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Preface

Generalized Method of Moments (GMM) has become one of the main statis-
tical tools for the analysis of economic and financial data. Accompanying this
empirical interest, there is a growing literature in econometrics on GMM-based
inference techniques. In fact, in many ways, GMM is becoming the common
language of econometric dialogue because the framework subsumes many other
statistical methods of interest, such as Least Squares, Maximum Likelihood and
Instrumental Variables.

This book provides a comprehensive treatment of GMM estimation and
inference in time series models. Building from the instrumental variables es-
timator in static linear models, the book presents the asymptotic statistical
theory of GMM in nonlinear dynamic models. This framework covers classical
results on estimation, such as consistency and asymptotic normality, and also
inference techniques, such as the overidentifying restrictions test and tests of
structural stability. The finite sample performance of these inference methods
is also reviewed. Additionally, there is detailed discussion of recent develop-
ments on covariance matrix estimation, the impact of model misspecification,
moment selection, the use of the bootstrap, and weak instrument asymptotics.
There is also a brief exploration of the connections between GMM and other
moment-based estimation methods such as Simulated Method of Moments, In-
direct Inference and Empirical Likelihood.

The computer scientist Jan van de Snepscheut once admonished that “in
theory, there is no difference between theory and practice. But, in practice,
there is.” Arguably a universal truth, this statement is certainly true about
econometrics. Therefore, throughout the text, we focus not only on the theo-
retical arguments but also on issues that arise in implementing the statistical
methods in practice. All the inference techniques are illustrated using empirical
examples in macroeconomics and finance.

The text assumes a knowledge of econometrics, statistics and matrix algebra
at the level of a course based on text such as William Greene’s Econometric
Analysis. All the main statistical results are discussed intuitively and proved
formally. The presentation is designed to be accessible to a first- or second-year
student in a graduate economics program at an American university.

This book developed out of lectures given at North Carolina State University.
Parts of the material was also used as a basis for short courses at: the Division
of Research and Statistics at the Board of Governors of the Federal Reserve

vii
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System in Washington D.C.; the Netherlands Graduate School of Economics;
the Mansholt Graduate School of Social Sciences at Wageningen University in
the Netherlands; the Department of Economics and Management at Wageningen
University. Earlier drafts of the book were used by Eric Ghysels in a graduate
econometrics course taught at Pennsylvania State University. I am very grateful
to the participants in these courses for many useful comments and suggestions
that have improved the book.

I made considerable progress in translating these lecture notes into the chap-
ters of this book during my tenure of a research fellowship at the Department
of Economics at the University of Birmingham. I am indebted to this depart-
ment for both this support and also the colleagial atmosphere that made my
visit both productive and pleasurable. I also worked on the book while a short-
term visitor at the Department of Economics and Management at Wageningen
University and gratefully acknowledge this support. The rest of the work was
undertaken at the Department of Economics at North Carolina State University,
and I happy to have this opportunity to record my gratitude to the department
and university for their support over the years of both my own work and also
econometrics more generally.

In the course of preparing the manuscript, a number of questions arose for
which I had to turn to others for help. I would like to record my sincere grat-
itude to the following for generously sharing their time in order to provide me
with the answers: John Aldrich, Anil Bera, Ron Gallant, Eric Ghysels, Atsushi
Inoue, Essie Maasoumi, Louis Maccini, Angelo Melino, Benedikt Potscher, Bob
Rossana, Steve Satchell, Wally Thurman, Ken West, Ken Vetzal, and Tim
Vogelsang. A number of people have read various drafts of this work and pro-
vided comments. This feedback was invaluable and I wish to thank particularly
Ron Gallant, Eric Ghysels, Sanggohn Han, Atsushi Inoue, Kalidas Jana, Alan
Ker, Kostas Kyriakoulis, Fernanda Peixe, Barbara Rossi, Amit Sen and Aris
Spanos.

This book took far longer to complete than I ever imagined at the outset of
the project. Over the years, I have accumulated a considerable debt of grati-
tude to: Lee Craig, who provided sagacious advice on various aspects of book
authorship and literary style; Andrew Schuller, the editor, who provided con-
tinual encouragement; and Jason Pearce who patiently answered my questions
about I¥TEX. I have pleasure in thanking all three for their help.

However, my greatest debt is to my family. My wife Ada provided unfailing
support throughout, and I dedicate this book to her and our son, Marten, as a
token of my heartfelt gratitude.

Raleigh, NC
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Introduction

1.1 Generalized Method of Moments in
Econometrics

Generalized Method of Moments (GMM) was first introduced into the econo-
metrics literature by Lars Hansen in 1982. Since then it has been widely applied
to analyze economic and financial data. This interest has both stimulated and
been facilitated by the development of numerous statistical inference techniques
based on GMM estimators. These applications have been in very diverse ar-
eas spanning macroeconomics, finance, agricultural economics, environmental
economics and labour economics. Depending on the context, GMM has been
applied to time series, cross sectional, and panel data. In this book we focus
on the use of GMM estimation with time series data and illustrate the various
inference procedures using examples from macroeconomics and finance.! These
areas are arguably the ones in which GMM has been most widely applied and,
consequently, has had the biggest impact. Table 1.1 gives a list of various areas
of economics to which GMM has been applied; inevitably this list is not exhaus-
tive. Many of the studies have been published in top economic journals, which
is one measure of the importance of the technique. Nearly all the studies have
been published since the early 1990s and this testifies to the increasing impact
of GMM on empirical analysis in economics.

It is natural to wonder why Hansen’s 1982 paper had such an impact. After
all, Maximum Likelihood estimation (MLE) has been around since the early part
of twentieth century and it is the best available estimator within the Classical
statistics paradigm. The optimality of MLE stems from its basis on the joint
probability distribution of the data, which in this context becomes known as
the likelihood function. However, in some circumstances, this dependence on
the probability distribution can become a weakness. In the models in Table 1.1,
two particular problems are present and these have motivated the use of GMM.

I For discussions of GMM with panel data, see Baltagi (2001) or Wooldridge (2002).
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These are as follows.

1. Sensitivity of statistical properties to the distributional assumption
The desirable statistical properties of MLE are only attained if the dis-
tribution is correctly specified. Unfortunately, economic theory rarely
provides the complete specification of the probability distribution of the
data. One solution is to choose a distribution arbitrarily. However, unless
this guess coincides with the truth, the resulting estimator is no longer
optimal and, worse still, its use may lead to biased inferences.

2. Computational burden

For many of the models in Table 1.1, Maximum Likelihood estimation
would be computationally very burdensome. Two types of problem tend
to occur. In some cases, the economic model coincides with the joint
probability distribution of the data but the implied likelihood function is
extremely difficult to evaluate numerically with available computer tech-
nology. In other cases, the economic model only involves some aspects of
the probability distribution and the completion of the specification intro-
duces many additional parameters which must also be estimated. Often
in these latter cases, the likelihood function must be maximized subject
to a set of nonlinear constraints implied by the economic model, which
further adds to the computational burden.

In contrast, the GMM framework provides a computationally convenient method
of performing inference in these models without the need to specify the likelihood
function.

The cornerstone of GMM estimation is a set of population moment condi-
tions which are deduced from the assumptions of the econometric model. The
exact nature of these conditions varies from application to application but, what-
ever they are, their validity is crucial for the properties of the resulting estima-
tor. The potential of moment conditions for estimation has been recognized
since the 1890s when a technique known as Method of Moments was first pro-
posed. In fact, many estimation techniques familiar in econometrics are based
either explicitly or implicitly on the information in population moment condi-
tions. However, prior to Hansen’s work, the statistical theory of these estimators
tended to be restricted to the moment conditions of a particular functional form.
One of the main contributions of Hansen’s paper was to emphasize the common
underlying structure of these previous analyses and to develop a statistical the-
ory which can be applied to any set of moment conditions. Inevitably, GMM
builds on these earlier analyses and so to help put GMM in perspective, it is
useful to understand its statistical antecedents. Therefore, we start by briefly
summarizing in Section 1.2 how the use of moment conditions has evolved in
statistics and econometrics. This provides a first illustration of how moment
conditions can be used as a basis for estimation. It also links GMM to a num-
ber of estimators familiar in econometrics. After this historical review, a set
of contemporary examples from Table 1.1 are provided in Section 1.3. At this
stage, the focus is on showing how the population moment conditions arise in
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Table 1.1
Applications of GMM

Agriculture

Business cycles

Commodity
markets
Consumption

Cost/Production
frontiers/functions
Development

Economic growth
Education/human
capital
Environmental
economics
FEquity pricing

FEzchange rates

Thijssen (1996), Chavas and Thomas (1999), Bourgeon
and Le Roux (2001)

Singleton (1988), Christiano and Eichenbaum (1992),
Burnside, Eichenbaum, and Rebelo (1993), Braun
(1994), Boldrin, Christiano, and Fisher (2001)

Deaton and Laroque (1992), Bjornson and Carter
(1997), Considine and Heo (2000), Haile (2001)

Miron (1986), English, Miron, and Wilcox (1989),
Campbell and Mankiw (1990), Runkle (1991), Blundell,
Pashardes, and Weber (1993), Blundell, Browning, and
Meghir (1994) Attanasio and Browning (1995), Attanasio
and Weber (1995), Ni (1995), Meghir and Weber (1996),
Dynan (2000), Fuhrer (2000), Weber (2000)

Kopp and Mullahy (1990), Blundell and Bond (2000),
Ahn, Good, and Sickles (2000)

Jalan and Ravallion (1999), Hansen and Tarp (2001),
Ogaki and Zhang (2001)

Caselli, Esquivel, and Lefort (1996)

Angrist and Krueger (1992), Palacios-Huerta (2003)

Smith and Pattanayak (2002)

Hansen and Singleton (1982), Singleton (1985), Finn,
Hoffman, and Schlagenhauf (1990), Ghysels and Hall
(1990a,b) Ferson (1990), Bodurtha and Mark (1991),
Epstein and Zin (1991), Ferson and Constantinides
(1991), Harvey (1991), MacKinlay and Richardson
(1991), Snow (1991), Bessembinder and Chan (1992),
Ferson and Harvey (1992), Ilmanen (1992), Marshall
(1992), Bansal, Hsich, and Viswanathan (1993), Bansal
and Viswanathan (1993), Cecchetti, Lam, and Mark
(1993), Ferson, Foerster, and Keim (1993), Fisher
(1994), Zhou (1994), Campbell (1996), Cochrane
(1996), Hansen and Singleton (1996), He, Kan, Ng,
and Zhang (1996), Ho, Perraudin, and Sgrensen
(1996), Hagiwara and Herce (1997), Hansen and
Jaganathan (1997), Ghysels (1998), Garcia and Bonomo
(2001), Timmerman (2001), Jiang and Knight (2002),
Vissing-Jgrgenson and Attanasio (2003)

Hansen and Hodrick (1980), Mark (1985), Melino
and Turnbull (1990), Modjtahedi (1991), Bekaert and
Hodrick (1992), Cumby and Huizinga (1992), Backus,
Gregory, and Telmer (1993), Imrohoroglus (1994),
Dumas and Solnik (1995), Hartmann (1999), Bekaert
and Hodrick (2001), Groen and Kleibergen (2003)

continued over
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Table 1.1 (continued)
Applications of GMM

Health care

Import demand
Interest rates

Inventories

Investment

Labour demand

Labour market
Labour supply

Macroeconomic
forecasts

Microstructures
in finance

Money

Mutual fund
performance

Product demand

Productivity

R & D spending
Resources
Technological
innovation
Trading volume of
financial assets
Transportation

Windmeijer and Silva (1997), Schellhorn (2001), Silva and
Windmeijer (2001)

de la Croix and Urbain (1998)

Dunn and Singleton (1986), Diba and Oh (1991), Lee
(1991), Chan, Karolyi, Longstaff, and Sanders (1992),
Longstaff and Schwartz (1991), Cushing and Ackert
(1994), Vetzal (1997), Green and Odegaard (1997)
Miron and Zeldes (1988), Eichenbaum (1989), Kayshap
and Wilcox (1993), Durlauf and Maccini (1995), Fuhrer,
Moore, and Schuh (1995a), Bils and Kahn (2000)
Gordon (1992), Hubbard and Kayshap (1992), Whited
(1992), Bond and Meghir (1994), Gilchrist and
Himmelberg (1995), Oliner, Rudebusch, and Sichel
(1996), Chirinko and Schaller (1996), Ogawa and Suzuki
(1998), Chirinko and Schaller (2001)

Pindyck and Rotemberg (1983), Arellano and Bond
(1991), Pfann and Palm (1993)

Yashiv (2000), Yuan and Li (2000)

Mankiw, Rotemberg, and Summers (1985), Eichenbaum,
Hansen, and Singleton (1988), Kahn and Lang (1991),
Angrist (2001)

Keane and Runkle (1990), Bonham and Cohen (1995,
2001)

Madhavan and Smidt (1993), Huang and Stoll (1997),
Madhavan, Richardson, and Roomans (1997), Biasis,
Hillion, and Spatt (1999), Grammig and Wellner (2002)
Eckstein and Leiderman (1992), Dutkowsky (1993),
Holman (1998), Clarida, Gali, and Gertler (2000)

Chen and Knez (1996), Bekaert and Urias (1996)

Berry, Levinsohn, and Pakes (1995)

Bernstein (1994), Atkinson, Cornwell, and Honerkamp
(2003)

Himmelberg and Petersen (1994)

Young (1991, 1992), Green and Mork (1991), Popp (2001)
Blundell, Griffith, and Vanreenen (1995)

Foster and Viswanathan (1993), Bessembinder, Chan, and
Seguin (1996)
Nevo (2003)

in these models.

Later in the book, we return to these models to illustrate

the various estimation and inference procedures discussed. The development of
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these procedures requires certain statistical concepts and results. Section 1.4
provides a review of some background statistical theory which is needed for the
introduction of the basic GMM framework in Chapters 2 and 3. More advanced
statistical theory is developed as necessary in subsequent chapters. Section 1.5
concludes the chapter with an overview of the remainder of the book.

1.2 Population Moment Conditions and the
Statistical Antecedents of GMM

The term population moment was originally used in statistics to denote the
expectation of the polynomial powers of a random variable. So if v; is a discrete
random variable with probability mass function P(v; = v) defined on a sample
space V then its r*" population moment is given by

Ev]] = Z v"P(uy =v) = vy
{vev}

where the summation is over all values in V and r is a positive integer. If v; is a
continuous random variable with probability density function p(v) then its r**
moment is given by .
Elv;] = / v"p(v)dv = v,
— 00

From these definitions it is easily recognized that the population mean is just
the first population moment and the population variance is vo — v. The term
(population) moment has been in the statistical lexicon since at least the work
of A. Quetelet who lived from 1796 to 1874 and was inspired by the concept of
moments in physics, see Stuart and Ord (1987, p.53).2

Karl Pearson® (1893, 1894, 1895) was the first person to recognize the po-
tential of population moments as a basis for estimation. In this series of articles,
he introduced Method of Moments estimation. To understand his original mo-
tivation, it is necessary to consider briefly the state of statistical analysis in the
late nineteenth century. During that century, a lot of natural phenomena were
thought to be well summarized by a normal distribution. This belief can be at-
tributed to at least two reasons. First, the actual evidence was limited, because
only a few data sets had been collected. Secondly, the available diagnostic tests
were very rudimentary and could only detect very dramatic departures from
normality; see Stigler (1986, p.330) . However, as interest in statistics — and

2 Adolphe Quetelet was a Belgian with far ranging interests. He wrote the libretto of an
opera, a historical survey of romance and poetry as well as his scientific work in astronomy,
sociology and statistics. Pearson (1895) described him as a man “who often foreshadowed sta-
tistical advances without providing the method by which they might be dealt with” (Pearson,
1895, p.381). For an interesting discussion of Quetelet’s contributions see Stigler (1986).

3 Karl Pearson (1857-1936) was an Englishman trained as a mathematician whose inter-
ests also included physics, German history, folklore and philosophy. Apart from Method of
Moments, his numerous contributions to statistics included chi-squared goodness of fit tests,
correlation and the Pearson family of distributions.
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science — grew, more datasets were collected. With this growing body of empir-
ical evidence, researchers became aware that many natural phenomena showed
departures from normality and in particular exhibited skewness. This raised the
challenge of finding theoretical probability distributions which could adequately
capture this behaviour. Karl Pearson was in the forefront of this research and
developed what has become known as the Pearson family of distributions, e.g.
see Stuart and Ord (1987, pp.210-20). This family is characterized by a proba-
bility density function which is indexed by a vector of four parameters. Different
values of the parameters can yield a wide variety of distributions, including the
normal, beta and gamma.

The practical problem was to find the most appropriate member of this
family for the data set in hand — or in other words, to estimate the parameter
vector. The existing techniques for fitting normal distributions were not suited
to these more general types of distribution. Instead, Pearson suggested calcu-
lating estimates based on moments. The idea is simple. Population moments
implied by the family of distributions are functions of the unknown parameter
vector. Pearson proposed estimating the parameter vector by the value implied
by the corresponding sample moments. His approach is best understood by
considering a simple example. For the purposes of our discussion we can ab-
stract from the generality of the Pearson family and just focus attention on a
particular member, the normal distribution. This distribution depends on just
two parameters:* the population mean, jio, and the population variance, o3.
These two parameters satisfy the population moment conditions

FElv] —
ol (1)

Elvi] = (0§ +po) =
Pearson’s method involves estimating (g, 03) by the values (fir,62) which
satisfy the analogous sample moment conditions and we have indexed the esti-
mators by the sample size T. Therefore (fir,6%) are the solutions to

T
T7'Y v—jr = 0
t=1
T
Ty i —(67+47) = 0
t=1

and so, with some rearrangement, it follows that

4 The normal distribution is obtained from the generic form of the Pearson family by
setting two of the four parameters to zero.
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T (1.2)
op = T7') (v —pr)

Pearson called this approach the “Method of Moments” for obvious reasons.
Pearson (1895) demonstrated the power of this technique with an analysis of
the distributions of such diverse phenomena as barometric pressures, the sizes
of the carapace of crabs, the heights of recruits to the U.S. army, the valuation
of house prices and the number of divorces granted.

This approach is very intuitive but not without its weaknesses. For exam-
ple, all the higher moments of the normal distribution depend on (p,03); e.g.
see Stuart and Ord (1987, p.78). Therefore, this technique could have been
applied equally well to the third and fourth moments, say, of the distribution.
The problem is that the resulting estimators of (10, 03) would be different from
those given in (1.2). Which estimators should be used? This question is hard
to address within the Method of Moments framework. In fact, it was this ques-
tion which led R. A. Fisher® to analyze how information from a probability
distribution can be channeled most effectively into parameter estimation. The
result was the Maximum Likelihood principle; see Fisher (1912, 1922, 1925).
In fact, MLE can also be interpreted as a special case of GMM based on a
population moment condition whose derivation requires the specification of the
probability distribution of the data. However, it is pedagogically most conve-
nient to postpone further discussion of this interpretation until the complete
GMM framework has been introduced in Chapter 3.5 For our purposes here, it
is more relevant to consider another weakness inherent in the Method of Mo-
ments framework. Suppose that it is desired to base estimation of (g, 03) on
the first three moments of v, that is (1.1) plus

Elv?] — 3E[0?li0 + 3Bl — i = 0 (13)

In this case, the sample analogs to (1.1)—(1.3) form a system of three equations
in two unknowns, and such a system typically has no solution. Therefore, the
Method of Moments is infeasible. It is easily recognized that this problem is
not specific to this example. Clearly, some modification is needed in order to

5 Ronald Fisher (1890-1962) was an English scientist who made fundamental contributions
to statistics, probability, genetics and the design of experiments. He is regarded by many as
the founder of mathematical statistics. Apart from Maximum Likelihood, he developed the
general framework of estimation theory including the concepts of consistency, information,
sufficiency, efficiency, ancillarity and pivotal statistics. His other famous contributions include
the analysis of variance method and the F-distribution.

6 For completeness, we note that if it is assumed in our simple example that {v:,t =
1,2...,T} are also independently distributed then (fir,5%) are the MLE’s ; e.g. see Stuart
and Ord (1987, p.287). However, this coincidence is the exception rather than the rule. In
general, ML estimation does not involve matching these type of simple population moment
conditions; see Section 3.6 for further discussion.
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produce estimates of p parameters based on more than p population moment
conditions. This brings us to the second important statistical antecedent of
GMM, namely the method of Minimum Chi-Square.

In a series of articles in the late 1920s and the 1930s, Neyman and Pearson
laid the foundations for the framework of “classical” hypothesis testing.” One
side product of this research was the Minimum Chi-Square method of estima-
tion. The method was originally proposed to facilitate inference about whether
or not an observed sample was generated from a particular distribution, but the
basic idea can be applied to estimation in a wide variety of problems includ-
ing the estimation of (ug,o?) based on (1.1)—(1.3). However, it is instructive
to introduce the method in the context of the specific example considered by
Neyman and Pearson.

Neyman and Pearson (1928) considered the particular case in which a re-
searcher wishes to model the probability that the outcome of an experiment lies
in one of £ mutually exclusive and exhaustive groups. If p; is used to denote the
probability the outcome lies in the i*" group then the null hypothesis of interest
is that

pi = h(i,0) (1.4)
where h(.) is some specified functional form indexed by an unknown parameter
vector fy. The question was how to test this hypothesis. In 1928, the challenging
feature of this problem was that the null hypothesis only specified the form of
the probability function up to some unknown parameter vector. At that stage,
the problem had only been solved if the null specified a particular value of 6
as well. In the latter case, Karl Pearson (1900) had shown that inference could
be based on the goodness of fit statistic,

k ;. 2
GFT(H()) _ Z [Tz —T;Li(lﬁo)] (15)

i=1

where T is the frequency of outcomes in the i*" group in a sample of size T.
Pearson (1900) showed that this statistic was approximately distributed X%_l
under the null hypothesis.® Neyman and Pearson (1928) recognized that if 0 is
unknown then the goodness of fit statistic can provide the basis for estimation
of 0y as well as inference about the null hypothesis. Their idea was to estimate
0y by éT, the value of # which minimizes the goodness of fit statistic.? In view
of Pearson’s (1900) aforementioned distributional result, Neyman and Pearson

7 Jerzy Neyman (1894-1981) was born in Russia but came from a Polish family. Egon
S. Pearson (1895-1980) was the son of Karl Pearson. Their collaboration began in the mid-
1920s when Neyman held a post doctoral fellowship to study under Karl Pearson at University
College of London where Egon Pearson was also on the faculty. Apart from their seminal work
together, both made numerous other contributions to statistics including Neyman’s work on
the theory of survey sampling, estimation by confidence sets and best asymptotically normal
estimators, and Pearson’s work on quality control and operations research.

8 Notice that the degree of freedom of the distribution is only k — 1 and not k because
once the frequencies in k — 1 groups are known then the frequency in the k" group is auto-
matically determined by T}, =T — Zf;ll T;.

9 This insight was not completely new even in 1928. Smith (1916) discussed the idea of
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(1928) refered to O as a “Minimum Chi-Square estimator”. Furthermore, they
showed that under the null hypothesis in (1.4), GFy(f7) is approximately dis-
tributed x? with k — 1 — p degrees of freedom where p denotes the dimension of
Oo.

At first glance, it may not be readily apparent that there is any connection
between the estimation problem considered by Neyman and Pearson (1928) and
the problem of how to estimate (po,03) based on the first three moments of the
normal distribution. However, both problems actually have the same underlying
structure. To uncover this connection, it is necessary to view Neyman and
Pearson’s (1928) method from a slightly different perspective. To develop this
new interpretation, it is necessary to rewrite the goodness of fit statistic and
introduce a set of indicator variables. First, note the goodness of fit statistic
can be written as

GFr(0) TZ [P — h(s 90)] (1.6)

where p; = T;/T, the relative frequency in the sample of outcomes in the ‘"
group. Now consider the set of indicator variables {D;(i);i = 1,2,...k; t =
1,2,...T} which take the value one if the t*" outcome of the experiment lies in
the i'" group and takes the value zero otherwise. Notice that if (1.4) is true then
it follows that P(D:(i) = 1) = h(i;6p), and hence that E[D;(i)] = h(i;6p). So,
using these indicator variables, it can be seen that (1.4) implies the following
vector of k£ population moment conditions

Dt(l) - h(l;eo)
Dy (2) — h(2;60)
E . =0 (1.7)

Dy(k) — h(k; )

Since Zle{Dt(i) — h(i;6p)} = 0 by definition, only & — 1 of the population
moment conditions actually provide unique information about 6y. However, we
retain all k to elicit the connection with the goodness of fit statistic. If k—1 > p
— which we have assumed implicitly all along — then these population moment
equations can be used to estimate 6. The sample analogs to (1.7) are given by

D1 — h(1§9)
]32 — h(2,9)

—0 (1.8)
P — h(k:0)

choosing estimators to minimize the goodness of fit statistic. However, her focus was on trying
to uncover a sense in which Method of Moments estimators could be considered optimal. In
fact, she found that Method of Moments estimators gave a good approximation to the values
which minimized the goodness of fit statistic in the examples considered in her paper. This
finding may explain why this alternative method of estimation was not explored more fully
until twelve years later. See Bera and Bilias (2002) for further discussion of the origins of
Minimum Chi-Square.
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The elements on the left hand side of (1.8) can be recognized as the same
terms which appear inside the square in the numerator of the version of the
goodness of fit statistic in (1.6). We are now in a position to establish the
connection between Minimum Chi-Square estimation of 6y and estimation based
on the population moment conditions in (1.7). First consider the case in which
there are as many unique moment conditions as unknown parameters, that is
k — 1 = p. By definition, the Method of Moments estimator, Or say, satisfies
pi — h(1, éT) =0 fori=1,2...p.1% This property implies that GFT(éT) =0,
and since GFp(#) > 0, it must follow that 67 also minimizes GFp(f). So
if k —1 = p then the Minimum Chi-Square estimator is just the Method of
Moments estimator based on (1.7). Now consider the case in which there are
more unique moment conditions than parameters, that is k—1 > p. In this case,
the principle of Method of Moments estimation does not work, but Minimum
Chi-Square is still valid. The key difference is that Method of Moments is defined
as the solution to a set of moment conditions and this solution only exists if
k —1 = p, whereas Minimum Chi-Square is defined in terms of a minimization,
which can be performed for any £k — 1 > p. This suggests that to estimate
(1o, o) from the first three moments of the normal distribution, it is necessary
to formulate the estimation in terms of a minimization. To implement such
a strategy, it is necessary to specify an appropriate minimand. Once again,
Minimum Chi-Square provides the answer. It is easily verified that

pr—h10) VT 0 . . 0 1 — h(1;6)
po — h(2;0) 0 p3- . . 0 po — h(2;0)
GFr(0) =T . . S .
D — h(k;0) 0 0 . . Pt pr — h(k;0)
(1.9

and so GFr(#) can be interpreted as a quadratic form in the sample moment
condition (1.8). Notice that the matrix in the centre of (1.9) is positive defi-
nite!! by construction and so ensures that GFr(6) > 0. This structure leads to
the following intuitively appealing interpretation of the Minimum Chi-Square
estimator: it is the value of # which is closest to solving the sample moment
conditions in the metric of GFr(0).

It takes only a little reflection to realize that the same approach can be
applied to the estimation of any problem in which there are more moments
than parameters to be estimated. To illustrate how, let us return to estimation
of (uo, o) based on (1.1)-(1.3). For this problem, the minimand takes the form

my(1) — p /
MCr(p,0?) = my(2) — (0% + p?) My x
My (3) — 3my(2)p + 3my, (1) p? — 3

10 Note that we can obtain fp by solving any k — 1 of the sample moment conditions
in (1.8), and that the estimator must satisfy the remaining sample moment condition be-
cause Zle{ﬁi — h(i;07)} = 0 by construction.

11 The goodness of fit statistic is undefined unless p; > 0 for all i.
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my(1) = p
my(2) = (0 + p?) (1.10)
my(3) = 3my(2)p + 3my (Dp? — p°

where My is a positive definite matrix which may depend on T', and m, (i) =
-1 Zthl vi. Notice that this minimand embodies two modifications of (1.9)
beyond the choice of sample moments. First, the scaling factor, T, has been
omitted, because it has no impact on the minimization. Secondly, we have not
specified an exact form for the matrix in the quadratic form; it can be any
positive definite matrix. The Minimum Chi-Square estimators of (g, 03) are
the values of (11, 02) which minimize MCr (i, 02).

This connection between Minimum Chi-Square and moment based estima-
tion seems to have been made first during the late 1940s and the 1950s. It was
certainly at this time that researchers began to realize the potential generality
of the method, although their perspective was limited inevitably by the com-
putational constraints of that time. Ferguson (1958) developed the statistical
theory for the estimator in the case where the population moment condition
takes the form E[g(v)] — h(#) = 0 and v; is an ii.d. process.'? However,
for some reason, his contribution appears not to have impacted on economet-
rics — perhaps because the functional form of the moment condition was not
particularly appropriate for econometric applications of that time. However,
with hindsight, it can be recognized that the statistical framework developed by
Ferguson (1958) contains many of the elements which reappeared in the GMM
literature twenty-five years later albeit in a far more general context.

The third important antecedent of GMM is the method of Instrumental Vari-
ables (IV) estimation. Unlike Method of Moments and Minimum Chi-Square,
IV was specifically developed to exploit the information in moment conditions
for the estimation of structural economic models. This method appears to have
been first applied in an analysis of demand and supply of agricultural commodi-
ties in the 1920s. In both an U.S. Department of Agriculture Bulletin (Wright,
1925), and also in the appendix to his father’s book, The Tariff on Animal and
Vegetable Oils (Wright 1928), Sewall Wright showed how Method of Moments
could be used to estimate the parameters of supply and demand equations.'?
He presented these estimators using a technique known as “Path Analysis”, but
it is most convenient to adopt an alternative approach which has become the
standard derivation in econometric textbooks. To illustrate we consider the sys-
tem of equations

12 Ferguson (1958) also considers a number of variations on this estimation problem, some
of which had been analyzed earlier by Barankin and Gurland (1951). Also see Neyman (1949).

13 Sewall Wright (1889-1988) was an American who is best known for his work on popu-
lation genetics. Following his position at the USDA, he became Professor of Zoology at the
University of Chicago and is considered to be of the three founders of modern theoretical
population genetics.
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@’ = aopi+ul
@ = Bo, 1 + Bo,2pt +up (1.11)
@ = @ =a

where ¢P, ¢ represent demand and supply in year t, p; is the price of the
commodity in that year and n; is a vector containing factors that affect supply.
The market is assumed to clear and the total quantity produced is denoted ¢;.
For our purposes here, it suffices to consider the problem of how to estimate
g given a sample of T observations on ¢; and p;. An Ordinary Least Squares
(OLS) regression of ¢; on p; runs into problems here because price and out-
put are simultaneously determined and this causes OLS estimates to be biased,
e.g. see Judge, Griffiths, Hill, Lutkepohl, and Lee (1985, p.570). Sewall Wright
solved these problems as follows. Suppose there is an observable variable z”
which is related to price but whose covariance with u”, Cov[zP,uP], is zero.
An example would be any of the factors that affect supply, such as an input
price or yield per acre. Then by taking the covariance of z” with both sides of
the demand equation in (1.11) it follows that

CovlzP, qi] — apCov[zP ,pi] = 0 (1.12)

It is convenient to simplify this moment condition using other properties of the
model. Typically, it is assumed that E[uP] = 0 and so E[q;] = aFE[ps]. Using
this identity in (1.12), the moment condition can be rewritten as'

Elz’q] — aoBlzpi] = 0 (1.13)

Equation (1.13) provides a population moment condition involving the observ-
able variables and the unknown parameter, ag, which can be used as a basis
for estimation. Pearson’s Method of Moments principle leads to the estimation
of the parameters by the values which solve the analogous sample moments,
namely

T T
ar = ZZtDQt/ZztDpt (1.14)
t=1 t=1
This equation can be recognized as what is known today as an Instrumental
Variables estimator with z” being refered to as the “instrument”. However this
term was not coined until the 1940s when IV was rediscovered and came to stay
in econometrics. In fact, Wright’s work was largely ignored by economists until
Goldberger (1970) returned it to its rightful place in the history of econometrics.

A similar Method of Moments reasoning was used in the 1940s. However,
this time, IV was proposed as a solution for the problems caused by errors in
variables. To illustrate, consider the case in which

Yi = Yoy + uny (1.15)

14 Recall that for any two random variables a and b, Cov[a, b] = E[ab] — E[a] E[b].
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but z?¥ is only observed with error
t y )
_ .0
Ty = X; + Ut

Since the regressor is unobserved, equation (1.15) cannot be estimated directly.
Instead inference is based on

Yt = Yot + Uy (1.16)

Ordinary Least Squares estimation of (1.16) is biased because z; and u; =
U1, — Youg, are correlated; e.g. see Judge, Griffiths, Hill, Lutkepohl, and Lee
(1985, p.705-8). Reiersgl (1941) and Geary (1942, 1943) independently proposed
solving this problem by introducing a variable z; which is correlated with x; but
uncorrelated with u;.1®> Using the same intuition as Wright, Reierosol and Geary
deduced the moment condition

Covlzt, ys] — v0Cov[z, 2¢] = 0

The Method of Moments estimation principle leads to the analogous formula to
(1.14) for the IV estimator of .

Reiersgl (1945) introduced the term “instrumental variables” and Geary
(1949) derived certain statistical properties of the estimator in the context of the
errors in variables model. Durbin (1954) extended the method to simultaneous
equation models, and Sargan(1958, 1959) provided the first complete theoreti-
cal analyses of the estimator.'® Building from this basis, the IV framework has
become so developed that, prior to the introduction of GMM, it was typically
treated in econometrics as an estimation technique in its own right rather than
being perceived as an example of the Method of Moments.!” Within this lit-
erature on IV, Amemiya (1974) and Jorgenson and Laffont (1974) played an
important role in extending the method to nonlinear models, and the statistical
theory employed in these papers is an important precursor to the arguments
used to analyze the properties of GMM.

The above discussion has illustrated some of the problems to which mo-
ment based estimation has been applied. Over the years, considerable attention
has been focused on analyzing the properties of these estimators and various
associated inference techniques. However, this theory has tended to place re-
strictions on the functional form of the population moment condition. One of

15 See Morgan (1990, p.220-8) and Aldrich (1993) for more detailed discussions of the
emergence of IV in the 1940s. Olav Reiersgl (1908— ) is a Norwegian statistician who made
a number of important contributions to econometrics, most notably through his work on IV
and identification. He also contributed to other areas of statistics as well as genetics. Robert
(Roy) Geary (1896-1983) was an Irishman who worked as a government statistician in Dublin
for most of his career. Apart form his work in mathematical statistics, he is also known for
being one of the pioneers in the field of national income accounting.

16 See Arellano (2002) for an appraisal of the connection between Sargan’s work and GMM.

17 There are some exceptions. For instance, Burguette, Gallant, and Souza (1982) use the
term “Method of Moments” to denote a class of estimators of the parameters of nonlinear
static simultaneous equation model which includes IV estimators.
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the main contributions of GMM is to provide a framework for the statistical
analysis based on essentially any population moment condition. Accordingly, it
is necessary to adopt a broad definition of a population moment condition.

Definition 1.1 Population Moment Condition

Let 6y be a vector of unknown parameters which are to be estimated, vy be a
vector of random wvariables and f(.) a vector of functions then a population
moment condition takes the form

E[f(v,00)] =0 (1.17)
for all t.

This definition encompasses the examples discussed above. For instance, the
moment condition in (1.1) can be obtained from (1.17) by putting

.
$end)= | o e )

where 6y = (uo,03)". Wright’s example in (1.13) is obtained by putting
f(v,0) = ZtDQt - OéOZtDpt

where vy = (2P, q;,p¢)’ and 0y = .

Just as in Minimum Chi-Square, GMM involves choosing parameter estima-
tors to minimize a quadratic form in a weighting matrix, Wy, and the sample
moment 71 Z;l f (v, 0).

Definition 1.2 Generalized Method of Moments Estimator
The Generalized Method of Moments estimator based on (1.17) is the value of
0 which minimizes:

T

T
Qr(0) = T f(ve, 0O)WrT ™Y f(vr,0) (1.18)

t=1 t=1

where W is a positive semi-definite matriz which may depend on the data but
converges in probability to a positive definite matriz of constants.

The restrictions on the weighting matrix are required to ensure that Q7 (6)
is a meaningful measure of distance. Notice that the positive semi-definiteness
of Wr ensures both that Q7(6) > 0 for any 6, and also that QT(éT) =0
if 71 23:1 f (v, éT) = 0. However, positive semi-definiteness leaves open the
possibility that QT(éT) is zero at a value of O which does not satisfy the sample
moment conditions. Since all our analysis is based on asymptotic theory, it is
only necessary to rule out this eventuality in the limit as T — oo.

A comparison of (1.10) and (1.18) indicates that Minimum Chi-Square and
GMM are essentially the same method. With hindsight, it might be argued
that a new terminology was not really needed. However, Hansen (1982) refered
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to the estimator in Definition 1.2 as “Generalized Method of Moments”, and
that is the name by which the method is known in econometrics.'® We shall,
therefore, follow this practice.

The next section presents five examples of moment conditions from models
in Table 1.1. These models have been carefully selected because they provide
convenient illustrations of many of the issues discussed in this book. Here,
the focus is on showing how the population moment conditions arise and the
potential problems encountered with maximum likelihood estimation in these
models.

1.3 Five Examples of Moment Conditions in
Economic Models

1.3.1 Consumption-Based Asset Pricing Model

The consumption-based asset pricing model is used by financial economists to
explain how assets are priced and by macroeconomists to explain the evolution
of consumption spending. To see how this can be done, it is necessary first
to present the model formally and derive the population moment conditions
which are the basis for GMM estimation. The ultimate aim of the model is
to explain aggregate movements. This is done using a framework in which
aggregate outcomes are assumed to be the result of the decisions made by a single
“representative” agent. This representative agent approach is certainly open to
criticism, e.g. see Kirman (1992), but nevertheless has received considerable
attention in the literature. The general theoretical structure was first developed
by Lucas (1978). However, Hansen and Singleton (1982) were first to highlight
and exploit the potential of GMM in these types of models.

Consider the case where a representative agent makes decisions about con-
sumption expenditures and investment to maximize his/her expected discounted
utility

E[Z U (coi)[S]

where ¢; is consumption in period t, U(.) is a strictly concave utility function,
0o is a constant discount factor and €); is the information set available to the
agent at time t. In any period the agent can choose to spend his/her income
on either goods for consumption or investments in a collection of N assets with
maturities m;,j =1,2,...N. Let g;; be the quantity of asset j held at the end

18 Tn fact, this terminology originates from a set of unpublished lecture notes produced
by Christopher Sims for his graduate econometrics course at the University of Minnesota.
Interestingly, Sims used the term to denote an estimator which is obtained by solving a linear
combination of moment conditions rather than via the minimization in Definition 1.2. Hansen
developed certain statistical results for Sim’s estimator as part of his Ph.D. thesis submitted
to the University of Minnesota in 1978. Hansen and Sims provide interesting background on
the genesis of the method in interviews published in the October 2002 issue of the Journal of
Business and Economic Statistics.
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of period t, p;+ be the price of asset j at time t, 7;+ be the period t payoff from
a unit of the j*" asset purchased in period ¢ — m;, and wy be real labour income
in period t. All prices are denominated in terms of the consumption good.®
The budget constraint is

N

N
¢t + E Djtq5,t = E Tjtq5,t—m; + Wt
j=1 =1

for all £. The optimal path of consumption and investment satisfies
iU (ct) = 80" Blrj em,; U’ (Coem, ) 1] (1.19)

for all t and j = 1,2,..., N, where U’(c) denotes the marginal utility of con-
sumption. This condition states that the utility lost by foregoing consumption
in period t to purchase a unit of asset j, p; :U’(c;), must equal the value in period
t of the expected utility gained from consuming the return on the investment in
period t +m;, 63" E[rj11m, U’ (Cim,)|Q]. Equation (1.19) can be rewritten as

B85 (rjsm, /P5){U (Crym,) /U () U] =1 =10 (1.20)

for j=1,2,...N. Equation (1.20) is refered to as the Euler equation of the system,
after the mathematician Leonhard Euler (1707-83) who derived an analogous
equation to characterize the solution path in the calculus of variations problem.
The Euler equation places a restriction on the co-movements of consumption and
asset prices and so can be used by macroeconomists and financial economists to
learn about these variables.

So far, the analysis has been in terms of a general utility function, but to
make (1.20) operational it is necessary to specify a particular functional form.
At this stage it is most convenient to follow Hansen and Singleton (1982) and

define
Yo __ 1

The parameter vy must be less than one for the utility function to be concave.
This functional form is known as the constant relative risk aversion (CRRA)
utility function because the relative risk aversion of the representative agent is
(1 — 59) at any level of consumption. Differentiating (1.21) and making the
appropriate substitutions into (1.20), the Euler equation becomes

E[60" (rjtm, /Ps) (Com, /€2) 0 2] =1 =0 (1.22)

Clearly with this specification there are two parameters to be estimated, namely
(70, 00). Taking unconditional expectations of the Euler equation provides one
population moment condition involving these parameters, but, in fact, (1.22)
implies many more moment conditions. If we set

W t(70,00) = O (1 t4my /Pj) (Coamy [er) O™ =1

19 In other words, pjt is the price of the asset in dollars divided by the price of the con-
sumption good in dollars.
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then an iterated conditional expectations argument can be used in conjunction
with the Euler condition in (1.22) to show that

Elujt(70,00) 2] = E[E[ujt(0,00) [] 2] = 0 (1.23)

for any vector z; € ;. In this context, z; might include a constant, which
amounts to taking the unconditional expectation of the Euler equation, and vari-
ables such as r; ; / Djt—my» Ct / Ct—m,; or indeed any other macroeconomic variables
contained in the representative agent’s information set. The moment conditions
in (1.23) provide the basis for GMM estimation of the parameters (7o, dg).

In contrast, Maximum Likelihood estimation would involve specifying the
conditional distribution for {(7 t1m,/Pjt,Ct4m;/ct);j = 1,2,... N} and maxi-
mizing the likelihood subject to the constraint in (1.22) for each t. The latter
would involve numerical integration in most cases and is consequently computa-
tionally very burdensome.?’ Furthermore, due to the inherent nonlinearlity of
the model, Hansen and Singleton (1982) show that MLE is unlikely to yield un-
biased inferences unless the distribution its correctly specified.?! The potential
for this bias can be reduced by using a flexible functional form which is capable
of approximating a wide class of probability density functions; e.g. see Gallant
and Tauchen (1989). However this further adds to the computational burden.

1.3.2 Evaluation of Mutual Fund Performance

Mutual funds consist of a portfolio of financial assets administered by a fund
manager.?? The role of the manager is to vary the composition of this portfolio
in response to any relevant economic or financial information to meet some spec-
ified criterion. An investor can purchase shares in the fund and thereby acquire
an asset whose rate of return is that of the portfolio. The incentive for invest-
ing in the fund stems from the ability of the manager to acquire and efficiently
process market information. However, in practice managers may misread their
information or simply be the victims of unpredictable events. In this case the
average investor may have received a better return by constructing his/her own
portfolio based on a more restricted information set. Naturally there is consider-
able interest in identifying which funds have yielded superior returns compared
to some suitably chosen benchmark. This topic received some attention in the
1970s, but interest has increased recently in response to the massive growth in
assets managed by such funds in the U.S. In this section we describe a measure
of fund performance proposed by Chen and Knez (1996). These authors actu-
ally propose a number of related measures but at this time it is sufficient to
focus on the simplest because it illustrates how the moment condition arises.

20 One exception is the model studied by Hansen and Singleton (1983). They estimate
the CRRA model described above by Maximum Likelihood under the assumption that
({rj,t+m, /Pj,t}; ct+m, /ct) have a lognormal distribution.

1 See Section 3.8.

22 In practice funds may be administered by a team of managers, but for expositional

convenience we refer to a single manager.
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To begin with, it is useful to review two very fundamental results from
finance. The “Law of One Price” states that any two investments with the
same payoff in every state of the world must have the same price (e.g. see
Ingersoll, 1987, p.59). The second fundamental result is deduced from this law.
Chamberlain and Rothschild (1983) show that the Law of One Price implies
a useful characterization of the relationship between the price and return of
a financial asset. To flesh out this asset pricing equation, it is necessary to
introduce some notation. Let X; be a vector of (N x 1) payoffs on N traded
assets with nt" element Zp, which is the time ¢ return per time ¢ — 1 dollar
invested in asset n. Notice that each payoff , x,, ;, can be interpreted as an asset
with a price of $1. Chamberlain and Rothschild (1983) show that the Law of
One Price implies there exists a unique scalar random variable d; = X[y such
that

E[X,d] =1y (1.24)

where 15 is a N x 1 vector of ones and dg is an N x 1 vector of constants. The
variable d; is known as the stochastic discount factor.?3> As we shall see, this
asset pricing equation is central to Chen and Knez’s method.

To evaluate the performance of a mutual fund it is necessary to have some
benchmark. Since managers are essentially selling their ability to gather and
process information, it is natural to compare the fund’s return to that achievable
by an investor with no such information. This “uninformed” investor is taken
to be an individual who holds a constant composition portfolio and hence never
buys or sells assets in response to new information. Let the weights of this
portfolio be collected into an N x 1 vector a whose n'" element is a,. The
return on such a passively held portfolio in period t is given by

N N
Ri(a) = Z Op Ty ¢, for Z a, =1 (1.25)
n=1 n=1

Notice the weights have been normalized to sum to one and so R:(a) can be
interpreted as the payoff achievable from an initial investment of $1. Also, the
weight on z,, ; can be positive indicating a long position in the asset or it can be
negative indicating a short position.?* In contrast to the uninformed investor,
the fund manager has the option of updating the composition of the fund’s
portfolio and this is reflected by making the weights in his/her portfolio time
dependent. Accordingly, the return on the fund is

N N
1= Onpwng, for > Onp=1 (1.26)
n=1 n=1

23 Tt is also known as the “pricing operator” or the “pricing kernel”.

24 An investor holds a long position in an asset if he/she owns units of the asset. An investor
holds a short position in an asset if he/she has sold units of an asset that they did not own,
say by borrowing it from a broker, and must return the borrowed units at some point in the
future.
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where the superscript m represents “mutual fund”. Again the weights, {6, }
this time, sum to one and so rJ™ represents the return on a $1 investment.
Clearly, the manager has the option to leave the weights unchanged over time.
However, if he/she follows this strategy then the fund does not increase the
opportunity set for investors. In this case, Chen and Knez argue the manager
has provided no service and so should receive a performance measure of zero.
Furthermore, they argue that the manager should receive the same evaluation
if he/she changes the weights of the fund’s portfolio but this only leads to a
return which could have been earned by some passively held portfolio over the
same period. A positive performance measure is only earned if the fund return
exceeds that on any passively held portfolio over the same period.

It is clearly desirable to identify which funds have positive performance mea-
sures. It turns out to be most convenient to address this issue by reversing the
question and seeking to identify funds with a zero performance measure. Chen
and Knez (1996) show that the fund has a zero performance measure relative
to the benchmark set of passively held portfolios in (1.25) if

At dy) = Elr]"X{d] — 1 =0 (1.27)

To assess whether (1.27) is true, an estimate of Jp is needed. Chen and Knez
solve this problem by combining (1.24) and (1.27) into the augmented popula-
tion moment condition

E[Q:X[60] — 1n41 =0 (1.28)

where Q¢ = (X, 7")". These equations provide a basis for the estimation of .
At first glance this appears to impose the very hypothesis that we wish to test.
However, (1.28) is a vector of N 4+ 1 moment conditions in N parameters and
so the sample moments are not zero when evaluated at the estimated value of
do- As we shall see, this leaves scope for testing whether the data are actually
consistent with (1.28) and hence the hypothesis that the fund has a performance
measure of zero.

This problem could be approached using Maximum Likelihood estimation. It
would involve specifying the conditional distribution of ); given the information
available at time t-1 and assessing whether the estimated distribution satisfied
the moment restriction in (1.27). However, this approach encounters both the
types of problem described in Section 1.1. First, it is necessary to make a
distributional assumption. A natural choice is normality but, unfortunately,
this is not appropriate for stock return data; see Richardson and Smith (1993).
To date there is no consensus on the appropriate choice; see Fama (1976, p.26)
and Bollerslev, Engle, and Nelson (1994) for discussions of common features of
the distribution of asset return data. Of course, unless the true distribution
is used there is no guarantee that MLE yields more precise estimators than
those obtained by GMM. Second, such estimation will involve significantly more
parameters than the N involved in Chen and Knez’s approach and so will be
more computationally intensive.
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1.3.3 Conditional Capital Asset Pricing Model

Harvey (1991) investigates whether the conditional Capital Asset Pricing Model
(conditional CAPM hereafter) can explain the differences in the average returns
across financial markets in industrialized countries. The original, or uncondi-
tional, CAPM is one of the main models in finance and has received a lot of
academic and non-academic attention; e.g. see Malkiel (1987). Its importance
stems from its provision of an explicit relationship between the expected rate
of return on an asset and the sytematic risk of holding that asset. In this con-
text risk is measured by the variance of the asset return and derives from two
sources. There is systematic risk which derives from the inherent uncertainties
in the macroeconomy and there is unsystematic risk which is specific to the
stock in question.?® Systematic risk is measured as the variance of the so-called
“market portfolio”. This portfolio consists of all the assets in the market and
so represents the most diversified portfolio it is possible to hold. By holding
a suitably large portfolio the investor can diversify away the unsystematic risk
and so he/she is only compensated for bearing the systematic risk in holding
an asset. Systematic risk is present in all risky assets but to different degrees
depending on the nature of the asset. Another attractive feature of CAPM is
that it provides a measure of the degree of the systematic risk present in an
asset; this measure is known as the investment beta.

One weakness of the original CAPM is its implicit assumption that the level
of systematic risk in an asset stays constant over time. Intuition suggests this
risk should vary in response to changes in the macroeconomy and decisions
made by the firm issuing the asset. This type of behaviour can be incorporated
into the theory and yields the conditional CAPM. To introduce the model it is
necessary to define first some notation. Let R;; be the return in period t on
investing $1 in the asset in question in period t — 1, R, + be the corresponding
return on investing $1 in the market portfolio in period t — 1 and Ry, be the
return in period t from investing $1 in the the risk free asset in period t — 1.26
The excess returns on the asset and the market portfolio are defined respectively
asri+ = Ryt — Ryy and 1y = Ryt — Ry +. The conditional CAPM implies

E[Ti7t|Qt_1} = ﬂi,tE[Tm,t|Qt—1] (129)
where the conditional investment beta is
Bix = Covlr ¢, Tm | —1]/Var[rm|Q—1] (1.30)

and E[.|Q:_1], Var[.|Q:—1] and Cov[.|Q2;_1] denote respectively the expectation,
variance and covariance conditional on an information set €;_1.27

We can now return to the specifics of Harvey’s (1991) study. He examines
whether the model in (1.29)—(1.30) can explain the variation in the returns

25 Systematic and unsystematic risk are also refered to as market and idiosyncratic risk
respectively.

26 A risk-free asset is one whose return is known at the time of purchase.

27 The original CAPM can be obtained from (1.29)—(1.30) by replacing the conditional
expectations, variance and covariance by their unconditional counterparts.
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across seventeen international stock markets. In this context r; ; becomes the
excess return on holding the market portfolio for country i. The variable 7, ;
is the excess return from holding a “world market” portfolio that is weighted
combination of the returns on a variety of world-wide investments; see Harvey
(1991) for details. To make the model operational it is necessary to specify the
conditional means of the excess returns. To this end, let z;_; be the vector of
relevant economic and financial variables contained in 2;_;. Harvey assumes
that

Elri Q] = 2100

1.31
Elrmd ] = o 1mo (1.31)

where 0,0, {0:,0} are unknown vectors of constants. The parameters to be
estimated are 0,0 and {d;0;¢ = 1,2,...17}. The estimation is based on two
types of moment conditions: those implied by the specification of the conditional
means, (1.31), and those implied by the conditional CAPM, (1.29)—(1.30). To
present the moment conditions it is convenient to define

Uit = Tit — 227151',0 (1 32)

’
Um,t = Tm,t_zt—15m70

The first set of moments comes from using iterated conditional expectations and
Elu;+|Q:—1] = 0 to show that

E[ui’tzt_l] = E[E[ui,tzt_ﬂﬂt_l]] = E[E[Ui’t|Qt_1]Zt_1H =0 (133)

Using a similar argument for u,,: and substituting from (1.32) yields the mo-
ment conditions

El(rit — zi_10i0)z-1] =

1.34
E[(Tm,t - 22—16’01,0)215—1] = ( )

for i=1,2,...,17. The second set of moment conditions comes directly from the
conditional CAPM structure. The substitution of (1.30) into (1.29) plus some
rearrangement yields

VaT[Tm7t|Qt,1]E[7"i_’t|Qt,1] — COU[TZ"t, Tm,t|Qt71]E[7'm,t|Qt71] = 0 (135)

Employing a similar iterated conditional expectations argument as in (1.33) and
substituting from (1.31), it can be deduced that

E[{(rm¢ — 21-10m,0)*21_16i,0 — (Tm.t — 21_10m.,0) X
(rit = 24-106,0)21—10m,0}2t—1] = 0 (1.36)

for i=1,2,...17, which constitute the second set of moment conditions used in
estimation.

This model can be estimated by Maximum Likelihood but, again, this ap-
proach will encounter the problems mentioned in Section 1.1. The endogenous
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variables are ry = (71,4, T2,¢, ..., T17,t, "m,¢)’. To implement MLE the conditional
distribution for r; must be specified so that it satisfies both the conditional mean
specification in (1.31) and the relationship between the conditional means, con-
ditional variances and covariances in (1.35). Once again, the normal distribution
is a natural first choice, but just as in the mutual fund example, these asset re-
turns do not possess this distribution. Therefore, MLE under the assumption
of normality is not necessarily more precise than GMM although it should lead
to unbiased inferences provided the variances are correctly calculated.?® MLE
would be also slightly more computationally burdensome than GMM due to
the imposition on the likelihood of the restrictions between first and second
moments implied by the conditional CAPM.

1.3.4 Inventory Holdings by Firms

A firm can choose to use its output to meet current demand or hold it as in-
ventory. There is a considerable literature in macroeconomics which seeks to
explain the level of inventory holdings in the aggregate economy; e.g. see the
survey by Blinder and Maccini (1991). These studies typically proceed by mod-
elling the sales and inventories of a particular industry as if they are the outcome
of decisions made by a single representative firm. One popular line of theory is
based on the assumption that the representative firm uses inventories to smooth
production levels. Although intuitively reasonable, the production smoothing
model has had mixed success in explaining aggregate inventory behaviour; see
Blinder and Maccini (1991). One response to this evidence has been to argue
that firms smooth production costs and not levels. To test if either of these
hypotheses can explain the data it is desirable to perform inference within a
model which allows both types of behaviour. Eichenbaum (1989) presents such
a model and uses it to analyze the inventory holdings in a number of two digit
SIC industries in the U.S. This section outlines Eichenbaum’s model.

The representative firm is assumed to face two types of costs: production
costs and inventory holding costs. The production costs are assumed to be:

Cat = 1Qr + (a0/2)Q7 (1.37)

where @, is the firm’s output at time t and 1, is a random variable captur-
ing stochastic shocks to the marginal cost of production. Since 14 is random,
marginal costs are a random function and so there is an incentive for holding
inventories to smooth production costs. However, if v; = 0 then marginal cost
is a deterministic function of output and so the only incentive for holding in-
ventories is to smooth the level of production. The constant «g controls the
slope of the marginal cost schedule: if ag is positive then the marginal costs
are increasing with output and if g is negative then the marginal costs are

28 If the distribution is misspecified then in general the information matrix identity does
not hold. This affects the formulae for the variances of the estimators; see White (1982) and
Section 3.8.
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decreasing with output. The inventory holding costs are assumed to be
Crp = (80/2)(Is = 705:)* + (m0/2) I} (1.38)

where I;, S; are the inventories and sales of the firm at time t respectively.?? The
constants g, dg and, 79 are all nonnegative. The first term in (1.38) captures the
cost to the firm of inventories deviating from the desired fraction of sales, vyS;.
The second term in (1.38) captures the storage costs associated with holding
inventories. The combination of the production and inventory costs yields the
total cost function of the firm:

Ci=Cqi+Cry (1.39)

By definition, sales, inventories and production are fundamentally related
by: Q: = St + I; — I;_1. Using this identity (); can be explicitly eliminated from
the model. Therefore, the firm is assumed to choose I;4; and S;11 to maximize
future discounted profits, denoted

oo

B> 8 (pr4;Sttj — Cras)|] (1.40)

Jj=0

where p; is the price in period t of the good produced by the firm, Sy is the
discount factor and €; is the firm’s information set at time t.
To characterize the optimal path for inventories and sales it is necessary
to make some assumption about the random variable v;. Eichenbaum (1989)
assumes that
Vi = poVi—1 + € (141)

where Ele|Q—1] = 0, Var[e|Q:—1] < oo and |pg| < 1. In this case the Euler
equation implies the following condition:

Elhiy2(10) — pohit1(to)|Q] =0 (1.42)

where

hir1 (o) = Tirr — {0 + (MoBo) e + By ' I—1 + Se1 — d0By ' Se (1.43)

and the parameters of the system are pg and the cost function parameters ¢y =
(Mo, Bo, ¢0)” where ¢ = (1 — dgy0/a) and Ag is a root from the second order
autoregressive polynomial governing the time series properties of the inventory
series; see Eichenbaum (1989) for details. Using a similar iterated expectations
argument as in (1.23), it can be shown that

El{hiy2(t0) — pohes1(o) }2¢] =0 (1.44)

29 Eichenbaum includes a term n¢lt where 114 is a parameter which depends on t. However
this parameter is argued to be eliminated by a data transformation prior to estimation. So
for expositional simplicity this parameter has been set to zero.
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for any vector z; € ;. For example, Eichenbaum estimates the parameters
using the lagged values of inventories and sales, {S;—;, I;—;;1 = 1,2,.. .k}, in z.

Maximum Likelihood would involve estimation of the bivariate vector autore-
gressive system for (St, I;) subject to the nonlinear cross equation restrictions on
the parameters implied by the model. This is likely to be more computationally
burdensome with the exact degree depending on the choice of distribution. Un-
fortunately, economic theory provides no guidance on this choice. Once again,
unless the chosen distribution is correct then the resulting MLE’s are unlikely
to have the anticipated optimal properties.

1.3.5 Stochastic Volatility Models of Exchange Rates

The preceding models have all been developed from economic theory. In some
circumstances, it may be desired to capture the time series properties of an
economic variable using a purely statistical model. An example of such a model
would be the autoregressive integrated moving average (ARIMA) class devel-
oped by Box and Jenkins (1976). However, ARIMA models are not particularly
appropriate for many financial assets because they do not allow the conditional
variance to change over time. This has led to considerable interest in statistical
models which can capture this type of behaviour. The most prominent of these
models are the autoregressive conditional heteroscedasticity (ARCH) models
introduced by Engle (1982), which have been applied very widely in finance,
see the survey by Bollerslev, Chou, and Kroner (1992). More recently, a sec-
ond class is receiving considerable attention and these are known as stochastic
volatility models; see the survey by Ghysels, Harvey, and Renault (1996).

In this section we describe the stochastic volatility model used by Melino and
Turnbull (1990) to analyze daily exchange rates. The model has its origins in a
stochastic differential equation for the evolution of the exchange rate over time.
However, we focus directly on the discrete time stochastic process which is used
to approximate this underlying continuous time process. Let y(7) denote the
exchange rate at time 7 and assume that the exchange rate is observed at times
{71, 72,...7r}. These observations are not at evenly spaced intervals because
there are days on which no trading occurs, such as weekends and holidays. To
accomodate these effects, it is useful to denote the distance between observations
by di = & — 11, and the minimum distance by d = min:(d;). The discrete
time approximation takes the form

y(re) = aod: + (1 + Body)y(1i—1)

(1.45)
+ 2 (ri-1)y (1) 2dy P e(my)

where the latent process () is generated by

In[z(m)] = dod + (1 + nod)in[z(r — d)] + Cod**u(r) (1.46)

[ZEZHNW([g] [,,10 pf)D (1.47)
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Given that the model includes a distributional assumption, it is natural to use
Maximum Likelihood. However, the evaluation of the conditional likelihood at
time t involves a T-dimensional numerical integration which is computationally
extremely burdensome — if not infeasible — on many currently available computer
systems. However the normality assumption implies various population moment
conditions which can form the basis of GMM estimation of the parameter vector
0o = (o, Bo,d0,M0,Co, po).2° For example, Melino and Turnbull (1990) show
that the following population moment conditions hold:3!

Elw(6o)]
E[w?(60)] — exp[2u, + 202
Elw;(6o)
Elw{(00)] — 3exp[4p, + 807
Ellwi(0)] — (2/m)"*explp, +0.507

Il
O 000000 oo oo

]
]
2]
2]
o)
)]
Elw(0o)w—j(00)] =
)
)
)

El|lw(00)]?] — 2(2/m)2exp[3us + 4.502 (1.48)
Eflwi(6o)wi(6o)] =
Ellwi(0o)wi—;(0o)[] — £1,5(00) + £2,(60) =
El|w(00)|wi—j(00)] — m;(0o) =
E[w; (6o)w;_;(60)] —n;(fo) =
for j =1,2,... where
y(1t) — aody — (1 + Bodt)y(Te-1)
+(0) = 1.49
wel%o) PATCENORE (49
and
Gj(00) = (2/m)Y2eap2s + 02(1+ (1 +n0d)’) — 0.5p2¢2d(1 + 1od)?U~Y)
l(00) = (2/m)2poCod"*(1 + mod)’ (1 — 28(poCod™/* (1 + mod)’ )
x exp[2pty + 02 (1 + (14 nod)?)]
mi(0o) = (2/m)"*poCod?(1 + nod)’ texp[2u, + o2(1 + (1 + nod)”)]
ni(00) = {4p5¢3d(1+nod)*Y™Y + 1}eap[dp, + 402 (1 + (14 nod)’)]
Hae = _60/770
o2 = (§d/[1—(1+mnd)’]

and ®(.) denotes the cumulative distribution function of a standard normal
random variable.

30 Tn their estimations, Melino and Turnbull (1990) fix the value of 70 and so we omit this
term from 60y. See Section 9.4 for further discussion of this issue.

31 These expressions are not actually presented in the published version of Melino and
Turnbull’s paper but are contained in an unpublished appendix by Ken Vetzal which was
kindly sent to the author by Angelo Melino.



26 Introduction

1.4 Review of Statistical Theory

To develop the theory of GMM estimators it is necessary to appeal to various
statistical concepts and results. This section briefly reviews some basic ideas
which are used throughout the text; other results are explained as they be-
come needed. A more thorough review of these topics can be found in many
econometric or statistical texts such as Davidson and MacKinnon (1993), Fuller
(1976), Judge, Griffiths, Hill, Lutkepohl, and Lee (1985), and, for more rigorous
treatments, Davidson (1994) and White (1984). All the results are based on
asymptotic, or in other words, large sample theory. In the majority of our anal-
ysis, this type of analysis involves an examination of what happens to various
statistics as the sample size, T, tends to infinity. Asymptotic is the adjective
derived from “asymptote”, the noun for the line which acts as a limit for a
curve. According to the American Heritage Dictionary, asymptote comes from
the Greek “asumptotos” in which “a” means not, “sun” means together and,
“ptotos” means likely to fall. In spite of these unpromising origins, asymptotic
analysis is used to approximate the behaviour of statistics in large, but finite,
samples. An important secondary issue is the accuracy of this approximation
and this is discussed in detail in Chapter 6.

Before reviewing this theory, it is useful to emphasize an item of notation. In
the preceeding sections, it has been shown that statistical or economic models
imply a set of population moment conditions involving the parameters and the
data. It is important to realize that these moment conditions only hold at the
true value of the parameters. A zero subscript is used to emphasize the true
value of the parameter vector. This notation is neccessary to avoid ambiguity in
the formal discussion of statistical estimation. As we have seen in Section 1.2,
GMM estimation involves finding the value of the parameters which minimize
Qr(0) given in (1.18). Formally, this will involve considering the behaviour of
Qr(0) over a set of possible values for 8, known as the parameter space and
denoted ©. The notation 6 is reserved to refer to an arbitrary element of ©.
As above, the notation éT is used to denote the parameter estimator based on
a sample of size T'. Both 6y and 6 are individual elements of ©.

