55
6 25.70 28.32 33.90
7 28.76 31.45 37.03
8 31.61 34.53 40.09

Statistic: AvOT

q − p 10% 5% 1%

1 4.17 5.37 8.11
2 7.21 8.60 11.96
3 9.91 11.54 15.40
4 12.51 14.32 18.28
5 15.01 17.01 21.39
6 17.52 19.68 24.02
7 19.91 22.24 27.00
8 22.44 24.78 29.52

Statistic: ExpOT

q − p 10% 5% 1%

1 2.45 3.13 4.69
2 4.17 4.99 6.87
3 5.73 6.69 8.81
4 7.20 8.26 10.43
5 8.64 9.77 12.20
6 10.02 11.21 13.85
7 11.41 12.69 15.33
8 12.79 14.12 16.80

Source: Hall and Sen (1999)[Table 1]. Copyright 1999 by the American Statistical Association.
Reprinted with permission from the Journal of Business and Economic Statistics.
Notes: the figures represent the critical points for the three tests at the 10%, 5% and 1%
significance level for Π = [0.15, 0.85].

Which functional should be used? Simulation evidence suggests that no one
test dominates the others.48 So, unless your priors happen to correspond to one
of the weighting distributions underlying the statistics, it is probably best to
calculate all three, and this seems to have become the most common practice.
However, the Sup test does have one attractive feature not shared by the other
two. If SupWT , say, occurs at t = tB then π̂W = tB/T provides an estimate

48 See Hall and Sen (1999).
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of the break point fraction. To date, it is unknown whether this estimate is
consistent for π under the alternative but there are grounds for conjecturing
that this property holds in just-identified models at least.49 This remains an
interesting avenue for future research.

It can be recalled that the decomposition of the null hypothesis has been
motivated by its potential to provide useful model building information. In the
previous sub-section, it is argued that this potential is realized for local instabil-
ity regardless of the true break point but is only realized for non-local instability
if correct break point has been identified. The latter property is underscored
by simulation evidence in Hall and Sen (1999) which shows that SupOT , AvOT

and ExpOT have power against non-local parameter variation. These properties
prompted Hall and Sen (1999) to propose the following strategy.

Hall and Sen’s (1999) strategy for diagnosing the source of the instability.

Case 1: If all the unknown break point tests fail to reject then this is evidence that
all aspects of the model are stable.

Case 2: If the parameter variation tests are significant and either the unknown
break point overidentifying restriction based tests are insignificant or
OT (π̂W ) is insignificant, then this is evidence of parameter variation.

Case 3: In all other situations, the tests indicate that there is instability that in-
volves more than just the parameters.

Two comments are in order. First, note that the method is premised on
the assumption that π̂W is consistent for π if the instability is confined to the
parameters alone. Secondly, Hall and Sen (1999) propose evaluating the sig-
nificance of OT (π̂W ) using the appropriate critical point of the χ2

2(q−p) dis-
tribution, and this ignores a sampling error associated with the estimation
of the break point. However, they report simulation evidence which suggests
this distributional approximation is reasonably accurate. Their simulation ev-
idence as a whole suggests that the strategy provides a feasible method for
discriminating between parameter variation alone and more general forms of
instability.

One final point should be noted. Although, all these tests are designed
against an alternative in which there is instability at a single point in the sam-
ple. All the tests have non-trivial power against other forms of instability. We
do not reproduce the argument here but instead refer the reader to the papers
already cited above.50

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model51

49 For example, Nunes, Kuan, and Newbold (1995) prove its consistency in linear regression
models estimated by quasi maximum likelihood.

50 Also see Section 5.4.3.
51 See Section 9.2 for another empirical example of these tests.
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Table 5.7 reports the structural stability tests when the break point is treated
as unknown. Following accepted practice, we set Π = [0.15, 0.85] which means
the potential break point is assumed to lie between 1965:1 and 1992:2. For

brevity, we only report results based on using W
(1)
T = (T−1

∑T
t=1 ztz

′

t)
−1 and

the covariance matrix estimator ŜT = ŜSU . Parenthetically, we note that if

W
(1)
T = 105I5 is used then the sub-sample estimates diverge in a few cases.
For VWR, all the statistics are insignificant at the 10% level, and so these

tests provide no evidence of misspecification in this case. For EWR, all the
parameter variation statistics are insignificant at the 10% level, and all the
overidentifying restrictions based tests are significant at the 5% level. This ev-
idence clearly indicates misspecifcation, and so is consistent with our earlier
findings based on the overidentifying restrictions test. However, the application
of the structural stability tests provides further information about the nature
of the misspecification. Using Hall and Sen’s (1999) diagnostic strategy de-
scribed above, the pattern of results suggests that the misspecification cannnot
be attributed to parameter variation alone.

Table 5.7 also reports the dates associated with the supremum of each test.
Two features of these results stand out. First, the supremum for the parameter
variation tests occurs at virtually the same point for a given choice of asset – in
spite of the insignificance of the tests concerned. Secondly, the supremum for
the overidentifying restrictions test occurs at the second possible breakpoint,
that is 1965:2, for each choice of asset. This could reflect instability, but there
is another explanation which needs to be noted. It can be recalled that the
statistical theory behind the tests relies on the applicability of asymptotic theory
in each of the sub–samples. At either end of Π, one of the sub–samples consists
of only seventy observations, and it may be that this is not sufficiently large for
asymptotic theory to provide a good approximation. In that case, the supremum
may occur close to π = 0.15 or π = 0.85 simply because the sequence of test
statistics has not converged in distribution over the entire interval Π. Figures
5.1–5.2 plot the individual test statistics for WT (π) and OT (π) against π for
each choice of asset. The plots for DT (π) and LMT (π) are qualitatively similar
to those for WT (π) and so are omitted for brevity. ⋄
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Table 5.7
Structural stability tests with unknown break point

VWR:

Test Sup− Date Av− Exp−

W 4.899 1982:7 1.468 0.899
LM 5.603 1982:9 2.095 1.194
D 5.852 1982:7 2.239 1.427
O 12.759 1965:2 5.751 3.704

EWR:

Test Sup− Date Av− Exp−

W 4.893 1975:1 1.035 0.623
LM 5.262 1975:1 0.896 0.571
D 6.909 1975:2 1.642 1.123
O 22.580 1965:2 13.712 8.093

Note: W , LM , D and O denote the tests based on WT (π), LMT (π), DT (π) and OT (π) defined
in (5.75), (5.77), (5.78) and (5.80). Date denotes the date associated with the Supremum
statistic.
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Figure 5.1: Wald and overidentifying restrictions tests for structural instability
for the consumption based asset pricing model with value weighted returns
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Figure 5.2: Wald and overidentifying restrictions tests for structural instability
for the consumption based asset pricing model with equally weighted returns

5.4.2.1 Technical Details

There are two main steps to the analysis of structural stability tests derived
above for the unknown break point case. First, it is necessary to character-
ize the limiting behaviour of individual members of the sequence of statistics
{WT (π);π ∈ Π} and {OT (π);π ∈ Π}. Secondly, these characterizations are
used to deduce the limiting behaviour of the various functions of the sequences
in which we are interested. The first part is closely related to our earlier analysis
of the statistics for the fixed break point case. However, this time, the results
must apply for all π ∈ Π, and this requires different techniques and assump-
tions. Below it is shown that the limiting distributions of the test statistics
revolve around two continuous time processes known as a Brownian Motion and
a Brownian Bridge. Therefore, we begin with definitions of these processes.

Definition 5.1 Brownian Motion
A n dimensional Brownian Motion Bn(.) is a continuous time process associ-
ating each date r ∈ [0, 1] with the (n × 1) vector Bn(r) satisfying the following
properties:

(i) B(0) = 0n where 0n is a (n × 1) vector of zeros.

(ii) For any dates 0 ≤ r1 ≤ r2 ≤ . . . ≤ rk ≤ 1 the changes {Bn(ri) −
Bn(ri−1), i = 2, 3 . . . k} are a set of mutually independent random vec-
tors with Bn(ri) − Bn(ri−1) ∼ N(0n, (ri − ri−1)In).

(iii) For any given realization, Bn(r) is continuous in r with probability one.
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A Brownian motion is the continuous time analog to a random walk, and is
widely used in analyses of diffusion processes.52

Definition 5.2 Brownian Bridge
A n dimensional Brownian Bridge BBn(.) is a continuous time process asso-
ciating each date r ∈ [0, 1] with the (n × 1) vector BBn(r) = Bn(r) − rBn(1)
where Bn(.) is a Brownian motion.

Notice that a Brownian bridge both begins and ends at zero.
Below we establish that certain statistics converge in distribution to the

distributions possessed by particular functions of Brownian Motions or Bridges.
Such statements require an additional notation. Accordingly, we use aT ⇒ b to
denote the statement aT converges in distribution to the distribution possessed
by the random variable b. More succinctly, aT is said to weakly converge to b.

From (5.75) and (5.80), it is clear that the analysis of WT (π) and OT (π)

is going to require assumptions about the partial sum, T−1
∑[πT ]

t=1 f(vt, θ0), its
long run variance and the associated derivative matrix. To this end, we assume
the data generation process satisfies the following assumptions.53

Assumption 5.6 Uniform Convergence of the Variance of the Partial
Sums
supπ∈Π ‖V ar[T−1/2

∑[πT ]
t=1 f(vt, θ0)] − πS‖ p→ 0.

Assumption 5.7 Uniform Convergence of the Partial Derivative Ma-
trix
supπ∈Π ‖[T−1

∑[πT ]
t=1 ∂f(vt, θ0)]/∂θ′ − πG0‖ p→ 0.

Assumption 5.8 Functional Central Limit Theorem

S−1/2T−1/2
∑[πT ]

t=1 f(vt, θ0) ⇒ Bq(π).

Notice that Assumptions 5.6 implies both that S1(π) = S2(π) = S, and also,
together with Assumption 5.7, that F1(θ0) = F2(θ0) = F (θ0). The form of the
distribution in Assumption 5.8 can be motivated from

T−1/2

[πT ]
∑

t=1

f(vt, θ0) =

[

[πT ]

T

]1/2

[πT ]−1/2

[πT ]
∑

t=1

f(vt, θ0)

by noting that ([πT ]/T )1/2 ≈ π1/2, and that the CLT implies [πT ]−1/2

∑[πT ]
t=1 f(vt, θ0)

d→ N(0, S). There is one consequence of Assumption 5.8 which
is worth highlighting. Since,

T−1/2
T
∑

t=1

f(vt, θ0) = T−1/2

[πT ]
∑

t=1

f(vt, θ0) + T−1/2
T
∑

t=[πT ]+1

f(vt, θ0)

52 The name derives from the name of the first person to have recorded this type of unin-
terupted irregular motion in a natural phenomenon. R. Brown was a botanist and he observed
the phenomenon when pollen dispersed on water. His results were published in 1828; see
Brown (1828).

53 Recall that for any matrix A, ‖A‖ = [tr(A′A)]1/2.
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and Assumption 5.8 implies

S−1/2T−1/2
T
∑

t=1

f(vt, θ0) ⇒ Bq(1)

S−1/2T−1/2

[πT ]
∑

t=1

f(vt, θ0) ⇒ Bq(π)

then it must follow that

S−1/2T−1/2
T
∑

t=[πT ]+1

f(vt, θ0) ⇒ Bq(1) − Bq(π) (5.93)

Hamilton (1994)[Sections 17.1–17.3, 18.1] provides a very good introduction to
Brownian Motions and the conditions behind Assumptions 5.6–5.8. Davidson
(1994)[Part IV] provides a more comprehensive treatment.

With these assumptions in place, we now proceed to characterize the limiting
behaviour of WT (π) and OT (π) in terms of Brownian Motions and Brownian
Bridges. Consider first WT (π). The end result was first derived by Andrews
(1993), but we follow the approach taken by Sowell (1996) which exploits the
projection matrix structure inherent in the identifying restrictions.

Since WT (π) depends on T 1/2[θ̂1,T (π) − θ̂2,T (π)] and

T 1/2[θ̂1,T (π) − θ̂2,T (π)] = T 1/2[θ̂1,T (π) − θ0] − T 1/2[θ̂2,T (π) − θ0] (5.94)

we begin by deriving expressions for T 1/2[θ̂i,T (π)−θ0]. To facilitate the analysis,
we assume that the GMM estimators based on Ti are consistent for all π.

Assumption 5.9 Consistency of Sub-Sample Estimators

supπ∈Π‖θ̂i,T (π) − θ0‖ p→ 0.

We can now repeat exactly the same sequence of arguments as in Section
3.4.2 to obtain the following analogs to (3.26)

T 1/2[θ̂i,T (π) − θ0] = −M̄i,T (π)T 1/2gi,T (θ0; π) (5.95)

where

M̄i,T (π) = [Gi,T (θ̂i,T (π);π)′Ŝi,T (π)−1Gi,T (θ̂i,T (π), θ0, λT ;π)]−1

×Gi,T (θ̂i,T (π);π)′Ŝi,T (π)−1

and Gi,T (θ̂i,T (π), θ0, λT ;π) is defined in an analogous fashion to GT (θ̂T , θ0, λT ).
To proceed we adopt the following high level assumption.54

54 Andrews (1993) or Ghysels, Guay, and Hall (1997) for more primitive conditions under
which Assumption 5.10 holds.
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Assumption 5.10 Uniform Convergence of M̄i,T (π)

supπ∈Π‖M̄i,T (π) − M0‖ p→ 0 where M0 = (G
′

0S
−1G0)

−1G
′

0S
−1.

It then follows from (5.95), Assumptions 5.6–5.10 and (5.93) that

T 1/2(θ̂1,T (π) − θ0) ⇒ − 1

π
[F (θ0)

′F (θ0)]
−1F (θ0)

′

Bq(π) (5.96)

T 1/2(θ̂2,T (π) − θ0) ⇒ − 1

1 − π
[F (θ0)

′F (θ0)]
−1F (θ0)

′

× (Bq(1) − Bq(π)) (5.97)

where once again we have set F (θ0) = S−1/2G0. The combination of (5.94) and
(5.96)–(5.97) yields

T 1/2[θ̂1,T (π) − θ̂2,T (π)] ⇒ − 1

π(1 − π)
[F (θ0)

′F (θ0)]
−1F (θ0)

′

BBq(π) (5.98)

Now consider V̂W (π). By similar arguments to above, it can be shown that

V̂W (π)
p→ 1

π
[F (θ0)

′F (θ0)]
−1 +

1

1 − π
[F (θ0)

′F (θ0)]
−1

=
1

π(1 − π)
[F (θ0)

′F (θ0)]
−1 (5.99)

The combination of (5.98)–(5.99) implies

WT (π) ⇒ 1

π(1 − π)
BBq(π)′P (θ0)BBq(π) (5.100)

where once again P (θ0) = F (θ0)[F (θ0)
′F (θ0)]

−1F (θ0)
′. Now P (θ0) is a projec-

tion matrix with rank equal to p by Assumption 3.6. Therefore P (θ0) has p
eigenvalues equal to one, q − p eigenvalues equal to zero, and there exists an
orthogonal matrix H such that55

P (θ0) = H
′

ΛH (5.101)

where Λ = diag(1p, 0q−p) and 1p is a (p × 1) vector of ones. If we partition H
into [H1, H2], where H1 is q × p then (5.101) implies that

P (θ0) =

[

H
′

1H1 0
0 0

]

(5.102)

If (5.102) is substituted into (5.100) then it follows that

WT (π)
d→ 1

π(1 − π)
BBp(π)′H

′

1H1BBp(π) (5.103)

where BBp(π) denotes the first p elements of BBq(π). Now by definition, Hi

are orthogonal matrices and so H1H
′

1 = Ip. Therefore, H1Bp(π) ∼ N(0p, πIp)
and so it follows that H1Bp(π) ⇒ Bp(π) and hence that H1BBp(π) ⇒ BBp(π).
This gives us the following result.

55 See Dhrymes (1984) [Propositions 52 and 55, pp.61 and 65].
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Theorem 5.9 Limiting Distribution of WT (π)
If Assumptions 3.1–3.5, 3.8–3.9, 5.6–5.10 hold then: WT (.) ⇒ W (.) where
W (.) is a continuous time process associating each date π ∈ Π with the scalar
W (π) = 1

π(1−π)
BBp(π)′BBp(π).

Now consider OT (π). By definition, we have

O1,T = ‖Ŝ1,T (π)−1/2[πT ]1/2g1,T (θ̂1,T (π);π)‖2 (5.104)

O2,T = ‖Ŝ2,T (π)−1/2(T − [πT ])1/2g2,T (θ̂2,T (π);π)‖2 (5.105)

and we can repeat the same sequence of arguments as in Section 3.4.3 to deduce
the following sub-sample analogs to (3.35),

Ŝ1,T (π)−1/2[πT ]1/2g1,T (θ̂1,T (π);π) = N1,T (π)Ŝ1,T (π)−1/2

×[πT ]1/2g1,T (θ0;π) (5.106)

Ŝ2,T (π)−1/2(T − [πT ])1/2g2,T (θ̂2,T (π);π) = N2,T (π)Ŝ2,T (π)−1/2(T − [πT ])1/2

×g2,T (θ0;π) (5.107)

where

Ni,T (π) = Iq − Ŝ
−1/2
i,T Gi,T (θ̂i,T (π), θ0, λT ; π)[Gi,T (θ̂i,T (π);π)′Ŝi,T (π)−1

×Gi,T (θ̂i,T (π), θ0, λT ; π)]−1Gi,T (θ̂i,T (π);π)′Ŝi,T (π)−1/2′

for i = 1, 2. As with M̄i,T , we must assume this matrix converges uniformly in
π.

Assumption 5.11 Uniform Convergence of Ni,T (π)

supπ∈Π‖Ni,T (π)Ŝi,T (π)−1/2 − N0S
−1/2‖ p→ 0 where N0 = [Iq − P (θ0)].

To illustrate the argument from here on, it is most convenient to focus on only
O1,T (π), and then to state the corresponding result for O2,T (π) afterwards.
Assumptions 5.8 and 5.11 together with (5.106) imply that

O1,T (π) ⇒ ‖ 1

π1/2
[Iq − P (θ0)]Bq(π)‖2 (5.108)

=
1

π
Bq(π)′[Iq − P (θ0)]Bq(π) (5.109)

Now, using (5.101)and H ′H = Iq, we have

Iq − P (θ0) = H ′H − H ′ΛH = H ′[Iq − Λ]H

=

[

0 0

0 H
′

2H2

]

This result can be combined with (5.108)–(5.109) to deduce that

O1,T (π) ⇒ 1

π
Bq−p(π)′H

′

2H2Bq−p(π)
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where Bq−p(π) is the vector consisting of the last q−p elements of Bq(π). Since
H2 is an orthogonal matrix, we can use the same reasoning as above to deduce
that H2Bq−p(π) ⇒ Bq−p(π) and hence that

O1,T (π) ⇒ 1

π
Bq−p(π)′Bq−p(π)

Similar reasoning yields

O2,T (π) ⇒ 1

1 − π
[Bq−p(1) − Bq−p(π)]′[Bq−p(1) − Bq−p(π)]

So finally we obtain the following result for OT (π).

Theorem 5.10 Limiting Distribution of OT (π)
If Assumptions 3.1–3.5, 3.8–3.9, 5.6–5.9, 5.11 hold then: OT (.) ⇒ O(.) where
O(.) is a continuous time process associating each date π ∈ [0, 1] with the scalar
O(π) = 1

π Bq−p(π)′Bq−p(π) + 1
1−π [Bq−p(1) − Bq−p(π)]′[Bq−p(1) − Bq−p(π)].

Theorems 5.9 and 5.10 give the limiting behaviour of WT (π) and OT (π)
for π ∈ Π. The limiting distribution of the test statistics then follows directly
from the Continuous Mapping Theorem. This theorem states that if ZT (.) ⇒
Z(.) and h(.) is a continuous functional, then h(ZT (.)) ⇒ h(Z(.)).56 Since
Sup−, Av− and Exp− versions of the statistics involve continuous functionals
of {WT (π)} or {OT (π)}, we can use the Continuous Mapping theorem to deduce
the following corollary to Theorems 5.9 and 5.10.

Corollary 5.1 Limiting Distributions of Structural Stability Tests for
the Unknown Break Point Case
If Assumptions 3.1–3.5, 3.8–3.9, 5.6–5.11 hold then: (i) SupWT ⇒ Supπ∈ΠW (π);
(ii) AvWT ⇒

∫

Π
W (π)dJ(π); (iii) ExpWT ⇒ log{

∫

Π
exp[0.5W (π)]dJ(π); (iv)

SupOT ⇒ Supπ∈ΠO(π); (v) AvOT ⇒
∫

Π
O(π)dJ(π);

(vi), ExpOT ⇒ log{
∫

Π
exp[0.5O(π)]dJ(π).

These results are presented in the following places: (i) Andrews (1993) [Theo-
rem 3]; (ii)–(iii) Sowell (1996) [Theorem 3];57 (iv)–(vi) Hall and Sen (1999) [The-
orem 3.1]. It is the critical points from these distributions with J(π) equal to
the uniform distribution on Π which are reproduced in Tables 5.5 and 5.6.

One final comment is in order. It can be recalled from Theorem 3.5 that
the parameter estimator (identifying restrictions) and the estimated sample mo-
ment (overidentifying restrictions) are asymptotically independent if the model
is correctly specified. This independence has already manifested itself in various
other inference procedures discussed earlier in this chapter, and it is also present
here. The sequence of statistics {WT (π)} are functions of the first p elements
of Bq(.), and the {OT (π)} are functions of the last q − p elements. Since, by
definition, the elements of a Brownian motion are mutually independent, it fol-
lows that the tests of parameter variation are asymptotically independent of the
tests based on the overidentifying restrictions under HSS

0 (Π).

56 For example, see Hamilton (1994) [p.482] and the discussion therein.
57 Also see Andrews and Ploberger (1994).
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5.4.3 Other Types of Structural Instability

As mentioned in the preamble to this section, the single break point case has
received by far the most attention within the GMM literature on structural
stability. However, other types have also been considered and we now provide
a brief review of these alternatives.

An obvious extension of the single break point case is to allow for the pres-
cence of multiple break points. To date this approach has not been developed
in the context of GMM estimators. However, Bai and Perron (1998) have de-
veloped methods in the context of linear regression models. One aspect of their
results is particularly interesting. They show that if it is assumed that there is
a single break point then the estimated fraction π̂ is consistent for the fraction
associated with one of the multiple break points. This enables them to propose
an iterative procedure in which the researcher gradually increases the number
of break points until the structural stability tests are no longer significant. To
date, it is unknown whether this type of sequential estimation procedure works
in the more general GMM framework.

Hansen (1990) considers tests for HSS
0 ([0, 1]) against the alternative

E[f(vt, θt)] = 0 and

θt = θt−1 + ηt

where ηt ∼ i.i.d.(0, τ2Ht). Notice that if τ2 = 0 then this model reduces to
the null hypothesis. Interestingly, Hansen (1990) shows that the LM statistic
against this alternative is well approximated by AvWT and so this statistic is
likely to have good power properties against this alternative as well.58

More generally, Sowell (1996) provides a framework for the construction of
optimal tests for parameter variation based on GMM estimators. His results
provide a generic approach which can be specialized to the form of instability
of interest.

Finally, it should be noted that all these procedures rely on asymptotically
large samples and so are unlikely to have good power properties against insta-
bility at the very beginning or end of the sample. Dufour, Ghysels, and Hall
(1994) propose a Generalized Predictive test which can be applied in this situ-
ation. The null and alternative hypothesis are the same as the Predictive test
except this time only T1 need be asymptotically large and T2 may be as small as
one observation. The statistic is based on {f(vt, θ̂1,T (π)), t ∈ T2} and not the
sub-sample average. Since the focus is now the individual observations, it is not
possible to use a conventional asymptotic analysis to deduce the distribution.
One solution is to make a distributional assumption, but this is unattractive
in most GMM settings. Therefore Dufour, Ghysels, and Hall (1994) consider
various distribution free methods of approximating or bounding the p-value of
their statistics.

58 Hansen (1990) analysis is motivated by earlier work due to Nyblom (1989) in the context
of Maximum Likelihood estimators.
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5.5 Other Hypothesis Tests

The foregoing tests are by far the most commonly used in the types of applica-
tion listed in Table 1.1. However, certain other tests have been proposed and in
this section we provide a brief review of these methods. The discussion covers
non-nested hypothesis tests (Section 5.5.1), Hausman tests (Section 5.5.2) and
conditional moment tests (Section 5.5.3).

5.5.1 Non-Nested Hypothesis Tests

So far, we have concentrated on methods for testing hypotheses about popu-
lation moment conditions or parameters within a particular model. However,
in many cases more than one model has been advanced to explain a particu-
lar economic phenomenon and so it may become necessary to choose between
them. Sometimes, one model is nested within the other in the sense that it can
be obtained by imposing certain parameter restrictions. In this case the choice
between them amounts to testing whether the data support the restrictions in
question using the methods described in Section 5.3. Other times, one model is
not a special case of the other and so they are said to be non-nested. There have
been two main approaches to developing tests between non-nested models. One
is based on creating a more general model which nests both candidate models
as a special case; the other examines whether one model is capable of explaining
the results in the other. Most of this literature has focused on regression models
or models estimated by maximum likelihood. While these situations technically
fall within the GMM framework, they do not possess its distinctive features
and so are not covered here.59 Instead, we focus on methods for discriminating
between two non-nested Euler equation models. These models involve partially
specified systems and so involve aspects unique to the GMM in its most general
form.

We consider the case where there are two competing models denoted M1
and M2. If M1 is true then the parameter vector θ1 and the data satisfy the
Euler equation

E1[u1(vt, θ1)|Ωt−1] = 0 (5.110)

where Ωt−1 is the information available at time t−1 and E1[.] denotes expecta-
tions under the assumption that M1 is correct. For our purposes, it is sufficient
to assume the Euler equation residual u1(vt, θ1) is a scalar. From (5.110) it
follows that the residual is orthogonal to any (q1 × 1) vector z1,t ∈ Ωt−1, and
this yields the population moment condition

E1[z1,tu1(vt, θ1)] = 0 (5.111)

Using analogous definitions, M2 leads to the (q2 × 1) population moment con-
dition

E2[z2,tu2(vt, θ2)] = 0 (5.112)

59 These techniques are well described in the recent comprehensive review by Gourieroux
and Monfort (1994).
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where again the Euler equation residual is taken to be a scalar. It is assumed
that the two models are globally non-nested in the sense that one model is not
a special case of the other.60 Since both models can be subjected to the tests
in Sections 5.1–5.4, there can only be a need to discriminate between them if
both models pass all these diagnostics; so we assume this to be the case.

As mentioned above there are two main strategies to developing non-nested
hypothesis tests and each has been applied within the context of Euler equation
models. Singleton (1985) proposes nesting the Euler equations of M1 and M2
within the Euler equation of a more general model. Ghysels and Hall (1990b)
propose tests of whether one model can explain the results in another. We now
describe these in turn.

Singleton’s (1985) analysis begins with the observation that if M1 is false
and its overidentifying restrictions test is insignificant then it must be because
the test has poor power properties when M2 is true. Therefore, he proposes
choosing the linear combination of the overidentifying restrictions which has the
most power in the direction of M2. The problem is how to characterize this
direction. Singleton (1985) solves this issue by introducing a more general Euler
condition which is the following convex combination of those from M1 and M2,

EG[et(θ1, θ2, ω)|Ωt−1] = 0 (5.113)

where
et(θ1, θ2, ω) = ωu1(vt, θ1) + (1 − ω) u2(vt, θ2)

where 0 ≤ ω ≤ 1 and EG[.] taken with respect to the true distribution of the
data under this more general model. Notice that ω = 1 implies M1 is correct,
and ω = 0 implies M2 is correct. The other values of ω imply a continuum
of residual processes which lie between those implied by M1 and M2 in some
sense. If ω is replaced by a suitably defined sequence ωT which converges to one
from below at rate T 1/2 and z1,t = z2,t = zt, then

EG[ztet(θ1, θ2, ω)] = 0

defines a sequence of local alternatives to (5.111) in the direction of (5.112).
Singleton (1985) shows that the linear combination of the overidentifying re-
strictions in M1 which maximizes power against this local alternative is the
transpose of

AT = S−1
1,T

(

g1,T (θ̂1,T ) − g2,T (θ̂2,T )
)

where gi,T (θ̂i,T ) = T−1
∑T

t=1 ztui(vt, θ̂i,T ), Ŝ1,T is a consistent estimator of

limT→∞ V ar[T 1/2g1,T (θ1)] and θ̂i,T is the GMM estimator of θi. This leads to
the test statistic

NNT (1, 2) = T g1,T (θ̂1,T )′AT (A′
T Σ1,T AT )

−1
A′

T g1,T (θ̂1,T )

60 See Pesaran (1987) for a formal definition of nested, partially non-nested and globally
non-nested models. The distinction between the last two can be important but need not
concern us here.
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where Σ1,T = Ŝ1,T − Ĝ1,T (Ĝ′
1,T Ŝ−1

1,T Ĝ1,T )−1Ĝ′
1,T and Ĝ1,T = ∂g1,T (θ̂1,T )/∂θ′.

Singleton (1985) shows that if M1 is correct then NNT (1, 2) converges to a χ2
1

distribution. The roles of M1 and M2 can be reversed to produce the analogous
statistic NNT (2, 1) which would be asymptotically χ2

1 if M2 is correct. In fact,
the test should be performed both ways and so there are four possible outcomes:
NNT (1, 2) is significant but NNT (2, 1) is not and so M2 is chosen; NNT (2, 1)
is significant but NNT (1, 2) is not and so M1 is chosen; both NNT (1, 2) and
NNT (2, 1) are significant and so both models can be rejected; both NNT (1, 2)
and NNT (2, 1) are insignificant and so it is not possible to choose between them
in this way.

This approach is relatively simple to implement because it does not require
any additional assumptions or computations beyond those already involved for
the estimation of M1 and M2. Its weakness is that the convex combination
of the Euler equations from M1 and M2 may not be the Euler equation of a
well defined economic model.61 In such cases, it is unclear how a significant
statistic should be interpreted. The only way to avoid this problem is to con-
sider sequences of local alternatives to the data generation process implied by
M1 which are in the direction of the data generation process implied by M2.
However, this involves making the type of distributional assumption which the
use of GMM was designed to avoid.

Ghysels and Hall (1990b) propose an alternative approach to testing based
on whether one model can explain the results in the other.62 More specifically,
the data are said to support M1 if

T−1
T
∑

t=1

z2,tu2(vt, θ̂2,T ) − E1[z2,tu2(vt, θ̂2,T )] (5.114)

is zero allowing for sampling error. To implement the test it is necessary to
know or be able to estimate the expectation term in (5.114). Unfortunately,
this typically involves specifying the conditional distribution of vt and so is
unattractive for the reason mentioned above.63 Ghysels and Hall (1990b) de-
velop a test based on approximating the expectation using quadrature based
methods, but we omit the details here.

Both these statistics are clearly focusing on the overidentifying restrictions
alone. It is possible to extend Ghysels and Hall’s (1990b) approach to tests of
whether M1 can explain the identifying restrictions in M2. Such a test would
focus on whether the solution to the identifying restrictions in M2 is equal to
the value predicted by M1. In other words, it would examine

θ̂2,T − E1[θ̂2,T ]

61 For example, Ghysels and Hall (1990b) show that a model constructed by taking a convex
combination of the data generating processes for vt implied by M1 and M2 does not typically
possess an Euler equation of the form in (5.113).

62 This general approach is often refered to as the encompassing test principle; see Mizon
and Richard (1986).

63 Furthermore Ghysels and Hall (1990b) show that a misspecification of this distribution
can cause their statistic to be significant.
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However, it would suffer from the same drawbacks as mentioned above and so
we do not pursue such a test here.

Neither of these approaches is really satisfactory. Singleton’s (1985) test is
only appropriate in the limited setting where (5.113) is the Euler condition of
a meaningful model. Ghysels and Hall’s (1990b) test is always appropriate but
requires additional assumptions about the distribution, and once these are made,
it is more efficient to use Maximum Likelihood estimation.64 This contrasts with
the more successful treatments of the hypotheses in Sections 5.1–5.4. In these
earlier cases, the partial specification caused no problems, but it clearly does
so for non-nested hypotheses. In one sense, these results are more important
because they illustrate the potential limits to inference based on a partially
specified model.

5.5.2 Hausman Tests

Hausman (1978) proposes testing a hypothesis on the basis of a comparsion
of two estimators of the parameter vector. One estimator must be consistent
under the null hypothesis but inconsistent under the alternative. The other must
be consistent under both null and the alternative. The simplest illustration is
one of the examples used by Hausman, and which is also the most common
application of this approach to testing. Suppose we have a linear regression
model and are suspicious that one of the regressors, xi,t say, is endogenous. The
null hypothesis that xi,t is exogenous can be tested via a Hausman test which
compares the OLS estimator with an IV estimator. The former is consistent
only if xit is exogenous; the latter is consistent regardless. Clearly the difference
between them converges to zero under the null, but some non-zero value under
the alternative.65

It is readily recognized that this basic principle can be applied in a wide
variety of settings. It is often applied in the context of Maximum Likelihood
estimation to test if the specification is correct. To present this version of the
statistic, let θ̂T denote the MLE and θ̃T be a GMM estimator of θ0 based on
some population moment condition E[f(vt, θ0)] = 0. The Hausman test statistic
is then given by

HT = T
(

θ̂T − θ̃T

) (

ṼT − V̂T

)−1 (

θ̂T − θ̃T

)

where V̂T and ṼT are consistent estimators of the asymptotic covariance of θ̂T

and θ̃T respectively. Under the joint null hypotheses that the Maximum Like-
lihood estimation is based on the correct model and E[f(vt, θ0)] = 0 is valid

64 Although, full information maximum likelihood may be more computationally burden-
some; see Ghysels and Hall (1990b).

65 This statistic is often refered to as the Wu–Hausman test because – to quote Nakamura
and Nakamura (1998) – “it was Hausman [(1978)] who presented it in the form that led to its
widespread use but Wu [(1973)] who presented it first.” [p.220]. See Nakamura and Nakamura
(1998) for further discussion of the literature on these types of endogeneity test.
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then Hausman (1978) shows that HT converges to a χ2
p distribution. The alter-

native hypothesis is that the model is not correctly specified but nevertheless
E[f(vt, θ0)] = 0.

Newey (1985a) extends this test principle to models estimated by GMM.
Newey (1985a) derives a Hausman statistic based on the difference between
GMM estimators obtained from two sets of moment conditions which may con-
tain elements in common. Interestingly, he shows that if one estimator is ob-
tained with the optimal weighting matrix then the asymptotic variance of the
difference of the estimators has the same difference structure as in the Maxi-
mum Likelihood case. However, this asymptotic variance may also be singular.
In principle, this matter is easily fixed by using a generalized inverse in the
construction of the quadratic form, and then comparing the statistic to the
critical point from a χ2 distribution with degrees of freedom equal to the rank
of ṼT − V̂T . However, in practice, this adjustment is not so straightforward
for two reasons. First, rank{p limT→∞(ṼT − V̂T )} may be difficult to deduce
a priori. Secondly, and unlike inverses, generalized inverses are not necessarily
continuous functions of the elements, and so additional conditions are needed
to ensure that the generalized inverse of ṼT − V̂T converges in probability to
the generalized inverse of p limT→∞ ṼT − V̂T ; see Andrews (1987). Both these
problems may explain the infrequent use of this test in the types of applications
listed in Table 1.1.

5.5.3 Conditional Moment Tests

All the statistics presented in Section 5.1, 5.2 and 5.4 test hypotheses about the
the population moment conditions upon which estimation is based. This mirrors
the majority of empirical applications mentioned in the introduction. In these
types of application, the model is only partially specified and so it is desirable
to base estimation on as much relevant information as possible.66 Therefore
all available moment conditions tend to be used in estimation.67 However, if
the distribution of the data is known then the most asymptotically efficient
estimates are obtained by using Maximum Likelihood. As shown in Section
3.7.1, maximum likelihood amounts to GMM estimation based on the score
function of the data. So, in this case there is no advantage to including any
other moment conditions implied by the model. These other moment conditions
can, however, be used to test whether the specification of the model is correct.
This generic approach yields what have become known as conditional moment
tests.

Newey (1985b) and Tauchen (1985a) independently introduce a general frame-
work for conditional moment testing based on Maximum Likelihood estimators.
To illustrate this framework, suppose that the conditional probability density

66 This statement is formally justified in Chapter 6.
67 The choice of moment conditions may be limited by other factors such as data availability

or computational constraints.
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of vt given {vt−1, vt−2, . . . v1} is pt(vt; θ0), and so the score function is

E[Lt(θ0)] = 0

where Lt(θ0) = ∂log(pt(vt; θ0))/∂θ. As mentioned above this is the moment
condition upon which estimation is based. Now assume that if this model is
correctly specfied then the data also satisfy the (q × 1) population moment
condition E[g(vt, θ0)] = 0. Therefore one way to assess the validity of the model
is to test

H0 : E[g(vt, θ0)] = 0

against the alternative
HA : E[g(vt, θ0)] �= 0

This hypothesis can be tested using the statistic

CMT = T−1
T
∑

t=1

gt(θ̂T )′Q−1
T

T
∑

t=1

gt(θ̂T ) (5.115)

where θ̂T is the maximum likelihood estimator, QT is a consistent estimator of
limT→∞ V ar[T−1/2

∑T
t=1 ct(θ0)], and

ct(θ0) = gt(θ0) − E[∂gt(θ0)/∂θ′]{E[∂Lt(θ0)/∂θ′]}−1Lt(θ0)

Under H0, CMT converges to a χ2
q distribution. The statistic has a similar struc-

ture to the overidentifying restrictions test but there is an important difference.
Since E[g(vt, θ0)] = 0 is not used in estimation, the statistic has power against
any violations of H0; see Newey (1985b). In spite of this, some caution is needed
in the interpretation of the results. While a rejection of H0 implies the model
is misspecified, a failure to reject only implies that the assumed distribution
exhibits this particular characteristic of the true distribution.

The choice of g(.) varies from model to model. For example, in the normal
linear regression model, g(.) often involves the third and fourth moments of the
error process; see Bowman and Shenton (1975). White (1982) suggests that one
generally applicable choice is to base g(.) on the information matrix identity,

E[Lt(θ0)Lt(θ0)
′] = − E[∂Lt(θ0)/∂θ′]

because if the the null hypothesis cannot be rejected then conventional formulae
for Wald, LR and LM statistics are valid. Consequently, this approach has been
explored in many settings; for example, see Chesher (1984) and Hall (1987a).
Various other examples are provided by Newey (1985b) and Tauchen (1985a).

5.6 Summary

This chapter has presented a number of inference procedures that can be used
to learn about the underlying model. The discussion focused on four main types
of hypothesis test within the GMM framework: the overidentifying restrictions
test; an overidentifying restrictions based test for the validity of a subset of
the population moment condition; Wald, D and LM tests for testing whether



200 Hypothesis Testing

the parameter vector satisfies a set of nonlinear restrictions; structural stability
tests based on both the identifying restrictions and also the overidentifying
restrictions. The limiting behaviour of these test statistics is derived under
the appropriate null hypothesis. The power properties are analyzed using either
local or non-local alternatives, and these two approaches are contrasted. A brief
review is also provided of other less common hypothesis tests within the GMM
framework such as non-nested tests, Hausman tests and conditional moment
tests.

In the preamble to this chapter, it is observed that three types of inference
questions arise in practice. These are – Is the model correctly specified? Does
the model satisfy restrictions implied by economic/statistical theory? Which
of two competing models is correct? We now briefly summarize what has been
learnt about how these questions can be addressed.

• Is the model correctly specified? Misspecification can take two basic forms.
First, the model can be misspecified in the sense described in Chapter 4
that is, E[f(vt, θ)] is the same for all t but there is no value of θ that makes
this expectation zero. Secondly, the model can be structurally unstable
so that E[f(vt, θ0)] = 0 for some part of the sample but not for all of it.
The overidentifying restrictions test is designed to test against the first
of these types of misspecification, and is consistent against this type of
alternative. The overidentifying restrictions test has power against certain
types of misspecification due to structural instability but is not consistent
against all forms of structural instability. This type of misspecification
can be detected using specially designed structural stability tests. The
latter tests can be based on either the identifying restrictions, in which
case they amount to tests for parameter variation, or the overidentifying
restrictions.

• Does the model satisfy restrictions implied by economic/statistical theory?
In many cases of interest, the restrictions implied by economic theory take
the form of a set nonlinear restrictions on the parameter vector. Such
restrictions can be tested using Wald, D or LM tests.

• Which of two competing models is correct? Assuming that both models
appear correctly specified on the basis of diagnostics decribed above, the
answer then depends on the relationship between the two models. If they
are nested, in the sense that one is obtained by imposing a set of parameter
restrictions on the other, then the choice between them can be based on
the Wald, D or LM statistics for testing the validity of the restrictions
in question. However, if the models are non-nested then this becomes a
far harder question to address within the the types of model in Table 1.1
without the specification of the probability distribution of the data.

All the inference procedures described above are based on asymptotic the-
ory. However, as noted at the outset, asymptotic theory is only used as an
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approximation to large sample behaviour. It is therefore important to investi-
gate how good this asymptotic approximation is to finite sample behaviour in
the kinds of circumstance encountered in practice. This topic is addressed in
the next chapter.



6

Asymptotic Theory and

Finite Sample Behaviour

So far, all the analysis has rested on asymptotic theory. This approach has
been taken for two good reasons. First, to date, it has proved impossible to
develop a finite sample distribution theory for GMM estimators in nonlinear
dynamic models. Secondly, as we have seen, asymptotic analysis delivers a
very powerful inference framework. However, there is inevitably a price to be
paid. All the asymptotic results are only strictly valid in the limit as T → ∞,
and so represent an approximation to finite sample behaviour. The question
to which we now turn is: how good is this approximation? Intuition suggests
that the answer varies from case to case, and so one goal of this chapter is to
identify what aspects of the specification determine the quality of the asymptotic
approximation.

Since finite sample distribution theory is intractable for nonlinear dynamic
models, this question has been addressed in this context via computer based
simulation studies calibrated to match models of particular interest. These
studies form the main focus of this chapter and are reviewed in Section 6.3.
However, we precede our review of these simulation studies with a discussion of
two relevant aspects of the theoretical literature.

First, since many of the simulation studies examine the consequences of in-
creasing the number of moment conditions, it is useful to consider what can be
learnt about these consequences from asymptotic analysis. Section 6.1.1 consid-
ers the case in which there is a finite increase in the degree of overidentification.
It emerges from this analysis that such an increase can never have a detrimental
effect on the asymptotic distribution of the estimator. However, there are some
circumstances in which there is no effect, and so the additional moment condi-
tions are said to be redundant. This scenario turns out to be pertinent to our
discussion of the aforementioned simulation studies, and so a formal definition
of redundancy is provided in Section 6.1.2. Given the potential asymptotic ben-
efits from increasing the degree of overidentification, it is natural to consider an

202
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estimation strategy in which this degree is allowed to increase with the sample
size. In Section 6.1.3, it is shown that there are potential gains from such a
strategy but these can only be reaped if the degree of overidentification does
not increase too quickly with the sample size.

The second relevant aspect is the theoretical literature on the finite sample
behaviour of the GMM estimator in static models. While it is true that finite
sample distribution theory has proved intractable for nonlinear dynamic mod-
els to date, this is not the case for the IV estimator in the linear regression
model discussed in Chapter 2. Although the exact finite sample distribution is
not easily interpreted, its form does reveal the aspects of the specification upon
which it depends, and these are summarized in Section 6.2.1. Further insights
are gained by considering higher order approximations such as Edgeworth ex-
pansions for the distribution of the estimator or so called Nagar expansions for
the finite sample bias and mean squared error of the GMM estimator. Both
methods have been applied in the context of the linear simultaneous equations
model, but the second has recently been employed very fruitfully to examine the
bias of GMM estimators in nonlinear static models. Section 6.2.2 summarizes
the main insights gained from both these analyses. Although these results only
apply to static models, intuition suggests that if a factor of the specification
effects the quality of the asymptotic approximation in static models then the
analogous factor has a corresponding effect in dynamic models. At the same
time, it would be anticipated that the presence of dynamics introduces addi-
tional complications.

As mentioned above, Section 6.3 reviews the insights gained from a number of
simulations studies calibrated to the types of models underlying the applications
in Table 1.1. Finally, Section 6.4 pulls together the evidence from the preceding
three sections to provide an overview of what factors appear to affect the quality
of the asymptotic approximation. These factors are also used to motivate the
topics addressed in the following two chapters.

6.1 The Impact of the Degree of

Overidentification on the Asymptotic

Behaviour of the Estimator

Theorems 3.1 and 3.2 establish the consistency and asymptotic normality of θ̂T .
Inspection of these results reveals that they hold for any population moment
condition satisfying certain regularity conditions of which the most important,
for our purposes here, are the orthogonality condition in Assumption 3.3 and the
identification condition in Assumption 3.4. In most cases, the underlying model
implies multiple choices of f(vt, θ0) which satisfy these conditions. Therefore,
it is important to consider how these asymptotic properties are affected by the
expansion of the set of population moment conditions upon which estimation is
based. We split the analysis into three parts. Section 6.1.1 considers the case
in which there is a finite increase in the number of moment conditions, Section
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6.1.2 introduces the concept of redundant moment conditions and Section 6.1.3
considers the case in which the number of moments increases with T .

6.1.1 Finite Increase in the Degree of Overidentification

To facilitate the analysis, it is necessary to introduce the following notation.
We partition f(.) into f(vt, θ)

′ = [f1(vt, θ)
′, f2(vt, θ)

′] where fi(.) is (qi × 1) and

q = q1 + q2 is finite. Now let θ̂1,T be the (optimal) two step GMM estimator
based on

E[f1(vt, θ0)] = 0 (6.1)

It is assumed that θ0 is identified by (6.1) and hence that q1 ≥ p. Finally, let

θ̂T denote the (optimal) two step estimator based on

E[f(vt, θ0)] = 0 (6.2)

It is straightforward to invoke Theorems 3.1 and 3.2 in order to deduce that
both estimators are consistent for θ0 and

T 1/2(θ̂1,T − θ0)
d→ N(0, V1) (6.3)

T 1/2(θ̂T − θ0)
d→ N(0, V ) (6.4)

where V = (G′
0S

−1G0)
−1, V1 = (G′

1,0S
−1
1,1G1,0)

−1, S and G0 are defined as

before,1 S1,1 is the (q1 × q1) upper left hand block of S, and G1,0 is the (q1 × p)
matrix comprising the first q1 rows of G0. Therefore the only difference between
the two limiting distributions lies in their variance. The following theorem
establishes the relationship between V and V1.

Theorem 6.1 Asymptotic Efficiency and the Inclusion of Additional
Population Moment Conditions
If (i) Assumptions 3.1–3.5 and 3.7–3.13 hold; (ii) rank(G1,0) = p (iii) θ̂1,T is

the (optimal) two step GMM estimator based on (6.1); (iv) θ̂T be the (optimal)
two step GMM estimator based on (6.2); then V1 − V is positive semi-definite

and so θ̂T is asymptotically at least as efficient as θ̂1,T .

The regularity conditions are needed to ensure that (6.3)–(6.4) hold. The proof
rests purely on showing that V1 − V is positive semi-definite.
Proof:
Since V and V1 are positive definite, V1−V is positive semi-definite if V −1−V −1

1

is also positive semi-definite.2 The latter difference is more convenient to work
with, and is our focus here. To this end, partition G0 and S into

G0 =

[

G1,0

G2,0

]

, S =

[

S1,1 S1,2

S2,1 S2,2

]

1 See Section 3.4.2.
2 See Dhrymes (1984) [Proposition 65, p.76]. Strictly, Dhrymes only establishes the result

for the case in which the difference in positive definite, but his proof is easily amended to
cover the case in which the difference is positive semi-definite.
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Using the partitioned matrix inversion formula,3 it follows that

S−1 =

[

S−1
1,1(Iq1

+ S1,2AS2,1S
−1
1,1) −S−1

1,1S1,2A

−AS2,1S
−1
1,1 A

]

(6.5)

where A = (S2,2 − S2,1S
−1
1,1S1,2)

−1. The substitution of both (6.5) and the

partition of G0 into D = V −1 − V −1
1 yields

D = G′
1,0S

−1
1,1(Iq1

+ S1,2AS2,1S
−1
1,1)G1,0 − G′

2,0AS2,1S
−1
1,1G1,0

−G′
1,0S

−1
1,1S1,2AG2,0 + G

′

2,0AG2,0 − G
′

1,0S
−1
1,1G1,0

Multiplying out this expression, it can be verified that D = B′AB where B =
S2,1S

−1
1,1G1,0 −G2,0. Now S is positive definite (p.d) by assumption, and so S−1

shares this property, which in turn implies A is p.d. Therefore, D is positive
semi-definite by construction, and so we have established the desired result.
⋄

This result makes intuitive sense. The elements of the population moment
condition can be viewed as pieces of information about θ0 and, from this perspec-
tive, Theorem 6.1 can be paraphrased as saying that more correct information
never hurts. For the puposes of our later discussion, it is useful to examine the
circumstances under which it does not help either. This is the topic of the next
sub-section.

6.1.2 Redundant Moment Conditions

Breusch, Qian, Schmidt, and Wyhowski (1999) use the term redundancy to
describe the situation in which the augmentation of the population moment
condition has no effect on the asymptotic variance of the estimator. This idea
can be expressed formally as follows.

Definition 6.1 Redundant Moment Condition
Let V denote the asymptotic variance of the GMM estimator based on E[f1(vt,
θ0)] = 0, E[f2(vt, θ0)] = 0, and let V1 be the corresponding variance when esti-
mation is based on E[f1(vt, θ0)] = 0 alone. The population moment condition
E[f2(vt, θ0)] = 0 is said to be redundant for θ0 given E[f1(vt, θ0)] = 0 if V1 = V .

Intuition suggests that E[f2(vt, θ0)] = 0 is redundant given E[f1(vt, θ0)] = 0 if
it provides no information about θ0 beyond that already in E[f1(vt, θ0)] = 0. To
formalize this intuition, it is necessary to first characterize the part of f2(vt, θ0)
which cannot be explained by f1(vt, θ0). To this end, it is assumed that the
Central Limit Theorem can be applied to deduce that

[

T 1/2g1,T (θ0)
T 1/2g2,T (θ0)

]

d→ N

([

0
0

]

,

[

S1,1 S1,2

S2,1 S2,2

])

(6.6)

3 See Magnus and Neudecker (1991) [p.11].
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where T 1/2gi,T (θ0) = T−1/2
∑T

t=1 fi(vt, θ0) for i = 1, 2. It follows from (6.6)
that the conditional distribution of T 1/2g2,T (θ0) given T 1/2g1,T (θ0) is given by

N
(

S2,1S
−1
1,1T 1/2g1,T (θ0), S2,2 − S2,1S

−1
1,1S1,2

)

Given the form of this conditional distribution, the unexplained part of
T 1/2g2,T (θ0) is given by

T 1/2g2,T (θ0) − S2,1S
−1
1,1T 1/2g1,T (θ0) = T−1/2

T
∑

t=1

r(vt, θ0), say,

where r(vt, θ0) = f2(vt, θ0) − S2,1S
−1
1,1f1(vt, θ0). Therefore, we now focus on the

residual, r(vt, θ0). At this stage, it is useful to recall three aspects of our discus-
sion of local identification in Section 3.1. First, the local information about θ0

contained in a moment condition is captured by the expectation of its derivative
with respect to θ. Secondly, the moment condition uniquely determines θ0 if
this expected derivative is full rank. Thirdly, if this expected derivative is rank
deficient then the moment condition provides some information about θ0 but
not enough to determine it uniquely. Taken together these three points imply
that the moment condition is only completely uninformative if the expected
derivative is zero. Therefore, E[f2(vt, θ0)] = 0 provides no local information
about θ0 beyond that in E[f1(vt, θ0)] = 0 if and only if

E[∂r(vt, θ0)/∂θ′] = 0

This condition is one of three for redundancy provided by Breusch, Qian, Schmidt,
and Wyhowski (1999). The other two are less intuitive but may be easier to
verify in practice. For completeness, we reproduce all three here, but omit the
proof.4

Lemma 6.1 Conditions for Redundancy
The following statements are equivalent. (A): E[f2(vt, θ0)] = 0 is redundant
given E[f1(vt, θ0)] = 0. (B): E[∂r(vt, θ0)/∂θ′] = 0. (C): E[∂f2(vt, θ0)/∂θ′] =
S2,1S

−1
1,1E[∂f1(vt, θ0)/∂θ′]. (D): There exists a (q1 × p) matrix A such that

E[∂f1(vt, θ0)/∂θ′] = S1,1A and E[∂f2(vt, θ0)/∂θ′] = S2,1A.

The concept of redundancy proves useful in understanding some of the sim-
ulation results described in Section 6.3.

6.1.3 The Degree of Overidentification Increases with the

Sample Size

If we follow Theorem 6.1 to its logical conclusion, then it leads us to an esti-
mation strategy in which we include as many population moment conditions as
possible. For a given sample, q must be less than T . However, as T increases,

4 Also see Section 7.1.
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Theorem 6.1 appears to suggest that it may be advantageous to allow q to in-
crease as well – in other words, to adopt a strategy in which the number of
population moment conditions is qT and qT → ∞ with T . In spite of its intu-
itive appeal, this logical step must be taken with caution because Theorem 6.1
is premised on Theorem 3.2, and the latter only holds for fixed q. To date, there
have been only a few studies which shed light on the asymptotic behaviour of
the estimator when p is fixed but qT → ∞ with T → ∞. This evidence suggests
that the asymptotic theory derived in Chapter 3 may be valid if qT −p increases
fairly slowly, but is unlikely to be so if qT −p increases too rapidly. It should be
noted, however, that all these studies consider the issue in the context of i.i.d.
data. It is left to future research to consider whether these rates of increase for
qT translate to dependent data. We now briefly summarize the main results on
this issue.

Newey (1990) examines the limiting behaviour of the IV estimator in the con-
text of a nonlinear simultaneous equations model under the assumption that the
error, ut(θ0), is conditionally homoscedastic given zt. This restriction is impor-
tant because it implies that the optimal weighting matrix is Ŝ−1

CIV in (2.29), and
so proportional to (T−1Z ′Z)−1, the choice assumed in Newey’s (1990) analysis.5

He shows that Theorem 3.2 continues to hold provided qT = o(T 1/2). Koenker
and Machado (1999) consider only linear models but allow for the possibility
that ut(θ0) may be conditionally heteroscedastic and so S is estimated by ŜSU

in (3.40).6 They show that qT → ∞ and qT = o(T 1/3) are sufficient conditions
for Theorem 3.2. This rate is rather slow, and so implies a more limited scope
for an estimation strategy based on an expanding set of moment conditions.
Interestingly, this slow rate appears to stem directly from the behaviour of ŜSU .
However, this rate is sufficient and not necessary, and as such is a lower bound
on the possible rate of increase for qT .

