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Warning: a few of the tables and figures are reused in later chapters. This can mess
up the references, so that the text refers to a table/figure in another chapter. No worries:
it is really the same table/figure. Still, I promise to fix this some day.
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Chapter 1

Review of Statistics

Reference: Verbeek (2012) Appendix B
More advanced material is denoted by a star (�). It is not required reading.

1.1 Random Variables and Distributions

1.1.1 The Distribution of a Random Variable

A univariate distribution of a random variable x describes the probability of different
values. If f .x/ is the probability density function (pdf), then the probability that x is
between A and B is calculated as the area under the density function from A to B

Pr .A < x � B/ D
Z B

A

f .x/dx: (1.1)

See Figure 1.1 for illustrations of normal (gaussian) distributions.

Remark 1.1 If x � N.�; �2/, then the probability density function is

f .x/ D 1p
2��2

e�
1
2.
x��
� /

2

:

This is a bell-shaped curve centred on the mean � and where the standard deviation �

determines the “width” of the curve.

The probability that x � B (that is, �1 < x � B) is measured by the cumulative

distribution function, cdf.B/. For instance, if x has a N.0; 1/ distribution, then Pr.x �
�1:645/ D 0:05 and Pr.x � 0/ D 0:5. Once you have the cdf, you can calculate the
probability of B < x as 1 � cdf.B/. See Figure 1.2 for an illustration.
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4 3 2 1 0 1 2 3 4
x

0.2

0.4
Pr(2 < x 3) =
6.2%

N(0,2) distribution
N(0,2)

4 3 2 1 0 1 2 3 4
x

0.2

0.4
Pr(2 < x 3) =
16.1%

Normal distributions: different means
N(0,2)
N(1,2)

4 3 2 1 0 1 2 3 4
x

0.2

0.4
Pr(2 < x 3) =
2.1%

Normal distributions: different variances
N(0,2)
N(0,1)

Figure 1.1: A few different normal distributions

If we invert the cdf, then we get the quantiles of the random variable. For instance,
the 0.05th quantile of a N.0; 1/ variable is �1:645, while the 0.5th quantile (also called
the median) is 0.

1.1.2 The Joint Distribution of Several Random Variables

A bivariate distribution of the random variables x and y contains the same information
as the two respective univariate distributions, but also information on how x and y are
related. Let h .x; y/ be the joint density function, then the probability that x is between
A and B and y is between C and D is calculated as the volume under the surface of the
density function

Pr .A < x � B and C < y � D/ D
Z B

A

Z D

C

h.x; y/dydx: (1.2)

See Figure 1.3 for an example.
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3 2 1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

Pr(x 1) = 0.16

Pdf of N(0,1)

3 2 1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

Pr(x 0.5) = 0.69

Pdf of N(0,1)

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0 Cdf of N(0,1)

Figure 1.2: Pdf and cdf of N(0,1)

A joint normal distributions is completely described by the means and the covariance
matrix "

x

y

#
� N

 "
�x

�y

#
;

"
�2x �xy

�xy �2y

#!
; (1.3)

where �x and �y denote means of x and y, �2x and �2y denote the variances of x and y
and �xy denotes their covariance. Sometimes alternative notations are used: E x for the
mean, Std.x/ for the standard deviation, Var.x/ for the variance and Cov.x; y/ for the
covariance. See Figure 31.2 for an example.

Clearly, if the covariance �xy is zero, then the variables are (linearly) unrelated to
each other. Otherwise, information about x can help us to make a better guess of y. The
correlation of x and y is defined as

�xy D �xy

�x�y
: (1.4)

See Figure 31.2 for an example.
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If two random variables happen to be independent of each other, then the joint density
function is just the product of the two univariate densities (here denoted f .x/ and k.y/)

h.x; y/ D f .x/ k .y/ if x and y are independent. (1.5)

This is useful in many cases, for instance, when we construct likelihood functions for
maximum likelihood estimation.

y
1

0
1

x
1

0
1

0.1

0.2

Pr(0 < x 1 and 1 < y 2) = 5.4%

Bivariate normal distribution, corr =0.8

Figure 1.3: Density function bivariate normal distribution

1.1.3 Conditional Distributions�

If h .x; y/ is the joint density function and f .x/ the (marginal) density function of x, then
the conditional density function is

g.yjx/ D h.x; y/=f .x/: (1.6)

Notice that the conditional mean can be interpreted as the best guess of y given that we
know x. Similarly, the conditional variance can be interpreted as the variance of the
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y
1 0 1

x
1

0
1

0.1

0.2corr = 0.1

Bivariate normal distribution

y
1 0 1

x
1

0
1

0.1

0.2

corr = 0.8

Bivariate normal distribution

Figure 1.4: Density function bivariate normal distributions

forecast error (using the conditional mean as the forecast). The conditional and marginal
distribution coincide if x and y are independent. (This follows directly from combining
(1.5) and (1.6).)

For the bivariate normal distribution (1.3) we have the distribution of y conditional on
a given value of x as

yjx � N
�
�y C �xy

�2x
.x � �x/ ; �2y �

�xy�xy

�2x

�
: (1.7)

In this case, the mean depends on x, while the variance does not. Also notice that the
variance is lower than in the unconditional distribution (we have more information). In-
dependence of x and y would here mean a zero covariance: set �xy D 0 in (1.7) to see
that the conditional and unconditional distributions coincide. See Figure 31.3 for an illus-
tration: notice how the location and the width of the conditional distribution of y changes
as a function of the correlation and the value of x.

Remark 1.2 (Relation of (1.7) to a linear regression�) Suppose you regress y D a C
bxC u. The mean in (1.7) is the same as aC bx and the variance is the same as Var.u/.

1.1.4 Illustrating a Distribution

If we know the type of distribution (uniform, normal, etc) a variable has, then the best way
of illustrating the distribution is to estimate its parameters (mean, variance and whatever
more—see below) and then draw the density function.

In case we are not sure about which distribution to use, the first step is typically to draw
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y
1 0 1

x
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Bivariate normal distribution

1 0 1
y

0.0

0.2

0.4

0.6 corr = 0.1

Conditional distribution of y
x = 0.0
x = 1.0

y
1 0 1

x
1

0
1

0.1

0.2
corr = 0.8

Bivariate normal distribution

1 0 1
y

0.0

0.2

0.4

0.6 corr = 0.8

Conditional distribution of y

Figure 1.5: Density functions of normal distributions

a histogram: it shows the relative frequencies for different bins (intervals). For instance, it
could show the relative frequencies of a variable xt being in each of the follow intervals:
-0.5 to 0, 0 to 0.5 and 0.5 to 1.0. Clearly, the relative frequencies should sum to unity (or
100%), but they are sometimes normalized so the area under the histogram has an area of
unity (as a probability density function).

Empirical Example 1.3 (Histogram of equity returns) See Figure 1.6.

1.1.5 Confidence Bands and t-tests

For a symmetric distribution, a 90% (two-sided) confidence band is constructed by finding
a critical value c such that

Pr .� � c < x � �C c/ D 0:9: (1.8)
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Monthly excess return, %
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 mean
 0.22

  std
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Monthly data on two U.S. indices, 1970:01-2021:12
Sample size: 624
Solid line: estimated normal distribution

Small growth stocks
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Monthly excess return, %

0

2

4

6
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 mean
 0.73

  std
 5.79

Large value stocks

Figure 1.6: Histogram of returns, the curve is a normal distribution with the same mean
and standard deviation as the return series

Replace 0.9 by 0.95 to get a 95% confidence band—and similarly for other confidence
levels. In particular, if x � N.�; �2/, then

Pr .� � 1:64� < x � �C 1:64�/ D 0:9 and

Pr .� � 1:96� < x � �C 1:96�/ D 0:95: (1.9)

As an example, suppose x is not a data series but a regression coefficient (denoted
Ǒ)—and we know that the standard error equals some number � . We could then construct

a 90% confidence band around the point estimate ( Ǒ) as

Œ Ǒ � 1:64�; Ǒ C 1:64��: (1.10)

In case this band does not include your null hypothesis ˇ D q (q D 0 is a commonly
used special case), then we would be 90% that the (true) regression coefficient is different
from q.

Alternatively, suppose we instead construct the 90% confidence band around q as

Œq � 1:64�; q C 1:64��: (1.11)

If this band does not include the point estimate ( Ǒ), then we are also 90% sure that the
(true) regression coefficient is different from q.
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A third way to create a confidence band is to first create a standardized variable

t D
Ǒ � q
�

; (1.12)

and then notice that we are 90% sure that t is in the interval

Œ�1:64; 1:64�: (1.13)

(Provided the null hypothesis is true, that is, ˇ D q.) This is a t -test. Testing the null
hypothesis by using (1.10), (1.11) or (1.13) should give the same answer to the question:
is there sufficient statistical evidence against the null hypothesis.

1.1.6 The Idea behind Confidence Bands and t-tests

Suppose we have estimated a parameter ( Ǒ) from a particular sample of data (observations
1 to T , say). The parameter could, for instance, be the mean or a regression coefficient.
This estimate is actually a random variable so it makes sense to construct a confidence
band as in (1.10). The reason for why it is a random variable is that another sample is
most likely to produce a different estimate—and that if we could try all possible samples
then the different estimates would have some sort of distribution. If we are willing to as-
sume that data for those other samples would be similar (scattered around the same mean,
showing the same degree of dispersion, etc) to the sample we actually study (observations
1 to T ), then we can use our sample to guess how much other samples would differ. For
instance, we can estimate the variance of the data (�2) and draw the conclusions about
how different the sample averages would be in different samples (it would have a variance
of �2=T as discussed in (1.16)).

1.1.7 Hypothesis Testing

We are here interested in testing the null hypothesis that ˇ D q, where q is a number of
interest (0.27, say). A null hypothesis is often denoted H0. (Econometric programs often
automatically report results for H0: ˇ D 0.) We here consider the alternative hypothesis
(denoted H1 or perhaps HA) that ˇ ¤ q. This leads to a two-sided (or two-tailed) test.

Typically, we assume that the estimates are normally distributed. To be able to easily
compare with printed tables of probabilities, transform to aN.0; 1/ variable. In particular,
if the true coefficient is really q, then Ǒ�q should have a zero mean (recall that E Ǒ equals

14



the true value). Dividing by the standard error (deviation) of Ǒ, we should have

t D
Ǒ � q

Std. Ǒ/
� N.0; 1/ (1.14)

In case jt j is very large (say, 1.64 or larger), then our estimate Ǒ is a very unlikely outcome
if E Ǒ (which equals the true coefficient value, ˇ) is indeed q. We therefore draw the
conclusion that the true coefficient is not q, that is, we reject the null hypothesis.

1.2 Moments

1.2.1 Mean and Standard Deviation

The mean and variance of a series are estimated as

Nx DPT
tD1xt=T and O�2 DPT

tD1 .xt � Nx/2 =T: (1.15)

The standard deviation (the square root of the variance) is the most common measure of
volatility. (Sometimes we use T � 1 in the denominator of the sample variance instead
T .) See Figure 1.6 for an illustration.

A sample mean is normally distributed if xt is normally distributed, xt � N.�; �2/.
The reason is that a linear combination of normally distributed variables is (typically)
also normally distributed. However, a sample average is often approximately normally
distributed even if the variable is not (discussed below). If xt is iid (independently and
identically distributed), then the variance of a sample mean is

Var. Nx/ D �2=T , if xt is iid. (1.16)

A sample average is (typically) unbiased, that is, the expected value of the sample
average equals the population mean, that is,

E Nx D E xt D �: (1.17)

Since sample averages are typically normally distributed in large samples, we thus have

Nx � N.�; �2=T /; (1.18)
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so we can construct a t-stat as
t D Nx � �

�=
p
T
; (1.19)

which has an N.0; 1/ distribution.
Proof. (of (1.16)–(1.17)) To prove (1.16), notice that

Var. Nx/ D Var
�PT

tD1xt=T
�

DPT
tD1 Var .xt=T /

D T Var .xt/ =T 2

D �2=T:

The first equality is just a definition and the second equality follows from the assumption
that xt and xs are independently distributed. This means, for instance, that Var.x2 C
x3/ D Var.x2/ C Var.x3/ since the covariance is zero. The third equality follows from
the assumption that xt and xs are identically distributed (so their variances are the same).
The fourth equality is a trivial simplification.

To prove (1.17)

E Nx D E
PT

tD1xt=T

DPT
tD1 E xt=T

D E xt :

The first equality is just a definition and the second equality is always true (the expectation
of a sum is the sum of expectations), and the third equality follows from the assumption
of identical distributions which implies identical expectations.

1.2.2 Skewness and Kurtosis

The skewness, kurtosis and Bera-Jarque test for normality are useful diagnostic tools.
They are

Test statistic Distribution
skewness D 1

T

PT
tD1

�
xt��
�

�3
N .0; 6=T /

kurtosis D 1
T

PT
tD1

�
xt��
�

�4
N .3; 24=T /

Bera-Jarque D T
6

skewness2 C T
24
.kurtosis � 3/2 �22:

(1.20)

16



This is implemented by using the estimated mean and standard deviation. See Figure 1.6
for an illustration.

The distributions stated on the right hand side of (1.20) are under the null hypothesis
that xt is iid N.�; �2/. The “excess kurtosis” is defined as the kurtosis minus 3. The test
statistic for the normality test (Bera-Jarque) can be compared with 4.6 or 6.0, which are
the 10% and 5% critical values of a �22 distribution.

Clearly, we can test the skewness and kurtosis by traditional t-stats as in

t D skewnessp
6=T

and t D kurtosis � 3p
24=T

; (1.21)

which both have N.0; 1/ distribution under the null hypothesis of a normal distribution.

1.2.3 Covariance and Correlation

The covariance of two variables (here x and y) is typically estimated as

O�xy D
PT

tD1 .xt � Nx/ .yt � Ny/ =T: (1.22)

(Sometimes we use T � 1 in the denominator of the sample covariance instead of T .)
The correlation of two variables is then estimated as

O�xy D O�xy
O�x O�y ; (1.23)

where O�x and O�y are the estimated standard deviations. A correlation must be between
�1 and 1. Note that covariance and correlation measure the degree of linear relation only.
This is illustrated in Figure 1.7.

Empirical Example 1.4 (Scatter plot of equity returns) See Figure 1.8.

Under the null hypothesis of no correlation—and if the data is approximately normally
distributed, then

O�p
1 � O�2

� N.0; 1=T /; (1.24)

so we can form a t-stat as
t D
p
T

O�p
1 � O�2

; (1.25)

which has an N.0; 1/ distribution.
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Figure 1.7: Example of correlations.

1.2.4 Correlations vs. Causality

Notice that a correlation between x and y does not say anything about causality. There
are several possibilities, including

.x; "/) y (1.26)

.y; u/) x

.z; u/) x and .z; "/) y

In the first case, x and some other variables (here labelled ") are indeed causing y, so
changes in x are likely to be accompanied by changes in y. The second case shows the
opposite: y is causing x. The third case is when some other variable z is driving the
correlation between x and y. However, an independent move in x (due to u) will not lead
to moves in y. This reasoning carries over to regression analysis too. In many regressions
we would like to capture the causality, although forecasting models are more focused on
the correlation per se.
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Figure 1.8: Scatter plot of two different portfolio returns

1.2.5 Correlations and the Variance of a Sample Average

The result in (1.16) that Var. Nx/ D �2=T does not hold if xt and xt�s are correlated. To
see that, consider the case when the sample has just two observations

Nx D .x1 C x2/=2 and

Var. Nx/ D .�2 C �2 C �12 C �21/=4: (1.27)

In the iid case we assume that �12 D �21 D 0, so Var. Nx/ D �2=2. In the other extreme
case of perfect correlations, �12 D �2 so the variance of the sample average is the same
as for the data (no precision is gained by averaging), Var. Nx/ D �2.

More generally, with T observations, we have

Var. Nx/ DPT
iD1
PT
jD1�ij=T

2; (1.28)

which is sum of all the elements of the covariance matrix, divided by T 2. This can be
written as

Var. Nx/ D N�
2 � N�ij
T

C N�ij ; (1.29)
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where N�2 is the average variance and N�ij the average covariance of any two observations
(xt and xt�s, say). This carries over to the variance of regression coefficients—when the
residuals are correlated (over time or over cross sectional units).

Example 1.5 (Covariance matrix with T D 2) The covariance matrix of x1 and x2 is"
�2 �12

�21 �2

#
;

if we assume that x1 and x2 have the same variance (�2). Also, notice that �12 D �21.

Example 1.6 (Var. Nx/) Assume N�2 D 1, then Var. Nx/ is

N�ij D 0 N�ij D 0:10
T D 10 W 0:1 0:19

T D 100 W 0:01 0:109

1.3 Distributions Commonly Used in Tests

1.3.1 Standard Normal Distribution, N.0; 1/

Suppose the random variable x has a N.�; �2/ distribution. Then, the the standardized

variable .x � �/=� has a standard normal distribution

t D x � �
�
� N.0; 1/: (1.30)

To see this, notice that x � � has a mean of zero and that x=� has a standard deviation
of unity. (This result is the motivation for why the confidence band (1.13) gives the same
result as (1.11).)

1.3.2 t -distribution

If we instead need to estimate � to use in (1.30), then the test statistic has tn-distribution

t D x � �
O� � tn; (1.31)

where n denotes the “degrees of freedom,” that is the number of observations minus the
number of estimated parameters. For instance, if we have a sample with T data points
and only estimate the mean, then n D T � 1.
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Figure 1.9: Probability density functions

The t-distribution has more probability mass in the tails than an N.0; 1/ distribution:.
It therefore gives a more “conservative” test (harder to reject the null hypothesis), but the
difference vanishes as the degrees of freedom (sample size) increases. See Figure 31.5
for a comparison and Table 1.1 for critical values.

Example 1.7 (t -distribution) If t D 2:0 and n D 50, then this is larger than the 10%

critical value (but not the 5% critical value) for a 2-sided test in Table 1.1.

1.3.3 Chi-square Distribution

If z � N.0; 1/, then z2 � �21, that is, z2 has a chi-square distribution with one degree of
freedom. This can be generalized in several ways. For instance, if x � N.�x; �xx/ and
y � N.�y; �yy/ and they are uncorrelated, then Œ.x ��x/=�x�2C Œ.y ��y/=�y�2 � �22.

More generally, we have

v0˙�1v � �2n, if the n � 1 vector v � N.0;˙/: (1.32)
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See Figure 31.5 for an illustration and Table 1.2 for critical values.

Example 1.8 (�22 distribution) Suppose x is a 2 � 1 vector"
x1

x2

#
� N

 "
4

2

#
;

"
5 3

3 4

#!
:

If x1 D 3 and x2 D 5, then"
3 � 4
5 � 2

#0 "
5 3

3 4

#�1 "
3 � 4
5 � 2

#
� 6:1

has a �22 distribution. Notice that 6.1 is higher than the 5% critical value (but not the 1%

critical value) in Table 1.2.

1.3.4 F -distribution

If x � �2n1 and y � �2n2 , then .x=n1/=.y=n2/ has an Fn1;n2 distribution with (n1; n2)
degrees of freedom. See Figure 31.5 for an illustration and Tables 1.3–1.4 for critical
values.

1.4 Normal Distribution of the Sample Mean

In many cases, it is unreasonable to assume that a random variable xt is normally dis-
tributed. The nice thing with a sample mean (or sample average), here denoted Nx, is that
it has very useful properties (in a reasonably large sample). This section gives a short
summary of what happens to sample means as the sample size increases (often called
“asymptotic theory”).

The law of large numbers (LLN) says that the sample mean converges to the true
population mean as the sample size goes to infinity. This holds for a very large class
of random variables, but there are exceptions. A sufficient (but not necessary) condition
for this convergence is that the sample average is unbiased (as in (1.17)) and that the
variance goes to zero as the sample size goes to infinity (as in (1.16)). (This is also called
convergence in mean square.) To see the LLN in action, see Figure 31.1.

The central limit theorem (CLT) says that
p
T Nx converges in distribution to a normal

distribution as the sample size increases. See Figure 31.1 for an illustration. This also
holds for a large class of random variables—and it is a very useful result since it allows
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Figure 1.10: Sampling distributions

us to test hypotheses by assuming that
p
T Nx is normally distributed. Most estimators

(including least squares and other methods) are effectively some kind of sample average,
so the CLT can be applied.
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1.5 Appendix: Statistical Tables

n Significance level

10% 5% 1%
10 1:81 2:23 3:17

20 1:72 2:09 2:85

30 1:70 2:04 2:75

40 1:68 2:02 2:70

50 1:68 2:01 2:68

60 1:67 2:00 2:66

70 1:67 1:99 2:65

80 1:66 1:99 2:64

90 1:66 1:99 2:63

100 1:66 1:98 2:63

Normal 1:64 1:96 2:58

Table 1.1: Critical values (two-sided test) of t distribution (different degrees of freedom)
and normal distribution.

1.6 Appendix: Data Sources

The data used in these lecture notes are from the following sources:

1. website of Kenneth French,
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

2. Datastream

3. Federal Reserve Bank of St. Louis (FRED), http://research.stlouisfed.org/fred2/

4. website of Robert Shiller, http://www.econ.yale.edu/~shiller/data.htm

5. yahoo! finance, http://finance.yahoo.com/

6. OlsenData, http://www.olsendata.com
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n Significance level

10% 5% 1%
1 2:71 3:84 6:63

2 4:61 5:99 9:21

3 6:25 7:81 11:34

4 7:78 9:49 13:28

5 9:24 11:07 15:09

6 10:64 12:59 16:81

7 12:02 14:07 18:48

8 13:36 15:51 20:09

9 14:68 16:92 21:67

10 15:99 18:31 23:21

Table 1.2: Critical values of chisquare distribution (different degrees of freedom, n).

n1 n2 �2n1=n1

10 30 50 100 300
1 4:96 4:17 4:03 3:94 3:87 3:84

2 4:10 3:32 3:18 3:09 3:03 3:00

3 3:71 2:92 2:79 2:70 2:63 2:60

4 3:48 2:69 2:56 2:46 2:40 2:37

5 3:33 2:53 2:40 2:31 2:24 2:21

6 3:22 2:42 2:29 2:19 2:13 2:10

7 3:14 2:33 2:20 2:10 2:04 2:01

8 3:07 2:27 2:13 2:03 1:97 1:94

9 3:02 2:21 2:07 1:97 1:91 1:88

10 2:98 2:16 2:03 1:93 1:86 1:83

Table 1.3: 5% Critical values of Fn1;n2 distribution (different degrees of freedom).
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n1 n2 �2n1=n1

10 30 50 100 300
1 3:29 2:88 2:81 2:76 2:72 2:71

2 2:92 2:49 2:41 2:36 2:32 2:30

3 2:73 2:28 2:20 2:14 2:10 2:08

4 2:61 2:14 2:06 2:00 1:96 1:94

5 2:52 2:05 1:97 1:91 1:87 1:85

6 2:46 1:98 1:90 1:83 1:79 1:77

7 2:41 1:93 1:84 1:78 1:74 1:72

8 2:38 1:88 1:80 1:73 1:69 1:67

9 2:35 1:85 1:76 1:69 1:65 1:63

10 2:32 1:82 1:73 1:66 1:62 1:60

Table 1.4: 10% Critical values of Fn1;n2 distribution (different degrees of freedom).
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0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-3.0 0:0013 0:0014 0:0014 0:0015 0:0015 0:0016 0:0016 0:0017 0:0018 0:0018

-2.9 0:0019 0:0019 0:0020 0:0021 0:0021 0:0022 0:0023 0:0023 0:0024 0:0025

-2.8 0:0026 0:0026 0:0027 0:0028 0:0029 0:0030 0:0031 0:0032 0:0033 0:0034

-2.7 0:0035 0:0036 0:0037 0:0038 0:0039 0:0040 0:0041 0:0043 0:0044 0:0045

-2.6 0:0047 0:0048 0:0049 0:0051 0:0052 0:0054 0:0055 0:0057 0:0059 0:0060

-2.5 0:0062 0:0064 0:0066 0:0068 0:0069 0:0071 0:0073 0:0075 0:0078 0:0080

-2.4 0:0082 0:0084 0:0087 0:0089 0:0091 0:0094 0:0096 0:0099 0:0102 0:0104

-2.3 0:0107 0:0110 0:0113 0:0116 0:0119 0:0122 0:0125 0:0129 0:0132 0:0136

-2.2 0:0139 0:0143 0:0146 0:0150 0:0154 0:0158 0:0162 0:0166 0:0170 0:0174

-2.1 0:0179 0:0183 0:0188 0:0192 0:0197 0:0202 0:0207 0:0212 0:0217 0:0222

-2.0 0:0228 0:0233 0:0239 0:0244 0:0250 0:0256 0:0262 0:0268 0:0274 0:0281

-1.9 0:0287 0:0294 0:0301 0:0307 0:0314 0:0322 0:0329 0:0336 0:0344 0:0351

-1.8 0:0359 0:0367 0:0375 0:0384 0:0392 0:0401 0:0409 0:0418 0:0427 0:0436

-1.7 0:0446 0:0455 0:0465 0:0475 0:0485 0:0495 0:0505 0:0516 0:0526 0:0537

-1.6 0:0548 0:0559 0:0571 0:0582 0:0594 0:0606 0:0618 0:0630 0:0643 0:0655

-1.5 0:0668 0:0681 0:0694 0:0708 0:0721 0:0735 0:0749 0:0764 0:0778 0:0793

-1.4 0:0808 0:0823 0:0838 0:0853 0:0869 0:0885 0:0901 0:0918 0:0934 0:0951

-1.3 0:0968 0:0985 0:1003 0:1020 0:1038 0:1056 0:1075 0:1093 0:1112 0:1131

-1.2 0:1151 0:1170 0:1190 0:1210 0:1230 0:1251 0:1271 0:1292 0:1314 0:1335

-1.1 0:1357 0:1379 0:1401 0:1423 0:1446 0:1469 0:1492 0:1515 0:1539 0:1562

-1.0 0:1587 0:1611 0:1635 0:1660 0:1685 0:1711 0:1736 0:1762 0:1788 0:1814

-0.9 0:1841 0:1867 0:1894 0:1922 0:1949 0:1977 0:2005 0:2033 0:2061 0:2090

-0.8 0:2119 0:2148 0:2177 0:2206 0:2236 0:2266 0:2296 0:2327 0:2358 0:2389

-0.7 0:2420 0:2451 0:2483 0:2514 0:2546 0:2578 0:2611 0:2643 0:2676 0:2709

-0.6 0:2743 0:2776 0:2810 0:2843 0:2877 0:2912 0:2946 0:2981 0:3015 0:3050

-0.5 0:3085 0:3121 0:3156 0:3192 0:3228 0:3264 0:3300 0:3336 0:3372 0:3409

-0.4 0:3446 0:3483 0:3520 0:3557 0:3594 0:3632 0:3669 0:3707 0:3745 0:3783

-0.3 0:3821 0:3859 0:3897 0:3936 0:3974 0:4013 0:4052 0:4090 0:4129 0:4168

-0.2 0:4207 0:4247 0:4286 0:4325 0:4364 0:4404 0:4443 0:4483 0:4522 0:4562

-0.1 0:4602 0:4641 0:4681 0:4721 0:4761 0:4801 0:4840 0:4880 0:4920 0:4960

Table 1.5: Values of the standard normal distribution function at x where x is the sum of
the values in the first column and the first row.
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0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0:5000 0:5040 0:5080 0:5120 0:5160 0:5199 0:5239 0:5279 0:5319 0:5359

0.1 0:5398 0:5438 0:5478 0:5517 0:5557 0:5596 0:5636 0:5675 0:5714 0:5753

0.2 0:5793 0:5832 0:5871 0:5910 0:5948 0:5987 0:6026 0:6064 0:6103 0:6141

0.3 0:6179 0:6217 0:6255 0:6293 0:6331 0:6368 0:6406 0:6443 0:6480 0:6517

0.4 0:6554 0:6591 0:6628 0:6664 0:6700 0:6736 0:6772 0:6808 0:6844 0:6879

0.5 0:6915 0:6950 0:6985 0:7019 0:7054 0:7088 0:7123 0:7157 0:7190 0:7224

0.6 0:7257 0:7291 0:7324 0:7357 0:7389 0:7422 0:7454 0:7486 0:7517 0:7549

0.7 0:7580 0:7611 0:7642 0:7673 0:7704 0:7734 0:7764 0:7794 0:7823 0:7852

0.8 0:7881 0:7910 0:7939 0:7967 0:7995 0:8023 0:8051 0:8078 0:8106 0:8133

0.9 0:8159 0:8186 0:8212 0:8238 0:8264 0:8289 0:8315 0:8340 0:8365 0:8389

1.0 0:8413 0:8438 0:8461 0:8485 0:8508 0:8531 0:8554 0:8577 0:8599 0:8621

1.1 0:8643 0:8665 0:8686 0:8708 0:8729 0:8749 0:8770 0:8790 0:8810 0:8830

1.2 0:8849 0:8869 0:8888 0:8907 0:8925 0:8944 0:8962 0:8980 0:8997 0:9015

1.3 0:9032 0:9049 0:9066 0:9082 0:9099 0:9115 0:9131 0:9147 0:9162 0:9177

1.4 0:9192 0:9207 0:9222 0:9236 0:9251 0:9265 0:9279 0:9292 0:9306 0:9319

1.5 0:9332 0:9345 0:9357 0:9370 0:9382 0:9394 0:9406 0:9418 0:9429 0:9441

1.6 0:9452 0:9463 0:9474 0:9484 0:9495 0:9505 0:9515 0:9525 0:9535 0:9545

1.7 0:9554 0:9564 0:9573 0:9582 0:9591 0:9599 0:9608 0:9616 0:9625 0:9633

1.8 0:9641 0:9649 0:9656 0:9664 0:9671 0:9678 0:9686 0:9693 0:9699 0:9706

1.9 0:9713 0:9719 0:9726 0:9732 0:9738 0:9744 0:9750 0:9756 0:9761 0:9767

2.0 0:9772 0:9778 0:9783 0:9788 0:9793 0:9798 0:9803 0:9808 0:9812 0:9817

2.1 0:9821 0:9826 0:9830 0:9834 0:9838 0:9842 0:9846 0:9850 0:9854 0:9857

2.2 0:9861 0:9864 0:9868 0:9871 0:9875 0:9878 0:9881 0:9884 0:9887 0:9890

2.3 0:9893 0:9896 0:9898 0:9901 0:9904 0:9906 0:9909 0:9911 0:9913 0:9916

2.4 0:9918 0:9920 0:9922 0:9925 0:9927 0:9929 0:9931 0:9932 0:9934 0:9936

2.5 0:9938 0:9940 0:9941 0:9943 0:9945 0:9946 0:9948 0:9949 0:9951 0:9952

2.6 0:9953 0:9955 0:9956 0:9957 0:9959 0:9960 0:9961 0:9962 0:9963 0:9964

2.7 0:9965 0:9966 0:9967 0:9968 0:9969 0:9970 0:9971 0:9972 0:9973 0:9974

2.8 0:9974 0:9975 0:9976 0:9977 0:9977 0:9978 0:9979 0:9979 0:9980 0:9981

2.9 0:9981 0:9982 0:9982 0:9983 0:9984 0:9984 0:9985 0:9985 0:9986 0:9986

Table 1.6: Values of the standard normal distribution function at x where x is the sum of
the values in the first column and the first row.
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Chapter 2

Least Squares Estimation

Reference: Verbeek (2012) 2 and 4; Greene (2018) 2-4.
More advanced material is denoted by a star (�). It is not required reading.

2.1 Least Squares: The Optimization Problem and Its Solution

2.1.1 Simple Regression

The simplest regression model is

yt D ˇ0 C ˇ1xt C ut , where Eut D 0 and Cov.xt ; ut/ D 0; (2.1)

where we can observe (have data on) the dependent variable yt and the regressor xt but
not the residual ut . In principle, the residual should account for all the movements in
yt that we cannot explain by xt . The subscript t refers to observation t , which could
represent period t (when data is a time series) or investor t (when data is a cross-section).
In the latter case, it is common to instead use i as subscript.

Remark 2.1 (On notation) These notes sometimes use alternative notations for the re-

gression equation, for instance, yt D ˛ C ˇxt C ut (as is typical in CAPM regressions)

or yi D aC bxi C ui .

Notice the two very important assumptions: (i) the mean of the residual is zero; and
(ii) the residual is not correlated with the regressor, xt . This basically says that the residual
is pure noise. In contrast, if the average of ut was non-zero, then ˇ0 C ˇ1xt would get
the general level of yt wrong. Also, if xt and ut were correlated, then the best guess of
yt based on xt would not be ˇ0 C ˇ1xt .
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Figure 2.1: Example of OLS

Suppose you do not know ˇ0 or ˇ1, and that you have a sample of data: yt and xt for
t D 1; :::; T . The LS estimator of ˇ0 and ˇ1 minimizes the loss functionPT

tD1.yt � b0 � b1xt/2 D .y1 � b0 � b1x1/2 C .y2 � b0 � b1x2/2 C :::: (2.2)

by choosing b0 and b1 to make the loss function value as small as possible. The objective
is thus to pick values of b0 and b1 in order to make the model fit the data as closely as
possible—where close is taken to be a small variance of the unexplained part (the resid-
ual). See Figures 2.1–2.2 for illustrations. (Least squares is only one of many possible
ways to estimate regression coefficients. We will discuss other methods later on.)

Remark 2.2 Note that ˇi is the true (unobservable) value which we estimate to be Ǒi .
Whereas ˇi is an unknown (deterministic) number, Ǒi is a random variable since it is

calculated as a function of the random sample of yt and xt . We use bi as an argument

in the loss function (so we contemplate different values of bi ) —and the optimal value is

clearly Ǒi .

Remark 2.3 (First order condition for minimizing a differentiable function). We want

to find the value of b in the interval blow � b � bhigh, which makes the value of the

differentiable function f .b/ as small as possible. The answer is blow , bhigh, or a value of

b where df .b/=db D 0. See Figure 2.3.
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The first order conditions for a minimum are that the derivatives of this loss function
with respect to b0 and b1 should be zero. Notice that

@

@b0
.yt � b0 � b1xt/2 D �2.yt � b0 � b1xt/1 (2.3)

@

@b1
.yt � b0 � b1xt/2 D �2.yt � b0 � b1xt/xt : (2.4)

Let . Ǒ0; Ǒ1/ be the values of .b0; b1/ where the derivatives are zero (that is, . Ǒ0; Ǒ1/ are
the optimal values)

@

@ˇ0

PT
tD1.yt � Ǒ0 � Ǒ1xt/2 D �2

PT
tD11.yt � Ǒ0 � Ǒ1xt/ D 0 (2.5)

@

@ˇ1

PT
tD1.yt � Ǒ0 � Ǒ1xt/2 D �2

PT
tD1xt.yt � Ǒ0 � Ǒ1xt/ D 0; (2.6)

which are two equations in two unknowns ( Ǒ0 and Ǒ1), which must be solved simultane-
ously. These equations show that both the constant and xt should be orthogonal to the fit-
ted residuals, Out D yt� Ǒ0� Ǒ1xt . This is indeed a defining feature of LS and can be seen
as the sample analogues of the assumptions in (2.1) that Eut D 0 and Cov.xt ; ut/ D 0.
To see this, note that (2.5) says that the sample average of Out should be zero. Similarly,
(2.6) says that the sample cross moment of Out and xt (that is,

PT
tD1 Outxt=T ) should also

be zero, which implies that the sample covariance is zero as well since Out has a zero
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Figure 2.3: Quadratic loss function. Subfigure a: 1 coefficient; Subfigure b: 2 coefficients

sample mean (see Remark 2.4).

Remark 2.4 (Cross moments and covariance) A covariance is defined as

Cov.x; y/ D EŒ.x � E x/.y � Ey/�

D E.xy � x Ey � y E x C E x Ey/

D E xy � E x Ey � Ey E x C E x Ey

D E xy � E x Ey:

If E x D 0 or Ey D 0, then Cov.x; y/ D E xy. When x D y, then we get Var.x/ D
E x2 � .E x/2. These results hold for sample moments too.

When the means of y and x are zero, then we know that intercept is zero (ˇ0 D 0). In
this case, (2.6) with Ǒ0 D 0 immediately givesPT

tD1xtyt D Ǒ1
PT

tD1xtxt or

Ǒ
1 D

PT
tD1 xtyt=TPT
tD1 xtxt=T

: (2.7)

In this case, the coefficient estimator is the sample covariance (recall: means are zero) of
yt and xt , divided by the sample variance of the regressor xt (this statement is actually
true even if the means are not zero and a constant is included on the right hand side—just
more tedious to show it).
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Figure 2.4: Example of OLS estimation

Empirical Example 2.5 (CAPM regressions) See Table 2.1 and Figure 2.5 for CAPM

regressions for two industry portfolios. The betas clearly differ.

HiTec Utils

constant �0:07 0:24

.�0:54/ .1:75/

market return 1:24 0:51

.36:79/ .13:53/

R2 0:75 0:32

obs 624 624

Table 2.1: CAPM regressions, monthly returns, %, US data 1970:01-2021:12. Numbers
in parentheses are t-stats.

Example 2.6 (Simple regression) Consider the simple regression model (PSLS1). Sup-

pose we have the following data

t x y

1 �1 �1:5
2 0 �0:6
3 1 2:1
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To calculate the LS estimate according to (2.7) we note thatXT

tD1 xtxt D .�1/
2 C 02 C 11 D 2 andXT

tD1 xtyt D .�1/.�1:5/C 0.�0:6/C 1 � 2:1 D 3:6

This gives
Ǒ
1 D 3:6

2
D 1:8:

The fitted residuals are264 Ou1Ou2
Ou3

375 D
264�1:5�0:6
2:1

375 � 1:8
264�10
1

375 D
264 0:3

�0:6
0:3

375 :
The fitted residuals indeed obey the first order condition (2.6) sinceXT

tD1 xt Out D .�1/ � 0:3C 0.�0:6/C 1 � 0:3 D 0:

See Figure 2.4 for an illustration.

Example 2.7 Using the same data as in Example 2.6 we can also calculate the sums of

squared residuals for different values of the slope coefficient. With ˇ1 D 1:6 we get

t ut u21

1 �1:5 � 1:6 � .�1/ D 0:1 0:01

2 �0:6 � 1:6 � 0 D �0:6 0:36

3 2:1 � 1:6 � 1 D 0:5 0:25

sum 0 0:62

With ˇ D 1:8 and ˇ D 2:0 we instead get

t ut u21

1 �1:5 � 1:8 � .�1/ D 0:3 0:09

2 �0:6 � 1:8 � 0 D �0:6 0:36

3 2:1 � 1:8 � 1 D 0:3 0:09

sum 0 0:54
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Figure 2.5: Scatter plot against market return

t ut u21

1 �1:5 � 2:0 � .�1/ D 0:5 0:25

2 �0:6 � 2:0 � 0 D �0:6 0:36

3 2:1 � 2:0 � 1 D 0:1 0:01

sum 0 0:62

Among these alternatives, ˇ D 1:8 has the lowest sum of squared residuals (it is actually

the optimum). See Figure 2.4.

2.1.2 Multiple Regression

All the previous results still hold in a multiple regression—with suitable reinterpretations
of the notation.

Consider the linear model

yt D x1tˇ1 C x2tˇ2 C � � � C xktˇk C ut
D x0tˇ C ut ; (2.8)

where yt and ut are scalars, xt a k�1 vector, and ˇ is a k�1 vector of the true coefficients.
In this expression, one of the elements of xt is typically a constant equal to one (and the
intercept is its coefficient).
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Remark 2.8 (On notation) These notes typically denote a vector of regression coefficients

by ˇ. The distinction from the yt D ˛ C ˇxt C ut notation sometimes used for simple

regressions should be clear from the context.

Least squares minimizes the sum of the squared fitted residualsPT
tD1.yt � x0tb/2; (2.9)

by choosing the vector b. The first order conditions (zero derivatives) hold at the (optimal)
values Ǒ, and can then be written

0kx1 D
PT

tD1xt.yt � x0t Ǒ/ or
PT

tD1xtyt D
PT

tD1xtx
0
t
Ǒ: (2.10)

Solve this as
Ǒ D

�PT
tD1xtx

0
t

��1PT
tD1xtyt : (2.11)

If the regressors are orthogonal (for instance, ˙x1tx2t D 0) then the results from the
multiple regression (2.31) are the same as those from a series of simple regressions: yt
regressed on x1t , yt regressed on x2t , etc. (This is easy to see since in this case ˙xtx0t is
a diagonal matrix which carries over to the inverse.) This is an unlikely case, unless the
regressors have been pre-processed to indeed be orthogonal.

Remark 2.9 (Matrix notation�) Let X be a T � k matrix where row t is filled with the

elements of xt and let Y be a T � 1 where element t is yt . Then, X 0X D ˙T
tD1xtx0t and

X 0Y D ˙T
tD1xtyt , so (2.11) can also be written Ǒ D .X 0X/�1X 0Y .

Example 2.10 (OLS with 2 regressors) With 2 regressors (k D 2) denoted x1t and x2t ,

xtyt D
"
x1tyt

x2tyt

#
and xtx0t D

"
x1t

x2t

# h
x1t x2t

i
D
"
x1tx1t x1tx2t

x2tx1t x2tx2t

#
:

This means that (2.10) is"
0

0

#
DPT

tD1

"
x1t.yt � x1t Ǒ1 � x2t Ǒ2/
x2t.yt � x1t Ǒ1 � x2t Ǒ2/

#

and (2.11) is " Ǒ
1

Ǒ
2

#
D
 PT

tD1

"
x1tx1t x1tx2t

x2tx1t x2tx2t

#!�1PT
tD1

"
x1tyt

x2tyt

#
:

36



Example 2.11 (OLS with constant and one more regressor) In Example 2.10, let x1t D 1.

The first order conditions are then"
0

0

#
DPT

tD1

"
yt � Ǒ1 � x2t Ǒ2

x2t.yt � Ǒ1 � x2t Ǒ2/

#
:

The first line implies that Ǒ1 D Nyt � Nx2t Ǒ2 (since dividing 0 by T is still 0). Using this

in the second line to replace Ǒ1 and noticing that it does not matter if the term outside

the parenthesis is x2t or x2t � Nx2t (since the term in parenthesis is zero on average) gives

˙.x2t � Nx2t/Œ.yt � Nyt/ � .x2t � Nx2t/ Ǒ2� D 0. We can then solve as Ǒ2 D ˙.x2t �
Nx2t/.yt � Nyt/=˙.x2t � Nx2t/2, which is the sample covariance of x2t and yt divided by the

sample variance of x2t (divide both numerator and denominator by T to see this).

Example 2.12 (Regression with an intercept and slope) Suppose we have the following

data: 264y1y2
y3

375 D
264�1:5�0:6
2:1

375 ; x1 D " 1�1
#
; x2 D

"
1

0

#
; and x3 D

"
1

1

#
:

This is clearly the same as in Example 2.6, except that we allow for an intercept (which

turns out to be zero in this particular example). The notation we need to solve this problem

is the same as for a general multiple regression. Therefore, calculate the following:

XT

tD1 xtx
0
t D

"
1

�1

# h
1 �1

i
C
"
1

0

# h
1 0

i
C
"
1

1

# h
1 1

i
D
"
1 �1
�1 1

#
C
"
1 0

0 0

#
C
"
1 1

1 1

#

D
"
3 0

0 2

#

XT

tD1 xtyt D
"
1

�1

#
.�1:5/C

"
1

0

#
.�0:6/C

"
1

1

#
2:1

D
"
�1:5
1:5

#
C
"
�0:6
0

#
C
"
2:1

2:1

#

D
"
0

3:6

#
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To calculate the LS estimate, notice that the inverse of the
PT

tD1 xtx0t is"
3 0

0 2

#�1
D
"
1=3 0

0 1=2

#
;

which can be verified by "
1=3 0

0 1=2

#"
3 0

0 2

#
D
"
1 0

0 1

#
:

The LS estimate is therefore

Ǒ D
�XT

tD1 xtx
0
t

��1XT

tD1 xtyt

D
"
1=3 0

0 1=2

#"
0

3:6

#

D
"
0

1:8

#
:

Remark 2.13 (The Frisch-Waugh-Lovell theorem�) Split up xt into the vectors x1t and

x2t and write (2.8) as yt D x01tˇ1 C x02tˇ2 C ut . First, regress yt on x1t and get the

residuals Qe1. Second, regress x2t on x1t and get the residuals Qx2t . Third, regress Qe1 on

Qx2t . This gives the same estimates as ˇ2 from the multiple regression of yt on both x1t
and x2t . (The proof is a straightforward reshuffling of the first order conditions, see,

for instance, Greene (2018) 3.) The perhaps most common application of this is when

x1t contains various dummy variables (for instance, for different cross-sectional units)

and x2t are the variables of key interest. It can then be convenient to apply this 3-step

approach. This is used in the fixed effects estimator for panel data.

2.1.3 Least Squares: Goodness of Fit

The quality of a regression model is often measured in terms of its ability to explain the
movements of the dependent variable.

Let Oyt be the fitted (predicted) value of yt . For instance, with (2.1) it would be Oyt D
Ǒ
0 C Ǒ1xt . If a constant is included in the regression (or the means of y and x are zero),

then a check of the goodness of fit of the model is given by the fraction of the variation in
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yt that is explained by the model

R2 D Var. Oyt/
Var.yt/

D 1 � Var. Out/
Var.yt/

; (2.12)

which can also be rewritten as the squared correlation of the actual and fitted values

R2 D Corr.yt ; Oyt/2: (2.13)

Notice that we must have constant in regression (unless both yt and xt have zero means)
for R2 to make sense.

A low variance of the residuals, Var. Out/, will be important for getting low standard
errors of the estimates ( Ǒ0; Ǒ1; :::), since signal only little “noise” in the model. (The
details are discussed in later sections.) Equation (2.12) shows that Var. Out/ and R2 are
negatively related, so it follows that a high R2 will be associated with low standard errors
of the estimates.

Example 2.14 (R2) From Example 2.6 we have Var. Out/ D 0:18 and Var.yt/ D 2:34, so

R2 D 1 � 0:18=2:34 � 0:92:

See Figure 2.4.

Proof. (of (2.12)–(2.13)) Write the regression equation as

yt D Oyt C Out ;

where hats denote fitted values. Since Oyt and Out are uncorrelated (always true in OLS—
provided the regression includes a constant), we have

Var.yt/ D Var. Oyt/C Var. Out/:

R2 is defined as the fraction of Var.yt/ that is explained by the model

R2 D Var. Oyt/
Var.yt/

D Var.yt/ � Var. Out/
Var.yt/

D 1 � Var. Out/
Var.yt/

:

Equivalently, we can rewrite R2 by noting that

Cov .yt ; Oyt/ D Cov . Oyt C Out ; Oyt/ D Var . Oyt/ :
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Use this in the denominator of R2 and multiply by Cov .yt ; Oyt/ =Var . Oyt/ D 1

R2 D Cov .yt ; Oyt/2
Var.yt/Var . Oyt/

D Corr .yt ; Oyt/2 :

To understand this result, suppose that xt has no explanatory power, so R2 should
be zero. How does that happen? Well, if xt is uncorrelated with yt , then Ǒ1 D 0. As
a consequence Oyt D Ǒ

0, which is a constant. This means that R2 in (2.12) is zero,
since the fitted residual has the same variance as the dependent variable ( Oyt captures
nothing of the movements in yt ). Similarly, R2 in (2.13) is also zero, since a constant is
always uncorrelated with anything else (as correlations measure comovements around the
means).

Remark 2.15 (R2 from simple regression�) Suppose Oyt D ˇ0Cˇ1xt , so (2.13) becomes

R2 D Cov .yt ; ˇ0 C ˇ1xt/2
Var.yt/Var.ˇ0 C ˇ1xt/ D

Cov .yt ; xt/
2

Var.yt/Var.xt/
D Corr.yt ; xt/2:

The R2 can never decrease as we add more regressors, which might make it attractive
to add more and more regressors. To avoid that, some researchers advocate using an ad
hoc punishment for many regressors, NR2 D 1� .1�R2/.T � 1/=.T � k/, where k is the
number of regressors (including the constant). This measure can be negative.

Empirical Example 2.16 (CAPM regressions) See Table 2.1 for CAPM regressions for

two industry portfolios where the R2 values clearly differ. This is seen also from the

dispersion around the regression line in Figure 2.5.

2.2 Missing Data

It is often the case that some data is missing For instance, we may not have data on
regressor 3 for observation t D 7. If data is missing in a random way, then we can simply
exclude (yt ; xt ) for the t with some missing data. In contrast, if data is missing in a non-
random way (for instance, depending on the value of yit ), then we have to apply more
sophisticated sample-selection models (not discussed in this chapter).

Remark 2.17 (Replacing missing values with 0�) Instead of excluding (yt ; xt ) for the

t with some missing data, we could set .yt ; xt/ D .0; 0k/. This would not change the

estimates, but it could lead to the wrong standard errors unless we are careful (see below

for details).
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2.3 The Distribution of Ǒ

Note that the estimated coefficients are random variables since they depend on which
particular sample that has been “drawn.” For instance, if our sample gives Ǒ1 D 0:85 and
we know that the standard deviation across samples is 0:1 then we are pretty sure that the
true value ˇ1 is not 0. In contrast, if the standard deviation across samples is 2.1, then our
result is not such an unlikely outcome even if the true value ˇ1 is 0.

It is important to remember that we always assume that there are some true (but un-
known) parameter values that would be the same across samples. The only reason why
the estimates differ across samples is that the model is not perfect: there are residuals and
they differ (randomly) across observations and thus also across different samples. See
Figure 2.6 for an illustration from a computer simulation (Monte Carlo simulation).

We usually do not have several samples, so the variation across samples is not directly
observable. However, we can (under some assumptions) use the variation within our

sample to figure out how the variation across samples ought to be. This can help us
testing hypotheses about the coefficients, for instance, that ˇ1 D 0.

To see where the uncertainty comes from, consider the simple case of only one regres-
sor and a zero constant in (2.7). Use (2.1) to substitute for yt (recall ˇ0 D 0)

Ǒ
1 D 1PT

tD1xtxt

PT
tD1xt .ˇ1xt C ut/

D ˇ1 C 1PT
tD1xtxt

PT
tD1xtut ; (2.14)

so the OLS estimate, Ǒ1, equals the true value, ˇ1, plus the sample covariance of xt and
ut divided by the sample variance of xt . Since ut is a random variable, Ǒ1 is too. Clearly,
we do not know the true value ˇ1, so this decomposition is just conceptual.

When there are several regressors (xt is a vector with k elements), then (2.14) becomes
an expression for the vector

Ǒ D ˇ C
�PT

tD1xtx
0
t

��1PT
tD1xtut ; (2.15)

where ˙xtx0t is a k � k matrix and ˙xtut is a k � 1 vector.
One of the basic assumptions in (2.1) is that the covariance of the regressor and the

residual is zero. This should hold in a very large sample (or else OLS cannot be used to
estimate ˇ1), but in a small sample it may be different from zero. Only as the sample gets
very large can we be (almost) sure that the second term in (2.14) vanishes.
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Figure 2.6: Distribution of OLS estimate, from simulation and theory

Equation (2.14) will give different values of Ǒ when we use different samples, that is
different draws of the random variables xt and yt (and thus ut ). Since the true value, ˇ,
is a fixed constant, the distribution of these estimates across samples would describe the
uncertainty we should have about the true value after having obtained a specific estimated
value. However, we cannot observe this distribution directly (we do not have a lot of
different samples). However, we can use the idea of this distribution to discuss the general
properties of OLS—and we can (with some added assumptions) provide a good estimate
of how that distribution could look like.

The first conclusion from (2.14) is that, with ut D 0 the estimate would always
be perfect. In contrast, with large movements in ut we will see large movements in Ǒ
(across samples). The second conclusion is that a small sample (small T ) will also lead
to large random movements in Ǒ1—in contrast to a large sample where the randomness
in
PT

tD1xtut=T is averaged out more effectively (should be zero in a large sample).
There are three main routes to learn more about the distribution of Ǒ: (i) set up a
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small “experiment” in the computer and simulate the distribution (Monte Carlo or boot-
strap simulations); (ii) pretend that the regressors can be treated as fixed numbers (or at
least independent of the residuals in all periods) and then assume something about the
distribution of the residuals; or (iii) use the asymptotic (large sample) distribution as an
approximation. The asymptotic distribution can often be derived, in contrast to the exact
distribution in a sample of a given size. If the actual sample is large, then the asymptotic
distribution may be a good approximation.

The simulation approach has the advantage of giving a precise answer—but the dis-
advantage of requiring a very precise question (must write computer code that is tailor
made for the particular model we are looking at, including the specific parameter values).
See Figures 2.6, 2.9 and 2.7 for examples.

In contrast, asymptotic theory give more general results—but arriving there is hard.
Treating the regressors as constants is easier—and is often good enough for illustrating
the main properties of the estimation method.

43



The typical outcome of all three approaches will (under strong assumptions) be that

Ǒ � N
�
ˇ;
�PT

tD1xtx
0
t

��1
�2
�
; (2.16)

where �2 denoted the variance of the residuals, Var.ut/.This expression allows for xt
to be a vector with k elements. Clearly, with k D 1, xt is a scalar (and x0t D xt ). In
practice, we calculate/estimate both ˙T

tD1xtxt and �2 from the available data (the latter
as the variance of the fitted residuals). See Table 2.1 for an empirical example and Figure
2.6 for an illustration of how the results depend on � and the standard deviation of xt .

Remark 2.18 (Matrix notation�) Let X be a T � k matrix where row t is filled with

the elements of xt . Then, the variance-covariance matrix in (2.16) can also be written

.X 0X/�1�2.

Remark 2.19 (Replacing missing values with 0�) If we set .yt ; xt/ D .0; 0k/ is there is

any missing value in .yt ; xt/ as suggested in Remark 2.17, then �2 in (2.16) should be

multiplied by Tb=T , where Tb is the number of observations with data (not being missing

values).

Example 2.20 (Applying (2.16)) When the regressor is just a constant (equal to one)

xt D 1, then we havePT
tD1xtx

0
t D

PT
tD11 � 10 D T so Var. Ǒ/ D �2=T:

(This is the classical expression for the variance of a sample mean.)

Example 2.21 (Applying (2.16)) When the regressor is a zero mean variable, then we

have PT
tD1xtx

0
t D Var.xt/T so Var. Ǒ/ D �2= ŒVar.xt/T � :

The variance is increasing in �2, but decreasing in both T and Var.xt/.

Example 2.22 (�Applying (2.16)) When the regressor is just a constant (equal to one)

and one variable regressor with zero mean, ft , so xt D Œ1; ft �0, then we have

PT
tD1xtx

0
t D

PT
tD1

"
1 ft

ft f 2t

#
D T

"
1 0

0 Var.ft/

#
, so

Var

 " Ǒ
1

Ǒ
2

#!
D �2

�PT
tD1xtx

0
t

��1
D
"
�2=T 0

0 �2= ŒVar.ft/T �

#
:
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Figure 2.8: Regressions: importance of error variance and variation of regressor

This is combination of the two previous examples.

Example 2.23 (Distribution of slope coefficient) From Example 2.6 we have Var. Out/ D
�2 D 0:18 and

PT
tD1xtxt D 2, so Var. Ǒ1/ D 0:18=2 D 0:09, which gives Std. Ǒ1/ D

0:3.

Example 2.24 (Covariance matrix of b1 and b2) From Example 2.12

XT

tD1 xtx
0
t D

"
3 0

0 2

#
and �2 D 0:18, then

Var

 " Ǒ
1

Ǒ
2

#!
D
"

Var. Ǒ1/ Cov. Ǒ1; Ǒ2/
Cov. Ǒ1; Ǒ2/ Var. Ǒ2/

#

D
"
1=3 0

0 1=2

#
0:18 D

"
0:06 0

0 0:09

#
:
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The standard deviations (also called standard errors) are therefore"
Std. Ǒ1/
Std. Ǒ2/

#
D
"
0:24

0:3

#
:

An alternative way of expressing the distribution (often used in conjunction with
asymptotic) theory is

p
T . Ǒ � ˇ/ � N

�
0;
�PT

tD1xtx
0
t=T

��1
�2
�
: (2.17)

This is the same as (2.16). (To see that, divide the LHS of (2.17) by
p
T . Then, the

variance on the RHS must be divided by T , which gives the same variance as in (2.16).
Then, add ˇ to the LHS, which changes the mean on the RHS to ˇ. We then have (2.16).)

2.3.1 The Distribution of Ǒ with Fixed Regressors

The assumption of fixed regressors makes a lot of sense in controlled experiments, where
we actually can generate different samples with the same values of the regressors (the
heat or whatever). It makes much less sense in econometrics. However, it is easy to
derive results for this case—and those results happen to be very similar to what asymptotic
theory gives.

The results we derive below are based on the Gauss-Markov assumptions: (a) the
residuals have zero means, (b) have constant variances and (c) are not correlated across
observations. In other words, the residuals are zero mean iid variables. (As an alter-
native to assuming fixed regressors (as we do here), it can instead be assumed that the
residuals and regressors are independent. This delivers very similar results.) We will also
assume that the residuals are normally distributed (not part of the typical Gauss-Markov
assumptions).

For notational convenience, write (2.15) as

Ǒ D ˇ C S�1xx .x1u1 C x2u2 C : : : xTuT / , where Sxx D
PT

tD1xtx
0
t : (2.18)

Since xt is assumed to be non-random, the expected value of this expression is

E Ǒ D ˇ C S�1xx .x1 Eu1 C x2 Eu2 C : : : xT EuT / D ˇ (2.19)

since we always assume that the residuals have zero means (see (2.1)). This says that
OLS is unbiased when the regressors are fixed (which does not always carry over to the
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case of stochastic regressors). The interpretation is that we can expect OLS to give (on
average) a correct answer. That is, if we could draw many different samples and estimate
the slope coefficient in each of them, then the average of those estimates would be the
correct number (ˇ). Clearly, this is something we want from an estimation method (a
method that was systematically wrong would not be very attractive).

Remark 2.25 (Linear combination of normally distributed variables.) If the random

variables zt and vt are normally distributed and independent of each other, then a C
bzt C cvt is normally distributed with a mean of a C b�z C c�v and a variance of

b2�2z C c2�2v .

Suppose ut � N.0; �2/ and the residuals are independent of each other, then (2.18)
shows that Ǒ is normally distributed. The reason is that Ǒ is just a constant (ˇ) plus a
linear combination of independent normally distributed residuals (with fixed regressors
xt and S�1xx can be treated as constants). It is straightforward to see that the mean of
this normal distribution is ˇ (the true value), since the rest is a linear combination of the
residuals—and they all have a zero mean.

Finding the variance-covariance matrix of Ǒ is just slightly more complicated. Re-
member that we treat xt as fixed numbers (“constants”) and assume that the residuals are
iid: they are uncorrelated with each other (follows from independently distributed) and
have the same variances (follows from identically distributed). We also notice that the
variance (-covariance) matrix of x1u1 equals

Var .xtut/ D xtx0t�2t : (2.20)

where �2t D Var .ut/ and where we use the fact that the vector xt is non-random.

Example 2.26 (of (2.20)) With

xt D
"
1

2

#
and �2t D 0:18, we get

Var .xtut/ D
"
1

2

# h
1 2

i
� 0:18 D

"
1 2

2 4

#
� 0:18:
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The variance of (2.18) can then be written

Var. Ǒ/ D S�1xx Var .x1u1 C x2u2 C : : : xTuT / S�1xx
D S�1xx

�
x1x

0
1�

2
1 C x2x02�22 C : : : xT x0T �2T

�
S�1xx

D S�1xx
�
x1x

0
1�

2 C x2x02�2 C : : : xT x0T �2
�
S�1xx

D S�1xx
�PT

tD1xtx
0
t

�
�2S�1xx

D S�1xx �2: (2.21)

The first line follows directly from (2.18), since ˇ is a constant. The second line follows
from assuming that the residuals are uncorrelated with each other (Cov.ui ; uj / D 0 if i ¤
j ), so all cross terms (xixj Cov.ui ; uj /) are zero. The third line follows from assuming
that the variances are the same across observations (�2i D �2j D �2). The fourth and fifth
lines are just algebraic simplifications which use the definition of Sxx.

There are three main ways of getting a low uncertainty (low Var. Ǒ/). For simplicity,
focus on the case with just one regressor. We then have the following results. First, a large
sample (T is large), decreases the S�1xx factor (since Sxx D ˙T

tD1xtx0t increases with T )
while �2 stays constant: a larger sample gives a smaller uncertainty about the estimate.
Second, large movements in the regressors (large value of Sxx D ˙T

tD1xtx0t ) should help
us estimate the link between x and y since the movements in y driven by x should then
dominate over the movements in y driven by the residual. Third, a lower volatility of the
residuals (lower �2) also gives a lower uncertainty about the estimate. See Figures 2.6
and 2.8.

A key assumption in regression analysis is that our sample is “representative” of the
population. In practice, this means that we can estimate both Sxx and �2 in (2.21) from

the data in the sample. This is the main “trick” behind using our (one and only) sample to
inform us about how the distribution of Ǒ (across samples) looks like. This is a plausible
assumption when our sample is a random draw from the population (say, 700 out of a
total of 10,000 firms). It is perhaps a stronger assumption when the sample is a time
series of data. Then we basically assume that the past (before the sample) and the future
(after the sample) will have the same structure. In case you are not willing to accept those
assumptions, the t -stats are useless for you.
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2.3.2 Multicollinearity

When the regressors in a multiple regression are highly correlated, then we have a practi-
cal problem: the standard errors of individual coefficients tend to be large, even if the R2

suggests that the regression does fairly well.
As a simple example, consider the regression

yt D ˇ1x1t C ˇ2x2t C ut ; (2.22)

where (for simplicity) the dependent variable and the regressors have zero means. In this
case, the variance (assuming iid errors) is

Var. Ǒ2/ D �2

T Var.x2t/
1

1 � Corr.x1t ; x2t/2
; (2.23)

where the new term is the (squared) correlation. If the regressors are highly correlated,
then the uncertainty about the slope coefficient is high. The basic reason is that we see
that the regressors have an effect on yt , but it is hard to tell if that effect is from regressor
one or two (since they are so similar). This can well lead to a situation where the R2 is
high and a joint test easily rejects the null hypothesis that all slopes are zero—but each
individual slope coefficient is insignificant.