The IV estimator in (1.14), G, can be used to illustrate several key features
of asymptotic analysis of GMM estimators. It is of interest to analyze what
happens to a7 as T — oo and for this we require the concept of convergence in
probability. This analysis is facilitated by analyzing the limiting behaviour of
the sums in the numerator and denominator separately using the Weak Law of
Large Numbers and then taking the ratio of these limits to deduce the limiting
behaviour of &p. This last step can be justified using Slutsky’s Theorem. In
particular, it is of interest to examine whether the estimator converges in prob-
ability to the true population value of that coefficient; if so, then it is said to be
consistent. For the purposes of constructing confidence intervals and hypothesis
tests about «g, it is necessary to find some transformation of &p which con-
verges in distribution to a known probability distribution. For our purposes the
appropriate transformation is 7'/ 2(&r — ) and this statistic can be shown to
converge to a normal distribution as T' — oo using the Central Limit Theorem.
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In the remainder of this section these and certain other statistical concepts are
defined more formally. It is most convenient to split the discussion into two
parts. The first part deals with the properties of random sequences such as
convergence in probability or distribution which can be discussed in abstract.
The second part deals with results such as the Weak Law of Large Numbers
and Central Limit Theorem for which it is neccessary to place restrictions on
the nature of the random variables in the model.

1.4.1 Properties of Random Sequences

To fix ideas, consider the case where the sequence is deterministic and so not
random. Let {hp; T =1,2,...} be a sequence of real numbers. If this sequence
has a limit, h, then this is denoted by

lim hT =h

— 00

This implies that for every € > 0 there is a positive, finite integer T, such that
|lhr —h| <e for T >T. (1.50)

Note (1.50) does not imply |hr — h| becomes monotonically smaller as T in-
creases. However, it does tell us that |hp — h| is smaller than e for all T > T,
and so conveys a sense in which At is becoming closer to h as T tends to infinity.
Often, it is useful to characterize the behaviour of a sequence with respect to
T regardless of whether it converges or not. This can be achieved using large
and small orders of magnitude. The sequence is said to be of large order of
magnitude cp if there exists a real number m such that |hy|/cr < m for all
T. This is denoted by hr = O(cr). The sequence is said to be of small order
of magnitude cr if the limit of hr/cr is zero as T — oo. This is denoted by
hT = O(CT).

In these definitions, the deterministic nature of the sequence is reflected in
the way it can be stated with certainty that hp satisfies the property in question.
With sequences of random variables it is necessary to attach a probability to
such events occuring. This leads us to the concept of convergence in probability.
For notational convenience the results are also stated in terms of “Ar” but this
is now a random variable.

Definition 1.3 Convergence in Probability
The sequence of random variables {hT} converges in probability to the random
variable h if for all € > 0

Jim Py~ < =1

In this case h is known as the probability limit or plim of hr and is denoted by
plimhy = h or hy 2 h.
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The definition of convergence in probability implies that for each ¢ > 0 there
exists a finite T, such that the probability of |hr — h| < € is arbitrarily close
to one for all T' > T,. So convergence in probability can be recognized as the
natural extension of the concept of of convergence for deterministic sequences.
The concepts of order of magnitude can be similarly extended to sequences of
random variables.

Definition 1.4 Orders in Probability

1. The sequence of random wvariables {hr} is said to be of large order in
probability cr if for every e > 0 there exists positive real numbers m. and
T. such that P||\hrp|/cr > m¢] < € for all T > T.. This is denoted by
hT = Op(CT)-

2. The sequence of random variables {hr} is said to be of small order in
probability cp if plim(hy/cr) = 0. This is denoted by hy = op(cr).

Both types of order in probability are very useful in asymptotic analysis because
they can be linked to consistency and convergence in distribution as will be
shown below. However, first it is necessary to extend the notion of convergence
in probability to vectors and matrices. A vector (or matrix), hr, is said to
converge in probability to h if the i** (or (i,)!*) element of hy converges in
probability to the i*" (or (,)") element of h for all i (or (i,7)). The extension
of orders in probability is a little more tricky because in general there is no
guarantee that all elements of a random vector or matrix are of the same order.
However, in the majority of our analysis this will be the case and so we use the
notation hr = Op(cr) or hy = o,(cr) to indicate that all the elements of the
vector or matrix individually satisfy the stated order in probability.

In many cases, our analysis involves the probability limits of functions of
random vectors and so the following result is going to be very useful. For
convenience the result is stated in terms of random vectors; however, the same
result applies for random variables and random matrices.

Lemma 1.1 Slutsky’s Theorem??

Let {hr} be a sequence of random wvectors which converges in probability to
the random wvector h and let f(.) be a wvector of continuous functions then

plimf(hr) = f(h).

In many cases hp = éT, a GMM estimator of some unknown parameter vector
B, and so it is of interest to characterize the limiting relationship between
estimator and estimand.

Definition 1.5 Consistency of an Estimator
Let {01} be a sequence of estimators of the unknown parameter vector of con-
stants Oy then 01 is said to be a consistent estimator of Oy if plim 0 = 0.

32 This theorem is named after Evgenii Slutsky (1880-1948), a Russian mathematician
who first proved a version of this result. He made numerous other contributions to statistics
including early work which helped to lay the foundations of stationary time series theory. He
also made contributions to economics particularly in the area of demand analysis including
the eponymous Slutsky effect and Slutsky matrix.
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If plim Or # 0 then the estimator is said to be inconsistent. Notice that the
consistency of 6 for 0 implies Op — 8o = 0p(1). Consistency is a rather weak
property because it merely states that as T — oo the estimator converges in
probability to the true value. It is perfectly reasonable to question how much
comfort can be drawn from this property since it implies the true value is only
recovered in the limit. However, earlier it was observed that convergence also
implies a sense in which 01 becomes closer to 0y as T increases. This is a more
intuitively appealing property; certainly we would be concerned if the estimator
is inconsistent and so not converging in probability to the true value!

Convergence in probability implies that the difference between 61 and 6,
disappears with probability one as T' — oo. Therefore in the limit 61 and 0o
are essentially identical. In deriving the asymptotic distribution of the GMM
estimator, it will be convenient to appeal to the weaker notion of convergence in
distribution. For this definition we revert to the more general notation because
this concept is not just applied to estimators in our analysis.

Definition 1.6 Convergence in Distribution

The sequence of random vectors {hr} with corresponding distribution functions
{Fr(c)} converges in distribution to the random vector h with distribution func-
tion F(c) if and only if there exists T, for every e such that |Fr(c) — F(c)| < €

for T > T. at all points of continuity {c}. This is denoted by hr L h

The distribution of & is known as the limiting (or asymptotic) distribution of
hp. If hr converges in distribution then hr = O,(1). However, in practice,
our focus is not just on establishing that hy converges in distribution, but also
on characterizing the exact nature of its limiting distribution. We now turn to
various results which facilitate this type of analysis as well as the other aspects
of asymptotic behaviour described above.

1.4.2 Stationary Time Series, the Weak Law of Large Num-
bers and the Central Limit Theorem

The asymptotic theory in this book revolves around analyses of the limiting
behaviour of sums of random variables using the Weak Law of Large Numbers
and Central Limit Theorem. For these results to apply, it is necessary to place
restrictions on the nature of the random variables in the model. Various ap-
proaches can be taken but, throughout this book, we follow Hansen’s (1982)
original treatment involving stationary time series. In passing we note that this
assumption is employed in nearly all the studies listed in Table 1.1.33

Definition 1.7 Strictly Stationary Processes
Let N(T) = {1,2,...T} and {vy;t eN(T)} be a set of random vectors. Define
{t1,t2,...,tn} to be a subset of N(T). The set of random vectors are said to

33 See Appendix A for a brief discussion of the GMM framework under alternative assump-
tions about the data generation process.
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be strictly stationary if the joint probability distribution function, F(.), of any
subset of {v;} satisfies:

F(Utlavtga N ,’Utn) = F(Ut1+c, Vtg4cye - vtn+c)

for any integer n and integer constant ¢ such that {t; +c,ta+c¢,...t, +c} is a

subset of N(T).

One consequence of this definition is that all moments of the process are
constant over time, provided they exist. The imposition of strict stationarity
is insufficient by itself to permit the proof of Weak Law of Large Numbers and
the Central Limit Theorem. In addition restrictions need to be placed on the
dependence structure and certain higher moments of the series. Examples of
such conditions on the dependency are ergodicity or various types of mizing
condition. Both involve rather sophisticated mathematical ideas and so for the
present, we just add the caveat “subject to certain regularity conditions” in the
statement of the following results. However, we return to these conditions in
Chapter 3.

Lemma 1.2 Weak Law of Large Numbers (WLLN)
Let {vy;t =1,2,...,T} be a sequence of strictly stationary random vectors with
Elvy] = p then subject to certain regularity conditions

Lemma 1.3 Central Limit Theorem (CLT)
Let {ve;t =1,2,...,T} be a sequence of strictly stationary (sx1) random vectors
with Efvy] = p then subject to certain regularity conditions

T
723 (0, — ) % N(0,5)

t=1

where N(0,%) denotes the s dimensional multivariate normal distribution with
mean 0 and positive definite covariance matriz

T
Y= Th_r)I;o Var[T~1/? Z(Ut — )]

t=1

The matrix 3 is known as the long run covariance matrix of v; to distinguish it
from the the contemporaneous covariance matrix E[(vy — p)(ve — p)’].

To conclude this section, it is useful to present one final result which is
invoked frequently.?*

34 This result is proved in Fuller (1976, p.199).
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Lemma 1.4 The Limiting Distribution of Random Linear Functions
of Vectors Converging to a Normal Distribution

Let {Mr;t =1,2...,T} be a sequence of random matrices which converges in
probability to M, a matriz of constants, and {hr,;t =1,2...T} be a sequence
of random wvectors which converges to a N(0,X) distribution then

Mrhy % N(0, MEM')

1.5 Overview of Later Chapters

This chapter has provided the flavour of GMM and placed the technique in the
context of both the econometrics and statistics literatures. In the next chapter,
we introduce the key elements of the GMM framework using the IV estima-
tor in the static linear model. This approach keeps the technical details to a
minimum and allows the reader to appreciate more readily the main ideas and
intuitions. The issues addressed here are: identification; the asymptotic proper-
ties of the estimator; the iterated GMM estimator; and a decomposition of the
population moment conditions into identifying and over-identifying restrictions
which leads to the overidentifying restrictions test amongst other things. The
following chapters build from these foundations to present the GMM framework
for estimation and inference which encompasses the majority of the models in
Table 1.1.

Chapter 3 addresses GMM estimation and the asymptotic properties of the
estimator in correctly specified nonlinear dynamic models. The topics cov-
ered are: identification, calculation of the estimator by numerical optimization
routines, consistency, asymptotic normality, covariance matrix estimation and
iterated GMM estimators. Formal proofs are presented for the main statistical
results. However, the issues are also illustrated using the consumption based as-
set pricing model to provide guidance on the practical implementation of GMM
as well. All this discussion takes the data, parameter vector and population
moment condition as given. In some cases, the researcher may desire to impose
a normalization on any one of these three features. Therefore, the impact of
normalization is also discussed and this motivates a variant of GMM known as
the continuous updating estimator. This chapter concludes with a more formal
presentation of how many seemingly different estimators can be regarded as
special cases of GMM.

Chapter 4 explores the consequence of misspecification for the statistical
properties of the GMM estimator. Particular attention is focused on convergence
in probability of the estimator, covariance matrix estimation and the the limiting
distribution of the estimator. A comparison with the results in the previous
chapter reveals that misspecification has a fundamental impact on the large
sample behaviour of the GMM estimator and its associated statistics. These
differences motivate the use of the model specification tests.

Chapter 5 examines a wide variety of hypothesis tests which have been pro-
posed within the GMM framework. The main focus is on the following: the
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overidentifying restrictions test, tests for the validity of a subset of population
moment conditions, tests of whether the parameter vector satisfies a set of re-
strictions, and structural stability tests. However there is also some discussion
of Hausman-type tests, non-nested hypothesis tests and conditional moment
tests.

All the preceding analysis is based on asymptotic theory. Chapter 6 ex-
plores how well this theory approximates finite sample behaviour. If attention
is reduced to a very specific class of models then it is possible to examine this
question analytically. However, for more general specifications, it is necessary to
resort to computer based simulation studies. Both approaches are reviewed in
Chapter 6, and the results from each are synthesized to indicate what aspects of
the specification appear to effect the quality of the asymptotic approximation to
finite sample behaviour. This chapter begins with a discussion of the available
asymptotic results on the consequences of increasing the number of the moment
conditions upon which the estimation is based.

The asymptotic theory in Chapters 3 and 5 takes the population moment
condition as given. However, the evidence reviewed in Chapter 6 indicates
that the quality of the asymptotic approximation can be sensitive to the choice
of moment condition. Chapter 7 reviews the literature on moment selection.
The discussion falls into two parts. The first part summarizes available results
on the optimal choice of instrument in the special case of GMM known as
generalized instrumental variables (GIV). The second part describes a number
of information criteria that have been proposed as a basis for moment selection.

In the face of evidence that the asymptotic theory from Chapters 3 and 5 can
provide a poor approximation, it is natural to seek alternative approximations
that permit more reliable inference. Three such approximations are reviewed in
Chapter 8. These are: the use of the bootstrap, an asymptotic theory derived
under the assumption that the population moment condition provides weak
identification, and an asymptotic theory for the case in which the long run
variance is estimated by a class of estimators that are random in the limit.

All the methods and issues described above are illustrated empirically using
the consumption based asset pricing model in Section 1.3.1. Chapter 9 presents
empirical results for the other four examples in Section 1.3 that illustrate various
aspects of the GMM inference framework.

Finally, Chapter 10 briefly reviews some other estimation techniques that
are closely related to GMM. These are Simulated Method of Moments, Indirect
Inference, Efficient Method of Moments and the method of Empirical Likelihood.
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The Instrumental Variable
Estimator in the Linear
Regression Model

One of the main advantages of GMM is that it can be used to perform inference
about the parameters in nonlinear dynamic models. However, as might be
anticipated, both nonlinearity and dynamics create a number of technical issues
which need to be addressed in the statistical analysis. These issues can obscure
the essential structure of the method for those readers less familiar with this
type of analysis. Therefore, in this chapter, we introduce the key elements of
the GMM framework using the IV estimator in the static linear model. This
approach enables us to keep the technical details to a minimum and allows the
reader to appreciate more readily the main ideas and intuitions. Those readers
already familiar with the basic GMM framework may prefer to pass over this
chapter.

Section 2.1 specifies the model and discusses the connections between the
population moment condition and the condition for parameter identification.
Section 2.2 derives the estimator and describes a fundamental decomposition of
the population moment condition into “identifying” and “overidentifying” re-
strictions. Section 2.3 considers the asymptotic properties of the estimator and
the estimated sample moment. In the course of this discussion, it emerges that
a consistent estimator of the long run variance of the sample moment is required
for inference procedures based on the parameters or estimated moments. There-
fore, Section 2.3 also contains a brief discussion of how such a covariance matrix
estimator can be constructed in this simple model. Section 2.4 examines the
optimal way in which to use the information in the population moment condi-
tions, and introduces the “two step” and iterated GMM estimators. Section 2.5
discusses the consequences of specification error, and introduces the overiden-
tifying restrictions test statistic which is the standard diagnostic for the model

33
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specification within the GMM framework. Section 2.6 contains a summary of
the chapter.

2.1 The Population Moment Condition and
Parameter Identification

Consider the linear regression model
yr = 1400 + uy, t=1,2,...T (2.1)

in which z; is a (p x 1) vector of observed explanatory variables for the observed
variable y;, and w; is the unobserved error term. The (p x 1) vector 6y is an
element of the parameter space, ©, a subset of the p-dimensional Euclidean
space RP. The instruments are contained in the (¢ x 1) vector z;. To facilitate
the discussion, it is useful to define: u.(6) = y — x}0. Notice that u:(6p) = ;.
As the analysis progresses, certain restrictions need to be placed on the variables
but these will only be imposed as they become necessary to emphasize their role.
At this stage, we only require the following.

Assumption 2.1 Strict Stationarity
The random vector vy = (x}, 2, us)' is a strictly stationary process.

This assumption implies that any population moments of v; are independent of
t.
Estimation of 6 is based on the following population moment condition.

Assumption 2.2 Population Moment Condition
The (q x 1) vector z; satisfies: E[ziu:(6p)] = 0.

This type of condition is sometimes refered to as an “orthogonality condition”
because it states that z; is statistically orthogonal to u;. At this stage, it may be
useful to relate this structure back to one of the models encountered in Chapter
1.

Example: Wright’s (1925) Demand Equation

It can be recalled from Section 1.2 that Wright (1925) proposed IV as a method
for estimating the parameters of demand and supply equations. His original
derivation was based on the Method of Moments principle and so its implemen-
tation only required the researcher to find one instrument z” which satisfied the
moment condition in (1.13). Two candidates were suggested: an input price,
now denoted z7,, and yield per acre, zZ). However, rather than choose between
these two instruments arbitrarily, intuition suggests that a far more appealing
strategy is to base estimation on both. This leads to the (2 x 1) population
moment condition

E[Zt(Qt - aopt)] =0



2.1 The Population Moment Condition 35

where z; = (28], 28))’. Tt can be recognized that this population moment condi-
tion fits within the framework of Assumption 2.2 once ¢;, p; and «q are substi-
tuted for y;, z; and 6y respectively in (2.1). o

While Assumption 2.2 specifies the information upon which estimation is
based, the resulting estimation is only going to be successful if this population
moment condition provides enough information to determine 6y uniquely. In
reality, this is not guaranteed to be the case. The parameter vector 6, is only
uniquely determined by the moment condition if E[z;u.(6)] # 0 at all other
values of #. In this case 6y is said to be identified by the population moment
condition. This condition is easily stated but, in this form, provides little guid-
ance about the circumstances under which it holds. Fortunately, it is possible to
obtain a more transparent version. With some simple rearrangement, it follows
that

Elzu(0)] = E[zui(00)] + Elze23] (00 — 6) (2.2)
and this combined with the population moment condition implies
Elzu(0)] = Elz2}] (60 — 0) (2.3)

Therefore 6y is identified if Ezz;](0p — 0) # 0 for all 6 # 6y. Equation (2.3)
is a system of linear equations in 8y — 8 and so this property is guaranteed if
the rank of E[z;x}] is p; for example see Strang (1988, p.96). This gives the
following condition for identification.

Assumption 2.3 Identification Condition
rank{E[zx}]} = p.

The population moment and identification conditions provide the essential
information upon which estimation of 6y is based. In view of its fundamental
importance, it is worth briefly pausing to reflect on the exact nature of this
information. Assumptions 2.2 and 2.3 imply there is a unique value in the
parameter space at which E[z;u:(6)] equals zero. In our discussion we have
denoted this value by 6y — however, nothing has been said about this value
beyond its uniqueness.

Before proceeding to define the GMM estimator, it is worth briefly con-
sidering how parameter identification can fail. There are two basic scenarios.
First, failure can occur because there are fewer moment conditions than param-
eters. In terms of the mathematics, this implies that rank(E[zz)]) < ¢ < p.
Intuitively, the problem here is that it is impossible to extract the p pieces of in-
formation needed to determine 6y uniquely from less than p population moment
conditions. Secondly, failure can occur even when g > p because collectively
the population moment conditions still do not provide enough information to
uniquely determine 6y. This second scenario is best understood by considering
a simple example. Suppose p = ¢ = 2; let xy = (T1,4,@24)’, 2¢ = (21,4, 22,¢)" and
0;,80,; denote the it" elements of 8,6, respectively. In this case,

| Elzigm1s] Elerixa] 601 — 61
Elzu(9)] = Elza 21, Elz2,%2,4] 02 — 02 (2:4)
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For this model, identification requires the rank of E[z:z}] to be two. Failure
can occur because either E[z;x}] contains a row of zeros or because the first row
is a multiple of the second. Each of these can be interpreted in terms of the
statistical model as follows.

o Case 1: E[zux}] contains a row of zeros

Suppose Elz1.x;] = (0,0) and Elzp,x;] = (mq,me). In this case E[z14
u ()] = 0 regardless of the value of 6y—0, and so it provides no information
on 6y. The other moment condition provides some information but not
enough to uniquely determine 6y. For example if m; # 0 for ¢ = 1,2 then
Elza4ut(0)] = 0 for any 0y — 0 of the form (¢, —myc/ms). Identification
fails because an insufficient number of elements of E[z;u:(6p)] = 0 provide
information about 6.

o Case 2: One row of E[zx}] is a multiple of the other
Suppose E[z1 2;] = kE[z2.x}] = (my, m2) for some constant k and for
the sake of argument m; # 0 for ¢ = 1,2. In this case E[z;u(6)] = (0,0)’
for any 6y — 6 of the form (¢, —mjc/ms) and, once again, 6 is not uniquely
determined by the population moment condition. So identification fails
because both elements of E[ziu:(6y)] = 0 provide exactly the same infor-
mation about 6.

From this discussion, it is clear that parameter identification and the rela-
tionship between p and ¢ are important. It is therefore useful to introduce the
following terminology. If the identification condition fails then the parameter
vector 6y is said to be under-identified (or unidentified) by the population mo-
ment condition. If the parameters are identified and ¢ = p then the parameters
are said to be just-identified by the population moment condition. Notice in this
case there are just p sources of the p pieces of information needed to identify
0p. Finally, if the parameters are identified and ¢ > p then 6y is said to be
over-identified by the population moment condition. In this case there are more
than p sources of the p pieces of information needed to identify 6.

For the remainder of this chapter, it is assumed that the parameters are
either just- or over-identified. In Section 8.2, we examine the kind of problems
which can occur if the parameters are under-identified or close to being so, a
scenario termed “weak identification”.

2.2 The Estimator and a Fundamental
Decomposition

Section 1.2 introduced the generic definition of the GMM estimator. To spe-
cialize this definition to our current context, it is most convenient to work with
matrix notation rather than summations. Therefore we start by introducing the
following definitions. Let y be the (T x 1) vector whose " element is y;; X
be the (T x p) matrix whose t*" row is x}; Z be the (T x ¢) matrix whose t**
row is z}; u be the (T x 1) vector whose #*" element is u;; and u(f) = y — X6.
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Using this notation to make the appropriate substitutions into (1.18), the GMM
minimand for this model is:

Qr(0) = {T"u(0) ZYWr{T~' Z'u(6)} (2.5)
Following Definition 1.2, the GMM estimator of 8y is defined as
O = argmingcg Qr(9) (2.6)

where the notation “argmin” is a mathematical shorthand for the value of the
argument — 6 — which minimizes the function — Qr(6). Since,

Qr0) =Ty ZWrZ'y+ 0 X' ZWrZ' X0 — 2o/ ZWrZ' X0}
the first order conditions for the minimization in (2.6) are!
(T'X'ZYWop (T Z'y) = (T X' Z)Wr(T~'Z' X)or (2.7)
So provided (T~'X'Z)Wr(T~1Z'X) is nonsingular, the estimator is given by
Op = {(T' X' Z)Wp(T7Z' X))} "N T X' Z)Wp (T Z'y) (2.8)

It can be recalled from Section 1.2 that GMM (or Minimum Chi-Square)
were introduced to circumvent the problems encountered with Method of Mo-
ments. That earlier discussion emphasized the way in which GMM generalized
the Method of Moments principle. However, the relationship between the two
estimation principles is far more subtle. Although the GMM estimator is defined
via the minimization in (2.6), it is actually the solution to the first order condi-
tions in (2.7). With a simple rearrangement, these conditions can be rewritten
as

(T~ X' ZYWpT~ Z'u(07) = 0 (2.9)

This characterization of the first order conditions reveals that éT is identical to
the Method of Moments estimator based on,

Elzi2;)W E[zu(6p)] = 0 (2.10)

This Method of Moments interpretation is useful because it makes explicit the
relationship between the estimator and the population moment condition in
Assumption 2.2. Minimization of Q7 (6) with respect to # amounts to estimation
based on the information that the p linear combinations of E[zu ()] given
in (2.10) are zero. Notice that this interpretation implies that if ¢ = p then
Method of Moments and GMM are equivalent because in this case E[xiz;|W is
nonsingular and so (2.10) implies E[z;u;(6p)] = 0.2 In this case, the weighting
matrix plays no role and the GMM estimator is given by,

0= (T'Z'X)" YT Z"y) (2.11)

1 See Dhrymes (1984)[Proposition 95 and Corollary 28, p.110-111].

2 Recall that a similar observation is made in Section 1.2 regarding the equivalence of
Method of Moments and Minimum Chi-Square.

3 Notice that this solution is consistent with (2.8) because if p = ¢ then
{(TIX'Z2)Wr(T71Z2'X)}1 = (T_IZ’X)_lI/qul(T_lX'Z)_1 - subject to the existence
of the stated inverses.
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However if ¢ > p then no such reduction is possible, and the choice of weight-
ing matrix is important because it determines the exact nature of the linear
combinations of E[zu.(6p)] set to zero in (2.10).

This Method of Moments interpretation also indicates that if ¢ > p then
there is a difference between the information with which we began, Assumption
2.2, and the information actually used in estimation, equation (2.10). To charac-
terize the relationship between the two, it is useful to develop an alternative rep-
resentation for (2.10) which has the same dimension as the population moment
condition. For this part of the analysis, it is more convenient to work with a non-
singular tranformation of the population moment condition, W*'/2E[z;u:(6o)],

where W1/2 satisfies W = WY/2'W1/2.4 So we begin by rewriting (2.10) as
F'WY2E[zu,(00)] = 0 (2.12)

where F' = Elz,;2]W'?". Equation (2.12) indicates that GMM estimation is
based on the information that W'/2 E[z;u.(6)] lies in the null space of the (px q)
matrix F’. Sowell (1996) observes that this condition is identical to the restric-
tion that the least squares projection of W1/2E [2tut] onto the column space of
F' is zero. By this logic, we obtain the following alternative representation of
the information used in GMM estimation,

F(F'F) 'F'WY2E[zu(60)] = 0 (2.13)

While (2.13) consists of ¢ equations in E[z;u:(6p)], not all of them are linearly
independent because rank{F(F'F)~'F'} = rank{F} < p. Notice that we have
already assumed this rank equals p to ensure identification. The re-emergence
of this quantity here provides an alternative perspective on the fundamental
connection between identification and estimation: the p parameters are only
identified if the estimation is based on p linearly independent equations. In
view of this connection, Sowell (1996) refers to the elements of (2.13) as the
identifying restrictions associated with GMM estimation. It follows immediately
from (2.13) that the part of W'/2E[zu,(6p)] unused in estimation is given by

(I, — F(F'F) ' FYWY2E[zu:(60)] = 0 (2.14)

Equation (2.14) constitute a set of rank{l, — F(F'F)™1F'} = q — p linearly in-
dependent equations in W'/2E[z;u;(6)]. Hansen (1982) refered to the elements
of (2.14) as the overidentifying restrictions.

This decomposition is fundamental to the analysis of GMM estimators of
overidentified parameter vectors and so it is worth emphasizing its structure.
The (g x 1) vector of population moment conditions is decomposed into p iden-
tifying restrictions and q¢ — p overidentifying restrictions. The identifying re-
strictions represent the part of the population moment condition used in es-
timation and the overidentifying restrictions are the remainder. Most impor-
tantly, these two components are linearly unrelated because F(F'F)~'F/{I, —
F(F'F)~'F'} = 0.

4 There must be a (¢ X ¢) nonsingular matrix W1/2 which satisfies this identity because
W is positive definite from Definition 1.2; see Dhrymes (1984) [Corollary 14, p.73].
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So far, these components have been defined in terms of population quantities.
We now consider the extent to which this behaviour is mirrored by their sample
counterparts. Since the identifying restrictions represent the information upon
which estimation is based, it would be anticipated that their sample analog holds
at Op. This is easily verified to be the case because the first order conditions in
(2.9) imply

Fr(FpFr) " FpWy/* T~ Z'u(b7) = 0 (2.15)

where Fr = (T71X'7) W%/2/ and Wp = W%/2,W%/2. In contrast, the overi-
dentifying restrictions are ignored in estimation and so it would be anticipated
that they do not generally hold in the sample. Again, this is the case. However,
they do play a similar remainder role in the sample. From (2.15) it follows that

(I, — Fr(FpFr) "Wy > T2 Z'u(0r) = Wi *T~ Z'u(fr) (2.16)

and so the estimated transformed sample moment is just the sample analog to
the function of the data in the overidentifying restrictions. This leads to a useful
interpretation of the GMM minimand. In Section 1.2, Q7 (6) was introduced as
a measure of how far the sample moment is from its expectation of zero. The
substitution of (2.16) into (2.5) indicates that the minimized value, Q7 (fr),
measures how far the sample is from satisfying the overidentifying restrictions.
This interpretation proves useful in the development of statistics for testing
whether the model is correctly specified. However, before we can discuss such
methods, it is necessary to consider the asymptotic properties of the parameter
estimator and the estimated sample moment. So, we delay further discussion of
methods for assessing the model specification until Section 2.5.

2.3 Asymptotic Properties

GMM estimation generates two important statistics which play a central role in
inference about the underlying model; these are the parameter estimator and
the estimated sample moment. Since the latter depends on the former, it makes
most sense to begin our discussion of their asymptotic properties with the pa-
rameter estimator, and then to use these results to analyze the behaviour of the
estimated sample moment. The asymptotic analysis of the parameter estimator
focuses on the twin properties of consistency and asymptotic normality. The
latter facilitates the construction of large sample confidence intervals for the
elements of 0y. As will emerge, these intervals involve a consistent estimator
of the long run variance of the sample moment, and so we briefly consider how
such an estimator can be calculated in our simple model. As mentioned in the
previous section, the estimated sample moment plays an important role in the
construction of hypothesis tests. In this capacity, it is the asymptotic normality
of T=12Z'u(f7) which is important, and so it is this aspect of the statistic’s
behaviour upon which we concentrate.

The asymptotic analysis rests on applications of the Weak Law of Large
Numbers (WLLN) and Central Limit Theorem (CLT) in Lemmas 1.2 and 1.3
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respectively. It was noted in Section 1.4.2 that the assumption of strict sta-
tionarity is insufficient by itself for these theorems and so we must introduce an
additional restriction. Our purpose here is to illustrate the basic ideas and so
it is convenient to assume away any dependence structure in the data for the
time being.

Assumption 2.4 Independence
The vector vy = (x}, z;,u)" is independent of vi1s for all s # 0.

Together, assumptions 2.1 and 2.4 imply v; is an independently and identically
distributed process.

To begin with, it is most convenient to substitute for y in (2.8). Equation
(2.1) implies y = X6y + v and using this identity in (2.8) yields

Or =0+ {(TX'ZYWp (T Z'X)} 1 (T X' Z)Wp (T Z'u) (2.17)

The consistency and asymptotic normality of 61 can be deduced directly from
(2.17). We start with consistency.
From (2.17), it follows that

plim Op = 0 + plim [{(T' X' Z)Wr (T Z'X)y N (T X' Z)Wr (T~ Z'u)]
(2.18)
Using Slutsky’s Theorem (see Lemma 1.1), (2.18) can be rewritten as

plimbp =60y + {plim(T~ X' Z)plim(Wrp)plim(T~Z'X)}

2.19
plim(T X' Z)plim(Wr)plim/(T~' Z'u) (2.19)

From Definition 1.2, it follows immediately that plim(Wr) = W, a positive
definite symmetric matrix. The limiting behaviour of the other matrices in
(2.19) can be deduced from the WLLN. Since z;x} and z;u; are contemporaneous
functions of independent processes, they are themselves independent processes.
Therefore the WLLN yields®

[
[

It is at this point that the population moment and identification conditions
become important. The identification condition states that E[z;x}] is of rank p
and so the inverse of E[z,z;] W E[z.x}] exists. The population moment condition
states that E[z;u;] = 0. Using these two results in (2.19) yields

—1 —1 T / p
TZ2'X =TS e, B
14
—

Elzx) (2.20)
T_lZ'u =71 23:1 ZiUt FElziug

] (2.21)

plim Op = 0y + M E[zu,] = 6y (2.22)

where M = (F'F)~'F'W'/? and we have again put F' = W'/2E[z2}]. There-
fore, 07 is consistent for 6.

5 Strictly, it must be assumed that all stated expectations exist. However, since the
purpose of this chapter is purely expository, we suppress such details here.
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The asymptotic distribution® of the estimator is derived by rewriting (2.17)
as

TY2(0r —0) = {(T7' X' Z)Wp(T7Z' X))} YT X' Z)Wp (T2 Z'u) (2.23)

and analyzing the behaviour of the components on the right hand side of (2.23).
Since z;u; is an independent process, the CLT can be invoked to deduce that

T
T2 7w =T7Y23" zuy % N(0, S) (2.24)

t=1

where S = limp o Var[T=1/2 Y] zyu;] and the mean of this distribution
follows from the population moment condition. Therefore, T1/2 (éT —0) =
Mpnp where Mp converges in probability to the matrix of constants M and
np converges in distribution to a normal random vector. Using Lemma 1.4, it
follows that

TV2(0p — 65) % N(0, MSM’) (2.25)

where, as a reminder, M = {E[z;2;] W E[z2}]} " E[x,2,] W. In the case where
p = q then M reduces to E[zx}] and so MSM' = {E[zx}]} 1 S{E[z.z}]} L.
Equation (2.25) implies that an approximate large sample 100(1 — «)% con-

fidence interval for 6 ; is
Or,; + Za/Z\/m (2.26)

where VTM is the (i, ) element of a consistent estimator of M SM" and 2,5 is the
100(1—a/2) percentile of the standard normal distribution. A consistent estima-
tor of MSM’ can be obtained from consistent estimators of its components be-
cause by Slutsky’s Theorem if My 2 M and Sy 2 S then MTSTM’T 2 MSM.
The obvious choice of My is {(T~' X' Z)Wp (T~ Z'X)} = (T~ X' Z)Wr because
it has already been shown this matrix converges in probability to M. To con-
struct Sy it is necessary to be more specific about the form of the long run
covariance matrix, S. Under our assumptions z;u; is an independently and
identically distributed process with a mean of zero. Together these restrictions
imply

Fluusz2l] = Eu?z?), say  fort=s
0 fort#£s
and so
T T
S = TlgI;OT ! t_zl ZlE w22 = Elu?z2'] (2.27)

6 There has been a vast literature on the finite sample properties of IV estimators in the
linear model. Unfortunately, these results do not generalize to the nonlinear dynamic models
which are the ultimate focus of this book. Therefore we concentrate on asymptotic results
here. However, this finite sample theory is briefly reviewed in Section 6.2.
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White (1984, Chapter 6) demonstrates that S can be consistently estimated by
T

Sp = T7') i7zz (2.28)
t=1

where u; = y; — :z:;éT In certain circumstances, more structure can be placed
on E[u?zz'] which can be exploited in the construction of Sr. For example, in
most econometric textbooks IV is first encountered in the “classical” model in
which u; possesses the properties:

Assumption 2.5 Classical Assumptions about u;
(i)Eus] = 0; (ii) E[u?] = o2; (iii) us and 2 are independent.

222'] = 0%FE[z2}] and this can be consistently

Under these assumptions Elu
estimated by

Scrv = 62T7'2'Z (2.29)

where 62, = T~ u(f7) u(fr) and we have used the “CIV” subscript to emphasize
the imposition of the Classical assumptions about w; but suppressed the T
subscript for notational simpicity.

Finally, we derive the asymptotic distribution of the estimated sample mo-
ment. For reasons that will become apparent, it is most convenient to consider
the transformed version of this statistic obtained by premultiplying the original
by W%/ ?. First notice that

W/ 2T 2 7u(0r) = WEPT12 2 — WPT12' X T2 (6 — 6y) (2.30)
and so it follows from (2.23) that
Wi PT 12 Z2'u(0r) = (I, — Pr)WH>(T~/22'u) (2.31)

where Pp = Fr(FjFr)~'Fy, and - as in Section 2.3 — Fp = W/*(T~12'X). In-
spection of (2.31) reveals that T—1/2Z’u(f1) has a similar structure to TV/2(6,—
0o) — that is, it takes the form Npnp where Np converges in probability to a
matrix of constants and ny converges to a vector of normal random variables.
Therefore, we can once again use Lemma 1.4 to deduce the limiting distribution,
namely

WiPT12 7' u(fr) % N(0, NSN') (2.32)

where N = [I, — PJW'/2. In Section 2.3, it is noted that the estimated sample
moment is closely related to the overidentifying restrictions, and this connection
also manifests itself in the asymptotic distribution. Equation (2.31) implies that

Wi AT Z2'u(0r) = (I, — PYWY2T V22" + o,(1) (2.33)

and so the asymptotic behaviour of W%/ *r-1/2g u(éT) is governed by the func-
tion of the data which appears in the overidentifying restrictions. Once this
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relationship is recognized then it becomes apparent that the limiting distribu-
tion in (2.32) only has mean zero if the overidentifying restrictions are satisfied
at 0p. One other aspect of the limiting distribution should also be noted. The
covariance matrix is

NSN' = (I, — PYWY2sw/2'(1, — P) (2.34)

Since W'/2 and S are nonsingular, it follows’ from (2.34) that rank(NSN') =
rank(Il, — P) = ¢ — p, and hence that NSN’ is singular.® Notice that this rank
equals the degree of overidentification and so further emphasizes the connection
between the estimated sample moment and the overidentifying restrictions.

2.4 The Optimal Choice of Weighting Matrix

So far, the analysis has taken the weighting matrix as given and only placed
fairly mild restrictions on its composition in Definition 1.2. At the same time,
it has been seen that this matrix plays a crucial role in the analysis because it
determines the exact nature of the minimand. In this section, we characterize
the optimal choice of weighting matrix and this leads us to a discussion of the
two step or iterated GMM estimator.

To begin, we must consider what is meant by “optimality” in this context.
An inspection of the previous analysis indicates that the weighting matrix only
affects the asymptotic properties of the estimator via the covariance matrix in
(2.25). This can be anticipated from the role of Wy in the estimation. The es-
timator will converge in probability to the true value as long as the population
moment and identification conditions hold. Essentially, these conditions ensure
there is sufficient information from which to estimate 6y and that this informa-
tion is correct. The choice of weighting matrix determines how this information
is used and so impacts directly upon the precision of the estimation. It is this
feature which is captured by the variance of the asymptotic distribution. There-
fore the optimal weighting matrix is defined to be the value which minimizes
the asymptotic variance.

Inspection of (2.25) reveals that it is the probability limit of W, W, which
affects the asymptotic variance of Or. Therefore, we begin by characterizing
the optimal value of W and then consider the issues involved in constructing a
matrix which converges to this limit. For this discussion it is useful to introduce
the following notation for the asymptotic variance of 67 given in (2.25),

V(W) = {E[:Uﬁé]WE[chi]}fl Elxiz )W SW E[Ztl‘”{E[ItZ’;]WE[ZtI;]}71
(2.35)
The optimal value of W, W0 say, is the value which minimizes V(W) in a
matrix sense and so satisfies

V(W) — V(W°) = a positive semi-definite matriz

7 See Dhrymes (1984) [p.17].
8 See Rao (1973) [Chapter 8] for a discussion of the singular normal distribution.
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for any other valid choice of weighting matrix, W. Hansen (1982) shows that
0 = §~1. Substituting this value into (2.35) yields

V(S™) = {E[x:2}] ST Elz2}]} ! (2.36)

This matrix V(S~1) represents an efficiency bound for GMM estimation of 6
based on the population moment condition E[z;u:(6p)] = 0 because all other
choices of W result in a variance which is at least as large.

To construct a GMM estimator which reaches this bound, it suffices to put
Wr equal to ST , where Sr is a consistent estimator of S. This appears to
create a circularity because (2.28) indicates that Sr depends on HT, this is
easily resolved, however. For the consistency of Sr, it is only necessary that
this matrix is constructed using a consistent estimator of 8y and not the optimal
estimator. This leads us to Hansen’s (1982) two step procedure for optimal
GMM estimation. On the first step, a consistent estimator of 6y is obtained
using GMM with a sub-optimal weighting matrix such as Wy = I, or W =
(T~1Z'Z)~1. This estimator is used to construct Sr. On the the second step,
the model is re-estimated using Wr = S’; !, These two steps are sufficient
to obtain an estimator with asymptotic covariance matrix equal to V(S~1).
However, the estimator of S used in the second step estimation is based on a sub-
optimal estimator of 8y and so there may be gains in finite sample performance
from iterating this procedure. In some cases, iteration may be unnecessary. For
example, in the Classical regression model setting (Assumptions 2.1-2.5) the
optimal estimator can be constructed by settlng Wr just equal to (T712'Z)~!
instead of SC v because the factors involving 6 62, and so GT, cancel out. In this
case the optimal estimator can be calculated in one step, and can be recognized
as the Two Stage Least Squares (2SLS) estimator. In practice, this type of
convenient cancellation is rare and so iteration is required in most cases of
interest.

Finally, a matter of terminology should be addressed. The estimator de-
scribed in this subsection is typically refered to as “the optimal two step (or
iterated) GMM estimator”. It is important to remember that this optimality
only refers to the choice of weighting matrix and there is no implication that the
population moment condition is optimal in any sense. It is possible to character-
ize the optimal set of population moment conditions to use in GMM estimation.
However, this is an extremely complicated problem for the types of model in
Table 1.1. Therefore, it serves no useful pedagogic value to explore this issue
here but we return to it in Chapter 7.

2.5 Specification Error: Consequences and
Detection
So far, it has been assumed that the underlying economic/statistical model is

correctly specified. Unfortunately, this need not be the case, and so it is im-
portant to consider how specification error would impact on the asymptotic



2.5 Specification Error: Consequences and Detection 45

properties of the estimator and the estimated sample moment. Intuition sug-
gests that such an error renders all inferences suspect at best and completely
invalid at worse. This is born out by the discussion below, and so motivates
the development of statistical procedures to assess whether the model is cor-
rectly specified. In this section we introduce the overidentifying restrictions test
which has become the standard diagnostic for model specification within the
GMM framework. Other diagnostics are discussed in Chapter 5.

To facilitate the discussion, it is useful to recap briefly what aspects of the
model impact on 7 and T*IZ’u(éT). To this end, it is useful to introduce the
notation M to denote the underlying economic/statistical model. As we have
seen, this model has the property

M = E[zu:(0y)] =0, Vt for some unique 6y € O (2.37)

The population moment condition in (2.37) implies the identifying restrictions
are satisfied at 6y and so éT both converges in probability to 6y and T1/2 (éT —
o) converges to a mean zero normal distribution. The population moment
condition also implies the overidentifying restrictions are satisfied at 6 and so
T’l/QZ’u(éT) converges to a mean zero normal distribution.

If M is no longer considered to be the truth, then there are two natural,
alternative scenarios. First, the true model, M 4 say, although different from
M, shares the property in (2.37) — that is

Mas = FElzu(04)] = 0, Vt for some unique 64 € © (2.38)

Secondly, the true model, M g say, implies the property in (2.37) does not hold
— that is
Mp = A0 € O such that E[zu:(0)] =0, Vt (2.39)

Notice that (2.38) can hold for any ¢ > p but (2.39) can only hold for ¢ > p. This
follows because if ¢ = p then E[ziu:(0)] = 0 represents a set of p equations in
p unknowns which must perforce have a solution — subject to the identification
condition in Assumption 2.3. We now consider the behaviour of the estimator
and estimated sample moment under M 4 and Mpg.

First, consider the case where the true model is M 4. Since M and M 4 are
different by definition, they must have different implications for some aspect of
the distribution of v;. However, a comparison of (2.37) and (2.38) indicates that
M and M4 have the same implications for E[z;u:(0)] — the only potential dif-
ference being in the parameter value at which the moment condition is satisfied.
The population moment condition in (2.38) implies the identifying restrictions
are satisfied at 6, and so the analysis in Section 2.3 can be replicated to show
that Op converges in probability to 6,. Furthermore, this analysis can be con-
tinued as before to show that T/ 2(@T — 64) converges to a mean zero normal
distribution. Equation (2.38) also implies the overidentifying restrictions are
satisfied at #4 and so this in turn implies that the estimated sample moment
converges to a mean zero normal random vector. So the only potential difference
between M and M4 is in the value to which éT converges. However, as stated
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above, neither model implies anything about the value of 8 which satisfies the
population moment condition beyond its uniqueness. Therefore, M and M4
are observationally equivalent on the basis of E[zyu.(6)] alone.

In contrast, M and Mp have very different implications for E[z;u(0)].
Equation (2.39) states that there is no value of 8 at which the population mo-
ment condition is satsified. In spite of this, there must be a solution to the
identifying restrictions because they constitute a set of p equations in p un-
knowns.? If this solution is denoted @, then it follows by the same logic as
before that 67 converges in probability to #,. It is also possible to develop an
asymptotic distribution theory for the estimator in this case, but the analysis
is more complicated than under M. However the most important difference
emerges in the behaviour of the estimated sample moment. The analysis in
Section 2.3 can be replicated to show that

Wi PT 2 Z2'u(0r) = (I, — PYWYT2Z'u(8,) + o0,(1) (2.40)

It is apparent from (2.40) that the asymptotic behaviour of Wy/*T=1/2Z"u(fr)
is determined by whether or not the overidentifying restrictions are satisfied
at f,. The answer to this question can be deduced from the properties of 6,.
By definition, 6, satisfies the identifying restrictions and (2.39) implies that
E[ziut(0.)] # 0. Since,

WY2E[zu(0,)] = PWY2E[20u:(0.)] + (I, — PYWY2E[zu,(6.)]

it must follow that
Iy — P)Wl/QE[ZtUt(G*)] #0 (2.41)

Equations (2.40) and (2.41) imply that W,/ 2T=1/22'u(67) is not O,(1) — as it
is under M or M4 — but diverges at rate 7"'/? and, in consequence, does not
converge in distribution.'®

Regardless of whether M 4 or M g is the truth, it is desirable to develop sta-
tistical tests which can indicate that the assumed model is incorrect. Clearly, it
is impossible to discriminate between M and M4 on the basis of T~/2Z"u(fr).
This can only be achieved by deducing a different set of moment conditions from
M and testing whether they are corroborated by the data.'! On the other hand,
M and M p have different implications for the overidentifying restrictions and
so it would be anticipated that it is possible to discriminate between these two
models based on the estimated sample moment.

Sargan (1958) was the first person to introduce the idea of testing the overi-
dentifying restrictions in a linear model estimated by IV, and Hansen (1982)
extended the statistic to the GMM framework. It is natural to base the test on
the GMM minimand, QT(éT), since it is shown in Section 2.3 that this statistic
measures how far the sample is from satisfying the overidentifying restrictions.

9 Again, subject to the identification condition in Assumption 2.3.

10 See Chapter 4.

1 However, the same problem recurs because there is always more than one probability
distribution which can generate a finite set of population moment conditions.
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To develop the distribution theory, it is most convenient to focus on the opti-
mal GMM estimator, and so we set Wr = S, ! Therefore, the overidentifying
restrictions test statistic'? is given by

Jr =TQr(br) = T *u(br)' Z S71 T~ Z'u(6r) (2.42)
Under the null hypotheses,
H() . E[ztut(ﬂo)] = O

Jr converges in distribution to a xZ2_,.'* Notice that the degrees of freedom
equal the number of overidentifying restrictions. Intuition suggests that Jp can
detect when the true model is actually Mp, and this is verified in Chapter 5.

2.6 Summary

The purpose of this chapter is to introduce the main elements of the GMM
framework using the example of the IV estimator in the static linear regression
model. This approach is feasible because the intrinsic information in IV esti-
mation takes the form of a population moment condition. Specifically, IV rests
crucially on the existence of a vector of instruments, z;, that are uncorrelated
with the regression error, u;(y), or equivalently that the instruments satisfy
Elzui(6p)] = 0. If this population moment condition is used as a basis for
GMM estimation then the resulting GMM estimator is the IV estimator. The
advantage of deriving IV in this way is that it enables us to highlight seven key
features of the GMM framework:

e Identification: For the estimation to be succesful, the population moment
condition must not only be valid but also provide sufficient information
to identify the parameter vector.

e Identifying and overidentifying restrictions: GMM estimation in overiden-
tified models involves a fundamental decomposition of the moment con-
dition into identifying restrictions and overidentifying restrictions. The
identifying restrictions contain the information that goes into the estima-
tion, and the overidentifying restrictions are a remainder that manifests
itself in the estimated sample moment.

o Asymptotic properties: The GMM estimator is consistent and, when ap-
propriately scaled, has a limiting distribution that is normal.

12 This is also sometimes refered to as the J-test.

13 Tt can be recognized that the overidentifying restrictions test is a direct extension of
Neyman and Pearson (1928) statistic GF(f7) discussed in Section 1.2. At first glance, the
degrees of freedom appear to be in conflict; however, there is a logical explanation. Only k£ —1
of the population moment conditions in (1.7) are free: the k" condition, say, is implied by
first k — 1 plus the constraints Zle[Dt (2) — h(i;00)] = 0 which must hold because of the
definitions of D¢(3) and h(%;6p).
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Estimated sample moment: The estimated sample moment is shown to
have a limiting normal distribution whose attributes depend directly on
the function of the data in the overidentifying restrictions.

Long run covariance estimation: To translate this asymptotic normality
into practical inference procedures, it is necessary to estimate the long run
variance of the sample moment consistently.

Optimal choice of weighting matriz: The optimal choice of weighting ma-
trix depends on the long run variance of the sample moment and so its
use typically involves a two step or iterated estimation.

Model diagnostics: The overidentifying restrictions provide a basis for
testing the validity of the model specification via the estimated sample
moment.

Subsequent chapters build from this foundation to present the GMM framework
in nonlinear dynamic models. Chapter 3 focuses on estimation and, in its course,
extends the discussion of the first five aspects highlighted above to the general
setting. The statistical properties derived in Chapter 3 are premised on the
assumption that the model is correctly specified. Chapter 4 considers the impact
of misspecification on the limiting properties of the GMM estimator. Chapter 5
derives the large sample properties of both the overidentifying restrictions test
and also a number of other hypothesis tests which have been proposed within
the GMM framework.
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GMM Estimation in
Correctly Specified Models

The previous chapter has provided an introduction to the GMM framework and
the types of inference issues which arise within it. Although many of the details
reflected the static, linear nature of the model, the underlying intuition did
not. The essential feature of the estimation is the minimization of a quadratic
form in the sample analog to a population moment condition which provided
sufficient information to identify the unknown parameters. In this chapter, we
show this strategy can be successfully extended to nonlinear dynamic models.
The focus here is on the estimator and the derivation of its statistical properties
in correctly specified models. The impact of misspecification on these properties
is examined in Chapter 4. Matters of inference are postponed until Chapter 5
when a variety of hypothesis testing procedures are reviewed. The level of the
discussion is more rigorous than the previous chapter, and the main results are
formally proved. However, the issues are also illustrated throughout with an
empirical example to provide guidance on the practical implementation of the
estimator as well. Here, we focus on Hansen and Singleton’s (1982) consumption
based asset pricing model which was described in Section 1.3.1. Chapter 9
reports empirical results for the other four models in Section 1.3.

Section 3.1 defines the population moment condition and presents condi-
tions for parameter identification. Section 3.2 discusses the calculation of the
estimator in practice and includes a brief review of numerical optimization tech-
niques. Section 3.3 extends the fundamental decomposition of the population
moment condition into identifying and overidentifying restrictions to the nonlin-
ear model. Section 3.4 derives the asymptotic properties of the estimator and
the estimated sample moment. Section 3.4.1 presents a proof of consistency
and Section 3.4.2 derives the asymptotic distribution of the estimator, and also
uses this analysis to provide further insights into the form of the identifying
and overidentifying restrictions. Section 3.4.3 derives the asymptotic distribu-
tion of the estimated sample moment. Section 3.5 describes the construction

49
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of consistent estimators of the long run variance under three scenarios for the
dynamic structure of the sample moment. Section 3.5.1 covers the case where
f(ve,0p) is a serially uncorrelated process; Section 3.5.2 considers the case where
f (v, 0p) is generated by a vector autoregressive moving average process; and fi-
nally Section 3.5.3 considers the class of heteroscedasticity and autocorrelation
covariance (HAC) matrix estimators whose properties only require the depen-
dence structure to satisfy very mild restrictions. Section 3.6 derives the optimal
choice of weighting matrix and this leads to a discussion of the two step and
iterated GMM estimators. Section 3.7 examines the consequences of various
transformations and normalizations on the GMM estimator, and this leads to a
discussion of both the continuous updating GMM estimator and also the con-
struction of confidence intervals based directly on the GMM minimand. The
chapter concludes with a slight detour. In Chapter 1, it is stated that many
estimators can be viewed as special cases of GMM. Although some simple ex-
amples were provided, it was not possible to elaborate on the point at that
stage. However, this is possible after the material in the first five sections of
this chapter. Section 3.8 shows formally how other estimators can be fit within
the GMM framework. Section 3.9 contains a summary of the chapter.

3.1 Population Moment Condition and
Parameter Identification

In Chapter 1, it was shown that a wide variety of econometric models lead to
population moment conditions which involve nonlinear functions of the data and
parameters. It is therefore desirable to adopt a very general framework which
encompasses all these cases. This means that the analysis in this chapter begins
with the population moment condition and no attempt is made to character-
ize the specific data generation process which lays behind it. This population
moment condition involves a function f(.,.) of the observable vector of random
variables v; and the unknown (p x 1) parameter vector, 6. As before the param-
eter space is denoted by © C RP. However, before we introduce the population
moment and identification conditions, certain restrictions need to be placed on
vy and f(.,.).

Assumption 3.1 Strict Stationarity
The (r x 1) random vectors {v; —o0o < t < 0o} form a strictly stationary process
with sample space V.C R".

Recall that this assumption implies all expectations of functions of v; are inde-
pendent of time.

Assumption 3.2 Regularity Conditions for f(.,.)

The function f: V x © — R, where ¢ < 0o, satisfies: (i) it is continuous on
© for each vy € V; (i) E[f(v:,0)] exists and is finite for every 6 € ©; (iii)
E[f(ve,0)] is continuous on ©.
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Formally, it is necessary to assume that f(.,0) is a measurable function but we
suppress this type of condition throughout the text. All functions considered
are assumed to be measurable; see Newey and McFadden (1994) for a discussion
of circumstances in which this may not hold. Assumption 3.2 holds in most,
if not all, of the models behind the studies listed in Table 1.1. However, this
assumption excludes some cases of interest, such as step functions which are
by their nature discontinuous. One further aspect of Assumption 3.2 should be
noted. The function f(.) is assumed to be finite dimensional. This assumption
is standard and satisfied in all the applications listed in Table 1.1. However,
there are circumstances in which it may be desirable to relax this assumption.
In Section 6.1.3, we consider the limiting behaviour of the estimator when ¢
tends to infinity with the sample size. It is also possible to generalize the
GMM framework to a continuum of moment conditions but we do not pursue
this extension. For the latter, the interested reader is refered to Carrasco and
Florens (2000).
The analysis centers on the following population moment condition.

Assumption 3.3 Population Moment Condition
The random vector vy and the parameter vector 0y satisfy the (¢ x 1) population
moment condition: E[f(ve, 0p)] = 0.

Just as in the linear model, the population moment condition can only be used
as a basis for estimation if it provides enough information to uniquely identify
the parameter vector 6y. In the linear model, it is possible to relate parameter
identification to a simple condition which only involved the data. In nonlinear
models, the situation is more complicated. Identification can fail due to the
properties of the data, v, or due to the properties of f(.) as a function of 6 or
due to an interaction of the two. To characterize how these types of failure can
occur in nonlinear models, it is necessary to introduce the concepts of global and
local identification. The need for this distinction will become apparent below.
The basic condition for parameter identification is given by:

Assumgtion 3.4 Glo‘pal Identiﬁcatipn
E[f(ve, 0)] # 0 for all 6 € © such that 6 # 6.

The adjective “global” emphasizes that the population moment condition
only holds at one value in the entire parameter space. This can be recognized
as the concept of identification used in our discussion of the linear model in the
previous chapter. Within that context, it was possible to derive a convenient
condition for global identification. Unfortunately, this is rarely possible in non-
linear models. However, there is one type of identification failure in nonlinear
models which can be diagnosed using the condition in Assumption 3.4. This is
the case when failure occurs due to the nature of f(.) as a function of 6. This
type of problem is best understood by considering two examples: in the the first
there are just two values of 6y which satisfy the population moment condition;
in the second, there are an infinite number of values which do so.
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Example: The Partial Adjustment Model
Suppose the data are generated by the model!

Y —Yi-1 = Poy" —yi—1)
Uy = pout—1 + et

where y* represents the desired level of the process y; and e; is an i.i.d. process
with mean zero. Simple rearrangement yields

ye = Bo(1 — po)y™ + (14 po — Bo)ye—1 + (Bo — 1)poyi—2 + € (3.1)

Now suppose there exists a set of variables z; which satisfy the population
moment condition E[zier(6p)] = 0 where e:(0) = y: — B(1 — p)y* — (1 4+ p —
B)yi—1 — (8 — Dpyi—2 and 0 = (8, p,y™)’. Although this is very similar to the
population moment condition in Chapter 2, it is outside that framework because
e+(0) is a nonlinear function of #. Using the condition in Assumption 3.4, the
parameter vector is identified if E[z:e:(6)] = 0 at only 6 = 6. To see if this
holds, it is useful to introduce the notation

et(1) =Yt — po — pYe—1 — H2Ye—2 (3.2)

where pu = (po, 11, #2)’. Equation (3.2) can be viewed as a type of “reduced
form” version of e;(#) because any value of 6 implies a value for p via the rela-
tionship,

o = B —py”
po= l+p—p (33)
pe = (B=1)p

Using these definitions, the condition for identification can be restated as the
requirement that each value of u is implied by only one value of . However, in-
spection of (3.3) reveals this is not the case here. The problems arise because the
bottom two equations imply a quadratic equation for p, namely p?—pp1 —pio = 0,
to which there are two solutions. Denote these by p; and ps. Each of these so-
lutions implies a value of 8 which satisfies the bottom two equations as well;
denote these by 5; = 1+ pa/p; for i = 1,2. Finally let yF = uo/{8:(1 — pi)}.
Clearly 6; = (Bi, pi,yF)" yields the same value of p for both ¢ = 1,2 and so
Assumption 3.4 is violated. o

Example: Eichenbaum’s (1989) Model for Inventory Holdings by
Firms

L This type of model has been used to analyze a wide variety of economic series including
money demand and inventory holdings. In these applications exogenous regressors are also
included and formally this removes the identification problem. However, if the regressors only
play a very marginal role then the same type of identification problems can emerge; see Blinder
(1986), Hall and Rossana (1991).
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It is shown in Section 1.3.4 that Eichenbaum’s (1989) model for inventory hold-
ings implies that the following population moment condition holds

E[{ht+2(0) — pohit1(to) }2¢] =0 (3.4)

where hyy1(¢) = I — {A+ (A3) "'} + 87 o1 + Spy1 — ¢67'S; and ¢ =
(A, B8,0)". In our earlier discussion of this model, ¢ is treated as a parameter
to be estimated rather than the three underlying parameters of which it is a
function. It may have been wondered why (4,7, ) are not estimated directly
and the answer is that they are not identified by the population moment condi-
tion. The problem arises because the elements of (,~, @) only appear in a ratio
form via ¢ = 1 — dy/a. Therefore, for any non-zero constant k, both (8,7, &)
and (k8,7 ka) yield the same value of ¢. This would clearly cause a violation
of Assumption 3.4. However, there is no such problem if only ¢ is estimated
instead. o

In both these examples, the identification failure arises because of the na-
ture of f(.) as a function of . As mentioned above, identification can fail for
other reasons but these are harder, if not impossible, to diagnose by examining
E[f (v, 0)] directly. In the linear model of the previous chapter, it is possible
to deduce a relatively simple condition for global identification and it would
clearly be desirable to develop something similar for nonlinear models. Unfor-
tunately, this cannot be done because it is typically impossible to find a useful
alternative representation for f(v, ) which holds over all § € ©. However such
a representation can be found if attention is limited to some suitably defined
neighbourhood of 8. The price of this approach is that we are now deriving con-
ditions for identification only within this neighbourhood and these are refered to
as conditions for local identification. As the names suggest, local identification
does not guarantee global identification but global identification cannot hold
without local identification. Therefore, a more transparent condition for local
identification is useful because it provides insights into when identification can
fail.

To derive the condition for local identification, it is necessary to introduce
the following definition and assumption. An e-neighbourhood of 6y is defined
to be the set N, which satisfies N. = {0; ||0 — 6p|| < €}. The aforementioned
alternative representation of f(.) is based on a first order Taylor Series approx-
imation for f(vs,8) over a neighbourhood of the form N.. For this to be valid,
it is necessary that N, C © and so 6y must be an interior point of ©.2 So this
condition is included with certain other regularity conditions in the following
assumption.

Assumption 3.5 Regularity Conditions on 9f (v, 0)/00’

(i) The derivative matriz 0f (v, 0)/00" exists and is continuous on © for each
ve € V; (i1) Oy is an interior point of ©; (iii) E[0f (v, 00)/08'] exists and is
finite.

2 In other words 69 must not lie on the boundary of ©. See Apostol (1974) [p.49] for
definition of the interior of a set.
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Part (i) of this condition is satisfied by most, but not all, of the models behind
the studies listed in Table 1.1. If violations occur they tend to stem from the
presence of absolute values for which the derivative is not defined everywhere
on ©. For example, the stochastic volatility model in Section 1.3.5 leads to
population moment conditions which involve absolute values.® It is possible
to develop local identification conditions in these situations but the analysis
becomes more complicated.* Since these cases tend to be the exception rather
than the rule, we work here within the framework of Assumption 3.5. Notice
that the other four models in Section 1.3 satisfy Assumption 3.5(i) and the other
two parts of the assumption can reasonably be expected to hold as well.

The condition for local identification is derived by restricting attention to
sufficiently small € so that f(.) is equal to the following first order Taylor series
expansion ° in N,

f(ve,0) = f(ve,00) + {0f (v¢,60)/00"}(6 — o) (3.5)

The advantage of this approach is that (3.5) implies f (v, 6) is a a linear function
of 6 — 0y in this neighbourhood. Taking expectations on both sides of (3.5) and
using Assumptions 3.3 and 3.5 yields

E[f(ve,0)] = {E[0f (vt,00)/00']}0 — bo) (3.6)

Equation (3.6) is essentially the same structure as (2.3) and so we can appeal
to our earlier analysis of the the linear model to deduce the following condition
for local identification.

Assumption 3.6 Local Identification

rank{E[0f (vt,00)/00']} = p.

This condition can be recognized as the generalization of the identification
condition for the linear model given in Assumption 2.3.° Notice the form of
the condition immediately implies identification fails if there are fewer moment
conditions than parameters, i.e. ¢ < p. While this is no surprise given the
discussion in Chapter 2, this restriction was not immediately apparent from
the global identification condition in Assumption 3.4. As in the linear model,
this type of condition can also fail if ¢ > p. However, one important difference
is that identification in nonlinear models may be sensitive to the value of 6
via Of (v,0)/06'. This opens up the possibility that the population moment
condition may provide enough information to identify the parameters at some
values of Ay but not at others.

3 Another example is encountered in Section 9.1 when we consider an extension of the
mutual fund evaluation method described in Section 1.3.2.

4 The interested reader is refered to Newey and McFadden (1994)[Section 7].

5 See Apostol (1974)[p.361].

6 In the linear model, f(vt,0) = z¢ut(9) and so 0f(vt,00)/060' = —z¢x,. The condition
implies global identification in the linear model because (3.5) is then an identity which holds
for all & and not just in a neighbourhood of 6.
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Clearly, the exact nature of the condition in Assumption 3.6 depends on
the f(.) in question. To illustrate the types of condition which can arise in
practice, we now examine local identification in three examples. We begin with
continuations of our earlier examples to illustrate the difference between global
and local identification. We then derive the local identification condition for the
consumption based asset pricing model in Section 1.3.1. Further examples can
be found in Chapter 9.