If qT increases faster than the rates given above then this impacts on the
limiting behaviour of the estimator in some way. Morimune (1983) considers
the limiting behaviour of the 2SLS (IV) estimator in the context of the linear
simultaneous equation model. He shows that if qT increases at rate T 1/2 then
the estimator is consistent, T 1/2(θ̂T − θ0) has a limiting normal distribution
but the mean of this distribution is not zero. He further shows that if qT

increases at rate T then the estimator is inconsistent. Bekker (1994) derives the
limiting behaviour of the IV estimator in the case where the equation of interest
is linear in the parameters and qT increases with T . Using θ̄ to denote the
probability limit of θ̂T , Bekker (1994) shows that (T − p)1/2(θ̂T − θ̄) converges
to a normal distribution with mean zero but a different variance than the one in
Theorem 3.2.

5 The main focus of Newey’s (1990) study is actually the construction of optimal instru-
ments, a topic that is considered in Chapter 7.

6 Note that the dimension of ŜT is qT and so increases with T . This case is outside the
settings reviewed in Section 3.5 for which qT = q.
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6.2 Finite Sample Theory for Static Models

This section describes the insights gained from two theoretical frameworks for
learning about the finite sample behaviour of GMM estimators in static mod-
els. Section 6.2.1 describes the available exact finite sample results for GMM
estimators. Section 6.2.2 summarizes results derived using higher order approx-
imations based on Edgeworth and Nagar expansions.

6.2.1 Exact Results for the IV Estimator in the Linear

Simultaneous Equations Models

There has been a considerable literature on the finite sample distributions of
estimators in the static linear simultaneous equations model.7 Here we focus
exclusively on the results for the IV estimator described in Chapter 2.

For our purposes in Chapter 2, it suffices to specify just the equation of in-
terest and make certain broad assumptions about the interrelationship between
the variables. Here it is necessary to be more specific. Accordingly, we now
assume the equation of interest is a member of the simultaneous system

Y B + NΓ = U (6.7)

in which Y is the (T×J) matrix of of observations on the J endogenous variables,
N is the (T × K) matrix of observations of the K exogenous variables and U
is the (T × J) matrix of errors. It is assumed that the tth row of U , Ut,. is a
vector of independent random variables with zero mean and covariance matrix
Σ whose typical element is σi,j,0, and which is independent of Us,. for all s �= t.
Without loss of generality, we focus attention on the the IV estimator of the
parameters in the first equation of the system. To this end, we partition Y and
N as follows: Y = [y1, Y1] and N = [N1, N2], where y1 is the (T × 1) vector of
observations on the first endogenous variable in the system, and Ni is (T × Ki)
with tth row N ′

i,t, and K1 + K2 = K. The first equation of the system can then
be written as

y1 = Y1β0 + N1γ0 + u1 (6.8)

where u1 = U.,1 is the first column of U . The reduced form of the system in
(6.7) is given by

Y = NΠ + A

where Π = −ΓB−1 and A = UB−1. It is convenient to write this reduced form
as

[y1, Y1] =
[

N1 N2

]

[

Π1,1 Π1,2

Π2,1 Π2,2

]

+ [a1, A1] (6.9)

Below it is necessary to refer to the reduced form error variance, and so we let
ωi,j,0 denote the i − jth element of Ω0 = V ar[at] where at is the tth row of
[a1, A1].

7 See Phillips (1983) or Bowden and Turkington (1984, pp.137–44) for a survey of these
results.
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If we set X1 = [Y1, N1] and θ
′

= [β
′

, γ
′

] then (6.8) can be written as

y1 = X1θ0 + u1 (6.10)

Equation (6.10) can be recognized to be of the same generic form as the model
in Chapter 2 with y = y1, X = X1 and p = J + K1 − 1. As in that earlier
setting, the observations on the instruments are contained in the T × q matrix
Z where

Z = [N1, N2C2] = NCz

where K ≥ q ≥ p, and Cz, C2 are selection matrices. Two aspects of this
instrument choice should be noted. First, the instruments taken from the set of
exogenous variables that appear in the system. Secondly, the instrument matrix
always includes the exogenous variables from the equation being estimated.
The results discussed below are based on the assumption that N is fixed in
repeated samples. In this case, it is easily verified that u1 satisfies the “Classical
assumptions” listed in Assumption 2.5, and so the “optimal” two step estimator
is just the two stage least squares estimator.8 We therefore focus on this version
of the IV estimator, that is

θ̂T =

[

β̂T

γ̂T

]

=
(

X
′

1PzX1

)−1

X
′

1Pzy1 (6.11)

where Pz = Z(Z
′

Z)−1Z
′

.

Phillips (1980) derives the exact distribution of β̂T in the case where Ut,. pos-
sesses a normal distribution. The resulting expression is extremely complicated
and – to quote Phillips himself – “not as easy to interpret as we would like”.9

Therefore we do not present the precise details here. Instead, we abstract to
more general level and use Phillips’s (1980) result to examine what aspects of
the specification affect this distribution. To simplify this discussion, we restrict
attention to the case in which J = 2 and Cz = Ik – therefore the system consists
of only two equations and all the exogenous variables are used as instruments.
It is worth noting that prior to Phillips’s work, the finite sample distribution
of β̂T had been derived for certain special cases, and one of these is for J = 2.
So, since we limit attention to this case, our discussion can take advantage of
insights gained from the earlier studies by Richardson (1963), Sawa (1969) and
Anderson and Sawa (1973, 1979).10

Using the aforementioned results, it can be shown that the finite sample
distribution of β̂T depends on the following aspects of the specification:

• β0, the true parameter value.

• q − p, the degree of overidentification.

8 See Section 2.4.
9 See Phillips (1980) [p.870].

10 Notice that Richardson (1963) and Phillips (1980) employ normalizations so that variance
of the reduced form error and instrument cross product matrix are both identity matrices.
These restrictions facilitate the analysis but also must be borne in mind when considering
how the properties of the instruments effect the distribution.



210 Finite Sample Behaviour

• µ2, the concentration parameter,

µ2 = ω−1
2,2,0Π

′

2,2[N
′

2N2 − N
′

2N1(N
′

1N1)
−1N

′

1N2]Π2,2 (6.12)

• Σ0, the covariance matrix of the errors.

It is not surprising that the distribution depends on both β0 and Σ0, but for
our purposes here, there is little to be learnt from exploring the nature of their
impact on the distribution. It is the roles of q − p and µ2 which provide the
most useful insights. Most of these insights have been revealed by numerical
calculations, but there is one interesting facet which can be deduced directly
from the form of the distribution. Phillips’s (1980) analytical result reveals that

the finite sample moments of β̂T only exist up to the order q − p.11 Anderson
and Sawa (1979) evaluate the distribution of β̂T numerically for a wide variety
of parameter settings. In general terms, their results suggest the following con-
clusions ceteris paribus. As q − p increases the finite sample distribution tends
to be negatively skewed and to exhibit less variation than would be predicted
by the asymptotic distribution. In other words, as q − p increases the distribu-
tion becomes increasingly concentrated about some point away from the true
value. In contrast, increases in µ2 tend to offset both these effects, although
the distribution still exhibits less variation than would be anticipated from the
asymptotic approximation.

Since all our statistical theory is based on T → ∞, two questions naturally
arise: – at what sample size does asymptotic theory provide a good approxi-
mation? – and on what aspects of the specification does this depend? It can
be recalled from Theorem 3.1 that β̂T is consistent and so as the sample size
increases the distribution of β̂T must collapse onto β0. Whereas Theorem 3.2
states that T 1/2(β̂T − β0) converges in distribution to a normal random vector.
In fact, both behaviours only occur if µ2 → ∞.12 Therefore this is the route
through which T affects the distribution, and this relationship can be made
explicit by rewriting (6.12) as

µ2 = Tω−1
2,2,0Π

′
2,2(M2,2 − M2,1M

−1
1,1M1,2)Π2,2 = T µ̃2, say (6.13)

where Mi,j = T−1N
′

i Nj . Equation (6.13) reveals an interesting feature of the
passage from finite sample to asymptotic behaviour: it is not T per se that
matters, but T µ̃2. Therefore, µ̃2 effects the sample size at which asymptotic
theory manifests itself. In particular, notice that if µ̃2 is very close to zero then
the passage from finite sample to asymptotic behaviour is likely to be slow.
Since all our inference rests on asymptotic theory, it is important to gain a
better understanding of what µ̃2 ≈ 0 implies about the specification. This is
most readily achieved by considering the extreme case in which µ̃2 = 0. Clearly

11 Such a relationship had previously been conjectured by Basmann (1961, 1963).
12 See Anderson and Sawa (1979) [p.174] or Phillips (1983) [footnote 10, p.470]. It is this

behaviour which gives µ2 its name : as µ2 → ∞ the distribution of β̂T becomes increasingly
concentrated around β0 and collapses onto this point in the limit.
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this condition holds if either Π2,2 = 0 or M2,2 −M2,1M
−1
1,1M1,2 = 0. However, a

more instructive answer can be obtained by relating these two conditions back to
the condition for identification in this model. It can be recalled from Section 2.1
that the condition for identification is rank{E[ztx

′

t]} = p. For our model here,

E[ztx
′

t] = E

[(

N1,t

N2,t

)

(y2,t, N
′

1,t)

]

= E

[

N1,ty2,t N1,tN
′

1,t

N2,ty2,t N2,tN
′

1,t

]

where – since J = 2 – we set Y1 = y2 and y2 is the (T ×1) vector with tth element
y2,t. Using this substititution in (6.9) and the properties of at, it follows that

E[ztx
′

t] = E

[

N1,tN
′

1,tΠ1,2 + N1,tN
′

2,tΠ2,2, N1,tN
′

1,t

N2,tN
′

1,tΠ1,2 + N2,tN
′

2,tΠ2,2, N2,tN
′

1,t

]

Inspection reveals that this matrix has rank less than p if either Π2,2 = 0 or
N2,t is an exact linear function of N1,t. Notice that the second condition implies
that N2 = N1H and so

R2,1 = M2,2 − M2,1M
−1
1,1M1,2 = T−1[H ′N ′

1N1H − H ′N ′
1N1(N

′

1N1)
−1N

′

1N1H]

= 0

Therefore, the conditions for θ0 to be unidentified are exactly the same as those
for µ̃2 = 0.13 The re-emergence of the condition for identification here is not
surprising, because it is fundamental to our ability to estimate θ0 from the pop-
ulation moment condition. However, this analysis also adds a new facet to our
understanding of the relationship between the two. If either Π2,2 or R2,1 is very
close to zero then E[ztut(θ)] may be very close to zero for θ �= θ0. In this case
θ0 is said to be “weakly identified” by E[ztut(θ0)] = 0. Under these conditions,
µ̃2 is also likely to be small and so the estimator converges slowly toward the
behaviour predicted by asymptotic theory.14 Anderson and Sawa (1979) report
evidence that this convergence is further slowed down by increases in q − p.
They conclude that “the desirable asymptotic properties of the 2SLS estimator
are not necessarily expected to be relevant to the cases that appear in practice,
that is, the sample size being at least 50 but less than 100 and the number of
excluded exogenous variables” – q−p in our notation – “being more than 10 but
less than 50”(Anderson and Sawa (1979) [p.175]). It is important to remem-
ber their time of writing when interpreting what sample sizes are “relevant” in
practice. Nevertheless, their conclusions give us an indication of circumstances
in which the asymptotic approximation may not be accurate.

The above discussion provides insights into the nature of the finite sample
distribution. It is also useful to have similar insights for specific features of
the distribution such as the mean and variance. Hillier, Kinal, and Srivastava

13 This assumes ω2,2,0 < ∞.
14 Also see Section 8.2.
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(1984) derive exact formulae for the moments of the IV estimator under nor-
mality. These formulae can be used to calculate the bias and mean squared
error but are sufficiently complicated to be uninterpretable.15 However, it is
possible to develop more revealing expressions if we are prepared to settle for
approximations to the finite sample moments. This topic is discussed in the
next sub-section.

6.2.2 Higher Order Approximations

The asymptotic analysis in Chapters 2 through 5 is often refered to as “first
order” asymptotics. This terminology originates from the idea of expressing the
statistic of interest, cT say, as a polynomial expansion in negative powers of T
such as

cT = c0 + c1T
−1/2 + c2T

−1 + c3T
−3/2 + . . .

The limiting behaviour of cT is governed by the lead or first term of the expan-
sion c0, and this gives rise to the terminology. As mentioned above, these first
order asymptotics only provide an approximation to finite sample behaviour.
Intuition suggests that a better approximation can be obtained by including
higher order terms from this expansion. In this section, we review the litera-
ture on two types of higher order expansions for GMM estimators: Edgeworth
expansions for the distribution function, and Nagar expansions for the bias and
mean square error.

Edgeworth expansions provide a bridge between the finite sample and lim-
iting distributions, and by examining their lead terms it is possible to uncover
what factors affect the passage to the limiting distribution. Sargan and Mikhail
(1971) and Sargan (1975) derive the Edgeworth expansion for the IV estimator
in the static linear simultaneous model in (6.7) with normal errors.16 For our
purposes here, it is sufficient to focus on the case in which J = 2 and so there
are only two endogenous variables. In this case, Sargan and Mikhail (1971)
show that

P

⎡

⎢

⎣

T 1/2(β̂T − β0)
√

AV ar(β̂T )

≤ r

⎤

⎥

⎦
= Φ(r) +

1√
T

D1(r) +
1

T
D2(r) + Op(T

−3/2)

(6.14)

where β̂T is the estimator defined in (6.11), AV ar(β̂T ) is the asymptotic variance

of β̂T , Φ(.) is the cumulative distrbution function of the standard normal distri-
bution, and Di(.), i = 1, 2 are constants that depend on the model.17 It can be
recognized that the first term on the right hand side of (6.14) is the probability

15 Knight (1986) derives exact formulae for the moments of the 2SLS estimator when the
errors follow an Edgeworth type distribution but these expressions possess the same advantages
and disadvantages as their counterparts when the error has a normal distribution.

16 Also see Morimune (1983).
17 Sargan (1975) extends the analysis to the case where β̂T − β0 is standardized by the

square root of the estimated asymptotic variance.
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of the particular event based on the asymptotic distribution of the estimator. It
therefore follows that the use of the limiting distribution to calculate such prob-
abilities involves an error of order Op(T

−1/2). More can be learned about this
error by examining the determinants of Di(.). Sargan and Mikhail (1971) report
calculations that indicate the asymptotic approximation tends to deteriorate as
the degree of overidentification increases. This leads them to conclude that:

“by using an intelligent choice of instrumental variables, little may
be lost in the asymptotic variance of the estimator and a good deal
may be gained in the decreased error of the asymptotic approxima-
tions.”[Sargan and Mikhail, 1971, p.158]

In terms of more modern terminology, this conclusion can be stated as saying
that the inclusion of redundant or nearly redundant instruments tends to lead
to a deterioration in the quality of the asymptotic approximation.

Nagar (1959) develops expansions for the first two moments of the Two
Stage Least Squares estimator in the linear simultaneous equations model with
normal errors. Although the approximations have been generalized subsequently
to certain other distributions,18 it is most convenient to maintain normality and
also to continue to restrict attention to the case in which J = 2 – all notation
is the same as in the previous sub-section.

Nagar (1959) derives a random vector, bz, and a random matrix, Mz, such
that:

θ̂T − θ0 = bz + op(T
−1) (6.15)

(θ̂T − θ0)(θ̂T − θ0)
′ = Mz + op(T

−2) (6.16)

He then approximates the bias (first moment) of θ̂T by E[bz] and the mean

square error matrix of θ̂T by E[Mz].
19 This leads to the following approxima-

tions: for the bias (up to the order of T−1)

E[bz] = (q − p − 1)Qzs (6.17)

where Qz = (X ′PzX)−1,

s =

[

B
′

1σ1

0p−1

]

B1 is the matrix satisfying A1 = UB1, σ1 is the first column of Σ and 0r is the
r × 1 null vector; and for the mean squared error (up to order T−2)

E[Mz] = σ11Qz (I + A∗) (6.18)

where

A∗ = [−2(q − p − 1)tr (QzHσ) + tr (QzHΣ)] · Ip

+
{[

(q − p)2 − 3(q − p) + 4
]

Hσ − (q − p − 2)HΣ

}

Qz,

18 See Buse (1992), Donald and Newey (2001) and Peixe and Hall (2000).
19 While this step has an obvious intuitive appeal, it is not valid in all circumstances; see

Srinivasan (1970). However, Sargan (1974) establishes a set of conditions under which it is
valid in the context here.
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Hσ = σ−1
11 ss′ and

HΣ =

[

B
′

1ΣB1 0
′

p−1

0p−1 0(p−1)×(p−1)

]

and 0r×r is the r × r null matrix.
These two approximations can be used to explore the impact of the inclusion

of additional instruments upon the first two moments of the estimator. Inspec-
tion of (6.17) reveals that the approximate bias depends on Z via q − p and
Qz. Therefore, the bias is sensitive to both the number of instruments and their
relationship to y2. The bias is also different for each element of θ̂T . To gain
a better understanding, it is convenient to focus on mz = ‖E[bz]‖ which can
be interpreted as an aggregate measure of bias in the estimation of θ0. Buse
(1992) derives a relatively simple condition for mz to increase when additional
instruments are included in the estimation. To present this condition, define Z1

and Z2 to be respectively (T × q1) and (T × q2) matrices of instruments and
assume Z1 represent the first q1 columns of Z2. This means q1 < q2. For what
follows, it is also important to recall that by assumption the first K1 columns
of any instrument matrix contain the explanatory variables, N1, which appear
in the equation being estimated. If mi equals the value of mz associated with
Z = Zi then Buse (1992) shows that

m2

m1

⎧

⎨

⎩

≥
=
≤

⎫

⎬

⎭

1 if
q2 − p − 1

q1 − p − 1

⎧

⎨

⎩

≥
=
≤

⎫

⎬

⎭

R2
2 − R2

0

R2
1 − R2

0

(6.19)

where R2
i represents the uncentred R2 from the regression of y2 on Zi, and R2

0

represents the R2 from the regression of y2 on N1. Therefore the approximate
bias will increase with the number of excess instrumental variables only if the
proportional increase in the number of instruments is faster than the rate of
increase in R2 measured relative to the fit of Y1 on N1. This means that the
potential impact of additional instruments depends on the explanatory power
of those already included.

While it is desirable to avoid bias, an increase in bias may be tolerated if
the mean squared error is reduced. Unfortunately, the formula in (6.18) is not
so amenable to interpretation. However, it can be used to numerically evaluate
how the inclusion of new instruments affects the approximate mean squared
error. Peixe and Hall (2000) report this type of calculation for the special case
of the model described above in which J = 2, K1 = 1, K2 = 8. More specifically,
they consider the system

y1 = y2β + n1γ1,1 + u1 (6.20)

y2 = Nγ2 + u2 (6.21)

in which β = γ1,1 = 1, γ2,1 = . . . = γ2,5 = .03, γ2,6 = . . . = γ2,9 = .33. These
choices imply the first five columns of N have only a marginal contribution to
the explanation of y2, but the last four variables have a more significant impact
so that the population R2 for (6.21) is around 30%. To reflect this dichotomy,
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we refer to {ni, i = 1, . . . 5} as “bad” instruments (for y2), and {ni, i = 6, . . . 9}
as “good” instruments (for y2). Strictly none of these instruments are redun-
dant but there is clearly a sense in which the “bad” instruments can be viewed
as “nearly” redundant given the “good” ones.20 The error specification is as
follows: letting ui,t denote the tth element of ui, then ut = (u1,t, u2,t)

′ is in-
dependently and identically distributed as a normal random vector with mean
zero and a variance–covariance matrix Σ0 whose diagonal elements are one and
off-diagonal elements are 0.8. The sample size is set at T = 30. Table 6.1 re-
produces the calculated values of the approximate bias and mean squared error
for various instrument combinations reported in Peixe and Hall (2000). There
are five cases each involving four instruments.21 The only difference between
the five cases lies in the number of good and bad instruments included. As
would be expected, the approximate bias and MSE decrease every time a bad
instrument is replaced by a good one. Table 6.1 also reports the percentage
change in bias and MSE if an additional instrument is included. The results
reveal that if the additional instrument is “bad” then both the bias and mean
squared error increase. However, if the additional instrument is “good” then the
impact on the bias is more subtle. If only one of the four instruments is good
then the inclusion of another good one reduces the bias. Whereas, if at least two
of the four are good then the inclusion of another good one increases the bias.
Also the size of this increase is an increasing function of the number of good
instruments. In spite of this, the inclusion of an additional good instrument
always decreases the mean squared error. While caution must be exercised in
generalizing the specific results to more general settings, one conclusion is clear.
There is a far more complex relationship between the behaviour of the estimator
and the properties of the instrument vector in finite samples than is predicted
by asymptotic theory.

Table 6.1
Impact of an additional instrument

Inst. Bias % + 1G % + 1B MSE % + 1G % + 1B
3B1G 0.478 -24.08 48.80 0.546 -27.36 3.66
2B2G 0.243 0.25 49.36 0.390 -17.09 1.90
1B3G 0.163 12.59 49.57 0.319 -12.45 1.25
4G 0.122 49.75 0.277 0.98

Source: Peixe and Hall (2000).
Notes: Inst denotes the composition of the benchmark set of instruments: e.g. 3B1G denotes
three bad instruments and one good one. Bias and MSE are calculated using (6.17) and (6.18)
respectively. % + 1G (% + 1B) denotes the percentage change in either the bias or MSE as a
result on the inclusion of an additional good (bad) instrument.

20 For ease of expression here, we attribute the property of redundancy directly to the
instrument and not the associated population moment condition.

21 Notice that this is the smallest number of instruments for which the second moment of
the estimator exists within this model. See the comments made earlier in this section.
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Newey and Smith (2004) develop Nagar type expansions for the bias of both
the two step GMM and continuous updating GMM estimators in nonlinear
static models. To present these results, we return to our generic notation and
so assume that estimation of θ0 is based on E[f(vt, θ0)] = 0. The data vector,
vt, is assumed to be a realization from some independently and identically dis-
tributed process. Let θ̂T denote the two step GMM estimator and θ̃T denote the
continuous updating GMM estimator.22 Also define Gt = ∂f(vt, θ)/∂θ′|θ=θ0

,
ft(θ) = f(vt, θ) and let ft,i(θ) denote the ith element of ft(θ). Newey and
Smith (2004) show that the approximate bias of the GMM estimator is given by

E[θ̂T ] − θ0 = T−1{BI + BG + BS + BW } + o(T−1) (6.22)

where

BI = M(S−1){E[GtM(S−1)ft(θ0)] − a}
BG = −(G

′

0S
−1G0)

−1E[G
′

tS
−1/2′{Iq − P (θ0)}S−1/2ft(θ0)]

BS = M(S−1)E[ft(θ0)ft(θ0)
′S−1/2′{Iq − P (θ0)}S−1/2ft(θ0)]

BW = −M(S−1)

p
∑

j=1

E

[

∂ft(θ)ft(θ)
′

∂θj

∣

∣

θ=θ0

]

[M(W ) − M(S−1)]′ej

a is (q × 1) vector with ith element,

ai = 0.5 tr

{

(G
′

0S
−1G0)

−1E

[

∂2ft,i(θ0)

∂θ∂θ′

]}

M(W ) = (G′
0WG0)

−1G
′

0W , P (θ0) = F (θ0)[F (θ0)
′F (θ0)]

−1F (θ0)
′, F (θ0) =

S−1/2G0 and ej is a (p × 1) vector whose jth element is one and remaining
elements are all zero. As Newey and Smith (2004) observe these four compo-
nents of the bias have an interesting interpretation. To motivate this part of
the discussion, it is useful to first recall the Method of Moments interpretation
of GMM derived from the first order conditions, that is the two step GMM
estimator is the MM estimator based on G

′

0S
−1E[f(vt, θ0)] = 0.23 If both G0

and S are known, then the GMM estimator is just the value of θ that sets this
linear combination of the sample moments equal to zero, that is θ̄T , the solution
to G

′

0S
−1gT (θ̄T ) = 0. It is easily recognized that this version of the estimator

converges to the same limiting distribution as the two step estimator. We thus
refer to θ̄T as an infeasible optimal GMM estimator – infeasible as G0 and S are
unknown, optimal in the sense that it is a minimum variance estimator based
on E[f(vt, θ0)] = 0. With this in mind, we now consider the components of the
bias in turn. BI is the approximate asymptotic bias of the infeasible optimal
GMM estimator; BG is a bias term that arises due to the estimation of G0; BS is
a bias term that arises due to the need to estimate S; BW is a bias term arising
from the first step estimator. Two other general features of this decomposition

22 See (3.102) in Section 3.7.
23 See Section 3.3.
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are worth noting. First, if the parameter vector is just identified then BG, BS

and BW are all equal to zero. Therefore, overidentification introduces bias from
a variety of sources. Secondly, it is interesting to note that these sources of the
bias depend on the same features of the model that play a crucial role in the
limiting distribution of the GMM estimator in misspecified models.24

Newey and Smith (2004) show that the corresponding bias of the continuous
updating GMM estimator is given by

E[θ̃T ] − θ0 = T−1{BI + BS} + o(T−1) (6.23)

In comparison to (6.22), it can be seen that there are fewer sources of bias.
Specifically, there are no longer bias terms associated with the first step estima-
tion or the estimation of the derivative matrix. The absence of the first of these
is to be expected because there is no longer a first step estimation. The sec-
ond is less easy to explain from a GMM perspective. Newey and Smith (2004)
show that the absence of BG is to be expected because the continuous updating
GMM estimator is a member of the class of Generalized Empirical Likelihood
estimators. However, further elaboration here would constitute a major detour,
and so the interested reader is refered to Newey and Smith (2004).25

While these general formulae provide some useful insights into the bias, the
specific form of the terms is difficult to interpret. Newey and Smith (2004) spe-
cialize these formulae to three cases of interest: the IV estimator in the linear
model described in Chapter 2; the Generalized IV estimators described in Sec-
tion 7.2; and separable moment conditions, that is f(vt, θ) = f1(vt)− f2(θ0). In
all cases, Newey and Smith (2004) show that the bias of the GMM estimator in-
creases with the number of overidentifying restrictions ceteris paribus – however
some caution is needed in making such comparisons as noted by Buse (1992)
because the introduction of additional moment conditions alters other aspects
of the model.26 Imbens (2002) reports a similar calculation for a very simple
example in which only one moment condition provides information and all the
remaining moment conditions are redundant. He shows that the approximate
bias increases linearly with the number of redundant moment conditions.

6.3 Simulation Evidence from Nonlinear

Dynamic Models

As we have just seen, finite sample distribution theory provides some useful in-
sights into what aspects of the distribution affect the quality of the asymptotic
approximation in static models. Intuition suggests that these aspects of the
specification are going to play a similarly important role in nonlinear dynamic
models. At the same time, it would also be anticipated that the presence of
nonlinearity and/or dynamics introduces additional complications. In recent

24 See Chapter 4.
25 There is a brief introduction to empirical likelihood estimators in Section 10.2.
26 See discussion earlier in this section.
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years, concern has grown about the adequacy of the asymptotic approximation
in the sample sizes encountered in practice, and this has spawned a number
of computer based simulation studies calibrated to the types of model which
appear in Table 1.1.27 An overview of these studies is provided by Table 6.2.
In this section we review the main findings from this literature.

Table 6.2
Simulation studies of the finite sample properties of GMM

Economic or statistical
topic

Type

Asset pricing NV, NP Tauchen (1986), Kocherlakota (1990),
Hansen, Heaton, and Yaron (1996),
Smith (1999)

LV, NP Ferson and Foerster (1994)
Business cycles NV, NP Burnside and Eichenbaum (1996),

Christiano and den Haan (1996)
Covariance structures NV, LP Altonji and Segal (1996)

NV, NP Clark (1996)
Inventories LV, LP Fuhrer, Moore, and Schuh (1995), West

and Wilcox(1994,1996)
Stochastic volatility NV, NP Andersen and Sørensen (1996)

Note: Type indicates the functional form of the model with NV (LV) denoting nonlinear
(linear) in variables and NP (LP) denoting nonlinear (linear) in the parameters.

As in the previous section, there are two main questions of interest here
– does asymptotic theory provide a good approximation in the sample sizes
encountered in practice? – and, what aspects of the specification affect the
quality of this approximation? The answer to the first question is going to be
model specific, but the answer to the second is likely to be generic on some level
and so is our main focus here. In spite of this, it is pedagogically more convenient
to organize the discussion around four specific studies. We begin with the
studies by Tauchen (1986) and Kocherlakota (1990) which are calibrated to the
consumption based asset pricing model used in our empirical example. We then
briefly summarize the results reported in Hansen, Heaton, and Yaron (1996)
for a slightly more sophisticated version of this model. Finally, we consider the
study by Andersen and Sørensen (1996) based on the stochastic volatility model
described in Section 1.3.5. Together these four studies provide a good overview
of the qualitative findings from this literature.

Asymptotic theory has been used to justify the GMM estimation and also
to develop a vast array of inference procedures based on the estimator. In our
discussion here, we focus on how well this theory approximates finite sample

27 As an illustration of the level of this interest, the July 1996 issue Journal of Business

and Economic Statistics has a special section devoted to seven papers on this topic.
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behaviour of the two most important components of this framework: the esti-
mator θ̂T and the overidentifying restrictions test JT . Specifically, we consider
the following five questions:

1. Is the GMM estimator approximately unbiased?

2. How reliable are confidence intervals based on asymptotic theory?

3. Is the finite sample distribution of the overidentifying restrictions test well
approximated by a χ2

q−p?

4. How does iteration affect the answers to 1.–3.?

5. How does the use of the continuous updating estimator affect the answers
to 1.–3.?

Apropos the fourth question, it can be recalled from Section 3.6 that iteration
beyond the second step has no effect on the asymptotic distribution and was
proposed purely because of potential gains in finite samples. At that stage in our
discussion we could only anticipate some advantage, now we can learn whether
these gains are realized in practice. With these five questions in mind, we now
turn to the simulation evidence.

Tauchen (1986) examines the behaviour of GMM in Hansen and Singleton’s
(1982) version of the consumption based asset pricing model.28 His design
assumes there is only one asset, and estimation is based on the population
moment condition,

E[ztut(θ0)] = 0 (6.24)

where

ut(θ) = δ(ct+1/ct)
γ−1(rt+1/pt)

zt = (1, ct/ct−1, . . . , ct−L/ct−L−1, rt/pt−1, . . . , rt−L/pt−L−1)
′

The degree of overidentification is controlled by L, and Tauchen considers the
cases L = 1, 2, 3, 4. Notice that L = 2 gives the instrument vector used in
our estimation of the model earlier in the text. Two sample sizes are consid-
ered: T = 50, 75. A large part of Tauchen’s (1986) contribution is to have
developed a method for generating artificial data consistent with the underly-
ing model. However, we only comment very briefly on this aspect of his study.
To this end, note that the asset return, rt+1, is given by rt+1 = pt+1 + dt+1

where dt+1 denotes the dividends paid out during the period. Therefore, the
model can be viewed as depending on three stocastic variables: ct, dt, and
pt. Tauchen generates data on the first two of these variables from a V AR(1)
model for [ln(ct+1/ct), ln(dt+1/dt)]. Given this data and the Euler equation for
t = 1, 2, . . . T , it is possible to solve for {pt}. Tauchen reports results for various
choices of parameters in the VAR; he sets γ = 0.3, 1.30 and δ = 0.97. The
secondly step weighting matrix is Ŝ−1

SU defined in (3.40). It should be noted that

28 See Section 1.3.1.
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Tauchen only considers the two step estimator because that was the conventional
practice at his time of writing. So his results cannot help us with questions 4 or
5 above. However, in terms of the other three questions, his study reveals the
following answers in order.

1. Bias: For L = 1 (i.e. q − p = 1) the estimator is approximately unbiased,
but there is a tendency for the bias to increase as L, and hence q − p,
increases. At the same time, increases in L reduce the variance and so θ̂T

becomes concentrated at a value away from the truth. Interestingly, this
mirrors Anderson and Sawa’s (1979) finding for the IV estimator in the
linear model discussed in the previous section.

2. C.I.’s: For L = 1, 2 (i.e. q−p = 1, 3) the empirical coverage of the asymp-
totic confidence intervals is approximately equal to the nominal value.29

However, for L = 3, 4 (i.e. q − p = 5, 7) the empirical coverage tends to
be less than the nominal value.

3. JT : the empirical size of the overidentifying restrictions test tends to be
close to its nominal value in all cases considered.30 If anything, the test
rejects slightly less frequently than would be anticipated from asymptotic
theory.

Based on this evidence, Tauchen recommends that q − p be kept less than or
equal to three in this model with these sample sizes. However, there is one
aspect of Tauchen’s (1986) study which should be borne in mind when consid-
ering this recommendation. The degree of overidentification is controlled by L,
and so an expansion of the instrument vector involves the inclusion of lagged
values of consumption growth and the asset return from further back in time.
Now ut(θ) depends on (ct+1/ct, rt+1/pt), and within his design the autocorre-
lations of these variables decays as the lag length increases. Therefore, as L
increases zt becomes augmented with variables whose association with ut(θ)
is decaying. In other words, every increase in L introduces instruments whose
quality is worse than those already included. This is not a criticism of Tauchen’s
(1986) design because this strategy is commonly used for instrument selection
in Euler equation models in practice. However, it is probably more appropri-
ate to view Tauchen’s recommendation within the context of this instrument
selection strategy than as a more general comment about the desirable degree
of overidentification per se.

Kocherlakota (1990) uses Tauchen’s (1986) simulation method to investigate
the behaviour of GMM in Hansen and Singleton’s (1982) model with multiple
assets. In this case, estimation is based on the population moment condition

E[zt ⊗ ut(θ0)] = 0 (6.25)

29 “Empirical coverage” is the term used for the proportion of the replications in which
the calculated confidence interval contains the true parameter value. So for a 95% confidence
interval, say, to be perfectly accurate, its empirical coverage must equal its nominal value,
which is 95%.

30 “Empirical size” is term given to the proportion of replications in which the test is
significant.



6.3 Nonlinear Dynamic Models 221

where ut(θ) is (s × 1) vector whose ith element is δ(ct+1/ct)
γ−1(ri,t+1/pi,t) and

zt is (k × 1) vector of instruments. Kocherlakota considers models with up to
three assets, i.e. s = 1, 2, 3, and k = 1, 3, 4. However, of the seven particular
combinations chosen, six involve q − p = 1 and one involves q − p = 6. Since
the design involves multiple assets, Kocherlakota is able to confine attention to
instrument vectors whose elements come from the set {1, ct/ct−1, ri,t/pi,t−1} –
in other words, L = 1 in terms of the notation used to describe Tauchen’s (1986)
study. Unlike Tauchen (1986), Kocherlakota (1990) evaluates the performance
of both the two step and iterated estimator – the latter with Imax = 70 – with
ŜT (i) = ŜSU for i > 1. Two other differences between the two studies are also
worth noting: Kocherlakota (1990) sets T = 90 for the most part but also reports
results for T = 200, 500, 2000; he also sets γ = 13.7 and δ = 1.139.31 We begin
our discussion of his results with the case in which T = 90 because these most
closely parallel Tauchen’s settings. As a whole, Kocherlakota’s (1990) evidence
suggests that the iteration beyond the second step considerably improves the
quality of the asymptotic theory as an approximation to finite sample behaviour.
So strong is the evidence that he focuses entirely on the iterated estimator in
the published version of his paper – and so our discussion of his results must do
the same. In terms of the other three questions, his findings are as follows.

1. Bias: There is evidence of bias in some cases, and not others. This bias
does not appear to be linked to the degree of overidentification per se,
that is to the limited extent this can be assessed within this design.

2. C.I.’s: The empirical coverage of the asymptotic confidence intervals is
too low in nearly every case and in some cases the strikingly so – e.g.
≈ 60% instead of the nominal value of 95%.

3. JT : The quality of the asymptotic approximation is good in some cases
but not in others. In the latter, the empirical size of the test tends to be
around 20% when the nominal size is 5%.

Buried within this summary is an interesting pattern to the results. Although
the choices s = 1, k = 3 and s = 3, k = 1 both imply q − p = 1 the estimator
behaves very differently in the two cases. If there are multiple assets and one
instrument (s = 3, k = 1) then the finite sample behaviour is well approximated
by the asymptotic theory, but if there is one asset and multiple instruments
(s = 1, k = 3) then the estimator is biased, the asymptotic confidence inter-
vals are unreliable and the overidentifying restriction test rejects too frequently.
Therefore, low values of q − p are no guarantee that the asymptotic approxima-
tion is good.

One attractive feature of Kocherlakota’s (1990) study is that he also consid-
ers what happens as T increases. As T moves from 90 to 200, 500 and finally

31 The parameter values are calibrated to replicate certain features of annual data for the
U.S spanning 1889–1978. In contrast, Tauchen’s (1986) parameter settings were chosen to be
“reasonable” from an economic theoretic standpoint. It should be noted that Kocherlakota
(1990) also reports a limited number of simulation results using data generated with other
parameter values including γ = 0.3, δ = 0.97 which were used by Tauchen.
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2000, the quality of the asymptotic approximation improves. However, in the
worst cases, it is only at the largest sample size that asymptotic theory ac-
curately predicts the empirical coverage of the asymptotic confidence intervals
and the empirical size of the overidentifying restrictions test. While this is not
an encouraging conclusion, Kocherlakota finds that the situation is worse with
the two step estimator. He finds that after only two steps, the overidentifying
restrictions test converges very slowly to its asymptotic distribution.

Clearly, some aspect of the asymptotic theory is not providing a good ap-
proximation to finite sample behaviour. It would clearly be useful to diagnose
where the problem lays, and Kocherlakota (1990) provides some useful guidance
in this direction for the overidentifying restrictions test. To describe what he
did, we must remind ourselves of the structure of the estimated sample moment
again. Equation (3.35) shows that

W
1/2
T T 1/2gT (θ̂T ) = NT (θ̂T )W

1/2
T T 1/2gT (θ0) = ÑT T 1/2gT (θ0), say (6.26)

It can be recalled from Section 3.4.3 that the asymptotic normality of W
1/2
T

T 1/2gT (θ̂T ) rested on the convergence in probability of ÑT to a matrix of con-
stants and the application of the Central Limit Theorem to T 1/2gT (θ0). Inter-
estingly, Kocherlakota (1990) finds that T = 90 is large enough for T 1/2gT (θ0) to
be approximately normally distributed in all the cases he considers. The prob-
lem stems from ÑT . Kocherlakota (1990) finds that all the cases in which the χ2

approximation is poor are exactly the cases in which ÑT is still exhibiting con-
siderable variability. Since ÑT is the product of matrices, Kocherlakota’s (1990)

evidence points to two possible culprits: Ŝ−1
T and GT (θ̂T ). Interestingly, this

evidence highlights two of the sources of bias in the Nagar type expansion for the
GMM estimator described in the previous sub-section; see equation (6.22). The

involvement of GT (θ̂T ) here also creates an interesting tie in with our discussion
of the finite sample distribution of IV estimator in the static linear model. It can
be recalled from the previous section that the convergence of the IV estimator
to its asymptotic distribution depends on the concentration parameter, T µ̃2,
and that this convergence is likely to be slow if θ0 is “weakly” identified. Now
the matrix GT (θ̂T ) has a similar link to identification because it is the sample
analog of G0.

32 This suggests that weak identification may be one source of the
problems noted in Kocherlakota’s (1990) study – an explanation which would
certainly accord with our empirical experience of the model in Chapter 3.33

Before we move on to discuss the other two studies mentioned above, it is
worth reflecting what we have learnt from Tauchen’s (1986) and Kocherlakota’s
(1990) results about the interpretation of our empirical results. It can be recalled
that choice of zt is a special case of Tauchen’s (1986) design with L = 2, and
one in which he found asymptotic theory provided a reasonable approximation
even in his much smaller sample sizes. However, Kocherlakota’s (1990) study
reveals that the quality of the approximation can be sensitive to θ0 as well as

32 Recall that the condition for local identification is rank(G0) = p; see Assumption 3.6 in
Section 3.1.

33 In particular see the discussion in Section 3.6.
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other aspects of the data generation process. In particular, it seems reasonable
to be concerned about the quality of the identification and how it has affected
finite sample behaviour. So it may be premature to draw a line under the results
obtained so far, and we return to this example in the next two chapters as we
explore various methods for improving inference based on GMM estimation.

Hansen, Heaton, and Yaron (1996) also examine the behaviour of GMM and
its associated statistics in a consumption based asset pricing model. However,
their study builds from those described above in two important ways. First,
they allow for time non-separability in the utility function of the representative
agent. Second, they simulate the behaviour of continuous updating estimator
as well as the two step and iterated estimators.

Hansen, Heaton, and Yaron (1996) consider the case in which the represen-
tative agent’s utility function takes the form,

U(ct) =
(ct + η0ct−1)

1−γ0 − 1

1 − γ0

Notice if η0 = 0 then this utility function reduces to the CRRA utility function
used by Tauchen and Kocherlakota.34 The agent is assumed to invest in two
assets: a bond, whose payoff is denoted R1,t, and a stock, whose payoff is
denoted R2,t.

35 Hansen, Heaton, and Yaron (1996) simulate artificial data from
this model for a number of scenarios of empirical relevance.36 For brevity, we
focus on two scenarios here: in the first, the data generation process is calibrated
to annual US data and the sample size is set to T = 100; and in the second, the
data generation process is calibrated to monthly US data and the the sample
size is set to T = 400. In both cases, they consider the case in which estimation
is based on the population moment condition

E[zt ⊗ et+2(θ0)] = 0 (6.27)

where zt ∈ Ωt, θ = (γ, δ, η)′, δ is the discount factor37, and et+2(θ) is the (2×1)
vector with ith element given by38

ei,t+2(θ) = 1 + δη

{

ct+1 + ηct

ct + ηct−1

}−γ

− δRi,t+1

{

ct+1 + ηct

ct + ηct−1

}−γ

− δ2η

{

ct+2 + ηct+1

ct + ηct−1

}−γ

Two choices of instrument are used: z1,t = (1, ct/ct−1)
′ and z2,t = (z1,t, R1,t,

R2,t)
′ for which q − p equals 1 and 5 respectively.

34 If η0 = 0 then utility is time separable in the sense that utility in period t depends on
consumption in period t; otherwise, utility is said to be time non-separable because utility in
period t depends on both contemporaneous and lagged consumption.

35 In terms of the notation above, R2,t = (pt + dt)/pt−1.
36 Hansen, Heaton, and Yaron (1996) use a variation on Tauchen’s (1986) method to sim-

ulate the data.
37 See Section 1.3.1.
38 It should be noted that et+2(θ) is a transformed version of the Euler equation associated

with this model.
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Hansen, Heaton, and Yaron’s (1996) evidence for the two step and iterated
estimators tends to corroborate the findings from the previous studies. There-
fore, we do not report specific details save to note that they find asymptotic
theory tends not to be a good guide in samples T = 100; whereas, it is rea-
sonably accurate for the iterated estimator with T = 400 for the model with
q − p = 1, but not in the model with q − p = 5. Instead, we focus our discus-
sion on how their results illuminate the relative properties of the iterated and
continuous updating estimators. The most striking feature of this comparison
is that the continuous updating estimator converges to very extreme values in a
small but significant number of the replications whereas the iterated estimator
does not.39 This behaviour is the source of two key differences between the
simulated distributions of the estimators. First, the simulated distribution of
the continuous updating estimator exhibits far longer tails than those of the
iterated estimator. Secondly, these extreme values are not evenly distributed
between the left and right tails and so cause an asymmetry in the simulated
distribution of the continuous updating estimator which does not appear to be
present for the iterated estimator. Both these features manifest themselves in
the moments of the simulated distribution, and so impact on the comparison of
the estimators. For example, if bias is measured as the difference between the
true value and the median of the simulated distribution then in most cases – but
not all – the continuous updating estimator exhibits less bias than the iterated
estimator. However, if the median is replaced by the mean in the previous cal-
culation, then in most cases the ranking is reversed. This tail behaviour leads
Hansen, Heaton, and Yaron (1996) “from the standpoint of obtaining estimates,
we see no particular advantage to using continuous updating when minimizing
GMM criterion functions”[p.278]. However, they also note that the use of the
continuous updating estimator may be advantageous for inference. Specifically,
they find that the overidentifying restrictions test based on the continuous up-
dating estimator tends to exhibit empirical size closer to its nominal value than
its counterpart based on the iterated estimator. It is worth noting that this
conclusion regarding the relative merits of the iterated GMM and the continu-
ous updating estimator appears to be in conflict with that based on their Nagar
type expansions; see (6.22)–(6.23) in the previous sub-section. These differing
conclusions may reflect the different contexts: the Nagar expansions are for
static models and the simulation results are for a dynamic model. Further work
is needed to reconcile the results from these two approaches.

The simulation studies described above shed little light on what factors effect
the behaviour of Ŝ−1

T . To gain some insight into this question, it is useful to
recall both the form of the long run variance and the estimators. It can be
recalled from Section 3.5 that

S = Γ0 +

∞
∑

i=1

(Γi + Γ
′

i)

39 Also see Section 3.7.
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and our basic strategy for estimating this matrix is to use a weighted sum
of the sample autocovariance matrices.40 So there are two natural questions:
– what factors affect the convergence of the sample autocovariances to their
population counterparts? – and what factors affect the convergence of our
weighted sum of autocovariances to S? The answer to the first depends on
the nature of the nonlinearity in f(vt, θ). The answer to the second depends in
part on the weighted sum involved. We have reviewed the extensive literature
on covariance matrix estimation already, and below we discuss some further
simulation evidence on this issue. However, before that, it is useful to expand
a little on the answer to the first question.

For the purposes of this discussion, we can confine attention to polynomial
powers of a scalar random variable vt. For simplicity, assume that {vt; t =
1, 2, . . . T} is an independent sequence and vt ∼ N(0, 1). As we have seen, the
GMM estimation strategy exploits the convergence in probability of sample to
population moments, that is

T−1
T
∑

t=1

vk
t

p→ E[vk
t ] = µk, say. (6.28)

While this result holds for any k, the variability of the sample moment depends
on k in a rather simple – but striking – fashion. It is straightforward to show
that

V ar[T−1
T
∑

t=1

vk
t ] = σ2

k/T

where σ2
k = V ar[vk

t ], and under our assumptions it follow that σ2
1 = 1, σ2

2 = 2,

σ2
3 = 15, σ2

4 = 96, σ2
5 = 945 and so on.41 So, for example, T−1

∑T
t=1 v4

t exhibits
96 times as much variability as the sample mean in any sample size! Or put
another way, the variance of the sample mean is 0.1 when T = 10, but it takes a
sample of size 960 to achieve the same precision for T−1

∑T
t=1 v4

t . These simple
calculations indicate that the convergence of sample moments is very sensitive
to the form of the nonlinearity. This example is not without practical relevance
either. Polynomial powers naturally occur in the population moment conditions
used in many studies, and these calculations provide a simple intuition behind
the findings in a number of the simulation studies listed in Table 6.2.

We now turn our attention to a simulation study of GMM in stochastic
volatility models which involves moment conditions of the type in (6.28) and
also HAC estimators. Andersen and Sørensen (1996) consider the following
simplified version of the model in Section 1.3.5

yt =
√

xtet

ln(xt) = θ1 + θ2ln(xt−1) + θ3ut

40 For the purposes of this discussion, we exclude ŜV ARMA which is not considered in any
of the simulation studies listed in Table 6.2.

41 For the standard normal distribution, E[vk
t ] = (k − 1)(k − 3) . . . 3.1.; see Johnson and

Kotz (1970) [p.47].
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where (et, ut) ∼ i.i.d.N(0, I2).
42 Note that this version of the model is used both

to generate the data and is also the assumed specification for the estimation.
Therefore, there are only three parameters to be estimated: θ = (θ1, θ2, θ3)

′. It
can be recalled from Section 1.3.5 that the normality assumptions yields an infi-
nite number of possible population moment conditions. Andersen and Sørensen
(1996) consider estimation based on various permutations of the moment con-
ditions but for our purposes here it is sufficient to concentrate on just four
choices. Below we just list the moments of yt involved; the exact form of the
associated population moment condition can then be deduced from (1.48).43 To
this end, we define mi = |yt|i, for i = 1, 2, 3, 4; mi = E[|ytyt−i|], for i = 4 + j,
j = 1, 2 . . . 10; mi = E[y2

t y2
t−i], for i = 14 + j, j = 1, 2, . . . 10. The four sets of

population moment condition are then given by:

M5 : m1, m2, m4, m6, m15

M9 : m1 − m5, m7, m9, m16, m18

M14 : m1 − m4, m6, m8, m10, m12, m14, m15, m17, m19, m21, m23

M24 : m1 − m24

Andersen and Sørensen (1996) report results for the two- and three-step estima-
tors.44 They consider different choices of θ for the parameter generation, and
sample sizes of T = 500, 1000, 2000, 4000 and 10, 000. While the latter may seem
large numbers, they are not uncommon in the the high frequency data to which
these models are applied. In spite of these sizes, Andersen and Sørensen (1996)
report that their numerical algorithm experienced non-convergence problems in
the smaller sample sizes; further details of the source of these problems and how
they were addressed can be found in their paper.

Andersen and Sørensen (1996) report results for various choices of kernel
and bandwidth in HAC estimator. We begin, as they do, with the case in which
a Bartlett kernel is used with bT = 10. In terms of our four questions above,
the results suggest the following:

1. Bias: There are quite substantial biases at T = 500 but tend to disappear
quickly as the sample size increases. The bias tends to be smallest with
M9 at T = 2000 and with M14 for the larger samples.

2. C.I.’s: For T > 1000, the empirical coverage is reasonably close to the
nominal value if M9 or M14 are used. However, if M24 is used then the
studentized coefficient – that is (θ̂T,i − θ0,i)/s.e.(θ̂T,i) – exhibits a marked
leftward skewness even at T = 10, 000.

3. JT : The results reveal an interesting pattern. As the number of moment
conditions increase the distribution of JT shifts to the right, and, for a
given set of moment conditions, the distribution shifts to the left as T

42 This model can be obtained using the following restrictions in (1.45)–(1.47): y(τt) = yt,
x(τt) = xt, dt = 1, η = θ2 − 1, α = 0, β = −1, γ = 0, δ = θ1, ζ = θ3 and ρ = 0.

43 Note that in this simple model wt(θ) = yt.
44 The “three-step” estimator is the iterated estimator with Imax = 3.
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increases. However, there is little evidence that the statistic is converging
to its asymptotic distribution even at these sample sizes. The empirical
size is closest to its nominal value at T = 1000, T = 2000 and T = 4000
for respectively M9, M14 and M24. If fewer moment conditions are used
than this prescription at a given sample size then the test rejects too
frequently; if too many are used then the test rejects too infrequently.

4. Iteration: There is no systematic difference between the two- and three-
step estimators.

In qualitative terms, these results are broadly similar for various types of
HAC estimators. However, Andersen and Sørensen (1996) report that the qual-
ity of the asymptotic approximation is improved by the use of the prewhitening
and recoloring advocated by Andrews and Monahan (1992), and also the data
based bandwidth selection method proposed by Newey and West (1994). The
evidence also suggests the Bartlett kernel is to be prefered over the quadratic
spectral in this model, which is counter to asymptotic theory.45 At the same
time, it should be noted that the evidence suggests the choice between these
HAC estimators is of second order of importance. All the HAC estimators con-
verge fairly slowly to their limit in this class of models. A similar finding is
reported by Burnside and Eichenbaum (1996), Christiano and den Haan (1996)
and West and Wilcox (1996) albeit to differing degrees depending on the setting
in question.

Two features of Andersen and Sørensen’s (1996) results stand out. First, a
large sample size is needed for asymptotic theory to approximate finite sample
behaviour in these models, and secondly the quality of the approximation de-
pends on the choice of moments. The culprit in the first case is ŜT . Andersen
and Sørensen (1996) compare ŜT with its simulated population long run vari-
ance, and find that the former is clearly exhibiting considerable bias and varia-
tion even at T = 10, 000. Given that the moment conditions involve polynomial
powers, such behaviour would be anticipated for the reason given above. How-
ever, there may be another facet to this explanation. Altonji and Segal (1996)
argue that in models of covariance structure this slow convergence means that
Ŝ−1

T and T 1/2gT (θ̂T ) exhibit a correlation in sample sizes which has a nega-
tive impact on the quality of the asymptotic approximation.46 Since stochastic
volatility models involve variances Altonji and Segal’s (1996) arguments may
well apply here as well. Andersen and Sørensen (1996) also uncover an interest-
ing explanation for the sensitivity of the quality of the asymptotic approximation
to the choice of moment conditions. They calculate the asymptotic variances of
the GMM estimator implied by the four choices. These figures reveal a dramatic
drop in variance with the move from M5 to M9, a smaller, but still marked,
drop in variance with the move from M9 to M14, but only a slight drop in

45 In contrast, the studies by Burnside and Eichenbaum (1996) and Christiano and den
Haan (1996) find no clear ranking between the two kernels is possible. See Section 3.5.3 for
further discussion of their relative merits.

46 Recall they are statistically independent in the limit because the former converges in
probability to S−1, a matrix of constants.
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variance with the move from M14 to M24. It can be recognized that these cal-
culations are a good predictor of the finite sample behaviour described above,
that is the properties of the estimator tended to improve as q increased – at
least in the larger samples – until we reached M14, but then deteriorated with
move from M14 to M24. These calculations indicate that whether or not it is
beneficial to expand the population moment condition in finite samples from
E[f1(vt, θ0)] = 0 to E[f1(vt, θ0)] = 0, E[f2(vt, θ0)] = 0 depends on both the
precise definitions of E[f1(vt, θ0)] = 0 and E[f2(vt, θ0)] = 0 and also their inter-
relationship. So in these terms, it can be recognized that this conclusion echoes
the one drawn from the calculations based on the Nagar type approximation to
the bias of the linear IV estimator reported in the previous section.