More generally, in the multiple regression

yt D x0tˇ C ut ; (2.24)

it is straightforward to show that for all slope coefficients (not the intercept)

Var. Ǒi/ D �2

T Var.xit/
1

1 �R2i
; (2.25)

where R2i is the R2 value obtained from regressing xit on the other regressors (including
a constant). The last term (1=.1 � R2i /) is often called the variance inflation factor and
some regression packages report the maximum across the regressors, and a value of 10 or
larger (R2i � 0:9) is considered highly problematic. (The name variance inflation factor
is meant to indicate how much the variance increases compared to a simple regression,
assuming �2 is unchanged. In practice, the estimated �2 often change considerably.)
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Proof. (of 2.23�). Recall that for a 2 � 2 matrix we have"
a b

c d

#�1
D 1

ad � bc

"
d �b
�c a

#
:

For the regression (2.22) we get" PT
tD1x

2
1t

PT
tD1x1tx2tPT

tD1x1tx2t
PT

tD1x
2
2t

#�1
D

1PT
tD1x

2
1t

PT
tD1x

2
2t �

�PT
tD1x1tx2t

�2
" PT

tD1x
2
2t �PT

tD1x1tx2t
�PT

tD1x1tx2t
PT

tD1x
2
1t

#
:

The variance of the second slope coefficient is �2 time the lower right element of this
matrix. Multiply and divide by T to get

Var. Ǒ2/ D �2

T

PT
tD1x

2
1t=TPT

tD1
1
T
x21t
PT

tD1
1
T
x22t �

�PT
tD1

1
T
x1tx2t

�2
D �2

T

Var.x1t/
Var.x1t/Var.x2t/ � Cov.x1t ; x2t/2

D �2

T

1=Var.x2t/

1 � Cov.x1t ;x2t /2
Var.x1t /Var.x2t /

;

which is the same as (2.23).

2.4 The Distribution of Ǒ: More General Results

2.4.1 Problems with the Gauss-Markov (iid) and Normality Assumptions

The previous results on the distribution of Ǒ have several weak points—which will be
briefly discussed here.

First, the Gauss-Markov assumptions of iid residuals (constant volatility and no cor-
relation across observations) are likely to be false in many cases. These issues (het-
eroskedasticity and autocorrelation) are therefore discussed at length later on.

Second, the idea of fixed regressor is clearly just a simplifying assumption—and un-
likely to be relevant for economics and financial data. If the regressors are random vari-
ables then we typically not rule out that ut and xtCs are correlated, for instance, when
the regressors include the lagged dependent variable. This can make OLS biased in small
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samples, although the OLS estimate might converge to the true values (so OLS is “con-
sistent”) as the sample size increases.

Third, there are no particularly strong reasons for why the residuals should be nor-
mally distributed. If not, the estimates are unlikely to be normally distributed in small
samples, but may well be in large samples (due to the central limit theorem). This is
discussed in some detail below.

The next few sections introduce these issues, but later chapters will discuss them in
more detail.

2.4.2 Failure of the Gauss-Markov Assumptions

If the residuals are not iid, then we have to stop at the first line of (2.21), so

Var. Ǒ/ D S�1xx SS�1xx , where S D Var
�
˙T
tD1xtut

�
: (2.26)

The S matrix is estimated in different ways (for instance, using White’s or Newey-West’s
methods) depending on the properties of the residuals (heteroskedasticity or autocorrela-
tion).

2.4.3 Bias

If an estimation method is biased, then it produces systematically wrong (say, too low)
coefficients.

Figure 2.9 illustrates some simulation results from estimating an AR(1)

yt D ˇ0 C ˇ1yt�1 C ut (2.27)

on artificially generated samples where “data” follow

yt D 0:9yt�1 C ut , where ut is iid. (2.28)

In this case, the regressor is a (stochastic) random variable (not fixed). Figure 2.9 suggests
that the estimates are biased (not centered on the true value) in small samples.

To understand these results, recall that (2.15) says that

Ǒ D ˇ C
�PT

tD1xtx
0
t

��1PT
tD1xtut (2.29)

where ut are the true residuals. We will never observe the true residuals, so (2.29) can
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Figure 2.9: Results from a Monte Carlo experiment of LS estimation of the AR coeffi-
cient.

only be used for a conceptual discussion.
To get unbiased estimates (E Ǒ D ˇ), the second term of the right hand side of (2.29)

should have an expectation of zero. This would happen when ut and xtCs (for all s)
are independent. This is hard to guarantee when the regressors are random variables. For
instance, in the AR(1) example, then ut affects xtC1 so there is an interaction between the
numerator and denominator. This is probably most easily investigated by (Monte Carlo)
simulations. In many cases, the bias decreases rapidly as the sample size increases (see
the discussion of “consistency”).

Remark 2.27 (�Bias of AR(1)) It can be shown (see, for instance, Pesaran (2015) 14) that

a bias corrected estimate of the AR(1) coefficient can be calculated as .1CT Ǒ1/=.T �3/.

Remark 2.28 (Unbiasedness with stochastic regressors�) Ǒ1 in (2.29) is unbiased if x�
(all � in the sample, 1 � T ) does not help predict ut . If we we can write use the law of
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Figure 2.10: Results from a Monte Carlo experiment of LS estimation of the AR coeffi-
cient when data is from an ARMA process.

iterated expectations (Ex.Eujx/ D Eu) to write

E Ǒ D ˇ C Ex
�PT

tD1xtx
0
t

��1PT
tD1xt E.ut jx/;

where x here denotes the full sample of xt . If E.ut jx/ D 0 then E Ǒ D ˇ. Clearly, for an

AR(1) this does not hold since ut affects yt which is the regressor in t C 1 (xtC1).

2.4.4 Consistency

If an estimation method is inconsistent, then it produces systematically wrong (say, too
low) coefficients also in very large samples (actually, in the limit as T !1).

Figure 2.9 suggests that the problem with the AR(1) estimation vanishes as the sample
size increases. This suggests the importance of doing simulations (to understand the
properties of the estimation method)—and of using large data sets.

To get consistent estimates (which is defined as the bias and the variance of Ǒ1 go to
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zero as T ! 1), then it is enough if xt and ut (in the same period) are uncorrelated.
This is indeed the case in the AR(1) simulations discussed before. To see this from (2.29),
notice that a “law of large numbers” makes the numerator (˙T

tD1xtut=T ) converge to the
population covariance of ut and xt . (Also, the denominator converges to a fixed number,
so we can focus on the numerator.)

This means that if we knew that Cov .xt ; ut/ D 0 (in the population), then we would
also know that OLS is consistent. However, since the true errors are never observed, this
cannot be shown by empirical methods. (Recall OLS always construct fitted errors so they
are uncorrelated with the regressors.) Instead, we have to rely on theoretical arguments
that make it plausible to believe or not in consistency.

To make matters worse, it is often the case that Ǒ1 converges (as T increases), but
perhaps not to what you hoped for. As an illustration of how tricky this can be, consider
the case in Figure 2.10. It estimates the same AR(1) as in (2.27) but where the simulated
“data” now follows

yt D �yt�1 C "t , where "t D vt C �vt�1 where vt is iid. (2.30)

In this case, the residuals (here called "t ) are themselves autocorrelated. The figure clearly
shows that the OLS estimate of the slope ˇ1 in (2.27) does not converge to the true value
� as the sample sizes increases: OLS is inconsistent. The reason in this case is that "t and
yt�1 (the regressor) both depend on vt�1 so they are correlated.

An a priori argument for why OLS should be able to estimate a model consistently
thus require a careful discussion of the model properties: how can we explain that the
residuals are uncorrelated with the regressors? (Alternatively, we use an instrumental
variables technique, which is discussed later on.) This typically involves a discussion of
the following.

1. Have we excluded (omitted) some relevant regressors? If so, their effect is captured
by the residual. If these excluded regressors are correlated to some of the included
regressors, then we have a problem.

2. Do we use a lagged dependent variable as regressor at the same time as the residual
is autocorrelated? (This is the previous example.)

3. Does yt affect xt? If so a shock to the equation that explains yt also drives xt
and we get a correlation between the regressor (xt ) and the residual. A classical
case is when we try to estimate how the demand for a product depends on its price.
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In fact, such an equation actually estimates a mix between the demand and supply
elasticities.

4. Is the regressor measured without (important) errors? If not, we again have a corre-
lation between (the used) regressor and the residual.

2.4.5 Normality

If the regressors xt are fixed numbers and ut is normally distributed, then the second term
in (2.29) shows that the normality carries over to Ǒ also in small samples. Actually, we
can relax the assumption about the regressors (to allow them to be random) as long as we
assume that xt and ut are independent (the same assumption as needed for unbiasedness).
We can test the assumption of normally distributed residuals by using a Bera-Jarque test

BJ D T

6
skewness2 C T

24
.kurtosis � 3/2 ; (2.31)

which has �22 distribution under the null hypothesis that both the skewness and excess
kurtosis (that is, kurtosis�3) are zero.

Remark 2.29 (Small sample distribution with stochastic regressors�) With stochastic re-

gressors, the small-sample distribution of Ǒ is typically unknown. Even in the most re-

strictive case where ut is iid N.0; �2/ and E.ut jx�/ D 0 for all � , we can only get that

(2.16) holds conditional on the sample. More generally, Ǒ in (2.15) is a product of two

random variables, .˙T
tD1xtx0t/�1 and ˙T

tD1xtut and there is no strong reason to assume

that this product is normally distributed just because ut is.

Even if the normality test fails, we can often still hope for a (close to) normal distri-
bution of Ǒ1 if the sample is large—due to the central limit theorem. This is illustrated in
Figure 2.7. It is based on simulations where the residual is drawn from a very non-normal
distribution. For a small sample, this carries over to Ǒ1 and the t -stat for the hypothesis
that ˇ1 D 0. However, already a moderately sized sample tend to give an almost normal
distribution.

To understand the theory of this rewrite (2.29) by subtracting ˇ1 from both sides and
then multiply both sides by

p
T (2.15) says that

p
T . Ǒ1 � ˇ1/ D

�
1

T

PT
tD1xtx

0
t

��1p
T
1

T

PT
tD1xtut : (2.32)
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Figure 2.11: Distribution of OLS estimate, from simulations

The inverted term is the sample average of xtx0t which will converge to a matrix of fixed
numbers (the population mean of xtx0t ) as T ! 1. We can therefore focus on what
happens to the numerator. It is

p
T times the sample average of xtut (a vector). Under

weak conditions a central limit theorem applies to
p
T�a sample average: it typically

converges to a normal distribution.
This shows that

p
T Ǒ1 has an asymptotic normal distribution. This often holds as

a reasonable approximation also in moderately sized samples. See Figure 2.11 for an
illustration.

Actually, it turns out that this is a property of many estimators (not just OLS), ba-
sically because most estimators are some kind of sample average. The properties of this
distribution are quite similar to those that we derived by assuming that the regressors were
fixed numbers.

Based on (2.32), the key result is that the distribution of
p
T . Ǒ1 � ˇ1/ converges to a
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normal distribution (as T increases)

p
T . Ǒ � ˇ/ d! N

�
0;˙�1xx˙˙

�1
xx

�
; (2.33)

where is the probability limit of ˙T
tD1xtx0t=T (essentially, the limit of the matrix as T

increases) and ˙ D Var.˙T
tD1xtut=

p
T /. Cancelling T terms and making a somewhat

liberal interpretation gives

“ Ǒ d! ” N
�
ˇ; S�1xx SS

�1
xx

�
; (2.34)

where the covariance matrix is same as in (2.26).
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Chapter 3

Least Squares: Testing

Reference: Verbeek (2012) 2 and 4; Greene (2018) 4-5 and parts of 9 and 20.
More advanced material is denoted by a star (�). It is not required reading.

3.1 Hypothesis Testing

3.1.1 Testing a Single Coefficient: A t -test

We are interested in testing the null hypothesis (H0) that ˇ D q, where q is a number
of interest. (Econometric programs typically report results for H0: ˇ D 0.) Here, the
alternative hypothesis is that ˇ ¤ q, so this is a two-sided (also called “two-tailed”) test.

1 2 3 4 5
possible  values

0.2

0.4

0.6 10% critical values:
3±1.64 × 0.5

= 1.9

: 1.9
Std( ): 0.5
H0 : = 3
t = (1.9 3)/0.5 = 2.2

Distribution of  around H0

N(3, 0.52)

4 2 0 2 4
possible values of t-stat

0.2

0.4

10% critical values:
±1.64

t

Distribution of t-stat
N(0, 1)

Figure 3.1: Distribution of Ǒ and t-stat

58



We assume that the estimates are normally distributed, which may be a good ap-
proximation when the sample is large (because of the central limit theorem). If the null
hypothesis is true, then

Ǒ � N.q;Var. Ǒ//: (3.1)

To be able to easily compare with printed tables of probabilities, we transform to a
N.0; 1/ variable. In particular, if the true coefficient is really q, then Ǒ � q should have a
zero mean. Dividing by the standard error (deviation) of Ǒ, we should have

t D
Ǒ � q

Std. Ǒ/
� N.0; 1/ (3.2)

We reject the null hypothesis when jt j is very large, for instance, if jt j > 1:64.
This decision is driven by (a) how far Ǒ is from q; (b) how uncertain Ǒ is (as measured

by Std. Ǒ/); (c) and how we define the cut off (here 1.64). The latter is typically done by
first choosing a significance level (for instance, 10%) which defines a critical value (1.64
for the 10% significance level): reject the null hypothesis if jt j is larger that the critical
value (1:64 on the 10% level, 1:96 on the 5% level). The significance level represents the
probability, in a random sample, of falsely rejecting a null hypothesis that is actually true.
See Figure 3.1 for an illustration. A lower significance level (5%, giving a critical value of
1.96) is therefore a more conservative test (we require stronger evidence to reject the null
hypothesis), and thus run a lower risk of a false rejection. The significance level is thus a
trade-off between actually being able of rejecting the null hypothesis and sometime doing
it falsely. See Figure 3.2 for an illustration of the probabilities according to an N(0,1)
distribution.

Otherwise, when jt j is not very large (for instance, jt j), then evidence is not suffi-
cient to reject the null hypothesis. (You may compare with a court of law where the null
hypothesis is that the accused is not guilty.)

Example 3.1 (t-test) Let Ǒ D 1:9, Std. Ǒ/ D 0:5 and q D 3. Then, t D .1:9 � 3/=0:5 D
�2:2 so jt j > 1:64 and also jt j > 1:96. The null hypothesis is thus rejected at both the

10% and the 5% significance levels.

Empirical Example 3.2 (CAPM regressions for industry portfolios) See Table 3.1.

Empirical Example 3.3 (Multi-factor regressions for industry portfolios) See Table 3.2.
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x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr(x 1.96) = 2.5%
Pr( 1.96 < x 1.64) = 2.5%

N(0,1) distribution

Figure 3.2: Density function of a standard normal distribution

The p-value is a related concept. It is the lowest significance level at which we can
reject the null hypothesis: a lower number is a stronger rejection. See Figure 3.3 for an
illustration.

Example 3.4 (p-value) Continuing Example 3.1, notice that according to a N(0,1) distri-

bution, the probability of �2:2 or lower is 1.4%, so the p-value is 2.8%. We thus reject

the null hypothesis at the 10% significance level and also at the 5% significance level.

We sometimes compare with a t -distribution instead of aN.0; 1/, especially when the
sample is short. For instance, with 22 data points and two estimated coefficients (so there
are 20 degrees of freedom), the 10% critical value of a t-distribution is 1.72 (while it is
1.64 for the standard normal distribution). However, for samples of more than 30–40 data
points, the difference is trivial.

Remark 3.5 (One-sided test�) As an examples of a one-sided test let H0 W ˇ � q and

H1 W ˇ > q. Sometimes the null hypothesis is written ˇ D q, but that makes little

practical difference. We then reject the null hypothesis at the 10% significance level if t >

1:28 which is the 0.90 quantile of a N.0; 1/ distribution. Conversely, when H0 W ˇ � q
and H1 W ˇ < q, then we reject the null hypothesis if t < �1:28. Since 1.28 is the 20%

critical value in a two-sided test, we can actually use a two sided test (for instance, from

a regression package) to also do a one-sided test: (a) if we reject the null hypothesis on

the 20% level in a double sided test; (b) and the sign is right; then (c) this is a rejection

on the 10% level in a one-sided test.
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: 1.9
Std( ): 0.5
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t = (1.9 3)/0.5 = 2.2

Distribution of t-stat
N(0, 1)
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possible values of t-stat
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0.4

p-value:
2 × 1.4% = 2.8%

t

Calculating the p-value
N(0, 1)

Figure 3.3: Calculating the p-value

3.1.2 Confidence Bands

A significance level of 10% means that there is (if the null hypothesis is true) a 90%
probability that the t value in (3.2) is within the interval (band) (�1:64; 1:64), that is,

Pr.�1:64 � t � 1:64/ D 90%: (3.3)

The t -test discussed above rejects the null hypothesis (ˇ D q) when t is outside this
confidence band. Notice that

t is outside Œ�1:64; 1; 64� ” (3.4)
Ǒ is outside Œq � 1:64Std. Ǒ/; q C 1:64Std. Ǒ/� and (3.5)

q is outside Œ Ǒ � 1:64Std. Ǒ/; Ǒ C 1:64Std. Ǒ/�: (3.6)

The interval in (3.5) is a 90% confidence band of ˇ centered on the null hypothesis, while
the confidence band in (3.6) is centered on the point estimate. These are alternative ways
of doing a hypothesis test—and are often used to provide more information than just a
reject/no reject decision. For instance, we are 90% sure that the true ˇ value is within the
band centered around the point estimate. See Figures 3.1 and 3.4.

Proof. (that t and Ǒ are outside their confidence bands at the same time) For Ǒ to be
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HiTec Utils

constant �0:07 0:24

.�0:54/ .1:75/

market return 1:24 0:51

.36:79/ .13:53/

R2 0:75 0:32

Autocorr 0:38 0:97

White 0:03 0:00

All slopes 0:00 0:00

obs 624 624

Table 3.1: CAPM regressions, monthly returns, %, US data 1970:01-2021:12. Numbers
in parentheses are t-stats. Autocorr is the p-value for no autocorrelation; White is the
p-value for homoskedasticity; All slopes is the p-value for all slope coefficients being
zero.

outside the band we must have

Ǒ < q � 1:64Std. Ǒ/ or Ǒ > q C 1:64Std. Ǒ/:

Rearrange this by subtracting q from both sides of the inequalities and then divide both
sides by Std. Ǒ/

Ǒ � q
Std. Ǒ/

< �1:64 or
Ǒ � q

Std. Ǒ/
> 1:64:

Example 3.6 (t-test and confidence band around q) With Std. Ǒ/ D 0:5 and q D 3, the

90% confidence band is 3˙1:64�0:5, that is, Œ2:18; 3:82�. Notice that Ǒ D 1:90 is outside

this band, so we reject the null hypothesis. Equivalently, t D .1:9 � 3/=0:5 D �2:2 is

outside the band Œ�1:64; 1:64�.

Example 3.7 (t-test and confidence band around Ǒ) With Std. Ǒ/ D 0:5 and Ǒ D 1:9, the

90% confidence band is 1:9˙1:64�0:5, that is, Œ1:08; 2:72�. Notice that q D 3 is outside

this band, so we reject the null hypothesis.

3.1.3 Power and Size�

The size is the probability of rejecting a true H0. It should be low. Provided you use
a valid test (correct standard error, etc), the size is the significance level you have cho-
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HiTec Utils

constant 0:12 0:13

.1:06/ .1:00/

market return 1:13 0:59

.35:97/ .16:64/

SMB 0:21 �0:20
.4:15/ .�3:97/

HML �0:52 0:31

.�10:75/ .5:35/

R2 0:82 0:40

Autocorr 0:66 0:63

White 0:00 0:00

All slopes 0:00 0:00

obs 624 624

Table 3.2: Fama-French regressions, monthly returns, %, US data 1970:01-2021:12.
Numbers in parentheses are t-stats. Autocorr the p-value for no autocorrelation; White
is the p-value for homoskedasticity; All slopes is the p-value for all slope coefficients
being zero.

sen (which defines the critical values). For instance, with a t -test with critical values
.�1:64; 1:64/, the size is 10%. (The size is sometime called the type I error.) This means
that we run a 10% chance of wrongly rejecting a true null hypothesis. See Table 3.3.

H0 not rejected H0 rejected

H0 is true 1� size size
H0 is false 1� power power

Table 3.3: Size and power

The power is the probability of rejecting a false H0. It should be high. Typically, it
cannot be controlled (but some tests are better than others...). This power depends on how
false H0 is, which we will never know. All we can do is to create (artificial) examples to
get an idea of what the power would be for different tests and for different values of the
true parameter ˇ. For instance, with a t -test using the critical values �1:64 and 1:64, the
power would be

power = Pr.t � �1:64/C Pr.t � 1:64/: (3.7)

(1�power is sometimes called the type II error. This is the probability of not rejecting a
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0.2

0.4

0.6 90% conf band:
3±1.64 × 0.5

= 1.9

90% conf band around H0 : = 3
N(3, 0.52)

0 1 2 3

0.2

0.4

0.6 90% conf band:
1.9±1.64 × 0.5

H0 : = 3

90% conf band around = 1.9
N(1.9, 0.52)

Figure 3.4: Confidence band around the null hypothesis or around the point estimate

false H0.)
To make this more concrete, suppose we test the null hypothesis that the coefficient is

equal to q, but the true value happens to be ˇ. Since the OLS estimate, Ǒ is distributed as
NŒˇ;Std. Ǒ/�, it must be the case that the t -stat is distributed as

t D
Ǒ � q

Std. Ǒ/
� N

 
ˇ � q
Std. Ǒ/

; 1

!
: (3.8)

We can then calculate the power as the probability that t � �1:64 or t � 1:64, when t has
the distribution on the RHS in (3.8). Clearly, the results depend on what the true value ˇ
really is. See Figure 3.5.

Example 3.8 If ˇ D 3:6, q D 3 and Std. Ǒ/ D 0:5, then the power is 0.33.

3.1.4 Testing A Linear Combination

We can form linear combinations of the regressions coefficients and apply a t-test.
LetR be a 1�k (row) vector that defines our linear combination and suppose we want

to test Rˇ D q. This is easily by nothing that

Var.R Ǒ/ D RV. Ǒ/R0; (3.9)

is a scalar, so the t-test becomes

t D R Ǒ � qq
RV. Ǒ/R0

� N.0; 1/: (3.10)
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Distribution of t when true = 3.6
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true 
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0.75

Probability of rejecting H0 : = 3

Figure 3.5: Power of t-test, assuming different true parameter values

Example 3.9 (Testing a difference) For simplicity, suppose we have only two coefficients

and want to test the difference. Then, R D Œ 1 �1 �. Suppose (again for simplicity) that

V. Ǒ/ D
"
1 �

� 1

#
, where � D Cov. Ǒ1; Ǒ2/. Clearly,RV. Ǒ/R0 equals Var. Ǒ1/CVar. Ǒ2/�

2Cov. Ǒ1; Ǒ2/ which here is 2.1 � �/. A higher covariance means that Ǒ1 and Ǒ2 tend to

move in the same direction so the difference has a small uncertainty. It is then easy to test

the difference. The opposite is true when testing a sum (then R D Œ 1 1 �).

3.1.5 Joint Test of Several Coefficients: Chi-Square Test

A joint test of several coefficients is different from testing the coefficients one at a time.
For instance, suppose your economic hypothesis is that ˇ1 D 1 and ˇ3 D 0. You could
clearly test each coefficient individually (by a t-test), but that may give conflicting results.
In addition, it does not use the information in the sample as effectively as possible. It
might well be the case that we cannot reject any of the hypotheses (that ˇ1 D 1 and
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ˇ3 D 0), but that a joint test might be able to reject it. Intuitively, a joint test is like
exploiting the power of repeated sampling.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
x
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0.6

Pr(x 2.71) = 10%

2
1  distribution
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0.3

0.4

0.5
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2
5  distribution

Figure 3.6: Density functions of �2 distributions with different degrees of freedom

A joint test makes use of the following remark.

Remark 3.10 (Chi-square distribution) If v is a zero mean vector with n elements which

are jointly normally distributed (v � N.0;˙/), then

v0˙�1v � �2n:

As a special case, suppose the vector only has one element. In this case, the quadratic

form can be written Œv=Std.v/�2, which is the square of a t-statistic.

Example 3.11 (Quadratic form with a chi-square distribution) If the 2 � 1 vector v has

the following normal distribution"
v1

v2

#
� N

 "
0

0

#
;

"
1 0

0 2

#!
;
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then the quadratic form "
v1

v2

#0 "
1 0

0 1=2

#"
v1

v2

#
D v21 C v22=2

has a �22 distribution. (In a more general example, the variables could be correlated.)

For instance, suppose we have estimated a model with three coefficients and the null
hypothesis is

H0 W ˇ1 D 1 and ˇ3 D 0: (3.11)

It is convenient to write this on matrix form as

"
1 0 0

0 0 1

#264ˇ1ˇ2
ˇ3

375 D "1
0

#
or more generally (3.12)

Rˇ D q; (3.13)

where q has J (here 2) rows. Notice that the covariance matrix of these linear combina-
tions is then

Var.R Ǒ/ D RV. Ǒ/R0; (3.14)

where V. Ǒ/ denotes the covariance matrix of the coefficients. Putting together these
results we have the test static (a scalar)

.R Ǒ � q/0ŒRV. Ǒ/R0��1.R Ǒ � q/ � �2J : (3.15)

This test statistic is compared to the critical values of a �2J distribution . (Alternatively, it
can be put in the form of an F statistic, which is a small sample refinement.)

A particularly important case is the test of the joint hypothesis that all k � 1 slope
coefficients in the regression (that is, excluding the intercept) are zero. It can be shown
that the test statistic for this hypothesis is (assuming your regression also contains an
intercept)

TR2=.1 �R2/ � �2k�1: (3.16)

Empirical Example 3.12 (Test of all slopes) See Tables 3.1 and 3.2.

Example 3.13 (Joint test) Suppose H0: ˇ1 D 0 and ˇ3 D 0; . Ǒ1; Ǒ2; Ǒ3/ D .2; 777; 3/
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and

R D
"
1 0 0

0 0 1

#
and V. Ǒ/ D

2644 0 0

0 33 0

0 0 1

375 , so

RV. Ǒ/R0 D
"
1 0 0

0 0 1

#2644 0 0

0 33 0

0 0 1

375
2641 0

0 0

0 1

375 D "4 0

0 1

#
:

(We assume V. Ǒ/ is diagonal just because it makes it easier to invert.) Then, (3.15) is0B@"1 0 0

0 0 1

#264 2

777

3

375 � "0
0

#1CA
0 "
4 0

0 1

#�10B@"1 0 0

0 0 1

#264 2

777

3

375 � "0
0

#1CA
h
2 3

i "0:25 0

0 1

#"
2

3

#
D 10;

which is higher than the 10% critical value of the �22 distribution (which is 4.61).

Remark 3.14 (�An alternative form of (3.15)) Define the standardised values z D .R Ǒ �
q/=Std.R Ǒ � q/. Then, (3.15) can be also be written z0 Corr.z/�1z.

Remark 3.15 (Power and size of a joint test�) Suppose v � N.v0; ˙/, where v0 might be

non-zero. Then v0˙�1v � �2n.�/ with � D v00˙�1v0 and where �2n.�/ is a non-central

chi-square distribution with non-centrality parameter �. (This distribution coincides with

the traditional chi-square when � D 0.) In particular, if Rˇ � q D q0 (instead of zero),

then the test static in (3.15) would have a �2J .�/ distribution with � D q00ŒRV. Ǒ/R0��1q0.
We could then calculate the power of the test in (3.15) for different values of q0.

Proof. (of (3.16)) Recall that R2 D Var . Oyt/ =Var .yt/ D 1 � Var . Out/ =Var .yt/,
where Oyt D x0t Ǒ and Out are the fitted value and residual respectively. We therefore get
TR2=.1 � R2/ D T Var . Oyt/ =Var . Out/. To simplify the algebra, assume that both yt
and xt are demeaned and that no intercept is used. (We get the same results, but after
more work, if we relax this assumption.) In this case we can rewrite as TR2=.1 � R2/ D
T Ǒ0Var.xt/ Ǒ=�2, where �2 D Var . Out/. If the iid assumptions are correct, then the
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variance-covariance matrix of Ǒ is V. Ǒ/ D ŒT Var.xt/��1�2, so we get

TR2=.1 �R2/ D Ǒ0T Var.xt/=�2 Ǒ
D Ǒ0V. Ǒ/�1 Ǒ:

This has the same form as (3.15) with R D I and q D 0 and J equal to the number of
slope coefficients.

3.1.6 Confidence Bands around a Forecast and a Forecast Error�

Suppose we have estimated the linear model

yt D x0tˇ C ut : (3.17)

For a given (known) vector xs, our forecast of ys is

E.ysjxs/ D x0s Ǒ:

For a given xs, this is just a linear combination of the estimated coefficients, so the result
in (3.14) holds, but with x0s replacing R

VarŒE.ysjxs/� D x0sV. Ǒ/xs: (3.18)

Instead, if we want the uncertainty about the forecast error

ys � E.ysjxs/ D x0s.ˇ � Ǒ/C us; (3.19)

then we have to add the uncertainty of us

VarŒys � E.ysjxs/� D x0sV. Ǒ/xs C �2: (3.20)

(To show this last result, notice that xs is not random and that us is not correlated with Ǒ
if the latter is estimated from a sample that does not contain period s:)

3.1.7 A Joint Test of Several Coefficients: F-test�

The joint test can also be cast in terms of the F distribution (which may have better small
sample properties).

Divide (3.15) by J and replace V. Ǒ/ by the estimated covariance matrix OV . Ǒ/. This

is, for instance, OV . Ǒ/ D O�2
�PT

tD1xtx0t
��1

, but where we (as in reality) have to estimate
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the variance of the residuals by the sample variance of the fitted residuals, O�2. This gives�
R Ǒ � q

�0 h
R OV . Ǒ/R0

i�1 �
R Ǒ � q

�
J

� FJ;T�k , where (3.21)

OV . Ǒ/ D O�2
�XT

tD1 xtx
0
t

��1
:

The test of the joint hypothesis that all k�1 slope coefficients in the regression (that is,
excluding the intercept) are zero can be written (assuming your regression also contains
an intercept)

R2=.k � 1/
.1 �R2/=.T � k/ � Fk�1;T�k: (3.22)

Proof. (of (3.21)) Equation (3.21) can also be written�
R Ǒ � q

�0 �
R�2

�PT
tD1 xtx0t

��1
R0
��1 �

R Ǒ � q
�
=J

O�2=�2 :

The numerator is a �2J variable divided by J . The denominator can be written˙T
tD1. Out=�/2=.T�

k/. If the residuals are normally distributed (and independent across time), then this is a
�2
T�k variable (not �2T since we have estimated k parameters which influence Out ) divided

by T � k. In addition, if the numerator and denominator are independent (which re-
quires that the residuals are independent of the regressors), then the ratio has an FJ;T�k
distribution.

Example 3.16 (Joint F test) Continuing Example 3.13, and assuming that OV . Ǒ/ D
V. Ǒ/, we have a test statistic of 10=2 D 5. Assume T � k D 50, then the 10% criti-

cal value (from an F2;50 distribution) is 2.4, so the null hypothesis is rejected at the 10%

level.

3.1.8 Testing (Nonlinear) Joint Hypotheses: The Delta Method�

Consider an estimator Ǒ
k�1

which satisfies

p
T . Ǒ � ˇ/ d! N .0; Vk�k/ ; (3.23)

and suppose we want the asymptotic distribution of a transformation of ˇ

q�1 D f .ˇ/; (3.24)
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where f .:/ has continuous first derivatives. Under that null hypothesis (that the true value
is  )

p
T .f . Ǒ/ � / d! N

�
0;�q�q

�
; where

� D @f .ˇ/

@ˇ
0
V
@f .ˇ/0

@ˇ
, where (3.25)

@f .ˇ/

@ˇ 0
is the q � k matrix of partial derivatives (the Jacobian)

@f .ˇ/

@ˇ0
D

2664
@f1.ˇ/

@ˇ1
� � � @f1.ˇ/

@ˇk
:::

: : :
:::

@fq.ˇ/

@ˇ1
� � � @fq.ˇ/

@ˇk

3775
q�k

(3.26)

The derivatives can sometimes be found analytically, otherwise numerical differentiation
can be used. Now, a test can be done as in the same way as in the linear case.

Example 3.17 (Testing a Sharpe ratio) Stack the mean (� D E xt ) and second moment

(�2 D E x2t ) as ˇ D Œ�; �2�0. The Sharpe ratio is calculated as a function of ˇ

E.x/
�.x/

D f .ˇ/ D �

.�2 � �2/1=2 , so
@f .ˇ/

@ˇ0
D
h

�2
.�2��2/3=2

��
2.�2��2/3=2

i
:

If Ǒ is distributed as in (3.23), then (3.25) is straightforward to apply.

Example 3.18 (Linear function) When f .ˇ/ D Rˇ, then the Jacobian is @f .ˇ/

@ˇ 0
D R, so

� D RVR0, just like in (3.14).

Example 3.19 (Testing a correlation of xt and yt ) Suppose you have estimated the vari-

ances of (xt ; yt ) and also their covariance. Stack the parameters in the vector ˇ D
Œ�xx; �yy; �xy�

0. The correlation and the Jacobian is then

�.x; y/ D f .ˇ/ D �xy

�
1=2
xx �

1=2
yy

, so
@f .ˇ/

@ˇ0
D
h
�1
2

�xy

�
3=2
xx �

1=2
yy

�1
2

�xy

�
1=2
xx �

3=2
yy

1

�
1=2
xx �

1=2
yy

i
:

Proof. (Sketch of a proof of (3.25), requiring some asymptotics�) By the mean value
theorem we have

f . Ǒ/ D f .ˇ/C @f .ˇ�/
@ˇ0

. Ǒ � ˇ/;

where the derivatives are evaluated at ˇ� which is (weakly) between Ǒ and ˇ. Premultiply
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Figure 3.7: Effect of heteroskedasticity on uncertainty about regression line

by
p
T and rearrange as

p
T Œf . Ǒ/ � f .ˇ/� D @f .ˇ�/

@ˇ0
p
T . Ǒ � ˇ0/.

If Ǒ is consistent (plim Ǒ D ˇ) and @f .ˇ�/ =@ˇ0 is continuous, then (by Slutsky’s theo-
rem) the probability limit of the derivatives is @g .ˇ/ =@ˇ0 (that is, evaluated at the true ˇ
—and thus a constant). If

p
T . Ǒ � ˇ0/ is asymptotically normally distributed, then (by

the continuous mapping theorem) this carries over to the left hand side.

3.2 Heteroskedasticity

Suppose we have a regression model

yt D x0tb C ut ; where Eut D 0 and Cov.xit ; ut/ D 0: (3.27)

In the standard case we assume that ut is iid (independently and identically distributed),
which rules out variation in the volatility of the residual (heteroskedasticity).

In case the residuals actually are heteroskedastic, least squares (LS) is nevertheless a
useful estimator: it is still consistent (we get the correct values as the sample becomes
really large). However, the standard expression for the standard errors of the coefficients
is, except in a special case, not correct. This is illustrated in Table 6.4, which shows
results from simulations.

To test for heteroskedasticity, we can use White’s test of heteroskedasticity. The test
assumes that the fitted residuals are from consistent estimates (there is little point in testing
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residuals from false models...) and that the regressors may be stochastic variables.
The null hypothesis is homoskedasticity, and the alternative hypothesis is the kind of

heteroskedasticity which can be explained by the levels, squares, and cross products of
the regressors—clearly a special form of heteroskedasticity. The reason for this specifi-
cation is that if the squared residuals are uncorrelated with the squared regressors, then
the usual LS covariance matrix applies—even if the residuals have some other sort of
heteroskedasticity (this is the special case mentioned before).

To implement White’s test, let wt be a vector of the squares and cross products of the
regressors (be sure to have a constant among the regressors). The test is then to run a
regression of squared fitted residuals on wt

Ou2t D w0t C vt ; (3.28)

and to test if all the slope coefficients (not the intercept) in  are zero. This can be done
be using the fact that TR2=.1 � R2/ � �2p, p D dim.wt/ � 1. (Some authors prefer to
use TR2 instead, but the difference is likely to be small.)

There are several versions of White’s test: (a) using only the linear terms (also called
the Breusch-Pagan test); (b) using only the linear and quadratic terms (not the cross prod-
ucts); (c) using only a subset of the regressors.

Example 3.20 (White’s test) If the regressors include .1; x1t ; x2t/ then wt in (3.28) is the

vector (1; x1t ; x2t ; x21t ; x1tx2t ; x
2
2t ).

Remark 3.21 (�Duplicate variables in wt . If xt contains a dummy variable, then its

square will be the same. You can still use the same test statistic, but p should be the

number of linearly independent variables in wt minus 1.)

Empirical Example 3.22 (Test of heteroskedasticity) See Tables 3.1 and 3.2.

There are two ways to handle heteroskedasticity in the residuals. First, we could use
some other estimation method than LS that incorporates the structure of the heteroskedas-
ticity. For instance, combining the regression model (3.27) with an ARCH structure of
the residuals—and estimating the whole thing with maximum likelihood (MLE). As a
by-product we get the correct standard errors—provided the assumed distribution (in the
likelihood function) is correct. Second, we could stick to OLS, but use another expres-
sion for the variance of the coefficients: a heteroskedasticity consistent covariance matrix,
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 D 0  D 1
˛ W 0 1 0 1

Simulated 7:1 18:9 13:4 25:1

OLS formula 7:1 13:3 13:4 19:2

White’s 7:0 18:5 13:3 24:3

Bootstrap 7:1 18:5 13:4 24:4

Bootstrap 2 7:0 18:5 13:3 24:3

FGLS 7:5 17:3 14:0 24:1

Table 3.4: Standard error of OLS slope (%) under heteroskedasticity (simulation evi-
dence). Model: yt D 1C0:9xtC�t , where �t � N.0; �2t /, with �2t D .1C jzt jC˛jxt j/2,
where zt is iid N(0,1) and independent of xt . Sample length: 200. Number of simula-
tions: 25000. The bootstrap draws pairs .ys; xs/ with replacement while bootstrap 2 is a
wild bootstrap.

among which “White’s covariance matrix” is the most common. (There is also a third
possible solution: using GLS, but that is often a non-robust approach.)

To understand the construction of White’s covariance matrix, recall that the variance
of Ǒ is found from

Ǒ D ˇ C S�1xx .x1u1 C x2u2 C : : : xTuT / ; (3.29)

where Sxx D ˙T
tD1xtx0t . If we assume that the residuals are uncorrelated with each other,

then

Var. Ǒ/ D S�1xx
�
x1x

0
1�

2
1 C x2x02�22 C : : : xT x0T �2T

�
S�1xx

D S�1xx
PT

tD1xtx
0
t�
2
t„ ƒ‚ …

S

S�1xx : (3.30)

(Notice that Sxx and S denote very different things.) This expression cannot be simplified
further since �t is not constant—and also related to x2t . The idea of White’s estimator is
to estimate S by

OS DPT
tD1xtx

0
t Ou2t : (3.31)

It is straightforward to show that the standard expression for the variance underes-
timates the true variance when there is a positive relation between x2t and �2t (and vice
versa). The intuition is that much of the precision (low variance of the estimates) of OLS
comes from data points with extreme values of the regressors: think of a scatter plot and
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notice that the slope depends a lot on fitting the data points with very low and very high
values of the regressor. This nice property is destroyed if the data points with extreme
values of the regressor also have lots of noise (high variance of the residual). See Figure
3.7 and Table 6.4.

White’s covariance matrix should be applied when White’s test (3.28) indicates prob-
lems, otherwise perhaps not. While White’s covariance estimator provides safety against
heteroskedasticity, it also comes at a cost: estimating the S matrix as in (3.31) risks intro-
ducing more noise.

Remark 3.23 (Standard OLS vs White’s variance�) For simplicity, consider the case of

only one regressor. If x2t is not related to �2t , then we could write the last term in (3.30)

as PT
tD1x

2
t �

2
t D

1

T

PT
tD1�

2
t

PT
tD1x

2
t

D �2PT
tD1x

2
t

where �2 is the average variance, typically estimated as
PT

tD1u2t =T . That is, it is the

same as for standard OLS. In addition, notice that

PT
tD1x

2
t �

2
t >

1

T

PT
tD1�

2
t

PT
tD1x

2
t

if x2t is positively related to �2t (and vice versa). For instance, with .x21 ; x
2
2/ D .10; 1/

and .�21 ; �
2
2 / D .5; 2/,

PT
tD1x2t �2t D 10 � 5C 1 � 2 D 52 while 1

T

PT
tD1�2t

PT
tD1x2t D

1
2
.5C 2/.10C 1/ D 38:5:

Remark 3.24 (GLS�) With heteroskedasticity and/or autocorrelation, OLS is still con-

sistent and we can adjust the covariance matrix of the coefficients. However, OLS is less

efficient (higher uncertainty of the coefficients) than GLS (Generalized Least Squares) is.

The basic idea of GLS is transform regression equation so

y�t D x�0t ˇ C "�t ;

have iid residuals. Estimating ˇ with LS on this transformation is efficient (called GLS)

and the traditional expressions of the covariance matrix of the coefficients can be used.

For instance, with heteroskedasticity, the transformation is

yt

�t
D x0t
�t
ˇ C "t

�t
:

75



10 5 0 5 10
x

20

10

0

10

20

y
Scatter plot, iid residuals

regression (all data)
regression (high x)

10 5 0 5 10
x

20

10

0

10

20

y

Scatter plot, autocorrelated residuals

Figure 3.8: Effect of autocorrelation on uncertainty about regression line

(Yes, also the constant is divided by �t .) Notice that "t=�t has a constant variance (equal

to one). In practice we don’t know �t , so we first estimate it (the method is then called

“feasible” GLS, FGLS.) FGLS may improve the efficiency, but can be unstable if we model

the heteroskedasticity wrongly. A commonly applied approach is the following (a) let O"t
be the residual from the OLS regression; (b) regress ln.O"2t / on the regressors and all the

squares (and cross-products of them); (c) let zt be the fitted values from the regression in

(b) and set �t D
p

exp.zt/.

3.3 Autocorrelation

Autocorrelation of the residuals (Cov.utut�s/ ¤ 0) is also a violation of the iid as-
sumptions underlying the standard expressions for the variance of Ǒ. In this case, LS is
typically still consistent (exceptions: when the lagged dependent variable is a regressor),
but the variances are again wrong.

The typical effect of positively autocorrelated residuals is to increase the uncertainty
about the OLS estimates—above what is indicated by the traditional standard errors based
on the iid assumption. This is perhaps easiest to understand in the case of estimating the
mean of a data series, that is, when regressing a data series on a constant only. If the
residual is positively autocorrelated (have long swings), then the sample mean can deviate
from the true mean for an extended period of time—perhaps for most of a sample: the
estimate is imprecise. See Figure 3.8 for an illustration.

There are several straightforward tests of autocorrelation—all based on using the fitted
residuals. The tests all assume that the fitted residuals are from consistent estimates. The
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null hypothesis is no autocorrelation. First, estimate the autocorrelations of the fitted
residuals as

�s D Corr. Out ; Out�s/, s D 1; :::; L: (3.32)

Second, test autocorrelation s by using the fact that
p
T O�s has a standard normal distri-

bution (in large samples) p
T O�s � N.0; 1/: (3.33)

To extend (3.33) to higher-order autocorrelation, use the Box-Pierce test

QL D T
LX
sD1
O�2s !d �2L: (3.34)

Empirical Example 3.25 (Test of autocorrelation) See Tables 3.1 and 3.2.

An alternative for testing the first autocorrelation coefficient is the Durbin-Watson.
The test statistic is (approximately)

DW � 2 � 2 O�1; (3.35)

and the null hypothesis is rejected in favour of positive autocorrelation if DW < 1:5 or
so (depending on sample size and the number of regressors).

These tests can also be applies to each of the elements in xtut (instead of just ut ), since
it is actually autocorrelations of these cross terms that matter most (see the discussion
below).

� W 0.0 0.75

Simulated 5:8 23:0

OLS formula 5:8 8:7

Newey-West 5:7 16:3

VARHAC 5:7 22:4

Bootstrapped 5:5 19:6

FGLS 5:9 23:1

Table 3.5: Standard error of OLS intercept (%) under autocorrelation (simulation evi-
dence). Model: yt D 1C 0:9xt C �t , where �t D ��t�1 C �t ; �t is iid N(). NW uses 5
lags. VARHAC uses 5 lags and a VAR(1). The bootstrap uses blocks of size 20. Sample
length: 300. Number of simulations: 25000.

If there is autocorrelation, then we can choose to estimate a fully specified model (in-
cluding how the autocorrelation is generated) by MLE or we can stick to OLS but apply an
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� D 0:0 � D 0:75
� W 0.0 0.75 0.0 0.75

Simulated 5:8 8:7 3:9 10:9

OLS formula 5:8 8:6 3:9 5:8

Newey-West 5:7 8:4 3:8 8:9

VARHAC 5:7 8:5 3:8 10:5

Bootstrapped 5:8 8:5 3:8 10:1

FGLS 5:8 4:7 3:9 5:9

Table 3.6: Standard error of OLS slope (%) under autocorrelation (simulation evidence).
Model: yt D 1C 0:9xt C �t , where �t D ��t�1C �t ; �t is iid N(). xt D �xt�1C �t ; �t is
iid N(). NW uses 5 lags. VARHAC uses 5 lags and a VAR(1). The bootstrap uses blocks
of size 20. Sample length: 300. Number of simulations: 25000.

autocorrelation consistent covariance matrix—for instance, the “Newey-West covariance

matrix.”
To understand the Newey-West covariance matrix, notice that the the variance of

Var. Ǒ/ is
Var. Ǒ/ D S�1xx Var .x1u1 C x2u2 C : : : xTuT /„ ƒ‚ …

S

S�1xx ; (3.36)

where the regressors may be stochastic variables.
However, there might be correlation across time periods, so the S term in the middle

needs to account for terms like Cov.xtut ; xt�sut�s/. For instance, for T D 3 the S term
is

S D Var.x1u1/C Var.x2u2/C Var.x3u3/C
2Cov.x2u2; x1u1/C 2Cov.x3u3; x2u2/C 2Cov.x3u3; x1u1/: (3.37)

When data is uncorrelated across time (observations), then all the covariance terms are
zero. With autocorrelation, they may not be. For a general T , the S term is

S DPT
tD1 Var .xtut/C 2

Pm
sD1
PT

tDsC1 Cov .xtut ; xt�sut�s/ ; (3.38)

where m denotes the number of covariance terms that might be non-zero (at most, m D
T � 1).

It is clear from (3.38) that what really counts is not so much the autocorrelation in ut
per se, but the autocorrelation of xtut . If this is positive, then the standard expression un-
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derestimates the true variance of the estimated coefficients (and vice versa). For instance,
the autocorrelation of xtut is likely to be positive when both the residual and the regres-
sor are positively autocorrelated. (Notice that a constant, xt D 1 is extremely positively
autocorrelated, so autocorrelation of the residual along is enough to cause problems with
the intercept.) In contrast, when the regressor has no autocorrelation, then the product
does not either. This is illustrated in Tables 3.5–18.3.

The idea of the Newey-West estimator is to estimate S by (with several regressors)

OS D �0 C
Pm
sD1.1 �

s

mC 1/.�s C�
0
s/; where (3.39)

�s D
PT

tDsC1xtx
0
t�s Out Out�s: (3.40)

The weights 1�s=.mC1/ are close to 1 for small lags (s values), but decline linearly (tent
shaped weights) to zero. The point of using such weights is to make sure that the OS matrix
remains invertible (to show this is somewhat involved). This suggests that m should be
somewhat larger than last lag with significant autocorrelation. However, a common rule
of thumb is to use round m D floor.0:75T 1=3/, where floor./ means rounding down to
nearest integer (and alternative rule is m D floor.4.T=100/2=9/).

For instance, with only one lag (m D 1) the calculation is (with several regressors)

OS DPT
tD1xtx

0
t Ou2t C

PT
tD2.1 �

1

2
/
�
xtx
0
t�1 C xt�1x0t

� Out Out�1; (3.41)

and by excluding all lags (setting m D 0), the Newey-West estimator coincides with
White’s estimator

OS DPT
tD1xtx

0
t Ou2t : (3.42)

Hence, Newey-West estimator handles also heteroskedasticity.

Remark 3.26 (VARHAC�) The VARHAC estimator of the covariance matrix (see An-

drews and Monahan (1992)) is to first fit a VAR(p) to zt D xt Out

zt D A0 C
Xp

iD1Aizt�i C "t

and then calculate D D I �Pp
iD1Ai . Then, OS D D�1 OS "D�1, where OS " is Newey-West

estimate applied to O"t only (use O"t instead of xt Out in (3.39)).

Empirical Example 3.27 (Autocorrelation from overlapping return periods) Figures 18.7–

3.10 are empirical examples of the importance of using the Newey-West method rather
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Figure 3.9: Slope coefficient, LS vs Newey-West standard errors

than relying of the iid assumptions. In both cases, the residuals have strong positive

autocorrelation.

The Newey-West approach should be applied when the tests of the residuals indicate
autocorrelation, otherwise probably not. The method involves estimating lots of parame-
ters in the S matrix—and this can in itself introduce noise and uncertainty.

Remark 3.28 (GLS�) With first-order autocorrelation, ("t D �"t�1Cvt ; where vt is iid),

we can implement FGLS by doing a “quasi-difference” of the regression equation

yt � �yt�1 D .xt � �xt�1/0 ˇ C ."t � �"t�1/ :

This new residual, "t � �"t�1, is iid. In practice we don’t know �, so we first estimate it.
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Chapter 4

The Variance of a (Time Series) Sample Average

Reference: Hayashi (2000) 6.5
Additional references: Hamilton (1994) 14; Verbeek (2004) 4.10; Harris and Matyas
(1999); and Pindyck and Rubinfeld (1998) Appendix 10.1; Cochrane (2001) 11.7

4.1 The Variance of a Sample Average

Many estimators (including OLS, MLE and GMM) are based on some sort of sample
average. Unless we are sure that the series in the average is iid, we need an estimator of
the variance (of the sample average) that takes serial correlation into account. For a time
series average, the Newey and West (1987) estimator is probably the most popular.

To illustrate the idea, consider a time series sample mean, Nx, of a K � 1 vector xt

Nx D 1

T

TX
tD1

xt : (4.1)

If xt is iid, then
Cov.
p
T Nx/ D Cov.xt/; (4.2)

which is a K �K matrix. This clearly is the same as saying that Cov. Nx/ D Cov.xt/=T .
Instead, if xt is autocorrelated, then

Cov.
p
T Nx/ D

T�1X
sD�.T�1/

�
1 � jsj

T

�
� .s/, where � .s/ D Cov.xt ; xt�s/; (4.3)

where � .s/ is a K � K matrix, where cell (i; j ) is the covariance between element i of
xt and element j of xt�s. Here we assume that Cov.xt ; xt�s/ only depends on s (not on
t ), but this can be relaxed.
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Example 4.1 (� .s/ for a vector with two variables) If xt D Œx1t ; x2t �
0 where x1t is one

variable and x2t is another, then

� .s/ D
"

Cov.x1;t ; x1;t�s/ Cov.x1;t ; x2;t�s/
Cov.x2;t ; x1;t�s/ Cov.x2;t ; x2;t�s/

#
:

Proof. (of (4.3)) Notice that for T D 3, we have

Var .x1 C x2 C x3/ D Cov.x1; x3/„ ƒ‚ …
� .�2/

C Cov.x1; x2/C Cov.x2; x3/„ ƒ‚ …
2� .�1/

C

Var.x1/C Var.x2/C Var.x3/„ ƒ‚ …
3� .0/

C Cov.x2; x1/C Cov.x3; x2/„ ƒ‚ …
2� .1/

C Cov.x3; x1/„ ƒ‚ …
� .2/

:

The general pattern is

Var

 
TX
tD1

xt

!
D

T�1X
sD�.T�1/

.T � jsj/ � .s/:

Divide both sides by T to get (4.3).

Remark 4.2 (Cross-sectional averages) The insight that correlations matter for an aver-

age applies also to a cross-sectional average. The only difference is that it is harder to

motivate why the variances should be the same across observations. As an example, con-

sider the cross-sectional average return (in period t ) across n assets, NRt D ˙n
iD1Ri;t=n.

It is clear that Var. NRt/ D 10˙1=n2, where 1 is an n � 1 vector of ones and ˙ is the co-

variance matrix of the n assets. This is just the sum of all elements, divided by n2, which

is very similar to (4.3), although we are here studying a cross-section, not a time series.

Taking the limit of (4.3) as T !1, we get

limT!1 Cov.
p
T Nx/ D

1X
sD�1

� .s/: (4.4)

Example 4.3 (Variance of sample mean of AR(1).) Let xt D �xt�1Cut , where Var .ut/ D
�2. Let � .s/ denote the sth autocovariance and notice that � .s/ D �jsj�2=

�
1 � �2�.

The asymptotic (as T !1 so jsj =T ! 0 in (4.3)) variance can be written

Var.
p
T Nx/ D

1X
sD�1

� .s/ D �2

1 � �2
1X

sD�1
�jsj D �2

1 � �2
1C �
1 � � ;
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Figure 4.1: Variance of
p
T� sample average of an AR(1) series

which is increasing in � (provided j�j < 1, as required for stationarity). The variance

of
p
T Nx is much larger for � close to one than for � close to zero: the high autocorrela-

tion create long swings, so the mean cannot be estimated with good precision in a small

sample. If we disregard all autocovariances, then we would conclude that the variance ofp
T Nx is �2=

�
1 � �2�, that is, the variance of xt . This is much smaller (larger) than the

true value when � > 0 (� < 0). For instance, with � D 0:9, it is 19 times too small. See

Figure 4.1 for an illustration. Notice that Var.
p
T Nx/=Var.xt/ D Var. Nx/=ŒVar.xt/=T �, so

the ratio also shows the relation between the true variance of Nx and the classical estimator

of it (based of the iid assumption).

4.2 The Newey-West Estimator

The Newey-West estimator of the variance-covariance matrix of
p
T Nx is

bCov.
p
T Nx/ D

nX
sD�n

�
1 � jsj

nC 1
�
bCov .xt ; xt�s/ ; (4.5)

where n is a finite “bandwidth” parameter. The “weights,” 1 � jsj =.n C 1/, are clearly
tent-shaped: 1 at the zero lag—and lower as the lags become longer. Figure 4.2 illustrates
the weights (the term in parentheses in (4.5)) for different choices of the bandwidth (n).
This is similar to (4.3), but the weights decrease quicker (assuming n < T � 1). This
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suggests that n should be somewhat larger than last lag with significant autocorrelation.
Alternatively, a common rule of thumb is n D floor.0:75T 1=3/, where floor./ means
rounding down to nearest integer (sometimes n D floor.4.T=100/2=9/ is used instead).

Example 4.4 (Newey-West estimator) With n D 1 in (4.5) the Newey-West estimator be-

comes

bCov.
p
T Nx/ D 1

2
bCov .xt ; xtC1/CbCov .xt ; xt/C 1

2
bCov .xt ; xt�1/ :

Remark 4.5 (VARHAC�) The VARHAC estimator of the covariance matrix (see Andrews

and Monahan (1992)) is as follows. First, fit a VAR(p) to xt

xt D A0 C
Xp

iD1Aixt�i C "t

and calculate D D I �Pp
iD1Ai . Then, use Cov.

p
T Nx/ D D�1S�D�1, where S� is

Newey-West estimate of Cov.
p
T N"/. As an example, let xt be a scalar that follows an

AR(1) process, xt D �xt�1 C "t . If "t is iid, then Cov.
p
T N"/ D �2 where �2 is the

variance of "t . D D 1 � �, so Cov.
p
T Nx/ D �2=.1 � �/2 which is the same as the

variance in Example 4.3 (since .1 � �2/=.1C �/ D 1 � �).
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Chapter 5

Asymptotic Results on OLS�

Reference: Verbeek (2012) 2 and 5

5.1 Motivation of Asymptotics

There are several problems when the standard assumptions about linear regressions are
wrong. First, the result that E Ǒ D ˇ (unbiased) relies on the assumption that the re-
gressors are fixed or alternatively that fu1; :::; uT g and fx1; :::; xT g are independent. Oth-
erwise, it is not true (in a finite sample)—see Figure 5.1. Second, the result that Ǒ is
normally distributed relies on the assumption that residuals are normally distributed. Oth-
erwise it is not true (in a finite sample). See Figure 5.2.

What is true when the standard assumptions are not satisfied? How should we test
hypotheses? Two ways to find answers: (a) do computer (Monte Carlo or bootstrap)
simulations; (b) find results for T ! 1 (“asymptotic properties”) and use them as ap-
proximations for large samples.

The results from asymptotic theory are more general (and perhaps prettier) than simulations—
and can be used as approximations if the sample is large. The basic reason for why this
works this is that most estimators are sample averages and sample averages often have
nice properties as T ! 1. In particular, we can make use of the law of large numbers
(LLN) and the central limit theorem (CLT). See Figure 5.3.

However, the asymptotic results are unlikely to be good approximations in small sam-
ples. In those cases we need simulations.

5.2 Asymptotics: Consistency

Reference: Greene (2018) 4.4; Hamilton (1994) 8.2; Davidson (2000) 3
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Figure 5.1: Distribution of LS estimator of autoregressive parameter

Issue: will our estimator come closer to the truth as the sample size increases? If not,
use another estimator (method).

5.2.1 Probability Limits

We need some basic facts about statistics (probability limits) for the discussion of consis-
tency.

Remark 5.1 (Convergence in probability) Ǒ (which depends on the sample size T ) con-

verges in probability to b if for every " > 0

limT!1 Pr.j Ǒ � bj < "/ D 1:

Notation: plim Ǒ D b or Ǒ !p b where plim stands for the probability limit.

Remark 5.2 (Probability limits of a product and of a function) If plim Ǫ D a and plim Ǒ D
b, then plim Ǫ Ǒ D ab. (In contrast, this does not not hold for expectations: E Ǫ Ǒ ¤
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Figure 5.2: Results from a Monte Carlo experiment with thick-tailed errors.

E Ǫ E Ǒ unless Ǫ and Ǒ are uncorrelated.) More generally, Slutsky’s theorem says that if

g./ is a continuous function, then plimg. Ǫ / D g.plim Ǫ /.
Remark 5.3 (Law of large numbers, simple version) A LLN says that the sample average

converges to the population mean as the sample size increases (to infinity). Clearly, this

means that the sample average is a consistent estimator of the population mean. Notation:

plim. Nx/ D E.x/.

5.2.2 Consistency of OLS

Remark 5.4 (Consistency) Consistency means that the estimate Ǒ converges in probabil-

ity to the true value as the sample size increases (to infinity).

The OLS estimate of a slope coefficient is (after dividing and multiplying by T )

Ǒ D ˇ C
�
1

T

XT

tD1 xtx
0
t

��1
„ ƒ‚ …

!˙�1xx

1

T

XT

tD1 xtut„ ƒ‚ …
!E.x;u/

(5.1)
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Figure 5.3: Distribution of sample averages

where ut are the residuals we could calculate if we knew the true slope coefficient (de-
noted ˇ), that is, the true residuals. The symbols below the equation indicate what the
different terms converge to (according to a LLN) as the sample size increases. In par-
ticular, the inverse is a continuous function so the first term converges to the inverse of
the second moment matrix of xt (E xtx0t ) which is denoted ˙xx. (This clearly assumes
that xt is such that the expectation is well defined.) Also, the two terms form a product
so we can apply the rule that the probability limit is the product of the two (individual)
probability limits.

In short, the probability limit is

plim Ǒ D ˇ C˙�1xx E.xtut/; (5.2)

where ˙�1xx is (asymptotically) a matrix of constants: there is nothing random about it.
Clearly, for the estimate Ǒ to converge to the true values (ˇ), E.xtut/ D 0 is needed. If
Eut D 0 (which is a basic assumption in most regression analysis) E.xtut/ D Cov.xt ; ut/,
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so consistency of Ǒ requires the regressors and the (true) residuals to be be uncorrelated.
Some observations:

1. We can not (easily) test this, since OLS creates Ǒ and the fitted residuals Out such
that

PT
tD1 xt Out=T D 0.

2. The standard regression assumption that ut and xt are independent implies that
E.xtut/ D 0. This means that the standard regression assumptions take it for
granted that OLS is consistent.

3. OLS can be biased, but still be consistent. This means that OLS is systematically
wrong in any small sample, but the problem vanishes in large samples. See Figure
5.1. In these figures, Cov.ut�1; xt/ ¤ 0 so OLS is biased since xt is not indepen-
dent of all residuals, but Cov.ut ; xt/ D 0 so it is consistent since xt is not correlated
with the contemporaneous residual.

4. There are cases when E.xtut/ D 0 doesn’t make sense. Then OLS is inconsistent.
More on this later.

5. See Figure 5.1 for an example of where OLS is consistent, and Figure 5.4 when it
is not.

What have we learned? Well,...under what conditions (E.xtut/ D 0) OLS comes
closer to the correct value as T increases.

5.3 When OLS Is Inconsistent

Q. When do we have E.xt ; ut/ ¤ 0?
A. Need to think hard...
But the usual suspects are (i) omitted variables; (ii) autocorrelated errors combined

with lagged dependent variable; (iii) measurement errors in regressors; and (iv) endoge-
nous regressors.

5.3.1 Omitted Variables

Reference: Greene (2018) 4.3
Consider the regression

yt D x0tˇ C h0t C "t ; (5.3)
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Figure 5.4: Results from a Monte Carlo experiment of LS estimation of the AR coefficient
when data is from an ARMA process.

where E.xt"t t/ D 0.
Suppose we omit (exclude) the ht variables and instead estimate

yt D x0tˇ C ut : (5.4)

This means that the residual from in the regression (5.4) is ut D h0t C "t , that is, it
incorporates the effect of both the omitted variables and the “true” residual.