Example: Partial Adjustment Model (Continued)
Recall that f(ve,0) = zie:(0) and so Of (vt,0p)/00" = z:0e:(6p)/00". From the
definition of e;(d) and 6 it follows that

E[0f(ve,00)/00'] = Ez:2,) M (6) (3.7)
where 7y = (1,941, ¥y:—2)" and

—-(1=py* By —B(1 - p)
M(9) = 1 1 0

—p —(B-1) 0
Given this structure, it follows that”
rank{E[0f(vi,00)/00']} < min{rank(E[zx}]),rank(M (o))}

Inspection of M () indicates that in general this matrix is of full rank and so
rank{E[0f(v;,00)/00']} = rank(E[z%,]).2 Therefore local identification rests
on the relationship between the instruments and Z; in a similar way to our
earlier analysis of the linear regression model. Assuming this rank condition
holds, 6 is locally identified.

It is informative to relate this conclusion back to our earlier analysis of this
model. It was shown there that the parameter vector is globally unidentified
because there are two values of § which satisfy the population moment condition.
This failure arose because the solutions for p satisfy a quadratic equation to

which the roots are
p=p+ (/1 +4ps)/2

Notice that this structure suggests the two solutions are distinct values of 6
and not within an € neighbourhood of each other for some suitably small value
of e. It is therefore consistent with the finding that the two solutions are locally
identified even though 6, is globally unidentified. o

Example: Eichenbaum’s (1989) Model for Inventory Holdings by
Firms (Continued)
We again reconsider the problem of estimating the augmented parameter vector

7 See Dhrymes (1984) [Proposition 7, p.17].
8 See Ibid [Proposition 6, p.16].
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in which (4,7, a) are included in v instead of ¢. To simplify the analysis it is
convenient to set p = 0 but this does not effect the essence of the argument.
This case maps into our generic notation with f(v,00) = hita(tbo)z: where
0 = (N, 5,8,7,a)’. As in the previous example the nonlinearity only arises
through the parameters and so the derivative matrix has a similar structure

E[0f (v1,00)/00'] = Elz] M (6o) (3.8)

except this time &y = (I441, It, St41)" and

(20 T-1 (A8 0 0 0
M(9) = 0 —372 0 0 0
0 (1-8v/a)3~> A6~ Ja 667 a —yf "/’

However this time it is immediately apparent that rank{M(0)} < 3 and so
rank{E[0f(vt,00)/00']} < 3 < p. Therefore 6y is locally unidentified in this
model. Again this result ties in with our previous analysis of global identifica-
tion. It was shown before that (8,7, @) and (kd, 7, k@) yield the same value of ¢
for any nonzero constant k. Since k can be arbitrarily close to one, it follows that
if 8y = (Mo, Bo, 00, Y0, g)” satisfies the population moment condition then there
is always another value 0, = (Ao, Bo, k00,70, ko) within an e neighbourhood of
0y which also satisfies the population moment condition for any ¢ > 0.

Finally, it should be noted that this problem disappears if ¢ is treated as
a parameter to be estimated instead of (4,7, a). To see this, redefine the pa-
rameter vector to be 8 = (\, 5, ¢)’. In this case, 0f (vs,0)/06" is given by (3.8)

with
p)~t-1 ()t 0
M(9) = 0 -2 0
0 o2 —p!

It is immediately apparent that rank{M(#)} = 3 and so local identification
depends on whether rank{E[zZ}]} = 3. o

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model

It is shown in Section 1.3.1 that if the representative agent possesses a CRRA
utility function then the data and parameter vector, § = (v,4)’, satisfy the
population moment condition in (1.23). For our purposes here, it is convenient
to restrict attention to the case in which there is only one asset with a maturity
of one period. The population moment condition is then E[zzu:(6p)] = 0 where
ur(0) = 5:1:'1Y;i1x2,t+1 — 1, and we have set @141 = ¢i41/Ct, Tair1 = Tey1/Pr
with the j subscript being dropped as there is only one asset. In this model, we
have

E[0f(v1,0)/00'] = E[2:8log(w1,141)7] 412,41 » 2] 141%2,041] (3.9)

For local identification this matrix must have rank two when evaluated at 6.
Apart form requiring z; to contain at least two elements, it is not easy to deduce
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from (3.9) when this rank condition holds. o

These three examples illustrate how the rank condition can highlight what
aspects of the model are important for identification. However, as we have
also seen, it may be difficult to determine a priori whether these conditions are
satisfied for the data in hand. In practice, failures in identification may only
become apparent when estimation is attempted and so we return to this topic
in that context in the next section.’

3.2 The Estimator and Numerical
Optimization

It can be recalled from Definition 1.2 that the GMM minimand takes the form,

T T
0) ={T~" > f(ve, )Y Wr{T™" " f(vs,0)} (3.10)

For completeness we restate the properties of the weighting matrix here.

Assumption 3.7 Properties of the Weighting Matrix
Wr is a positive semi-definite matriz which converges in probability to the pos-
itiwe definite matriz of constants W.

By definition, the GMM estimator of 6 is

O = argmingeo Qr(6) (3.11)

where “argmin” stands for value of the argument — 6 — which minimizes the
function — Q7 (6). If Assumption 3.5 holds, and in most cases of interest it will,
then the first order conditions for this minimization imply dQr(6r)/80 = 0.
This condition yields!'?

/Utu 9T
= {1~ 12 YW {T~ 1Zf v, 07)} (3.12)
t=1
In the linear model of Chapter 2, these conditions could be solved to obtain a
closed form solution for 67 as a function of the data. Unfortunately, in nonlinear
models this is typically impossible. For example, the first order conditions for
Hansen and Singleton’s (1982) consumption based asset pricing model are

T
0 = {T7") [zdrlog(xi1)2) 5 172041 23] 51 22,041] ) Wr
t=1
T ~
AT z(dpa]i w2041 — 1)} (3.13)
t=1

9 Also see Section 3.6.
10 See Dhrymes (1984) [Proposition 92, p.111].
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Only a little trial and error is needed to verify that these cannot be solved to
produce a closed form solution for Or.

Back in the days of Karl Pearson, the story would have stopped here. Fortu-
nately, the advance of computer technology over the last forty years has enabled
the development of a vast array of numerical optimization routines which can be
used to calculate 6. These days, such optimization procedures can be imple-
mented with just a few lines of code in most econometric or statistical software
packages. In view of this, we do not provide a comprehensive review of these
procedures here.!'’ Instead we briefly discuss certain issues involved in their
implementation.

These types of computer based routines essentially perform an “informed
version” of trial and error to find the value of § which minimizes Q7 (6). The
procedure begins with some trial value of 6, (0) say. If this is the value which
minimizes Qr(6) then it should not be possible to find a value of 6 for which
the minimand is smaller. So the computer uses some rule to see if it can find
a value of 6, (1) say, which satisfies Q7(0(1)) < Q7(6(0)). If it can, then 6(1)
becomes the new candidate value for 67 and the computer searches again to see
it can find a value 0(2) such that Q7(0(2)) < Q7((1)). This updating process
continues until it is judged that the value of # which minimizes Q1 (6) has been
found. It is useful to distinguish three important aspects of such routines.

e The starting value for 6, 6(0).

e The iterative search method by which the candidate value of Or is updated
on the it" step.

e The convergence criterion used to judge when the minimum has been
reached.

The various numerical optimization routines differ in how the iterative search
method is performed. In most problems it is computationally infeasible to per-
form a search over the entire parameter space'? and so some rule is used to limit
the calculations involved. For example, in a class known as Gradient Methods'>
the value of 4 is updated on the i** step by

0(i)
where ); is a scalar known as the step size and D(.) is a (p x 1) vector known
as the step direction. The step direction vector is a function of the gradient,
0Qr(0(i — 1))/00, and hence reflects the curvature of the function at (i — 1).

As the names suggest, D(0(i — 1)) determines the direction in which to update

0(i — 1) and \; determines how far to go in that direction.

0(i — 1) + X\ D(0(i — 1))

11 Many excellent surveys already exist in the econometrics literature e.g. Quandt (1983),
Judge, Griffiths, Hill, Lutkepohl, and Lee (1985)[Appendix B] Gallant (1987)[Chapter 2].

12 Such a strategy is known as a grid search.

13 For example, see Judge, Griffiths, Hill, Lutkepohl, and Lee (1985) [p.953].
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Convergence can be assessed in a number of ways. For example, if 0(i) is
the value which minimizes Q7(f) then the updating routine should not move
away from this point. This suggests that the minimum has been found if

110G+ 1) — 03| < e (3.14)

where € is an arbitrarily small positive constant. A typical value for € is 1076 or
less. This rule allows for the fact that the update ;1 D(6(i)) is unlikely to be
exactly zero even if #(i) is the minimum due to rounding errors in calculation.
As stated in (3.14), the convergence criterion is independent of the magnitude
of #. In practice, this may be a problem if the latter is very small. Ideally, €
should be replaced by n(||0(i)|| 4+ 7) where 1 and 7 are small positive constants
in the order of 107° and 103 respectively. However, in some commercially
available computer packages the rule is of the form in (3.14). If this is the
case then the user must be sensitive to the order of magnitude of of # when
choosing €. Alternatively, convergence can be assessed by examining the first
order conditions. Once the minimum is reached then (3.12) should be satisfied
and this leads to the criterion

10Q7(8(i))/90]| < € (3.15)

where again allowance is made for rounding errors. Finally, if the minimum has
been reached then the updating should not alter the value of the minimand and
SO

|Qr(0(i + 1)) — Qr(0(i))| <€ (3.16)
Once again, it is desirable for the convergence criterion to reflect the size of the
objective function and so a better version of the rule is obtained by substituting
n(Qr(0(i)) + 7) for € in (3.16). However, as above, the convergence criterion
in some commercially available packages takes the form in (3.16) and if it does
then the user must be sensitive to the values of the minimand in choosing
€. Which rule should be used? It is often prudent to check all three because
anyone can be satisfied by itself without the minimum being reached; see Quandt
(1983) [p.737-8], Gallant (1987) [p.29].

The choice of starting values is also important. Ideally, #(0) should be as
close as possible to the value which minimizes Q7 () because this reduces the
number of iterations and hence the computational burden. Sometimes a pre-
liminary estimate of y is available and this can be used as a starting value.'*
Whether this is the case or not, it is a wise precaution to run the routine with
more than one set of starting values. In nonlinear models, the minimand may
exhibit a less regular topology than in the linear model with the result that the
numerical routine can have problems finding the minimum. The use of multiple
starting values provides some safeguard against this problem because the rou-
tine can be restarted outside of the problem areas. However, if these problems

14 This would be the case when calculating the two step or iterated GMM estimator; see
Section 2.4 and 3.6. In other cases, various rules have been suggested for the calculation
of starting values. We do not describe these here but refer the interested reader to Gallant
(1987) [pp-29-30] and the references therein.



60 GMM Estimation

persist from different starting values then this may indicate the parameter vec-
tor is unidentified by the population moment condition upon which estimation
is based.

To conclude this section, we provide an illustration of these issues.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model

Hansen and Singleton (1982) estimate their model with various choices of assets.
We concentrate here on just two of these choices; both are portfolios constructed
from all the stocks on the New York Stock Exchange and the difference between
them derives from the weights used in the portfolio. In one, all the assets
receive an equal weight; this choice is refered to as “equally weighted returns”
and denoted EWR. In the other, the weights on the assets reflect their relative
values; this choice is refered to as “value weighted returns” and denoted VWR.
In principle, the population moment condition in (1.23) holds jointly for both
choices of assets but it is pedagogically more convenient to estimate the model
separately for each choice of asset. Each asset has maturity m = 1 and so (1.23)
implies each of the assets satisfies

Elz(007)% 172441 — 1)] =0 (3.17)

where 1 441 = ciq1/¢t, 241 = Te41/pe and z; is the vector of instruments.
To implement the model, it is necessary to specify z;. In Section 1.3.1
it is shown that this moment condition holds for any z; € 4, and so the
economic model leaves open a lot of possibilities. Our identification analysis
indicated 8y = (70,d0)" is locally identified by (3.17) if the rank of the matrix
in (3.9) is two. As remarked above, this is not particularly illuminating apart
from the requirement that z; has at least two elements. With so many options
available, Hansen and Singleton (1982) estimate the model with a number of
different choices of instrument. However, here we will focus on just one to
simplify the presentation; this choice is z; = (1,214, T1,¢-1, T2, T2—1) . It is
also necessary to choose a value for the weighting matrix. We use two common
choices (7! Ethl 22;) "% and cl5 where c is a constant that is discussed below.
Hansen and Singleton (1982) estimate the model using monthly U.S. data
for the period 1959:2-1978:12, but we take advantage of the march of time to
use an extended sample covering 1959:1-1997:12. Once allowance is made for
the two conditioning observations needed to construct z;, this leaves a sample
of size T' = 465. The consumption of the representative agent in period ¢, ¢, is
defined to be aggregate real consumption of nondurables and services in period
t divided by total population in period ¢. Both consumption and population
series are compiled by the U.S. Department of Commerce, and obtained from
the FRED database constructed by the Federal Reserve Bank of St. Louis. The
consumption figures are seasonally adjusted and expressed in billions of chained
1992 dollars. The nominal return on the assets is obtained from the CRSP
tapes, and transformed into a real return using the implicit deflator associated
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with the measure of consumption. Specifically, this gives

deflator at time t
deflator at time t + 1

z2.44+1 = (1 + nominal return at time t + 1)

where the deflator at time t is the ratio of aggregate real consumption of non-
durables and services at time t to its nominal counterpart in period ¢. The latter
is also seasonally adjusted and has the same source as the real data.

The estimations are performed by minimizing TQ7(f) using routines in the
MATLAB version 6.0 Optimization Toolbox (Mathworks, 2000). This package
provides a number of optimization procedures. All our estimations employ the
procedure fminu which is a variant of the gradient method described above.!®
This estimation routine allows the researcher to specify constants which control
the convergence criterion for the parameters and the minimand. In our estima-
tion these two numbers are set equal and denoted €. To illustrate their impact
on the results, we perform the estimations using €p; = 1074,10® and 1075.

We begin with the estimation of the model for EWR. The results are pre-
sented in Table 3.1. Consider first the results for the case in which Wy = 10°I5.
The scaling factor of 10° is included because if Wy = I5 then the value of the
minimand is of the order 1072 for parts of the parameter space and this made it
difficult for fminu to find the minimum.'® Even with this scaling, the minimand
appears ill behaved. When €); = 1074, all four starting values do not initiate
procedures which converge to the same point. This behaviour could arise for
two reasons. First, the minimand may have a well-defined local minimum at
each of the two points to which the algorithm converged. In this case the param-
eters are locally identified at each point but obviously not globally identified.
Secondly, the convergence criterion may be insufficiently tight and the iterative
procedure is stopping before it reaches a local minimum. To assess which is
the case here, we re—estimate with ep; = 107° and then with e3; = 1075, As
can be seen, this refinement causes the iterative procedure to converge to the
same point for all the starting values. This diagnosis is confirmed by a plot of
the minimands. Figures 3.1 contains a plot the minimand for the case in which
Wr = 10515. As can be seen, Q7 (0) is very flat in the dimension of ~.

15 See Section 9.1 for an empirical example in which this method does not work well and
so an alternative routine is employed.

16 This is an example of the problem noted above. The value of the objective function was
of a lower order of magnitude than the convergence criteria.
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Table 3.1

GMM Estimation

First step estimation results for the consumption-based asset

pricing model with equally weighted returns

WT = 10515 :
Starting values EM (%,0) TQr(0)
(0.5, 0.5) 104,105,107 (-3.145, 0.999)  5.974
(-0.5, -0.5) 104 (-0.334, 0.994)  6.064
102,106 (-3.145, 0.999) 5.974
(5.5, 5.5) 10-4,1075,10~6  (-3.145,0.999)  5.974
(-5.5, -5.5) 107%,1075,107%  (-3.145, 0.999) 5.974
Wr = (T7' 0 22) 7
Starting values eMm (3,0) TQ7(6)
(0.5, 0.5) 104 (0.500, 0.993)  0.031
102,10 ( 0.398, 0.993) 0.031
(0.5,-0.5) 104,105,107 (0.398, 0.993)  0.031
( 5.5, 5.5) 104,105,1075  ( 0.398, 0.993)  0.031
(-5.5,-5.5 104,105,1075  ( 0.398, 0.993)  0.031
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Figure 3.1: Minimand with Wy = 10°I5 for the consumption-based asset
pricing model with equally weighted returns
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A similar problem emerges when Wr = (T~ Y21, 2,2/)~!, but again it disap-
pears when the convergence criterion is tightened. The shape of the minimand
is qualitatively similar to that in Figure 3.1 and so the plot is omitted. Al-
though, we have convergence for each choice of weighting matrix, the parameter
estimates are clearly very sensitive to this choice. In one case the estimated
relative risk aversion of the representative agent (1 — %) is 0.602 and in the
other it is 4.145. This discrepancy illustrates the motivation for estimation with
the optimal weighting matrix. However, we must delay a presentation of those
results until Section 3.6.

We now consider the estimation of the model with VWR. The results are
presented in Table 3.2. From Table 3.2, it is clear that the same problems are
encountered as before with Wy = 10°I5. It can be seen from Figure 3.2 that
the minimand has qualitatively the same shape with VWR as it did with EWR.
Once again, the results are sensitive to the choice of weighting matrix.

Table 3.2
First step estimation results for the consumption-based asset
pricing model with value weighted returns

WT = 10515 :
Starting values EM (4,6) TQr(0)
(0.5, 0.5) 10 (0503, 0.994)  0.388
107%,1076 (-1.871, 0.998) 0.338
(-0.5,-0.5) 104,105 (-0.348, 0.996)  0.359
1076 (-1.871, 0.998) 0.338
(5.5, 5.5) 104,1075,1076  (-1.871, 0.998)  0.338
(-5.5,-5.5) 107%,1075,107%  (-1.871, 0.998) 0.338
Wr = (TS zz)
Starting values EM (4,0) TQr(0)
all * 107%,1075,1075%  ( 0.698, 0.994) 0.003

Notes: * all = ( 0.5, 0.5), (-0.5,-0.5), (5.5,5.5), (-5.5,-5.5)
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Figure 3.2: Minimand with W = 10°I5 for the consumption-based asset
pricing model with value weighted returns

3.3 The Identifying and Overidentifying
Restrictions

The definition of the GMM estimator in (3.11) does not require f(.) to be dif-
ferentiable with respect to 6. In some cases this generality is useful, but it is
unnecessary in nearly all the models in Table 1.1. When f(.) is differentiable
then the estimator can be defined equivalently as the solution to the first order
equations in (3.12). This might appear a minor difference but it is important
because it facilitates a Method of Moments interpretation for GMM. Just as
in the linear model, this interpretation leads to a decomposition of the popu-
lation moment condition into identifying and overidentifying restrictions. As
shown in Chapter 2, this decomposition can be very useful for understanding
the properties of GMM and it also plays an important role in the construction
of diagnostics for the adequacy of the model specification. Similar dividends are
reaped in the nonlinear model and so now we extend this decomposition to any
models which satisfy the differentiablity conditions of Assumption 3.5.

An inspection of (3.12) reveals that the GMM estimator based on E[f(vy,
6o)]= 0 can be interpreted as a Method of Moments estimator based on

F(00)WY2E[f(ve,00)] =0 (3.18)
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where F(6y) = WY2E[0f(vs,00)/00'). Equation (3.18) states that
W1/2E[f (v, 0p)] lies in the null space of F(f)’, and implies rank{F (6)} linear
combinations of the transformed moment condition are set to zero. Assumption
3.6 guarantees this rank equals p and so, as in the linear model, the Method of
Moments interpretation emphasizes the fundamental connection between iden-
tification and estimation. However, this time there is a slight difference. In the
linear model, the concepts of local and global identification are identical but this
is not the case in nonlinear models as seen in Section 3.1. The form of (3.18) in-
dicates that it is the local version which is important here. The p parameters are
only locally identified if the estimation is based on p linearly independent equa-
tions. The nature of this connection coincides with the our earlier definitions of
the two types of identification. Local identification implies the population mo-
ment condition is satisfied uniquely at 8y in a suitably defined neighbourhood.
In this case, (3.18) has a well-defined solution at 6y. However, there may be
other points in the parameter space at which (3.18) has well-defined solutions —
this eventuality is only ruled out if 6y is globally identified.

If p = ¢ then (3.18) is equivalent to E[f(v,6p)] = 0, and we note paren-
thetically that this means the weighting matrix plays no role in the analysis.
However, if ¢ > p then there is a difference between information used in esti-
mation and the original population moment condition. Since (3.18) is essen-
tially the same structure as (2.10), we can repeat the same arguments here to
show the population moment condition can be decomposed into identifying and
overidentifying restrictions associated with GMM estimation. The identifying
restrictions are'”

F(00)[F(60)' F(60)] ™" F(60)' W'/ E[f (v, 60)] = 0 (3.19)

These restrictions characterize the part of the transformed population moment
condition used in estimation. Formally, (3.19) states that the least squares pro-
jection of W2 E[f(vt,00)] onto the column space of F(f) is zero, and thereby
places rank{F (00)[F(00) F(0y)] ' F(6y)'} = p restrictions on the transformed
population moment condition. The overidentifying restrictions represent the
remainder and so by definition are!'®

{I, — F(00)[F(60)' F(00)] "' F(00) YW'/2E[f vy, 00)] = 0 (3.20)

Equation (3.20) states that the projection of W'Y/2E[f(vs,60)] on to the or-
thogonal complement of F(6p) is zero, and thereby places ¢ — p restrictions on
the transformed population moment condition. Notice that the identifying and
overidentifying matrices have the same projection matrix structure encountered
in the linear model, and so are orthogonal in nonlinear models as well.

The roles of the two sets of restrictions are reflected in their sample counter-
parts. Since the identifying restrictions represent the information used in esti-
mation, their sample analogs are satisfied at O by construction. In contrast, the

17 This terminology is introduced by Sowell (1996) who first characterized the identifying
restrictions.

18 This terminology is introduced by Hansen (1982) who first characterized the overidenti-
fying restrictions in this context.
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overidentifying restrictions are ignored in estimation and so their sample analog
is not satisfied. However, they can be used to give a useful interpretation to the
GMM minimand. From (3.12), it follows that

T
WiPT YN fu,br) = {I, — Pr(0r)[Fr(br) Fr(0r)) " Pr(0r)'} x
T
W%/ZT—l Z f(vt7 éT) (321)

where Fr(0) = W;«/ZT_1 Zle df (vg,0)/06, and so the transformed estimated
sample moment is the sample analog to the function of the data appearing
in the overidentifying restrictions.!® Therefore, Q7 (f7) can be interpreted as a
measure of how far the sample is from satisfying the overidentifying restrictions.

3.4 Asymptotic Properties

In the linear model, the asymptotic analysis rested crucially on a closed form
expression for Or. However, as discussed in Section 3.2, such a representation
typically does not exist in nonlinear models and so it is necessary to develop
a different strategy of proof. As it turns out, the difference is most marked in
the proof of consistency. Once consistency is established then it is possible to
invoke the Mean Value Theorem to obtain a representation for éT — 6 which
facilitates the derivation of asymptotic normality along very similar lines to the
argument used in the linear model. Hansen (1982) establishes these properties
in his original article. Newey and McFadden (1994) and Wooldridge (1994)
provide very useful treatments of the asymptotic analysis of a wide variety of
econometric estimators. Our discussion takes advantage of their results and the
reader is refered to these sources for some of the more technical details.

Before developing the asymptotic analysis it is necessary to place a further
restriction on v;. Recall from Section 1.4.2 that stationarity, by itself, is insuf-
ficient to allow the application of Laws of Large Numbers and Central Limit
Theorem. Therefore we now impose the following.

Assumption 3.8 Ergodicity
The random process {vy; —o0o < t < 0o} is ergodic.

A formal definition of ergodicity involves rather sophisticated mathematical
ideas and is beyond the scope of this book. Instead we refer the interested
reader to Davidson (1994) [pp.199-203] or Spanos (1999) [pp.424-6]. It is suf-
ficient for ergodicity that the dependence between v; and v;_,, decreases at a
certain rate to zero as m — oo. If v; exhibits this behaviour then it is called a
mixing process. This type of assumption has received a lot of attention in the
econometrics literature because it can be used to underpin asymptotic analysis

19 This assumes W is positive definite.
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in either stationary or nonstationary environments, and so is more general than
ergodicity which can only be used for stationary series. Further discussion of
these issues here would constitute a major detour and would distract us from the
main purpose of this chapter. Therefore, we provide a heuristic introduction to
mixing processes in Appendix A. This appendix also contains a brief summary
of the literature on GMM in a nonstationary environment.

3.4.1 Consistency of the Parameter Estimator

Even though there is no closed form expression for éT, it is clearly defined by
(3.11). The key to a proof of consistency is the consideration of what happens
if we perform a similar minimization on the population analog to Qr(6),

Qo(0) = {E[f(ve, )]} WA{E[f (v, 0)]} (3.22)

The answer follows directly from our earlier assumptions. The population mo-
ment condition implies Q(6p) = 0. The global identification condition and the
positive definiteness of W, imply Qo (8) > 0 for all § # 6y. Taken together these
two properties imply Qo (6) has a unique minimum at § = . Intuition suggests
that if: (i) 7 minimizes Q7(); and (ii) Q7 () converges in probability to a
function, Qo (@), whose unique minimum is at 6p; then 1 must converge in prob-
ability to 6p. In essence this intuition is correct but there is one mathematical
detail which needs to be taken into account. It is not necessarily the case that
the minimum of a sequence of functions converges to the minimum of the limit of
the sequence of functions. For this to be the case, it is sufficient that Q7 (6) con-
verges uniformly to Qo(6).2° This property is not guaranteed by Assumptions
3.1-3.8 and we must impose the following two additional restrictions.

Assumption 3.9 Compactness of ©
O is a compact set.

This compactness assumption strictly requires the knowledge of bounds on 6y
which is typically unavailable. However, this is often ignored in practice be-
cause these bounds can be assumed to be sufficiently large not to impact on the
construction of the estimator.?! The only other additional assumption is the re-
quirement that f(vy, 6) is bounded by a function with finite expectation for all 6.

Assumption 3.10 Domination of f(v;,0)
Elsupocol|f(vt, 0)[]] < o0

With these assumptions imposed, it is possible to deduce uniform convergence.??

20 This property is not guaranteed by pointwise convergence of Qr(f). See Apostol
(1974) [Chapter 9] for a useful discussion of the difference between pointwise and uniform
convergence.

21 Recall that a compact set is closed and bounded; see Apostol (1974) [Chapter 3]. Newey
and McFadden (1994) discuss the potential for proving consistency without the imposition of
compactness. Also see Potscher and Prucha (1997) [Chapters 3 and 4].

22 Tor example, see Newey and McFadden (1994) [Theorem 2.6], Wooldridge (1994) [The-
orem 4.1] and the references therein.
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Lemma 3.1 Uniform Convergence in Probability of Qr(6)
If Assumptions 3.1, 3.2, 3.7-3.10 hold then supyce |Qr(0) — Qo(8)] 2 0.

Once uniform convergence is guaranteed, then consistency can be estab-
lished.

Theorem 3.1 Consistency of the Parameter Estimator
If Assumptions 3.1-3.4 and 3.7-3.10 hold then 67 2 6.

For completeness we now provide a more formal proof of this theorem. It is
most convenient to break the proof down into two parts. First, it is shown that
the conditions of the theorem imply:

Tlim P[0 < Qo(fr) < €] =1 for any € > 0 (3.23)
This equation states that 67 minimizes Qo(6) with probability one as T —

o0o. The second part of the proof shows formally that this property implies
consistency.

Part (i): Proof of (3.23).

This result is deduced from the following three statements about Qr(.) and
Qo(.) implied by uniform convergence and the definition of the estimator.

(a): Lemma 3.1 states that the difference between Qr () and Qo (6) disappears
with probability one as T" — oo at any value of § € ©. Now, by definition
Or € O, and so Lemma 3.1 implies limy_, P[|Qo(07) — Qr(07)| <
€/3] = 1 for any constant € > 0.23 This implies in turn that

Jim P[Qo(0r) < Qr(fr) +¢/3] =1.

(b): Since 7 minimizes Q(0) it follows that
Jim PQr(6r) < Qr(60) +¢/3] = 1.

(c): By similar reasoning to part (a), it follows that
Jim PQr(6o) < Qo(bh) +¢/3] =1.
A combination of the probability statements in (a) and (b) yields
Jim P[Qo(fr) < Qr(f) +2¢/3] = 1
and this statement can be combined with (c) to deduce
Jim PlQo(fr) < Qo) +¢ =1

23 The division of € by three is for notational convenience below and has no substantive
impact on the argument.
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Equation (3.23) then follows immediately because Assumption 3.3 implies
Qo(6p) = 0 and the positive definiteness of W implies Qy(6) > 0.

Part (ii): (3.23) = 00 2 0.

Let N be an open subset of © which contains 6y and N¢ be the complement
of N relative to ©. By definition IN€ is a closed subset of a compact set and so
is itself compact.?* Since N¢ is compact and Qo(f) is a continuous function it
follows that Qp(f) has an infimum on N¢, which we denote by infgene Qo(0).
From Assumption 3.4, it follows that this infimum is strictly positive. Therefore
we can substitute € = infgene Qo(f) in (3.23) to deduce

Am P[Qo(br) < onf Qo(0)] =1

This implies lim7_, o P[éT ¢ N¢ = 1 and hence that limp_, P[éT eN]=1.
Finally, since the above argument holds for any choice of N no matter how
“small”, it must follow that limr_,., P [éT = 0y] = 1 which is the desired result.
o

Notice that the conditions for Theorem 3.1 placed no restrictions on the
derivative matrix df (vy, 6)/0¢’. It is true that we have refered to this derivative
matrix in previous sections but its role has not been crucial. It was used to
obtain a condition for local identification in models which satisfied Assumption
3.5; however the concept of global identification did not require its existence.
The derivative matrix also played a role in the discussion of numerical opti-
mization. However, as mentioned above, Q7(6) can be minimized by search
methods which do not require the calculation of the gradient. As we shall see
in the next sub-section, the derivative matrix plays a more central role in the
proof of asymptotic normality of the estimator.

3.4.2 Asymptotic Normality of the Parameter Estimator

To develop the asymptotic distribution of the estimator, we require an asymp-
totically valid closed form representation for 7*/2 (éT —6). This representation
comes from an application of the Mean Value Theorem.?> This theorem relates
f(.) to its first derivatives Jf (v, 0)/06 and so it is necessary to impose As-

sumption 3. 5 26 To snnphfy the presentation, define gr() = T—! Zt 1 [, 6)
and Gp(0) = T~ S, 0f (v1,0)/00’. The Mean Value Theorem implies that
gr(07) = gr(00) + Gr (07,00, \r) (O — 6) (3.24)

where GT(éT, 6o, Ar) is the (g x p) matrix whose i*" row is the corresponding

row of GT(G_(TU) where 9_(Ti) = Arifo + (1 — )\TVZ-)HAT for some 0 < Ap; <1, and

24 See Apostol (1974) [pp.50-3].

25 See Apostol (1974) [p.355).

26 Similar results can be developed for non-differentiable f(v¢,8) in cases where E[f(v¢, 0)]
is differentiable; see Newey and McFadden (1994) [Section 7].
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Ar is the (g x 1) vector with i*" element Ar,. Premultiplication of (3.24) by
GT(QT)/WT yields

Gr(0r) Wrgr(0r) = Gr(0r) Wrgr(60) + Gr(0r) WrGr(0r, 00, Ar) (01 — 6o)

(3.25)
Now the first order conditions in (3.12) imply the left hand side of (3.25) is zero
and so with some rearrangement it follows from (3.25) that

T2 (O — 6) —[Gr(07) WrGr(Or, 00, Ar)] ™ G (07) WrT 2 g1 (00)

= —MpTY?gp(0y),  say. (3.26)

Notice that this equation has the same basic structure as arose in the linear
model at this stage: a random matrix, — My, times a random vector, T/ g7 (6;).
Just as in Section 2.3, we start by analyzing the limiting behaviour of these
two components separately and then combine them to deduce the asymptotic
distribution of the estimator. The asymptotic behaviour of T/2g7(6p) is given
by a version of the Central Limit Theorem. To apply the Central Limit Theorem,
it is necessary to assume the second moment matrices of the sample moment
satisfy certain restrictions.?”

Assumption 3.11 Properties of the Variance of the Sample Moment
(i) E[f(vs,00)f(ve,00)] emists and is finite; (ii) limg_ooVar[T'?gr(6y)] = S
exists and is a finite valued positive definite matriz.

The Central Limit Theorem is as follows.

Lemma 3.2 Central Limit Theorem for 7"/2g7(6,)
If Assumptions 3.1, 3.3, 3.8 and 3.11 hold then T'/?g7 (o) LA N(0,S5).

The analysis of My is more complicated than in the linear model because it
depends on GT(éT) and GT(éT, o, Ar). Since Or 2 6y and égpi) lies on the line
segment between 61 and 6y, then it follows that ég) L0y fori=1,2...p. Intu-
ition suggests that this should imply both G (07) and Gr (01,00, A1) converge
in probability to Go = E[0f(vt,00)/00'] . In essence this is correct, but the
argument can only be formally justified if we impose two further restrictions on

Of (vr,0)/06".28

Assumption 3.12 Continuity of E[0f (v, 6)/06’]
E[0f(vt,0)/00'] is continuous on some neighbourhood N of 0g.

Assumption 3.13 Uniform Convergence of Gr ()
supgen, ||G7(6) — E[0f (vr,0)/00]]] = 0.2

27 See Hansen (1982) for more primitive conditions for such an S to exist. We do not give
these conditions here because they are superseded in the next section by the more restrictive
conditions under which S can be consistently estimated.

28 See Newey and McFadden (1994)[p.2145].

29 For any matrix A, we define ||A| = [tr(A’A)]}/2.
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With these assumptions imposed — and, of course, the conditions for the con-
sistency of 61 — it is possible to deduce the following.

Lemma 3.3 Convergence of GT(éT) and GT(éT, 60, A1)
If Assumptions 3.1-3.5, 3.7-3.10, 3.12 and 3.13 hold then GT(éT) 2 Gy and
Gr (07,00, \7) 2 Go.

Lemma 3.3 can be combined with Assumption 3.7 and Slutsky’s Theorem
to deduce that My 2 (GyWGo)~'GyW. Therefore just as in the linear model,
TY 2(9T —0p) is asymptotically the product of a random matrix which converges
in probability to a constant, and a random vector which converges to a normal
distribution. Therefore, the desired result follows once again from Lemma 1.4.

Theorem 3.2 Asymptotic Normality of the Parameter Estimator

If Assumptions 3.1-3.5 and 3.7-3.13 hold®® then: T/2 (07 —0,) A N(0,MSM")
where M = (GoLWGo) " 1GLW.

Theorem 3.2 implies that an approximate 100(1 — a))% confidence interval for
0o,; in large samples is given by

Or,; £ Za/2\/ Vi) T (3.27)

where VT,u‘ is the i — i'" element of a consistent estimator of MSM’. As in
the linear model, a natural candidate is based on consistent estimators of the
component matrices M and S. Notice that this time the matrix My cannot
be used because although consistent, the values of {égﬁ),i =1,2...p} are un-

known. However this problem is easily circumvented by replacing ééf) with 67
and using My = [Gr(07) WrGr(07)] " Gr(67) Wy to estimate M. However,
the consistent estimation of S is more complicated and is the topic of Section
3.5.

As we have seen, Theorem 3.2 rests on an application of the Mean Value
Theorem. The latter can only be applied if 6y is an interior point of ©. It
should be noted that if 6y is on the boundary then the limiting distribution
theory is different. Since this situation is not common, we do not pursue it
further here but refer the interested reader to Andrews (2002a).

To conclude this sub-section, we briefly return to the decomposition of the
population moment condition into identifying and overidentifying restrictions.
In Section 3.3, these components are defined and their role explained, but no
intuition is offered for why they take these particular forms. It is now possi-
ble to remedy this omission because an intuition can be developed from the
relationships used to deduce the asymptotic distribution.

The derivation of asymptotic normality began with (3.24). This equation is
formally justified from the Mean Value Theorem and holds for any 1. How-
ever, an inspection of the subsequent analysis indicates that we would have

30 Assumption 3.6 is only omitted because it is implied by Assumption 3.5.
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obtained the same asymptotic distribution if instead we had confined attention
to a sufficiently small neighbourhood around 6y for which

T'2g7(0) = T'?g7(60) + Gr(00)T"/*(0 — 6o) (3.28)

In other words, for the purposes of the asymptotic distribution theory it is
sufficient to concentrate on the behaviour of the sample moment in the neigh-
bourhood of @ for which T/2gr(6) is a linear function of T/2(§—6y). If we con-
centrate on this neighbourhood for the analysis of the minimization of T'Q7(6)
as well, then the identifying restrictions emerge naturally from the structure of
the problem. Using (3.28), the GMM minimand in this neighbourhood can be
rewritten as

TQr(6) = [[Wr/*T"2gr(0)|I° = Wy *T" gz (60) + Fr(60)T"/*(6 — 60)|
(3.29)
where, as before, Fr(6) = W%/2T_1 Zthl df (vg,0)/00 . Therefore if f7 mini-
mizes Qr(f) in this neighbourhood then T/2(Ar — 6y) must also be the least
squares solution to

W/ 2T 21 (60) + Fr(00)T" /(0 — 60) = 0 (3.30)

The least squares solution to the inconsistent set of equations in (3.30) is found
by solving the consistent set of equations?®!

Pr(60)Wa/*T"?g1(60) + Fr(80)T"/*(6 — 6) = 0 (3.31)

where Pr(0) = Fr(0)[Fp(6) Fr(6)] ' Fr(f) . Since the properties of the pro-
jection matrix and (3.28) in turn imply

Pr(00)Wy*TV2gr(60) + Fr(60)TY*(0 —60) = Pr(60){Wy/*T?gr(60)
+Fr(00)T"/%(0 — 60)}
= Pr(00)Wy/* T ?gr(6)
it follows that the least squares solution to (3.30) must also set
[1Pr(00) Wy T g (6) (3.32)

to zero. Equations (3.28)—(3.32) show that the identifying restrictions possess
their projection matrix form because, for the purposes of asymptotic distribution
theory, the estimation can be considered as being based on a linearization of
the sample moment condition in the neighbourhood of 6y. Finally, note that
the least squares solution to (3.30) is

T'V2(0p — 60) = —[Fr(60) Fr(60)] " Fr(60) Wy *T? g1 () (3.33)

Equation (3.33) is easily verified to be asymptotically equivalent to the formula
in (3.26) from which we deduced the asymptotic normality of the estimator.

31 For example, see Strang (1988) [p.156].
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3.4.3 Asymptotic Normality of the Estimated Sample
Moment

It is shown in Section 3.3 that the estimated sample moment represents a source
of information about whether the overidentifying restrictions are satisfied in
the population. This property is exploited elsewhere to develop a test of the
hypothesis that the model is correctly specified.3? At this stage, we confine our
attention to deriving the asymptotic distribution of W%/ 211/2 gT(éT) in correctly
specified models.

Equation (3.24) implies

Wi 2T 2gr(br) = Wi/ TV ?g1(00) + Wi/Gr (01,00, Ar)T? (07 — bo)
(3.34)
If we substsitute for T7'/2 (67 — 6p) from (3.26) then (3.34) can be written as

W%/2T1/29T(éT) = NT(HAT)W;«/2T1/2QT(90) (335)

where
~ ~ ~ ~ ~ /
Ny (br)=1I, — W3/*Gr (67,00, A\r)[Gr(Br) WrGr(Br, 60, M) G (67) W,/

Equation (3.35) implies W%/ *T1/2g1 (A7) has the same generic structure as the
expression for T1/2(07—6) in (3.26) namely: a random matrix times the random
vector, T/2gr(6y). Therefore we can use the same arguments as Section 3.4.2
to deduce the following result.

Theorem 3.3 Asymptotic Normality of the Estimated Sample
Moment

If Assumptions 3.1-8.5 and 3.7-3.13 hold then: W%/2T1/2gT(éT) L N(0, NW/2
SWl/QlN’) where N = [I, — P(6p)] and P(60) = F(60)[F(60)' F(60)] " F(6y)".

The connection between the estimated sample moment and the overidentify-
ing restrictions manifests itself in the asymptotic distribution. Equation (3.35)
implies that

Wi T P gr(br) = (1, = P(00)]W'>T"gr(80) + o0p(1) (3.36)

Inspection of (3.36) reveals that the asymptotic behaviour of the estimated
sample moment is governed by the function of the data which appears in the
overidentifying restrictions. Therefore, the mean of the asymptotic distribution
in Theorem 3.3 is zero because the overidentifying restrictions are satisfied at
0p. This relationship also has an impact on the properties of the variance of
the limiting distribution. Since W'/2 and S are nonsingular, it follows that3
rank{NSN'} = rank{Il, — P(6y)} = g — p, and so the covariance matrix is
singular.3* This rank is easily recognized to be the number of overidentifying
restrictions.

32 See Section 2.5 and Chapter 5.
33 See Dhrymes (1984) [p.17].
34 See Rao (1973) [Chapter 8] for a discussion of the singular normal distribution.
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3.5 Long Run Covariance Matrix Estimation

So far, very little has been said about S except that it exists and is positive
definite. The latter is the matrix generalization of the requirement that a scalar
variance be positive. It is important that the estimator also exhibits this prop-
erty or is positive semi-definite at the very least; otherwise the estimated vari-
ances of the individual coefficient estimators can be negative. This is not always
such a trivial property to impose and is one aspect of the various estimators
upon which we focus below.

To understand more about the structure of S, it is useful to rewrite its
definition as follows,

T
S = lim Var[T_l/Qth]

T—o0

lim FE
T—o0

T T
(T—1/2 th . E[T—1/2 th]> «
t=1 t=1
T T !
(TW S h-Br2Y ﬁ])
t=1 t=1

where to simplify notation we have set f; = f(v,6p). Since

T
T2y fo— EIT 1/QX:ft =1 l/zz(ft_E[ftD
t=1

t=1
it follows that

T

§ = Jim E{T™V2Y (fy = BIfDHT V2 Y (fe - ELfDY]

~+
=

T T
= Jim BTSN (- B - B (3:37)
t=1 s=1
The stationarity assumption implies that E[(f; — E[fi])(fi—; — E[fi—;])'] =T},

say, for every t and so3°

T-1 . 00
. T —J / /
S =Ty +T1£13>0{§ 1: <T> (T, +T5)} =T + § 1(rl- 1T (3.38)
J= =

The matrix I'; is known as the j* autocovariance matrix of f;.3¢ From (3.38)
it is clear that estimation of S is going to require assumptions about these
autocovariance matrices.

35 For example, see Hamilton (1994) [pp. 279-80].
36 See Hamilton (1994) [pp.261-2] for a discussion of the properties of autocovariance
matrices.
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The long run covariance matrix estimation literature has focused on the ways
to avoid any potential inconsistency caused by inappropriate assumptions about
the dynamic specification of {f(v¢,69)}. Therefore, nearly all the contributions
to this literature develop the properties of the estimator in question under the
assumption that the model is correctly specified and so E[f(v:,6p)] = 0. We
maintain this assumption throughout the section. However, it should be noted
that if this assumption is inappropriate then all the estimators discussed below
are inconsistent. In other words, the consistency of a covariance matrix estima-
tor depends on the validity of the assumptions about both the mean and dynamic
structure of {f(v,6p)}. It might be felt that little concern need be attached
to any inconsistency caused by E[f(v,6p)] # 0 because once it is recognized
that the model is misspecified then there is typically no interest in construct-
ing confidence intervals for . However, the use of an inconsistent covariance
matrix estimator has a detrimental effect on the properties of certain tests for
misspecification, and may in turn affect the properties of moment selection pro-
cedures based upon these tests.3” This motivates the use of covariance matrix
estimators which are consistent even if the model is misspecified. Fortunately,
there is a simple way to modify the estimators discussed here to achieve that
end. However, we delay further discussion of this topic until Section 4.3.

In this section we describe estimators which have been proposed under three
different sets of assumptions about the dynamic structure of f;. The first is
where {f;} forms a serially uncorrelated sequence. This type of restriction oc-
curs in some of the models listed in Table 1.1 and so this case is treated sepa-
rately in Section 3.5.1. The remainder of the section considers the more general
case in which f; is serially correlated. Two main approaches have been taken.
The first assumes that f; is generated by a vector autoregressive moving average
(VARMA) process and is reviewed in Section 3.5.2. This approach has the ad-
vantage that the autocovariances can be estimated straightforwardly from the
parameters of the VARMA model. The potential disadvantage is that if this
model for f; is incorrect then the resulting estimator of S may be inconsis-
tent. The second approach uses a member of the class of heteroscedasticity and
autocorrelation covariance (HAC) matrix estimators and these are described in
Section 3.5.3. These estimators are consistent under the much weaker conditions
on {f;}. Unfortunately, these more general estimators can exhibit poor finite
sample performance and this prompted the construction of prewhitened and re-
coloured HAC estimators. Initial evidence suggests this latter version performs
better and so it is also described in Section 3.5.3.

Our discussion of covariance matrix estimation is less rigorous than the
analysis in the previous sections. Instead we focus on the intuition behind
the various methods and describing both their strengths and weaknesses. All
the estimators can be established to be consistent under appropriate conditions
but the reproduction of these very technical results is beyond the scope of this
text. Instead, we refer the interested reader to the appropriate sources for a
catalogue of the required regularity conditions and rigorous proofs of the stated

37 See Chapters 5 and 7 respectively.
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results. As we shall see, there is plenty to discuss even without this more formal
analysis!

3.5.1 Serially Uncorrelated Sequences

If { f;} is a serially uncorrelated sequence then I'; = 0 for j # 0 and so it follows
from (3.38) that S is given by

S = Ssu = E[fif] (3.39)

where we have used the SU subscript to distinguish this .S from the cases con-
sidered below. The form of Sgy is essentially the same as the S matrix in (2.27)
and a similar logic leads to the estimator3®

T
Ssu=T"">_fifl (3.40)
t=1

where f, = f(vt,éT). It can be shown that Sgy %> Ssu; e.g. see White
(1994) [Theorem 8.27, p.193]. Notice that this estimator is positive semi-definite

by construction because .
Ssy =T 'H'H (3.41)

where H is the (T x q) matrix with ¢t row f;.

In the types of models in Table 1.1, this type of behaviour occurs because the
underlying theory implies {f:} is a martingale difference sequence with respect
to the information set Q;—1 = {fi—1, fi—2,... f1}. Such a process satisfies both
E[fi] =0 for all ¢t and also

E[f)Q_1] =0 fort=2,3... (3.42)
Consequently, for ¢t > s, we have E[ftf;mt,l] = E[ft|Qt,1]f; = 0 which implies

E[ftf;] = E[E[ftlﬂtfl]fél =0 (343)

3.5.2 VARMA Processes

If f; is generated by a stationary and invertible vector autoregressive moving
average (VARMA) model of order (m,n) and E[f;] = 0, then it has the following
representation’’

U(L)fe = ®(L)e; (3.44)

in which {e;} is a sequence of independently and identically distributed random
vectors with Ele;] = 0 and Var[e;] = X. The (¢ x ¢) matrix polynomials, (L)

38 Also see Section 4.3.
39 See Hamilton (1994) [Chapters 10 and 11] for an introduction to vector time series models
and Reinsel (1993) for a more elaborate discussion of VARMA models.
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and ®(L) are respectively of orders m and n; U(L) contains the autoregressive
parameters of the system and ®(L), the moving average parameters. The re-
strictions on the parameters implied by the terms “stationary and invertible”
are important for our discussion and so worth a brief explanation. A VARMA
process is stationary if the roots, {s;, i = 1,2,...m}, of the characteristic equa-
tion det{¥(s)} = 0 are all outside the unit circle. This implies that f; has a
VMA (o) representation,*?

fe=A{U(L)} 'O (L)e; (3.45)

The process is invertible if the roots, {s}, i = 1,2,...n}, of the characteristic
equation det{®(s*)} = 0 are all outside the unit circle. This implies f; has a

VAR(co) representation,*!
(@} UD) i = AL, = e (3.46)
where A(L) = I, — AjL — AsL? — ... is a (¢ x ¢) matrix polynomial of infinite

order.
Now let us return to the construction of a consistent estimator for S. From
(3.45) it follows that??

S = Svarma = {TM)} o) T (1) {w(1)} ! (3.47)

where ¥(1) = I, + 7", U; and ®(1) = I, + >, ®;. This matrix can be
consistently estimated by

Svaraa = {¥(1)} (1S {¥(1)} (3.48)
where \il(l) =TI, +> ", U, é(l) =T, +> ", ®,; and {i], ¥, éj i=1,2,...m;
j = 1,2,...n} are consistent estimators of {¥,¥;, ®;;i = 1,2,...m; j =

1,2,...n}. Since f; is unobserved, these parameter estimates are obtained by
estimating a VARMA model for ft. The estimator of ¥ is of the form 3 =
71 23:1 é:é, and so Sy arm A is positive semi-definite by construction. The
estimation of VARMA models can be performed using generalized least squares
or maximum likelihood; see Reinsel (1993) [Chapter 5]. However, it is compu-
tationally burdensome due to the presence of the MA terms. Various methods
have been proposed for circumventing this problem in the context of covariance
matrix estimation. Eichenbaum, Hansen, and Singleton (1988) and West (1997)
suggest methods which can be employed if f; follows a VARMA(0,n) process.
Although, the absence of the autoregressive component can be justified in some
of the models listed in Table 1.1, we do not review these procedures here. In-
stead, we focus on a more general method proposed by den Haan and Levin
(1996) which can be applied when f; follows a V ARM A(m,n) process.*3

40 See Hamilton (1994) [pp. 259-61].
41 Tbid. [p. 263].

42 Tbid. [pp. 276-84].

43 Also see den Haan and Levin (1997).
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To motivate den Haan and Levin’s method, it is useful to rewrite Sy araa
in terms of the coefficients in the VAR(o00) representation. From (3.46) it follows
that

Svarma ={AQ)} 1 S{A1)} (3.49)

This suggests an alternative approach is to estimate S using the coeflicients
from the VAR(oco) representation and thereby avoid the computational prob-
lems associated with the estimation of MA terms. There is just one snag: it
is impossible to estimate an infinite order autoregressive model from a finite
sample. To circumvent this problem, den Haan and Levin (1996) propose ap-
proximating (3.46) by a finite order VAR model whose order increases with the
sample size. To implement this method in practice, it is necessary to choose the
order of this approximation. Den Haan and Levin (1996) recommend this choice
is made via a data-based model selection criterion. Specifically, they propose
the following method for the estimation of Sy s4rara.**

Den Haan and Levin’s Method
1. Calculate 3(0) = 71 Zthl feftl.

2. Estimate the model

fr=Ar (k) o1+ ..+ Ap(k) ik + er(k) (3.50)
Jor k = 1,2,...K and t = K +1,K + 2...T by least squares where
fi = fu, 07). These estimates are given by
T T
Do S Y mriy !
t=K+1 t=K+1

where A(k) = (Ai(k), Aa(k), ... (k) and r{ = (f_y, fi_oe - f1_4) -

Construct the forecast error éy(k) = fi — A(k)ry and

S(k) =T ZtT:KH ér(k)ér(k)".

3. Let k be the value of k which minimizes Schwarz’s (1978) information

criterion
SIC(k) = log{det[S(k)]} + w (3.51)
over k=0,1,... K.
4. Estimate Sy arna by
k
Svarma ={I, =Y Ai(k)}'S(k){1, - ZA (3.52)
=1

44 Also see Section 4.2
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To implement this method, it is necessary to choose K. Den Haan and Levin
(1996) show SvARrMA is consistent provided K — o0 as T — oo and K =
O(Tl/ 3) but an appropriate rule for picking K in finite samples remains an
open question.*> This choice has the advantage the lag selection procedure is
consistent because if n > 0 then k tends in probability to oo as T — oo, but
if n =0 then k 2 m.46 Finally, notice that once again this covariance matrix
estimator is positive semi-definite by construction.

We have motivated this estimator by assuming f; satisfies a VARMA model.
However, inspection of den Haan and Levin’s method indicates that it is con-
sistent provided the autocovariance structure of f; is equivalent to that of some
infinite order autoregression. For this, it is only sufficient and not necessary that
ft be a VARMA process. Den Haan and Levin provide a set of more general
conditions under which the estimator is consistent. These conditions are very
similar to those employed in the next section and certain parallels will emerge
between S’V ArMA and some of the methods to which we now turn.

3.5.3 Heteroscedasticity and Autocorrelation Covariance
Matrix Estimators

Unfortunately, VARMA processes may not be sufficiently general to capture the
dependence structure of f; in all cases of interest. This has prompted the devel-
opment of the class of heteroscedasticity and autocorrelation covariance (HAC)
matrices which are consistent under relatively weak assumptions on the depen-
dence structure of the process. However, it is necessary to impose some further
restrictions beyond those already assumed in Section 3.4 for the asymptotic
analysis. The discussion in this section rests mostly on the work of Andrews
(1991) and Newey and West (1994), and these authors catalogue the required
regularity conditions.*”

To motivate these estimators, it is useful to return to the definition of S given
in (3.38), namely S =g+ .o, (I; +I7). Given this structure, it is natural to
estimate S by truncatmg this mﬁmte sum and using the sample autocovariances,
F =71 Zt —it1 ftft _;» as estimates of their population analogs. This leads

to the estimator ,
T
Srr=To+ ) (Ii+T7) (3.53)
i=1
where “TR” stands for truncated. White and Domowitz (1984) first proposed

45 The asymptotic theory is satisfied by the closest integer to ¢I''/3 for any finite positive
constant c.

46 Den Haan and Levin (1996) also consider using Akaike’s (1973) information criterion,
AIC(k) = log{det[ﬂ(k)]}Jr 259 46 pick the lag length. Their theoretical analysis suggests that
SIC' is a better choice because AIC is not a consistent method of lag selection; however their
limited simulation evidence suggests that the two criteria perform comparably in this context.

4T These include the conditions: (i) supge . E[|0? f(vt,0)/860;00;]] < oo fori,,j =1,2,...p
and N is some neighbourhood of 6p; (ii) (f(v¢,00)', vec(df (ve, 00)/00" — E[Df(ve,00)/00']))
has [-summable autocovariances and absolutely summable fourth order cumulants, where [ is
some positive constant.
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this type of estimator and showed its consistency in certain least squares settings
provided 7 — 0o as T — oo and £ = o(T"/?). This would appear to solve
the problem, but does not. While Srr converges in probability to a positive
definite matrix, it may be indefinite in finite samples.

The source of the trouble is not the truncation but the weights given to
the sample autocovariances in (3.53). This is most readily seen by restricting
attention to the case where f; is a £—dependent process so that I'; = 0 for all
1> £, and {7 = £. In this case, the correct order of the process is being used in
the estimator but the estimator is still not positive semi-definite. This failure
is uncovered by rewriting Srr as

Srr=T 'H'DH

where H is the same matrix as in (3.41) and D is the (T x T') matrix whose
only non-zero elements are D; ; = 1 for j = s1(i),...s9(¢) for ¢ = 1,2,...T
and s1(¢) = maz(i — £,1),s2(i) = min(i + ¢,T). Since D is not positive semi-
definite, neither is ST r. It is important to realize that the failure of positive
semi-definiteness does not always imply negative sample variances. Rather it
means that negative variances can occur for certain realizations of H. In the
limit, the problem disappears because all realizations from the process must
satisfy Srp > To + Zle(Fi +T';) which is positive definite by definition. One
other important aspect of the problem can be learnt from this example. If £ = 0
then S'TR = S’SU and this estimator is positive semi-definite by construction.
So the problem stems from the inclusion of the sample autocovariance matrices
{Tii=1,2,...0}.

The solution is to construct an estimator in which the contribution of the
sample autocovariances matrices are weighted to downgrade their role suffi-
ciently in finite samples to ensure positive semi-definiteness but have the weights
tend to one as T — oo to ensure consistency. This is the intuition behind the
class of heteroscedasticity autocorrelation covariance (HAC) matrices. This class
consists of estimators of the form

T-1
Srac =To+ Z wi (T +17) (3.54)
i=1

where w; 7 is known as the kernel (or weight). The kernel must be carefully cho-
sen to ensure the twin properties of consistency and positive semi-definiteness.
The three most popular choices in the econometrics literature are given in Table
3.3.
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Table 3.3
Kernels for three common HAC estimators

Name Author(s) Kernel, w;

Bartlett Newey and West (1987a) 1—a; fora; <1
0 for a; > 1

Parzen Gallant (1987) 1—6a? + 6a3 for 0 < a; <0.5
2(1 —a;)3 for 0.5 <a; <1
0 for a; > 1

Quadratic ~ Andrews(1991) 22 5 Sl%m” — Cos(my;)
127 dl *

Spectral

Note: a; = i/(br + 1); di = i/bp; m; = 67d; /5.

Here “name” refers to the term by which the particular choice of kernel is most
commonly known, and is a reference back to an earlier literature on the estima-
tion of the spectral density at frequency zero in which these types of problems
were first solved.#® The parameter br is known as the bandwidth, and must
be non-negative. Notice that this parameter controls the number of autocovari-
ances included in the HAC estimator when either the Bartlett or Parzen kernels
are used. In these two cases, by must be an integer, but no such restriction is
required for the quadratic spectral kernel. Which set of weights should be used?
Andrews (1991) shows that the Quadratic Spectral weights are optimal in the
sense that they minimize an asymptotic mean squared error criterion for the
estimation of S. His results imply that this choice only marginally dominates
the Parzen weights, but both should be much better than the Bartlett weights.
This is mirrored to some extent by his simulation results for a linear model
with some simple forms of autocorrelation and heteroscedasticity. However, al-
though the Quadratic Spectral weights perform slightly better than the Parzen
weights, neither dominate the Bartlett weights to the extent predicted by the
theory. Newey and West (1994) report simulation evidence from two more gen-
eral linear models; in one, their results corroborate Andrews’s but in the other
they find no clear ranking is possible. Newey and West (1994) conclude that
the choice between the kernels is not particularly important; a view for which
there is some precedent in the earlier spectral density estimation literature.*’
The bandwidth is a much more important determinant of the finite sam-
ple properties of Siac. For consistency, by must tend to infinity with 7°.°°
Andrews (1991) shows that the asymptotic mean square error is minimized by
setting by equal to O(T'/?) for the Bartlett weights and O(T"/?) for both the

48 See Priestley (1981) for a review of this earlier literature.

49 See Priestley (1981) [p.574].

50 Newey and West (1987a) and Gallant (1987) prove the consistency of their particular
estimators under the assumption by = o(T!/4). Andrews (1991) and Hansen (1992) prove
the consistency of this general class of estimators under the assumption by = o(T1/2).
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Parzen and Quadratic Spectral weights. However, again, this type of condition
provides little practical guidance because it only restricts the optimal band-
width for the Bartlett weights, say, to be of the form ¢T'/3 for any choice of
finite ¢ > 0. Andrews (1991) develops some procedures for picking the optimal ¢
based on the assumption that f; follows certain VARMA models. However, we
do not pursue these here because if this specification is adopted then it seems
more reasonable to use the SV ArMaA described in the previous section.?’ Newey
and West (1994) propose a nonparametric method for selecting the bandwidth
and show it minimizes the asymptotic mean square error criterion. The me-
chanics of this approach are as follows; the parameters (h,n,c,,v) are defined
afterwards.

Newey and West’s Method of Bandwidth Selection

1. Use the (¢ x 1) vector h to construct the scalar random variable ¢, = h' f;.
2. Construct 6; =T~ ! Z?:j+1 cice—j for 5 =0,1,...n.

3. Calculate %) =230, j¥6; and 50 = 60 +23°7_, 6.

4. Calculate 4 = ¢, {{5W) /5(0}231/Cv+1),
5

. For the Bartlett and Parzen kernels, set by = int{3T"/**D} where
int{.} denotes the integer part of the number inside the brackets; for the
Quadratic Spectral kernel, set bp = AT/ (2v+1)

It would be anticipated that the bandwidth depends on the autocovariances of
ft and close inspection of the above reveals this to be the case. However, there
is no simple intuition for the exact nature of the calculations. The parameters
(n,cy,v) are given in Table 3.4.

Table 3.4
Parameter values for Newey and West’s (1994)
bandwidth selection method
Weight v n Cy

Bartlett L o) 14117
Parzen 2 O(TY?»)  2.6614
Quadratic Spectral 2 O(T?/%) 1.3221

Notice that the exact choice of n is not specified and so Newey and West’s pro-
cedure does not completely solve the problem. They recommend that the calcu-
lations be repeated for different choices of n to ensure the resulting confidence
intervals or hypothesis tests are not sensitive to the choice of this parameter.

51 If f, follows a VARMA process and so S = Sy garnma then S'VARMA converges to this
limit faster than Sgac; see Andrews (1991) and den Haan and Levin (1996).
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To implement the method, the vector h must also be chosen. Newey and West
(1994) focus on the case where f; = zu; and suggest that if the first element
of z; is a constant then h can be set equal to (0,1,1,...1). More generally,
the choice of h can be data dependent subject to certain conditions; see Newey
and West (1994) [p.636]. However to date, no further guidance is available
about either how this choice should be made or its impact on the finite sample
properties of the covariance matrix estimator.

In theory, the HAC estimators have solved the problem of constructing a
consistent, positive semi-definite estimator of S under very weak conditions on
ft. However, in practice, they often do not work well in cases of interest. Sim-
ulation evidence suggets their use can lead to the confidence intervals in (3.27)
which do not possess the anticipated coverage rates in finite samples; see An-
drews (1991), Andrews and Monahan (1992) and Newey and West (1994). An
examination of the estimation error indicates the types of circumstance in which
this problem may be present. For ease of exposition, we restrict attention to
HAC estimators for which w; 7 = 0 for ¢ > bp. From (3.38) and (3.54), the
estimation error is

br
S—Suac = To—To+ Y wir{(li—Ty)+ (-1}
i=1
. _ (3.55)
+ Z(l —w;r) (T + 1) + Z (T; +T73)
=1 i=br+1

So there are three sources of error: (i) error from the estimation of the auto-
covariances, {I'; — I';}; (ii) error due the weights on the estimated autocovari-
ances, 1 — w; p; (ili) approximation error due to the truncation of the sum,
Z?ibTH(Fi +1T%). The best way to appreciate when these errors are large is to
start by describing a situation in which they should be relatively small. Suppose
ft is a f—dependent process and ¢ is small relative to bp. In this case it follows
that: (i) the weights on the T; for i < ¢ are very close to one; (i) for i > ¢ the
weights help to shrink the estimated covariance matrices towards their limiting
value of zero; (iii) there is no approximation error. These three effects combine
to produce an estimator that is reasonably accurate in finite samples. Now
consider what happens as ¢ increases. Estimation error creeps in because the
weights are substantially different from one for the longer lags less than or equal
to £ and then once by < ¢, there is approximation error as well. This suggests
that Spac is unlikely to perform well in finite samples if the population auto-
covariance matrices of f; die out too slowly. Such behaviour would be observed
if f; is generated by a process with a substantial autoregressive component.
Autoregressive behaviour is a common feature of economic time series and
so these problems motivated Andrews and Monahan (1992) to propose a mod-
ification to the HAC estimator based on a technique called prewhitening and
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recolouring.5> The basic idea is to filter f; to reduce the size of its autoregres-
sive component and hence to produce a series for which an HAC estimator works
better. This is known as the “prewhitening” phase. The long run variance of
the filtered series is estimated using a member of the class of HAC. Then in the
“recolouring” phase, the long run variance of ft is estimated from the HAC and
the properties of the filter. Andrews and Monahan (1992) recommend using a
VAR(m) process to filter the data and so their procedure is as follows.

Andrews and Monahan’s Procedure

1. FEstimate the VAR(m) model for i,
fr=Am) o1 4. 4 A (m) fr—m + er(m) (3.56)

by least squares. These estimates are given by

Am)= Y forl{d D e}

t=m-+1 t=m+1

where A(m) = (A (m), Az(m), ... A (m)) and rj = Ly fl g fl).
Construct the forecast error é,(m) = fy — A(m)ry.