Since the move from M14 to M24 has only a marginal impact on the asymp-
totic variance of the estimator, this expansion of the population moment con-
dition appears to introduce what might be viewed as nearly redundant moment
conditions. Therefore, this last set of results appears to suggest that the inclu-
sion of redundant or nearly redundant moment conditions can lead to a dete-
rioration in the finite sample properties of the estimator. Such an explanation
would certainly accord with the intuition gained from the Nagar type approx-
imation calculated by Imbens (2002) discussed in Section 6.2.2. However, this
example gives no sense of whether the inclusion of redundant moment conditions
can have such dramatic effects on the quality of the asymptotic approximation.
While Andersen and Sørensen (1996) did not explicitly pursue this issue further,
Hall and Peixe (2003) provide simulation evidence which does corroborate this
conclusion albeit in a different setting. They consider the following linear model

yt = xtθ0 + ut (6.29)

xt = Π
′

0zt + et (6.30)

where xt is a scalar and zt is a 12 × 1 vector. Putting v
′

t = [ut, et, z
′

t], artif-
ical data are generated using vt ∼ IN(0,Σv) where the main diagonal of Σv

are all set to unity, and the only non-zero off diagonal elements are Σv(1, 2) =
Σv(2, 1) = cov(ut, et) = 0.5. The parameters are set to θ0 = 0 and Π

′

0 =
[0.5, 0.5, 0, . . . 0]. Notice that within this design, [zt,3, zt,4, . . . zt,12] are redundant
given (zt,1, zt,2). Hall and Peixe (2003) consider the behaviour of the set of IV es-

timators {θ̂T (i); i = 1, 2, . . . 12} where θ̂T (i) is given by (2.8) evaluated at WT =
(T−1Z ′Z)−1, zt = zt(i) and zt(i) is the i × 1 vector (zt,1, zt,2, . . . zt,i−1, zt,i)

′.47

This definition implies that, for i > 2, zt(i) contains i−2 redundant instruments.

Table 6.3 contains the simulated bias and root mean square error of θ̂T (i) along
with the mean and empirical rejection frequency of the t-statistic for the hy-
pothesis H0 : θ0 = 0 based on 10, 000 replications in the case where T = 100. It
is evident from these results that the quality of the asymptotic approximation
deteriorates as the number of redundant instruments increases. For example,
if there are up to three redundant instruments then the empirical rejection fre-
quency of the t-statistic is close to the nominal value of 10%; however, if there

47 Notice that, for this design, θ̂T (i) is the optimal two step estimator; see Section 2.4.
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are nine or ten redundant instruments then the empirical rejection frequency is
twice the nominal size.

Table 6.3
Consequences of the inclusion of redundant instruments

i bias rmse tstat size

1 −0.030 0.371 0.084 0.075
2 −0.000 0.146 0.140 0.095
3 0.010 0.143 0.211 0.099
4 0.021 0.142 0.282 0.106
5 0.030 0.141 0.351 0.114
6 0.039 0.141 0.418 0.126
7 0.048 0.142 0.484 0.137
8 0.057 0.143 0.550 0.148
9 0.065 0.144 0.617 0.161

10 0.073 0.147 0.682 0.177
11 0.080 0.149 0.746 0.195
12 0.088 0.152 0.810 0.210

Source: Hall and Peixe (2003). Copyright Marcel Dekker; reprinted with permission.

Notes: bias and rmse are the simulated bias and rmse of θ̂T (i). tstat denotes the simulated
mean of t-statistic for H0 : θ0 = 0. size denotes the empirical size of the t-test with nominal
size 0.1.

While we have reviewed only four studies in detail, their results are repre-
sentative of this literature. In terms of our five questions, the overall findings
for the first four are as follows.

1. Bias: the estimator is approximately unbiased in some settings and not
in others. The bias tends to increase with q − p, the degree of overiden-
tification, and particularly with the inclusion of a number of redundant
moment conditions. However, a low value for q − p is not a guarantee
of the absence of bias because the bias is also sensitive to other aspects
of the model such as the functional form of moment condition, the time
series properties of the data and the choice of long run covariance matrix
estimator.

2. C.I.’s: the empirical coverage of the asymptotic confidence intervals is
sometimes close to the nominal value but more often tends to be less than
the nominal value. This means the asymptotic confidence intervals tend to
overstate the precision of the estimation in finite samples. The empirical
coverage tends to deteriorate with the inclusion of a number of redundant
moment conditions or in the presence of weak identification. The reliability
of the asymptotic approximation is also sensitive to the time series prop-
erties of the data and the functional form of the moment condition; the
approximation can be extremely unreliable in circumstances where these
two features of the model interact to cause the long run covariance matrix
estimator to be ill-behaved.
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3. JT : in some cases it is well approximated by a χ2
q−p, but in others this

approximation can be poor. In the latter cases, the test may either reject
or fail to reject too frequently depending on the model in question. While
there does not appear to be a systematic pattern to the relationship between
the empirical and nominal size, the discrepancy between them appears to be
larger in the presence of weak identification. The reliability of the asymp-
totic approximation is also sensitive to the time series properties of the
data and the functional form of the moment condition; the approximation
can be extremely unreliable in circumstances where these two features of
the model interact to cause the long run covariance matrix estimator to be
ill behaved.

4. Iteration: the quality of asymptotic approximation tends to be greatly im-
proved by iteration.

Since only one study has examined the continuous updating estimator to date,
our conclusions about the fifth question are more tentative. Nevertheless, for
completeness, we summarize them here.

5. Continuous updating: this version of the estimator tends to exhibit fat tails
which may have undesirable consequences for parameter estimation, but
the associated overidentifying restrictions test may be closer to its asymp-
totic distribution than its counterpart based on the iterated estimator.

6.4 Summary and Link to Following Chapters

In this chapter, we have investigated how well asymptotic theory approximates
behaviour in samples of the size encountered in practice. It seems fair to say
that the evidence is mixed. In some models of interest the approximation can be
good at samples of size 100, and in others it is bad even at samples a hundred
times larger. Furthermore, for a given functional form, the adequacy of the
approximation may be very sensitive to the parameter values used to generate
the artificial data. Perhaps only one thing can be said for certain, that is finite
sample behaviour is far more complex than would be predicted by asymptotic
theory.

In spite of this complexity, the following factors appear to play an important
role in determining the quality of the asymptotic approximation:

• the functional form of f(vt, θ0);

• the degree of overidentification, q − p;

• the interrelationship between the elements of f(vt, θ0);

• the quality of the identification;

• the estimator of the long run variance.



6.4 Summary and Link to Following Chapters 231

All these factors collectively point to the following conclusion: the exact choice
of population moment condition is crucial to the performance of the method.
This observation motivates the material covered in the next chapter. Two spe-
cific questions are addressed: – is there a feasible optimal choice of population
moment condition? – how can we select the right set of population conditions
for the problem in hand? Progress has been made with both questions, but at
the end of the day, there is still a need to explore methods for improving the
properties of inference techniques in finite samples. In Chapter 8, we examine
three methods for achieving this goal. The first is the use of the bootstrap
to provide more accurate critical points, the second is an asymptotic theory
which has been developed for the case in which some or all of the parameters
are weakly identified, and the third is an asymptotic theory in which the HAC
estimator converges to a random matrix.



7

Moment Selection in

Theory and in Practice

A researcher is typically faced with a large set of alternatives from which to
choose the q elements of the population moment condition. This choice can
be made in an ad hoc fashion, but it is clearly preferable to base selection of
f(.) upon statistical criteria which reflect the ultimate purpose of the analysis.
Throughout this chapter, we focus almost exclusively on the common case in
which the objective is to make inferences about θ0 based on the asymptotic
distribution theory developed in previous chapters. From this perspective, the
optimal choice of moment condition is the score vector because the resulting
GMM estimator is the MLE and the latter is known to be asymptotically ef-
ficient in the class of consistent uniformly asymptotically normal estimators.1

Unfortunately, as argued in Section 1.1, ML is infeasible in the types of model
listed in Table 1.1. Therefore, if any useful guidance is to be provided for these
settings then optimality must be judged relative to the class of moment con-
ditions employed in practice for the model under consideration. There have
been two distinct phases to the literature on moment selection within the GMM
framework. From the mid-1980s until the mid-1990s, attention focused on the
use of theoretical arguments to characterize the optimal choice of moment con-
dition within the class of GMM estimators known as Generalized Instrumental
Variables. More recently, attention has focused on data based methods for
moment selection using information criteria. Both phases of the literature are
reviewed in this chapter.

To begin this discussion, it is useful to consider what properties it is desir-
able for the selected moment condition to possess. Using the material from the
previous chapters, it is argued in Section 7.1 that the selected moment condi-
tion should satisfy three conditions: the orthogonality condition, the efficiency
condition and the non-redundancy condition. The latter two are most natu-
rally considered together and their combination is refered to as the relevance

1 See Section 3.8.

232
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condition. In addition, this section describes both the ways in which moment
selection complicates the concept of identification, and also how the use of the
data in moment selection has the potential to contaminate subsequent inferences
about θ0.

Section 7.2 reviews the available results on the efficient choice of moment
condition within Generalized Instrumental Variables (GIV) estimation. Within
this class of problems, the optimal choice of moment condition is found by char-
acterizing the optimal choice of instrument vector. The choice of instrument
vector involves two decisions: which elements of the information set should be
used? and, which functions of these elements (or variables) should be used as
instruments? Since the first question depends on the particular model under
consideration, the answer varies from case to case. Therefore, with few ex-
ceptions, the literature on optimal instruments has focused exclusively on the
second question. It turns out that the optimal functional form is relatively
straightforward to characterize in static models, but far more problematic in
dynamic models. The relative simplicity of the solution in static models makes
it far easier to develop an intuition for the form of the optimal instrument in
this context. It is therefore instructive to start by considering the static case,
and then to use these results as a stepping stone to the dynamic models which
are the focus of this book. Accordingly, we split our discussion into two parts
with Section 7.2.1 covering the static case and Section 7.2.2 considering the
extension to the dynamic case. In either case, the optimal functional form de-
pends on aspects of the data generation process which are typically unknown in
practice. One possible way forward is to estimate these unknown features of the
data generation process from the sample, and then substitute these estimates
into the formula for the optimal instrument. However, these auxilliary esti-
mations encounter a number of practical problems which are also described in
Section 7.2. In fact, these problems tend to be of sufficient magnitude that the
“optimal instrument” is rarely used in applications. Therefore, this literature is
best viewed as providing an efficiency bound for GIV estimators rather than a
practical method for instrument selection. This bound can be used to compare
the efficiency of GIV with other estimators, and Section 7.2.3 provides a brief
review of the available results of this type.

In contrast to the setting just described, a researcher must decide which
moments to choose without knowledge of the underlying data generation pro-
cess. In such circumstances, moment selection must perforce be based upon
the data, and this is a key feature of all the methods recently proposed in the
literature. These methods are reviewed in Section 7.3. Section 7.3.1 deals with
selection based on the orthogonality condition and Section 7.3.2 deals with se-
lection based on the relevance condition. Section 7.3.3 discusses their sequential
use to provide a practical method for moment selection and illustrates it us-
ing Hansen and Singleton’s (1982) consumption based asset pricing model. The
methods reviewed in Section 7.3.1–7.3.3 can be applied to any GMM estimator
that satisfies the types of regularity condition in Chapter 3. There has also been
some related work within the more restrictive setting of GIV estimation. These
methods are briefly reviewed in Section 7.3.4.
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7.1 Preliminaries

To consider the problem of moment selection, it is necessary to introduce some
additional notation. It is assumed that the candidate set of scalar functions
which can form the basis for the population moment condition is finite. It is
convenient to stack these scalar functions into a single vector fmax(.) whose
dimension is denoted by qmax. Following Andrews (1999), we use a (qmax × 1)
selection vector c to denote which elements of the candidate set are included in
a particular moment condition. We therefore now index f(.) by c; cj = 1 implies
the jth element of fmax(.) is included in f(.; c), and cj = 0 implies this element
is excluded. Note that |c| = c′c equals the number of elements in f(.; c). The
set of all possible selection vectors is denoted by C, that is

C = { c ∈ ℜqmax ; cj = 0, 1, for j = 1, 2, . . . qmax,

and c = (c1, c2, . . . cqmax
), |c| ≥ p }

Below we use csel to denote the element of c that indexes the “selected” moment
condition. For the present, we need not concern ourselves with how this element
is selected.

To assess what properties are desirable for the selected moment condition,
it is necessary to consider the objective of the estimation. Throughout this
chapter, we follow the empirical literature and assume that this objective is
to make inferences about θ0 based on the two step (or iterated) estimator
using the GMM asymptotic distribution theory developed in previous chap-
ters.2 For purposes of discussion, it is useful to restate the appropriate ver-
sion of Theorem 3.2 in terms of the notation used here. Accordingly, define
θ̂T (c) to be the GMM estimator based on E[f(vt, θ; c)] = 0, and let Vθ(c) de-
note the matrix [G0(c)

′S(c)−1G0(c)]
−1 where G0(c) = E[∂f(vt, θ0; c)/∂θ′] and

S(c) = limT→∞ V ar[T−1/2
∑T

t=1 f(vt, θ0; c)]. The distributional result in The-
orem 3.2 can then be restated as

T 1/2[θ̂T (c) − θ0]
d→ N (0, Vθ(c) ) (7.1)

Our list of three desirable properties for the selected moment condition arises
from a consideration of the first and second moment properties of this asymp-
totic distribution, and of its quality as an approximation to finite sample be-
haviour.

The distribution in (7.1) has a mean of zero, and so embodies the assumption
that the GMM estimator is consistent for the true value θ0. From Section 3.4, it
is clear that Assumptions 3.3 plays a crucial role in the derivation of this result,
and so it is desirable for this condition to be satisfied by the selected vector.
This observation leads to the following condition.

2 It should be noted that while this objective is common to many of the studies in Table
1.1, it is not shared by all. For example, in some cases the main focus of the study is a point
estimate of a particular parameter and this may necessitate alternative criterion for moment
selection; see Section 7.3.4 for further discussion.
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Definition 7.1 Orthogonality Condition
The selected moment condition satsifies Assumption 3.3, that is E[f(vt, θ0; csel)]
= 0.

If this condition is satisfied, then the asymptotic distribution can be viewed as
having the desirable first moment properties.

In most cases, there is more than one element of C which yields a moment
condition satisfying the orthogonality condition. It is clearly most desirable to
base inference on the moment condition with the smallest variance in a matrix
sense. This leads to the following efficiency condition.

Definition 7.2 Efficiency Condition
The selected moment condition is efficient, that is Vθ(c) − Vθ(csel) is positive

semi-definite for all c ∈ C such that E[f(vt, θ0; c)] = 0.

If this condition is satisfied, then the asymptotic distribution can be viewed as
having desirable second moment properties.

It can be recalled from Theorem 6.1 that asymptotic variance can never
increase as q increases. Therefore, the efficiency condition can be met by basing
the estimation upon the moment condition consisting of all elements of the
candidate set that satisfy the orthogonality condition. However, simulation
evidence indicates that the inclusion of redundant moment conditions can lead
to a deterioration in the quality of the asymptotic approximation to finite sample
behaviour.3 This consideration motivates the non-redundancy condition.

Definition 7.3 Non-Redundancy Condition
No individual element of E[f(vt, θ0; csel)] = 0 is redundant given the remaining
elements.

It should be noted that, to date, there are no theoretical results on the deter-
minants of the quality of the asymptotic approximation in nonlinear dynamic
models that might provide a basis for selecting moments so that this approxi-
mation is good. Selection based on non-redundancy is best viewed, therefore,
as a way of avoiding a situation in which the quality of the approximation can
be very bad.

Both the efficiency and non-redundancy conditions relate to the asymptotic
variance of the estimator, and so it proves useful to treat them simultaneously
on occasion in moment selection. For expositional brevity, we refer to this
combination as the relevance condition.

Definition 7.4 Relevance Condition
The selected moment condition is said to be relevant for the estimation of θ0 if
it satisfies both the efficiency and non-redundancy conditions.

The remainder of this chapter focuses on methods for moment selection based
on the conditions above. Section 7.2 reviews the literature on the characteri-
zation of choice of moment condition that satisfies the efficiency condition in a

3 See Section 6.3
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class of Generalized Instrumental Variables estimators. Sections 7.3.1 and 7.3.2
describe methods for moment selection based on the orthogonality condition
and relevance condition respectively, and Section 7.3.3 considers their combined
use in a sequential fashion.

It might be wondered why the identification condition (Assumption 3.4) did
not enter the discussion, particularly since this assumption played a crucial
role in the analysis in Chapter 3. The reason is that the issue of identification
is going to become much more complex once allowance is made for moment
selection. In Chapters 3 and 4, all the analysis is conditional on a given choice
of f(.). For example, the model is said to be correctly specified if there exists a
value θ0 such that E[f(vt, θ0)] = 0, and θ0 was said to be identified if there is
no other value of θ which satisfies this moment condition. The setting here is
different because, by its very nature, moment selection means we must consider
different choices of f(.). Now it is entirely possible for two different choices of
moment condition to satisfy the orthogonality condition at different parameter
values, that is both E[f(vt, θ1; c1)] = 0 and E[f2(vt, θ2; c2)] = 0. As seen below,
each of the proposed moment selection methods involves its own particular
assumption about identification that must hold if the method is to have the
desired properties.

We conclude this section by considering a further way in which moment
selection complicates the analysis. The methods described in Section 7.3 are
based on the data. However, once the data are employed in this way, a poten-
tial problem emerges. All the asymptotic theory developed in Chapters 3 and
5 is premised on the assumption that f(.) is fixed a priori. If f(.) is selected
from the data then the choice of moment condition may be random, and hence
the asymptotic properties of the resulting estimator would depend on the sta-
tistical properties of the selection method. From a practical perspective, it is
simpler by far if we can proceed with our inference about θ0 as if the selected
moment condition had been fixed a priori. We refer to this requirement as the
inference condition. This issue has been addressed in the literature by provid-
ing conditions under which the data based selection vector, ĉT say, converges in
probability to a constant vector because in this case the validity of the inference
condition can be deduced from the following lemma due to Pötscher (1991).

Lemma 7.1 Sufficient Conditions for the Inference Condition
Let ĉT , c0 ∈ C and let hT (c) be any statistic based on E[f(vt, θ0; c)] = 0. If

ĉT
p→ c0 then hT (ĉT ) − hT (c0) = op(1).

If hT (ĉT ) − hT (c0) = op(1) then hT (ĉT ) has the same asymptotic properties
as hT (c0). This lemma provides a theoretical justification for proceeding with
inference as if c has been set equal to c0 a priori but, as Pötscher (1991) observes,
this result must be interpreted with some caution. The convergence is only
pointwise, and Pötscher (1991) shows that the convergence may not be uniform
in some cases of interest. As a result, the asymptotic distribution of hT (c0) may
provide a very poor approximation to the distribution of hT (ĉT ) even in large
samples. Pötscher (1991) demonstrates this lack of uniform convergence in an
example where the dimension of the parameter vector is related to the dimension
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of the model. To date, it is unclear whether these arguments translate to the
setting here in which the dimension of the parameter vector is independent of the
moment selection. In the absence of a theoretical resolution, the only guidance
available is from simulation studies and these studies are reviewed on a case by
case basis below. Finally, it is useful to introduce an item of terminology. It is
customary in the model selection literature to say that ĉT is consistent for c0 to

describe the situation in which ĉT
p→ c0, and we follow this practice below.

7.2 The Optimal Instrument

In this section, we restrict attention to a class of GMM estimators known as
Generalized Instrumental Variables (GIV) for which the efficient choice of mo-
ment condition is characterized by finding the efficient choice of instrument. It
is customary to refer to this efficient choice as the “optimal instrument” for rea-
sons that become apparent, and we follow this practice. Although our running
empirical illustration is actually an example of GIV, we have not yet discussed
this particular class of GMM estimators in its general form.4 Since the structure
of the associated population moment condition is crucial for our analysis here,
we begin by providing a formal definition of the GIV estimator.

Within the GIV framework, the population moment condition is based on
the statistical orthogonality of two vectors. These two vectors are denoted here
by ut(θ0) and zt−m. The vector ut(θ0) consists of functions of the data and the
unknown parameter vector, and satisfies the conditional moment restriction

E[ut(θ0)|Ωt−m] = 0 (7.2)

where Ωt−m is the infomation set at time t − m for some non-negative integer
m. The exact definitions of Ωt−m and m depend on the assumptions about
the dynamic structure, and so are provided below on a case by case basis.
In applications, (7.2) represents the information derived from the underlying
economic/statistical model. The instrument vector zt−m consists of a vector of
functions of elements of the information set, and so satisfies

zt−m ∈ Ωt−m (7.3)

Using an iterated expectations argument,5 equations (7.2) and (7.3) can be
combined to deduce the population moment condition,

E[zt−m ⊗ ut(θ0)] = 0 (7.4)

Hansen and Singleton (1982) refer to GMM estimation based on (7.4) as Gen-
eralized Instrumental Variables estimation. In view of the genesis of (7.4), the
researcher needs only to decide which zt−m to use in order to implement GIV.

4 GIV is also used to estimate the conditional capital asset pricing model (Section 1.3.3)
and the inventory holdings model (Section 1.3.4).

5 See Section 1.3.1.
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Therefore, within this framework, the problem of moment selection reduces to
one of instrument selection.

In the literature on optimal instruments, it is customary to work with a
slightly modified version of the population moment condition.6 Instead of (7.4),
the population moment condition takes the form

E[f(vt, θ0)] = E[Zt−mut(θ0)] = 0 (7.5)

where ut(θ0) is a (s × 1) vector of functions which satisfies (7.2), Zt−m is a
(q×s) matrix and Zt−m ∈ Ωt−m. If GMM estimation is based on the population
moment condition in (7.5) with the optimal choice of weighting matrix then it
follows from Theorems 3.2 and 3.4 that

T 1/2(θ̂T − θ0)
d→ N ( 0, V (Z)) (7.6)

where

V (Z) = {E[

(

∂ut(θ0)

∂θ′

)′

Z
′

t−m] S−1
Z E[Zt−m

∂ut(θ0)

∂θ′
]}−1 (7.7)

for SZ = limT→∞ V ar[T−1/2
∑T

t=1 Zt−mut(θ0)]. Since this distribution is cen-
tred on zero by construction, the optimal choice of Zt is the one which minimizes
V (Z) in a matrix sense.

Below we use the notation Z0
t−m to denote the optimal instrument. Since

this optimality is relative to the class of instruments which lead to an asymptotic
distribution of the form (7.6)–(7.7), it is necessary that the optimal instrument
satisfies the regularity conditions for Theorem 3.2. It is most convenient to
impose these regularity conditions up front. Since our focus here is on the
functional form of the optimal instrument, we adopt the following high level
assumption.7

Assumption 7.1 Regularity Conditions for the Optimal Instrument
f(vt, θ0) = Z0

t−mut(θ0) satisfies the regularity conditions for Theorem 3.2.

7.2.1 Static Models

For this part of our discussion, ergodicity is replaced by the following more
restrictive assumption.

Assumption 7.2 Independence
{vt; t = 1, 2, . . . T} forms an independent sequence.

Notice that Assumptions 3.1 and 7.2 together imply {vt} forms an independent
and identically distributed process.

To proceed further, it is necessary to put some structure on the information
set which appears in (7.2). Throughout this book, {vt} is taken to be a time

6 This difference facilitates the analysis but makes no difference to the ultimate result.
7 More primitive conditions can be found in either Gallant (1987), Newey (1993) (for the

iid case) or Wooldridge (1994).
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series. Assumption 7.2 implies that vt is independent of the history of the pro-
cess, Vt−1 = (vt−1, vt−2, . . .). Furthermore, by construction Vt−1 is observable
at time t and so must lie in the information set. However, the information set
must contain more than this if GMM estimation is to work here. To see why,
consider the static linear model in Chapter 2 and suppose that xt−1 is used
as an instrument for xt. In this case, it follows from Assumption 2.3 that the
condition for identification is rank{E[xt−1x

′

t]} = p. However, if vt, and hence
xt, is i.i.d. then

E[xt−1x
′

t] = E[xt−1]E[xt]
′

= µxµ
′

x, say

which is rank one by construction. To avoid this problem, it is necessary for
the information set to contain some contemporaneous variables. Therefore, we
partition vt into vt = (v1,t, v2,t)

′ and define the information set to be Ωt =
{v2,t, Vt−1}. This structure also means that expectations conditional on Ωt are
identical to those conditional on v2,t, and so we use the notation E[ . | v2,t] for
E[ . |Ωt] below.

The optimal choice of Zt is given by the following theorem.

Theorem 7.1 The Optimal Choice of Instrument in Static Models
If (i) vt satisfies Assumptions 3.1 and 7.2; (ii) Assumption 7.1 holds with m = 0;
then the optimal choice of Zt in (7.5) is given by

Z0
t = K E[∂ut(θ0)/∂θ′ | v2,t]

′Σ−1
u|v2

where K is any (p × p) nonsingular matrix of finite constants and Σu|v2
=

E[ut(θ0)ut(θ0)
′|v2,t]. This optimal choice leads to a GMM estimator with asymp-

totic covariance matrix

V (Z0) =
{

E
[

E[∂ut(θ0)/∂θ′ | v2,t]
′Σ−1

u|v2

E[∂ut(θ0)/∂θ′ | v2,t]
]}−1

Proof:
Let θ̂T (Z) denote the GIV estimator based on (7.5) with the optimal weighting

matrix, and θ̂T (Z0) denote the GIV estimator based on (7.5) with Zt = Z0
t .

Notice that Z0
t is (p × s) and so the choice of weighting matrix is immaterial in

this case.
The proof rests on using

θ̂T (Z) = θ̂T (Z0) + [θ̂T (Z) − θ̂T (Z0)] (7.8)

to derive an explicit formula for V (Z) − V (Z0) = D(Z). It is then shown that
D(Z) is positive semi-definite for any choice of Z, which establishes the desired
result.

The matrix D(Z) depends on certain asymptotic variances and covariances.
It is most convenient to define these terms prior to the derivation. These defini-
tions rest on the random vectors which determine the asymptotic distributions
of θ̂T (Z) and θ̂T (Z0). From (3.26) it follows that

T 1/2[θ̂T (Z) − θ0] = T−1/2
T
∑

t=1

mt(Z) + op(1) (7.9)
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where

mt(Z) = − [FZ(θ0)
′FZ(θ0)]

−1FZ(θ0)
′

S
−1/2
Z Ztut(θ0) (7.10)

and FZ(θ0) = S
−1/2
Z E[Zt∂ut(θ0)/∂θ′]. Similarly, the corresponding expression

for the optimal GIV estimator is given by

T 1/2[θ̂T (Z0) − θ0] = T−1/2
T
∑

t=1

mt(Z
0) + op(1) (7.11)

where

mt(Z
0) = − {E[Z0

t ∂ut(θ0)/∂θ′]}−1Z0
t ut(θ0) (7.12)

and we have set K = Ip without loss of generality.8 The derivation of D(Z) is
most readily understood if we adopt a notation which explicitly reflects the vari-
ance/covariance nature of the terms. Accordingly, we introduce the following
definitions

Avar[θ̂T (Z)] = lim
T→∞

V ar[T−1/2
T
∑

t=1

mt(Z)]

Avar[θ̂T (Z0)] = lim
T→∞

V ar[T−1/2
T
∑

t=1

mt(Z
0)]

Acov[θ̂T (Z), θ̂T (Z0)] = lim
T→∞

E[T−1
T
∑

t=1

mt(Z){
T
∑

t=1

mt(Z
0)}′

]

Avar[θ̂T (Z) − θ̂T (Z0)] = lim
T→∞

V ar[T−1/2
T
∑

t=1

dt(Z)]

Acov[θ̂T (Z0), θ̂T (Z) − θ̂T (Z0)] = lim
T→∞

E[T−1
T
∑

t=1

mt(Z
0){

T
∑

t=1

dt(Z)}′]

= C, say

where dt(Z) = mt(Z) − mt(Z
0) and the “A” prefix stands for asymptotic.

Notice that Avar[θ̂T (Z)] and Avar[θ̂T (Z0))] are just the matrices V (Z) and
V (Z0) given in (7.7) and Theorem 7.1.

We are now in a position to derive D(Z). From (7.8), it follows that

T 1/2[θ̂T (Z) − θ0] = T 1/2[θ̂T (Z0) − θ0] + T 1/2[θ̂T (Z) − θ̂T (Z0)]

and so

Avar[θ̂T (Z)] = Avar[θ̂T (Z0)] + Avar[θ̂T (Z) − θ̂T (Z0)]

+ C + C ′ (7.13)

8 Note that V (Z0) is invariant to K.
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Equation (7.13) can be rearranged to show that

D(Z) = Avar[θ̂T (Z) − θ̂T (Z0)] + C + C ′ (7.14)

Since Avar[θ̂T (Z) − θ̂T (Z0)] is positive semi-definite by construction, it is suffi-
cient to establish that C = 0 in order for D(Z) to be positive semi-definite. So
we now focus on the matrix C.

From the definition of a covariance, it follows that

C = Acov[θ̂T (Z), θ̂T (Z0)] − Avar[θ̂T (Z0)]

= Acov[θ̂T (Z), θ̂T (Z0)] − V (Z0)

and so
C = 0 ⇐⇒ Acov[θ̂T (Z), θ̂T (Z0)] = V (Z0)

It is at this stage that the static nature of the model is exploited because
Assumption 7.2 implies Acov[θ̂T (Z), θ̂T (Z0)] = E[mt(Z)mt(Z

0)′]. Using an
iterated conditional expectations argument, it follows that

E[mt(Z)mt(Z
0)′] = [FZ(θ0)

′FZ(θ0)]
−1FZ(θ0)

′S
−1/2
Z E[Zt E[ut(θ0)ut(θ0)

′

×|v2,t] Z0
t

′
]{E[(∂ut(θ0)/∂θ′)

′

(Z0
t )

′

]}−1

= [FZ(θ0)
′FZ(θ0)]

−1FZ(θ0)
′S

−1/2
Z E[ZtΣu|v2

Z0
t

′
]

×{E[(∂ut(θ0)/∂θ′)
′

(Z0
t )

′

]}−1 (7.15)

Using the definition of Z0
t , it follows that

E[ZtΣu|v2
Z0

t
′
] = E [Zt E[∂ut(θ0)/∂θ′ | v2,t]] (7.16)

Now,
∂ut(θ0)/∂θ′ = E[∂ut(θ0)/∂θ′ |Ωt] + At (7.17)

where E[At | Ωt] = 0. Since Zt ∈ Ωt, it follows from (7.16)-(7.17) that

E[ZtΣu|v2
Z0

t
′
] = E [Zt E[∂ut(θ0)/∂θ′ | v2,t]]

= E [Zt E[∂ut(θ0)/∂θ′ | Ωt]]

= E[Zt∂ut(θ0)/∂θ′] (7.18)

Substsituting (7.18) into (7.15), we obtain

E[mt(Z)mt(Z
0)′] = [FZ(θ0)

′FZ(θ0)]
−1FZ(θ0)

′FZ(θ0){E[(∂ut(θ0)/∂θ′)
′

Z0
t

′

]}−1

= V (Z0)

where the last identity follows from (7.17) by similar logic to (7.18). Therefore
C = 0 and so D(Z) is positive semi-definite which establishes the desired result.
⋄
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One aspect of the proof is worth commenting on. Notice that C = 0 implies
that T 1/2[θ̂T (Z0)−θ0] is asymptotically uncorrelated with T 1/2[θ̂T (Z) − θ̂T (Z0)]
for any other choice of instrument Z.9

At first sight, it is not obvious why Z0
t is the optimal instrument. To help

develop an intuition for this result, we consider three simple examples involving
linear models. The first example shows that Theorem 7.1 leads to an IV estima-
tor which corresponds with the estimation approach proposed in the literature
on linear simultaneous equations models. The second two examples illuminate
the role of Σu|v2

in the construction of Z0
t . After these examples, it is shown

how the intuition from linear models can also be used to understand the form
of the optimal instrument in nonlinear models.

Example: Linear Model with s = 1 and Conditional Homoscedasticity
In Chapter 2, we consider the case in which the population moment condition
takes the form,

E[ztut(θ0)] = 0 (7.19)

where ut(θ0) = yt−x
′

tθ0. Notice that if we set zt = Zt−m then (7.19) is a special
case of (7.5). For our puposes here, it is sufficient to restrict attention to the
case in which p = 1 and so xt is a scalar. We also now add the restriction that
ut(θ0) is conditionally homoscedastic, and denote this variance by Σu|v2

= σ2
0 .

Since ∂ut(θ0)/∂θ = −xt, the optimal instrument is given by

Z0
t = − k

σ2
0

E[xt | v2,t]

for any non-zero finite constant k. However, since k can take any such value,
we are free to set k = −σ2

0 in which case the optimal instrument reduces to
Z0

t = E[xt | v2,t]. In other words, the optimal instrument is just the part of xt

which can be explained by v2,t. It can be verified that the resulting IV (GIV)
estimation with zt = Z0

t is identical to OLS estimation of θ0 based on10

yt = E[xt | v2,t]θ0 + ũt

The latter is described by Theil (1971)[p.452] as “an obvious estimation pro-
cedure” in his discussion of estimation in linear simultaneous equation models.
⋄

Example: Linear Model with s = 1 and Conditional
Heteroscedasticity
Suppose now that we modify the previous example by introducing conditional
heteroscedasticity in ut(θ0), that is E[ut(θ0)

2|v2,t] = σ2
t , but leave all other

9 West (2001) uses this property to characterize the optimal instrument, and considers
conditions under which this holds in dynamic models.

10 Recall that by definition of the conditional expectation, xt = E[xt | v2,t] + et where
E[et|v2,t] = 0.
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aspects of the specification the same. In this case, the optimal instrument takes
the form

Z0
t = − k

σ2
t

E[xt | v2,t]

for any non–zero finite constant k. This time, it is not possible to eliminate σ2
t

by judicious choice of k – although we can set k = −1 to remove the minus sign.
In this case, Σ−1

u|v2

scales E[∂ut(θ0)/∂θ|v2,t] to take account of the conditional

heteroscedasity in ut(θ0). ⋄

Example: Linear Model with s = 2 and Conditional Homoscedasticity
Now suppose that

ut(θ0) =

[

y1,t − x
′

1,tθ0,1

y2,t − x
′

2,tθ0,2

]

where θ0 = (θ
′

0,1, θ
′

0,2)
′

, θ0,i is pi × 1 and assume that ut(θ0) is conditionally
homoscedastic with

E[ut(θ0)ut(θ0)
′ | v2,t] = Σ0

With this specification, the components of Z0(.) are given by

E

[

∂ut(θ0)

∂θ′

∣

∣ v2,t

]

= E

[

−x
′

1,t 0
′

p2

0
′

p1
−x

′

2,t

∣

∣ v2,t

]

Σ−1
u|v2

= Σ−1
0

where 0a is the a × 1 null vector. In this case, Σ−1
u|v2

scales E[∂ut(θ0)/∂θ′|v2,t]

to take account of any difference between the variances of u1,t(θ0) and u2,t(θ0),
and any covariance between u1,t(θ0) and u2,t(θ0). ⋄

These examples provide an intuition for the structure of Z0
t in linear models.

To develop a comparable understanding for the nonlinear model, it is necessary
to explain why Z0

t depends on ∂ut(θ0)/∂θ′. The explanation can be found by

comparing the determinants of the asymptotic behaviour of T 1/2(θ̂T − θ0) in
linear and nonlinear models. To simplify the exposition, we consider the case
in which s = 1; we also introduce “L” and “N” subscripts on θ̂T to distinguish
the linear and nonlinear cases. For the linear model in Chapter 2, we have11

T 1/2(θ̂L,T − θ0) = {(T−1X ′Z)WT (T−1Z ′X)}−1(T−1X ′Z)WT (T−1/2Z ′u)
(7.20)

For the nonlinear model, it can be shown that12

T 1/2(θ̂N,T − θ0) = − {[T−1D(θ0)
′Z]WT [T−1Z

′

D(θ0) ]}−1

× [T−1D(θ0)
′Z ]WT T−1/2Z

′

u(θ0) + op(1) (7.21)

11 See equation (2.23).
12 See equations (7.9)–(7.10).
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where D(θ0) is the T × p matrix with tth row ∂ut(θ0)/∂θ′, Z is the T × q
matrix with tth row Zt, and u(θ0) is the T × 1 vector with tth element ut(θ0).
A comparison of (7.20) and (7.21) reveals that the asymptotic behaviour of

T 1/2(θ̂N,T − θ0) is identical to that of T 1/2(θ̂L,T − θ0) in a model with regressor
vector, xt = −∂ut(θ0)/∂θ′ and error, ut(θ0). This equivalence can be used to
translate the intuition from linear models to their nonlinear counterparts.13

While Theorem 7.1 characterizes the optimal instrument, it does not by it-
self solve the problem of instrument selection. The function Z0

t depends on
E[∂ut(θ0)/∂θ′ | v2,t] and, in most cases, Σu|v2

as well; neither of these functions
are typically part of the specification of the underlying economic/statistical
model. Therefore, Z0

t is an infeasible choice of instrument. One natural solu-
tion is to estimate the components of Z0

t from the data. In some cases, this
approach may be plausible. One such case is the linear model in our first exam-
ple above in which case the feasible optimal IV estimator is just the Two Stage
Least Squares estimator as we now illustrate.

Example: Linear Model with s = 1 and Conditional Homoscedasticity
(continued)
To construct a feasible optimal instrument, it is necessary to specify a functional
form for E[xt|v2,t]. Therefore, we assume that xt is itself generated by a linear
regression model,

xt = v
′

2,tγ0 + et (7.22)

where E[et|v2,t] = 0 and E[e2
t |v2,t] = τ2

0 . With this specification, the optimal
instrument is

Z0
t = v

′

2,tγ0

where we have set k = −σ2
0 as discussed above. To construct a feasible coun-

terpart to Z0
t , it is necessary to estimate γ0. Under the above conditions, it is

natural to estimate γ0 via Ordinary Least Squares applied to (7.22). If this is
done then the resulting IV estimator of θ0 is

θ̃T =
x′V2(V

′

2V2)
−1V

′

2y

x′V2(V
′

2V2)−1V
′

2x

in the obvious notation. This estimator can be recognized as the Two Stage
Least Squares (2SLS) estimator of θ0 which is familiar from the linear simulta-
neous equations model literature.14 Using similar arguments to Section 2.3, it
can be shown that θ̃T has the same asymptotic distribution as the IV estimator
of θ0 with zt = Z0

t . Therefore, the 2SLS can be interpreted as the feasible
optimal instrumental variable estimator within this model.15 ⋄

13 Recall that a similar linearization of the moment condition lay behind the construction
of the identifying restrictions; see Section 3.4.2.

14 See Theil (1971)[p.451-454].
15 This result also applies if p > 1.
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In this example, the construction of Z0
t rests crucially on the assumption

that E[xt|v2,t] is linear. This specification may be very natural in some con-
texts – such as the linear simultaneous equations model – but may not be so
appropriate in others. A comparable approach in nonlinear models would re-
quire an assumption about the conditional mean of ∂ut(θ0)/∂θ′. Unfortunately,
this is unlikely to be an aspect of the data generation process specified by the
underlying economic model. One alternative is to use non-parametric methods
to approximate this expectation. However, since our ultimate focus is dynamic
models, we do not explore these methods further here. Instead we refer the
interested reader to Newey (1990) or the survey in Newey (1993).16

7.2.2 Dynamic Models

A number of papers consider the extension of Theorem 7.1 to dynamic models.
As might be imagined, the characterization of the optimal instrument depends
crucially on specific assumptions about the dynamic structure of certain aspects
of the data generation process. In many cases of interest, economic theory
provides little guidance on these aspects, and even in cases where the economic
model provides this type of information, the construction of a feasible version
of the optimal instrument is intractable. Consequently, there have been few
attempts to implement GIV with the optimal instrument in the types of model
in Table 1.1. In view of this, there seems little value to reproducing here the
very technical analysis needed to rigorously justify the functional form of the
optimal instrument in dynamic nonlinear models. Instead, we focus on two
relatively simple dynamic structures, and present only heuristic arguments. Our
discussion rests heavily on the framework developed in Hansen (1985), and, to
a lesser extent, the earlier work by Hansen and Sargent (1982) and Hayashi
and Sims (1983); the interested reader is referred to these sources for the more
technical details.17

Throughout this sub-section, the information set, Ωt−m, is assumed to con-
tain the information in the series up until time t − m. However, to present a
more formal definition, it is necessary to place additional structure on vt. In our
notation, vt represents the vector of random variables which appear in the pop-
ulation moment condition. In many cases in which GIV is applied to dynamic
models, the instruments are lagged values of variables which appear in ut(θ0).
For example, in Hansen and Singleton’s (1982) consumption based asset pricing
model, ut(θ0) depends on x1,t+1 = ct+1/ct and x2,t+1 = rt+1/pt, and in our em-
pirical implementation, the instrument vector contained the constant and lagged
values of x1,t+1 and x2,t+1.

18 This approach is so commmon in practice that we
lose little generality by assuming it is followed here. Accordingly, we partition
vt = (v

′

1,t, v
′

2,t)
′

and assume that v2,t contains functions of lagged values of v1,t.
In this case, the information set is defined to be: Ωt−m = {v1,t−m, v1,t−m−1, . . .}.

16 Note that Newey (1993) considers this issue in the context of cross section data and so
his information consists of v2,t alone.

17 Also see Hansen, Heaton, and Ogaki (1988), Bates and White (1990) and West (2001).
18 See Section 3.2.
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We consider the form of the optimal instrument under two assumptions
about the dynamic structure of ut(θ0). In the first, ut(θ0) is a martingale
difference with respect to Ωt−1 and so Zt−1ut(θ0) is an uncorrelated sequence.
In the second, ut(θ0) is a VMA(n) process, and so Zt−n−1ut(θ0) is a n-dependent
process. We start with the simplest case.

Assumption 7.3 Martingale Difference with Respect to Ωt−1

ut(θ0) is a martingale difference sequence with respect to Ωt−1.

One consequence of this assumption is that f(vt, θ0) = Zt−1ut(θ0) is a serially
uncorrelated process, and it is this property which is important here. An inspec-
tion of the proof of Theorem 7.1 reveals that the serial independence of {vt} is
only important because it implies {f(vt, θ0)} is serially uncorrelated. Therefore,
Theorem 7.1 extends directly to the martingale difference case.

Theorem 7.2 The Optimal Choice of Instrument in Dynamic Models
(i): ut(θ0) is a Martingale Difference with Respect to Ωt−1

If (i) vt satisfies Assumptions 3.1 and 3.8; (ii) Assumptions 7.1 (with m = 1)
and 7.3 hold then the optimal choice of Zt−1 in (7.5) is given by

Z0
t−1 = K E[∂ut(θ0)/∂θ′ | Ωt−1]

′Σ−1
t−1

where K is any (p × p) nonsingular matrix of finite constants and Σt−1 =
E[ut(θ0)ut(θ0)

′|Ωt−1]. This optimal choice leads to a GMM estimator with
asymptotic covariance matrix

V (Z0) =
{

E
[

E[∂ut(θ0)/∂θ′ | Ωt−1]
′Σ−1

t−1E[∂ut(θ0)/∂θ′ | Ωt−1]
]}−1

Just as before, the optimal instrument is infeasible because it depends on
unknown aspects of the data generation process. In view of the relative simplic-
ity of the dynamic structure, it might be hoped that it is possible to construct
a feasible counterpart to Z0

t−1. However, this hope is misplaced in most cases
of interest. The following example illustrates the problems encountered.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model
It can be recalled from Section 1.3.1 that ut(θ0) is a martingale difference se-
quence in Hansen and Singleton’s (1982) version of the consumption based as-
set pricing model. In our earlier discussion of this model, we denoted the key
random variables ct+1/ct and rt+1/pt by x1,t+1 and x2,t+1. We continue this

practice here. This means xt+1 = (x1,t+1, x2,t+1)
′

plays the role of v1,t in our
discussion above, and so, for consistency, we denote the information set by Ωt

instead of Ωt−1. With these adjustments in notation, Theorem 7.2 implies the
optimal instrument depends on:

E[∂ut(θ0)/∂θ | Ωt] = E

[

δ0log(x1,t+1)(x1,t+1)
γ0−1x2,t+1

(x1,t+1)
γ0−1x2,t+1

∣

∣Ωt

]

Σt = E[(δ0x
γ0−1
1,t+1x2,t+1 − 1)2 | Ωt]
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To calculate these two components of Z0
t directly involves knowledge of certain

aspects of the conditional distribution of xt+1 given Ωt. A review of Section
1.3.1 reveals that these aspects are not specified as part of the underlying eco-
nomic model. There are two natural ways forward. First, in the spirit of 2SLS,
models can be assumed for E[∂ut(θ0)/∂θ′ | Ωt] and Σt. Secondly, the condi-
tional distribution of xt+1 can be estimated and then the relevant conditional
expectations can be approximated using a numerical integration technique such
as quadrature.19 We consider these in turn.

The first approach shares both the strengths and weaknesses of 2SLS. If the
assumed models for E[∂ut(θ0)/∂θ′ | Ωt] and Σt are correct then their estimated
versions can be used to construct a feasible optimal instrument. If the assumed
specifications are wrong, then clearly the resulting instrument while feasible
is not optimal. Unfortunately, as mentioned above, economic theory provides
little, if any, guidance on suitable specifications.

The second approach raises two problems. First, it requires precisely the type
of distributional assumption which the use of GMM was supposed to avoid.20

Secondly, the estimation is likely to be computationally very burdensome. Both
these problems are sufficient by themselves to make the use of a feasible opti-
mal instrument unattractive. A further disincentive is provided in a simulation
study reported by Tauchen (1986).21 In the controlled simulation environment,
the data generation process is known and so the calculations are more straight-
forward, although still computationally burdensome. He finds that in many
cases the numerical optimization routine failed to converge when the optimal
instrument was used. Therefore, the attempted use of the feasible optimal in-
strument undermined the estimation completely. ⋄

From an analytical perspective, the martingale difference case represents the
best possible scenario because {f(vt, θ0) = Zt−1ut(θ0)} is a serially uncorrelated
process and so Theorem 7.1 translates directly. Once serial correlation is intro-
duced, the form of the optimal instrument must change. To illustrate how, we
now consider the following case.

Assumption 7.4 Moving Average Case
ut(θ0) is generated by the following VMA(n) process

ut(θ0) = Λ(L)et = et + Λ1et−1 + Λ2et−2 + . . . + Λnet−n

where {et} satisfies E[et|Ωt−i] = 0 and V ar[et|Ωt−i] = Is for all i > 0, and the
roots of det[Λ(s∗)] = 0 lie outside the unit circle.

Under this assumption ut(θ0) is a homoscedastic, invertible VMA(n) pro-
cess.22 With this specification, E[ut(θ0) |Ωt−k] is zero for k > n but is non-zero
in general for k ≤ n. Therefore, we set m = n + 1 in (7.5).

19 See Tauchen (1985b, 1986), Tauchen and Hussey (1991), Ghysels and Hall (1993).
20 See Sections 1.1 and 1.3.1.
21 See Section 6.3 for further discussion of this study.
22 The assumptions of invertibility and conditional homoscedasticity can be relaxed; see

Hansen, Heaton, and Ogaki (1988) and Heaton and Ogaki (1991).
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Although Theorem 7.2 does not directly apply to this new setting, we can
exploit it here as part of the following three-step strategy for deducing the form
of the optimal instrument.

Step 1: Transform ut(θ0) into a process ũt(θ0) so that Zt−n−1ũt(θ0) is a serially
uncorrelated process.

Step 2: Use Theorem 7.2 to characterize the optimal instrument in the trans-
formed model.

Step 3: Reverse the transformation to deduce the form of the optimal instru-
ment in the untransformed model from the result in Step 2.

To execute this strategy, we must find the appropriate transformation. As we
review possible candidates, there is one implicit consequence of the assumed
specification which plays a particularly important role, and so it is useful to
highlight this feature at the outset. Since Ωt = {v1,t, v1,t−1, . . .}, Zt ∈ Ωt

implies Zt ∈ Ωt+j for j > 0 but it does not imply that Zt ∈ Ωt−j for j > 0.
In other words, Zt is not strictly exogenous.23 The key consequence of this
structure is that

E[Zt−n−1ui(θ0)] = 0 for i ≥ t (7.23)

�= 0 for i < t0 and some t0 < t (7.24)

The obvious first candidate for the transformation is Λ(L)−1 because the
resulting process Λ(L)−1ut(θ0) equals et.

24 However, a closer inspection reveals
this filter does not meet our requirements here. Setting Λ(L)−1 = 1+

∑∞
i=1 Λ̄iL

i,
it follows that

E[Zt−n−1Λ(L)−1ut(θ0)] = E[Zt−n−1{ut(θ0) + Λ̄1ut−1(θ0) + Λ̄2ut−2(θ0) + . . .}]

= E[Zt−n−1ut(θ0)] + Λ̄1E[Zt−n−1ut−1(θ0)]

+ Λ̄2E[Zt−n−1ut−2(θ0)] + . . . (7.25)

Using (7.23)–(7.24) to evaluate this expectation, it is apparent that

E[Zt−n−1Λ(L)−1ut(θ0)] �= 0

Therefore, GIV estimation based on the assumption that this expectation is
zero would lead to an inconsistent estimator of θ0.

The problem here clearly stems from that backward nature of the filter
Λ(L)−1.25 Fortunately, this is not the only type of filter which can be used
to remove the autocovariance structure of ut(θ0). Hayashi and Sims (1983)

23 See Engle, Hendry, and Richard (1983) for a discussion of various types of exogeneity.
24 The filter Λ(L)−1 is actually an infinite order polynomial in L and so would have to

approximated by a finite order polynomial in practice but this can be ignored here.
25 The filter is said to operate “backwards in time” because the filtered value of ut(θ0) only

depends on its current and past values.
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suggest using the forward filter Λ(L−1)−1 = 1 +
∑∞

i=1 Λ̃iL
−i.26 This filter not

only removes the autocovariance structure but also produces a sequence which
is still orthogonal to Zt−n−1.

27 To see this, let ũt(θ0) = Λ(L−1)−1ut(θ0) and
observe that

E[Zt−n−1ũt(θ0)] = E[Zt−n−1{ut(θ0) + Λ̃1ut+1(θ0) + Λ̃2ut+2(θ0) + . . .}]

= E[Zt−n−1ut(θ0)] + Λ̃1E[Zt−n−1ut+1(θ0)]

+ Λ̃2E[Zt−n−1ut+2(θ0)] + . . . (7.26)

Using (7.23), it is straightforward to deduce from (7.26) that E[Zt−n−1ũt(θ0)] =
0. In view of this, it is the forward filter which is used here to remove the
autocovariance structure.

The next stage in the analysis involves the characterization of the opti-
mal instrument in the transformed model. The transformation ensures that
Zt−n−1ũt(θ0) is a serially uncorrelated process and so we can appeal to Theo-
rem 7.2 to deduce that the optimal choice of Zt−n−1 in the transformed model
is given by

Z̃0
t−n−1 = E[∂ũt(θ0)/∂θ′ | Ωt−n−1]

′{E[ũt(θ0)ũt(θ0)
′|Ωt−n−1]}−1 (7.27)

It only remains to reverse the transformation in order to deduce the form
of the optimal instrument in the original model. At first glance, this objective
would appear to be met by premultipying Z̃0

t by Λ(L−1). However, this is
not so because Λ(L−1)Z̃0

t �∈ Ωt−n−1 due to the forward nature of the filter.
Instead, Hansen (1985) shows that the appropriate transformation is given by
the Λ(L)−1, and so the optimal instrument can be calculated via the recursion

Z0
t = Λ1Z

0
t−1 + Λ2Z

0
t−2 + . . . + ΛnZ0

t−n + Z̃0
t (7.28)

To construct this optimal instrument in practice, it would be necessary to trun-
cate the infinite order filter Λ(L)−1. Therefore, Hansen (1985) suggests using
(7.28) with Z0

i = 0 for i = 0,−1, . . . − n.
For completeness, we summarize the previous discussion in the following

lemma.28

Lemma 7.2 The Optimal Choice of Instrument in Dynamic Models
(ii): Moving Average Case
If (i) vt satisfies Assumptions 3.1 and 3.8; (ii) Assumptions 7.1 (with m = n+1)
and 7.4 hold then the optimal choice of Zt−n−1 in (7.5) is given by

Z0
t−n−1 = K Λ(L)−1Z̃0

t−n−1

26 Again we will ignore the infinite nature of the filter for the time being and concentrate
on showing that the technique solves our problem. This filter is said to act “forwards in time”
because the filtered value of ut(θ0) is a function of its current and future values.

27 See Hayashi and Sims (1983) for further discussion of the properties of forward filters.
28 We omit the characterization of associated asymptotic variance because the resulting

expression is very complicated, and provides no additional insights; see Hansen (1985) for
further details.
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where K is any (p × p) nonsingular matrix of finite constants,

Z̃0
t−n−1 = E[∂ũt(θ0)/∂θ′ | Ωt−n−1]

′{E[ũt(θ0)ũt(θ0)
′|Ωt−n−1]}−1

and ũt(θ0) = Λ(L−1)−1ut(θ0).

To date, this result has had little, if any, impact on the empirical literature
because of the complexity of the calculations involved. If n is known, then the
estimation of Λ(L) is conceptually straightforward but nevertheless computa-
tionally burdensome.29 If n is unknown then this burden is increased by the need
to estimate the order of the VMA. The estimation of E[∂ũt(θ0)/∂θ′ | Ωt−n] is
problematic for all the reasons described in the martingale difference case above.

While the estimation of Z0
t−n−1 is fraught with problems, there are grounds

for anticipating that, under some circumstances, an indirect approach may yield
an IV estimator which achieves the efficiency bound implied by Lemma 7.2. In
order to be able to elaborate on this statement, it is useful to consider first the
form of the optimal instrument in a simple example.30

Example: Univariate Linear Regression Model with MA(1) Errors
Suppose that ut(θ0) = yt − xtθ0 and p = 1 so that xt is a scalar. Let ut(θ0)
satisfy Assumption 7.4 with n = 1. In this case, there is only one moving average
parameter which is denoted by λ here for simplicity, and so Λ(L) = 1+λL. The
forward filter is then

Λ(L−1)−1 = 1 − λL−1 + λ2L−2 − . . . (7.29)

Using (7.29) and ∂ut(θ0)/∂θ = −xt, it follows that

E[∂ũt(θ0)/∂θ |Ωt−2] = −E[xt − λxt+1 + λ2xt+2 − . . . |Ωt−2] (7.30)

To proceed further, it is necessary to make an assumption about the data gen-
eration process for xt. So we now suppose that

xt = πwt + ex,t

wt = ψwt−1 + ew,t

where wt ∈ Ωt−2, |ψ| < 1, {ei,t} is i.i.d. for i = x, w, E[ex,t|Ωt−2] = 0, and
E[ew,t|wt−1, wt−2, . . .] = 0.31 Note that this specification implies

xt+m = πwt+m + ex,t+m

= π

{

ψmwt +
m−1
∑

i=0

ψiew,t+m−i

}

+ ex,t+m

29 Recall that this burden motivated the use of a VAR approximation to a VARMA process
in den Haan and Levin’s (1996) covariance matrix estimator; see Section 3.5.2.