Recall that the OLS estimates are

Ǒ D ˇ C S�1xx˙T
tD1xtut ; (5.5)

where Sxx D ˙T
tD1xtx0t . Since ut D h0t C "t , we can write this as

Ǒ D ˇ C S�1xx
PT

tD1xth
0
t C S�1xx

PT
tD1xt"t : (5.6)

The last term should vanish as the sample size increases (the residual in (5.3) should not
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Figure 5.5: Effect of omitted variables

be correlated with any of the regressors), while the middle term can be written

Œ O�1 : : : O�L � (5.7)

where O�i is the (column) vector of coefficients obtained by regressing hit on xt

O�i D S�1xx
PT

tD1xthit : (5.8)

See Figure 5.5.
Together this shows that the probability limit of Ǒ is

plim Ǒ D ˇ C Œ plim O�1 : : : plim O�L �: (5.9)

This analysis shows that Ǒ incorporates how xt comoves with the ht . In case they are
uncorrelated (�i D 0), then omitting the ht variables does not affect the point estimates
of ˇ. However, if they are correlated, then the point estimates Ǒ are inconsistent (and
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biased) in the sense of being systematically different from the true ˇ values in (5.3).
Notice the following:

� Ǒ from (5.4) is actually the right number to use if we want to predict: “given xt ,
what is the best guess of yt?” The reason is that Ǒ factors in also how xt predicts
ht (which affects yt ).

� Ǒ from (5.4) is not the right number to use if we want to understand an economic
mechanism: “if we increase xit , by one unit (but holding all other variables con-
stant), what is the likely effect on yt?” The reason is that we here need a consistent
estimate of ˇ. Even in this case, (5.9) and an economic theory might be useful in
assessing (guessing) the sign of the bias.

5.3.2 Autocorrelated Errors Combined with Lagged Dependent Variable

As an example of how autocorrelated errors combined with a lagged dependent variable
as regressor leads to inconsistent OLS estimates, consider

yt D ˇ1 C ˇ2xt C ˇ3yt�1 C ut , where (5.10)

ut D �t C ��t�1, �t iid. (5.11)

As a special case, ˇ2 D 0 gives an ARMA(1,1) model, which is a well known case which
cannot be estimated by OLS. See Figure 5.4.

The issue is that yt�1 is correlated with the lagged shock (�t�1) and hence with the
OLS residuals ut : Cov.yt�1; ut/ ¤ 0. This is a common problem in dynamic models.

Remark 5.5 (AR(1) with autocorrelated errors, theoretical result�) Consider the case in

(5.10)–(5.11) but where ˇ2 D 0 so the regression is an AR(1) but the errors follow an

MA(1) process. In the limit, the OLS estimate is Ǒ3 D Cov.yt ; yt�1/=Var.yt�1/. Using

(5.10) to replace yt gives Ǒ3 D ˇ3 C Cov.�t C ��t�1; yt�1/=Var.yt�1/. Since the 2nd

term is non-zero (it is � Var.�t�1/=Var.yt�1/), this is not equal to ˇ3.

5.3.3 Measurement Errors in a Regressor

As an example of how measurement errors in a regressor gives inconsistent OLS esti-
mates, consider a simple (true) model like

yt D ˇ1 C ˇ2wt C �t : (5.12)
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However, we estimate with a proxy xt for the regressor wt

yt D ˇ1 C ˇ2xt C ut , with (5.13)

xt D wt C et ; (5.14)

where et is a measurement error. This is a common problem in micro data, including
corporate finance. This leads to Cov.xt ; ut/ ¤ 0 (since both xt and ut depend on the
measurement error et ) so OLS is inconsistent for estimating ˇ2. See Figure 5.6.

To see the precise source of the inconsistency, solve for wt D xt � et , use in correct
model (5.12) to get

yt D ˇ1 C ˇ2 .xt � et/C �t
D ˇ1 C ˇ2xt�ˇ2et C �t„ ƒ‚ …

ut

: (5.15)

From (5.14) we know that xt is correlated with the measurement error (et ), which gives
Cov.xt ; ut/ ¤ 0. In fact, it can be shown that

plim Ǒ2 D ˇ2
�
1 � Var.et/

Var.wt/C Var.et/

�
: (5.16)

Notice that Ǒ2 ! 0 if the measurement error dominates (Var.et/ ! 1), since yt is
not related to the measurement error. In contrast, Ǒ2 ! ˇ2 as measurement vanishes
(Var.et/ ! 0): no measurement error. Measurement errors will thus bias the coefficient
towards zero. Any significant coefficient can therefore be seen as a conservative estimate.

Proof. (of (5.16)) To simplify, assume that xt has a zero mean. From (5.2), we
then have plim Ǒ2 D ˇ2 C ˙�1xx E.xtut/. Here, ˙�1xx D 1=Var.xt/, but notice from
(5.14) that Var.xt/ D Var.wt/ C Var.et/ if wt and et are uncorrelated. We also have
E.xtut/ D Cov.xt ; ut/, which from the definition of xt in (5.14) and of ut in (5.15) gives

Cov.xt ; ut/ D Cov.wt C et ;�ˇ2et C �t/ D �ˇ2 Var.et/:

Together we get

plim Ǒ2 D ˇ2 C˙�1xx E.xtut/ D ˇ2 � ˇ2 Var.et/
Var.wt/C Var.et/

;

which is (5.16).
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Figure 5.6: Effect of measurement error in regressor

5.3.4 Endogenous Regressors (System of Simultaneous Equations)

Consider the simplest simultaneous equations model for supply and demand on a market.
Supply is

qt D pt C ust ;  > 0; (5.17)

and demand is
qt D ˇpt C ˛At C udt ; ˇ < 0; (5.18)

where At is an observable demand shock (perhaps income).

Example 5.6 (Supply and Demand�) The system (the “structural form”) is therefore"
1 �
1 �ˇ

#"
qt

pt

#
C
"
0

�˛

#
At D

"
ust

udt

#
:
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Figure 5.7: Illustration of demand and supply curves

This can be solved in terms of the exogenous variables (the “reduced form”) as"
qt

pt

#
D
"
� 

ˇ�˛
� 1
ˇ�˛

#
At C

"
ˇ

ˇ� � 

ˇ�
1

ˇ� � 1
ˇ�

#"
ust

udt

#
:

Suppose we try to estimate the supply equation (5.17) by LS. However, pt is correlated
with ust (since ust ! qt ! pt ), so we cannot hope that LS will be consistent. See 5.7 for
an illustration (disregard the IV/2SLS subfigure for now). It is clear that the OLS estimate
OOLS will be a mixture of the true  and ˇ values (and other things), see Example 5.7 and
Figure 5.8. It is sometimes possible to use economic theory to assess the sign of the
bias. In some such cases, it can be argued that any significant coefficient is a conservative
estimate.

Example 5.7 (Supply equation with LS�) Using the reduced form from Example 12.4, it

is straightforward to show that the probability limit of the OLS estimate of  is (assuming
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Figure 5.8: OLS estimate of  in supply equation

that the supply and demand shocks are uncorrelated)

plim OOLS D Cov.qt ; pt/
Var.pt/

D ˛2 Var.At/C  Var.udt /C ˇVar.ust /
˛2 Var.At/C Var.udt /C Var.ust /

:

First, suppose the supply shocks are zero, Var.ust / D 0, then plim O D  , so we indeed

estimate the supply elasticity, as we wanted. Think of a fixed supply curve, and a demand

curve which moves around. These point of pt and qt should trace out the supply curve. It

is clearly ust that causes a simultaneous equations problem in estimating the supply curve:

ust affects both qt and pt and the latter is the regressor in the supply equation. With no

movements in ust there is no correlation between the shock and the regressor. Second, now

suppose instead that the both demand shocks are zero (both At D 0 and Var.udt / D 0).

Then plim O D ˇ, so the estimated value is not the supply, but the demand elasticity. Not

good. This time, think of a fixed demand curve, and a supply curve which moves around.
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5.4 Asymptotic Normality

Reference: Greene (2018) 4.4; Hamilton (1994) 8.2; Davidson (2000) 3
Issue: what is the distribution of your estimator in large samples?

5.4.1 Central Limit Theorems

We need some basic facts about statistics (central limit theorems) for the discussion of
asymptotic normality.

Remark 5.8 (Convergence in distribution) Let Oz be a random variable (which depends

on the sample size T ) and letZ be another random variable that does not. If limT!1 Pr. Oz <
c/ D Pr.Z < c/ for every c, then Oz converges in distribution to the random variable Z.

Notation Oz d! Z.

Remark 5.9 (Central limit theorem, simple version) A CLT says that
p
T Nx d! N./, that

is, becomes normally distributed when T becomes really large. This holds for many

random variables (although exceptions exist). Notice that the distribution of Nx converges

to a spike as T increases (LLN), but the distribution of
p
T Nx converges to a normal

distribution. See Figure 5.3.

Remark 5.10 (Continuous mapping theorem.) Let the random variables Oz and Oq and

the non-random aT be such that Oz d! Z, Oq p! Q (a finite and positive definite matrix)

and aT ! a (a traditional limit). Also, let g.z; y; a/ be a continuous function. Then

g. Oz; Oq; aT / d! g.Z;Q; a/.

Example 5.11 For instance, the sequences in Remark 5.10 could be Oz D pT˙T
tDwt=T

(the scaled sample average of a random variablewt ); Oq D ˙T
tDw2t =T (the sample second

moment); and a D ˙T
tD10:7t (which converges to 2.333).

5.4.2 Asymptotic Normality of OLS

Subtract ˇ from both sides of (5.1), and multiply both sides by
p
T to get

p
T . Ǒ � ˇ/ D

�
1

T

XT

tD1 xtx
0
t

��1
„ ƒ‚ …

!˙�1xx

p
T
1

T

XT

tD1 xtut„ ƒ‚ …p
T�sample average

(5.19)
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Figure 5.9: Results from a Monte Carlo experiment with thick-tailed errors.

The first term converges (by a LLN) in probability limit to ˙�1xx , assuming the xt is such
that the limit is well defined. (This is like the Oq p! Q variables in Remark 5.10.) The
second term is

p
T�sample average (of xtut ), which (by a CLT) will (typically) converge

in distribution to a normally distributed variable. According to Remark 5.10, we should
therefore expect

p
T Ǒ to be normally distributed in large samples—even if the residual

doesn’t have a normal distribution. See Figure 5.9 for an example.
According to Remark 5.10 and (5.19)

p
T . Ǒ � ˇ/ converges in distribution to ˙�1xx

times a normally distributed variable (vector). If OLS is consistent, then the normal dis-
tribution has a zero mean (E xtut D 0). Let ˙ denote the variance-covariance matrix of
˙T
tD1xtut=

p
T

˙ D Var
�XT

tD1 xtut=
p
T

�
: (5.20)

Together, we then have

p
T . Ǒ � ˇ/ d! N

�
0;˙�1xx˙˙

�1
xx

�
(5.21)
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Remark 5.12 (�Relation to expression in earlier chapters) We have previously shown

that

Var. Ǒ/ D S�1xx SS�1xx , where Sxx D ˙T
tD1xtx

0
t and S D Var.˙T

tD1xtut/:

To see that this is really the same as (5.21), notice two things. First, if Var.
p
T Ǒ/ D A,

then Var. Ǒ/ D A=T . This transforms the covariance matrix in (5.21) to

Var. Ǒ/ D ˙�1xx˙˙�1xx =T:

Second, notice that ˙xx D Sxx=T (in probability limits) and that ˙ D S=T . Use this in

the previous equation to get

Var. Ǒ/ D .TS�1xx /.S=T /.TS�1xx /=T

and cancel the T terms to get Var. Ǒ/ D S�1xx SS�1xx .

5.5 Spurious Regressions

Strong trends often causes problems in econometric models where yt is regressed on xt .
In essence, if no trend is included in the regression, then xt will appear to be significant,
just because it is a proxy for that trend. The same holds for non-stationary processes,
even if they have no deterministic trends. The reason is that the innovations accumulate
and the series therefore tend to be trending in small samples. Asymptotic results are
typically of little use here, since the non-stationarity means that the asymptotic results are
degenerate (for instance, infinite variance). A warning sign of a spurious regression is
when R2 > DW statistic.

Empirical Example 5.13 (Regressing the price level on GDP) See Figure 5.10 for results

from regressing the U.S. price level (GDP deflator) on output (GDP level). The results

indicate a very significant regression slope, but extreme autocorrelation. This is likely to

be a spurious regression. Also, economics would suggest that nominal (price level) and

real variables (output) variables are driven by completely different factors.

See Figures 5.11–5.14 for a Monte Carlo simulation.
For trend-stationary data, this problem is easily solved by detrending with a linear

trend (before estimating or just adding a trend to the regression).
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Figure 5.11: Distribution of slope coefficient when yt and xt are independent AR(1)
processes

However, this is usually a poor method for a unit root processes. What is needed is a
first difference. For instance, a first difference of the random walk with drift is

�yt D yt � yt�1
D �C "t ; (5.22)

which is white noise (any finite difference, like yt � yt�s, will give a stationary series),
so we could proceed by applying standard econometric tools to �yt .
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Chapter 6

Simulating the Finite Sample Properties

Reference: Greene (2000) 5.3 and Horowitz (2001)
Additional references: Cochrane (2001) 15.2; Davidson and MacKinnon (1993) 21; Davi-
son and Hinkley (1997); Efron and Tibshirani (1993) (bootstrapping, chap 9 in particular);
and Berkowitz and Kilian (2000) (bootstrapping in time series models)

6.1 Introduction

We know the small sample properties of regression coefficients in linear models with
fixed regressors and iid normal error terms. When these conditions are not satisfied,
then we must rely on asymptotic results or apply Monte Carlo/bootstrap simulations to
approximate the small sample properties. For instance, if the regression residuals have
autocorrelation and/or heteroskedasticity, then we may either use a consistent estimator
of the covariance matrix (Newey-West, White, etc) and apply the usual test by comparing
with the asymptotically correctN.0; 1/ or �2q distributions. Alternatively, we can compare
the test statistic (based on either the classical covariance matrix or a consistent one) with a
simulated distribution. The advantage of the simulations is that they might provide better
approximations of the small sample properties than the asymptotic distribution does.

The results from the simulations can be used to study, for instance, (a) the distribu-
tion of a point estimate (to create confidence bands or a standard deviation) or (b) the
distribution of a test statistic (to generate appropriate critical values).

How these simulations should be implemented depends crucially on the properties
of the model and data: if the residuals are autocorrelated, heteroskedastic, or perhaps
correlated across regressions equations. These notes summarize a few typical cases.

Empirical Example 6.1 (The empirical importance of simulated standard errors) The
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need for using Monte Carlos or bootstraps varies across applications and data sets. For

a case where it does not matter much, see Table 6.1, and for a case where it matters,

compare the traditional and bootstrapped t-stats in Tables 6.2–6.3.

˛ t (LS) t (NW) t (boot)
A (NoDur) 2:77 2:31 2:14 1:90

B (Durbl) �0:19 �0:09 �0:10 �0:09
C (Manuf) 0:19 0:22 0:21 0:19

D (Enrgy) 1:44 0:64 0:62 0:60

E (HiTec) �0:86 �0:55 �0:55 �0:49
F (Telcm) 1:08 0:72 0:69 0:60

G (Shops) 1:38 1:09 1:03 1:02

H (Hlth ) 2:23 1:46 1:48 1:47

I (Utils) 2:93 1:79 1:75 1:84

J (Other) �0:92 �0:96 �0:91 �0:75

Table 6.1: Estimates of CAPM on US industry portfolios 1970:01-2021:12. NW uses
1 lag. The bootstrap samples .yt ; xt/ pairs, in blocks of 10 observations and has 3000
simulations.

2y 3y 4y 5y

factor 1:00 1:85 2:64 3:39

.6:44/ .6:45/ .6:53/ .6:63/

constant �0:00 �0:00 �0:00 �0:00
.�0:00/ .�0:22/ .�0:48/ .�0:77/

R2 0:12 0:12 0:13 0:13

obs 684 684 684 684

Table 6.2: Regression of different excess (1-year) holding period returns (in columns, in-
dicating the maturity of the respective bond) on a single forecasting factor and a constant.
Numbers in parentheses are t-stats. U.S. data for 1964:01-2021:12.

6.2 Monte Carlo Simulations

6.2.1 Monte Carlo Simulations in the Simplest Case

Monte Carlo simulations is essentially a way to generate many artificial (small) samples
from a parameterised model and then estimate the statistic (for instance, a slope coef-
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2y 3y 4y 5y

factor 1:00 1:85 2:64 3:39

.3:74/ .3:80/ .3:91/ .4:02/

constant �0:00 �0:00 �0:00 �0:00
.�0:00/ .�0:10/ .�0:23/ .�0:36/

R2 0:12 0:12 0:13 0:13

obs 684 684 684 684

Table 6.3: Regression of different excess (1-year) holding period returns (in columns,
indicating the maturity of the respective bond) on a single forecasting factor and a con-
stant. U.S. data for 1964:01-2021:12. Numbers in parentheses are t-stats. Bootstrapped
standard errors, with blocks of 10 observations.

ficient) on each of those samples. The distribution (across the artificial samples) of the
statistic is then used as an approximation of the small sample distribution of the estimator.

The following is an example of how Monte Carlo simulations could be done in the
special case of a linear model with a scalar dependent variable

yt D x0tˇ C ut ; (6.1)

where ut is iid N.0; �2/ and xt is stochastic but independent of ut˙s for all s. (This
means that xt cannot include lags of yt .)

Suppose we want to find the small sample distribution of a function of the estimate,
g. Ǒ/. To do a Monte Carlo experiment, we need information on (i) the coefficients ˇ; (ii)

the variance of ut ; �2; (iii) and a process for xt .
The process for xt is typically estimated from the data on xt (for instance, a VAR

system xt D A1xt�1 C A2xt�2 C et ). Alternatively, we could simply use the actual
sample of xt and repeat it.

The values of ˇ and �2 are often a mix of estimation results and theory. In some case,
we simply take the point estimates. In other cases, we adjust the point estimates so that
g.ˇ/ D 0 holds, that is, so you simulate the model under the null hypothesis in order to
study the size of tests and to find valid critical values for small samples. Alternatively,
you may simulate the model under an alternative hypothesis in order to study the power
of the test using either critical values from either the asymptotic distribution or from a
(perhaps simulated) small sample distribution.

To make this discussion a bit more concrete, suppose you want to use these simulations
to get a 5% critical value for testing the null hypothesis g.ˇ/ D 0. The Monte Carlo
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experiment follows these steps.

1. Construct an artificial sample of the regressors (see above), Qxt for t D 1; : : : ; T .
Draw random numbers Qut for t D 1; : : : ; T from a prespecified distribution (for in-
stance, N.0; �2/) and use those together with the artificial sample of Qxt to calculate
an artificial sample Qyt for t D 1; : : : ; T from

Qyt D Qx0tˇ C Qut ; (6.2)

by using the prespecified values of the coefficients ˇ (perhaps your point estimates).

2. Calculate an estimate Q̌ and record it along with the value of g. Q̌/ and perhaps also
the test statistic of the hypothesis that g.ˇ/ D 0.

3. Repeat the previous steps N (3000, say) times. The more times you repeat, the
better is the approximation of the small sample distribution.

4. Sort your simulated Q̌, g. Q̌/, and the test statistic in ascending order. For a one-
sided test (for instance, a chi-square test), take the (0:95N )th observations in this
sorted vector as your 5% critical value. For a two-sided test (for instance, a t-
test), take the (0:025N )th and (0:975N )th observations as the 5% critical values.
You could also record how many times the 5% critical values from the asymptotic
distribution would reject a true null hypothesis.

5. You may also want to plot a histogram of Q̌, g. Q̌/, and the test statistic to see if there
is a small sample bias, and how the distribution looks like. Is it close to normal?
How wide is it? You could also estimate the variance-covariance matrix of Q̌ by
treating each estimate (from each simulation) as an observation—and then estimate
the covariance matrix across these observations.

We use the same basic procedure when yt is a vector, except that we have to consider
correlations across the elements of the vector of residuals ut . For instance, we could
generate the vector Qut from a N.0; ˙/ distribution—where ˙ is the variance-covariance
matrix of ut .

Remark 6.2 (GeneratingN.�;˙/ random numbers�) Suppose you want to draw an n�1
vector "t of N.�;˙/ variables. Use the Cholesky decomposition of ˙ to calculate the

lower triangular P such that ˙ D PP 0. Draw ut from an N.0; In/ distribution, and
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Figure 6.1: Results from a Monte Carlo experiment with fat-tailed errors

define "t D � C Put . Note that Cov."t/ D EPutu0tP 0 D PIP 0 D ˙ . (To watch out

for: the convention for whether to calculate P or P 0 differs across computer languages.)

It is straightforward to sample the errors from other distributions than the normal,
for instance, a student-t distribution. Equipped with uniformly distributed random num-
bers, you can always (numerically) invert the cumulative distribution function (cdf) of any
distribution to generate random variables from any distribution by using the probability
transformation method. See Figure 6.1 for an example.

Remark 6.3 (The probability transformation method�) A random variable Y has the cdf

u D Pr.Y � y/ D F.y/, where y is a number. Clearly, u is a probability and thus

between 0 and 1. Draw random numbers ui from a uniform distribution over .0; 1/.

Then, calculate yi D F �1.ui/, where F �1./ is the inverse of F./. A sample of yi will

have the cdf F .

Example 6.4 (The probability transformation method�) The exponential cdf is u D 1 �
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Figure 6.2: Results from a Monte Carlo experiment on two methods of testing for ran-
domness.

exp.��y/ with inverse y D � ln .1 � u/ =� . Draw ui from U.0; 1/ and transform to yi
to get an exponentially distributed variable.

6.2.2 Monte Carlo Simulations when xt Includes Lags of yt

When xt contains lags of yt , then we must set up the simulations so that temporal link is
preserved in every artificial sample which we create. For instance, suppose xt includes
yt�1 and another vector zt of variables which are independent of ut˙s for all s

yt D x0tˇ C ut (6.3)

D yt�1 C � 0zt C ut :

We can then generate an artificial sample as follows. First, create a sample Qzt for t D
1; : : : ; T by some time series model (for instance, a VAR) or by taking the observed
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Figure 6.3: Results from a Monte Carlo experiment of LS estimation of the AR coeffi-
cient.

sample itself. Second, observation t of . Qxt ; Qyt/ is generated recursively as

Qyt D  Qyt�1 C � 0 Qzt C Qut for t D 1; : : : T (6.4)

Notice that this makes sure that Qyt�1 is the lagged value of Qyt (from the same artificial
sample). We clearly need the initial value Qy0 (for instance, a randomly picked number
from the sample of yt ) to start up the artificial sample—and then the rest of the sample
(t D 1; 2; :::) is calculated recursively. To reduce the importance of the initial value, you
may choose to generate 100C T values and then discard the first 100 observations. See
Figures 6.2–6.3 for examples.

Remark 6.5 (Monte Carlo for a VAR system) For a VAR(2) model (where there is no zt )

yt D A1yt�1 C A2yt�2 C ut ;

the procedure is straightforward. First, estimate the model on data and record the esti-
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mates (A1; A2;Var.ut/). Second, draw a new time series of residuals, Qut for t D 1; : : : ; T
and construct an artificial sample recursively (first t D 1, then t D 2 and so forth) as

Qyt D A1 Qyt�1 C A2 Qyt�2 C Qut :

(This requires some starting values for y�1 and y0.) Third, re-estimate the model on the

artificial sample, Qyt for t D 1; : : : ; T .

6.2.3 Monte Carlo Simulations with non-iid Errors

It is more difficult to handle non-iid errors, like those with autocorrelation and het-
eroskedasticity. We then need to model the error process and generate the errors from
that model.

When the errors are autocorrelated, then we could estimate the error process from the
fitted errors and then generate artificial samples of errors (here by an AR(2))

Qut D a1 Qut�1 C a2 Qut�2 C Q"t ; (6.5)

where Q"t are iid.
See Figure 6.4 for an illustration.
Alternatively, heteroskedastic errors can be generated by, for instance, a GARCH(1,1)

model
ut � N.0; �2t /, where �2t D ! C ˛u2t�1 C ˇ�2t�1: (6.6)

However, this specification does not account for any link between the volatility and the
regressors (squared)—as tested for by White’s test. This would invalidate the usual OLS
standard errors and therefore deserves to be taken seriously. A simple, but crude, approach
is to generate residuals from a N.0; �2t ) process, but where �2t is approximated by the
fitted values from

"2t D c0wt C �t ; (6.7)

where wt include the squares and cross product of all the regressors.
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Figure 6.4: Results from a Monte Carlo experiment of LS estimation of the AR coefficient
when data is from an ARMA process.

6.3 Bootstrapping

6.3.1 Bootstrapping in the Simplest Case

Bootstrapping is another way to do simulations, where we construct artificial samples
by sampling from the actual data (this is sometimes called a non-parametric bootstrap,
whereas a parametric bootstrap is basically a Monte Carlo simulation). The advantage of
the bootstrap is then that we do not have to try to estimate the process of the errors and
regressors (as we do in a Monte Carlo experiment). This means that we do not have to
make any strong assumption about the distribution of the errors.

The bootstrap approach works particularly well when the errors are iid and indepen-
dent of xt�s for all s. (This means, among other things, that xt cannot include lags of yt .)
We here consider bootstrapping the linear model (6.1), for which we have point estimates
(perhaps from LS) and fitted residuals. The procedure is then similar to the Monte Carlo
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approach, except that the artificial sample is generated somewhat differently. In particular,
Step 1 in the Monte Carlo simulation is replaced by the following:

1. Construct an artificial sample Qyt for t D 1; : : : ; T by

Qyt D x0t Ǒ C Qut ; (6.8)

where Qut is drawn with replacement (“residual resampling”) from the fitted residu-
als ( Qut D Ous where s is the random draw) and where Ǒ is the point estimate from
the original sample. Clearly, xt is just the original data.

Example 6.6 With T D 3, the artificial sample could be264 . Qy1; Qx1/
. Qy2; Qx2/
. Qy3; Qx3/

375 D
264 .x01 Ǒ C Ou2; x1/
.x02 Ǒ C Ou1; x2/
.x03 Ǒ C Ou2; x3/

375 :
The approach in (6.8) works also when yt is a vector of dependent variables. In this

case we draw the whole vector Qut together to retain the cross-sectional correlation of the
residuals.

The theoretical motivation for why bootstraps work is that the distribution of the fitted
residuals converge to the true distribution as the sample size increases. In this sense, the
bootstrap relies on asymptotic results, just like most traditional tests rely on a central limit
theorem. The key point, however, is that the bootstrap often has smaller distortions (for
instance, to the rejection frequency) than traditional tests have.

Remark 6.7 (Bootstrapped confidence bands) Using the simulated 0:025th and 0:975th

quantiles of the bootstrapped Q̌ values is a way of creating a 95% confidence band, some-

times called Efron’s “bootstrap percentile method”. The “bootstrap percentile t -method”

(also suggested by Efron) is often considered to be an improvement. To implement it, first

define Qt D . Q̌ � Ǒ/=Std. Q̌/, where Std. Q̌/ is the standard deviation across the bootstrap

estimates. (Sometimes the centering is done by subtracting the average of Q̌ values in-

stead of the point estimate Ǒ). Let Q.Qt I 0:025/ be the 0.025th quantile of Qt (that is, the

2.5th percentile) and Q.Qt I 0:975/ be the 0.975th quantile. Then, we could define a 95%

confidence band as Œ Ǒ CQ.Qt I 0:025/Std. Ǒ/; Ǒ CQ.Qt I 0:975/Std. Ǒ/�, where Std. Ǒ/ is a

consistent estimate of the standard deviation of Ǒ.

114



One issue with the bootstrap is that it does not directly create observations that obey
the null hypothesis, or even a given alternative hypothesis. For instance, it is not straight-
forward to create samples where a particular coefficient is zero (ˇ2 D 0, say). Actually,
(6.8) creates a distribution around the point estimate, that is, of Q̌ � Ǒ, where Ǒ is the
point estimate from the original sample. This is not important if we just want to under-
stand the standard error of a coefficient (since the standard deviation across the bootstrap
simulations is already defined in terms of squared deviations around the average value
in the bootstraps.). However, it is crucial when we want to understand percentiles of
coefficients, t -stats, or �2-stats.

An additional complication is that the average (across bootstrap simulations) estimate
Q̌ may not always equal the point estimate Ǒ. If we still want to use the bootstraps to find

critical values, then we have to center the test statistic on the the average estimate in the
bootstraps, Q̌. For instance, for a t -test we calculate

t D
Q̌ � average Q̌

Std. Q̌/ (6.9)

for each simulation and then take the (0:025N )th and (0:975N )th observations as the 5%
critical values (instead of the ˙1:96 from a standard normal distribution). These critical
values can then be used for t -tests based on the original sample, for instance, that ˇ2 D k.
In most cases, there is little difference between centering on the average Q̌ and the point
estimate Ǒ.

A similar reasoning applies to joint tests of coefficients. Consider a linear combination
of the coefficients, R Q̌. If V is the OLS variance-covariance matrix, then for each sample
we would calculate the quadratic form

� D ŒR. Q̌ � average Q̌/�0.RVR0/�1ŒR. Q̌ � average Q̌/�: (6.10)

Once again, we could take the (0:95N )th simulated � as the 5% critical value (instead of
the 95th percentiles for a �2q distribution, for instance, 5.99 for q D 2). This critical value
can be used to hypotheses like Rˇ � k based on the original sample.

In general, the bootstraps of test statistics like the t and � are more precise than
the bootstraps of the regression coefficients themselves—provided that we use consistent
estimates of the covariance matrix. (In the limit, these statistics do not depend on model
parameters—they asymptotically “pivotal”—which often improves the convergence rate.)
For instance, in the case of autocorrelated residuals, this suggests that it might be better to
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create a bootstrap simulation for t -stats calculated with a Newey-West covariance matrix
than a “t -stat” based on a standard OLS covariance matrix since the latter will have an
asymptotic distribution which depends on the autocorrelation (that is, model parameters).

6.3.2 Bootstrapping when xt Includes Lags of yt

When xt contains lagged values of yt , then we have to modify the approach in (6.8) since
Qut can become correlated with xt . For instance, if xt includes yt�1 and we happen to
sample Qut D Out�1, then we get a non-zero correlation between regressor and residual.
The easiest way to handle this is as in the Monte Carlo simulations in (6.4), but where Qut
are drawn (with replacement) from the sample of fitted residuals. The same carries over
to the VAR model in Remark 6.5.

6.3.3 Bootstrapping when Errors Are Heteroskedastic

Suppose now that the errors are heteroskedastic, but serially uncorrelated. If the het-
eroskedasticity is unrelated to the regressors, then we can still use (6.8).

However, if the heteroskedasticity is related to the regressors, then it would be wrong
to pair xt with just any Qut D Ous since that destroys the relation between xt and the
variance of the residual. (This is the case that White’s test for heteroskedasticity tries to
identify.)

An alternative way of bootstrapping can then be used: generate the artificial sample by
drawing (with replacement) pairs .ys; xs/, that is, we let the artificial pair for observation
t be . Qyt ; Qxt/ D .ys; xs/ for some random draw of s. Since .ys; xs/ D .x0s Ǒ C Ous; xs/
we are effectively pairing the fitted residual Ous with the contemporaneous regressors xs.
This is called a paired bootstrap (or “case resampling”). Notice that we are sampling
with replacement—otherwise the approach of drawing pairs would be to just re-create the
original data set. This approach works also when yt is a vector of dependent variables.

Example 6.8 With T D 3, the artificial sample could be264 . Qy1; Qx1/
. Qy2; Qx2/
. Qy3; Qx3/

375 D
264 .y2; x2/

.y3; x3/

.y3; x3/

375 D
264 .x02ˇ C Ou2; x2/
.x03ˇ C Ou3; x3/
.x03ˇ C Ou3; x3/

375
It could be argued (see, for instance, Davidson and MacKinnon (1993)) that bootstrap-

ping the pairs .ys; xs/ makes little sense when xs contains lags of ys, since the random
sampling of the pair .ys; xs/ destroys the autocorrelation pattern of the regressors.

116



See Table 6.4 for an application.

 D 0  D 1
˛ W 0 1 0 1

Simulated 7:1 18:9 13:4 25:1

OLS formula 7:1 13:3 13:4 19:2

White’s 7:0 18:5 13:3 24:3

Bootstrap 7:1 18:5 13:4 24:4

Bootstrap 2 7:0 18:5 13:3 24:3

FGLS 7:5 17:3 14:0 24:1

Table 6.4: Standard error of OLS slope (%) under heteroskedasticity (simulation evi-
dence). Model: yt D 1C0:9xtC�t , where �t � N.0; �2t /, with �2t D .1C jzt jC˛jxt j/2,
where zt is iid N(0,1) and independent of xt . Sample length: 200. Number of simula-
tions: 25000. The bootstrap draws pairs .ys; xs/ with replacement while bootstrap 2 is a
wild bootstrap.

Remark 6.9 (The wild Bootstrap) The wild bootstrap is also aimed at solving the het-

eroskedasticity problem. In this case, the artificial sample is generated as in (6.8), but

we use Qut D Out Q"t where Out is the fitted (OLS) residual for observation t and Q"t is drawn

from an iid random variable with mean 0 and variance 1. For instance, Q"t could have a

two-point distribution where it is either �1 or 1 with equal probabilities.

6.3.4 Bootstrapping when Errors Are Autocorrelated

It is quite hard to handle the case when the errors are serially dependent, since we must
sample in such a way that we do not destroy the autocorrelation structure of the data. A
common approach is to fit a model for the residuals, for instance, an AR(1), and then
bootstrap the (hopefully iid) innovations to that process.

Another approach amounts to resampling blocks of data. For instance, suppose the
sample has 10 observations, and we decide to create blocks of 3 observations. The first
block is . Ou1; Ou2; Ou3/, the second block is . Ou2; Ou3; Ou4/, and so forth until the last block,
. Ou8; Ou9; Ou10/. If we need a sample of length 3� , say, then we simply draw � of those 3-
observations blocks randomly (with replacement) and stack them to form a longer series.

Example 6.10 With T D 9 and a block size of 3, the artificial sample could be

Ou2; Ou3; Ou4„ ƒ‚ …
block 2

; Ou7; Ou8; Ou9„ ƒ‚ …
block 7

; Ou4; Ou5; Ou6„ ƒ‚ …
block 4

:
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To handle end point effects (so that all data points have the same probability to be
drawn), we also create blocks by “wrapping” the data around a circle. In practice, this
means that we add the following blocks: . Ou10; Ou1; Ou2/ and . Ou9; Ou10; Ou1/.

The length of the blocks should clearly depend on the degree of autocorrelation, but
T 1=3 is sometimes recommended as a rough guide. An alternative approach is to have
non-overlapping blocks. See Berkowitz and Kilian (2000) for some other approaches.

See Table 6.5 for an illustration.

� W 0.0 0.75

Simulated 5:8 10:2

OLS formula 5:8 7:2

Newey-West 5:7 9:6

VARHAC 5:7 11:1

Bootstrapped 5:5 9:5

FGLS 5:9 10:2

Table 6.5: Standard error of OLS intercept (%) under autocorrelation (simulation evi-
dence). Model: yt D 1C 0:9xt C �t , where �t D �t C ��t�1; �t is iid N(). NW uses 5
lags. VARHAC uses 5 lags and a VAR(1). The bootstrap uses blocks of size 20. Sample
length: 300. Number of simulations: 25000.

6.3.5 Other Approaches

There are many other ways to do bootstrapping. For instance, we could sample the re-
gressors and residuals independently of each other and construct an artificial sample of
the dependent variable Qyt D Qx0t Ǒ C Qut . This clearly makes sense if the residuals and
regressors are independent of each other and errors are iid. In that case, the advantage of
this approach is that we do not keep the regressors fixed.
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Chapter 7

A System of OLS Regressions

Reference: Wooldridge (2010) 7.3; Greene (2018) 10
More advanced material is denoted by a star (�). It is not required reading.

7.1 A System of Two OLS Regressions

Consider regressions for two different dependent variables (y1t and y2t , for instance, the
returns on two different assets) on the same set of regressors (xt )

y1t D x0tˇ1 C u1t (7.1)

y2t D x0tˇ2 C u2t ; (7.2)

where ˇ1 is the vector of regression coefficients for y1t and ˇ2 for y2t .
It is straightforward to show (see below) that if the residuals are iid and independent

of all regressors but we allow for Cov.u1t ; u2t/ ¤ 0, then

Var

 " Ǒ
1

Ǒ
2

#!
D
"
�11S

�1
xx �12S

�1
xx

�21S
�1
xx �22S

�1
xx

#
; (7.3)

where �ij D Cov.uit ; ujt/ and where Sxx D ˙T
tD1xtx0t .

More generally, when the residuals are heteroskedastic or autocorrelated,

Var

 " Ǒ
1

Ǒ
2

#!
D
"
S�1xx 0

0 S�1xx

#
˝

"
S�1xx 0

0 S�1xx

#
; where (7.4)
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˝ D Var

 PT
tD1

"
xtu1t

xtu2t

#!

D
"

Var.˙xtu1t/ Cov.˙xtu1t ; ˙xtu2t/
Cov.˙xtu2t ; ˙xtu1t/ Var.˙xtu2t/

#
: (7.5)

The ˝ matrix (which is 2k � 2k if there are k regressors in xt ) could be estimated with
the methods of White or Newey-West.

Extensions to more than two regression equations are straightforward.
Proof. (of (7.3)–(7.5)) Similarly to the single-equation OLS, we can write

Ǒ
1 D ˇ1 C S�1xx

PT
tD1xtu1t

Ǒ
2 D ˇ2 C S�1xx

PT
tD1xtu2t

The variance (matrix) of Ǒ1 or of Ǒ2 follows the same pattern as for single-equation OLS.
In contrast, the covariance (matrix) is

Cov. Ǒ1; Ǒ1/ D S�1xx Cov.
PT

tD1xtu1t ;
PT

tD1xtu2t/S
�1
xx :

Together, this gives (8.10)–(7.5). If the residuals are iid and independent of the regressors,
then ˝ simplifies to

˝ D
"
�11Sxx �12Sxx

�21Sxx �22Sxx

#
;

which gives (7.3).

7.2 A System of n OLS Regressions

Remark 7.1 (Kronecker product) Let ˝ denote the Kronecker product, that is, if A and

B are matrices, then

A˝ B D

2664
a11B � � � a1nB
:::

:::

am1B � � � amnB

3775 :
For instance, with

A D
"
1 3

2 4

#
and B D

h
10 11

i
, we get A˝ B D

"
10 11 30 33

20 22 40 44

#
:

Let O� be the vector of where Ǒ1; Ǒ2; :::; Ǒn are stacked (equation 1 first, then equation
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2, etc).
With iid residuals the variance-covariance matrix (instead of (7.3)) is

Var. O�/ D ˙ ˝ S�1xx ; (7.6)

where ˙ D Cov.ut/ is the n � n variance-covariance matrix of the n residuals.
Similarly, with non-iid residuals we get (instead of (8.10))

Var. O�/ D .In ˝ S�1xx /˝.In ˝ S�1xx /; (7.7)

where In is the n � n identity matrix. Let ut be the vector of the n residuals in period t
(u1t ; u2t ; :::; unt ). Then, ˝ is (instead of (7.5))

˝ D Var
�PT

tD1ut ˝ xt
�
; (7.8)

which is an nk � nk matrix which can be estimated by the methods of White or Newey-
West.

Remark 7.2 (Estimating ˝) To estimate ˝ in (7.8), create an T � nk matrix. Let first

k columns of row t be u1tx0t , the second k columns be u2tx0t . Then apply, for instance,

Newey-West to these nk time series.

Empirical Example 7.3 (CAPM on industry portfolios) Figure 7.1 shows results for the

intercepts from regressing US industry portfolios on the market. The joint test is for

whether all intercepts are zero.
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Figure 7.1: CAPM regressions on US industry indices
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Chapter 8

A System of Regressions Equations

8.1 A System of OLS Regressions

Reference: Wooldridge (2010) 7.3
Consider the two regressions

yt D x0tˇ C ut (8.1)

zt D w0t C vt : (8.2)

Let Ȯxx D
PT

tD1xtx0t=T and similarly for the other second moment matrices. We then
know (from basic properties of LS) that

p
T . Ǒ � ˇ/ D Ȯ �1xx

p
T
1

T

PT
tD1xtut (8.3)

p
T . O � / D Ȯ �1ww

p
T
1

T

PT
tD1wtvt : (8.4)

Let ˙i i D plim Ȯ i i . The remaining terms (typically) obey CLTs, so we can expect
the asymptotic distribution to be normal.

The covariance of
p
T Ǒ and

p
T O is therefore

Cov.
p
T Ǒ;
p
T O/ D ˙�1xx˙yz˙�1ww ; with (8.5)

˙yz D Cov
�p

T
1

T

PT
tD1xtut ;

p
T
1

T

PT
tD1wtvt

�
(8.6)

where we use the fact that since ˙�1ww is symmetric. Warning: ˙yz is just notation for the
covariance matrix of the scaled samples averages of xtut and wtvt .
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The variance-covariance matrices of
p
T Ǒ and

p
T O are as in the usual OLS setting

Cov.
p
T Ǒ/ D ˙�1xx˙yy˙�1xx and Cov.

p
T O/ D ˙�1ww˙zz˙�1ww with (8.7)

˙yy D Cov
�p

T
1

T

PT
tD1xtut

�
and (8.8)

˙zz D Cov
�p

T
1

T

PT
tD1wtvt

�
: (8.9)

We can write the full variance-covariance matrix

Cov

 p
T

" Ǒ
O

#!
D
"
˙�1xx 0

0 ˙�1ww

#"
˙yy ˙yz

˙zy ˙zz

#
„ ƒ‚ …
˙ from (8.11)

"
˙�1xx 0

0 ˙�1ww

#
: (8.10)

Example 8.1 (Dimensions) If xt has 3 elements and wt has 2 elements, then the dimen-

sions for each of the matrices in (8.10) are"
3 � 3 3 � 2
2 � 3 2 � 2

#
, which is 5 � 5.

The middle matrix (on the right hand side) of (8.10) is really the full variance-covariance
matrix of the vector where we stack

p
T 1
T
˙xtut and

p
T 1
T
˙wtvt , which I denote by˙

˙ D Cov

 p
T
1

T

PT
tD1

"
xtut

wtvt

#!
: (8.11)

This could, for instance, be estimated with the methods of White or Newey-West.
Extensions to more than two regression equations are straightforward: the general

patterns of (8.10) and (8.11) are the same.

Remark 8.2 (iid residuals) If the residuals are iid and independent of all regressors (also

across observations), then ˙ simplifies to"
˙yy ˙yz

˙zy ˙zz

#
D
"
�uu˙xx �uw˙xw

�uw˙wx �ww˙ww

#
:

Remark 8.3 (Kronecker product) If A and B are matrices, then

A˝ B D

2664
a11B � � � a1nB
:::

:::

am1B � � � amnB

3775 :
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Remark 8.4 (SURE) When both regression (8.1) and (8.2) have the same regressors, so

wt D xt , then (8.10) and (8.11) simplify to

Cov

 p
T

" Ǒ
O

#!
D
"
˙�1xx 0

0 ˙�1xx

#
˙

"
˙�1xx 0

0 ˙�1xx

#
and ˙ D Cov

 p
T
1

T

PT
tD1

"
ut

vt

#
˝ xt

!
;

where ˝ is the Kronecker product. If, in addition, the residuals are iid and independent

of x as in Remark 8.2, then this simplifies further to

Cov

 p
T

" Ǒ
O

#!
D
"
�uu �uv

�vu �vv

#
˝˙�1xx :

8.2 Applications

8.2.1 CAPM with Several Test Assets

Suppose we have n test assets. Stack the CAPM regressions i D 1; : : : ; n as2664
Re1t
:::

Rent

3775 D
2664
˛1
:::

˛n

3775C
2664
ˇ1
:::

ˇn

3775ft C
2664
"1t
:::

"nt

3775 , where (8.12)

E "it D 0 and Cov.ft ; "it/ D 0:

This is a system of seemingly unrelated regression equations (SURE)—with the same
regressor (see, for instance, Greene (2003) 14). In this case, the efficient estimator (GLS)
is LS on each equation separately.

We, we could test, for instance, if ˛ D 0 by a Wald test. (In case residuals are iid and
independent of the regressors, the covariance matrix of the ˛ vector can be shown to have
a particularly simple form.)

8.2.2 A Multifactor Model with Several Test Assets

Reference: Cochrane (2005) 12.1; Campbell, Lo, and MacKinlay (1997) 6.2.1
When the K factors, ft , are excess returns, the null hypothesis typically says that

˛i D 0 in

Reit D ˛i C ˇ0ift C "it , where (8.13)

E "it D 0 and Cov.ft ; "it/ D 0K�1;
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Figure 8.1: CAPM, FF portfolios

and ˇi is now an K � 1 vector. We stack the returns for n assets to get2664
Re1t
:::

Rent

3775 D
2664
˛1
:::

˛n

3775C
2664
ˇ11 : : : ˇ1K
:::

: : :
:::

ˇn1 : : : ˇnK

3775
2664
f1t
:::

fKt

3775C
2664
"1t
:::

"nt

3775
or in vector form

Ret D ˛ C f̌t C "t ;where (8.14)

E "t D 0n�1 and Cov.ft ; "0t/ D 0K�n;

where ˛ is n � 1 and ˇ is n �K. Notice that ˇij shows how the i th asset depends on the
j th factor.

Again, we could test, for instance, if ˛ D 0.
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Chapter 9

Portfolio Sorts

9.1 Overview

Reference: Bali, Engle, and Murray (2016)
Portfolio sorts are used to construct portfolios (groups) based on some characteristic,

for instance, firm size. Once the portfolios have been defined (to which group/portfolio
does i belong?) we often compute the (possible weighted) average with each (group or)
portfolio

Rgt D
P
i2GroupgwitRit ; (9.1)

where wit is the relative portfolio weight of asset i in the portfolio (˙wit D 1). We often
use an unweighted average where wit D 1=(number of members of the group).

A common way (since Jensen, updated in Huberman and Kandel (1987)) is to study
the performance of a portfolio by running the following regression

Regt D ˛ C ˇRemt C "t , with (9.2)

E "t D 0 and Cov.Remt ; "t/ D 0;

where Regt is the excess return on the portfolio being studied and Remt the excess returns
of a vector of benchmark portfolios (for instance, only the market portfolio if we want to
rely on CAPM. Neutral performance requires ˛ D 0, which can be tested with a t test.

9.2 Univariate Sorts

A simple and commonly applied method for studying how an asset characteristic (xi ) is
related to returns (or some other performance measure) is to do a univariate sort. For
instance, we could sort the assets i D 1; :::; n according to xi and then construct three
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portfolios: (1) for those i whose xi belong to the lowest 1/3; (2) those in the mid 1/3 and
(3) those in the highest 1/3. Then, we measure the return on equally weighted portfolios—
and perhaps analyse the return of portfolio 3 minus the return on portfolio 1. The sorting
and portfolio construction is typically repeated at regular intervals. For instance, the
Fama-French size portfolios are based on the market capitalization and are rebalanced
every June. For a daily momentum strategy, we would rather redo the sort every day
based on recent performance.

Empirical Example 9.1 (Sorting on recent returns) See Table 9.1 for an empirical ex-

ample where the 25 FF portfolios are sorted into low/low recent 22-day returns, with 5

portfolios in each. The results indicate strong momentum.

Low 22-day return 4:31

.0:21/

High 22-day return 14:30

.0:79/

Difference 9:99

.0:92/

Table 9.1: Average excess returns and (Sharpe ratios) for 3 portfolios from a univariate
sort on recent (22-day) returns (5/5 assets). Daily data on 25 FF portfolios 1979:01-
2021:12

Example 9.2 (Simplified version of “Betting against beta” by Frazzini and Pedersen�)
First, find those assets with ˇi;t�1 < median.ˇi;t�1/ where ˇi;t�1 is the CAPM beta

estimated on data up to and including t � 1. (The median is across the assets.) This is

the low beta group. Second, calculate the equally weighted portfolio return in t . Third,

repeat for all periods. Fourth, do points 1–3 also for the high beta assets, ˇi;t�1 �
median.ˇi;t�1/. Fifth, form the excess return as the difference between the two portfolios.

9.3 Bivariate Sorts

Bivariate sorts (also called double sorts) are used when there are two important character-
istics (here called x and z) and you want to study how z affects returns—controlling for
x (that is, holding x “constant”). This may well be important if x and z are correlated.
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Bivariate sorts can be done in several ways. An independent bivariate sort first does a
univariate sort of xi (say, forming 3 categories: growth, neutral or value), then it makes an-
other univariate sort according to another sorting variable zi (say, forming two categories:
small or big). Then we find the intersections of the two sorts—think of a matrix

Low xi Medium xi High xi
Low zi : .xL; zL/ .xM ; zL/ .xH ; zL/

High zi : .xL; zH / .xM ; zH / .xH ; zH /

(9.3)

where, for instance, .xM ; zH / denote the set of assets that belong to the medium x cate-
gory and high z category. Notice that this matrix has a different structure than a traditional
scatter plot with x on the horizontal axis and z on the vertical axis: in this (and all other
tables) we put low zi on the first line and high zi on the second.

In an independent bivariate sort we cannot directly control how many assets there will
be in each group—and some groups might be empty (see Example 9.3 and Figure 9.1).

Once the portfolio sort is done, we typically calculate the average return (or some
other variable of interest) of each portfolio. In the independent sort, you can either com-
pare across rows or across columns.
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Figure 9.1: Example of bivariate sorts. The data is indicated by letters.

Example 9.3 (Independent double sort) Suppose there are 5 assets (labelled A, B,...) and
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that the values of x and z are
xi zi

Asset A 1 1

Asset B 2 2

Asset C 3 3

Asset D 4 4

Asset E 5 �1
We form low/high groups with 2 elements in each

Assets

Low x: A, B

High x: D, E

Low z: E, A

High z: C, D

The independent double sort then gives

Low x High x

Low z: A E

High z: D

Notice that there are no assets in the (low x, high z) group. See also Figure 9.1 for an

illustration, but notice that the scatter plot has a different structure: low z values are

plotted below high z values.

Empirical Example 9.4 (Independent sorting on recent volatility and returns) We first

sort the 25 FF portfolios according to recent volatility, putting 10 into the low group and

10 into the high group. Then we sort on recent returns, also putting 10 into a low group

and 10 into a high group. Finally, we form intersections. Figure 9.2 illustrates (for a

short subsample) how the number of portfolios in the “low vol, low return” group varies

over time. Typically, there are 4–5 portfolios in the group, but it varies considerably over

time. The subsequent analysis is therefore focused on the dependent sort (see below).

In dependent bivariate sort we first sort according to xi as before. Then, within an
x category we sort according to zi . This allows us to control the number of assets in
each group. Notice that the ordering matters in the dependent sort: letting x represent
growth/neutral/value and z small/big will not give the same results as switching the la-
bels. In the dependent sort, we compare across the z categories, that is, across rows in
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Figure 9.2: Independent bivariate portfolio sort, 25 FF portfolios

(9.3), for instance, the return of .xL; zH / minus the return of .xL; zL/ and so forth. In
(9.3) this gives three numbers—which are sometimes averaged: the interpretation is that
you are studying the effect of z (here: small/large), but controlling for x (here: one of
growth/neutral/value). See Figure 9.1 for an example.

Example 9.5 (Dependent double sort) Continuing the previous example, the dependent

double sort (with one asset in each portfolio) gives

Low x High x

Low z: A E

High z: B D

For instance, among the “high x” assets D and E, asset E has a lower z value so it is

allocated to the (high x, low z) portfolio, while asset D has a higher z value so it is

allocated to the (high x, high z) portfolio. Notice that all portfolios are populated. See

also Figure 9.1 for an illustration.

Empirical Example 9.6 (Dependent sorting on recent volatility and returns) We first sort

the 25 FF portfolios according to recent volatility, putting 10 into the low group and 10

into the high group. Within the “low vol” group, we then sort according to recent returns,

putting 5 into to the “low vol, low return” group and 5 into the “low vol, high return”
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group. We do the same within the “high volatility” group. This means that there are

always 5 FF portfolios in each of the 4 groups. See Figure 9.3 for some (unconditional)

background information about the 25 FF portfolios and Figure 9.4 for how often the

different FF portfolios are in each of the four groups. Table 9.2 reports the average

excess returns and the Sharpe ratios for the four groups.
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Figure 9.3: Average returns and volatility of the 25 FF portfolios

Low 22-day vol High 22-day vol
Low 22-day return 8:81 5:13

.0:55/ .0:23/

High 22-day return 13:19 12:49

.0:86/ .0:60/

High - low 4:38 7:36

.0:87/ .0:94/

High - low, average 5.87
(1.12)

Table 9.2: Average excess returns and (Sharpe ratios) for 4 portfolios from a dependent
bivariate sort. The first sort is on volatility (10/10 assets), the second sort (within each
volatility bin) is on recent returns (5/5 assets). Daily data on 25 FF portfolios 1979:01-
2021:12

The bivariate sort is designed to handle some correlation between x and z. If there
is no correlation, then a single sort is enough. However, the bivariate sort will break
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down if the correlation is too strong. In the independent sort, it can lead to few (or even
zero) assets in the off-diagonal portfolios if the correlation is positive (and vice versa if
the correlation is negative). In the dependent sort, it may simply leads to results that
cannot be trusted, see Figure 9.5 for an example. The figure illustrates how the “high z”
portfolios have clearly higher x values than the “low z” portfolios have, so the approach
is only moderately successful in controlling for x. This could be solved by having smaller
x bins (which may require many assets), so that that the variation in x within each bin is
small compared to the variation in z. For instance, the low x bin could contain 20% of
the assets, the high x also 20%, leaving out the 60% in the middle. As an alternative, we
could consider an orthogonalisation (see below).

Remark 9.7 (When x and z are perfectly correlated�) If we change Example 9.3 so z

equals x, then the independent double sort gives

Low x High x

Low z: D, E

High z: A, B

This has the problem that the off-diagonal portfolios are empty. In contrast, the dependent

sort gives
Low x High x

Low z: A D

High z: B E

The latter has the problem that comparing across rows does not control for x. For in-

stance, asset B has a higher x (and z) value than asset A.

Remark 9.8 (The Fama-French factors�) The SMB and HML are created by an indepen-

dent bivariate sort. First, classify firms according to the book/market value: low (growth

stocks, using 30th percentile as cutoff), neutral or high (value stocks, using 70th percentile

as cutoff). Second, classify firms according to size: small or big, using the median as a

cutoff. Create six value weighted portfolios from the intersection of those categories

Low book/market Medium book/market High book/market

Small: Small Growth (SG) Small Neutral (SN) Small Value (SV)

Big: Big Growth (BG) Big Neutral (BN) Big Value (BV)

The SMB is the average of the small portfolios minus the average of the big portfolios:

SMB D 1=3.SG C SN C SV /� 1=3.BG CBN CBV /. Rearranging gives SMB D
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1=3.SG�BG/C1=3.SN�BN/CSV /C1=3.SV �BV /, which shows that it represents

the return on small stocks (for a given book/market) minus the return on big stocks (for

same book/market). The HML is the average of the value stocks minus the growth stocks,

HML D 1=2.SV C BV / � 1=2.SG C BG/, which can be rearranged as HML D
1=2.SV � SG/ C 1=2.BV � BG/, which shows that it represents the return on value

stocks (for a given size) minus the return on growth stocks (for the same size).

9.4 Orthogonalisation

Single sort on orthogonalised data is an alternative to a double sort and may be better
at handling strong (linear) correlation of x and z. It involves two steps. First, run a
regression of (z on x and a constant) to get coefficients (a; b). Second, do a single sort on
the residual

"i D zi � .aC bxi/: (9.4)

The regression can be done in several different ways: (1) a cross-sectional regression
as in Figure 9.6; (2) time series regressions; (3) a panel regression. In cases (1) and (2)
there is also a choice between using the full sample or just data up to t � 1.

9.5 Trading Strategies

Dynamic trading strategies are similar (and sometimes identical) to portfolio sorts. The
basic idea is to create a portfolio based on some kind of sorting of a trading signal.

Empirical Example 9.9 (Momentum for daily returns on the 25 FF portfolios) Figure

18.9 suggests that there is considerable momentum in the cross-section of the 25 FF port-

folios. Investing in past winners earns high returns.

Empirical Example 9.10 (Mean reversion of daily S&P 500 returns) Figure 9.8 shows

that extreme S&P 500 returns are followed by mean-reverting movements the following

day (negative autocorrelation)—which suggests that a trading strategy should sell after a

high return and buy after a low return.

Empirical Example 9.11 (Mean reversion of daily returns for different size categories)

Figure 9.9 compares the results for daily returns on different size categories —and il-

lustrates that there is more predictability (indicating positive autocorrelation) for small

stocks.
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Empirical Example 9.12 (Long run S&P 500 after different p/e values) Figure 9.10

shows average one-year return on S&P 500 for different bins of the p/e ratio (at the

beginning of the year). The figure illustrates that buying when the market is undervalued

(low p/e) might be a winning strategy.
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Figure 9.4: Dependent bivariate portfolio sort, 25 FF portfolios
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Chapter 10

GMM�

Sections denoted by a star (�) is not required reading.
Reference: Cochrane (2005) 11 and 14; Campbell (2018) 4; Singleton (2006) 2–4;

Greene (2018) 13

10.1 The Basic GMM

In general, the q � 1 vector of sample moment conditions in GMM are written

Ng.ˇ/ D 1

T

XT

tD1 gt.ˇ/ D 0q�1; (10.1)

where Ng.ˇ/ is short hand notation for the sample average. The notation gt.ˇ) is meant to
show that moments conditions depend on the parameter vector (ˇ) and on data for period
t . We let ˇ0 denote the true value of the k � 1 parameter vector.

The GMM estimator is

Ǒ
k�1 D arg min Ng.ˇ/0W Ng.ˇ/; (10.2)

whereW is some symmetric positive definite q � q weighting matrix. When the model is
exactly identified (q D k), then we do not have to perform an explicit minimization, since
all sample moment conditions can be set equal to zero (there are as many parameters as
there are moment conditions). However, we may still have to apply a numerical algorithm
to find the Ǒ values that make Ng. Ǒ/ D 0q�1 hold, in particular, if gt./ are non-linear
functions.

It can be shown that choosing W D S�10 , where S0 is the covariance matrix ofp
T Ng.ˇ0/ evaluated at the true parameter values, gives the most efficient estimates (for

a given set of moment conditions). To approximate this, an iterative procedure is often
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used: start with W D Iq (or some other reasonable weighting matrix), estimate the pa-
rameters and use them to create a T � q matrix of moment conditions, estimate S0, then
(in a second step) use W D OS�10 and reestimate. In most cases this iteration is stopped at
this stage, but you could also continue iterating until the point estimates converge.

Example 10.1 (Moment condition for a mean) To estimate the mean of xt , use

gt D xt � �:

There is one parameter and one moment condition: exactly identified.

Example 10.2 (Moments conditions for OLS) Consider the linear model yt D x0tˇ0Cut ,
where xt and ˇ are k � 1 vectors. The k moments are

gt D xt.yt � x0tˇ/:

There are as many parameters as moment conditions: exactly identified.

Example 10.3 (Moment conditions for estimating a normal distribution) Suppose you

specify four moments for estimating the mean and variance of a normal distribution

gt D

266664
xt � �
.xt � �/2 � �2
.xt � �/3
.xt � �/4 � 3�4

377775
This case is overidentified (q D 4 and k D 2), so a weighting matrix is needed.

Example 10.4 (Moment conditions for variances and a covariance) For expositional sim-

plicity, assume that both variables have zero means. The variances and the covariance

can then be estimated by the moment conditions

PT
tD1gt.ˇ/=T D 03�1 where gt D

264 x2t � �xx
y2t � �yy
xtyt � �xy

375 and ˇ D

264 �xx

�yy

�xy

375 :
10.1.1 Distribution of the Basic GMM

GMM estimators are typically asymptotically normally distributed, with a covariance ma-
trix that depends on the covariance matrix of the moment conditions (S0) and the mapping
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from the parameters to the moment conditions (D0). The details of these matrices are dis-
cussed below. For now, notice that the distribution of the GMM estimates is

p
T . Ǒ � ˇ0/ d! N.0; V / if W D S�10 , where

V D �D00S�10 D0

��1
; (10.3)

provided we have used S�10 as the weighting matrix (W D S�10 ) in (10.2). The choice
of the weighting matrix is irrelevant if the model is exactly identified, so (11.17) can be
applied to this case (even if we did not specify any weighting matrix at all). It can also
be noticed that when the model is exactly identified, then we can typically rewrite the
covariance matrix as V D D�10 S0.D�10 /0, which might be easier to calculate. (The case
of using another W matrix is discussed below.)

Let S0 be the (q � q) covariance matrix of
p
T Ng.ˇ0/, evaluated at the true parameter

values
S0 D CovŒ

p
T Ng.ˇ0/�; (10.4)

where Cov./ is a matrix of covariances. When there is no autocorrelation of the moments,
then (10.4) becomes

S0 D Cov Œgt.ˇ0/� , if gt is not autocorrelated. (10.5)

When there is autocorrelation, then we may use the Newey-West approach to estimate S0.
In practice, S0 is estimated by using the estimated coefficients in the moments to get

the data series gt. Ǒ/, a T � q matrix, from which we estimate the covariances needed for
(10.4) or (10.5).

Example 10.5 (Estimating a mean, variance) The moment in Example 10.1 (assuming

iid data, so we can use (10.5)) gives

S0 D Var.xt/ D �2:

In practice, we replace the variance by a sample estimate. If we suspect that xt is auto-

correlated, then we may use the NW estimator of Var.
p
T Ng/.

Example 10.6 (OLS, covariance) For the moments in Example 10.2, using ut D yt�x0tˇ,

we have

S0 D Cov

"p
T

T

TX
tD1

xtut

#
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In practice, replace ut by the fitted residuals and calculate a sample covariance. It can

be shown that under the Gauss-Markov assumptions S0 D �2˙xx. If we suspect that the

variance of ut is related to xt , then we should calculate the covariance matrix of gt , which

gives White’s covariance estimator. In addition we suspect that gt is autocorrelated, then

we may use the NW estimator of Var.
p
T Ng/.