2. Construct the estimator ¥ = Lo + ZiT;ll wi (T + 1) where
Dy =T 3 Ge(m)éi(m)'.

3. The estimator of S is

Spwre ={I, =Y _ Ai(m)} 'S{I, — Z/L»(m)}—l’ (3.57)

i=1

Any value of m can be used; however, Newey and West (1994) recommend
using S pwrc with m = 1 and their method of bandwidth selection in step
2. This estimator is positive semi-definite by construction and Andrews and
Monahan (1992) prove its consistency. There are clearly close parallels with
den Haan and Levin’s (1996) method: the main difference is that Andrews and
Monahan use the autoregressive filter to remove some of the autocorrelation
structure; whereas in den Haan and Levin’s method the autoregressive filter
must remove all the autocorrelation structure with the autoregression. This
difference manifests itself in the consistency proofs. The consistency of S PWRC
depends mostly on the use of the HAC estimator in step 2, but the filter must
also satisfy certain properties. In particular, if we write plz‘mTéoofli(m) =
A;(m), then A(L) = I,—>"" | A;(m) must satisfy the conditions for stationarity
presented in the previous section. Since den Haan and Levin’s method is based

52 Like the HAC estimators, this technique has its origins in the literature on spectral
density estimation where it was first proposed by Press and Tukey (1956).
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essentially on the AR(0co) representation, this property is guaranteed in that
case.”® However, it may not hold if the AR polynomial is arbitrarily truncated
at some finite lag as is done in Andrews and Monahan’s procedure. However,
since the AR filter is just a device to reduce the autocorrelation, and not to
remove it, Andrews and Monahan propose modifying the filter as follows to
ensure it satisfies the required “stationarity” condition.

To describe this modification, it is most convenient to set m = 1, which is
the choice recommended by Newey and West (1994). Since there is now only
one coefficient matrix, Al(l), we denote this matrix by A. Notice that in this
case, the condition for stationarity reduces to the requirement that the eigen-
values of plimr_.A = A are less than one in absolute value.’® In practice,
problems may occur if the eigenvalues of A satisfy this condition but are close to
one. Therefore, Andrews and Monahan (1992) propose modifying A to ensure
its eigenvalues are less than 0.97 in absolute value. Their procedure is based
on the Singular Value Decomposition of A. This decomposition is A = BAC”
where A is a diagonal matrix whose elements are all non-negative.’> Andrews
and Monahan (1992) show that the eigenvalues of A are guaranteed to satisfy
the required constraint if all the elements of A are less than or equal to 0.97.
If this is not the case, then Andrews and Monahan (1992) recommend the of-
fending elements of A are replaced by 0.97 to give a new matrix A and Ais
replaced by A = BAC’. Simulation evidence in Andrews and Monahan (1992)
and Newey and West (1994) suggests the use of prewhitening and recolouring
improves the finite sample performance of the asymptotic confidence intervals
n (3.27). So for completeness, we conclude this section by bringing together all
these recommendations into a single procedure. Although, this was originally
proposed by Newey and West (1994), we shall give it a more general name since
it represents the synthesis of results and simulation evidence reported in all the
papers cited above.?®

Estimation of S when f; is Stationary and Ergodic

1. Estimate the model ft Aft 1+ e by least squares to give A. Let A =
BAC" be the Singular Value Decomposition of A. Define A to be the
diagonal matriz whose (i,1)™ element is given by Ay = min{A;,0.97}
and A = BAC'. Construct &, = ft - Aft_l.

53 Of course, this statement is subject to certain regularity conditions being satisfied; see
den Haan and Levin (1996).

54 See Hamilton (1994) [p.259].

55 This decomposition can be calculated straightforwardly in most computer packages for
matrix analysis. It is defined as follows. First, note that A’A and AA’ have exactly the
same set of nonzero eigenvalues, which we denote by {d;;¢ = 1,2,...r}. It is reasonable to
assume in our context that » = ¢ and so both A’A and A’ A are of full rank. The it? diagonal
element of A is §;. The matrix B is the (g x q) matrix whose i*® column is the eigenvector
of AA’ associated with the §;. The matrix C' is the (g X ¢) matrix whose i** column is the
the eigenvector of A’A associated with ;. For example, see Dhrymes (1984) [p.78] or Strang
(1988) [Appendix A] for a more detailed discussion.

56 Also see Section 4.3.
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2. Use an HAC estimator in conjunction with Newey and West’s method of
bandwidth selection given above to construct the matrix

T-1
£=To+ Y wirli+I})
i=1
where Ty = T~ ZtT:¢+1 ée;_;.
3. The estimator of S is
Ssp = {I, — A} 's{1, — A}V (3.58)

where the subscript “SE” stands for “stationary and ergodic”.

The choice between the covariance matrix estimators SSU, SV ARMA and
Ssr depends on the model in question. Whichever estimator is appropriate, it
can be used to calculate the approximate large sample confidence intervals for
6o,; given in (3.27). This section concludes with an illustration of the various
methods in the context of Hansen and Singleton’s (1982) consumption based
asset pricing model.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model

Since z; € €, it follows from (1.22) that f(v,6p) = Zt(50$¥?;+11$2¢+1 —1)is
martingale difference sequence. Therefore the economic model implies S can be
consistently estimated by Ssu given in (3.40). In spite of this structure, we shall
use this example to illustrate all the various methods discussed in this section.
For den Haan and Levin’s (1996) method K is set equal to int{T*/3} = 7 but in
cach case the Schwarz criteria chooses k = 0 and so indicates that ft is serially
uncorrelated. In this case, SV ARMA equals SSU Three versions of Sy AC are
calculated: one for each kernel in Table 3.3. In each case, we fix the bandwidth
to by = 7. Finally, three versions of Sgp are calculated; again one for each
kernel. The bandwidth for each is calculated using the parameters in Table 3.4,
and so n equals int{T?/°} = 3, int{T*?°} = 2, int{T?/?*} = 1 respectively for
the Bartlett, Parzen and Quadratic Spectral kernel. We arbitrarily chose to set
h =(1,1,1,1,1). Clearly the width of the confidence intervals is determined

) ) )

by the standard error of the estimates,

se(éz) = \/‘A/TM/T (359)

where VT 4 is the i main diagonal element of VT = MTS'TM} and MT =
[GT(O) WrGr(0)]"2Gr () Wr. So, for brevity, only the standard errors of 47
and Or are reported. Table 3.5 contains these statistics for the case in which
the model is estimated with equally weighted returns (EWR), and Table 3.6
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presents the results for the case in which the model is estimated with value
weighted returns (VWR).57

Certain features stand out. First, the different choice of covariance matrix
estimator has some impact on the calculated standard errors. In principle, all
the versions of S7 are consistent if the model is correctly specified because then
f(vt,0p) is a martingale difference sequence. Since den Haan and Levin’s (1996)
method confirms the absence of serial correlation in f (v, 6p), these differences
reflect inherent randomness or finite sample bias. Secondly, the estimates based
on Wr = (T3}, z2])~" give much smaller standard errors. Finally, no
matter what the choice of asset or weighting matrix, §y is far more precisely
estimated than .

Table 3.5
Standard errors of the first step estimators for the
consumption-based asset pricing model with EWR

WT ST s.e.(&T) s.e.((ST)
10°75 SU, VARMA  6.844  1.210 x 1072
HAC(B,7) 5.893  1.036 x 1072
HAC(P,7) 6.458  1.132 x 1072
HAC(Q,7) 5549  9.720 x 1073
SE(B,1) 7.670  1.360 x 1072
SE(P,4) 7.148  1.254 x 1072
SE(Q,2.2) 7.340  1.293 x 1072
(T'S°7, z2))""  SU, VARMA 2263  4.393 x 107°
HAC(B,7) 2134  4.544 x 1073
HAC(P,7) 2.148  4.540 x 1073
HAC(Q,7) 2.091 4502 x 1073
SE(B,0) 2.430  4.916 x 1073
SE(P,1) 2420  4.894 x 1073

SE(Q,2.49) 2.308 4.726 x 1073

Notes: B, P, Q denote the Bartlett, Parzen, Quadratic Spectral kernel. For
K=B,P or Q: HAC(K,7) denotes an HAC estimator kernel with K kernel
and by = 7; SE(K,b) denotes Sgi with K kernel and estimated bandwidth b.

57 Tt should be noted that evidence reported below indicates the model is misspecified for
EW R and this renders the standard errors in (3.59) invalid. See Section 5.1.4 and Section 4.2
respectively.
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Table 3.6

Standard errors of the first step estimators for the
consumption-based asset pricing model with VWR

Wr St s.e.(3r) s.e.(0r)
10°15 SU, VARMA 5.840 1.063 x 102
HAC(B,7) 4.559  8.447 x 1073
HAC(P,7) 4.827  8.852x 1073
HAC(Q,7) 4342 8.059 x 1073
SE(B,1) 5.593  1.032 x 1072
SE(P,5) 5073  9.315x 1073

SE(Q,0.78) 5632 1.038 x 1072
(T'SS, z2)""  SU, VARMA  1.867  3.761 x 103

HAC(B,7) 1.699  3.523 x 1073
HAC(P,7) 1.722  3.548 x 1073
HAC(Q,7) 1.674  3.489 x 1073
SE(B,0) 1.850  3.765 x 1073
SE(P,4) 1.761  3.626 x 1073

SE(Q,1.62) 1.812 3.727 x 1073

Notes: See Table 3.5 for definitions.

3.6 The Optimal Choice of Weighting Matrix

In Section 3.3 it is shown that if ¢ = p then GMM is equivalent to the Method
of Moments estimator based on E[f (v, 00)] = 0 and so does not depend on the
weighting matrix. However if ¢ > p then no such reduction is possible and it
is clear from Theorem 3.2 that the asymptotic variance of br depends on Wy
via W.58 This opens up the possibility that inferences may be sensitive to .
Just as in the linear model, it is desirable to base inference on the most precise
estimator and so the optimal choice of W is the one which yields the minimum
variance in a matrix sense. Once again, this choice is S~!; however this time
we state the result more formally. Hansen (1982) proves this result but we note
parenthetically that his argument is different from the one employed below.

Theorem 3.4 Optimal Choice of Weighting Matrix
If Assumptions 3.1-3.5, 3.7-3.13 hold then the minimum asymptotic variance
of Or is (GHS™1Go)~1 and this can be obtained by setting W = S~—1.

Note that the regularity conditions are imposed to ensure that 07 has the asymp-
totic distribution given in Theorem 3.2.

Proof of Theorem 3.4:
Let 67(W) be the GMM estimator based on Assumption 3.3 with weighting ma-
trix Wyp. It can be recalled from Section 2.4 that the result is established if it

58 If p = ¢ then the asymptotic variance of O is MSM' = (GHS—1Go)~1L.
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can be shown that V(W) —V (S~1) equals a positive semi-definite matrix, where
V(W) denotes the variance of the limiting distribution of T%/2[0p(W) — 6).

To begin the proof, it is useful to relate T/2[0p (W) — 6] to T'/2[0p(S~1) —
o). This is done quite simply by noting that

T'2[0r (W) = 6o] = T'2[0r(S™") — 6] + T"*[0r(W) — 2(S™")] (3.60)
Now, from (3.33) it follows that
TY20r(W) — 6] = — M(W)TY%gp(60) + 0,(1) (3.61)
where M (W) = (GoWGo) Gy W, and so that
T20p (W) = 0p(S™1)] = —[M(W) — M(S™IT2gr(6s) + 0p(1) (3.62)

Therefore, if we substitute (3.61) and (3.62) into (3.60) and calculate the
limiting variance of each side then it follows that

VW) = V(SH) + Vi + C + ' (3.63)
where Vi = limy o Var[{M(W) — M(S~)}T"?gr(6y)] and
¢ = lim Cov [{M(W) - M(S_l)}Tl/QgT(90)7M(S_l)T1/29T(90)] (3.64)
Equation (3.63) is easily rearranged to give
VW) - V(S =W + C + (3.65)

Now V7 is positive semi-definite by construction, and so we focus attention on
C. By definition, it follows that

C

Jim B [{M(W) = M(S™)}T g0 (80)T" g2 (60) M (5™ |
= {M(W) = M(S7V)} Tim B [T"2gr(00)T" g2 (00)' | M(5Y
= MW)SM(S™')Y — M(S™HSM(S™')Y =0 (3.66)

Equations (3.65)—(3.66) and the definition of V; establish the desired result.
o

The proof is derived by showing that C' = 0. It can be recognized that C'
is the asymptotic covariance between T/2[Ap(S~1) — o] and T2[Ap (W) —
07(S~1)]. Therefore, C' = 0 implies that T/2[0p(S~1) — 6] is asymptotically
uncorrelated with TV/2[0p (W) — 6p(S~1)] for any W.

Theorem 3.4 implies the optimal choice of Wy is 5‘77 ! where Sr is a consis-
tent estimator of S. As in the linear model, the construction of this estimator
requires at least two steps. On the first step a sub-optimal choice of Wy is used
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to obtain a preliminary estimator, éT(l). This estimator is used to obtain a
consistent estimator of S, which is denoted S’T(l). On the second step 60y is
re-estimated with Wy = S7(1)~!. The resulting estimator, 7(2), has the min-
imum asymptotic covariance matrix given in Theorem 3.4.5° However, this two
step estimator is based on a version of the optimal weighting matrix constructed
using a sub-optimal estimator of 6y. This suggests there may be finite sample
gains from using éT(Z) to construct a new estimator of .S, S’T(Q) say, and then
re-estimating 0y with Wy = S7(2)~'. The resulting estimator, 67(3), also has
the same asymptotic distribution as éT(Q) but it is anticipated to be more ef-
ficient in finite samples. This potential finite sample gain in efficiency provides
a justification for updating the estimate of S again and re-estimating 6y. This
process can be continued iteratively until the estimates converge; if this is done
then it yields what has become known as the iterated GMM estimator. The i*"
step of such an iterative procedure is as follows.

The it* Step of Iterated GMM Estimation

o Ifi = 1: Estimate 0y using GMM based on the population moment con-
dition in Assumption 3.3 with a sub-optimal weighting matrixz, such as
Wr = I,;. Denote this estimator by éT(l), Use this estimator to construct
a consistent estimator of S by one of the methods described in Section
8.5.50 Denote this estimator by Sp(1).

o [fi > 1: Estimate 0y using GMM based on the population moment con-
dition in Assumption 3.3 with Wp = Sp(i — 1)~ where Sp(i — 1) is a
consistent estimator of S based on éT(z — 1), the estimator of Oy from the
(i — 1)t step. If |07 (i) — 07 (i —1)|| < € then the procedure has converged
and the iterated GMM estimator is Op = Op(i). If ||07(i) —0p(i—1)|| > €
and i < Inqe then go to the (i + 1) step.

Typically €y is set equal to some small positive number such as 1075, Notice
that a ceiling of I,,,,, has been placed on the number of steps. This is needed
because in practice there is no guarantee that this iterative procedure converges
and so limiting the number of steps is a safeguard against putting the com-
puter into an infinite loop! Regardless of whether convergence occurs before the
chosen Ipnaq, all {07(i), i > 1} have the same asymptotic distribution with the
covariance matrix given in Theorem 3.4.

The choice of W = S~! has a second important implication for the asymp-
totic behaviour of the estimator which is presented in the following theorem.

Theorem 3.5 Asymptotic Independence of T'/2(6; — 6,) and
5—1/2T1/29T<9T)
If (i) Assumptions 3.1-8.5, and 3.7-3.13 hold; (ii) W = S~ then T*/? (07 —0,)
and S=YV2T'2g1(07) are asymptotically independent.

59This estimator is sometimes refered to as Hansen’s two step estimator because it is pro-

posed in Hansen (1982).
60 Also see Section 4.3.
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Proof:

First recall that Theorems 3.2 and 3.3 establish that both statistics converge to
normal distributions, and so a necessary and sufficient condition for asymptotic
independence is that these two statistics are asymptotically uncorrelated. The
latter can be deduced from (3.26) and (3.36). Using Lemma 3.3 and putting
W = S~1, it follows from (3.26) and (3.36) that

TY2(0r —00) = Hir + 0p(1) (3.67)
Wi 2T 2gr(07) = Hor + 0,(1) (3.68)
where
Hir = —[F(60)F(60)] " F(60) ST *gr(6)
Hyr = [I, — P(60)]S™Y2TY?g7(6)

If we let C' = limp_.o Cov[Hy r, H2 7] then it follows from Theorems 3.2 and
3.3 that )
C = Thm E[HLTHQ,T] (369)

Using (3.67) and (3.68) in (3.69), we obtain
C = lim B[ - [F(60) F(60)] " F(60)'S™/*T" gz (60)T" gr(60)'s />

[Ty — P(60)]]

= —[F(60) F(00)] " F(6o)’ s { 1220 Var[Tl/QgT(ﬂo)] }371/2/ X
[y — P(0o)]

= —[F(60) F(60)] " F(8o)'S~/25 S [I, — P(6y)]

Now, by definition, we have § = S1/2'81/2 and §—1 = S—1/2'S-1/2 which
together imply S—1/2 = (51/2/)_1. Tt therefore follows that S—1/255~1/2" = 1,.
Using this identity C' reduces to

C = —[F(60) F(00)] ' F(00)'[I; — P(60)] = 0 o

This independence property is exploited in the construction of certain test
statistics described in Chapter 5. However, in our present context, it provides an
interesting perspective on why this choice of W leads to an efficient estimator.
First, notice that if we repeat the sequence of steps in the proof of Theorem 3.5
with any other choice of W then the end result is that C' # 0. Therefore, W =
S~1is the only choice of weighting matrix for which the estimator is statistically
independent of the part of the moment condition unused in estimation. In other
words, by making this choice of W, we have extracted all possible information
about the parameters contained in the sample moment.

The estimators described in this section are often described as “the optimal
two step GMM?” or “optimal iterated GMM?” estimator. It is important to re-
alize that this optimality only refers to the choice of weighting matrix. These
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are the most precise GMM estimators which can be constructed from the given
population moment condition E[f(v¢, 0p)] = 0. It does not imply that there is
anything optimal about the population moment condition itself. The optimal
choice of moment condition is discussed in Chapter 7. We conclude this section
with an empirical illustration of the two—step and iterated estimator.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model

Table 3.7 contains the two step and iterated GMM estimation results for both
equally weighted returns (EWR) and value weighted returns (VWR). Since the
economic model implies f(v¢, 0p) is a martingale difference sequence, the covari-
ance matrix is estimated by Sgu at each step. The convergence criteria for the
GMM iterative procedure is €9 = 1076, Convergence only took four iterations
with VWR and five with EWR. After two steps the impact of the first-step
weighting matrix is clearly diminishing. With iteration, the impact disappears
completely.

Table 3.7
Two step and iterated GMM estimators for the consumption
based asset pricing model with EWR and VWR

EWR:
W}l) (A, ST) fori=1 (A, ST) fori=2 (Ar, ST) after iteration

A (—3.145,0.999) (—0.328,0.999) (—0.343,0.992)
B (0.398,0.993) (—0.317,0.992) (—0.343,0.992)
VWR:

W;l) (A, ST) fori=1 A, ST) fori=2 (A, ST) after iteration

A (—1.871,0.998) (0.706, 0.994) (0.666, 0.994)
B (0.698,0.994) (0.666, 0.994) (0.666, 0.994)

Notes: Wq(ﬂl) denotes the first-step weighting matrix, A denotes Wq(}) =10°I5 and B
denotes W;l) = (77! Z?:l ztz;)_l.

Table 3.8 reports the standard errors and 95% confidence intervals for the pa-
rameters. A comparison with the first step standard errors in Tables 3.5 and
3.6 indicates that iteration has increased the precision. As before, the discount
factor is very precisely estimated, but the coefficient of relative risk aversion is
not. In fact, the confidence intervals for v¢ include values which exceed one. It



3.6 The Optimal Choice of Weighting Matrix 93

may be recalled from Section 1.3.1 that 79 < 1 was a necessary restriction for
the representative agent to possess a concave utility function. However, this is
not necessarily a concern since the confidence intervals are also consistent with
the representative agent’s utility function being concave.

Table 3.8

Approximate standard errors and 95% confidence intervals for the
iterated GMM Estimators in the consumption based asset pricing model

Asset  s.e.(37) c.i.(4r) s.e.(dr) c.i.(b7)
EWR 2.215 (—4.863,4.000) 0.004 (0.983,1.000)
VWR 1.823 (—2.916,4.249) 0.004 (0.987,1.001)

Notes: s.e.(.) denotes the standard error calculated using (3.59) with W = S'gll], St = Ssy

and Sgy is defined in (3.40). c.i.(.) denotes the 95% confidence interval calculated using
(3.27).

The imprecision of the estimates is a concern, however. The source of the
problem can be traced to an interaction of the properties of the data and the
nature of the nonlinearity in f (v, d). The mean and standard deviations of real
per capita consumption growth, x1 41, are 1.002 and 0.004 respectively. The
mean and standard deviation of the asset series, x3:y1, are 1.008 and 0.050
respectively for EWR and 1.006 and 0.042 for VWR. So clearly all the series
fluctuate approximately around one; most importantly consumption growth de-
viates very little from this value. The nonlinearity enters through the Euler
equation residual

ut(H) = (Sl"lY;_,'l_ll‘z’tJrl -1 (370)

Now, if we replace 1 ¢4+1 and @241 in (3.70) by their approximate means of
one then we have

u(9) ~ 5177 — 1

This approximation can be set to zero by putting § = 1 regardless of the value of
v. Of course, the data exhibit some variation so that the approximation does not
hold exactly. However it is close enough to give the flavour of the problem here:
the population moment condition provides very good information about dy but
poor information about . This is an example of the case in which a parameter
is weakly identified by the population moment condition. This situation occurs
sufficiently frequently to have generated its own branch of GMM theory, and
this is reviewed in Section 8.2.

Although we return to this model to illustrate other aspects of the GMM
framework, this nevertheless seems the most appropriate place to mention briefly
subsequent developments in the empirical literature on this topic. Since Hansen
and Singleton’s (1982) study there have been a number of papers which have
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estimated the consumption based asset pricing model with more sophisticated
utility functions; see Kocherlakota (1996) for a survey. However, empirical suc-
cess has been limited. Many studies encounter the same problem as we did
above: aggregate consumption data exhibits far less variation than asset re-
turns and so cannot possibly explain how these assets are priced. This could
mean the economic model is fundamentally wrong or that we have the wrong
measure of consumption. The latter explanation has recently received some
attention. Mankiw and Zeldes (1991) document that stocks are owned by ap-
proximately only thirty percent of the U.S. population and therefore aggregate
consumption is unlikely to be a good proxy for the consumption of asset holders.
Unfortunately, aggregate data for stockholders are unavailable. Hagiwara and
Herce (1997) circumvent this problem by using aggregate dividends to proxy
the consumption of asset holders and find this subsitution leads to far more
reasonable empirical results. o

3.7 Transformations, Normalizations and the
Continuous Updating GMM Estimator

So far in this chapter, we have treated the data and parameter vector as given.
However, in practice, a researcher may have to make decisions about the scale
of the data or the parameterization of the model or whether to transform f(.)
in some fashion. In this section, we consider the extent to which the GMM
estimator is invariant to such decisions. It emerges that the estimator can be
sensitive to these types of transformations, and this motivates both a variant
of GMM known as the continuous updating estimator and also an alternative
method for the calculation of confidence intervals. Both these extensions are
discussed in this section.

To begin, it is useful to distinguish five types of transformation which are
considered below.

o Units of measurement for vy: In some cases a researcher must decide what
units in which to measure the data. For example, any nominal value can
be measured in $’s, 1000$’s or 1,000,000$’s. The choice between them
determines whether a price of one thousand dollars is recorded as 1000, 1
or 0.001, and so determines the scale of the data.

e Reparameterization: Suppose 6p is globally identified and 6y = h(yo)
where h : P — RP is a continuous, differentiable bijective mapping.
In this case, the population moment condition can be reparameterized as
E[f(ve, h(70))] = E[fy(ve,70)] = 0, and GMM can be used to estimate 7o
based on E[f,(v¢,70)] = 0 instead of 6y based on E[f (v, 0)] = 0.

e Normalization of the parameter vector: In some cases, #y may only be
identified up to some scaling factor and so it is necessary to impose some
normalization on 6, such as 6y ; = 1, in order to achieve identification.
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o Curvature altering transformations of the population moment condition:5!

In some cases, the objective function may be ill-behaved and researchers
have found it advantageous to scale the population moment condition by
some function of the 6. In other words, estimation of 6y is based on

c(00)E[f (vt,6p)] = 0.

e Stationarity inducing transformations: In some cases, the underlying model
may imply E[h(v:,00)] = 0 in which @; is a vector of nonstationary vari-
ables. Such a specification is outside our framework because Assumption
3.1 is violated. However, it may be possible to find a nonsingular ma-
trix H(0;—1,6p) say, such that H(0;_1,00)h(0s,00) = f(ve,00) where v,
is a vector of stationary random variables, and E[f(vi,60)] = 0. In this
case, GMM estimation can be based on the population moment condition

E[f(vt,00)] = 0.

Below we consider the impact of each type of transformation on the GMM
estimator in turn.

The GMM Estimator and the Units of Measurement for v;

In general, the GMM estimator is not invariant to changes in the units of mea-
surement of v;. A simple example illustrates. Let v; be a scalar random variable
with unknown population mean 6y. This definition implies that,

Elvi] — 6 = 0 (3.71)

Since 6 is just identified by (3.71), the GMM estimator is just the Method
of Moments estimator which, in turn, is Op = T-1 Zthl vg. Now suppose vy is
replaced by z; = cv; in (3.71) for some non—zero, finite constant c. The resulting
GMM estimator of 6 is éT =71 ZtT:l x¢. It is easily verified that 9~T = CéT,
and so the GMM estimator is not invariant to changes in the scale of the data.
However, this lack of invariance is a strength rather than a weakness because
the scaling of the data has changed the interpretation of the parameter 6y. In
one case, it is the population mean of v; and in the other, it is the population
mean of x; = cv;.

It is important to realize that the lack of invariance applies to scale changes
in vg, that is to the random variables which appear in the population moment
condition. In some cases, v; may itself be a function of a set of underlying
variables and changes in the units of these variables may or may not have
an impact on the scale of v;. For example in Hansen and Singleton’s (1982)
consumption based asset pricing model, v, is defined to be (¢i41/ct, me41/pt). In
this case, since the elements of v, are ratios, changes in the units of ¢; or asset
prices (with commensurate changes in the returns) have no impact on v;, and
hence no impact on the GMM estimator. o

61 This type of transformation is sometimes refered to as “normalization” of the population
moment condition. However, we eschew this terminology to avoid confusion with the concept
of normalization of the parameter vector.
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The GMM Estimator and Reparameterization

The GMM estimator is invariant to reparameterization in the sense that the two
parameterizations yield logically consistent estimators. However, a similar result
does not extend to the estimated asymptotic standard errors, and so inferences
may be sensitive to the choice of parameterization. These two statements are
now justified in turn.

Let @ 7(v) be the GMM minimand associated with the reparameterized
model, that is Q. r(v) = Qr(h(v)), and 47 = argminQ, r(y). Given the
properties of h(.) stated above, it is possible to calculate 41 as follows. First,
Qr(h(v)) can be minimized with respect to h(y) to yield hy, say. Then, hy =
h(dr) can be solved to yield a unique value for 47. It is easily recognized that
fLT = éT and so by construction

0p = h(y7) (3.72)

Therefore the two estimators are logically consistent. However, the same cannot
be said for inferences based on the estimator, as we now show.

It can be recalled from the discussion following (3.27) that the estimated
asymptotic standard errors of O are the square roots of the diagonal elements
of the matrix,

Voo = [Gr(0r)WrGr(07)) *Gr(Or) WrSrWrGr(Or)
|G (0r) WrGr(07)] (3.73)
Similar arguments imply that the corresponding matrix for 47 is given by
Vir = [GyrGr)WrGyr(Ar) G (3) WSy 1 Wr Gy 7 (A7)
Gy (3r) WGy r (7))~ (3.74)

where G, r(.), and S, are the analogs of Gr(.), Sr only defined in terms
of f,(.) instead of f(.). Intuition suggests that these two matrices should be
related, and they are. To see how, note that (3.72) implies f(vy, 07) = fy(ve, Ar),
and hence that S’T = S’%T — assuming the same generic covariance matrix
estimator is used in each case, of course. Furthermore, by the Chain rule

0fy()/0n" = {0f(.)/00'} Oh(.) /0y
and so, using (3.72), it follows that
Gyr(Ar) = Gr(br)H () (3.75)

where H(.) = Oh(.)/0y'. Collecting these results together and making the
appropriate substitutions into (3.74), it can be shown that

Vor = [HG)] VorlHGr) ™ (3.76)

To illustrate how reparameterization may affect inferences, it suffices to take
a simple example. Suppose p = 1 and h(y) = +3. The asymptotic confidence

interval for ~ is
'?T + Za)2 \V VA/,T/T (377)
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Since # = v3 and (3.76) holds with H(97) = 342, it follows that (3.77) implies
the following interval for 6y

3 3
({% — a3 o/ T} Lo+ a3 e/ T ) (3.75)
In contrast, the asymptotic confidence interval based upon Or directly is

0r £ zaso\/Vor/T (3.79)

In general, there is no reason why the intervals in (3.78) and (3.79) should be
equal.

This sensitivity is a potential source of concern, and motivates an alternative
method for the construction of confidence intervals that is discussed later in this
section. However, it is worth noting one defence of the intervals described above.
It can be argued that many economic models imply a “natural parameterization”
and so this is the only parameterization of interest. For example, in Hansen and
Singleton’s (1982) consumption based asset pricing model, there are two aspects
of the agents behaviour which are crucial for the model: his/her discount factor
and coefficient of relative risk aversion. In our presentation in Section 1.3.1,
these two aspects of the model are captured directly by unknown parameters
(00,70). Alternatively, the model could have been parameterized so that the
discount factor and risk aversion are captured by hj(n;) and ha(nz) say, for
some prespecified functions h;(.) of unknown parameters (11,72). However, in
this second approach the unknown parameters have no meaningful economic
interpretation. So the first parameterization is argued to be the “natural” one
for this model and the second, by implication, to be “unnatural”. While this
argument may not find universal favour, it is certainly the case that published
studies tend to employ the natural parameterization. o

The GMM Estimator and Normalization of the Parameter Vector
In general, the GMM estimators associated with different normalizations of the
parameter vector do not exhibit a logical consistency in finite samples. However,
they do exhibit a logical consistency in the limit.

This particular issue has been the focus of some attention in the literature
on the use of the linear quadratic model for inventory holdings, and this set-
ting provides a convenient framework for our discussion. Several papers have
contributed to this part of the literature but our discussion is based on Fuhrer,
Moore, and Schuh (1995).92 The model has essentially the same structure as
the one described in Section 1.3.4 except that now the cost functions take the
form,

Co. = (001/2)QF + (002/2)(Qr — Qi—1)*
Olt, (90,3/2)(It —Wo[t—l)2

62 The interested reader is refered to Fuhrer, Moore, and Schuh (1995) or Blinder and
Maccini (1991) for the appropriate references.
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With these definitions, the Euler equation becomes

E[001(Qt — BoQir1) + 002(AQ¢ — 260AQ¢+1 + BoAQ¢:2)
+ bosly + 004S:|Q] =0 (3.80)

where Gy and ; denote the discount factor and information set at time t respec-
tively (as in Section 1.3.4), A denotes the difference operator,%3 and we have
set 0g4 = 0y 3wp. It is common in the literature on this model to fix the value
for By a priori because then the Euler equation is linear in both the parameters
and variables. We follow this practice, and so the Euler equation can be written
more compactly as,

Ele(0o) [€2] = 0 (3.81)

where
et(ﬂ) = 01R1,t + 92R27t + O031; + 045; (382)

and we have set Ry ; = (Qr — BoQ¢+1), Rat = (AQt — 280AQ441 + B5AQ1+2),
and 6y = (60,1, 00.2,60,3,00.4). Using similar argument to (1.23), it follows from
(3.81) that

E[ztet(ﬂo)} =0 (383)

for any z; € ().

Ideally (3.83) would form the basis for GMM estimation of 6y. However,
inspection of (3.82) reveals that 6y is not identified by this population moment
condition: if (3.83) holds then so does E[ze;(0)] = 0 for § = cfy and any finite
constant c. In other words, 6 is only identified up to a scaling factor. In the
absence of any additional information about the parameters from the underlying
economic theory, it is necessary to impose some arbitrary normalization on 6
in order to facilitate the estimation. For the purposes of exposition, we consider
two such normalizations. First, suppose the elements of e;(6y) are divided by
90,1 to yield

é(o) = Riyx + Yo1R2s + o2l + 10,35 (3.84)

where g ,; = 00.5+1/60,1. Secondly, suppose the elements of e;(6) are divided
by 0,4 to yield

e(do) = P01 Rt + do2Ray + o3l + S (3.85)

where ¢g; = 6,;/6p,4. Notice that both these normalizations of 6 are logically
consistent in the sense that given 1)y it is possible to solve uniquely for ¢y and
vice versa.%*

These normalizations lead to two different population moment conditions
upon which estimation can be based,

Elzéi(¢o)] = 0 (3.86)
Elze(¢o)] = 0 (3.87)
63 That is AQt = Qr — Qi—1.

64 Specifically, the mapping between them is given by ¢1 = 1/13, ¢2 = 1 /13, ¢p3 = 2 /13
where it is assumed for simplicity that all coefficients are non-zero.
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Since both population moment conditions have the linear structure considered
in Chapter 2, we can appeal to that earlier analysis to deduce that v is identi-
fied by (3.86) provided rank{E[ztx/Lt]} = 3 where x1¢ = (—Roy, —1It,—St),
and ¢g is identified by (3.87) provided rank{E[ztxlu}} = 3 where x2; =
(=Ri4t,—Ray,—1I:)'. The form of the estimators is given by (2.8), that is

-1
vp = le tzt YW (T Zztxlt ]
T Z 2102 W (T~ Z %Ry 4) (3.88)
- IR
or = Zl“ztzt YW (T Zztht ]

Z ZTo tZt WT Z ZtSt (389)

It is remarked above that the two normalizations of 8y are logically consistent.
Since 1/;T % 4o and QAST L, ¢, the estimators must exhibit a similar logical
consistency in the limit. However, there is no reason for z/AJT and qAST to exhibit
this property in finite samples. For example, even though the model implies
¥0,1/%0,2 = ¢o,2/Po,3, the corresponding estimators in (3.88)—(3.89) do not ex-
hibit this property, that is 1/)T 1 /ng * ¢T 2 /d)Tg in general. Fuhrer, Moore,
and Schuh (1995) provide empirical evidence that the estimators of inventory
models can be very sensitive to the choice of normalization. Further evidence
is provided by the simulation study reported in West and Wilcox (1994). o

The GMM Estimator and Curvature Altering Transformations of the
Population Moment Condition
The GMM estimator is invariant to curvature altering transformations of the
population moment condition if the parameter vector is just identified; however,
if the parameter vector is overidentified then it only exhibits this property in
the limit.

We begin with the just identified case, that is p = ¢q. Suppose that GMM
estimation is to be based upon the transformed population moment condition,

c(00)E[f (vi,60)] = 0 (3.90)

where c(f) is a finite non-zero scalar.%> Since p = ¢, the GMM estimator is just
the Method of Moments estimator #7 obtained by solving the sample analog to

65 For simplicity, we take c(.) to be a scalar, but the same arguments go through if c(6p) is
a (p X p) nonsingular matrix.
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(3.90),
()T~ f(ve, b7) = 0 (3.91)

t=1
However, provided ¢(fr) is finite and non-zero, (3.91) implies

T

T3 f(or,0r) = 0 (3.92)

t=1

and so 7 is also the Method of Moments, and hence GMM, estimator of 6,
based on E[f(vs,0p)] = 0.6

However, if ¢ > p then the above argument does not go through because the
first order conditions do not set the sample moment to zero. Specifically, the

GMM estimator based on (3.90) is now the solution to
A T T
{[% T‘ltz_;f(vt,GT)’ + c(OT)GT(GT)’} WTT‘ltz_;f(vt,GT) =0

(3.93)

In general, the solution to (3.93) does not satisfy the first order conditions asso-

ciated with GMM estimation based on the untransformed population moment

condition given in (3.12).6” However, since (3.90) holds, the estimator is con-

sistent for 6y and so the transformation does not affect the probability limit of

the estimator.

As mentioned above, this type of transformation is employed when the min-
imand is ill-behaved making estimation difficult. Such a problem occurs in
Eichenbaum’s (1989) inventory model described in Section 1.3.3. and we illus-
trate this type of transformation in Section 9.3 as part of our empirical investi-
gation of this model. o

Stationarity Inducing Transformations

If it is possible to find one stationarity inducing transformation of f(.) then
there are infinitely many such transformations. In general, the GMM estimator
is sensitive to the choice of transformation in finite samples, but is consistent
no matter which transformation is used.

These statements are most easily substantiated in the context of a specific
example. To this end, we consider the consumption based asset pricing model
described in Section 1.3.1 and, to simplify the discussion, focus on the specifi-
cation used in our empirical implementation.5®

66 Note that if the entire population moment condition in (3.71) is scaled by ¢, instead of
just scaling v, then the resulting GMM estimator is invariant to the choice of c.

67 The reader should be alerted to ‘an abuse of notation in making the comparison between
these two equations. In Section 3.2, 7 is defined to be the solution to (3.12). In the current
paragraph, O7 has been used to denote the solution to (3.93).

68 That is with only one asset with a maturity of one period, and the constant relative risk
aversion utility function given in (1.21).
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To begin, it is useful to revisit the derivation of the population moment
condition in Section 1.3.1 because the steps taken involve the implicit use of a
stationarity inducing transformation. It can be recalled from this earlier dis-
cussion that the derivation of the population moment condition began with
a characterization of the optimal path for consumption in (1.19). Under the
conditions given above, this equation reduces to

ptcgo_l = 50E[Tt+1033_;1|9t] (3.94)

From this starting point, we proceeded as follows. Since ptczo_l € Q, both
sides of this equation were divided by ptcz(’*l to give

E[6o(re1/pe)(cera/c) ™t = 1] = 0 (3.95)

and then the population moment condition is deduced from (3.95) using an iter-
ated expectations argument. However, we could have taken another approach.
Equation (3.94) can be rewritten as

ElSori416)27" — pecl M) = 0 (3.96)

It is then possible to use the same iterated expectations argument to deduce
population moment conditions based (3.96). Why use the first approach and
not the second? The answer is simple. Population moment conditions based
on (3.95) involve 141 = ¢iy1/ce and o441 = T441/pe, both of which are
stationary random variables. Whereas moment conditions deduced from (3.96)
involve functions of the nonstationary variables (¢, ¢, pt).

While the choice between (3.95) and (3.96) may be clear cut. It should be
noted that the stationarity inducing transformation used in (3.95) is not unique.
For example, let w; € € be a stationary random variable, then division of (3.94)
by wepc]® " yields

E[Sow;  (reg1/pe) (e /) — wi ] = 0 (3.97)

which can also form the basis for population moment conditions involving sta-
tionary random variables. It follows, therefore, that there are an infinite num-
ber of stationarity inducing transformations. The impact of the choice of wy
is most easily understood by considering the moment condition upon which
estimation is ultimately based. It can be recalled from Section 1.3.1 that
an iterated expectations argument is used to deduce FElu:(fp)z:] = 0 where
ug(fp) = 60(x27t+1x¥?t:_11 —1). If the same argument is used starting from (3.97)
then the resulting moment condition is simply E[u;(0p)Z;] = 0 where 2, = w; ' 2.
Therefore, the components in the stationarity inducing transformation play dif-
ferent roles: division by ptc;m*l actually induces stationarity and w; simply
scales the instrument vector. From this perspective, it is immediately apparent
that the resulting estimator is not invariant in finite samples to the choice of



102 GMM Estimation

stationarity inducing transformation, but is nevertheless consistent for 6y for
any suitable choice of w;.%” o

It is clear that either the estimator or subsequent inferences can be sensitive
to the types of transformation considered above. The sensitivity of the estima-
tor is particularly unappealing in the last three cases because there is clearly an
arbitrariness to the specific normalization or transformation chosen. It is possi-
ble to modify the GMM minimand to produce an estimator which is invariant
to curvature altering transformations. This version is known as the continuous
updating GMM estimator and is considered below. The sensitivity of inferences
to reparameterization may be viewed as a less serious problem because of the
“natural parameterization” argument. However, the latter view is not univer-
sally accepted and so we explore an alternative method for the construction of
confidence intervals. We now describe both these remedies in turn.

The continuous updating GMM estimator was introduced by Hansen, Heaton,
and Yaron (1996). The motivation for this estimator is best understood by con-
sidering the population analog to the GMM minimand with the optimal weight-
ing matrix. It can be recalled from Theorem 3.4 that the optimal choice of W is
S~1. For our purposes here, it is important to note that this choice of weighting
matrix depends on #y because S = limy_, o, Var[T2g7(6p)], and to emphasize
this dependence we now write S = S(6y). Using this notation, the population
analog to the GMM minimand is

Qpop(0) = E[f(ve,0)]'S(0)™" E[f (ve,0)] (3.98)

Notice that both the population moment condition and weighting matrix de-
pend on 6y. However, since the consistency of the estimator depends crucially
on E[f(v,00)] = 0 and not on S(6p)~!, we have treated the dependencies of
f(.) and S(.) on @ differently so far. In the iterated estimation, a preliminary
estimator of 6 is used to construct the weighting matrix and hence to eliminate
the argument from the weighting matrix so that the minimand takes the form

Qiterr(0) = gr(0)'Sr(i —1)""gr(0) (3.99)

While this is approach is perfectly reasonable, it is not the only one possible.
An alternative is to acknowlege the dependence of S on 6 in the minimization
and hence define the minmand to be

Qcont,T(a) = gT(e)/ST(Q)_lgT(a) (3100)
where
T-1 /
Sr(0) = Tor(0) + > wir[Tir(0) + Tix(0)] (3.101)
i=1

69 If the Euler equation is linear in the variables then it is possible to argue that an analogous
conditional moment restriction is satisfied by the detrended variables. See Section 9.3 for
further discussion of this approach to inducing stationarity.
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where T;7(0) = T~ 3, | f(ve,0)f(vi—i,0)'. Notice that Sr(f) has the
generic form of the HAC estimators discussed in Section 3.5.3 and so S7 () = S
under appropriate conditions upon the dynamic structure of f(v¢, 8y) and kernel,
w;,r. The continuous updating GMM estimator is defined to be,

Hcont,T = argminGG@ Qcont,T(e) (3102)

Intuition suggests that the continuous updating estimator exhibits the same
asymptotic properties as the two step or iterated estimator, and this is the case.
This can be established using similar arguments to the proofs of Theorems 3.1
and 3.2 and is left to the reader. Although the iterated and continuous updating
estimators have the same asymptotic distributions, they are typically different
in finite samples. The first order conditions for the iterated estimation are given
by (3.12) with Wiy = Sp(i — 1)1, those for the continuous updating estimator
are given by,”®

26262 Sr(0r) " gr6r) - {%} (52(0)™ @ Sr(0r)

x  veclgr(0r)gr(0r)] = 0 (3.103)

A comparison of the two sets of equations indicates that the first order con-
ditions for the continuous updating estimator contain an additional term due
to the presence of the argument in the weighting matrix. To make this sec-
ond term explicit, it is necessary to substitute in the appropriate formula for
05(0)/ d0'. For our purposes here, it is sufficient to restrict attention to the case
in which w; 7 = 0, that is in which the long run variance is estimated under the
assumption that f(v,60) is a serially uncorrelated process. In this case, it can
be shown that

T
w =T {ll® f(v,0)] + [f(vtﬁ)@fq]}w

t=1

(3.104)

In general, there is no reason why the solutions to (3.12) and (3.103) should
coincide for finite T. However, it can be verified that both sets of equations are
satisfied by 6y in the limit.

The chief advantage of the continuous updating estimator is that it is in-
variant to curvature altering transformations of f(v;,8). To illustrate, consider
again the situation described above in which the population moment condition
is multiplied by ¢(6p), and so estimation is based on (3.90). The key difference
now is that Qeont, () depends on # via both the sample moment and the in-
verse of the covariance matrix. After the transformation the sample moment is
¢(0)gr(0) and the inverse of the covariance matrix is ¢(6) ~2S7(6) 1. Once these
terms are substituted into the minimand in (3.100), it is easily verified that the

70 These equations can be derived using Dhrymes (1984) [Proposition 99, p.115; Proposition
106, p.124].
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factors involving ¢(6) cancel out, and so the estimator is unaffected by this type
of transformation. In some cases, different elements of the population moment
may be transformed by different functions of #, and the previous argument is
easily extended to cover this case and also the more general scenario in which
f (v, 0) is premultiplied by any nonsingular matrix C(0).

It is important to realize that the invariance of the continuous updating esti-
mator is only with respect to curvature altering transformations of the popula-
tion moment condition. However, there are cases in which the net effect of one
of the other types of transformation is to premultiply the population moment
by some nonsingular matrix C'(6), and so the continuous updating estimator is
invariant to these types of transformation in such cases as well.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model

Table 3.9 contains the continuous updating estimates, their standard errors and
95% confidence intervals for the parameters for both choices of assets. The
starting values for the estimations are the iterated estimates reported in Table
3.7. This choice is made for two reasons. First, if the model is correctly spec-
ified, then the iterated estimator is consistent for 6y which is a solution to the
first order conditions in (3.103) in the limit. Secondly, in this example, this
choice of starting value initiates the minimization in an area within which the
minimand is reasonably well behaved. In contrast to our experience with the
iterated estimator, the results are very sensitive to the choice of starting value.
In particular, for certain starting values, the numerical optimization routine di-
verges into parts of the parameter space clearly not in the neighbourhood of the
global minimum of T'Qcont,7(f). A similar experience is reported by Hansen,
Heaton, and Yaron (1996) in the context of slightly more sophisticated versions
of the consumption based asset pricing model. These differing experiences can
be explained by considering the surface of the minimands with the VWR data.
Figure 3.3 plots the second step minimand based on the first step estimates
calculated using Wy = 10°I5 with the VWR data. A comparison with Figure
3.2 indicates the minimand has the same valley like shape on both first and
second steps. In contrast, the surface of the continuous updating minimand has
a ravine in which the minimum is located as shown in Figure 3.4. The minimum
is far harder to locate in the latter case particularly as the surface is relatively
flat around the ravine.

With VWR, the results are very similar, although not identical, to those
reported for the iterated estimator. With EWR, the only noticable difference
between the estimation results is in the estimate of vy: continuous updating
GMM yields 0.515 for this parameter, as opposed to —0.343 with iterated GMM.
Notwithstanding this difference, the results are qualitatively the same from
the iterated and continuous GMM estimations. In both cases, g is precisely
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Figure 3.3: Second-step GMM minimand for the consumption based asset
pricing model with value weighted returns
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Figure 3.4: Continuous Updating GMM minimand for the consumption based
asset pricing model with value weighted returns
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estimated but v is not. Furthermore, the source of this imprecision is the same
here as it is in the iterated estimation: 7y, is weakly identified by the population
moment condition associated with continuous updating GMM. o

Table 3.9
Continuous Updating GMM estimation results for the
consumption based asset pricing model

EWR :

(3, 07) s.e.(37) ci.(37) s.e.(7) c.i.(o7)
(0.515,0.990) 2.229 (—3.853,4.884) 0.004 (0.981,0.998)

VWR :

(3, 07) s.e.(37) ci.(37) s.e.(7) c.i.(o7)
(0.785,0.993) 1.829 (—2.801,4.370) 0.004 (0.986, 1.000)

Notes: s.e.(.) denotes the standard error calculated using (3.59) with W = S‘gé, Sp = Sgé

and Sgy is defined in (3.40). c.i.(.) denotes the 95% confidence interval calculated using
(3.27).

It is the form of the minimand that gives the continuous updating estima-
tor its invariance to normalization of the population moment condition. It is
this minimand which also provides the key to the construction of asymptotic
confidence sets which are invariant to reparameterization. We use the term
“confidence set” because the approach described below is based on a proba-
bility statement involving 6y rather than statements involving its individual
elements. This approach was first introduced into the GMM literature by Stock
and Wright (1995, 2000) although in the context of a different problem. Stock
and Wright are concerned with the problem of inference in the presence of
weakly identified parameters, and we discuss this approach to inference in that
context in Section 8.2. For the present, we focus purely on the construction of
confidence sets which are invariant to reparameterization.”!

To derive these confidence sets, it is necessary to consider the limiting dis-
tribution of TQcont,7(0p). This distribution follows straightforwardly from the
limiting behaviour of its components, T'/2g7(6y) and Sz(fy)~'. Under the

conditions of Lemma 3.2, it follows that T'/2gr () <, N(0,S). If it is also

71 In the weak identification literature, these confidence sets are sometimes refered as S-sets,
a terminology inpsired by the notation used by Stock and Wright (2000).
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assumed that Sr(0) 2, S, then St(6p) 1 Log-1m2 Combining these two
results, it follows that

TQcont,T(QO) i’ XCZI (3105)

An asymptotically valid 100(1 — )% confidence set for  is then given by

{0 : TQcont,r(0) < cq(a)} (3.106)

where ¢q(a) is the 100(1— )% percentile of the x? distribution. In other words,

the confidence sets in (3.106) consist of all values of 8 for which the minimand
of the continuous updating GMM estimator does not exceed the appropriate
percentile of the limiting distribution of TQcont,7(60). It is easily recognized
that our earlier arguments about the invariance of the estimator to reparame-
terization can be applied here to show that the confidence sets in (3.106) ex-
hibit the same invariance property. This confidence set is illustrated below for
our running example. In that particular case, the calculations are relatively
straightforward because 6 is only a (2 x 1) vector. However, the computational
burden increases rapidly with p and quickly becomes prohibitive. Therefore, this
method of calculating confidence sets can be infeasible in many cases of interest.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model

It can be recalled that the model has been estimated for two types of asset,
VWR and EWR. As it turns out, these two cases provide a good illustration
of a fundamental difference between the confidence sets and marginal intervals
reported earlier. By construction the marginal intervals in (3.27) are non-empty.
However, it is entirely possible for the confidence set in (3.106) to contain no
elements, and this is exactly what happens when the model is estimated with
EWR. Such a phenomenon provides evidence that the model is misspecified.
We come to the same conclusion using model specification tests in Section 5.1,
and delay further discussion of this outcome until then. Instead we focus here
on the case in which the model is estimated with VWR. For this case, the
95% confidence set for (dg,70) consists of all points within the ellipse plotted in
Figure 3.5. This confidence set is clearly more informative than the marginal
intervals reported in Tables 3.8 and 3.9 because it reveals a connection between
the plausible values for vy and dg. In general terms, higher values of 7y in
the set are associated with smaller values of §y and vice versa. However, in one
sense the confidence set and marginal confidence intervals are similar: they both
imply dp is estimated very precisely but ~yg is not. o

72 The reader is refered to the references given in Section 3.5.3 for appropriate regularity
conditions for this result to hold.
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Figure 3.5: 95% confidence set for 6y in the consumption based asset
pricing model with value weighted returns

3.8 GMM as a Unifying Principle of
Estimation

It is stated in Chapter 1 that GMM provided a unifying framework for the
analysis of many econometric estimators. At that point it was only possible
to provide a few illustrations of this thesis but we are now in a position to
elaborate further. So we conclude this chapter by describing how the GMM
framework encompasses many other estimators derived using a seemingly dif-
ferent approach. This section covers material which is irrelevant to many of the
applications listed in Table 1.1, and so some readers may wish to proceed to
Chapter 4.

It is convenient to divide the discussion into two parts. First, we consider the
case in which all the elements of 6y are estimated simultaneously. For reasons
that will become apparent, we refer to such estimators as single step. This is
the case upon which we have focused in the book so far. Then we consider the
case of sequential estimators in which the elements of the parameter vector are
estimated in stages.
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3.8.1 Single Step Estimators

Many econometric estimators are obtained by optimizing a scalar of the form

T
> N(0) (3.107)

Two leading examples are least squares and maximum likelihood, both of which

we discuss in more detail below. If N;(6) is differentiable then the estimator, 6,
is the value which solves the associated first order conditions

> ON(0)/06 = 0 (3.108)

Equation (3.108) implies that 6 is equivalent to the Method of Moments esti-
mator based on the population moment condition

E[ON,(6y)/06] = 0 (3.109)

Since ON,(0)/06 is a (p x 1) vector it can be recalled from Section 3.3 that 6 is
also the GMM estimator based on (3.109).

As illustrations, we now derive the population moment condition implicit in
the GMM interpretation of least squares and maximum likelihood estimation.
A further example can be found in the next sub-section.

Example: Ordinary Least Squares Estimation in the Linear Regres-
sion Model

Suppose the static, linear regression model from Chapter 2 is estimated by or-
dinary least squares. Typically, this estimator is derived as the value of # which
minimizes the residual sum of squares. Within the terms of our discussion here,
this involves

Ni(0) = (yr — 236)?

Therefore, the OLS estimator can be interpreted as a GMM estimator based on
the population moment condition

Elzy(y, —2}8)] = 0 (3.110)

This condition states that the regressors and error are uncorrelated and is, of
course, one of the assumptions of the “Classical regression model”. o

Example: Maximum Likelihood Estimation

Suppose the conditional probability density function of the continuous station-
ary random vector v; given {v;_1,vi—a,...} is p(vs; 6o, Vi—1) where Vi =
(v;_1,V;_g,...v;_;). The maximum likelihood estimator (MLE) of 6, based
on the conditional log likelihood function is the value of # which maximizes,

T
Ly(0) = > In{p(vi;0,Vi_1)} (3.111)

t=1
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This fits within our framework with N;(0) = In{p(v; 0, V:—1)} and so the MLE
can be interpreted as a GMM estimator based on the population moment con-
dition

E[0in{p(v4;0,Vi_1)}/00] = 0 (3.112)

Since both OLS and MLE are derived from perfectly valid estimation prin-
ciples in their own right, it is reasonable to question whether there is any value
to this GMM interpretation. In fact there are two main advantages. First, the
GMM interpretation focuses attention specifically on the information used in
estimation; whereas this is often not apparent from the original derivation of
the estimators. For example, the importance of (3.110) for OLS estimation only
emerges in proofs of unbiasedness or consistency of the estimator. Secondly,
this interpretation allows the asymptotic properties of a variety of seemingly
different estimators to be deduced using the framework discussed in the previ-
ous sections. It is in this sense that we refer to GMM as a unifying principle
of estimation. To illustrate both these advantages, we return to the case of
Maximum Likelihood estimation.

Example: Maximum Likelihood Estimation (Continued)

It is argued in Chapter 1 that the dependence of MLE on the probability distri-
bution was a major weakness in the types of nonlinear dynamic models in Table
1.1. This problem is more readily appreciated using the GMM interpretation
of MLE. The above analysis indicates that the MLE is consistent if (3.112) is
satisfied. In fact, this population moment condition is automatically satisfied
if the distribution is correctly specified. It is useful to prove this result here
because it provides a natural starting point for considering the consequences of
misspecification.

By definition, a probability density function satisfies

/p(vt;Go,Vt_l)dv,’5 =1 (3.113)
v

where fv(.)dvé denotes integration with respect to vy over the sample space V.
Differentiation of (3.113) yields

9 /p(vt;Ho,VLl)dvé =0 (3.114)
90 | Jv

If p(.) satisfies the relatively mild conditions for the reversal of the orders of
differentiation and integration then (3.114) implies

/{813(%;90,%71)/69}(1@; =0
v
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This equation can be rewritten as

1
/ {Op(0s: 00, Vi 1) )00} plvsi 60, Vir) YU, = O (3.115)
v p(vi;60,Vi1)

If the probability density function is correctly specified then (3.115) is identical
to (3.112) because din{p(#)}/00 = {1/p(0)}0p(0)/D6, for any scalar function
p(.). However, notice that if p(.) is no longer the true probability density func-
tion of v; then (3.115) cannot be interpreted as an expectation and so does not
imply (3.112).

Does this mean that (3.112) never holds if the distribution is misspecified?
The answer is no, but once the possibility of misspecification is admitted then
its theoretical justification disappears. This issue is best understood using an
example. Consider again the consumption based asset pricing model we have
used throughout this chapter. As mentioned in Section 1.3.1 the conditional
distribution of #;41 = (%1441, %2,041)" = (In(z1,641), In(z2,441))" is unknown
but let us suppose it is assumed to be normal. To be consistent with the
economic model, the likelihood must be maximized subject to the restriction
E[5$Y;i1$2,t+1 |©2:] = 1. Hansen and Singleton (1982) show that for this model
one element of (3.112) is equivalent to the population moment condition

E [{ln(éo) + (’YO — 1)571,t + -%27:‘, + 0.5{(’)/0 - 1)2011 + 022 + 2(’}/0 - 1)0’12}}] =0

(3.116)
where 0;; is the i — j" element the conditional variance of #;11. Equation
(3.116) holds if the conditional distribution of #;4; is normal. However, if the
distribution has been misspecified then this condition can no longer be justified
by the line of argument in (3.113)—(3.115). Furthermore, a comparison with
(1.22) indicates that (3.116) is not implied by the Euler equation of the economic
model. Therefore, if the distribution has been incorrectly specified then there
is neither a statistical nor an economic justification for the moment condition
upon which this Maximum Likelihood estimation is based. This motivates the
use of GMM estimation based on population moment conditions implied by the
economic model.

The problems here stem from the presence of nonlinear functions of endoge-
nous variables in the population moment condition.”® If this feature is not
present, then (3.112) may hold for a wide class of plausible true probability
distributions. So there are circumstances in which Maximum Likelihood is un-
dertaken even though the distribution is unknown. In this case, it is refered to
as Quasi Mazimum Likelihood estimation (White, 1982) or Pseudo Maximum
Likelihood estimation (Gourieroux, Monfort, and Trognon, 1984). Both these
sets of authors derive the asymptotic distribution of the estimator. However,
it can also be derived directly using the GMM framework. If it is assumed
that (3.112) holds then Theorem 3.2 implies the suitably normalized Quasi-
MLE converges to a normal distribution with mean zero and covariance matrix

73 See Amemiya (1977) and Phillips (1982) for further discussion of this issue.
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(GHS™1Go) ™t where™

G() = E[82 ln{p(vt;ﬁo, Vvt,l) }/8089']
S = E{din[p(vi; 6o, Vi-1)]/06}1{0ln[p(vi; b0, Vi-1)]/00}']

If the distribution of v; is misspecified then no further reduction of the asymp-
totic covariance matrix is possible. However, if the distribution is correctly
specified then the information matrix identity”™ implies (G{S™1Go)~! equals
S~! and so the GMM framework yields the familiar result from Maximum Like-
lihood theory. o

3.8.2 Sequential Estimators

So far we have concentrated on the case in which all elements of 6, are esti-
mated simultaneously. However, in some cases it is convenient to estimate 6
sequentially. In this section, it is shown that a class of sequential estimators are
also special cases of GMM. We start with the general case and then illustrate
the ideas using a model with generated regressors.

To introduce the basic idea, it is sufficient to focus on two step sequential
estimation procedures. Accordingly, we partition the parameter vector into
05 = (651,05 o) where g ; is (p; x 1) vector. Suppose that in the first step, 61 is
estimated by GMM based on the population moment condition E[f1(vi,00,1)] =
0 with weighting matrix Wi r. Let this estimator be él,T. Now suppose that
in the second step, 6 2 is estimated by GMM based on the (p2 x 1) population
moment condition E[fa(v,00)] = 0 with QALT substituted for 6y ;. Notice that
00,2 is just identified by E[f2(ve, 00)] = 0 conditional on 6 1 and so the weighting
matrix plays no role in this estimation. Newey and McFadden (1994) show that
this sequential estimation procedure is identical to the single step estimation of
0o via GMM based on E[f(v¢,0p)] = 0 where

f1(ve,00.1) }
,00) = ’ 3.117
f(vt 0) |: fQ(Ut, 00) ( )
and the weighting matrix
| War 0
Wr = [ 0 War ] (3.118)

for any positive definite matrix Wy 7. At first glance this may seem surprising
but there is a simple intuition behind the result. From (3.117) and (3.118) it
follows that the minimand for the simultaneous estimation can be written as

Qr(d) = Qir(th) + Q27(61,02)
= gl,T(al)/Wl,Tgl,T(el) + gz,T(91,92)'W2,T92,T(91,92)
7 Notice that (3.115) implies Oln[p(ve; 6o, Vi—1)]/00 is a martingale difference sequence

with respect to Vz_1.
75 For example, see White (1982).
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where gl,T(Ql) = 7! Zle fl(vt,Gl) and g27T(91,02) = 7! Zle fg(vt,G).
Since fa(.) is (p2 x 1), there always exists a value of 63 which sets Q2,7 (61,02)
to zero regardless of the value of 6. So the minimization of Qr(6) can be
performed by first finding the value 6, which minimizes @1,7(61) and then find-
ing the value of 65 which sets QQ)T(él’T,HQ) to zero. Clearly, this is just the
sequential procedure described above.

It is important to notice that this argument only works for situations in which
f2(.) is the same dimension as 0 . To illustrate what happens if this is violated,
it is useful to denote the dimension of fy(.) by g2. First consider the case where
g2 < p2. This implies 6 o is unidentified by E[f2(vs, 00)] = 0 conditional on 6y 1
and so 6y is unidentified. Now consider the case where g > py. This time 6 2
is over-identified by E[f2(vs,00)] = 0 conditional on 6y ;. Consequently, there
is not generally a value of #2 which sets Q2. 7(61,02) to zero for any value of 6.
This means the value of §; which minimizes Q1 () is no longer the same as the
value which minimizes Q1 7(61) alone.

In spite of this limitation, many sequential estimators are covered by these
conditions. The main advantage of this GMM interpretation comes in the cal-
culation of the correct asymptotic variance for HA27T. Since ég,T is calculated
conditional on OALT, its asymptotic distribution must take account of the uncer-
tainty inherent in the estimation of 6y ;. The correct distribution is typically
not obvious when the estimator is viewed in its original sequential form. How-
ever, the GMM perspective allows the correct form of the distribution to be
deduced immediately from Theorem 3.2. As an illustration, we consider a more
general version of the partial adjustment model discussed in Section 3.1. Other
examples can be found in Newey (1984) and Newey and McFadden (1994).

Example: A Partial Adjustment Model for Inventory Holdings
Hall and Rossana (1991) consider the following model for inventories

Ay = 70,0 + 7.0¥-1 + Yo0Ti-1 + V30w + yaows, + ug

Uy = pPoUt—1 + €

where y; are inventory holdings in period t, Ay, = y; — y¢—1, T4—1 IS a vector
containing the number of workers, the hours per production worker, materials,
work in progress and unfilled orders in period ¢ — 1, w{, is the expected new
orders, and w§ , is expected material prices. All variables are in logs. The error
term e; is assumed to be independently and identically distributed with mean
zero. If all the regressors are observed then the parameters can be estimated by
nonlinear least squares. These estimators are defined to be

T

(3, pr) = argmine perxr T~ {ed(v,p)}? (3.119)
t=1

where e (7, p) = u(7y) — pue—1(7), we(v) = Aye — (1, ye—1, 731, wi 4, w5 )"y and
v is the (9 x 1) vector of regression parameters. Unfortunately, neither of the
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expected values are known at time t. To circumvent this problem, Hall and
Rossana (1991) estimate these variables by their least squares predictions from
the AR(12) models

wiy = Wi Bi0 + €y

where 11)27t = (1,wit—1,Wit—2,...wit—12) and B; o are the vector of regression
parameters. These predictions are known as “generated regressors” because
they are generated from a separate model. The need to predict wf, creates a
sequential estimation.”® In the first step 6y = (ﬂi,Oaﬂé,O) are estimated. In

the second step, Oy 2 = (’Y(/),Po) are estimated conditional on 9A17T. However, it
is not obvious exactly how this structure would affect inference about the pa-
rameters of the inventory equation. As suggested above, the answer is found by
interpreting the estimation from a GMM perspective. To achieve this, we must
derive the population moment conditions which are being implicitly exploited
in each step of the estimation. Since the univariate AR(12) models are linear
regression models, it follows from the previous subsection” that ;7 are the
GMM estimators based on

Wy ¢ (wr,e — W 4B1,0)

N _ =0
Wa, (w2, — Wh 32,0)

Elfi(v,010)] = E
The minimand for nonlinear least squares estimation also fits within the frame-
work discussed in the previous sub-section. The minimand in (3.119) can be
obtained from (3.107) by putting N,(6) = e;(v, p)?. Therefore it follows from
(3.109) that the GMM interpretation of Hall and Rossana’s (1991) estimator is
completed by

0é, (0,
Blfa(on 00)] = B2 6 () = 0
005
where
e(0) = u(y,02) — plig—1(v,01)
u(7,601) = Ayr— (Lyi1, 1, W) 4 f1,W2,82)"y

The correct form of the asymptotic distribution of the inventory equations can
be deduced from Theorem 3.2. o

3.9 Summary

This chapter provides a comprehensive treatment of GMM estimation in cor-
rectly specified models. Building from the discussion in the previous chapter,
it is shown that the basic approach to estimation employed in the linear static

76 Pagan (1984) presents an in depth analysis of the problems caused by generated regres-
sors. However, he does not exploit the GMM perspective described here. This approach was
taken first by Newey (1984).