30 This example is based on personal correspondence from Ken West, and I am very grateful
for his permission to use it here.

31 Note that for this specification to be logically consistent, wt cannot be a lagged value of
either xt or yt. Therefore, we must modify our definition of the information set used above
to include a third variable wt.
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Therefore, it follows that

E[∂ũt(θ0)/∂θ |Ωt−2] = − π
{

wt − λψwt + (λψ)2wt − . . .
}

= −πwt/(1 + λψ)

and so the optimal instrument is

Z0
t−2 = (1 + λL)−1γwt

= γwt − γλwt−1 + γλ2wt−2 − . . . (7.31)

where γ = −π/(1 + λψ). ⋄
In this example, it is necessary to estimate π, λ and ψ in order to construct a
feasible version of Z0

t−2. However, the structure of (7.31) suggests an alternative
approach may be viable. Since Z0

t−2 is a linear function of {wt−j ; j = 0, 1, 2, . . .},
the “optimal” population moment condition E[Z0

t−2ut(θ0)] = 0 is implied by
the set of population moment conditions {E[wt−jut(θ0)] = 0; j = 0, 1, . . .}.
Therefore, Hayashi and Sims (1983) suggest bypassing Z0

t−2 and estimating θ0

from the population moment condition

E[zt(qT )ut(θ0)] = 0

where zt(qT ) = (wt, wt−1, wt−2, . . . wt−qT
)′. Hayashi and Sims (1983) argue

that if the optimal weighting matrix is used and qT → ∞ with T then the
resulting estimator is as asymptotically efficient as the estimator based on the
optimal instrument.32 In spite of its intuitive appeal, this conclusion should be
treated with some caution. Hayashi and Sims’s (1983) analysis is premised on
the assumption that both estimators have an asymptotic normal distribution,
but their analysis does not consider the rate at which qT must increase in order
for this to be true.33 Nevertheless, it seems plausible that the result holds
under certain conditions both in the linear regression model case considered by
Hayashi and Sims (1983), and also in nonlinear models as well.

7.2.3 Efficiency Comparison with Maximum Likelihood

It is remarked above that GIV estimation is only undertaken in situations in
which Maximum Likelihood is infeasible. In view of this background, intuition
suggests that the resulting GIV estimator is less efficient asymptotically than the
Maximum Likelihood estimator. Although there have been only a few formal
comparisons of the two methods in the literature, the previous statement is
most likely a good guide. Nevertheless, there are a couple of exceptions which
are worth noting. Both involve linear models and Maximum Likelihood under
a normality assumption. The first case is the linear simultaneous equation
models in which 2SLS is as asymptotically efficient as the Limited Information

32 Hayashi and Sims (1983) analysis is confined to linear regression models but allows for
p > 1.

33 See Section 6.1.3.
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Maximum Likelihood; see Theil (1971)[p.507]. The second case is univariate
ARMA(m,n) models. Stoica, Söderström, and Friedlander (1985) show that an
IV estimator of the AR parameters is asymptotically as efficient as Maximum
Likelihood.34 Linearity plays an important role in such results, and this type of
equivalence is unlikely to extend to nonlinear models. To date, the only results
available are in the context of nonlinear simultaneous equation models with a
normality assumption on the errors. In this context, Jorgenson and Laffont
(1974) and Amemiya (1977) show that IV is indeed less efficient asymptotically
than Maximum Likelihood.

However, there is a sense in which GIV estimation based on the optimal
instrument is the best we can do given the information available. Chamberlain
(1987) shows that, in static models, the matrix V (Z0) in Theorem 7.1 repre-
sents a lower bound on the asymptotic covariance matrix of any consistent and
asymptotically normal estimator of θ0 in which the only substantive information
used in estimation is the population moment condition in (7.5).35

7.3 Moment Selection in Practice

Once Maximum Likelihood is ruled out, the extant results on optimal moment
selection do not provide a practical solution to the problem of moment selection.
An immediate problem is that results have only been obtained for the class of
moment conditions associated with GIV estimation. However, even in this case,
the practical value is limited for three reasons. First, the results characterize
the efficient member out of the set of moment conditions which satisfy the or-
thogonality condition, but provide no guidance on how to identify this reference
set. Secondly, it turns out that the construction of the optimal instrument is
computationally burdensome and requires the assumptions about aspects of the
data generation process which are typically not specified as part of the underly-
ing economic model. Thirdly, the optimal instrument has desirable asymptotic
properties but there is no guarantee that this translate to desirable finite sample
properties. Therefore, in this section, we consider methods of moment selection
which are arguably of more practical relevance. Sections 7.3.1 and 7.3.2 discuss
methods for moment selection based on the orthogonality condition and rele-
vance condition respectively, and Section 7.3.3 considers a method of moment
selection based on their sequential use. This section also contains an applica-
tion of the methods to Hansen and Singleton’s (1982) consumption based asset
pricing model. Section 7.3.4 reviews some related methods which have been
proposed for Instrumental Variables estimators.

34 Also see Hansen and Singleton (1991, 1996).
35 Chamberlain’s (1987) analysis is based on a form of semiparametric Maximum Likelihood

estimation known as Empirical Likelihood; see Section 10.2.
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7.3.1 Selection Based on the Orthogonality Condition

To implement a data based model selection based on this criterion, it is nec-
essary to find a statistic which can indicate whether or not the orthogonality
condition is satisfied. The obvious candidate is the overidentifying restrictions
test statistic, JT , given in equation (5.2). For, although we did not use this ter-
minology in Section 5.1, it can be recognized that the orthogonality condition
is in fact the null hypothesis of this test. Andrews (1999) considers a number
of ways in which this statistic can be used as a basis for moment selection, and
derives their statistical properties. In this section, we concentrate on Andrews’s
(1999) information criterion based approach because simulation evidence sug-
gests this method works best. However, the other methods are briefly discussed
at the end of this sub–section.

Information criterion have been applied to the problem of model selection
in a wide variety of settings. In the case here, the criterion is the sum of two
terms: the overidentifying restrictions test and a “bonus” term which reflects
the number of overidentifying restrictions. This criterion is evaluated for all
possible choices of moment condition, and then the selected moment condition
is the one which minimizes the criterion. To express this idea mathematically,
it is necessary to index the overidentifying restrictions test statistic by c, the
selection vector introduced in Section 7.1. Therefore, we define JT (c) to be
equal to JT in (5.2) evaluated at f(.) = f(.; c). The moment selection criterion
takes the form

MSC(c) = JT (c) + B(T, |c|) (7.32)

where B(T, |c|) is the aforementioned bonus term. The selected moment condi-
tion is given by ĉT , the choice of c which minimizes the criterion, that is

ĉT = argminc∈C MSC(c) (7.33)

Although the minimization is defined over C, Andrews (1999) observes that
it may be more appropriate to consider a reduced set of possibilities in certain
circumstances. For example, in our consumption based asset pricing example, all
the moment conditions are derived from the same Euler condition. If one such
condition is invalid, then the underlying model is wrong and it makes little sense
to base the estimation upon only those moment conditions that appear valid.
In this case, an argument can be made for testing the validity of the candidate
set alone. In other cases, moment conditions may be naturally associated with
different aspects of the underlying specification, and so it may be desired to assess
the validity of different groups of moment conditions using MSC (c). For example,
in the stochastic volatility model in Section 1.3.5, different moment conditions are
associated with different aspects of the assumed distribution of the series.

In spite of the previous remarks, we focus on the limiting properties of
ĉT as defined in (7.33) and what they imply about this method of moment
selection.36 In order to develop this analysis, we must: (i) make assumptions

36 It is relatively straightforward to modify the analysis to accommodate minimization over
a restricted set of possibilities, and so this is left to the interested reader.
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about the limiting behaviour of JT (c); (ii) specify the properties of the bonus
term, B(T, |c|); (iii) impose certain identification conditions. We address these
three in turn below.

In Section 5.1, it is shown that the overidentifying restrictions test statistic
converges to a χ2

q−p distribution if the null hypothesis is correct, but diverges to
infinity if the null is invalid. It is important that both these properties hold here.
However, for the specification of the bonus term below, the rate of divergence
is also important. It can be recalled from Theorem 5.2 and 5.3 that rate of
divergence depends on the way in which the long run variance is estimated.
Following Andrews (1999), it is assumed here that this variance is estimated
using a mean correction discussed in Section 4.3 so that the resulting estimator is
consistent regardless of whether or not the orthogonality condition is satisfied.37

Therefore, we impose the following high level assumption on the overidentifying
restrictions test; more primitive conditions are given in Theorems 5.1 and 5.2.

Assumption 7.5 Regularity Conditions for JT (c)

(i) If E[f(vt, θ; c)] = 0 for a unique θ ∈ Θ then JT (c)
d→ χ2

|c|−p; (ii) if

E[f(vt, θ; c)] = µ(θ) �= 0 for all θ ∈ Θ then T−1JT (c)
p→ a(c) where a(c) is

a finite postive constant dependent on c.

The bonus term takes the form

B(T, |c|) = −h(|c|)κT (7.34)

Its constituents are assumed to satisfy the following conditions.

Assumption 7.6 Regularity Conditions for the Bonus Term
(i) h(.) is strictly increasing; (ii) κT → ∞ as T → ∞ and κT = o(T ).

Notice that under these conditions, the bonus term decreases as |c| increases,
and so, since MSC (c) is minimized, rewards selection vectors which include more
elements from the candidate set. To implement the method, it is necessary to
choose specific functions for h(.) and κT . We consider two choices here, both
of which are suggested by earlier work on order selection in autoregressive time
series. The first involves

h(|c|) = |c| − p and κT = ln(T ) (7.35)

and corresponds to the BIC proposed by Schwarz (1978). The second involves

h(|c|) = |c| − p and κT = b ln[ln(T )] (7.36)

where b is a finite constant greater than 2. Andrews (1999) recommends setting
b = 2.01. These choices of h(.) and κT correspond to those proposed by Hannan

37 Hall, Inoue, and Peixe (2003) show that the consistency result in Theorem 7.3 still holds
if the long run variance is estimated using an uncentred HAC with appropriate modification
of Assumption 7.5. However, we assume here that a centred covariance matrix is used because
this is the way in which the method is normally implemented.
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and Quinn (1979), and so the implied criterion is often denoted HQIC. A third
popular choice in the autoregressive time series literature is the AIC proposed
by Akaike (1974), but the analogous choice of κT does not satisfy Assumption
7.6. Therefore we do not consider it further at this stage, but, in view of its
popularity, return to it once we have established the properties of selection
methods based on bonus terms which do satisfy Assumption 7.6.

As explained in Section 7.1, there are going to be two layers to the necessary
identification conditions. First, there must be a unique c which minimizes the
population analog to (7.33). Secondly, given this choice of c, the orthogonality
condition must be satisfied at a unique value of θ – or in other words, the pa-
rameter vector must be identified by the selected moment condition. Conditions
for the latter have already been presented in Section 3.1. So our focus here is on
the identification of the selection vector. It is useful to derive the appropriate
condition in steps. To begin, recall from above that different choices of f(.) can
satisfy the orthogonality condition at different values of θ. Therefore, we define
Z0 to be the set of selection vectors for which f(.; c) satisfies the orthogonality
condition for some parameter value, that is

Z0 = { c ∈ C such that E[f(vt, θ; c)] = 0 for some θ ∈ Θ }

From this set, we need to distinguish those selection vectors which include the
most elements of the candidate set, that is

MZ0 =
{

c ∈ Z0 such that |c| ≥ |c∗| for all c∗ ∈ Z0
}

For the population analog to (7.33) to have a unique minimum, this set must
contain only one vector which we denote by co below. Perforce, this condition
implies |co| > p.38 We now impose this condition along with the requisite
condition for parameter identification.

Assumption 7.7 Identification Conditions
(i) MZ0 = {co}; (ii) E[f(vt, θ0; co)] = 0 and E[f(vt, θ; co)] �= 0 for all θ ∈
Θ \ {θ0}.

With these conditions in place, the limiting behaviour of ĉT is given by the
following theorem.

Theorem 7.3 Consistency of ĉT

If Assumptions 7.5-7.7 hold then ĉT
p→ co.

Before presenting the proof, we note that this theorem combined with Lemma
7.1 imply that39

T 1/2[θ̂T (ĉT ) − θ0]
d→ N( 0, Vθ(co)) (7.37)

Proof of Theorem 7.3:
Notice that the stated result holds if it can be shown that MSC (co) < MSC (c)

38 In general, there is a θ(c) which satisfies E[f(vt, θ(c); c)] = 0 for any c such that |c| = p;
see the preamble to Chapter 4.

39 See the discussion of Lemma 7.1.



256 Moment Selection

for any c �= co with probability one in the limit as T → ∞. To establish the
latter, it suffices to consider just two cases: (i) c = c1 where E[f(vt, θ1; c1)] = 0
but c1 �= co; (ii) c = c2 where E[f(vt, θ; c2)] �= 0 for any θ ∈ Θ. Notice that these
two scenarios cover all other possibilities apart from c = co. We now consider
them in turn.

To simplify the notation, we define ∆T (c, co) = MSC(c) − MSC(co). From
(7.32) it follows that

∆T (c1, co) = JT (c1) + B(T, |c1|) − {JT (co) + B(T, |co|)}

Using (7.34) and Assumption 7.5(i), we have

∆T (c1, co) = Op(1) + [h(|co|) − h(|c1|)]κT

As remarked above, Assumption 7.7(i) implies that |co| > |c1| and so

∆T (c1, co) = Op(1) + kκT (7.38)

where k > 0. The desired result then follows from (7.38) and Assumption 7.6(ii).
Now consider ∆T (c2, co). From (7.32), it follows that

T−1∆T (c2, co) = T−1 {JT (c2) + BT (T, |c2|) − JT (co) − BT (T, |co|)}

Using Assumptions 7.5 and 7.6, it can be seen that

T−1∆T (c2, co) = a(c2) + op(1) (7.39)

Since a(c2) > 0 from Assumption 7.5(ii), the desired result is established. ⋄

Andrews (2000) reports simulation evidence on the finite sample behaviour
of these methods in the context of a static linear regression model estimated
by IV; see Chapter 2. Within his design, there are five regressors and the
candidate set consists of eight instruments i.e. p = 5 and qmax = 8. Various
parameter settings are used in which either seven or all eight instruments satisfy
the orthogonality condition. The minimization in (7.33) is performed over a
restricted set to make the computations managable: three cases are considered
involving respectively 8, 12 and 17 possible selection vectors. The evidence
suggests the model selection procedure works well for some parameter settings
but not for others. The problems appear to stem from failure in the identification
conditions, and we consider the ramifications of such failure in an example
below. The evidence suggests that MSC (c) works marginally better with the
bonus term associated with BIC given in (7.35). Another feature of the design
is also pertinent: the maximum degree of overidentification is 3. Hall and
Peixe (2003) reports simulation results for a similar linear regression model
estimated by IV in which all instruments satisfy the orthogonality condition
and the maximum degree of overidentification is 7. Within their design p equals
one, all the instruments satisfy the orthogonality condition but six are redundant
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given the other two. Their evidence indicates that MSC (c) tends to select all the
orthogonal instruments with high probability as would be expected. However,
the inclusion of the redundant instruments leads to a deterioration of the finite
sample properties of the estimator relative to the one based on just the two
non–redundant instruments. This finding motivates moment selection based on
the relevance condition which is the topic of the next sub-section.

In view of its familiarity in other contexts, it is worth considering the proper-
ties of MSC (c) with the bonus term associated with Akaike’s (1974) information
criterion (AIC), that is

h(|c|) = |c| − p and κT = 2 (7.40)

It can be seen that this choice of bonus term does not satisfy Assumption 7.6 be-
cause κT does not tend to infinity with T . A review of the proof to Theorem 7.3
indicates that (7.39) still holds, and so the method selects moment conditions
which satisfy the orthogonality condition with probability one. However, since
κT �→ ∞ with T , (7.38) no longer implies that ∆(c1, co) > 0 with probability
one. Instead, the selected vector is random in the limit – a result which paral-
lels Shibata’s (1976) finding that AIC overfits the order of autoregressive time
series with non-zero probability in the limit. Andrews (2000) finds this method
performs worst in his simulation study.

We conclude our discussion of MSC (c) by considering the consequences of
identification failure. These are best illustrated within the context of a simple
example.

Example: Identification Failure in a Linear Model
Consider the linear model

yt = xtθ0 + ut

xt = w1,tπ1 + w2,tπ2 + et

where all variables are scalars. Once again, we define ut(θ) = yt − xtθ. The
candidate set of instruments is constructed from the (8 × 1) vector wt whose
ith element is wi,t. The stochastic behaviour of the model depends on n

′

t =

[ut, et, w
′

t], and its assumed that nt ∼ N(0,Σ) where Σ has i − jth element σi,j

and lower triangular elements

σi,j = 1 for i = j

= σue �= 0 for (i, j) = (1, 2)

= 0 else

The candidate set, fmax(vt, θ), is assumed to consist of the (8×1) vector whose
ith element is zi,t(yt − xtθ) and

zi,t = wi,t for i = 1, 2, . . . 6

= wi,t + δiut, δi �= 0, for i = 7, 8
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With this specification, it is immediately apparent that

E[zi,tut(θ0)] = 0 for i = 1, 2, . . . 6

�= 0 for i = 7, 8

However, it is also the case that

E[zi,tut(θ1)] = 0 for i = 3, 4, . . . 8

�= 0 for i = 1, 2

for θ1 = σ−1
ue . Therefore Assumption 7.7(i) fails in this case because MZ0 =

{c1, c2} for c1 = (1, 1, 1, 1, 1, 1, 0, 0) and c2 = (0, 0, 1, 1, 1, 1, 1, 1). ⋄

If identification fails in this way then the consequences are dramatic. ĉT

converges to a random vector whose probability distribution attaches non-zero
probability to both c1 and c2.

40 Furthermore, this non-degeneracy mainfests
itself in the limiting behaviour of the estimator: θ̂T converges to a random
variable θ0(c) whose distribution takes the form: θ(c) = θ0 with probability pc

and θ(c) = σ−1
ue with probability 1 − pc. So in these circumstances moment

selection has undermined the consistency of the estimator. One further aspect
of this case is worth noting. The limiting distribution of ĉT only attaches non–
zero probability to selection vectors containing six non-zero elements. In this
example, it can be verified that there are no instrument vectors containing seven
or eight elements which would satisfy the orthogonality condition for some θ.
This turns out to be a general result. Andrews (1999) shows that |ĉT | converges
in probability to the largest |c| such that E[f(vt, θ; c)] = 0 for some θ. Since it
is impossible to know a priori if the identification condition is satisfied, caution
must be exercised in the use of this method of moment selection. One possible
way forward is to use the method to identify |c|, and then examine the associated
JT (c) for all permutations of c with this length. However, to date, no statistical
theory is available to guide this investigation.

This concludes our discussion of MSC here, but we return to it in Section
7.3.3 where the method is illustrated using our running empirical example. We
end this sub-section by briefly considering other methods of moment selection
based on the overidentifying restrictions test.

In view of its hypothesis testing origins, it would seem natural to develop
moment selection strategy based on the outcome of repeated applications of the
overidentifying restrictions test. Andrews (1999) considers two such strate-
gies known as “upward” and “downward” testing. As the names suggest,
the only difference between them is the direction of testing. The upward se-
quence involves considering choices of f(.) of dimension (p + i × 1) in the se-
quence i = 1, 2, . . . until a significant overidentifying restrictions test is encoun-
tered. The downward sequence involves considering choices of f(.) of dimension

40 Using a special case of this design, Peixe (2000) finds the probabilities to be 0.564 and
0.436 for MSC based on the BIC bonus term in her simulations for sample size T = 500.



7.3 Moment Selection in Practice 259

(qmax − i × 1) in the sequence i = 0, 1, . . . until an insignificant overidentifying
restrictions test is encountered. In some cases, it may be necessary to consider
all possible choices of a given dimension; in others, it may be possible to limit
the number of permutations considered. Whichever sequence is used, this ap-
proach has the potential to uncover which elements of the candidate set satisfy
the orthogonality condition. However, if a fixed significance level is used then
this approach does not satisfy the inference condition. The problem is that,
by construction, a 5% significance level implies the null hypothesis is falsely re-
jected with a probability of 0.05. This makes the outcome of either the upward
or downward testing sequences random in repeated samples. One way around
this problem is to employ a significance level, αT , which decays to zero with T .
Pötscher (1983) shows that a suitable rate of decay is given by ln(αT ) = o(T ).
Unfortunately, this type of rule does not indicate how to pick αT in a given
sample of size T . Andrews (2000) also reports simulation evidence for these
methods using αT = 0.276/ln(T ) where the scaling factor is chosen to yield
α250 = 0.05. He finds the selection procedures work reasonably well, but are
dominated by MSC with the bonus term associated with BIC. Therefore, we do
not consider these methods further here. The interested reader is referred to
Andrews (1999, 2000).41

7.3.2 Selection Based on the Relevance Condition

In this section, we describe an information criterion for moment selection based
upon the relevance condition. When selection is based on the orthogonality
condition, there is a natural choice of statistic to capture the sample information.
With the relevance condition, it is not immediately obvious what constitutes
the pertinent sample statistic. It can be recalled from Section 7.1 that the
relevance condition is a combination of the the efficiency and non–redundancy
conditions. Since both the latter conditions are statements about the asymptotic
variance of the estimator, the sample analog of this variance is the natural
basis for the sample information in an information criterion. However, this
sample information must be a scalar and so it is necessary to find a suitable
transformation of the variance. Hall, Inoue, Jana, and Shin (2003) show that
the natural logarithm of the determinant of the variance is a natural candidate
because it satisfies the following properties.

Lemma 7.3 Properties of ln[|Vθ(c)|]
Let ci ∈ C for i = 1, 2. If Vθ(c1) − Vθ(c2) is positive semi-definite then
ln[|Vθ(c1)|] − ln[|Vθ(c2)|] ≥ 0 with the equality only holding if Vθ(c1) = Vθ(c2).

Accordingly, Hall, Inoue, Jana, and Shin (2003) propose the relevant moment
selection criterion

RMSC (c) = ln[|V̂θ,T (c)|] + P (T, |c|) (7.41)

41 Also see Hall, Inoue, and Peixe (2003).
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where V̂θ,T (c) = [GT (θ̂T (c); c)′Ŝ−1
T (c)GT (θ̂T (c); c)]−1, and we have now indexed

into GT (.) and ST (.) by c. Note that the covariance estimator ŜT (c) must be
consistent for S(c) (using the obvious notation) but may depend on a prelim-
inary estimator of θ0. The penalty term is given by P (T, |c|). The selected
vector is the value which minimizes the criterion over C, that is

c̃T = argminc∈CRMSC(c)

To analyse the asymptotic behaviour of c̃T , it is necessary to make certain
assumptions. As with our analysis if ĉT in the previous sub-section, three types
of conditions are required: (i) conditions on the sample statistic; (ii) conditions
on the penalty term; (iii) identification conditions. In terms of the first of
these, it is far more convenient here to adopt rather high level assumptions to
streamline the discussion; more primitive conditions can be found in Chapter 3
or the references therein. With that caveat, we now present and discuss each of
these three types of regularity condition in turn.

Assumption 7.8 Regularity Conditions for V̂θ,T (c)

V̂θ,T (c) = Vθ(c) + Op(τ
−1
T ) where τT → ∞ as T → ∞.

Notice that the statement of this assumption makes explicit reference to the
rate of convergence of the covariance matrix. This rate depends on the rate of
convergence of the constituents of V̂θ,T (c). Under the assumptions in Chapter

3, it can be shown that GT (θ̂T (c); c) = G0 + Op(T
−1/2). However, the rate of

convergence for ŜT (c) depends on the form of the covariance matrix. If ŜT (c)
is the sum of a fixed number of autocovariances – such as ŜSU – then it can be
shown that ŜT (c) = S + Op(T

−1/2). In this case, τ = T 1/2. If ŜT (c) is an HAC

estimator, then ŜT (c) = S + Op((bT /T )−1/2). In this case, τT = (T/bT )1/2.42

The exact rate is important because it determines the exact form of the penalty
term.

Assumption 7.9 Regularity Conditions for P (T, |c|)
For c̄ ∈ C such that |c̄| > |c|, τT [P (T, |c̄|) − P (T, |c|)] → +∞ as T → ∞ and
P (T, |c|) = o(1).

This assumption would be met by the choice

P (T, |c|) = (|c| − p)ln(τT )/τT (7.42)

which corresponds to the BIC-type criterion as discussed in the previous sub-
section.

As with MSC(c), there are two layers to the identification condition: one
involving the selection vector and one involving θ0. The first of these identifica-
tion conditions defines cr to be the selection vector associated with the relevant
subset. To formalize this definition it is necessary to introduce the following

42 See Section 4.4 for further discussion.
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sets: the set of selection vectors that are asymptotically efficient relative to the
candidate set,

C = {c; Vθ(ιqmax
) = Vθ(c), c ∈ C}

where ιqmax
is a qmax × 1 vector of ones; and also the subset of C containing the

selection vectors of minimum length,

Cmin = {c; c ∈ C, |c| ≤ |c̄| for all c̄ ∈ C}

Using this notation, we impose the following identification conditions.

Assumption 7.10 Identification Condition
(i) Cmin = {cr}; (ii) E[f(vt, θ0; c)] = 0 if and only if θ = θ0 for any c ∈ C.

Under these conditions, Hall, Inoue, Jana, and Shin (2003) establish the
following result.

Lemma 7.4 Consistency of c̃T

Under Assumptions 7.8–7.10,

c̃T
p→ cr. (7.43)

The proof exploits Lemma 7.3 and follows similar lines to Theorem 7.3, and so
is omitted for brevity. Note that this lemma combined with Lemma 7.1 imply
that43

T 1/2[θ̂T (c̃T ) − θ0]
d→ N( 0, Vθ(cr)) (7.44)

Hall, Inoue, Jana, and Shin (2003) report simulation evidence for RMSC in
the context of IV estimation of linear regression model with a single regressor
xt and qmax = 8 so that the maximum degree of overidentification is seven.44

Within their design, all the potential instruments satisfy the orthogonality con-
dition but six are redundant given the other two. The evidence suggests that
the performance of the method is sensitive to both the R2 from the regression
of xt on the intruments and also the degree of endogeneity of the xt. If the
R2 equals 0.5 then the method does a good job of identifying which moment
conditions are informative about the regression parameter, and the behaviour
of θ̂T (c̃T ) is well approximated by conventional asymptotic theory in samples
of size T = 100. If the R2 equals 0.1 then RMSC has problems identifying
which moment conditions are informative about the regression parameter, and
the behaviour of θ̂T (c̃T ) is not well approximated by conventional asymptotic
theory in samples of size of T = 100.45 However, by T = 500, the method per-
forms much better and θ̂T (c̃T ) is well approximated by conventional asymptotic
theory except for cases where xt is highly endogenous.46

43 See the discussion of Lemma 7.1.
44 See Chapter 2.
45 Also see Section 8.2.
46 Here “highly endogenous” means the correlation between xt and the error of the equation

– ut in the notation of Chapter 2 – is 0.9.
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7.3.3 A Combined Strategy

In practice, the candidate set, fmax(vt, θ0), is most likely to contain some el-
ements which satisfy the orthogonality condition and some which do not. Of
these orthogonal instruments, only a subset may satisfy the relevance condition.
Therefore, it is desirable to develop a method which selects moments on the ba-
sis of both the orthogonality and relevance conditions. Selection based on either
MSC(c) or RMSC(c) alone cannot meet this objective because each is based on
only one of the conditions. However, intuition suggests that a combination of
the two methods should achieve the desired goal. This section explores the
properties of such a selection strategy.

So we now assume that the candidate set is made up as follows.

Assumption 7.11 Candidate Set
fmax(vt, θ) = [f(vt, θ; co)

′, f(vt, θ; c∗)
′]′ where co is defined in Assumption 7.7,

and f(vt, θ; co) = [f(vt, θ; cr)
′, f(vt, θ; ci)

′]′ where cr is defined in Assumption
7.10.

For the sake of exposition, we assume that MSC is applied first, and then RMSC.
The sequence does not affect the essence of the theoretical arguments below, but
may potentially have consequences in finite samples in practice. Since RMSC (c)
is to be applied following MSC (c), it is necessary to modify the definition of c̃T

to reflect the fact that the minimization is over a candidate set delineated by
the first selection criterion.47 Accordingly, we define the set

ĈT =
{

c ∈ ℜ|ĉT |; cj = 0, 1, for j = 1, 2, . . . |ĉT |

and c = (c1, c2, . . . c|ĉT |), |c| ≥ p
}

and redefine c̃T as follows,

c̃seq
T = argminc∈ĈT

RMSC(c)

The following theorem establishes the consistency of this sequential method
of moment selection.

Theorem 7.4 Consistency of c̃seq
T

If Assumptions 7.5 – 7.11 hold then: c̃seq
T

p→ cr.

The proof follows directly from a combination of Theorem 7.3 and Lemma 7.4,
and so is left to the reader. It follows directly from Theorem 7.4 and Lemma
7.1 that the asymptotic distribution of θ̂T (c̃seq

T ) is given by48

T 1/2[θ̂T (c̃seq
T ) − θ0]

d→ N( 0, Vθ(cr)) (7.45)

47 See Section 7.3.1 for discussion of circumstances in which it is desirable to minimize
MSC(c) over subsets of C.

48 This assumes f(vt, θ; co) satisfies the regularity conditions of Theorem 3.2. Also see the
discussion of Lemma 7.1.
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To date, there have been no simulation studies exploring the finite sample be-
haviour of this combined method of moment selection, and this is an interesting
area for future research.49 We now illustrate both MSC and RMSC using our
running example.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model
Our previous empirical implementation is based on the population moment con-
dition

E[zt(δ0x
γ0−1
1,t+1x2,t+1 − 1)] = 0

where x1,t+1 = ct+1/ct, x2,t+1 = rt+1/pt and zt = [1, x1,t, x2,t, x1,t−1, x2,t−1]
′.

It was remarked at the outset that this choice of instrument vector is arbitrary,
and we now consider the performance of the model with the population moment
condition

E[f(vt, θ0; c)] = E[zt(c)(δ0x
γ0−1
1,t+1x2,t+1 − 1)] = 0

for c = ci, i = 1, 2, . . . 5 where

zt(c1) = [1, x1,t, x2,t]
′

zt(c2) = [1, x1,t, x2,t, x1,t−1, x2,t−1]
′

zt(c3) = [1, x1,t, x2,t, x1,t−1, x2,t−1, x1,t−2, x2,t−2]
′

zt(c4) = [1, x1,t, x2,t, x1,t−1, x2,t−1, x1,t−2, x2,t−2, x1,t−3, x2,t−3]
′

zt(c5) = [1, x1,t, x2,t, x1,t−1, x2,t−1, x1,t−2, x2,t−2, x1,t−3, x2,t−3, x1,t−4, x2,t−4]
′

Notice that c = c2 gives the moment condition used in our earlier empirical
implementation of this model. Table 7.1 reports the values of MSC (c) and
RMSC (c) for these five choices of c.

Table 7.1
MSC (c) and RMSC (c) for certain choices of instrument

vector in the consumption based asset pricing model

V WR EWR

i MSC (ci) RMSC (ci) MSC (ci) RMSC (ci)

1 −5.546 0.970 2.141 1.682
2 −16.671 1.235 −6.308 1.929
3 −28.806 1.186 −17.920 1.848
4 −37.438 1.542 −26.617 2.193
5 −41.294 1.778 −37.446 2.428

Notes: MSC(ci) is given by (7.32) with ŜT = ŜSU,µ from (4.24) and bonus term given by

(7.35); RMSC(ci) is given by (7.41) with ŜT = ŜSU from (3.40) with penalty term given by
(7.42) with τ = T 1/2.

49 See Section 7.3.4 for discussion of a related issue.
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Consider first the results for value weighted returns (VWR). The value of MSC
falls as the number of instruments increases, and so c5 is the prefered choice from
this limited set. The overidentifying restrictions test statistic associated with
this choice, JT (c5), takes the value 13.9262 which implies a p-value of 0.1250.
Therefore, this choice of moments appears valid. However, RMSC indicates that
the choice c1 is prefered. It is interesting to contrast the parameter estimates
and their associated confidence intervals for these two choices of instrument. If
c = c5 – the choice selected using MSC – then γ̂T and δ̂T are 0.991 and 1.627,
and their respective 95% asymptotic confidence intervals are (0.985, 0.998) and

(−1.496, 4.751). If c = c1 – the choice selected using RMSC – then γ̂T and δ̂T

are 0.994 and 0.593, and their respective 95% asymptotic confidence intervals
are (0.987, 1.001) and (−3.026, 4.212).50 These results provide an illustration of
the sensitivity of inferences to the choice of moment condition. We now con-
sider what happens if fmax(vt, θ) = zt(c5)(δ0x

γ0−1
1,t+1x2,t+1 − 1) is treated as the

candidate set and the moment selection is performed by minimizing RMSC (c)
over C. One immediate problem is the computational burden associated with
allowing for so many possible choices of instrument vector. For purposes of
comparison, we implemented the search two ways: using the two step estimator
and the iterated estimator with a maximum of twenty iterations. Interestingly,
both versions led to the same selected vector, zt(c̃T ) = (x1,t, x1,t−1, x2,t−2),
and a minimimized value for RMSC of 0.807. This agreement raises the pos-
sibility that little may be lost by limiting the number of iterations, but fur-
ther work is needed to explore whether this finding extends to other settings.
The resulting iterated GMM parameter estimates are (γ̂T , δ̂T ) = (0.994, 0.611),
and their respective 95% asymptotic confidence intervals are (0.987, 1.001) and
(−2.683, 3.906).

Now consider equally weighted returns (EWR). The value for MSC exhibits
a similar pattern to the case with VWR. However, this time JT (c5), takes the
value 17.7745 which implies a p-value of 0.0379, and so indicates this choice of
moments is invalid. Therefore, we do not consider this case further.

7.3.4 Other Methods of Instrument Selection

Both MSC and RMSC are valid for the GMM framework. There has also been
some recent work on the problem of instrument selection within the framework
of the GIV estimator described in Section 7.2. In this section, we review two
particular methods: an information criterion for instrument selection based on
the relevance condition proposed by Hall and Peixe (2003) and a method based
on minimizing an approximation to the mean square error proposed by Donald
and Newey (2001). Each method is designed to address the issue of instrument
selection in classes of problems encountered in practice. However, neither is
applicable in the general GIV framework. In view of this lack of generality, we
only provide a heuristic discussion of the methods. Before we describe these
two methods, it is worth noting that the same basic question was addressed in

50 These figures are for the iterated estimator with ŜT = ŜSU .
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the context of IV estimation of linear simultaneous equation models back in the
1960’s. Fisher (1965) and Mitchell and Fisher (1970) respectively introduce and
refine the method of “structurally ordered instrumental variables”. However,
we do not review their work here because it does not extend to the types of
model in Table 1.1.51

Hall and Peixe (2003) consider the problem of instrument selection when the
moment condition takes the form

E[zt(c)ut(θ0)] = 0

where ut(θ) = u(vt, θ) is a scalar function, ut(θ0) is a martingale difference
sequence with respect to Ωt−1, E[ut(θ0)

2|Ωt−1] = σ2
0 and zt(c) ∈ Ωt−1. They

are concerned with developing a method for selecting the moment condition –
or instrument – which satisfies the relevance condition. All the members of the
candidate set are assumed to satisfy the orthogonality condition. Their method
is motivated by considering the form of the asymptotic variance of the estimator.
Under their conditions, the asymptotic distribution of the GIV estimator is

T 1/2[θ̂T (c) − θ0]
d→ N( 0, Vθ(c))

where52

V (c) = σ2
0A(c)Λ(c)−2A(c)′ (7.46)

Λ(c) = diag (ρ1(c), . . . ρp(c)), {ρi(c); i = 1, 2, . . . p} are defined to be the canoni-
cal correlations between ∂ut(θ0)/∂θ and zt(c), and A(c) is the p×p matrix whose
ith row, ai(c)

′

, contain the weights in the linear combination of ∂ut(θ0)/∂θ as-
sociated with the ith canonical correlation.53 The form of this variance suggests
that the canonical correlations may provide a basis for selection based on the
relevance condition. In fact, Hall and Peixe (2003) establish that zt(c2) is re-
dundant given zt(c1) if and only if

ρi(c1 + c2) = ρi(c1) i = 1, 2, . . . p

Therefore, Hall and Peixe (2003) propose an information criterion for moment
selection which exploits the information in these canonical correlations. They
refer to this criterion as the canonical correlation information criterion (CCIC).
Since θ0 is unobservable, CCIC is based on the sample canonical correlations
between and ∂ut(θ̃T )/∂θ and zt(c) where θ̃T is some preliminary estimator.
Using ri,T (c) to denote the ith such canonical correlation, CCIC is given by54

CCIC(c) = T

p
∑

i=1

ln
[

1 − ri,T (c)2
]

+ (|c| − p)ln(T ) (7.47)

51 Also see Hall and Peixe (2000) for further discussion.
52 This type of decomposition for the asymptotic variance was first presented by Sargan

(1958) in his study of IV estimators in linear models.
53 See inter alia Anderson (1984) [Chap. 12] for further discussion of canonical correlations.
54 This version of CCIC uses the BIC version of the penalty term. Hall and Peixe (2003)

also consider the behaviour of their method with the HQIC and AIC type penalty terms.
However, simulation evidence suggests the method works best with BIC and so we do not
consider the other versions here.
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The selected instrument vector is given by zt(c̃
ccic
T ) where

c̃ccic
T = argminc∈C CCIC(c) (7.48)

Hall and Peixe (2003) report simulation results for a static linear regression
model. Overall, their evidence suggests the method is successful in screening
out redundant instruments, and that selection based on relevance leads to a
considerable improvement in the quality of the asymptotic approximation to
the behaviour of GIV estimator. They also report simulation results for the
case in which MSC (c) and CCIC (c) are used sequentially. Interestingly, they
find the ordering can make a substantial difference to the performance of the
sequential method in finite samples. Within their design, it proves beneficial to
use CCIC (c) first and then MSC (c). The interested reader is refered to Hall
and Peixe (2003) for further discussion of this issue.

Donald and Newey (2001) consider the problem of instrument selection for
a type of model that is encountered in cross-sectional studies in labour eco-
nomics. In these studies, the focus of attention is often on the point estimate
of a particular parameter, and so the finite sample precision of this estimate is
a more appropriate criterion for instrument selection than the orthogonality or
relevance conditions. However, since the resulting method is only applicable to
i.i.d. data, we confine our discussion to a special case of their method in order
to illustrate the basic approach. The interested reader is refered to Donald and
Newey (2001) for a more detailed discussion including simulation evidence and
an empirical example. Within their framework, it is assumed that the researcher
wishes to estimate the following single equation by instrumental variables

yt = Y
′

t γ0 + x
′

1,tβ0 + ut (7.49)

where x1,t are a vector of exogenous variables but Yt is a vector of endogenous
variables generated by

Yt = h(xt) + et (7.50)

where xt = (x
′

1,t, x
′

2,t)
′

. The variables (x
′

t, ut, e
′

t) are assumed to be i.i.d. The er-

rors are assumed to satisfy: E[ut|xt] = 0, E[et|xt] = 0, V ar[(ut, e
′

t)
′

(ut, e
′

t)|xt] =
Ω and Cov[et, ut|xt] �= 0. It is convenient to stack the unknown parameters into
a single vector and so we set θ = (γ

′

, β
′

)′, and also to introduce the stacked
system

Nt =

[

Yt

x1,t

]

= d(xt) + wt (7.51)

where d(xt) = [h(xt)
′

, x
′

1,t]
′

and wt = [e
′

t, 0
′] The candidate set of instruments

is assumed to consist of elements of the form zt,i = zi(xt). Notice that by
construction all instruments satisfy the orthogonality condition. Unlike the
other methods described above, this framework allows for the dimension of the
candidate set to increase with T at some rate which is restricted by the theory
as described below. Donald and Newey (2001) propose choosing c to minimize a
Nagar type approximation to the mean square error (MSE) of the estimator.55

55 See Section 6.2.2 for further discussion of Nagar approximations.
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To make this approach operational, Donald and Newey (2001) assume that
the researcher is interested in a linear combination of the parameters rather
than the parameter vector itself, and they also propose substituting preliminary
estimates for any unknown nuisance parameters which appear in the formula.
In the case of Two Stage Least Squares estimator, this approach leads to the
following estimated approximate MSE for the linear combination λ̂

′

T θ̂T (c):56

AMSE (c) = σ̂2
λ,u

|c|2
T

+ σ̂2
u[R̂λ(c) − σ̂2

λ

|c|
T

]

where σ̂2
u = ũ′ũ/T , σ̂2

λ = λ̂
′

T D̃−1w̃
′

w̃D̃−1λ̂T /T , σ̂λ,u = λ̂
′

T Ĥ−1w̃′ũ/T and D̃

is a preliminary estimator of T−1
∑T

t=1 d(xt)d(xt)
′, w̃ is a residual vector from

a preliminary estimation of (7.51), ũ is a residual vector from a preliminary
estimation of (7.49), and R̂λ(c) is a measure of the goodness of fit for the
estimation of (7.51) using zt(c). One possible choice for R̂λ(c) is

R̂λ(c) =
λ̂

′

T D̃−1ŵ(c)
′

ŵ(c)D̃−1λ̂T

T
+

2σ̂2
λ|c|
T

ŵ(c) = {IT − Z(c)[Z(c)′Z(c)]−1Z(c)
′}N , Z(c) is the T × |c| matrix with tth

row zt(c)
′ and N is the T × n matrix with tth row N

′

t . The selected instrument
vector is the one which minimizes the estimated approximate MSE, that is

ĉmse
T = minc∈C AMSE(c)

Donald and Newey (2001) provide conditions under which AMSE (c) converges
in probability to the true MSE, and these include the requirement that the can-
didate set expands at a rate slower than T 1/2. Under these conditions, ĉmse

T can
be considered optimal in the sense that it minimizes the MSE asymptotically
with probability one. However, they do not consider the asymptotic distribu-
tion of θ̂T (ĉmse

T ). Intuition suggests that the inference condition is satisfied
under certain regularity conditions, but the characterization of these regularity
conditions remains a topic for future research.57

7.4 Summary

In this chapter, we have considered the problem of moment selection. The
desirable properties for the selected moment depend upon the ultimate objective
of the study in question. For the majority of this chapter, it is assumed that
this objective is to perform inference about θ0 based on the asymptotic theory
derived in Chapters 3 and 5. Given this context, it is argued that it is desirable
for the selected vector to satisfy:

56 Donald and Newey (2001) also consider the Limited Information Maximum Likelihood
estimator and a bias adjusted version of 2SLS. See their article for further discussion of these
two cases and comparisons between all three estimators.

57 See Section 6.1.3 for a discussion of the available asymptotic distribution theory if the
number of moment conditions increases with T .
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• the orthogonality condition – so that the estimation is based on valid in-
formation;

• the efficiency condition – so that inference is based on the asymptotically
most precise estimates;

• the non-redundancy condition – so that the selected moment condition
does not contain any redundant elements whose inclusion can cause a de-
terioration in the quality of the asymptotic approximation to finite sample
behaviour.

There have been two approaches to this issue in the literature. The first
approach is to characterize theoretically the optimal choice of moment condition.
The second approach is to develop data based methods for moment selection.
We now briefly summarize the results on each.

• The optimal moment condition: Given that only asymptotic distribution
theory is available, the optimal choice is the one that satisfies both the
orthogonality and efficiency conditions. Given this criterion, the optimal
moment condition is always the score vector because the resulting GMM
estimator is the MLE. Unfortunately, this choice is infeasible in the types
of model listed in Table 1.1. Therefore, it is necessary to restrict the
search for the optimal moment to settings encountered in practice. For
the class of Generalized Instrumental Variable estimators, it is possible
to characterize the functional form of the optimal instrument in terms
of the information set. However, the optimal instrument is infeasible in
most nonlinear dynamic models because its construction requires knowl-
edge of aspects of the data generation process which are typically not
specified as part of the economic model. However, knowledge of the form
of the optimal instrument facilitates efficiency comparisons between ML
and GIV. To date, such comparisons indicate that GIV can be as asymp-
totically efficient as ML in certain linear models with normal errors, but
this equivalence does not extend to the general nonlinear model.

• Data based methods for moment selection: In most circumstances, a re-
searcher must decide which moments to choose without knowledge of the
underlying data generation process. In such circumstances, moment selec-
tion must perforce be based upon the data, and it is therefore important
that the use of the data in this way does not contaminate the limiting dis-
trubtion theory. This consideration yields a fourth desirable property for
a moment selection procedure that is termed the inference condition. To
date, this problem has mostly been approached using information crite-
rion. The moment selection criterion (MSC) is designed to select moments
on the basis of the orthogonality condition, and the relevant moment se-
lection criterion (RMSC) is designed to select moments on the basis of
a combination of the efficiency and non-redundancy conditions that is
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termed the relevance condition. Under certain conditions, these meth-
ods each satisfy the inference condition. MSC and RMSC can be used
individually or sequentially.

The preliminary evidence suggests that the use of MSC and RMSC can help
a researcher to avoid situations in which asymptotic theory provides a very poor
approximation to finite sample behaviour. However, it is also clear that their use
is not a panacea for the finite sample deficiencies of the conventional asymptotic
theory that are documented in Chapter 6. Therefore, in the following chapter,
we explore a number of alternative asymptotic approximations to the finite
sample behaviour of the GMM estimator.



8

Alternative Approximations

to Finite Sample Behaviour

In Chapter 6, it is seen that the available simulation evidence indicates that
the asymptotic theory developed in Chapters 3 and 5 may not provide a good
approximation to the finite sample behaviour of the GMM estimator in certain
circumstances of interest. The situation can be ameliorated by careful selection
of moment conditions, and this motivates the methods described in the previous
chapter. However, while the use of such moment selection procedures may lead
to an improvement, the overall quality of the asymptotic approximation may
still leave something to be desired. Therefore, in this chapter, we consider three
alternative methods for approximating the finite sample behaviour of the GMM
estimator and its associated statistics. These three are: (i) the bootstrap; (ii)
an asymptotic theory developed for the case in which the parameter vector is
weakly identified by the population moment condition; (iii) and an asymptotic
theory designed to provide a better approximation when the weighting ma-
trix is based on a heteroscedasticity autocorrelation covariance (HAC) matrix
estimator.

In Section 8.1, we discuss the use of the bootstrap which is a resampling
technique that has – at least in theory – the potential to improve the quality of
the approximation in any model. This potential has been successfully realized
in many areas of statistical inference, and so the method is a natural candidate
for improving the quality of inferences based on GMM estimators. However,
it turns out that the extension of the bootstrap to this setting is not so sim-
ple in terms of both implementation and also the verification that it yields an
improvement. In particular, complications arise in overidentified, nonlinear dy-
namic models. While considerable progress has been made in circumventing
these complications, the available analysis does not yet encompass the general
framework employed in Chapter 3. Section 8.1.1 provides a brief review of the
ideas behind the bootstrap. Section 8.1.2 describes the steps involved in the
application of the bootstrap to nonlinear dynamic models.

270
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In Section 8.2, we describe an alternative asymptotic theory that has been
developed for the case in which the parameter vector is weakly identified by the
population moment condition. Equivalently, this scenario can also be termed as
the case in which the population moment condition is “nearly uninformative”
about the parameter vector. To date, this problem has mostly been encountered
in models estimated by Generalized Instrumental Variables (GIV). Therefore,
we focus our discussion on this case but the qualitative conclusions extend to
the GMM setting. Section 8.2.1 presents the limiting behaviour of the GIV
estimator. Section 8.2.2 presents methods for performing inference within this
scenario. Section 8.2.3 discusses the detection of poor identification.

In Section 8.2.3, we return to the problem of bandwidth selection for HAC
matrix estimators of the long run variance. In Section 3.5.3, we review the liter-
ature on bandwidth selection when the aim is to provide a consistent estimator
of the long run variance. It can be recalled that, to date, there is no definitive
rule for making this selection. One way to remove this ambiguity is simply to
set the bandwidth equal to the sample size. While this choice does not satisfy
the conditions for consistency, it does lead to an alternative asymptotic theory
upon which to base inference about the parameters. This alternative theory is
briefly reviewed in Section 8.2.3.

Since all three alternative approximations are relatively new and so not yet
widely applied, the discussion here is less technical than before and no formal
proofs are provided. Instead, the focus is placed on the intuition behind the
three approaches, and on practical matters.

8.1 The Bootstrap

8.1.1 Background and Intuition

Efron (1979) introduced the term “bootstrap” as a generic name for methods of
statistical inference based on resampling techniques. By their very nature, re-
sampling techniques can be computationally burdensome but, with advances in
computer technology, it has become feasible to apply the method in increasingly
complex settings. These advances have stimulated a considerable literature in
statistics on the bootstrap where the method has been used both for the esti-
mation of bias, variance, and distribution functions, and also for the reduction
of errors made in the use of approximate significance levels of tests or coverage
probabilities of approximate confidence intervals. However, it is only relatively
recently that researchers have considered applying the method in the context
of GMM. Hall and Horowitz (1996) provide the first treatment of the bootstrap
based on GMM in the context of nonlinear, dynamic models, and our discussion
rests heavily on their work.1 It is beyond the scope of this book to provide a
comprehensive review of the more general literature on the bootstrap in statis-

1 An alternative approach is to base the bootstrap upon the Empirical Likelihood. How-
ever, since this method has only been developed for i.i.d. cases, we do not not discuss it here
but do return to it as part of the discussion of Empirical Likelihood in Section 10.2.
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tics. Instead, the interested reader is refered to Hall (1994) and the references
therein.

The idea behind the bootstrap is best understood by considering a simple
example in which the method is used to reduce the errors made in the use of an
approximate 100α% significance level test. Let {vt; t = 1, 2, . . . T} be a sample
of independent random draws from a common distribution with mean µ0 and
variance σ2

0 . In terms of our framework, the parameter vector is θ0 = [µ0, σ
2
0 ]′.

It is natural to estimate θ0 from the first two moment conditions, and so, using
(1.1)–(1.2), it follows that:

θ̂T =

[

µ̂T

σ̂2
T

]

=

[

v̄T

T−1
∑T

t=1(vt − v̄T )2

]

where v̄T = T−1
∑T

t=1 vt. Suppose that it is desired to test the hypothesis
H0 : µ0 = 0 versus H1 : µ0 �= 0 based on a sample of size T . The natural test
statistic is the t–ratio,

τT =
T 1/2µ̂T

σ̂T
(8.1)

The decision rule of the test involves the comparison of |τT | with a percentile
from some distribution. The key question is: what is the appropriate distribu-
tion? Before we consider how the bootstrap can be used to answer this question,
it is useful for purposes of comparison to review two more familiar choices of
distribution and the properties of the ensuing tests.

If the true distribution of τT is known then it is possible to perform an exact
test. If FT [τ ] denotes the true cumulative distribution function of τT then the
decision rule for the test is as follows:

Test based on the finite sample distribution: Reject H0 if |τT | > cT (α/2)
(8.2)

where FT [cT (α/2)] = 1 − α/2. This version is said to be an “exact” 100α%
significance level test because the probability of a type I error is α.2 Clearly,
this exact test can only be performed if the true distribution function is known.
Unfortunately, this is rarely the case. Therefore, inference is most commonly
based upon the limiting distribution, which for τT is the standard normal dis-
tribution. If Φ[τ ] denotes the cumulative distribution function of the standard
normal distribution then the decision rule based on the limiting distribution
takes the form:

Test based on the limiting distribution: Reject H0 if |τT | > c∞(α/2) (8.3)

where Φ[c∞(α/2)] = 1−α/2. With the decision rule in (8.3), the true probability
of a type one error is 2{1−FT [c∞(α/2)]}, and this is only guaranteed to be α in
the limit. Therefore, it is not an exact 100α% significance level test for finite T ,

2 Such an exact test is most often encountered in circumstances when {vt} are random

draws from a normal distribution because then (
√

(T − 1)/T )τT has a Student’s t distribution
with T − 1 degrees of freedom.
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but is instead refered to as an “approximate” 100α% level test in finite samples.
As with all approximations, there is an error and it is the desire to reduce this
error that motivates the use of the bootstrap.

The bootstrap version of the test is based on an alternative approximation to
the distribution of τT that is obtained via resampling from the observed sample.
The decision rule for this version of the test takes the form:

Test based on the bootstrap distribution: Reject H0 if |τT | > cB
T (α/2) (8.4)

where cB
T (α/2) is calculated as follows.

• Draw N samples of size T with replacement from the observed sample.

Let the nth such sample be denoted (v
(n)
1 , v

(n)
2 , . . . v

(n)
T ).

• For each of these N samples, calculate the statistic

τ̃
(n)
T =

T 1/2(v̄
(n)
T − v̄T )

σ̂
(n)
T

, n = 1, 2, . . . N

where v̄
(n)
T = T−1

∑T
t=1 v

(n)
t and σ̂

(n)
T =

√

T−1
∑T

t=1(v
(n)
t − v̄

(n)
T )2.

• cB
T (α/2) is the 100(1 − α)th percentile of the empirical distribution of

(|τ̃ (1)
T |, |τ̃ (2)

T |, . . . |τ̃ (N)
T |).

Notice that the critical point is calculated using the empirical distribution of
the absolute value of τ̃T . This transformation is taken because it is the absolute
value of τT that appears in the decision rule. Notice also that the t-statistic in

the bootstrap, τ̃
(n)
T , is centred about the sample mean, and so is different from

the original t-statistic. This correction is needed to ensure that E[τ̃
(n)
T ] = 0, and

hence that the bootstrapped distribution mimics the first moment properties of
τT under H0 regardless of the true value of µ0. The bootstrap version of the test
is also only an approximate 100α% significance level test but intuition suggests
that the involvement of the data yields a test whose size is closer to α than its
counterpart based on the limiting distribution. This turns out to be the case,
and a formal justification comes from consideration of Edgeworth expansions of
both the true and the bootstrap cumulative distribution functions.3

To begin, we consider the Edgeworth expansion of the true cumulative dis-
tribution function. Under certain regularity conditions, it can be shown that

P [τT ≤ c] = Φ(c) + T−1/2h1,T (c) + T−1h2,T (c) + o(T−1) (8.5)

uniformly over c where h1,T (c) and h2,T (c) are respectively even and odd func-
tions of c for any T . The properties of {hi,T (.); i = 1, 2} mean that a convenient
cancellation takes places when we consider the probability that |τ | < c for any
c > 0. Specifically, it follows from (8.5) that:

P [|τT | ≤ c] = P [τT < c] − P [τ < −c] (8.6)

= Φ(c) − Φ(−c) + 2T−1h2,T (c) + o(T−1) (8.7)

3 Also see Section 6.2.2.
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Since Φ(−c) = 1 − Φ(c), equation (8.7) can be simplified further to yield:

P [|τT | ≤ c] = −1 + 2Φ(c) + 2T−1h2,T (c) + o(T−1) (8.8)

For our purposes, it is more convenient to focus on the expansion for P [|τT | > c].
Using (8.8), it follows that

P [|τT | > c] = 1 − P [|τT | ≤ c]

= 2
{

1 − Φ(c) − T−1h2,T (c)
}

+ o(T−1) (8.9)

Equation (8.9) can be used to provide insights into the nature of the “approxi-
mation” in the approximate 100α% significance level test based on the limiting
distribution of τT . Putting c = c∞(α/2), it follows from (8.9) that the true
significance level of this version of the test is

P [|τT | > c∞(α/2)] = α + O(T−1) (8.10)

Therefore, the test based on the limiting distribution has an exact significance
level that deviates from 100α% by a term of large order T−1.