Example 10.7 (Estimating/testing a normal distribution, covariance) Assuming iid nor-

mally distributed data (so we can use (10.5)) the moments in Example 10.3 would have

the following variance-covariance matrix

S0 D

266664
�2 0 3�4 0

0 2�4 0 12�6

3�4 0 15�6 0

0 12�6 0 96�8

377775 :
In practice, we instead use the point estimates in the moments and calculate the sample

covariance matrix. If we suspect that gt is autocorrelated, then we may use the NW

estimator of Var.
p
T Ng/.

LetD0 be the (q�k) probability limit of the gradient (Jacobian) of the sample moment
conditions with respect to the parameters (also evaluated at the true parameters)

D0 D plim
@ Ng.ˇ0/
@ˇ0

: (10.6)

In practice, the gradientD0 is approximated by using the point estimates and the available
sample of data.

Remark 10.8 (Jacobian) The Jacobian is of the following format

@ Ng.ˇ0/
@ˇ0

D

2666664
@ Ng1.ˇ/
@ˇ1

� � � @ Ng1.ˇ/
@ˇk

:::
:::

:::
:::

@ Ngq.ˇ/
@ˇ1

� � � @ Ngq.ˇ/
@ˇk

3777775 (evaluated at ˇ0).

Example 10.9 (Estimating a mean, Jacobian) For the moment in Example 10.1

D0 D @

@�

1

T

TX
tD1
.xt � �/ D �1;

which does not involve any parameters or any data.
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Example 10.10 (OLS, Jacobian) For the moments in Example 10.2

D0 D plim

 
� 1
T

TX
tD1

xtx
0
t

!
D �˙xx:

This does not contain any parameters either, but includes data. In practice, we replace

˙xx by a sample estimate.

Example 10.11 (Estimating/testing a normal distribution, covariance) For the moments

in Example 10.3 (assuming iid normally distributed data) we have (the rows are for the

four different moment conditions, the columns for the parameters: � and �2)

D0 D plim
1

T

TX
tD1

266664
�1 0

�2.xt � �/ �1
�3.xt � �/2 0

�4.xt � �/3 �6�2

377775

D

266664
�1 0

0 �1
�3�2 0

0 �6�2

377775 :
Element (4,1) of the second equality holds only if the data has a symmetric distribution

(for instance, a normal distribution). In practice, we would use the point estimates in the

matrix on the first line and calculate the sample average.

Example 10.12 (Estimating a mean, distribution) For the moment condition in Example

10.1 we have (assuming iid data)

p
T . O� � �0/ d! N.0; �2/, so “ O� � N.�0; �2=T /:”

Example 10.13 (OLS, distribution) For the moment conditions in Example 10.2

V D �˙xxS�10 ˙xx
��1

:

Under the Gauss-Markov assumptions S0 D �2˙xx, so

V D
h
˙xx

�
�2˙xx

��1
˙xx

i�1
D �2˙�1xx :

Example 10.14 (Estimating/testing a normal distribution, distribution) For the moment

conditions in Example 10.3 (assuming iid normally distributed data) we have that the
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asymptotic covariance matrix of the estimated mean and variance is then (.D00S�10 D0/
�1)0BBBB@

266664
�1 0

0 �1
�3�2 0

0 �6�2

377775
0266664

�2 0 3�4 0

0 2�4 0 12�6

3�4 0 15�6 0

0 12�6 0 96�8

377775
�1266664

�1 0

0 �1
�3�2 0

0 �6�2

377775
1CCCCA
�1

D
"

1
�2

0

0 1
2�4

#�1

D
"
�2 0

0 2�4

#
:

In an overidentified model (k < q), we can test if the k parameters make all q mo-
ment conditions hold. Notice that under the null hypothesis (that the model is correctly
specified) p

T Ng .ˇ0/ d! N
�
0q�1; S0

�
; (10.7)

where q is the number of moment conditions. Since Ǒ is chosen in such a way that k
linear combinations of the moment conditions are zero, there are effectively only q � k
non-degenerate random variables. We can therefore test the hypothesis that Ng .ˇ0/ D 0

by the “J test”

T Ng. Ǒ/0S�10 Ng. Ǒ/
d! �2q�k; if W D S�10 : (10.8)

The left hand side equals T times of value of the loss function in (10.2) evaluated at the
point estimates. With no overidentifying restrictions (q D k) there are no restrictions to
test. Indeed, the loss function value is then always zero at the point estimates.

Example 10.15 (Estimating/testing a normal distribution, testing) After having estimated

the mean and the variance, we can test if all four moment conditions in Example 10.3

hold. If data is drawn from a normal distribution, they should hold (give and take some

randomness).

Empirical Example 10.16 (Estimating a mean a variance with GMM) Table 10.1 re-

ports estimates of the mean and variance of the FF equity market return. The first ap-

proach (column) uses only the first two moment conditions of 10.3 (an exactly identified

case). Other approaches apply different (suboptimal) W matrices in solving (10.2). Fi-

nally, the last approaches apply (11.36) by using different A matrices. Table 10.2 reports

results from iterating on the W matrix when solving (10.2). The W matrix used in the

final iteration is shown in Table 10.3.
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ex. ident. Ng0W1 Ng Ng0W2 Ng A1 Ng A2 Ng
� 0:62 0:62 0:39 0:62 0:57

�2 20:86 20:86 20:91 20:86 20:86

Table 10.1: Estimates of mean and variance of the FF equity market factor, 1970:01-
2021:12. The W1 and A1 matrices put equal weights on moment conditions 1–2 and zero
weight moment conditions 3–4, whileW2 and A2 put also a very small weight on moment
condition 3.

iteration
0 1 2 3 4

� 0:62 0:75 0:76 0:76 0:76

�2 20:86 18:59 18:55 18:55 18:55

Table 10.2: Estimates of mean and variance of the FF equity market factor, 1970:01-
2021:12. The estimates minimize Ng0Wi Ng, where Wi D S�1i�1

10.2 GMM with a Suboptimal Weighting Matrix

The distribution of the GMM estimates when we use a sub-optimal weighting matrix is
similar to (11.17), but the variance-covariance matrix is different (basically, reflecting the
fact that the approach does not produce the lowest possible variances anymore).

Example 10.17 (Estimating/testing a normal distribution) Example 10.3 is overidentified

since there are four moment conditions but only two parameters. Instead of using the

optimal weighting matrix (the inverse of S0 from Example 10.7, assuming the data is iid

normally distributed), we could use any other (positive definite) 4�4matrix. For instance,

W D I4 or a matrix that puts almost all weight on the first two moment conditions.

It can be shown that if we use another weighting matrix than W D S�10 , then the

1210:00 58:17 �9:61 �0:40
58:17 18:99 �0:62 �0:07
�9:61 �0:62 0:14 0:01

�0:40 �0:07 0:01 0:00

Table 10.3: Wi � 10000 used in the last iteration when, minimizing Ng0Wi Ng to estimate the
mean and variance of the FF equity market factor, 1970:01-2021:12.
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variance-covariance matrix in (11.17) should be changed to

V2 D VA2D00WS0W 0D0V
0
A2, where (10.9)

VA2 D
�
D00WD0

��1
:

Similarly, the test of overidentifying restrictions becomes

T Ng. Ǒ/0	C2 Ng. Ǒ/
d! �2q�k; (10.10)

where 	C2 is a generalized inverse of

	2 D 	A2S0	 0A2, where (10.11)

	A2 D Iq �D0

�
D00WD0

��1
D00W:

The covariance matrix 	2 has a reduced rank, so we must use a generalized inverse in the
test.

Remark 10.18 (Quadratic form with degenerate covariance matrix) If the n � 1 vector

X � N.0;˙/, where ˙ has rank r � n then Y D X 0˙CX � �2r where ˙C is the

pseudo inverse of ˙ .

Example 10.19 (Pseudo inverse of a square matrix) For the matrix

A D
"
1 2

3 6

#
, we have AC D

"
0:02 0:06

0:04 0:12

#
:

10.3 GMM without a Loss Function

Suppose we sidestep the whole optimization issue and instead specify k linear combina-
tions of the q moment conditions directly

0k�1 D A„ƒ‚…
k�q

Ng. Ǒ/„ƒ‚…
q�1

; (10.12)

where the matrix A is chosen by the researcher. We can solve (possibly with a numerical
algorithm) for the Ǒ values that make these equations hold.

Example 10.20 (Overidentified example: estimating/testing a normal distribution) Ex-

ample 10.3 is overidentified since there are four moment conditions but only two param-
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eters. One possible A matrix would put all weight on the first two moment conditions

A D
"
1 0 0 0

0 1 0 0

#
:

It is straightforward to show that the variance-covariance matrix in (11.17) should be
changed to

V3 D VA3A0S0A00V 0A3, where (10.13)

VA3 D .A0D0/
�1 ;

where A0 is the probability limit of A (if it is random).
Similarly, in the test of overidentifying restrictions (11.35), we should replace 	2 by

	3 D 	A3S0	 0A3, where (10.14)

	A3 D Iq �D0 .A0D0/
�1A0:

The covariance matrix 	3 has a reduced rank, so we must again use a generalized inverse
in the test.

Example 10.21 (Estimating/testing a normal distribution) Continuing Example 10.20,

we have that A0D0 in (11.37) is

VA3 D

0BBBBBBBBB@
"
1 0 0 0

0 1 0 0

#
„ ƒ‚ …

A0

266664
�1 0

0 �1
�3�2 0

0 �6�2

377775
„ ƒ‚ …

D0

1CCCCCCCCCA

�1

D
"
�1 0

0 �1

#
:

Example 10.22 (Estimating/testing a normal distribution) Continuing the previous ex-
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ample, 	A3 in (11.39) is

	A3 D

266664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

377775
„ ƒ‚ …

I4

�

266664
�1 0

0 �1
�3�2 0

0 �6�2

377775
„ ƒ‚ …

D0

0BBBB@
"
�1 0

0 �1

#
„ ƒ‚ …

A0D0

1CCCCA
�1 "

1 0 0 0

0 1 0 0

#
„ ƒ‚ …

A0

D

266664
0 0 0 0

0 0 0 0

�3�2 0 1 0

0 �6�2 0 1

377775 :
	3 in (11.39) is therefore

	3 D

266664
0 0 0 0

0 0 0 0

�3�2 0 1 0

0 �6�2 0 1

377775
266664
�2 0 3�4 0

0 2�4 0 12�6

3�4 0 15�6 0

0 12�6 0 96�8

377775
266664

0 0 0 0

0 0 0 0

�3�2 0 1 0

0 �6�2 0 1

377775
0

D

266664
0 0 0 0

0 0 0 0

0 0 6�6 0

0 0 0 24�8

377775
Example 10.23 (Estimating/testing a normal distribution) Continuing the previous ex-

ample, we have that the test of the overidentifying restrictions (11.35) (assuming iid nor-

mally distributed data to calculate S0) is (notice the generalized inverse of 	3)

D T

266664
0

0

˙T
tD1.xt � �/3=T

˙T
tD1Œ.xt � �/4 � 3�4�=T

377775
0266664

0 0 0 0

0 0 0 0

0 0 1=.6�6/ 0

0 0 0 1=.24�8/

377775
266664
0

0

˙T
tD1.xt � �/3=T

˙T
tD1Œ.xt � �/4 � 3�4�=T

377775
D T

6

�
˙T
tD1.xt � �/3=T

�2
�6

C T

24

˚
˙T
tD1Œ.xt � �/4 � 3�4�=T

	2
�8

:

When we replace � and � by their estimates, then this is the same as the Jarque-Bera test

of normality.
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10.4 GMM Example: The Means and Second Moments of Returns

Let Rt be a vector of net returns of N assets. We want to estimate the mean vector and
the covariance matrix. The moment conditions for the mean vector are

ERt � � D 0N�1; (10.15)

and the moment conditions for the unique elements of the second moment matrix are

E vech.RtR0t/ � vech.� / D 0N.NC1/=2�1: (10.16)

Remark 10.24 (The vech operator) vech(A) where A ism�m gives anm.mC 1/=2� 1
vector with the elements on and below the principal diagonal A stacked on top of each

other (column wise). For instance, vech

"
a11 a12

a21 a22

#
D

264 a11

a21

a22

375.

Stack (10.15) and (10.16) and substitute the sample mean for the population expecta-
tion to get the GMM estimator

1

T

TX
tD1

"
Rt

vech.RtR0t/

#
�
"

O�
vech. O� /

#
D
"

0N�1
0N.NC1/=2�1

#
: (10.17)

In this case, D0 D �I , so the covariance matrix of the parameter vector ( O�; vech. O� /) is
just S0 (defined in (10.4)), which is straightforward to estimate.
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Chapter 11

GMM

References: Greene (2000) 4.7 and 11.5-6
Additional references: Hayashi (2000) 3-4; Verbeek (2004) 5; Hamilton (1994) 14; Ogaki
(1993), Johnston and DiNardo (1997) 10; Harris and Matyas (1999); Pindyck and Rubin-
feld (1998) Appendix 10.1; Cochrane (2001) 10-11; Hansen (1982)

11.1 Method of Moments

Let g .xt/ be a k�1 vector valued continuous function of a stationary process, and let the
probability limit of the mean of g .:/ be a function  .:/ of a k � 1 vector ˇ of parameters.
We want to estimate ˇ. The method of moments (MM, not yet generalized to GMM)
estimator is obtained by replacing the probability limit with the sample mean and solving
the system of k equations

1

T

TX
tD1

g .xt/ �  .ˇ/ D 0k�1 (11.1)

for the parameters ˇ.
It is clear that this is a consistent estimator of ˇ if  is continuous. (Proof: the sample

mean is a consistent estimator of .:/, and by Slutsky’s theorem plim . Ǒ/ D .plim Ǒ/
if  is a continuous function.)

Example 11.1 (Moment conditions for variances and covariance) Suppose the series xt
and yt have zero means. The following moment conditions define the traditional variance
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and covariance estimators 264
1
T

PT
tD1 x2t � �xx

1
T

PT
tD1 y2t � �yy

1
T

PT
tD1 xtyt � �xy

375 D
26400
0

375 :
It does not matter if the parameterers are estimated separately or jointly. In contrast, if

we want the correlation, �xy , instead of the covariance, then we change the last moment

condition to
1

T

XT

tD1 xtyt � �xy
p
�xx
p
�yy D 0;

which must be estimated jointly with the first two conditions.

Example 11.2 (MM for an MA(1).) For an MA(1), yt D �t C ��t�1, we have

Ey2t D E .�t C ��t�1/2 D �2�
�
1C �2�

E .ytyt�1/ D E Œ.�t C ��t�1/ .�t�1 C ��t�2/� D �2� �:

The moment conditions could therefore be"
1
T

PT
tD1 y2t � �2�

�
1C �2�

1
T

PT
tD1 ytyt�1 � �2� �

#
D
"
0

0

#
;

which allows us to estimate � and �2.

11.2 Generalized Method of Moments

GMM extends MM by allowing for more orthogonality conditions than parameters. This
could, for instance, increase efficiency and/or provide new aspects which can be tested.

Many (most) traditional estimation methods, like LS, IV, and MLE are special cases
of GMM. This means that the properties of GMM are very general, and therefore fairly
difficult to prove.
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11.3 Moment Conditions in GMM

Suppose we have q (unconditional) moment conditions,

Eg.wt ; ˇ0/ D

2664
Eg1.wt ; ˇ0/

:::

Egq.wt ; ˇ0/

3775
D 0q�1; (11.2)

from which we want to estimate the k � 1 (k � q) vector of parameters, ˇ. The true
values are ˇ0. We assume that wt is a stationary and ergodic (vector) process (otherwise
the sample means does not converge to anything meaningful as the sample size increases).
The sample averages, or “sample moment conditions,” evaluated at some value of ˇ, are

Ng.ˇ/ D 1

T

TX
tD1

g.wt ; ˇ/: (11.3)

The sample average Ng .ˇ/ is a vector of functions of random variables, so they are ran-
dom variables themselves and depend on the sample used. It will later be interesting to
calculate the variance of Ng .ˇ/. Note that Ng.ˇ1/ and Ng.ˇ2/ denote sample means obtained
by using two different parameter vectors, but on the same sample of data.

Example 11.3 (Moments conditions for IV/2SLS.) Consider the linear model yt D x0tˇ0C
ut , where xt and ˇ are k � 1 vectors. Let zt be a q � 1 vector, with q � k. The moment

conditions and their sample analogues are

0q�1 D E ztut D EŒzt.yt � x0tˇ0/�; and Ng .ˇ/ D 1

T

TX
tD1

zt.yt � x0tˇ/;

(or Z0.Y �Xˇ/=T in matrix form). Let q D k to get IV; let zt D xt to get LS.

Example 11.4 (Moments conditions for MLE.) The maximum likelihood estimator maxi-

mizes the log likelihood function, 1
T
˙T
tD1 lnL .wt Iˇ/, which requires 1

T
˙T
tD1@ lnL .wt Iˇ/ =@ˇ D

0, which is just like a GMM moment condition.
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11.3.1 Digression: From Conditional to Unconditional Moment Conditions�

Suppose we are instead given conditional moment restrictions

E Œu.xt ; ˇ0/jzt � D 0m�1; (11.4)

where zt is a vector of conditioning (predetermined) variables. We want to transform this
to unconditional moment conditions.

Remark 11.5 (E .ujz/ D 0 implies Euz D 0:) The condition E .ujz/ D 0 implies

(a) Cov.z; u/ D 0 (since Cov.z; u/ DCovŒz;E .ujz/�) and (b) Eu D 0 (since Eu D
Ez E .ujz/).

Example 11.6 (Euler equation for optimal consumption.) The standard Euler equation

for optimal consumption choice which with isoelastic utility U .Ct/ D C 1�t = .1 � / is

E
�
RtC1ˇ

�
CtC1
Ct

��
� 1

ˇ̌̌̌
˝t

�
D 0;

where RtC1 is a gross return on an investment and ˝t is the information set in t . Let

zt 2 ˝t , for instance asset returns or consumption t or earlier. The Euler equation then

implies

E
�
RtC1ˇ

�
CtC1
Ct

��
zt � zt

�
D 0:

Let zt D .z1t ; :::; znt/0, and define the new (unconditional) moment conditions as

g.wt ; ˇ/ D u.xt ; ˇ/˝ zt D

266666666664

u1.xt ; ˇ/z1t
:::

u1.xt ; ˇ/znt

u2.xt ; ˇ/z1t
:::

um.xt ; ˇ/znt

377777777775
q�1

; (11.5)

which by (11.4) must have an expected value of zero, that is

Eg.wt ; ˇ0/ D 0q�1: (11.6)

This a set of unconditional moment conditions—just as in (11.2). The sample moment
conditions (11.3) are therefore valid also in the conditional case, although we have to
specify g.wt ; ˇ/ as in (11.5).
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Note that the choice of instruments is often arbitrary: it often amounts to using only
a subset of the information variables. GMM is often said to be close to economic theory,
but it should be admitted that economic theory sometimes tells us fairly little about which
instruments, zt , to use.

11.4 The Optimization Problem in GMM

11.4.1 The Loss Function

The GMM estimator Ǒ minimizes the weighted quadratic form

J D

2666664
Ng1.ˇ/
:::
:::

Ngq.ˇ/

3777775
02666664

W11 � � � � � � W1q
:::

: : :
:::

:::
: : :

:::

W1q � � � � � � Wqq

3777775

2666664
Ng1.ˇ/
:::
:::

Ngq.ˇ/

3777775 (11.7)

D Ng.ˇ/0W Ng.ˇ/; (11.8)

where Ng.ˇ/ is the sample average of g.wt ; ˇ/ given by (11.3), and where W is some
q � q symmetric positive definite weighting matrix. (We will soon discuss a good choice
of weighting matrix.) There are k parameters in ˇ to estimate, and we have q moment
conditions in Ng.ˇ/. We therefore have q � k overidentifying moment restrictions.

With q D k the model is exactly identified (as many equations as unknowns), and it
should be possible to set all q sample moment conditions to zero by a choosing the k D q
parameters. It is clear that the choice of the weighting matrix has no effect in this case
since Ng. Ǒ/ D 0 at the point estimates Ǒ. In this case, GMM is just MM.

Example 11.7 (Simple linear regression.) Consider the model

yt D xtˇ0 C ut ; (11.9)

where yt and xt are zero mean scalars. The moment condition and loss function are

Ng .ˇ/ D 1

T

TX
tD1

xt.yt � xtˇ/ and

J D W
"
1

T

TX
tD1

xt.yt � xtˇ/
#2
;
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so the scalar W is clearly irrelevant in this case.

Example 11.8 (IV/2SLS method continued.) From Example 11.3, we note that the loss

function for the IV/2SLS method is

Ng.ˇ/0W Ng.ˇ/ D
"
1

T

TX
tD1

zt.yt � x0tˇ/
#0
W

"
1

T

TX
tD1

zt.yt � x0tˇ/
#
:

When q D k, then the model is exactly identified, so the estimator could actually be found

by setting all moment conditions to zero. We then get the IV estimator

0 D 1

T

TX
tD1

zt.yt � x0t ǑIV / or

Ǒ
IV D

 
1

T

TX
tD1

ztx
0
t

!�1
1

T

TX
tD1

ztyt

D Ȯ �1zx Ȯzy;

where Ȯzx D ˙T
tD1ztx0t=T and similarly for the other second moment matrices. Let

zt D xt to get LS
Ǒ
LS D Ȯ �1xx Ȯxy :

11.4.2 First Order Conditions

Remark 11.9 (Matrix differentiation of quadratic forms.) Let xn�1, f .x/m�1, andAm�m
symmetric. Then

@f .x/0Af .x/
@x

D 2
�
@f .x/

@x0

�0
Af .x/ :

The k first order conditions for minimizing the GMM loss function in (11.8) with
respect to the k parameters are that the partial derivatives with respect to ˇ equal zero at
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the estimate, Ǒ,

0k�1 D @ Ng. Ǒ/0W Nm. Ǒ/
@ˇ

D

2666664
@ Ng1. Ǒ/
@ˇ1

� � � @ Ng1. Ǒ/
@ˇk

:::
:::

:::
:::

@ Ngq. Ǒ/
@ˇ1

� � � @ Ngq. Ǒ/
@ˇk

3777775

02666664
W11 � � � � � � W1q
:::

: : :
:::

:::
: : :

:::

W1q � � � � � � Wqq

3777775

2666664
Ng1. Ǒ/
:::
:::

Ngq. Ǒ/

3777775 (with Ǒk�1);

(11.10)

D
 
@ Ng. Ǒ/
@ˇ0

!0
„ ƒ‚ …

k�q

W„ƒ‚…
q�q

Ng. Ǒ/„ƒ‚…
q�1

: (11.11)

We can solve for the GMM estimator, Ǒ, from (11.11). This set of equations must often be
solved by numerical methods, except in linear models (the moment conditions are linear
functions of the parameters) where we can find analytical solutions by matrix inversion.

Example 11.10 (First order conditions of simple linear regression.) The first order con-

ditions of the loss function in Example 11.7 is

0 D d

dˇ
W

"
1

T

TX
tD1

xt.yt � xt Ǒ/
#2

D
"
� 1
T

TX
tD1

x2t

#
W

"
1

T

TX
tD1

xt.yt � xt Ǒ/
#
; or

Ǒ D
 
1

T

TX
tD1

x2t

!�1
1

T

TX
tD1

xtyt :

Example 11.11 (First order conditions of IV/2SLS.) The first order conditions corre-

158



sponding to (11.11) of the loss function in Example 11.8 (when q � k) are

0k�1 D
"
@ Ng. Ǒ/
@ˇ0

#0
W Ng. Ǒ/

D
"
@

@ˇ0
1

T

TX
tD1

zt.yt � x0t Ǒ/
#0
W
1

T

TX
tD1

zt.yt � x0t Ǒ/

D
"
� 1
T

TX
tD1

ztx
0
t

#0
W
1

T

TX
tD1

zt.yt � x0t Ǒ/

D � ȮxzW. Ȯzy � Ȯzx Ǒ/:

We can solve for Ǒ from the first order conditions as

Ǒ
2SLS D

�
Ȯ
xzW Ȯzx

��1 Ȯ
xzW Ȯzy :

When q D k, then the first order conditions can be premultiplied with . ȮxzW /�1, since
Ȯ
xzW is an invertible k � k matrix in this case, to give

0k�1 D Ȯzy � Ȯzx Ǒ, so ǑIV D Ȯ �1zx Ȯzy :

11.5 Asymptotic Properties of GMM

We know very little about the general small sample properties, including bias, of GMM.
We therefore have to rely either on simulations (Monte Carlo or bootstrap) or on the
asymptotic results. This section is about the latter.

GMM estimates are typically consistent and normally distributed, even if the series
g.wt ; ˇ/ in the moment conditions (11.3) are serially correlated and heteroskedastic—
provided wt is a stationary and ergodic process. The reason is essentially that the esti-
mators are (at least as a first order approximation) linear combinations of sample means
which typically are consistent (LLN) and normally distributed (CLT). More about that
later. The proofs are hard, since the GMM is such a broad class of estimators. This
section discusses, in an informal way, how we can arrive at those results.

11.5.1 Consistency

Sample moments are typically consistent, so plimg .ˇ/ D Eg.wt ; ˇ/. This must hold at
any parameter vector in the relevant space (for instance, those inducing stationarity and
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variances which are strictly positive). Then, if the moment conditions (11.2) are true only
at the true parameter vector, ˇ0, (otherwise the parameters are “unidentified”) and that
they are continuous in ˇ, then GMM is consistent. From Slutsky’s theorem

plim Ng. Ǒ/ D Ng.plim Ǒ/;

and we know that this must equal Eg.wt ; plim Ǒ/ and Eg./ D 0 only at ˇ0.

Example 11.12 (Consistency of 2SLS.) By using yt D x0tˇ0 C ut , the first order condi-

tions in Example 11.11 can be rewritten

0k�1 D ȮxzW 1

T

TX
tD1

zt.yt � x0t Ǒ/

D ȮxzW 1

T

TX
tD1

zt

h
ut C x0t

�
ˇ0 � Ǒ

�i
D ȮxzW Ȯzu C ȮxzW Ȯzx

�
ˇ0 � Ǒ

�
:

Take the probability limit

0k�1 D plim ȮxzW plim Ȯzu C plim ȮxzW plim Ȯzx
�
ˇ0 � plim Ǒ

�
:

In most cases, plim Ȯxz is some matrix of constants, and plim Ȯzu D E ztut D 0q�1. It

then follows that plim Ǒ D ˇ0. Note that the whole argument relies on that the moment

condition, E ztut D 0q�1, is true. If it is not, then the estimator is inconsistent. For

instance, when the instruments are invalid (correlated with the residuals) or when we

use LS (zt D xt ) when there are measurement errors or in a system of simultaneous

equations.

11.5.2 Asymptotic Normality

To derive the asymptotic distribution of
p
T . Ǒ � ˇ0/, we need to define three things.

(As usual, we also need to scale with
p
T to get a non-trivial asymptotic distribution; the

asymptotic distribution of Ǒ � ˇ0 is a spike at zero.) First, let S0 (a q � q matrix) denote
the asymptotic covariance matrix (as sample size goes to infinity) of

p
T times the sample
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moment conditions evaluated at the true parameters

S0 D Cov
hp
T Ng .ˇ0/

i
(11.12)

D Cov

"
1p
T

TX
tD1

g.wt ; ˇ0/

#
; (11.13)

where we use the definition of Ng .ˇ0/ in (11.3). In practice, we often estimate this by
using the Newey-West estimator (or something similar).

Second, let D0 (a q � k matrix) denote the probability limit of the gradient of the
sample moment conditions with respect to the parameters, evaluated at the true parameters

D0 D plim
@ Ng.ˇ0/
@ˇ0

, where (11.14)

@ Ng.ˇ0/
@ˇ0

D

2666664
@ Ng1.ˇ/
@ˇ1

� � � @ Ng1.ˇ/
@ˇk

:::
:::

:::
:::

@ Ngq.ˇ/
@ˇ1

� � � @ Ngq.ˇ/
@ˇk

3777775 at the true ˇ vector. (11.15)

Notice that a similar gradient, but evaluated at Ǒ, also shows up in the first order conditions
(11.11).

Third, let the weighting matrix be the inverse of the covariance matrix of the moment
conditions (once again evaluated at the true parameters)

W D S�10 : (11.16)

It can be shown that this choice of weighting matrix gives the asymptotically most ef-
ficient estimator for a given set of orthogonality conditions. For instance, in 2SLS, this
means a given set of instruments and (11.16) then shows only how to use these instru-
ments in the most efficient way. Of course, another set of instruments might be better (in
the sense of giving a smaller Cov( Ǒ)).

With the definitions in (11.12) and (11.14) and the choice of weighting matrix in
(11.16) and the added assumption that the rank ofD0 equals k (the number of parameters)
then we can show (under fairly general conditions) that

p
T . Ǒ � ˇ0/ d! N.0k�1; V /, where V D �D00S�10 D0

��1
: (11.17)

This holds also when the model is exactly identified, so we really do not use any weighting
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matrix.
To prove this note the following.
Proof. (The asymptotic distribution (11.17). Sketch of proof.) This proof is essen-

tially an application of the delta rule. By the mean-value theorem the sample moment
condition evaluated at the GMM estimate, Ǒ, is

Ng. Ǒ/ D Ng.ˇ0/C @ Ng.ˇ1/
@ˇ0

. Ǒ � ˇ0/ (11.18)

for some values ˇ1 between Ǒ and ˇ0. (This point is different for different elements in Ng.)
Premultiply with Œ@ Ng. Ǒ/=@ˇ0�0W . By the first order condition (11.11), the left hand side
is then zero, so we have

0k�1 D
 
@ Ng. Ǒ/
@ˇ0

!0
W Ng.ˇ0/C

 
@ Ng. Ǒ/
@ˇ0

!0
W
@ Ng.ˇ1/
@ˇ0

. Ǒ � ˇ0/: (11.19)

Multiply with
p
T and solve as

p
T
� Ǒ � ˇ0� D �" @ Ng. Ǒ/

@ˇ0

!0
W
@ Ng.ˇ1/
@ˇ0

#�1  
@ Ng. Ǒ/
@ˇ0

!0
W„ ƒ‚ …

�

p
T Ng.ˇ0/: (11.20)

If

plim
@ Ng. Ǒ/
@ˇ0

D @ Ng.ˇ0/
@ˇ0

D D0; then plim
@ Ng.ˇ1/
@ˇ0

D D0;

since ˇ1 is between ˇ0 and Ǒ. Then

plim� D � �D00WD0

��1
D00W: (11.21)

The last term in (11.20),
p
T Ng.ˇ0/, is

p
T times a vector of sample averages, so by a

CLT it converges in distribution to N.0; S0/, where S0 is defined as in (11.12). By the
continuous mapping theorem we then have that

p
T
� Ǒ � ˇ0� d! plim� � something that is N .0; S0/ ; that is,

p
T
� Ǒ � ˇ0� d! N

�
0k�1; .plim� /S0.plim� 0/

�
:
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The covariance matrix is then

CovŒ
p
T . Ǒ � ˇ0/� D .plim� /S0.plim� 0/

D �D00WD0

��1
D00WS0Œ

�
D00WD0

��1
D00W �

0 (11.22)

D �D00WD0

��1
D00WS0W

0D0

�
D00WD0

��1
: (11.23)

If W D W 0 D S�10 , then this expression simplifies to (11.17). (See, for instance, Hamil-
ton (1994) 14 (appendix) for more details.)

It is straightforward to show that the difference between the covariance matrix in
(11.23) and

�
D00S�10 D0

��1 (as in (11.17)) is a positive semi-definite matrix: any lin-
ear combination of the parameters has a smaller variance if W D S�10 is used as the
weighting matrix.

All the expressions for the asymptotic distribution are supposed to be evaluated at the
true parameter vector ˇ0, which is unknown. However, D0 in (11.14) can be estimated
by @ Ng. Ǒ/=@ˇ0, where we use the point estimate instead of the true value of the parameter
vector. In practice, this means plugging in the point estimates into the sample moment
conditions and calculate the derivatives with respect to parameters (for instance, by a
numerical method).

Similarly, S0 in (11.13) can be estimated by, for instance, Newey-West’s estimator of
CovŒ
p
T Ng. Ǒ/�, once again using the point estimates in the moment conditions.

Example 11.13 (Covariance matrix of 2SLS.) Define

S0 D Cov
hp
T Ng .ˇ0/

i
D Cov

 p
T

T

TX
tD1

ztut

!

D0 D plim
@ Ng.ˇ0/
@ˇ0

D plim

 
� 1
T

TX
tD1

ztx
0
t

!
D �˙zx:

This gives the asymptotic covariance matrix of
p
T . Ǒ � ˇ0/

V D �D00S�10 D0

��1 D �˙ 0zxS�10 ˙zx
��1

:
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11.6 Summary of GMM

Economic model W Eg.wt ; ˇ0/ D 0q�1, ˇ is k � 1

Sample moment conditions W Ng.ˇ/ D 1

T

TX
tD1

g.wt ; ˇ/

Loss function W J D Ng.ˇ/0W Ng.ˇ/

First order conditions W 0k�1 D @ Ng. Ǒ/0W Ng. Ǒ/
@ˇ

D
 
@ Ng. Ǒ/
@ˇ0

!0
W Ng. Ǒ/

Consistency W Ǒ is typically consistent if Eg.wt ; ˇ0/ D 0

Define W S0 D Cov
hp
T Ng .ˇ0/

i
and D0 D plim

@ Ng.ˇ0/
@ˇ0

Choose: W D S�10
Asymptotic distribution W

p
T . Ǒ � ˇ0/ d! N.0k�1; V /, where V D �D00S�10 D0

��1
11.7 Efficient GMM and Its Feasible Implementation

The efficient GMM (remember: for a given set of moment conditions) requires that we
use W D S�10 , which is tricky since S0 should be calculated by using the true (unknown)
parameter vector. However, the following two-stage procedure usually works fine:

� First, estimate model with some (symmetric and positive definite) weighting matrix.
The identity matrix is typically a good choice for models where the moment con-
ditions are of the same order of magnitude (if not, consider changing the moment
conditions). This gives consistent estimates of the parameters ˇ. Then a consistent
estimate OS can be calculated (for instance, with Newey-West).

� Use the consistent OS from the first step to define a new weighting matrix as W D
OS�1. The algorithm is run again to give asymptotically efficient estimates of ˇ.

� Iterate at least once more. (You may want to consider iterating until the point esti-
mates converge.)

Example 11.14 (Implementation of 2SLS.) Under the classical 2SLS assumptions, there

is no need for iterating since the efficient weighting matrix is ˙�1zz =�2. Only �2 depends
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on the estimated parameters, but this scaling factor of the loss function does not affect
Ǒ
2SLS .

One word of warning: if the number of parameters in the covariance matrix OS is
large compared to the number of data points, then OS tends to be unstable (fluctuates a lot
between the steps in the iterations described above) and sometimes also close to singular.
The saturation ratio is sometimes used as an indicator of this problem. It is defined as the
number of data points of the moment conditions (qT ) divided by the number of estimated
parameters (the k parameters in Ǒ and the unique q.q C 1/=2 parameters in OS if it is
estimated with Newey-West). A value less than 10 is often taken to be an indicator of
problems. A possible solution is then to impose restrictions on S , for instance, that the
autocorrelation is a simple AR(1) and then estimate S using these restrictions (in which
case you cannot use Newey-West, or course).

11.8 Testing in GMM

The result in (11.17) can be used to do Wald tests of the parameter vector. For instance,
suppose we want to test the s linear restrictions that Rˇ0 D r (R is s � k and r is s � 1)
then it must be the case that under null hypothesis

p
T .R Ǒ � r/ d! N.0s�1; RVR0/: (11.24)

Remark 11.15 (Distribution of quadratic forms.) If the n � 1 vector x � N.0;˙/, then

x0˙�1x � �2n.

From this remark and the continuous mapping theorem in Remark (5.10) it follows
that, under the null hypothesis that Rˇ0 D r , the Wald test statistics is distributed as a �2s
variable

T .R Ǒ � r/0 �RVR0��1 .R Ǒ � r/ d! �2s : (11.25)

We might also want to test the overidentifying restrictions. The first order conditions
(11.11) imply that k linear combinations of the q moment conditions are set to zero by
solving for Ǒ: Therefore, we have q � k remaining overidentifying restrictions which
should also be close to zero if the model is correct (fits the data). Under the null hypothesis
that the moment conditions hold (so the overidentifying restrictions hold), we know thatp
T Ng .ˇ0/ is a (scaled) sample average and therefore has (by a CLT) an asymptotic normal
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distribution. It has a zero mean (the null hypothesis) and the covariance matrix in (11.12).
In short, p

T Ng .ˇ0/ d! N
�
0q�1; S0

�
: (11.26)

If would then perhaps be natural to expect that the quadratic form T Nm. Ǒ/0S�10 Ng. Ǒ/
should be converge in distribution to a �2q variable. That is not correct, however, since Ǒ
chosen is such a way that k linear combinations of the first order conditions always (in
every sample) are zero. There are, in effect, only q�k nondegenerate random variables in
the quadratic form (see Davidson and MacKinnon (1993) 17.6 for a detailed discussion).
The correct result is therefore that if we have used optimal weight matrix is used, W D
S�10 , then

p
T Ng. Ǒ/!d N

�
0q�1; 	1

�
, with (11.27)

	1 D S0 �D0

�
D00S

�1
0 D0

��1
D00: (11.28)

This covariance matrix has reduced rank. It is therefore convenient to use the result that

T Ng. Ǒ/0S�10 Ng. Ǒ/
d! �2q�k; if W D S�10 : (11.29)

(A proof is given in the next section.) The left hand side equals T times of value of the
loss function (11.8) evaluated at the point estimates, so we could equivalently write what
is often called the J test

TJ. Ǒ/ � �2q�k; if W D S�10 : (11.30)

This also illustrates that with no overidentifying restrictions (as many moment conditions
as parameters) there are, of course, no restrictions to test. Indeed, the loss function value
is then always zero at the point estimates.

Example 11.16 (Test of overidentifying assumptions in 2SLS.) In contrast to the IV method,

2SLS allows us to test overidentifying restrictions (we have more moment conditions than

parameters, that is, more instruments than regressors). This is a test of whether the resid-

uals are indeed uncorrelated with all the instruments. If not, the model should be rejected.

It can be shown that test (11.30) is (asymptotically, at least) the same as the traditional

(Sargan (1964), see Davidson (2000) 8.4) test of the overidentifying restrictions in 2SLS.

In the latter, the fitted residuals are regressed on the instruments; TR2 from that regres-

sion is �2 distributed with as many degrees of freedom as the number of overidentifying

restrictions.
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Another test is to compare a restricted and a less restricted model, where we have
used the optimal weighting matrix for the less restricted model in estimating both the less
restricted and more restricted model (the weighting matrix is treated as a fixed matrix in
the latter case). It can be shown that the test of the s restrictions (the “D test”, similar in
flavour to an LR test), is

T ŒJ. Ǒrestricted / � J. Ǒless restricted /� � �2s ; if W D S�10 : (11.31)

The weighting matrix is typically based on the unrestricted model. Note that (11.30) is a
special case, since the model with allows q non-zero parameters (as many as the moment
conditions) always attains J D 0, and that by imposing s D q � k restrictions we get a
restricted model.

11.9 GMM with Sub-Optimal Weighting Matrix�

When the optimal weighting matrix is not used, that is, when (11.16) does not hold, then
the asymptotic covariance matrix of the parameters is given by (11.23) instead of the
result in (11.17). That is,

p
T . Ǒ � ˇ0/ d! N.0k�1; V2/, where V2 D

�
D00WD0

��1
D00WS0W

0D0

�
D00WD0

��1
:

(11.32)
The consistency property is not affected.

The test of the overidentifying restrictions (11.29) and (11.30) are not longer valid.
Instead, the result is that

p
T Ng. Ǒ/!d N

�
0q�1; 	2

�
, with (11.33)

	2 D ŒI �D0

�
D00WD0

��1
D00W �S0ŒI �D0

�
D00WD0

��1
D00W �

0: (11.34)

This covariance matrix has rank q � k (the number of overidentifying restriction). This
distribution can be used to test hypotheses about the moments, for instance, that a partic-
ular moment condition is zero.

Proof. (Sketch of proof of (11.33)–(11.34)) Use (11.20) in (11.18) to get

p
T Ng. Ǒ/ D

p
T Ng.ˇ0/C

p
T
@ Ng.ˇ1/
@ˇ0

� Ng.ˇ0/

D
�
I C @ Ng.ˇ1/

@ˇ0
�

�p
T Ng.ˇ0/:
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The term in brackets has a probability limit, which by (11.21) equals I�D0

�
D00WD0

��1
D00W .

Since
p
T Ng.ˇ0/!d N

�
0q�1; S0

�
we get (11.33).

Remark 11.17 If the n � 1 vector X � N.0;˙/, where ˙ has rank r � n then Y D
X 0˙CX � �2r where ˙C is the pseudo inverse of ˙ .

Remark 11.18 The symmetric ˙ can be decomposed as ˙ D Z�Z0 where Z are the

orthogonal eigenvectors (Z
0

Z D I ) and � is a diagonal matrix with the eigenvalues

along the main diagonal. The pseudo inverse can then be calculated as ˙C D Z�CZ0,
where

�C D
"
��111 0

0 0

#
;

with the reciprocals of the non-zero eigen values along the principal diagonal of ��111 .

This remark and (11.34) implies that the test of overidentifying restrictions (Hansen’s
J statistics) analogous to (11.29) is

T Ng. Ǒ/0	C2 Ng. Ǒ/
d! �2q�k: (11.35)

It requires calculation of a generalized inverse (denoted by superscript C), but this is
fairly straightforward since 	2 is a symmetric matrix. It can be shown that this simplifies
to (11.29) when the optimal weighting matrix is used (see below for a proof).

Proof. (Sketch of proof of (11.35)) From the proof of (11.33)–(11.34), notice W D
S�10 gives (in the limit)

p
T Ng. Ǒ/ D

h
I �D0

�
D00S

�1
0 D0

��1
D00S

�1
0

ip
T Ng.ˇ0/:

Premultiply Ng.ˇ0/ by S1=20 S
�1=2
0 and then multiply both sides by S�1=20 to get

p
T S
�1=2
0 Ng. Ǒ/ D �0

p
T S
�1=2
0 Ng.ˇ0/, where ((*))

�0 D I � S�1=20 D0

�
D00S

�1
0 D0

��1
D00S

�1=2
0 :

It is clear that �0 is symmetric and that �0�0 D �0 (it is idempotent). It can also be
shown that the rank is q � k. The square of the left hand side of (*) must equal the square
of the right hand side, so (using the fact that �0�00 D �0), so

T Ng. Ǒ/0S�10 Ng. Ǒ/ D Z0�0Z, where Z D
p
T S
�1=2
0 Ng.ˇ0/: (**)
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Notice that Z � N.0; I /, so we can use the rule that says that, if Z � N.0; I / then
Z0�0Z � �2q�k (provided �0 is symmetric, idempotent and of rank q � k). This clearly
means that also the left hand side of (**) has a �2

q�k distribution.

Remark 11.19 ((11.32) and (11.34) when W D S�10 ) when W D S�10 , then (11.32)

gives V2 D
�
D00S�10 D0

��1, which is the same as in (11.17). However, when W D S�10 ,

then (11.34) gives 	2 D S �D
�
D0S�1D

��1
D0. Actually, using this in (11.35) gives (at

least asymptotically) the same result as using (11.29).

11.10 GMM without a Loss Function�

Suppose we sidestep the whole optimization issue and instead specify k linear combi-
nations (as many as there are parameters) of the q moment conditions directly. That is,
instead of the first order conditions (11.11) we postulate that the estimator should solve

0k�1 D A„ƒ‚…
k�q

Ng. Ǒ/„ƒ‚…
q�1

( Ǒ is k � 1). (11.36)

The matrix A is chosen by the researcher and it must have rank k (lower rank means that
we effectively have too few moment conditions to estimate the k parameters in ˇ). If A
is random, then it should have a finite probability limit A0 (also with rank k).

One case when this approach makes particular sense is when we want to use a subset
of the moment conditions to estimate the parameters (some columns in A are then filled
with zeros), but we want to study the distribution of all the moment conditions.

By comparing (11.11) and (11.36) we see thatA plays the same role as Œ@ Ng. Ǒ/=@ˇ0�0W ,
but with the difference that A is chosen and not allowed to depend on the parameters. In
the asymptotic distribution, it is the probability limit of these matrices that matter, so
we can actually substitute A0 for D00W in the proof of the asymptotic distribution. The
covariance matrix in (11.32) then becomes

V3 D .A0D0/
�1A0S0Œ.A0D0/

�1A0�0

D .A0D0/
�1A0S0A00Œ.A0D0/

�1�0; (11.37)

which can be used to test hypotheses about the parameters.
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Similarly, the asymptotic distribution of the moment conditions is

p
T Ng. Ǒ/!d N

�
0q�1; 	3

�
, with (11.38)

	3 D ŒI �D0 .A0D0/
�1A0�S0ŒI �D0 .A0D0/

�1A0�0; (11.39)

where 	3 has reduced rank. As before, this covariance matrix can be used to construct
both t type and �2 tests of the moment conditions. For instance, the test of overidentifying
restrictions (Hansen’s J statistics)

T Ng. Ǒ/0	C3 Ng. Ǒ/
d! �2q�k; (11.40)

where 	C3 is a generalized inverse of 	3.

11.11 Simulated Moments Estimator�

Reference: Ingram and Lee (1991)
It sometimes happens that it is not possible to calculate the theoretical moments in

GMM explicitly. For instance, suppose we want to match the variance of the model with
the variance of data

Eg.wt ; ˇ0/ D 0, where (11.41)

g.wt ; ˇ/ D .wt � �/2 � Var_in_model .ˇ/ ; (11.42)

but the model is so non-linear that we cannot find a closed form expression for Var_of_model.ˇ0/.
Similarly, we could match a covariance of

The SME involves (i) drawing a set of random numbers for the stochastic shocks in
the model; (ii) for a given set of parameter values generate a model simulation with Tsim
observations, calculating the moments and using those instead of Var_of_model.ˇ0/ (or
similarly for other moments), which is then used to evaluate the loss function JT . This is
repeated for various sets of parameter values until we find the one which minimizes JT .

Basically all GMM results go through, but the covariance matrix should be scaled up
with 1C T=Tsim, where T is the sample length. Note that the same sequence of random
numbers should be reused over and over again (as the parameter values are changed).

Example 11.20 Supposewt has two elements, xt and yt , and that we want to match both

variances and also the covariance. For simplicity, suppose both series have zero means.
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Then we can formulate the moment conditions

g.xt ; yt ; ˇ/ D

264 x2t � Var(x)_in_model.ˇ/

y2t � Var(y)_in_model.ˇ/

xtyt � Cov(x,y)_in_model.ˇ/

375 : (11.43)
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Chapter 12

Examples and Applications of GMM

12.1 GMM and Classical Econometrics: Examples

12.1.1 The LS Estimator (General)

The model is
yt D x0tˇ0 C ut ; (12.1)

where ˇ is a k � 1 vector.
The k moment conditions are

Ng .ˇ/ D 1

T

TX
tD1

xt.yt � x0tˇ/ D
1

T

TX
tD1

xtyt � 1

T

TX
tD1

xtx
0
tˇ: (12.2)

The point estimates are found by setting all moment conditions to zero (the model is
exactly identified), Ng .ˇ/ D 0k�1, which gives

Ǒ D
 
1

T

TX
tD1

xtx
0
t

!�1
1

T

TX
tD1

xtytˇ: (12.3)

If we define

S0 D ACov
hp
T Ng .ˇ0/

i
D ACov

 p
T

T

TX
tD1

xtut

!
(12.4)

D0 D plim
@ Ng.ˇ0/
@ˇ0

D plim

 
� 1
T

TX
tD1

xtx
0
t

!
D �˙xx: (12.5)
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then the asymptotic covariance matrix of
p
T . Ǒ � ˇ0/

VLS D
�
D00S

�1
0 D0

��1 D �˙ 0xxS�10 ˙xx
��1 D ˙�1xx S0˙�1xx : (12.6)

We can then either try to estimate S0 by Newey-West, or make further assumptions to
simplify S0 (see below).

12.1.2 The IV/2SLS Estimator (General)

The model is (12.1), but we use an IV/2SLS method. The q moment conditions (with
q � k) are

Ng .ˇ/ D 1

T

TX
tD1

zt.yt � x0tˇ/ D
1

T

TX
tD1

ztyt � 1

T

TX
tD1

ztx
0
tˇ: (12.7)

The loss function is (for some positive definite weighting matrix W , not necessarily
the optimal)

Ng.ˇ/0W Ng.ˇ/ D
"
1

T

TX
tD1

zt.yt � x0tˇ/
#0
W

"
1

T

TX
tD1

zt.yt � x0tˇ/
#
; (12.8)

and the k first order conditions, .@ Ng. Ǒ/=@ˇ0/0W Ng. Ǒ/ D 0, are

0k�1 D
"
@

@ˇ0
1

T

TX
tD1

zt.yt � x0t Ǒ/
#0
W
1

T

TX
tD1

zt.yt � x0t Ǒ/

D
"
� 1
T

TX
tD1

ztx
0
t

#0
W
1

T

TX
tD1

zt.yt � x0t Ǒ/

D � ȮxzW. Ȯzy � Ȯzx Ǒ/: (12.9)

We solve for Ǒ as
Ǒ D

�
Ȯ
xzW Ȯzx

��1 Ȯ
xzW Ȯzy : (12.10)

Define

S0 D ACov
hp
T Ng .ˇ0/

i
D ACov

 p
T

T

TX
tD1

ztut

!
(12.11)

D0 D plim
@ Ng.ˇ0/
@ˇ0

D plim

 
� 1
T

TX
tD1

ztx
0
t

!
D �˙zx: (12.12)
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This gives the asymptotic covariance matrix of
p
T . Ǒ � ˇ0/

V D �D00S�10 D0

��1 D �˙ 0zxS�10 ˙zx
��1

; (12.13)

assuming that we have used W D S�10 .
When the model is exactly identified (q D k/, then we can make some simplifications

since Ȯxz is then invertible. This is the case of the classical IV estimator. We get

Ǒ D Ȯ �1zx Ȯzy and V D ˙�1zx S0
�
˙ 0zx

��1 if q D k. (12.14)

(Use the rule .ABC/�1 D C�1B�1A�1 to show this.)

12.1.3 Classical LS Assumptions

Reference: Greene (2000) 9.4 and Hamilton (1994) 8.2.
This section returns to the LS estimator in Section (12.1.1) in order to highlight the

classical LS assumptions that give the variance matrix �2˙�1xx .
We allow the regressors to be stochastic, but require that xt is independent of all utCs

and that ut is iid. It rules out, for instance, that ut and xt�2 are correlated and also that
the variance of ut depends on xt . Expand the expression for S0 as

S0 D E

 p
T

T

TX
tD1

xtut

! p
T

T

TX
tD1

utx
0
t

!
(12.15)

D 1

T
E .:::C xs�1us�1 C xsus C :::/

�
:::C us�1x0s�1 C usx0s C :::

�
:

Note that

E xt�sut�sutx0t D E xt�sx0t Eut�sut (since ut and xt�s independent)

D
(
0 if s ¤ 0 (since Eus�1us D 0 by iid ut )
E xtx0t Eutut else.

(12.16)

This means that all cross terms (involving different observations) drop out and that we
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can write

S0 D 1

T

TX
tD1

E xtx0t Eu2t (12.17)

D �2 1
T

E
TX
tD1

xtx
0
t (since ut is iid and �2 D Eu2t ) (12.18)

D �2˙xx: (12.19)

Using this in (12.6) gives
V D �2˙�1xx : (12.20)

12.1.4 Almost Classical LS Assumptions: White’s Heteroskedasticity.

Reference: Greene (2000) 12.2 and Davidson and MacKinnon (1993) 16.2.
The only difference compared with the classical LS assumptions is that ut is now

allowed to be heteroskedastic, but this heteroskedasticity is not allowed to depend on the
moments of xt . This means that (12.17) holds, but (12.18) does not since Eu2t is not the
same for all t .

However, we can still simplify (12.17) a bit more. We assumed that Extx0t and Eu2t
(which can both be time varying) are not related to each other, so we could perhaps multi-
ply E xtx0t by˙T

tD1 Eu2t =T instead of by Eu2t . This is indeed true asymptotically—where
any possible “small sample” relation between E xtx0t and Eu2t must wash out due to the
assumptions of independence (which are about population moments).

In large samples we therefore have

S0 D
 
1

T

TX
tD1

Eu2t

! 
1

T

TX
tD1

E xtx0t

!

D
 
1

T

TX
tD1

Eu2t

! 
E
1

T

TX
tD1

xtx
0
t

!
D !2˙xx; (12.21)

where !2 is a scalar. This is very similar to the classical LS case, except that !2 is
the average variance of the residual rather than the constant variance. In practice, the
estimator of !2 is the same as the estimator of �2, so we can actually apply the standard
LS formulas in this case.

This is the motivation for why White’s test for heteroskedasticity makes sense: if the
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heteroskedasticity is not correlated with the regressors, then the standard LS formula is
correct (provided there is no autocorrelation).

12.1.5 Estimating the Mean of a Process

Suppose ut is heteroskedastic, but not autocorrelated. In the regression yt D ˛ C ut ,
xt D zt D 1. This is a special case of the previous example, since Eu2t is certainly
unrelated to E xtx0t D 1 (since it is a constant). Therefore, the LS covariance matrix
is the correct variance of the sample mean as an estimator of the mean, even if ut are
heteroskedastic (provided there is no autocorrelation).

12.1.6 The Classical 2SLS Assumptions�

Reference: Hamilton (1994) 9.2.
The classical 2SLS case assumes that zt is independent of all utCs and that ut is iid.

The covariance matrix of the moment conditions are

S0 D E

 
1p
T

TX
tD1

ztut

! 
1p
T

TX
tD1

utz
0
t

!
; (12.22)

so by following the same steps in (12.16)-(12.19) we get S0 D �2˙zz:The optimal
weighting matrix is therefore W D ˙�1zz =�2 (or .Z0Z=T /�1=�2 in matrix form). We
use this result in (12.10) to get

Ǒ
2SLS D

�
Ȯ
xz
Ȯ �1
zz
Ȯ
zx

��1 Ȯ
xz
Ȯ �1
zz
Ȯ
zy; (12.23)

which is the classical 2SLS estimator.
Since this GMM is efficient (for a given set of moment conditions), we have estab-

lished that 2SLS uses its given set of instruments in the efficient way—provided the clas-
sical 2SLS assumptions are correct. Also, using the weighting matrix in (12.13) gives

V D
�
˙xz

1

�2
˙�1zz ˙zx

��1
: (12.24)

12.1.7 Non-Linear Least Squares

Consider the non-linear regression

yt D F.xt Iˇ0/C "t ; (12.25)
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where F.xt Iˇ0/ is a potentially non-linear equation of the regressors xt , with a k � 1
vector of parameters ˇ0. The non-linear least squares (NLS) approach is minimize the
sum of squared residuals, that is, to solve

Ǒ D arg min
PT

tD1Œyt � F.xt Iˇ/�2: (12.26)

To express this as a GMM problem, use the first order conditions for (12.26) as mo-
ment conditions

Ng .ˇ/ D � 1
T

PT
tD1

@F.xt Iˇ/
@ˇ

Œyt � F.xt Iˇ/� : (12.27)

The model is then exactly identified so the point estimates are found by setting all moment
conditions to zero , Ng .ˇ/ D 0k�1.

As usual, S0 D CovŒ
p
T Ng .ˇ0/�, while the Jacobian is

D0 D plim
@ Ng.ˇ0/
@ˇ0

D plim
1

T

PT
tD1

@F.xt Iˇ/
@ˇ

@F.xt Iˇ/
@ˇ0

� plim
1

T

PT
tD1 Œyt � F.xt Iˇ/�

@2F.xt Iˇ/
@ˇ@ˇ0

:

(12.28)

Example 12.1 (With two parameters) With ˇ D Œˇ1; ˇ2�0 we have

@F.xt Iˇ/
@ˇ

D
"
@F.xt Iˇ/=@ˇ1
@F.xt Iˇ/=@ˇ2

#
;
@F.xt Iˇ/
@ˇ0

D
h
@F.xt Iˇ/=@ˇ1 @F.xt Iˇ/=@ˇ2

i
:

The moment conditions are

Ng .ˇ/ D � 1
T

PT
tD1

"
@F.xt Iˇ/=@ˇ1
@F.xt Iˇ/=@ˇ2

#
Œyt � F.xt Iˇ/� ;

which is a 2�1 vector. Notice that the outer product of the gradient (first term) in (12.28)

is a 2� 2 matrix. Similarly, the matrix with the second derivatives (the Hessian) is also a

2 � 2 matrix
@2F.xt Iˇ/
@ˇ@ˇ0

D
"
@2F.xt Iˇ/
@ˇ1@ˇ1

@2F.xt Iˇ/
@ˇ1@ˇ2

@2F.xt Iˇ/
@ˇ2@ˇ1

@2F.xt Iˇ/
@ˇ2@ˇ2

#
:

Example 12.2 (Linear regression function as a special case) When F.xt Iˇ/ D x0tˇ, then

@F.xt Iˇ/=@ˇ D xt , so the moment conditions are Ng .ˇ/ D �PT
tD1xt

�
yt � x0tˇ

�
=T .

Since the second derivatives are zero, (12.28) becomes D0 D plim
PT

tD1xtx0t=T , which

is the same in the LS case (except possibly for the sign ofD0, but that is of no consequence

since it is only the square of D0 that matters.)
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Example 12.3 (Logistic smooth transition regression) Let G.z/ be a logistic (increasing

but “S -shaped”) function

G.z/ D 1

1C expŒ�.z � c/� ;

where the parameter c is the central location (where G.z/ D 1=2) and  > 0 determines

the steepness of the function (a high  implies that the function goes quickly from 0 to

1 around z D c.) See Figure 13.14 for an illustration. A logistic smooth transition

regression is

yt D
˚
Œ1 �G.zt/� ˇ01 CG.zt/ˇ02

	
xt„ ƒ‚ …

F.xt Iˇ/ in (12.25)

C "t

D Œ1 �G.zt/� ˇ01xt CG.zt/ˇ02xt C "t :

The regression coefficients vary smoothly with zt : from ˇ1 at low values of zt to ˇ2 at high

values of zt . See Figure 13.14 for an illustration. The parameter vector (; c; ˇ1; ˇ2—

called just ˇ in (12.25)) is easily estimated by NLS by concentrating the loss function: op-

timize (numerically) over .; c/ and let (for each value of .; c/) the parameters (ˇ1; ˇ2)

be the OLS coefficients on the vector of “regressors” .Œ1 �G.zt/� xt ; G.zt/xt/. The

most common application of this model is obtained by letting xt D yt�s (this is the

LSTAR model—logistic smooth transition auto regression model), see Franses and van

Dijk (2000).

12.1.8 Moment Conditions with Spuriously Extended Sample 1

One way to handle unbalanced panels (when there is more data on sone variables than
on others), is to artificially expand the sample and then interact the moment conditions
with a dummy variable to pick out the correct subsample. This example illustrates how
and why that works. To keep it simple, the example discusses the case of estimating a
sample mean of xt—for which we have data over the sample t D 1 to � and the sample
is artificially extended with T � � data points.

To estimate the mean we specify the moment condition

gt D dt .xt � �/ , with dt D
(
1 t D 1; ::; �
0 t D � C 1; :::; T (12.29)
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2 = 0.5
2 = 0

Figure 12.1: Logistic function and the effective slope coefficient in a Logistic smooth
transition regression

so the moment conditions look like 266666666664

x1 � �
:::

x� � �
0
:::

0

377777777775
(12.30)

With i id data, the variance S0 D CovŒ
p
T Ng .ˇ0/� D Cov.gt/, that is,

S0 D ��2 C .T � �/0
T

D �

T
�2; (12.31)

where �2 D Var.xt/. Also, the Jacobian (plim @ Ng.ˇ0/=@ˇ0) is

D0 D ��
T
: (12.32)
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Combining gives

p
T . O� � �/ d! N.0; V /; where

V D
���
T
�
� �
T
�2
��1
� ��
T

��1
D �2 � T

�
: (12.33)

Therefore,

Var. O�/ D V=T D �2

�
; (12.34)

which is the correct result—the artificial extension of the sample does not lead to a spu-
riously low uncertainty. This demonstrates that the aritificial extension of the sample
actually does no harm: the inference based on standard GMM formulas is still correct.

12.1.9 Moment Conditions with Spuriously Extended Sample 2 (Dummies for Miss-
ing Values)

Consider the simple regression equation

yt D bxt C "t (12.35)

and suppose the sample length is T , but only the first � observations have full data, while
the last T � � observations include some missing values. (Putting these observations last
is just a matter of convenience.)

Suppose we prune (“excise”) the sample by simply skipping the observations with
missing values. Under the standard iid assumptions, we then have that the LS estimate
( Ob) is distributed as p

T . Ob � b0/ d! N .0k�1; V / ; (12.36)

where the covariance matrix is

V D �2
 

plim
1

�

�X
tD1

xtxt

!�1
and �2 D plim

1

�

�X
tD1

"2t : (12.37)

Instead, suppose we use all T observations, but let dt D 1 if there is data for period t
and zero otherwise. This gives the sample moment condition

Ng D 1

T

TX
tD1

dtxt .yt � bxt/ (12.38)
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The Jacobian is

D0 D � plim
1

T

TX
tD1

dtxtxt (12.39)

and the covariance of the moment conditions (under the standard iid assumptions)

S0 D plim
1

T

TX
tD1

dtxtxtdt"
2
t D s2 plim

1

T

TX
tD1

dtxtxt ; where s2 D plim
1

T

TX
tD1

dt"
2
t :

(12.40)
Combining as in (12.6) gives the covariance matrix

V b D s2
 
1

T

TX
tD1

dtxtxt

!�1
: (12.41)

To see that this is the same as in (12.37), notice that

TX
tD1

dtxtxt D
�X
tD1

xtxt , and (12.42)

s2 D 1

T

TX
tD1

dt"
2
t D

1

T

�X
tD1

"2t D
�

T
�2:

Using this in (12.40)–(12.41) gives

V b D �

T
�2

 
1

T

�X
tD1

xtxt

!�1
D �2

 
1

�

�X
tD1

xtxt

!�1
:

which is the same as in (12.37). This makes a lot of sense since the dummy approach
is just about nullifying the effect of the periods with missing values. In a sense this
makes the Jacobian too small, but that is compensated for by making S0 too large. This
demonstrates that the estimation could be done in either way.