77 Notice that the static nature of the variables in our earlier example played no role in the
discussion.
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model translates readily to nonlinear, dynamic models. The basic statistical
framework also translates; although, inevitably, the presence of nonlinearity and
dynamics complicates the analysis at various points. Seven key features emerge.

e Identification: For the estimation to be successful, the population moment
condition must not only be valid but also provide sufficient information
to identify the parameter vector. The intuition behind parameter iden-
tification is identical to the linear model, but nonlinearity considerably
complicates its verification within a particular model. As a result, it is
necessary to introduce the concepts of local and global identification.

o Calculation of the estimator: The presence of nonlinearity and, to a lesser
extent, the dynamics means that the first order conditions do not yield
a closed form solution for the estimator in general. Instead, the solution
must be found via numerical optimization techniques.

o [dentifying and overidentifying restrictions: GMM estimation in overi-
dentified models involves a fundamental decomposition of the population
moment condition into identifying and overidentifying restrictions. The
identifiying restrictions contain the information that goes into the estima-
tion, and the overidentifying restrictions are a remainder that manifests
itself in the estimated sample moment.

o Asymptotic properties: The GMM estimator is consistent and, when ap-
propriately scaled, has a limiting normal distribution. Here too, the ab-
sence of a closed form solution for the estimator, necessitates a different
approach. This difference is most marked in the proof of consistency.
However, once consistency is established, the Mean Value Theorem can
be used to linearize the sample moment, and the proof of asymptotic nor-
mality can be viewed as a direct generalization of the arguments used in
the linear model.

e FEstimated sample moment: The estimated sample moment is shown to
have a limiting normal distribution whose attributes depend directly on
the function of the data in the overidentifying restrictions.

e Long run covariance matrix estimation: To translate the asymptotic nor-
mality into practical inference procedures, it is necessary to estimate the
long run variance of the sample moment consistently. To construct a suit-
able estimator, it is necessary to make certain assumptions about the de-
pendence structure of f(vg,8), the function of the data which appears in
the population moment condition. Three cases are considered: f(vy,6p) is
a serially uncorrelated process; f(vt,6p) is generated by a vector autore-
gressive moving average process; the class of heteroscedasticity and au-
tocorrelation covariance (HAC) matrix estimators whose properties only
require the dependence structure to satisfy very mild restrictions.

e Optimal choice of weighting matriz: The optimal choice of weighting ma-
trix converges to the inverse of the long run covariance matrix of the
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sample moment. Therefore, in general, its use necessitates a two step or
iterated estimation.

In addition to the standard GMM estimation framework, this chapter also
discusses certain important extensions. It is shown that both the estimator
and/or subsequent inferences are sensitive to certain transformations of either
the data, parameter vector or moment condition. These sensitivities motivate
the discussion of the continuous updating GMM estimator and also an alter-
native method for the construction of confidence sets based on inverting the
minimand.

It is also shown that GMM can be viewed as a unifying principle of estimation
because it encompasses other methods such as Maximum Likelihood, Ordinary
Least Sqares and certain Sequential estimation techniques.

A key assumption throughout is that the model is correctly specified. In the
next chapter, we consider the consequences of misspecification for the asymp-
totic properties of the estimator and estimated sample moment. As would be
anticipated, these consequences are not good and this motivates the use of spec-
ification tests, such as the overidentifying restrictions test. Such diagnostic tests
are examined in Chapter 5 as part of a more general review of hypothesis testing
within the GMM framework.



4

GMM Estimation in
Misspecified Models

The previous chapter establishes the large sample properties of the estimator
and its various associated statistics in correctly specified models. In practice,
a researcher never knows whether his/her assumptions correspond to the real
world, and so it is important to consider the impact of misspecification on the
statistical properties derived in Chapter 3. Intuition suggests misspecification
has a detrimental effect, and this is borne out by the analysis presented in
this chapter.! In particular, it is shown that misspecification contaminates
inferences about the parameter vector, and this pessimistic conclusion motivates
the model specification tests presented in the next chapter. However, there
is a secondary purpose to the presentation of a formal analysis of the GMM
estimator under misspecification. Inspection of the empirical literature reveals
that it is not uncommon to find cases in which the sample evidence suggests that
the model is misspecified but inference about the parameters is still performed
— either implicitly or explicitly — using the asymptotic theory appropriate for
correctly specified models. The results presented here provide guidance on the
interpretation of such inferences, and suggest that this approach to inference in
misspecified models is invalid in general.

Before we proceed further, it is useful to consider exactly what is meant
by the term “misspecification” in our context. As seen in Chapter 1, an eco-
nomic/statistical model consists of a set of assumptions about the data gener-
ation process for v;. For expositional convenience, we now denote this model
by M. This model implies a set of population moment conditions which can
be used as a basis for GMM estimation of 6y. This logical sequence can be
represented by

M = E[f(v,00)] =0, ¥t, for some unique 6, € © (4.1)

1 Also see Section 2.5 for a heuristic discussion of the consequences of misspecification in
the static linear model.

117
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If M is no longer considered to be the truth, then there are two natural, alter-
native scenarios. First, the true model, M4, although different from M, shares
the property in (4.1); that is

My = E[f(v,04)] =0, Vi, for some unique 0, € © (4.2)

Secondly, the true model, M g, implies the property in (4.1) does not hold; that
is

Mp = A0 € O such that E[f(v,0)] =0, VL. (4.3)

Clearly, M and M, are observationally equivalent on the basis of E[f(vs,0)]
alone.? Therefore, the estimator and the estimated sample moment have essen-
tially the same large sample properties under M and M 4 — the only difference
is in the use of 0y or 0, to denote the value at which the population moment
condition and other regularity conditions are satisfied. In contrast, M and Mp
have different implications for E[f (v, 0)], and these manifest themselves in the
behaviour of the estimator and the estimated sample moment. It is convenient
to reserve the term “misspecification” to denote only this second situation. As
it stands, (4.3) states only that E[f (v, #)] is non-zero. For the analysis in this
chapter, it is most convenient to retain the assumption that v; is a stationary
process, and so E|[f(vt,0)] is independent of ¢. Therefore, we restrict attention
to the following class of misspecified models.

Assumption 4.1 The Nature of the Misspecification
E[f(ve,0)] = p(8) for all t and ||u(0)|| > 0 for all0 € ©.3

One immediate consequence of this assumption is that it excludes misspecifica-
tion characterized by structural instability — that is, cases in which E[f (v, 0)] =
¢ While this obviously limits the generality of the analysis, the price is worth
paying because Assumption 4.1 smooths the passage from correctly to incor-
rectly specified models, and so enables us to highlight more simply the main
differences between the two scenarios. However, in Section 5.4, we do return to
the topic of structural instability in the context of hypothesis testing. There
is one further consequence of Assumption 4.1 which should be noted. Taken
together, Assumptions 4.1 and 3.1 (the stationarity of v;) imply that ¢ > p.
This follows because if p = ¢ then the value which satisfies the identifying re-
strictions in (3.19), 6 say, must also satisfy the population moment condition.*
In other words, if the parameter vector is just-identified then the true model
must exhibit the properties of M 4 above.?

2 Notice this definition of observational equivalence depends crucially on f(.). Since M
and M4 are different models they will have different implications for other aspects of the
distribution of vy.

3 For any vector a, ||a|| = (a’a)

4 See Hall and Inoue (2003).

5 This does not hold if vs is non-stationary.

1/2
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In practice, inference is typically based on the two step or iterated esti-
mator. The key feature of such estimators is that the i*® step estimation
employs a weighting matrix equal to the inverse of a covariance matrix esti-
mator calculated using éT(z — 1). This structure means that the population
analog to the minimand on the it" step depends on the probability limit of
Or(i — 1) via the weighting matrix. This construction provides a mechanism
through which the consequences of misspecification are transmitted from one
step to the next. This means that to deduce the impact of this misspecifica-
tion on the iterated estimator, it is necessary to consider each step sequentially.
Therefore, we begin our discussion with the first step estimator: Section 4.1
derives its probability limit, and Section 4.2 derives its limiting distribution.
It emerges that misspecification considerably complicates the analysis of the
limiting distribution. Specifically, the rate of convergence of éT(l) to 0.(1) de-
pends on the rate of convergence of W to W. This means that in some cases
T'/2[07(1) — 0,(1)] does not converge in distribution. However, it is shown
that this statistic has a limiting normal distribution under certain conditions
which plausibly cover the most common choices of weighting matrix in practice.
Section 4.3 considers the impact of misspecification on the long run covariance
matrix estimators presented in Section 3.5. It is shown that none of these es-
timators are consistent if the model is misspecified. However, it is also shown
that there is a simple way to modify all the estimators to ensure consistency
regardless of whether or not the model is correctly specified. There are cer-
tain advantages to using one of these modified estimators in the construction
of moment selection procedures. A formal justification of this statement is left
until Chapter 7. Section 4.4 examines the limiting behaviour of the second-
step estimator. Here too, the method of covariance matrix estimation is im-
portant because it determines the rate of convergence of the weighting matrix
to its limit and hence the rate of convergence of the estimator. We concen-
trate on two cases. Section 4.4.1 presents the analysis when the covariance
matrix estimator is constructed under the assumption that f(v,6,) is a serially
uncorrelated process. Section 4.4.2 presents the same analysis when an HAC
estimator is used. Section 4.5 considers the limiting behaviour of the estimated
sample moment. Unlike the estimator, T'/2gp (07 (i)) diverges at rate T/2 re-
gardless of the rate of convergence of the weighting matrix. Finally, Section
4.6 provides a summary of the consequences of misspecification on the GMM
estimator.

Before we begin the analysis, it is necessary to address an item of notation. In
the course of our discussion, it emerges that the plimy_ o 07 (i) may be different
for each i, and consequently, we use 6,(7) to denote this limit. However, to avoid
excessive repetition, we express assumptions in terms of 6,, and then define 6,
in the appropriate theorem. In spite of the aforementioned dependence on ¢,
there are times in which the analysis is generic to all steps and so we adopt
the more economical notation of éT for the estimator and 6, for its probability
limit.
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4.1 Probability Limit of the First Step
Estimator

By definition, the first step GMM estimator can be constructed with any weight-
ing matrix which satisfies Assumption 3.7. In Section 3.4.1, it is shown that
such an estimator converges in probability to 6y in correctly specified models
provided certain regularity conditions are satisfied. So this earlier analysis pro-
vides the natural place to start our search for conditions under which the first
step estimator converges in misspecified models. It can be recalled that the
proof of Theorem 3.1 is broken down into two parts. Part (i) uses the uniform
convergence property in Lemma 3.1 to establish that éT minimizes Qo () with
probability one as T' — oo. Then part (i4) uses the population moment and
identification conditions in Assumptions 3.3-3.4 to show that part (:) implies
consistency. This overview suggests similar arguments can be used to establish
the convergence of Or in misspecified models provided a suitable replacement is
found for Assumptions 3.3 and 3.4 in part (i7). To this end, we now introduce
the following assumption.

Assumption 4.2 Identification Condition
There exists 0. € © such that Qo(6x) < Qo(0) for all 6 € ©\ {6.}.

Assumption 4.2 states that the population analog to the first step GMM
minimand has a unique minimum at 6,. This property defines 6, = 0,(1) as the
probability limit of éT(l) in Theorem 4.1 below. Before we present that result, it
is worth noting two ways in which Assumption 4.2 differs from the combination
of Assumptions 3.3 and 3.4. First, Assumption 4.2 does imply a specific value
for E[f (v, 6,)] — although it does imply that || E[f (v, 04)] ||< co. Secondly, in
misspecified models, there is no reason why the same parameter value should
minimize Qo(f) for two different choices of W. Therefore, in general, 0, is
determined in part by W.6

Theorem 4.1 Convergence of (1)
If Assumptions 8.1-3.2, 3.7-3.10, 4.1 hold and 4.2 holds for 0, = 0.(1) then

07(1) 2 6,(1).

As anticipated above, the proof is split into two parts along similar lines
to the proof of Theorem 3.1. Part (i) uses the definition of the estimator and
Lemma 3.1 to deduce that

Jim P[0 < Qo(07(1)) < Qo(0+(1)) 4+ € =1 for any € > 0 (4.4)
Part (ii) uses (4.4) and Assumption 4.1 to deduce that 67(1) % 6,(1). The
details are left to the reader.

6 See Section 4.4 for futher discussion of this issue in the context of the two step or iterated
estimator.
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4.2 Asymptotic Distribution Theory for the
First Step Estimator

In Section 3.4.2 it is shown that T/2(0; — ) converges to a normal distribu-
tion if the model is correctly specified. In this section, we develop an analogous
limiting distribution theory for the first step estimator when the model is mis-
specified. It emerges that the weighting matrix plays a far more fundamental
role in misspecified models, and this complicates the analysis. This dependence
is present at each step of the GMM estimation, and so the first part of the anal-
ysis is not specific to the first step estimator. Therefore, we adopt the generic
notation of 67 for the estimator and 6, for its probability limit for most of this
analysis and then specialize the results to éT(l) at the end. This section is based
on results in Hall and Inoue (2003) to which the reader is refered for rigorous
proofs of the main results.”

As in the previous section, we need to determine appropriate conditions un-
der which to perform the analysis. Once again, the logical starting place is the
corresponding analysis in correctly specified models. Inspection of the regularity
conditions in Theorem 3.2 reveals that many of them do not involve the specifica-
tion of the model per se. In particular, Assumptions 3.1, 3.2, 3.7-3.10, 3.12-3.13
impose regularity conditions on v;, © or the behaviour of f(.),df(.)/86" over
O. Therefore, we can equally well impose those assumptions here. Obviously,
Assumptions 3.3-3.4 depend on the model specification, and, as in the previous
section, we replace them with Assumption 4.2. Once this is done, we can invoke
Theorem 4.1 to deduce that 67 % 6,. The nature of this limit will have an
impact on our analysis. It can be recalled from Section 3.4.2 that the analysis
started with the Mean Value Theorem applied to gT(éT) around 6y. We use a
similar starting point below but take the linearization around .. So we must
replace Assumptions 3.5, 3.12 and 3.13 by the following assumption.®

Assumption 4.3 Regularity Conditions on 9f(v,0)/00

(i) The derivative matriz df(v,0)/00" exists and is continuous on © for each
v € V; (ii) 0. is an interior point of ©; (iii) E[0f(vy,0,)/00'] exists and is
finite; () E[0f(vt,0)/00'] is continuous on some e-neighbourhood N. of 0,;
(v) supgey, |G (6) — B[S (ve,6)/0¢']]] = 0.

Once the linearization is taken around 0., it is the behaviour of T1/2gT(9*)
which becomes relevant. Accordingly, we define

E[f(vr,0.)] = p (4.5)

Notice that Assumption 4.1 implies p. # 0. We must also replace Assumption
3.11 and Lemma 3.2 by:

7 Hall and Inoue’s (2003) results subsume earlier work by Maasoumi and Phillips (1982);
the latter paper presents the limiting distribution of the IV estimator in the linear regression
model with Wr set equal to the inverse of the instrument cross product matrix.

8 Part (4) is identical to Assumption 3.5(i). Tt is repeated here to simplify the presentation.
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Assumption 4.4 Properties of the Variance of the Sample Moment
(i) E[(f(ve,0.) — ) (F(vg,0,) — p2)'] exists and is finite;

(ii) limp oo Var[T'2?g7r(0,)] = S, exists and is a finite valued positive definite
matric.

Lemma 4.1 Central Limit Theorem for 7-'/2 Zthl[f(vt, 0.) — fi]

If Assumptions 3.1, 3.8, 4.1, and 4.4 hold then T—1/? Ez;l[f(vt,ﬁ*) — L] LA
N(0, S,).

With all these assumptions imposed, we can now proceed to the analysis. As
mentioned above, we begin by using the Mean Value Theorem to deduce that

gr(01) = g7(0.) + Gr(0r,0., Ar)(0r — 0.) (4.6)

where Gr(r, 0., A1) is (¢ X p) matrix whose i'" row is equal to the it" row

of GT(ééf)) where égf) = )\gf)G* + (1 - )\(Ti))éT for some 0 < )\gf) < 1, and
1=1,2,...q. It is then possible to apply the same sequence of arguments as in
Section 3.4.2 to show that (4.6) leads to

TY2(0p —0,) = —[Gr(0r) WrGr(Or, 0., Ar)] " Gr(6r) WrT  2g7(6,) (4.7)

It is convenient to rewrite (4.7) as

TV?(0r —0,) = Hor{Hyr + Har} (4.8)
where
Hor = — G (br) WrGrp (07, 0., Ar)] ! (4.9)
T
Hyr = Gr(0r) WrT™ 23 [f(vr,0.) — ] (4.10)
t=1
H27T = TI/ZGT(éT)/WTM* (4.11)

It is instructive to compare (4.8) with the corresponding equation in our analysis
of correctly specified models, (3.26). The term HorHir can be recognized as
the analog to the right hand side of (3.26), and so misspecification has introduced
a second term, Ho rHa 7, into the equation.” To proceed further, it is useful to
decompose Ha 1 as follows:

Hypr = Hor(l) + Hap(2) + Hor(3) + Har(4) (4.12)
where
Hy (1) TY2[Gr(07) — Gr(6,)] W s (4.13)
Hor(2) = TY?[Gr(0,) — G.) Wrp, (4.14)
Hy7r(3) = G.TY*(Wp—W)p, (4.15)
Hyp(4) = TY?G.Wp, (4.16)

9 Notice that if the model is correctly specified then p.« = 0 and so Hyr =0.
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At this stage, we can take advantage of two simplifications. First, the population
analog to the first order conditions imply Hs 7(4) = 0. Secondly, Hz (1) can
be written as'®

Hyr(1) = (uWr @ L)vec{T"?[Gr(br) — Gr(0.)]}
(nWr ® L)GE) (07, 0., r) T2 (0r — 0.)
= MTT1/2(éT — 9*), say

where Gg,?)(é:p, 0., dT) is the pg X p matrix whose it vow is the corresponding
row of (8/00 Yvec{df (v;,05))/90'} with 6% = ¢ br+(1-¢4)6,, 0 < () < 1,
and ¢ is the pg x 1 vector with i*" element ¢¥).

Taking advantage of these two simplifications, (4.8)—(4.16) can be used to
deduce that

TY?(0p —6,) = [I, — HorMp) ‘Hor {Hi7 + Hor(2) + Hop(3)} (4.17)

Intuition suggests that [I, — HO,TMT]_lHQT converges in probability to some
matrix of constants and H; 7 converges in distribution to normal vector under
our conditions. Tt is also reasonable to assume that T/2[Gr(0,) — G.] converges
to a normal limiting distribution under certain conditions, and so Hy 7(2) ex-
hibits the same property. The key question is the limiting behaviour of Ha 1 (3).
From (4.15), it is clear that the limiting behaviour of Hy 1 (3) depends on that
of TY/2(Wy — W). In order for TY/2(67 — 6,) to converge in distribution, it is
a necessary condition that T"/2(07 — 6,) = O,(1). From (4.17), it is clear that
such a condition can only be satisfied if T'/2(Wr — W) = O,(1). Therefore, if
Wy converges to W at a slower rate than T2 then T'/2 (67 — 6,) must diverge.
This dependence of T'/2(07 — 6,) on TY/2(Wp — W) is in marked contrast to
what is found in correctly specified models, and is directly attributable to the
presence of Hy  in (4.8).

To make further progress, it is clearly necessary to make some assumption
about the nature of the convergence of W to W. We focus on two particular
scenarios which both satisfy T'/2(Wr — W) = O,(1) and together cover the
choices of first step estimator used in our empirical example in Chapter 3. The
first scenario is where W = W, which obviously covers W = I, and the second
is where TV2(Wy — W)p, converges to a normal distribution, which we show
below covers Wr = [T~} Zle z2,])~! under plausible assumptions. However,
before we present these results certain other conditions must be imposed. To
ensure that G(T2 )(éT, 0., 1) converges to a well-defined limit, we impose:

Assumption 4.5 Regularity Conditions for Gg?)(H)
(1) (0/00" yvec{df (vy,0)/00'} exists and is continuous on © for each v € V;
(i) E[(0/00"yvec{df(v:,0)/00'}] exists and is continuous on ©;

10 Dhrymes (1984)[Corollary 25, p.103] and the Mean Value Theorem applied to the i — j**
element of G (0r).
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(iii) supgey. |G (0) — E[(/00 Y vec{df (v1,0)/00'}]]| L 0 where N, is an e
neighbourhood of 0,.

It is also necessary to ensure that the the inverse matrix in (4.17) is well defined
in the limit. Therefore, we impose:

Assumption 4.6 Regularity Conditions on H,
The p x p matrix H, = G.WG, + (L.W & Ip)ng) is nonsingular where G, =
E[0f(vy,0,)/00'] and G\* = E[(0/06yvec{df(vy,0,)/00'}].

Assumption 4.6 is satisfied if Q(0) satisfies the second-order sufficient condition
for minimization at 6,. It is also necessary to impose certain conditions in order
for Hy 7(2) to converge to a normal distribution. For ease of exposition, we
impose those conditions implicitly in the statement of the following theorem.

Theorem 4.2 Limiting Distribution of the First Step Estimator
Let Assumptions 3.1, 3.2, 3.7-83.10, 4.1-4.6 (with 0, = 6,(1)) hold.

(i) If Wp =W and

T2 [fn ) =] ] a (o Se Ve
TY2(Gr(0.) = G W "\ Ve Vap ) )0

)

then it follows that
T'2(0r — 0.) % N(0,%1)

where

S = H- Y (G WS WG, + G.W Vg + Vo WG, + Vao)H, !

(ii) If
T2 EtT:ﬂf(Ut, 0.) — 1] J Se Vipg Vig
TY2[Gr(8,) — G )W s = N0, | Vou Voo Vo3
T= (Wr — W)y Va1 Vo Vi3
then
T1/2(9T - 9*) i N(O7H*_122H*_1)7
where
Yo = G;WS*WG* + VV2,2 + G;V3’3G* + G;WVLQ

+G;WV1’3G* + %,1WG* + G;‘/gJWG* + ‘/273G* + G;V372

It is interesting to compare the results in parts (i)—(ii). First recall that 0,(1)
depends on W. Secondly, the structure of covariance matrices is different. So,
in general, the limiting distributions in (i) and (ii) are different. However, there
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is one obvious exception: if p, = 0 — i.e. the model is correctly specified — then
6.(1) = 6y and both variances reduce to'!

= (GLWG,) Y GC.WS WG (GLWG,) ™! (4.18)

which can be recognized as the variance in Theorem 3.2 (if we put 6, = ). This
comment also implies that, in general, the first step estimator has a different
distribution in correctly specified and misspecified models.

It is remarked above that Theorem 4.2 covers the case in which the weight-
ing matrix is the inverse of the instrument cross product matrix under plau-
sible assumptions. To uncover the nature of these conditions, we let Wy =
[T-! Zthl 2z W= M = {E[z2]]} ", and rewrite TY/2(Wp — W) as
follows

T
TV2(Wp — W) = =M T2 (22 - 1Zztzt 1 (4.19)
t=1

From (4.19), it can be seen that this case is covered by Theorem 4.2(ii) provided

that Uech{T_l/Q[ZtT:1 212y — M)} converges to a mean zero normal distribu-
tion.12

4.3 Long Run Covariance Matrix Estimation

Section 3.5 described various estimators of the long run variance of the sample
moment. These estimators were grouped into three classes according to the
assumption made about the dynamic structure of f(v,6,). However, all the
estimators have one feature in common: they are constructed under the as-
sumption that the model is correctly specified. Once we move into the world
of misspecified models, none of the proposed estimators are consistent even if
they are based on a correct assumption about the dynamic structure. This
section describes the impact of misspecification on each of the covariance ma-
trix estimators, and explains how they can be modified to ensure consistency in
misspecified models. Gallant and White (1988)[Chapter 6] consider the impact
of model misspecification on covariance matrix estimation under very general
conditions, and some of our discussion represents a specialization of their results
to stationary processes.

It is shown below that the exact impact of misspecification on each covariance
matrix estimator is different. However, it is possible to gain a sense of both the
problem and the solution by examining a single autocovariance matrix. By
definition, the j*" autocovariance matrix of f(vy,,) is

= B0 00) = pHS (05, 0) = )]
B[ (v6,0.)f (05, 6)'] = ppi, (4.20)
11 Notice that p+ = 0 implies V; ; = 0.

12 yech{.} denotes the operator which stacks the lower triangular elements of a matrix into
a vector.
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Suppose we estimate I'; by

T
r; =77t Z f(, 07) f(ve_j, br) (4.21)

t=j+1

This statistic is a consistent estimator of the first term on the right-hand side
of (4.20) but therefore an inconsistent estimator of I'; because p. # 0. Given
(4.20), the obvious solution is to estimate I'; by

Ly =17 Z (vr,01) — gr(O7)][f (vi—j. 07) — g7(07)] (4.22)

t=5+1

As would be anticipated, this estimator is consistent for I';. Also notice that
if the model is correctly specifed then fj = f‘j + 0p(1), and so there is no cost
asymptotically to using the mean correction when it is unnecessary.

It is useful to introduce a terminology to capture the difference between f
and T';. The key difference between them is that the data, { (v, HT)} are “cen-
tred” about their mean gT(GT) in I‘ but they are “uncentred” in I‘ Therefore,
we refer to F as the centred version of the sample autocovariance and F as the
uncentred version. These adjectives are similarly used to distinguish covariance
matrices based on uncentred or centred autocovariances. We now examine the
behaviour of each of the covariance matrix estimators from Section 3.5 in turn.

If {f(v,0.)} forms a serially uncorrelated sequence then S, = I'y. Since
Ssu = I, it follows from (4.20) that

Ssu B Sy + pap, (4.23)

Equation (4.23) indicates that Ssu converges to a positive definite matrix of
constants — but obviously not S.. However, given the discussion above, it is
clear that a consistent estimator for S, is given by:

T

Ssvy = T3 [F (v 0r) — gr(O0)f (vr. ) — g7 (07)] (4.24)

Now consider the impact of misspecification on den Haan and Levin’s (1996)
estimator. For this discussion, it is convenient to focus on the case where f; is
actually generated by

V(L) (fi — ) = O(L)e, (4.25)

where the matrix polynomials satisfy the conditions for stationarity and in-
vertibility in Section 3.5.2 and e; satisfies the properties listed there as well.
Starting from (4.25), it can be deduced along similar lines to Section 3.5.2 that
f+ satisfies the autoregressive model

A(L)(fe — 1) = e (4.26)



4.3 Long Run Covariance Matrix Estimation 127

A comparison of (4.26) with (3.50) indicates that there are now two sources
of misspecification in the autoregressive model used in Step 2 of den Haan and
Levin’s (1996) method. Apart from the truncation error, there is the omission of
the intercept. Unlike the truncation error, the problems caused by the omission
of the intercept cannot be removed by letting the autoregressive lag length tend
to infinity with the sample size. Intuition suggests this type of misspecification
causes S’V ARMA to be an inconsistent estimator of S,. Unfortunately, a formal
investigation of this question is complicated by the presence of the lag selection
criterion in Step 3 of den Haan and Levin’s (1996) method. However, once again,
consistency is restored by applying a mean correction. This time, the correction
is implemented by applying den Haan and Levin’s method to f (v, fr) in mean
deviation form.

Finally, we consider the impact of misspecification on the class of HAC
estimators — both with and without the use of prewhitening and recolouring.
We begin with the uncentred HAC estimator

T-1

SHAC = fo + Zwi’T (f‘t + f;) (4.27)
=1

In Section 3.5.3 it is observed that the kernel, w; 7, and bandwidth, by, must be
carefully chosen to ensure the estimator is consistent. However, this comment
is conditional on the assumption that f‘j is a consistent estimator of I';. As we
have seen, this premise is only valid if the model is correctly specified. This
means inevitably that S‘H Ac is itself no longer a consistent estimator. While
the source of the inconsistency is the same as with SSU, the consequences are
more drastic because of the increasing bandwidth. Using results in Gallant and
White (1988)[Chapter 6], it can be shown that

Suac = S« + BTu*u; + o0,(1) (4.28)
where Br = 1 + 22?:_11 w; 7. It can be shown that Br increases at rate br
for either the Bartlett, Parzen or Quadratic Spectral kernels. So in these cases,
Sirac is asymptotically equivalent to the sum of two matrices: S,, a positive
definite matrix of constants, and By i, a rank one matrix of O(br). While
Si+ Brps ,u; is positive definite for finite T, it is clear that the rank one matrix
dominates in the limit as T'— oo. In the next section, it is shown that (4.28)
has an important implication for the limiting behaviour of SYI?AC which in turn
affects the limiting behaviour of the two step GMM estimator. For the present,
we focus instead on how to modify the estimator to ensure consistency even if
the model is misspecified. Once again, the answer is straightforward: replace

[; in (4.27) by T; from (4.22). This yields the centred HAC estimator,'
T-1
Swacy, = To + Zwi,T (Fi + F,-) (4.29)

i=1

13 Hall (2000) proves this estimator is consistent with either the Bartlett, Parzen or
Quadratic Spectral kernel and by — oo with T but by = o(T1/2),
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4.4 The Two Step or Iterated GMM Estimator

In this section, we consider the implications of misspecification for the prob-
ability limit of the two step or iterated estimator. The exact nature of this
transmission mechanism depends on which covariance matrix estimator is used.
For reasons that emerge below, we split the analysis into two parts. Section 4.4.1
considers the case in which f(vy, 0,) — s is a serially uncorrelated process, and
either SSU or SSU,  is used to construct the weighting matrix. Section 4.4.2 con-
siders the case in which either an uncentred or centred HAC estimator is used
to construct the weighting matrix.!* It emerges that the behaviour in these
two cases is very different, and also very different from the behaviour of the first
step estimator. In this discussion, it is necessary to distinguish various functions
of the parameter vector evaluated at different steps of the estimation. There-
fore, we define 1. (i) = u(0.(i)), S (i) = limy_.o Var[T=/? Zthl £, 0.(9))],
To(i) = Var[f(vs,0.(i))], and let Ty (i), To(i) denote respectively the uncentred
and centred zero order sample autocovariance matrices evaluated at 07(i).

N A~

4.4.1 Estimation with Wy = Sg& or Wp = Sg&u

It is most convenient to develop the analysis under the assumption that f (v, 6.)
is a serially uncorrelated sequence and so S.(1) = T'o(1). In this case, the
inconsistency of Sgu stems solely from p, # 0, and not from an incorrect
assumption about the dynamic structure of f(v,6.) — p.. However, some of
the results hold more generally and so we relax this assumption briefly at the
end to consider the impact of dynamic misspecification.

We begin our discussion with the second step estimator, 07(2). Recall from
Section 3.6, that 07(2) is calculated using Wr = Sp(1)~! where Sp(1) is an
estimator of the long run variance based on éT(l). Therefore, the population
analog to the second step minimand is given by:

0) = E[f(vi,0)) W E[f (v, 0)] (4.30)

where W® = {plimp_,o, S7(1)} . Then from Theorem 4.1, (4.21) and (4.22)
it follows that

’

(1) + g (D)pa(1) (4.31)

>

A P
Ssu = Tg = 8
a - P
SSU7N = F() - S
and so'®

St B ST = (DS ()T (D (1) S ()T (4.33)

(4.34)

>
@ |
S
=
=
n
*
—~
=
|
—

14 We do not explicitly consider the case in which den Haan and Levin’s (1996) estimator
is used because, as mentioned above, the presence of the lag selection method complicates the
analysis.

15 For example see Morrison (1976) [p.69].
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where ¢, (1) = [1 + (1) 'S.(1)" . (1)]71. Inspection of (4.33)(4.34) reveals
that both S5} sy and S S,} converge in probability to positive definite matrices
of constants and so satlsfy the conditions for a weighting matrix specified in
Assumption 3.7. It is also apparent that W2 is different in each case, and
intuition suggests this difference should also manifest itself in the probability
limits of the associated two step estimators. It is hard to confirm or disprove this
intuition by looking at Q(()Q). However, more progress can be made by turning to
the population analog of the first order conditions. To this end, let 9&”) denote
the unique mlnlmlzer of Q(2)( ) when W® = 5, (1), and 6{”) be the unique
minimizer of Q) () when W® = §,(1)=1.16 In order to characterize these
values by the first order conditions, it is necessary to assume that Assumption
4.3(ii)—(iii) hold at both (") and 0!, Once these conditions are imposed, it

follows that 9£") is the solution to the first order conditions

G(0) S.(1) "' B[f(v:,0)] — c*<1>G<9>’s*(1)*u*<1>u*<1>’s*<1>-1E[f<vt,9)(14 = )o
.35

and Gic) is the solution to
G(0)S.(1) *E[f(v:,0)] = 0 (4.36)

Inspection of (4.35) and (4.36) reveals two features of the probability limits: in
general, 08 £ 09 and neither equals 0,(1), the probability limit of 6(1).17
However, there is one exception which should be noted. If 0, (1) satisfies (4.36),
then it also satisfies (4.35), and so ol = ¢l = 0.(1). Such a coincidence
would occur if the first step weighting matrix is of the form kS, (1)~! for some
constant k, but this is unlikely to be the case in general. The equality between
the two probability limits can also occur if the estimation is iterated beyond
two steps. If both the iterated estimator based on W = 5’5& and the iterated
estimator based on Wp = 5’5[1] M individually converge then it can be shown
using appropriately modified versions of (4.35) and (4.36) that both estimators
have the same probability limit.

Now consider the limiting distribution of the second step estimator. Regard-
less of whether Wp = S’g& or Wr = Ss_é,;u it is possible to establish that the
second step estimator has a limiting normal distribution under plausible con-
ditions. For brevity, we focus on the case in Which Wr = S'gé but a similar

argument applies for the case in which Wp = S, SU The argument is based on
an appeal to Theorem 4.2(ii). Using the same trick as (4.19), it can be shown
that the limiting distribution of 6(2) is given by Theorem 4.2(ii) provided
vech{T'/?(Ty(1) — T'o(1))} converges to a normal distribution. However, this
appeal to Theorem 4.2(ii) is not so benign as it at first appears. Using the Mean

16 The superscript on 6. reflects whether the covariance matrix is uncentred or centred,
and the ‘(2)’ argument is suppressed for ease of notation.

17 Recall that if the model is correctly specified then the probability limit of all three
estimators is 6g.
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Value Theorem, it can be shown that

vech{TV2[Fo(1) — To()]} = wech{T2[Tor(1) — To(1)]}
(8/06" yvech{To,r (0. (1)}T"*[fr(1) — 6.(1)]
+ 0p(1) (4.37)
where T'g () =T! Zt 1[ (vt, 0) — (][ f (vt, 8) — u(9)])'. Therefore, the large
sample behaviour of T/2[01(2)—0.(2)] depends on the large sample behaviour of

TY2[0p(1) —0,.(1)] unless (8/80" yvech{To1(0.(1))} £ 0. In general, there is no
reason to suppose that this condition holds. A similar argument can be applied
to the iterated versions of these estimators to deduce that the limiting distri-
bution of TV/2[07 (i) — 0. (i)] depends on {T/2[07(5) — 0,()], 7 =1,2,...i— 1}
in general. Needless to say, this recursive structure must be taken into account
in the calculation of the asymptotic variance of the estimator. However, we do
not pursue the form of this asymptotic variance further here.

So far, it has been assumed that f(v,0,) is a serially uncorrelated sequence.
If this assumption is relaxed then S, (1) must be replaced by I'g(1) in (4.35) and
(4.36). However, this substitution has no qualitative impact on the foregoing
analysis of the probability limits of the estimators, and so all the conclusions
remain valid in this more general case. The assumption of no serial correlation
also has no qualitative impact on the appeal to Theorem 4.2(ii) to deduce the
asymptotic normality. However, its relaxation introduces a dynamic structure
in f(vi,0+) — ps which must be accounted for in the definitions, and also the
estimation, of the covariance matrices V; ; in Theorem 4.2(ii).

To conclude, this sub-section we examine the impact of using Sgllj , Inour
empirical example.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model

Table 3.7 in Section 3.6 reports the results from the two step and iterated esti-
mations with 5’5& used as weighting matrix. Table 4.1 contains the analogous
results when Sg,} , 1s used. With equally weighted returns (EWR), conver-

gence takes 5 and 4 iterations respectively with Wj(}) = 10°I5 and Wq(}) =
(71 Zthl z2z;)” . With value weighted returns (VWR), one less iteration is
needed in each case. If the model is correctly specified, then the probability
limit of the estimator is the same on all steps. The results in Table 3.7 indicate
the iterated estimator converges to the same values for a given asset irrespective
of the the first step weighting matrix. Our analysis in this sub-section indicates
that if convergence occurs then the probability limits of the iterated estimators
should be the same regardless of whether the weighting matrix is either 351} or
5‘55 , €ven if the model is misspecified. These arguments lead us to expect that
the corresponding estimates should be close in large finite samples irrespective
of whether the model ultimately proves to be correctly or incorrectly specified.
A comparison of Tables 3.7 and 4.1 indicates the iterated estimates are iden-



4.4 The Two Step or Iterated GMM Estimator 131

tical to three decimal places for VWR and to two decimal places for EWR. o

Table 4.1
Two step and iterated GMM estimators for the consumption based

asset pricing model with EWR and VWR

EWR:
Wél) (4,0) for i=1 (4,0) for i =2 (4,0) after iteration
1057, (=3.145,0.999) (—0.253,0.992) (—0.344,0.992)

(T2 z2)t (0.398,0.993)  (—0.335,0.992) (—0.344,0.992)
VWR:

Wél) (’%5) for i =1 (’%5) for 1 =2 (’?,5) after iteration
10915 (—1.871,0.998) (0.716,0.993)  (0.666,0.994)

(T2 F 2i2)™t (0.698,0.994)  (0.666,0.994)  (0.666,0.994)

Note: Wq(wl) denotes the first-step weighting matrix.

4.4.2 Estimation with Wy = gﬁ}w or Wp = Af}z(;,u

Now let us consider the same questions in the cases where either an uncentred
or centred HAC estimator is used to construct the weighting matrix. Although
there are some similarities between the two cases, there are sufficient differences
to necessitate a separate treatment for each. It emerges that the distribution
theory is very different from the cases considered above and non-standard in the
sense that the estimator no longer converges at rate 7-1/2. In this sub-section,
we concentrate on explaining the sources of these differences and so only provide
heuristic arguments to justify the stated results. A more rigorous treatment can
be found in Hall (2000) and Hall and Inoue (2003).

4.4.2.1 Estimation with W, = 5';1140’#

First notice that 31_1,140 ., satisfies the conditions for a valid weighting matrix

given in Assumption 3.7 because by construction, S HAC,u 18 positive semi-
definite for finite T" and converges in probability to the positive definite matrix
S.«. This suggests that we can appeal to similar arguments as in the proof of
Theorem 4.1 in order to deduce that éT(Q) converges in probability to some
value.
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Corollary 4.1 Probability Limit of 67(2)

Let Wp = 317{140,“ and SHAC,# 2, S.«(1), a positive definite matriz. If Assump-
tions 3.1-8.2, 8.8-3.10, 4.1 hold and Assumption 4.2 holds at 0, = 0,.(2) then
07(2) 2 0,(2).

Notice that in general 0,(2) # 6.(1), the probability limit of the first step
estimator, unless the weighting matrix on the first step, Wr (1), is proportional
to S.(1)~!. In practice, there is no reason to suppose that Wr (1) = kS, (1)~!
except by coincidence and so the probability limits of the first and second step
estimators are different in most circumstances.

Now let us consider the limiting distribution of 67(2). In the previous sec-
tion, it is shown that Theorem 4.2 can be invoked to deduce the asymptotic
normality of the second step estimator when Wy equals Sgllj or S’STLl, u However,
such a strategy does not work here. The key difference is in the rate of conver-
gence of Wr to W. While Sb?l}u converges to T'g(1)~! at rate T/ SI:(}LXC,H
converges to S, (1)~! at a slower rate. This means that T1/2[SI}}40’“ - S.(1)™ 4
diverges as T' — oo, and hence T/2[07(2) — 0, (2)] does the same. Therefore, in
order to derive the limiting distribution, we must scale 7(2) — 6,(2) by some
other function of T' which increases at a slower rate than T/2.

Since a similar story is going to emerge when Wp = S;I}axc — albeit with
a different rate of convergence — it is more convenient to develop the analysis
at a general level and then specialize the derived result to deduce the limiting
distribution when Wp = 5‘;}407 u Accordingly, we consider the case in which
Wr converges to W at rate c;l where cr is a sequence of constants with the
properties ¢p — 0o with 7' — oo and ¢p = o(T"/?). We also return to the generic
notation of f7 for the estimator and 6, for its plim to facilitate comparsion with
Section 4.2. Our starting point is (4.8) with ¢ substituted for 7/2, that is

cr(fr —0.) = (cr/TY*)Hor{ Hix + Haor}
(cr/TYHorHy 1 + (cr/TY?*)HopHyp  (4.38)

where Hyp, Hir and Ha g are defined in (4.9)—(4.11). We now consider the
behaviour of the two terms on the right-hand side of (4.38) in turn. In Section
4.2 it is shown that HorH:i 1 = Op(1), and an inspection of the argument
reveals that this conclusion did not depend on the rate at which Wy converges
to W. Therefore, the same arguments can be used here. However, since this
term is multiplied by c¢7/T"/? and cp = o(T"/?), it follows that

(er/TY*)HorHyp & 0 (4.39)

Now consider (cz/TY/?)HyrHy 7. Using (4.12)-(4.16) and Hyr(4) = 0, it
follows that

(CT/TI/Q)HO’THQ’T = (CT/T1/2)HO’T{H2’T(1) + HQ’T(2) + HQ’T(?))} (440)
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Using similar arguments to Section 4.2 to analyse Ho rHa 1 (7),7 = 1,2, it can
be shown that

(er/TY?)Hor[Hor(1) + Ha 1 (2)] = HorMrer(0r — 0,) +0,(1)  (4.41)
Therefore, combining (4.38)—-(4.41), it follows that

cr(0r —0.) = (I, — HorMr)| ™ Hor (cr/TY?)Hor(3) + 0p(1)  (4.42)

Just as in Section 4.2, Hor and My converge in probability to matrices of
constants (under certain conditions) and so (4.42) implies the limiting behaviour
of ey (67 — 0,) is driven by

(cr/TY*)Hyr(3) = Gop(Wy — W), (4.43)

To proceed further, we must make some assumption about ¢ (Wr — W) and
so we return to the specific example of interest here. Using a similar argument
to (4.19),

e[Sy — 5«17 = = SphederlSracy — S« (4.44)

and so it suffices to consider er[Sgac, — S«(1)] because S.(1)~! = O(1) and
SﬁlAc,u = 0,(1). To this end, it is useful to introduce the following notation.
We define

T-1
Ser = Tor+ Z Wi T (Fi,T + F;,T)
i=1

S*,T

T-1
Lo+ Zwi,T (Fi + F;)
i=1

where I'; 7 =T~} Zfziﬂ[f(vt, 0.) — gr(0.)][f (vi—i, 0x) — gr(04)])'. Using these

definitions, ¢ (Sgac,, — S«(1)) can be decomposed into the sum of three terms
as follows,

cr(Smac,, —S«(1)) = er(Smac,u — Ser) +cr(Ser — Sr) +er(Ser — S« (1))
(4.45)
Notice that the first component, S HAC,u — 5'*,T7 represents the difference be-
tween the HAC evaluated at 67(1) and 6, (1); the second component, Ser—Sir
is the difference between the HAC evaluated at 6,(1) and the corresponding
function evaluated at population instead of sample autocovariances; and the
third component, S, 7 — Si(1) is the difference between the population analog
to the HAC and the long run covariance matrix. Notice that the sum of the
first two components is S'H Ac,u — S«,1, and so can be interpreted as the error
inherent in using the HAC estimator to estimate its population analog. The
third component can then be interpreted as the bias induced by estimating S, r
instead of S,(1).
Hall and Inoue (2003) verify that under a set of plausible regularity condi-
tions the three components in (4.45) behave as follows.
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Assumption 4.7 Limiting Behaviour of the Components of S‘HAC,“ —

S, (1)

1. (T/bT)l/%ech(SHAc,u — 5’*,71) = 0,(1).

2. (T/bp)?vech(Ssr — Ser) <, N(0,9Q,) where Q, is a positive definite
matriz depending on the kernel w(.).

3. limp_, o b%(S*;p —5,(1)) = C where k > 0 is known as the characteristic
exponent of the kernel w(.),'® and

C = —lim (1—‘“@) i l7*T; < oo.

z—0 |x|k e

Before proceeding, it is worth briefly commenting on certain aspects of this
assumption. In all our previous invocations of asymptotic normality, such as
Lemma 4.1, the rate of convergence has been T~1/2. The key difference here is
in the form of SHAc,;L — S«(1). Recall that S'HAC,M is itself a weighted sum of
T — 1 autocovariances (and their transposes). While we can apply the Central
Limit Theorem to deduce T'/2vech{T';—I';} converges to normal distribution for
fixed 7, the rate of increase in the number of autocovariances included in S HAC,
slows down the rate of convergence.'® Notice also that the rate of convergence
of all three components depends on the bandwidth, and the behaviour of the
second and third components also depends on the kernel.

Using equation (4.45) and Assumption 4.7, it follows that the limiting be-
haviour of e7(Sgrac., — S«(1)) depends on the bandwidth and the kernel:

o if limg_ o TV/2 /b5 % = 0 then (T/b7)V/2(Spac, — S.(1)) 5 N (0, Qu);

o if limp_oo TV/2/bY/*™ = ¢ € (0,00) then (T/br)/*(Spac, — S.(1)) >
N(¢C,Qy,);

o if limy oo TY/2 /b3 *™F = o0 then plimg_ oobki(Spac., — S.(1)) = C.

Notice that neither the rate of convergence nor the nature of the limiting be-
haviour is the same in all three cases. In particular, if limp ., 7"/2/ bgp/ o
then the bias term, S, 7 — S, (1), becomes dominant and this causes b% (S ac, . —
S.(1)) to converge to a constant. As would be anticipated, these differences also
manifest themselves in the limiting behaviour of the estimator. Using (4.42)-
(4.45) and Assumption 4.7, the following three possibilities emerge for the lim-
iting behaviour of 67 (2).

18 Anderson (1994)[Section 9.3.2] defines the characteristic exponent and discusses its prop-
erties.
19 For further discussion see Andrews (1991) or Hall and Inoue (2003).
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Lemma 4.2 Limiting Behaviour of 0;(2) When Wy = Sghcﬂ

Assume that: (i) Wp = SI_JZC,M and Sgrac., 2> S.(1), a positive definite matriz;
(ii) Assumptions 3.1, 8.8 and 4.7, and certain other regularity conditions hold.?°
The limiting distribution is as follows:

o if limp_osTV2 /6> = 0 then (T/br)V/2[07(2) — 6.(2)] % N(0,53);
o if limp oo TY2/bY/*™ = ¢ € (0,00) then (T/br)Y/2[07(2) — 6.(2)] %
N(¢H>;k1G:k*O:u**7 23);

o if limTﬂooTlﬂ/b;/Hk = 00 then b5 [07(2) — 0,(2)] & H G, Clivs;

where X3 = H;'D'BOB DH.,; ', D = —(11,(2)'S, (1) 1'®G., S, (1)71), B is the

selection matriz defined by vec{S.} = Bvech{S,}, Hix and G, are respectively
H,. and G, in Assumption 4.6 evaluated at 0, = 0,(2) instead of 6.(1).

It is interesting to contrast this result with the corresponding discussion in
the case where Wy = S’g& or 5‘5& .- Notice that unlike those previous cases,
the asymptotic distribution of the second step estimator does not depend on the
first step estimator. The reason is that one of the regularity conditions behind
Assumption 4.7 is the restriction that 67(1) —6,(1) = O,(T~'/2).2" This means
that (T/bp)"/2[A7(1) — 6.(1)] = 0,(1), and so can have no effect on the large
sample behaviour of (T/br)Y/2[07(2) — 60,(2)].

We now consider the iterated estimator. It is straightforward to extend
Corollary 4.1 to éT(z) However, the limiting distribution of the iterated esti-
mator is going to be very complicated in general. Using a similar argument to
(4.37), it follows that if limT_moTl/z/b;/z—H€ € [0, c0) the limiting distribution of
(T /b)) /2[07 (i) — 0. (7)] depends on {(T/bp)"/2[07(j) —0.(5)], j = 2,3,...i—1}
in general. Notice that, this time, the dependence only goes back to the second
step for the reasons discussed above.

4.4.2.2 Estimation with W = S;{}axc

We now consider the case in which the second step estimator is calculated using
the uncentred HAC estimator based on f7(1). To begin, we must consider
whether SﬁlAc satisfies the conditions for a valid weighting matrix given in
Assumption 3.7. Since this part of the analysis is generic to all steps, we return
to our more general notation of éT for the estimator and 6, for its limit. In
Section 4.3.3, it is shown that the large sample behaviour of S HAC is identical
to Sy + Brus u;. The following lemma characterizes the implications of this
structure for the large sample behaviour of SZIAC.

20 These include 07 (1) — 04 (1) = Op(T~1/2). See Hall and Inoue (2003) [Theorem 3] for a
complete list of regularity conditions and also a rigorous proof.
21 This condition is “plausible” because it is implied by Theorem 4.2.
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Lemma 4.3 L1m1t1ng Behaviour of SHAC
If Syac =S, +BT,LL*,U* +0,(1) where By = 1—|—22:ZT_11 w;r, Br = O(br) and
the bandwidth satisfies by — 0o, by = o(T"/?) then: SHAC L St where

1 /
St = S - ——S St (4.46)
PS5
Since the structure of this inverse is non-standard and also important below, we
present a heuristic proof.?? Since

Stac = Su+ Brpa, + op(1) (4.47)

and Si + Br . u* is nonsingular for any finite T, it follows that the large sample
behaviour of SHAC can be deduced from (S, + Brpusu,)"t. For any T, we
have??

Br

(S« + Brpwp,) ™t = STt - = S g, S (4.48)
T Mg x *

recall that by — oo as T — oo, and so it follows from (4.47)—(4.48) that
N / 1 /
Spho & lim (S.+ Brpa,) ™ = S7 = ——85 " pop S0 = ST
T—o0 /S—l
.u“* * /u‘*
The matrix ST has two properties which play an important role in the
analysis.

Corollary 4.2 Properties of ST
(i) rank(ST) = q — 1; (i) the nullspace of ST is spanned by .

Notice that part (i) implies that 5']}}40 converges to a singular matrix and so
does not satisfy the conditions for a weighting matrix laid down in Assumption
3.7.

With this in mind, now consider the population analog to the second-step
minimand when Wp = So o AC From Lemma 4.3, this minimand is given by

QP (6) = E[f(vi,0)STE[f(v,6)] (4.49)

Using Corollary 4.2(ii), it can be seen that Qég) (#) attains its minimum possible
value of zero at # = 6,. To explore the implications of this structure for the
estimator, we must impose some form of identification condition. The simplest
such condition is to assume that this minimum is unique or, in other words, that
there is no other value of § which generates a value of 1(6) in the nullspace of S..

Assumption 4.8 Identification Condition
STE[f(v,0)] # 0 for any 0 € © \ {6..}.

22 See Hall (2000) for a rigorous proof.
23 See the matrix inversion result in (4.33).
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In some cases it is possible to verify that this assumption holds, but in other
models its imposition is more an article of faith. Once identification is assumed
we can use the same sequence of arguments as in Theorem 4.1 to deduce the
following result.

Corollary 4.3 Probability Limit of 07(2)
Let Wy = Sﬁ}w' If (i) Assumptions 3.1,3.2, 3.8-3.10, 4.1 and 4.8 hold; (ii)
0r(1) 2 0.(1); (i) Sp'\o 2 S*; then: 67(2) 2 60.(1).

Corollary 4.3 states that the GMM estimator converges to the same proba-
bility limit in both the first- and second-step estimations. It is straightforward
to extend this result to the iterated estimator as well. Therefore if W = S’I;ixc
then the probability limits of the estimators exhibit the same type of behaviour
as they would in a correctly specified model. This also implies that the iterated
estimation converges after just two steps with probability one. Therefore, the
second step and iterated estimators are asymptotically identical. One other con-
sequence of Corollary 4.3 is that there is no need to index population quantities,
such as us or Sy, by i, and so we drop this index for the rest of this section.

Now consider the limiting distribution of éT(2). As mentioned in the previ-
ous section, the rate of convergence is slower than 7'/2, and so we must return
to (4.42) in order to start the analysis. However, this time there are some ad-
ditional simplications of which we can take advantage. Corollary 4.2(ii) implies
St . = 0 and so both plimy_.o My = 0 and (W —W)u,. = Wrp,. Therefore,
(4.42) reduces to

CT(éT —0,) = H07TG;CTSI;}40M* + 0,(1) (4.50)

The key question is what is the appropriate choice of ¢y. To answer this ques-
tion, it is convenient to rewrite (4.50) as

cr(Or —0.) = HO’TG;CTSEl,u* + HO,TG;CT(SI;]AC — Sfl)u* + 0p(1) (4.51)

where S = S, + By ju,. Hall and Inoue (2003) establish that the following
results hold under plausible regularity conditions.

HorG, = —(G.STG.)"'G. = 0(1) (4.52)

_ br _
brSytp. = St = 01 4.53
(Sihc =St e = Spho(Sr = Snac)Sp'p (4.54)

= 0,(1)0,(br/TV*)0,(b;") = O,(T/?) (4.55)

If these results are used in conjunction with (4.51) then a two-part answer
emerges to our question.

Lemma 4.4 Rate of Convergence for 61(2)
Let Wy = 3}3340 If (a) Assumptions 3.1, 3.8,and 4.8 hold; (b) Sz 2> S*;
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(¢c) Equations (4.52)—(4.55) hold; (d) certain other regularity conditions hold.?*
Then (i) br(0r(2) — 0.] & B(GL.S*G.) " G.S e if GLS7 e # 0 where 3 =
—limp oo (br/Br) /(155 )5 (i) T2[67(2) — 6.] = Op(1) if GL.S e = 0.

Notice that G;S*_lu* = 0 implies that plimr_ s éT(l) = 0, is the solution
to the population analog to the first order conditions when Wy = SF_I}‘!C, u
Therefore part (ii) is only relevant in the unlikely eventuality that the probability
limit of the first step weighting matrix is proportional to the long run variance
S..25 So the most relevant part of the lemma in practice is likely to be part (i).
Lemma 4.4(i) states that bp[f7(2) — 6,] converges to a degenerate distribution,
or in other words a constant vector. This behaviour is similar to the case when
Wr = 5“;{}40’;1 and limTﬂooTl/Q/b; 2k 00, and has a correspondingly similar
explanation. However, this time it is the bias induced by the use of uncentred
autocovariance matrices in the HAC that is dominant.

4.5 The Estimated Sample Moment

We now consider the large sample behaviour of the estimated sample moment.
In contrast to the results derived for the estimator, this analysis is uncomplicated
and independent of the weighting matrix.

The analysis rests in part on an application of the Weak Law of Large Num-
bers. This law has not yet been invoked in our discussion of the nonlinear
dynamic model, and so we now state it formally.26

Lemma 4.5 Weak Law of Large Numbers

Let 0 € ©, E[f(vs,0)] = u(0) and Assumptions 3.1, 3.2, 3.8 and 3.10 hold then
T i f(0n0) B (6.

Let 07 be a GMM estimator and assume it converges to some point in
the parameter space, #,. Notice that this definition is sufficiently broad to
include all the choices of weighting matrix considered above. In this case, it is
straightforward to establish the following result.

Theorem 4.3 Large Sample Behaviour of the Estimated Sample Mo-
ment

Let (i) Assumptions 3.1, 8.2, 8.8-3.10, 4.1 and 4.3 hold; (ii) 60 2 6, for some
0, € ©. Then gr(07) 5 u(6,) where ||u(6,)]] > 0.

Proof:
Using the Mean Value Theorem, it follows that

gr(0r) = gr(0.) + Gr(0r,0., A7) (07 — 6.)

24 See Hall and Inoue (2003) [Theorem 4].

25 Tt is for this reason that we do not characterize the nature of the limiting behaviour
beyond the given order in probability statement.

26 See Wooldridge (1994) for discussion of Laws of Large Numbers in dynamic models.
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The result then follows directly because under the stated conditions
Gr(07,0.,, A7) 2 G, =0(1), 07 — 0, 20, gr(0,) 2 p(0,) and ||u(8)| > 0 for
all € ©. o

The important consequence of Theorem 4.3 is that [|[7'/2gp(07)| diverges
to infinity at rate 7'/2. Therefore, taken together, Theorems 3.3 and 4.3 imply
that T'/2g7(f7) converges to a mean zero normal distribution if the model is
correctly specified but diverges to infinity if the model is misspecified. This
property is exploited in the construction of the model specification tests which
are reviewed in the next chapter.

4.6 Summary of Consequences of
Misspecification for GMM Estimation

It is useful to begin by recalling the properties of the GMM estimator in cor-
rectly specified models. Since Assumptions 4.1 and 3.1 imply ¢ > p, we confine
our attention here to the case in which the parameter vector is overidentified.

Properties of GMM in correctly specified models:

e 07 converges in probability to 6y for any choice of Wy which satisfies
Assumption 3.7.

o T'/2(fp —6y) converges to a normal distribution and the choice of weight-
ing matrix only affects this distribution in the variance via W.

e The two step and iterated estimators have the same asymptotic properties.

o« T/ 2gT(HAT) converges to a mean zero normal distribution.

In contrast, it has been shown in this chapter that the following properties hold
in misspecified models.

Properties of GMM in misspecified models:

e The probability limit of br depends on W in general.

e The rate of convergence of Or to its limit, 6., depends on the rate of
convergence of Wr to W, and the limiting distribution of ¢y (67 — 64)
depends on that of cp(Wp — W).

e The two step and iterated estimators have different asymptotic properties,
and the asymptotic distribution of 67 (i) depends on the estimators from
the previous steps.?”

27 This statement excludes the case in which Wy = S‘Ei‘c
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o T'/2g1 () diverges.

So, basically, everything is different. Most importantly, misspecification
means that in most cases we have not estimated what we anticipated. This is
sufficient by itself to make all subsequent inferences misleading, and so provides
a motivation for the model specification tests described in the next chapter.



5

Hypothesis Testing

The previous two chapters describe the behaviour of the estimator and its asso-
ciated statistics in both correctly specified and misspecified models. The next
step is to develop inference procedures through which the estimation results can
be used to learn about the underlying model. There are three broad questions
which naturally arise in this context — Is the model correctly specified? Does the
model satisfy restrictions implied by economic/statistical theory? Which of two
competing models is correct? Within the GMM framework, all these questions
are addressed via hypothesis tests concerning either population moment condi-
tions or the parameter vector or both. In practice, these inferences are most
often — if not always — based on the two step or iterated estimator. Therefore,
we focus attention exclusively on this case throughout the chapter.
Misspecification has the potential to make the estimator inconsistent, and
so to render all subsequent inferences misleading. Therefore, it is prudent to
begin by testing whether the model is correctly specified. Within our frame-
work, the economic/statistical model implies that v, satisfies the population
moment condition E[f(vs,0p)] = 0. Since this is the starting point for our es-
timation, it is clearly desirable to test whether the sample are consistent with
the hypothesis that this condition holds in the population. In most of the appli-
cations in Table 1.1, ¢ is greater than p and so the overidentifying restrictions
are available to form the basis for a test of the model specification. Section 5.1
extends the earlier discussion of the overidentifying restrictions test to nonlinear
dynamic models. It also presents a formal analysis of the statistic’s behaviour
in both correctly and misspecified models. The latter involves two forms of
misspecification: “non-local” and “local”. It is most common in the literature
to analyze the power properties of various statistics using local misspecification
framework. This approach is particularly attractive in cases where more than
one statistic is available to test a hypotheses because it facilitates a meaning-
ful comparison of the candidates’ power properties. However we include both
here because it is only via a non-local analysis that it becomes possible to un-
cover the dependence of the limiting behaviour of the statistic on the method
of covariance matrix estimation. This issue is only illustrated explicitly for the
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overidentifying restrictions test but equally applies to the other tests of model
specification described below.

In some cases, a priori information may indicate that the potential misspec-
ification is confined to certain elements of the population moment condition.
In certain circumstances, it is possible to exploit this information to construct
a more powerful test than the overidentifying restrictions test. Section 5.2 de-
scribes when this is possible and presents statistics for testing so-called hypothe-
ses about a subset of the moment conditions. If the model is validated by the
previous test statistics, then it is reasonable to use the estimation results as
a basis for inference about the phenomena captured by the model. In many
economic models, these inferences reduce to hypotheses about restrictions on
the parameter vector. Section 5.3 discusses methods for testing the hypothesis
that the parameter vector satisfies a set of nonlinear restrictions of the form
r(6p) = 0. These types of restrictions naturally arise in many economic mod-
els and so test results can often provide useful insights about the underlying
economic structure.

One of the main assumptions behind GMM is that the population moment
condition holds throughout the entire sample; in other words the model is as-
sumed to be “structurally stable”. A natural concern is whether the popula-
tion moment condition is only true for part of the sample in which case the
model exhibits “structural instability”. Section 5.4 describes various methods
for testing structural stability. The differences between the tests are most eas-
ily understood by considering their sensitivity to instability of identifying and
overidentifying restrictions separately. It is also shown how this decomposition
can be exploited to develop tests which can distinguish between instability in
the parameters alone and instability of a more general form.

The foregoing hypothesis tests are by far the most common in the types of
applications in Table 1.1, and so merit detailed discussion. Section 5.5 provides
a brief summary of certain other inference techniques which have been proposed
in the literature. Section 5.5.1 discusses non-nested hypothesis tests, which have
been proposed as a method of choosing between two competing specifications.
In some cases, one competing model can be nested within the other and so it
is possible to assess which is more appropriate using the types of procedure
described in Sections 5.1 through 5.3. However, in other cases the competing
models are not nested in this fashion, and so alternative procedures must be
developed. As will be seen, this type of question is much harder to address
within the majority of models listed in Table 1.1 without further restrictions.
Section 5.5.2 describes so-called “Hausman” tests which involve the compari-
son of two estimators based on different sets of population moment conditions.
Section 5.5.3 concludes the chapter with a discussion of “conditional moment”
tests. These tests are commonly employed in models estimated by Maximum
Likelihood to assess whether the assumed distribution is correct. Although
Maximum Likelihood is not a focus of this book, these tests are included here
because they have some important similarities and differences with the other
procedures discussed above. Section 5.6 concludes with a brief summary of the
chapter.