A similar expansion can be developed for probabilities based on the boot-
strap distribution. In practice, this distribution is a function of N , the number
of replications, but the theoretical justification derives from considering the lim-
iting bootstrap distribution obtained as N → ∞. This clearly raises the issue
of how N should be chosen, and this is considered in Section 8.1.2.3. A second
important aspect of this distribution is that it is conditional on the observed
sample and so is itself subject to sampling variation. This dependence is indi-
cated by inserting a B superscript on P [.]. It should also be noted that this
randomness manifests itself in the percentile cB

T (α/2), and this feature becomes
important at certain points in the argument. With these features in mind,
we can now consider the Edgeworth expansion for PB [.]. Under appropriate
regularity conditions, it can be shown that

PB [τ̃T ≤ c] = Φ(c) + T−1/2hB
1,T (c) + T−1hB

2,T (c) + op(T
−1) (8.11)

uniformly over c where hB
1,T (c) and hB

2,T (c) are respectively even and odd func-

tions of c. Since hB
i,T (.) have the same properties as their counterparts in the

expansion for the true CDF, we can repeat the argument above to deduce

PB [|τ̃T | > c] = 2
{

1 − Φ(c) − T−1hB
2,T (c)

}

+ op(T
−1) (8.12)

A comparison of (8.9) and (8.12) indicates that the probabilities based on the
true and bootstrapped distributions differ. However, it can be shown that
T−1hB

2,T (c) converges almost surely to T−1h2,T (c) as T → ∞. Using this result,
(8.12) can be re-written as

PB [|τ̃T | > c] = 2
{

1 − Φ(c) − T−1h2,T (c)
}

+ op(T
−1) (8.13)

and so it can be recognized that the probabilities based on the true and boot-
strap distributions are equal through terms of order T−1. All that remains
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is to show that this equivalence implies that the use of the bootstrap version
of the test yields more accurate inference than the test based on the limit-
ing distribution. This is established in two steps. First, it is shown that
cB
T (α/2) = cT (α/2) + op(T

−1). Secondly, it is shown that the preceeding rela-
tionship between the percentiles implies that P [|τT | ≥ cB

T (α/2)] = α + o(T−1).
The details follow; for this part of the presentation we set cT = cT (α/2) and
cB
T = cB

T (α/2) to avoid excessive notation.
The first step can be established by considering

dT (cB
T ) = Φ(cB

T ) + T−1h2,T (cB
T ) (8.14)

Using a Mean Value Theorem expansion of dT (cB
T ) around dT (cT ), it follows

that
dT (cB

T ) = dT (cT ) + DT (c̄T )(cB
T − cT ) (8.15)

where DT (c) = ∂dT (c)/∂c and c̄T = λT cB
T + (1 − λT )cT for some λT ∈ [0, 1].

Simple rearrangement yields

dT (cB
T ) − dT (cT ) = DT (c̄T )(cB

T − cT ) (8.16)

It turns out that |DT (c̄T )| is finite and bounded away from zero for non-zero
α although we do not present the details here.4 Therefore, the desired result
follows if it can be shown that dT (cB

T ) − dT (cT ) = op(T
−1). The latter can

be established by manipulating the expansions derived above. Since P [|τT | >
cT ] = α by construction, it follows from (8.9) that

1 − Φ(cT ) − T−1h2,T (cT ) = α/2 + o(T−1) (8.17)

Similarly, since PB [|τ̃T | > cB
T ] = α, it follows from (8.13) that

1 − Φ(cB
T ) − T−1h2,T (cB

T ) = α/2 + op(T
−1) (8.18)

Taken together (8.17) and (8.18) imply that dT (cB
T ) − dT (cT ) = op(T

−1), and
so it follows from (8.16) that

cB
T = cT + op(T

−1) (8.19)

This completes the first step of the argument.
To establish the second step, it is useful to express the probabilities P [|τT | >

cT ] and P [|τT | > cB
T ] in terms of indicator functions. To this end, define I(A)

to be an indicator function that takes the value one if event A occurs and is
zero otherwise. Using this notation, we have

P [|τT | > cT ] = E[I(|τT | > cT )] (8.20)

P [|τT | > cB
T ] = E[I(|τT | > cB

T )] (8.21)

It is therefore possible to compare the probabilities by comparing the underlying
indicator functions. It can be recognized that I(|τT | > cT ) and I(|τT | > cB

T )

4 See Hall (1994).
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agree if either |τT | > max{cB
T , cT } or min{cT , cB

T } ≥ |τT | because in these cases
we have

|τT | > max{cB
T , cT } ⇒ I(|τT | > cT ) = I(|τT | > cB

T ) = 1

min{cT , cB
T } ≥ |τT | ⇒ I(|τT | > cT ) = I(|τT | > cB

T ) = 0

However they disagree if either cB
T ≥ |τT | > cT or cT ≥ |τT | > cB

T because in
these cases we have

cB
T ≥ |τT | > cT ⇒ I(|τT | > cT ) = 1, I(|τT | > cB

T ) = 0

cT ≥ |τT | > cB
T ⇒ I(|τT | > cT ) = 0, I(|τT | > cB

T ) = 1

Using these relations, it is clear that

I(|τT | > cB
T ) = I(|τT | > cT ) − I(cB

T ≥ |τT | > cT ) + I(cT ≥ |τT | > cB
T ) (8.22)

The substitution of (8.22) into the right hand side of (8.21) yields

P [|τT | > cB
T ] = E[I(|τT | > cT )] − E[I(cB

T ≥ |τT | > cT )]

+ E[I(cT ≥ |τT | > cB
T )] (8.23)

Equation (8.20) and the definition of cT imply that the first term on the right
hand side of (8.23) is α, and (8.19) implies that the other terms on the right
hand side are collectively o(T−1). Substituting these results into (8.23) yields

P [|τT | > cB
T ] = α + o(T−1) (8.24)

A comparison of (8.10) and (8.24) reveals the potential gains from the use
of the bootstrap. The use of the bootstrap involves an approximation error in
the significance level of o(T−1); whereas basing inference on the limiting distri-
bution involves an approximation error of O(T−1). The bootstrap is therefore
said to provide “asymptotic refinements”. In more general settings, the boot-
strap yields such asymptotic refinements in cases where inference is based on an
asymptotically pivotal statistic, that is a statistic whose limiting distribution is
independent of the distribution of the data. While this asymptotic refinement
motivates the use of the bootstrap, it should be noted that order statements
only reveal something about the rate at which the error decreases. They do not
tell us anything about the magnitude of the error for a given T , and so there
is no guarantee that the bootstrap yields more reliable inference procedures in
every case.5

The above discussion has focused on a very simple case in which the data
are independently and identically distributed and the parameter vector is just
identified by the population moment condition. The key question is whether the
method and the theoretical arguments can be extended to the case where the
data are dependent, the parameter vector is overidentified and the population
condition is nonlinear in the parameters. The answer is in the affirmative but
subject to some important qualifications. This is the topic of the next sub–
section.

5 For example, if the order T −1 term in (8.9) may be 10−6T −1 then the use of the bootstrap
is unlikely to yield a significant improvement over inference based on the limiting distribution.
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8.1.2 Nonlinear Dynamic Models

Hall and Horowitz (1996) provide the first rigorous treatment of the bootstrap
based on GMM estimation of the parameters in nonlinear dynamic models.
Their analysis deals with the use of the so-called block bootstrap with non-
overlapping blocks to reduce the error in the significance level of the overi-
dentifying restrictions test statistic and the two-sided t-statistic for testing
H0,i : θ0,i = θ̄0,i. Andrews (2002b) extends Hall and Horowitz’s (1996) analysis
in a number of directions that include the use of the block bootstrap with either
overlapping or non-overlapping blocks and a consideration of a broader array of
inference procedures. Our discussion covers both versions of the block bootstrap
but, for brevity, we restrict attention to just two statistics, the overidentifying
restrictions test and the two-sided confidence intervals for θ0,i. Therefore, this
sub-section is based on a synthesis of certain results in Hall and Horowitz (1996)
and Andrews (2002b) and relies heavily on these sources.

As discussed in the previous sub-section, the theoretical justification for the
bootstrap derives from Edgeworth expansions. Such expansions are only valid
under certain regularity conditions, and these conditions turn out to be far more
restrictive than those used to underpin the asymptotic analysis in Chapters 3
and 5. Although we do not consider these Edgeworth expansions here, we begin
this sub-section with a discussion of the necessary regularity conditions in order
to highlight the key differences from the earlier analysis. After that, we describe
the mechanics of applying the block bootstrap within the GMM setting.

The discussion here is premised on the assumptions that the overidentifying
restrictions test has the limiting chi-squared distributions given in Theorems
5.1 and T 1/2(θ̂T − θ0) has the limiting normal distribution given in Theorem
3.2. In addition to the regularity conditions required for these results, Hall and
Horowitz (1996) and Andrews (2002b) impose a number of other conditions.
For our purposes here, it suffices to focus on the conditions that most obviously
restrict the model in comparison to the framework in Chapters 3 and 5. These
conditions involve the dependence structure of vt, the autocovariance structure
of f(vt, θ0), and the composition of vt. The interested reader is refered to the
aforementioned sources for a complete listing of the required conditions.6

It can be recalled that our asymptotic analysis is premised on the assumption
that the data are stationary and ergodic. As discussed in Appendix A, this
assumption places restrictions on the memory of the process. To implement the
bootstrap, it is necessary to restrict this memory further.

Assumption 8.1 Approximation of vt by a m–Dependent Process
There is a sequence of s × 1 i.i.d. vectors {et}∞

t=−∞ with s ≥ r and a r × 1
function h such that the r×1 vector vt can be written as vt = h(et, et−1, et−2, . . .).
There is a constant d > 0 such that for all t = 1, 2, . . . and all m > d−1,

‖h(et, et−1, et−2, . . .) − h(et, et−1, et−2, . . . et−m, 0, 0, . . .)‖ ≤ d−1e−dm

6 The remaining conditions involve restrictions on f(vt, θ) pertaining to continuity, exis-
tence of certain moments and the existence and smoothness of derivatives up to the fourth
order.
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This condition implies that the dynamic behaviour of vt can be approximated by
a nonlinear moving average of {et−i; i = 0, 1, . . . m} in the sense described above
and so {et−i; t = m+1, m+2, . . .} have a negligible effect on the dynamics of vt.
This restriction implies that vt is α–mixing with mixing parameter αm = e−m

which is a much faster rate than is required for the Weak Law of Large Numbers
or Central Limit Theorem.7 In spite of this limitation, Assumption 8.1 is still
satisfied by a number of empirically relevant models such as infinite order moving
average processes with exponentially decreasing coefficients.

The earlier asymptotic analysis places fairly mild restrictions on the auto-
covariance structure of f(vt, θ0) requiring simply that the long run variance, S,
exists and is positive definite. For the bootstrap analysis here, it is necessary
to limit this dependence structure as follows.

Assumption 8.2 f(vt, θ0) is a k-Dependent Process
E[f(vt, θ0)f(vt−i, θ0)

′] = 0 for i > k and some k < ∞.

This assumption implies that

S = Γ0 +

k
∑

i=1

(Γi + Γ
′

i) (8.25)

where Γi = E[f(vt, θ0)f(vt−i, θ0)
′]. While this assumption is clearly not univer-

sally valid, it is satisfied by a number of models of interest: witness our running
empirical example of the consumption based asset pricing model in which the
underlying economic theory implies that f(vt, θ0) satisfies this restriction with
k = 0. Parenthetically, we note that there are grounds for anticipating that this
assumption can be relaxed in future work. Inoue and Shintani (2003) consider
the use of the bootstrap in linear models estimated by instrumental variables
under very weak restrictions on the dependence structure of f(vt, θ0).

8 However,
to date, these results have not been extended to GMM estimators of nonlinear
models and so we do not consider their framework here.

The last additional restriction highlighted here involves the composition of vt

in terms of continuous and discrete random variables. To date, no assumptions
have been made regarding this aspect of the model. However, now they must.

Assumption 8.3 Composition of vt

vt can be partitioned into (v
(c)′

t , v
(d)′

t )′ where v
(c)
t ∈ ℜc for some c > 0 and

v
(d)
t ∈ ℜd for d ≥ 0 and c + d = r. The distributions of v

(c)
t and ∂f(vt, θ0)/∂θ′

are absolutely continuous. The distribution of v
(d)
t is discrete.

7 See Appendix A for a definition of αm.
8 Inoue and Shintani (2003) provide a theoretical justification for the bootstrap in this

case but find the potential gains are not as great as those described here. They also find that
the potential gains are sensitive to the choice of kernel in the HAC estimator.
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In other words, vt must contain at least one continuous random variable; the
remaining elements may include discrete random variables but this is not neces-
sary. While noteworthy, this assumption is unlikely to be particularly restrictive
in practice because most economic models involve at least one continuous ran-
dom variable.

We now turn to the mechanics of the bootstrap. This discussion breaks
down naturally into three parts. Section 8.1.2.1 considers appropriate designs
for the bootstrap sampling scheme when the data are dependent, and this leads
to a discussion of the block bootstrap. Section 8.1.2.2 describes the appropriate
construction of the statistics whose bootstrap distributions are used to approxi-
mate the distribution of our statistics of interest. This sub-section also includes
a brief discussion of the so–called approximate bootstrap method that has been
proposed to reduce the computational burden in nonlinear models. Section
8.1.2.3 presents a rule for picking N , the number of bootstrap replications. As
emerges below, the precise details require fairly lengthy explanation. Therefore,
Section 8.1.2.4 summarizes the necessary calculations and also illustrates them
using our running empirical example.

8.1.2.1 Generation of Bootstrap Sample When the Data
are Dependent

There are two basic approaches to constructing the bootstrap sample when the
data are dependent. These are known as the parametric bootstrap and the non-
parametric bootstrap. In the parametric bootstrap, the resampling is based on
an estimated model for vt. As an illustration, suppose this estimated model
is a VAR; in this case, the bootstrap sample for vt is generated by resampling
from the residuals with replacement, and then solving the model recursively.
While relatively straightforward to implement, this approach is only guaranteed
to deliver the types of gain described above if the assumed model for vt is
correct. It is this caveat that makes the approach unattractive in the types of
models in Table 1.1 for which the data generation process of vt is not completely
specified. Therefore, we do not pursue the parametric bootstrap further here.9

Instead we focus on the non-parametric bootstrap. This method essentially
involves sampling blocks of adjacent observations from the observed sample
and so is commonly refered to as the “block bootstrap”. These blocks can
be non-overlapping or overlapping.10 To illustrate the difference, consider the
following example. Suppose that vt is scalar and we have an observed sample
of four observations, (v1, v2, v3, v4). Suppose further that it is decided to draw
observations in blocks of two – the question of how to choose the block size
is discussed below. Since the original sample has T = 4, it is necessary to
draw two blocks with replacement from the original sample to make up one
particular bootstrap sample. If the non-overlapping scheme is used then there
are only two possible blocks: (v1, v2) and (v3, v4). If the overlapping scheme is

9 The interested reader is refered to Andrews (2002b) and the survey in Li and Maddala
(1996).

10 The non–overlapping scheme is proposed by Carlstein (1986), and the overlapping scheme
by Künsch (1989). Each method is sometimes refered to by the name of its proponent.
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used then there are three possible blocks: (v1, v2), (v2, v3) and (v3, v4). Both
schemes seem intuitively reasonable. To date, there has been no comparison
of the two in the context of GMM. However, the available evidence in other
contexts suggest that the overlapping scheme is to be prefered.11 Nevertheless,
we consider both below.

While the previous illustration gives the flavour of the block bootstrap, it
turns out that the construction of the base sample is actually more complicated.
This complication arises because the bootstrap is justified using Edgeworth ex-
pansions and these are only valid for dependent data if the statistics of interest
are functions of sample moments involving the same variables and running over
the same set of observations. If we view the sample in terms of the original
observations {vt}T

t=1 then this structure is not present. However, if we alter
our perspective on both the sampling unit and the sample size then the de-
sired structure can be restored. To illustrate, we consider the simple case in
which k = 1 and so S = Γ0 + Γ1 + Γ

′

1. In this case the overidentifying re-
strictions test and confidence intervals are functions of the three basic sample
statistics: the sample moment condition T−1

∑T
t=1 f(vt, θ), the derivative ma-

trix T−1
∑T

t=1 ∂f(vt, θ)/∂θ′ and the sample analog to the long run variance

ST = T−1
T
∑

t=1

f(vt, θ)f(vt, θ)
′ + T−1

T
∑

t=2

f(vt, θ)f(vt−1, θ)
′

+ T−1
T
∑

t=2

f(vt−1, θ)f(vt, θ)
′ (8.26)

It can be recognized that these three statistics do not collectively have the
desired structure for two reasons. First, the sample moment and its derivative
depend on vt but the variance depends on vt and vt−1. Secondly, some of the
summations start at t = 1 and some at t = 2. To solve the first problem, it is
necessary to view the sampling unit as

Ṽt =

[

vt

vt−1

]

To solve the second problem, the sample is restricted to the observations t =
2, 3 . . . T . These two amendments together imply that the sample is now viewed
as consisting of {Ṽt; t = 2, . . . T}.

These ideas extend easily to the general case defined by Assumption 8.2.
The base sample for the bootstrap is VB = {Ṽt; t = k +1, k +2, . . . T} where Ṽt

is the r(k + 1) × 1 consisting of the r × 1 vectors {vt−i; i = 0, 1, . . . k} stacked
into a vector as follows

Ṽt =

⎡

⎢

⎢

⎢

⎢

⎣

vt

vt−1

.

.
vt−k

⎤

⎥

⎥

⎥

⎥

⎦

(8.27)

11 See Lahiri (1999).



8.1 The Bootstrap 281

It is important to realize that if the bootstrap is to yield the gains described
in the previous sub-section then the GMM estimation must also be based on the
same sample. This means, for instance, that the first and second step estimators
must be calculated respectively as:

θ̂k,T (1) = argminθ∈Θ gk,T [θ]′WT gk,T [θ] (8.28)

θ̂k,T (2) = argminθ∈Θ gk,T [θ]′{Ŝk,T [θ̂k,T (1)]}−1gk,T [θ] (8.29)

where gk,T [θ] = (T − k)−1
∑T

t=k+1 f(vt, θ),

Ŝk,T [θ] = Γ̂0,(k,T )(θ) +

k
∑

i=1

{

Γ̂i,(k,T )(θ) + Γ̂i,(k,T )(θ)
′

}

(8.30)

and Γ̂i,(k,T )(θ) = (T − k)−1
∑T

t=k+1 f(vt, θ)f(vt−i, θ)
′. Notice that the required

structure for the bootstrap necessitates the use of the “truncated” covariance
matrix estimator.12 In comparison to the original definitions of these estimators,
it is clear that there is some loss of information associated with taking this
approach because, for example, the contribution of {f(vi, θ); i = 1, 2, . . . k} to
∑

t f(vt, θ) is lost. However, this is unavoidable because their retention would
lead to a statistic that deviates from the required structure by terms of Op(T

−1)
and this would negate the anticipated gain from the use of the bootstrap.

Using the base sample in (8.27), we can now present the details of how to
implement the block bootstrap. Needless to say, the exact details depend on
the sampling scheme.

Non-overlapping blocks: The base sample, VB , is divided into b blocks of a
pre-specified length ℓ. Denote these blocks by {Bi; i = 1, 2, . . . b} where B1 =
(Ṽk+1, Ṽk+2, . . . Ṽk+ℓ), B2 = (Ṽk+ℓ+1, Ṽk+ℓ+2, . . . Ṽk+2ℓ) and so forth. Notice
that this means T − k = bℓ; if this is not the case for the desired choice of ℓ
then additional observations must be dropped from the sample to ensure con-
formity. The nth bootstrap sample is constructed by randomly sampling with
replacement b blocks from {Bi; i = 1, 2, . . . b}.

Overlapping blocks: Let I denote the set of observations that can begin a block
of ℓ observations, that is I = {k+1, k+2, . . . T −ℓ+1}. The construction of the
nth bootstrap sample begins with random sampling from I with replacement
b times. If this random sample from I is denoted by {ij ; j = 1, 2, . . . b} then
the nth bootstrap sample then consists of the b blocks that begin with the
observations {ij ; j = 1, 2, . . . b}. So the first block in the bootstrap sample is

B̃
(n)
1 = (Ṽi1 , Ṽi1+1, . . . Ṽi1+ℓ), the second block is B̃

(n)
2 = (Ṽi2 , Ṽi2+1, . . . Ṽi2+ℓ)

and so forth.

In our subsequent discussion, it is necessary to express the bootstrap sample in

12 See Section 3.5.3 for a discussion of its properties.
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terms of the sampling unit instead of the blocks. Regardless of the sampling

scheme used, we write the nth bootstrap sample as Ṽ(n) = {Ṽ
(n)
s ; s = 1, 2, . . . T̃}

where T̃ = T − k.
To implement this approach, it is clearly necessary to choose the block length

ℓ. Since the dynamic structure of the data is unknown, it is natural to consider
rules in which the block size increases with T , such as ℓT = CT 1/a. To date,
there has been significant progress in deducing appropriate choices for a but less
with regard to the selection of C. A complicating factor is that the choice of a
depends on the statistic of interest. As mentioned above, we focus below on the
use of the bootstrap to reduce the error in both the size of the overidentifying
restrictions test and also in the confidence level of intervals for the unknown
parameters. For these uses, Andrews (2002b) shows the optimal choice of a is
4.13 He further shows that this is the optimal choice if the bootstrap is used
to reduce the error in the size of the Wald tests and t–tests. In contrast, if the
objective is to use the bootstrap to estimate the distribution function of the
absolute value of the t–statistic then Hall, Horowitz, and Jing (1995) show that
the optimal choice of a is 5.14 To date there is no guidance available on the
choice of C for minimizing the error in either the size of the overidentifying
restrictions test or the confidence coverage of intervals based on the GMM es-
timator. However, there has been some progress on this issue in other settings;
see Hall, Horowitz, and Jing (1995) and Bühlmann and Künsch (1996).

8.1.2.2 Calculation of the GMM Estimator and Related Statistics in
the Bootstrap Samples

It can be recalled from Section 8.1.1 that even in the simple example of inference
about a mean in an i.i.d. context, the functional form of the t-statistic differed
in the original and bootstrap samples. Specifically, the bootstrap version of t-
statistic involves a correction to ensure that it is invariant to whether or not the
null hypothesis holds. A similar modification is necessary in the GMM setting.
However, there is a second problem here that necessitates the introduction of
an additional correction factor. While the block bootstrap seems an intuitively
reasonable method for resampling from dynamic data, it does not yield samples
with identical time series properties to the original data. Fortunately, it is
possible to remedy the situation by the introduction of an additional correction
factor. The exact nature of these corrections is discussed below as they arise
in the sequence of necessary calculations. The presentation here only considers
the case in which inference is based on the second step-estimator although, in
principle, all definitions can be modified to accommodate inference based on the
iterated estimator.15

Recall that the sample is now viewed in terms of the augmented vectors

13 Optimal in the sense that this choice minimizes the error between the nominal and actual
size of the test, and the nominal and actual coverage probability for the confidence interval.

14 Optimal in the sense that it minimizes the mean squared error.
15 Hall and Horowitz (1996) and Andrews (2002b) consider inference based on either the

first-step or second-step estimators.
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{Ṽ
(n)
s } but the sample moment only depends on a sub-vector of Ṽ

(n)
s . Therefore,

we decompose Ṽ
(n)
s to reflect its structure as defined by (8.27), as follows

Ṽ (n)
s =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ṽ
(n)
s,1

v
(n)
s,2

.

.

v
(n)
s,k+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

“ = ”

⎡

⎢

⎢

⎢

⎢

⎣

vt

vt−1

.

.
vt−k

⎤

⎥

⎥

⎥

⎥

⎦

(8.31)

where the last identity is heuristic and included to remind the reader of the
structure of Ṽ .

Before we proceed any further, it is necessary to address a matter relating to

the notation. As with Ṽ
(n)
s , all the statistics calculated in the bootstrap sample

should be indexed by n. However, this makes the notation extremely cumber-
some and so we suppress this dependence during this part of the discussion. As
emerges below, the statistics of interest are functions of both the bootstrap and
also the original sample. All statistics calculated from the bootstrap sample are
indicated by a tilde accent (i.e. ã); all statistics calculated from the original
sample are indicated by a hat accent (i.e. â). No accent indicates that the
statistic in question is a function of both samples.

In the original sample, the GMM estimator is obtained by minimizing a
quadratic form in the sample moment. In the bootstrap sample, this moment
must be centred to ensure that it is zero at θ̂k,T and thus mimics the property
of the population moment which is zero at θ0. This centered version of the
bootstrap sample moment is calculated as:

g̃T̃ [θ; θ̂k,T ] = T̃−1
T̃
∑

s=1

fc(ṽs,1, θ; θ̂k,T ) (8.32)

where
fc(v, θ; θ̂k,T ) = f(v, θ) − mT (θ̂k,T ) (8.33)

where the c subscript stands for “centred”, and mT (.) is calculated from the
original sample but the exact formula depends on the sampling scheme. If the
non-overlapping scheme is used then

mT (θ) = gk,T [θ] (8.34)

where gk,T [θ] is defined under (8.29) above. If the overlapping scheme is used
then

mT (θ) = (T − k − ℓ + 1)−1
T
∑

t=k+1

w(t)f(vt, θ) (8.35)

where

w(t) =

⎧

⎨

⎩

(t − k)/ℓ
1

(T − t + 1)/ℓ

if t ∈ [k + 1, ℓ + k − 1]
if t ∈ [ℓ + k, T − ℓ + 1]
if t ∈ [T − ℓ + 2, T ]

(8.36)
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The first step GMM estimator in the bootstrap sample is calculated as fol-
lows:

θ̃T̃ (1) = argminθ∈Θ g̃T̃ [θ; θ̂k,T (1)]′ WT g̃T̃ [θ; θ̂k,T (1)] (8.37)

Notice that on this first step, the bootstrap sample moment is centred using
mT (.) evaluated at the first step GMM estimator defined in (8.28). The second
step GMM estimator in the bootstrap sample is calculated as:

θ̃T̃ (2) = argminθ∈Θ g̃T̃ [θ; θ̂k,T (2)]
′

{

S̃T̃ [θ̃T̃ (1); θ̂k,T (1)]
}−1

g̃T̃ [θ; θ̂k,T (2)]

(8.38)
where

S̃T̃ [θ; θ̄] = Γ̃0,T̃ (θ; θ̄) +

k
∑

i=1

{

Γ̃i,T̃ (θ; θ̄) + Γ̃i,T̃ (θ; θ̄)
′

}

Γ̃i,T̃ (θ; θ̄) = T̃−1
T̃
∑

s=1

fc(ṽs,1, θ; θ̄)fc(ṽs,i+1, θ; θ̄)′

and fc(.) is defined in (8.33). Two aspects of the second step minimand are
worth noting. First, the bootstrap sample moment is centred using mT (.) eval-
uated at the second step estimator defined in (8.29). Secondly, the long run
variance estimator is calculated using the centred sample moment.

Recall that we consider here only two statistics associated with the second
step estimator: the overidentifying restrictions test and a confidence interval for
θ0,i. The distribution of the overidentifying restrictions test is approximated
using the following statistic calculated in the bootstrap samples:

J̃T̃ = H̃T̃ [θ̃T̃ (2)] (8.39)

where16

H̃T̃ [θ]= T̃ g̃
′

T̃
[θ; θ̂k,T (1)]{S̃T̃ [θ; θ̂k,T (2)]}−1/2A+

T̃
{S̃T̃ [θ; θ̂k,T (2)]}−1/2g̃T̃ [θ; θ̂k,T (2)]

(8.40)
In the previous equation, A+

T̃
denotes the Moore–Penrose generalized inverse

of the matrix AT̃ that is calculated as follows:

AT̃ = M̂k,T Ŝ
−1/2
k,T BT̃ Ŝ

−1/2
k,T M̂k,T (8.41)

where

M̂k,T = Iq − Ŝ
−1/2
k,T Ĝk,T Ĉk,T Ĝ

′

k,T Ŝ
−1/2
k,T (8.42)

Ĉk,T = [Ĝ
′

k,T Ŝ−1
k,T Ĝk,T ]−1 (8.43)

Ŝk,T = Ŝk,T [θ̂k,T (2)] (8.44)

Ĝk,T = Ĝk,T [θ̂k,T (2)] (8.45)

16 Following the practice in this literature, Z−1/2 denotes the symmetric square root of
Z−1 for any nonsingular symmetric real matrix Z, that is if the spectral decomposition of Z

is Z1Z2Z′

1 then Z−1/2 = Z1Z
−1/2
2 Z′

1.
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for Ŝk,T [θ] is defined in (8.30), and

Ĝk,T [θ] = T̃−1
T
∑

t=k+1

∂f(vt, θ)/∂θ
′

(8.46)

The last component of AT̃ is a matrix BT̃ whose calculation depends on the
sampling scheme employed. If the non-overlapping scheme is used then:

BT̃ = T̃−1
b−1
∑

i=0

ℓ
∑

j=1

ℓ
∑

m=1

hT (iℓ + j + k)hT (iℓ + m + k)′ (8.47)

where
h(t) = f(vt, θ̂k,T (2)) − mT (θ̂k,T (2))

If the overlapping scheme is used then:

BT̃ = bT̃−1(T̃ − ℓ + 1)−1
T̃−ℓ
∑

i=0

ℓ
∑

j=1

ℓ
∑

m=1

hT (i + j + k)hT (i + m + k)′ (8.48)

The bootstrap version of the confidence interval is based on approximating the
distribution of the absolute value of the t-ratio by

ãτ T̃ ,i = |τ̃T̃ ,i| = ci

T̃ 1/2|θ̃T̃ ,i(2) − θ̂k,T,i(2)|
√

{ṼT̃ }i,i

(8.49)

where θ̂k,T,i(2) is the ith element of θ̂k,T (2), {.}i,i denotes the i − ith diagonal

element of the matrix in parentheses, and ṼT̃ is given by

ṼT̃ =
[

G̃
′

T̃
{S̃T [θ̃T̃ (2); θ̂k,T (2)]}−1G̃T̃

]−1

(8.50)

and

G̃T̃ = T̃−1
T̃
∑

s=1

∂f(ṽs,1, θ̃T̃ (2))/∂θ
′

(8.51)

The correction factor ci is defined as

ci =

√

{Ĉk,T }i,i

{DT̃ }i,i

(8.52)

where Ĉk,T is defined above in (8.43), and

DT̃ = Ĉk,T Ĝ
′

k,T Ŝ−1
k,T BT̃ Ŝ−1

k,T Ĝk,T Ĉk,T (8.53)

The bootstrap percentile is based on the absolute value because the objective
here is to calculate a symmetric confidence interval for θ0,i, that is of the generic

form θ̂k,T,i ± n̂T .
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Inspection of (8.39)–(8.40) and (8.49) reveals that the bootstrap versions of
the overidentifying restrictions statistics and t-ratio have two types of correc-
tion relative to their sample counterparts. First, each statistic has a “centering”
correction similar in spirit to the correction required to the t-statistic in our mo-
tivating example: – the sample moment is centred in the overidentifying restric-
tions test; – the t-ratio is centred using the corresponding GMM estimator from
the original sample. However, in this more general setting, it is also necessary
to make a second correction and this leads to the presence of A+

T̃
in (8.40) and ci

in (8.49). These additional corrections are needed because the block bootstrap
does not adequately replicate the time series properties of the original data.
The problem stems from the long run variance. In the original population, this
variance only involves terms of the form E[f(vs, θ0)f(vt, θ0)

′] for |s − t| < k.
However, in the population generated from the bootstrap distribution, this long
run variance involves terms of the form Ẽ[f(vs, θ0)f(vt, θ0)

′] for all s, t within
the same block where Ẽ[.] denotes expectations relative to the bootstrap dis-
tribution.17 Note that this second correction is only needed because the block
bootstrap is used in an attempt to take account of the dynamic dependence
structure in the data. If the data are independent then there is no need to use
the block bootstrap and so the problem goes away. It is for this reason that this
second correction is unnecessary in our motivating example in Section 8.1.1.

Bootstrap methods are inherently computationally burdensome because of
the resampling. However, in our setting, the burden is potentially far greater
because it is necessary to perform two numerical optimizations for each boot-
strap sample. Fortunately, it is not necessary to iterate gradient methods until
convergence within the numerical optimization in order to gain the asymptotic
refinements associated with the bootstrap.18 Davidson and MacKinnon (1999)
present a heuristic justification for this statement and Andrews (2002b) subse-
quently provides a rigorous demonstration. For our purposes here, it suffices to
concentrate on the heuristic argument. To illustrate, we focus attention on the
Newton–Raphson method of optimization in which the the estimator is updated
on the ith step of the numerical optimization according to

θ̄(i) = θ̄(i − 1) −
[

∂2QT

(

θ̄(i − 1)
)

∂θ∂θ′

]−1
∂QT (θ̄(i − 1))

∂θ

Typically, this updating is continued until convergence to give the estimator θ̂T .
However, for our purposes here, it is important to consider the way in which
this convergence occurs. Robinson (1988) shows that if θ̄(0) − θ̂T = Op(T

−1/2)

then θ̄(i) − θ̂T = Op(T
−2i−1

). Using this property, Davidson and MacKinnon
(1999) make the important observation that it is only necessary to iterate two

steps before the difference between θ̄(i) and θ̂T is of smaller order than asymp-
totic refinements associated with the bootstrap. Therefore, it suffices to use

17 See Hall and Horowitz (1996) for further discussion.
18 See Section 3.2 for a discussion of gradient methods.
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the Newton–Raphson method with only two iterations in the numerical opti-
mizations within the bootstrap samples. Needless to say, the specifics depend
on the exact method of numerical optimization. If the Gauss–Newton method
is used then at least three steps are needed in the numerical optimization; see
Davidson and MacKinnon (1999) or Andrews (2002b). Davidson and MacKin-
non (1999) introduce the term “approximate bootstrap” to describe the generic
strategy of fixing the number of iterations within the numerical optimization in
the bootstrap samples. To implement the approximate bootstrap, it is neces-
sary to have a suitable starting value for the optimization. The natural choice
is the corresponding GMM estimator from the observed sample, and Andrews
(2002b) verifies that this choice is appropriate.

Clearly the approximate bootstrap has the potential to reduce the compu-
tational burden considerably. However, two caveats need to be borne in mind.
First, the results above only yield a minimum number of iterations. Intuition
suggests that the results can never be worse if more iterations are used within the
numerical optimization routine. To date, there is no evidence on how the number
of iterations affects the accuracy of subsequent inferences in overidentified non-
linear dynamic models. Secondly, the available results only cover variants of the
Newton–Raphson and Gauss–Newton routines. It is an open question whether
the approximate bootstrap can be extended to other gradient methods.

8.1.2.3 Choosing the Number of Replications

It can be recalled that the motivation for the bootstrap derives from its ability
to provide asymptotic refinements to inference. However, the argument is based
on a consideration of what is often termed the “ideal bootstrap” in which the
number of replications, N , tends to infinity. Clearly this version of the bootstrap
is infeasible, and so we now consider a three-step method for the selection of N
proposed by Andrews and Buchinsky (2000). The precise details of this method
are application specific. Following our practice above, we limit our discussion
to the two statistics of interest, the overidentifying restrictions test and a two–
sided symmetric confidence interval for elements of θ0. For the former, we focus
purely on using the bootstrap to calculate the critical point for a given level of
significance. Therefore, in both cases, the bootstrap is being used to calculate a
pre–specified percentile of a distribution. It should be noted that our discussion
is specific to this precise context. The details of the method would be different
if, for example, the bootstrap is used to calculate the p-value of the test or if it
is used to calculate two-sided equal-tailed confidence intervals.19

Since both our cases of interest involve the use of the bootstrap to calcu-
late a particular percentile, we abstract to a generic notation to simplify the
presentation. Accordingly, let ΞT denote the statistic calculated in the original

sample and Ξ̃
(n)
T denote the statistic calculated in the nth bootstrap sample.

Let pT denote the true 100(1−α)% percentile of ΞT , p̃T,∞ be the corresponding

19 Andrews and Buchinsky (2000) consider both these cases along with many others of
empirical relevance.
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percentile based on the ideal bootstrap and p̃T,N be the same statistic based
on the bootstrap with N replications. It turns out to be convenient to restrict
attention to choices of N that satisfy:

ν

N + 1
= 1 − α (8.54)

where ν is some positive integer, because then p̃T,N is the νth order statistic of

the bootstrap sample {Ξ̃
(n)
T ; n = 1, 2, . . . N}. However, it should be noted that

this is a non–trivial restriction: for example, α = 0.05 then the set of possible
values for N is {20h−1; h = 1, 2, 3, . . .}; see Andrews and Buchinsky (2000) for
further details.

Since the bootstrap is motivated by the properties of the ideal bootstrap, it
is natural to base the selection rule for N upon some measure of the distance
between p̃T,N and p̃T,∞. In Andrews and Buchinsky’s (2000) three-step method,
this distance is captured by the percentage deviation of p̃T,N from p̃T,∞, that is

100 |p̃T,N − p̃T,∞|
p̃T,∞

It can be recalled from Section 8.1.1 that the bootstrap percentiles are random
because they are conditional on the observed sample. Therefore, any statements
about the distance between the percentiles must have a probability attached,
and so take the form

PB

[

100 |p̃T,N − p̃T,∞|
p̃T,∞

≤ pdb

]

= (1 − β) (8.55)

where, once again, PB [ . ] denotes probability based on the bootstrap distribu-
tion. The three-step method provides a rule for selecting N for prespecified val-
ues of the percentage deviation bound, pdb, and the probabilty 1−β. Although
it does not serve our purposes here to explore the theoretical underpinnings of
the method here, it is worth noting that it derives from the following limiting
result:

N1/2

(

p̃T,N − p̃T,∞

p̃T,∞

)

d→ N(0, ω) (8.56)

where ω is application specific. The method involves the construction of con-
sistent estimates for ω that can be used in conjunction with the distributional
result in (8.56) to deduce a value for N for which (8.55) is satisfied for a given
pdb and 1 − β. The details are as follows.
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Andrews and Buchinsky’s (2000) three-step method for the selection of N

Define α1 and α2 such that α = α1/α2 where α1 and α2 are positive integers
with no common divisors.20 It is also necessary to specify (pdb, β).

Step 1: Calculate an initial value for N as follows: N1 = α2h1 − 1 where
h1 = int[10, 000z2

1−β/2ω1/(pdb2α2)], ω1 is an initial estimator of ω given
on a case by case basis in Tables 8.1–8.2, zδ is the 100δ percentile of the
standard normal distribution, and int[ . ] denotes the integer part.

Step 2: Simulate N1 bootstrap samples {Ṽ(n); n = 1, 2, . . . N1} and compute
the updated estimator of ω, ω2, the formula for which is given in Tables
8.1–8.2 on a case by case basis.

Step 3: Calculate an updated estimator of N as follows: N2 = α2h2 − 1 where
h2 = int[10, 000z2

1−β/2ω2/(pdb2α2)].

The selected number of replications is N∗ = max{N1, N2}.

Table 8.1
ω1 and ω2 in the calculation of the 100α% critical value of the

overidentifying restrictions test

ωi Quantities used in ωi

ω1 =
α(1 − α)

p2
1−αg2(p1−α)

g( x ) = xd−1e−x/2

Γ(d)2d d = (q − p)/2

p1−α =
the 100(1 − α)% percentile of the χ2

q−p distribution

ω2 =
α(1 − α)

p̃2
1−αg̃2 g̃ =

{

N1

2m̃
(J̃∗

ν+m̃ − J̃∗
ν−m̃)

}−1

J̃∗
i = the ith order statistic of {J̃

(n)

T̃
; n =

1, 2, . . . N1}
ν = (N1 + 1)(1 − α)

m̃ = int[cαN
2/3
1 ]

p̃1−α = J̃∗
ν

cα =

{

1.5z2
1−α/2g

4(p1−α)

3g
′

(p1−α)2 − g(p1−α)g
′′

(p1−α)

}1/3

g
′

( x ) = g( x ){(d − 1)x−1 − 0.5}
g

′′

( x ) = g
′

( x ){(d−1)x−1 − 0.5} − g( x )(d−1)x−2

Notes: In this context, Γ( . ) denotes the “gamma function” and is not to be confused with our
earlier use of this symbol for an autocovariance matrix. It is defined as follows: Γ(0.5) =

√
π;

if a is an even integer then Γ(a/2) = (a/2 − 1) . . . 3.2.1; if a is an odd integer then Γ(a/2) =
(a/2 − 1) . . . 5

2
. 3
2

. 1
2

√
π; e.g. see Hamilton (1994) [p.355].

20 So, for example, if α = 0.10, 0.05, 0.01 then (α1, α2) are respectively
(1, 10), (1, 20), (1, 100).
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Table 8.2
ω1 and ω2 in the calculation of the 100(1 − α)% symmetric

confidence interval for θ0,i

ωi Quantities used in ωi

ω1 =
α(1 − α)

z2
1−α/2 [2φ(z1−α/2)]

2 φ(z) = (2π)−1/2e−z2/2

ω2 =
α(1 − α)

p̃2
1−αh̃2

h̃ =
{

N1

2m̃
(ãτ∗

i,ν+m̃ − ãτ∗
i,ν−m̃)

}−1

ãτ∗
i,j = the jth order statistic of {ãτ

(n)

T̃ ,i
; n =

1, 2, . . . N1}
ν = (N1 + 1)(1 − α)

m̃ = int[cαN
2/3
1 ]

p̃1−α = ãτ∗
ν

cα =

{

6z2
1−α/2[φ(z1−α/2)]

2

2z2
1−α/2 + 1

}1/3

8.1.2.4 Summary of Bootstrap Calculations

Pulling together the previous discussion, it can be seen that there are four major
steps to implementing the bootstrap in the context here.

Step 1: Re-estimate the model using the truncated original sample as in (8.28)–
(8.29).

Step 2: Generate N1 bootstrap samples in the way described in Section 8.1.2.1 for
N1 defined in the Andrews and Buchinsky’s (2000) three-step procedure
in Section 8.1.2.3.

Step 3: Calculate the bootstrap distributions for the statistic of interest as de-
scribed in Section 8.1.2.2 and compute N2, and hence N∗, defined in
Andrews and Buchinsky’s (2000) three-step procedure in Section 8.1.2.3.

Step 4: Generate N∗ bootstrap samples as in Section 8.1.2.1 and calculate the
required statistics of interest as in section 8.2.1.2.21

Inference is then conducted as follows. For the overidentifying restrictions test
the decision rule is to reject H0 : E[f(vt, θ)] = 0 at the 100α% significance level
if:

JT > J̃∗
ν (8.57)

21 Note that this step does not involve additional calculations if N∗ = N1 and only the
generation of an additional N2 − N1 bootstrap samples if N∗ = N2.
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where J̃∗
ν is defined in Table 8.1. This decision rule yields an approximate

100α% test because the true size of the test is given by:

P (JT > J̃ν | H0) = α + o(T−1)

The 100(1 − α)% bootstrap confidence interval for θ0,i is given by

θ̂k,T,i ± ãτ∗
i,ν

√

V̂i,i/(T − k) (8.58)

where ãτ i,ν∗ is defined in Table 8.2, V̂i,i is the i − ith element of V̂ where

V̂ = [Ĝ′
k,T Ŝ−1

k,T Ĝk,T ]−1

and the component matrices are defined in (8.44)–(8.45). Once again, the at-
tached probability statement is only approximate as the true coverage proba-
bility is:

P

(

θ̂k,T,i − ãτ∗
i,ν

√

V̂i,i/(T − k) ≤ θ0,i ≤ θ̂k,T,i + ãτ∗
i,ν

√

V̂i,i/(T − k)

)

= 1 − α + o(T−1)

We now illustrate these calculations using our running empirical example.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model
We use the bootstrap to calculate the critical value associated with perform-
ing the overidentifying restrictions test at the 5% significance level, and the
percentiles needed to construct 95% symmetric confidence intervals for the pa-
rameters. Our description of the necessary calculations follows the four-step
sequence described above. For this particular model Step 1 is redundant be-
cause k = 0. To implement Step 2, it is necessary to determine the sampling
unit and sample size for the bootstrap sample. It can be recalled for this model

f(vt, θ) = zt(δx
γ−1
1,t+1x2,t+1 − 1)

where x1,t+1 = ct+1/ct, x2,t+1 = rt+1/pt and zt = (1, x1,t, x2,t, x1,t−1, x2,t−1)
′

.
Therefore the sampling unit for the bootstrap sample is

Ṽt =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1,t+1

x2,t+1

x1,t

x2,t

x1,t−1

x2,t−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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Since k = 0, the bootstrap sample size is the same as the original sample,
that is T̃ = T = 465. We next turn to the block size, ℓ. It can be recalled
that from Section 8.1.2.1 that the optimal block size depends on the statis-
tic being calculated. Since we calculate a fixed percentile of a distribution,
the optimal block size is O(T 1/4). For this example, the sample size is 465,
and so T 1/4 = 4.6437. Obviously, the block size must be an integer and so
we fix ℓ = 5. This is a convenient choice because it means there are exactly
ninety-three non-overlapping blocks in the sample. To calculate the number of
replications, we set pdb = 0.05 and β = 0.95. The resulting choice of N1 is 2379
for the overidentifying restrictions test and 1379 for the confidence intervals.
Therefore, for simplicity, we set N1 = 2379 for both types of statistics. Paren-
thetically, it should be noted that in a very small number of the bootstrap sam-
ples S̃T [θ̃T̃ (2); θ̂k,T (2)] was singular. Therefore the number of bootstrap samples
was actually set equal to N1 + 50 and the calculations were based on the first
N1 bootstrap samples for which the calculation of the required statitics was
succesful.

We report results using both choices of first-step weighting matrix used in our

empirical example. For the case in which W
(1)
T is the inverse of the instrument

cross product matrix, the first step estimation is performed in the bootstrap
sample using the corresponding matrix constructed from the bootstrap sample,

denoted here by (T̃−1
∑T̃

t=1 z̃tz̃
′

t)
−1 . Given the nonlinearity of the model, it

is particularly attractive to use the approximate bootstrap to reduce the com-
putational burden. Unfortunately, to date, there are no theoretical results to
offer guidance on the number of steps needed to obtain asymptotic refinements
for the particular optimization routine used in fminu in MATLAB. So for illus-
trative purposes, the method is performed using 2, 4, 6, 8, 10, 20, 30, 40, 50 and
100 steps. For this example, it turns out that the percentiles are sensitive
to the number of steps allowed. As an illustration, Table 8.3 reports the ap-
propriate percentiles based on N = N1 replications for the case in which the
asset is V WR using both choices of first step weighting matrix and blocking
scheme. It should be noted that, for a given blocking scheme, the calcula-
tions reported in Table 8.3 are all based on the same set of bootstrap sam-
ples and so the only difference is in the number of steps in the approximate
bootstrap.

As a reminder, the corresponding percentiles from the limiting distributions
are 7.815 for the overidentifying restrictions test, and 1.96 for the t-statistics.
Inspection reveals that the bootstrap percentiles are for the most part close
to these limiting values. However, the percentile are also clearly sensitive to
the blocking scheme, the number of steps in the approximate bootstrap, and
also the choice of first step weighting matrix. Of these three, the nature of
the Edgeworth expansion would lead us to anticipate the sensitivity of the per-

centiles to W
(1)
T , but the rest are less easily explained. The sensitivity of the

bootstrap percentiles to the number of steps in the numerical optimization sug-
gests that the theoretical results outlined above do not extend to the routines
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Table 8.3
Bootstrap 95th percentiles for the overidentifying restrictions test

and the absolute values of the t-statistics with V WR

Non-overlapping blocks Overlapping blocks

W
(1)
T imax J̃T̃ ãτ T̃ ,γ ãτ T̃ ,δ J̃T̃ ãτ T̃ ,γ ãτ T̃ ,δ

105I5 2 8.311 0.000 1.161 8.071 0.000 1.087
4 8.311 0.000 1.161 8.071 0.000 1.088
6 8.208 1.586 1.593 7.664 1.518 1.521
8 7.740 2.018 1.983 7.499 1.958 1.983
10 7.794 1.995 1.990 7.438 1.937 1.966
20 7.747 2.035 2.009 7.322 1.985 1.990
30 7.706 2.030 2.018 7.263 2.002 2.006
40 7.731 2.035 2.040 7.264 2.007 2.010
50 7.731 2.049 2.027 7.266 2.007 2.012
100 7.736 2.048 2.027 7.266 2.007 2.012

(T̃−1
∑T̃

t=1 z̃tz̃
′

t)
−1 2 8.238 0.000 1.156 7.564 0.000 1.100

4 8.238 0.000 1.156 7.564 0.000 1.103
6 8.114 1.496 1.529 7.546 1.573 1.621
8 7.936 2.012 1.966 7.258 2.024 1.973
10 7.822 1.964 1.960 7.214 2.022 1.971

≥20 7.814 1.966 1.960 7.251 2.022 1.973

Notes: J̃T̃ is defined in (8.39), ãτ T̃ ,γ and ãτ T̃ ,δ are defined in (8.49) with the i subscript

replaced by the symbol for the parameter in question. imax denotes the maximum number of
steps in approximate bootstrap.

used here – at least for imax ≤ 100. A striking feature of this sensitivity is
that the percentile for ãτ T̃ ,γ is zero to five decimal places with imax = 2, 4 with
either choice of weighting matrix or blocking scheme. We conjecture that this
reflects a feature of the moment condition noted in Section 3.6, namely that it
is nearly uninformative about γ0. However, a deeper analysis is left to future
research.

The next step is to calculate N2. For brevity, we focus on the case where
imax = 100. Table 8.4 reports the values of N2 and the final bootstrap
percentiles for both choices of asset. As can be seen, the bootstrap percentiles
for the overidentifying restrictions test do not alter our verdict about the spec-
ifications. As with inference based on the asymptotic critical values, the model
is rejected for EWR but not with V WR. Given this evidence, it is only inter-
esting to consider the confidence intervals for the parameters based on V WR.
However, since the percentiles for the t-statistics for γ and δ are so close to the
corresponding values from the standard normal distribution, this is left as an
exercise for the reader.
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Table 8.4
N2 and final bootstrap 95th percentiles for the overidentifying

restrictions test and confidence intervals for γ0 and δ0

Non-overlapping blocks Overlapping blocks

Asset W
(1)
T N2(J̃T̃ ) N2(ãτ T̃ ,γ) N2(ãτ T̃ ,δ) N2(J̃T̃ ) N2(ãτ T̃ ,γ) N2(ãτ T̃ ,δ)

VWR A 2999 1819 1819 6659 1399 1199
B 4939 1159 1299 2199 899 1179

EWR A 2799 939 939 3419 959 1359
B 4079 1999 1919 2139 1499 1099

Non-overlapping blocks Overlapping blocks

Asset W
(1)
T J̃T̃ ãτ T̃ ,γ ãτ T̃ ,δ J̃T̃ ãτ T̃ ,γ ãτ T̃ ,δ

VWR A 7.684 2.013 2.000 7.544 1.973 1.994
B 7.566 2.045 2.020 7.251 2.022 1.973

EWR A 7.701 NA NA 7.667 NA NA
B 7.415 NA NA 7.573 NA NA

Notes: N2(.) denotes the value for N2 calculated using the formulae for associated with the

statistics in the parentheses. A denotes W
(1)
T = 105I5, B denotes W

(1)
T = (T̃ −1

∑T̃
t=1 z̃tz̃

′

t)
−1.

NA denotes “not applicable”. For other definitions see Table 8.3.

8.2 Inference in the Presence of Weak

Identification

The asymptotic theory in Chapters 3 and 5 is predicated on the assumption
that the parameter vector is identified by the population moment condition
used in the estimation. In recent years there has been a growing awareness
that this proviso may not be so trivial in situations which arise in practice.
In a very influential paper, Nelson and Startz (1990) draw attention to this
potential problem and provided the first evidence of the problems it causes for
the inference framework we have described above. Their paper has prompted
considerable interest in the behaviour of GMM in cases in which the parameter
vector is weakly identified. In this section we provide a review of this literature.

To begin, it is necessary to define what is meant by the term “weakly identi-
fication”. The essence of the concept is most easily understood within a simple
example. Accordingly, we consider the simple linear regression model

yt = xtθ0 + ut (8.59)

in which ut is an i.i.d. process with mean zero and variance σ2
0 . Suppose the

scalar parameter θ0 is estimated by Instrumental Variables which, as we have
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seen, is just GMM estimation based on the population moment condition

E[ztut(θ0)] = 0 (8.60)

where zt is a q × 1 vector of instruments and ut(θ0) = yt − xtθ0. From Section
2.1, it can be recalled that θ0 is identified by (8.60) if rank{E[ztxt]} = 1. In
this simple example, θ0 is unidentified if E[ztxt] is the null vector, which would
occur if zt and xt are uncorrelated and both possess zero means. In practice, it
is unlikely that E[ztxt] is exactly zero. The contribution of Nelson and Startz’s
(1990) paper is to demonstrate that problems occur if E[ztxt] is non-zero but
small. It is this scenario which is refered to as “weak identification”. It is also
convenient to have a terminology that describes this scenario in terms of the
population moment condition. Therefore, if the parameter vector is weakly iden-
tified then the population moment condition is said to be nearly uninformative
about the parameter vector.

To proceed, it is necessary to develop a model which can capture the idea
of nearly uninformative moment conditions. Staiger and Stock (1997) solve this
problem by assuming that

xt = z
′

tγT + et (8.61)

where γT = T−1/2c, c is a non-zero q × 1 vector of constants, and et is the
unobserved error which has both a zero mean and is uncorrelated with zt.