12.2 Identification of Systems of Simultaneous Equations

Reference: Greene (2000) 16.1–3
This section shows how the GMM moment conditions can be used to understand if

the parameters in a system of simultaneous equations are identified or not.
The structural model (form) is

Fyt CGzt D ut ; (12.43)

181



where yt is a vector of endogenous variables, zt a vector of predetermined (exogenous)
variables, F is a square matrix, and G is another matrix.1 We can write the j th equation
of the structural form (12.43) as

yjt D x0tˇ C ujt ; (12.44)

where xt contains the endogenous and exogenous variables that enter the j th equation
with non-zero coefficients, that is, subsets of yt and zt .

We want to estimate ˇ in (12.44). Least squares is inconsistent if some of the re-
gressors are endogenous variables (in terms of (12.43), this means that the j th row in F
contains at least one additional non-zero element apart from coefficient on yjt ). Instead,
we use IV/2SLS. By assumption, the structural model summarizes all relevant informa-
tion for the endogenous variables yt . This implies that the only useful instruments are the
variables in zt . (A valid instrument is uncorrelated with the residuals, but correlated with
the regressors.) The moment conditions for the j th equation are then

E zt
�
yjt � x0tˇ

� D 0 with sample moment conditions
1

T

TX
tD1

zt
�
yjt � x0tˇ

� D 0:

(12.45)
If there are as many moment conditions as there are elements in ˇ, then this equation

is exactly identified, so the sample moment conditions can be inverted to give the Instru-
mental variables (IV) estimator of ˇ. If there are more moment conditions than elements
in ˇ, then this equation is overidentified and we must devise some method for weighting
the different moment conditions. This is the 2SLS method. Finally, when there are fewer
moment conditions than elements in ˇ, then this equation is unidentified, and we cannot
hope to estimate the structural parameters of it.

We can partition the vector of regressors in (12.44) as x0t D Œ Qz0t ; Qy 0t �, where y1t and z1t
are the subsets of zt and yt respectively, that enter the right hand side of (12.44). Partition
zt conformably z0t D Œ Qz0t ; z�0t �, where z�t are the exogenous variables that do not enter
(12.44). We can then rewrite the moment conditions in (12.45) as

E

"
Qzt
z�t

# 
yjt �

"
Qzt
Qyt

#0
ˇ

!
D 0: (12.46)

1By premultiplying with F �1 and rearranging we get the reduced form yt D ˘ztC"t , with˘ D �F �1
and Cov."t / D F �1Cov.ut /.F �1/0.
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yjt D �Gj Qzt � Fj Qyt C ujt
D x0tˇ C ujt , where x0t D

� Qz0t ; Qy 0t� ; (12.47)

This shows that we need at least as many elements in z�t as in Qyt to have this equations
identified, which confirms the old-fashioned rule of thumb: there must be at least as

many excluded exogenous variables (z�t ) as included endogenous variables ( Qyt ) to have

the equation identified.
This section has discussed identification of structural parameters when 2SLS/IV, one

equation at a time, is used. There are other ways to obtain identification, for instance, by
imposing restrictions on the covariance matrix. See, for instance, Greene (2000) 16.1-3
for details.

Example 12.4 (Supply and Demand. Reference: GR 16, Hamilton 9.1.) Consider the

simplest simultaneous equations model for supply and demand on a market. Supply is

qt D pt C ust ;  > 0;

and demand is

qt D ˇpt C ˛At C udt ; ˇ < 0;
where At is an observable exogenous demand shock (perhaps income). The only mean-

ingful instrument is At . From the supply equation we then get the moment condition

EAt .qt � pt/ D 0;

which gives one equation in one unknown,  . The supply equation is therefore exactly

identified. In contrast, the demand equation is unidentified, since there is only one (mean-

ingful) moment condition

EAt .qt � ˇpt � ˛At/ D 0;

but two unknowns (ˇ and ˛).

Example 12.5 (Supply and Demand: overidentification.) If we change the demand equa-

tion in Example 12.4 to

qt D ˇpt C ˛At C bBt C udt ; ˇ < 0:
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There are now two moment conditions for the supply curve (since there are two useful

instruments)

E

"
At .qt � pt/
Bt .qt � pt/

#
D
"
0

0

#
;

but still only one parameter: the supply curve is now overidentified. The demand curve is

still underidentified (two instruments and three parameters).

12.3 Testing for Autocorrelation

This section discusses how GMM can be used to test if a series is autocorrelated. The
analysis focuses on first-order autocorrelation, but it is straightforward to extend it to
higher-order autocorrelation.

Consider a scalar random variable xt with a zero mean (it is easy to extend the analysis
to allow for a non-zero mean). Consider the moment conditions

gt.ˇ/ D
"
x2t � �2
xtxt�1 � ��2

#
; so Ng.ˇ/ D 1

T

TX
tD1

"
x2t � �2
xtxt�1 � ��2

#
, with ˇ D

"
�2

�

#
:

(12.48)
�2 is the variance and � the first-order autocorrelation so ��2 is the first-order autocovari-
ance. We want to test if � D 0. We could proceed along two different routes: estimate
� and test if it is different from zero or set � to zero and then test overidentifying restric-
tions. We analyze how these two approaches work when the null hypothesis of � D 0 is
true.

12.3.1 Estimating the Autocorrelation Coefficient

We estimate both �2 and � by using the moment conditions (18.5) and then test if � D
0. To do that we need to calculate the asymptotic variance of O� (there is little hope of
being able to calculate the small sample variance, so we have to settle for the asymptotic
variance as an approximation).

We have an exactly identified system so the weight matrix does not matter—we can
then proceed as if we had used the optimal weighting matrix (all those results apply).

To find the asymptotic covariance matrix of the parameters estimators, we need the
probability limit of the Jacobian of the moments and the covariance matrix of the moments—
evaluated at the true parameter values. Let Ngi.ˇ0/ denote the i th element of the Ng.ˇ/
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vector—evaluated at the true parameter values. The probability of the Jacobian is

D0 D plim

"
@ Ng1.ˇ0/=@�2 @ Ng1.ˇ0/=@�
@ Ng2.ˇ0/=@�2 @ Ng2.ˇ0/=@�

#
D
"
�1 0

�� ��2
#
D
"
�1 0

0 ��2
#
;

(12.49)
since � D 0 (the true value). Note that we differentiate with respect to �2, not � , since
we treat �2 as a parameter.

The covariance matrix is more complicated. The definition is

S0 D E

"p
T

T

TX
tD1

gt.ˇ0/

#"p
T

T

TX
tD1

gt.ˇ0/

#0
:

Assume that there is no autocorrelation in gt.ˇ0/. We can then simplify as

S0 D Egt.ˇ0/gt.ˇ0/0.

This assumption is stronger than assuming that � D 0, but we make it here in order to
illustrate the asymptotic distribution. To get anywhere, we assume that xt is iid N.0; �2/.
In this case (and with � D 0 imposed) we get

S0 D E

"
x2t � �2
xtxt�1

#"
x2t � �2
xtxt�1

#0
D E

"
.x2t � �2/2 .x2t � �2/xtxt�1

.x2t � �2/xtxt�1 .xtxt�1/2

#

D
"

E x4t � 2�2 E x2t C �4 0

0 E x2t x
2
t�1

#
D
"
2�4 0

0 �4

#
: (12.50)

To make the simplification in the second line we use the facts that E x4t D 3�4 if xt �
N.0; �2/, and that the normality and the iid properties of xt together imply E x2t x

2
t�1 D

E x2t E x2t�1 and E x3t xt�1 D E �2xtxt�1 D 0.
By combining (12.49) and (12.50) we get that

ACov

 p
T

"
O�2
O�

#!
D
�
D
0

0S
�1
0 D0

��1

D
0@" �1 0

0 ��2
#0 "

2�4 0

0 �4

#�1 " �1 0

0 ��2
#1A�1

D
"
2�4 0

0 1

#
: (12.51)
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This shows the standard expression for the uncertainty of the variance and that the
p
T O�.

Since GMM estimators typically have an asymptotic distribution we have
p
T O� !d

N.0; 1/, so we can test the null hypothesis of no first-order autocorrelation by the test
statistics

T O�2 � �21. (12.52)

This is the same as the Box-Ljung test for first-order autocorrelation.
This analysis shows that we are able to arrive at simple expressions for the sampling

uncertainty of the variance and the autocorrelation—provided we are willing to make
strong assumptions about the data generating process. In particular, ewe assumed that
data was iid N.0; �2/. One of the strong points of GMM is that we could perform similar
tests without making strong assumptions—provided we use a correct estimator of the
asymptotic covariance matrix S0 (for instance, Newey-West).

12.3.2 Testing the Overidentifying Restriction of No Autocorrelation�

We can estimate �2 alone and then test if both moment condition are satisfied at � D 0.
There are several ways of doing that, but the perhaps most straightforward is skip the loss
function approach to GMM and instead specify the “first order conditions” directly as

0 D A Ng

D
h
1 0

i 1
T

TX
tD1

"
x2t � �2
xtxt�1

#
; (12.53)

which sets O�2 equal to the sample variance.
The only parameter in this estimation problem is �2, so the matrix of derivatives

becomes

D0 D plim

"
@ Ng1.ˇ0/=@�2
@ Ng2.ˇ0/=@�2

#
D
"
�1
0

#
: (12.54)

By using this result, the A matrix in (12.54) and the S0 matrix in (12.50,) it is straighfor-
ward to calculate the asymptotic covariance matrix the moment conditions. In general,
we have

ACovŒ
p
T Ng. Ǒ/� D ŒI �D0 .A0D0/

�1A0�S0ŒI �D0 .A0D0/
�1A0�0: (12.55)
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The term in brackets is here (since A0 D A since it is a matrix with constants)

"
1 0

0 1

#
„ ƒ‚ …

I2

�
"
�1
0

#
„ ƒ‚ …

D0

0BBBB@
h
1 0

i
„ ƒ‚ …

A0

"
�1
0

#
„ ƒ‚ …

D0

1CCCCA
�1

h
1 0

i
„ ƒ‚ …

A0

D
"
0 0

0 1

#
: (12.56)

We therefore get

ACovŒ
p
T Ng. Ǒ/� D

"
0 0

0 1

#"
2�4 0

0 �4

#"
0 0

0 1

#0
D
"
0 0

0 �4

#
: (12.57)

Note that the first moment condition has no sampling variance at the estimated parameters,
since the choice of O�2 always sets the first moment condition equal to zero.

The test of the overidentifying restriction that the second moment restriction is also
zero is

T Ng0
�

ACovŒ
p
T Ng. Ǒ/�

�C
Ng � �21; (12.58)

where we have to use a generalized inverse if the covariance matrix is singular (which it
is in (12.57)).

In this case, we get the test statistics (note the generalized inverse)

T

"
0

˙T
tD1xtxt�1=T

#0 "
0 0

0 1=�4

#"
0

˙T
tD1xtxt�1=T

#
D T

�
˙T
tD1xtxt�1=T

�2
�4

;

(12.59)
which is the T times the square of the sample covariance divided by �4. A sample cor-
relation, O�, would satisfy ˙T

tD1xtxt�1=T D O� O�2, which we can use to rewrite (12.59) as
T O�2 O�4=�4. By approximating �4 by O�4 we get the same test statistics as in (12.52).

12.4 Estimating and Testing a Normal Distribution

12.4.1 Estimating the Mean and Variance

This section discusses how the GMM framework can be used to test if a variable is nor-
mally distributed. The analysis cold easily be changed in order to test other distributions
as well.

Suppose we have a sample of the scalar random variable xt and that we want to test if
the series is normally distributed. We analyze the asymptotic distribution under the null
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hypothesis that xt is N.�; �2/.
We specify four moment conditions

gt D

266664
xt � �
.xt � �/2 � �2
.xt � �/3
.xt � �/4 � 3�4

377775 so Ng D 1

T

TX
tD1

266664
xt � �
.xt � �/2 � �2
.xt � �/3
.xt � �/4 � 3�4

377775 (12.60)

Note that Egt D 04�1 if xt is normally distributed.
Let Ngi.ˇ0/ denote the i th element of the Ng.ˇ/ vector—evaluated at the true parameter

values. The probability of the Jacobian is

D0 D plim

266664
@ Ng1.ˇ0/=@� @ Ng1.ˇ0/=@�2
@ Ng2.ˇ0/=@� @ Ng2.ˇ0/=@�2
@ Ng3.ˇ0/=@� @ Ng3.ˇ0/=@�2
@ Ng4.ˇ0/=@� @ Ng4.ˇ0/=@�2

377775

D plim
1

T

TX
tD1

266664
�1 0

�2.xt � �/ �1
�3.xt � �/2 0

�4.xt � �/3 �6�2

377775 D
266664
�1 0

0 �1
�3�2 0

0 �6�2

377775 : (12.61)

(Recall that we treat �2, not � , as a parameter.)
The covariance matrix of the scaled moment conditions (at the true parameter values)

is

S0 D E

"p
T

T

TX
tD1

gt.ˇ0/

#"p
T

T

TX
tD1

gt.ˇ0/

#0
; (12.62)

which can be a very messy expression. Assume that there is no autocorrelation in gt.ˇ0/,
which would certainly be true if xt is iid. We can then simplify as

S0 D Egt.ˇ0/gt.ˇ0/0; (12.63)

which is the form we use here for illustration. We therefore have (provided gt.ˇ0/ is not
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autocorrelated)

S0 D E

0BBBB@
266664

xt � �
.xt � �/2 � �2
.xt � �/3

.xt � �/4 � 3�4

377775
1CCCCA
0BBBB@
266664

xt � �
.xt � �/2 � �2
.xt � �/3

.xt � �/4 � 3�4

377775
1CCCCA
0

D

266664
�2 0 3�4 0

0 2�4 0 12�6

3�4 0 15�6 0

0 12�6 0 96�8

377775 :
(12.64)

It is straightforward to derive this result once we have the information in the following
remark.

Remark 12.6 If X � N.�; �2/, then the first few moments around the mean of a are

E.X��/ D 0, E.X��/2 D �2, E.X��/3 D 0 (all odd moments are zero), E.X��/4 D
3�4, E.X � �/6 D 15�6, and E.X � �/8 D 105�8.

Suppose we use the efficient weighting matrix. The asymptotic covariance matrix of
the estimated mean and variance is then (.D00S�10 D0/

�1)0BBBB@
266664
�1 0

0 �1
�3�2 0

0 �6�2

377775
0266664

�2 0 3�4 0

0 2�4 0 12�6

3�4 0 15�6 0

0 12�6 0 96�8

377775
�1266664

�1 0

0 �1
�3�2 0

0 �6�2

377775
1CCCCA
�1

D
"

1
�2

0

0 1
2�4

#�1

D
"
�2 0

0 2�4

#
:

(12.65)

This is the same as the result from maximum likelihood estimation which use the sample
mean and sample variance as the estimators. The extra moment conditions (overidenti-
fying restrictions) does not produce any more efficient estimators—for the simple reason
that the first two moments completely characterizes the normal distribution.

12.4.2 Testing Normality�

The payoff from the overidentifying restrictions is that we can test if the series is actually
normally distributed. There are several ways of doing that, but the perhaps most straight-
forward is skip the loss function approach to GMM and instead specify the “first order
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conditions” directly as

0 D A Ng

D
"
1 0 0 0

0 1 0 0

#
1

T

TX
tD1

266664
xt � �
.xt � �/2 � �2
.xt � �/3
.xt � �/4 � 3�4

377775 : (12.66)

The asymptotic covariance matrix the moment conditions is as in (12.55). In this case,
the matrix with brackets is

266664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

377775
„ ƒ‚ …

I4

�

266664
�1 0

0 �1
�3�2 0

0 �6�2

377775
„ ƒ‚ …

D0

0BBBBBBBBB@
"
1 0 0 0

0 1 0 0

#
„ ƒ‚ …

A0

266664
�1 0

0 �1
�3�2 0

0 �6�2

377775
„ ƒ‚ …

D0

1CCCCCCCCCA

�1

"
1 0 0 0

0 1 0 0

#
„ ƒ‚ …

A0

D

266664
0 0 0 0

0 0 0 0

�3�2 0 1 0

0 �6�2 0 1

377775 (12.67)

We therefore get

ACovŒ
p
T Ng. Ǒ/� D

266664
0 0 0 0

0 0 0 0

�3�2 0 1 0

0 �6�2 0 1

377775
266664
�2 0 3�4 0

0 2�4 0 12�6

3�4 0 15�6 0

0 12�6 0 96�8

377775
266664

0 0 0 0

0 0 0 0

�3�2 0 1 0

0 �6�2 0 1

377775
0

D

266664
0 0 0 0

0 0 0 0

0 0 6�6 0

0 0 0 24�8

377775 (12.68)

We now form the test statistics for the overidentifying restrictions as in (12.58). In
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this case, it is (note the generalized inverse)

T

266664
0

0

˙T
tD1.xt � �/3=T

˙T
tD1Œ.xt � �/4 � 3�4�=T

377775
0266664

0 0 0 0

0 0 0 0

0 0 1=.6�6/ 0

0 0 0 1=.24�8/

377775
266664
0

0

˙T
tD1.xt � �/3=T

˙T
tD1Œ.xt � �/4 � 3�4�=T

377775
D T

6

�
˙T
tD1.xt � �/3=T

�2
�6

C T

24

˚
˙T
tD1Œ.xt � �/4 � 3�4�=T

	2
�8

: (12.69)

When we approximate � by O� then this is the same as the Jarque and Bera test of nor-

mality.
The analysis shows (once again) that we can arrive at simple closed form results by

making strong assumptions about the data generating process. In particular, we assumed
that the moment conditions were serially uncorrelated. The GMM test, with a modified
estimator of the covariance matrix S0, can typically be much more general.

12.5 IV on a System of Equations�

Suppose we have two equations

y1t D x01tˇ1 C u1t
y2t D x02tˇ2 C u2t ;

and two sets of instruments, z1t and z2t with the same dimensions as x1t and x2t , respec-
tively. The sample moment conditions are

Ng.ˇ1; ˇ2/ D 1

T

TX
tD1

"
z1t
�
y1t � x01tˇ1

�
z2t
�
y2t � x02tˇ2

� # ;
Let ˇ D .ˇ01; ˇ02/0. Then

@ Ng.ˇ1; ˇ2/
@ˇ0

D
"

@
@ˇ 01

1
T

PT
tD1 z1t

�
y1t � x01tˇ1

�
@
@ˇ 02

1
T

PT
tD1 z1t

�
y1t � x01tˇ1

�
@
@ˇ 01

1
T

PT
tD1 z2t

�
y2t � x02tˇ2

�
@
@ˇ 02

1
T

PT
tD1 z2t

�
y2t � x02tˇ2

� #

D
"

1
T

PT
tD1 z1tx

0
1t 0

0 1
T

PT
tD1 z2tx

0
2t

#
:
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This is invertible so we can premultiply the first order condition with the inverse of
Œ@ Ng.ˇ/=@ˇ0�0A and get Ng.ˇ/ D 0k�1. We can solve this system for ˇ1 and ˇ2 as"

ˇ1

ˇ2

#
D
"

1
T

PT
tD1 z1tx

0
1t 0

0 1
T

PT
tD1 z2tx

0
2t

#�1 "
1
T

PT
tD1 z1ty1t

1
T

PT
tD1 z2ty2t

#

D
24 �

1
T

PT
tD1 z1tx

0
1t

��1
0

0
�
1
T

PT
tD1 z2tx

0
2t

��1
35" 1

T

PT
tD1 z1ty1t

1
T

PT
tD1 z2ty2t

#
:

This is IV on each equation separately, which follows from having an exactly identified
system.
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Chapter 13

Factor Models

Sections denoted by a star (�) is not required reading.

13.1 CAPM Tests: Overview

Reference: Cochrane (2005) 12.1; Campbell, Lo, and MacKinlay (1997) 5; Campbell
(2018) 3

Let Reit be the excess return on asset i in excess over the riskfree asset, and let ft be
the excess return on the market portfolio (f for factor). CAPM with a riskfree return says
that ˛i D 0 in

Reit D ˛i C ˇift C "it , where (13.1)

E "it D 0 and Cov.ft ; "it/ D 0:

The basic test of CAPM is to estimate (13.1) on a single asset and then test if the
intercept is zero. This can easily be extended to several assets, where we test if all the
intercepts are zero.

Notice that the test of CAPM can be given two interpretations. If we assume that the
factor (ft ) is the correct benchmark, then it is a test of whether asset i is “correctly” priced
(this is the approach in mutual fund evaluations). Alternatively, if we assume that asset i
is correctly priced, then it is a test of the mean-variance efficiency of the factor (compare
the Roll critique).
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Figure 13.1: MV frontiers with 2 and 3 assets

13.2 Testing CAPM: Traditional LS Approach

13.2.1 CAPM with One Asset: Traditional LS Approach

If the residuals in the CAPM regression are iid (and independent of the regressor), then the
traditional LS approach is just fine: estimate (13.1) and form a t-test of the null hypothesis
that the intercept is zero.

The variance of the estimated intercept in the CAPM regression (13.1) is

Var. Ǫ i/ D .1C SR2/�2i =T; (13.2)

where �2i is the variance of the residual in (13.1) and SR2 is the squared Sharpe ratio of
the market portfolio (recall: ft is the excess return on market portfolio). The result is
well known, but a simple proof is found in Appendix 13.10. Equation (13.2) shows that
the uncertainty about the intercept is high when the disturbance is volatile and when the
sample is short, but also when the Sharpe ratio of the market is high. Note that a large
market Sharpe ratio means that the market asks for a high compensation for taking on
risk. A bit uncertainty about how risky asset i is then gives a large uncertainty about what
the risk-adjusted return should be. Clearly, (13.2) can be used to construct a t-test.
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Instead of a t-test, we can use the equivalent chi-square test

Ǫ 2i
Var. Ǫ i/

d! �21 under H0: ˛0 D 0: (13.3)

It is quite straightforward to use the properties of mean-variance frontiers (see Gibbons,
Ross, and Shanken (1989), MacKinlay (1995) and the simple proof in Appendix 13.10)
to show that the test statistic in (13.3) can be written

Ǫ 2i
Var. Ǫ i/ D

.cSRc/2 � SR2
.1C SR2/=T ; (13.4)

where SR is the Sharpe ratio of the market portfolio and SRc is the Sharpe ratio of the
tangency portfolio when investment in both the market return and asset i is possible.
(Recall that the tangency portfolio is the portfolio with the highest possible Sharpe ratio.)
If the market portfolio has the same (squared) Sharpe ratio as the tangency portfolio of
the mean-variance frontier of asset i and the market portfolio (so the market portfolio
is mean-variance efficient also when we take the test asset into account) then the test
statistic, Ǫ 2i =Var. Ǫ i/, is zero—and CAPM is not rejected. The economic importance of a
non-zero intercept (˛) is thus that the tangency portfolio changes if the test asset is added
to the investment opportunity set. See Figure 13.1 for an illustration.

13.2.2 CAPM with Several Assets: Traditional LS Approach

Suppose we have n test assets. Stack the expressions (13.1) for i D 1; : : : ; n as2664
Re1t
:::

Rent

3775 D
2664
˛1
:::

˛n

3775C
2664
ˇ1
:::

ˇn

3775ft C
2664
"1t
:::

"nt

3775 , where (13.5)

E "it D 0 and Cov.ft ; "it/ D 0:

This is a system of seemingly unrelated regressions (SUR)—with the same regressor (see,
for instance, Greene (2003) 14). In this case, the efficient estimator (GLS) is LS on each
equation separately. Moreover, the covariance matrix of the coefficients is particularly
simple.

Under the null hypothesis of zero intercepts and iid residuals (although possibly cor-
related across regressions), the LS estimate of the intercept has the following asymptotic
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distribution

p
T Ǫ !d N

�
0n�1; ˙.1C SR2/

�
, where (13.6)

˙ D

2664
�11 : : : �1n
:::

:::

�n1 : : : O�nn

3775 with �ij D Cov."it ; "jt/

and where SR2 D .Ef /2=Var.f /.
In practice, we use the sample moments for the covariance matrix, �ij D

PT
tD1 O"it O"jt=T .

This result is well known, but a simple proof is found in Appendix 13.11. To test the null
hypothesis that all intercepts are zero, we then use the test statistic

T Ǫ 0.1C SR2/�1˙�1 Ǫ � �2n: (13.7)

13.2.3 CAPM with Several Assets: Bonferroni Test

Remark 13.1 (The Bonferroni inequality) Suppose we perform i D 1:::n different tests,

each at the significance level pi . The Bonferroni inequality then says that if the null

hypotheses are all true, then

Pr.not rejecting in any of the n tests/ � 1 �˙n
iD1pi .

It follows that rejecting in at least one of the n tests has a probability of less than or equal

to ˙n
iD1pi . For instance, with pi D 0:05=n, there is 5% chance of rejecting in at least

one test: Pr.rejecting in at least one of the n tests/ � 0:05.

As an alternative to the joint test, we could instead study each of the n assets sepa-
rately. Clearly, if we can safely reject the null hypothesis for at least one asset, then the
joint hypothesis is also rejected. However, this cannot be implemented with traditional
critical values since the chance of at least one false rejection increases with the number of
test assets.

To control this “family-wise error rate,” a Bonferroni correction is applied. To do this,
let ti be the t -stat for asset i (ti D Ǫ i=Std. Ǫ i/). As usual, we would reject the hypothesis
that ˛i D 0 on the 5% level if is jti j > 1:96.

Redo this for each asset—and reject the joint hypothesis on the family-wise signifi-
cance level of 5% if at least one of the individual test statistics exceeds the 0:05=n critical
value. For instance, with 10 test assets, we compare jti j with 2:81 instead of 1:96 (since
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2.81 is the 99.75th percentile of a N.0; 1/ distribution, whereas the 97.5 percentile is
1.96). To use another significance level �, use �=n instead of 0:05=n.

It can be noticed that since we focus on the highest individual test statistic, the Bon-
ferroni and the Holm-Bonferroni (Holm, 1979) methods give the same result. This would
be different if we wanted to see how many of the alphas that are different from 0. In that
case the Holm-Bonferroni method is more powerful.

1 2 3 4 5
1 �3:16 0:35 0:66 2:39 2:63

2 �2:09 0:81 1:71 2:41 1:99

3 �1:95 1:54 1:38 2:40 2:36

4 �0:53 0:65 1:39 2:10 1:54

5 0:08 1:34 1:29 �0:01 0:79

Table 13.1: t-stats for ˛ in CAPM, 25 FF portfolios 1970:01-2021:12. NW uses 1 lag.
The Bonferroni adjusted 10% and 5% critical values are 2.88 and 3.09.

13.3 Testing CAPM: GMM

13.3.1 CAPM with Several Assets: GMM and a Wald Test

To test n assets at the same time when the errors are non-iid we can use the GMM frame-
work.

Write the n regressions in (13.5) on vector form as

Ret D ˛ C f̌t C "t , where (13.8)

E "t D 0n�1 and Cov.ft ; "0t/ D 01�n;

where ˛ and ˇ are n � 1 vectors. Clearly, setting n D 1 gives the case of a single test
asset.

The 2n GMM moment conditions are that, at the true values of ˛ and ˇ,

Egt.˛; ˇ/ D 02n�1, where (13.9)

gt.˛; ˇ/ D
"

"t

ft"t

#
D
"

Ret � ˛ � f̌t

ft
�
Ret � ˛ � f̌t

� # : (13.10)

There are as many parameters as moment conditions, so the GMM estimator picks values
of ˛ and ˇ such that the sample analogues of (13.9) are satisfied exactly, which gives the
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LS estimator. For the inference, we allow for the possibility of non-iid errors, but if the
errors are actually iid, then we (asymptotically) get the same results as in Section 13.2.

With point estimates and their sampling distribution it is straightforward to set up a
Wald test for the hypothesis that all elements in ˛ are zero

Ǫ 0Var. Ǫ /�1 Ǫ d! �2n: (13.11)

Remark 13.2 (Easy coding of the GMM Problem (13.9)) Estimate (13.8) by LS (equation

by equation). Then, plug in the fitted residuals in (13.10) to generate time series of the

moments (will be important for the tests).

Remark 13.3 (Distribution of GMM) Let the parameter vector in the moment condition

have the true value b0. Define

S0 D Cov
hp
T Ng .b0/

i
and D0 D plim

@ Ng.b0/
@b0

:

When the estimator solves min Ng .b/0 S�10 Ng .b/ or when the model is exactly identified, the

distribution of the GMM estimator is

p
T . Ob � b0/ d! N .0k�1; V / , where V D .D0S

�1
0 D00/

�1:

When D0 is invertible (as it would be in an exactly identified model), then we can also

write V D D�10 S0.D�10 /0.

Details on the Wald Test�

Note that, with a linear model, the Jacobian of the moment conditions does not involve
the parameters that we want to estimate. This means that we do not have to worry about
evaluating the Jacobian at the true parameter values. The probability limit of the Jacobian
is simply the expected value, which can be written as

plim
@ Ngt.˛; ˇ/
@Œ˛; ˇ�

D D0 D �E

"
1 ft

ft f 2t

#
˝ In

D �E

 "
1

ft

#"
1

ft

#0!
˝ In; (13.12)

where˝ is the Kronecker product. (The last expression applies also to the case of several
factors.) Notice that we order the parameters as a column vector with the alphas first and
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the betas second. It might be useful to notice that in this case

D�10 D �
"

E

 "
1

ft

#"
1

ft

#0!#�1
˝ In; (13.13)

since .A˝ B/�1 D A�1 ˝ B�1 (if conformable).

Remark 13.4 (Kronecker product) If A and B are matrices, then

A˝ B D

2664
a11B � � � a1nB
:::

:::

am1B � � � amnB

3775 :
Example 13.5 (Two test assets) With assets 1 and 2, the parameter vector is b D Œ˛1; ˛2; ˇ1; ˇ2�0.
Write out the sample analogues of (13.9) as266664
Ng1.˛; ˇ/
Ng2.˛; ˇ/
Ng3.˛; ˇ/
Ng4.˛; ˇ/

377775 D 1

T

XT

tD1

266664
Re1t � ˛1 � ˇ1ft
Re2t � ˛2 � ˇ2ft

ft.R
e
1t � ˛1 � ˇ1ft/

ft.R
e
2t � ˛2 � ˇ2ft/

377775 D 1

T

XT

tD1

"
1

ft

#
˝
"
Re1t � ˛1 � ˇ1ft
Re2t � ˛2 � ˇ2ft

#
;

where Ng1.˛; ˇ/ denotes the sample average of the first moment condition. The Jacobian

is

@ Ng.˛; ˇ/
@Œ˛1; ˛2; ˇ1; ˇ2�0

D

266664
@ Ng1=@˛1 @ Ng1=@˛2 @ Ng1=@ˇ1 @ Ng1=@ˇ2
@ Ng2=@˛1 @ Ng2=@˛2 @ Ng2=@ˇ1 @ Ng2=@ˇ2
@ Ng3=@˛1 @ Ng3=@˛2 @ Ng3=@ˇ1 @ Ng3=@ˇ2
@ Ng4=@˛1 @ Ng4=@˛2 @ Ng4=@ˇ1 @ Ng4=@ˇ2

377775

D � 1
T

XT

tD1

266664
1 0 ft 0

0 1 0 ft

ft 0 f 2t 0

0 ft 0 f 2t

377775 D � 1T
XT

tD1

 "
1

ft

#"
1

ft

#0!
˝ I2:

The asymptotic covariance matrix of
p
T times the sample moment conditions, eval-

uated at the true parameter values, that is at the true disturbances, is defined as

S0 D Cov

 p
T

T

TX
tD1

gt.˛; ˇ/

!
: (13.14)
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The Newey-West estimator is often a good estimator of S0.
From Remark 13.3, we can write the covariance matrix of the 2n� 1 vector of param-

eters (n parameters in ˛ and another n in ˇ) as

Cov

 p
T

"
Ǫ
Ǒ

#!
D D�10 S0.D�10 /0: (13.15)

13.3.2 CAPM and Several Assets: GMM and an LM Test�

We could also construct an “LM test” instead by imposing ˛ D 0 in the moment condi-
tions (13.9). The moment conditions are then

Eg.ˇ/ D E

"
Ret � f̌t

ft.R
e
t � f̌t/

#
D 02n�1: (13.16)

Since there are q D 2n moment conditions, but only n parameters (the ˇ vector), this
model is overidentified.

We could either use a weighting matrix in the GMM loss function or combine the
moment conditions so the model becomes exactly identified.

With a weighting matrix, the estimator solves

minb Ng.b/0W Ng.b/; (13.17)

where Ng.b/ is the sample average of the moments (evaluated at some parameter vector b),
and W is a positive definite (and symmetric) weighting matrix. Once we have estimated
the model, we can test the n overidentifying restrictions that all q D 2n moment condi-
tions are satisfied at the estimated n parameters Ǒ. If not, the restriction (null hypothesis)
that ˛ D 0n�1 is rejected. The test is based on a quadratic form of the moment conditions,
T Ng.b/0	�1 Ng.b/ which has a chi-square distribution if the correct 	 matrix is used.

Alternatively, to combine the moment conditions so the model becomes exactly iden-
tified, premultiply by a matrix A to get

An�2n Eg.ˇ/ D 0n�1: (13.18)

The model is then tested by testing if all 2n moment conditions in (13.16) are satis-
fied at this vector of estimates of the betas. This is the GMM analogue to a classical
LM test. Once again, the test is based on a quadratic form of the moment conditions,
T Ng.b/0	�1 Ng.b/ which has a chi-square distribution if the correct 	 matrix is used.
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For instance, to effectively use only the last n moment conditions in the estimation,
we specify

AEg.ˇ/ D
h
0n�n In

i
E

"
Ret � f̌t

ft.R
e
t � f̌t/

#
D 0n�1: (13.19)

This clearly gives the classical LS estimator without an intercept

Ǒ D
PT

tD1 ftRet =TPT
tD1 f

2
t =T

: (13.20)

Example 13.6 (Combining moment conditions, CAPM on two assets) With two assets we

can combine the four moment conditions into only two by

AEgt.ˇ1; ˇ2/ D
"
0 0 1 0

0 0 0 1

#
E

266664
Re1t � ˇ1ft
Re2t � ˇ2ft

ft.R
e
1t � ˇ1ft/

ft.R
e
2t � ˇ2ft/

377775 D 02�1:

Remark 13.7 (Test of overidentifying assumption in GMM) When the GMM estimator

solves the quadratic loss function Ng.ˇ/0S�10 Ng.ˇ/ (or is exactly identified), then the J test

statistic is

T Ng. Ǒ/0S�10 Ng. Ǒ/
d! �2q�k;

where q is the number of moment conditions and k is the number of parameters.

Remark 13.8 (Distribution of GMM, more general results) When GMM solves minb Ng.b/0W Ng.b/
or A Ng. Ǒ/ D 0k�1, the distribution of the GMM estimator and the test of overidentifying

assumptions are different from those in Remarks 13.3 and 13.7.

13.3.3 Size and Power of the CAPM Tests

The size (using asymptotic critical values) and power in small samples is often found
to be disappointing. Typically, these tests tend to reject a true null hypothesis too often
(see Campbell, Lo, and MacKinlay (1997) Table 5.1) and the power to reject a false null
hypothesis is often fairly low. These features are especially pronounced when the sample
is small and the number of assets, n, is high. One useful rule of thumb is that a saturation

ratio (the number of observations per parameter) below 10 (or so) is likely to worsen the
performance of the test. In the test here we have nT observations, 2n parameters in ˛ and
ˇ, and n.nC 1/=2 unique parameters in S0, so the saturation ratio is T=.2C .nC 1/=2/.
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Figure 13.2: CAPM, FF portfolios

For instance, with T D 60 and n D 10 or at T D 100 and n D 20, we have a saturation
ratio of 8, which is very low (compare Table 5.1 in CLM).

One possible way of dealing with the wrong size of the test is to use critical values
from simulations of the small sample distributions (Monte Carlo simulations or bootstrap
simulations).

13.3.4 Choice of Portfolios

This type of test is typically done on portfolios of assets, rather than on the individual
assets themselves. There are several econometric and economic reasons for this. The
econometric techniques we apply need the returns to be (reasonably) stationary in the
sense that they have approximately the same means and covariance (with other returns)
throughout the sample (individual assets, especially stocks, can change character as the
company moves into another business). It might be more plausible that size or industry
portfolios are stationary in this sense. Also, individual assets are typically very volatile,
which makes it hard to obtain precise estimate and to be able to reject anything.

It sometimes makes economic sense to sort the assets according to a characteristic
(size or perhaps book/market)—and then test if the model is true for these portfolios.
Rejection of the CAPM for such portfolios may be particularly informative.
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Figure 13.3: CAPM, FF portfolios

13.3.5 Empirical Evidence

See Campbell, Lo, and MacKinlay (1997) 6.5 (Table 6.1 in particular) and Cochrane
(2005) 20.2.

One of the more interesting studies is Fama and French (1993) (see also Fama and
French (1996)). They construct 25 stock portfolios according to two characteristics of the
firm: the size and the book value to market value ratio (BE/ME). In June each year, they
sort the stocks according to size and BE/ME. They then form a 5� 5 matrix of portfolios,
where portfolio ij belongs to the i th size quantile and the j th BE/ME quantile (so this is
a double-sort). This is illustrated in Table 13.2.

Book value/Market value
1 2 3 4 5

Size 1 1 2 3 4 5
2 6 7 8 9 10
3 11 12 13 14 15
4 16 17 18 19 20
5 21 22 23 24 25

Table 13.2: Numbering of the FF portfolios.

Fama and French run a traditional CAPM regression on each of the 25 portfolios
(monthly data 1963–1991)—and then study if the expected excess returns are related
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to the betas as they should according to CAPM (recall that CAPM implies EReit D
ˇi ERemt ).

Empirical Example 13.9 (CAPM on 25 FF portfolios) In fact, there is little relation be-

tween EReit and ˇi (see Figure 13.2). This lack of relation is due to the combination of

two features of the data, see Figure 13.3. First, within a size quantile there is a negative

relation (across BE/ME quantiles) between EReit and ˇi—in stark contrast to CAPM. Sec-

ond, within a BE/ME quantile, there is a positive relation (across size quantiles) between

EReit and ˇi—as predicted by CAPM.

13.4 Testing Multi-Factor Models (Factors are Excess Returns)

Reference: Cochrane (2005) 12.1; Campbell, Lo, and MacKinlay (1997) 6.2.1

13.4.1 A Multi-Factor Model

When the K factors, ft , are excess returns, the null hypothesis typically says that ˛i D 0
in

Reit D ˛i C ˇ0ift C "it , where (13.21)

E "it D 0 and Cov.ft ; "it/ D 0K�1;

and ˇi is now an K � 1 vector. The CAPM regression is a special case when the market
excess return is the only factor. In other models like ICAPM (see Cochrane (2005) 9.2),
we typically have several factors. We stack the returns for n assets to get2664

Re1t
:::

Rent

3775 D
2664
˛1
:::

˛n

3775C
2664
ˇ11 : : : ˇ1K
:::

: : :
:::

ˇn1 : : : ˇnK

3775
2664
f1t
:::

fKt

3775C
2664
"1t
:::

"nt

3775
or in vector form

Ret D ˛ C f̌t C "t ;where (13.22)

E "t D 0n�1 and Cov.ft ; "0t/ D 0K�n;

where ˛ is n � 1 and ˇ is n �K. Notice that ˇij shows how the i th asset depends on the
j th factor.
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This is, of course, very similar to the CAPM (one-factor) model—and both the LS and
GMM approaches discussed before are straightforward to extend.

13.4.2 Multi-Factor Model: Traditional LS (SURE)

The results from the LS approach of testing CAPM generalizes directly (see Appendix
13.11 for details). In particular, (13.7) still holds—but where the residuals are from
the multi-factor regressions (13.21) and where the Sharpe ratio of the tangency portfo-
lio (based on the factors) depends on the means and covariance matrix of all factors

T Ǫ 0.1C SR2/�1˙�1 Ǫ � �2n, where (13.23)

SR2 D Ef 0 Cov.f /�1 Ef:

13.4.3 Multi-Factor Model: Orthogonalized Factors

Remark 13.10 (The effect of orthogonalized regressors) Let Qx2t be the residual from re-

gressing x2t on x1t . Suppose you estimate the following regressions

yt D x01tb1 C e1t (13.24)

yt D Qx02tb2 C e2t (13.25)

yt D x01tˇ1 C x02tˇ2 C ut (13.26)

yt D x01t1 C Qx02t2 C "t ; (13.27)

Then, (a) O1 D Ob1; (b) O2 D Ob2; and also (c) O2 D Ǒ2.

Proof. (of Remark 13.10)�) Since x1t and Qx2t in (13.27) are orthogonal, we can
estimate (13.24) and (13.25) separately and get the same coefficients as in the joint
estimation—which demonstrates results (a) and (b). Instead of regression (13.25), we
could estimate (�) e1t D Qx02tı2C"2t where e1t is the residual from (13.24). It is clear that
Ob2 D Oı2 since the movements in yt that are driven by x1t are orthogonal to Qx2t and will
thus not affect regression (13.25). Result (c) then follows from the fact that regression (�)
is known to give the same estimate as Ǒ2 from (13.26); this is the Frisch-Waugh-Lovell
theorem (see, for instance, Greene (2018) 3).

The point of Remark 13.10 is the following. Suppose x1t contains a set of basic factors
and a constant, and that we are interested in investigating a set of additional (new?) factors
x2t . It might then be tempting to orthogonalize the new x2t factors against the old x1t
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factors—perhaps in the hope of getting a cleaner measure of their importance. However,
the remark shows that this does not change the coefficients of the new factors.

(As a practical aspect, notice that instead of estimating (13.27) we can estimate (13.24)
and (13.25) separately and get the same results.)

It is important to understand the difference between the regression of yt on Qx2t in
(13.25) and a regression of yt on (the original, not orthogonalized) x2t

yt D x02tc2 C v2t : (13.28)

If (a) x1t and x2t are correlated and (b) x1t and yt also are correlated, then the estimate
Oc2 will differ from Ob2. This is similar to an omitted variables bias.

Remark 13.11 (Omitted variables) It known (see, for instance, Greene (2018) 4) that if

the correct regression model is yt D g0tˇg C h0tˇh C ut , but we estimate yt D g0tc C vt ;
then the probability limit of Oc D ˇg C Œ �1 : : : �L �ˇh where �i is probability limit of

the coefficients from regressing hit on gt

In terms of Remark 13.11, consider (13.26) to be the correct model and (13.28) as
the model with omitted variables (x1t is omitted). We then notice that Oc2 is a mix of two
things: (1) how x2t influences yt which is ˇ2 (or equivalently, 2 or b2); (2) how x1t

influences yt (which is ˇ1) times how x1t influences x2t .
For instance, we could have the case where ˇ2 D 0 (x2t has not effect on yt ) but

c2 > 0 since x1t affects both yt and x2t positively. In contrast, the regression on the
ortogonalized variable (13.25) would give zero coefficients.

13.4.4 Multi-Factor Model: GMM

The moment conditions are

Egt.˛; ˇ/ D E

 "
1

ft

#
˝ "t

!
D E

 "
1

ft

#
˝ .Ret � ˛ � f̌t/

!
D 0n.1CK/�1:

(13.29)
Note that this expression looks similar to (13.9)—the only difference is that ft may now
be a vector (and we therefore need to use the Kronecker product). It is then intuitively
clear that the expressions for the asymptotic covariance matrix of Ǫ and Ǒ will look very
similar too.
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When the system is exactly identified, the GMM estimator solves the sample ana-
logues of (13.29), which is the same as LS (equation by equation). The model can be
tested by testing if all alphas are zero, as in (13.11).

Instead, when we restrict ˛ D 0n�1 (overidentified system), then we either specify a
weighting matrix W and solve

minˇ Ng.ˇ/0W Ng.ˇ/; (13.30)

or we specify a matrix A to combine the moment conditions and solve

AnK�n.1CK/ Ng.ˇ/ D 0nK�1: (13.31)

Example 13.12 (Moment condition with two assets and two factors) The moment condi-

tions for n D 2 and K D 2 are

Egt.˛; ˇ/ D E

26666666664

Re1t � ˛1 � ˇ11f1t � ˇ12f2t
Re2t � ˛2 � ˇ21f1t � ˇ22f2t

f1t.R
e
1t � ˛1 � ˇ11f1t � ˇ12f2t/

f1t.R
e
2t � ˛2 � ˇ21f1t � ˇ22f2t/

f2t.R
e
1t � ˛1 � ˇ11f1t � ˇ12f2t/

f2t.R
e
2t � ˛2 � ˇ21f1t � ˇ22f2t/

37777777775
D 06�1:

Restricting ˛1 D ˛2 D 0 gives the moment conditions for the overidentified case.

Details on the Wald Test�

For the exactly identified case, we have the following results. The expressions for the
JacobianD0 and its inverse are the same as in (13.12)–(13.13). Notice that in this Jacobian
we differentiate the moment conditions (13.29) with respect to vec.˛; ˇ/, that is, where
the parameters are stacked in a column vector with the alphas first, then the betas for the
first factor, followed by the betas for the second factor etc. The test is based on a quadratic
form of the moment conditions, T Ng.b/0	�1 Ng.b/which has a chi-square distribution if the
correct 	 matrix is used. The covariance matrix of the average moment conditions are as
in (13.14).

13.4.5 Empirical Evidence

Fama and French (1993) also try a multi-factor model. They find that a three-factor model
fits the 25 stock portfolios fairly well (two more factors are needed to also fit the seven
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bond portfolios that they use). The three factors are: the market excess return, the return
on a portfolio of small stocks minus the return on a portfolio of big stocks (SMB), and
the return on a portfolio with high BE/ME minus the return on portfolio with low BE/ME
(HML).

Remark 13.13 (The Fama-French factors) The SMB and HML are created by a double

sort. First, classify firms according the book/market value: low (growth stocks, using

30th percentile as cutoff), neutral or high (value stocks, using 70th percentile as cutoff).

Second, classify firms according to size: small or big, using the median as a cutoff. Create

six value weighted portfolios from the intersection of those groups

Low book/market Medium book/market High book/market

Small: Small Growth (SG) Small Neutral (SN) Small Value (SV)

Big: Big Growth (BG) Big Neutral (BN) Big Value (BV)

The SMB is the average of the small portfolios minus the average of the big portfolios:

SMB D 1=3.SG C SN C SV /� 1=3.BG CBN CBV /. Rearranging gives SMB D
1=3.SG�BG/C1=3.SN�BN/CSV /C1=3.SV �BV /, which shows that it represents

the return on small stocks (for a given book/market) minus the return on big stocks (for

same book/market). The HML is the average of the value stocks minus the growth stocks,

HML D 1=2.SV C BV / � 1=2.SG C BG/, which can be rearranged as HML D
1=2.SV � SG/ C 1=2.BV � BG/, which shows that it represents the return on value

stocks (for a given size) minus the return on growth stocks (for the same size).

Empirical Example 13.14 (A 3-factor model for the 25 FF portfolios) The Fama-French

three-factor model is rejected at traditional significance levels (see Campbell, Lo, and

MacKinlay (1997) Table 6.1 or Fama and French (1993) Table 9c), but it can still capture

a fair amount of the variation of expected returns—see Figures 13.4–13.5.

Empirical Example 13.15 (A 3-factor model for 10 industry portfolios) Figure 13.6 sug-

gests that the 3-factor FF models works poorly for industry portfolios.

Is it a trivial finding that the 25 FF portfolios are better explained once we use the HML
and SMB factors? No, as argued by Fama and French (1996) it just shows that there is a
common (possibly unknown) pricing factor. To see that in a simplified setting, suppose
excess returns are generated by some one-factor model Reit D ˇift C "it , although we
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may not know what the factor is. In addition, assume that the portfolio (HML or SMB,
say) we create is just an equally weighted average across all n assets like

xt D ˇxft C
Pn
iD1"it=n, where ˇx D

Pn
iD1ˇi=n: (13.32)

(With an appropriate interpretation of the signs of the betas, this could actually be a
long-short portfolio.) Regressing Reit on this portfolio gives a slope coefficient i D
Cov.Reit ; xt/=Var.xt/. If we assume that all residuals are uncorrelated with the factor
and with each other, then the numerator of i can be simplified as

Cov.Reit ; xt/ D ˇiˇx Var.ft/C Var."it/=n: (13.33)

The last term is due to the fact that "it shows up both in Reit and xt , but its importance
decreases as the number of assets in the portfolio (n) increases. This shows that if the
cross-section (n) is large, then i depends mostly on the first term. Clearly, the first term
is non-zero if all three ingredients are non-zero. This means that both asset i and the
portfolio are exposed to a (time-varying) factor, although we may not know what that
factor represents. However, the pattern of i across assets may give us a clue. (There are
clearly other methods to investigate if there are common factors, for instance, principal
component analysis.)

Remark 13.16 (Factor structure after having controlled for the market movements�) If

the purpose is to investigate if there is a remaining factor structure after having controlled

for the market movements, we can do the following. First, create “abnormal returns”

as Reit � ObiRemt , where Obi is the coefficient obtained from regressing Reit on Remt (and

a constant). Then, replace Reit in (13.32)–(13.33) with this abnormal return. By the

properties of OLS, this gives the same as running multiple regressions using Remt and xt
as regressors (this is the Frisch-Waugh theorem).

13.4.6 Calendar Time and Cross Sectional Regression

To investigate how the performance (alpha) or exposure (betas) of different investors/funds
are related to investor/fund characteristics, we often use the calendar time approach. First
defineM discrete investor groups (for instance, age 18–30, 31–40, etc) and calculate their
respective average excess returns ( NRejt for group j )

NRejt D
1

Nj

P
i2GroupjR

e
it ; (13.34)
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Figure 13.4: FF, FF portfolios

where Nj is the number of individuals in group j .
Then, we run a factor model

NRejt D j̨ C ˇ0jft C vjt ; for j D 1; 2; : : : ;M (13.35)

where ft typically includes various return factors (for instance, excess returns on equity
and bonds). By estimating theseM equations as a SURE system with White’s (or Newey-
West’s) covariance estimator, it is straightforward to test various hypotheses, for instance,
that the intercept (the “alpha”) is higher for the M th group than for the for first group.

Example 13.17 (Calendar time approach with two investor groups) With two investor

groups, estimate the following SURE system

NRe1t D ˛1 C ˇ01ft C v1t ;
NRe2t D ˛2 C ˇ02ft C v2t :

The calendar time approach is straightforward and the cross-sectional correlations are
fairly easy to handle (in the SURE approach). However, it forces us to define discrete
investor groups—which makes it hard to handle several different types of investor char-
acteristics (for instance, age, trading activity and income) at the same time.

The cross sectional regression approach is to first estimate the factor model for each
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investor
Reit D ˛i C ˇ0ift C "it ; for i D 1; 2; : : : ; N (13.36)

and to then regress the (estimated) betas for the pth factor (for instance, the intercept) on
the investor characteristics

Ǒ
pi D z0icp C wpi : (13.37)

In this second-stage regression, the investor characteristics zi could be a dummy variable
(for an age group, say) or a continuous variable (age, say). Notice that using a continu-
ous investor characteristics assumes that the relation between the characteristics and the
beta is linear—something that is not assumed in the calendar time approach. (This saves
degrees of freedom, but may sometimes be a very strong assumption.) However, a poten-
tial problem with the cross sectional regression approach is that it is often important to
account for the cross-sectional correlation of the residuals.

13.5 Testing Multi-Factor Models (General Factors)

Reference: Cochrane (2005) 12.2; Campbell, Lo, and MacKinlay (1997) 6.2.3 and 6.3
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Figure 13.6: Three-factor model, US industry portfolios

13.5.1 GMM Estimation with General Factors

Linear factor models imply that all expected excess returns are linear functions of the
same vector of factor risk premia (�)

EReit D ˇ0i�, where � is K � 1, for i D 1; : : : n; (13.38)

where the ˇi are the loading of asset i on the factors, as estimated from (13.21).
Stacking the test assets gives

E

2664
Re1t
:::

Rent

3775 D
2664
ˇ11 : : : ˇ1K
:::

: : :
:::

ˇn1 : : : ˇnK

3775
2664
�1
:::

�K

3775 , or

ERet D ˇ�; (13.39)

where ˇ is n �K.
When the factors are excess returns, then the factor risk premia must equal the ex-

pected excess returns of those factors, � D Eft . (To see this, let the factor also be one
of the test assets. It will then get a beta equal to unity on itself.) In any case, if a factor
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Figure 13.7: CAPM on the 25 FF portfolios, TS and CR regressions

risk premium is negative, then assets that are positively exposed to it (positive betas) will
have a negative risk premium, and vice versa.

Remark 13.18 (Factor mimicking portfolios) It is more difficult to estimate and test a

model with general factors than a model with excess return factors. A common approach

to get around the difficulties is to replace any general factor with the linear combination

of excess returns that best mimics the general factor. This linear combination can be

constructed be either forming a regression of the general factor on a vector of excess

returns, or by creating an arbitrage portfolio that is long assets that are highly correlated

with the general factor and short assets that are less or even negatively correlated with

the factor.

The old way of testing this is to do a two-step estimation: first, estimate the ˇi vectors
in a time series model like (13.21) (equation by equation); second, use Ǒi as regressors in
a regression equation of the type (13.38) with a residual added

NRei D Ǒ0i�C ui ; (13.40)

where NRei D ˙T
tD1Reit=T is the (time-series) average of Reit .

It is then tested if ui D 0 for all assets i D 1; : : : ; n. This approach is often called
a cross-sectional regression while the previous tests are time series regressions. Clearly,
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this approach relies on the assumption that the betas are indeed non-zero (and preferably
not too similar across the test assets).

An issue with the cross-sectional approach is that we have to account for the fact that
the regressors in the second step, Ǒi , are just estimates and therefore contain estimation
errors. This “errors-in-variables” problem is likely to have two effects (i) it gives a down-
wards bias of the estimates of � and an upward bias of the mean of the fitted residuals;
and (ii) invalidate the standard expression of the test of �.

A way to handle these problems is to combine the moment conditions for the time
series regressions (13.29) (to estimate ˇ) with (13.39) (to estimate �) to get a joint system

Egt.˛; ˇ; �/ D E

264
"
1

ft

#
˝ .Ret � ˛ � f̌t/

Ret � ˇ�

375 D 0n.1CKC1/�1: (13.41)

We can then test the overidentifying restrictions of the model. There are n.1CKC1/
moment condition (for each asset we have one moment condition for the constant, K
moment conditions for the K factors, and one moment condition corresponding to the
restriction on the linear factor model). There are only n.1CK/CK parameters (n in ˛,
nK in ˇ and K in �). We therefore have n�K overidentifying restrictions which can be
tested with a chi-square test. From the GMM estimation using (13.41) we get estimates
of the factor risk premia and also the variance-covariance of them. This allows us to not
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Figure 13.9: CAPM and 2-factor model

only test the moment conditions, but also to characterize the risk factors and to test if
they are priced (each of them, or perhaps all jointly) by using a Wald test. Notice that
this is, in general, a non-linear estimation problem, since the parameters in ˇ multiply the
parameters in �.

Empirical Example 13.19 (Time series vs. cross-sectional regression, CAPM and 3-

factor model for the 25 FF portfolios) See Figures 13.7–13.8 for an empirical example

based on the CAPM and the FF model, and for a comparison with the results from the

time series approach. For CAPM, the fit differs across the two methods (since the implied

factor risk premia do). For the 3-factor FF model, the fit is more similar across the

methods.

Empirical Example 13.20 (CAPM vs. 2-factor model) See Figure 13.9 for an empirical

comparison of CAPM with a 2-factor model (where one of the factors is not an excess

return).

One approach to estimate the model is to specify a weighting matrixW and then solve
a minimization problem like (13.30). The test is based on a quadratic form of the moment
conditions, T Ng.b/0	�1 Ng.b/ which has a chi-square distribution if the correct 	 matrix
is used. In the special case of W D S�10 , the distribution is given by Remark 13.3. For
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other choices of the weighting matrix, the expression for the covariance matrix is more
complicated.

It is straightforward to show that the Jacobian of these moment conditions (with re-
spect to vec.˛; ˇ; �/) is

D0 D �

2664 1
T

PT
tD1

 "
1

ft

#"
1

ft

#0!
˝ In 0n.1CK/�Kh

0 �0
i
˝ In ˇn�K

3775 (13.42)

where the upper left block is similar to the expression for the case with excess return
factors (13.12), while the other blocks are new.

Example 13.21 (Two assets and one factor) we have the moment conditions

Egt.˛1; ˛2; ˇ1; ˇ2; �/ D E

26666666664

Re1t � ˛1 � ˇ1ft
Re2t � ˛2 � ˇ2ft

ft.R
e
1t � ˛1 � ˇ1ft/

ft.R
e
2t � ˛2 � ˇ2ft/
Re1t � ˇ1�
Re2t � ˇ2�

37777777775
D 06�1:

There are then 6 moment conditions and 5 parameters, so there is one overidentifying

restriction to test. Note that with one factor, then we need at least two assets for this

testing approach to work (n � K D 2 � 1). In general, we need at least one more asset

than factors. In this case, the Jacobian is

@ Ng
@Œ˛1; ˛2; ˇ1; ˇ2; ��0

D � 1
T

XT

tD1

26666666664

1 0 ft 0 0

0 1 0 ft 0

ft 0 f 2t 0 0

0 ft 0 f 2t 0

0 0 � 0 ˇ1

0 0 0 � ˇ2

37777777775
D �

264 1
T

PT
tD1

 "
1

ft

#"
1

ft

#0!
˝ I2 04�1

Œ0; ��˝ I2 ˇ

375 :
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13.5.2 Traditional Cross-Sectional Regressions as a Special Case

Instead of estimating the overidentified model (13.41) (by specifying a weighting matrix),
we could combine the moment equations so they become equal to the number of param-
eters. This can be done, by specifying a matrix A and combine as AEgt D 0. This does
not generate any overidentifying restrictions, but it still allows us to test hypotheses about
the moment conditions and about �. One possibility is to let the upper left block of A
be an identity matrix and just combine the last n moment conditions, Ret � ˇ�, to just K
moment conditions

AEgt D 0Œn.1CK/CK��1 (13.43)"
In.1CK/ 0n.1CK/�n

0K�n.1CK/ �K�n

#
E

264
"
1

ft

#
˝ .Ret � ˛ � f̌t/

Ret � ˇ�

375 D 0 (13.44)

E

264
"
1

ft

#
˝ .Ret � ˛ � f̌t/

�.Ret � ˇ�/

375 D 0 (13.45)

Here A has n.1C K/C K rows (which equals the number of parameters (˛; ˇ; �/) and
n.1 C K C 1/ columns (which equals the number of moment conditions). (Notice also
that � is K � n, ˇ is n �K and � is K � 1.)

Remark 13.22 (Calculation of the estimates based on (13.44)) In this case, we can es-

timate ˛ and ˇ with LS equation by equation—as a standard time-series regression of a

factor model. To estimate the K � 1 vector �, notice that we can solve the second set of

K moment conditions as

� E.Ret � ˇ�/ D 0K�1 or � D .�ˇ/�1 � ERet ;

which is just like a cross-sectional instrumental variables regression of ERet D ˇ� (with

ˇ being the regressors, � the instruments, and ERet the dependent variable).

With � D ˇ0, we get the traditional cross-sectional approach (13.38). The only differ-
ence is we here take the uncertainty about the generated betas into account (in the testing).
Alternatively, let˙ be the covariance matrix of the residuals from the time-series estima-
tion of the factor model. Then, using � D ˇ0˙�1 gives a traditional GLS cross-sectional
approach.
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Empirical Example 13.23 (Factor risk premia for the 3-factor model, different methods)

Table 14.2 shows estimates of the factor risk premia from several methods based on the

25 FF portfolios.

Data CR FMB1 FMB2
Market 7:39 6:88 6:88 �7:36

.2:20/ .2:29/ .2:23/ .3:94/

SMB 1:58 1:47 1:47 1:08

.1:48/ .1:55/ .1:52/ .1:52/

HML 3:38 4:13 4:13 3:73

.1:44/ .1:60/ .1:48/ .1:48/

Table 13.3: Different estimates of factor risk premia, annualized %. Numbers in (paren-
theses) are standard deviations. The 25 FF portfolios 1970:01-2021:12. Data are the
mean excess returns of the factors; CR are estimates of the factor risk premia from a
cross-sectional regression; FMB1 are from Fama-MacBeth without intercept in the cross-
sectional regression; FMB2 are from Fama-MacBeth with intercept in the cross-sectional
regression.In both FMB regressions, the betas are estimated from the full sample.

To test the asset pricing implications, we test if the moment conditions Egt D 0 in
(13.43) are satisfied at the estimated parameters. The test is based on a quadratic form of
the moment conditions, T Ng.b/0	�1 Ng.b/ which has a chi-square distribution if the correct
	 matrix is used (typically more complicated than in Remark 13.3).

Example 13.24 (LS cross-sectional regression, two assets and one factor) With the mo-

ment conditions in Example (13.21) and the weighting vector � D Œˇ1; ˇ2� (13.45) is

AEgt.˛1; ˛2; ˇ1; ˇ2; �/ D E

26666664
Re1t � ˛1 � ˇ1ft
Re2t � ˛2 � ˇ2ft

ft.R
e
1t � ˛1 � ˇ1ft/

ft.R
e
2t � ˛2 � ˇ2ft/

ˇ1.R
e
1t � ˇ1�/C ˇ2.Re2t � ˇ2�/

37777775 D 05�1;

which has as many parameters as moment conditions. The test of the asset pricing model
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is then to test if

Egt.˛1; ˛2; ˇ1; ˇ2; �/ D E

26666666664

Re1t � ˛1 � ˇ1ft
Re2t � ˛2 � ˇ2ft

ft.R
e
1t � ˛1 � ˇ1ft/

ft.R
e
2t � ˛2 � ˇ2ft/
Re1t � ˇ1�
Re2t � ˇ2�

37777777775
D 06�1;

are satisfied at the estimated parameters.