5.1 The Overidentifying Restrictions Test 143

Finally, two omissions should be noted. First, this chapter focuses exclu-
sively on the asymptotic properties of these tests. In most cases, the original
articles did not provide simulation evidence on the finite sample properties of
their proposed tests. Instead this type of evidence tends to be found in studies
which sought to examine the finite sample behaviour of all aspects of GMM
in the context of a particular model. We believe that it is more instructive to
review these studies in a similar spirit, and so further discussion of this aspect
of hypothesis testing can be found in Chapter 6. Secondly, it is beyond the
scope of this book to provide an introduction to the general theory of statistical
hypothesis testing; this material can be found in many other sources such as
Lehmann (1959) or Cox and Hinckley (1974).

5.1 The Overidentifying Restrictions Test

Section 2.5 introduced the idea of using the overidentifying restrictions to test
whether the model is correctly specified. Although this earlier discussion is
in the context of the linear model, the underlying intuition is not specific to
this structure. In this section we extend the overidentifying restrictions test
to nonlinear dynamic models and formally analyse its properties in correctly
specified and misspecified models. There are two main approaches to this type
of analysis in misspecified models. The first employs the framework in Chapter
4, which it is now useful to refer to as mon-local misspecification. The second
is based on a local form of misspecification. The distinction between them is
best motivated by briefly reconsidering the nature of Assumption 4.1. This
assumption has two important implications. First, there is no value of 6 for
which E[f (v, 0)] = 0 - that is, the model is misspecified. Secondly, E[f (v, 0)] =
w(0) — that is, the “size” of the misspecification, u(6), is the same for all ¢,
regardless of the sample size. In other words, the model is wrong and the
situation does not change as the sample size increases. This scenario contrasts
with local misspecification in which the model is misspecified for finite 7', but
the size of the misspecification decreases with T' so that in the limit the model is
correct. This misspecification is “local” in the sense that the data are generated
by a sequence of processes which become closer and closer to satisfying Hy as
T increases and in the limit do satisfy this hypothesis. As might be imagined,
a different analysis is required for each type of misspecification. Therefore, we
break our discussion down into three parts. Section 5.1.1 introduces the test
statistic and derives its asymptotic distribution in correctly specified models.
Section 5.1.2 considers the behaviour of the statistic in non-locally misspecified
models, and Section 5.1.3 presents its local counterpart. As will be seen, the
conclusions from these two types of analysis are couched in very different terms.
Section 5.1.4 concludes the discussion with a demonstration that each form of
analysis leads to the same qualitative conclusions about the properties of the
test.
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5.1.1 The Statistic and its Asymptotic Distribution in
Correctly Specified Models

Section 2.5 introduces the idea of using the overidentifying restrictions test
statistic to assess the adequacy of the model specification. It can be recalled
that the idea behind the test is simple: if E[ziu:(60)] = 0 then the estimated
sample moment, 712’ u(éT), should be zero once allowance is made for sam-
pling error. The same logic can be applied equally in nonlinear dynamic models:
if E[f(vt,0p)] = 0 then gT(éT) should be approximately zero. This insight mo-
tivated Hansen (1982) to propose testing the null hypothesis

Ho: Elf(v,00)] = 0 (5.1)
using the overidentifying restrictions test statistic
Jr = Tgr(6r) Sp"gr(0r) (5:2)

where, as a reminder, 7 is the second step (or iterated) estimator. This statistic
is easily recognized to be the generalization of Sargan’s (1958) statistic (equa-
tion (2.42) above) to nonlinear dynamic models. Hansen (1982, Lemma 4.2)
derived its limiting distribution under Hy, and this result is given in the follow-
ing theorem.

Theorem 5.1 The Asymptotic Distribution of the Overidentifying Re-
strictions Test Statistic R
If (i) Assumptions 3.1-3.5, 3.8-8.13 hold; (ii) St is positive semi-definite and

converges in probability to S; then Jr 4, ngp.

Proof:
Since plim Sy = S it follows from Slutsky’s Theorem (Lemma 1.1) that Jp —
Jr £ 0 where } R A

Jr =Tgr(0r)' S gr(0r) (5.3)

Therefore, the theorem can be established by proving that Jr has the stated
limiting distribution. Using Theorem 3.3 evaluated at W = S~!, we obtain

~ d ’

Jr = g = P(Bo)lngll* = nglly — P(6o)lng (5.4)
where ng denotes a (¢ x 1) random vector with a standard normal distribution.

Now I, — P(6) is a projection matrix whose rank is ¢ — p by Assumption 3.4.1
The desired result then follows from (5.4) and Rao (1973, p.186). o

Notice that Theorem 4.1 holds for any choice of covariance matrix estimator
which is both positive semi-definite and consistent for S under the assumption
that the model is correctly specified. This class includes any estimators in Sec-
tions 3.5 and 4.3 which adequately capture the dynamic structure of f(vq,8p).

I Recall that Assumption 3.4 implies Assumption 3.6 and hence that rank[F(6p)] = p.
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Although we have stated Theorem 5.1 in terms of the two step or iterated
GMM estimator, intuition suggests a similar result holds for minimand of the
continuous updating estimator.? In fact, the proof of Theorem 5.1 is easily
adapted to show that under Hy

d
Jeont,T = TQcont,T(oT) - Xg—p (55)

where - with an abuse of notation - 67 is the now the continuous updating esti-
mator.?> However, while the asymptotic distributions of Jeont, 7 and Jr are the
same, the numerical values differ in a predicatable way under certain circum-
stances. Specifically, if Jp is based on the iterated estimator and these iterations
converge, then it follows from the definition of the continuous updating estima-
tor that J.one, 7 cannot exceed Jr.t

This statistic has become a standard diagnostic for models estimated by
GMM and is routinely calculated in most computer packages. In Section 2.5, we
discussed the interpretation of this test in general terms. We now complement
those earlier remarks with a more formal analysis of the statistic’s behaviour in
misspecified models in Sections 5.1.2 and 5.1.3.

5.1.2 Non-Local Misspecification

Our analysis of GMM in misspecified models is premised on Assumption 4.1.°
As mentioned above, this misspecification is refered to as “non-local” because
the “size” of the misspecification, u(6), is the same for all observations and
sample sizes. Intuition suggests that if the model is wrong for every observation
then the evidence against it must mount up as the sample increases with the
result that the model is rejected with probability one in the limit. In essence this
intuition is correct, but there is an important caveat concerning the calculation
of the covariance matrix. The analysis in this section is based on Hall (2000).
Before, we present the more formal analysis, it is useful to develop a heuristic
understanding of the way in which the covariance matrix estimator can play such
a crucial role. Recall that the overidentifying restrictions test is a quadratic form
in T'/2gp(07) and S;'. Theorem 4.3 indicates that T2 (0r) diverges under
non-local specification. Intuition suggests that this behaviour is inherited by Jr
provided S} ! converges in probability to a positive definite matrix. However,
it can be recalled from Section 4.4 that the inverse of certain covariance matrix
estimators — S;Ihc in particular — only converge to a positive semi-definite
matrix in misspecified models and in these cases it is no longer so obvious that
Jr diverges. For this reason, it is most convenient to separate our analysis into
two parts depending on the limiting behaviour of 3; 1 There is one other aspect
of this heuristic discussion, which should be noted. We have made no mention

2 See Section 3.7.

3 We omit the details for brevity. See Hansen, Heaton, and Yaron (1996) for further
discussion.

4 See Section 6.3 for further discussion.

5 See Chapter 4.
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of whether S'T is a consistent estimator of S,. The key issue is only whether or
not plimyp_, 5‘; ! is positive definite for which consistency is sufficient but not
necessary.

We begin with the more standard case in which 5'77 ! converges to a positive
definite limit. Inspection of Section 4.3 reveals that this case covers the estima-
tors: Sgu, and the versions of the covariance matrices based on f (v, 6)— g7 (6).6
For this analysis, we require the second step estimator to converge in probability
to some constant limit. Below we impose this condition directly for simplicity
because more primitive conditions depend in part on the covariance matrix es-

timator; see Chapter 4.7

Theorem 5.2 Large Sample Behaviour of Jr: Part (i)

If (i) Assumptions 3.1, 8.2, 3.8-83.10, 4.1 and 4.3 hold; (ii) 5‘;1 satisfies As-
sumption 3.7; (iii) Or 2 0, for some 0, € O; then: T 'Jr L ¢ where
0 < ¢ < oo and so limp_.o P[Jr > co] = 1, where cq is the 100(1 — a)t?
percentile of the ngp distribution.

The basic outline of the proof has been anticipated above, but for completeness
we now fill in the details.

Proof:

Let W denote the probability limit of S;* and . = E[f (v, 6.)]. From Theorem
4.3 and Slutsky’s Theorem (Lemma 1.1) it follows that

T Jr = p, Wi + op(1) (5.6)

Since W is positive definite and p, # 0 by Assumption 4.1, it follows from (5.6)
that 7-*Jp & ¢ = p, W, > 0. Therefore, Jr = Tc + op(T) increases at rate
T and so tends to co in probability as T" — oo, which gives the desired result.
o

In statistical parlance, Theorem 5.2 states that Jr is a consistent test of
Hy : E[f(vt,6p)] = 0 against the alternative that the data satisfy Assumption
4158

We now consider what happens if S’I:,lAC is used as the weighting matrix on
the second step. It can be recalled from Lemma 4.3 that Sliqc converges in
probability to a positive semi-definite matrix and that the form of this limit
has important implications for the two step estimator. We now establish that
this limiting behaviour also has important consequences for the behaviour of
the overidentifying restrictions test.

6 SVARMA is omitted from this list because, at time of writing, its limiting behaviour in
misspecified models is unknown; see the discussion in Section 4.3.

7 For the purposes of comparison with Chapter 4, note that here we suppress the (2) index
on both éT and 60, for ease of notation.

8 This is a somewhat unfortunate terminology since we have already used the term con-
sistency to refer to a property of an estimator. However, the meaning should be obvious from
the context.
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Theorem 5.3 Large Sample Behaviour of Jr: Part (ii) R

If: (i) Assumptions 3.1, 3.2, 3.8-3.10, 4 1 4.3 and 4.4 hold; (ii) ST = Sgac =
S*+BT,U*,U;+OP( ) where BT =142 Z -1 wz T, BT = O(bT), hmT_,oo BT/bT ;é
0 and the bandwidth satisfies by — oo, by = 0(T1/2) then: Jr = Op(T'/br).
Proof:

Let the minimand on the second step GMM estimation be Qg? ) (0). By definition
Qr(0r(2)) < Qr(6,), and so it is sufficient to prove that TQr(6,) = Op(T'/br).
By the Cauchy-Schwarz inequality” and condition (ii), we have

TRy (6.) < IT/brllbr/Br||BrQF (6.)] (5.7)
Since T'/by = O(T'/br) and condition (ii) implies by /Br = O(1) we concentrate
here on showing that BTQgg) (0.) = O,(1). Since

BrQ$(0.) = By *9r(0.) ST By *gr(6.)

we first consider B;/ %97(0,). By definition, we have

T

BY?gr(0.) = BY*u. + (Br/T)°T7>3 [f(v1,0.) — ] (5.8)
t=1

Now Lemma 4.1 implies that 7-1/2 Zthl[f(’ut, 0+) — p«] = Op(1). Furthermore
we have assumed that by = o(T'/?), and so (5.8) implies B;/QQT(H )= B;/zp*

op(1). Therefore, it follows that
BrQr(0.) = BruSy'u. + op(1) (5.9)
= Brp.Sp'me + Brp(Sp' =S ). + 0,(1) (5.10)
Using (4.53) it can be shown that

, Bru, S,
Bri,Sp'u. = ——22= P — o) (5.11)

Now consider the second term in (5.10), that is

BT;L;(Sfl 7551);1* BT;L*S LSy — ST)Sflu* =ngr, say

From (4.54)—(4.55), it follows that nsr = 0,(1), and so, using this result with
(5.11) in (5.10), we have BrQr(6.) = O,(1). The desired result then follows
from (5.7). o

Theorem 5.3 indicates that Jp cannot increase at a faster rate than T'/bp
when Wr = SI}}L‘C. By itself, this result does not imply Jr increases at that

9 See Apostol (1974) [p.294].
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rate, although this is in fact the case. Therefore, the overidentifying restrictions
test is still consistent.

Together Theorems 5.2 and 5.3 indicate there is a difference in the rate
at which Jr diverges depending on how the HAC is calculated. If a centred
HAC estimator is used then Jr increases at rate T, but if an uncentred HAC
estimator is used then Jr increases at rate T'/br. Notice if we use an uncentred
HAC with the optimal bandwidth then there is also a difference in the rate of
increase of Jr between the kernels.!® With the Bartlett, Jr increases at rate
T2/3 whereas with the Parzen and Quadratic Spectral kernels, Jp increases at
rate T4/, Hall (2000) provides simulation evidence which illustrates that the
failure to centre the HAC can have a substantial impact on the magnitude of
the statistic in finite samples as well. It is less clear whether this difference
in rates also manifests itself in differing power properties for the two versions
of the test. For power calculations at a fixed significance level, it is only the
magnitude of the statistic relative to the critical point which matters. Intuition
suggests that there may be circumstances in which the two versions of the tests
have different finite sample power properties but this remains an open research
question. However, the rate of increase is important for the construction of
moment selection procedures based on the overidentifying restrictions test; see
Section 7.3.1.

5.1.3 Local Misspecification

So far our analysis has considered the scenarios in which the model is either
correctly specified or subject to non-local misspecification. The contrast be-
tween these two is stark. If the model is correct then the following holds: (a)
the population moment condition is true for all ¢; (b) the parameter estimator
is consistent; (¢) T/2gp (A7) converges to a mean zero normal distribution; and
(d) it is only necessary to capture the dynamic structure of f; to construct a
consistent estimator of the long run variance. In contrast if there is non-local
misspecification then: (a) the population moment condition is invalid for all ¢;
(b) the parameter estimator is likely to be inconsistent; (c) T%/2g7 (A7) diverges;
and (d) the construction of a consistent covariance matrix estimator must ac-
count for both the non-zero mean and the dynamic structure of f;. In this
section, we move to a third scenario which lies between these two extremes. Lo-
cal misspecification captures the case where the population moment condition is
invalid for any finite T but the size of the violation is O(T~/2) and so disappears
in the limit. This rate of decrease ensures the misspecification does not affect
the probability limits of either the parameter or covariance matrix estimators,
but does manifest itself in the mean of the limiting distribution of T/2gr ()
and consequently the asymptotic distributions of the estimator and estimated
sample moment as well. Newey (1985a) was the first paper to present an analy-
sis of the overidentifying restrictions test under local alternatives. However, we
take a different approach to the construction of local misspecification which was

10 See Table 3.4.
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first exploited in this context by Hall (1999). The qualitative conclusions are
the same as Newey’s (1985a) but the route to them is slightly different.

To introduce the local misspecification framework, it is most convenient to
begin with the transformed population moment condition introduced in Section
3.3. Since two-step estimation involves W = S~1 on the final step, we express
the hypothesis that Assumption 3.3 holds by

Hy: STY2 E[f(vs,60)] =0 (5.12)

The advantage of this approach is that it allows Hy to be decomposed into hy-
potheses about the identifying and overidentifying restrictions. To this end, we
once again set P(0) = F(0)[F(0) F(0)]"'F(0) where F(0) = S~Y2E[df (v, 0)/
90']. Tt then follows from (3.19)-(3.20) that

Hy : Hl & HY
Hi:  P(6y) S™2E[f(v,00)] = 0
HE [I, — P(00)] S~*2E[f(vt,60)] = 0

where H, HY are respectively the hypotheses that the identifying and overi-
dentifying restrictions hold at 6y. Since the transformed population moment
can always be decomposed into

ST ELf(0,0)] = PO) STV2Ef(0,0)] + I, — P(0)) S™2E[f(v1,0)]
(5.13)
we can characterize the local misspecification in terms of violations of the iden-
tifying and overidentifying restrictions. To this end, we introduce the following
sequences of local alternatives to H{ and HS

Hjr: P(60) S™V2Er[f(vi,600)] = T2 P(80) nr = T2y
Hg,T : [Iq - P(eo) ]5_1/2ET[f(Ut790)] = T_l/Q[Iq - P(90)]770 = T_l/zuo

in which gy # 0, uo # 0 and Erp[.] denotes expectations with respect to the joint
probability distribution of {v;;¢ = 1,2,...T}. The reason for this subscript
on the expectation operator is discussed below, but first we briefly consider
the nature of these two alternatives. Notice that under H I{LT the identifying
restrictions are violated for finite 7', but the “size” of this violation decreases
as T increases and disappears in the limit as 7' — oo. Clearly, HS,T implies a
similar pattern of violations of the overidentifying restrictions. This technical
device for constructing local alternative hypotheses is known as Pitman drift
after Pitman (1949) who first introduced it.!! As mentioned above, equation
(5.13) can be used to combine these two sequences into a sequence of local
alternatives to Hy, that is Ha 1 = HI{X,T & HX’T.

11 Edwin Pitman (1897-1993) was an Australian statistician who made a number of con-
tributions to statistics including the eponymous efficiency measure. The 1949 reference is to
a set of lecture notes prepared for a lecture series given at the University of North Carolina,
Chapel Hill and also elsewhere in the U.S. Although not published at that time, the notes
were widely circulated and played an influential role in the development of statistical theory.
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One immediate consequence of local misspecification is that the data v
cannot be a realization from a strictly stationary process because the value of
E|[f(vt,00)] changes with T. This means the probability distribution of the data
depends on T, and so the sample is now a realization from a doubly indexed
process {vip,t = 1,...T;T = 1,2,...}!'? and it is for this reason that we in-
troduced above the subscript T' for the expectation operator. It is possible to
develop characterizations of the probability distribution of the data which lead
to Ha,r; for example, see Newey (1985a). However we do not pursue that route
here and choose instead to characterize the data generation process implicitly
via the properties which play a part in the analysis. Intuition suggests that
H, 7 causes a relatively modest perturbation from stationarity, and it is rea-
sonable to assume there are data generation processes which satisfy the following
assumption.

Assumption 5.1 Data Generation Process under H 1

The observed data are assumed to be a realization from a stochastic process
{vi;t = 1,2,...} which satisfies the following conditions: (i) 67 %> 6o; (ii)
gr(07) 2 0; (iii) Gr(0r) B Go, Gr (07,00, A7) 2 Go; (iv) Sp 2 S, a positive
definite matriz; (v) S=V/2TY2gr (o) A N(pr+po, Iy).

So for our purposes, the only effective difference between the data generation
processes under Hy and H,4 7 is in the mean of the limiting distribution for
Tl/QQT(Go).

Before we analyze the behaviour of the overidentifying restrictions test, it
is instructive to consider the impact of local misspecification on the asymptotic
distribution of the parameter estimator. Since 67 %> 6, we can use (3.24)(3.26)
in order to establish the following result.

Lemma 5.1 The Asymptotic Behaviour of T'/2(; — 6,) under Har
If Assumption 5.1 holds then:

V267 — 6p) 4N (‘(GBS_IGO)_IGGS_I/QIWL (Ggs_lGo)_l)

There are two aspects of this distributional result which should be noted.
First, a comparison with Theorem 3.2 reveals that local misspecification only
impacts on the mean of the distribution. Secondly, this impact derives from
H A,T alone. This conforms to our earlier comments about the different roles of
these two sets of restrictions.' A local violation of the identifying restrictions
causes a bias in the asymptotic distribution of Or away from 6y, but a local
violation of the overidentifying restrictions has no impact.

With this in mind, we now characterize the behaviour of the overidentifying
restrictions test under Ha 7.

12 Such a process is called a triangular array; see Davidson (1994) [pp.34, 178]. However,
for notational simplicity, we suppress the additional subscript on v.
13 See Section 3.3.



5.1 The Overidentifying Restrictions Test 151

Theorem 5.4 Large Sample Behaviour of Jr under H4 r

If Assumption 5.1 holds then: Jr <, Xo_p(opo) where x2(b) denotes a x*
distribution with degrees of freedom a and non—centrality parameter b.'*

Proof:

Once again, it suffices to consider the statistic Jp = TgT(éT)lelgT(éT). The
first few steps of the argument are identical to the analysis of T/2gy (A7) in the
proof of Theorem 5.1. The Mean Value Theorem can be used to deduce (3.34)
and this in turn leads to (3.35). Since Assumption 5.1 implies the matrices
in (3.35) converge to the same limits under Hy and Ha r, equation (3.35) is
equivalent to

STV 200 (07) = [1, — P(00)]S™Y2TY2g7(60) + 0,(1) (5.14)
Using (5.14) and Assumption 5.1, it follows that
-4 ,
Jr — H[Iq_P(GO)](nq"‘NI"’NO)”Q = (ng+ur+po) [1g—P(00)](ng+pr+po)
) (5.15)
where ng ~ N(0,1,). Equation (5.15) implies Jp converges to a x2_,(b) distri-
bution where b = (yu1 + o) [I; — P(60)) (1 + p1o). However, since puy = P(6o)n;

and po = [I, — P(6p)]no, the non-centrality parameter reduces to b = M/oMO-
o

Theorem 5.4 reveals that the non—centrality parameter depends on po alone,
and so the test only has power against local violations of the overidentifying
restrictions. This implies that if the local misspecification is confined to the
identifying restrictions then Jr converges to a central X?pr distribution. There-
fore, the test has the same distribution under both Hy and Hi&,T & HY, and so
cannot be used to discriminate between these two states of the world.

5.1.4 The Parallels Between Non-Local and Local
Analysis

As we have just seen, very different techniques are required for the analysis of
the test’s behaviour in the presence of local and non-local misspecification. At
first glance, it is not immediately obvious that they lead to the same conclusions
about the interpretation of a significant statistic — but they do! Since the test
is the standard diagnostic within the GMM framework, it is worthwhile briefly
explaining the parallels between the two types of analysis.

In the preamble to Chapter 4, we introduced three models: the assumed
model M, and two alternative candidates for the true model M, and Mp.
These models have the following properties:

M = E[f(vt,0p)] = 0 for some unique 4, € O

14 See Johnson and Kotz (1970) [Chapter 28] for a review of the properties of the non-central
x2 distribution.
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My = E[f(v,0+)] =0 for some unique 64 € O
Mp = A6 €0 suchthat E[f(v:,0)] =0

If M is misspecified then whether or not we can detect this fact using Jp de-
pends on whether M 4 or Mp represents the truth. If Mpg is true then the
assumed population moment condition is subject to non-local misspecification.
In this case, Jp is consistent against this alternative, and so leads to rejection
of the model with probability one in the limit. Now suppose M 4 represents the
truth. Thus far, we have not explicitly considered this case, but it is easy to see
what happens. Both M and M 4 imply there is a unique value of 6 at which
the population moment condition is satisfied. Since neither model places any
further restrictions on this unique value of 8, they are observationally equivalent
on the basis of E[f (v, 0)]. Therefore, the estimator and all its associated statis-
tics behave exactly the same under both M and M 4. So this type of model
misspecification cannot be detected — for the good reason that the part of the
model used in estimation is actually correct!

This behaviour is mirrored in the analysis under local misspecification. The
local alternative H ,{1,T & HY corresponds to a local version of M 4. To bring
out this connection, it is necessary to consider a local alternative to Hy in which
the population moment condition is satisfied at a sequence of parameter values
that converges to 6y, that is

HY 1o STV2E7[f(v,07)]) = 0 (5.16)

where 07 = 0y+T~'/?np. Given the local nature of the alternative, it is possible
to use a first order Taylor expansion in (5.16) to deduce that H XT implies

STV2Er(f(vi, 00)] + T~2F(Bo)np = 0 (5.17)
Since F'(0y) = P(6p)F(0y), equation (5.17) can be rewritten as
STV Er[f(vi,00)] = =T V2F(Oo)np = T7/*P(0o)nr

where n; = —F(6p)np. It is then immediately apparent that HZT = Hfl,T & HE.
In other words, H i,T & H§ can be characterized as a sequence of alternatives
in which the population moment condition is satisfied at a unique parameter
value for each T, and so each member of the sequence satisfies the definition
of M 4. Theorem 5.4 states that Jp has the same distribution under both H
and H iT & H§, and so can now be recognized as the precursor to our com-
ments above about the statistic’s behaviour under M 4. Since H §7T implies
that S~Y/2E7[f (v, 60)] lies in the column space of F(6), it follows that H
implies the data are generated by a sequence of models with the properties of
M. So, Theorems 5.2 and 5.4 represent two ways of saying that the test can
be used to discriminate between M and Mp.

To conclude this discussion, it is useful to bring one implicit assumption into
the light. Throughout, it has been assumed that the estimation really did locate
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the global maximum of Qr(#). While, this is a reasonable assumption to make
for the theoretical analysis, it may not be such a trivial issue in practice as we
discussed in Section 3.2. Andrews (1997) observes that a significant statistic
may be attributable to the failure of the estimation routine to locate the global
minimum. In fact, Andrews (1997) proposes a method based on Jr to determine
whether the global minimum has been reached. However, we do not pursue the
details here, because this approach confounds issues of numerical convergence
and model specification. However, Andrews’s observation does re-emphasize the
importance of locating the global maximum.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model

Table 5.1 reports the overidentifying restrictions test statistics based on both
the two step and iterated GMM estimators. For brevity, we only report re-
sults for the case in which the first step weighting matrix is the inverse of the
instrument cross product matrix. Two choices of covariance matrix estimator
are used: S’SU and SSU,;L- However, in this case, the conclusions are affected
by neither iteration nor the choice of covariance matrix estimator. The model
is rejected with equally weighted returns (EWR) but cannot be rejected with
value weighted returns (VWR). For the record, we also note that the same con-
clusions are drawn using the continuous updating estimator described in Section
3.7. In each case, the J-statistic based on the continuous GMM estimator is only
marginally smaller than its counterpart based on the iterated estimator. o

Table 5.1
Overidentifying restriction test statistics

Asset St Statistic Two-step Iterated
EWR Ssu Jr 11.645 11.810
p — value 0.009 0.008
Sst.p Jr 11.945 12.116
p — value 0.008 0.007
VWR Ssu Jr 1.747 1.748
p — value 0.626 0.626
Ssuu Jr 1.754 1.755
p — value 0.625 0.625

Notes: Sgy, SSU,H are given in (3.40) and (4.24) respectively, Jr denotes the overidentifying
restrictions test in (5.2) and p-value denotes the observed significance level of Jr.

5.2 Testing Hypotheses about Subsets of
E[f(vt7 90)]

The vector of population moment conditions can often be partitioned into a set
of sub-vectors each of which refer to a different aspect of the model. In some
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cases, a priori information may indicate that if there is misspecification then it
is confined to a particular part of the population moment condition so that the
true model, Mp g, would have the property,

Mps = E[fi(v,60p)] = 0 for some unique 6y € © but E[fa(vi,80)] # 0

(5.18)
for some partition f(ve,8) = [f1(ve,0)', fa(ve,8)'). Since Mp g C Mp, the
overidentifying restrictions test is consistent against this type of misspecifica-
tion. However, it is possible to construct a more powerful test of the model
specification by taking advantage of the a priori information on the likely source
of the misspecification. In this section, we present this test and analyze its prop-
erties under local forms of misspecification.

To begin, it is necessary to define the partition of f(.) more formally and
also introduce a partition of 6. Let 0 = (05 1,0p4) where 0 is (p; x 1),
and f(vg,00) = [f1(ve,00.1), fa(ve, 00)'] where fi(.) is (g; x 1). Without loss of
generality we focus on the case in which it is desired to test the null hypothesis

H(;SZ E[fl(vt,ﬁo}l)] = Oand E[fg(’l}t,eo)] =0 (519)
against the alternative that
H3 : Elfi(ve.001)] = 0and E[fa(vr,00)] # 0 (5.20)

Two features of this specification should be noted. First, the veracity of
E[f1(vt,60,1)] = 0 is maintained under both null and alternative; so the poten-
tial misspecification is confined to E[f2(ve, 0p)]. Secondly, this framework allows
for the possibility that the maintained moment conditions, E|[f1(vs,001)] = 0,
only depend on part of the parameter vector.

Both Newey (1985a) and Eichenbaum, Hansen, and Singleton (1988) have
proposed methods for discriminating between these two hypotheses. Although
these authors take very different approaches, Ahn (1995) shows their resulting
statistics are asymptotically equivalent under both Hj and local versions of
H f{ . From a practical perspective, Eichenbaum, Hansen, and Singleton’s (1988)
statistic is far easier to calculate, and so we concentrate exclusively on this test.
Readers interested in the approach taken by Newey (1985a) are refered to his
original paper or the discussion in the review article by Hall (1999).

Eichenbaum, Hansen, and Singleton’s (1988) statistic is so convenient be-
cause it is simply the difference between two overidentifying restrictions tests.
The first is the overidentifying restrictions test from GMM estimation based on
the full set of population moment conditions, Jr in (5.2). The second is the
overidentifying restrictions test associated with GMM estimation of 6y ; based
on the moment conditions maintained under both H§ and H%, that is

Jir = Tgl,T(él,T)/Si%gl,T(él,T) (5.21)

where ) 7 is the two step (or iterated) GMM estimator of 6y ; based on E[f (v,
001)] =0, g17(01) =T7! Zthl fi(v, 61), and 5’1’1 is a consistent estimator of
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Sy = limp oo Var[T=/2 321 f1(v1,60,1)]. Eichenbaum, Hansen, and Single-
ton’s (1988) statistic is then given by,

Cr = Jr — Jir (5.22)

The intuition behind the test’s construction is most readily appreciated after an
exploration of its properties, and so we now proceed to the statistical analysis,
but return to the intuition at the end of this section.

We begin with its limiting distribution under Hy. It is clear from the struc-
ture of the statistic that most of the regularity conditions are going to be the
same as for the corresponding result for the overidentifying restrictions test in
Theorem 5.1. However, Cp also depends on a second GMM estimation us-
ing E[f1(ve,00,1)] = 0 alone, and so it is necessary to introduce the following
identification condition.'®

Assumption 5.2 Identification Condition for 6, ;
E[0f1(vi,00.1)/86,] has rank p; .

Notice that this assumption implies ¢; > p;. Clearly, if ¢ = p; then J;+ =0
and Cr reduces to Jr; therefore it is assumed below that ¢; > p;. It must also
be the case that g2 > ps otherwise there be a value of 8y » which sets E[f (v, 6)]
equal to zero for any given value of 6 ;.'¢

Theorem 5.5 The Asymptotic Distribution of Eichenbaum, Hansen,
and Singleton’s (1988) Statistic under Hy

If (i) Assumptions 3.1-3.5, 3.8-3.13 and 5.2 hold; (i) q1 > p1, q2 > pa; (iii)
5'1,1 is positive semi-definite and converges in probability to Si1; (i) Sr s

positive semi-definite and converges in probability to S; then Cp 4, ng_m,

The proof is somewhat involved and so is relegated to the technical details
sub-section at the end of this section.

There is an interesting pattern to the degrees of freedom of Jr, Ji 7 and
Cr. Theorem 5.1 implies that Jr and J; 7 have ¢ — p and ¢ — p; degrees
of freedom respectively. Theorem 5.5 implies that Cp has ga — py degrees of
freedom. Therefore, the subtraction of J; r from Jr has created a statistic,
Cr, with (g1 — p1) fewer degrees of freedom. Notice that the resulting degrees
of freedom equal the degree to which 6y 5 is overidentified by E|[f2(vy,6p)] = 0
given 0 1.

At the beginning of this section, it is stated that it is possible to use in-
formation on the nature of the misspecification to construct a more powerful
test than Jp. It is now time to show that Cp fulfils this promise. To do this,
it is necessary to move into a setting in which the true model satisfies H.
In Section 5.1, we introduced two frameworks for analyzing the behaviour of
test statistics in misspecified models: a non-local and a local analysis. In that

15 See Section 3.1 for a discussion of identification.
16 This follows from the assumption of stationarity by the same logic used to deduce that
Assumption 4.1 implies g > p; see the preamble to Chapter 4.
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context, it is shown that either framework can be used to delineate the class of
alternatives against which Jp has power. However, the non-local framework is
not well suited to the question at hand here because the end result is that Cr,
like Jr, rejects H5 with probability one in the limit.!” While useful to know,
this does not help us to characterize which is more powerful. In contrast, the
local framework is carefully constructed so that the test statistics converge in
distribution. Since the end product is a distribution, it is possible to compare
the power properties of two statistics within this framework, and so this is the
approach we take.

Section 5.1.3 presents a local power analysis of the overidentifying restric-
tions test. In that earlier context, it is instructive to set up local alternatives
using the identifying and overidentifying restrictions. However, that approach
is less convenient here. Instead, we consider the following sequence of local
alternatives to Hy,

S . fl(vt,eo,l) _ Oy %1 _ p=1/2
Hix: ET{ fa(ve,00) | T_q1/2,u2 = T s (5.23)

For brevity, we confine ourselves to a heuristic comparison of the distributions
of Jr and Cr under H i)T. First, recall from Section 5.1.3 that for our purposes
there is only one important difference between the data generation processes
under the null and local alternatives and that is in the limiting distribution of
sample moment. Under H EVT, we have

STV2T200(00) % N(S™Vpug, 1,) (5.24)

and it is shown in the technical details sub-section at the end of this section
that this behaviour translates into

Jr L3 (w) (5.25)
d
= X32_p2(yj) (5.26)

where vy = pgS~1/2'[I, — P(64)]S~/2pus. Therefore, the only difference be-
tween the limiting distributions is in the degrees of freedom. If v; > 0 then Crp
is the more powerful test because it has fewer degrees of freedom.'® 19

The foregoing discussion gives a useful perspective on the construction of the
test. We can think of the overidentifying restrictions based on E[f (v, 00)] =
0 as being built up of two components. The first component is the set of

17 Cr is a consistent test of H(‘)S against Hfl. The essence of the proof is quite simple.

Since Mp g C Mp it follows from Theorem 5.2 that T=1Jr & cg > 0 under Hf;. Also,
E[f1(ve,00,1)] = 0 under H5 and so from Theorem 5.1 that Ji,7 = Op(1). Taken together
these two properties imply: T—1Cp LN cg, and hence is consistent.

18 From the analysis in Section 5.1.3, it follows that v; > 0 if the data are generated by a,
sequence of processes which satisfies both H i}T and H g’T.

19 See Johnson and Kotz (1970) [Chapter 28] for a discussion of the properties of the non-
central x? distribution.
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g1 — p1 overidentifying restrictions for 6,1 based on E[fi(v¢,001)] = 0; the
second component is the set of g2 — py overidentifying restrictions for 6y » based
on E[fa(ve,00)] = 0 given 6p1. Each component contributes to the degrees
of freedom of the test, but it is only the second which contributes to the non-
centrality parameter under H ;Z"T. This structure is exploited in the construction
of Cr because the statistic is effectively calculated by subtracting from Jp the
part which is insensitive to the misspecification under H4 7.

Although the statistic has been motivated as a test of a subset of the popula-
tion moment condition, the null hypothesis, Hy, involves both E[fi(vt,00.1)] =
0 and E[f2(vt,6p)] = 0. Therefore, the test is potentially sensitive to misspecifi-
cation of any part of the population moment condition. Therefore, the veracity
of the a priori information is crucially important in the interpretation of a sig-
nificant statistic.

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model

In Section 5.1 it is shown that the use of the overidentifying restrictions test
leads to rejection of the model with equally weighted returns (EWR) but not
with value weighted returns (VWR). We now investigate the specification of the
model with VWR further using Eichenbaum, Hansen, and Singleton’s (1988)
statistic. It can be recalled that our estimation employs an instrument vector
which contains an intercept and lagged values of both consumption growth and
the asset return. It may be possible that the moment conditions associated with
either of the latter two variables are incompatible with the data but this was not
detected with the overidentifying restrictions for the types of reason described
above. This possibility leads us to consider two versions of Eichenbaum, Hansen,
and Singleton’s (1988) statistic. To introduce the associated null and alterna-
tive, we set 2y , = (ct/ct—1,¢t—1/ct—2) and 2y, = (1¢/pt—1,7t—1/pt—2). The first
version tests whether the moments associated with consumption growth are
compatible with the data and so the null and alternative are given by (5.19)-
(5.20) with

At = | 2 |w
fa(ve,00) = z10u(6o)

The second version tests whether the moment conditions associated with the
asset return are compatible with data, that is Hy and H? in (5.19)-(5.20) with

At = | u
fa(ve,60) = 221us(bo)

The results are given in Table 5.2. In each case the long run variance is estimated
using Sgy and the statistics are based on the iterated estimator. Clearly, neither
test offers evidence against the specification in this case.
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Table 5.2
Eichenbaum, Hansen, and Singleton’s (1988) statistics for the
consumption based asset pricing model

Statistic d.f. z1 29
Jir 1 1.241 0.384

p — value 0.265 0.536
Cr 2 0.503 1.363

p — value 0.778 0.506

Notes: z; denotes the choice of instrument in f2(v¢,0), Ji, 7 denotes the overidentifying re-
strictions test in (5.21) Cr denotes the overidentifying restrictions test in (5.22) d.f. denotes
degrees of freedom and p-value denotes the observed significance level.

5.2.1 Technical Details

I: Proof of Theorem 5.5:
Before we begin, it is useful to introduce the following partition of G(6) =
E[0f (v, 0)/06] into four blocks conforming to the partitions of f(.) and 6,

_ | Gi@) | | G1i(0) Gi2(9)
GO) = [ Ga(6) ] = { Ga1(8) Gaa(0)

where G, ; = E[0fi(vt,6)/08;).
In view of conditions (iii) — (iv) of the the theorem, it suffices to consider

Cr = T{gr(0r)S  gr(0r) — g1.7(017)' ST 1ig1,7(01.7)} (5.27)

Since the proof is quite long, it is useful to present an overview of the proof
strategy. There are three main steps.
Step 1: It is shown that

STV 200 (07) = ALSTYATY2g10(00) + 0,(1) (5.28)
SaPTY g1 7 (Brr) = A2S™V2TY2g1(60) + o0,(1) (5.29)

for certain matrices of constants A; and As, and hence that
Cr = Tgr(6)'S™V2[A] Ay — AyAqlS™2g1(0) + o,(1) (5.30)

Step 2: It is shown that A;Al — AIQAZ is idempotent with rank g — po.
Step 3: Steps 1 and 2 can be combined with the Central Limit Theorem to
derive the stated result along similar lines to the proof of Theorem 5.1.

Since Step 3 is straightforward, we concentrate purely on Steps 1 and 2
below.
Proof of Step 1: The definition of A; in (5.28) is straightforward because (3.36)
implies

STV 200 (0r) = [1, — P(00)]S™Y2TY2g7(600) + 0,(1) (5.31)
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and so A; = [I; — P(fy)]. The definition of Ay in (5.29) requires a little more
work. Since Tl/zgl,T(GLT) is also an estimated sample moment — this time from

the estimation of 6y 1 based on E[f1(v,6p,1)] = 0 — we can appeal once again
to (3.36) and deduce that

51_,%/2T1/291,T(9~1,T) = [IQI - P1(90,1)]51_,%/2711/2911(90,1) + Op(l) (5.32)
where Pi(001) = F1,1(90,1)[F1,1(90,1)’F1,1(90,1)]71171,1(90,1)/ and Fy1(601) =
S;%/2G171(90)1). Now, since

Sia 2T 21 0(00.1) = Syi?gy © Ogyxqa) SY2STY2T 290 (00)  (5.33)
where 04, xq, 18 @ (¢1 X ¢2) null matrix, it follows that (5.32) can be rewritten as

ST 210 (01r) = (I, — Pi(Bon)|2S72T2g0(00) + 0,(1)  (5.34)

where = = i}/z[lql ¢ 0gyxg0)SY/2. A comparison of (5.29) and (5.34) indicates
that A2 = [Iql - P1(9071)]E.
Proof of Step 2: First notice that A; is idempotent and

AyAy = E'[I,, — Pi(6p1)]2 = B, say. (5.35)

So to complete this step of the proof, it is necessary to show that (i) A1 — B is
idempotent, and (ii) rank(A; — B) = ¢2 — pa.
Consider (i) first. Using the idempotency of A, it follows that

(A, — B)(A, — B) = A, — BA, — A\B + BB (5.36)

We now show that BA; = A1 B = BB = B, and so that the right hand side of
(5.36) reduces to Ay — B which is the desired result. First, notice that from the
definition of A; we have that

BA, = B[I,— P(by)] = B— BP(bty)
So BA; = B if BP(6y) = 0. This latter result is established by observing that,
BP(6y) = BF(00)[F(60) F(60)] ' F(6o)

and

BF(6) = Z[I, — Pi(601)]EF(6o)

(g, — P1(60,1)]F1,1(0o,1)

<

A similar argument can be used for A1 B = B, and so we now consider BB. By
definition, it follows that

BB = Z'[I,, — Pi(00.1)]E2 [I,, — P1(60.1)]Z (5.37)
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Since I, — Pi(6p,1) is idempotent, and

=2 = Sy 128 = 1, (5.38)

it follows from (5.37) that BB = B.

Now consider (ii). Since A; — B is idempotent, it follows that rank(A4; —
B) = trace(A; — B).2° Furthermore, it can be shown that trace(Al - B) =
trace(A;) — trace(B).?! These two traces can be deduced as follows??

trace(A1) = trace(ly) — trace{P(6y)}
= q — trace{F(0y)' F(00)[F(00)' F(6)] "}
= q—trace(I)) = q¢—p
and??
trace(B) = trace{=Z[l, — P1(6 )]E }
= tvﬂace{E/E[Iq1 Pi(60)]}
= trace[l;, —Pi(00)] = ¢1 —

Taken together, these two results imply
rank(A; — B) = trace(A;) — trace(B) = ¢ — p— (1 — p1) = q2 — p2

which completes Step 2 of the proof. The theorem then follows by combining
Steps 1 — 8 in the manner described above. o

II: Derivation of Noncentrality Parameters for J;r and Crp

Equation (5.24) can be combined with (5.14) to show that

Jr 5y = P(00)](ng + S~ %us)||? (5.39)

where once again n, denotes a random vector with a N(0,I,) distribution.
Equation (5.39) implies

d
JT—>

Xo_p(vs) (5.40)
where v; = //SS_UQI[IQ — P(0)]S~"?us. Equation (5.24) can be combined
with (5.30) and Step 2 of the proof of Theorem 5.5 to show that

Cr % [|[A1 = Bl(ng + S~2us)|?

20 See Dhrymes (1984) [Proposition 55, p.66].

21 See Dhrymes (1984) [Proposition 16, p.24].

22 The arguments below use the property that trace(D1D2) = trace(D2D1) for any con-
formable matrices D1, D2; see Dhrymes (1984) [Proposition 16, p.24].

23 For the third step, note that(5.38) implies £ = =71,
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and hence that J
Cr 5 Xoy_p,(vs) (5.41)

where vg = HISS*1/2/[A1 — B]S~'?ug. At first glance, v; and vg appear
different, but closer inspection reveals that they are identical. This follows
because: (i) A; = [I;, — P(6p)]; and (ii) equations (5.35) and (5.23) can be
combined to show that BS~'/2pg = 0. o

5.3 Testing Hypotheses About the Parameter
Vector

There are many cases in which a particular economic theory implies a set of
restrictions on the parameter vector of the econometric model. This means it is
possible to assess the veracity of the theory by testing whether the restrictions
in question are satisfied by the data. This section describes various methods for
performing this type of inference.

The structure of this testing problem is different from those described in the
previous two sections. We now move into a world where the data are assumed
to be generated by a model from the set M4 defined by?*

Ma = E[f(v,00)] = 0 for some unique 6y € ©

The question of interest is whether the data are generated by the subset of M 4
which satisfy

Ma.r = E[f(v,6p)] =0 for some unique 6y € 0, = {6 : () =0} (5.42)

where r(fy) is a vector of nonlinear functions of 6. Notice that by definition
O, C O. Therefore, the issue is whether 6, lies in ©,. or its complement in O,
O¢. This type of problem is often refered to as a nested hypothesis test because
©,. can be “nested” in © in the sense that ©,. is a subset of ©.

The vector r(.) must satisfy certain conditions if the restrictions are to be
meaningful.

Assumption 5.3 Regularity Conditions for r(.)
Let r : RP — R° be a (s x 1) vector of real valued functions which satisfies:
(i) v(.) is a vector of continuous differentiable functions; (i) rank{R(0y)} = s

where R(0) = 0r(9)/06’.

This assumption ensures that r(6y) form a coherent set of equations — that is,
given p — s elements of , it is possible to solve uniquely for the remaining s
values using r(fy) = 0.2° Notice that this property automatically excludes re-
dundant restrictions, and also that the rank condition necessarily implies s < p.

24 Previously we used 04 to characterize M 4 but we use 6 here for consistency with the
specification of the hypotheses below.

25 These conditions derive from the Implicit Function Theorem; for example, see Apostol
(1974) [p.374].
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Newey and West (1987b) develop the theory for testing
HE: r(6)=0 versus HE: r(6) #0

based on GMM estimators. They propose three main statistics which can be
viewed as extensions to the GMM framework of the Wald, Lagrange Multiplier
(LM) and Likelihood Ratio (LR) tests from Maximum Likelihood theory.?6 To
facilitate the presentation, it is useful to define unrestricted and restricted esti-
mators of #y. The unrestricted estimator is just 61 defined earlier. The restricted
estimator is the value of § which minimizes Q7(6) subject to r(6) = 0; this is
denoted 67. The asymptotic properties of the restricted estimator are derived
in the technical details sub-section at the end of this section. It is assumed that
both these minimizations use the weighting matrix 5’;1. We now introduce the
three statistics in turn.

The Wald test examines whether the unrestricted estimator, 67, satisfies the
restrictions with due allowance for sampling error. The statistic is

Wr = Tr(fr) [R(éT) [GT(éT)’S*;lGT(éT)]*1R(éT)'} Trbr) (543)

The LM test examines whether the restricted estimator, éT, satisfies the first
order conditions from the unrestricted estimation. This statistic is:

LMy =T gr(6r)' S5 G (01)[Gr (0r)' S5 G (0r)] G (0r)' S g1 (Or)
(5.44)
Finally, the D or LR-type test examines the impact on the GMM minimand of
the imposition of the restrictions. This statistic is

Dr = T[Qr(0r) — Qr(fr)] (5.45)

In the context of Maximum Likelihood theory, it is well known that these
three statistics are asymptotically equivalent under the null hypothesis. Newey
and West (1987b) [Theorem 2] show that this equivalence extends to the GMM
setting.

Theorem 5.6 Asymptotic Equivalence of Wr, LMy and Dy under HE
If (i) Assumptions 3.1-3.5, 8.7-3.13, and 5.3 hold; (i1) S’;l L. 8= then under
Hé:i.' (a) Wr = Nt + Op(].),' (b) LMy = Np + Op(l),' (C) Dr = Nt + Op(l),'
where Ny = npV, np, np = R(GHS™1Go)1GpS™ T 291 (6y), and V,, =
R(GyS™'Go) 'R,

The proof is relegated to the technical details sub-section. One immediate
consequence of Theorem 5.6 is that all three statistics share the limiting distri-
bution of Ny under HE. This distribution is easily deduced from the definition

of Ny because under our conditions it follows that ng -5 N (0, V). Therefore
we obtain the following distributional result.

26 Tt should be noted that there are a number of asymptotically equivalent versions of these
tests. Our presentation focuses exclusively on the versions proposed by Newey and West
(1987b). See Newey and McFadden (1994) [p.2222] for a discussion of the alternative versions.
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Theorem 5.7 The Limiting Distribution of W, LMy and D7 under
Hi
If (i) Assumptions 3.1-3.5, 3.7-8.18, and 5.8 hold; (ii) Sz %> S~1; then under

HEt: Wy <, X%, LMy 4, x% and Dr A X% as T — 0.

There is one other consequence of Theorem 5.6 which should be noted. Using
similar arguments to Theorem 3.5, it is possible to show that np is asymp-
totically independent of S—1/271/ 2gT(éT) under the conditions of the theo-
rem. Since the large sample behaviour of Wy, LMy and Dy are governed
by nr, it follows that these three statistics are also asymptotically independent
of S=1/27%/241(f7). This, in turn, implies that Wy, LMy and Dy are asymp-
totically independent of the overidentifying restrictions test statistic, Jr, under
the composite null hypothesis that E[f(vs,6p)] = 0 and r(6y) = 0.

Newey and West (1987b) show that the asymptotic equivalence of the statis-
tics extends to local alternatives characterized by

Hfp: r(0) = T7?ur
Furthermore, they show that the statistics converge to a x2(dr) where
_ _ -1
or = /L;% [R(eo)(GE)S lGo) ! R(eo)/] ur >0

So the statistics have power against the alternative for which they are designed.
In view of their equivalence, some other criteria must be used to choose between
the three. One such criterion is computational burden, although this is less of
a concern now than it once was. The D statistic is more burdensome because it
requires two estimations, whereas the Wald and LM only require one. Sometimes
the unrestricted estimation is easier and sometimes not — it all depends on
the model in question and the nature of r(.). However, the Wald test has
two disadvantages which should be mentioned. First, it is not invariant to
a reparameterization of the model or the restrictions. This means that it is
possible to rewrite the model and restrictions in a logically consistent way, but
end up with a different Wald statistic.?” Neither of the other two tests have this
problem.?® The second disadvantage is that the Wald statistic tends to be less
well approximated by the x? distribution in finite samples than the other two
statistics; for example, see the simulation evidence reported in Gallant (1987).

At this stage, it is useful to bring into the light one assumption that has been
lurking in the shadows. Throughout the analysis in this section, it has been
assumed that Assumption 3.3 holds and so E[f(vt,6p)] = 0. It is important to
realize that a violation of this assumption can also lead to a significant statistic.
In other words, HI* may be rejected because either Assumption 3.3 holds but
r(6p) # 0 — or it may be rejected because the model is misspecified. Hall and

27 For example, the restriction 0o, = 0; can also be rewritten as 06“2- = éf for any finite
positive integer k. This sensitivity of the Wald statistic derives from the sensitivity of the
asymptotic standard errors to reparameterization; see Section 3.7.

28 Davidson and MacKinnon (1993) [p.467-9] provide a useful discussion of this issue and
some examples. Also see Critchley, Marriott, and Salmon (1996).
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Inoue (2003) provide a formal justification for this statement within the frame-
work of non-local misspecification employed in Chapter 4. Their results indicate
that Wald, LM and D tests do not converge to limiting x? distributions in mis-
specified models even if the restrictions are satisfied. Furthermore, the limiting
behaviour of the three test statistics depends crucially on the covariance matrix
estimator employed. For example, Hall and Inoue (2003) show that W, LMy
and Dr diverge to infinity in the case where either a centred or uncentred HAC
estimator is used. These results emphasize the importance of using the model
specification tests, Jr or Cr, before undertaking inference about the parameters.

To conclude our discussion, it is useful to explore briefly a different per-
spective on HE involving the identifying restrictions. It can be recalled from
Section 3.3 that the identifying restrictions can be interpreted as the restric-
tion that the projection of S™'/2E[f(v;,6p)] onto the column space of F(6p),
C[F(6p)], is zero.? We now show that the restrictions can be interpreted as
a statement about the structure of C[F(6y)]. To do this, notice that if Hl? is
true then the Implicit Function Theorem implies that the population moment
condition can be written as

E[f(vi,9(tho))] = 0 (5.46)

where )y is a p — s vector which satisfies 6y = g(t)g). Now, if (5.46) is treated
as a basis for GMM estimation of 1y then the associated identifying restrictions
imply the projection of S~Y2E[f (v, 0)] onto the column space of F(vg) is zero
where F (o) = S~Y2E[0f (vs, g(tho))/0%']). However, since

F(o) = F(0o) {ag(%)/aw/}

it follows that the column space of F (1), C[F(t)], is of dimension p — s and
C[F(¢0)] C C[F(60)]-

It is interesting to contrast this perspective on H{¥ with what we learned about
testing Hy : E[f (v, 0p)] = 0inthe course of our earlier analysis of the overidentify-
ing restrictions test. The analyses in Sections 5.1.2 and 5.1.3 indicate that tests of
the validity of the population moment condition revolve around the overidentifying
restrictions which, it can be recalled from Section 3.3, involve the orthogonal com-
plement of F'(fy). Therefore, the fundamental decomposition inherent in GMM
estimation reverberates into hypothesis testing based on the estimator: hypothe-
ses about the parameters are equivalent to hypotheses about the columnspace of
F(0y), and hypotheses about the population moment condition are equivalent to
hypotheses about the orthogonal complement of F'(6y).

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model

It can be recalled from Section 5.1 that the overidentifying restrictions test is
significant when the asset is the index with equally weighted returns (EWR). We
interpret this rejection as being indicative of misspecification, and so, in view

29 Recall that in this chapter we focus exclusively on the two step or iterated estimator and
so S~1 must be substituted for W in the Section 3.3.



5.3 Testing Hypotheses About the Parameter Vector 165

of the remarks above, do not consider that version of the model here. Instead
we concentrate purely on the value weighted returns (VWR) case for which the
overidentifying restrictions test is insignificant.

Using L’Hopital’s rule it can be shown that lim,_o(c” — 1)/y = In(c)
Therefore the restriction vg = 0 reduces CRRA utility function to the log utility
function. This restriction can be expressed in our general notation by putting
7(6p) = 0. If we define 0y = [0, do]’ then R(6p) is given by

R(6o) = [1,0]

30

It is immediately apparent that this choice of r(.) satisfies the regularity condi-
tions in Assumption 5.3. The restricted estimation is performed using the pro-
cedure constr in the MATLAB version 6.0 Optimization Toolbox (Mathworks,
2000).

Table 5.3 contains the W, LM7 and Dr statistics for the test of Hé:‘ Ty =
0. All three statistics are calculated using Sr = Ssy. From Theorem 5.7, all
three test statistics converge to a x? under this null. Notice that for this case
the Wald test has a very simple form. Since r(f7) = 47 and R(07p) = [1,0]

(5.43) reduces to
52

Wr = TY—T
V11
where Vi, is the 1 — 1 element of [Gr(f7)' S5 Gr (7)), Tn other words, the
Wald statistic is just the square of the “t—statistic” for vy = 0.
In this particular example, the choice between the three statistics is of no
consequence because they are identical to three decimal places. As can be seen,
we fail to reject H{* : 79 = 0 at conventional levels of significance.

Table 5.3
Test statistics for H{? : 79 = 0

Test Statistic p-value
Wr 0.133 0.715

LMy 0.133 0.715
Dr 0.133 0.715

Note: W, LMy and Dp are defined in (5.43)—(5.45).

5.3.1 GMM Estimation Subject to Nonlinear Restrictions
on #; and Other Technical Details

I. The Asymptotic Properties of the Restricted GMM Estimator
The restricted two step GMM estimator is defined by

Or = argmingeo, Qr(0) (5.47)

where ©, = {#s.t. # € © and 7(d) = 0} and Q7 = gr(0)'S; gz (6).
Throughout, it is assumed that 8y satisfies the restrictions.

30 See Rudin (1976) [p.109)].



166 Hypothesis Testing

Assumption 5.4 Restrictions on 6,
T(eo) =0.

The analysis is split into two parts: the consistency of 61 and the asymptotic
distribution of TV2(6 — ). As in Chapter 3, the logical sequence is to begin
with consistency.

A comparison of (3.11) and (5.47) indicates that the only difference between
the restricted and unrestricted estimations stems from the set over which the
minimization is taken. It is therefore straightforward to modify the proof of
Theorem 3.1 to establish the following.

Lemma 5.2 Consistency of Or
If Assumptions 3.1 — 8.4, 8.7 — 3.10, 5.3 and 5.4 hold then: 61 2.9,

While the characterization in (5.47) can be used to establish consistency, it
does not lend itself to the derivation of the asymptotic distribution of 7*/2 (5T —
o). For this question, it is more fruitful to define 61 using Lagrange’s method for
constrained optimization. Accordingly, we introduce the Lagrangean function

Lr(0,p) = Qr(0) — 2r(0)'p (5.48)

where 2p is the (s x 1) vector of Lagrange multipliers.®! Subject to certain

regularity conditions,3? 7 and the associated estimator of p, denoted pr, satisfy
the first order conditions, 0L(0r, pr)/00 = 0 and OL(O1, pr)/dp = 0. In this
case, these conditions yield

Gr(0r)'Si gr(0r) — R(Or) pr = 0 (5.49)
—r(fp) = 0 (5.50)

To derive the asymptotic distribution of T 2(9~T — 6p), it is necessary to know
the probability limits of 8 and pr; the former limit is provided by Lemma 5.2
above, and the latter is given in the following lemma.

Lemma 5.3 Probability Limit of pr
If Assumptions 8.1 — 8.5, 8.7 — 8.10, 3.12-3.13, 5.8 and 5.4 hold then: pr 20.

This result can be derived by considering the limiting behaviour of (5.49) as
T — 00, however we leave the details to the reader.33

The asymptotic distribution of T%/2(6p — 6p) is deduced from (5.49)(5.50).
However, before this can be done, each equation requires a certain amount
of manipulation, and so we start by considering each equation individually.
Equation (5.49) implies that

Gr(07) S T 2gr(07) — R(Or)'TY?pr = 0 (5.51)

31 The factor of 2 is introduced for ease of presentation below.
32 See Intrilligator (1971) [Chapter 3].
33 Or see Newey and McFadden (1994) [p.2218].
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Under our conditions, G7(f7) £ Gy, and if we assume Sp 2 S then (5.51) can
be rewritten as

GYSTITY2g1(6r) — R(00)TY?pr + 0,(1) = 0 (5.52)

The next step involves the use of the Mean Value Theorem to linearize T"/2 gT(éT)
around T2gr (). Under our assumptions, this linearized version implies

TY2g1(0r) = TY?gr(60) + GoTY?(0r — o) + 0,(1) (5.53)

Finally, if (5.53) is substituted into (5.52) then we obtain
GLST T2 g1 (00) + GoS™ GoTY*(0r — 6y) — R(60)T*pr + 0,(1) = 0
(5.54)

Now consider (5.50). The Mean Value Theorem and Lemma 5.2 can be used to
deduce that

T'?r(0r) = T'?r(0) + R(06)T/?(0r — 00) + o0p(1) (5.55)
Using (5.55) and Assumption 5.4, it can be seen that (5.50) implies
R(00)TY? (07 — 6y) + 0,(1) = 0 (5.56)

Taken together, equations (5.54) and (5.56) imply that T'V/2 (67 —6,) satisfies
the following set of equations,

0 o G()S_lTl/ng(eo)
0 - 0
G\S™1Gy —R, TY2 (01 — 6,
+ { "R Y } { T(l/gﬁT o) | 4 0,(1)(5.57)

where for brevity we set Ry = R(y). Using the formulae for the inversion of a
partitioned matrix,3* it can be shown that (5.57) implies

TY*(0r —60y) = —{Vu — VuR'[RVu R 'RV }GY ST 2 g(6p) + 0,(1)

(5.58)
where to simplify the formulae we have set Viy = (G{S™'Go)~! — this notation
reflects the fact this matrix is the variance of the asymptotic distribution for
the unrestricted estimator; see Theorem 3.2. Notice that (5.58) has essentially
the same structure as appeared at this stage in the analysis of the unrestricted
estimator in Section 3.4.2: a matrix of constants times the vector, T/2gr(6y).
So once again, the limiting distribution is normal.

Lemma 5.4 Asymptotic distribution of T/2(0; — 6)
If (i) Assumptions 3.1-3.5, 3.7-8.13, 5.8 and 5.4 hold; (i) Sy 2 S; then:
TY2(f7 — 0,) % N(0, Vi) where Vg = Viy — VyR'(RVyR')~"'RVy.

34 See Magnus and Neudecker (1991) [p.11].
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Notice that Viy — Vg is a positive semi-definite matrix and so the restricted
estimator is at least as efficient as the unrestricted estimator — in other words,
we are never worse off for imposing walid restrictions on the parameters, as
would be anticipated.

A comparison of Lemma 5.4 and Theorem 3.2 suggests the limiting dis-
tributions of the unrestricted and restricted estimator have much in common.
However, there is one key difference which needs to be brought into the light.
The matrix Vi has rank p — s and so the normal distribution in Lemma 5.4 is
singular. Whereas, the limiting covariance matrix for the unrestricted estima-
tor is nonsingular. This difference reflects the nature of the estimators. In the
unrestricted estimation all the elements of 67 are “free”. In contrast, only p— s
elements of O are “free” because the remaining s elements are tied down by
the restrictions.

This analysis has concentrated on the estimator under H{¥. In Section 5.3,
certain comments are made about the behaviour of the restricted estimator un-
der local alternatives H f,T. Newey and McFadden (1994) [p.2218-20] present a
more general version of our analysis under this more general class of processes.
Just as in Section 5.1.3, the only effective difference between H{ and H E,T
appears in the mean of the asymptotic distribution. Therefore, both Lemmas
5.2 and 5.3 continue to hold under local alternatives.

II. Proof of Theorem 5.6
Part (a): Under the assumptions listed in condition (i) of the theorem, it follows

that: R(67) 2 R(f) and Gr(7) & Gy. These two results combined with
condition (ii) of the theorem imply that

WT = T1/2T<éT)/Vn_1T1/2T(éT) + Op(1>

Therefore, the result will be established if we can show that T/2r(67) = +np+
op(1). To this end, we use the Mean Value Theorem to deduce that

T2 (br) = T'?r(60) + R(Or.00. Ar)TY?(0r — 65) (5.59)

where R(07,60, A1) is an (s x p) matrix whose i*" row is the i*" row of R(é(Ti))
where ég) = A0+ (1 — )\T,i)é(Ti) for some 0 < Ap; <1, and Ap is the (s x 1)
vector with i*" element Ar,;. Since or 2 0o, it follows that é(Ti) 2 6y and so
R(07,00, A\r) & R(6). Using this result and (6) = 0 in (5.59), it follows that

TY2r(br) = R(60)TY*(07 — 60) + o0,(1) (5.60)
Equation (3.26) implies that
TY2(0r — 6y) = —(GHS™1Go)LGHS™ T 291 (00) + 0,(1) (5.61)

Finally, the substitution of (5.61) into (5.60) yields T'/2r(07) = —np + op(1),
which completes the proof of (a).
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Part (b): Lemma 5.2 establishes that 07 2 6y, and under the stated conditions

Gr @T) 2 Gy. The second of these results can be combined with the consistency
of St to deduce that LMy = LM¢ + 0,(1) where

LMy = TY?gp(07) S GoVuGyS™ T 291 (07) + 0,(1) (5.62)

where Vi = (G(S7'Go)™". So the desired result will be established if we can
show that LM = Np + o,(1). To this end, we now consider the limiting
behaviour of G{S~'T/2g7(07). Using (5.53), it follows that

GLSTITY2gr(0r) = GRS TY2gr(60) + GHS™ GoTY?(0r — 6o) + 0,(1)

(5.63)
Equation (5.58) provides an asymptotically equivalent expression for T 2(0r —
o), and if this expression is subsitituted into (5.63) then we obtain

GYSTITY%gr(r) = R'RVuR ] 'RVuGLS™'TY2g7(00) + 0,(1)  (5.64)

If (5.64) is substituted into (5.63) then — with appropriate cancellations — we
obtain LM = Ny + 0,(1).