22

Using similar logic to the derivation of (2.3), it follows that this specification
implies

ET [ztut(θ)] = {E[ztz
′

t]}T−1/2c(θ0 − θ) (8.62)

Therefore, θ0 is identified by (8.60) for finite T but is not in the limit as
T → ∞.23 So the concept of nearly uninformative moment conditions is cap-
tured by assuming that the information in the population moment condition
disappears at rate T−1/2. This rate is chosen so that the effects of the nearly
uninformative moment conditions manifest themselves in the limiting behaviour
of the estimator. Since p = 1, we have

θ̂T − θ0 =
x′Z(Z ′Z)−1Z ′u

x′Z(Z ′Z)−1Z ′x
(8.63)

in the obvious notation. As in Section 2.3, the limiting behaviour of θ̂T − θ0

depends on the limiting behaviour of the components on the right hand side of
(8.63). Using the Weak Law of Large Numbers and the Central Limit Theorem

respectively, it follows that: (i) T−1Z ′Z
p→ Mzz, a positive definite matrix of

constants; (ii) T−1/2Z ′u
d→ N(0, σ2

0Mzz) – assuming here for simplicity that zt

22 Notice this design involves exactly the same type of Pitman drift that is used to set
up local alternatives to hypothesis tests; see Section 5.1.3. Equation (8.61) implies the ex-
planatory variable is a triangular array {xt,T ; t = 1, 2, . . . T ; T = 1, 2, . . .} but we suppress the
second subscript for notational brevity. This structure also implies that the distribution of xt

is indexed by T and so we index the expectation operator by T when it is applied to functions
of xt.

23 See Section 2.1 for a discussion of identification in the linear model.
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is independent of ut. Notice that neither (i) nor (ii) involve the relationship
between xt and zt and so would equally hold if θ0 is properly identified. The
key difference comes in the behaviour of Z ′x. From (8.61), it follows that

Z ′x = T−1/2Z ′Zc + Z ′e (8.64)

where e is the T × 1 vector with tth element et. Therefore, T−1Z ′x
p→ 0 and

T−1/2Z ′x
d→ N(Mzzc, σ

2
eMzz). The nature of this limiting behaviour means

that,

θ̂T − θ0 =
T−1/2x′Z(T−1Z ′Z)−1T−1/2Z ′u

T−1/2x′Z(T−1Z ′Z)−1T−1/2Z ′x

d→ Ψ
′

1M
−1
zz Ψ2

Ψ
′

1M
−1
zz Ψ1

(8.65)

where Ψ1 ∼ N(Mzzc, σ
2
eMzz) and Ψ2 ∼ N(0, σ2

eMzz). Therefore, θ̂T converges
to a random variable when parameter vector is weakly identified in the sense of
(8.61). This is in marked contrast to the case when θ0 is identified because then

θ̂T converges in probability to θ0.
24

This simple example provides a clear indication that the asymptotic theory
derived in Chapters 3 and 5 is inappropriate for the weak identification case. As
a result, three questions naturally arise: – what is the behaviour of the GMM
estimator in dynamic nonlinear models when the parameter vector is weakly
identified? – is it possible to perform inference about θ0 in this setting and
if so how? – is it possible to test whether θ0 is identified by the population
moment condition? These three questions are covered respectively in Sections
8.2.1 through 8.2.3.

Before we proceed to this discussion, it is worth emphasising the intended in-
terpretation of this framework. The definition of weak identification is artificial
in the sense that it is not seriously believed that real economic data are gener-
ated by processes with Pitman drift. This is simply a mathematical device that
is used to generate a limiting distribution theory that provides a good approx-
imation to finite sample behaviour in cases when – in the terms of our simple
example – E[xtzt] is small but non-zero. However, it should be noted that if
E[xtzt] is non-zero then the asymptotic theory in Chapter 2 (or more generally
Chapters 3 and 5) is valid. The problem is that it may take a very large T
before this asymptotic theory provides a good approximation. Hahn and Inoue
(2002) provide simulation evidence that suggests that conventional asymptotics
can provide a satisfactory approximation in the types of large dataset encoun-
tered in microeconometrics (i.e. T = 10, 000) unless the number of instruments
is large and the correlation between the endogenous regressor and the instru-
ments is pathologically small.25 However, available evidence suggests that this

24 See Section 2.3.
25 Hahn and Inoue (2002) compare a number of methods for constructing confidence in-
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is not the case in the sample sizes encountered in macroeconometrics and that
in these cases the theory discussed below provides a better approximation.

It is also worth noting that the approach described above is not the only
possible way to obtain an alternative distribution theory for the IV estimator
in the presence of weak identification. One alternative is to use the limiting
distribution theory developed by Bekker (1994) that is based on the assumption
that the number of instruments increases with the sample size.26 Hahn and
Inoue (2002) find that this distribution theory provides a good approximation
in the types of sample sizes encountered in microeconometrics. However, this
approach has not yet been extended to nonlinear models and so we do not pursue
it further here.

8.2.1 The Limiting Behaviour of the GMM Estimator

To date, weak identification has been mostly encountered in models estimated
by Generalized Instrumental Variables estimators, and so our discussion focuses
on this case.27 In this setting, the problem of weak identification is commonly
refered to as the “weak instrument” problem. Staiger and Stock (1997) develop
the limiting distribution theory in linear models, and Stock and Wright (2000)
extend the analysis to nonlinear models. It is the latter that is our focus here.
One central finding of these papers is that the usual limiting distribution the-
ory does not apply and this motivates the presentation of alternative inference
methods in the following sub-section. In view of this, our discussion concen-
trates on the framework for capturing nearly uninformative moment conditions
and the conclusions to be drawn from the nature of the limiting distributions.
The interested reader is refered to Stock and Wright (2000) for detailed deriva-
tions. Although the analysis is in terms of GIV estimation, it is worth noting
that the corresponding results for GMM can be obtained by setting zt = 1.

As mentioned above, we focus on the following class of moment conditions.

Assumption 8.4 GIV Estimation
Let f(vt, θ) = ut(θ) ⊗ zt.

In our simple example above, the parameter vector consists of a single element
and so, by construction, the entire parameter vector is weakly identified. In
more general settings, logic dictates that some elements of the parameter vector
may be identified and others weakly identified. To accommodate this scenario,
we partition the parameter vector as follows: θ = (φ′, ψ′)′ where φ is pφ × 1
and ψ is pψ × 1 where p = pφ + pψ. Similarly, we write Θ = Φ × Ψ in the
obvious notation. Below φ consists of the weakly identified parameters and
ψ the parameters that are identified. As before, it is assumed that q ≥ p
and so problems with identification are not due to too few population moment

tervals in the context of a simple linear regression model. Also see Section 6.2.1 for further
discussion of the connection between identification and the passage to the limiting distribution.

26 See Section 6.1.3.
27 See Section 7.2.
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conditions per se but rather the poor quality of the information in these moment
conditions.28

It is pedagogically easier to present the mathematical framework used to
capture this scenario and then discuss how it achieves the desired goal. This
framework is given in the following assumption.

Assumption 8.5 Weak Identification

(i) ET [f(vt, θ)] = T−1/2m1,T (θ) + µ2(ψ).

(ii) m1,T (θ) → µ1(θ) uniformly in θ ∈ Θ, µ1(θ0) = 0, µ1(θ) is continuous in
θ and is bounded on Θ.

(iii) µ2(ψ0) = 0, µ2(ψ) �= 0 for ψ �= ψ0, M2(ψ) = ∂µ2(ψ)/∂ψ′ has full rank at
ψ = ψ0 and is continuous.

From Assumption 8.5, it can be seen that the population moment condition is
satisfied at θ0. At other parameter values, ET [f(vt, θ)] consists of two parts.
The first part, T−1/2m1,T (θ), decays to zero at rate T−1/2. Therefore, this first
part is nearly uninformative about both φ0 and ψ0. In contrast, the second part,
µ2(ψ), is non-zero for any ψ �= ψ0 and so is informative about ψ0. Therefore,
within this framework, φ0 is weakly identified but ψ0 is identified.

Before proceeding further, it is worth briefly contrasting this framework
with the scenario of redundant moment conditions described in Section 6.1.2.
It can be recalled that E[f2(vt, θ0)] = 0 is redundant given E[f1(vt, θ0)] = 0
if the asymptotic variance of the GMM estimator is the same whether esti-
mation is based on E[f1(vt, θ0)] = 0 alone or on both E[f1(vt, θ0)] = 0 and
E[f2(vt, θ0)] = 0. The presumption in this earlier discussion is that θ0 is identi-
fied by E[f1(vt, θ0)] = 0. Therefore the literature on redundant moment condi-
tions addresses the problems encountered if uninformative moment conditions
are included along with informative moment conditions when the parameter vec-
tor is identified.29 In contrast, the literature on weak identification addresses
the problems that arise when the population moment conditions are collectively
nearly uninformative about the parameter vector. As might be imagined, the
consequences of redundant and nearly uninformative moment conditions are
quite different.30

Stock and Wright (2000) [Corollary 4] present the limiting distributions of
the first step, second step and continuous updating GIV estimators. For brevity,
we focus on the second step estimators, φ̂T (2) and ψ̂T (2). However, it emerges
that these distributions depend in part on the behaviour of the first step esti-
mators, φ̂T (1) and ψ̂T (1), and so the relevant aspects of the limiting behaviour
of the first step estimators are also summarized below. The analysis rests on the

28 See Section 3.1 for a discussion of identification.
29 See Sections 6.1.2, 7.3.2 and 7.3.4.
30 See Hall, Inoue, Jana, and Shin (2003) for further discussion of the connections between

redundancy and weak identification.
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empirical process representation for the GMM objective function.31 Within this
framework, T 1/2gT (θ) is treated as a function of θ that converges to a Gaussian
process.32 The limit process is assumed to have the following properties.33

Assumption 8.6 Functional Central Limit Theorem
T 1/2gT (θ) ⇒ Ψ(θ) where Ψ(θ) is a Gaussian stochastic process on Θ with mean
zero and covariance function E[Ψ(θ1)Ψ(θ2)

′] = Ω(θ1, θ2).

The following lemma characterizes the limiting behaviour of the two step
GIV estimators where, for simplicity, it is assumed that the first step weighting
matrix is Iq.

Lemma 8.1 Limiting Behaviour of GIV Estimators
Under assumptions 8.4 – 8.6 and certain other regularity conditions,34 the

limiting behaviour of the GIV estimators is as follows: (i) φ̂T (1)
d→ φ

(1)
∞ ,

ψ̂T (1)
p→ ψ0; (ii)

[

φ̂T (2)

T 1/2[ψ̂T (2) − ψ0]

]

d→
[

φ
(2)
∞

∆ψ

]

where

φ(1)
∞ = argminφ∈Φ Q

(1)
∗ (φ)

φ(2)
∞ = argminφ∈Φ Q

(2)
∗ (φ)

∆ψ = −[F (φ(1)
∞ , ψ0)

′F (φ(1)
∞ , ψ0)]

−1F (φ(1)
∞ , ψ0)

′Ω(1)−1/2[Ψ(φ(2)
∞ , ψ0)

+ µ1(φ
(2)
∞ , ψ0)]

and

Q
(1)
∗ (φ) = [Ψ(φ, ψ0) + µ1(φ, ψ0)]

′C1(ψ0)[Ψ(φ, ψ0) + µ1(φ, ψ0)]

C1(ψ0) = Iq − M2(ψ0)[M2(ψ0)
′

M2(ψ0)]
−1M2(ψ0)

′

Q
(2)
∗ (φ) = [Ψ(φ, ψ0) + µ1(φ, ψ0)]

′C2(φ
(1)
∞ , ψ0)[Ψ(φ, ψ0) + µ1(φ, ψ0)]

C2(φ
(1)
∞ , ψ0) = Ω(1)−1/2′

K(φ(1)
∞ , ψ0)Ω(1)−1/2

K(φ(1)
∞ , ψ0) = Iq − F (φ(1)

∞ , ψ0)[F (φ(1)
∞ , ψ0)

′F (φ(1)
∞ , ψ0)]

−1F (φ(1)
∞ , ψ0)

′

F (φ(1)
∞ , ψ0) = Ω(1)−1/2M2(ψ0)

Ω(1)−1/2 = [Ω(1)1/2′

]−1

Ω(1) = Ω(1)1/2′

Ω(1)1/2 = Ω(θ(1), θ(1))

θ(1) = (φ(1)′

∞ , ψ
′

0)
′

31 See Andrews (1994) for a review of empirical process theory.
32 A similar device is used to develop a limiting distribution theory for structural stability

tests in Section 5.4.2.1. Note that in the context of structural stability tests, the partial sum
is treated as a function of the break fraction π.

33 See Andrews (1994) or Stock and Wright (2000) for more primitive conditions under
which the Functional Central Limit Theorem holds in this setting.

34 These include an identification condition that is omitted here to simplify the presentation.
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and M2(ψ) is defined in Assumption 8.5. Lemma 8.1 has two important implica-
tions. First, the estimator of the sub-vector of the weakly identified parameters,
φ̂T , converges to a random variable on both steps and so is not consistent. Sec-
ondly, the estimator of the sub-vector of identified parameters, ψ̂T , is consistent
but its limiting distribution is no longer normal.35 In other words, inference
about the identified parameters is contaminated by the presence of the weakly
identified parameters. The bottom line is that none of the inference procedures
in Chapter 5 are valid in the presence of weak identification. The following sub–
section considers alternative approaches to inference that have been proposed
to circumvent these problems.

8.2.2 Inference in the Presence of Weak Identification

Since the GMM estimators exhibit non-standard limiting behaviour, the con-
ventional estimator based approach to inference is infeasible. To resurrect infer-
ence in this setting, an alternative approach is required. This approach involves
finding a statistic whose limiting distribution at θ0 is both standard and also un-
affected by the presence of weak identification, and then inverting this statistic
to construct confidence sets for θ0. In the context of linear models estimated by
IV, Staiger and Stock (1997) explore this approach based on the Anderson and
Rubin (1949) statistic. In the same context, Wang and Zivot (1998) show that
modified versions of the Wald, LM and D statistics are bounded by a statistic
of known distribution and so can also form the basis for confidence sets. These
approaches are compared in Zivot, Startz, and Nelson (1998). We do not re-
view these papers in more detail as the results only apply to the linear setting.
Instead, we focus on the method proposed by Stock and Wright (2000) that is
valid in nonlinear models.

As noted above, it is necessary to find a statistic whose limiting distribution
at θ0 is both standard and also unaffected by the presence of weak identification.
Fortunately, such a statistic is close at hand. Under the conditions of Lemma
3.2,36 it follows that

TQcont,T (θ0) = TgT (θ0)
′ST (θ0)

−1gT (θ0)
d→ χ2

q (8.66)

Therefore, Stock and Wright (2000) propose inverting TQcont,T (θ0) to obtain
the approximate 100(1 − α)% confidence set

{ θ : TQcont,T (θ) < cq(α) } (8.67)

where cq(α) is the 100(1−α) percentile of the χ2
q distribution. This approach to

inference is discussed in Section 3.7 where it is proposed as a way of constructing
confidence sets that are invariant to reparameterization. In the context of weak
identification, such sets are often refered to as “S-sets”, a terminology derived

35 The distribution of the T 1/2[ψ̂T (1)−ψ0] is qualitatively similar to that of T 1/2[ψ̂T (2)−
ψ0]; see Stock and Wright (2000).

36 See Section 3.4.2.
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from the notation in Stock and Wright (2000). However, since our notation is
different, we eschew this name. Notice that the distributional result in (8.66)
holds regardless of whether or not θ0 is identified or weakly identified, and so
this approach to inference is equally valid in both cases.37

The confidence sets in (8.67) have the appealing feature that they can be
infinite in one or more dimension and so reveal that the elements of the param-
eter vector in question are unidentified. This contrasts with the conventional
asymptotic confidence intervals in (3.27) which are by construction of fixed
length. In fact, the intervals in (3.27) are fundamentally flawed in this setting.
Dufour (1997) shows that for a confidence interval to have the stated coverage
probability then it must be possible for it to have infinite length.38

However, this approach to inference also has its drawbacks. Kleibergen
(2000) has pointed out that the confidence sets in (8.67) are not centred on θ̂T .
Whether this is perceived as a drawback may be a matter of taste. Kleibergen
(2000) uses this feature to motivate confidence sets based on inversion of a
statistic based on the first order derivative of the continuous updating GMM
minimand; see Kleibergen (2000) for further details. A more serious drawback is
that the inversion in (8.67) is only computationally feasible for relatively small
values of p. This problem can be ameliorated if the partition between the weakly
identified and identified parameters is known and it is the weakly identified
parameters that are of interest. In such circumstances, valid confidence sets
can be based on the minimand of the restricted GMM estimation in which the
minimization is performed over the identified parameter, ψ, conditional on a
value for the weakly identified parameter, φ. To flesh out the details, it is
necessary to introduce some additional notation. Let ψ̂T (φ̄) denote the GMM
estimator of ψ conditional on φ = φ̄, that is

ψ̂T (φ̄) = argminψ∈Ψ TQcont,T (θ)
∣

∣

φ=φ̄
(8.68)

Stock and Wright (2000) show that

TQcont,T

(

φ0, ψ̂T (φ0)
)

d→ χ2
q−pψ

(8.69)

where, as before, pψ is the dimension of ψ, and so propose the following asymp-
totically valid 100(1 − α)% confidence set for φ0,

{ φ : TQcont,T

(

φ, ψ̂T (φ)
)

< cq−pψ
(α) } (8.70)

We now illustrate this alternative approach within the context of our running
empirical example.

37 See Section 3.7 for a discussion of other reasons for using this approach to inference when
the parameter vector is identified.

38 The intervals in (3.27) may also be invalid if θ0 is identified but there is a subset of the
parameter space, Θun, in which θ is unidentified; see Dufour (1997) for further discussion.
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Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model
The confidence sets in (8.67) have already been presented in Section 3.7. As a
reminder, the set for (γ0, δ0) was non-empty but bounded for the value weighted
returns (VWR) case, and empty for equally weighted returns (EWR). The latter
indicates misspecification, and it is consistent with our findings based on the
overidentifying restrictions test in Section 5.1. Therefore, we concentrate on the
VWR case here. The available evidence suggests that this is one case in which
the partition of the parameter vector might reasonably be taken to be known
with the weakly identified parameter being φ = γ and the identified parameter,
ψ = δ. Using this partition, we use (8.70) to calculate a confidence set – or
interval as pφ = 1 – for γ. To make the calculation feasible in practice, it is
necessary to discretize the parameter space for γ. This was done as follows.
To begin, the parameter space is taken to consist of all points lying between
−50 and 50 on a grid with 0.01 between each point. This leads to an interval of
[−4.88, 7.19]. To refine this interval, the calculations are redone for the finer grid
consisting of all points between −5.000 and 7.200 with 0.001 between each point.
The resulting interval is [−4.886, 7.188]. This interval is almost twice the width
of the interval reported in Table 3.8 that is based on the traditional asymptotic
confidence interval given in (3.27). It is also asymmetric around γ̂T , which is
0.666 for this model.39 Therefore, the use of these alternative asymptotics leads
to different conclusions about the set of plausible values for γ0. ⋄

8.2.3 The Detection of Weak Identification

It is clear from the discussion in Section 8.2.1 that the presence of weak iden-
tification renders the conventional asymptotics inappropriate. This motivates
the development of the alternative approach to inference described in Section
8.2.2 based on methods that are robust to the presence of nearly uninformative
moment conditions. The difference between these two inference frameworks nat-
urally raises the question of how a researcher should perform inference if the
identification of the parameters is suspect. One solution is to adopt the confi-
dence set framework in Section 8.2.2 because it is valid regardless of whether
or not θ0 is identified. However, there are at least three reasons why it may be
desirable to diagnose whether or not the parameters are identified. First, the
confidence set may only be feasible in cases where p is relatively small. Sec-
ondly, there is far wider array of inference procedures available if the parameter
vector is identified. Finally, if the parameter vector is identified then the point
estimator is consistent and this knowledge may affect our interpretation of the
estimates. Therefore, in this section, we consider methods that have been pro-
posed for testing identification. Even more than other aspects of the literature
on weak identification, this topic has been addressed within the context of lin-
ear regression models estimated by IV. In spite of this limitation, we review the
available results because the qualitative conclusions likely extend to nonlinear

39 See Table 3.7
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models. However, it is left to future research to extend the methods described
here to the GMM framework with nonlinear dynamic models.

To initiate the discussion, we first consider how the presence of weak iden-
tification might be detected within the simple motivating example given in at
the beginning of this sub-section. It can be recalled that the population mo-
ment condition in (8.60) is nearly uninformative about θ0 because ET [xt|zt] is
decaying to zero at rate T−1/2. Or put more simply, the relationship between
xt and zt is dying out as T → ∞. Intuition suggests that this state of affairs
can be uncovered by running the regression of xt on zt and examining standard
diagnostics for goodness of fit. Since it is desired to develop a test for iden-
tification, the most convenient diagnostic is the F -statistic for the hypothesis
that the coefficients on zt are all zero in this regression. Bound, Jaeger, and
Baker (1995) advocate that this first stage F -statistic be rountinely reported as
a “rough guide” on the strength of the identification. For our purposes here, it is
useful to formalize this recommendation. To this end, we denote the regression
model for xt on zt by40

xt = z′
tγ + error

Let Fγ be the F -statistic for the hypothesis that γ = 0 in this model. In terms
of identification, the null and alternative hypotheses are interpreted as follows:

H0 : γ = 0 ⇔ θ0 not identified (8.71)

H1 : γ �= 0 ⇔ θ0 identified (8.72)

Therefore, θ0 is deemed identified if Fγ is significant.
This generic approach can be extended to more general linear models in

which xt is a vector and includes both endogenous and exogenous regressors.
Hall, Rudebusch, and Wilcox (1996) propose testing for identification based on
the canonical correlations between xt and zt. Shea (1997) proposes a method
based on the partial correlations between xt and zt. Cragg and Donald (1993)
propose a test based on the rank of the coefficient matrix in the reduced form
regression of xt on zt. However, we do not consider the specifics of these tests
further but instead focus on two aspects of this generic approach, namely the
implications of testing for identification prior to inference about θ0 and the
interpretation of the alternative hypothesis.

The ultimate focus of the analysis is θ0, and so it is important to consider
how the use of such a test for identification affects subsequent inferences about
the parameter vector. The answer is that it depends both on how the test
for identification is used and also on the statistic used to perform inference
about θ0. There are two ways in which the test for identification could be
used and for simplicity, we discuss these in the context of the simple example
above. One option is to use Fγ to select the instrument vector. Within this
approach, Fγ is calculated for a sequence of possible choices of instrument and
the selected instrument vector, z∗

t say, is the first in the sequence for which Fγ

40 In this context, this regression is often refered to as “the first stage regression” as it is
the first stage of a Two Stage Least Squares estimation of (8.59).
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is significant. Estimation is then based on the moment condition in (8.60) with
zt = z∗

t and inference is performed under the assumption that θ0 is identified.
A second option is to treat zt as given and then use Fγ to determine which
statistical theory is used to perform inference about θ0. With this approach,
an insignificant Fγ value leads to inference based on a method that is valid
if θ0 is weakly identified, and a significant Fγ leads to inference based on a
method that is valid if θ0 is identified. The evidence to date suggests that the
first option is not a good strategy but the second is. Hall, Rudebusch, and
Wilcox (1996) report simulation evidence on a variant of the first option above
in which a test for identification is used to select the instrument vector and
subsequent inference about the (scalar) parameter θ0 is performed using the
confidence interval in (3.27).41 This evidence indicates that inferences about θ0

can be severely distorted in the sense that the actual coverage probability of
the confidence interval is much smaller than the nominal level. However, there
is a caveat to this finding. The confidence interval in (3.27) can be interpreted
as containing all values of θ̄ for which H0 : θ0 = θ̄ is not rejected using the
Wald statistic at the 100α% level. Zivot, Startz, and Nelson (1998) show that
the behaviour of the Wald statistic is severely distorted by the presence of
weak identification whereas the LM and LR tests are far more robust. Zivot,
Startz, and Nelson (1998) report comparable evidence for the case in which the
confidence interval is calculated by inverting the LR and LM tests for H0 : θ0 =
θ̄. This evidence indicates that the use of the Wald test based confidence interval
does indeed account for a substantial part of the distortions reported by Hall,
Rudebusch, and Wilcox (1996). However, non-trivial distortions remain even
if inference is based on the LR or LM tests. Zivot, Startz, and Nelson (1998)
also report simulation evidence for the second option in which the choice of
instrument is taken as given and Fγ is used to determine the statistical theory
employed. Within their design, θ0 is a scalar and the confidence interval is
constructed by inverting either the LM or LR test for H0 : θ0 = θ̄. The
value of Fγ determines the distribution used to approximate the behaviour of
these statistics. Their evidence indicates that the coverage rate is very close to
the nominal level regardless of whether θ0 is unidentified, weakly identified or
identified.

For all the tests of identification, the null is that θ0 is unidentified and the
alternative is that θ0 is identified. While it is true that failure to reject the null
indicates a problem, Stock and Yogo (2001) argue that rejection of the null at
conventional significance levels does not necessarily imply that “conventional
asymptotics” provide a good approximation. This is certainly true for the Wald
statistic considered in their paper, and likely true for other statistics as well.
They further argue that the definition of what constitutes weak identification
should reflect the nature of the desired inference about θ0. In the context of
IV estimation of a linear model, they consider two criteria for whether the
instruments are weak: one based on a measure of the bias in θ̂T and the other

41 The variation is that the test for identification is not Fγ but a test based on the correlation
between scalar xt and scalar zt.
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based on the size distortions exhibited by the Wald test. Both are intuitively
reasonable but interestingly they yield different criterion that, furthermore, are
sensitive to different aspects of the specification. While this analysis is confined
to linear models, it clearly reveals that the issues of defining poor identification
and testing for identification are more subtle than has been previously realized.

To date, there has been far less attention on the issue of testing for identifi-
cation in nonlinear models. The simple reason is that in the general nonlinear
model the key determinant of local identification is the derivative matrix G0

which depends on θ0. This problem can be circumvented as demonstrated by
Wright (2001) who proposes a test for identification in the context of GIV es-
timation. However, the issues described in the previous two paragraphs remain
to be addressed in this context, and so we do not explore the test further here.

8.3 Inference When the Long Run Variance is

Estimated by an HAC Estimator with

bT = T

It can be recalled from Theorem 3.2 that the asymptotic variance of θ̂T depends
on the long run variance of the sample moment, S. Given a consistent estimator
of S, ŜT say, it is possible to perform inference about θ0 based on this limiting
distribution theory. For example, Theorem 3.2 implies that inference about θ0,i

can be based on,

T 1/2(θ̂T,i − θ0,i)
√

V̂T,ii

d→ N(0, 1) (8.73)

where V̂T,ii is the i − ith element of

V̂T = [GT (θ̂T )′WT GT (θ̂T )]−1GT (θ̂T )′WT ŜT WT GT (θ̂T )[GT (θ̂T )′WT GT (θ̂T )]−1

(8.74)
Section 3.5 contains a review of a number of alternative estimators for ŜT with
the choice between them depending upon the requisite assumptions about the
dependence structure of {f(vt, θ0)}. The most general of these is the class of
heteroscedasticity autocorrelation covariance (HAC) estimators. To calculate
the HAC estimator, it is necessary to choose a kernel, ω(.), and a bandwidth,
bT . These components must satisfy certain restrictions if the resulting covari-
ance matrix estimator is to be consistent. However, these conditions leave a fair
amount of latitude. While the literature has provided guidance on the relative
merits of popular choices of kernel, there is no data based method for bandwidth
selection that does not involve some kind of arbitrary decision by the practi-
tioner. This is particularly undesirable as simulation evidence suggests that
subsequent inferences about θ0 can be sensitive to the choice of bandwidth.42

In view of these problems, Vogelsang (2003) proposes using a HAC estimator

42 See Sections 3.5.3 and 6.3.
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with bT = T . Such a rule has the twin advantages of being simple and definitive
but it violates the conditions for consistency of the covariance matrix estimator
with the result that (8.73) no longer holds. However, Vogelsang (2003) shows
that it is possible develop an alternative asymptotic theory that can be used as
a basis for inference about θ0 in this case. In this section we briefly review this
theory.

To facilitate the discussion, it is useful to introduce the following notation.
In view of the structure of the kernels in Table 3.3 and our current focus on
the case in which bT = T , we write ω(i/T ) for ωi,T . Below it is necessary to
consider situations in which the argument of the kernel is a difference, and to
avoid excessive notation we set ki,j = ω((i− j)/T ). Let ŜbT =T denote the HAC

estimator in equation (3.54) with bT = T , and set gi(θ) = T−1
∑i

t=1 f(vt, θ).

Finally, let θ̂T be the GMM estimator based on weighting matrix WT . It is
important for the arguments below that θ̂T is consistent for θ0. One implication
of the analysis below is that Ŝ−1

bT =T does not satisfy Assumption 3.7 and so is not

a valid weighting matrix. Therefore, ŜbT =T is only used to perform inference
after estimation is completed.

This approach to inference works for the general case in which it is desired
to test the hypothesis that the parameters satisfy a nonlinear set of restrictions,
r(θ0) = 0. However, it is more convenient to introduce this framework in the
context of the simple case in which r(θ0) = θ0,i. The more general case is then
covered at the end of the section. The arguments presented are heuristic and
the interested reader is refered to Vogelsang (2003) for a rigorous justification.

Suppose then that it is desired to test perform inference about θ0,i. The
natural starting point is the analagous statistic to the one appearing in (8.73),
namely

T 1/2(θ̂T,i − θ0,i)
√

V̂bT =T,ii

(8.75)

where V̂bT =T,ii is the i − ith element of

V̂bT =T = [GT (θ̂T )′WT GT (θ̂T )]−1GT (θ̂T )′WT ŜbT =T WT GT (θ̂T )

×[GT (θ̂T )′WT GT (θ̂T )]−1 (8.76)

Since ŜbT =T is only used for inference and not estimation, the limiting behaviour
of the numerator is the same as before. However, this time it is useful to express
this limiting behaviour in terms of a Brownian motion.43 To this end, let ιi
be the (p × 1) selection vector whose ith element is one and whose remaining
elements are all zero. Using similar arguments to Section 3.4.2, it follows from
(3.26) that

T 1/2(θ̂T,i − θ0,i) = ι
′

iT
1/2(θ̂T − θ0)

= −ι
′

i[G
′

0WG0]
−1G′

0WT 1/2gT (θ0) + op(1) (8.77)

43 See Section 5.4.2.1.
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Equation (8.77) and the Functional Central Limit Theorem (Assumption 5.8)
together imply that

T 1/2(θ̂T,i − θ0,i) ⇒ −ι
′

i[G
′

0WG0]
−1G′

0WS1/2′

Bq(1) (8.78)

= σB1(1) (8.79)

where Bq(r) is a (q × 1) Brownian motion and σ is the (positive) square root of

ι
′

i[G
′

0WG0]
−1G′

0WSWG0[G
′

0WG0]
−1ιi.

Now consider the denominator of (8.75). Clearly the denominator depends
on V̂bT =T . To develop the limiting behaviour of V̂bT =T , we start with ŜbT =T

and gradually add in the surrounding matrices that appear in (8.76). Vogelsang
(2003) shows that

ŜbT =T = T−1
T−1
∑

ℓ=1

T−1
∑

m=1

dm,ℓTgℓ(θ̂T )Tgm(θ̂T )′ +

T
∑

i=1

f(vi, θ̂T )ki,T gT (θ̂T )′

+T
T−1
∑

ℓ=1

(kT,ℓ − kT,ℓ+1)gT (θ̂T )gℓ(θ̂T )′ (8.80)

where
dm,ℓ = (km,ℓ − km,ℓ+1) − (km+1,ℓ − km+1,ℓ+1)

Now consider CT = GT (θ̂T )′WT ŜbT =T WT GT (θ̂T ). Since the first order condi-

tions – equation (3.12) – imply GT (θ̂T )′WT gT (θ̂T ) = 0, it follows from (8.80)
that

CT = T−1
T−1
∑

ℓ=1

T−1
∑

m=1

dm,ℓGT (θ̂T )′WT Tgm(θ̂T )Tgℓ(θ̂T )′WT GT (θ̂T ) (8.81)

To characterize the limiting behaviour of CT , it is useful to introduce the step
function DT (r) defined on r ∈ [0, 1] as DT (r) = D(j) for j/T ≤ r ≤ (j + 1)/T ,
j = 1, 2, . . . , T −1 where D(x/T ) = [ω((x+1)/T )−ω(x/T )]− [ω(x/T )−ω((x−
1)/T )]. Using this step function, CT can rewritten as

CT = −T−1
T−1
∑

ℓ=1

T−1
∑

m=1

T 2DT ((m − ℓ)/T )GT (θ̂T )′WT gm(θ̂T )gℓ(θ̂T )′WT GT (θ̂T )

= −
∫ 1

0

∫ 1

0

T 2DT (r1 − r2)GT (θ̂T )′WT T 1/2g[r1T ](θ̂T )

× T 1/2g[r2T ](θ̂T )′WT GT (θ̂T )dr1dr2 (8.82)

where g[rT ](θ) = T−1
∑[rT ]

t=1 f(vt, θ). The advantage of this representation is
that T 2DT (r) → ω′′(r) where ω′′(.) denotes the second derivative of ω(.) on
(−1, 1).

From (8.82), it is clear that the limiting behaviour of CT depends on

GT (θ̂T )′WT T 1/2g[rT ](θ̂T ). Using similar arguments to the derivation of The-
orems 5.9–5.10 in Section 5.4.2.1, it can be shown that

GT (θ̂T )′WT T 1/2g[rT ](θ̂T ) ⇒ G
′

0WS1/2′

BBq(r) (8.83)
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where BBq(r) denotes a (q×1) Brownian Bridge.44 It follows from (8.82)–(8.83)
that

ι
′

iV̂bT =T ιi ⇒ σ2

∫ 1

0

∫ 1

0

−ω′′(r1 − r2)BB1(r1)BB1(r2)dr1dr2 (8.84)

Combining (8.75), (8.79) and (8.83), it follows from the Continuous Mapping
Theorem that

T 1/2(θ̂T,i − θ0,i)
√

V̂bT =T,ii

⇒ B1(1)

{
∫ 1

0

∫ 1

0
−ω′′(r1 − r2)BB1(r1)BB1(r2)dr1dr2}1/2

(8.85)
A comparsion of this distribution with the conventional limit distributions in
(8.73) indicates that the difference lies purely in the denominator.45 Since B1(1)
and BB1(r) are independent by construction, it follows that the limiting distri-
bution in (8.85) is that of the ratio of two independent random variables. This
structure further implies that the limiting distribution is a mixture of normals.
Notice also that the distribution in (8.85) depends on the kernel. We return to
this issue below.

The more general hypothesis r(θ0) = 0 can be tested using the Wald-type
test,

W̃T = Tr(θ̂T )′[R(θ̂T )V̂bT =T R(θ̂T )′]−1r(θ̂T )/s

where R(θ) = ∂r(θ)/θ′ and r(.) is s× 1. The following lemma gives the limiting
distribution of this statistic under the null hypothesis. The necessary regularity
conditions pertain to the consistency of θ̂T , r(.) and the behaviour of the partial
sums and derivatives. Since all three have been presented in Chapters 3 and 5,
we do not explictly repeat them in the text here.

Lemma 8.2 Limiting Distribution of W̃T under H0 : r(θ0) = 0
If Assumptions 3.1-3.5, 3.7-3.10, 5.3, 5.7 and 5.8 hold then:

W̃T ⇒ Bs(1)′

[ ∫ 1

0

∫ 1

0

−ω′′(r1 − r2)BBs(r1)BBs(r2)
′dr1dr2

]−1

Bs(1)/s

The limiting distribution in Lemma 8.2 depends only on the number of
restrictions, s, and the kernel. Keifer and Vogelsang (2002a) show that the
Bartlett kernel has superior local power properties in a simpler setting, and so we
confine our discussion to this kernel here.46 With the Bartlett kernel, ω′′(x) = 0
for all x �= 0 but has the drawback that ω(x) is not differentiable at x = 0.47

44 See Definition 5.2 in Section 5.4.2.1.
45 Recall that B1(1) = N(0, 1).
46 Keifer and Vogelsang (2002a) consider the case in which the null hypothesis involves a

set of linear restrictions on the regression parameters in a linear model.
47 Recall that the Bartlett kernel is ω(x) = 1 − |x| for x ∈ (−1, 1) and zero elsewhere; see

Section 3.5.3.



8.3 Long Run Variance by HAC Estimator with bT = T 309

However, Keifer and Vogelsang (2002b) show that ω′′(0) can be replaced by −2
with the result that the limit distribution in Lemma 8.2 becomes:

Bs(1)′[2

∫ 1

0

BBs(r)BBs(r)
′dr]−1Bs(1)/s (8.86)

Critical values for this distribution are given in Table 8.5 for p ≤ 12. Both
Keifer and Vogelsang (2002a) and Vogelsang (2003) provide critical points for
p ≤ 30. Keifer and Vogelsang (2002a) also provide critical points for a variety
of other kernels for the case of p = 1.

Vogelsang (2003) evaluates the finite sample performance of this approach
via a small simulation study. The sample design involves the IV estimation of
the parameters of linear regression model with errors that are generated by an
AR(p) process for p = 0, 1, 2. The null hypothesis of interest is that θ0,i ≤ 0
versus the alternative that θ0,i > 0, and so the test statistic is given in (8.75)
evaluated at θ0,i = 0. As comparison, Vogelsang (2003) also considers the
performance of the conventional approach using (8.73) for the case in which
ŜT is calculated using an HAC with a quadratic spectral kernel and bandwidth
selected by a method proposed in Andrews (1991). The evidence suggests that,
of the two, the test based on the HAC with bT = T exhibits an empirical size
that is closer to the nominal level and the asymptotic approximation is good at
T = 200. Size adjusted power calculations indicate that this ranking is reversed
under the alternative although the difference between the two tests is relatively
small.48

Table 8.5
Critical points for W̃T with the Bartlett kernel

p 10% 5% 1%

1 14.28 23.14 51.05
2 17.99 26.19 48.74
3 21.13 29.08 51.04
4 24.24 32.42 52.39
5 27.81 35.97 56.92
6 30.36 38.81 60.81
7 33.39 42.08 62.27
8 36.08 45.32 67.14
9 38.94 48.14 69.67
10 41.71 50.75 72.05
11 44.56 53.70 74.74
12 47.27 56.70 78.80

Source: Reprinted from Advances in Econometrics, 17, T.J. Vogelsang, “Testing in GMM
models without truncation”, pp. 199–233, copyright (2003), with permission from Elsevier.
Notes: the figures represent the critical points for the tests at the 10%, 5% and 1% significance
levels.

48 Vogelsang (2003) considers the case with and without pre-whitening and recolouring.
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Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model
It can be recalled that the underlying economic theory for this model implies
that f(vt, θ0) is a serially uncorrelated process, and so the majority of our
inferences have not involved the use of an HAC matrix to estimate the long
run variance. Nevertheless, for completeness, we use this approach to inference
to obtain alternative confidence intervals for the parameters in the model with
V WR. It follows from (8.85) and Table 8.5 that an approximate 95% confidence
interval for θ0,i is given by

θ̂T,i ±
√

23.14

√

V̂bT =T,ii/T

Using the iterated estimator based on WT = Ŝ−1
SU , the interval for γ0 is (−3.082,

4.415) and the interval for δ0 is (0.985, 1.026). Both are slightly wider than the
corresponding intervals reported in Table 3.8.49 ⋄

8.4 Summary

In this chapter, we review three alternative methods for approximating the
finite sample behaviour of the GMM estimator and its associated statistics.
These three are: (i) the bootstrap; (ii) an asymptotic theory developed for
the case in which the parameter vector is weakly identified by the population
moment condition; (iii) and an asymptotic theory designed to provide a better
approximation when the weighting matrix is based on a heteroscedasticity auto-
correlation covariance (HAC) matrix estimator. All three of these alternative
approximations are relatively new to the GMM literature, and so the associated
statistical theory is less comprehensive than that derived using the conventional
theoretical framework reviewed in Chapters 3 and 5. While important progress
has been made in each case, lacunae remain:

• The bootstrap: Since the bootstrap is based on resampling, it has the po-
tential to provide asymptotic refinements for all the inference procedures
discussed in Chapters 3 and 5. However, to date, these asymptotic refine-
ments have only be proven to occur within a class of nonlinear dynamic
models that includes some, but not all, the types of model in Table 1.1.
The basis on resampling means that the method can also be computa-
tionally burdensome in nonlinear models, but this burden can be reduced
by using the approximate bootstrap. In the types of model in Table 1.1,
the data generation process is unknown and therefore the non-parametric
bootstrap must be used. With dynamic data, the non-parametric boot-
strap involves resampling blocks of data and, to date, there are no defini-
tive guidelines on how these blocks should be chosen in the settings that
arise in GMM estimation.

49 See Section 3.6.
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• Weak identification: There have been two main branches of this literature.
The first branch has focused on showing the sensitivity of the conventional
asymptotic approximation to the quality of the identification. This branch
of the theory provides an important caveat to the conventional asymptotic
analysis because weak identification is encountered in practice. The second
main branch of this literature focuses on the development of inference
techniques that are robust to weak identification. To date, such techniques
are only feasible in the context of nonlinear dynamic models for settings
in which the number of parameters is relatively small.

• HAC estimation with bandwidth equal to sample size: An attractive feature
of this approach is that it provides a simple, definitive rule for bandwidth
selection. Although the long run variance is not consistently estimated, it
is still possible to perform asymptotically valid inference about the param-
eters. However, this choice of bandwidth cannot be used for estimation,
and, to date, there are no comparable asymptotically valid procedures for
inference based on the overidentifying restrictions.

Chapters 3 through 8 have exposited the main aspects of the statistical the-
ory of GMM estimation and its associated inference techniques. Throughout
the discussion, the various techniques have been illustrated using one of the ex-
amples from Section 1.3, namely the consumption based asset pricing model. In
the following chapter, we consider the estimation of the remaining four examples
from Section 1.3.



9

Empirical Examples

Throughout the preceeding chapters, the various facets of GMM estimation have
been illustrated using the consumption based asset pricing model described in
Section 1.3.1. In this chapter, we present empirical analyses for the other four
models described in Section 1.3.

Section 9.1 implements the mutual fund evaluation measure proposed by
Chen and Knez (1996). This discussion illustrates the potential sensitivity of
inferences based on the overidentifying restrictions test to the choice of covari-
ance matrix estimator. We also present results based on a modified measure of
performance evaluation that involves a non-negativity constraint. As a conse-
quence, the choice of f(vt, θ) does not satisfy the restrictions on the derivative
imposed by Assumption 3.5 because the derivative of the minimand is not de-
fined at all values of the parameter space. This non-existence causes problems
for gradient methods of optimization and so necessitates the use of an alternative
algorithm.

Section 9.2 explores whether the conditional capital asset pricing model can
explain the variation across international stock prices indices. The adequacy
of the specification is assessed using both the overidentifying restrictions test
and also tests for structural stability. The analysis indicates that inferences
about structural stability can be very sensitive to whether inference is based
on the Wald, LM or D tests discussed in Section 5.4. One possible explanation
is that the LM and D tests use the full sample GMM estimator instead of the
restricted GMM estimator. To assess the impact of this substitution, alternative
versions of the LM and D test are introduced. The evidence indicates that
this substitution, while asymptotically valid, has a considerable impact on the
behaviour of the tests in this example.

Section 9.3 reports estimation results for Eichenbaum’s (1989) model for in-
ventory holdings, and examines whether the production smoothing or produc-
tion cost smoothing hypothesis best captures aggegate behaviour in non-durable
manufacturing industries. The analysis of the production smoothing model is
based on both the original moment condition derived in Section 1.3.3 and also
on two alternatives derived by applying curvature altering transformations to

312
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the original. The iterated GMM estimates are seen to be sensitive to the trans-
formation employed, and these are contrasted to the continuous updating GMM
estimates that are insensitive to such transformations.

Section 9.4 explores whether a stochastic volatility model can capture the
time series properties of the daily U.S. dollar - Canadian dollar exchange rate.
This is another example in which the moment condition does not satisfy the
conditions placed on the derivative matrix by Assumption 3.5. This time the
problem is due to the presence of the absolute value function. In this con-
text, this problem has been treated by using a polynomial approximation in the
neighbourhood of the point at which the derivative is not defined, and we exam-
ine the sensitivity of the estimation results to the width of this neighbourhood.
In this example, the parameter vector is heavily overidentified, and so we ex-
amine whether any of the moment conditions are redundant using the moment
selection criteria described in Chapter 7.

9.1 Mutual Fund Performance Evaluation

Section 1.3.2 describes a method for the evaluation of mutual fund performance
proposed by Chen and Knez (1996). It can be recalled that a fund receives a
zero performance measure if

λ(rm
t , dt) = E[rm

t X ′
tδ0] − 1 = 0 (9.1)

where rm
t is the payoff on the mutual fund, dt is the stochastic discount factor

and Xt is a (N × 1) vector of payoffs on the traded assets included in the
benchmark set. A fund receives a positive performance measure if λ(rm

t , dt) > 0.
To distinguish this measure from another that is discussed below, we follow Chen
and Knez (1996) and refer to λ(rm

t , dt) as the LOP measure where the acronym
stands for “Law of One Price”, the theorem from which the measure is deduced.
As in Section 1.3.2, we re-express this condition for a zero evaluation as

E[QtX
′
tδ0] − 1N+1 = 0 (9.2)

where Qt = (X ′
t, r

m
t )′, δ0 is a (N × 1) parameter vector defined in Section 1.3.2

and 1N+1 is a (N +1× 1) vector of ones. It can be recognized that (9.2) consti-
tutes a set of N +1 population moment conditions in N parameters and so it is
possible to test the null hypothesis of a zero evaluation using the overidentifying
restrictions test described in Section 5.1. Notice that the alternative for this test
statistic is that E[QtX

′
tδ0] − 1N+1 �= 0 and so is broader than λ(rm

t , dt) > 0.
Therefore, a significant statistic provides evidence against a zero performance
evaluation but does not necessarily provide evidence of positive performance.

Inspection of (9.2) reveals that it is linear in the parameters. It there-
fore follows by similar arguments to Section 2.1 that δ0 is globally identified
if rank{E[QtX

′

t ]} = N , the number of parameters in the notation here. Given
the structure of Qt, a sufficient condition for identification is therefore that
E[XtX

′

t ] is nonsingular which might reasonably be anticipated to hold in the
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absence of any obvious redundancies in the definition in the benchmark set. The
linear structure can also be exploited to deduce a closed form solution for the
GMM estimator of δ0. Using similar arguments to Section 2.2, it can be shown
that

δ̂T = (M ′
T WT MT )−1M ′

T WT 1N+1 (9.3)

where MT = T−1
∑

t=1 QtX
′

t .
Chen and Knez (1996) evaluate the performance of sixty eight funds both

individually and in the aggregate. For the aggregate analysis, funds are grouped
according to their investment objective and then the group “average” return is
constructed as the return on an equally weighted portfolio of the funds in the
group. Chen and Knez (1996) consider five investment objectives: growth (G),
income-growth (IG), income (I), stability–growth–income (SGI), and maximum
capital gain (MC). In this section, we evaluate fund performance for these group
averages. For the benchmark set, Chen and Knez (1996) use the risk free rate
and twelve industry based portfolios.1 The data used here are the same as Chen
and Knez’s (1996) study and constitute monthly returns for the period January
1968 through December 1989.2 This gives a total of T = 264 observations.

To implement the estimation, Chen and Knez (1996) estimate the long run
variance using a HAC estimator with the Bartlett kernel and a bandwidth
bT = 17 and base inference on the two step estimator.3 Therefore, we begin
our analysis with this configuration and then consider the impact of using the
iterated estimator and also using two alternative covariance matrix estimators.
Since there is no theoretical reason to set bT = 17, we also report results using
an HAC estimator with a Bartlett kernel and the bandwidth selected via Newey
and West’s (1994) data-based method. Finally, we consider the sensitivity of
the results to the use of “prewhitening and recolouring” by reporting results
based on ŜT = ŜSE in (3.58). In all calculations, the first step weighting matrix
is set equal to the identity matrix.4

Table 9.1 reports the results for the group averages. The top line of the
table represents the configuration used by Chen and Knez (1996) and the re-
sults are close to those reported in their Table 1. The slight differences likely
reflect differences in estimation routine.5 This evidence clearly fails to reject
the null of a zero performance evaluation at the 5% level in every case although
there is evidence against the null at the 10% level for stability–growth–income
group. It can be seen that iteration has no qualitative impact on this conclusion
– even though convergence required between ten and fifteen steps in each case.6

However, the results are far more sensitive to the choice of covariance matrix
estimator. If the bandwidth is estimated from the data then the chosen value

1 See Chen and Knez (1996) for further details.
2 I am extremely grateful to Peter Knez for providing me with this data.
3 See Section 3.5.3 for a discussion of HAC estimators.
4 Chen and Knez (1996) do not report which weighting matrix they used on the first step.
5 Although a closed form solution exists, this is only exploited in the first step and esti-

mates on subsequent steps are actually obtained using a numerical optimization routine. The
convergence criterion is set at ǫM = 10−6; see Section 3.2.

6 Convergence criterion is implemented with ǫθ = 10−6 and Imax = 20; see Section 3.6.
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is always zero or one. This, in turn, leads to an increase in the test statistics
in every case. In two cases, the income and stability–growth–income groups,
the tests now provide evidence against zero performance at the 5% level. Inter-
estingly if ŜSE is used then the statistics fall between those obtained by fixing
and estimating the bandwidth. With this choice of covariance matrix estimator,
the null of a zero performance evaluation is not rejected at the 5% level for all
groups although only marginally for the income and stability–growth–income
groups.

Table 9.1
LOP measures of average mutual fund performance

Investment objective

Stat. G IG I SGI MC

ŜT = ŜHAC(17)

J
(2)
T 1.870 1.095 2.233 2.846 2.460

p − value 0.172 0.295 0.135 0.092 0.117

J
(i)
T 1.860 1.109 2.195 2.674 2.513

p − value 0.173 0.292 0.139 0.102 0.113

ŜT = ŜHAC(b̂)

J
(2)
T 2.478 1.524 4.944 4.042 2.579

p − value 0.116 0.217 0.026 0.044 0.108

J
(i)
T 2.410 1.586 4.824 4.084 2.546

p − value 0.121 0.208 0.028 0.043 0.111

ŜT = ŜSE

J
(2)
T 2.170 1.250 3.588 3.431 2.267

p − value 0.141 0.264 0.058 0.064 0.132

J
(i)
T 2.147 1.261 3.331 3.213 2.268

p − value 0.143 0.261 0.068 0.073 0.132

Notes: All HAC estimators are calculated with the Bartlett kernel. ŜT = ŜHAC(17) denotes

the case in which ŜT = ŜHAC in (3.54) and bT = 17; ŜT = ŜHAC(b̂) denotes the case in

which ŜT = ŜHAC and bT is selected using Newey and West’s (1994) method; ŜT = ŜSE is

given in (3.58); J
(2)
T and J

(i)
T are the overidentifying restrictions test in (5.2) based on the

two step and iterated estimators respectively; p − value is the p-value of the overidentifying
restrictions test on the line above.

Clearly the evidence is sensitive to the choice of covariance matrix estimator.
Unfortunately, no guidance is available regarding the performance of these es-
timators in this type of setting and so it is impossible to know which version
of the test is more reliable here. Even allowing for the sensitivity to the choice
of covariance matrix estimator, the results do not provide compelling evidence
against a zero performance evaluation. As remarked by Chen and Knez (1996),
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such a conclusion might not be considered particularly surprising given the ag-
gregate nature of the group return. However, it is also possible that the choice
of measure may understate performance. While it is true that the LOP measure
is zero if the mutual fund does not enlarge the investment opportunity set for
uninformed investors, it is also possible for the LOP measure to be zero even
though the opportunity set has been expanded in the sense that some investor
prefers to hold the fund over any constant composition portfolio based on Xt.
This concern motivates the introduction of the modified evaluation measure that
we now consider.

This modified measure rests on the assumption that the securities market
satisfies a no-arbitrage condition, that is all securities with a positive pay-off
have a positive price.7 If this condition is satisfied then the stochastic dis-
count factor is strictly positive and Xt can be priced by d+

t = (X
′

tδ0)
+ where

(X
′

tδ0)
+ = max{X

′

tδ0, 0}, so that (1.24) is replaced by

E[Xtd
+
t ] = 1N

A similar modification is made in the evaluation measure to yield

λ+(rm
t , dt) = E[rm

t (X ′
tδ0)

+] − 1 = 0

which Chen and Knez (1996) refer to as the NA-measure with the acronym
standing for “no-arbitrage”. Chen and Knez (1996) show that the NA measure
is only zero if the fund does not expand the investment opportunity set and
that it is positive if there is at least one investor who would prefer to hold the
fund rather than any constant composition portfolio constructed from Xt.

In principle, it is possible to test zero performance using the NA measure in
the same way as before. The only difference is that the overidentifying restric-
tions test is now based on the population moment condition

E[Qt(X
′
tδ0)

+] − 1N+1 = 0 (9.4)

However, this difference raises an important issue. The population moment
condition in (9.4) involves the function (X ′

tδ)
+ that is not differentiable with

respect to δ at X
′

tδ = 0 and so does not satisfy Assumption 3.5, one of the
regularity conditions for our asymptotic distribution theory. However, there are
grounds for anticipating that Theorem 5.1 still holds in this case; see Hansen,
Heaton, and Luttmer (1995). Therefore, we follow Chen and Knez (1996) and
proceed under the assumption that this extension is possible.

The functional form in (9.4) is far more complicated than the LOP case
due to the presence of the non-negative operator (X ′

tδ)
+. Experimentation

with different starting values revealed that this type of nonlinearity creates
problems for fminu, the gradient method in MATLAB. In fact, it is noted in
the User’s Guide to the Optimization Toolbox that fminu does not work well
if the function is discontinuous. Although the minimand is continuous here,
the derivative does not exist at X ′

tδ and hence is not a continuous function.

7 See Ingersoll (1987) [Chapter 2].
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Therefore, the estimations are performed using an alternative routine fmins
within the Optimization Toolbox that employs a simplex search method. This
algorithm is less efficient than fminu but does not require evaluation of the
gradient of the minimand; see Mathworks (2000) for further details.