Example 13.25 (Structure of � E.Ret � ˇ�/) If there are 2 factors and three test assets,

then 02�1 D � E.Ret � ˇ�/ is

"
0

0

#
D
"
�11 �12 �13

�21 �22 �23

#0B@
264ERe1t

ERe2t
ERe3t

375 �
264ˇ11 ˇ12

ˇ21 ˇ22

ˇ31 ˇ32

375"�1
�2

#1CA :
13.5.3 What If the Factors Are Excess Returns?�

It would (perhaps) be natural if the tests discussed in this section coincided with those in
Section 13.4 when the factors are in fact excess returns. That is almost so. The difference
is that we here estimate theK�1 vector � (factor risk premia) as a vector of free parame-
ters, while the tests in Section 13.4 impose � D Eft . This can be done in (13.44)–(13.45)
by doing two things. First, define a new set of test assets by stacking the original test
assets and the excess return factors

QRet D
"
Ret

ft

#
; (13.46)

which is an .nCK/ � 1 vector. Second, define the K � .nCK/ matrix � as

Q� D
h

0K�n IK

i
: (13.47)

(Clearly, the betas of ft (as test assets) must equal IK and their residuals must be zero.
This means that the GLS approach to (13.45), � D ˇ0˙�1, is conceptually the same as
(13.47), since all weight is on the betas of ft . However, (13.47) is numerically more
robust.) Together, this gives

� D Eft : (13.48)
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It is also straightforward to show that this gives precisely the same test statistics as the
Wald test on the multifactor model (13.21).

Proof. (of (13.48)) The betas of the QRet vector are

Q̌ D
"
ˇn�K
IK

#
:

The expression corresponding to � E.Ret � ˇ�/ D 0 is then

h
0K�n IK

i
E

"
Ret

ft

#
�
h

0K�n IK

i " ˇn�K
IK

#
� D 0, or

Eft D �:

Remark 13.26 (Two assets, one excess return factor) By including the factors among the

test assets and using the weighting vector � D Œ0; 0; 1� gives

AEgt.˛1; ˛2; ˛3; ˇ1; ˇ2; ˇ3; �/ D E

2666666666664

Re1t � ˛1 � ˇ1ft
Re2t � ˛2 � ˇ2ft
ft � ˛3 � ˇ3ft

ft.R
e
1t � ˛1 � ˇ1ft/

ft.R
e
2t � ˛2 � ˇ2ft/

ft.ft � ˛3 � ˇ3ft/
0.Re1t � ˇ1�/C 0.Re2t � ˇ2�/C 1.ft � ˇ3�/

3777777777775
D 07�1:

Since ˛3 D 0 and ˇ3 D 1, this gives the estimate � D Eft . There are 7 moment

conditions and as many parameters. To test the asset pricing model, test if the following

220



moment conditions are satisfied at the estimated parameters

Egt.˛1; ˛2; ˛3; ˇ1; ˇ2; ˇ3; �/ D E

266666666666666664

Re1t � ˛1 � ˇ1ft
Re2t � ˛2 � ˇ2ft
ft � ˛3 � ˇ3ft

ft.R
e
1t � ˛1 � ˇ1ft/

ft.R
e
2t � ˛2 � ˇ2ft/

ft.ft � ˛3 � ˇ3ft/
Re1t � ˇ1�
Re2t � ˇ2�
ft � ˇ3�

377777777777777775
D 09�1:

In fact, this gives the same test statistic as when testing if ˛1 and ˛2 are zero in (13.11).

Remark 13.27 (What is an excess return?�) Short answer: the return of a zero cost port-

folio. More detailed answer: consider a portfolio with the (net) return

Rp D v1R1 C v2R2 C v3R3 C .1 � v1 � v2 � v3/R4;

where vi is the portfolio weight on asset i which has the net return Ri . The balance

(1 � v1 � v2 � v3) is made up of asset 4 with the net return R4 (which may be a riskfree

asset). Rearrange as

Rp �R4 D v1 .R1 �R4/C v2 .R2 �R4/C v3 .R3 �R4/ :

Clearly, Rp � R4 is an excess return—and it is a linear combination of other excess

returns (even if v1, v2 and/or v3 happen to be negative and they do not sum to unity). If

v3 D �v2, then we can rearrange further to get

Rp �R4 D v1 .R1 �R4/C v2 .R2 �R3/ :

This is still an excess return, although the “excess” on the right hand side is over different

returns.

When Some (but Not All) of the Factors Are Excess Returns�

Partition the vector of factors as

ft D
"
Zt

Ft

#
; (13.49)
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where Zt is an v � 1 vector of excess return factors and Ft is a w � 1 vector of general
factors (K D v C w).

It makes sense (and is econometrically efficient) to use the fact that the factor risk
premia of the excess return factors are just their average excess returns (as in CAPM).
This can be done in (13.44)–(13.45) by doing two things. First, define a new set of test
assets by stacking the original test assets and the excess return factors

QRet D
"
Ret

Zt

#
; (13.50)

which is an .nC v/ � 1 vector. Second, define the K � .nCK/ matrix �

Q� D
"

0v�n Iv

#w�n 0w�v

#
; (13.51)

where # is some w � n matrix. Together, this ensures that

Q� D
"
�Z

�F

#
D
"

EZt
.#ˇF /�1#.ERet � ˇZ�Z/

#
; (13.52)

where the ˇZ and ˇF are just betas of the original test assets onZt and Ft respectively—
according to the partitioning

ˇn�K D
h
ˇZn�v ˇFn�w

i
: (13.53)

One possible choice of # is # D ˇF 0, since then �F are the same as when running a
cross-sectional regression of the expected “abnormal return” (ERet �ˇZ�Z) on the betas
(ˇF ).

Empirical Example 13.28 (2-factor model on the 25 FF portfolios) Figure 13.10 illus-

trates that the fit of a 2-factor model, estimated with the cross sectional approach, depends

on whether the risk premia of excess return factors are constrained to coincide with the

average excess return on them or not.

Proof. (of (13.52)) The betas of the QRet vector are

Q̌ D
"
ˇZn�v ˇFn�w
Iv 0v�w

#
:
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Figure 13.10: Fit of 2-factor model, CR regressions w/wo restrictions

The expression corresponding to � E.Ret � ˇ�/ D 0 is then

Q� E QRet D Q� Q̌ Q�"
0v�n Iv

#w�n 0w�v

#"
ERet
EZt

#
D
"

0v�n Iv

#w�n 0w�v

#"
ˇZn�v ˇFn�w
Iv 0v�w

#"
�Z

�F

#
"

EZt
#w�n ERet

#
D
"

Iv 0v�w
#w�nˇZn�v #w�nˇFn�w

#"
�Z

�F

#
:

The first v equations give
�Z D EZt :

The remaining w equations give

# ERet D #ˇZ�Z C #ˇF �F ; so

�F D .#ˇF /�1#.ERet � ˇZ�Z/:

Example 13.29 (Structure of � to identify � for excess return factors) Continue Example

13.25 (where there are 2 factors and three test assets) and assume that Zt D Re3t—so the

first factor is really an excess return—which we have appended last to set of test assets.
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Then ˇ31 D 1 and ˇ32 D 0 (regressing Zt on Zt and Ft gives the slope coefficients 1

and P0.) If we set .�11; �12; �13/ D .0; 0; 1/, then the moment conditions in Example 13.25

can be written

"
0

0

#
D
"
0 0 1

�21 �22 �23

#0B@
264ERe1t

ERe2t
EZt

375 �
264ˇ11 ˇ12

ˇ21 ˇ22

1 0

375"�Z
�F

#1CA :
The first line reads

0 D EZt �
h
1 0

i "�Z
�F

#
, so �Z D EZt :

13.5.4 Empirical Evidence

Chen, Roll, and Ross (1986) use a number of macro variables as factors—along with
traditional market indices. They find that industrial production and inflation surprises are
priced factors, while the market index might not be. Breeden, Gibbons, and Litzenberger
(1989) and Lettau and Ludvigson (2001) estimate models where consumption growth is
the factor—with mixed results.

13.6 Linear SDF Models

This section discusses how we can estimate and test the asset pricing equation

EmtRet D 0: (13.54)

Assume that the SDF is linear in the factors

mt D NmC b0.ft � Eft/; (13.55)

where theK�1 vector ft contains the factors and where Nm ¤ 0. Combining with (13.54)
gives the moment conditions

gt.b/ D mtRet D NmRet C b0.ft � Nft/Ret ; (13.56)

wheremt is a scalar. There areK parameters (in b) and nmoment conditions (the number
of assets). The mean of the SDF cannot be estimated from excess returns (it could if we
used returns), but it is straightforward to show that the choice of Nm (as long as not zero)
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does not matter for the test based on excess returns.

Empirical Example 13.30 (The implied SDF parameters from the 25 FF portfolios) See

Figure 13.11 for estimates of the FF model.

Remark 13.31 (The SDF model and the mean SDF) Take expectations of the moment

conditions (13.56) and set equal to zero to get

b0 Cov.ft ; Ret / D � NmERet :

This would be satisfied by . Nm; b/ D .0; 0/, which makes no sense. Instead, for any Nm ¤ 0,

we could have

ERet D
�1
Nm b0 Cov.ft ; Ret /;

which allows us to test if there is a K � 1 vector b that prices all n assets, given how the

covariance matrix of the returns and factors looks like.

To estimate this model with a weighting matrix W , we minimize the loss function

J D Ng.b/0W Ng.b/: (13.57)

Alternatively, the moment conditions are combined into K effective conditions as

AK�n Ng.b/ D 0K�1: (13.58)
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To test the asset pricing implications, we test if the moment conditions Egt D 0 are
satisfied at the estimated parameters. The test is based on a quadratic form of the moment
conditions, T Ng.b/0	�1 Ng.b/ which has a chi-square distribution if the correct 	 matrix is
used.

13.6.1 SDF Models versus Linear Factor Models: The Tests�

Reference: Ferson (1995); Jagannathan and Wang (2002) (theoretical results); Cochrane
(2005) 15 (empirical comparison); Bekaert and Urias (1996); and Söderlind (1999)

The test of the linear factor model and the test of the linear SDF model are (generally)
not the same: they test the same implications of the models, but in slightly different ways.
The moment conditions look a bit different—and combined with non-parametric methods
for estimating the covariance matrix of the sample moment conditions, the two methods
can give different results (in small samples, at least). Asymptotically, they are always the
same, as showed by Jagannathan and Wang (2002).

There is one case where we know that the tests of the linear factor model and the
SDF model are identical: when the factors are excess returns and the SDF is constructed
to price these factors as well. To demonstrate this, let Re1t be a vector of excess returns
on some benchmarks assets. Construct a stochastic discount factor as in Hansen and
Jagannathan (1991):

mt D NmC .Re1t � NRe1t/0b; (13.59)

where Nm is a constant and b is chosen to make mt “price” Re1t in the sample, that is, so

˙T
tD1 ERe1tmt=T D 0: (13.60)

Consider the test assets with excess returns Re2t , and “SDF-based performance”

Ng2t D 1

T

PT
tD1R

e
2tmt : (13.61)

Compare with the linear factor portfolio model

Re2t D ˛ C ˇRe1t C "t ; (13.62)

(where E "t D 0 and Cov.Re1t ; "t/ D 0) to see that the SDF-performance (“pricing error”)
is proportional to a traditional alpha

Ng2t= Nm D Ǫ : (13.63)
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In both cases we are thus testing if ˛ is zero or not.
Proof. (of (13.63)) (Here written in terms of population moments, to simplify the

notation.) It follows directly that b D �Var.Re1t/
�1 �ERe1t Nm�. Using this and the expres-

sion for mt in (13.61) gives

Eg2t D ERe2t Nm � Cov
�
Re2t ; R

e
1t

�
Var.Re1t/

�1 ERe1t Nm:

We now rewrite this equation in terms of the parameters in the factor portfolio model
(13.62). The latter implies ERe2t D ˛ C ˇ ERe1t , and the least squares estimator of
the slope coefficients is ˇ D Cov

�
Re2t ; R

e
1t

�
Var

�
Re1t

��1. Using these two facts in the
equation above—and replacing population moments with sample moments, gives (13.63).

13.7 Conditional Factor Models

Reference: Cochrane (2005) 8; Ferson and Schadt (1996)
The simplest way of introducing conditional information is to simply state that the

factors are not just the usual market indices or macro economic series: the factors are
functions of them (this is sometimes called “scaled factors” to indicate that we scale
the original factors with instruments). For instance, if Remt is the return on the market
portfolio and zt�1 is something else which is thought to be important for asset pricing
(use theory), then the factors could be

f1t D Remt and f2t D zt�1Remt : (13.64)

Since the second factor is not an excess return, the test is done as in (13.41).
An alternative interpretation of this is that we have only one factor, but that the coef-

ficient of the factor is time varying. This is easiest seen by plugging in the factors in the
time-series regression part of the moment conditions (13.41), Reit D ˛ C f̌t C "it ,

Reit D ˛ C ˇ1Remt C ˇ2zt�1Remt C "it
D ˛ C .ˇ1 C ˇ2zt�1/Remt C "it : (13.65)

The first line looks like a two factor model with constant coefficients, while the second
line looks like a one-factor model with a time-varying coefficient (ˇ1 C ˇ2zt�1). This
is clearly just a matter of interpretation, since it is the same model (and is tested in the
same way). This model can be estimated and tested as in the case of “general factors”—as
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Figure 13.12: Betas of CAPM and 2-factor model

zt�1Remt is not a traditional excess return.

Empirical Example 13.32 (Conditional factor model estimated on the 25 FF portfo-

lios) Figures 13.12–13.13 shows the betas of the conditional model. It seems as if the

value firms (portfolios 5, 10, 15, 20, 25) have a somewhat higher exposure to the market

when volatility is high. However, the time-variation is not marked. Therefore, the condi-

tional (two-factor model) fits the cross-section of average returns only slightly better than

CAPM—see Figure 13.9.

Conditional models typically have more parameters than unconditional models, which
is likely to give small samples issues (in particular with respect to the inference). It is
important to remember some of the new factors (original factors times instruments) are
probably not an excess returns, so the test is done with an LM test as in (13.41).

Remark 13.33 (Dynamic Portfolios�) The returns on our factors, ft , could be the excess

return on dynamic portfolios, Re1t D st�1 ˝ Re0t , where st�1 are some information vari-

ables (not payoffs as before), for instance, lagged returns or market volatility, and Re0t
are some basic benchmarks (S&P500 and bond, perhaps). The reason is that if Re0t are

excess returns, so are Re1t D st�1 ˝ Re0t . Therefore, the typical cross-sectional test (of

ERe D ˇ0�) coincides with the test of the alpha—and also of zero SDF pricing errors.

Notice also that the returns of our test assets, Reit , could be the excess return on dynamic

strategies in terms of some basic test assets (mutual funds, say), Re2t D zt�1˝Rept , where

zt�1 are information variables and Rept are basic test assets. In this case, we are testing

the performance of these dynamic strategies.
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Figure 13.13: Betas of conditional CAPM

13.8 Conditional Models with “Regimes”

Reference: Christiansen, Ranaldo, and Söderlind (2011)
It is also possible to estimate non-linear factor models. The model could be piecewise

linear or include higher order times. For instance, Treynor and Mazuy (1966) extend the
CAPM regression by including a squared term (of the market excess return) to capture
market timing.

Alternatively, the conditional model (13.65) could be changed so that the time-varying
coefficients are non-linear in the information variable. In the simplest case, this could be
dummy variable regression where the definition of the regimes is exogenous.

More ambitiously, we could use a smooth transition regression, which estimates both
the “abruptness” of the transition between regimes as well as the cutoff point. Let G.z/
be a logistic (increasing but “S -shaped”, sigmoidal) function

G.z/ D 1

1C expŒ�.z � c/� ; (13.66)

where the parameter c is the central location (where G.z/ D 1=2) and  > 0 determines
the steepness of the function (a high  implies that the function goes quickly from 0 to
1 around z D c.) See Figure 13.14 for an illustration. A logistic smooth transition
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Figure 13.14: Logistic function and the effective slope coefficient in a Logistic smooth
transition regression

regression is

Reit D ˇ.zt�1/0xt C "t
D ˚Œ1 �G.zt�1/� ˇ01 CG.zt�1/ˇ02	 xt C "t
D Œ1 �G.zt�1/� ˇ01xt CG.zt�1/ˇ02xt C "t : (13.67)

At low zt values, the regression coefficients are (almost) ˇ1 and at high zt values they are
(almost) ˇ2. See Figure 13.14 for an illustration.

Remark 13.34 (NLS estimation) The parameter vector (; c; ˇ1; ˇ2) is easily estimated

by Non-Linear least squares (NLS) by concentrating the loss function: optimize (numer-

ically) over .; c/ and let (for each value of .; c/) the parameters (ˇ1; ˇ2) be the OLS

coefficients on the vector of “regressors” .Œ1 �G.zt�1/� xt ; G.zt�1/xt/.

The most common application of this model is by letting xt D Rei;t�s. This is the
LSTAR model—logistic smooth transition auto regression model, see Franses and van
Dijk (2000).

Empirical Example 13.35 (L� model estimated on the 25 FF portfolios) See Figures

13.15–13.16.
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Figure 13.15: Betas on the market in the low and high regimes, 25 FF portfolios

13.9 Fama-MacBeth

Reference: Cochrane (2005) 12.3; Campbell, Lo, and MacKinlay (1997) 5.8; Fama and
MacBeth (1973)

The Fama and MacBeth (1973) approach (called FMB below) is a bit different from
the regression approaches discussed so far—although it seems most related to what we
discussed in Section 13.5. The method has three steps, described below.

� First, estimate the betas ˇi (i D 1; : : : ; n) from (13.1) (this is a time-series re-
gression). This is often done on the whole sample—assuming the betas are con-
stant. Sometimes, the betas are estimated separately for different sub samples (so
we could let Ǒi carry a time subscript in the equations below).

� Second, run a cross sectional regression for every t . That is, for period t , estimate
�t from the cross section (across the assets i D 1; : : : ; n) regression

Reit D t C �0t Ǒi C "it ; (13.68)

where Ǒi are the regressors. Note the difference to the traditional cross-sectional
approach discussed in (13.8), where the second stage regression regressed NReit (the
time-series average of Reit ) on Ǒi , while the Fama-MacBeth approach runs one re-
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Figure 13.16: Test of 1 and 2-factor models, 25 FF portfolios

gression for every time period. The intercept t (which capture time-fixed effects)
is often dropped from the regression.

� Third, estimate the time averages

O"i D 1

T

TX
tD1
O"it for i D 1; : : : ; n, (for every asset) (13.69)

O� D 1

T

TX
tD1
O�t : (13.70)

Since O�t measures the cross-sectional effect, O� is just the average of the cross-
sectional effect.

The second step, using Ǒi as regressors, creates an errors-in-variables problem since
Ǒ
i are estimated, that is, measured with an error. The effect of this is typically to bias

the estimator of �t towards zero (and any intercept, or mean of the residual, is biased
upward). One way to minimize this problem, used by Fama and MacBeth (1973), is to let
the assets be portfolios of assets, for which we can expect that some of the individual noise
in the first-step regressions to average out—and thereby make the measurement error in
Ǒ smaller.
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Empirical Example 13.36 (FMB vs. other methods, 25 FF portfolios) See Table 14.2.

Remark 13.37 (Fama-MacBeth with constant betas) If the betas are (restricted to be)

constant across time, then the estimate O� from (13.70) without intercept (exclude the t
term) is the same as from the traditional cross-sectional regression (13.40). To see that,

consider the simplifying case of only one factor (so Ǒi is a scalar). Then, the FMB from the

second step regression (13.68) without an intercept gives O�t D .˙n
iD1 ǑiReit/=.˙n

iD1 Ǒ2i /.
Notice that the denominator is the same across time, so we can calculate the time-average

(13.70) as

O� D 1

T

TX
tD1

Pn
iD1 ǑiReit
˙n
iD1 Ǒ2i

D
Pn
iD1 Ǒi NReit
˙n
iD1 Ǒ2i

;

which is the same as from the CR approach.

We clearly want portfolios which have different betas, or else the second step regres-
sion (13.68) does not work. Fama and MacBeth (1973) choose to construct portfolios
according to some initial estimate of asset specific betas. Another way to deal with the
errors-in-variables problem is to adjust the tests. Jagannathan and Wang (1996) and Ja-
gannathan and Wang (1998) discuss the asymptotic distribution of this estimator.

We can test the model by studying if "i D 0 (recall from (13.69) that "i is the time
average of the residual for asset i , "it ), by forming a t-test O"i=Std.O"i/. Fama and MacBeth
(1973) suggest that the standard deviation should be found by studying the time-variation
in O"it . In particular, they suggest that the variance of O"it (not O"i ) can be estimated by the
(average) squared variation around its mean

Var.O"it/ D 1

T

TX
tD1

.O"it � O"i/2 : (13.71)

Since O"i is the sample average of O"it , the variance of the former is the variance of the latter
divided by T (the sample size)—provided O"it is iid. That is,

Var.O"i/ D 1

T
Var.O"it/ D 1

T 2

TX
tD1

.O"it � O"i/2 : (13.72)

A similar argument leads to the variance of O�

Var. O�/ D 1

T 2

TX
tD1
. O�t � O�/2: (13.73)
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Fama and MacBeth (1973) found, among other things, that the squared beta is not
significant in the second step regression, nor is a measure of non-systematic risk.

The approach can also be extended to include other variables in the cross-sectional
regressions, so (13.68) would become

Reit D t C �0t
" Ǒ

i

zit

#
C "it ; (13.74)

where zit could be a vector of asset (i ) specific characteristics in period t (for instance,
the leverage). Testing the � coefficients of zit is done in the same way as before. It can
be noticed that when zit is time-varying, then the FMB approach is not the same as OLS
on pooled data. In fact, FMB is focused on the average cross-sectional affect, not on the
time-series effect. (Actually, regressions where all fixed effects have been taken out by
demeaning are the same in FMB and pooled OLS.)

13.10 Appendix: Details of CAPM Regression

Proof. (of (13.2)) Consider the regression equation yt D x0tb0 C ut . With iid errors
that are independent of all regressors (also across observations), the LS estimator, ObLS , is
asymptotically distributed as

p
T . ObLS � b0/ d! N.0; �2˙�1xx /, where �2 D Eu2t and ˙xx D E˙T

tD1xtx
0
t=T:

When the regressors are just a constant (equal to one) and one variable regressor, ft , so
xt D Œ1; ft �0, then we have

˙xx D E
PT

tD1xtx
0
t=T D E

1

T

PT
tD1

"
1 ft

ft f 2t

#
D
"

1 Eft
Eft Ef 2t

#
, so

�2˙�1xx D
�2

Ef 2t � .Eft/2
"

Ef 2t �Eft
�Eft 1

#
D �2

Var.ft/

"
Var.ft/C .Eft/2 �Eft

�Eft 1

#
:

(In the last line we use Var.ft/ D Ef 2t � .Eft/2:) The upper left cell is (13.2).
Proof. (of (13.4)) From the CAPM regression (13.1) we have

Cov

"
Reit

Remt

#
D
"
ˇ2i �

2
m C Var."it/ ˇi�

2
m

ˇi�
2
m �2m

#
, and

"
�ei

�em

#
D
"
˛i C ˇi�em

�em

#
:

Suppose we use this information to construct a mean-variance frontier for both Rit and
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Rmt , and we find the tangency portfolio, with excess return Rect . It is straightforward to
show that the square of the Sharpe ratio of the tangency portfolio is �e0˙�1�e, where
�e is the vector of expected excess returns and ˙ is the covariance matrix. By using the
covariance matrix and mean vector above, we get that the squared Sharpe ratio for the
tangency portfolio, �e0˙�1�e, (using both Rit and Rmt ) is�

�ec
�c

�2
D ˛2i

Var."it/
C
�
�em
�m

�2
;

which we can write as

.SRc/
2 D ˛2i

Var."it/
C .SRm/2 :

Use the notation ft D Rmt �Rf t and combine this with (13.2) and to get (13.4).

13.11 Appendix: Details of SURE Systems

Proof. (of (13.6)) Write each of the regression equations in (13.5) on a traditional form

Reit D x0t�i C "it , where xt D
"
1

ft

#
:

Define
˙xx D plim

XT

tD1 xtx
0
t=T , and �ij D plim

XT

tD1 "it"jt=T:

With iid errors that are independent of all regressors (also across observations), the asymp-
totic covariance matrix of the vectors O�i and O�j (assets i and j ) is �ij˙�1xx =T (see below
for a separate proof). In matrix form,

Cov.
p
T O�/ D

2664
�11 : : : �1n
:::

:::

�n1 : : : O�nn

3775˝˙�1xx ;
where O� stacks O�1; : : : ; O�n. As in (13.2), the upper left element of ˙�1xx equals 1C SR2,
where SR is the Sharpe ratio of the market. For a link to the GMM based formulas in
Remark 13.3, notice that the above expression for Cov.

p
T O�/ can also be written

D�10 .˙ ˝˙xx/.D�10 /0; with D�10 D .In ˝˙�1xx /

and where ˙ is the matrix with �ij as the elements.
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Proof. (of distribution of SURE coefficients, used in proof of (13.6)�) To simplify,
consider the SUR system

yt D x0tˇ C ut
zt D x0t C vt :

Let Ȯxx D
PT

tD1xtx0t=T . We then know (from basic properties of LS) that

p
T . Ǒ � ˇ/ D Ȯ �1xx

p
T
1

T

PT
tD1xtut

p
T . O � / D Ȯ �1xx

p
T
1

T

PT
tD1xtvt :

Notice that ˙xx D plim Ȯxx, while the remaining terms (typically) obey CLTs. The
covariance of

p
T Ǒ and

p
T O is therefore (since ˙�1xx is symmetric)

Cov.
p
T Ǒ;
p
T O/ D ˙�1xx Cov

�p
T
1

T

PT
tD1xtut ;

p
T
1

T

PT
tD1xtvt

�
˙�1xx :

With iid errors (although ut and vt may be correlated) that are independent of all regres-
sors (also across observations), this simplifies to

˙�1xx plim.
1

T

PT
tD1xtx

0
t/˙

�1
xx �uv D ˙�1xx �uv:

Remark 13.38 (General results on SURE distribution, same regressors) Let the regres-

sion equations be

yit D x0t�i C "it , i D 1; : : : ; n;
where xt is a K � 1 vector (the same in all n regressions). When the moment conditions

are arranged so that the first n are x1t"t , then next are x2t"t

Egt D E.xt ˝ "t/;

then Jacobian (with respect to the coefficients of x1t , then the coefficients of x2t , etc) and

its inverse are

D0 D �˙xx ˝ In and D�10 D �˙�1xx ˝ In:
The covariance matrix of the moment conditions is as usual S0 D

P1
sD�1 Egtg0t�s. As
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an example, let n D 2, K D 2 with x0t D .1; ft/ and let �i D .˛i ; ˇi/, then we have266664
Ng1
Ng2
Ng3
Ng4

377775 D 1

T

XT

tD1

266664
y1t � ˛1 � ˇ1ft
y2t � ˛2 � ˇ2ft

ft.y1t � ˛1 � ˇ1ft/
ft.y2t � ˛2 � ˇ2ft/

377775 ;
and

@ Ng
@Œ˛1; ˛2; ˇ1; ˇ2�0

D

266664
@ Ng1=@˛1 @ Ng1=@˛2 @ Ng1=@ˇ1 @ Ng1=@ˇ2
@ Ng2=@˛1 @ Ng2=@˛2 @ Ng2=@ˇ1 @ Ng2=@ˇ2
@ Ng3=@˛1 @ Ng3=@˛2 @ Ng3=@ˇ1 @ Ng3=@ˇ2
@ Ng4=@˛1 @ Ng4=@˛2 @ Ng4=@ˇ1 @ Ng4=@ˇ2

377775

D � 1
T

XT

tD1

266664
1 0 ft 0

0 1 0 ft

ft 0 f 2t 0

0 ft 0 f 2t

377775 D
�
� 1
T

XT

tD1 xtx
0
t

�
˝ I2:

Remark 13.39 (General results on SURE distribution, same regressors, alternative or-

dering of moment conditions and parameters�) If instead, the moment conditions are

arranged so that the first K are xt"1t , the next are xt"2t as in

Egt D E."t ˝ xt/;

then the Jacobian (wrt the coefficients in regression 1, then the coefficients in regression

2 etc.) and its inverse are

D0 D In ˝ .�˙xx/ and D�10 D In ˝ .�˙�1xx /:

Reordering the moment conditions and parameters in Example 13.38 gives266664
Ng1
Ng2
Ng3
Ng4

377775 D 1

T

XT

tD1

266664
y1t � ˛1 � ˇ1ft

ft.y1t � ˛1 � ˇ1ft/
y2t � ˛2 � ˇ2ft

ft.y2t � ˛2 � ˇ2ft/

377775 ;
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and

@ Ng
@Œ˛1; ˇ1; ˛2; ˇ2�0

D

266664
@ Ng1=@˛1 @ Ng1=@ˇ1 @ Ng1=@˛2 @ Ng1=@ˇ2
@ Ng2=@˛1 @ Ng2=@ˇ1 @ Ng2=@˛2 @ Ng2=@ˇ2
@ Ng3=@˛1 @ Ng3=@ˇ1 @ Ng3=@˛2 @ Ng3=@ˇ2
@ Ng4=@˛1 @ Ng4=@ˇ1 @ Ng4=@˛2 @ Ng4=@ˇ2

377775

D � 1
T

XT

tD1

266664
1 ft 0 0

ft f 2t 0 0

0 0 1 ft

0 0 ft f 2t

377775 D I2 ˝
�
� 1
T

XT

tD1 xtx
0
t

�
:
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Chapter 14

Financial Panel Data

References: Verbeek (2012) 10, Baltagi (2008), Hoechle (2007), Driscoll and Kraay
(1998), Wooldridge (2010) and Petersen (2009).

14.1 Introduction to Panel Data

A panel data set (also called a longitudinal data set) has data on a cross-section (i D
1; 2; : : : ; N , individuals or firms) for many time periods (t D 1; 2; : : : ; T ). Our aim is to
estimate a linear relation between the dependent variable and the regressors

yit D ˛i C x0itˇi C uit ; (14.1)

where the coefficients (˛i ,ˇi ) may or may not be different for different individuals (this is
discussed in detail below). As examples of such applications, we may want to evaluate if
alphas or betas of different mutual funds are related to fund characteristics, for instance,
costs or trading activity. Alternatively, we want to investigate whether firms with different
types of board compositions perform differently. Sometimes it will be convenient to put
the constant in the xit vector to write the model as yit D x0itˇi C uit . (This should be
clear from the context.)

Data on the dependent variable has this structure:

i D 1 i D 2 � � � i D N
t D 1 W y11 y21 yN1

t D 2 W y12 y22 yN2
:::

t D T W y1T y2T yNT

(14.2)
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The structure for each of the regressors is similar, although it can also be the case that
(some of) the regressors are the same for allN investors (for instance, when the regressors
are pricing factors like the market excess return). When needed for clarity we will use the
yi;t notation instead of yit .

The structure in (14.2) implicitly assumes that we have a balanced panel, that is, have
data for all the cells. However, it is often the case that the panel is unbalanced in the sense
that some data is missing For instance, we may not have data on regressor 3 for i D 7

and t D 3. If data is missing in a random way, then we can simply exclude (yit ; xit ) for
the missing (i; t). In our example that means just excluding (y7;3; x7;3) but keeping all
other data. In contrast, if data is missing in a non-random way (for instance, depending
on the value of yit ), then we have to apply more sophisticated sample-selection models
(not discussed in this chapter).

14.2 An Overview of Different Panel Data Models

A pooled model assumes that all individuals have the same coefficients (no subscript on
ˇ), so (14.1) becomes

yit D ˛ C x0itˇ C uit : (14.3)

This model can be estimated by pooled OLS (see below).
A fixed effects model assumes that all individuals have the same slope coefficients, but

that their intercepts might differ

yit D ˛i C x0itˇ C uit : (14.4)

An extension of the fixed effects model is to also allow for time fixed effects

yit D �t C ˛i C x0itˇ C uit : (14.5)

Estimation of these models is discussed below.
A random effects model is similar to a fixed effects model, except that the individual

“mean” ˛i now contains a common component (˛) and a random individual component
(�i ). We can then write the model as

yit D ˛ C x0itˇ C uit where uit D �i C "it : (14.6)

The "it is typically assumed to be uncorrelated across time and individuals, but the �i
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terms make the uit residuals correlated over time (for the same individual). The estima-
tion of this model is discussed later.

The unrestricted model (14.1) allows all individuals to have different coefficients
(hence a subscript i on ˇi ). These regressions could be estimated by OLS for each indi-
vidual separately. Alternatively, a GLS approach can be applied to enhance the efficiency
by exploiting the correlation (of the residuals) across individuals. This approach is not
discussed in these notes, since it is basically very similar to the SURE model used for
testing CAPM and other linear factor models. (See the CAPM notes.)

14.3 Pooled OLS

Consider the regression model
yit D x0itˇ C uit ; (14.7)

where xit is an k � 1 vector. For notational convenience, this section assumes that any
constant is included in the xit vector along with the other regressors. Notice that the coef-
ficients are the same across individuals (and time), but that the regressors may vary along
both the time series and cross-sectional dimensions. We assume that ujt is uncorrelated
with xit (across all i and j ).

Define the matrices

˙xx D 1

TN

XT

tD1
XN

iD1 xitx
0
it (a k � k matrix) (14.8)

˙xy D 1

TN

XT

tD1
XN

iD1 xityit (a k � 1 vector). (14.9)

The LS estimator (stacking all TN observations) is then

Ǒ D ˙�1xx˙xy : (14.10)

In case uit is uncorrelated across time and also across individuals, then the usual
expressions for Std. Ǒ/ apply. However, it is often the case that there are clusters of indi-
viduals (all small firms, say) that have correlated residuals. This would require handling
those correlations.

Recall that we can (conceptually) decompose the point estimate Ǒ by using (14.7) to
substitute for yit in ˙xy (14.9) and then in (14.10). The result is

Ǒ D ˇ C˙�1xx
�
1

TN

XT

tD1
XN

iD1 hit
�

, where hit D xituit : (14.11)
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The variance-covariance matrix (k � k) can then be written

Var.
p
TN Ǒ/ D ˙�1xx Var

�
1p
TN

XT

tD1
XN

iD1 hit
�
˙�1xx : (14.12)

(Clearly, if Var.
p
TN Ǒ/ D A, then Var. Ǒ/ D A=.TN/).

Notice that the middle matrix in (14.12) is the variance-covariance matrix of a sum of
the k � 1 vector xituit divided by

p
TN , that is, the average xituit multiplied by

p
TN .

The sum in this expression looks likeXT

tD1
XN

iD1 hit D h1;1„ƒ‚…
iD1;tD1

C h2;1„ƒ‚…
iD2;tD1

C : : : hN�1;T„ ƒ‚ …
iDN�1;tDT

C hN;T„ƒ‚…
iDN;tDT

: (14.13)

The variance of this sum depends on how the elements are correlated. Different clus-

ter methods would account for a non-zero covariance across individuals within the same
period (for instance, between hit and hjt ), or across time for the same individual (for
instance, between hi;t and hi;t�1) and sometimes for both.

Remark 14.1 (Unbalanced panels�) With missing values in .yit ; xit/ we want to exclude

that observation. This can be done in several ways. For instance, by changing the sum-

mations in (14.8), (14.9) and (14.12) to skip over such data points. Alternatively, we can

set .yit ; zit/ D .0; 0k/ so all variables related to .t; i/ are set to zero—but then keep the

standard summation. In either case the TN terms are not entirely correct, but they cancel

both in the calculation of Ǒ in (14.10) and of Var. Ǒ/ in (14.12).

Remark 14.2 (�Panel regression vs average coefficient) Consider the regression for in-

vestor i

yit D x0tˇi C "it , i D 1:::N;
where the regressors are the same in all regressions—but where the coefficients might be

different across investors. Clearly, we have for each i

Ǒ
i D QS�1xx QSxyi ;

where QSxx D
TX
tD1

xtx
0
t=T and QSxyi D

TX
tD1

xtyit=T:

The cross-sectional average of the regression coefficients is therefore

1

N

NX
iD1
Ǒ
i D QS�1xx

1

N

NX
iD1
QSxyi :
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Compare that to (14.8) and notice that since xt is repeatedN times, we have QSxx D ˙xx.

Similarly, comparing with (14.9) gives

1

N

NX
iD1
QSxyi D ˙xy :

This shows that 1
N

PN
iD1 Ǒi D Ǒ, where the latter is from the panel regression (14.10).

14.4 The Within Estimator (“Fixed Effects Estimator”)

In the fixed effects model, we allow for different individual intercepts

yit D ˛i C x0itˇ C uit : (14.14)

There are several ways to estimate this model. The conceptually most straightfor-
ward is to include individual dummies (N ) where dummy i takes the value of one if the
data refers to individual i and zero otherwise and estimate the model with pooled OLS.
(Clearly, the regression can then not include any intercept. Alternatively, include an inter-
cept but only N � 1 dummies, for i D 2�N .) However, this approach can be difficult to
implement since it may involve a very large number of regressors.

As an alternative (which gives the same point estimates as pooled OLS with dummies)
consider the following approach. First, take average across time (for a given i ) of yit and
xit in (14.14). That is, think (but do not run any estimation yet...) of forming the cross-
sectional regression

Nyi D ˛i C Nx0iˇ C Nui , where (14.15)

Nyi D 1

T

PT
tD1yit and Nxi D 1

T

PT
tD1xit : (14.16)

Second, transform the data as

y�it D yit � Nyi (14.17)

x�it D xit � Nxi : (14.18)

These variables have zero means.
Use the transformed variables to express the difference between (14.14) and (14.15)

as
y�it D x�0it ˇ C u�it : (14.19)
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At this stage, estimate ˇ by running pooled OLS on all observations of (14.19). There is
no intercept in this regression, but adding one should not affect the slope coefficients. We
denote this estimate ǑFE (FE stands for fixed effects) and it is also often called the within

estimator. The interpretation of this approach is that we estimate the slope coefficients
by using only the movements around individual means (not how the individual means
differ). Notice that it gives the same results as OLS with dummies. Third and finally, get
estimates of individual intercepts as

˛i D Nyi � Nx0i ǑFE : (14.20)

Clearly, the within estimator wipes out all regressors that are constant across time for a
given individual (say, gender and schooling): they are effectively merged with the indi-
vidual means (�i ). In practice, such variables must be excluded from the xit vector since
otherwise there will be some transformed variables, xit� Nxi , that are always zero—causing
numerical problems.

Remark 14.3 (The within estimator and the Frisch-Waugh-Lovell theorem�) Regressing

yt and xt on a set of dummies gives Nyi and Nxi . The FWL theorem says that regressing y�it
on x�it gives the same slope coefficients as regressing yit on xit and the dummies.

We can apply the usual tests on the pooled OLS results from (14.19)—provided the
residuals are uncorrelated across time and individuals. Otherwise, we need to apply a
cluster method.

Remark 14.4 (Lagged dependent variable as regressor�) If yi;t�1 is among the regres-

sors xit , then the within estimator (14.19) is biased in short samples (that is, when T is

small)—and increasing the cross-section (that is, N ) does not help. To see the problem,

suppose that the lagged dependent variable is the only regressor (xit D yi;t�1). The

within estimator (14.19) is then

yit �
PT

tD1yit=T D Œyi;t�1 �
PT

tD2yi;t�1=.T � 1/�ˇ C Œuit �
PT

tD1uit=T �:

The problem is that the regressor .yi;t�1 � :::/ is correlated with ˙uit since the latter

contains ui;t�1 which affects yi;t�1 directly. In addition, ˙yi;t�1 contains yi;t which is

correlated with uit . It can be shown that this bias can be substantial for panels with small

T .
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Remark 14.5 (Fixed effects in unbalanced panels�) When (yit ; xit ) inlcude one or more

missing values, then we typically exclude that observation from the estimation. For that

reason, they should also be excluded from calculating Nyi and Nxi . In this way, (y�it ; x
�
it )

will have zero means in the sample that is used in the estimation.

LS Fixed eff Between GLS 1st diff
exper/100 7:84 4:11 10:64 4:57 3:55

.8:25/ .6:21/ .4:05/ .7:12/ .2:33/

exper2/100 �0:20 �0:04 �0:32 �0:06 �0:05
.�5:04/ .�1:50/ .�2:83/ .�2:37/ .�0:93/

tenure/100 1:21 1:39 1:25 1:38 1:29

.2:47/ .4:25/ .0:90/ .4:32/ .2:98/

tenure2/100 �0:02 �0:09 �0:02 �0:07 �0:08
.�0:85/ .�4:36/ .�0:20/ .�3:77/ .�2:45/

south �0:20 �0:02 �0:20 �0:13 �0:02
.�13:51/ .�0:45/ .�6:67/ .�5:70/ .�0:56/

union 0:11 0:06 0:12 0:07 0:04

.6:72/ .4:47/ .3:09/ .5:57/ .3:31/

Table 14.1: Panel estimation of log wages for women, T D 5 and N D 716 from NLS
(1982,1983,1985,1987,1988). Example of fixed and random effects models, Hill et al
(2008), Table 15.9. Numbers in parentheses are t-stats.

14.4.1 The Within Estimator with Time Fixed Effects

When we allow for both time fixed effects and individual fixed effects

yit D �t C ˛i C x0itˇ C uit ; (14.21)

then we could once again introduce dummies (now for both time periods and individuals)
and apply pooled OLS.

As before, it is often easier to transform the data before estimating with pooled OLS.
In this case, we run the regression on transformed variables

y�it D x�0it ˇ C u�it : (14.22)

245



The transformations are

y�it D yit � Nyi � Nyt C Ny (14.23)

x�it D xit � Nxi � Nxt C Nx; (14.24)

where Nxi is defined in (14.16) and

Nxt D
PN
iD1xit=N for each t and

Nx DPT
tD1
P
N
iD1xit=.TN/:

(Similarly for the transformation of yit .) The last terms ( Ny; Nx) makes sure that the grand
mean of the transformed variable is zero. (If we instead add an intercept to (14.22), then
this is not important for the slope coefficients.)

The estimation and testing of (14.22) is the same as for the standard within estimator
(see above).

Remark 14.6 (�Fixed effects in unbalanced panels) As with individual fixed effects, the

averages should only be calculated from those data points that will be used in the estima-

tion.

Remark 14.7 (Only time fixed effects�) When we allow for time fixed effects but no indi-

vidual fixed effect, then the transformations are

y�it D yit � Nyt
x�it D xit � Nxt :

Proof. (�of (14.22)) First, take averages over time (for each individual, i D 1 to N )
of (14.21) to get

Nyi D N�C ˛i C Nx0iˇ C Nui :
Second, take averages over the cross section (in each time period, t D 1 to T )

Nyt D �t C N̨ C Nx0tˇ C Nut :

Third, take averages across both time and the cross-section

Ny D N�C N̨ C Nx0ˇ:

Finally, subtract all three from (14.21) to get (14.22).
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14.5 The First-Difference Estimator

An another way of estimating the fixed effects model is to difference away the �i by
taking first-differences (in time)

�yit D ��t C�x0itˇ C u�it ; (14.25)

where �yit D yit � yi;t�1 and similarly for the regressors. Quite often, we interpret ��t
as just a constant. Notice that

u�it D uit � ui;t�1; (14.26)

so there are reasons to suspect that u�it is (negatively) autocorrelated.
Notice that the first-difference approach focuses on how changes in the regressors

(over time, for the same individual) affect changes in the dependent variable. Also this
method wipes out all regressors that are constant across time (for a given individual).

Regression (14.26) can be estimated by pooled OLS. However, unadjusted standard
errors are likely to overstate the uncertainty. This suggests that using the unadjusted
standard errors is a conservative approach (harder to reject the null hypothesis). The
reason is that if uit is iid, then Cov.u�it ; u

�
i;t�1/ D �Var.uit/.

Remark 14.8 (Lagged dependent variable as regressor�) If yi;t�1 is among the regres-

sors xit , then the first-difference method (14.25) does not work (OLS is inconsistent and

a larger sample does not help). The reason is that the (autocorrelated) residual is then

correlated with the lagged dependent variable. This model cannot be estimated by OLS

(the instrumental variable method might work).

14.6 Differences-in-Differences Estimator

Consider the first-difference model (14.25) when one of the regressors is a dummy vari-
able indicating whether individual i was “treated” (for instance, received investment ad-
vise) in period t . We can estimate this as before—and interpret the coefficient as the effect
of the “treatment” (conditional on all other variables)

In the classical difference-in-difference estimator there are only two periods (T D 2):
before and after the treatment. If there are no other regressors, then (14.25) can be written

�yit D ��t C ıQit C u�it ; (14.27)
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where Qit is the dummy variable. (The restriction that all individuals have the same
��t term is the so called “parallel trend assumption.”) In this case ı can be estimated by
the difference between the average �yit among the treated (� NyB2) and the average �yit
among the non-treated (� NyA2)

Oı D � NyB2 �� NyA2: (14.28)

(Notice that the change of the average is the same as the average of the change.)
More generally, consider the regression specification

yit D ˛i C �Qi C �t C ıTtQi C x0itˇ C "it ; (14.29)

where Qi is a cross-sectional dummy variable (0 if i is non-treated and 1 otherwhise)
and Tt is a time-series dummy variable (0 before the treatment, 1 after) and xit contains
other regressors. In this specification, ı is the key coefficient. In this specfication, ˛i ; Qi

and the cross-sectional vatriation in xit capture the differences across individuals that are
not related to the treatment. In contrast, �t and the time-series variation in xit capture
changes over time that are also unrelated to the treatment. In contrast, TtQi captures the
treatment effect.

Suppose we only have two time periods (before and after the treatment), then the first
difference of (14.29) gives

�yit D �˛i C ��Qi„ ƒ‚ …
0

C��t C ı�.TtQi/„ ƒ‚ …
Qit

C�x0itˇ C u�it ; (14.30)

where Qit is 0 for non-treated and 1 for treated (like in (14.27)). Notice that the “parallel
trend assumption” now amounts to assuming that ��t C �x0itˇ is the same across the
treated and non-treated. If this is questionable, then (14.27) should not be used. Rather,
we should estimate (14.30).

14.7 Random Effects Model�

The random effects model allows for random individual “intercepts” (�i )

yit D ˇ0 C x0itˇ C �i C "it ; where (14.31)

"it is iid N.0; �2" / and �i is iid N.0; �2�/: (14.32)
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Notice that �i is random (across agents) but constant across time, while "it is just random
noise. Hence, �i can be interpreted as the permanent “luck” of individual i .

It is sometimes argued that the random effect only makes sense if the data is a sample
from a larger population—and then captures the peculiar (relative to the population) fea-
tures of the individuals that end up in the sample. It is then convenient to merge �i with
"it , because it gives fewer parameters to estimate (and thus, saves degrees of freedom).
In contrast, if the cross-section effectively contains the population (all mutual funds on a
market, say), then a fixed effect is perhaps more reasonable.

Clearly, if the we regard �i as non-random, then we are back in the fixed-effects
model. (The choice between the two models is not always easy, so it may be wise to try
both—and compare the results.)

We could write the regression as

yit D ˇ0 C x0itˇ C uit , where uit D �i C "it : (14.33)

and we typically assume that "jt and �i are not correlated with each other or with xit .
Notice that uit is autocorrelated even if "it is not: Cov.uit ; ui;t�1/ D Var.�i/.

There are several ways to estimate the random effects model. First, the methods for
fixed effects (the within and first-difference estimators) all work—so the “fixed effect”
can actually be a random effect. Second, the between estimator using only individual
time averages (from (14.16))

Nyi D ˇ0 C Nx0iˇ C �i C N"i„ ƒ‚ …
residuali

; (14.34)

is also consistent, but discards all time-series information. Third, LS on

yit D ˇ0 C x0itˇ C �i C "it„ ƒ‚ …
residualit

(14.35)

is consistent (but not really efficient). However, in this case we may need to adjust Cov. Ǒ/
since the covariance matrix of the residuals is not diagonal.

In the random effects model, the�i variable can be thought of as an excluded variable.
Excluded variables typically give a bias in the coefficients of all included variables—
unless the excluded variable is uncorrelated with all of them. This is the assumption in
the random effects model (recall: we assumed that �i is uncorrelated with xjt ). If this
assumption is wrong, then we cannot estimate the RE model by either OLS or GLS, but
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the within-estimator (compare with the FE model) works, since it effectively eliminates
the excluded variable from the system.

Remark 14.9 (Generalized least squares�) GLS is an alternative estimation method that

exploits correlation structure of residuals to increase the efficiency. In this case, it can be

implemented by running OLS on

yit � # Nyi D ˇ0.1 � #/C .xit � # Nxi/0ˇ C �it , where

# D 1 �
q
�2u=.�

2
u C T�2�/:

In this equation, �2u is the variance of the residuals in the “within regression” as estimated

in (14.19) and �2� D �2B��2u=T , where �2B is the variance of the residuals in the “between

regression” (14.34). Here, �2� can be interpreted as the variance of the random effect �i .

However, watch out for negative values of �2� and notice that when # � 1, then GLS is

similar to the “within estimator” from (14.19). This happens when �2� >> �2u or when

T is large. The intuition is that when �2� is large, then it is smart to get rid of that source

of noise by using the within estimator, which disregards the information in the differences

between individual means.

14.8 Fama-MacBeth

The Fama and MacBeth (1973) approach (called FMB below) is a different method for
handling panel data. The method has two main steps, described below.

First, estimate �t and ˇt

yit D �t C x0itˇt C uit (14.36)

period by period (using the cross section i D 1 � N ). The FMB has the nice properties
of easily handling unbalanced data sets (the cross-sectional regressions (14.36) are run on
the available cross section for each time period).

Second, estimate the time averages

Ǒ D 1

T

TX
tD1
Ǒ
t : (14.37)

Remark 14.10 (Step 0�) The FMB can also be used to test CAPM (or other linear factor

models). In this case, yit in (14.36) are the excess returns on asset i in period t (Reit )
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and xit are the loadings (it ) of the excess return on the market excess return (or other

factors) according to the regression Reit D ˛C f 0t it C "it . In many cases, the it values

used as xit are estimated during a previous sample, for instance, during the five years up

to and including t � 1. In other cases, the it values are estimated from the full sample,

and are thus constant across periods. The latter has the advantage of being more precise

estimates, provided the assumption of constant loadings is correct.

Fama and MacBeth (1973) suggest that the standard deviation should be found by
studying the time-variation in Ǒt . In particular, they suggest that the variance of Ǒt (no-
tice, not Ǒ) can be estimated by the (average) squared variation around its mean

Var. Ǒt/ D 1

T

TX
tD1
. Ǒt � Ǒ/2: (14.38)

Since Ǒ is the sample average of Ǒt , the variance of the former is the variance of the latter
divided by T (the sample size)—provided Ǒt is iid. That is,

Var. Ǒ/ D 1

T
Var. Ǒt/ D 1

T 2

TX
tD1
. Ǒt � Ǒ/2: (14.39)

When xit are common risk factors (xit D xt ), then FMB and pooled OLS give the
same point estimates (provided (14.36) is estimated without an intercept, effectively set-
ting �t D 0). However, FMB’s Var. Ǒ/ automatically handles the cross sectional correla-
tions between residuals, while the pooled OLS would require applying a cluster method.

Empirical Example 14.11 (Estimated factor risk premia from different methods) Table

14.2 shows estimates of the factor risk premia from several methods based on the 25 FF

portfolios.

14.9 Calendar Time and Cross Sectional Regression

14.9.1 Calendar Time Approach

The calendar time (CalTime) approach is to first define M discrete investor groups (for
instance, age 18–30, 31–40, etc) and calculate their respective average excess returns ( Nyjt
for group j )

Nyjt D 1

Nj

P
i2Groupjyit ; (14.40)
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Data CR FMB1 FMB2
Market 7:39 6:88 6:88 �7:36

.2:20/ .2:29/ .2:23/ .3:94/

SMB 1:58 1:47 1:47 1:08

.1:48/ .1:55/ .1:52/ .1:52/

HML 3:38 4:13 4:13 3:73

.1:44/ .1:60/ .1:48/ .1:48/

Table 14.2: Different estimates of factor risk premia, annualized %. Numbers in (paren-
theses) are standard deviations. The 25 FF portfolios 1970:01-2021:12. Data are the
mean excess returns of the factors; CR are estimates of the factor risk premia from a
cross-sectional regression; FMB1 are from Fama-MacBeth without intercept in the cross-
sectional regression; FMB2 are from Fama-MacBeth with intercept in the cross-sectional
regression.In both FMB regressions, the betas are estimated from the full sample.

where Nj is the number of individuals in group j . Notice that Nyjt is just one time series
of the equally-weighted portfolio return for investors in group j .

Then, we run a factor model

Nyjt D x0t ǰ C vjt ; for j D 1; 2; : : : ;M (14.41)

where xt typically includes a constant and various return factors, for instance, excess
returns on equity and bonds. Notice that xt is the same for all groups. By estimating these
M equations as a SURE system with White’s (or Newey-West’s) covariance estimator, it
is straightforward to test various hypotheses, for instance, that the intercept (the “alpha”)
is higher for the M th group than for the for first group.

Example 14.12 (CalTime with two investor groups) With two investor groups, estimate

the following SURE system

Ny1t D x0tˇ1 C v1t ;
Ny2t D x0tˇ2 C v2t :

The CalTime approach is straightforward and the cross-sectional correlations are fairly
easy to handle (in the SURE approach). However, it forces us to define discrete investor
groups—which makes it hard to handle several different types of investor characteristics
(for instance, age, trading activity and income) at the same time.

Empirical Example 14.13 (Investor activivity vs performance, calendar time regressions)

See Table 14.3 for results on a ten-year panel of some 60,000 Swedish pension savers from
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Inactive Active Higly Active
coef �0:76 3:08 8:65

t-tstat NW �0:69 1:77 2:73

Table 14.3: Calendar time regressions. Annualised coefficients and t-stats from Table 10,
in Dahlquist et al (RFS 2017). For Inactive the coefficient is the annualised alpha, but for
the other two cateogories it is the difference in alpha to the Inactive. Three EW portfolios
based on 62640 individuals, 2116 days. The dependent variables are the returns of the EW
portfolio based on the activity indicators. The regressions also control for 7 risk factors
over 5 days (2 lags, 2 leads).

Dahlquist, Martinez, and Söderlind (2016). In this case, the dependent variable is the re-

turn of a pension investment portfolio (on day t , individual i ). Each individual is sorted

into one EW portfolio based of her/his trading activity over the last year (inactive active,

very active). The regressors include a constant, 7 risk factors (global and Swedish market,

SMB, HML as a well as a bond factor) on˙2 days (1C 7 � 5 regressors).

14.9.2 Cross Sectional Regression

The cross sectional regression (CrossReg) approach is to first estimate the factor model
for each investor on time series data

yit D x0tˇi C "it ; for i D 1; 2; : : : ; N (14.42)

and to run cross-sectional regressions of the (estimated) betas (for instance, for the pth
factor) on the investor characteristics

Ǒ
p;i D z0i C ui : (14.43)

In this second-stage regression, the investor characteristics zi could be a dummy variable
(for age group, say) or a continuous variable (age, say). Notice that using a continuous
investor characteristics assumes that the relation between the characteristics and the beta
is linear—something that is not assumed in the CalTime approach. (This saves degrees of
freedom, but may sometimes be a very strong assumption.) However, the cross-sectional
approach is best suited for the case when the investor characteristics (zi ) are constant
across time. This is a clear limitation.

A potential problem with the CrossReg approach is the cross-sectional correlation of
the residuals (ui ). For instance, we may have a very large cross-sectional (N is large), but
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it so happens that many of the investors follow very similar investment strategies. Notice
also that this approach can only handle the (time) average characteristics.

Empirical Example 14.14 (Investor activivity vs performance, cross-sectional regres-

sions) For an empirical illustration, see Table 14.4 where the t-stats look massively in-

flated. Also, the investor characteristics used in these regressions are kept constant

(across time) by simply using the time-series averages.

coef t-tstat W t-tstat C1 t-tstat C2 t-tstat C3
Inactive �1:14 �17:27 �38:04 �13:39 �6:06
Active 5:95 42:13 6:70 18:77 11:62

Higly Active 10:25 25:80 9:91 11:64 25:71

Age 0:00 2:70 2:09 2:54 1:79

Male 0:43 20:66 7:83 23:61 27:88

Pension rights �0:06 �8:55 �15:26 �6:76 �1:77

Table 14.4: Annualised regression coefficients and t-stats from a cross-sectional regres-
sion on the same data as in Dahlquist et al (RFS 2017), except that the investor character-
istics are fixed across time (using the time averages). The dependent variable is the alpha
of the 62640 individual portfolios. For Inactive the coefficient is the annualised alpha, but
for the other two cateogories it is the difference in alpha to the Inactive. The alphas are
from time series regressions which control for 7 risk factors over 5 days (2 lags, 2 leads).
The t-stats are from White (W), clustering on activity (C1) age (C2), and pension rights
(C3).

14.9.3 Cross Sectional Regression with Clustering of Residuals

In a cross-sectional regression T D 1. Use this in (14.8)–(14.9) to write (14.12) as

Var.
p
N Ǒ/ D ˙�1xx Var

�
1p
N

XN

iD1 hi
�
˙�1xx : (14.44)

When we assume that the residuals (or here, hi D xiui ) are iid, then Var.˙N
iD1hi/ is just

the sum of the variances of each term, ˙N
iD1 Var.hi/. With clustering, this is different.

The following example illustrates this.

Example 14.15 (Cluster method onN D 4) Assume that individuals 1 and 2 form cluster

1 and that individuals 3 and 4 form cluster 2—and disregard correlations across clusters.
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This means setting the covariances across clusters to zero,

Var.˙N
iD1hi/ D E.h21 C h22 C h23 C h24;

2h1h2 C 2h1h3„ƒ‚…
0

C 2h1h4„ƒ‚…
0

C 2h2h3„ƒ‚…
0

C 2h2h4„ƒ‚…
0

C 2h3h4/:

(Recall that E hi D 0, so E hihj D Cov.hi ; hj /.) Notice that this can be written

Var.˙N
iD1hi/ D E.h1 C h2/2 C E.h3 C h4/2:

Suppose there are C different clusters—and that we know which cluster individual i
belongs to. Then, the previous example suggests that we can estimate the middle term of
(14.44) as

SC D 1

N

CX
cD1

hc.hc/0, where hc D
X

i2 cluster c

hi : (14.45)

The iid case is when each i is her/his own cluster. In contrast, we cannot allow everyone
to be in the same cluster, since this would give hc D 0. This will change when we have
T > 1. It is often argued that replacing hi by hiC=.C � 1/ improves the small properties
of SC .

14.10 Panel Regressions, Driscoll-Kraay and Cluster Methods

Equation (14.12) says that

Var.
p
TN Ǒ/ D ˙�1xx S0˙�1xx , where S0 D Cov.

p
TN Nh/: (14.46)

Clearly, the value of Cov.
p
TN Nh/ depends on how the elements in the average Nh are

correlated (across time and across individuals).

14.10.1 The Effect of Cross-Sectional Correlations

To simplify the exposition we first focus on the cross-sectional correlations by assuming

that there are no autocorrelations. In this case, we can simplify as

S0 D Cov

 
1p
TN

TX
tD1

NX
iD1

hit

!
(14.47)

D 1

TN

TX
tD1

Cov.ht/, where ht D
NX
iD1

hit : (14.48)
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In this expression, ht is the k�1 vector of cross-sectional (i D 1; 2; :::; N ) sums in period
t . Since we use the covariance matrix of the moment conditions, heteroskedasticity is
accounted for (as in White’s method).

In general, Cov.ht/ involves all the cross-sectional covariances. For instance, with
N D 2 we have

Cov .h1t C h2t/ D Cov .h1t ; h1t/C Cov .h2t ; h2t/C Cov .h1t ; h2t/C Cov .h2t ; h1t/ ;
(14.49)

where each term is a k � k matrix. An iid assumption would assume that covariances
across individuals (firms) are zero (Cov .h1t ; h2t/ D 0). In contrast, a cluster method
may assume that such covariances are zero unless the two individuals belong to the same
cluster (town, football club,...). The Driscoll-Kraay method makes no such assumptions.

14.10.2 From Driscoll-Kraay to Standard OLS (no autocorrelations)

We initially rule out autocorrelations. The methods summarised below all aim at estimat-
ing S0 in (14.48) in a consistent way.

The Driscoll and Kraay (1998) (DK) estimates S0 by

SDK D 1

TN

TX
tD1

hth
0
t ; (14.50)

where ht is the k � 1 vector of the cross-sectional sum of hit in period t , as defined in
(14.48).

Remark 14.16 (Relation to the notation in Hoechle (2007)) Hoechle writes Cov. Ǒ/ D
.X 0X/�1 OST .X 0X/�1, where OST D

PT
tD1hth0t . Clearly,X 0X=.TN/ D ˙xx and OST =TN D

S . Combining gives (14.46).

Example 14.17 (DK on N D 4) As an example, suppose there is one regressor (k D 1)

and N D 4. Then, (14.48) gives the cross-sectional sum in period t

ht D h1t C h2t C h3t C h4t ;
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and the covariance matrix (14.50)

TN � SDK D
TX
tD1

hth
0
t

D
TX
tD1

.h1t C h2t C h3t C h4t/2

D
TX
tD1
.h21t C h22t C h23t C h24t

C 2h1th2t C 2h1th3t C 2h1th4t C 2h2th3t C 2h2th4t C 2h3th4t/

The term in parentheses is the sum of all the elements in this matrix of cross products

(hithjt ):
i 1 2 3 4

1 h21t h1th2t h1th3t h1th4t

2 h2th1t h22t h2th3t h2th4t

3 h3th1t h3th2t h23t h3th4t

4 h4th1t h4th2t h4th3t h24t

This means that all cross-sectional covariances are allowed to be non-zero. In case hit is

a k � 1 vector, replace (the scalar) hithjt by the (k � k matrix) hith0jt .