Part (¢): Once again, the proof rests in part on an application of the Mean
Value theorem to T'/2g7(f7) but this time it is taken around TV/2gy(07) to
yield

T1/2gT(§T) = Tl/ng(éT) + GT(éT,éT,)\T)Tl/z(éT — éT) (5.65)

where Gp (07, 07, Ar) is the (¢xp) matrix whose it" row is the i" row of GT(ég))
where (this time) 553) = )\Tﬂ;éT +(1- /\TJ)HAT for some 0 < Ap; <1 and Ap is
the (¢ x 1) vector with i*" element Ar,i. Since both 07 and O are consistent, it

follows that é(Ti) must also converge in probability to 6y for ¢ = 1,2,...q. This
property can then be combined with Assumptions 3.5, 3.12-3.13 to deduce that
Gr (01,07, A1) % Go and so that (5.65) implies

TY2g0(0r) = TY?gr(0r) + GoTY?(0r — 07) + 0,(1) (5.66)

If (5.66) is used to substitute for T'/2g7(f7) in (5.45) then it emerges after a
little rearrangement that

Dy = 2TY*(0p — 07)GLS7 T g1 (6r)
+TV2(0r — 07)GoS7 GoT (07 — Or) + 0,(1)  (5.67)
Clearly to proceed further, we need an expression for T/ 2(éT — éT) Since
TY?(0p — 67) = TY?(Op — 6y) — TY%(6r — 6))
it follows from (5.61) and (5.58) that

TY2(6r — b7) = VyR'[RVuR| "RVuGyS~ T %gr(6s) + 0p(1)  (5.68)
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We note parenthetically that under our conditions (5.68) implies that
T'2(6r — 67) % N(0, VyR'[RVuR']"'RVy,)

Using (5.68), we can now deduce the limiting behaviour of the terms on the
right hand side of (5.67) in turn. First consider

Dig = 2TY*(0r — 07)'GyS; T g7 (07)
The first order conditions for the unrestricted estimation, (3.12), imply that
Gr(Or) 8, T g1 (6r) = 0 (5.69)

Since Gr(fr) 2 Gy, it follows from (5.69) that G4S7 T 2gr(6r) = 0,(1).
Furthermore, (5.68) implies 7'/2(d7 — 67) = O,(1). Therefore we can com-
bine combine these two order in probability statements to deduce D;r =
Op(1)op(1) = o0p(1). Now consider the second term on the right hand side
of (5.67), namely

Dop = TY*(0r — 07) G857 GoT*(0r — O7) (5.70)

It follow from the consistency of St and (5.68) that Dy = Np+0p(1). There-
fore DT = Dl,T + D27T = NT + Op(l). <

5.4 Testing Hypotheses About Structural
Stability

So far, it has been assumed that if Assumption 3.3 is violated then the value
of E[f(vs,0p)] is the same for all ¢ (albeit for a given T in the case of local
misspecification). This property is refered to as structural stability. However,
Assumption 3.3 is also violated if E[f (v, 6p)] # 0 for only part of the sample;
such behaviour is termed structural instability. This section reviews various
methods for testing structural stability based on GMM estimators.

The null hypothesis for structural stability tests is very simple: it states that
Assumption 3.3 holds throughout the sample. The alternative is more difficult,
however, because it must specify how the model changes. In the GMM litera-
ture, attention has focused almost exclusively on the case where the instability
involves a discrete change at a single point in the sample known as the “break
point”. So this scenario receives the most attention here. However, we briefly
discuss other forms of instability at the end of the section. To present the null
and alternative hypotheses, it is necessary to introduce the following notation.
Let m be a constant defined on (0,1) and let 7T denote the potential break
point at which some aspect of the model changes. For our purposes here, it is
convenient to divide the original sample into two sub-samples. Sub-sample 1
consists of the observations before the break point, namely 71 = {1,2,... [T},
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where [.] denotes the integer part, and sub-sample 2 consists of the observations
after the break point, T = {[#T] + 1,...T}. This break point may be treated
as known or unknown in the construction of the tests. If it is known, then the
break point is specified a priori by the researcher and it is only desired to test for
instability at this point alone. For example, we investigate below whether the
change in operating procedures by the Federal Reserve in October 1979 caused
instability in Hansen and Singleton’s (1982) consumption based asset pricing
models. If the break point is unknown, then the null is the broader hypothesis
that there is no instability at any point in the sample. It is easily imagined that
tests for the two cases are closely related. We begin our discussion with the
simpler case in which the break point is known because this provides a more
convenient setting for introducing the null hypotheses and the test statistics.
We then consider the extension of these techniques to the unknown break point
case.

5.4.1 Known Break Point Case

As remarked above, the basic null hypothesis of structural stability is very
straightforward, namely

HS(m) : E[f(vi,00)] = 0 forallt € Ty&T

However, rather than work directly with Hy (), it is useful to decompose this
hypothesis into statements about the stability of the identifying and overidenti-
fying restrictions. It can be recalled from Section 3.3 that these two sets of
restrictions play different roles in the estimation, and we have already seen in
this chapter that these roles are reflected in the types of inference question for
which each is used. The identifying restrictions are imposed in estimation, and
so underlie hypotheses about 6y. The overidentifying restrictions are ignored
in estimation, and so can form the basis for inference about the validity of
the model specification. It emerges below that similar connections arise in the
context of structural stability testing, and this leads to valuable model building
information. It is therefore useful to decompose Hy(m) to reflect these two
possible sources of instability, and develop a test for each.

To introduce these component null hypotheses, it is necessary to allow for
the possibility that the data generation process for v; is different in 77 and
Ty. Accordingly, let F;[.] and Var;[.] denote the expectation and variance
operators relative to the data generation process for v; in 7;. Furthermore,
we define the following sub-sample analogs to P(#), F(0) and S: P;i(0,7) =
Fl(ﬂ, W)[FZ(Q, W)/Fi(g, 7T)]71Fi(0, 71')/7 FZ(G, 71') = 51(9, ’/T)71/2E7;[8f('0t, 91)/89/],

[xT)
S1(01,7) = TIEI;OVarl[[WT]_l/QZf(vt,Hl)]

t=1 )
Sa(02,7) = irlijI;OVarg[(T—[ﬂT])_l/2 Z f (v, 02)]

t=[rT]+1
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Since the identifying restrictions are imposed in estimation, there are always
parameter values which satisfy them in each of the two sub-samples. Therefore,
the identifying restrictions are said to be structurally stable if they are satisfied
by the same parameter value in each sub-sample. This null is formally stated
as

Hé(ﬂ') : P1 (00, 7T) {51(0077{_)}71/2E1 [f(’Ut, 90)] = 0, t e T1
Pg(eo, ﬂ') {Sg(eo,ﬂ')}_l/QEQ[f(’Ut, 90)] = 0, t e T2

In contrast, the overidentifying restrictions are ignored in estimation and so we
can examine their stability directly. The overidentifying restrictions are said to
be stable if they hold before and after the break point. This is formally stated
as
0 o1 02
Hy'(m) = Hy (m) & Hy " ()

where

HPY(w) o [Ig — Pi(61,m)]{S1(61,m)} V/2E [f(vy,61)] =0, t €Ty
HP? ()0 [Ig — Po(02,m)]{S2(02,m)} V2B [f(vy,02)] =0, t €T

Notice that H$! () and HY?(r) allow for the possibility that the overidentifying
restrictions are satisfied at different values in each sub-sample.

By the very nature of the decomposition, it is clear that any instability must
be reflected in a violation of at least one of the hypotheses H{ (7) and HY ().
Therefore it follows that

Hg®(m) = H () & HE (m)

The value of this decomposition is that it allows the researcher to discriminate
between two scenarios of empirical interest. The first is one in which the insta-
bility is confined to the parameters alone; this case is consistent with a violation
of Hl(m) but the validity of H (7). The second scenario is one in which the
instability is not confined to the parameters alone but effects other aspects of
the model; this would imply a violation of HY (7) and most likely H{ (1) as well.
We now describe test statistics for each component, and then present their
asymptotic properties. To this end, we introduce the following notation and an
additional assumption. Let the sample moment in each sub-sample be

(xT]

grr(0;m) = [7T)7" Y f(vr.6)
t=1

gr@:m) = (T—[ET)™ D flu.0)

t=[rT]+1

and Sy 7(7), Sa.7(7) be consistent estimators of Sy (6, 7), Sa(6a, 7) respectively.
With these definitions, the sub-sample two step GMM estimators are

N

;. 7(m) = argmingeo gi7(0;m) Sip(m) g (0;7) (5.71)
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for ¢+ = 1,2. We also need the sub-sample derivative matrices,

[+ T]
Gir(@;m) = [#T]7' > 0f(v1,0)/06'
t=1

T
Gor(O;m) = (T—[xT)~" > 0f(vi,0)/00
t=[rT]+1

The additional assumption governs the dependence — or, more appropriately,
the lack of it — between the two sub-samples. Throughout the discussion we
impose the following condition.

Assumption 5.5 Zero Covariance of Partial Sums
limy .00 Cov[TV2g1 (005 1), T2 g, 1 (00; )] = 0.

This assumption is not guaranteed under ergodicity but can be justified under
certain mixing conditions; see Andrews (1993).

From our earlier discussion, it can be recognized that H{(7) is equivalent
to a null hypothesis of no parameter variation. Andrews and Fair (1988) derive
test statistics for the latter hypothesis and it is most convenient to follow their
approach here. Therefore, we introduce the augmented population moment

condition:
di(m) f (ve, 1)
(1 = dy(m)) f(ve, O02)

where di(7) is a dummy variable which equals one when ¢ < 7T and ¢g =
(01,05)". Notice that this population moment condition is more general than
Assumption 3.3 because it allows for the possibility that E[f(v:,0)] = 0 is
satisfied at different parameter values before and after the break point. However,
if ¢¢ satisfies the restrictions

Elg(ve, ¢o)] = =0 (5.72)

[Ipa*kabO = Op (5~73)

then #; = 0y and so the moment condition is satisfied at the same param-
eter value throughout the sample. This structure suggests a straightforward
method for testing H{(7): estimate ¢y by GMM based on (5.72) and then use
the Wald, LM or LR-type statistic from the previous section to test the re-
strictions in (5.73). This approach requires calculation of the unrestricted and
restricted estimators of ¢y denoted by $U7T and gZ;R,T respectively. The un-
restricted estimator is ¢y = [01.7(7) ,02.7(7)]. The restricted estimator is
drr = [07(7) ,0r(7)] where

BN

2
Or(m) = argmingco »_ gir(0;7) Siz(m) ™" gir(0;7) (5.74)

i=1

However, Andrews (1993) shows that sup,re(071)||T1/2(9AT —07)|| = 0,(1) under
the null hypothesis, where Or is the “full sample” GMM estimator defined in
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(3.11). As a consequence, the limiting distribution theory is unaffected by the
use of the full sample GMM estimator in place of the restricted estimator.
Since the full sample estimator has almost certainly been calculated prior to
the implementation of the structural stability tests, there is some convenience to
making this substitution. Therefore, Andrews proposes versions of the LM and
D tests that are based on the full sample estimator and we follow this practice in
our presentation as these versions have become common in practice. However,
we note in passing that this substitution may have a considerable impact on
the value of the statistic in practice; see Section 9.2 for further discussion in the
context of an empirical example.
The Wald statistic is given by

We(n) = T [fir(r) — for(m)] V(@)™ [bua(x) — bz (5.75)
where

1 A N .
Vir(m) = —[Gir(01,r(m);m) S1r(m) " Gur (@ (m);m)] ™ +
1 A « .
m[GQ,T(GQ,T(W);w)’SQ,T(7r)*1c;27T(1927T(7r);w)]*l (5.76)
and S; () denotes a consistent estimator of S;(m) based on the unrestricted
estimator §; 7(m). The LM statistic is given by

T

LMy (m) = mgl,T(éT§W)Sj_“lGT(éT)[GT(QAT)/SZ_“lGT(éT)]il X
Gr(07)' S7 911 (07; ) (5.77)
The D statistic is given by,
Dy(n) = T[J(0r,0r;7) — J(Or,7(x), 020 (7); 7)) (5.78)
where
J(01,00,7) = wgirO1;7) S1r(m) g r(01;m) +

(1 =) go,7(02; ) Sa () ' g2, (025 7) (5.79)
To test HS (), Hall and Sen (1999) propose the statistic
OT(’]T) = OI,T(W) + OQ}T(']T) (580)

where O1 7 (m) and Og (7) are the overidentifying restrictions tests based on
the sub—samples 77 and T respectively, that is

Ovr(n) = [Tg1r01r(7);7) Sir(n) grr(brr(n);7) (5.81)
Osr(m) = (T = [7T)gar (02,0 (m); w) So.0(m) " g0 (B2,7(m); ) (5.82)

The following theorem gives the limiting distribution of these statistics. For
brevity, we state the result in terms of the Wald test but the same results apply

to either the LM or D statistics. For convenience, we also state the distributional
results under the composite null H5 ().
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Theorem 5.8 Limiting Distributions of Wy (7) and Or(7) under HS ()
If Assumptions 3.1-8.5, 3.8-3.13 and 5.5 hold then: (i) Wp(r) % Xz (ii)
Orp(r) & Xg(q_p); (iii) Wrp(m) and Orp(m) are asymptotically independent.

Part (i) is first presented in Andrews and Fair (1988)[Theorem 4], and its
proof has been anticipated in the derivation of the test statistic above. Parts
(ii)—(iii) are presented in Hall and Sen (1999)[Theorem 2.1]. There is a simple
intuition behind part (ii): Theorem 5.1 can be used to justify that Oy () and
Os, () are individually Xifp and then Assumption 5.5 implies their asymptotic
independence which gives the stated result. Part (iii) derives from Assumption
5.5 as well as the arguments which underlie Theorm 3.5.3°

It can be recalled that the decomposition of HS () was motivated by the
potential to uncover useful information about the source of the instability. To
assess whether this potential is realized, we must explore the behaviour of the
test statistics under an alternative hypothesis which allows for instability. Hall
and Sen (1999) show that Wr(7) has power against local alternatives to H{ (),
denoted H' (), but none against local alternatives to H (), denoted HS ().
Whereas, Or(m) has power against HG (7) but none against H (7). Further-
more these two statistics are also asymptotically independent under the compos-
ite local alternative H (7)&HS (7). These results suggest that the two statistics
can be combined to discriminate between local instability which is due solely to
parameter variation and local instability of a more general nature. Interestingly,
Hall and Sen (1999) show that this conclusion holds even if the wrong break
point is used in the calculation of the tests.?® However, the same conclusion
only holds for non-local alternatives if the correct break point is used. We return
to this issue when we describe the extension of these statistics to the unknown
break point case in the next sub-section.

At the conclusion of this sub-section, we illustrate the tests for the Hansen
and Singleton’s (1982) consumption based asset pricing model. However, before
that, we briefly describe two other statistics which could be used to test for
instability. These are the overidentifying restrictions test and the Predictive
test.

Since the overidentifying restrictions test is the standard diagnostic for model
specification, it is interesting to consider its properties against structural insta-
bility. Ghysels and Hall (1990a) show that Jr is insensitive to H{ () and Sen
(1997) shows that it has power against H{ (7). The arguments behind each are
essentially the same as those used to establish that Jr has power against HS
but none against H} in Section 5.1.3. Hall, Inoue, and Peixe (2003) consider
the limiting behaviour of Jr in the presence of non-local misspecification due
to neglected structural instability. They provide conditions for the test to be
consistent but show that these are not guaranteed to hold in all circumstances.

3% Tt should be noted that Theorem 5.8 (i) only requires H{ () to hold, and part (ii)
only requires HOO(TF) to hold — provided also that the other regularity conditions are suitably
modified; see Hall and Sen (1999).

36 In other words, the test is calculated with m = 7, say, but the true break point is [moT].
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This is because while there may be no single value of 8 that satisfies the pop-
ulation moment condition for every observation, there can be a value of 6 that
sets the average of these population moment conditions to zero. While note-
worthy, such a scenario is likely to be the exception rather than the rule. So
for practical purposes, it is reasonable to conclude that the overidentifying re-
strictions test can detect neglected structural instability in many settings. In
spite of these properties, intuition suggests that Wr(7) and Or () are likely to
be more powerful tests than Jp against structural instability because they are
specifically designed for that alternative. Simulation evidence reported in Sen
(1997) supports this view.

Ghysels and Hall (1990¢) proposed the Predictive test to discriminate be-
tween Hy(7) and the alternative hypothesis

HEYR(m) : Ei[f(ve,600)] =0, teTy and  Eu[f(ve,00)] #0, t € Ty

The statistic is based on evaluating the sample moments from 75 at éLT(’lT).
Under H@g 9(), this estimated sample moment should converge in probablity to
zero. This approach leads to the Predictive test statistic

PRy(7) = Tgo.r(01.7(n); ) Vi go.7(01.7(7); )

where Vpp is a covariance matrix defined in Ghysels and Hall (1990¢). Ghysels
and Hall (1990¢) show that this statistic converges to a x3 distribution under
Hy®(7).37 Ghysels, Guay, and Hall (1997) show that

Hy"(m) = HA(m)&H! (1)&HS® ()

In other words, the Predictive test has no power against violations of HS) Lm).
This feature renders the Predictive test less attractive than the combined use
of Wr(w) — or LMy (), Dp(w) — and Or(w) described above and so we do not
pursue it further here.38

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model

Since our sample spans five decades there are many events which may have
caused structural instability in an asset pricing model. To illustrate the tests
described above, we pick one such event: the change in the operating procedures
of the Federal Reserve in October, 1979. During the 1960s and most of the 1970s,
the Federal Reserve used the federal funds rate as its primary operating target
for monetary policy.? In October 1979, it was decided to change this practice to
one in which the level of non-borrowed reserves became the primary operating

37 Ghysels and Hall (1990a) propose a structural stability test based along a similar princi-
ple to the Eichenbaum, Hansen, and Singleton (1988) statistic in Section 5.2, but Ahn (1995)
shows this is asymptotically equivalent to the Predictive test — their finite sample properties
may be different, however.

38 Ghysels, Guay, and Hall (1997) also extend the Predictive test to the unknown break
point case.

39 The federal funds rate is the interest rate on funds loaned overnight between banks.
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target.?® It has been argued in the literature that this change in Fed policy may
have had sufficient impact on the financial environment to cause instability in
asset pricing models.*!

The evidence from the overidentifying restrictions test suggests that this
model may be correctly specified for value weighted returns (VWR), but mis-
specified for equally weighted returns (EWR). Both conclusions leave scope for
the use of structural stability tests although for different reasons. It can be
recalled above that the overidentifying restrictions test has power against struc-
tural instability but is anticipated to be less powerful than tests specifically
designed for this alternative. So for VWR, the motivation is that the failure to
reject with the overidentifying restrictions test may simply reflect the low power
of the test against structural instability. Whereas for EWR, the motivation is
to assess whether the significance of the overidentifying restrictions test can be
attributed to structural instability. Table 5.4 reports the structural stability
test statistics associated with the October 1979 break point. For brevity, we
only report results based on W;l) =(T! Zf:l zz;) "' and Sp = Sgp given in
(3.40).

For VWR, the overidentifying restrictions based tests are all insignificant
at the 10% level. However, the evidence from the parameter variation tests is
mixed. The Wald and LM tests are insignificant but the D test is just signifi-
cant at the 10% level. Unfortunately, there is no obvious way to interpret this
discrepancy between the tests of parameter variation. Statistical theory tells us
only that Wr(w), LMy (w) and Dr(w) are asymptotically equivalent under the
null and local alternatives but this does not imply the tests need be numerically
identical in finite samples. However, one possible explanation is that the Dp(7)
is calculated using the full sample GMM estimator as the “restricted estimator”.
While this substitution is asymptotically valid, it may inflate the value of the
statistic because it follows from (5.74) that J(07,0p;7) > J(0r, 0p; 7). 42

For EWR, the evidence is more clear cut. All the parameter variation tests
are insignificant at the 10% level, but the overidentifying restrictions based tests
indicate instability. Both Op(m) and Oz 1 (7) are significant at the 10% level,
but O p(m) is insignificant. This pattern of results suggests the model spec-
ification is correct prior to 1979:9, but misspecified thereafter.*> Provided we
accept the general framework of the consumption based asset pricing model, the
most logical source of this misspecification is the representative agent’s utility
function. So with this proviso, the evidence is consistent with the following sce-
nario. The representative agent possesses a CRRA utility function for the period
1959:3-1979:9, but then the functional form of this utility function changes as

See Mishkin (1995) for a historical review of the Federal Reserve’s monetary policy.

41 See inter alia Ghysels and Hall (1990a).

42 See Section 9.2.

This conclusion appears at odds with the results reported in Hansen and Singleton (1984)
who report a significant overidentifying restrictions test for the model with EWR. However,
the overidentifying restrictions test based on the pre break sample is sensitive to the choice
of break point; see Section 5.4.2 for further details.
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a result of some event in 1979.10.*4 However, there is one important caveat.
Although we have selected this break point for a reason, all these results may be
sensitive to the choice of break point and so it is important to conduct a more
thorough investigation before drawing any definitive conclusions about the im-
portance of this date. This is undertaken at the end of the next subsection.

Table 5.4
Structural stability tests associated with October 1979

Asset : VWR EWR
Test Statistic p-value Statistic p-value
W () 2.640 0.267 1.810 0.405
LMy (m) 3.382 0.184 0.888 0.641
Dr(7) 5.040 0.080 2.543 0.280
Or(m) 4.135 0.658 12.031 0.061
O17(m) 1.535 0.674 4.288 0.232
Oar () 2.601 0.457 7.743 0.052

Note: Wy (w), LMy (xw) and Dr(w) are defined in (5.75), (5.77) and (5.78), Or(w), O17(m)
and Oap(7) are defined in (5.80), (5.81) and (5.82).

5.4.2 Unknown Break Point Case

If the break point is unknown, then it is desired to test whether there is evidence
of instability at any point in the sample. However, in practice, it is necessary
to limit attention to the null hypothesis:

HFS(T) = Hy®(n), for all m € T C (0,1) (5.83)

On one hand, it is desirable for II to be as wide as possible so that the null is as
broad as possible. On the other hand, it must not be so wide that asymptotic
theory is a poor approximation in the sub-samples. In applications to models
of economic time series, it has become customary to use II = [0.15,0.85]. As
in the fixed break point case, we decompose the null into components involving
the stability of the identifying and overidentifying restrictions, that is

Hg®(1) = Hy (1) & HE (1) (5.84)

where
HIM) = Hl(n), forallm el (5.85)
HPM) = HY(r), forallm el (5.86)

44 See Sen and Hall (1999) for further discussion.
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We begin by describing statistics for testing H{(IT). The construction is
a natural extension of the fixed break point methods. Now Wr(mw), say, is
calculated for each possible 7 to produce a sequence of statistics indexed by ,
and inference is based on some function of this sequence. This function is chosen
to maximize power against a local alternative in which a weighting distribution
is used to indicate the relative importance of departures from H{ () in different
directions at different break points. A general framework for the derivation of
these optimal tests is provided by Andrews and Ploberger (1994) in the context
of Maximum Likelihood estimators and this is extended to the GMM framework
by Sowell (1996). One drawback with this approach is that a different choice
of weighting distribution leads to a different optimal statistic; however, three
choices have received particular attention. To facilitate their presentation, we
define the following local alternative to H{ (),

Hj (7 : Pi(60; m){S1(60, ™)} VP Er [ f(ve, 00)] =T Pury,  teT
Py(00; 7){S2(00, 1)} 2By [ f (vi,60)] = T ?pur 2, tel

It is assumed that 471 = 0 and a weighting distribution is specified for (7 2, 7). 4

The aforementioned three choices are as follows:

Choice 1:

If the conditional weighting distribution of uy o given 7 is of the form rL(m)U
where r is a scalar, L(r) is a particular matrix and U is the uniform distribution
on the unit sphere in R then Andrews and Ploberger (1995) show that for r
sufficiently large the optimal statistic is

SupWrp = sup { Wr(n) }
mell

Choices 2 and 3:

If the conditional weighting distribution of o given m as N (0, cX,), for some
constant ¢. Andrews and Ploberger (1994) and Sowell (1996) show that for a
particular choice of Y., the optimal statistic only depends on ¢ and not .
So, for convenience, this choice is made and then attention has focused on two
values of c. If ¢ = 0 then the optimal statistic takes the form

AWy = /H W (m)d.J ()

where J(7) defines the weighting distribution over 7. If ¢ = oo then the optimal
statistic takes the form

ExpWr = log {/H exp[O.5WT(7r)]dJ(7r)}

In principle, AvWp and ExpWr can be calculated with any choice of marginal
distribution for 7. However, it has become customary to assume this distribution
is uniform over II.

45 For these tests of parameter variation, the roles of 11,1, p1,2 can be interchanged.
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As they stand these statistics are not operational because we have treated 7
as continuous, whereas in practice it is discrete. For a given sample size, the set
of possible break points are Ty, = {i/T; i = [7pT], [7.T] + 1,...,[nuT]} where
7y, and 7y are respectively the lower and upper endpoints of the closed interval
IT. So in practice, inference is based on the discrete analogs to SupWy, AvWr
and ExpWr, that is

SupWr = sup {Wr(i/T)} (5.87)
€Ty
[ruT]
AUWT = d(ﬂ'L,?TU,T)_l Z WT(’L/T) (588)
i:[ﬂ'LT]
[ruT]
ExpWr = log { d(mp,mp, 7)™ Y expl0.5Wr(i/T)] (5.89)
i=[nT]

where the last two statistics are specialized to the case in which the weighting
distribution for 7 is uniform on II, and d(wp, 7y, T) = [7yT) — [7T] + 1.
Andrews (1993, 2003) and Andrews and Ploberger (1994) derive and tabulate
the limiting ditributions of SupWr, Avy and ExpWr under Hy(II). We delay a
discussion of the theoretical arguments to the end of this section. Critical points
for these distributions are reproduced here for II = [.15,.85] in Table 5.5.16
These enable the researcher to ascertain whether the statistic is significant at
preascribed level. Hansen (1997) reports response surfaces which can be used
to calculate p-values for all three versions of these tests. As a reminder, all the
previous remarks equally apply to the corresponding functionals of LMyp(7) or

DT(TF).

46 Table 5.5 only contains parts of the tabulations reported by Andrews (1993) and Andrews
and Ploberger (1994). They report critical points for p = 1,2,...20 and other choices of II.
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Table 5.5
Critical points for SupWy, AvWr and ExpWr

Statistic: SupWr

p 10% 5% 1%
1 7.12 8.68 12.16
2 10.00 11.72 15.56
3 12.28 14.13 18.07
4 14.34 16.36 20.47
5 16.30 18.32 22.66
6 18.11 20.24 24.74
7 19.87 22.06 26.72
8 21.55 23.82 28.55
9 23.20 25.54 30.42

10 24.80 27.13 32.31

11 26.38 28.81 33.96

12 27.90 30.43 35.67

Statistic: AvWr

P 10% 5% 1%
1 2.16 2.88 4.72
2 3.75 4.61 6.73
3 5.10 6.07 8.21
4 6.50 7.67 10.18
5 7.76 9.01 11.32
6 9.02 10.19 12.93
7 10.28 11.47 14.34
8 11.54 12.94 16.14
9 12.71 14.16 17.30

10 13.77 15.29 18.72

11 15.00 16.46 19.44

12 16.31 17.85 21.03

Statistic: ExpWrp

D 10% 5% 1%
1 1.51 2.06 3.41
2 2.59 3.22 4.76
3 3.49 4.22 5.77
4 4.37 5.23 7.13
5 5.22 6.13 7.91
6 6.01 6.92 8.96
7 6.70 7.66 9.53
8 7.58 8.60 10.96
9 8.31 9.35 11.67

10 9.00 10.04 12.61

11 9.69 10.75 13.21

12 10.45 11.55 13.83

Source: Andrews (2003)[Table 1] and Andrews and Ploberger (1994) [Tables 1 and 2]. Copy-
right: The Econometric Society. Reproduced with permission.

Notes: the figures represent the critical points for the three tests at the 10%, 5% and 1%
significance level for IT = [0.15,0.85].



182 Hypothesis Testing

The same ideas can be used to construct tests of the null hypothesis that
HE () holds for all € 1T against the alternative that

HXT(H) = HS’IT(W) & HXQT(W) for all m € II
where

HY%(m) [y — Pu(6y,m)]{S1(01,m)} 2By p[f(ve, 01)]
=T u04, t el

H%(m) I = Pa(2,m)]{S2(02,m)} "/ Eap[f (vr,02)]

= T71/21U027 t e T2

Hall and Sen (1999) propose using the following statistics:

SupOr = sup{Or(i/T)} (5.90)
€Ty
[ruT]
AvOr = d(rp,my,T)™? Z Or(i/T) (5.91)
i=[mpT]
[ruT]
EzpOr = log { d(mp,mv, 7)™ > expl0.501(i/T)] (5.92)
i=[rLT]

However, although the functionals are the same it has proved impossible to
date to deduce any optimality properties for the resulting tests along the lines
described above.?” Hall and Sen (1999) derive and tabulate the limiting dis-
tributions of these three statistics under HY(IT). Once again, we postpone a
discussion of the derivation until the end of this sub-section. Critical points for
these distributions are reproduced here in Table 5.6. Sen and Hall (1999) report
response surfaces which can be used to calculate p-values for all three versions
of these tests.

47 It is possible to derive optimal tests against the more restrictive alternatives
H()Ol(ﬂ')&Hg?T(ﬂ') for all 7 € II or Hg’lT(w)&HOO2(7r) for all m € II but the statistics are
different in each case; see the discussion in Hall and Sen (1999). However, notice that both
these alternatives restrict the violation of the population moment condition to occur either
after or before the break point. Whereas, in practice, a researcher typically lacks that kind of
a priori information, and so we do not pursue those tests here.
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Table 5.6

Critical points for SupOr, AvOr and FxpOr

183

Statistic: SupOr
q—7p 10%

8.70
12.78
16.33
19.65
22.81
25.70
28.76
31.61

OO W -

Statistic: AvOr
q—7p 10%

4.17
7.21
9.91
12.51
15.01
17.52
19.91
22.44

OO W -

Statistic: FxpOr
q—7p 10%

2.45
4.17
5.73
7.20
8.64
10.02
11.41
12.79

DU W

5%

10.39
14.75
18.53
21.99
25.31
28.32
31.45
34.53

5%

5.37

8.60
11.54
14.32
17.01
19.68
22.24
24.78

5%

3.13
4.99
6.69
8.26
9.77
11.21
12.69
14.12

1%

14.13

18.53
23.19
26.99
30.55
33.90
37.03
40.09

1%

8.11

11.96
15.40
18.28
21.39
24.02
27.00
29.52

1%

4.69

6.87

8.81
10.43
12.20
13.85
15.33
16.80

Source: Hall and Sen (1999)[Table 1]. Copyright 1999 by the American Statistical Association.
Reprinted with permission from the Journal of Business and Economic Statistics.
Notes: the figures represent the critical points for the three tests at the 10%, 5% and 1%

significance level for IT = [0.15, 0.85].

Which functional should be used? Simulation evidence suggests that no one
test dominates the others.*® So, unless your priors happen to correspond to one
of the weighting distributions underlying the statistics, it is probably best to
calculate all three, and this seems to have become the most common practice.
However, the Sup test does have one attractive feature not shared by the other
two. If SupWr, say, occurs at t = tg then 7y = tp/T provides an estimate

48 See Hall and Sen (1999).
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of the break point fraction. To date, it is unknown whether this estimate is
consistent for m under the alternative but there are grounds for conjecturing
that this property holds in just-identified models at least.*® This remains an
interesting avenue for future research.

It can be recalled that the decomposition of the null hypothesis has been
motivated by its potential to provide useful model building information. In the
previous sub-section, it is argued that this potential is realized for local instabil-
ity regardless of the true break point but is only realized for non-local instability
if correct break point has been identified. The latter property is underscored
by simulation evidence in Hall and Sen (1999) which shows that SupOr, AvOr
and ExpOr have power against non-local parameter variation. These properties
prompted Hall and Sen (1999) to propose the following strategy.

Hall and Sen’s (1999) strategy for diagnosing the source of the instability.

Case 1: If all the unknown break point tests fail to reject then this is evidence that
all aspects of the model are stable.

Case 2: If the parameter variation tests are significant and either the unknown
break point overidentifying restriction based tests are insignificant or
Or(7rw) is insignificant, then this is evidence of parameter variation.

Case 3: In all other situations, the tests indicate that there is instability that in-
volves more than just the parameters.

Two comments are in order. First, note that the method is premised on
the assumption that 7y, is consistent for 7 if the instability is confined to the
parameters alone. Secondly, Hall and Sen (1999) propose evaluating the sig-
nificance of Op (7w ) using the appropriate critical point of the X% 4—p) dis-
tribution, and this ignores a sampling error associated with the estimation
of the break point. However, they report simulation evidence which suggests
this distributional approximation is reasonably accurate. Their simulation ev-
idence as a whole suggests that the strategy provides a feasible method for
discriminating between parameter variation alone and more general forms of
instability.

One final point should be noted. Although, all these tests are designed
against an alternative in which there is instability at a single point in the sam-
ple. All the tests have non-trivial power against other forms of instability. We
do not reproduce the argument here but instead refer the reader to the papers
already cited above.?°

Example: Hansen and Singleton’s (1982) Consumption Based Asset
Pricing Model®!

49 For example, Nunes, Kuan, and Newbold (1995) prove its consistency in linear regression
models estimated by quasi maximum likelihood.

50 Also see Section 5.4.3.

51 See Section 9.2 for another empirical example of these tests.
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Table 5.7 reports the structural stability tests when the break point is treated
as unknown. Following accepted practice, we set II = [0.15,0.85] which means
the potential break point is assumed to lie between 1965:1 and 1992:2. For
brevity, we only report results based on using W}l) = (T! Zthl zz) ! and
the covariance matrix estimator S = Sgy. Parenthetically, we note that if
W;l) = 10515 is used then the sub-sample estimates diverge in a few cases.

For VWR, all the statistics are insignificant at the 10% level, and so these
tests provide no evidence of misspecification in this case. For EWR, all the
parameter variation statistics are insignificant at the 10% level, and all the
overidentifying restrictions based tests are significant at the 5% level. This ev-
idence clearly indicates misspecifcation, and so is consistent with our earlier
findings based on the overidentifying restrictions test. However, the application
of the structural stability tests provides further information about the nature
of the misspecification. Using Hall and Sen’s (1999) diagnostic strategy de-
scribed above, the pattern of results suggests that the misspecification cannnot
be attributed to parameter variation alone.

Table 5.7 also reports the dates associated with the supremum of each test.
Two features of these results stand out. First, the supremum for the parameter
variation tests occurs at virtually the same point for a given choice of asset — in
spite of the insignificance of the tests concerned. Secondly, the supremum for
the overidentifying restrictions test occurs at the second possible breakpoint,
that is 1965:2, for each choice of asset. This could reflect instability, but there
is another explanation which needs to be noted. It can be recalled that the
statistical theory behind the tests relies on the applicability of asymptotic theory
in each of the sub—samples. At either end of II, one of the sub—samples consists
of only seventy observations, and it may be that this is not sufficiently large for
asymptotic theory to provide a good approximation. In that case, the supremum
may occur close to 7 = 0.15 or m = 0.85 simply because the sequence of test
statistics has not converged in distribution over the entire interval II. Figures
5.1-5.2 plot the individual test statistics for Wr(7r) and Or(7) against 7 for
each choice of asset. The plots for Dy (7) and LMy(7) are qualitatively similar
to those for Wr(m) and so are omitted for brevity. o
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Table 5.7
Structural stability tests with unknown break point

VWR:
Test Sup— Date Av— Exp—
w 4.899 1982:7 1.468 0.899
LM 5.603 1982:9 2.095 1.194
D 5.852 1982:7 2.239 1.427
12.759 1965:2 5.751 3.704

EWR:
Test Sup— Date Av— Exp—
w 4.893 1975:1 1.035 0.623
LM 5.262 1975:1 0.896 0.571
D 6.909 1975:2 1.642 1.123
0] 22.580 1965:2 13.712 8.093

Note: W, LM, D and O denote the tests based on W (7)), LMy (w), D (7) and Op(7) defined
in (5.75), (5.77), (5.78) and (5.80). Date denotes the date associated with the Supremum
statistic.

e—SupOT
12 A

test statistics

I I I I I I I ! I
65 67 69 71 73 75 77 79 81 83 85 87 89 91 93
year

Figure 5.1: Wald and overidentifying restrictions tests for structural instability
for the consumption based asset pricing model with value weighted returns
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test statistics

5 “— SupWT =

0
65 67 69 71 73 75 77 79 81 83 85 87 89

year

Figure 5.2: Wald and overidentifying restrictions tests for structural instability
for the consumption based asset pricing model with equally weighted returns
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5.4.2.1 Technical Details

There are two main steps to the analysis of structural stability tests derived
above for the unknown break point case. First, it is necessary to character-
ize the limiting behaviour of individual members of the sequence of statistics
{Wr(r);n € II} and {Op(w);w € II}. Secondly, these characterizations are
used to deduce the limiting behaviour of the various functions of the sequences
in which we are interested. The first part is closely related to our earlier analysis
of the statistics for the fixed break point case. However, this time, the results
must apply for all 7 € II, and this requires different techniques and assump-
tions. Below it is shown that the limiting distributions of the test statistics
revolve around two continuous time processes known as a Brownian Motion and
a Brownian Bridge. Therefore, we begin with definitions of these processes.

Definition 5.1 Brownian Motion

A n dimensional Brownian Motion By,(.) is a continuous time process associ-
ating each date r € [0,1] with the (n x 1) vector By(r) satisfying the following
properties:

(i) B(0) = 0,, where 0, is a (n x 1) vector of zeros.

(i) For any dates 0 < r; < rg < ... < 1, < 1 the changes {B,(r;) —
B, (ri—1), © = 2,3...k} are a set of mutually independent random vec-
tors with By (r;) — Bu(ri—1) ~ N(Op, (r; — ri—1)1y).

(1ii) For any given realization, B, (r) is continuous in r with probability one.
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A Brownian motion is the continuous time analog to a random walk, and is
widely used in analyses of diffusion processes.??

Definition 5.2 Brownian Bridge

A n dimensional Brownian Bridge BB,(.) is a continuous time process asso-
ciating each date r € [0,1] with the (n x 1) vector BB, (r) = B,(r) — rB,(1)
where By, (.) is a Brownian motion.

Notice that a Brownian bridge both begins and ends at zero.

Below we establish that certain statistics converge in distribution to the
distributions possessed by particular functions of Brownian Motions or Bridges.
Such statements require an additional notation. Accordingly, we use ar = b to
denote the statement ar converges in distribution to the distribution possessed
by the random variable b. More succinctly, ar is said to weakly converge to b.

From (5.75) and (5.80), it is clear that the analysis of Wr(m) and Or ()
is going to require assumptions about the partial sum, 71 ZE’;Tl] fvg,09), its
long run variance and the associated derivative matrix. To this end, we assume
the data generation process satisfies the following assumptions.>3

Assumption 5.6 Uniform Convergence of the Variance of the Partial
Sums

super |[VarlT=2 S f(v,,600)] — 75| 2 0.

Assumption 5.7 Uniform Convergence of the Partial Derivative Ma-
trix

sup e 771 1 Of (v, 60)) /96" — G| 2 0.

Assumption 5.8 Functional Central Limit Theorem
§-1/2p-1/2 Z[WT] f(ve,00) = By(r).

Notice that Assumptions 5.6 implies both that Sy (7) = S2(7) = S, and also,
together with Assumption 5.7, that Fy(6y) = F2(6y) = F'(6p). The form of the
distribution in Assumption 5.8 can be motivated from

[T [7TT] 1/2 [T
TS flonte) = || TS fw o)
t=1 t=1

by noting that ([7TT]/T)1/2 ~ w'/2 and that the CLT implies [xT]~/2

Z[ﬂT] f (v, 0p) 4N (0,.5). There is one consequence of Assumption 5.8 which
is worth highlighting. Since,

(xT]

T*“Zf v, 00) = T—l/QZf v, 00) + T2 Z £ (v, 60)

=[xT]+1
52 The name derives from the name of the first person to have recorded this type of unin-
terupted irregular motion in a natural phenomenon. R. Brown was a botanist and he observed
the phenomenon when pollen dispersed on water. His results were published in 1828; see
Brown (1828).
53 Recall that for any matrix A, ||A| = [tr(A’A)]Y/2.
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and Assumption 5.8 implies
T
STHRTTVEN" (v, 00) = By(1)
t=1

(7]
STVRTTYEN " f(vr,00) = By(m)
t=1
then it must follow that

T
ST N f(ue,60) = By(1) — By(m) (5.93)
t=[rT]+1

Hamilton (1994)[Sections 17.1-17.3, 18.1] provides a very good introduction to
Brownian Motions and the conditions behind Assumptions 5.6-5.8. Davidson
(1994)[Part IV] provides a more comprehensive treatment.

With these assumptions in place, we now proceed to characterize the limiting
behaviour of Wr(7) and Or(w) in terms of Brownian Motions and Brownian
Bridges. Consider first Wr (7). The end result was first derived by Andrews
(1993), but we follow the approach taken by Sowell (1996) which exploits the
projection matrix structure inherent in the identifying restrictions.

Since Wy () depends on T"/2[0; () — 05 7(r)] and

TY2[0, 1 (n) — a0 (n)] = TY2[0y.0(7) — 6] — TY?[0ar(m) —6o]  (5.94)

we begin by deriving expressions for T/2 [élT(’ﬂ') —0o]. To facilitate the analysis,
we assume that the GMM estimators based on T; are consistent for all 7.

Assumption 5.9 Consistency of Sub-Sample Estimators
supren||f;,r () — 6o 2 0.

We can now repeat exactly the same sequence of arguments as in Section
3.4.2 to obtain the following analogs to (3.26)

T1/2[éi7T(ﬂ') — 00] = —Mi7T(7T)T1/2g,'7T(90; 71') (595)

M; r(7) = (G (07 (n); 7) i (m) L Gir (B (), B0, A )] 1
X Gy (0;p(m);m) S ()

and Gi’T(éi’T(ﬂ'), o, A; ) is defined in an analogous fashion to GT(éT, 0o, Ar).
To proceed we adopt the following high level assumption.>

54 Andrews (1993) or Ghysels, Guay, and Hall (1997) for more primitive conditions under
which Assumption 5.10 holds.
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Assumption 5.10 Uniform Convergence of M; ()
supren||M; () — Mo|| 2 0 where My = (GoS™ Go) " *Gy S~ .
It then follows from (5.95), Assumptions 5.6-5.10 and (5.93) that

Tl/z(éLT(’ﬂ') - 9()) = _%[F(Q[))/F(GO)]_lF(GO)IBq(’/T) (596)
TV2(Br(m) —60) =~ [F(60) F(60)] " F(f)

X (By(1) — By(m)) (5.97)

where once again we have set F(fy) = S™/2Gy. The combination of (5.94) and
(5.96)—(5.97) yields

~ ~ 1 ’
T2[0,7(7) = Oo.0 ()] = *W[F(9O)IF(90)]71F(90) BB,(m) (5.98)
Now consider VW(W). By similar arguments to above, it can be shown that
N 1 1
Viw(m) 5 —[F(0) F(00)]™" + 7——1[F(60) F(60)] ™"
1
= ————[F(60)'F(60)] " (5.99)
w(l—m)
The combination of (5.98)—(5.99) implies
1
Wr(m) = ———BBy(m) P(6y)BBy(r) (5.100)
m(l—m)

where once again P(6y) = F(00)[F(0o)' F(00)]"*F(6p)’. Now P(f)) is a projec-
tion matrix with rank equal to p by Assumption 3.6. Therefore P(6y) has p
eigenvalues equal to one, ¢ — p eigenvalues equal to zero, and there exists an
orthogonal matrix H such that5®

P(6y) = H AH (5.101)

where A = diag(1,,04—p) and 1, is a (p x 1) vector of ones. If we partition H
into [Hy, Hs], where H; is ¢ x p then (5.101) implies that

[ HH 0
P(6y) = { 0 o ] (5.102)
If (5.102) is substituted into (5.100) then it follows that
1 /
Wiy (n) % —— BB, (n) H, H,BB,(r) (5.103)
m(l—m)

where BB, (7) denotes the first p elements of BB,(w). Now by definition, H;

are orthogonal matrices and so H;H; = I,. Therefore, H, B, () ~ N(0,,7I,)
and so it follows that HqB,(m) = B,(w) and hence that Hy BB,(m) = BB,(m).
This gives us the following result.

55 See Dhrymes (1984) [Propositions 52 and 55, pp.61 and 65].
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Theorem 5.9 Limiting Distribution of W ()
If Assumptions 3.1-8.5, 3.8-3.9, 5.6-5.10 hold then: Wrp(.) = W(.) where
W (.) is a continuous time process associating each date m € II with the scalar
W(m) = gy BB,(m)' BB,().
Now consider Op(7). By definition, we have
Ovr = |S1,0(m) 2T g1 (01,0 (n); ) (5.104)
Opr = |Sor(m) V2T = [7T) g0 (B (m)im)lP (5.105)

and we can repeat the same sequence of arguments as in Section 3.4.3 to deduce
the following sub-sample analogs to (3.35),

S1o(m) PRI g (B (n);w) = Nyp(m)Syp(m) /2
X [ﬂ'T}l/2g17T(00; 7T) (5106)
S () VAT — 7T ga. 1 (2,0 (n);7w) = Nag(m)Sap(m)™ (T — [xT])"/?
xg2,1(0o; ) (5.107)
where
Nip(m) = I — S;;*/2Gi,T(éi,T(7r)a907>\T§W)[Gz’,T(éi,T(W);W)/Si,T(ﬂ')il

x G107 (%), 00, A\p; )] 2 Gir (B  (70); W)Igi,T(W)_l/Ql

for i = 1,2. As with M; 7, we must assume this matrix converges uniformly in
.

Assumption 5.11 Uniform Convergence of N; ()

supren || Nir(m)Si 0 (m) =12 — NoS—V2|| £ 0 where Ny = [I, — P(6)].

To illustrate the argument from here on, it is most convenient to focus on only
O1,r(m), and then to state the corresponding result for Oz r(m) afterwards.
Assumptions 5.8 and 5.11 together with (5.106) imply that

Ovr(r) = ll—zlly — Pl6o)By ()| (5.108)
= Byl ~ P(60)]By(r) (5.109)

Now, using (5.101)and H'H = I, we have

I, — P(6y) = H'H— H'AH = H'[I, — AJH

[0 0
~ | 0 HyH,
This result can be combined with (5.108)—(5.109) to deduce that

1 /
O1r(T) = ?Bq—p(”)/HzHQBq—p(W)
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where B,_,(7) is the vector consisting of the last ¢ — p elements of B, (). Since
H> is an orthogonal matrix, we can use the same reasoning as above to deduce
that HoBy_p(m) = Bg—p(m) and hence that

Ovr(m) = =By (n)/ By y(m)

Similar reasoning yields

ﬁ[qup(l) - qup(ﬂ)]l[qup(l) - qup(ﬂ')]

So finally we obtain the following result for Op ().

OQ’T(/]T) =

Theorem 5.10 Limiting Distribution of Or(7)
If Assumptions 3.1-3.5, 3.8-8.9, 5.6-5.9, 5.11 hold then: Or(.) = O(.) where
O(.) is a continuous time process associating each date w € [0, 1] with the scalar
O(m) = %Bq*p(ﬂ)/Bq*p(W) + ﬁ[Bq*p(l) — By—p(m)]'[Bg—p(1) — Bg—p(m)].
Theorems 5.9 and 5.10 give the limiting behaviour of Wr(m) and Or ()
for m € II. The limiting distribution of the test statistics then follows directly
from the Continuous Mapping Theorem. This theorem states that if Zp(.) =
Z(.) and h(.) is a continuous functional, then h(Zz(.)) = h(Z(.)).5¢ Since
Sup—, Av— and Fxp— versions of the statistics involve continuous functionals
of {Wr(m)} or {Or(m)}, we can use the Continuous Mapping theorem to deduce
the following corollary to Theorems 5.9 and 5.10.

Corollary 5.1 Limiting Distributions of Structural Stability Tests for
the Unknown Break Point Case

If Assumptions 3.1-3.5, 3.8-8.9, 5.6-5.11 hold then: (i) SupWr = SuprenW (w);
(i) AvWrp = [, W(n)dJ(r); (iii) ExpWr = log{ [, exp[0.5W (m)]dJ (7); (iv)
SupOr = SuprenO(n); (v) AvOr = [ O(m)dJ(T);

(vi), ExpOp = log{ [;; exp[0.50(m)]dJ ().

These results are presented in the following places: (i) Andrews (1993) [Theo-
rem 3]; (ii)—(iii) Sowell (1996) [Theorem 3];°7 (iv)—(vi) Hall and Sen (1999) [The-
orem 3.1]. Tt is the critical points from these distributions with J(7) equal to
the uniform distribution on II which are reproduced in Tables 5.5 and 5.6.

One final comment is in order. It can be recalled from Theorem 3.5 that
the parameter estimator (identifying restrictions) and the estimated sample mo-
ment (overidentifying restrictions) are asymptotically independent if the model
is correctly specified. This independence has already manifested itself in various
other inference procedures discussed earlier in this chapter, and it is also present
here. The sequence of statistics {Wr(m)} are functions of the first p elements
of By(.), and the {Or(m)} are functions of the last ¢ — p elements. Since, by
definition, the elements of a Brownian motion are mutually independent, it fol-
lows that the tests of parameter variation are asymptotically independent of the
tests based on the overidentifying restrictions under H5*(II).

56 Tor example, see Hamilton (1994) [p.482] and the discussion therein.
57 Also see Andrews and Ploberger (1994).



5.4 Testing Hypotheses About Structural Stability 193

5.4.3 Other Types of Structural Instability

As mentioned in the preamble to this section, the single break point case has
received by far the most attention within the GMM literature on structural
stability. However, other types have also been considered and we now provide
a brief review of these alternatives.

An obvious extension of the single break point case is to allow for the pres-
cence of multiple break points. To date this approach has not been developed
in the context of GMM estimators. However, Bai and Perron (1998) have de-
veloped methods in the context of linear regression models. One aspect of their
results is particularly interesting. They show that if it is assumed that there is
a single break point then the estimated fraction 7 is consistent for the fraction
associated with one of the multiple break points. This enables them to propose
an iterative procedure in which the researcher gradually increases the number
of break points until the structural stability tests are no longer significant. To
date, it is unknown whether this type of sequential estimation procedure works
in the more general GMM framework.

Hansen (1990) considers tests for Hg ([0, 1]) against the alternative
E[f(v1,0:)] = 0 and

Oy = 01 +

where n; ~ 4.i.d.(0,72Hy;). Notice that if 72 = 0 then this model reduces to
the null hypothesis. Interestingly, Hansen (1990) shows that the LM statistic
against this alternative is well approximated by AvWp and so this statistic is
likely to have good power properties against this alternative as well.%®

More generally, Sowell (1996) provides a framework for the construction of
optimal tests for parameter variation based on GMM estimators. His results
provide a generic approach which can be specialized to the form of instability
of interest.

Finally, it should be noted that all these procedures rely on asymptotically
large samples and so are unlikely to have good power properties against insta-
bility at the very beginning or end of the sample. Dufour, Ghysels, and Hall
(1994) propose a Generalized Predictive test which can be applied in this situ-
ation. The null and alternative hypothesis are the same as the Predictive test
except this time only T7 need be asymptotically large and T> may be as small as
one observation. The statistic is based on {f (v, 61 7(7)), t € Tz} and not the
sub-sample average. Since the focus is now the individual observations, it is not
possible to use a conventional asymptotic analysis to deduce the distribution.
One solution is to make a distributional assumption, but this is unattractive
in most GMM settings. Therefore Dufour, Ghysels, and Hall (1994) consider
various distribution free methods of approximating or bounding the p-value of
their statistics.

58 Hansen (1990) analysis is motivated by earlier work due to Nyblom (1989) in the context
of Maximum Likelihood estimators.
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5.5 Other Hypothesis Tests

The foregoing tests are by far the most commonly used in the types of applica-
tion listed in Table 1.1. However, certain other tests have been proposed and in
this section we provide a brief review of these methods. The discussion covers
non-nested hypothesis tests (Section 5.5.1), Hausman tests (Section 5.5.2) and
conditional moment tests (Section 5.5.3).

5.5.1 Non-Nested Hypothesis Tests

So far, we have concentrated on methods for testing hypotheses about popu-
lation moment conditions or parameters within a particular model. However,
in many cases more than one model has been advanced to explain a particu-
lar economic phenomenon and so it may become necessary to choose between
them. Sometimes, one model is nested within the other in the sense that it can
be obtained by imposing certain parameter restrictions. In this case the choice
between them amounts to testing whether the data support the restrictions in
question using the methods described in Section 5.3. Other times, one model is
not a special case of the other and so they are said to be non-nested. There have
been two main approaches to developing tests between non-nested models. One
is based on creating a more general model which nests both candidate models
as a special case; the other examines whether one model is capable of explaining
the results in the other. Most of this literature has focused on regression models
or models estimated by maximum likelihood. While these situations technically
fall within the GMM framework, they do not possess its distinctive features
and so are not covered here.?® Instead, we focus on methods for discriminating
between two non-nested Euler equation models. These models involve partially
specified systems and so involve aspects unique to the GMM in its most general
form.

We consider the case where there are two competing models denoted M1
and M2. If M1 is true then the parameter vector #; and the data satisfy the
Euler equation

E1 [ul(vt,01)|Qt,1] =0 (5110)

where €;_; is the information available at time ¢ — 1 and FE1[.] denotes expecta-
tions under the assumption that M1 is correct. For our purposes, it is sufficient
to assume the Euler equation residual uj(vs,671) is a scalar. From (5.110) it
follows that the residual is orthogonal to any (g1 x 1) vector 21, € €;_1, and
this yields the population moment condition

El[zlytul(vt, 91)] = O (5111)
Using analogous definitions, M2 leads to the (g2 x 1) population moment con-
dition

EQ[Z&ﬂLQ(U,g, 92)] =0 (5.112)

59 These techniques are well described in the recent comprehensive review by Gourieroux
and Monfort (1994).



5.5 Other Hypothesis Tests 195

where again the Euler equation residual is taken to be a scalar. It is assumed
that the two models are globally non-nested in the sense that one model is not
a special case of the other.%° Since both models can be subjected to the tests
in Sections 5.1-5.4, there can only be a need to discriminate between them if
both models pass all these diagnostics; so we assume this to be the case.

As mentioned above there are two main strategies to developing non-nested
hypothesis tests and each has been applied within the context of Euler equation
models. Singleton (1985) proposes nesting the Euler equations of M1 and M2
within the Euler equation of a more general model. Ghysels and Hall (1990b)
propose tests of whether one model can explain the results in another. We now
describe these in turn.

Singleton’s (1985) analysis begins with the observation that if M1 is false
and its overidentifying restrictions test is insignificant then it must be because
the test has poor power properties when M2 is true. Therefore, he proposes
choosing the linear combination of the overidentifying restrictions which has the
most power in the direction of M2. The problem is how to characterize this
direction. Singleton (1985) solves this issue by introducing a more general Euler
condition which is the following convex combination of those from M1 and M2,

EG[et(el,gg,WMQt,l] =0 (5113)

where
et(01,02,w) = wuy (v, 01) + (1 —w) uz(ve, b2)

where 0 < w < 1 and E¢g/[.] taken with respect to the true distribution of the
data under this more general model. Notice that w = 1 implies M1 is correct,
and w = 0 implies M2 is correct. The other values of w imply a continuum
of residual processes which lie between those implied by M1 and M2 in some
sense. If w is replaced by a suitably defined sequence wy which converges to one
from below at rate T2 and Z1, = Z2, = %, then

Eglziei(01,02,w)] =0

defines a sequence of local alternatives to (5.111) in the direction of (5.112).
Singleton (1985) shows that the linear combination of the overidentifying re-
strictions in M1 which maximizes power against this local alternative is the
transpose of

Ar = Sf% (gl,T(él,T) - 92,T(é2,T))

where gi’T(éZ-,T) =71 Zthl zeu (v, éi,T), SLT is a consistent estimator of
limr .o Var[T2g; 7(01)] and 0; 1 is the GMM estimator of ¢;. This leads to
the test statistic

NNz(1,2) = T g1.7(61,7) Ar (A’TELTATY1 Alpgrr(61.7)

60 See Pesaran (1987) for a formal definition of nested, partially non-nested and globally
non-nested models. The distinction between the last two can be important but need not
concern us here.
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where Zl,T = Sl,T - GLT(G/LTS;;GLT)ilélLT and él,T = 691,T(é1,T)/89/.
Singleton (1985) shows that if M1 is correct then N Nr(1,2) converges to a x3
distribution. The roles of M1 and M2 can be reversed to produce the analogous
statistic N N7(2,1) which would be asymptotically x3 if M2 is correct. In fact,
the test should be performed both ways and so there are four possible outcomes:
NNr(1,2) is significant but NNp(2,1) is not and so M2 is chosen; NNp(2,1)
is significant but NNp(1,2) is not and so M1 is chosen; both NNp(1,2) and
NN7p(2,1) are significant and so both models can be rejected; both NNp(1,2)
and NNr(2,1) are insignificant and so it is not possible to choose between them
in this way.

This approach is relatively simple to implement because it does not require
any additional assumptions or computations beyond those already involved for
the estimation of M1 and M2. Its weakness is that the convex combination
of the Euler equations from M1 and M2 may not be the Euler equation of a
well defined economic model.’! In such cases, it is unclear how a significant
statistic should be interpreted. The only way to avoid this problem is to con-
sider sequences of local alternatives to the data generation process implied by
M1 which are in the direction of the data generation process implied by M?2.
However, this involves making the type of distributional assumption which the
use of GMM was designed to avoid.

Ghysels and Hall (1990b) propose an alternative approach to testing based
on whether one model can explain the results in the other.5? More specifically,
the data are said to support M1 if

T
T_1 Z ZQ,t'U/Q (Ut, éQ,T) — E1 [227,5’112 (Ut, éQ,T)] (5.114)

t=1

is zero allowing for sampling error. To implement the test it is necessary to
know or be able to estimate the expectation term in (5.114). Unfortunately,
this typically involves specifying the conditional distribution of v; and so is
unattractive for the reason mentioned above.5® Ghysels and Hall (19905) de-
velop a test based on approximating the expectation using quadrature based
methods, but we omit the details here.

Both these statistics are clearly focusing on the overidentifying restrictions
alone. It is possible to extend Ghysels and Hall’s (1990b) approach to tests of
whether M1 can explain the identifying restrictions in M2. Such a test would
focus on whether the solution to the identifying restrictions in M2 is equal to
the value predicted by M1. In other words, it would examine

é2,T - E; [é2,T]

61 For example, Ghysels and Hall (19900b) show that a model constructed by taking a convex
combination of the data generating processes for v¢ implied by M1 and M2 does not typically
possess an Euler equation of the form in (5.113).

62 This general approach is often refered to as the encompassing test principle; see Mizon
and Richard (1986).

63 Furthermore Ghysels and Hall (1990b) show that a misspecification of this distribution
can cause their statistic to be significant.
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However, it would suffer from the same drawbacks as mentioned above and so
we do not pursue such a test here.

Neither of these approaches is really satisfactory. Singleton’s (1985) test is
only appropriate in the limited setting where (5.113) is the Euler condition of
a meaningful model. Ghysels and Hall’s (19900) test is always appropriate but
requires additional assumptions about the distribution, and once these are made,
it is more efficient to use Maximum Likelihood estimation.%* This contrasts with
the more successful treatments of the hypotheses in Sections 5.1-5.4. In these
earlier cases, the partial specification caused no problems, but it clearly does
so for non-nested hypotheses. In one sense, these results are more important
because they illustrate the potential limits to inference based on a partially
specified model.

5.5.2 Hausman Tests

Hausman (1978) proposes testing a hypothesis on the basis of a comparsion
of two estimators of the parameter vector. One estimator must be consistent
under the null hypothesis but inconsistent under the alternative. The other must
be consistent under both null and the alternative. The simplest illustration is
one of the examples used by Hausman, and which is also the most common
application of this approach to testing. Suppose we have a linear regression
model and are suspicious that one of the regressors, x; ; say, is endogenous. The
null hypothesis that x;; is exogenous can be tested via a Hausman test which
compares the OLS estimator with an IV estimator. The former is consistent
only if x;; is exogenous; the latter is consistent regardless. Clearly the difference
between them converges to zero under the null, but some non-zero value under
the alternative.5®

It is readily recognized that this basic principle can be applied in a wide
variety of settings. It is often applied in the context of Maximum Likelihood
estimation to test if the specification is correct. To present this version of the
statistic, let 07 denote the MLE and 67 be a GMM estimator of §, based on
some population moment condition E[f (v, 0p)] = 0. The Hausman test statistic
is then given by

iy =1 (b ) (% = V) (b — )

wherg VT and VT are consistent estimators of the asymptotic covariance of éT
and 6p respectively. Under the joint null hypotheses that the Maximum Like-
lihood estimation is based on the correct model and E[f(v,6p)] = 0 is valid

64 Although, full information maximum likelihood may be more computationally burden-
some; see Ghysels and Hall (1990b).

65 This statistic is often refered to as the Wu—Hausman test because — to quote Nakamura
and Nakamura (1998) — “it was Hausman [(1978)] who presented it in the form that led to its
widespread use but Wu [(1973)] who presented it first.” [p.220]. See Nakamura and Nakamura
(1998) for further discussion of the literature on these types of endogeneity test.
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then Hausman (1978) shows that Hr converges to a X2 distribution. The alter-
native hypothesis is that the model is not correctly spe(nﬁed but nevertheless
E[f(vtv 90)] =0.

Newey (1985a) extends this test principle to models estimated by GMM.
Newey (1985a) derives a Hausman statistic based on the difference between
GMM estimators obtained from two sets of moment conditions which may con-
tain elements in common. Interestingly, he shows that if one estimator is ob-
tained with the optimal weighting matrix then the asymptotic variance of the
difference of the estimators has the same difference structure as in the Maxi-
mum Likelihood case. However, this asymptotic variance may also be singular.
In principle, this matter is easily fixed by using a generalized inverse in the
construction of the quadratic form, and then comparing the statistic to the
critical point from a x? distribution with degrees of freedom equal to the rank
of VT — VT However, in practice, this adjustment is not so straightforward
for two reasons. First, rank{plimy_, o (Vy — V)} may be difficult to deduce
a priori. Secondly, and unlike inverses, generalized inverses are not necessarily
continuous functions of the elements, and so additional conditions are needed
to ensure that the generalized inverse of VT —Vr converges in probability to
the generalized inverse of plimy_.o Vi — Vi; see Andrews (1987). Both these
problems may explain the infrequent use of this test in the types of applications
listed in Table 1.1.

5.5.3 Conditional Moment Tests

All the statistics presented in Section 5.1, 5.2 and 5.4 test hypotheses about the
the population moment conditions upon which estimation is based. This mirrors
the majority of empirical applications mentioned in the introduction. In these
types of application, the model is only partially specified and so it is desirable
to base estimation on as much relevant information as possible.?¢ Therefore
all available moment conditions tend to be used in estimation.” However, if
the distribution of the data is known then the most asymptotically efficient
estimates are obtained by using Maximum Likelihood. As shown in Section
3.7.1, maximum likelihood amounts to GMM estimation based on the score
function of the data. So, in this case there is no advantage to including any
other moment conditions implied by the model. These other moment conditions
can, however, be used to test whether the specification of the model is correct.
This generic approach yields what have become known as conditional moment
tests.

Newey (1985b) and Tauchen (19854) independently introduce a general frame-
work for conditional moment testing based on Maximum Likelihood estimators.
To illustrate this framework, suppose that the conditional probability density

66 This statement is formally justified in Chapter 6.
7 The choice of moment conditions may be limited by other factors such as data availability
or computational constraints.
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of vy given {vi_1,vi—9,...v1} i8 pi(ve; 6p), and so the score function is
E[Li(8p)] =0

where L;(6) = Olog(pt(ve;6p))/00. As mentioned above this is the moment
condition upon which estimation is based. Now assume that if this model is
correctly specfied then the data also satisfy the (¢ x 1) population moment
condition E[g(vt,00)] = 0. Therefore one way to assess the validity of the model
is to test

HO : E[g(vt,eo)] =0

against the alternative
HA : E[g(’Ut,eo)] 7é 0
This hypothesis can be tested using the statistic

T T
CMp =T g:(0r) Q7" > ge(0r) (5.115)
t=1 t=1

where 07 is the maximum likelihood estimator, ()7 is a consistent estimator of
limy_, oo Var[T—1/2 Zthl ct(00)], and

ci(o) = (%) — E[0g:(60) /00" { EIOL1(60)/06']} ™" Li(60)

Under Hy, C' M converges to a Xﬁ distribution. The statistic has a similar struc-
ture to the overidentifying restrictions test but there is an important difference.
Since E[g(vt,00)] = 0 is not used in estimation, the statistic has power against
any violations of Hy; see Newey (1985b). In spite of this, some caution is needed
in the interpretation of the results. While a rejection of Hy implies the model
is misspecified, a failure to reject only implies that the assumed distribution
exhibits this particular characteristic of the true distribution.