Further experimentation using fmins indicated that the minimum on the
first step estimation is located in the neighbourhood of the LOP solution given
by (9.3). Therefore, this value is used as the starting value for the first step
estimation. The convergence criterion for the numerical optimization is ǫM =
10−6. For the iterated estimation, the convergence criterion is once again ǫθ =
10−6 but the maximum number of steps is increased to Imax = 100. In every
case, the numerical optimization failed to converge after 100, 000 iterations on
the first few steps of the iterated estimation. Experimentation indicated that
increasing the number of replications made no difference either to the likelihood
of convergence or the value of the minimand at the end. Nevertheless, after these
initial steps convergence did occur on each step and the iterated estimation did
itself converge. Therefore, all calculations are performed with a maximum of
100, 000 replications on each step. However, this pattern of behaviour means
that the reported values for the overidentifying restrictions test on the second
step should be regarded as upper bounds on these statistics.

The results are given in Table 9.2. Once again the first row of the table
replicates the configuration reported in Chen and Knez (1996) and we start our
discussion with this case. Our results are once again slightly different from those
reported in Chen and Knez (1996) but qualitatively similar. In comparison to
the LOP measure, the NA measure leads to larger values for the overidentifying
restrictions test in every case although none of the tests are significant at the
5% level. Once again, iteration tends to reduce the value of the test statistic.
However, as with the LOP measure, the results are very sensitive to the choice
of covariance matrix estimator. When the bandwidth is estimated from the data
it is invariably zero or one, and this leads to statistics that are significant at the
5% level for both the income and stability–income–growth groups. The use of
pre-whitening and recolouring leads to statistics that are lower but nevertheless
still marginally significant at the 5% level for the income and stability–income–
growth groups.

In their study, Chen and Knez (1996) also report distributions of p-values
from applying these tests to individual funds. Although we do not replicate this
part of their analysis here, it is worth briefly noting what they found. Of the
sixty eight funds considered, they report that 8% of the funds provide evidence
against zero performance at the 5% significance level using the LOP measure
and that this percentage increases to 13.2% when the NA measure is used. It
is unclear precisely how to interpret such percentages because even if all the
tests are independent and the null is true in every case then we would expect to
reject the null 5 per cent of the time. However, if this evidence is taken at face
value then there would appear to be evidence against zero performance using
these measures. At this point, it is worth reassessing what the measure actually
captures. It can be recalled that these measures compare fund performance to
a benchmark set of passively held portfolios. Chen and Knez (1996) argue that
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this may be too low a benchmark since financial information is reported in the
media. They therefore propose a “conditional” measure in which the benchmark
consists of portfolios whose weights can vary in response to publicly available
information. These conditional measure can also be implemented using GMM
and the type of testing stratgey employed above; see Chen and Knez (1996).

Table 9.2
NA measures of average mutual fund performance

Investment objective

Stat. G IG I SGI MC

ŜT = ŜHAC(17)

J
(2)
T 2.135 1.494 2.501 3.306 2.869

p − value 0.144 0.222 0.114 0.069 0.090

J
(i)
T 1.919 1.179 2.211 2.781 2.628

p − value 0.166 0.278 0.137 0.095 0.105

ŜT = ŜHAC(b̂)

J
(2)
T 2.862 1.879 5.497 4.720 3.180

p − value 0.091 0.171 0.019 0.030 0.075

J
(i)
T 2.692 1.838 4.765 4.757 3.135

p − value 0.101 0.175 0.029 0.029 0.077

ŜT = ŜSE

J
(2)
T 2.772 1.656 4.232 4.604 3.061

p − value 0.096 0.198 0.040 0.032 0.080

J
(i)
T 2.649 1.634 4.040 4.124 2.968

p − value 0.104 0.201 0.043 0.042 0.085

Notes: see Table 9.1.

9.2 Conditional Capital Asset Pricing Model

Section 1.3.3 describes the conditional capital asset pricing model (CCAPM).
This model has been used to investigate the pricing of a wide variety of assets.
In this section, we follow Harvey (1991) and investigate whether the model can
explain the variation in the returns across international stock markets.

It can be recalled from Section 1.3.3 that the model implies a set of pop-
ulation moment conditions involving the conditional first two moments of the
asset returns. It is convenient to express these moment conditions more com-
pactly here. To this end, we set θi,0 = (δ

′

i,0, δ
′

m,0)
′, ui,t(δi) = ri,t − z′

t−1δi and
um,t(δm) = rm,t − z′

t−1δm where (as a reminder) ri,t denotes the excess return
on holding the market portfolio for country i, rm,t is the excess return from
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holding the “world market” portfolio below, zt−1 denotes a vector of relevant
economic and financial variables contained in the information set Ωt−1. The
population moment conditions in (1.34) and (1.36) can be written as

E[fi(vt, θi,0)] = E[ai,t(θi,0) ⊗ zt−1] = 0 (9.5)

where

ai,t(θi) =

⎡

⎣

ui,t(δi)
um,t(δm)

um,t(δm)2z
′

t−1δi − um,t(δm)ui,t(δi)z
′

t−1δm

⎤

⎦ (9.6)

If the model is correct then these moment conditions hold simultaneously for all
countries. Harvey reports results based on (9.5) for both individual countries
and groups of countries. For brevity here, we only consider GMM estimation
on a country by country basis and so θi,0 is estimated based on (9.5) for each
country i.

Given this approach to the estimation, the condition for local identification
of θi,0 is that rank{E[∂fi(vt, θi,0)/∂θ

′

i]} = p where, in this case, p = 2nz and
nz denotes the dimension of zt−1. For this model, the derivative matrix is as
follows,

∂fi(vt, θi)

∂θ
′

i

= Ai,t(θi) ⊗ zt−1z
′

t−1 (9.7)

where

Ai,t(θi) =

⎡

⎣

−1 0
0 −1

A
(5)
i,t A

(6)
i,t

⎤

⎦

and

A
(5)
i,t = um,t(δm)2 + um,t(δm)z

′

t−1δm

A
(6)
i,t = −2um,t(δm)z

′

t−1δi − um,t(δm)ui,t(δi) + ui,t(δi)z
′

t−1δm

Using (1.34), it follows from (9.7) that

E

[

∂fi(vt, θi,0)

∂θ
′

i

]

= E[Ãi,t ⊗ zt−1z
′

t−1] (9.8)

where

Ãi,t =

⎡

⎣

−1 0
0 −1

um,t(δm,0)
2, −ui,t(δi,0)um,t(δm,0)

⎤

⎦

It can easily recognized that the matrix in (9.8) is rank p provided E[zt−1z
′

t−1]
is nonsingular. The latter condition holds as long as there are no linear redun-
dancies among the information variables.

As mentioned above, we present here results from estimating the model for
individual countries. It should be noted that this approach does not impose all
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the restrictions of the model. The underlying theory implies that (9.5) holds
for all i at the same value for δm,0. However, the latter restriction is ignored
when the estimation is on a country by country basis. Therefore, as noted
by Harvey, some caution must be exercised in interpreting the results. If the
model is not rejected for individual countries then this does not necessarily mean
that the model can simultaneously explain the variation in returns across these
countries. On the other hand, if the model is rejected for a particular country
then that provides valuable information about the failings of the underlying
theory.

The data are the same as those used in Harvey’s study.8 The observations
are monthly and span the period 1970:02 to 1989:05; this gives a total of 232
observations. The world market portfolio is the Morgan Stanley Capital Inter-
national index (MSCI) and represents a weighted combination of the returns
on a variety of world-wide investments; see Harvey (1991) for specific details.
Both the world return, rm,t and the country i return, ri,t, are expressed in U.S.
dollars in excess of the holding period return on the T-bill that is closest to 30
days to maturity. The information variables are denoted by zt−1 above. The
vector zt contains: a constant; rm,t; a dummy variable for the month of January;
the U.S. term structure premia, calculated as the return for holding a 90-day
U.S. T-bill for one month less the return from holding a 30 day T-bill; the U.S.
default risk spread calculated as the yeld on a Moody’s Baa rated bond less the
yield on a Moody’s Aaa rated bond; the dividend yield on the Standard and
Poor’s 500 stock index less the return on a 30-day U.S. T-bill. Given this choice
of information variables, the model yields q = 18 moment conditions and p = 12
parameters. Harvey (1991) reports results for seventeen countries.9 However,
for brevity, we restrict attention to the G-7 countries.

With regard to the specifics of the GMM estimation, Harvey (1991) uses a
first step weighting matrix proportional to the identity matrix, and estimates
the long run variance by ŜSU . Notice that the latter is consistent because
ai,t(θ0,i) is a martingale difference given Ωt−1 – provided the model is correctly
specified. Therefore, we use these weighting matrices as well but also consider
the sensitivity of the results to the use of (T−1

∑T
t=1 I3 ⊗ ztz

′

t)
−1 as the first

step weighting matrix. In each case, the starting values for δi are the least
squares estimates from the regression of ri,t on zt−1, and those for δm are the
corresponding estimates only with rm,t as the dependent variable.10

It can be seen from Table 9.3 that the relatively insensitive to the choice
of first step weighting matrix, and that in each case iterated estimation yields
identical statistics. However, the qualitative conclusion can be sensitive to itera-
tion. For both the U.S. and Japan, the overidentifying restrictions test statistic

8 I am grateful to Eric Ghysels for providing me with the data.
9 These countries are: Australia, Austria, Belgium, Canada, Denmark, France, Germany,

Hong Kong, Italy, Japan, The Netherlands, Norway, Spain, Sweden, Switzerland, the United
Kingdom, and the United States.

10 Notice that these estimates are the GMM estimates based on (1.34) alone.
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is insignificant at the 10% level after two steps but becomes significant after
iteration. It is the results based on the iterated statistics that replicate those
reported in Harvey (1991). Overall, there is evidence in favour of the model for
Canada, France, Germany, Italy and the U.K. and evidence against the model
for Japan and the U.S.

Table 9.3
Overidentifying restrictions tests for the conditional

capital asset pricing model

Case A Case B

Country Two step Iterated Two step Iterated

Canada 3.669 3.156 3.145 3.156

0.721 0.789 0.790 0.789

France 8.316 10.308 7.861 10.308
0.216 0.112 0.248 0.112

Germany 3.183 3.476 3.229 3.476
0.785 0.747 0.780 0.747

Italy 9.538 9.821 8.337 9.821
0.146 0.132 0.214 0.132

Japan 8.461 14.984 10.428 14.984
0.206 0.020 0.108 0.020

U.K. 1.083 1.104 1.094 1.104
0.982 0.981 0.982 0.981

U.S. 7.450 10.764 7.499 10.764
0.277 0.096 0.281 0.096

Notes: Case A denotes W
(1)
T = 105I18, and Case B denotes W

(1)
T = (T −1

∑T
t=1 I3 ⊗ ztz

′

t)
−1.

The numbers below the test statistics are the associated p-values.

It can be recalled that the innovation of the CCAPM is to allow the invest-
ment betas to vary over time. It is therefore natural to question the assumed
form of this variation is appropriate. If variation is present but the assumed
model is incorrect, then it would be anticipated that this would manifest itself
in structural instability. While the overidentifying restrictions test provides a
general diagnostic for misspecification, it is not specifically designed to test for
structural instability. Furthermore, it can be recalled from Section 5.4 that
the overidentifying restrictions test can have size equal to power against certain
types of structural instability. Motivated by these concerns, Ghysels (1998) ar-
gues that it is important to submit the CCAPM to formal test of structural
stability. He pursued the issue in the context of CCAPM’s for domestic U.S.
assets and found widespread evidence of instability. Therefore, we now consider
if similar evidence is present here.
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Since there is no reason to associate any instability with a particular mo-
ment in time, the analysis is based on the unknown break point versions of
the tests described in Section 5.4.2. It can be recalled from this earlier discus-
sion that the construction of these tests involves the calculation of the “known
break point” tests for all possible break points within an interval Π. Conven-
tional practice is to set Π = [0.15, 0.85] and we followed this rule here in the
absence of any alternative guidance. However, it is worth considering what this
rule actually implies here. For π = 0.15, the first sub-sample involves only
thirty-five observations. This means that the sub-sample estimation attempts
to retrieve twelve parameters from eighteen moment conditions based on just
35 observations! As can readily be imagined, under such circumstances, con-
vergence can be very sensitive to the sample. In this example, it turns out
that the numerical optimization runs into problems when π = 0.15 but not
when π = 0.85 (and so the second sub-sample consists of thirty-five observa-
tions). The problems stem from the near singularity of Ŝ1,T (π). Since this
occurred for every country, this particular break point is dropped from the cal-
culations and so the tests are calculated for break points tB = 36, 37, ...197
– or, equivalently, 1973.02 through 1986.07. Convergence also proves a prob-
lem for sub-samples if the maximum allowable number of iterations, Imax is
set too high. As a result, the estimations are performed with Imax = 6, that
is a six-step estimator. All calculations use the first step weighting matrix

W
(1)
T = (T−1

∑T
t=1 I3 ⊗ ztz

′

t)
−1.

Table 9.4 reports the Sup−, Av− and Exp− versions of the tests for both
parameter variation and also stability of the overidentifying restrictions.11 It
can be recalled from Section 5.4 that the three tests of parameter variation are
asymptotically equivalent under both the null hypothesis (i.e. no parameter
variation) and local alternatives. However, the three statistics exhibit very
diverse behaviour here. The LM versions of the test are insignificant at the 10%
level in every case, the Wald versions are significantly larger and significant at
the 1% level in every case, and the D versions are orders of magnitude larger
still.12 To date there is no guidance available regarding which version of these
tests is more reliable in finite samples. However, one possible explanation for
this discrepancy is that the LM and D tests are calculated using the full sample
GMM estimator rather than the restricted estimator. While the two estimators
are asymptotically equivalent under the null and local alternatives, it may be
that the sample size here is too small for this equivalence to apply. To explore
this possibility further, the test statistics are also calculated using the following
versions of the LM and D tests based on the restricted estimator θ̃T (π),

LM0
T (π) =

2
∑

i=1

Tidi,T (θ̃T (π);π)
′

Ṽi,T (π)di,T (θ̃T (π);π) (9.9)

11 Critical points for these statistics are given in Tables 5.5 and 5.6.
12 The extremely large values of the D statistic occur when one of the sub-samples is small,

because in these cases it turns out here that the estimator of the long run variance in the
small sub-sample is ill-conditioned and so close to singularity.
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D0
T (π) = T [J(θ̃T (π), θ̃T (π);π) − J(θ̂1,T (π), θ̂2,T (π);π)] (9.10)

where

di,T (θ̃T (π);π) = Gi,T (θ̃T (π);π)
′

S̃i,T (π)−1gi,T (θ̃T (π);π)

Ṽi,T = [Gi,T (θ̃T (π);π)
′

S̃i,T (π)−1Gi,T (θ̃T (π);π)]−1

and S̃i,T (π) denotes a consistent estimator of Si based on θ̃T (π); see Section
5.4.1 for further definitions. Both these statistics are asymptotically equivalent
under the null and local alternatives to the three tests for parameter variation
discussed in Section 5.4.1. Interestingly, for the example here, it can be seen from
Table 9.4 that the tests based on LM0

T (π) and D0
T (π) yield statistics that are

closer to the Wald based tests than their counterparts based on the full sample
estimator. Nevertheless, substantial differences remain, although in nearly every
case the tests based on WT (π), LM0

T (π) and D0
T (π) yield qualitatively the same

conclusion.

The overidentifying restrictions based tests tend to be insignificant. There-
fore, if these results are taken at face value then collectively they suggest that
the misspecification is due to parameter variation. However, this would seem
to be a big “if”. As mentioned above, the discrepancies in the tests raise suspi-
cions about the adequacy of the asymptotic approximation here. Furthermore,
we note that many of the Sup− tests yield estimated break points close to the
beginning or end of the sample, and it can be recalled that this may also be
an indicator that asymptotic theory is not a good approximation. Research is
currently in progress to investigate the reliability of these tests in the types of
setting considered here.

Due to these concerns about the adequacy of the asymptotic approximation,
we do not pursue this example further. However, it is worth briefly summarising
Ghysels’s (1998) conclusions regarding the ability of the CCAPM to explain the
prices of domestic U.S. assets. His sample consists of monthly data from 1927:01
through 1988:01 and thus contains more than three times as many observations
as the sample in our example above. Inference about structural stability is based
on the Sup-LM test based on the statistic in (5.77) using Π = [0.2, 0.8]. The
evidence indicates that the model is validated by the overidentifying restrictions
test in many cases but that there is substantial evidence of misspecification due
to neglected parameter variation. Interestingly, Ghysels (1998) reports that in
many cases the unconditional version of the capital asset pricing model provides
more accurate forecasts of asset prices than its conditional counterpart. These
results highlight the importance of not relying purely on the overidentifying
restrictions test to assess the adequacy of the specification.
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Table 9.4
Structural stability tests for the conditional capital

asset pricing model

Country Statistic Sup− Date Av− Exp−

Canada W 53.196 1985.08 31.444 22.404

LM 23.151 1977.11 14.636 9.817

LM0 43.276 1977.01 27.467 18.895

D 4.0×105 1973.07 3162.427 ∞
D0 271.293 1973.05 42.895 130.559

O 22.219 1983.12 13.324 8.239

France W 248.733 1973.09 36.225 119.279

LM 25.036 1980.09 16.162 10.054

LM0 56.713 1973.10 24.450 23.363

D 5.7×1015 1973.10 3.5×1013 ∞
D0 2.0×104 1974.01 303.526 ∞
O 30.667 1983.07 17.254 11.980

Germany W 116.670 1986.04 36.640 53.726

LM 19.791 1982.11 12.532 7.155

LM0 40.085 1975.04 23.798 15.938

D 7.8×107 1973.09 7.0×105 ∞
D0 1.4×104 1973.12 294.689 ∞
O 19.821 1974.01 11.388 7.199

Italy W 144.147 1986.02 37.277 66.986

LM 18.466 1978.03 11.881 6.848

LM0 43.198 1976.05 21.689 18.239

D 7.0 ×107 1986.07 5.2×105 ∞
D0 3.9×105 1973.07 3775.701 ∞
O 23.598 1984.12 17.364 9.700

Japan W 117.877 1973.02 33.620 54.157

LM 18.715 1977.01 12.429 7.251

LM0 44.201 1973.05 24.508 17.215

D 2.8×1010 1986.02 1.7×108 ∞
D0 3.6×105 1973.05 2408.333 ∞
O 30.142 1974.10 22.460 12.521

U.K. W 64.166 1973.02 21.053 26.996

LM 18.566 1981.12 11.594 6.704

LM0 37.351 1986.07 20.611 14.801

D 6.9×107 1986.04 6.6×105 ∞
D0 1.0×104 1986.04 129.555 ∞
O 21.528 1985.06 9.983 7.957

continued
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Table 9.4 (cont.)
Structural stability tests for the conditional capital

asset pricing model

Country Statistic Sup− Date Av− Exp−

U.S. W 121.367 1973.05 33.069 55.611

LM 17.225 1982.11 11.185 6.556

LM0 32.128 1976.10 20.865 13.328

D 1.2×109 1986.02 7.3×106 ∞
D0 4.9×104 1986.02 350.100 ∞
O 27.926 1986.07 16.748 10.084

Notes: W denotes the versions of the statistics based on the Wald test in (5.75), LM denotes
the versions of the statistics based on the LM test in (5.77), LM0 denotes the versions of the
statistics based on the LM test in (9.9), D denotes versions of the statistics based on the D
test in (5.78), D0 denotes versions of the statistics based on the D test in (9.10), O denotes
versions of the tests based on the statistic in (5.80). ∞ denotes results too large to represent
as conventional floating-point values.

9.3 Inventory Holdings by Firms

Section 1.3.4 describes Eichenbaum’s (1989) model for inventory holdings by
firms. The key innovation is that the model provides a framework for deter-
mining whether the production smoothing hypothesis or the production cost
smoothing hypothesis better captures firm behaviour. In this section, we exam-
ine which hypothesis – if either – captures aggregate inventory holding behaviour
in non-durable manufacturing industries for the U.S.

It can be recalled from Section 1.3.4 that the difference betwen the two
hypotheses rests on the the presence or absence of the stochastic shock νt in the
cost function. If νt = 0 for all t then stochastic cost shocks are absent and so the
only incentive for holding inventories is the desire to smooth production levels.
However, if νt �= 0 then stochastic cost shocks are present and this produces an
incentive to hold inventories to smooth both levels and costs. For simplicity,
we use the term “production smoothing version of the model” to refer to the
case in which νt = 0, and the term “production cost smoothing version of the
model” to refer to the case in which νt �= 0.

Eichenbaum (1989) shows that the production smoothing version of the
model implies the population moment condition,

E[ztht+1(ψ0)] = 0 (9.11)

where as a reminder

ht+1(ψ0) = It+1 − {λ0 + (λ0β0)
−1}It + β−1

0 It−1 + St+1 − φ0β
−1
0 St (9.12)

where ψ0 = (λ0, β0, φ0)
′ and zt ∈ Ωt. The production cost smoothing version of

the model implies the population moment condition

E[{ht+2(ψ0) − ρ0ht+1(ψ0)}zt] = 0 (9.13)
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It is clear from (9.11) and (9.13) that the production smoothing and production
cost smoothing hypotheses imply different restrictions on the data. To empha-
size an important aspect of this difference, it is useful to compare the two sets
of moment conditions in the case where ρ0 = 0. From (9.11), it can be seen that
the production smoothing version of the model implies that ht+1(ψ0) is orthog-
onal to all elements of the information set Ωt. In contrast, from (9.13) (lagged
one period), it can be seen that the production cost smoothing version implies
only that ht+1(ψ0) is orthogonal to any element of the information set Ωt−1.
Furthermore, Eichenbaum (1989) shows that if the production cost smoothing
version of the model is correct then ht+1(ψ0) is not orthogonal to any element
of the information set Ωt. This key difference indicates a way of discriminating
between the two versions of the model: if the production smoothing version
is correct then (9.11) is valid, but if the production cost smoothing version is
correct then (9.11) is invalid but (9.13) is valid. Therefore, the overidentifying
restrictions test associated with these two sets of moment conditions can reveal
which, if either, of the two competing hypotheses are correct.

The primary focus of such inventory models is to estimate of the speed of
adjustment of actual inventories to the target (or desired) level of inventories.
Eichenbaum (1989) shows that the speed of adjustment is 1 − λ0 within either
version of the model. This means that firms adjust inventories toward their
target level at (1 − λ0)100% per month. This interpretation also means that
λ0 must lie between zero and one if it is to make economic sense. Economic
theory also implies a restriction on φ0. It can be recalled that φ0 = 1− δ0γ0/α0

where (δ0, γ0, α0) are parameters of the cost function. Given their roles in the
cost function, all three of these parameters would be positive if the model is
correctly specified. This, in turn, translates into the restriction that φ0 < 1.
One final aspect of the parameterization needs to be noted. To simplify the
estimation, it is customary to fix the value of the discount factor β0 = 0.995 a
priori, and we follow this practice here – as did Eichenbaum (1989).

Eichenbaum (1989) estimates both versions of the model using aggregated
data for all non-durable manufacturing industries in the U.S. as well as aggre-
gated data for six specific industries using monthly data for 1959:1 through
1984:12.13 Here we restrict attention to the aggregate data for all non-durable
manufacturing industries, and use a revised and enlarged data set spanning
1959:1 through 1998:5, yielding a sample of 473 observations. The data are
compiled by the Bureau of Economic Analysis (BEA), the US Department of
Commerce.14 The series represent end of the month inventories and sales of
finished goods. The data are adjusted to constant chained 1992 dollars and are
seasonally adjusted.

One immediate problem is that these data on inventories and sales are not
stationary because they trend over time. Eichenbaum (1989) presents results
based on detrending the data via either first differencing or using a quadratic

13 The six industries in question are: tobacco, rubber, food, petroleum, chemicals and
apparel.

14 I am grateful to David Doorn for providing me with the data.
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time trend. Although there is not complete unanimity in the literature on the
appropriate method, these data are most commonly detrended using a quadratic
time trend and so we use that method here.15

We first consider estimation of the production smoothing version of the
model based on (9.11). Following Eichenbaum (1989), we set

zt = (1, It, St, It−1, St−1)

and so there are q = 5 moment conditions in p = 2 unknown parameters. The
first step weighting matrix is set equal to the inverse of the instrument cross
product matrix, (T−1

∑T
t=1 ztz

′

t)
−1. Within this model, ht+1(ψ0) is martingale

difference with respect to Ωt and so the long run variance can be consistently
estimated by ŜSU .

The condition for local identification of θ0 = (λ0, φ0)
′ is that the rank of

E[∂f(vt, θ0)/∂θ′] equal two. For this model, the derivative matrix is given by

E[∂f(vt, θ0)/∂θ′] = E[ztx̃
′
t]M(θ0) (9.14)

where x̃t = (It+1, St)
′ and

M(θ) =

[

(0.995λ2)−1 − 1 0
0 −(0.995)−1

]

As discussed in Section 3.1,

rank{E[∂f(vt, θ0)/∂θ′]} ≤ min{rank (E[ztx̃
′
t]) , rank (M(θ0))}

and so a necessary condition for identification is that both E[ztx̃
′

t] and M(θ0)
have rank equal to two. Inspection of M(θ0) indicates that this matrix is of
rank two. However, it is impossible to say anything regarding E[ztx̃

′

t] a priori.
Table 9.5 reports results for three different starting values, (λ, φ) = (0.5, 0.5),

(0.9, 0.9), (1.5, 1.0), using a convergence criterion of 10−6. It can be seen that in
each case the first step estimates are the same to three decimal places. However,
the estimates are not identical to a higher precision and this explains why the
iterated estimates are different. In spite of these differences, all the estimates
for λ exceed one and all the overidentifying restrictions statistics are significant
at the 1% level, both of which are indicative of misspecification.

Instead of proceeding to the production cost smoothing version of the model,
we first explore some alternative approaches to estimation of the production
smoothing model based on scaled versions of the moment condition. To motivate
these alternative approaches, it is useful to consider a plot of the first step
minimand associated with estimation based on the original moment condition
in (9.11). As can be seen in Figure 9.1, this first step minimand is very flat in
the area of the starting values.16 Of most concern is the fact that the minimand
is very flat in the dimension of λ, the parameter of most interest. So for this
data, it would appear that the population moment condition in (9.11) is not

15 See Doorn (2003) for further discussion.
16 Parenthetically, we note that this flatness is exhibited by the minimand on subsequent

steps and explains the sensitivity of the iterated estimates.
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Table 9.5

GMM estimates of the production smoothing model based on

c(θ0)E[f(vt, θ0)] = 0

Starting values, (λ, φ)

c(θ0) Statistic (0.5, 0.5) (0.9, 0.9) (1.5, 1.0)

1 (λ̂
(1)
T , φ̂

(1)
T ) (1.003, 0.947) (1.003,0.947) (1.003,0.947)

TQT (θ̂
(1)
T ) 53362295.59 53362295.59 53362295.59

(λ̂
(2)
T , φ̂

(2)
T ) (1.003, 0.945) (1.003,0.945) (1.003,0.945)

J
(2)
T 26.151* 26.151* 26.151*

(λ̂
(.)
T , φ̂

(.)
T ) (1.135, 0.937) (1.003,0.945) (1.003,0.945)

J
(.)
T 25.218* 26.154* 26.154*

(1 − λ)−1 (λ̂
(1)
T , φ̂

(1)
T ) (0.699, 0.901) diverges (1.550,0.880)

TQT (θ̂
(1)
T ) 1.0 ×109 . 4.4×108

(λ̂
(2)
T , φ̂

(2)
T ) (0.740, 0.907) . (1.427,0.894)

J
(2)
T 42.597* . 60.879*

(λ̂
(.)
T , φ̂

(.)
T ) (0.744, 0.905) . (1.407,0.894)

J
(.)
T 34.229* . 41.460*

−0.995λ (λ̂
(1)
T , φ̂

(1)
T ) (0.791, 0.927) (0.791,0.927) (0.790,0.927)

TQT (θ̂
(1)
T ) 37526635.32 37526635.32 37526635.32

(λ̂
(2)
T , φ̂

(2)
T ) (0.815, 0.926) (0.815,0.926) (0.815,0.926)

J
(2)
T 27.118* 27.118* 27.118*

(λ̂
(.)
T , φ̂

(.)
T ) (0.818,0.926) (0.818,0.926) (0.818,0.926)

J
(.)
T 25.993* 25.993* 25.993*

Notes: (λ̂
(i)
T , φ̂

(i)
T ) denote the GMM estimators on the ith step, J

(i)
T denotes the overidentifying

restrictions test on the ith step; i = . denotes the iterated estimator, * denotes significance at
the 1% level.

particularly informative about the parameters. A similar qualitative conclusion
has been drawn by researchers using other aggregate inventory data, and this
has motivated an interest in scaling the Euler equation residual, ht+1(ψ0), in
an attempt to provide a moment condition that is more informative about λ0

over the range of economically meaningful values. A number of scalings have
been used, here we consider two. Schuh (1996) bases estimation on the scaled
moment condition17

(1 − λ0)
−1E[ztht+1(ψ0)] = 0 (9.15)

17 It should be noted that Schuh (1996) uses this transformed moment condition to estimate
the model using establishment level data and not the aggregate data used here.
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Figure 9.1: First step minimand for the production smoothing model – original
version

Durlauf and Maccini (1995) base estimation on the scaled moment condition

−β0λ0E[ztht+1(ψ0)] = 0 (9.16)

Both these transformations are examples of a “curvature altering transformation
of the population moment condition” that is discussed in Section 3.7. From
this discussion, it can be recalled that such transformations alter the first order
conditions in overidentified models and so, in turn, alter the estimates in general.
However, the estimator is still consistent. We now consider the effects of each
of these transformations upon our results.

First, consider the case in which the moment condition is multiplied by
(1 − λ0)

−1. Figure 9.2 contains a plot of the first step minimand associated

with estimation based on (9.15) – again using WT = (T−1
∑T

t=1 ztz
′

t)
−1. It can

be seen that the transformation serves to create a ridge at λ = 1 so that there
is now a boundary around the economically meaningful range of values for λ.18

Nevertheless, the minimand still appears to be very flat within this region. It
should also be noted that the transformation has created a function with at
least two minima: one associated with λ in the economically relevant range and
one associated with a value of λ greater than one. One potential numerical
disadvantage of this transformation is that if λ = 1 then (1 − λ)−1 is infinite.

18 Since the minimand is infinite at λ0 = 1, the plot is truncated over the range λ ∈
(0.95, 1.05).
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Figure 9.2: First step minimand for the production smoothing model – scaled
by (1 − λ)−1
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Figure 9.3: First step minimand for the production smoothing model – scaled
by −βλ
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To circumvent this problem, (1−λ)−1 is computed as (1−λ+eps)−1 where eps =
2.2204 × 10−16 and represents the floating point relative accuracy in MATLAB
calculations. Estimation results are reported in Table 9.5 using the same starting
values as before. It can be seen that this time the first step estimates are sensitive
to the starting values. If the starting values are (0.5, 0.5) then the estimates of λ
are less than one. If the starting value is (0.9, 0.9) – and hence close to the ridge –
then the estimates diverge on the first step with the result that ŜSU is singular.
If the starting value is (1.5, 1.0) then the estimate of λ is greater than one.

It is the local minimum associated with λ̂T > 1 that is the smaller of the two.
However, this does not necessarily mean that it is these estimates that should be
chosen. The underlying economic model implies that there should be a value of
θ0 that both satisfies the population moment condition and is also economically
meaningful. This does not preclude the possibility of other minima outside the
economically relevant part of the parameter space. Furthermore, the asymptotic
distribution theory only requires local identification. Therefore, if there is a
single well-determined minimum within the economically meaningful part of
the parameter space, then it is reasonable to adopt the estimates associated
with that minimum. The mimimum associated with λ̂T < 1 would appear to
satisfy the criteria above. However, even then, the point estimate for λ0 implies
that inventories are adjusting towards the desired level at about 30% a month
which is considered to be implausibly low. The overidentifying restrictions tests
also indicate misspecification. Interestingly, the values for these statistics are
substantially larger than with the previous model.

Now consider the case in which the moment condition is multiplied by −β0λ0.
Figure 9.3 contains a plot of the first step minimand associated with estimation
based on (9.16) - again using WT = (T−1

∑T
t=1 ztz

′

t)
−1. It can be seen that this

transformation has created more curvature in the minimand. While it is not
clear exactly where the minimum lies, it certainly looks more clearly defined.
This is borne out by the estimation results: the estimates are actually identical
to six decimal places on each of the steps reported. As can be seen from Table
9.5, the estimates of λ0 are all less than one, but once again the implied speed of
adjustment is implausibly low. The overidentfiying restrictions tests are again
significant at the 1% level.

It is evident that the estimates reported above are sensitive to the choice of
transformation. Unfortunately, there is no obvious way to choose between them.
It can be recalled that this sensitivity is one motivation for using the continuous
updating GMM estimator. Figure 9.4 plots the minimand of the continuous up-
dating GMM estimator. It can be seen that this function exhibits considerably
more curvature. Figure 9.5 rotates this plot to reveal the valley more clearly
to the eye – note, that the axis are therefore different from the previous plots.
Given the potential instabilities of the continuous updating GMM minimand,19

the estimation is implemented using all the iterated estimates reported above
as starting values. The results are presented in Table 9.6. Interestingly, the
different starting values lead to two different sets of estimates one with λ̂T > 1

19 See Section 3.7.
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Figure 9.4: Continuous updating GMM minimand
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Figure 9.5: Continuous updating GMM minimand – with 90o rotation
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Table 9.6
Continuous updating GMM estimates of the

production smoothing model

Starting values, (λ, φ) (λ̂T , φ̂T ) JT

(0.818, 0.926),(1.407,0.894) (0,865,0.935) 25.134*
(0.744,0.905), (1.003, 0.945) (1.161,0.935) 25.134*

(1.135,0.937)

Notes: JT denotes the overidentifying restrictions test, * denotes significance at the 1% level.

and one with λ̂T < 1. The associated overidentifying restrictions statistics are
actually identical to ten decimal places. Although the estimates differ slightly
from those above, the overall conclusion is the same. Taking the minimum
associated with λ̂T < 1, the implied speed of adjustment is implausibly low and
the overidentifying restrictions test is significant at the 1% level.

While the estimates differ across the various estimations of the production
smoothing model, the basic conclusion is the same: the model is rejected with
this data. Eichenbaum (1989) reports a similar finding. We therefore now
consider the production cost smoothing version of the model, and concentrate
exclusively on the original version of the population moment condition in (9.13).

The condition for local identification is derived for a special case of the
model in Section 3.1, and since the condition is not particularly instructive, we
do not pursue it further here. The estimation is implemented using the same
instrument vector as before but there are now q = 5 moment conditions in p = 3
parameters due to the introduction of ρ. The first step weighting is once again
(T−1

∑T
t=1 ztz

′

t)
−1. Eichenbaum (1989) shows that the long run variance can

be consistently estimated by ŜSU within this model as well, and so we use this
estimator here.

Experimentation with a variety of starting values indicates that the first step
minimand possesses multiple minima. As above, there is one involving λ < 1
and one with λ > 1. Since there appears to be only one minima in the econom-
ically meaningful area of the parameter space, we focus attention on the results
associated with this minimum. It can be seen that from Table 9.7 that these
estimates provide evidence in favour of the specification. The implied speed of
adjustment is approximately 70%, φ̂T < 1 and the overidentifying restrictions
tests are insignificant at the 10% level (although only just in one case). Table
9.7 also contains the results from a continuous updating GMM estimation using
the iterated estimates as starting values. The only important difference is that
the continuous updating estimator of φ0 is −0.933 as opposed to the iterated
GMM estimates of approximately −0.2. Therefore all the results are consistent
with Eichenbaum’s (1989) finding that the production cost smoothing model is
not rejected using aggregate non-durables industry data.

Although our analysis is confined to aggregate non-durable industry data,
it is worth noting that Eichenbaum (1989) reports a similar pattern of results
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for the six industries considered in his study. Durlauf and Maccini (1995) also
find the production smoothing hypothesis is rejected using aggregate data, and
report evidence supportive of a variant of the production cost smoothing model.
While the production smoothing hypothesis is rejected using aggregate indus-
try data, there is evidence that this may be an artefact of aggregation. Using
an establishment level data set, Schuh (1996) finds that the speeds of adjust-
ment within the production smoothing model are an order of magnitude higher
at establishment level than their counterparts estimated using industry data
constructed by aggregating the establishment data.

Table 9.7
GMM estimates of the production cost smoothing model

Statistic F irst step Second step Iterated Continuous updating

λ̂T 0.295 0.330 0.332 0.256

s.e.(λ̂T ) 0.075 0.082 0.083 0.066

φ̂T −0.205 −0.238 −0.223 −0.933

s.e.(φ̂T ) 0.586 0.557 0.554 0.801
ρ̂T 0.931 0.925 0.925 0.927

s.e.(ρ̂T ) 0.022 0.022 0.022 0.024
JT . 3.671 4.136 3.629

p − value . 0.160 0.126 0.163

Notes: s.e.(.) denotes the standard error of the estimator calculated via (3.59), JT denotes
the overidentifying restrictions test and p − value its associated p-value.

9.4 Stochastic Volatility Model of Exchange

Rates

Section 1.3.5 describes the stochastic volatility model that has been used in a
number studies of financial time series. In this section, we follow Melino and
Turnbull (1990) and investigate whether this model can capture the time series
properties of the daily U.S. dollar – Canadian dollar exchange rate.

Melino and Turnbull (1990) base their estimation on the following moment
conditions:
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E[wt(θ0)] = 0

E[w2
t (θ0)] − exp[2µx + 2σ2

x] = 0

E[w3
t (θ0)] = 0

E[w4
t (θ0)] − 3exp[4µx + 8σ2

x] = 0

E[|wt(θ0)|] − (2/π)1/2exp[µx + 0.5σ2
x] = 0

E[|wt(θ0)|3] − 2(2/π)1/2exp[3µx + 4.5σ2
x] = 0

E[|wt(θ0)|wt(θ0)] = 0

E[wt(θ0)wt−j(θ0)] = 0

E[|wt(θ0)wt−j(θ0)|] − ℓ1,j(θ0) + ℓ2,j(θ0) = 0

E[|wt(θ0)|wt−j(θ0)] − mj(θ0) = 0

E[w2
t (θ0)w

2
t−j(θ0)] − nj(θ0) = 0

(9.17)

for j = 1, 2, . . . 10 where

wt(θ0) =
y(τt) − α0dt − (1 + β0dt)y(τt−1)

[dt{y(τt−1)}γ0 ]1/2
(9.18)

and

ℓ1,j(θ0) = (2/π)1/2exp[2µx + σ2
x(1 + (1 + η0d)j) − 0.5ρ2

0ζ
2
0d(1 + η0d)2(j−1)]

ℓ2,j(θ0) = (2/π)1/2ρ0ζ0d
1/2(1 + η0d)j−1(1 − 2Φ(ρ0ζ0d

1/2(1 + η0d)j−1)

× exp[2µx + σ2
x(1 + (1 + η0d)j)]

mj(θ0) = (2/π)1/2ρ0ζ0d
1/2(1 + η0d)j−1exp[2µx + σ2

x(1 + (1 + η0d)j)]

nj(θ0) = {4ρ2
0ζ

2
0d(1 + η0d)2(j−1) + 1}exp[4µx + 4σ2

x(1 + (1 + η0d)j)]

µx = −δ0/η0

σ2
x = ζ2

0d/[1 − (1 + η0d)2]

and Φ(.) denotes the cumulative distribution function of a standard normal
random variable. To simplify the estimations, Melino and Turnbull (1990) fix
the value of γ0 a priori and so the parameter vector is θ0 = (α0, β0, δ0, η0, ζ0, ρ0).
Melino and Turnbull (1990) try three different values for γ0, namely zero, one
and two, and find the results are relatively insensitive to the choice. Throughout
this section, we set γ0 = 1 a priori.

The condition for local identification is not particularly instructive for this
model, and so is omitted. However, inspection of (9.17) does reveal that not
all the moment conditions have the potential to provide information about all
the parameters. The following schematic summarizes the potential informa-
tion content of the moment conditions with the latter being represented by the
associated functions of the data:

wt(θ0)
w3

t (θ0)
wt(θ0)wt−j(θ0)
|wt(θ0)|wt(θ0)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

−→ α0, β0
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w2
t (θ0)

w4
t (θ0)

|wt(θ0)|
|w3

t (θ0)|

⎫

⎪

⎪

⎬

⎪

⎪

⎭

−→ α0, β0, δ0, η0, ζ0

|wt(θ0)wt−j(θ0)|
w2

t (θ0)w
2
t−j(θ0)

}

−→ α0, β0, δ0, η0, ζ0, |ρ0|

|wt(θ0)|wt−j −→ α0, β0, δ0, η0, ζ0, ρ0

Clearly all of these moment conditions involve (α0, β0) and the majority involve
δ0, η0, ζ0. However, it is only the moment conditions involving |wt(θ0)wt−j(θ0)|,
w2

t (θ0)w
2
t−j(θ0) and |wt(θ0)|wt−j , j = 1, 2, . . . that involve ρ0, and of these, only

the latter can reveal the sign of ρ0.
Inspection of (9.17) also reveals that the set of moment conditions involves

the expectations of absolute values of functions of wt(θ0). Such functions are
non-differentiable at zero. This scenario is outside the theoretical framework
developed earlier in the book beacuse the asymptotic theory is predicated on
Assumption 3.5 that states ∂f(vt, θ)/∂θ′ exists for all v ∈ V. Melino and Turn-
bull (1990) argue that since the necessary derivatives exist almost everywhere
then it is reasonable to anticipate that the same asymptotic theory goes through
with appropriate modification of the conditions. This argument is valid but its
formal proof requires empirical process methods, and is not pursued here.20

While this argument can be used to extend the asymptotic theory to cover this
type of model, there still remains the secondary issue of what value to assign
the derivative of |wt(θ)|, say, should wt(θ) = 0 in the computations. In fact, this
is not a vacuous question since this does happen in this model with this data
due to floating point accuracy of computer calculations. Melino and Turnbull
(1990) report that they set this derivative to zero. One disadvantage of this
approach is that the derivative can change dramatically in response to a slight
perturbation of the data, and Vetzal (1992) finds that this can cause problems
for the numerical optimization routine.21 Therefore, Vetzal (1992) proposes us-
ing a sixth order polynomial to approximate the behaviour of the absolute value
function in the neighbourhood of zero and then basing the derivative on the ap-
proximating polynomial. This approximation works as follows. The derivative
of |w| is replaced over the range w ∈ [−ǫ, ǫ] by the derivative of

p(w) = a0 + a1w + a2w
2 + a3w

3 + a4w
4 + a5w

5 + a6w
6 (9.19)

where the weights, {ai}, are chosen to ensure that p(w) mimics the beha-
viour of |w| at w = 0 and the boundaries of the neighbourhood. Specifically,
the constraints are: p(0) = 0, p(ǫ) = ǫ, p′(ǫ) = 1, p′′(ǫ) = 0, p(−ǫ) = ǫ,
p′(−ǫ) = −1, p′′(−ǫ) = 0 – where p′(w) = ∂p(w)/∂w and p′′(w) = ∂2p(w)/∂w2.
Vetzal (1992) shows that these constraints imply ai = 0 for i = 0, 1, 3, 5,

20 However, see Andrews (1994) or Newey and McFadden (1994) [Section 7].
21 For example, if wt(θ) is −10−10 then the derivative of |wt(θ)| is −1 but if wt(θ) is 10−10

then the derivative of |wt(θ)| is 1.
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a2 = 15/(8ǫ), a4 = −5/(4ǫ3) and a6 = 3/(8ǫ5). The advantage of this approach
is that the derivative makes a smooth transition from −1 to 1 in the neighbour-
hood of zero. The disadvantage is that the derivative is actually incorrect for
w ∈ {(−ǫ, 0) ∪ (0, ǫ)}. This approximation is employed in the calculation of the
derivatives of |wt(θ)|, |wt(θ)wt−j |, and |wt(θ)|wt−s(θ) for s = 0, 1, . . . 10. Vetzal
(1992) observes that |w3

t (θ)| resembles a parabola, and is quite flat around zero.
Consequently there is no need to use the approximation in this case and so the
derivative of |w3

t (θ)| is only modified by setting it to zero at wt(θ) = 0.22

We now turn to the estimation of the model. The data set consists of the
daily spot Canada–U.S. exchange rate for the period January 2, 1975 to Decem-
ber 10, 1986, and is identical to the one used in Melino and Turnbull’s (1990)
study.23 This gives a total of 3,010 observations on wt(θ0). For this data, the
minimum time interval, d, is one. With regard to the specifics of the GMM es-
timation, all results reported in this section are calculated in the following way.
An iterated GMM estimation is performed with the maximum number of itera-
tions set at Imax = 11 and a convergence criterion set at ǫθ = 106.24 In practice,
convergence rarely occurred before this ceiling was met. Our experience was
that convergence was not uniform, and some experimentation with larger val-
ues for Imax did not yield obvious improvement. We attribute this to the highly
nonlinear nature of the moment conditions as a function of θ0. The first step
weighting matrix equal to 108Iq, and the long run variance is estimated using
the prewhitened and recoloured HAC matrix with the bandwidth selected by
Newey and West’s (1994) data-based method and a Bartlett kernel, that is ŜSE

in (3.58). The starting values are the estimates reported by Melino and Turnbull
(1990), that is θ̄(0) = (0.042,−0.00054,−0.384, −0.091, 0.153,−0.110).25

We begin our empirical analysis of this model by considering the sensitivity
of the results to the treatment of the derivative of the absolute value functions.
Table 9.8 contains estimation results using four different neighbourhoods of the
approximation: [−ǫ, ǫ] with ǫ = 10−2, 10−4, 10−6, 0. In the first three cases,
the derivative is based on (9.19) in the way described above. For ǫ = 0, the
neighbourhood collapses to the point zero and in this case the derivative of
|wt(θ)| is only modified by setting it to zero at wt(θ) = 0. It can be seen
that both the estimates and standard errors exhibit some sensitivity to the
approximation used in the calculation of the derivative. However, there are

22 I am extremely grateful to Ken Vetzal for both drawing the issue discussed in this
paragraph to my attention, and also for providing me with the material upon which the
discussion is based.

23 I am extremely grateful to Angelo Melino for providing me with both the data and also
an unpublished appendix to their paper prepared by Ken Vetzal that derived the gradients of
the moment conditions.

24 See Section 3.6
25 It should be noted that the specifics of our estimation differ from those in Melino and

Turnbull (1990) in three respects: (i) they use an HAC estimator with bT = 50; (ii) the first

step weighting matrix is Ŝ−1
T evaluated at a Method of Moments estimator based on a set

of six undisclosed moments; (iii) the iterated estimator is iterated an unspecified number of
steps.
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clearly greater differences between the two step and iterated estimator for a
given value of ǫ.

Table 9.8
Sensitivity of GMM estimates to derivative calculation

in stochastic volatility model

ǫ = 0 ǫ = 10−6 ǫ = 10−4 ǫ = 10−2

2-st. iter. 2-st. iter. 2-st. iter. 2-st. iter.

α̂T 0.051 0.096 0.012 0.089 0.044 0.061 0.069 0.090

s.e. 0.090 0.060 0.100 0.067 0.097 0.083 0.072 0.061

β̂T −0.001 −0.001 −0.000 −0.001 −0.001 −0.001 −0.000 −0.001

s.e. 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001

δ̂T −0.334 −0.234 −0.356 −0.258 −0.368 −0.249 −0.315 −0.291

s.e. 0.050 0.106 0.043 0.107 0.042 0.061 0.062 0.138

η̂T −0.079 −0.056 −0.085 −0.061 −0.088 −0.059 −0.075 −0.069

s.e. 0.012 0.025 0.010 0.025 0.010 0.014 0.018 0.033

ζ̂T 0.163 0.114 0.172 0.121 0.176 0.123 0.156 0.127

s.e. 0.015 0.029 0.013 0.028 0.012 0.018 0.019 0.032

ρ̂T −0.279 −0.179 −0.321 −0.192 −0.324 −0.310 −0.216 −0.138

s.e. 0.356 0.696 0.320 0.632 0.299 0.672 0.375 0.469

JT 41.00 38.52 42.57 38.50 42.28 39.71 41.26 38.39

p − value 0.47 0.58 0.40 0.58 0.42 0.53 0.46 0.59

Notes: Estimation is based on (9.17) for j = 1, 2, . . . 10. 2 − st and iter. denote the two step
and iterated estimators respectively. s.e. denotes the standard error of the estimator on the
line above. ǫ indexes the width of the neighbourhood of approximation for the absolute value
function; see text.

given value of ǫ. Regardless of the permutation chosen, the results are qualita-
tively the same: the overidentifying restrictions test is insignificant at the 10%
level; the estimated parameters of the volatility process are individually signifi-
cantly different from zero at the 5% level, although the remaining estimates are
insignificant. These findings are also reported by Melino and Turnbull (1990).26

Since the overidentifying restrictions test suggests the model is consistent
with the data, we now consider the implications for the nature of the conditional
variation of the exchange rate. In this context, two questions naturally arise.
Is the volatility stochastic? – and if so, then for how long does the impact of
shocks to the volatility process last? We now consider these issues in turn.

26 The most striking difference between our results and those of Melino and Turnbull (1990)
are in the estimate and standard error of ρ̂T . Vetzal (1997) estimates a stochastic volatility
model for short term interest rates using different choices of covariance matrix estimator
and finds that the standard errors can be very sensitive to the choice of covariance matrix
estimator.
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Within this model, volatility is stochastic if ζ0 �= 0. A test of H0 : ζ0 = 0
versus H1 : ζ0 �= 0 can be performed using any of the statistics described in
Section 5.3. For simplicity, we use the Wald test in (5.43) which for this simple
case reduces to

WT = T

[

ζ̂T

s.e.(ζ̂T )

]2

Under the null, it follows from Theorem 5.7 that WT
d→ χ2

1. Inspection of
Table 9.8 reveals that this hypothesis is overwhelmingly rejected in every case.
Therefore, volatility does indeed appear to be stochastic. The impact of the
stochastic shocks on volatility is governed by the data generation process for
the latent variable x(τt). This process is

ln[x(τt)] = δ0d + (1 + η0d)ln[x(τt − d)] + ζ0d
1/2u(τt) (9.20)

One way to assess this impact is to consider the impulse response function.
Within this approach, the impact of a single shock on current and future val-
ues is calculated under the assumption that there are no future shocks, that is
assuming all subsequent values of u(τt) are zero.27 So for the following calcula-
tions, it is assumed that u(τt0) = ū and u(τt) = 0 for all t > t0. Recalling that
d = 1 for this example, it follows from (9.20) that the impact of this type of
shock on ln[x(τt)] is given by (1 + η0)

t−t0ζ0ū, for t ≥ t0. A common summary
statistic for impulse response functions is the half-life. The half-life of the shock
is defined to be the interval of time it takes for the impact of the shock to be
halved, that is thl such that

0.5ζ0ū = (1 + η0)
thl−t0ζ0ū (9.21)

Without loss of generality, we can set t0 = 0 and solve (9.21) to obtain

thl =
ln[0.5]

ln[1 + η0]

To illustrate the half-life, we focus attention on the case in which ǫ = 10−6. The
associated values for the iterated estimator of η̂T yield thl = 11.013 and so a
half-life of approximately eleven days.

Taken at face value, the evidence appears to suggest that the stochastic
volatility can capture the time series movements of this exchange rate. How-
ever, the inferences described above rest on asymptotic theory and the sim-
ulation results reported by Andersen and Sørensen (1996) cast doubt on the
adequacy of this theory as an approximation to finite sample behaviour in these
types of model.28 These simulation results also indicate that the quality of the
asymptotic approximation can be very sensitive to the choice of moments, and
furthermore that certain moment conditions may be redundant. Therefore, we

27 See Hamilton (1994) [Chapter 1] for further discussion.
28 See Section 6.3.
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estimate the model using different subsets of the moment conditions and com-
pare the results using the moment selection criteria described in Section 7.3. To
this end, we divided the moment conditions into five groups as follows (where
once again the moments are represented by the associated functions of the data):

M1 = {wi
t(θ0), i = 1, 2, 3, 4; |wk

t (θ0)|, k = 1, 3}
M2 = {wt(θ0)wt−j(θ0), j = 1, 2, . . . 10}
M3 = {|wt(θ0)wt−j(θ0)|, j = 1, 2, . . . 10}
M4 = {|wt(θ0)|wt−j(θ0), j = 0, 1, . . . 10}
M5 = {w2

t (θ0)w
2
t−j(θ0)], j = 1, 2, . . . 10

(9.22)

The model is estimated using four combinations of groups: M1, M2, M3, M4;
M1, M3, M4, M5; M1, M2, M4, M5; M2, M3, M4, M5.29 Table 9.9 reports
the values for MSC (c) and RMSC (c) for these four subset models and the
original model involving all five groups.30 Both criteria are calculated using
the penalty term associated with BIC given in (7.35). All statistics are cal-
culated using the iterated estimators based on the derivative approximation
with ǫ = 10−6. It can be recalled that the selected moment condition is the
one that minimizes the criterion in question. Therefore, the use of MSC (c)
selects all the moments in (9.17), but the use of RMSC (c) leads to the choice
of the subset M1, M3 − M5. The latter suggests that the moment conditions
E[wt(θ0)wt−j(θ0)] = 0, j = 1, 2, . . . 10 are redundant given the moment condi-
tions in M1, M3 − M5. Table 9.10 reports the iterated estimation results for
this subset model. Interestingly, once the moments in M2 are omitted, α̂T is
roughly two to three times larger than the corresponding estimate based on the
full set of moments, and the estimates of both the exchange rate and volatility
equations are now individually significant at the 5% level.

While it is useful to characterize the conditional variation of financial series,
this is not an end in itself. Melino and Turnbull (1990) use their model to
price currency options, but we do not pursue this issue here because it requires
additional estimations. Parenthetically, we note that they find the stochastic
volatility model performs better than a number of its competitors in this con-
text. More generally, stochastic volatility models have been used to analyze a
variety of financial time series. However, it should be noted that few of these
studies employ the GMM approach described above. Following the simulation
evidence reported by Andersen and Sørensen (1996), researchers have sought
alternative ways to estimate these models. One such method involves moment
based estimation using simulation techniques, and this is discussed in Chapter
10.

29 Recall from our earlier discussion that M4 must be included to identify ρ0.
30 See Sections 7.3.1 and 7.3.2 respectively for discussion of MSC and RMSC.
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Table 9.9
Moment selection criteria for the stochastic volatility model

Moments q MSC (c) RMSC (c)

M1 − M5 47 −289.76 −5.41

M2 − M5 41 −249.16 −2.36

M1, M3 − M5 37 −228.39 −7.70

M1, M2, M4, M5 37 −214.66 −6.08

M1 − M4 37 −213.02 −5.49

Notes: MSC(c) and RMSC(c) are the moment selection criteria in (7.32) and (7.41) respec-
tively.