A cluster method puts restrictions on the covariance terms (of hit ) that are allowed
to enter the estimate S . In practice, all terms across clusters are left out. This can be
implemented by changing the S matrix. In particular, instead of interacting all i with
each other, we only allow for interaction within each of the C clusters (c D 1; :::; C )

SC D 1

TN

TX
tD1

CX
cD1

hct .h
c
t /
0, where hct D

X
i2 cluster c

hit : (14.51)

(Clearly, with only one cluster, then we are back in the DK method (14.50).)

Example 14.18 (Cluster method on N D 4, changing Example 14.17 directly) Recon-

sider Example 14.17, but assume that individuals 1 and 2 form cluster 1 and that indi-

viduals 3 and 4 form cluster 2—and disregard correlations across clusters. This means
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setting the covariances across clusters to zero,

TN � SC D
TX
tD1
Œ.h1t C h2t/2 C .h3t C h4t/2�

D
TX
tD1
.h21t C h22t C h23t C h24t ;

2h1th2t C 2h1th3t„ ƒ‚ …
0

C 2h1th4t„ ƒ‚ …
0

C 2h2th3t„ ƒ‚ …
0

C 2h2th4t„ ƒ‚ …
0

C 2h3th4t/:

In this case, the term in parentheses sums all the elements in this matrix:

i 1 2 3 4

1 h21t h1th2t 0 0

2 h1th2t h22t 0 0

3 0 0 h23t h3th4t

4 0 0 h3th4t h24t

This disregards any cross-sectional correlations across clusters.

Instead, we get White’s covariance matrix by excluding all cross-sectional cross terms.
This can be accomplished by defining

SW D 1

TN

TX
tD1

NX
iD1

hith
0
it : (14.52)

(This can be interpreted as a cluster method (14.51) where each i is its own cluster.)
Notice that this disregards any cross-sectional correlations.

Example 14.19 (White’s method on N D 4) With only one regressor (14.52) gives

TN � S D
TX
tD1

�
h21t C h22t C h23t C h24t

�
;

so the term in parentheses sums all the elements in this matrix:

i 1 2 3 4

1 h21t 0 0 0

2 0 h22t 0 0

3 0 0 h23t 0

4 0 0 0 h24t
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Finally, the traditional LS covariance matrix assumes that White’s estimate (14.52)
can be simplified by exploiting the fact that xitx0it and u2it are not correlated. This changes
SW to ˙xxs2 where s2 D ˙T

tD1˙N
iD1u

2
it=TN . Using in (14.46) gives

CovLS.
p
TN Ǒ/ D ˙�1xx s2: (14.53)

14.10.3 Reintroducing Autocorrelations

The previous analysis disregarded autocorrelations. We now reintroduce this possibility.
For the DK estimator, first define the estimate of the pth autocovariance matrix by

SDK;p D 1

TN

TX
tD1

hth
0
t�p: (14.54)

When p D 0, then this is clearly the same as SDK in (14.50). If we allow for P lags, then

the estimate of S0 is

SDK D SDK;0 C
PP
pD1wp.SDK;p C S 0DK;p/; (14.55)

where wp D 1 � p=.P C 1/ in case we use the Bartlett weights (as in Newey-West), but
also wp D 1 can be motivated (see Petersen (2009) for a discussion).

The cluster method is to first define

SC;p D 1

TN

TX
tD1

CX
cD1

hct .h
c
t�p/

0 (14.56)

and then use
SC D SC;0 C

PP
pD1wp.SC;p C S 0C;p/: (14.57)

Finally, if we rule out all correlations across individuals, then we set

SW;p D 1

TN

TX
tD1

NX
iD1

hith
0
i;t�p (14.58)

and use
SW D SW;0 C

PP
pD1wp.SW;p C S 0W;p/: (14.59)

14.10.4 A Monte Carlo Experiment

Reference: Dahlquist, Martinez, and Söderlind (2016)
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Basic Setup

This section reports results from a simple Monte Carlo experiment. We use the model

yit D ˛ C f̌t C gi C uit ; (14.60)

where yit is the return of individual i in period t , ft a benchmark return and gi is the
(demeaned) number of the cluster (�2;�1; 0; 1; 2) that the individual belongs to. This is
a simplified version of the regressions we run in the paper. In particular, ı measures how
the performance depends on the number of fund switches.

The experiment uses 3000 artificial samples with t D 1; : : : ; 2000 and i D 1; : : : ; 1665.
Each individual is a member of one of five equally sized groups (333 individuals in each
group). The benchmark return ft is iid normally distributed with a zero mean and a stan-
dard deviation equal to 15=

p
250, while uit is also normally distributed with a zero mean

and a standard deviation of one (different cross-sectional correlations are shown in the
table). In generating the data, the true values of ˛ and ı are zero, while ˇ is one—and
these are also the hypotheses tested below. To keep the simulations easy to interpret, there
is no autocorrelation or heteroskedasticity.

Results for three different GMM-based methods are reported: Driscoll and Kraay
(1998), a cluster method and White’s method.

MC Covariance Structure

To generate data with correlated (in the cross-section) residuals, let the residual of indi-
vidual i (belonging to group j ) in period t be

uit D "it C vjt C wt ; (14.61)

where "it � N.0; �2" ), vjt � N.0; �2v ) and wt � N.0; �2w)—and the three components
are uncorrelated. This implies that

Var.uit/ D �2" C �2v C �2w ;

Cov.uit ; ukt/ D
"
�2v C �2w if individuals i and k belong to the same group
�2w otherwise.

#
(14.62)

Clearly, when �2w D 0 then the correlation across groups is zero, but there may be cor-
relation within a group. If both �2v D 0 and �2w D 0, then there is no correlation at all
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across individuals. For CalTime portfolios (one per activity group), we expect the indi-
vidual shocks "it to average out, so a group portfolio has the variance �2v C �2w and the
covariance of two different group portfolios is �2w .

The Monte Carlo simulations consider different values of the variances—to illustrate
the effect of the correlation structure.

Results from the Monte Carlo Simulations

Table 14.5 reports the fraction of times the absolute value of a t-statistic for a true null
hypothesis is higher than 1.96. The table has three panels for different correlation patterns
of the residuals (uit ): no correlation between individuals, correlations only within the pre-
specified clusters and correlation across all individuals.

In the upper panel, where the residuals are iid, all three methods have rejection rates
around 5% (the nominal size).

In the middle panel, the residuals are correlated within each of the five clusters, but
there is no correlation between individuals that belong to the different clusters. In this
case, but the DK and the cluster method have the right rejection rates, while White’s
method gives much too high rejection rates (around 85%). The reason is that White’s
method disregards correlation between individuals—and in this way underestimates the
uncertainty about the point estimates. It is also worth noticing that the good performance
of the cluster method depends on pre-specifying the correct clustering. Further simula-
tions (not tabulated) show that with a completely random cluster specification (unknown
to the econometricians), gives almost the same results as White’s method.

The lower panel has no cluster correlations, but all individuals are now equally cor-
related (similar to a fixed time effect). For the intercept (˛) and the slope coefficient on
the common factor (ˇ), the DK method still performs well, while the cluster and White’s
methods give too many rejects: the latter two methods underestimate the uncertainty since
some correlations across individuals are disregarded. Things are more complicated for the
slope coefficient of the cluster number (ı). Once again, DK performs well, but both the
cluster and White’s methods lead to too few rejections. The reason is the interaction of
the common component in the residual with the cross-sectional dispersion of the group
number (gi ).

Remark 14.20 (Interpretation of the simulations results�) To understand this last result,

consider a stylised case where yit D ıgiCuit where ı D 0 and uit D wt so all residuals
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are due to an (excluded) time fixed effect. In this case, the matrix above becomes266666664

i 1 2 3 4

1 w2t w2t �w2t �w2t
2 w2t w2t �w2t �w2t
3 �w2t �w2t w2t w2t

4 �w2t �w2t w2t w2t

377777775
(This follows from gi D .�1;�1; 1; 1/ and since hit D gi�wt we get .h1t ; h2t ; h3t ; h4t/ D
.�wt ;�wt ; wt ; wt/.) Both White’s and the cluster method sum up only positive cells, so

S is a strictly positive number. (For this the cluster method, this result relies on the as-

sumption that the clusters used in estimating S correspond to the values of the regressor,

gi .) However, that is wrong since it is straightforward to demonstrate that the estimated

coefficient in any sample must be zero. This is seen by noticing that
PN
iD1hit D 0 at

a zero slope coefficient holds for all t , so there is in fact no uncertainty about the slope

coefficient. In contrast, the DK method adds the off-diagonal elements which are all equal

to �w2t , giving the correct result S D 0.

Empirical Example 14.21 (Panel regressions, different types of t-stats) Based on Table

4, regression [2] in Karnaukh, Ranaldo, and Söderlind (2015), Table 14.6 shows point

estimates and Table 14.7 four different sets of t-stats.

14.11 From CalTime to a Panel Regression

The CalTime estimates can be replicated by using the individual data in the panel. For
instance, with two investor groups we could estimate the following two regressions

yit D x0tˇ1 C u.1/it for i 2 group 1 (14.63)

yit D x0tˇ2 C u.2/it for i 2 group 2. (14.64)

More interestingly, these regression equations can be combined into one single panel
regression (and still give the same estimates) by the help of dummy variables. Let zj i D 1
if individual i is a member of group j and zero otherwise. Stacking all the data, we have
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(still with two investor groups)

yit D .z1ixt/0ˇ1 C .z2ixt/0ˇ2 C uit

D
 "
z1ixt

z2ixt

#!0 "
ˇ1

ˇ2

#
C uit

D .zi ˝ xt/0ˇ C uit , where zi D
"
z1i

z2i

#
: (14.65)

This is estimated with LS by stacking all NT observations.
To see why the CalTime approach implicitly handles correlations within the groups

(clusters), notice that the CalTime approach (14.41) and the panel approach (14.65) give
the same coefficients. This makes it clear that the errors in CalTime are just group aver-
ages of the errors in the panel regressions

vjt D 1

Nj

P
i2Group ju

.j /
it : (14.66)

We know that
Var.vjt/ D 1

Nj
.� i i � � ih/C � ih; (14.67)

where � i i is the average Var.u.j /it / and � ih is the average Cov.u.j /it ; u
.j /

ht
/. With a large

cross-section, only the covariance matters. A good covariance estimator for the panel
approach will therefore have to handle the covariance with a group (and perhaps also the
covariance across groups). This suggests that the panel regression needs to handle the
cross-correlations (for instance, by using the cluster or DK covariance estimators).

Proof. (�of (14.67)) Write (14.66) as v D 10u=N , where 1 is an N � 1 vector of
ones. It follows that Var.v/ D 10˙1=N 2, where˙ is the covariance matrix of u. Clearly,
10˙1 is just the sum of all elements of ˙ . First, the sum of all elements along the
diagonal divided by N is the average variance, � i i . Second, the sum of all off-diagonal
elements divided by N.N � 1/ is the average covariance, � ih. Therefore, 10˙1=N 2 D
� i i=N C � ihN.N � 1/=N 2, which can be rearranged as (14.67).

We could also consider the case when the characteristics are not dummies (like young
or old), but rather continuous variable (for instance, age measured in years). For this case,
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write the model as

yit D .zit ˝ xt/0d C vit (14.68)

D .Œ1; z1it ; : : : ; zmit �˝ Œ1; x1t ; : : : ; xkt �/0d C uit ; (14.69)

where zj it measures characteristics j of investor i in period t and where xpt is the pth
regressor. In many cases zj it is time-invariant and could even be just a dummy: zj it D 1
if investor i belongs to investor group j (for instance, being young). In other cases, zj it
is time invariant and contains static information about investor i .

This model is estimated with LS (stacking all NT observations), but the standard er-
rors could be calculated according to Driscoll and Kraay (1998) (DK)—which accounts
for cross-sectional correlations, for instance, correlations between the residuals of differ-
ent investors (say, v1t and v7t ).

Example 14.22 (One investor characteristic and one pricing factor). In this case (14.68)

is

yit D

266664
1

xt

zit

zitx1t

377775
0

d C uit ;

D d0 C d1xt C d2zit C d3zitxt C uit :

In case we are interested in how the investor characteristics (zit ) affect the intercept

(alpha), then d2 is the key coefficient. To see that, rearrange as

yit D d0 C d2zit„ ƒ‚ …
intercept

C .d1 C d3zit/„ ƒ‚ …
slope

xt C uit :

Clearly, d2 shows how the characteristics zit affects the intercept and d3 how it affects

the slope.

14.11.1 An Empirical Illustration

Empirical Example 14.23 (Panel regressions) See Table 14.8 for results on a ten-year

panel of some 60,000 Swedish pension savers from Dahlquist, Martinez, and Söderlind

(2016). In this case, the dependent variable is the return of a pension investment portfolio

(on day t , individual i ). The regressors include a constant, 7 risk factors (global and
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Swedish market, SMB, HML as a well as a bond factor) on˙2 days (1C7�5 regressors),

an indicator of trading activity of the individual over the last year (inactive active, very

active).

The table illustrates the distinct difference in t-stats obtained by using different ways

of handling the cross-sectional correlations (of the residuals). Notice, in particular, that

the DK t-stats are the same as in calendar time approach (using Newey-West) in Table

14.3, although the estimation method is very different (here: a panel regression).

Empirical Example 14.24 (Panel regressions, different t-stats) Table 14.9 replicates the

point estimates from the cross-sectional regressions in Table 14.4, but using a panel es-

timation. Notice that this approach treats the investor characteristics as constant across

time. For instance, the activity level is the average activity level across time. Notice that

the point estimates are the same as in the cross-sectional regression, but the standard

errors differ. In particular, the DK approach gives much lower t-stats.

Table 14.10 extends the panel estimation in Table 14.8, but it includes more regressors
(age, gender and pension rights). This would be difficult to handle in a calendar time ap-
proach, and thus illustrates that a panel regression can handle more general cases. Notice
that the investor characteristics are here allowed to change across time. For instance, an
investor can be active during the early years and then become inactive.

14.12 The Results in Hoechle, Schmid and Zimmermann

Hoechle, Schmid, and Zimmermann (2015) (HSZ) prove the following two propositions
about (14.68)–(14.69).

Proposition 14.25 If the zit vector in (14.68) consists of dummy variables indicating

exclusive and constant group membership (z1it D 1 means that investor i belongs to

group 1, so zj it D 0 for j D 2; :::; m), then the LS estimates and DK standard errors

of (14.68) are the same as LS estimates and Newey-West standard errors of the CalTime

approach (14.41). (See HSZ for a proof.)

This proposition basically says that panel regression is as good as the CT approach.
So why use a panel regression, then? A. Because it allows for (a) many characteristics
(poor, old, men) without having to define a very large set of dummies (poor&old&men,
poor&old&female, poor&young&men,...); (b) a finer (continuous) characteristics grid
(age in years, months, days and...).
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Proposition 14.26 (When zit is a measure of constant investor characteristics) The LS

estimates and DK standard errors of (14.68) are the same as the LS estimates of CrossReg

approach (14.43), but where the standard errors account for the cross-sectional correla-

tions, while those in the CrossReg approach do not. (See HSZ for a proof.)
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Driscoll-
White Cluster Kraay

A. No cross-sectional correlation

˛ 0:049 0:049 0:050
ˇ 0:044 0:045 0:045
 0:050 0:051 0:050

B. Within-cluster correlations

˛ 0:853 0:053 0:054
ˇ 0:850 0:047 0:048
 0:859 0:049 0:050

C. Within- and between-cluster correlations

˛ 0:935 0:377 0:052
ˇ 0:934 0:364 0:046
 0:015 0:000 0:050

Table 14.5: Simulated size of different covariance estimators This table presents the
fraction of rejections of true null hypotheses for three different estimators of the co-
variance matrix: White’s (1980) method, a cluster method, and Driscoll and Kraay’s
(1998) method. The model of individual i in period t and who belongs to cluster j is
rit D ˛ C f̌t C gi C uit , where ft is a common regressor (iid normally distributed)
and gi is the demeaned number of the cluster that the individual belongs to. The sim-
ulations use 3000 repetitions of samples with t D 1; : : : ; 2000 and i D 1; : : : ; 1665.
Each individual belongs to one of five different clusters. The error term is constructed as
uit D "it C vjt C wt , where "it is an individual (iid) shock, vjt is a shock common to
all individuals who belong to cluster j , and wt is a shock common to all individuals. All
shocks are normally distributed. In Panel A the variances of ."it ; vjt ; wt/ are (1,0,0), so
the shocks are iid; in Panel B the variances are (0.67,0.33,0), so there is a 33% correlation
within a cluster but no correlation between different clusters; in Panel C the variances are
(0.67,0,0.33), so there is no cluster-specific shock and all shocks are equally correlated,
effectively having a 33% correlation within a cluster and between clusters.
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Poor Rich
cap flow �4:2 �4:4
VIX �8:6 �6:8
TED �4:6 �6:8
MSCIw �4:9 �2:0
FXvol �24:1 �37:7
Stockvol �4:2 �1:9
StockLiq �1:7 �8:6
BondLiq 9:7 7:3

lag �6:5 �1:3

Table 14.6: Regression coefficients (in %) from Table 4, regression [2] in Karnaukh et
al (RFS 2015), 1995:01–2009:12. Panel regressions of 30 FX liquidity time-series on
(common) drivers.

OLS White’s Cluster DK

Poor Rich Poor Rich Poor Rich Poor Rich
cap flow �2:14 �2:12 �2:12 �2:47 �1:50 �1:51 �1:26 �1:35
VIX �2:63 �1:97 �2:26 �1:81 �1:79 �1:22 �1:64 �1:12
TED �2:46 �3:43 �2:16 �3:42 �1:79 �2:37 �1:67 �2:19
MSCIw �2:20 �0:86 �1:95 �0:74 �1:32 �0:46 �1:13 �0:46
FXvol �10:46 �15:60 �6:61 �9:95 �4:86 �5:26 �4:43 �5:11
Stockvol �1:61 �0:71 �1:25 �0:48 �0:83 �0:33 �1:03 �0:31
StockLiq �0:75 �3:71 �0:60 �2:63 �0:43 �2:00 �0:40 �1:90
BondLiq 4:68 3:33 3:94 2:83 2:49 1:93 2:06 1:89

lag �3:38 �0:62 �2:93 �0:53 �1:98 �0:34 �1:72 �0:30

Table 14.7: Different t-stats for Table 4, regression [2] in Karnaukh et al (RFS 2015),
1995:01–2009:12. Clustering is done according rich/poor (on average). All methods,
except OLS, allow for first-order autocorrelation.

coef t-tstat W tstat DK
Inactive �0:76 �56:89 �0:69
Active 3:08 37:48 1:77

Higly Active 8:65 28:73 2:73

Table 14.8: Annualised regression coefficients and different t-stats from Table 10, regres-
sions I and II in Dahlquist et al (RFS 2017). For Inactive the coefficient is the annualised
alpha, but for the other two cateogories it is the difference in alpha to the Inactive. Panel
regressions, 62640 individuals, 2116 days. The dependent variable is the return of the
individual portfolio (day t , individual i ). The regressions also control for 7 risk factors
over 5 days (2 lags, 2 leads).
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coef t-tstat W tstat DK
Inactive �1:14 �13:01 �0:88
Active 5:95 40:99 1:69

Higly Active 10:25 23:50 2:54

Age 0:00 2:05 0:49

Male 0:43 15:50 3:71

Pension rights �0:06 �6:57 �1:46

Table 14.9: Annualised regression coefficients and different t-stats similar to Table 10,
regressions I and II in Dahlquist et al (RFS 2017), but where the investor characteristics
are fixed across time (using the time averages). Panel regressions, 62640 individuals, 2116
days. The dependent variable is the return of the individual portfolio (day t , individual i ).
The regressions also control for 7 risk factors over 5 days (2 lags, 2 leads).

coef t-tstat W tstat DK
Inactive �1:10 �1:63 �0:69
Active 3:10 34:61 1:79

Higly Active 8:69 28:44 2:74

Age 0:00 0:19 0:11

Male 0:62 2:94 2:22

Pension rights �0:03 �0:39 �0:33

Table 14.10: Annualised regression coefficients and different t-stats from Table 10, re-
gressions I and II in Dahlquist et al (RFS 2017). Panel regressions, 62640 individuals,
2116 days. The dependent variable is the return of the individual portfolio (day t , indi-
vidual i ). The regressions also control for 7 risk factors over 5 days (2 lags, 2 leads).
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Chapter 15

Predicting Asset Returns: Nonparametric Estimation

15.1 Basics of Kernel Regressions

Reference: Campbell, Lo, and MacKinlay (1997) 12.3; Härdle (1990); Pagan and Ullah
(1999); Mittelhammer, Judge, and Miller (2000) 21; Hansen (forthcoming (2021) 19

15.1.1 Introduction

Nonparametric regressions are used when we are unwilling to impose a parametric form
on the regression equation—and we have a lot of data.

Let the scalars yt and xt be related as

yt D b.xt/C "t ; (15.1)

where "t is uncorrelated over time and where E "t D 0 and E."t jxt/ D 0. The function
b./ is unknown and possibly non-linear. In comparison, in a linear regression we have
b.xt/ D ˇxt .

One possibility of estimating such a function is to approximate b.x/ by a polynomial
(or some other basis). This will give quick estimates, but the results are “global” in the
sense that the value of b.x/ at a particular x value (x D 1:9, say) will depend on all
the data points—and potentially very strongly so. The approach in this section is more
“local” by down weighting information from data points where xt is far from x.

As a starting point, suppose we want to estimate b.x/ at x D 1:9. If our sample has
3 observations (say, t D 3, 27, and 99) with xt D 1:9, then it would be straightforward
to average over these three observations to estimate b.1:9/ as .y3 C y27 C y99/=3. This
makes sense, since the average of the error terms ("3; "27; "99) is likely to be close to zero.

Unfortunately, we seldom have repeated observations of this type. Moreover, it seems
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to be a waste to disregard data points where xt is close, but not equal, to x. Instead, we
may try to estimate the value of b.x/ by averaging over (y) observations where xt is close
to x (here 1:9). The general form of this type of estimator is

Ob.x/ D
PT

tD1w.xt � x/ytPT
tD1w.xt � x/

; (15.2)

where w.xt � x/=˙T
tD1w.xt � x/ is the weight on data in t (in practice, yt ). This weight

is non-negative and (weakly) decreasing in the the distance of xt from x. Note that the
denominator makes the weights sum to unity. The basic assumption behind (15.2) is that
the b.x/ function is smooth so local averaging (around x) makes sense.

As an example of a w.:/ function, it could be to give equal weight all values of xt
that are in a certain bin (“mean-bin”) and zero weight to all other observations. See
Figure 15.1 for an example. Alternatively, we can give equal weights to the k values
of xt which are closest to x and zero to all other observations (this is the “k-nearest
neighbor” estimator, see Härdle (1990) 3.2). As another example, the weight function
could be defined so that it trades off the expected squared errors, EŒyt � Ob.x/�2, and the
expected squared acceleration, EŒd 2 Ob.x/=dx2�2. This defines a cubic spline (often used
in macroeconomics when xt D t , and is then called the Hodrick-Prescott filter).

15.1.2 Kernel Regression

A kernel regression uses a pdf as the weight function, w.xt � x/ D K.ut/, where
ut D .xt � x/=h. The choice of h (also called bandwidth) allows us to easily vary
the relative weights of different observations, in particular the importance of nearby vs.
distant observations.

The perhaps simplest choice is a flat function over an interval/bin (and zero outside).
For this case, write the weighting function as

w.ut/ D
(

1

2
p
3

for juj � p3
0 otherwise,

(15.3)

with ut D .xt � x/=h: (15.4)

The reason for the
p
3 terms is that it makes area under the function equal to 1 (

R
w.u/du D

1) and the variance also equal to one (
R
w.u/u2du D 1). This standardisation makes it

easy to compare with a N.0; 1/ distribution. In any case, we can adjust h to get the inter-
vals we want. Since (15.3) implies a flat function over ˙hp3, we can set h D =

p
3 to
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Mean-in-bin

estimate from indicated bins
estimate from sliding bins
data

Figure 15.1: Example of a mean-in-bin estimation

get flat weights for all data points (xt ) that satisfy  � xt �x �  . (Notice: some authors
use the convention of a uniform distribution over .x � h; x C h/ or .x � h=2; x C h=2/
instead.) The mean-in-bin approach in Figure 15.1 is implemented by using (15.3).

Remark 15.1 (Interpretation of the pdf in (15.3)) If w.ut/ is a pdf of the ut variable,

then w.ut/=h is the pdf of xt . Notice that both give the same result in (15.2).

However, we can gain efficiency and get a smoother (across x values) estimate by
using a density function that tapers off more smoothly. With an N.0; 1/ kernel applied to
ut D .xt � x/=h, we get the following weights

w.ut/ D 1p
2�

exp
��u2t =2� , with ut D .xt � x/=h: (15.5)

When h! 0, then no averaging is done ( Ob.x/ evaluated at x D xt is just yt ). In contrast,
as h!1, Ob.x/ becomes the sample average of yt so we have global averaging. Clearly,
some value of h in between is needed.

Remark 15.2 (The Epanechnikov kernel) Let ut D .xt�x/=h. The Epanechnikov kernel

is

w.ut/ D
(

3

4
p
5
.1 � u2t

5
/ for juj � p5

0 otherwise.

It can be noticed that
R
w.u/du D 1 and

R
w.u/u2du D 1 (the variance is 1).
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Figure 15.2: Different weighting functions for non-parametric regression

See Figure 15.2 for a comparison of weighting functions (also called kernels). The
choice between them is typically less important than the choice of the bandwitdh h.

In practice we have to estimate Ob.x/ at a finite number of points x. This could, for
instance, be 100 evenly spread points in the interval between the minimum and the maxi-
mum values observed in the sample. See Figures 15.3–15.6 for illustrations of the method.
Special corrections might be needed if there are a lot of observations stacked close to the
boundary of the support of x (see Härdle (1990) 4.4).

Example 15.3 (Kernel regression) Suppose the sample has three data points Œx1; x2; x3� D
Œ1:5; 2; 2:5� and Œy1; y2; y3� D Œ5; 4; 3:5�. Consider the estimation of b.x/ at x D 1:9.

With h D 1, the numerator in (15.5) isXT

tD1w.xt � x/yt D
�
e�.1:5�1:9/

2=2 � 5C e�.2�1:9/2=2 � 4C e�.2:5�1:9/2=2 � 3:5
�
=
p
2�

� .0:92 � 5C 1:0 � 4C 0:84 � 3:5/ =
p
2�

D 11:52=
p
2�:

The denominator isXT

tD1w.xt � x/ D
�
e�.1:5�1:9/

2=2 C e�.2�1:9/2=2 C e�.2:5�1:9/2=2
�
=
p
2�

� 2:75=
p
2�:
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Figure 15.3: Different weighting functions for non-parametric regression

The estimate at x D 1:9 is therefore

Ob.1:9/ � 11:52=2:75 � 4:19:

15.1.3 Multivariate Kernel Regression

Suppose that yt depends on two variables (xt and zt )

yt D b.xt ; zt/C "t ; (15.6)

where "t is uncorrelated over time and where E "t D 0 and E."t jxt ; zt/ D 0.
This makes the estimation problem more data demanding. To see why, suppose we

use a uniform density function as weighting function (see in (15.3)). However, with two
regressors, the interval becomes a rectangle. With as little as a 20 intervals of each of
x and z, we get 400 bins, so we need a large sample to have a reasonable number of
observations in every bin.

In any case, the most common way to implement the kernel regressor is to let

Ob.x; z/ D
PT

tD1w.xt � x/v.zt � z/ytPT
tD1w.xt � x/v.zt � z/

; (15.7)

where w./ and v./ are two kernels like in (15.5) and where we may allow the bandwidth
(h) to be different for xt and zt (and depend on the variance of xt and yt ). In this case.
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Figure 15.4: Example of kernel estimations

the weight of the observation (xt ; zt ) is proportional to w.xt �x/v.zt � z/, which is high
if both xt and zt are close to x and z respectively.

Empirical Example 15.4 (Kernel regression of an AR(2) for equity returns) See Figure

15.8.

15.2 Distribution of the Kernel Regression and Choice of Bandwidth

Kernel regressions are typically consistent, provided longer samples are accompanied by
smaller values of h, so the weighting function becomes more and more local as the sample
size increases. It can be shown (see Härdle (1990) 3.1 and Pagan and Ullah (1999) 3.3–4)
that under the assumption that xt is iid, the mean squared error, variance and bias of the
estimator at the value x are approximately (for general kernel functions)

MSE.x/ D VarŒ Ob.x/�C BiasŒ Ob.x/�2, with (15.8)

VarŒ Ob.x/� D 1

T h

�2.x/

f .x/
� R1�1K.u/2du (15.9)

BiasŒ Ob.x/� D h2 �
�
1

2

d 2b.x/

dx2
C df .x/

dx

1

f .x/

db.x/

dx

�
� R1�1K.u/u2du: (15.10)

In these expressions, �2.x/ is the variance of the residuals in (15.1) which may depend on
the x value, f .x/ the marginal density of x andK.u/ the kernel (pdf) used as a weighting
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Figure 15.5: Example of kernel regression with three data points

function for ut D .xt � x/=h. The remaining terms are functions of the true regression
function b.x/.

Remark 15.5 (�Value of
R1
�1K.u/

2du). When K.u/ is a standard normal pdf, then

the integral is 1=.2
p
�/, for the uniform distribution in (15.3) it is 1=.2

p
3/ and for an

Epanechnikov kernel in Remark 15.2 it is 3
p
5=25.

As a comparison, a linear regression has Ob.x/ D z0 O where z D Œ1; x�, so the variance
of the fitted value is

Var.z0 O/ D z0V. O/z; (15.11)

where V. O/ is the variance-covariance matrix of O . (Notice that this is different from the
variance of a forecast error, since the latter also includes the variance of the residual.)
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With a Gaussian kernel these expressions can be simplified to

VarŒ Ob.x/� D 1

T h

�2.x/

f .x/
� 1

2
p
�

(15.12)

BiasŒ Ob.x/� D h2 �
�
1

2

d 2b.x/

dx2
C df .x/

dx

1

f .x/

db.x/

dx

�
: (15.13)

Proof. (of (15.12)–(15.13)) We know thatR1
�1K.u/

2du D 1

2
p
�

and
R1
�1K.u/u

2du D 1;

ifK.u/ is the density function of a standard normal distribution. (We are using theN.0; 1/
pdf for the variable ut D .xt � x/=h.) Use in (15.9)–(15.10).

Remark 15.6 (VarŒ Ob.x/� with other kernels). Use Remark 15.5 to replace the 1=.2
p
�/

term in (15.12).

Equations (15.9) and (15.12) show that smaller h increases the variance (we effec-
tively use fewer data points to estimate b.x/) but decreases the bias of the estimator (it
becomes more local to x). If h decreases less than proportionally with the sample size (so
hT in the denominator of the first term increases with T ), then the variance goes to zero
and the estimator is consistent (since the bias in the second term decreases as h does). It
is clear that the choice of h has a major importance on the estimation results.
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Empirical Example 15.7 (Kernel regression of an AR(1) for equity returns) Figure 15.7

clearly illustrates the importance of the bandwidth.

The variance is also a function of the variance of the residuals and the “peakedness” of
the kernel, but not of the b.x/ function. The more concentrated the kernel is (s K.u/2du
large) around x (for a given h), the less information is used in forming the average around
x, and the uncertainty is therefore larger—which is similar to using a small h. A low
density of the regressors (f .x/ low) means that we have little data at x which drives up
the uncertainty of the estimator.

Equations (15.10) and (15.13) show that the bias increases (in magnitude) with the
curvature of the b.x/ function (that is, .d 2b.x/=dx2/2). This makes sense, since rapid
changes of the slope of b.x/ make it hard to get b.x/ right by averaging at nearby x
values. It also increases with the variance of the kernel since a large kernel variance is
similar to a large h.

Remark 15.8 (Rule of thumb value of h) In a simplified case, we can find the h value

that minimizes the MSE by an analytical approach. Use (15.13) to construct the MSE

D Var.b/Cbias.b/2. To simplify, assume the distribution of x is uniform, so f .x/ D
1=.xmax�xmin/ and df .x/=dx D 0. In addition, run the regression y D ˛CˇxCx2C"
as an approximation of b.x/. With this we have d 2b.x/=dx2 � 2 and we approximate
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�2 by the variance of the fitted residuals, �2" . Combining, we have

MSE D 1

T h
�2" .xmax � xmin/

1

2
p
�
C h42:

Minimizing with respect to h gives the first order condition

0 D � 1

T h2
�2" .xmax � xmin/

1

2
p
�
C 4h32, so

h D 0:6
�
�2" .xmax � xmin/

T 2

�1=5
In practice, replace xmax� xmin by the difference between the 90th and 10th percentiles of

x.

A good (but computationally intensive) approach to choose h is by the leave-one-out
cross-validation technique. This approach would, for instance, choose h to minimize the
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expected (or average) prediction error

EPE.h/ D
XT

tD1Œyt � Ob�t.xt ; h/�
2=T; (15.14)

where Ob�t.xt ; h/ is the fitted value of the regression function evaluated at x D xt . Notice
that the regression function Ob�t.xt ; h/ is estimated (using the bandwidth h) on a sample
that excludes observation .yt ; xt/. This means that each prediction is out-of-sample. To
calculate (15.14) we clearly need to make T estimations, that is, we have to estimate
Ob�t.xt ; h/ for each t . Then we repeat this for different values of h to find the minimum.

Empirical Example 15.9 (Kernel regression of an AR(1) for equity returns) Figure 15.9

shows the EPE for different values of the bandwidth for the kernel regressions previously

illustrated in Figure 15.7.

Remark 15.10 (EPE calculations) Step 1: pick a value for h

Step 2: estimate the b.x/ function on all data, but exclude t D 1, then calculate Ob�1.x1/
and the error y1 � Ob�1.x1/
Step 3: redo Step 2, but now exclude t D 2 and. calculate the error y2� Ob�2.x2/. Repeat

this for t D 3; 4; :::; T . Calculate the EPE as in (15.14).

Step 4: redo Steps 2–3, but for another value of h. Keep doing this until you find the best

h (the one that gives the lowest EPE)
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Remark 15.11 (Speed and fast Fourier transforms) A a fast Fourier transform can help

speeding up the calculation of the kernel estimator.

If the observations are independent, then it can be shown (see Härdle (1990) 4.2, Pagan
and Ullah (1999) 3.3–6, and also (15.12)) that, with a Gaussian kernel, the estimator at
point x is asymptotically normally distributed

p
T hŒ Ob.x/ � b.x/�!d N

�
0;

1

2
p
�

�2.x/

f .x/

�
; (15.15)

where f .x/ is the density of x and �2.x/ is the variance of the residuals in (15.1) which
could also depend on the x value. (A similar expression for the distribution holds for other
choices of the kernel.) This expression assumes that the asymptotic bias is zero, which
is guaranteed if h is decreased (as T increases) slightly faster than T �1=5 (for instance,
suppose h D T �1:1=5h0, where h0 is a constant). To estimate the density of x, we can
apply a standard method, for instance using a Gaussian kernel and the bandwidth (for the
density estimate only) of 1:06Std.xt/T �1=5.

Remark 15.12 (Asymptotic bias) The condition that h decreases faster than T �1=5 en-

sures that the bias of
p
T h Ob.x/ vanishes as T ! 1. This is seen by noticing that the

bias of Ob.x/ is proportional to h2 (see (15.13)). Multiplying by
p
T h gives the bias ofp

T h Ob.x/ as being proportional to T 1=2h5=2. With h D T �1:1=5h0, this bias is pro-

portional to T 1=2.T �1:1=5h0/5=2, that is, to T �0:05h5=20 which is decreases to zero as T

increases.

To estimate �2.x/ in (15.15), we may assume that it does not depend on x, so we
just estimate the variance of the fitted residuals. (Clearly, this requires estimating Ob.x/ at
every point x D xt in the sample, not just a small grid of x values.) Alternatively, we use
a non-parametric regression of the squared fitted residuals on xt

O"2t D �2.xt/, where O"t D yt � Ob.xt/; (15.16)

where Ob.xt/ are the fitted values from the non-parametric regression (15.1). To draw
confidence bands, it is typically assumed that the asymptotic bias is zero (E Ob.x/ D b.x/).

Empirical Example 15.13 (Kernel regression of an AR(1) for equity returns) See Figure

15.10 for an example where the width of the confidence band varies across x values—

mostly because the sample contains few observations of extreme x values as shown in
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Figure 15.11. In particular, compare with the confidence bands of a linear regression in

Figure 15.12, which do account for the lack of data points with extreme x values.

Empirical Example 15.14 (Bootstrapping the confidence bands for the kernel regression

I) Figure 15.13 shows a bootstrapped confidence band. The bootstrap simulations ac-

count for the (non-linear) autocorrelation (the returns are generated recursively using the

estimated regression function) and the residuals have regressor-dependent heteroskedas-

ticity. The latter is achieved by first estimating (by a non-parametric approach) how the

squared fitted residuals depend on the regressor (lagged return). Then standardized fitted

residuals are calculated. In the simulations, the fitted residuals are drawn (with replace-

ment) and then scaled up by the regressor dependent volatility.

Empirical Example 15.15 (Bootstrapping the confidence bands for the kernel regression

II) Figures 15.13 and 15.14 show bootstrapped confidence bands for the kernel regression

in Figure 15.10. Figure 15.13 plots the regression function (from Figure 15.10), ˙1:64
times the bootstrapped standard deviation (for each regressor value). In contrast, Figure

15.14 shows the 5th and 95th percentiles across the bootstrap simulations (also for each

regressor value).
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15.3 Local Linear Regressions

Notice that (15.2) solves the problem minax
PT

tD1w.xt � x/.yt � ˛x/2 for each value
of x. For a given value of x, ˛x is a constant—but it can vary across x values. The first
order condition (at a given x value) is

PT
tD1w.xt � x/.yt � ˛x/ D 0, so the solution is

as in (15.2), that is, Ǫx D Ob.x/. This can be interpreted as a “local constant” regression
model: for each x it is just a constant.

This can be extended to solving a problem like

min
˛x ;x

XT

tD1w.xt � x/Œyt � ˛x � ˇx.xt � x/�
2; (15.17)

which defines the local linear estimator. (Yes, the convention is to use xt � x as the
regressor, but this could easily be changed.) The first order conditions are similar to the
usual normal equations for LS (except that data point t has the weight w.xt � x/ and
that we use xt � x as the regressor). In fact, if we let zt D Œ1; xt � x�0 and collect the
coefficients in �x D Œ˛x; ˇx�0, then the first order conditions can be writtenXT

tD1w.xt � x/ztyt D
XT

tD1w.xt � x/ztz
0
t
O�x: (15.18)

It is straightforward to solve these, but perhaps even easier if we create Qzt D
p
w.xt � x/zt

and Qyt D
p
w.xt � x/yt , because (15.18) is then the same as the first order conditions

for a regression of Qyt on Qzt (without a constant). (An extension to a quadratic or higher
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Figure 15.12: Linear regression with confidence bands

function seems straightforward.)
Clearly, solving (15.18)) gives one O�x vector for each x value that we consider. Once

we have the estimates, the fitted value at the value x is just Ǫx (since the regression
function is yt D ˛x C ˇx.xt � x/C "t and we evaluate it at xt D x.)

It can be shown that the local-linear estimator has the same asymptotic variance as
the kernel regression, and that the bias only includes the d 2b.x/=dx2 term (not the linear
term). The latter means that the bias does not depend on the pdf of the regressor (f .x/),
which is an advantage.

The bandwidth parameter (which only shows up in the calculations of the weights,
w.xt � x/) can be chosen by a leave-one-out cross validation approach or use the same
rule of thumb choice as in Remark 15.8.

Remark 15.16 (Rule of thumb value of h) Since Remark 15.8 effectively disregards the

linear term in the bias (by assuming df .x/=dx D 0), it actually solves the same problem

as for the local linear regression. The optimal h values is thus the same.

Empirical Example 15.17 (Local linear regression of AR(1) for daily S&P 500 returns)

See Figures 15.15 – 15.18.

284



6 4 2 0 2 4 6
Lagged return (Rt 1), %

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Re
tu

rn
 (R

t),
 %

Bootstrap of standardized residuals
Replicates autocorrelation and (regressor dependent) heteroskedasticity

Daily S&P 500 returns
1979:01-2021:12

Kernel regression ±1.64 ×  bootstrapped std

Figure 15.13: Kernel regression with bootstrapped confidence bands

15.4 Applications of Kernel Regressions

15.4.1 “Nonparametric Estimation of State-Price Densities Implicit in Financial
Asset Prices,” by Ait-Sahalia and Lo (1998)

Reference: Ait-Sahalia and Lo (1998)
There seem to be systematic deviations from the Black-Scholes model. For instance,

implied volatilities are often higher for options far from the current spot (or forward)
price—the volatility smile. This is sometimes interpreted as if the beliefs about the future
log asset price put larger probabilities on very large movements than what is compatible
with the normal distribution (“fat tails”).

This has spurred many efforts to both describe the distribution of the underlying asset
price and to amend the Black-Scholes formula by adding various adjustment terms. One
strand of this literature uses nonparametric regressions to fit observed option prices to the
variables that also show up in the Black-Scholes formula (spot price of underlying asset,
strike price, time to expiry, interest rate, and dividends). For instance, Ait-Sahalia and
Lo (1998) applies this to daily data for Jan 1993 to Dec 1993 on S&P 500 index options
(14,000 observations).

This paper estimates nonparametric option price functions and calculates the implicit
risk-neutral distribution as the second partial derivative of this function with respect to the
strike price.
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Figure 15.14: Kernel regression with bootstrapped confidence bands

1. First, the call option price, Hit , is estimated as a multivariate kernel regression

Hit D b.St ; X; �; r� t ; ı� t/C "it ; (15.19)

where St is the price of the underlying asset, X is the strike price, � is time to
expiry, r� t is the interest rate between t and t C � , and ı� t is the dividend yield
(if any) between t and t C � . It is very hard to estimate a five-dimensional kernel
regression, so various ways of reducing the dimensionality are tried. For instance,
by making b./ a function of the forward price, St Œ� exp.r� t � ı� t/�, instead of St ,
r� t , and ı� t separably.

2. Second, the implicit risk-neutral pdf of the future asset price is calculated as
@2b.St ; X; �; r� t ; ı� t/=@X

2, properly scaled so it integrates to unity.

3. This approach is used on daily data for Jan 1993 to Dec 1993 on S&P 500 index op-
tions (14,000 observations). They find interesting patterns of the implied moments
(mean, volatility, skewness, and kurtosis) as the time to expiry changes. In par-
ticular, the nonparametric estimates suggest that distributions for longer horizons
have increasingly larger skewness and kurtosis: whereas the distributions for short
horizons are not too different from normal distributions, this is not true for longer
horizons. (See their Fig 7.)

4. They also argue that there is little evidence of instability in the implicit pdf over

286



6 4 2 0 2 4 6
Lagged return (Rt 1), %

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Re
tu

rn
 (R

t),
 %

Gaussian kernel, h = 2.25
The confidence band is based on the asymptotic distribution

Daily S&P 500 returns 1979:01-2021:12

Local linear regression of AR(1) for returns, with 90% conf band

Figure 15.15: Non-parametric local linear regression with confidence bands

their sample.
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Figure 15.17: Non-parametric local linear regression with bootstrapped confidence bands
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Figure 15.18: Non-parametric local linear regression with bootstrapped confidence bands

289



Chapter 16

Regression Discontinuity

(This file is a quick conversion from a file of slides. The formatting is thus not the best.)
Reference: Wooldridge ch. 21, Lee and Lemieux (JEL 2010), Lee (Journal of Econo-

metrics 2008), Hansen 21

yi D ˛ C �Di C f .Xi Iˇ/C "i , where (16.1)

Di D
(
0 if Xi < c
1 if Xi � c

� is the “treatment effect” (which depends on X , and X has also a direct effect)
Classical example (Thistlethwaite and Campbell, 1960): X is test scores, get merit

award if X � c, Y future academic outcomes
Basic idea: X has 2 effects, one of which is the � (due to the treatment kicking in at

c)
Figure 16.1: linear case where f .Xi Iˇ/ D ˇ0Xi
Why not IV? Xi affects treatment, but also has a direct effect
Why not “OLS”/other estimation: we want to use only information around c to mea-

sure the effect
You could think of the local Xi value to be partly “randomized” (could potentially

handle a range of potential issues like excluded variables).
Gives local identification of the effect (valid more generally?)
Key assumption: the effect of treatment is discrete, all other effects (related to X ) are

continuous
Figure 16.2:

1. EY.1/jX is expected Y at X if treated: ˛ C � C f .Xi Iˇ/ in (16.1)
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Figure 16.1: Lee and Lemieux Fig 1

2. EY.0/jX is expected Y at X if not treated: ˛ C f .Xi Iˇ/

3. We can only isolate � if f .Xi Iˇ/ is continuous at c (else we may measure �C jump
in f ./)

Sharp or fuzzy? (Pr.treatmentjX/ D 0=1 or just jumps up at c?) Here: focus is on
sharp designs.

(Fuzzy designs require stronger assumptions and involve an IV like estimation)

use only information around c? In practice, we need to use a bit more...

1. Assuming linearity or some polynomial? Perhaps, but leads to global estimation

2. Average below/above? Overestimates the effect if f 0./ > 0: cf. Figure 16.2: B 0�A0

3. Linear regression below/above? cf B � A

Notice:
2. is a kernel regression with a uniform kernel
3. is a local-linear regression with a uniform kernel (no contamination)
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Figure 16.2: Lee and Lemieux Fig 2

16.1 The Data

from Lee 2008: individual_final.dta: N D 27; 176
notice the close overlap of y values (there are only 141 unique y values), Figure 16.3
...in my figures, I only use the unique observations, Figure 16.4

16.2 Parametric Estimates below/above c

yi D ˛ C ˇ1Xi C ˇ2X2
i C ˇ3X2

i C ei for Xi < c

yi D ı C 1Xi C 2X2
i C 3X2

i C ei for Xi � c

global estimates: “precise” but are they correct? Figure 16.5

16.3 Kernel Regression with a Uniform Kernel

...is very easy, see Figures 16.6 (as kernel regression) and Figure 16.7 (as mean-in-bin)

1. create bins for Xi values (make sure the bin boundary is at c)

2. for i st. Xi is in bin k, find the average yi

3. repeat for every bin
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The (individual) data

Figure 16.3: Lee (2008) data

4. Trickier:

(a) choice of bins (“bandwidth”): rule of thumb or cross-validation

(b) the confidence bands

Drawback: may fail to capture the fact that f 0.Xi Iˇ/ ¤ 0 inside the bin.

16.4 Variance of Mean in Bin

Figure 16.7 (mean-in-bin)
Nyb: mean in bin b, Tb data points, variance (within bin) �2

b

Classical expression
Var. Nyb/ D �2b =Tb

From kernel regression with uniform kernel over bin˙hp3

VarŒ Ob.x/� D 1

T h

�2

f .x/
� 1

2
p
3

Suppose f .x/ is estimated as a (normalised) histogram:

fb.x/ D Tb

T � .bin width/
D Tb

T 2h
p
3
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The data (with unique y values)

Figure 16.4: Lee (2008) data, unique cases

Combine to see that VarŒ Ob.x/� D Var. Nyb/

16.5 Local Linear Regression with a Uniform Kernel

...is also very easy, see Figure 16.8 (kernel) and Figure 16.9 (LS in bin)

1. as before

2. for i st. Xi is in bin k, regress yi on Xi

3. as before

4. Trickier: as before

16.6 More Regressors

yi D ˛ C �Di C f .Xi Iˇ/CZ0i C "i (16.2)

Simplest approach: regress yi on Zi and use the residual to replace yi in the “RDD
estimation”

Alternative: estimate (16.2)
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Estimated effects: 0.65 and 0.44

Linear and cubic models

Figure 16.5: Parametric estimates (above/below threshold)

16.7 Distribution of Assignment Variable (Xi ): Local Randomization
or Not?

...no jump in cdf of Xi at c (informal test), see Figure 16.10

16.8 Regression Kink Designs

Reference: Card et al (Econometrica, 2015)
No jump, but slope changes

yi D ˛ CDif1.Xi Iˇ1/C .1 �Di/f2.Xi Iˇ2/C "i , where (16.3)

Di D
(
0 if Xi < c
1 if Xi � c

where f1./ and f2./ have different derivatives (“slopes”), but where we require f1.cIˇ2/ D
f2.cIˇ1/ (continuous), see Figure 16.11

an example of a kinked regression function (but from a very different field): Figure
16.12
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Flat weights for 0.01 xt x 0.01

point estimate and 90% conf band
Estimated effect: 0.49

Kernel regression, uniform kernel, h = 0.01/ 3

Figure 16.6: Non-parametric estimates, kernel regression
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Estimated effect and t-stat: 0.49 and 13.18

Crude average in bin

Figure 16.7: Mean in bin
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Estimated effect and t-stat: 0.39 and 7.43

Local linear regression, uniform kernel, h = 0.01/ 3

Figure 16.8: Non-parametric estimates, local linear regression
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LS in bin

Figure 16.9: local linear regression
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Figure 16.10: edf
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y = 2x 3max(x 1, 0) + 5max(x 2, 0)

Piecewise linear function

Figure 16.11: Example of piecewise linear function, created by basis expansion
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slope seg 1
extra slope seg 2
extra slope seg 3
const

   coeff
   5.500
  19.516
  -0.002
  -0.002
  -0.427
   0.011

     Std
   0.000
   0.301
   0.001
   0.003
   0.176
   0.003

Drift vs level, fitted values

Figure 16.12: Federal funds rate, piecewise linear model
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Chapter 17

Instrumental Variables Method (IV)�

Reference: Verbeek (2012) 5, Greene (2018) 8.3; Hamilton (1994) 9.2; and Pindyck and
Rubinfeld (1998) 7.

17.1 Instrumental Variables Method

When OLS is inconsistent (see Figure 17.1 for an example), then we typically apply MLE
or the instrumental variables (IV) or 2SLS methods. This section describes the latter.

We want to estimate ˇ in
yt D x0tˇ C ut ; (17.1)

where xt and ˇ are vectors with k elements. Recall that OLS is defined by making the
fitted residuals orthogonal (uncorrelated) with the regressors

0kx1 D
PT

tD1xt.yt � x0t Ǒ/: (17.2)

Example 17.1 (ARMA(1,1)) Consider the time series process yt D 0:9yt�1 C "t where

"t D vt C 0:5vt�1. Notice that the regressor (yt�1) is correlated with the residual (espe-

cially the vt�1 part), so OLS is inconsistent.

The IV method replaces (17.2) by

0kx1 D
PT

tD1zt.yt � x0t Ǒiv/; (17.3)

where zt is a vector of k elements that have two key properties: (1) zt is uncorrelated with
the true residual (ut ) so zt are valid instruments; but (2) correlated with the regressors
(xt ) so zt are relevant instruments. The first property cannot be directly checked since
we never observe the true residuals. Instead, theoretical arguments must be used, but the
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Estimated model: yt = + yt 1 + ut
Number of simulations: 25000

Distribution of LS slope, T = 1000
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0.9 LS slope

average
90% conf band

Figure 17.1: Results from a Monte Carlo experiment of LS estimation of the AR coeffi-
cient when data is from an ARMA process.

Hausman test can be of some help (see below). In particular, a valid instrument cannot

be endogenous with respect to (that is, caused by) yt and it cannot be an erroneously ex-

cluded regressor, because both cases would lead to Cov.zt ; ut/ ¤ 0. A good application
of the IV method must argue why that is not the case.

In contrast, the second property is easily checked by, for instance, regressing xt on zt
and studying the t-statistics. (A perhaps more intuitive discussion of what the IV estimator
does is found in the section on 2SLS.)

Example 17.2 (ARMA(1,1) continued) Continuing Example 17.1, notice that yt�2 (or

earlier lags) are not correlated with the residual so they could be used as instruments.

Notice that some regressors (elements of xt ) may also be used as instruments (zt ).
For instance, if just one of the regressors is an endogenous variable then we need (at least
one) new instrument for that regressor, while the other regressors can be instruments for
themselves.
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T = 500
Estimated model (LS, IV): AR(1)
Estimated model (ML): ARMA(1)

Number of simulations: 25000

ML

Figure 17.2: Results from a Monte Carlo experiment when data is from an ARMA pro-
cess.

Example 17.3 (Supply and Demand) Consider the simplest simultaneous equations model

for supply and demand on a market are

qt D pt C ust ;  > 0 (supply)

qt D ˇpt C ˛At C udt ; ˇ < 0 (demand),

where At is an observable demand shock (perhaps income). To estimate the supply curve,

the observable demand shocks At can be used as an instrument. See Figure 17.3 for an

illustration.

Solving (17.3) gives the IV estimator

Ǒ
iv D

�PT
tD1ztx

0
t

��1PT
tD1ztyt : (17.4)

Clearly, this is the same as OLS when zt D xt . Notice that˙ztx0t must be invertible (have
full rank) for this to work, that is, zt and xt must be correlated (or else zt are not valid
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Figure 17.3: Illustration of demand and supply curves

instruments). We need as many instruments as regressors, but some can be instruments for
themselves (if it can be argued that this regressor is not correlated with the true residual).
There are few results on the small sample properties, although it is often found that there
is a small sample bias.

Remark 17.4 (Matrix notation) Let z0t be the t th row of Z and similarly for X . We then

have Ǒiv D .Z0X/�1 .Z0Y /.

Figure 17.2 shows an example with an ARMA(1,1) process. The regressor (yt�1) is
correlated with the residual (vt�1), so OLS is inconsistent. The IV method uses (1; yt�2)
as instruments for (1; yt�1). Notice that (1; yt�2) are indeed uncorrelated with the residual
(which include shocks in t and t � 1 but not earlier), but correlated with the regressors
(because of the persistence of the yt series).
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Correlation of regressor and instrument

Figure 17.4: Results from a Monte Carlo experiment when data is from an ARMA pro-
cess.

Ǒ
iv is (asymptotically) normally distributed so

“ Ǒiv !d ”N.ˇ; V /, with (17.5)

V D S�1zx SS�1xz where S D Var.
PT

tD1ztut/

and Szx D ˙T
tD1ztx0t . (See Section 17.3 for details.) This general expression is valid for

both autocorrelated and heteroskedastic residuals—all such features are loaded into the S
matrix. We can estimate S by replacing ut by fitted residuals

Out D yt � x0tˇiv: (17.6)

If the residuals are iid and independent of zt (so S D �2Szz), then

V D �2S�1zx SzzS�1xz , if ut are iid. (17.7)

The IV estimator has often large standard deviations, especially with “weak instru-
ments” (weak correlation with regressors). This is illustrated in Figure 17.4.

Example 17.5 (Var. Ǒiv/ in the simplest case) Assume yt , xt and zt are zero mean vari-

ables and that zt and ut are independent. Equation (17.7) for a simple regression can
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then be written

Var. Ǒiv/ D �2 Var.zt/=T
Cov.x; z/2

D �2=T

Var.xt/
1

Corr.xt ; zt/2
:

If Corr.xt ; zt/ D 1 or �1, then this is the same as with OLS (but the consistency can be

questioned in this case). Instead, with a low Corr.xt ; zt/2 value (weak instruments), then

the uncertainty increases.

17.2 Two-stages-least squares (2SLS)

2SLS is the same as IV when there are as many instruments (L) as there are regressors
(k). When there are more instruments than regressors (L > k), then 2SLS can produce
more precise (efficient) estimates than IV. It proceeds in two steps.

First, regress each of the elements in xt on

xit D ı0izt C "t ; for i D 1 to k: (17.8)

where ıi is a vector with L elements and let Oxit be the fitted values

Oxit D ı0izt : (17.9)

We can stack the equations as
Oxt D ı0zt ; (17.10)

where ı is an L � k matrix with ıi in column i . The fit (or t-stats) of these regressions
are often used to assess if the instruments are relevant, but we typically require very high
jt-statsj, see the discussion of weak instruments.

Second, regress yt on the fitted values Oxt

yt D ˇ0 Oxt C vt : (17.11)

Remark 17.6 (Alternative to (17.11)�) We could equally well use Oxt instead of zt in the

IV estimator (17.4). This gives the same result as (17.11), provided that the instruments

in the first stage estimation (17.8) include all “non-problematic” regressors.

Similarly to IV, the small sample properties are poor if the first-stage regression has a
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Figure 17.5: Results from a Monte Carlo experiment when data is from an ARMA pro-
cess.

low R2 (“weak instruments”), but also when R2 is extremely high, since then the orthog-
onality conditions are likely to be violated — see Figure 17.4.

The 2SLS approach highlights the key idea of IV (and 2SLS): in the regression (17.11)
we only consider those movements in the regressors that are correlated with zt (as cap-
tured by Oxt ). Since zt is chosen to be uncorrelated with the residuals, but correlated with
xt , we are only using the “clean” co-movements of xt and yt to estimate the coefficients.
See Figure 17.3 for an illustration.

See Figure 17.5 for a case where using more instruments gives more precise estimates.
It can be shown (see Section 17.3 for details) that the (asymptotically valid) variance-

covariance matrix for ǑSLS is

V D BSB 0; where (17.12)

B D .SxzS�1zz Szx/�1SxzS�1zz and S D Var.
PT

tD1ztut/:

This general expression is valid for both autocorrelated and heteroskedastic residuals
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since thoses features are loaded into the S matrix. We can estimate S as in the IV case:
by replacing ut by the fitted residuals

Out D yt � x0tˇiv: (17.13)

Notice that these are not the same as the fitted residuals from the 2nd stage regression. If
the residuals are iid and independent of zt (so S D �2Szz), then V simplifies to

V D �2.SxzS�1zz Szx/�1 if ut are iid. (17.14)

Example 17.7 (ARMA(2,1)) yt D 0:6yt�1C 0:3yt�2C "t where "t D vt C 0:5vt�1. No-

tice that yt�1 is correlated with vt�1 but yt�2 is not. We could therefore use yt�2; yt�3; :::
as instruments for the two regressors.

Example 17.8 (Supply and Demand) Continuing Example 17.3,it can be shown that re-

gressing qt on Opt (where Opt D ıAt ) will give a consistent estimate of  : see Figure 17.3

for an illustration. (Example 17.11) calculates the probability limit of Oı).

Empirical Example 17.9 (Wage equation) Tables 17.1–17.2 shows results from an ex-

ample in Hill, Griffiths, and Lim (2008) 10.3.3. The purpose is to estimate how log wages

depend on education, experience and experience2, while treating education as an endoge-

nous variable. The instruments are experience, experience2 and the the education of the

mother: see the first stage regression in 17.1. The result is fairly different from the OLS

regression: see Table 17.2.

Remark 17.10 (Overidentifying restrictions in 2SLS�) When we use 2SLS, then we can

test if instruments affect the dependent variable only via their correlation with the re-

gressors. If not, something is wrong with the model since some relevant variables are

excluded from the regression. A simple test is to first estimate with 2SLS to get the fitted

residuals Out , then regress those on zt . The TR2 from this second regression is (under the

null hypothesis) �2
df

with df being the number of overidentifying restrictions.

17.3 Consistency and Asymptotic Distributions of the IV and 2SLS
Estimators�

This section gives some details of the asymptotic properties of IV and 2SLS.
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1st stage

c 9:775

.23:753/

exper 0:049

.1:152/

exper2 �0:001
.�0:959/

mothereduc 0:268

.8:481/

T 428

Table 17.1: First stage estimation of the ’educ’ variable. Example of IV estimation, Hill
et al (2008), section 10.3.3. Instruments: c, exper, exper2, and mothereduc. Numbers in
parentheses are t-stats (from White’s method).

17.3.1 Asymptotic Results on the IV Estimator�

There are few results on small sample properties, but it is often noticed that IV is often
imprecise and even biased. In large samples, we typically get consistency and a normal
distribution.

Use (17.1) to substitute for yt in (17.4), multiply both sides by
p
T and rearrange as

p
T . Ǒiv � ˇ/ D Ȯ �1zx

p
T
PT

tD1ztut=T , where (17.15)

Ȯ
zx D

PT
tD1ztx

0
t=T:

Since we have strong beliefs that Cov.zt ; ut/ D 0, this expression shows that Ǒiv should
be consistent.

Example 17.11 (Supply and Demand) Continuing Example 17.3, we can solve for the

two endogenous variables (the “reduced form”) as"
qt

pt

#
D
"

˛

�ˇ
˛
�ˇ

#
At C

"
ˇ

ˇ� � 

ˇ�
1

ˇ� � 1
ˇ�

#"
ust

udt

#
:

Suppose we estimate the supply curve by using At as the instrument. For simplicity,

assume all variables have zero means. Then the probability limit of (17.4) is

plim Oiv D Cov.pt ; At/�1 Cov.qt ; At/:

From the reduced form we have (assumingAt ; udt and ust are uncorrelated) Cov.pt ; At/ D
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OLS IV/2SLS

c �0:522 0:198

.�2:641/ .0:407/

educ 0:107 0:049

.7:634/ .1:301/

exper 0:042 0:045

.3:170/ .2:888/

exper2 �0:001 �0:001
.�2:073/ .�2:145/

T 428 428

Table 17.2: IV estimation of wage equation. Example of IV estimation, Hill et al (2008),
section 10.3.3. Instruments: c, exper, exper2, and mothereduc. Numbers in parentheses
are t-stats (from White’s method).

˛
�ˇ Var.At/ and Cov.qt ; At/ D ˛

�ˇ Var.At/. Combining gives plim Oiv D  . Also no-

tice that plim Oı D Cov.pt ; At/=Var.At/ D ˛=. � ˇ/.

Example 17.12 (Supply and Demand) Continuing Examples 17.3 and 17.11, we have

plim Oı D ˛=. � ˇ/. Thus, regressing qt on Opt D ıAt has a probability limit of

Cov.qt ; ıAt/=Var.ıAt/, which (using Example 17.11) can be simplified to ˛

�ˇ =ı D  .