The choice of ¢(.) varies from model to model. For example, in the normal
linear regression model, ¢(.) often involves the third and fourth moments of the
error process; see Bowman and Shenton (1975). White (1982) suggests that one
generally applicable choice is to base g(.) on the information matrix identity,

E[Ly(80)L(60)] = — E[OLi(60)/99]

because if the the null hypothesis cannot be rejected then conventional formulae
for Wald, LR and LM statistics are valid. Consequently, this approach has been
explored in many settings; for example, see Chesher (1984) and Hall (1987a).
Various other examples are provided by Newey (1985b) and Tauchen (1985a).

5.6 Summary

This chapter has presented a number of inference procedures that can be used
to learn about the underlying model. The discussion focused on four main types
of hypothesis test within the GMM framework: the overidentifying restrictions
test; an overidentifying restrictions based test for the validity of a subset of
the population moment condition; Wald, D and LM tests for testing whether
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the parameter vector satisfies a set of nonlinear restrictions; structural stability
tests based on both the identifying restrictions and also the overidentifying
restrictions. The limiting behaviour of these test statistics is derived under
the appropriate null hypothesis. The power properties are analyzed using either
local or non-local alternatives, and these two approaches are contrasted. A brief
review is also provided of other less common hypothesis tests within the GMM
framework such as non-nested tests, Hausman tests and conditional moment
tests.

In the preamble to this chapter, it is observed that three types of inference
questions arise in practice. These are — Is the model correctly specified? Does
the model satisfy restrictions implied by economic/statistical theory? Which
of two competing models is correct? We now briefly summarize what has been
learnt about how these questions can be addressed.

e [s the model correctly specified? Misspecification can take two basic forms.
First, the model can be misspecified in the sense described in Chapter 4
that is, E[f (v, 0)] is the same for all ¢ but there is no value of 6 that makes
this expectation zero. Secondly, the model can be structurally unstable
so that E[f(vs,6p)] = 0 for some part of the sample but not for all of it.
The overidentifying restrictions test is designed to test against the first
of these types of misspecification, and is consistent against this type of
alternative. The overidentifying restrictions test has power against certain
types of misspecification due to structural instability but is not consistent
against all forms of structural instability. This type of misspecification
can be detected using specially designed structural stability tests. The
latter tests can be based on either the identifying restrictions, in which
case they amount to tests for parameter variation, or the overidentifying
restrictions.

e Does the model satisfy restrictions implied by economic/statistical theory?
In many cases of interest, the restrictions implied by economic theory take
the form of a set nonlinear restrictions on the parameter vector. Such
restrictions can be tested using Wald, D or LM tests.

o Which of two competing models is correct? Assuming that both models
appear correctly specified on the basis of diagnostics decribed above, the
answer then depends on the relationship between the two models. If they
are nested, in the sense that one is obtained by imposing a set of parameter
restrictions on the other, then the choice between them can be based on
the Wald, D or LM statistics for testing the validity of the restrictions
in question. However, if the models are non-nested then this becomes a
far harder question to address within the the types of model in Table 1.1
without the specification of the probability distribution of the data.

All the inference procedures described above are based on asymptotic the-
ory. However, as noted at the outset, asymptotic theory is only used as an
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approximation to large sample behaviour. It is therefore important to investi-
gate how good this asymptotic approximation is to finite sample behaviour in
the kinds of circumstance encountered in practice. This topic is addressed in
the next chapter.



6

Asymptotic Theory and
Finite Sample Behaviour

So far, all the analysis has rested on asymptotic theory. This approach has
been taken for two good reasons. First, to date, it has proved impossible to
develop a finite sample distribution theory for GMM estimators in nonlinear
dynamic models. Secondly, as we have seen, asymptotic analysis delivers a
very powerful inference framework. However, there is inevitably a price to be
paid. All the asymptotic results are only strictly valid in the limit as T' — oo,
and so represent an approximation to finite sample behaviour. The question
to which we now turn is: how good is this approximation? Intuition suggests
that the answer varies from case to case, and so one goal of this chapter is to
identify what aspects of the specification determine the quality of the asymptotic
approximation.

Since finite sample distribution theory is intractable for nonlinear dynamic
models, this question has been addressed in this context via computer based
simulation studies calibrated to match models of particular interest. These
studies form the main focus of this chapter and are reviewed in Section 6.3.
However, we precede our review of these simulation studies with a discussion of
two relevant aspects of the theoretical literature.

First, since many of the simulation studies examine the consequences of in-
creasing the number of moment conditions, it is useful to consider what can be
learnt about these consequences from asymptotic analysis. Section 6.1.1 consid-
ers the case in which there is a finite increase in the degree of overidentification.
It emerges from this analysis that such an increase can never have a detrimental
effect on the asymptotic distribution of the estimator. However, there are some
circumstances in which there is no effect, and so the additional moment condi-
tions are said to be redundant. This scenario turns out to be pertinent to our
discussion of the aforementioned simulation studies, and so a formal definition
of redundancy is provided in Section 6.1.2. Given the potential asymptotic ben-
efits from increasing the degree of overidentification, it is natural to consider an

202
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estimation strategy in which this degree is allowed to increase with the sample
size. In Section 6.1.3, it is shown that there are potential gains from such a
strategy but these can only be reaped if the degree of overidentification does
not increase too quickly with the sample size.

The second relevant aspect is the theoretical literature on the finite sample
behaviour of the GMM estimator in static models. While it is true that finite
sample distribution theory has proved intractable for nonlinear dynamic mod-
els to date, this is not the case for the IV estimator in the linear regression
model discussed in Chapter 2. Although the exact finite sample distribution is
not easily interpreted, its form does reveal the aspects of the specification upon
which it depends, and these are summarized in Section 6.2.1. Further insights
are gained by considering higher order approximations such as Edgeworth ex-
pansions for the distribution of the estimator or so called Nagar expansions for
the finite sample bias and mean squared error of the GMM estimator. Both
methods have been applied in the context of the linear simultaneous equations
model, but the second has recently been employed very fruitfully to examine the
bias of GMM estimators in nonlinear static models. Section 6.2.2 summarizes
the main insights gained from both these analyses. Although these results only
apply to static models, intuition suggests that if a factor of the specification
effects the quality of the asymptotic approximation in static models then the
analogous factor has a corresponding effect in dynamic models. At the same
time, it would be anticipated that the presence of dynamics introduces addi-
tional complications.

As mentioned above, Section 6.3 reviews the insights gained from a number of
simulations studies calibrated to the types of models underlying the applications
in Table 1.1. Finally, Section 6.4 pulls together the evidence from the preceding
three sections to provide an overview of what factors appear to affect the quality
of the asymptotic approximation. These factors are also used to motivate the
topics addressed in the following two chapters.

6.1 The Impact of the Degree of
Overidentification on the Asymptotic
Behaviour of the Estimator

Theorems 3.1 and 3.2 establish the consistency and asymptotic normality of 6.
Inspection of these results reveals that they hold for any population moment
condition satisfying certain regularity conditions of which the most important,
for our purposes here, are the orthogonality condition in Assumption 3.3 and the
identification condition in Assumption 3.4. In most cases, the underlying model
implies multiple choices of f(vy,6p) which satisfy these conditions. Therefore,
it is important to consider how these asymptotic properties are affected by the
expansion of the set of population moment conditions upon which estimation is
based. We split the analysis into three parts. Section 6.1.1 considers the case
in which there is a finite increase in the number of moment conditions, Section
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6.1.2 introduces the concept of redundant moment conditions and Section 6.1.3
considers the case in which the number of moments increases with 7.

6.1.1 Finite Increase in the Degree of Overidentification

To facilitate the analysis, it is necessary to introduce the following notation.
We partition f(.) into f(ve, 0) = [f1(ve, 8), fa(ve, 0)'] where f;(.) is (¢; x 1) and
q = q1 + go is finite. Now let éLT be the (optimal) two step GMM estimator
based on

Elfi(ve,00)] = 0 (6.1)
It is assumed that 6y is identified by (6.1) and hence that ¢; > p. Finally, let
01 denote the (optimal) two step estimator based on

E[f(ve,60)] = 0 (6.2)

It is straightforward to invoke Theorems 3.1 and 3.2 in order to deduce that
both estimators are consistent for 8y and

TYV2(0, 7 — 0o) N(0, V1) (6.3)
TY2(0r —60) = N(0,V) (6.4)

RS

where V = (G{S™1Go)™t, Vi = ( Q’OSJ}GLO)A, S and Gy are defined as
before,! Sy 1 is the (q1 X ¢1) upper left hand block of S, and Gy ¢ is the (¢1 x p)
matrix comprising the first g; rows of Gy. Therefore the only difference between
the two limiting distributions lies in their variance. The following theorem
establishes the relationship between V and V;.

Theorem 6.1 Asymptotic Efficiency and the Inclusion of Additional
Population Moment Conditions

If (i) Assumptions 3.1-3.5 and 3.7-3.13 hold; (ii) rank(G10) = p (iii) 01 1 is
the (optimal) two step GMM estimator based on (6.1); () 07 be the (optimal)
two step GMM estimator based on (6.2); then Vi — V is positive semi-definite
and so O is asymptotically at least as efficient as HALT.

The regularity conditions are needed to ensure that (6.3)—(6.4) hold. The proof
rests purely on showing that V3 — V is positive semi-definite.

Proof:

Since V and V; are positive definite, V; —V is positive semi-definite if V1 — Vfl
is also positive semi-definite.? The latter difference is more convenient to work
with, and is our focus here. To this end, partition Gy and S into

_ | Gipo | Si1 Sie
=gl s=|5 8]

1 See Section 3.4.2.

2 See Dhrymes (1984) [Proposition 65, p.76]. Strictly, Dhrymes only establishes the result
for the case in which the difference in positive definite, but his proof is easily amended to
cover the case in which the difference is positive semi-definite.
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Using the partitioned matrix inversion formula,? it follows that

SiiUg + S12A4821571) —S71S124

-1 _
5= —AS5,15; 1 A

(6.5)

where A = (S22 — Sg,lsi%Sl,g)*l. The substitution of both (6.5) and the
partition of Gy into D =V~ — V7! yields

D = G871 +5124821571)Gro — Gy nAS21571G10
—G! 081 1812AGs 0 + Gy gAG2y — G 0S71Gio

Multiplying out this expression, it can be verified that D = B’AB where B =
Sg,lej G1,0—Ga2,0. Now S is positive definite (p.d) by assumption, and so S—1
shares this property, which in turn implies A is p.d. Therefore, D is positive
semi-definite by construction, and so we have established the desired result.
o

This result makes intuitive sense. The elements of the population moment
condition can be viewed as pieces of information about 6y and, from this perspec-
tive, Theorem 6.1 can be paraphrased as saying that more correct information
never hurts. For the puposes of our later discussion, it is useful to examine the
circumstances under which it does not help either. This is the topic of the next
sub-section.

6.1.2 Redundant Moment Conditions

Breusch, Qian, Schmidt, and Wyhowski (1999) use the term redundancy to
describe the situation in which the augmentation of the population moment
condition has no effect on the asymptotic variance of the estimator. This idea
can be expressed formally as follows.

Definition 6.1 Redundant Moment Condition

Let V denote the asymptotic variance of the GMM estimator based on E|[f1(vt,
00)] = 0, E[f2(vt,00)] = 0, and let V1 be the corresponding variance when esti-
mation is based on E[f1(vi,00)] = 0 alone. The population moment condition
E[f2(ve,6p)] = 0 is said to be redundant for 0y given E[f1(vs,00)] =0 if V1 =V.

Intuition suggests that E[f2(vt,6p)] = 0 is redundant given E[f;(vs,6p)] = 0 if
it provides no information about 6y beyond that already in E[f; (v, 09)] = 0. To
formalize this intuition, it is necessary to first characterize the part of fo(vy, 6p)
which cannot be explained by fi(vi,600). To this end, it is assumed that the
Central Limit Theorem can be applied to deduce that

T'2gy 7(0o) } d ({0} [ Sia o Sip2 })
’ N , ’ ’ 6.6
{ T2y 7(6) - 0 Sa1 S22 (6.6)

3 See Magnus and Neudecker (1991) [p.11].
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where TV/2g; 1(60) = T2 37, fi(ve,00) for i = 1,2. Tt follows from (6.6)
that the conditional distribution of T/2gy 7(6y) given T/2g; 7(6) is given by

N (52,1S£%T1/291,T(90)7 S22 — 5'2,151_,%51,2)

Given the form of this conditional distribution, the unexplained part of
T'2gy () is given by

T
T1/292}T(90) — 52}155}T1/2917T(90> = T_l/QZr(vt,Go), say,

t=1

where (v, 0) = fa(ve,0p) — 52)15'1_7} f1(ve,6p). Therefore, we now focus on the
residual, r(ve, 0p). At this stage, it is useful to recall three aspects of our discus-
sion of local identification in Section 3.1. First, the local information about 6
contained in a moment condition is captured by the expectation of its derivative
with respect to #. Secondly, the moment condition uniquely determines 6, if
this expected derivative is full rank. Thirdly, if this expected derivative is rank
deficient then the moment condition provides some information about 6y but
not enough to determine it uniquely. Taken together these three points imply
that the moment condition is only completely uninformative if the expected
derivative is zero. Therefore, E[f2(vi,00)] = 0 provides no local information
about 6y beyond that in E[f1(vt,6p)] = 0 if and only if

E[0r(vt,00)/00'] = 0

This condition is one of three for redundancy provided by Breusch, Qian, Schmidt,
and Wyhowski (1999). The other two are less intuitive but may be easier to
verify in practice. For completeness, we reproduce all three here, but omit the
proof.*

Lemma 6.1 Conditions for Redundancy

The following statements are equivalent. (A): E[fa(ve,00)] = 0 is redundant
given E[fi(ve,00)] = 0. (B): E[0r(v,00)/00'] = 0. (C): E[0f2(ve,0)/00"] =
Sz,lsi%E[afl(vt,00)/89’]. (D): There exzists a (q1 x p) matriz A such that
E[afl(vt,(%)/80’] = Sl’lA and E[@fg(vt,%)ﬁw’] = SQJA.

The concept of redundancy proves useful in understanding some of the sim-
ulation results described in Section 6.3.

6.1.3 The Degree of Overidentification Increases with the
Sample Size

If we follow Theorem 6.1 to its logical conclusion, then it leads us to an esti-
mation strategy in which we include as many population moment conditions as
possible. For a given sample, ¢ must be less than T. However, as T increases,

4 Also see Section 7.1.



6.1 Further Aspects of Asymptotic Behaviour 207

Theorem 6.1 appears to suggest that it may be advantageous to allow ¢ to in-
crease as well — in other words, to adopt a strategy in which the number of
population moment conditions is ¢ and ¢r — oo with T'. In spite of its intu-
itive appeal, this logical step must be taken with caution because Theorem 6.1
is premised on Theorem 3.2, and the latter only holds for fixed ¢q. To date, there
have been only a few studies which shed light on the asymptotic behaviour of
the estimator when p is fixed but gr — oo with T' — oo. This evidence suggests
that the asymptotic theory derived in Chapter 3 may be valid if gr — p increases
fairly slowly, but is unlikely to be so if gr — p increases too rapidly. It should be
noted, however, that all these studies consider the issue in the context of i.i.d.
data. It is left to future research to consider whether these rates of increase for
qr translate to dependent data. We now briefly summarize the main results on
this issue.

Newey (1990) examines the limiting behaviour of the IV estimator in the con-
text of a nonlinear simultaneous equations model under the assumption that the
error, u;(6), is conditionally homoscedastic given z;. This restriction is impor-
tant because it implies that the optimal weighting matrix is SE}V in (2.29), and
so proportional to (T=1Z’Z)~!, the choice assumed in Newey’s (1990) analysis.5
He shows that Theorem 3.2 continues to hold provided gr = o(T?/?). Koenker
and Machado (1999) consider only linear models but allow for the possibility
that us(6p) may be conditionally heteroscedastic and so S is estimated by Ssu
in (3.40).5 They show that gr — oo and gr = o(T'/3) are sufficient conditions
for Theorem 3.2. This rate is rather slow, and so implies a more limited scope
for an estimation strategy based on an expanding set of moment conditions.
Interestingly, this slow rate appears to stem directly from the behaviour of Ssu.
However, this rate is sufficient and not necessary, and as such is a lower bound
on the possible rate of increase for qr.

If g7 increases faster than the rates given above then this impacts on the
limiting behaviour of the estimator in some way. Morimune (1983) considers
the limiting behaviour of the 2SLS (IV) estimator in the context of the linear
simultaneous equation model. He shows that if g7 increases at rate T%/2 then
the estimator is consistent, T/ 2(HAT — 6p) has a limiting normal distribution
but the mean of this distribution is not zero. He further shows that if ¢r
increases at rate T then the estimator is inconsistent. Bekker (1994) derives the
limiting behaviour of the IV estimator in the case where the equation of interest
is linear in the parameters and g7 increases with 7. Using # to denote the
probability limit of 67, Bekker (1994) shows that (7' — p)*/2(67 — 0) converges
to a normal distribution with mean zero but a different variance than the one in
Theorem 3.2.

5 The main focus of Newey’s (1990) study is actually the construction of optimal instru-
ments, a topic that is considered in Chapter 7.

6 Note that the dimension of Sy is qr and so increases with 7". This case is outside the
settings reviewed in Section 3.5 for which ¢ = q.
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6.2 Finite Sample Theory for Static Models

This section describes the insights gained from two theoretical frameworks for
learning about the finite sample behaviour of GMM estimators in static mod-
els. Section 6.2.1 describes the available exact finite sample results for GMM
estimators. Section 6.2.2 summarizes results derived using higher order approx-
imations based on Edgeworth and Nagar expansions.

6.2.1 Exact Results for the IV Estimator in the Linear
Simultaneous Equations Models

There has been a considerable literature on the finite sample distributions of
estimators in the static linear simultaneous equations model.” Here we focus
exclusively on the results for the IV estimator described in Chapter 2.

For our purposes in Chapter 2, it suffices to specify just the equation of in-
terest and make certain broad assumptions about the interrelationship between
the variables. Here it is necessary to be more specific. Accordingly, we now
assume the equation of interest is a member of the simultaneous system

YB + NI = U (6.7)

in which Y is the (T'x J) matrix of of observations on the J endogenous variables,
N is the (T x K) matrix of observations of the K exogenous variables and U
is the (T x J) matrix of errors. It is assumed that the t** row of U, U, is a
vector of independent random variables with zero mean and covariance matrix
> whose typical element is o; j 0, and which is independent of Uy . for all s # ¢.
Without loss of generality, we focus attention on the the IV estimator of the
parameters in the first equation of the system. To this end, we partition Y and
N as follows: Y = [y1,Y1] and N = [Ny, N2, where y; is the (T' x 1) vector of
observations on the first endogenous variable in the system, and N; is (T x K;)
with #** row N/,, and K; + K2 = K. The first equation of the system can then
be written as

y1 = Y100 + N1yo + w1 (68)

where u; = U_; is the first column of U. The reduced form of the system in
(6.7) is given by
Y = NII + A

where Il = —T'B~! and A = UB~!. It is convenient to write this reduced form

as
I 1o

v, V1] = [Nl N ]I:H21 Il 2

} + [a1, A4] (6.9)

Below it is necessary to refer to the reduced form error variance, and so we let
w; 4,0 denote the 7 — 4t element of Qp = Var[a:] where a; is the tth row of
[al, Al] .

7 See Phillips (1983) or Bowden and Turkington (1984, pp.137-44) for a survey of these
results.
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If we set X; = [V1, Ni] and 6 = [, 4] then (6.8) can be written as
y1 = X16p +w (6.10)

Equation (6.10) can be recognized to be of the same generic form as the model
in Chapter 2 with y = y;, X = X; and p = J+ K; — 1. As in that earlier
setting, the observations on the instruments are contained in the T' X ¢ matrix
Z where

Z = [N, N2Cy] = NC,

where K > g > p, and C,, Cy are selection matrices. Two aspects of this
instrument choice should be noted. First, the instruments taken from the set of
exogenous variables that appear in the system. Secondly, the instrument matrix
always includes the exogenous variables from the equation being estimated.
The results discussed below are based on the assumption that NV is fixed in
repeated samples. In this case, it is easily verified that u; satisfies the “Classical
assumptions” listed in Assumption 2.5, and so the “optimal” two step estimator
is just the two stage least squares estimator.® We therefore focus on this version
of the IV estimator, that is

by — [ Br } - (Xiple) ' X Py, (6.11)
T
where P, = Z(Z Z2)"'Z'.

Phillips (1980) derives the exact distribution of 37 in the case where U, pos-
sesses a normal distribution. The resulting expression is extremely complicated
and — to quote Phillips himself — “not as easy to interpret as we would like”.”
Therefore we do not present the precise details here. Instead, we abstract to
more general level and use Phillips’s (1980) result to examine what aspects of
the specification affect this distribution. To simplify this discussion, we restrict
attention to the case in which J = 2 and C, = I} — therefore the system consists
of only two equations and all the exogenous variables are used as instruments.
It is worth noting that prior to Phillips’s work, the finite sample distribution
of BT had been derived for certain special cases, and one of these is for J = 2.
So, since we limit attention to this case, our discussion can take advantage of
insights gained from the earlier studies by Richardson (1963), Sawa (1969) and
Anderson and Sawa (1973, 1979).10

Using the aforementioned results, it can be shown that the finite sample
distribution of BT depends on the following aspects of the specification:

e [y, the true parameter value.

e ¢ — p, the degree of overidentification.

8 See Section 2.4.

9 See Phillips (1980) [p.870].

10" Notice that Richardson (1963) and Phillips (1980) employ normalizations so that variance
of the reduced form error and instrument cross product matrix are both identity matrices.
These restrictions facilitate the analysis but also must be borne in mind when considering
how the properties of the instruments effect the distribution.
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e 112, the concentration parameter,

1w = wy Tl o[ Ny Ny — NyNi(NyN1) ™ N N 5 (6.12)

e Yy, the covariance matrix of the errors.

It is not surprising that the distribution depends on both 3y and ¥, but for
our purposes here, there is little to be learnt from exploring the nature of their
impact on the distribution. It is the roles of ¢ — p and u? which provide the
most useful insights. Most of these insights have been revealed by numerical
calculations, but there is one interesting facet which can be deduced directly
from the form of the distribution. Phillips’s (1980) analytical result reveals that
the finite sample moments of BT only exist up to the order ¢ — p.!! Anderson
and Sawa (1979) evaluate the distribution of 37 numerically for a wide variety
of parameter settings. In general terms, their results suggest the following con-
clusions ceteris paribus. As g — p increases the finite sample distribution tends
to be negatively skewed and to exhibit less variation than would be predicted
by the asymptotic distribution. In other words, as ¢ — p increases the distribu-
tion becomes increasingly concentrated about some point away from the true
value. In contrast, increases in u? tend to offset both these effects, although
the distribution still exhibits less variation than would be anticipated from the
asymptotic approximation.

Since all our statistical theory is based on T — oo, two questions naturally
arise: — at what sample size does asymptotic theory provide a good approxi-
mation? — and on what aspects of the specification does this depend? It can
be recalled from Theorem 3.1 that BT is consistent and so as the sample size
increases the distribution of BT must collapse onto 3y. Whereas Theorem 3.2
states that TV2(fr — y) converges in distribution to a normal random vector.
In fact, both behaviours only occur if pu? — 00.'2 Therefore this is the route
through which T affects the distribution, and this relationship can be made
explicit by rewriting (6.12) as

,U,2 = Tw;%’oné72(M272 - M271M1_711M172)H272 = TI[LQ, say (613)

where M; ; = T‘lNi/Nj. Equation (6.13) reveals an interesting feature of the
passage from finite sample to asymptotic behaviour: it is not T per se that
matters, but T2, Therefore, ji? effects the sample size at which asymptotic
theory manifests itself. In particular, notice that if /i? is very close to zero then
the passage from finite sample to asymptotic behaviour is likely to be slow.
Since all our inference rests on asymptotic theory, it is important to gain a
better understanding of what i ~ 0 implies about the specification. This is
most readily achieved by considering the extreme case in which ji? = 0. Clearly

11 Such a relationship had previously been conjectured by Basmann (1961, 1963).

12 See Anderson and Sawa (1979) [p.174] or Phillips (1983) [footnote 10, p.470]. It is this
behaviour which gives u? its name : as p2 — oo the distribution of ,@T becomes increasingly
concentrated around By and collapses onto this point in the limit.
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this condition holds if either Il o = 0 or M35 — M271M1_,11M172 = 0. However, a
more instructive answer can be obtained by relating these two conditions back to
the condition for identification in this model. It can be recalled from Section 2.1
that the condition for identification is rank{E|[zx;]} = p. For our model here,

Elaz)] = EK ]]\\gt >(y2,t,Ni,t)]

)

E[ N1yt N1,tNi,t }
Noty2t NotNy,

where — since J = 2 — we set Y7 = yo and y» is the (T'x 1) vector with tth element
y2.¢+. Using this substititution in (6.9) and the properties of a;, it follows that
, NNy IO NiN, I Ni.N,
Elzizy) E { LeNV1 12+ VLeNg Haa, - VeV }
NNy Il o + No it Ny 1o o, Na Ny,

Inspection reveals that this matrix has rank less than p if either II; 5 = 0 or
Ny is an exact linear function of IV ;. Notice that the second condition implies
that No = N1 H and so

Roy = Map — My My { My = T7'[H'N{N\H — H'N{Ny(N,Ny) "' N, N, H]
=0

Therefore, the conditions for 6y to be unidentified are exactly the same as those
for i = 0.' The re-emergence of the condition for identification here is not
surprising, because it is fundamental to our ability to estimate 6y from the pop-
ulation moment condition. However, this analysis also adds a new facet to our
understanding of the relationship between the two. If either Il 5 or Ry ; is very
close to zero then E[zu:(0)] may be very close to zero for 6 # 6. In this case
0o is said to be “weakly identified” by E[ziu:(6p)] = 0. Under these conditions,
fi% is also likely to be small and so the estimator converges slowly toward the
behaviour predicted by asymptotic theory.'* Anderson and Sawa (1979) report
evidence that this convergence is further slowed down by increases in ¢ — p.
They conclude that “the desirable asymptotic properties of the 2SLS estimator
are not necessarily expected to be relevant to the cases that appear in practice,
that is, the sample size being at least 50 but less than 100 and the number of
excluded exogenous variables” — ¢ —p in our notation — “being more than 10 but
less than 50” (Anderson and Sawa (1979) [p.175]). It is important to remem-
ber their time of writing when interpreting what sample sizes are “relevant” in
practice. Nevertheless, their conclusions give us an indication of circumstances
in which the asymptotic approximation may not be accurate.

The above discussion provides insights into the nature of the finite sample
distribution. It is also useful to have similar insights for specific features of
the distribution such as the mean and variance. Hillier, Kinal, and Srivastava

13 This assumes w2,2,0 < 00.
14 Also see Section 8.2.
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(1984) derive exact formulae for the moments of the IV estimator under nor-
mality. These formulae can be used to calculate the bias and mean squared
error but are sufficiently complicated to be uninterpretable.'® However, it is
possible to develop more revealing expressions if we are prepared to settle for
approximations to the finite sample moments. This topic is discussed in the
next sub-section.

6.2.2 Higher Order Approximations

The asymptotic analysis in Chapters 2 through 5 is often refered to as “first
order” asymptotics. This terminology originates from the idea of expressing the
statistic of interest, c¢r say, as a polynomial expansion in negative powers of T'
such as

cr = ¢y + ClT_1/2 —+ CQT_l + CST_3/2+...

The limiting behaviour of ¢r is governed by the lead or first term of the expan-
sion ¢g, and this gives rise to the terminology. As mentioned above, these first
order asymptotics only provide an approximation to finite sample behaviour.
Intuition suggests that a better approximation can be obtained by including
higher order terms from this expansion. In this section, we review the litera-
ture on two types of higher order expansions for GMM estimators: Edgeworth
expansions for the distribution function, and Nagar expansions for the bias and
mean square error.

Edgeworth expansions provide a bridge between the finite sample and lim-
iting distributions, and by examining their lead terms it is possible to uncover
what factors affect the passage to the limiting distribution. Sargan and Mikhail
(1971) and Sargan (1975) derive the Edgeworth expansion for the IV estimator
in the static linear simultaneous model in (6.7) with normal errors.'® For our
purposes here, it is sufficient to focus on the case in which J = 2 and so there
are only two endogenous variables. In this case, Sargan and Mikhail (1971)
show that

1/2(73
p|ZEG =5 )+ by 4 LDyr) + 0y
AVar(Br) VT T

(6.14)
where (7 is the estimator defined in (6.11), AV ar(fr) is the asymptotic variance
of By, ®(.) is the cumulative distrbution function of the standard normal distri-
bution, and D;(.),i = 1,2 are constants that depend on the model.}” It can be
recognized that the first term on the right hand side of (6.14) is the probability

15 Knight (1986) derives exact formulae for the moments of the 2SLS estimator when the
errors follow an Edgeworth type distribution but these expressions possess the same advantages
and disadvantages as their counterparts when the error has a normal distribution.

16 Also see Morimune (1983).

17 Sargan (1975) extends the analysis to the case where 87 — 8o is standardized by the
square root, of the estimated asymptotic variance.
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of the particular event based on the asymptotic distribution of the estimator. It
therefore follows that the use of the limiting distribution to calculate such prob-
abilities involves an error of order OP(T_l/ 2). More can be learned about this
error by examining the determinants of D;(.). Sargan and Mikhail (1971) report
calculations that indicate the asymptotic approximation tends to deteriorate as
the degree of overidentification increases. This leads them to conclude that:

“by using an intelligent choice of instrumental variables, little may
be lost in the asymptotic variance of the estimator and a good deal
may be gained in the decreased error of the asymptotic approxima-
tions.” [Sargan and Mikhail, 1971, p.158]

In terms of more modern terminology, this conclusion can be stated as saying
that the inclusion of redundant or nearly redundant instruments tends to lead
to a deterioration in the quality of the asymptotic approximation.

Nagar (1959) develops expansions for the first two moments of the Two
Stage Least Squares estimator in the linear simultaneous equations model with
normal errors. Although the approximations have been generalized subsequently
to certain other distributions,'® it is most convenient to maintain normality and
also to continue to restrict attention to the case in which J = 2 — all notation
is the same as in the previous sub-section.

Nagar (1959) derives a random vector, b,, and a random matrix, M., such
that:

Op — 0y = b, + 0)(T7Y) (6.15)
(éT — 90)(9]“ — 90)/ = M, + Op(T_2) (616)
He then approximates the bias (first moment) of 7 by E[b.] and the mean

square error matrix of Op by E[M.].'? This leads to the following approxima-
tions: for the bias (up to the order of T—1)

Eb.] = (¢—p—1)Q:s (6.17)

- (5]
Op—1
B, is the matrix satisfying A; = U By, o7 is the first column of ¥ and 0, is the

r x 1 null vector; and for the mean squared error (up to order T~2)

E[M,] = onQ. (I +A%) (6.18)

where Q, = (X'P,X)™1,

where

A" = [_2((] il Z l)tT‘ (QZHU) + tr (QZHZ)} : Ip
+ {[l¢—p)?—=3(¢—p)+4] He — (¢—p—2)Hz} Q.,

18 See Buse (1992), Donald and Newey (2001) and Peixe and Hall (2000).

19 While this step has an obvious intuitive appeal, it is not valid in all circumstances; see
Srinivasan (1970). However, Sargan (1974) establishes a set of conditions under which it is
valid in the context here.
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. —1_
H, =077 ss’ and

and 0,«, is the » x r null matrix.

These two approximations can be used to explore the impact of the inclusion
of additional instruments upon the first two moments of the estimator. Inspec-
tion of (6.17) reveals that the approximate bias depends on Z via ¢ — p and
Q.. Therefore, the bias is sensitive to both the number of instruments and their
relationship to y». The bias is also different for each element of 6r. To gain
a better understanding, it is convenient to focus on m, = ||E[b.]|| which can
be interpreted as an aggregate measure of bias in the estimation of 6y. Buse
(1992) derives a relatively simple condition for m, to increase when additional
instruments are included in the estimation. To present this condition, define Z;
and Zs to be respectively (T' x ¢1) and (T' X g2) matrices of instruments and
assume Z; represent the first g; columns of Z5. This means ¢; < go. For what
follows, it is also important to recall that by assumption the first K7 columns
of any instrument matrix contain the explanatory variables, N, which appear
in the equation being estimated. If m; equals the value of m, associated with
Z = Z; then Buse (1992) shows that

R3 - R3

mo g2—p—1
R} - Rj

p—— (6.19)

mi

IN IV
—
=1

IN IV

where R? represents the uncentred R? from the regression of yo on Z;, and R3
represents the R? from the regression of y; on Nj. Therefore the approximate
bias will increase with the number of excess instrumental variables only if the
proportional increase in the number of instruments is faster than the rate of
increase in R? measured relative to the fit of Y3 on N;. This means that the
potential impact of additional instruments depends on the explanatory power
of those already included.

While it is desirable to avoid bias, an increase in bias may be tolerated if
the mean squared error is reduced. Unfortunately, the formula in (6.18) is not
so amenable to interpretation. However, it can be used to numerically evaluate
how the inclusion of new instruments affects the approximate mean squared
error. Peixe and Hall (2000) report this type of calculation for the special case
of the model described above in which J = 2, K; = 1, K3 = 8. More specifically,
they consider the system

Y1 = yeftmmatw (6.20)
y2 = Nmyatus (6.21)
in which ﬂ =71, = 1, Y2,1 = .- =725 = 03, Y2,6 = --- = 72,9 = .33. These

choices imply the first five columns of NV have only a marginal contribution to
the explanation of yo, but the last four variables have a more significant impact
so that the population R? for (6.21) is around 30%. To reflect this dichotomy,
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we refer to {n;,i =1,...5} as “bad” instruments (for y3), and {n;,s =6,...9}
as “good” instruments (for ys). Strictly none of these instruments are redun-
dant but there is clearly a sense in which the “bad” instruments can be viewed
as “nearly” redundant given the “good” ones.?’ The error specification is as
follows: letting u;; denote the t'* element of w;, then u; = (u1¢,u24) is in-
dependently and identically distributed as a normal random vector with mean
zero and a variance—covariance matrix g whose diagonal elements are one and
off-diagonal elements are 0.8. The sample size is set at T = 30. Table 6.1 re-
produces the calculated values of the approximate bias and mean squared error
for various instrument combinations reported in Peixe and Hall (2000). There
are five cases each involving four instruments.?! The only difference between
the five cases lies in the number of good and bad instruments included. As
would be expected, the approximate bias and MSE decrease every time a bad
instrument is replaced by a good one. Table 6.1 also reports the percentage
change in bias and MSE if an additional instrument is included. The results
reveal that if the additional instrument is “bad” then both the bias and mean
squared error increase. However, if the additional instrument is “good” then the
impact on the bias is more subtle. If only one of the four instruments is good
then the inclusion of another good one reduces the bias. Whereas, if at least two
of the four are good then the inclusion of another good one increases the bias.
Also the size of this increase is an increasing function of the number of good
instruments. In spite of this, the inclusion of an additional good instrument
always decreases the mean squared error. While caution must be exercised in
generalizing the specific results to more general settings, one conclusion is clear.
There is a far more complex relationship between the behaviour of the estimator
and the properties of the instrument vector in finite samples than is predicted
by asymptotic theory.

Table 6.1
Impact of an additional instrument

Inst. Bias %+ 1G %+ 1B MSE %+ 1G %+ 1B

3B1G 0.478 -24.08 48.80 0.546 -27.36 3.66
2B2G 0.243 0.25 49.36 0.390 -17.09 1.90
1B3G 0.163 12.59 49.57 0.319 -12.45 1.25

4G 0.122 49.75 0.277 0.98

Source: Peixe and Hall (2000).

Notes: Inst denotes the composition of the benchmark set of instruments: e.g. 3B1G denotes
three bad instruments and one good one. Bias and MSE are calculated using (6.17) and (6.18)
respectively. % + 1G (% + 1B) denotes the percentage change in either the bias or MSE as a
result on the inclusion of an additional good (bad) instrument.

20 For ease of expression here, we attribute the property of redundancy directly to the
instrument and not the associated population moment condition.

21 Notice that this is the smallest number of instruments for which the second moment of
the estimator exists within this model. See the comments made earlier in this section.
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Newey and Smith (2004) develop Nagar type expansions for the bias of both
the two step GMM and continuous updating GMM estimators in nonlinear
static models. To present these results, we return to our generic notation and
so assume that estimation of 6y is based on E[f(vs,6p)] = 0. The data vector,
vt, is assumed to be a realization from some independently and identically dis-
tributed process. Let 07 denote the two step GMM estimator and 61 denote the
continuous updating GMM estimator.?? Also define Gy = 9f (v, 0)/06|o=g,,
fi(0) = f(vs,0) and let f;;(0) denote the i*" element of f;(f). Newey and
Smith (2004) show that the approximate bias of the GMM estimator is given by

Efr] — 6y = T"YBr + Bg + Bs + Bw} + o(T™) (6.22)
where
By = M(S™Y)E[GM(S™1)f(00)] — a}
Ba = —(Gy87'Go) 'E[G,S~V¥ {1, — P(60)}S~ 2 £.(6y)]
Bs = M(S™")E[fi(60)f:(60) S™H¥{I, — P(60)}S /2 f1(60)]
p a ) " /
By = M(SUZE{%‘:(QH@_@O] [M(W) = M(S™"))'e;

j=1
a is (q x 1) vector with 7** element,

a; = o.5tr{(G{)s-lao)-1E

9 f1.i(0o)
0006’

M(W) = (GoWGo)"'GoW, P(6g) = F(80)[F(60)F(80)] " F(6,)', F(6y) =
S—1/2Gy and ej is a (p x 1) vector whose j' element is one and remaining
elements are all zero. As Newey and Smith (2004) observe these four compo-
nents of the bias have an interesting interpretation. To motivate this part of
the discussion, it is useful to first recall the Method of Moments interpretation
of GMM derived from the first order conditions, that is the two step GMM
estimator is the MM estimator based on GyS™'E[f(v,60)] = 0.23 If both Gy
and S are known, then the GMM estimator is just the value of 6 that sets this
linear combination of the sample moments equal to zero, that is 67, the solution
to GéS‘lgT(éT) = 0. It is easily recognized that this version of the estimator
converges to the same limiting distribution as the two step estimator. We thus
refer to A7 as an infeasible optimal GMM estimator — infeasible as G and S are
unknown, optimal in the sense that it is a minimum variance estimator based
on E[f(vs,00)] = 0. With this in mind, we now consider the components of the
bias in turn. By is the approximate asymptotic bias of the infeasible optimal
GMM estimator; B¢ is a bias term that arises due to the estimation of Gy; Bg is
a bias term that arises due to the need to estimate S; By is a bias term arising
from the first step estimator. Two other general features of this decomposition

22 See (3.102) in Section 3.7.
23 See Section 3.3.
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are worth noting. First, if the parameter vector is just identified then B¢g, Bg
and By are all equal to zero. Therefore, overidentification introduces bias from
a variety of sources. Secondly, it is interesting to note that these sources of the
bias depend on the same features of the model that play a crucial role in the
limiting distribution of the GMM estimator in misspecified models.?*

Newey and Smith (2004) show that the corresponding bias of the continuous
updating GMM estimator is given by

Elfr] — 6y = TYB; + Bs} + o(T™) (6.23)

In comparison to (6.22), it can be seen that there are fewer sources of bias.
Specifically, there are no longer bias terms associated with the first step estima-
tion or the estimation of the derivative matrix. The absence of the first of these
is to be expected because there is no longer a first step estimation. The sec-
ond is less easy to explain from a GMM perspective. Newey and Smith (2004)
show that the absence of B¢ is to be expected because the continuous updating
GMM estimator is a member of the class of Generalized Empirical Likelihood
estimators. However, further elaboration here would constitute a major detour,
and so the interested reader is refered to Newey and Smith (2004).25

While these general formulae provide some useful insights into the bias, the
specific form of the terms is difficult to interpret. Newey and Smith (2004) spe-
cialize these formulae to three cases of interest: the IV estimator in the linear
model described in Chapter 2; the Generalized IV estimators described in Sec-
tion 7.2; and separable moment conditions, that is f(vi,0) = fi(ve) — f2(6p). In
all cases, Newey and Smith (2004) show that the bias of the GMM estimator in-
creases with the number of overidentifying restrictions ceteris paribus — however
some caution is needed in making such comparisons as noted by Buse (1992)
because the introduction of additional moment conditions alters other aspects
of the model.26 Tmbens (2002) reports a similar calculation for a very simple
example in which only one moment condition provides information and all the
remaining moment conditions are redundant. He shows that the approximate
bias increases linearly with the number of redundant moment conditions.

6.3 Simulation Evidence from Nonlinear
Dynamic Models

As we have just seen, finite sample distribution theory provides some useful in-
sights into what aspects of the distribution affect the quality of the asymptotic
approximation in static models. Intuition suggests that these aspects of the
specification are going to play a similarly important role in nonlinear dynamic
models. At the same time, it would also be anticipated that the presence of
nonlinearity and/or dynamics introduces additional complications. In recent

24 See Chapter 4.
25 There is a brief introduction to empirical likelihood estimators in Section 10.2.
26 See discussion earlier in this section.
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years, concern has grown about the adequacy of the asymptotic approximation
in the sample sizes encountered in practice, and this has spawned a number
of computer based simulation studies calibrated to the types of model which
appear in Table 1.1.27 An overview of these studies is provided by Table 6.2.
In this section we review the main findings from this literature.

Table 6.2
Simulation studies of the finite sample properties of GMM
Economic or statistical Type
topic
Asset pricing NV, NP Tauchen (1986), Kocherlakota (1990),

Hansen, Heaton, and Yaron (1996),
Smith (1999)
LV, NP Ferson and Foerster (1994)
Business cycles NV, NP Burnside and Eichenbaum (1996),
Christiano and den Haan (1996)
Covariance structures NV, LP Altonji and Segal (1996)
NV, NP Clark (1996)

Inventories LV, LP Fuhrer, Moore, and Schuh (1995), West
and Wilcox(1994,1996)
Stochastic volatility NV, NP Andersen and Sgrensen (1996)

Note: Type indicates the functional form of the model with NV (LV) denoting nonlinear
(linear) in variables and NP (LP) denoting nonlinear (linear) in the parameters.

As in the previous section, there are two main questions of interest here
— does asymptotic theory provide a good approximation in the sample sizes
encountered in practice? — and, what aspects of the specification affect the
quality of this approximation? The answer to the first question is going to be
model specific, but the answer to the second is likely to be generic on some level
and so is our main focus here. In spite of this, it is pedagogically more convenient
to organize the discussion around four specific studies. We begin with the
studies by Tauchen (1986) and Kocherlakota (1990) which are calibrated to the
consumption based asset pricing model used in our empirical example. We then
briefly summarize the results reported in Hansen, Heaton, and Yaron (1996)
for a slightly more sophisticated version of this model. Finally, we consider the
study by Andersen and Sgrensen (1996) based on the stochastic volatility model
described in Section 1.3.5. Together these four studies provide a good overview
of the qualitative findings from this literature.

Asymptotic theory has been used to justify the GMM estimation and also
to develop a vast array of inference procedures based on the estimator. In our
discussion here, we focus on how well this theory approximates finite sample

27 As an illustration of the level of this interest, the July 1996 issue Journal of Business
and Economic Statistics has a special section devoted to seven papers on this topic.
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behaviour of the two most important components of this framework: the esti-
mator 67 and the overidentifying restrictions test Jr. Specifically, we consider
the following five questions:

1. Is the GMM estimator approximately unbiased?
2. How reliable are confidence intervals based on asymptotic theory?

3. Is the finite sample distribution of the overidentifying restrictions test well
approzimated by a Xr217p ?

4. How does iteration affect the answers to 1.-3.7

5. How does the use of the continuous updating estimator affect the answers
to 1.-3.7

Apropos the fourth question, it can be recalled from Section 3.6 that iteration
beyond the second step has no effect on the asymptotic distribution and was
proposed purely because of potential gains in finite samples. At that stage in our
discussion we could only anticipate some advantage, now we can learn whether
these gains are realized in practice. With these five questions in mind, we now
turn to the simulation evidence.

Tauchen (1986) examines the behaviour of GMM in Hansen and Singleton’s
(1982) version of the consumption based asset pricing model.?® His design
assumes there is only one asset, and estimation is based on the population
moment condition,

where
w(0) = 0(cer1/ct)’  (rev1/pe)
2t = (LCt/Ct—h-~-,Ct—L/Ct—L—hTt/pt—h--~77"t—L/pt—L—1)/

The degree of overidentification is controlled by L, and Tauchen considers the
cases L = 1,2,3,4. Notice that L = 2 gives the instrument vector used in
our estimation of the model earlier in the text. Two sample sizes are consid-
ered: T = 50,75. A large part of Tauchen’s (1986) contribution is to have
developed a method for generating artificial data consistent with the underly-
ing model. However, we only comment very briefly on this aspect of his study.
To this end, note that the asset return, ryy1, is given by ri11 = pey1 + diy1
where d;y1 denotes the dividends paid out during the period. Therefore, the
model can be viewed as depending on three stocastic variables: c¢;, d;, and
pt. Tauchen generates data on the first two of these variables from a VAR(1)
model for [In(ciy1/ct), in(diy1/de)]. Given this data and the Euler equation for
t=1,2,...T, it is possible to solve for {p;}. Tauchen reports results for various
choices of parameters in the VAR; he sets v = 0.3,1.30 and § = 0.97. The
secondly step weighting matrix is SS_(} defined in (3.40). It should be noted that

28 See Section 1.3.1.
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Tauchen only considers the two step estimator because that was the conventional
practice at his time of writing. So his results cannot help us with questions 4 or
5 above. However, in terms of the other three questions, his study reveals the
following answers in order.

1. Bias: For L =1 (i.e. ¢ —p = 1) the estimator is approximately unbiased,
but there is a tendency for the bias to increase as L, and hence ¢ — p,
increases. At the same time, increases in L reduce the variance and so éT
becomes concentrated at a value away from the truth. Interestingly, this
mirrors Anderson and Sawa’s (1979) finding for the IV estimator in the
linear model discussed in the previous section.

2. C.L’s: For L = 1,2 (i.e. ¢—p = 1,3) the empirical coverage of the asymp-
totic confidence intervals is approximately equal to the nominal value.?’
However, for L = 3,4 (i.e. ¢ —p = 5,7) the empirical coverage tends to
be less than the nominal value.

3. Jr: the empirical size of the overidentifying restrictions test tends to be
close to its nominal value in all cases considered.?’ If anything, the test
rejects slightly less frequently than would be anticipated from asymptotic
theory.

Based on this evidence, Tauchen recommends that ¢ — p be kept less than or
equal to three in this model with these sample sizes. However, there is one
aspect of Tauchen’s (1986) study which should be borne in mind when consid-
ering this recommendation. The degree of overidentification is controlled by L,
and so an expansion of the instrument vector involves the inclusion of lagged
values of consumption growth and the asset return from further back in time.
Now wu¢(f) depends on (cty1/¢t,r4+1/pt), and within his design the autocorre-
lations of these variables decays as the lag length increases. Therefore, as L
increases z; becomes augmented with variables whose association with u:(6)
is decaying. In other words, every increase in L introduces instruments whose
quality is worse than those already included. This is not a criticism of Tauchen’s
(1986) design because this strategy is commonly used for instrument selection
in Euler equation models in practice. However, it is probably more appropri-
ate to view Tauchen’s recommendation within the context of this instrument
selection strategy than as a more general comment about the desirable degree
of overidentification per se.

Kocherlakota (1990) uses Tauchen’s (1986) simulation method to investigate
the behaviour of GMM in Hansen and Singleton’s (1982) model with multiple
assets. In this case, estimation is based on the population moment condition

29 “Empirical coverage” is the term used for the proportion of the replications in which
the calculated confidence interval contains the true parameter value. So for a 95% confidence
interval, say, to be perfectly accurate, its empirical coverage must equal its nominal value,
which is 95%.

30 “Bmpirical size” is term given to the proportion of replications in which the test is
significant.
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where u;(6) is (s x 1) vector whose " element is §(cp41/c)" ™ (ri ¢41/pie) and
z¢ is (k x 1) vector of instruments. Kocherlakota considers models with up to
three assets, i.e. s = 1,2,3, and k = 1,3,4. However, of the seven particular
combinations chosen, six involve ¢ — p = 1 and one involves ¢ — p = 6. Since
the design involves multiple assets, Kocherlakota is able to confine attention to
instrument vectors whose elements come from the set {1,¢;/ci—1,7¢/Pii—1} —
in other words, L = 1 in terms of the notation used to describe Tauchen’s (1986)
study. Unlike Tauchen (1986), Kocherlakota (1990) evaluates the performance
of both the two step and iterated estimator — the latter with I,;,,, = 70 — with
ST(z) = SSU for i > 1. Two other differences between the two studies are also
worth noting: Kocherlakota (1990) sets T' = 90 for the most part but also reports
results for T' = 200, 500, 2000; he also sets v = 13.7 and § = 1.139.3! We begin
our discussion of his results with the case in which T' = 90 because these most
closely parallel Tauchen’s settings. As a whole, Kocherlakota’s (1990) evidence
suggests that the iteration beyond the second step considerably improves the
quality of the asymptotic theory as an approximation to finite sample behaviour.
So strong is the evidence that he focuses entirely on the iterated estimator in
the published version of his paper — and so our discussion of his results must do
the same. In terms of the other three questions, his findings are as follows.

1. Bias: There is evidence of bias in some cases, and not others. This bias
does not appear to be linked to the degree of overidentification per se,
that is to the limited extent this can be assessed within this design.

2. C.I.°s: The empirical coverage of the asymptotic confidence intervals is
too low in nearly every case and in some cases the strikingly so — e.g.
~ 60% instead of the nominal value of 95%.

3. Jr : The quality of the asymptotic approximation is good in some cases
but not in others. In the latter, the empirical size of the test tends to be
around 20% when the nominal size is 5%.

Buried within this summary is an interesting pattern to the results. Although
the choices s = 1,k = 3 and s = 3,k = 1 both imply ¢ — p = 1 the estimator
behaves very differently in the two cases. If there are multiple assets and one
instrument (s = 3,k = 1) then the finite sample behaviour is well approximated
by the asymptotic theory, but if there is one asset and multiple instruments
(s = 1,k = 3) then the estimator is biased, the asymptotic confidence inter-
vals are unreliable and the overidentifying restriction test rejects too frequently.
Therefore, low values of ¢ — p are no guarantee that the asymptotic approxima-
tion is good.

One attractive feature of Kocherlakota’s (1990) study is that he also consid-
ers what happens as T increases. As T moves from 90 to 200, 500 and finally

31 The parameter values are calibrated to replicate certain features of annual data for the
U.S spanning 1889-1978. In contrast, Tauchen’s (1986) parameter settings were chosen to be
“reasonable” from an economic theoretic standpoint. It should be noted that Kocherlakota
(1990) also reports a limited number of simulation results using data generated with other
parameter values including v = 0.3, § = 0.97 which were used by Tauchen.
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2000, the quality of the asymptotic approximation improves. However, in the
worst cases, it is only at the largest sample size that asymptotic theory ac-
curately predicts the empirical coverage of the asymptotic confidence intervals
and the empirical size of the overidentifying restrictions test. While this is not
an encouraging conclusion, Kocherlakota finds that the situation is worse with
the two step estimator. He finds that after only two steps, the overidentifying
restrictions test converges very slowly to its asymptotic distribution.

Clearly, some aspect of the asymptotic theory is not providing a good ap-
proximation to finite sample behaviour. It would clearly be useful to diagnose
where the problem lays, and Kocherlakota (1990) provides some useful guidance
in this direction for the overidentifying restrictions test. To describe what he
did, we must remind ourselves of the structure of the estimated sample moment
again. Equation (3.35) shows that

WHPT 291 (07) = Np(Br)Wa/>T 2gr(60) = NyT'2g7(6,), say  (6.26)

It can be recalled from Section 3.4.3 that the asymptotic normality of W%/ 2

TV 2gT(HAT) rested on the convergence in probability of Nr to a matrix of con-
stants and the application of the Central Limit Theorem to T/2g7(6). Inter-
estingly, Kocherlakota (1990) finds that 7' = 90 is large enough for T"/2 g1 (6y) to
be approximately normally distributed in all the cases he considers. The prob-
lem stems from Np. Kocherlakota (1990) finds that all the cases in which the x>
approximation is poor are exactly the cases in which Nr is still exhibiting con-
siderable variability. Since Nr is the product of matrices, Kocherlakota’s (1990)
evidence points to two possible culprits: 5’; ! and GT(éT). Interestingly, this
evidence highlights two of the sources of bias in the Nagar type expansion for the
GMM estimator described in the previous sub-section; see equation (6.22). The
involvement of GT(éT) here also creates an interesting tie in with our discussion
of the finite sample distribution of IV estimator in the static linear model. It can
be recalled from the previous section that the convergence of the IV estimator
to its asymptotic distribution depends on the concentration parameter, T}i?,
and that this convergence is likely to be slow if 0y is “weakly” identified. Now
the matrix GT(éT) has a similar link to identification because it is the sample
analog of G.3? This suggests that weak identification may be one source of the
problems noted in Kocherlakota’s (1990) study — an explanation which would
certainly accord with our empirical experience of the model in Chapter 3.33
Before we move on to discuss the other two studies mentioned above, it is
worth reflecting what we have learnt from Tauchen’s (1986) and Kocherlakota’s
(1990) results about the interpretation of our empirical results. It can be recalled
that choice of z; is a special case of Tauchen’s (1986) design with L = 2, and
one in which he found asymptotic theory provided a reasonable approximation
even in his much smaller sample sizes. However, Kocherlakota’s (1990) study
reveals that the quality of the approximation can be sensitive to 6y as well as

32 Recall that the condition for local identification is rank(Go) = p; see Assumption 3.6 in
Section 3.1.
33 In particular see the discussion in Section 3.6.
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other aspects of the data generation process. In particular, it seems reasonable
to be concerned about the quality of the identification and how it has affected
finite sample behaviour. So it may be premature to draw a line under the results
obtained so far, and we return to this example in the next two chapters as we
explore various methods for improving inference based on GMM estimation.

Hansen, Heaton, and Yaron (1996) also examine the behaviour of GMM and
its associated statistics in a consumption based asset pricing model. However,
their study builds from those described above in two important ways. First,
they allow for time non-separability in the utility function of the representative
agent. Second, they simulate the behaviour of continuous updating estimator
as well as the two step and iterated estimators.

Hansen, Heaton, and Yaron (1996) consider the case in which the represen-
tative agent’s utility function takes the form,

(et + moce—1)t ™ — 1
L=

Notice if 779 = 0 then this utility function reduces to the CRRA utility function
used by Tauchen and Kocherlakota.?* The agent is assumed to invest in two
assets: a bond, whose payoff is denoted R;;, and a stock, whose payoff is
denoted Ry ;.3> Hansen, Heaton, and Yaron (1996) simulate artificial data from
this model for a number of scenarios of empirical relevance.?® For brevity, we
focus on two scenarios here: in the first, the data generation process is calibrated
to annual US data and the sample size is set to T' = 100; and in the second, the
data generation process is calibrated to monthly US data and the the sample
size is set to T" = 400. In both cases, they consider the case in which estimation
is based on the population moment condition

E[Zt X €t+2(00)] =0 (627)

where z; € Q¢, 0 = (7,5,n)’, § is the discount factor3”, and e;,2(6) is the (2 x 1)
vector with i*" element given by>®

cepr e | cepr e |
ra(0) = 1 my————¢ — R PR
€i+2(0) + 77{ Ct 4+ 1ci—1 } R { Ct +nct—1 }

o [ty +nci |
B R e a
[

Uler) =

Two choices of instrument are used: z1: = (1,¢/ci—1)" and 2o+ = (214, Rit,
Ry )’ for which ¢ — p equals 1 and 5 respectively.

34 If no = 0 then utility is time separable in the sense that utility in period t depends on
consumption in period t; otherwise, utility is said to be time non-separable because utility in
period t depends on both contemporaneous and lagged consumption.

35 In terms of the notation above, Rz ¢ = (pt + dt)/pr—1.

36 Hansen, Heaton, and Yaron (1996) use a variation on Tauchen’s (1986) method to sim-
ulate the data.

37 See Section 1.3.1.

38 Tt should be noted that e;42(8) is a transformed version of the Euler equation associated
with this model.
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Hansen, Heaton, and Yaron’s (1996) evidence for the two step and iterated
estimators tends to corroborate the findings from the previous studies. There-
fore, we do not report specific details save to note that they find asymptotic
theory tends not to be a good guide in samples T' = 100; whereas, it is rea-
sonably accurate for the iterated estimator with 7" = 400 for the model with
q —p = 1, but not in the model with ¢ — p = 5. Instead, we focus our discus-
sion on how their results illuminate the relative properties of the iterated and
continuous updating estimators. The most striking feature of this comparison
is that the continuous updating estimator converges to very extreme values in a
small but significant number of the replications whereas the iterated estimator
does not.?® This behaviour is the source of two key differences between the
simulated distributions of the estimators. First, the simulated distribution of
the continuous updating estimator exhibits far longer tails than those of the
iterated estimator. Secondly, these extreme values are not evenly distributed
between the left and right tails and so cause an asymmetry in the simulated
distribution of the continuous updating estimator which does not appear to be
present for the iterated estimator. Both these features manifest themselves in
the moments of the simulated distribution, and so impact on the comparison of
the estimators. For example, if bias is measured as the difference between the
true value and the median of the simulated distribution then in most cases — but
not all — the continuous updating estimator exhibits less bias than the iterated
estimator. However, if the median is replaced by the mean in the previous cal-
culation, then in most cases the ranking is reversed. This tail behaviour leads
Hansen, Heaton, and Yaron (1996) “from the standpoint of obtaining estimates,
we see no particular advantage to using continuous updating when minimizing
GMM criterion functions” [p.278]. However, they also note that the use of the
continuous updating estimator may be advantageous for inference. Specifically,
they find that the overidentifying restrictions test based on the continuous up-
dating estimator tends to exhibit empirical size closer to its nominal value than
its counterpart based on the iterated estimator. It is worth noting that this
conclusion regarding the relative merits of the iterated GMM and the continu-
ous updating estimator appears to be in conflict with that based on their Nagar
type expansions; see (6.22)—(6.23) in the previous sub-section. These differing
conclusions may reflect the different contexts: the Nagar expansions are for
static models and the simulation results are for a dynamic model. Further work
is needed to reconcile the results from these two approaches.

The simulation studies described above shed little light on what factors effect
the behaviour of S; ! To gain some insight into this question, it is useful to
recall both the form of the long run variance and the estimators. It can be
recalled from Section 3.5 that

S =Ty + Y I+ 1)
1=1

39 Also see Section 3.7.
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and our basic strategy for estimating this matrix is to use a weighted sum
of the sample autocovariance matrices.*’ So there are two natural questions:
— what factors affect the convergence of the sample autocovariances to their
population counterparts? — and what factors affect the convergence of our
weighted sum of autocovariances to S? The answer to the first depends on
the nature of the nonlinearity in f(v¢,6). The answer to the second depends in
part on the weighted sum involved. We have reviewed the extensive literature
on covariance matrix estimation already, and below we discuss some further
simulation evidence on this issue. However, before that, it is useful to expand
a little on the answer to the first question.

For the purposes of this discussion, we can confine attention to polynomial
powers of a scalar random variable v;. For simplicity, assume that {v;; t =
1,2,...7T} is an independent sequence and v; ~ N(0,1). As we have seen, the
GMM estimation strategy exploits the convergence in probability of sample to
population moments, that is

T_lzvf L Bk = g, say. (6.28)

While this result holds for any &, the variability of the sample moment depends
on k in a rather simple — but striking — fashion. It is straightforward to show
that

T

Var(T™* va] = o2/T

t=1
where 02 = Var[vF], and under our assumptions it follow that o? =1, 0% = 2,
03 =15, 02 = 96, 02 = 945 and so on.*! So, for example, T~1 Zthl v} exhibits
96 times as much variability as the sample mean in any sample size! Or put
another way, the variance of the sample mean is 0.1 when 7" = 10, but it takes a
sample of size 960 to achieve the same precision for 71 ZtT:1 v, These simple
calculations indicate that the convergence of sample moments is very sensitive
to the form of the nonlinearity. This example is not without practical relevance
either. Polynomial powers naturally occur in the population moment conditions
used in many studies, and these calculations provide a simple intuition behind
the findings in a number of the simulation studies listed in Table 6.2.

We now turn our attention to a simulation study of GMM in stochastic
volatility models which involves moment conditions of the type in (6.28) and
also HAC estimators. Andersen and Sgrensen (1996) consider the following
simplified version of the model in Section 1.3.5

Y = e
In(zy) = 601+ 60in(xi—1) + Osuy

40 For the purposes of this discussion, we exclude SVARMA which is not considered in any
of the simulation studies listed in Table 6.2.

41 For the standard normal distribution, E[vf] = (k — 1)(k — 3)...3.1.; see Johnson and
Kotz (1970) [p.47].
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where (e, u;) ~ i.i.d.N(0, I5).*? Note that this version of the model is used both
to generate the data and is also the assumed specification for the estimation.
Therefore, there are only three parameters to be estimated: 6 = (0, 6,,03)". Tt
can be recalled from Section 1.3.5 that the normality assumptions yields an infi-
nite number of possible population moment conditions. Andersen and Sgrensen
(1996) consider estimation based on various permutations of the moment con-
ditions but for our purposes here it is sufficient to concentrate on just four
choices. Below we just list the moments of y; involved; the exact form of the
associated population moment condition can then be deduced from (1.48).43 To
this end, we define mi = |y|*, for i = 1,2,3,4; mi = E[|ysy—il], for i = 4 + 5,
Jj=1,2...10; mi = E[y?y?_,], for i = 14+ j, j = 1,2,...10. The four sets of
population moment condition are then given by:

M5 : ml, m2, m4, m6, mlb

M9 : ml—mb, m7, m9, ml6, ml8
M14 : ml—m4, mb6, m8 ml0, m12, m14, m15, m17, m19, m21, m23
M24 : ml—m24

Andersen and Sgrensen (1996) report results for the two- and three-step estima-
tors.** They consider different choices of 6 for the parameter generation, and
sample sizes of T' = 500, 1000, 2000, 4000 and 10, 000. While the latter may seem
large numbers, they are not uncommon in the the high frequency data to which
these models are applied. In spite of these sizes, Andersen and Sgrensen (1996)
report that their numerical algorithm experienced non-convergence problems in
the smaller sample sizes; further details of the source of these problems and how
they were addressed can be found in their paper.

Andersen and Sgrensen (1996) report results for various choices of kernel
and bandwidth in HAC estimator. We begin, as they do, with the case in which
a Bartlett kernel is used with by = 10. In terms of our four questions above,
the results suggest the following:

1. Bias: There are quite substantial biases at T' = 500 but tend to disappear
quickly as the sample size increases. The bias tends to be smallest with
M9 at T'= 2000 and with M14 for the larger samples.

2. C.1.7s: For T > 1000, the empirical coverage is reasonably close to the
nominal value if M9 or M 14 are used. However, if M24 is used then the
studentized coefficient — that is (OATZ - Goyi)/s.e.(éTﬂv) — exhibits a marked
leftward skewness even at T' = 10, 000.

3. Jr : The results reveal an interesting pattern. As the number of moment
conditions increase the distribution of Jr shifts to the right, and, for a
given set of moment conditions, the distribution shifts to the left as T

42 This model can be obtained using the following restrictions in (1.45)—(1.47): y(7¢) = v,
() =, de=1,n=02-1,a=0,8=-1,7y=0,0=01,( =03 and p=0.

43 Note that in this simple model w¢(6) = ys.

44 The “three-step” estimator is the iterated estimator with Inngaz = 3.
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increases. However, there is little evidence that the statistic is converging
to its asymptotic distribution even at these sample sizes. The empirical
size is closest to its nominal value at T' = 1000, T' = 2000 and 7" = 4000
for respectively M9, M14 and M24. If fewer moment conditions are used
than this prescription at a given sample size then the test rejects too
frequently; if too many are used then the test rejects too infrequently.

4. Iteration: There is no systematic difference between the two- and three-
step estimators.

In qualitative terms, these results are broadly similar for various types 