Table 9.10
Iterated GMM estimates for the stochastic volatility model

based on moments M1, M3 − M5

α̂T β̂T δ̂T η̂T ζ̂T ρ̂T JT

0.193 −0.002 −0.266 −0.064 0.127 −0.307 19.81

0.077 0.001 0.067 0.016 0.020 0.619 0.94

Notes: The numbers below the parameter estimates are the standard errors and the number
below JT is the p-value of the test.
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Related Methods of

Estimation

In this chapter, we briefly review two other methods for exploiting moment con-
ditions in estimation. Section 10.1 describes simulation based estimators known
as Simulated Method of Moments, Indirect Inference and Efficient Method of
Moments. Section 10.2 describes the method of Empirical Likelihood. The
purpose of this discussion is to provide the intuition behind the methods in
question and to explain their connections to GMM. References are provided for
those readers interested in a rigourous analysis of the statistical properties of
these estimators.

10.1 Simulation Based Estimation

Advances in computer technology have facilitated a growing interest in the use
of simulation methods to estimate the parameters of economic models based
on the information in population moment conditions. This approach is feasi-
ble in models where the data generation process is known apart from certain
parameters, and so it is possible to generate artificial samples of data for dif-
ferent values of this parameter vector. The parameter estimator is then the
value in the parameter space for which moments from the artificial data match
the corresponding moments in the observed sample. There are two main vari-
ants of this approach with the difference depending on the choice of moments.
If the moments are derived from the model of interest then this approach is
known as Simulated Method of Moments or Method of Simulated Moments. If
the moments are derived from some auxiliary model then the method is known
as Indirect Inference or Efficient Method of Moments depending on the precise
setting. In this section we provide a brief description of these methods and the
asymptotic properties of the associated estimators. The focus here is on provid-
ing an intuitive introduction to the method and on relating them to GMM. The
interested reader is refered to Carrasco and Florens (2002) for a recent survey
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and Gourieroux and Monfort (1996) for a more comprehensive treatment.

10.1.1 Simulated Method of Moments

The basic idea behind Simulated Method of Moments (SMM) is best under-
stood by considering a simple example. To this end, we return to a modified
version of the simple example used to introduce the Method of Moments in
Section 1.2. Suppose that {vt} is a sequence of scalar random variables that
are independently and identically distributed. As in this earlier discussion, it
is assumed that E[vt] = µ0 but here it is assumed that V ar[vt] = 1 and that
the distribution is normal. Given this specification, it is possible to generate an
artificial sample for any value of the mean µ via

vn(µ) = µ + en, n = 1, 2, . . . N (10.1)

where {en;n = 1, 2, . . . N} are random draws from the standard normal distri-
bution. While the artificial sample {vn(µ); n = 1, 2, . . . N} can be generated
for any choice of µ, there is only one such sample that comes from the same
distribution as the data, namely the one for which µ = µ0. In consequence, it
follows that as both T → ∞ and N → ∞:

T−1
T
∑

t=1

vt − N−1
N
∑

n=1

vn(µ0)
p→ 0

T−1
T
∑

t=1

vt − N−1
N
∑

n=1

vn(µ∗)
p→ µ0 − µ∗ �= 0, for µ0 �= µ∗

(10.2)

SMM exploits the properties in (10.2) in the natural way: the SMM estimator

of µ0 is µ̃T , the value that satisfies m
(1)
N,T (µ̃T ) = 0 where

m
(1)
N,T (µ) = T−1

T
∑

t=1

vt − N−1
N
∑

n=1

vn(µ) (10.3)

In the above example, it is possible to simulate data to match the sample
moment because the parameter is just identified. SMM can also be applied in
overidentified models in a similar fashion to GMM. Continuing the example,
suppose now that it is desired to base the estimation of µ0 on the information
in the first two moments. The resulting SMM estimator of µ0 is the value of µ
that minimizes

[

m
(1)
N,T (µ)

m
(2)
N,T (µ)

]′

WT

[

m
(1)
N,T (µ)

m
(2)
N,T (µ)

]

(10.4)

where

m
(2)
N,T (µ) = T−1

T
∑

t=1

v2
t − N−1

N
∑

n=1

v2
n(µ) (10.5)

and WT is a weighting matrix satisfying the conditions in Assumption 3.7.
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Both these SMM estimators can also be considered as a special case of GMM.
To elicit this connection, we return to the case where the estimator is based on
the first moment alone. Some additional notation and structure is also needed.
First, it is necessary to make some assumption about the relative magnitudes
of N and T . We follow the common strategy in the literature of assuming
that N = kT for some fixed positive integer k satisfying k > 1. Notice that
it is now possible to write the index of the generated random variable v(µ) as
n = k(t − 1) + i where i = 1, 2, . . . k for each t = 1, 2, . . . T . Secondly, using this
re-indexing, we can now define

ft(µ) = vt − k−1
k
∑

i=1

vk(t−1)+i(µ) (10.6)

Finally, define gT (µ) = T−1
∑T

t=1 ft(µ). With these definitions, it can be seen

that m
(1)
N,T (µ̃T ) = 0 can be re-written as

gT (µ̃T ) = T−1
T
∑

t=1

ft(µ̃T ) = 0

and so the SMM estimator is the GMM estimator based on the population
moment condition E[ft(µ0)] = 0.

This interpretation means that the consistency and asymptotic normality
of this SMM estimator can be deduced from Theorems 3.1 and 3.2.1 So, if
estimation is based on (10.6) then it follows from Theorem 3.2 that2

T 1/2(µ̃T − µ0)
d→ N(0, VSMM ) (10.7)

where VSMM = limT→∞ V ar[T−1/2
∑T

t=1 ft(µ0)]. Assuming that the observed
and generated samples are independent, it follows

VSMM = lim
T→∞

V ar[T−1/2
T
∑

t=1

vt]

+ lim
T→∞

V ar[T−1/2
T
∑

t=1

{k−1
k
∑

i=1

vk(t−1)+i(µ0)}] (10.8)

Since both {vt} and {vk(t−1)+i} are i.i.d normal with mean µ0 and variance 1,
it follows from (10.8) that

VSMM = (1 + k−1)

This variance bears a simple relationship to the asymptotic variance of the
GMM (or MM) estimator based on E[vt] − µ0 = 0. It follows directly from

1 While true in this example, it is not generally true; see below.
2 Note p = q = 1 and ∂ft(µ)/∂µ = 1.
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Theorem 3.2 and our assumptions about vt here that the asymptotic variance
of this GMM estimator is VGMM = 1 and so

VSMM = (1 + k−1)VGMM (10.9)

Therefore, the SMM estimator is asymptotically less efficient than the GMM es-
timator that used the information in the population moment condition directly.
However, note that the relative inefficiency decreases with k = N/T and is zero
in the limit as k → ∞. The relationship in (10.9) is generic and recurs in more
complicated models.

This efficiency ranking illustrates that there are typically no advantages to
implementing SMM when conventional GMM is feasible. However, there are a
number of circumstances in which conventional GMM is infeasible and SMM
then becomes an attractive alternative. SMM was introduced into the econo-
metric literature by McFadden (1989) in the context of discrete response models.
Within this setting, estimation can be based on moment conditions involving
the difference between the observed responses and the expected responses im-
plied by the model. In some cases, the expected response may be difficult to
express analytically or to compute via numerical integration, but may be readily
obtained via simulation. SMM has been used to estimate a variety of micro-
econometric models, such as a multinomial logit model of transportation choice
(McFadden and Train, 2000) and a bargaining model with asymmetric infor-
mation for medical malpractice disputes (Sieg, 2000).3 The method has also
been applied to estimate a number of macroeconomic models, such as the con-
sumption based asset pricing model (Heaton, 1995), a real business cycle model
(Collard, Fève, Langot, and Perraudin, 2002) and exchange rates (Iannizzotto
and Taylor, 1999).4 Since these macroeconomic examples are closer in spirit
to the types of model considered in Section 1.3 and Chapter 9, we explore one
of these examples in more detail to illustrate why GMM may be infeasible but
SMM can be implemented. Of the macroeconomic models listed above, the
natural choice for such treatment is the consumption based asset pricing model
studied by Heaton (1995) because this is a variation of the model described in
Section 1.3.1 that has been used as our running empirical example.

Example: Heaton’s (1995) Consumption Based Asset Pricing Model
Heaton (1995) studies a version of the consumption based asset pricing model
in which the representative agent maximizes

E

[

T
∑

t=0

δt
0

{

sγ0

t − 1

γ0

}

|Ωt

]

3 See Gourieroux and Monfort (1996) for other examples.
4 See Carrasco and Florens (2002) and Gourieroux and Monfort (1996) for additional

references.
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where δ0 is the discount factor, Ωt is the information set at time t,

st =
∞
∑

j=0

αjct−j

and ct is consumption expenditure in period t. Notice that the functional form of
the utility function is the same as in Hansen and Singleton’s (1982) version of the
model described in Section 1.3.1. The key difference is that the agent now derives
utility in period t from a linear combination of current and past consumption
expenditures, and so preferences are not time separable. This specification can
be motivated by considering consumption to be a durable good and st as the
service flow in period t from current and past consumption expenditures. It
can be recalled from Section 1.3.1 that the completion of the model requires
assumptions about the investment opportunities available to the agent. For
simplicity here, it is assumed that the agent can invest in period t in a single
asset at price pt that matures in period t + 1 with payoff rt+1. In this case, the
Euler equation is:

E

[

δ0

muc(t + 1)

muc(t)

rt+1

pt
|Ωt

]

− 1 = 0 (10.10)

where muc(t) denotes the marginal expected discounted lifetime utility of con-
sumption, that is

muc(t) = E

⎡

⎣

∞
∑

j=0

δj
0αjs

γ0−1
t+j |Ωt

⎤

⎦

Now consider the problem of how to estimate the model parameters based on
the information in the Euler equation. As in Section 1.3.1, it is possible to use
an iterated expectations argument to derive moment conditions based on the
orthogonality of the function of the data in the Euler equations to any variable
in the information set. While such moment conditions are the stepping stone
to GMM estimation in the simpler version of the model in Section 1.3.1, such
an estimation is infeasible here for the following two reasons:

• The Euler condition depends on an infinite sum. In practice, for GMM
estimation, this sum would need to be truncated at order m, say. However,
Heaton (1995) wishes to test for the existence of long run habit formation
for which the {αj} must be allowed to decay slowly, and this in turn
suggests that m needs to be large. However, large values of m lead to a
high order moving average structure in the error term of the Euler equation
residual, and existing simulation evidence suggests that GMM estimation
may be unreliable in these cases.5

• Heaton (1995) wishes to allow for the case in which the agent makes
decisions weekly rather than monthly. However, the GMM approach in

5 See Sections 3.5 and 6.3.
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Section 1.3.1 only works if data are observed at the frequency at which
decisions are made, and aggregate consumption data are unavailable at
higher frequencies than monthly.

Heaton (1995) shows that it is possible to circumvent both problems if the
estimation is performed using Simulated Method of Moments. To describe his
approach, it is necessary to introduce the following notation and structure.
Assume that there is only one asset, as in our empirical implementation of the
consumption based asset pricing model. Let t denote the week and assume
that every month consists of four weeks. Define c̃t, d̃t and p̃t to be weekly
consumption, weekly dividend payments and the price of the asset price at the
end of the week – so that the weekly asset return is r̃t = p̃t + d̃t.

Heaton (1995) assumes that Yt = [ln(c̃t/c̃t−1), ln(d̃t/d̃t−1)]
′ is generated by

a subset VAR(12) model with a normally distributed error process. The pa-
rameters of this VAR are estimated via SMM and are chosen to ensure that the
implied series for monthly consumption and dividend growth match the first
moment and certain second moments of actual monthly consumption and div-
idend growth data. Once the model for Yt is estimated, it is then possible to
simulate values for Yt. Given values for Yt and the parameters, it is possible to
solve (10.10) numerically for p̃t. Therefore, the parameters of the Euler equa-
tion are estimated via SMM and are chosen to ensure that the implied series
for monthly asset returns matches certain first and second moment properties
of the actual monthly asset return data. ⋄

Pakes and Pollard (1989) provide an asymptotic theory for the SMM es-
timator in models where the data are i.i.d. but the function in the moment
condition may be discontinuous, as would be the case, for instance, in discrete
response models. Lee and Ingram (1991) and Duffie and Singleton (1993) pro-
vide a comparable asymptotic theory for time series models. These authors
provide conditions under which the SMM estimator is consistent and asymptot-
ically normal. These conditions are different from those employed in Chapter 3
for the corresponding of GMM estimators and their precise nature depends on
both the structure of the moment condition and also on the way the data are
simulated. We therefore do not pursue this theory further here but refer the
reader to the aforementioned sources. Lee and Ingram (1991) also show that
in overidentified models, the SMM minimand can form the basis for a model
specification test along the same lines as the overidentifying restrictions test
within the GMM framework.

10.1.2 Indirect Inference

Simulated Method of Moments involves simulating data from a model and choos-
ing the parameters to match moments implied by the same model. However,
in some cases, it can be desirable to simulate data from one model to match
moments associated with some other model. This type of estimation is known
as Indirect Inference, a terminology introduced by Gourieroux, Monfort, and
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Renault (1993). It is common to refer to the model from which the simulations
are generated as the simulator, and the “other” model from which the moments
are constructed as the auxilliary model, and we adopt this terminology here.
Indirect Inference is attractive in circumstances where it is possible to simulate
data from the model of interest but the complexity of the model makes it im-
possible to estimate the parameters by conventional approaches, such as GMM.
To illustrate the approach, we revisit the problem of estimating the parameters
of a stochastic volatility model.

Example: Stochastic volatility model
For simplicity, consider the following special case of the stochastic volatility
model described in Section 1.3.5,

yt =
√

xtet (10.11)

ln(xt) = θ0,1 + θ0,2ln(xt−1) + θ0,3ut (10.12)

where (et, ut)
′ ∼ IN(0, I2). It can be recalled from Section 1.3.5 that the model

completely specifies the distribution, but that the structure of the model renders
Maximum Likelihood estimation infeasible. However, since the data generation
process is known, it is possible to simulate data from the model for a given value
of θ. This opens the door to the possibility of a simulation based estimation.
Let {yn(θ);n = 1, 2, . . . N} be a sample of simulated values for y from (10.11)-
(10.12) given θ, and once again we set N = kT for some positive integer k.

The key question is which moments to match? Gallant and Tauchen (1996)
argue that the natural choice of moments are the score equations of a closely
related model. Their argument applies more generally than our specific example
and their reasoning is based on the following efficiency argument. First suppose
that the auxilliary model encompasses the simulator; in this case the estimation
is based on the true score equations and so it can be shown that the resulting
estimators are asymptotically efficient provided k → ∞. Now suppose that the
auxilliary model does not encompass the simulator but is a good approximation
in some sense; in this case then the resulting estimator can be thought of as being
“nearly” asymptotically efficient. For the stochastic volatility model, a natural
choice of auxilliary model is an alternative model for conditional variation such
as the autoregressive conditional moving average (ARCH) model proposed by
Engle (1982). The ARCH model of order d is given by,

yt = ht(α0)wt

where

h2
t (α) = α1 +

d
∑

i=1

αi+1w
2
t−i

and α = (α1, α2, . . . αd+1)
′. Under the assumption that wt ∼ IN(0, 1), the
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quasi-log likelihood function is tractable and the associated score equations are:6

T
∑

t=1

s[α̂T ; yt] = 0 (10.13)

where α̂T is the quasi maximum likelihood estimator of α0 = (α0,1, α0,2, . . . ,
α0,d+1)

′,7 and s[.] is given by

s[α; yt] = zt

[

y2
t − h2

t (α)

2h2
t (α)

]

for zt = (1, y2
t−1, y

2
t−2, . . . y

2
t−d)

′.
The Indirect Inference estimator of θ0 is defined to be

θ̃T = argminθ∈Θ

{

N−1
N
∑

n=1

s[α̂T ; yn(θ)]

}′

WT

{

N−1
N
∑

n=1

s[α̂T ; yn(θ)]

}

where WT is a weighting matrix satisfying Assumption 3.7. For this estimation
strategy to work, the auxilliary model must provide at least as many moment
conditions as parameters to be estimated in the simulator. In this example, this
restriction translates into the constraint that d+1 ≥ 3. Notice that if d+1 > 3
then θ0 is overidentified by the moments in the auxilliary score, and this is why
the minimand is a quadratic form. ⋄

Gourieroux, Monfort, and Renault (1993) establish the consistency and
asymptotic normality of the Indirect Inference estimator. They also show that
there are a number of alternative ways of setting up the Indirect Inference mini-
mand based on choosing the parameters of the simulator so that estimates from
the auxilliary model based on the simulated data match the estimates from the
auxilliary model based on the observed sample. However, since Gourieroux,
Monfort, and Renault (1993) show these estimators are asymptotically equiv-
alent to those based on matching the first derivative of the auxilliary model
minimand, we do not discuss these alternative approaches here. Gourieroux,
Monfort, and Renault (1993) also provide a number of specifications tests for
models estimated by Indirect Inference. In particular, they show that in overi-
dentified models, the Indirect Inference minimand can form the basis for a model
specification test along the same lines as the overidentifying restrictions test
within the GMM framework.

To conclude this sub-section, we return to the issue raised in the exam-
ple above of which moments to match. Given Gallant and Tauchen’s (1996)
efficiency argument, it is clearly desirable that the auxilliary model provides
the best possible approximation to the data generation process. Therefore
Gallant and Tauchen (1996) recommend that the auxilliary model involve the

6 See inter alia Hamilton (1994) [p.661].
7 See Section 3.8.1.
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specification that the probability density function of the data takes some flexible
functional form capable of approximating a wide variety of distributions within
the class of interest. For time series data such as the stochastic volatility ex-
ample above, Gallant and Tauchen (1996) propose using a member of the class
semi-non parametric (SNP) densities proposed by Gallant and Nychka (1987) to
generate the score in the auxilliary model. SNP densities consist of a lead term,
such as the conditional density associated with the ARCH(q) model, multiplied
by an expansion involving Hermite polynomials. Gallant and Nychka (1987)
show that such a density can recover a wide class of distributions as the order
of the expansion tends to infinity. Therefore, this type of Indirect Inference es-
timator is often refered to as Efficient Method of Moments (EMM). Andersen,
Chung, and Sørensen (1999) provide simulation evidence on the use of EMM
estimators in the stochastic volatility model, and find the method performs far
better than the type of GMM estimator implemented in Section 9.4. EMM
has been used to estimate the parameters of a variety of models; see Carrasco
and Florens (2002) for a summary. Examples of its use to estimate stochastic
volatility models are reported in Andersen and Lund (1997) and Gallant, Hsieh,
and Tauchen (1997) where the applications are to interest rates and stock price
indices respectively.

10.2 Empirical Likelihood

The method of Empirical Likelihood was introduced into the statistical liter-
ature by Owen (1988). In this and two subsequent articles in 1990 and 1991,
Owen demonstrated that the method can be used to perform inference about as-
pects of a distribution or the parameters of a linear regression model. Empirical
Likelihood has subsequently been extended to cases where it is desired to im-
pose the restriction that the distribution satisfies a nonlinear moment condition
indexed by an unknown parameter vector. As a result, this type of estimator is
attracting an increasing amount of interest in econometrics. In this sub-section,
we provide a brief introduction to the method and pay particular attention to
highlighting its connections to GMM. More comprehensive treatments can be
found in the recent survey article by Imbens (2002) or the recent monograph by
Owen (2001).

To introduce the Empirical Likelihood approach to estimation, consider the
situation in which the researcher observes a random sample of T observations on
an i.i.d. random variable, v, and wishes to estimate its distribution. In the ab-
sence of any information about the form of the distribution function, the natural
estimator is the empirical distribution function, that is the estimated probabil-
ity of each sample value is 1/T . This approach to estimation can be expressed
as the outcome of an optimization as follows. Let ṽt denote the tth outcome in
the sample and πt denote the probability that v = ṽt. To be valid probabilities,
it must follow that 0 ≤ πt ≤ 1 and

∑T
t=1 πt = 1. The joint probability distribu-

tion function of the sample is then given by
∏T

t=1 πt. If some parametric model
had been assumed for πt then this joint probability distribution function could
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be treated as the likelihood for the data, and used as a basis for estimating the
unknown parameters of the distribution. Suppose now that the same step is
taken here even though there is no assumption about the form of the underly-
ing distribution function. In this case, the “likelihood”,

∏T
t=1 πt, is treated as a

function of the unknown probabilities {πt}. This likelihood interpretation leads
to the following method for estimating the probabilities:

π̂ = maxπ∈Π

T
∏

t=1

πt subject to
T
∑

t=1

πt = 1 (10.14)

where π = (π1, π2, . . . πT ) and Π = [0, 1]T . The resulting estimators can be
shown to be πt = 1/T for all t – in other words, the distribution function is

estimated by the empirical distribution function. The function
∏T

t=1 πt is known
as the empirical likelihood.

This approach can be extended to incorporate information about the mo-
ments of the unknown distribution. Continuing the example, suppose now that
it is known that the distribution satisfies E[v] = 0. The empirical distribution
estimator for the probabilities does not ensure this restriction in the sample
because in general

T
∑

t=1

π̂tṽt = T−1
T
∑

t=1

ṽt �= 0

However, it is possible to modify the constraint set so that this first moment
condition is imposed. Specifically, suppose now that the empirical log likelihood
is maximized subject to the twin constraints that the probabilities sum to one
and the sample first moment is zero, that is

π̄ = maxπ∈Π

T
∏

t=1

ln[πt] subject to

T
∑

t=1

πt = 1 and

T
∑

t=1

πtṽt = 0

It can be shown that estimates of the probabilities are now π̄t = (1 + λṽt)
−1

where λ is the Lagrange Multiplier associated with the constraint that
∑T

t=1 πtṽt

= 0.
This approach can also be extended to the types of population moment

condition considered in the preceding chapters. Qin and Lawless (1994) de-
rive the Empirical Likelihood estimators for the case in which it is desired to
impose the moment restriction that the (q × 1) population moment condition
E[f(v, θ0)] = 0 holds for some unknown (p × 1) parameter vector, θ0. In this
case, it is necessary to estimate both the unknown probabilities and also θ0.
The Empirical Likelihood estimators for this case are defined to be:

(π̃, θ̃) = maxπ∈Π,θ∈Θ

T
∏

t=1

ln[πt] subject to

T
∑

t=1

πt = 1 and

T
∑

t=1

πtf(ṽt, θ) = 0

(10.15)
Qin and Lawless (1994) show that if q = p then the resulting estimator of πt

is π̃t = 1/T for all t, and θ̃ is the Method of Moments estimator based on
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E[f(v, θ0)] = 0 – and so θ̃ is also the GMM estimator in this case. However,
if q > p then the Empirical Likelihood and GMM estimators are different in
general.

In comparison to GMM, it can be seen that Empirical Likelihood offers a
very different way to exploit the information in population moment conditions.
However, it turns out that the two estimators have the same asymptotic prop-
erties. Specifically, Qin and Lawless (1994) show that the Empirical Likelihood
estimator is consistent for θ0 and converges to the same limiting distribution as
the GMM estimator calculated using the optimal weighting matrix.8

Just as within the GMM framework, one hypothesis of particular interest is
whether the data are compatible with population moment condition. Imbens,
Spady, and Johnson (1998) show that this hypothesis can be tested within the
Empirical Likelihood framework using statistics derived from the Likelihood
Ratio, Wald and Lagrange Multiplier testing principles. For brevity, we consider
only the Likelihood Ratio type test here. This test compares the value of the
empirical likelihood function at the restricted estimates, π̃, with the value at
the unrestricted estimates, π̂. The statistic is

LR − EL = 2{ELLFT (π̄) − ELLFT (π̃)}

where ELLFT (π) =
∑T

t=1 ln[πt]. Under the null hypothesis that E[f(v, θ0)] =
0, Imbens, Spady, and Johnson (1998) show that LR − EL converges to a χq−p

distribution. Notice this limiting distribution is exactly the same as the limiting
distribution of the overidentifying restrictions test under the same null.9

In terms of these asymptotic properties, there is nothing to choose between
Empirical Likelihood and GMM estimation. However, there is some recent evi-
dence that the Empirical Likelihood estimators may exhibit better finite sample
performance. Newey and Smith (2004) develop Nagar type approximations for
the approximate bias of the Empirical Likelihood estimator along with those for
the two step GMM and continuous updating estimators that are discussed in
Section 6.2.2. They show that the approximate bias of the Empirical Likelihood
estimator is equal to T−1BI , using the notation defined in Section 6.2.2. There-
fore the Empirical Likelihood has fewer sources of bias than either the two step
GMM or continuous updating GMM estimators. Given the existence of these
types of bias, it is natural to consider using the bootstrap to provide more ac-
curate finite sample inference. Since Empirical Likelihood approach generates
probabilities for the data outcomes that are consistent with the moment condi-
tion, it provides a very computationally convenient way of generating articifial
data consistent with the estimated model. Brown and Newey (2002) present
an empirical likelihood based method for the bootstrapping with i.i.d. data and
show that it is at least as efficient as the methods described in Section 8.1.

All the studies mentioned above address the behaviour of the Empirical
Likelihood estimator in the context of i.i.d. data. Kitamura (1997) shows that

8 See Section 3.4 and 3.6. Also see Chamberlain (1987) and Section 7.2.3.
9 See Theorem 5.1 in Section 5.1.
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if the data are generated by a stationary dynamic process the Empirical Like-
lihood estimator in (10.15) is no longer as asymptotically efficient as the two
step GMM estimator. However, asymptotic equivalence can be restored if the
sampling unit is taken to be blocks of observations along similar lines to the
blocking schemes discussed in Section 8.1.2.1. The probabilities in the empiri-
cal likelihood are then interpreted as the probability that a particular block is
sampled. Kitamura (1997) provides conditions under which the resulting Em-
pirical Likelihood estimators have the same asymptotic distribution as the two
step GMM estimator.

There have been a number of variations of the Empirical Likelihood estimator
proposed in the literature. These variations involve replacing the Empirical
Likelihood by some other function of the probabilities. It is not our purpose here
to provide a review of this literature and instead the interested reader is refered
to Imbens (2002). However, one particular extension is worth noting. Smith
(1997) introduces the class of Generalized Empirical Likelihood estimators, and
Newey and Smith (2004) show that this class includes the continuous updating
GMM estimator but not the two step GMM estimator. This difference is the
source of the estimators contrasting approximate bias properties discussed in
Section 6.2.2.



Appendix A

Mixing Processes and

Nonstationarity

This appendix provides a heuristic introduction to mixing processes followed by
a brief summary of existing results on GMM in a nonstationary environment.

A.1 Mixing processes

As mentioned in the Section 3.4, if vt is a mixing process then the dependence
between vt and vt−m disappears as m → ∞. To make this definition operational,
it is necessary to make precise the notion of “dependence”. Several approaches
have been taken and each yields a different type of mixing process. In this
appendix, we focus on so called strong or α–mixing processes. The discussion in
this appendix relies heavily on Davidson (1994) [Chapters 13 and 14] to which
the reader is refered for a rigorous treatment of this material and definitions of
other types of mixing processes.

Although more accessible than ergodicity, the definition of an α-mixing pro-
cess involves some sophisticated mathematical concepts. Below we build up to a
formal definition in three steps. First, we introduce the measure of dependence
in the context of two specific sets of elementary events. Secondly, this measure
is extended to cover the dependence between two collection of sets. Finally, we
show how this measure can be used to capture the dependence structure of a
stochastic process.

To begin, it is useful to recall from elementary probability theory that if two
events G and H are independent then P (G ∩ H) = P (G)P (H). If G and H
are dependent then the converse is true, namely P (G ∩ H) − P (G)P (H) �= 0.
These two basic properties suggest that

a′(G, H) = P (G ∩ H) − P (G)P (H)

provides a reasonable starting place in our search for a measure of dependence
between G and H. However, as it stands, a′(G, H) has one unattractive feature.

354



A.1 Mixing processes 355

The measure a′(G, H) makes a distinction between cases a′(G1, H1) = c and
a′(G2, H2) = −c whereas intuition suggests these two cases are both the same
“distance” from independence. In other words, it is preferable to capture the
dependence between G and H using

a(G, H) = | P (G ∩ H) − P (G)P (H) | (A.1)

We now turn to the extension of this measure of dependence to collection of
sets. For conformity with what follows below, it is useful to give these collections
of sets certain properties.

Definition A.1 σ-field
Let F be a collection of subsets of the set Ω. Then F is a σ-field (or σ-algebra)
if it satisfies the following three conditions: (i) Ω ∈ F ; (ii) if A ∈ F then
Ac ∈ F ; (iii) if {An, n = 1, 2, . . .} is a sequence of sets in F then ∪∞

n=1An ∈ F .

Now define G and H to be two σ-fields, and let G ∈ G and H ∈ H. As we have
seen G and H are independent if a(G, H) = 0. For G and H to be independent,
it must be the case that a(G, H) = 0 for all G ∈ G and all H ∈ H or, more
compactly, α(G, H) = 0 where

α(G,H) = supG∈G,H∈H a(G, H) (A.2)

Notice that if G and H are dependent then there must be some G ∈ G and
H ∈ H for which a(G, H) �= 0 and so α(G, H) �= 0. As the notation suggests
α(G,H) forms the basis for the measure of dependence in the definition of an
α–mixing process.

The last step towards the formal definition of an α-mixing process involves
the adaptation of the measure of dependence to time series. At this stage, it is
necessary to introduce certain concepts relating to stochastic processes. These
concepts are stated, but not explained, because such an explanation is beyond
the scope of this book. It is hoped that the previous discussion is sufficient to
convey the intuition behind the definition of a mixing process. We refer the
interested reader to Davidson (1994) [Chapters 12–14] for a rigorous treatment
of stochastic processes, dependence and mixing processes.

Consider the stochastic process {vt(ω)} defined on the probability space
(Ω,F , P ). Let F t

s be the smallest σ-field on which (vs, vs+1, . . . vt) is measurable.
Two particular σ fields are of interest here: F t

−∞, which can be thought of as the
“the information contained in the sequence up to date t”; and F∞

t+m, which can
be thought of as “the information contained in the sequence from t+m onwards”.
From our previous discussion, we can capture the dependence between F t

−∞ and
F∞

t+m by
αm = α(F t

−∞,F∞
t+m)

With this background, we can finally present the definition towards which we
have been working.

Definition A.2 α–mixing process
The sequence {vt}∞

t=−∞ is said to be α–mixing if limm→∞ αm=0.
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Therefore, an α-mixing process is one in which the dependence between two
observations, αm, decays to zero as m → ∞. One implication of this definition
is that the autocovariances of vt exhibit a similar decay, that is1

Cov(vt, vt−m) → 0 as m → ∞ (A.3)

This particular property provides a useful glimpse into the difference between
mixing and ergodicity, because the latter implies2

M−1
M
∑

m=1

Cov(vt, vt−m) → 0 as M → ∞ (A.4)

Therefore, mixing implies the autocovariances decay to zero as m → ∞ but
ergodicity implies the average of the first M autocovariances tends to zero as
M → ∞. The former implies the latter but not vice versa. From a comparison
of (A.3) and (A.4), it can be seen that some generality is lost by moving from
ergodic to mixing processes. However, since (A.3) is plausible for many economic
series, it may be argued that not much is lost.

For the asymptotic analysis in Chapter 3 it is insufficient for the dependence
simply to decay to zero, but it must do so at a particular rate.3 The rate of
decay has been captured in the literature using the concept of size of a mixing
process.

Definition A.3 Size of a mixing process
vt is an α–mixing process of size −c0 if αm = O(m−c) for some c > c0.

This definition implies that the larger the size then the greater the dependence
allowed in the series. Obviously it is desirable to allow for as much dependence
as possible. However, the issue is not that simple, because dependence is just one
feature of the series which must be restricted to permit conventional asymptotic
analysis. It is also necessary to place restrictions on the existence of certain
moments, and hence implicitly on the tail behaviour of vt. As an illustration,
consider the conditions imposed by Andrews (1991) to underpin his analysis of
the asymptotic properties of covariance matrix estimators which are discussed
in Section 3.5.3. He imposes the following two conditions: (i) vt is α-mixing of
size −3ν/(ν − 1); (ii) E[‖vt‖4ν ] < ∞. Inspection reveals that as ν increases the
size increases and so the degree of dependence allowed increases. However, at
the same time, an increase in ν increases the order up to which the moments of
vt must exist. The latter is implicitly a restriction on the tail behaviour of the

1 See Davidson (1994) [p.203].
2 See Davidson (1994) [p.201]. Note that this condition is sufficient but not necessary for

ergodicity unless {vt} is a Gaussian process in which case it is a necessary condition as well.
3 This includes the Weak Law of Large Numbers, Central Limit Theorem and also the

consistency of the covariance matrix estimators discussed in Section 3.5.
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distribution of vt.
4 So there is a tension between these two aspects of vt in the

context of asymptotic analysis.
In the course of the analysis in Chapter 3, it is necessary to apply limit theo-

rems to various functions of vt. One particularly attractive feature of α-mixing
processes is that certain functions of them are also α-mixing. Specifically, if vt

is an α-mixing of size −c0 then Yt = g(vt, vt−1, . . . vt−τ ) is also an be α-mixing
of size −c0 provided τ is finite. The reason for this proviso is readily understood.
If τ is infinite, then both Yt and Yt−m are functions of {vt−n, n > m} regardless
of how large m becomes, and so Yt cannot be an α-mixing process in general.
However, it turns out that this situation can be circumvented by restricting g(.)
to be near epoch dependent. Essentially, this condition restricts g(.) so that the
dependence in Yt decays sufficiently fast to allow the derivation of Laws of Large
Numbers and Central Limit Theorems. We do not pursue this topic here but
instead refer the interested reader to Davidson (1994) [Chapter 17].

A.2 Nonstationarity

If stationarity is relaxed then it becomes necessary to make an explicit assump-
tion about the nature of the nonstationarity. Three approaches have been taken
in the literature: (i) nonstationary mixing processes; (ii) deterministic trends;
(iii) unit root processes. We now provide a brief summary of the available results
in each case.

• Mixing processes: The concept of a mixing process can be extended to
nonstationary processes by setting αm = supt α(F t

−∞,F∞
t+m). Subject

to certain restrictions, Weak Laws of Large Numbers and Central Limit
Theorems can be developed for nonstationary mixing processes; see Gal-
lant and White (1988) or Pötscher and Prucha (1997). It is then possible
to establish the consistency and asymptotic normality of the estimator
within this environment; see Gallant (1987), Gallant and White (1988)
and Pötscher and Prucha (1997).

• Deterministic trends: Andrews and McDermott (1995) consider the case in
which the data are generated by vt = v(dt, wt) where dt is a deterministic
trend and wt is a stationary process. They provide conditions under which
the GMM estimator is consistent and asymptotically normal within this
set–up.

• Unit root processes: If vt contains unit root processes then the limiting
distribution theory is non-standard. To date, progress has only been made

4 For example, consider the case in which vt is scalar and possesses a Student t distribution
with δ degrees of freedom. As the parameter δ decreases the tails of the distribution become
“thicker” and this has implications for the moments. Specifically, the moments of the t
distribution only exist up to order δ. Therefore the restriction E[‖vt‖4ν ] = E[v4ν

t ] < ∞
implies δ ≥ 4ν, and thereby implicitly places a restriction on the thickness of the tails of the
distribution. See Johnson and Kotz (1970) [Chapter 27] for a discussion of the properties of
the t distribution.
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for the particular case of IV estimation of linear models. Hall (1987b) and
Pantula and Hall (1991) analyze the behaviour of unit root tests based
on IV estimators. Phillips and Hansen (1990) and Kitamura and Phillips
(1997) analyze the limiting behaviour of IV estimators in a multivariate
setting.
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Bühlmann, P., and Künsch, H. R. (1996). ‘Block selection in the bootstrap for
time series’, Discussion paper, unpublished mimeo.

Burguette, J. F., Gallant, A. R., and Souza, G. (1982). ‘On unification of the
asymptotic theory of nonlinear econometric models’, Econometric Reviews,
1: 151–90.



Bibliography 365

Burnside, C., and Eichenbaum, M. (1996). ‘Small sample properties of GMM
based Wald tests’, Journal of Business and Economic Statistics, 14: 294–308.

, , and Rebelo, S. (1993). ‘Labor hoarding and the business
cycle’, Journal of Political Economy, 101: 245–73.

Buse, A. (1992). ‘The bias of instrumental variable estimators’, Econometrica,
60: 173–80.

Campbell, J. Y. (1996). ‘Understanding risk and return’, Journal of Political
Economy, 104: 298–345.

and Mankiw, N. G. (1990). ‘Permanent income, current income and
consumption’, Journal of Business and Economic Statistics, 8: 265–80.

Carlstein, E. (1986). ‘The use of subseries methods for estimating the variance
of a general statistic from a stationary time series’, Annals of Statistics, 14:
1171–9.

Carrasco, M., and Florens, J. P. (2000). ‘Generalization of GMM to a continuum
of moments conditions’, Econometric Theory, 16: 797–834.

(2002). ‘Simulation based method of moments and efficiency’, Journal
of Business and Economic Statistics, 20: 482–92.

Caselli, F., Esquivel, G., and Lefort, F. (1996). ‘Reopening the convergence
debate: a new look at cross-country growth empirics’, Journal of Economic
Growth, 1: 363–89.

Cecchetti, S. G., Lam, P., and Mark, N. C. (1993). ‘The equity premium and
the risk free rate’, Journal of Monetary Economics, 31: 21–45.

Chamberlain, G. (1987). ‘Asymptotic efficiency in estimation with conditional
moment restrictions’, Journal of Econometrics, 34: 305–34.

and Rothschild, M. (1983). ‘Arbitrage, factor structure and mean
variance analysis on large asset markets’, Econometrica, 51: 1281–304.

Chan, K. C., Karolyi, G. A., Longstaff, F. A., and Sanders, A. B. (1992). ‘An
empirical comparison of alternative models of the short term interest rate’,
Journal of Finance, 47: 1209–27.

Chavas, J. P., and Thomas, A. (1999). ‘A dynamic analysis of land prices’,
American Journal of Agricultural Economics, 81: 772–84.

Chen, Z., and Knez, P. (1996). ‘Portfolio performance measurement: theory
and applications’, Review of Financial Studies, 9: 511–55.

Chesher, A. (1984). ‘Testing for neglected heterogeneity’, Econometrica, 52:
865–72.



366 Bibliography

Chirinko, R. S., and Schaller, H. (1996). ‘Bubbles, fundamentals and invest-
ment: a multiple equation testing strategy’, Journal of Monetary Economics,
38: 47–76.

and (2001). ‘Business fixed investment and “bubbles”: the
Japanese case’, American Economic Review, 91: 663–80.

Christiano, L. J., and den Haan, W. J. (1996). ‘Small sample properties
of GMM for business cycle analysis’, Journal of Business and Economic
Statistics, 14: 309–27.

and Eichenbaum, M. (1992). ‘Current real business cycle theories and ag-
gregate labor market fluctuations’, American Economic Review, 82: 430–50.

Clarida, R., Gali, J., and Gertler, M. (2000). ‘Monetary policy rules and
macroeconomic stability: evidence and some theory’, Quarterly Journal of
Economics, pp. 147–80.

Clark, T. E. (1996). ‘Small sample properties of estimators of nonlinear models
of covariance structure’, Journal of Business and Economic Statistics, 14:
367–73.

Cochrane, J. H. (1996). ‘A cross-sectional test of an investment asset pricing
model’, Journal of Political Economy, 104: 572–621.
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Method of Moments’, in L. Mátyás (ed.), Generalized Method of Moments
Estimation, pp. 75–101. Cambridge University Press, Cambridge, U.K.

(2000). ‘Covariance matrix estimation and the power of the overiden-
tifying restrictions test’, Econometrica, 68: 1517–27.

and Inoue, A. (2003). ‘The large sample behaviour of the Gener-
alized Method of Moments estimator in misspecified models’, Journal of
Econometrics, 114: 361–94.

, , Jana, K., and Shin, C. (2003). ‘Information in Generalized
Method of Moments estimation and entropy based moment selection’, Dis-
cussion paper, Department of Economics, North Carolina State University,
Raleigh, NC, U.S.A.

, , and Peixe, F. P. M. (2003). ‘Covariance estimation and the
limiting behaviour of the overidentifying restrictions test in the presence of
neglected structural instability’, Econometric Theory, 19: 962–83.

and Peixe, F. P. M. (2000). ‘Data mining and the selection of
instruments’, Journal of Economic Methodology, 7: 265–78.

and (2003). ‘A consistent method for the selection of relevant
instruments’, Econometric Reviews, 22: 269–88.

and Rossana, R. J. (1991). ‘Estimating the speed of adjustment in partial
adjustment models’, Journal of Business and Economic Statistics, 9: 441–53.

, Rudebusch, G., and Wilcox, D. (1996). ‘Judging instrument relevance
in instrumental variables estimation’, International Economic Review, 37:
283–98.

and Sen, A. (1999). ‘Structural stability testing in models estimated
by Generalized Method of Moments’, Journal of Business and Economic
Statistics, 17: 335–48.

Hall, P. (1994). ‘Methodology and Theory for the Bootstrap’, in R. F. Engle
and D. L. McFadden (eds.), Handbook of Econometrics, vol. 4, pp.2342–81.
Elsevier Science Publishers, Amsterdam, The Netherlands.

Hall, P. and Horowitz, J. L. (1996). ‘Bootstrap critical values for tests based
on Generalized Method of Moments’, Econometrica, 64: 891–917.

, , and Jing, B.-Y. (1995). ‘On blocking rules for the bootstrap
with dependent data’, Biometrika, 82: 561–74.



Bibliography 373

Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press,
Princeton, NJ, U.S.A.

Hannan, E. J., and Quinn, B. G. (1979). ‘The determination of order of an auto-
regression’, Journal of the Royal Statistical Society, Series B, 41(2): 190–5.

Hansen, B. E. (1990). ‘Lagrange multiplier tests for parameter instability in
non-linear models’, Discussion paper, Department of Economics, University
of Rochester, Rochester, NY, U.S.A.

(1992). ‘Consistent covariance matrix estimation for dependent
heterogeneous processes’, Econometrica, 60: 967–72.

(1997). ‘Approximate asymptotic p–values for structural change tests’,
Journal of Business and Economic Statistics, 15: 60–7.

Hansen, H., and Tarp, F. (2001). ‘Aid and growth regressions’, Journal of
Development Economics, 64: 547–70.

Hansen, L. P. (1978). ‘Econometric modelling strategies for exhaustible resource
markets with applications to nonferrous metals’, Ph.D. thesis, Department
of Economics, University of Minnesota, Minneapolis, MN, U.S.A.

(1982). ‘Large sample properties of Generalized Method of Moments
estimators’, Econometrica, 50: 1029–54.

(1985). ‘A method of calculating bounds on the asymptotic covari-
ance matrices of generalized method of moments estimators’, Journal of
Econometrics, 30: 203–38.

, Heaton, J., and Luttmer, E. G. J. (1995). ‘Econometric Evaluation of
Asset Pricing Models’, Review of Financial Studies, 8: 237–74.

, , and Ogaki, M. (1988). ‘Efficiency bounds implied by multi-
period conditional moment restrictions’, Journal of the American Statistical
Association, 83: 863–71.

Hansen, L. P., Heaton, J., and Yaron, A. (1996). ‘Finite sample properties
of some alternative GMM estimators obtained from financial market data’,
Journal of Business and Economic Statistics, 14: 262–80.

and Hodrick, R. J. (1980). ‘Forward exchange rates as optimal
predictors of future spot rates’, Journal of Political Economy, 887: 829–53.

and Jaganathan, R. (1997). ‘Assessing specification errors in stochastic
discount factor models’, Journal of Finance, 52: 557–90.

and Sargent, T. (1982). ‘Instrumental variables procedures for estimat-
ing linear rational expectations models’, Journal of Monetary Economics, 9:
263–96.



374 Bibliography

and Singleton, K. J. (1982). ‘Generalized instrumental variables estima-
tion of nonlinear rational expectations models’, Econometrica, 50: 1269–86.

and (1983). ‘Stochastic consumption, risk aversion and the
temporal behavior of asset returns’, Journal of Political Economy, 91: 249–65.

and (1984). ‘Errata’, Econometrica, 52: 267–8.

and (1991). ‘Computing semi-parametric efficiency bounds
for linear time series models’, in W. Barnett, J. Powell, and G. Tauchen
(eds.), Nonparametric and Seminonparametric Methods in Econometrics and
Statistics, pp. 387–412. Cambridge University Press, Cambridge, U.K.

and (1996). ‘Efficient estimation of linear asset pricing models
with moving average errors’, Journal of Business and Economic Statistics,
14: 53–68.

Hartmann, P. (1999). ‘Trading volumes and transaction costs in the foreign
exchange market: evidence from daily dollar yen spot data’, Journal of
Banking and Finance, 23: 801–24.

Harvey, C. (1991). ‘World price of covariance risk’, Journal of Finance, 46:
111–57.

Hausman, J. (1978). ‘Specification tests in econometrics’, Econometrica, 46:
1251–71.

Hayashi, F., and Sims, C. (1983). ‘Nearly efficient estimation of time series
models with predetermined, but not exogenous instruments’, Econometrica,
51: 783–98.

Heaton, J. (1995). ‘An empirical investigation of asset pricing with temporally
dependent preference specifications’, Econometrica, 63: 681–717.

and Ogaki, M. (1991). ‘Efficiency bound calculations for a time series
model with conditional heteroscedasticity’, Economics Letters, 35: 167–71.

He, J., Kan, R., Ng, L., and Zhang, C. (1996). ‘Tests of the relations
among marketwide factors, firm specfic variables and stock returns using a
conditional asset pricing model’, Journal of Finance, 51: 1891–908.

Hillier, G., Kinal, T. W., and Srivastava, V. K. (1984). ‘On the moments of
ordinary least squares and instrumental variables estimators in a general
structural equation’, Econometrica, 52: 185–202.

Himmelberg, C. P., & Petersen, B. C. (1994). ‘R & D internal finance: a
panel study of small firms in high-tech industries’, Review of Economics and
Statistics, 76: 38–51.



Bibliography 375

Holman, J. A. (1998). ‘GMM estimation of a money in the utility function
model: the implications of functional forms’, Journal of Money, Credit and
Banking, 30: 679–98.

Ho, M. S., Perraudin, R. M., and Sørensen, B. E. (1996). ‘A continuous time
arbitrage pricing model with stochastic volatility and jumps’, Journal of
Business and Economic Statistics, 14: 31–44.

Huang, R. D., and Stoll, H. R. (1997). ‘The components of the bid–ask spread:
a general approach’, Review of Financial Studies, 10: 995–1034.

Hubbard, R. G., and Kayshap, A. K. (1992). ‘Internal net worth and the
investment process: an application to U. S. agriculture’, Journal of Political
Economy, 100: 506–34.

Iannizzotto, M., and Taylor, M. (1999). ‘The target zone model, nonlinearity
and mean reversion: is the honeymoon really over?’, Economic Journal, 109:
C96–C110.

Ilmanen, A. (1992). ‘Time-varying expected returns in the international bond
markets’, Journal of Finance, 100: 481–506.

Imbens, G. (2002). ‘Generalized method of moments and empirical likelihood’,
Journal of Business and Economic Statistics, 20: 493–506.

, Spady, R. H., and Johnson, P. (1998). ‘Information theoretic approaches
to inference in moment condition models’, Econometrica, 66: 333–57.

Imrohoroglus, S. (1994). ‘GMM estimates of currency substitution between the
Canadian dollar and the United States Dollar’, Journal of Money, Credit
and Banking, 26: 792–807.

Ingersoll, J. E. (1987). Theory of Financial Decision Making. Rowman and
Littlefield, Savage, MD, U.S.A.

Inoue, A., and Shintani, M. (2003). ‘Bootstrapping GMM estimators for time
series’, Journal of Econometrics, forthcoming.

Intrilligator, M. D. (1971). Mathematical Optimization and Economic Theory.
Prentice Hall, Englewood Cliffs, NJ, U.S.A.

Jalan, J., and Ravallion, M. (1999). ‘Are the poor less well insured? Evidence
on vulnerability to income risk in rural China’, Journal of Development
Economics, 58: 61–81.

Jiang, G. L., and Knight, J. L. (2002). ‘Estimation of continuous time processes
via the empirical characteristic function’, Journal of Business and Economic
Statistics, 20: 198–212.

Johnson, N. L., and Kotz, S. (1970). Distributions in Statistics: Continuous
Univariate Distributions–2. Wiley, New York, NY, U.S.A.



376 Bibliography

Jorgenson, D. W., and Laffont, J.-J. (1974). ‘Efficient estimation of nonlinear
simultaneous equations with additive disturbances’, Annals of Economic and
Social Measurement, 3/4: 615–40.

Judge, G. G., Griffiths, W. E., Hill, R. C., Lutkepohl, H., and Lee, T. C.
(1985). The Theory and Practice of Econometrics. Wiley, New York, NY,
U.S.A., 2nd edn.

Kahn, S., and Lang, K. (1991). ‘The effect of hours constraints on labor supply
estimates’, Review of Economics and Statistics, 73: 605–11.

Kayshap, A., and Wilcox, D. (1993). ‘Production and inventory control at
the General Motors Corporation during the 1920s and 1930s’, American
Economic Review, 83: 383–401.

Keane, M., and Runkle, D. E. (1990). ‘Testing the rationality of price forecasts:
new evidence from panel data’, American Economic Review, 80: 714–35.

Keifer, N. M., and Vogelsang, T. J. (2002a). ‘Heteroscedasticity–autocorrelation
robust testing using bandwidth equal to sample size’, Econometric Theory,
18: 1350–66.

and (2002b). ‘Heteroscedasticity-autocorrelation robust stan-
dard errors using the Bartlett kernel without truncation’, Econometrica, 70:
2093–5.

Kirman, A. (1992). ‘Whom or what does the representative agent represent?’,
Journal of Economic Perspectives, 6: 117–36.

Kitamura, Y. (1997). ‘Empirical likelihood methods with weakly dependent
processes’, Annals of Statistics, 25: 2084–102.

and Phillips, P. C. B. (1997). ‘Fully modified IV, GIVE and GMM
estimation with possibley non–stationary regressors and instruments’,
Journal of Econometrics, 80: 85–123.

Kleibergen, F. (2000). ‘Testing parameters in GMM without assuming that
they are identified’, Discussion paper, Discussion paper # TI 2001-067/4,
Tindbergen Institute, Amsterdam, The Netherlands.

Knight, J. L. (1986). ‘The moments of OLS and 2SLS when the disturbances
are non-normal’, Journal of Econometrics, 27: 39–60.

Kocherlakota, N. R. (1990). ‘On tests of representative consumer asset pricing
models’, Journal of Monetary Economics, 26: 285–304.

(1996). ‘The equity premium: it’s still a puzzle’, Journal of Economic
Literature, 34: 42–71.

Koenker, R., and Machado, J. A. F. (1999). ‘GMM inference when the number
of moment conditions is large’, Journal of Econometrics, 93: 327–44.



Bibliography 377

Kopp, R. J., and Mullahy, J. (1990). ‘Moment based estimation and testing of
stochastic frontier models’, Journal of Econometrics, 46: 165–83.
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Bühlmann, P., 282
Backus, D., 3
Bai, J., 193
Baker, R., 303
Baltagi, B. H., 1n
Bansal, R., 3
Barankin, E., 11n
Basman, R. L., 210n
Bates, C. E., 245n
Bekaert, G., 3, 4
Bekker, P. A., 207, 297
Bera, A., 9n
Bernstein, J. I., 4
Berry, S., 4
Bessembinder, H., 3, 4
Biasis, B., 4
Bilias, Y., 9n
Bils, M., 4

Bjornson, B., 3
Blinder, A. S., 22, 52n, 97n
Blundell, R., 3, 4
Bodurtha, J. N., 3
Boldrin, M., 3
Bollerslev, T., 19, 24
Bond, S., 3, 4
Bonham, C., 4
Bonomo, M., 3
Bound, J., 303
Bourgeon, J. M., 3
Bowden, R. J., 208n
Bowman, K. O., 199
Box, G. E. P., 24
Braun, R. A., 3
Breusch, T., 205, 206
Brown, B. W., 352
Brown, R., 188n
Browning, M., 3
Buchinsky, M., 287, 287n, 288–90
Burguette, J. F., 13n
Burnside, C., 3, 218, 227, 227n
Buse, A., 213n, 214, 217

Campbell, J. Y., 3
Carlstein, E., 279n
Carrasco, M., 51, 342, 345n, 350
Carter, C. A., 3
Caselli, F., 3
Cecchetti, S. G., 3
Chamberlain, G., 18, 252, 252n, 352n
Chan, K., 3, 4
Chan, K. C., 4
Chavas, J. P., 3
Chen, Z., 4, 17, 19, 312–14, 314n,

315–18
Chesher, A., 199
Chirinko, R. S., 4
Chou, R. Y., 24
Christiano, L. J., 3, 218, 227, 227n
Chung, H.-J., 350
Clarida, R., 4
Clark, T. E., 218

389



390 Author Index

Cochrane, J. H., 3
Cohen, R., 4
Collard, F., 345
Considine, T. J., 3
Constantinides, G. M., 3
Cornwell, C., 4
Cox, D. R., 143
Cragg, J. G., 303
Critchley, F., 163n
Cumby, R. E., 3
Cushing, M. J., 4

Davidson, J., 26, 66, 150n, 189, 354,
355, 356n, 357

Davidson, R., 26, 163n, 286, 287
de la Croix, D., 4
Deaton, A., 3
den Haan, W. J., 77, 77n, 78, 79,

79n, 82n, 84, 85n, 86, 87,
126, 127, 128n, 218, 227,
227n, 250n

Dhrymes, P. J., 37n, 38n, 43n, 55n,
57n, 73n, 85n, 103n, 123n,
160n, 190n, 204n

Diba, B. T., 4
Domowitz, I., 79
Donald, S. G., 213n, 264, 266, 267,

267n, 303
Doorn, D., 327n
Duffie, D., 347
Dufour, J.-M., 193, 301, 301n
Dumas, B., 3
Dunn, K., 4
Durbin, J., 13
Durlauf, S. N., 4, 329, 334
Dutkowsky, D. H., 4
Dynan, K. E., 3

Eckstein, Z., 4
Efron, B., 271
Eichenbaum, M., 3, 4, 22, 23, 53,

55, 77, 100, 154, 155, 157,
158, 176n, 218, 227, 227n,
312, 325–7, 333

Engle, R. F., 19, 24, 248n, 348
English, W., 3

Epstein, L. G., 3
Esquivel, G., 3
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