Since
p
T˙T

tDztut=T in (17.15) is
p
T�a sample average, it is plausible that a CLT

applies so the asymptotic distribution
p
T . Ǒiv � ˇ/ might be normal with a zero mean

and a variance-covariance matrix

Var.
p
T Ǒiv/ D ˙�1zx ˙˙�1xz ; where ˙ D Var

�PT
tD1ztut=

p
T
�
: (17.16)

and where ˙zx is the probability limit of Ȯzx. The last matrix in the covariance matrix
follows from .˙�1zx /0 D .˙

0

zx/
�1 D ˙�1xz . Dividing both sides by T and rewriting gives

(17.5). (Details:˙zx is the probability limit of Szx=T and˙ D S=T . Use this in (17.16)
and simplify to get the probability limit of TS�1zx SS�1xz . Divide both sides by T to get
Var. Ǒiv/ which then equals (17.5).)
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17.3.2 Asymptotic Results on 2SLS�

From (17.8)–(17.9) we have

Oı D Ȯ �1zz Ȯzx;
Ǒ D Ȯ �1Ox Ox Ȯ Oxy (17.17)

where Ȯzz D
PT

tD1ztz0t=T , and so forth. Notice that Ȯ �1zz is an L�L matrix and Ȯzx is
an L � k matrix, so Oı is L � k as mentioned around (17.10). The fitted values in (17.10)
can then be written

Oxt D Oı0zt
D Ȯxz Ȯ �1zz zt ; (17.18)

so

Ȯ Ox Ox D
PT

tD1 Oxt Ox0t=T D Ȯxz Ȯ �1zz Ȯzx and

Ȯ Oxy D
PT

tD1 Oxtyt=T D Ȯxz Ȯ �1zz Ȯzy : (17.19)

(Substitute for Ox from (17.18) and simplify to derive this.)
Using these results in the equations of Oı and Ǒ (17.17) gives

Ǒ D . Ȯxz Ȯ �1zz Ȯzx/�1 Ȯxz Ȯ �1zz Ȯzy (17.20)

Substituting for yt by using (17.1) and expanding gives

Ǒ D . Ȯxz Ȯ �1zz Ȯzx/�1 Ȯxz Ȯ �1zz
PT

tD1zt.x
0
tˇ C ut/=T

D ˇ C . Ȯxz Ȯ �1zz Ȯzx/�1 Ȯxz Ȯ �1zz„ ƒ‚ …
A

PT
tD1ztut : (17.21)

Consistency follows from plim
PT

tD1ztut=T D 0 and asymptotic normality from a CLT
applied to

p
T
PT

tD1ztut=T and the asymptotic variance-covariance matrix is

Var.
p
T Ǒiv/ D A˙A0, where ˙ D Var.˙T

tDztut=
p
T / (17.22)

This can be rewritten as (17.12). (Details: ˙zx is the probability limit of Szx=T etc and
˙ D S=T . Divide both sides by T .)

Remark 17.13 (�Alternative expression for A) By using (17.17), A in (17.21) can also
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be written A D . Oı0˙zz Oı/�1 Oı0.

17.4 Hausman’s Specification Test

Reference: Greene (2018) 8.6
This test is constructed to test if an efficient estimator (like LS) gives (approximately)

the same estimate as a consistent estimator (like IV). If not, the efficient estimator is most
likely inconsistent. It is therefore a way to test for the presence of endogeneity and/or
measurement errors.

Let Ǒe be an estimator that is consistent and asymptotically efficient when the null
hypothesis, H0, is true, but inconsistent when H0 is false. Let Ǒc be an estimator that is
consistent under bothH0 and the alternative hypothesis. WhenH0 is true, the asymptotic
distribution is such that

Cov. Ǒe; Ǒc/ D Var. Ǒe/: (17.23)

Proof. (of 17.23, univariate version�) Consider the estimator � ǑcC.1 � �/ Ǒe, which
is clearly consistent under H0 since both Ǒc and Ǒe are. The asymptotic variance of this
estimator is

�2 Var. Ǒc/C .1 � �/2 Var. Ǒe/C 2� .1 � �/Cov. Ǒc; Ǒe/;

which is minimized at � D 0 (since Ǒe is asymptotically efficient). The first order condi-
tion with respect to �

2�Var. Ǒc/ � 2 .1 � �/Var. Ǒe/C 2 .1 � 2�/Cov. Ǒc; Ǒe/ D 0

should therefore be zero at � D 0 so

Var. Ǒe/ D Cov. Ǒc; Ǒe/:

(See Davidson (2000) 8.1)
This means that we can write

Var. Ǒe � Ǒc/ D Var. Ǒe/C Var. Ǒc/ � 2Cov. Ǒe; Ǒc/
D Var. Ǒc/ � Var. Ǒe/: (17.24)

We can use this to test, for instance, if the estimates from least squares ( Ǒe, since LS
is efficient if errors are iid normally distributed) and instrumental variable method ( Ǒc ,
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since consistent even if the true residuals are correlated with the regressors) are the same.
In this case, H0 is that the true residuals are uncorrelated with the regressors.

All we need for this test are the point estimates and consistent estimates of the variance-
covariance matrices. Testing one of the coefficient can be done by a t test, and testing all
the parameters by a �2 test

. Ǒe � Ǒc/0Var. Ǒe � Ǒc/�1. Ǒe � Ǒc/ � �2j ; (17.25)

where the covariance matrix is from (17.24) and where j equals the number of regressors
that are potentially endogenous or measured with error. Note that the covariance matrix
is likely to have a reduced rank, so the inverse needs to be calculated as a generalized
(pseudo) inverse.
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Chapter 18

Predicting Asset Returns

Sections denoted by a star (�) is not required reading.
Reference: Cochrane (2005) 20.1; Campbell, Lo, and MacKinlay (1997) 2 and 7;

Campbell (2018) 5; Taylor (2005) 5–7; Elliot and Timmermann (2016)

18.1 A Little Financial Theory and Predictability

The traditional interpretation of autocorrelation in asset returns is that there are some
“irrational traders.” For instance, feedback trading would create positive short term au-
tocorrelation in returns. If there are non-trivial market imperfections, then predictability
can be used to generate economic profits.

In contrast, if there are no important market imperfections, then predictability of ex-
cess returns should be thought of as predictable movements in risk premia. To see the
latter, let RetC1 be the excess return on an asset. The canonical asset pricing equation says

Et mtC1RetC1 D 0; (18.1)

where mtC1 is the stochastic discount factor.

Remark 18.1 (A consumption-based model) Suppose we want to maximize the expected

discounted sum of utility Et ˙1sD0ˇsu.ctCs/. Let Qt be the consumer price index in t .

Then, we have

mtC1 D
8<: ˇ

u0.ctC1/
u0.ct /

Qt
QtC1

if returns are nominal

ˇ
u0.ctC1/
u0.ct /

if returns are real.

We can rewrite (18.1) (using Cov.x; y/ D E xy � E x Ey) as

Et RetC1 D �Covt.mtC1; RetC1/=Et mtC1: (18.2)
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This says that the expected excess return will vary if risk (the covariance) does. If we can
model how these expected returns change over time, then we have a forecasting model
for returns. (If the expectations are not too crazy, then the forecasting model may actually
forecast future returns...)

Example 18.2 (Epstein-Zin utility function) Epstein and Zin (1991) define a certainty

equivalent of future utility as Zt D ŒEt.U
1�
tC1 /�1=.1�/ where  is the risk aversion—and

then use a CES aggregator function to govern the intertemporal trade-off between current

consumption and the certainty equivalent: Ut D Œ.1 � ı/C 1�1= t C ıZ1�1= t �1=.1�1= /

where is the elasticity of intertemporal substitution. If returns are iid (so the consumption-

wealth ratio is constant), then it can be shown that this utility function has the same

pricing implications as the CRRA utility, that is,

EŒ.Ct=Ct�1/�Rt � D constant.

(See Söderlind (2006) for a simple proof.) The point is that without predictability, the

Epstein-Zin utility function has the same implications as the CRRA utility function. Es-

tablishing whether there is predictability is therefore a way to assess the importance of

the theory.

Example 18.3 (Portfolio choice with predictable returns) Campbell and Viceira (1999)

specify a model where the log return of the only risky asset follows the time series process

rtC1 D rf C xt C utC1;

where rf is a constant riskfree rate, utC1 is unpredictable, and the state variable follows

(constant suppressed)

xtC1 D �xt C �tC1;
where �tC1 is also unpredictable. Clearly, Et.rtC1 � rf / D xt . Covt.utC1; �tC1/ can be

non-zero. For instance, with Covt.utC1; �tC1/ < 0, a high return (utC1 > 0) is typically

associated with an expected low future return (xtC1 is low since �tC1 < 0). With Epstein-

Zin preferences, the portfolio weight on the risky asset is (approximately) of the form

vt D a0 C a1xt ;

where a0 and a1 are complicated expression (in terms of the model parameters—can be

calculated numerically). There are several interesting results. First, if returns are not
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predictable (xt is constant since �tC1 is), then the portfolio choice is constant. Second,

when returns are predictable, but the relative risk aversion is unity (no intertemporal

hedging), then vt D 1=.2/ C xt=Œ Vart.utC1/�, so predictability does still not matter.

Third, with a higher risk aversion and Covt.utC1; �tC1/ < 0, there is a positive hedging

demand for the risky asset: it pays off (today) when the future investment opportunities

are poor.

Example 18.4 (Habit persistence) The habit persistence model of Campbell and Cochrane

(1999) has a CRRA utility function, but the argument is the difference between consump-

tion and a habit level, Ct � Xt , instead of just consumption. The habit is parameterised

in terms of the “surplus ratio” St D .Ct �Xt/=Ct . The log surplus ratio.(st )is assumed

to be a non-linear AR(1)

st D �st�1 C �.st�1/�ct :
It can be shown (see Söderlind (2006)) that if �.st�1/ is a constant � and the excess return

is unpredictable (by st ) then the habit persistence model is virtually the same as the CRRA

model, but with .1C �/ as the “effective” risk aversion.

Example 18.5 (Reaction to news and the autocorrelation of returns) Let the log asset

price, pt , be the sum of a random walk and a temporary component (with perfectly cor-

related innovations, to make things simple)

pt D ut C �"t , where ut D ut�1 C "t
D ut�1 C .1C �/"t :

Let rt D pt � pt�1 be the log return. It is straightforward to calculate that

Cov.rtC1; rt/ D ��.1C �/Var."t/;

so 0 < � < 1 (initial overreaction of the price) gives a negative autocorrelation. In short,

mean reversion in the price level means negative autocorrelation of the returns—and vice

versa. See Figure 18.1 for the impulse responses with respect to a piece of news, "t .

18.2 Autocorrelations

Reference: Campbell, Lo, and MacKinlay (1997) 2

315



0 1 2 3 4
period

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Log return is an MA(1): rt = t + t 1
The log price level is: pt = r0 + r1 + . . . + rt
The figure traces out the response to 0 = 1

Impulse response, = 0.4
log return
log price

0 1 2 3 4
period

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Positive (negative) autocorrelation of the returns

Momentum (mean reversion) of the price

Impulse response, = 0.4

Figure 18.1: Impulse responses when price is random walk plus temporary component

18.2.1 Autocorrelation Coefficients and the Box-Pierce Test

The sampling properties of autocorrelations ( O�s) are complicated, but there are several
useful large sample results for Gaussian processes (these results typically carry over to
processes which are similar to the Gaussian—a homoskedastic process with finite 6th
moment is typically enough, see Priestley (1981) 5.3 or Brockwell and Davis (1991) 7.2–
7.3). When the true autocorrelations are all zero (not �0, of course), then we have

p
T

"
O�i
O�j

#
!d N

 "
0

0

#
;

"
1 0

0 1

#!
; (18.3)

provided .i; j / ¤ 0 and i ¤ j . This result can be used to construct tests for both single
autocorrelations (t-test or �2 test) and several autocorrelations at once (�2 test). To apply
this on returns, the return horizon can be whatever (seconds, years,...), but it is important
that the returns are non-overlapping (time aggregation can easily introduce spurious serial
correlation).

Example 18.6 (t-test) We want to test the hypothesis that �1 D 0. Since the N.0; 1/

distribution has 5% of the probability mass below -1.64 and another 5% above 1.64, we

can reject the null hypothesis at the 10% level if
p
T j O�1j > 1:64. With T D 100, we

therefore need j O�1j > 1:64=
p
100 D 0:165 for rejection, and with T D 1000 we need

j O�1j > 1:64=
p
1000 � 0:053.

The Box-Pierce test follows directly from the result in (18.3), since it shows that
p
T O�i
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and
p
T O�j are iid N(0,1) variables. Therefore, the sum of the square of them is distributed

as an �2 variable. The test statistic typically used is

QL D T
LX
sD1
O�2s !d �2L: (18.4)

Example 18.7 (Box-Pierce) Let O�1 D 0:165, and T D 100, so Q1 D 100 � 0:1652 D
2:72. The 10% critical value of the �21 distribution is 2.71, so the null hypothesis of no

autocorrelation is rejected.

The choice of lag order in (18.4), L, should be guided by theoretical considerations,
but it may also be wise to try different values. There is clearly a trade off: too few lags may
miss a significant high-order autocorrelation, but too many lags can destroy the power of
the test (as the test statistic is not affected much by increasing L, but the critical values
increase).

Empirical Example 18.8 (Autocorrelations for different lags, daily equity returns) See

Figure 18.2 for autocorrelations (different lags) of S&P 500 returns. The figure suggests

little autocorrelation in returns (Ret ) , but considerable autocorrelation for the absolute

value (jRet j). Since, Ret D sign.Ret /jRet j, this suggests that it is very difficult to predict

the sign of the returns. Also, see Figure 18.3 for ten size-sorted equity portfolios which

suggests that most size categories have more autocorrelations than large cap (which are

fairly closer to S&P 500).

The main problem with these tests is that the assumptions behind the results in (18.3)
may not be reasonable. For instance, data may be heteroskedastic. One way of handling
these issues is to make use of the GMM framework. Alternatively, a non-parametric test
like the “runs test” can be used.

Remark 18.9 (Runs test�) A “runs test” is a non-parametric test of randomness. Let dt
be an indicator variable

dt D
(
0 if yt � q
1 if yt > q

where q typically (but not necessarily) is the mean of yt . Let T1 D
PT

tD1dt , that is the

number of occasions when yt > q, and T2 D T � T1 (the number of occasions when

yt � q). Also define the numbers of runs (r), that is, the number of changes in the dt
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Figure 18.2: Predictability of US stock returns

series (where the first observation is counted as a change)

r D 1CPT
tD2jdt � dt�1j:

(Warning: r indicates “runs,” not returns.) It is straightforward (but tedious) to show

that, under the null hypothesis of randomness,

E r D 2T1T2
T
C 1 and

Var.r/ D .E r � 1/.E r � 2/
T � 1 :

We can therefore test the null hypothesis of randomness by a t-stat

r � E rp
Var.r/

!d N.0; 1/:

The basic intuition of the test is that a positive autocorrelation would lead to too few runs
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Figure 18.3: Predictability of US stock returns, size deciles

(r < E r): the yt variable would stay on one side of the threshold q for long spells of

time—and hence there would be few changes in xt . Negative autocorrelation is just the

opposite, since it tends to give a zigzag pattern around the mean. See Figure 18.4 for an

example.

18.2.2 GMM Test of Autocorrelation�

This section discusses how GMM can be used to test if a series is autocorrelated. The
analysis focuses on first-order autocorrelation, but it is straightforward to extend it to
higher-order autocorrelation.

Consider a scalar random variable xt with a zero mean (it is easy to extend the analysis
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Figure 18.4: Runs test

to allow for a non-zero mean). Consider the moment conditions

gt.ˇ/ D
"
x2t � �2
xtxt�1 � ��2

#
; so Ng.ˇ/ D 1

T

TX
tD1

"
x2t � �2
xtxt�1 � ��2

#
, with ˇ D

"
�2

�

#
:

(18.5)
�2 is the variance and � the first-order autocorrelation so ��2 is the first-order autocovari-
ance. We want to test if � D 0. We could proceed along two different routes: estimate �
and test if it is different from zero or set � to zero and then test overidentifying restrictions.

We are able to arrive at simple expressions for these tests—provided we are willing
to make strong assumptions about the data generating process. (These tests then typically
coincide with classical tests like the Box-Pierce test.) One of the strong points of GMM
is that we could perform similar tests without making strong assumptions—provided we
use a correct estimator of the asymptotic covariance matrix of the moment conditions.

Remark 18.10 (Box-Pierce as an Application of GMM) (18.5) is an exactly identified

system so the weight matrix does not matter, so the asymptotic distribution is

p
T . Ǒ � ˇ0/ d! N.0; V /, where V D �D00S�10 D0

��1
; V D D�10 S0.D�10 /0;

where D0 is the Jacobian of the moment conditions and S0 the covariance matrix of the
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moment conditions (at the true parameter values). We have

D0 D plim

"
@ Ng1.ˇ0/=@�2 @ Ng1.ˇ0/=@�
@ Ng2.ˇ0/=@�2 @ Ng2.ˇ0/=@�

#
D
"
�1 0

�� ��2
#
D
"
�1 0

0 ��2
#
;

since � D 0 (the true value). The definition of the covariance matrix is

S0 D E

"p
T

T

TX
tD1

gt.ˇ0/

#"p
T

T

TX
tD1

gt.ˇ0/

#0
:

Assume that there is no autocorrelation in gt.ˇ0/ (which means, among other things, that

volatility, x2t ; is not autocorrelated). We can then simplify as

S0 D Egt.ˇ0/gt.ˇ0/0:

This assumption is stronger than assuming that � D 0, but we make it here in order to

illustrate the asymptotic distribution. Moreover, assume that xt is iid N.0; �2/. In this

case (and with � D 0 imposed) we get

S0 D E

"
x2t � �2
xtxt�1

#"
x2t � �2
xtxt�1

#0
D E

"
.x2t � �2/2 .x2t � �2/xtxt�1

.x2t � �2/xtxt�1 .xtxt�1/2

#

D
"

E x4t � 2�2 E x2t C �4 0

0 E x2t x
2
t�1

#
D
"
2�4 0

0 �4

#
:

To make the simplification in the second line we use the facts that E x4t D 3�4 if xt �
N.0; �2/, and that the normality and the iid properties of xt together imply E x2t x

2
t�1 D

E x2t E x2t�1 and E x3t xt�1 D E �2xtxt�1 D 0. Combining gives

Cov

 p
T

"
O�2
O�

#!
D D�10 S0.D�10 /0

D
"
�1 0

0 �1=�2
#"

2�4 0

0 �4

#"
�1 0

0 �1=�2
#

D
"
2�4 0

0 1

#
:

This shows that
p
T O�!d N.0; 1/.
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18.2.3 Autoregressions

An alternative way of testing autocorrelations is to estimate an AR model

Rt D c C a1Rt�1 C a2Rt�2 C :::C apRt�p C "t ; (18.6)

and then test if all the slope coefficients are zero with a �2 test. The return horizon can be
whatever (seconds, years,...), but it is important that the returns are non-overlapping.

This approach is somewhat less general than the Box-Pierce test, but most stationary
time series processes can be well approximated by an AR of relatively low order. To
account for heteroskedasticity and other problems, we can estimate the covariance matrix
of the parameters by an estimator like Newey-West. It can be noticed that when Rt D
c C aRt�1 C "t , then a equals the first autocorrelation coefficient.

The autoregression can easily allow for the coefficients to depend on the market situ-
ation. For instance, consider an AR(1), but where the autoregression coefficient may be
different depending on the sign of last period’s return

Rt D ˛ C ˇQt�1Rt�1 C .1 �Qt�1/Rt�1 C "t , where (18.7)

Qt�1 D
(
1 if Rt�1 < 0
0 else.

Empirical Example 18.11 (AR(1) and asymmetric AR(1) for daily S&P 500 returns) See

Figure 18.5.

Autoregressions have also been used to study the predictability of long-run returns.

Empirical Example 18.12 (AR(1) for long run equity returns) See Figure 18.6 for AR(1)

results for different (long) investment horizons.

Remark 18.13 (Pitfall I in testing long-run returns) Let the return in (18.6) be a two pe-

riod return, rt D QrtCQrt�1, where Qrt is a one-period (log) return. An AR(1) on overlapping

data would then be

Qrt C Qrt�1 D c C a. Qrt�1 C Qrt�2/C "t :
Even if the one-period returns are uncorrelated, a would tend to be positive and significant—

since Qrt�1 shows up on both the left and right hand sides: the returns are overlapping.

Instead, the correct specification is

Qrt C Qrt�1 D c C a. Qrt�2 C Qrt�3/C "t :
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Figure 18.5: Predictability of US stock returns, results from a regression with interactive
dummies

Remark 18.14 (Pitfall 2 in testing long-run returns) A less serious pitfall is to use all

available returns on the left hand side, for instance, all daily two-day returns. Two suc-

cessive observations are then

Qrt C Qrt�1 D c C a. Qrt�2 C Qrt�3/C "t
QrtC1 C Qrt D c C a. Qrt�1 C Qrt�2/C "tC1

There is no problem with the point estimate of a, since the left and right hand side returns

do not overlap. However, the residuals ("t and "tC1) are likely to be correlated which has

to be handled in order to make correct inference. To see this, suppose Qrt D c=2 C ut
where ut is iid. Clearly, the left and right hand sides are uncorrelated, so a D 0. With

this we have

Qrt C Qrt�1 D c C "t , where "t D ut C ut�1
QrtC1 C Qrt D c C "tC1, where "tC1 D utC1 C ut :

Since ut shows up in both "t and "tC1, the latter are correlated. See Figure 18.7. This can

be solved by using a Newey-West approach (or something similar), or by skipping every

second observation (there is then no overlap of the residuals).
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Figure 18.6: Predictability of US stock returns

18.3 Multivariate (Auto-)correlations

There is no reason to restrict the prediction model to only use the lagged returns of the
same asset.

Empirical Example 18.15 (Augmented AR(1) regressions) Figure 18.8 shows results from

augmented AR(1) estimations for each of the ten size-sorted equity portfolios: the lagged

return of the largest firms (decile 10) is added as a regressor.

18.3.1 Momentum or Contrarian Strategy?

Reference: Lo and MacKinlay (1990)
A momentum strategy invests in assets that have performed well recently—and of-

ten goes short in those that have underperformed. The performance is driven by both
autocorrelation and spill-over effects from other assets.
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Figure 18.7: Slope coefficient, LS vs Newey-West standard errors

Empirical Example 18.16 (Momentum for daily returns on the 25 FF portfolios) Fig-

ure 18.9 suggests that there is considerable momentum in the cross-section of the 25 FF

portfolios. Investing in past winners earns high returns.

To disentangle the drivers of the return on a dynamic strategy, let there be N assets
with returns R, with means and a cross autocovariance matrix

ER D � and (18.8)

� .k/ D EŒ.Rt � �/. QRt�k � �/0�;

where QRt�k can be the returns in t � k (so � .k/ is an autocovariance matrix) or instead
the (time series) average returns over a period ending in t � k (for instance, a moving
average over 22 trading days).

Empirical Example 18.17 (Correlations of Ri;t and Rj;t�s) See Figure 18.10 for cross-

autocovariances of the daily 25 FF portfolios. For instance, cell (i,j) shows the correlation

of Ri;t and Rj;t�1.

Example 18.18 (� .k/ with two assets) We have

� .k/ D
"

Cov.R1;t ; QR1;t�k/ Cov.R1;t ; QR2;t�k/
Cov.R2;t ; QR1;t�k/ Cov.R2;t ; QR2;t�k/

#
:

When QRt�k D QRt�k , then this is the autocovariance matrix for lag 1.
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Figure 18.8: Coefficients from multiple prediction regressions

Define the equal weighted market portfolio return as

Rmt D 1

N

NX
iD1

Rit ; (18.9)

with the corresponding mean return �m D ERmt .
A momentum strategy could (for instance) use the N � 1 vector or portfolio weights

wt.k/ D
QRt�k � QRmt�k

N
; (18.10)

which says that wit.k/ is positive for assets with a return above (the cross-sectional) aver-
age return k periods back. (To analyse a contrarian strategy, reverse the sign of (18.10).)
Notice that the portfolio weights depend on QRt�k � QRmt�k, which can be just the returns
in t � k or perhaps a moving average of returns for a period ending in t � k. For instance,
with daily data the weights for day t may depend on the returns over the last month.

Notice that the weights sum to zero, so this is a zero cost portfolio. However, the
weights differ from fixed weights (which would, for instance, be to put 1=5 into the best
5 assets, and �1=5 into the 5 worst assets) since the overall size of the exposure (10jwt j)
changes over time. A large dispersion of the past returns means large positions and vice
versa.
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Figure 18.9: Performance of momentum investing

The profit from this strategy is

�t.k/ D
NX
iD1

QRit�k � QRmt�k
N„ ƒ‚ …
wit

Rit D
NX
iD1

QRit�kRit
N

� QRmt�kRmt ; (18.11)

where the last term uses the fact that ˙N
iD1 QRmt�kRit=N D QRmt�kRmt .

The expected profit is

E�t.k/ D N � 1
N 2

tr� .k/ � 1

N 2

�
10� .k/1 � tr� .k/

�C 1

N

PN
iD1.�i � �m/2; (18.12)

where the 10� .k/1 sums all the elements of � .k/ and tr� .k/ sums the elements along
the main diagonal. (See below for a proof.)

With a random walk, � .k/ D 0, (18.12) shows that the momentum strategy wins
money: the first two terms are zero, while the third term contributes to a positive perfor-
mance. The reason is that the momentum strategy (on average) invests in assets with high
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average returns (�i > �m).
The first term of (18.12) depends only on own autocovariances, that is, how a return

is correlated with the lagged return of the same asset. If these own autocovariances are
(on average) positive, then a strongly performing asset in t � k tends to perform well in
t , which helps a momentum strategy (as the strongly performing asset is overweighted).

Notice that the second term of (18.12) sums all elements in the autocovariance matrix
and then subtracts the sum of the diagonal elements—so it only depends on the sum of the
cross-covariances, that is, how a return is correlated with the lagged return of other assets.
In general, negative cross-covariances benefit a momentum strategy. To see why, consider
the case with only two assets and suppose we observe a higher lagged return on asset 1
than on asset 2. If this predicts a low return on asset 2 (since Cov.R2;t ; R1;t�k/ < 0),
but asset 2 does not predict asset 1 (since Cov.R1;t ; R2;t�k/ D 0), then the momentum
strategy will profit. The reason is that we have a negative portfolio weight of asset 2 (since
it performed relatively worse than asset 1 in the previous period).

Empirical Example 18.19 (Decomposing momentum profits, daily returns on the 25 FF

portfolios) See Tables 18.1 and 18.2.

Example 18.20 ((18.12) with 2 assets) With

� .k/ D
"
0:1 0

0 0:1

#
;

then

N � 1
N 2

tr� .k/ D 2 � 1
22
� .0:1C 0:1/ D 0:05, and

� 1

N 2

�
10� .k/1 � tr� .k/

� D � 1
22
.0:2 � 0:2/ D 0

so the sum of the first two terms of (18.12) is positive (good for a momentum strategy).

Example 18.21 ((18.12) with 2 assets) Suppose we have

� .k/ D
"

Cov.R1;t ; R1;t�k/ Cov.R1;t ; R2;t�k/
Cov.R2;t ; R1;t�k/ Cov.R2;t ; R2;t�k/

#
D
"
0 0

�0:1 0

#
:
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Figure 18.10: Illustration of the cross-autocorrelations, Corr.Rt ; Rt�k/, daily FF data.
Dark colours indicate high correlations, light colours indicate low correlations.

Then

N � 1
N 2

tr� .k/ D 2 � 1
22
� 0 D 0, and

� 1

N 2

�
10� .k/1 � tr� .k/

� D � 1
22
Œ�0:1 � 0� D 0:025,

so the sum of the first two terms of (18.12) is positive (good for a momentum strategy).

For instance, suppose R1;t�k > 0, then R2;t tends to be low which is good (we have a

negative portfolio weight on asset 2).

Proof. (of (18.12)) Take expectations of (18.11) and use the fact that E xy D Cov.x; y/C
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Portfolio 1 Portfolio 2 Portfolio 3
1 0:49 12:18 8:84

2 0:37 9:09 6:87

3 0:38 9:41 7:31

4 0:36 8:77 6:61

5 0:34 8:44 6:36

Table 18.1: Returns on different momentum portfolios, annualized %. The rows are for
different formation lags (days). Portfolio 1 follows Lo and MacKinlay (1990), except that
the portfolio weights depend on the average return over the previous month. Portfolio 2
applies a static scaling of the portfolio weights to get an average long (short) exposure of
1. Portfolio 3 instead scales the weights in each period. Daily US data 1979:01-2021:12
on 25 FF portfolios.

auto cov Cross cov means sum
1 1:14 �0:67 0:02 0:49

2 1:07 �0:72 0:02 0:37

3 0:83 �0:46 0:02 0:38

4 0:60 �0:26 0:02 0:36

5 0:62 �0:30 0:02 0:34

Table 18.2: Contributions to the average returns on a momentum portfolio, annualized %.
The rows are for different formation lags (days). The strategy follows Lo and MacKinlay
(1990), except that the portfolio weights depend on the average return over the previous
month. Daily US data 1979:01-2021:12 on 25 FF portfolios.

E x Ey to get

E�t.k/ D 1

N

PN
iD1

�
Cov.Rit ; QRit�k/C �2i

� � �Cov.Rmt ; QRmt�k/C �2m
�
:

(using the fact that E QRit�k D ERit and E QRmt�k D ERmt/. Define the N � N cross-
covariance matrix � .k/ D Cov.Rt ; QRt�k/ and recall that Rmt D 10Rt=N (and QRmt D
10 QRt=N ). We can then rewrite the terms as

1

N

PN
iD1 Cov.Rit ; QRit�k/ D 1

N
tr� .k/

Cov.Rmt ; QRmt�k/ D 10� .k/1=N 2

1

N

PN
iD1�

2
i � �2m D

1

N

PN
iD1.�i � �m/2:
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Combine to rewrite E�t as

E�t.k/ D 1

N
tr� .k/ � 1

N 2
10� .k/1C 1

N

PN
iD1.�i � �m/2;

which can be rearranged as (18.12).

18.4 Other Predictors

There are many other, perhaps more economically plausible, possible predictors of future
stock returns. For instance, both the dividend-price ratio and nominal interest rates have
been used to predict long-run returns, and short-run returns on other assets have been used
to predict short-run returns.

18.4.1 Prices and Dividends

Reference: Campbell and Shiller (1988), Campbell, Lo, and MacKinlay (1997) 7 and
Cochrane (2005) 20.1.

Recall that the asset price Pt , gross return RtC1 and dividends are related according
to

Pt D DtC1 C PtC1
RtC1

: (18.13)

(This is an identity, since it defines the gross return.) Recursively solving this equation
forward gives an expression of the price (or price/dividend ratio) is terms of the present
value of future dividends, where the discounting is made by the actual returns. (This
is also an identity.) See Appendix for details. We now log-linearise this present value
expression in order to tie it more closely to the (typically linear) econometrics methods
for detecting predictability The result is

pt � dt �
1X
sD0

�sŒ.dtC1Cs � dtCs/ � QrtC1Cs�; (18.14)

where pt is the log price, dt the log dividend and QrtC1Cs is a one-period log return. Also,
� D 1=.1CD=P / where D=P is a steady state dividend-price ratio (� D 1=1:04 � 0:96
if D=P is 4%) and where See Appendix for details. Clearly, a high price-dividend ratio
must imply future dividend growth and/or low future returns.

One of the most successful attempts to forecast long-run return is by using the dividend-
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price ratio
rtCq D ˛ C ˇq.dt � pt/C "tCq; (18.15)

where rtCq is the log return between t and t C q. For instance, CLM Table 7.1, report R2

values from this regression which are close to zero for monthly returns, but they increase
to 0.4 for 4-year returns (US, value weighted index, mid 1920s to mid 1990s).

Empirical Example 18.22 (Predicting long run equity returns with E/P) See Figure 18.11.

By comparing with (18.14), we see that the dividend-ratio in (18.15) is only asked to
predict a finite (unweighted) sum of future returns and not dividend growth. We should
therefore expect (18.15) to work particularly well if the horizon is long (high q) and if
dividends are stable over time, which seems to be the case.
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Figure 18.11: Predictability of US stock returns
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18.4.2 Predictability but No Autocorrelation

The evidence for US stock returns is that long-run returns may perhaps be predicted
by using dividend-price ratio or interest rates, but that the long-run autocorrelations are
weak (long run US stock returns appear to be “weak-form efficient” but not “semi-strong
efficient”). Both CLM 7.1.4 and Cochrane 20.1 use small models for discussing this
case. The key in these discussions is to make changes in dividends unforecastable, but
let the return be forecastable by some state variable (Et dtC1Cs � Et dtCs D 0 and
Et rtC1 D r C xt ), but in such a way that there is little autocorrelation in returns. By
taking expectations of (18.14) we see that price-dividend will then reflect expected future
returns and therefore be useful for forecasting.

18.5 Spurious Regressions and In-Sample Overfitting

References: Ferson, Sarkissian, and Simin (2003)

18.5.1 Spurious Regressions

Ferson, Sarkissian, and Simin (2003) argue that many prediction equations suffer from
“spurious regression” features—and that data mining tends to make things even worse.

Their simulation experiment is based on a simple model where the return predictions
are

RtC1 D ˛ C ıZt C vtC1; (18.16)

where Zt is a regressor (predictor). The true model is that returns follow the process

RtC1 D �CZ�t C utC1; (18.17)

where the residual is white noise. In this equation, Z�t represents movements in expected
returns. The predictors follow a diagonal VAR(1)"

Zt

Z�t

#
D
"
� 0

0 ��

#"
Zt�1
Z�t�1

#
C
"
"t

"�t

#
, with Cov

 "
"t

"�t

#!
D ˙: (18.18)

In the case of a “pure spurious regression,” the innovations to the predictors are un-
correlated (˙ is diagonal). In this case, ı ought to be zero—and their simulations show
that the estimates are almost unbiased. Instead, there is a problem with the standard de-
viation of Oı. If �� is high, then the returns will be autocorrelated. See Table 18.3 for an
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illustration.

� D 0:0 � D 0:75
� W 0.0 0.75 0.0 0.75

Simulated 5:8 8:7 3:9 10:9

OLS formula 5:8 8:6 3:9 5:8

Newey-West 5:7 8:4 3:8 8:9

VARHAC 5:7 8:5 3:8 10:5

Bootstrapped 5:8 8:5 3:8 10:1

FGLS 5:8 4:7 3:9 5:9

Table 18.3: Standard error of OLS slope (%) under autocorrelation (simulation evidence).
Model: yt D 1C 0:9xt C �t , where �t D ��t�1C �t ; �t is iid N(). xt D �xt�1C �t ; �t is
iid N(). NW uses 5 lags. VARHAC uses 5 lags and a VAR(1). The bootstrap uses blocks
of size 20. Sample length: 300. Number of simulations: 25000.

Under the null hypothesis of ı D 0, this autocorrelation is loaded onto the residuals.
For that reason, the simulations use a Newey-West estimator of the covariance matrix
(with an automatic choice of lag order). This should, ideally, solve the problem with the
inference—but the simulations show that it doesn’t: whenZ�t is very autocorrelated (0.95
or higher) and reasonably important (so an R2 from running (18.17), if we could, would
be 0.05 or higher), then the 5% critical value (for a t-test of the hypothesis ı D 0) would
be 2.7 (to be compared with the nominal value of 1.96). Since the point estimates are
almost unbiased, the interpretation is that the standard deviations are underestimated. In
contrast, with low autocorrelation and/or low importance of Z�t , the standard deviations
are much more in line with nominal values.

See Table 18.3 for an illustration. The table shows that we need a combination of an
autocorrelated residuals and an autocorrelated regressor to create a problem for the usual
LS formula for the standard deviation of a slope coefficient. When the autocorrelation is
very high, even the Newey-West estimator is likely to underestimate the true uncertainty.

To study the interaction between spurious regressions and data mining, Ferson, Sarkissian,
and Simin (2003) let Zt be chosen from a vector of L possible predictors—which all are
generated by a diagonal VAR(1) system as in (18.18) with uncorrelated errors. It is as-
sumed that the researchers choose Zt by running L regressions, and then picks the one
with the highest R2. When �� D 0:15 and the researcher chooses between L D 10

predictors, the simulated 5% critical value is 3.5. Since this does not depend on the im-
portance ofZ�t , it is interpreted as a typical feature of “data mining,” which is bad enough.
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When the autocorrelation is 0.95, then the importance of Z�t start to become important—
“spurious regressions” interact with the data mining to create extremely high simulated
critical values. A possible explanation is that the data mining exercise is likely to pick out
the most autocorrelated predictor, and that a highly autocorrelated predictor exacerbates
the spurious regression problem.

18.6 Model Selection

Selecting a good prediction model is often very different from constructing a model to
test a theoretical hypothesis or to establish economic causality. In particular, theory plays
a somewhat smaller role (just to help identifying a set of reasonable predictors) and there
is a greater emphasis on having a small model. The focus on small models is driven by
a considerable amount of evidence suggesting that large prediction models often perform
poorly out-of-sample.

This section summarises some standard approaches to keeping the model small, while
still providing a good in-sample fit. They can be applied to the full sample or data, or on
recursive/moving data windows.

18.6.1 Traditional Model Selection

Remember that R2 can never decrease by adding more regressors, so it is not really a
good guide in selecting a model (unless you have already decided on the number of pre-
dictors, for instance, only one). To avoid overfitting, we “punish” models with too many
parameters by using the adjusted R2, defined as

NR2 D 1 � .1 �R2/T � 1
T � k ; (18.19)

where T is the sample size and k is the number of regressors (including the constant).
This measure includes trade-off between fit and the number of regressors (per data point).
Notice that NR2 can be negative (while 0 � R2 � 1). Clearly, the model must include a
constant for R2 (and therefore NR2) to make sense. Alternatively, apply Akaike’s Informa-
tion Criterion (AIC) and the Bayesian information criterion (BIC). They are

AIC D ln �2 C 2 k
T

(18.20)

BIC D ln �2 C k

T
lnT; (18.21)
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where �2 is the variance of the fitted residuals.
These measures also involve trade-offs between fit (low �2) and number of parameters

(k, including the intercept). Choose the model with the highest NR2 or lowest AIC or BIC.
It can be shown (by using R2 D 1 � �2=Var.yt/) that AIC and BIC can be rewritten as

AIC D ln Var.yt/C ln.1 �R2/C 2 k
T

(18.22)

BIC D ln Var.yt/C ln.1 �R2/C k

T
lnT: (18.23)

This shows that both are decreasing in R2 (which is good), but increasing in the number
of regressors per data point (k=T ). It therefore leads to a similar trade-off as in NR2. Recall
that the model should always include a constant.

Empirical Example 18.23 (Empirical application of model selection) See Table 18.4 for

an empirical example showing a number of possible model specifications. The dependent

variable is the monthly realized variance of S&P 500 returns (calculated from daily re-

turns). The possible regressors are lags of the dependent variable, the VIX index and the

S&P 500 returns. Similarly, Table 18.5 for the the best specification according to AIC.

Notice that AIC tend to favour fairly large models with many regressors.

18.6.2 Sequential Model Selection

Reference: Hastie, Tibshirani, and Friedman (2001) 3
If there are k potential regressors, then there are 2k � 1 different models. If the list

of models is not too long, then we can try them all and use the AIC and BIC in (18.20)–
(18.21), see Table 18.5. Otherwise, we need some type of sequential approach.

Example 18.24 (3 potential regressors) If the three potential regressors are 1; x1 and x2,

then the list of models has 23�1 D 7 possibilities: .1/I .x1/I .x2/I .1; x1/I .1; x2/I .x1; x2/I .1; x1; x2/.

A forward stepwise selection is as follows

.1/ start with an intercept (18.24)

.2/ add the variable that improves the fit the most

.3/ repeat .2/ until the fit does not improve much.
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(1) (2) (3) (4) (5) (6) (7)

RVt�1 0:66 0:16

.8:79/ .1:94/

RVt�2 0:45 �0:01
.5:60/ .�0:14/

VIXt�1 0:95 1:08

.10:33/ .3:84/

VIXt�2 0:67 �0:38
.8:74/ .�1:70/

Rt�1 �0:86 0:03

.�3:41/ .0:16/

Rt�2 �0:49 �0:13
.�2:29/ .�1:39/

constant 5:13 8:35 �2:97 2:44 15:98 15:67 �0:38
.4:81/ .6:45/ .�1:98/ .1:85/ .17:47/ .16:85/ .�0:32/

R2 0:44 0:21 0:53 0:26 0:15 0:05 0:56
NR2 0:44 0:20 0:53 0:26 0:14 0:05 0:56

obs 362 362 362 362 362 362 362

Table 18.4: Regression of monthly realized S&P 500 return volatility 1990:02-2021:12.
Numbers in parentheses are t-stats, based on Newey-West with 4 lags.

To specify a stopping rule, first define the residual sum of squares (for a given vector of
coefficients, ˇ) as

RSS.ˇ/ DPT
tD1.yt � x0tˇ/2: (18.25)

In step (2) we would then add the variable that gives the lowest RSS (when added to the
previous selection). In step (3), it is often recommended that we stop adding regressors
when

RSS. Ǒold/ �RSS. Ǒnew/

RSS. Ǒnew/=.T � k � 1/
< c1;T�k�1; (18.26)

where k is the number of coefficients in Ǒold (including the intercept) so there are k C 1
coefficients in Ǒnew and c1;T�k�1 is the 90% or 95% critical value of an F1;T�k�1 distri-
bution. For instance, the 90% critical value of F1;100 equals 2:76.

As an alternative to the RSS based rule in (18.25)–(18.26), we could instead use
t-stats: in step (2) add the variable with the highest jt-statj and in step (3) stop adding
variables when that jt-statj is lower than 1.64 (or 1.96).

Empirical Example 18.25 (Forward stepwise selection) Applying the forward step se-
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(1) (2) (3) (4)

RVt�1 0:18 0:15

.2:04/ .1:74/

RVt�2

VIXt�1 1:02 1:20 1:22 1:06

.5:81/ .6:60/ .6:76/ .5:71/

VIXt�2 �0:34 �0:31 �0:37 �0:37
.�2:50/ .�2:26/ .�2:50/ .�2:62/

Rt�1

Rt�2 �0:18 �0:13
.�1:95/ .�1:40/

constant �0:67 �1:85 �0:98 �0:26
.�0:72/ .�1:58/ .�1:05/ .�0:31/

R2 0:56 0:55 0:56 0:56

BIC 3:80 3:80 3:80 3:81

obs 362 362 362 362

Table 18.5: Regression of monthly realized S&P 500 return volatility 1990:02-2021:12.
Ordered from best (1) according to BIC to fourth best (4). Numbers in parentheses are
t-stats, based on Newey-West with 4 lags.

lection approach (based on t-stats) to the regression discussed in Example 18.23 gives a

sequence of larger and larger models shown in Table 18.6.

18.6.3 The Lasso Method�

An alternative approach to model selection is the Lasso method, which minimizes the sum
of squared residuals (just like OLS), but with a penalty on ˙K

iD1jbi j,

minb
PT

tD1.yt � ˛ � x0tb/2 C 
PK
iD1jbi j; (18.27)

where the value of  is chosen a priori, but where we typically consider different values
of  . Having the same penalty on all jbi j makes perhaps most sense when the regressors
have the same scale (for instance, zero mean and unit standard deviation). The adaptive

Lasso instead uses weighted penalties, ˙K
iDwi jbi j, often with wi D 1=jbOLSi j. This will

clearly give a larger effective penalty on variables whose OLS coefficients are small (in
absolute terms). It is sometimes an advantage to divide the first term in (18.27) by T ,
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(1) (2) (3) (4)

RVt�1 0:18 0:15

.2:04/ .1:74/

RVt�2

VIXt�1 0:95 1:20 1:02 1:06

.10:33/ .6:60/ .5:81/ .5:71/

VIXt�2 �0:31 �0:34 �0:37
.�2:26/ .�2:50/ .�2:62/

Rt�1

Rt�2 �0:13
.�1:40/

constant �2:97 �1:85 �0:67 �0:26
.�1:98/ .�1:58/ .�0:72/ .�0:31/

R2 0:53 0:55 0:56 0:56

obs 362 362 362 362

Table 18.6: Best four regressions of monthly realized S&P 500 return volatility according
to a forward step selection (based on t-stats), 1990:02-2021:12. Ordered from smallest
model (1) to fourth smallest model (4). Numbers in parentheses are t-stats, based on
Newey-West with 4 lags.

to make the interpretation of  independent of the sample size (and sometimes also for
numerical reasons).

Remark 18.26 (Alternative formulation) The same problem can also be written as a con-

strained optimisation problem

minb
PT

tD1.yt � ˛ � x0tb/2 subject to
PK
iD1jbi j � t;

where a small t corresponds to a high  .

Clearly, when  D 0, then the lasso approach reproduces the OLS estimates. For
larger values of  , the lasso will give smaller coefficients: some bi will be zero and others
tend to be closer to zero than OLS would suggest (similar to other “shrinkage” methods
like a ridge estimation).

The lasso method can be used as a model selection technique by estimating a sequence
of models with with different  values. With a sufficiently high  , only one coefficient is
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(1) (2) (3) (4)

RVt�1 0:18 0:15

.2:04/ .1:74/

RVt�2

VIXt�1 0:95 1:20 1:02 1:06

.10:33/ .6:60/ .5:81/ .5:71/

VIXt�2 �0:31 �0:34 �0:37
.�2:26/ .�2:50/ .�2:62/

Rt�1

Rt�2 �0:13
.�1:40/

constant �2:97 �1:85 �0:67 �0:26
.�1:98/ .�1:58/ .�0:72/ .�0:31/

R2 0:53 0:55 0:56 0:56P jbi j 0:73 1:17 1:23 1:31

obs 362 362 362 362

Table 18.7: Best four regressions of monthly realized S&P 500 return volatility where
the model are selected by lasso, but then estimated with OLS, 1990:02-2021:12. Ordered
from smallest model (1) to fourth smallest model (4). Numbers in parentheses are t-
stats, based on Newey-West with 4 lags. The

P jbi j is for regression using standardized
variables.

non-zero, for a somewhat lower  value two coefficients are non-zero and so on. See Fig-
ure 18.12. Once the L (five, say) smallest specifications are found, we could re-estimate
each of them with OLS. (This is the lars-OLS hybrid discussed in Efron, Hasti, Johnstone,
and Tibshirani (2004).)

Empirical Example 18.27 (Lasso regression) Applying the Lasso approach to the re-

gression discussed in Example 18.23 gives a sequence of smaller and smaller models.

Figure 18.12 shows how the coefficients of the normalised variables change as penalty

parameter is increased. Re-estimating the four smallest of those models with OLS gives

the results in Table 18.7.

Remark 18.28 (Ridge regression�) The ridge regression solves minb
PT

tD1.yt � ˛ �
x0tb/2 C �

PK
iD1b

2
i ;where � > 0, so it forms a compromise between OLS and zero co-

efficients. This is easiest to see if yt and xt are demeaned so ˛ D 0. Then, the first order
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Figure 18.12: Lasso regressions

conditions for minimization are
PT

tD1xt.yt � x0t Qb/ � � Qb D 0, so Qb D .
PT

tD1xtx0t C
�I/�1

PT
tD1xtyt : Notice that � D 0 gives OLS, while � D1 gives Qb D 0.

Remark 18.29 (Application of the lasso/lars algorithms) These algorithms often stan-

dardize xt to have zero means and unit standard deviations, and yt to have zero means

(and perhaps unit standard deviation).

Remark 18.30 (Elastic net regression�) An elastic net regression is a mix of a Lasso

regression and a ridge regression. It solves minb
PT

tD1.yt � ˛ � x0tb/2 C 
PK
iD1jbi j C

�
PK
iD1b

2
i .

18.7 Forecast Averaging

Reference: Elliot and Timmermann (2016) 14
Averaging across forecasts have often proved to be a good way of producing a superior

forecast.
There are two main cases: (1) when we have access to the forecasts and also the

data/model that produced them and (2) when we have access to the forecasts only. We
discuss them in reverse order.
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Suppose we have access toK different forecasts ( ORit for i D 1 toK) of the return Rt .
All these forecasts are made in period t � h (with h � 1). We form a weighted average as

R�t D
PK
iD1wi ORit , with

PK
iD1wi D 1: (18.28)

For instance, w be be chosen as to minimize the forecast error variance or the MSE
over the sample up to and including t � h. In practice, it seems difficult to beat an un-
weighted average or an unweighted average after having pruned the most extreme fore-
casts (“trimmed mean”).

Remark 18.31 (�Minimising the MSE) Let ˙ be the variance-covariance matrix of the

forecast errors from K different models. If the forecasts are unbiased (so the forecast

errors have zero means), then the MSE of a combined forecast is w0˙w. Therefore,

minimize w0˙w=2C�.1�10w/ with respect to w to get the first order conditions˙w D
1� and 1 D 10w, which together imply w D ˙�11=10˙�11.

Instead, suppose we have access also to the models and data that produces the various
forecasts. It can then be argued that the proper way to proceed is to pool all the data and
apply the model selection techniques. However, the unweighted average across forecasts
often perform reasonably well.

Empirical Example 18.32 (Forecast combination, out-of-sample evaluations) See Table

18.8.

18.8 Out-of-Sample Forecasting Performance

References: Goyal and Welch (2008), and Campbell and Thompson (2008)
The idea of out-of-sample forecasting is to replicate real life forecasting. The pre-

diction equation is estimated on data up to and including t � 1, and then a forecast is
made for period t . The forecasting performance of the equation is then compared to some
benchmark prediction model like the historical average (also estimated on data up to and
including t � 1). See Figure 18.13 for an illustration. Then, the sample is extended
with one period (t ) and a forecast is made for t C 1. This continues until the sample is
exhausted.

Goyal and Welch (2008) find that the evidence of predictability of equity returns dis-
appears when out-of-sample forecasts are considered.
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1 t � 1

create
ORt

t

"t D
Rt � ORt

t C 1
sample

1 t

create
ORtC1

t C 1

"tC1 D
RtC1� ORtC1

longer sample

Figure 18.13: Out-of-sample forecasting

In contrast, Campbell and Thompson (2008) claim that there is still some out-of-
sample predictability, provided we put restrictions on the estimated models. They first
report that only few variables (earnings price ratio, T-bill rate and the inflation rate) have
significant predictive power for one-month stock returns in the full sample (1871–2003 or
early 1920s–2003, depending on predictor). The comparison is done in terms of the MSE
and an “out-of-sample R2”

R2OS D 1 �
PT

tDs"
2
t =
PT

tDse
2
t ; (18.29)

where s is the first period with an out-of-sample forecast, "t D Rt � ORt is the forecast
based on the prediction model (estimated on data up to and including t � 1) and et D
Rt � QRt is the prediction from some benchmark model (also estimated on data up to and
including t � 1). The paper uses the historical average (also estimated on data up to and
including t � 1) as the benchmark prediction. The evidence shows that the out-of-sample
forecasting performance is very weak—as claimed by Goyal and Welch (2008).

Campbell and Thompson (2008) argue that forecasting equations can easily give strange
results when they are estimated on a small data set (as they are early in the sample). They
therefore try different restrictions: setting the slope coefficient to zero whenever the sign
is “wrong,” setting the prediction (or the historical average) to zero whenever the value
is negative. This improves the results a bit—although the predictive performance is still
weak.

Empirical Example 18.33 (Out-of-sample prediction of equity returns) Figure 18.14 shows

results for daily size-sorted equity returns. There is some short-run predictability for
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small firm returns also out-of-sample. Figure 18.15 shows results on predicting long run

equity returns with E/P. The evidence suggests that the in-sample long-run predictability

vanishes out-of-sample.

1 2 3 4 5 6 7 8 9 10
size decile

0.01

0.00

0.01

0.02

0.03
US size deciles (daily) 1979:01-2021:12

Out-of-sample R 2 from AR(1) of excess
returns on size sorted equity portfolios.

The benchmark model is the (recursively
estimated) historical average.

(small) (large)

Out-of-sample R 2, AR(1) model

Figure 18.14: Short-run predictability of US stock returns, out-of-sample.

18.9 Evaluating Forecasting Performance

Further reading: Diebold (2001) 11; Stekler (1991); Diebold and Mariano (1995); Clark
and West (2007)

To do a solid evaluation of the forecast performance (of some forecaster/forecast
method/forecast institute), we need a sample (history) of the forecasts and the resulting
forecast errors. The reason is that the forecasting performance for a single period is likely
to be dominated by luck, so we can only expect to find systematic patterns by looking at
results for several periods.

To set up tests of the forecasting performance, let "t be the forecast error in period t

"t D Rt � ORt ; (18.30)

where ORt is the forecast (made in t � h) and Rt the actual outcome. (Warning: some
authors prefer to work with ORt �Rt as the forecast error instead.)

Quite often, we compare a forecast method (or forecasting institute) with a benchmark
forecast like a “no change,” a random walk or the historical average. The idea of such a
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The out-of-sample R 2 measures the fit 
of a regression on ln(E/P) relative to the
historical average

Out-of-sample R 2, excess returns predicted by ln(E/P)

Figure 18.15: Predictability of US stock returns, out-of-sample

comparison is to study if the resources employed in creating the forecast really bring value
added compared to a very simple (and inexpensive) forecast.

Ultimately, the ranking of forecasting methods should be done based on the true ben-
efits/costs of forecast errors—which may differ between organizations. For instance, a
forecasting agency has a reputation (and eventually customers) to lose, while an investor
has more immediate pecuniary concerns. Unless the relation between the forecast error
and the losses are immediately understood, the ranking of two forecast methods is typi-
cally done based on a number of standard criteria. Several of those criteria are inspired
by basic statistics.

Most statistical forecasting methods are based on the idea of minimizing the sum of
squared forecast errors, ˙T

tD1"2t . For instance, the least squares (LS) method picks the
regression coefficient in

Rt D ˇ0 C ˇ1xt�h C "t (18.31)

to minimize the sum of squared residuals. This will, among other things, give a zero
mean of the fitted residuals and also a zero correlation between the fitted residual and the
regressor. As usual, rational forecasts should have forecast errors that cannot be predicted
(by past regressors or forecast errors).

Evaluation of a forecast often involve extending these ideas to the forecast method,
irrespective of whether a LS regression has been used or not. In practice, this means
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studying (i) whether the forecast error, et , has a zero mean; (ii) the mean squared (or
absolute value) of the forecast error ; (iii) the fraction of times the squared (or absolute
value) of the forecast error is lower than some threshold; (iv) the profit from investing by
following a forecasting model; (v) if the forecast errors are autocorrelated or correlated
with past information.

Remark 18.34 (Autocorrelation of forecast errors�) An efficient h-step-ahead forecast

error has a zero correlation with the forecast error h (and more) periods earlier. For

instance, with h D 2, let etC2;t D ytC2 � Et ytC2 be the error of forecasting ytC2 using

the information in period t . It should be uncorrelated with et;t�2 D yt � Et�2 yt , since

the latter is known when the forecast Et ytC2 is formed.

To perform formal tests of forecasting performance a Diebold and Mariano (1995)
test is typically performed. It is an application of GMM. To implement it, consider two
different forecasts. For instance, the first forecast could come from a naive forecasting
model (for instance, no change) that you hope to beat (forecast errors et ) and the other is
your estimated model (forecast errors "t ). To test the different aspects discussed before,
let ı.x/ be an indicator function that is one if x is true and zero otherwise, and let Ret and
R"t denote the returns from following trading strategies based on the different forecasts.
Then, we could consider, for instance, the following moment conditions

gt D et � "t , or (18.32)

gt D e2t � "2t or gt D jet j � j"t j, or (18.33)

gt D ıŒsign. QRt/ ¤ sign.Rt/� � ıŒsign. ORt/ ¤ sign.Rt/�, or (18.34)

gt D Ret �R"t , or (18.35)

gt D etet�1 � "t"t�1 or gt D etxt�h � "txt�h: (18.36)

The different moment conditions correspond to the different aspects of the forecasts dis-
cussed above. For instance, (18.32) is for testing if the two methods have the same aver-
age forecast error, while (18.33) tests the MSE, which is an application of the Mariano-
Diebold approach. In contrast, (18.34) tests if the e model forecasts the wrong sign of
the return more often than the " model does. Finally, (18.35) compares the returns of a
trading strategy (not specified here) that depends on the forecasts and (18.36) tests if the
et errors are more predictable than the "t errors.

From the usual properties of GMM, we have typically have that (if the null hypothesis
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is true) p
T Ng!d N.0; S0/; (18.37)

where Ng DPT
tD1gt=T is the average moment condition and S0 is the variance of

p
T Ng.

When gt has no autocorrelation, then we can use S0 D Var.gt/=T . Otherwise, S0 can be
estimated by, for instance, a Newey-West approach. It is especially important to handle
autocorrelations in the forecast errors when we are forecasting multi-period returns using
overlapping data (for instance, monthly data on annual returns). This can be used to
construct a t-test.

The null hypothesis is that Egt D 0 (the two models perform equally well). In a
two-sided test the alternative hypothesis is Egt ¤ 0 (are the forecast errors different?).
The null is then rejected whenever the t -stat calculated from (18.37) is large in absolute
value (for instance, jt j > 1:645 for the 10% significance level). A one-sided test (where
the alternative is Egt > 0 or Egt < 0) is also easy to perform.

However, when the models behind e and " are nested (say, e is generated by a special
case of the model that generates "), then the asymptotic distribution is non-normal so
other critical values must be applied (see Clark and McCracken (2001)). This is, for
instance, the case when model behind e includes just an intercept and model behind "
has an intercept and a slope coefficient of some predictor x. If applied to returns, the
model behind e would just pick up the historical average return, while the model behind
" would also capture the predictive changes related to x. The basic reason for the non-
normal behaviour is that, even under the null hypothesis of equal performance, the average
e2t � "2t is likely to negative since "2t is affected by the noise caused by estimating too
many parameters. Clark and West (2007) suggest another way of handling this problem.
In particular, they suggest replacing the squared forecast errors in (18.33) with

gt D e2t � Œ"2t � . ORet � OR"t /2�; (18.38)

and then use (18.37). This approach adjusts for the fact that the model behind " is affected
by noise caused by the estimation of the extra parameters. (This logic assumes that the
smaller model is the true one, so the larger model includes parameters that ought to be set
to zero.)

Since Ret D ORet C et (and similarly for "t ), (18.38) can be rewritten in terms of the
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forecast errors only

gt D e2t � Œ"2t � .et � "t/2� (18.39)

D 2et.et � "t/: (18.40)

(Recall that et is the error from the smaller model, while "t is from the larger model.)
The null hypothesis is Egt D 0 and the alternative that Egt ¤ 0 for a two sided test (the
permance is different) or Egt > 0 for a one-sided test (the smaller “e” model is worse
than the larger “"” model).

The simulation evidence in Clark and West (2007) suggests that using (18.40) or ap-
plying a bootstrap to (18.33) have similar properties. The bootstrap approach can also be
readily applied to the other evaluation criteria (18.32)–(18.36).

AR(1) E/P Combination
mean t-stat mean t-stat mean t-stat

MSE in-sample 288:66 276:29

R2oos �0:04 �0:06 �0:02
e � " 0:23 1:96 �1:40 �1:38 �0:59 �1:13
e2 � "2 �12:96 �1:55 �17:70 �0:76 �7:21 �0:64
jej � j"j �0:21 �1:47 �0:73 �1:03 �0:28 �0:78
2e.e � "/ �12:03 �1:49 13:54 0:57 0:75 0:07

Table 18.8: Mariano-Diebold (and Clark-West) tests of forecasting 1-year S&P returns
with different models. The total sample is 1946–2020, but the forecasts are made for
1971–2020. The e forecasts are the historical average returns while the " forecasts are
out-of-sample and based on the different regressions. Estimation is done on an expanding
data window. The std use a NW approach with 1 lag (year).

5th percentile 95th percentile
e2 � "2 �2:20 0:21

jej � j"j �2:53 0:04

2e.e � "/ �1:71 1:67

Table 18.9: Bootstrapped percentiles of the Mariano-Diebold (and Clark-West) tests of
the E/P model in Table 18.8. The simulations are done under the null hypothesis by
randomly drawing (with replacement) the returns from the prediction sample.

Empirical Example 18.35 (Empirical results on predicting annual S&P 500 returns) Ta-

bles 18.8–18.9 and Figure 18.16 summarize the results. The combined model seems to do
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Figure 18.16: Accumumation of the (oos) MSE from three different forecasting models

slightly better than the two individual models. The build-up in the oos MSE shows some

jumps, but the ranking of the three methods do not change dramatically over time. Notice

also that the bootstrapped confidence bands in 18.9 appear very asymmetric, in spite of

being simulated under the null hypothesis. Only the Clark-West has a symmetric confi-

dence band.

For instance, Leitch and Tanner (1991) analyse the profits from selling 3-month T-
bill futures when the forecasted interest rate is above futures rate (forecasted bill price is
below futures price). The profit from this strategy is (not surprisingly) strongly related to
measures of correct direction of change (see above), but (perhaps more surprisingly) not
very strongly related to mean squared error, or absolute errors.

18.10 Appendix: Prices and Dividends

The gross return, RtC1, is defined as

RtC1 D DtC1 C PtC1
Pt

, so Pt D DtC1 C PtC1
RtC1

: (18.41)
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Substituting for PtC1 (and then PtC2; :::) gives

Pt D DtC1
RtC1

C DtC2
RtC1RtC2

C DtC3
RtC1RtC2RtC3

C : : : (18.42)

D
1X
jD1

DtCjQj

kD1RtCk
; (18.43)

provided the discounted value of PtCj goes to zero as j ! 1. This is simply an ac-
counting identity. It is clear that a high price in t must lead to low future returns and/or
high future dividends—which (by rational expectations) also carry over to expectations
of future returns and dividends.

It is sometimes more convenient to analyse the price-dividend ratio. Dividing (18.42)
and (18.43) by Dt gives

Pt

Dt

D 1

RtC1
DtC1
Dt

C 1

RtC1RtC2
DtC2
DtC1

DtC1
Dt

C 1

RtC1RtC2RtC3
DtC3
DtC2

DtC2
DtC1

DtC1
Dt

C : : :

(18.44)

D
1X
jD1

jY
kD1

DtCk=DtCk�1
RtCk

: (18.45)

As with (18.43) it is just an accounting identity. It must therefore also hold in expecta-
tions. Since expectations are good (the best?) predictors of future values, we have the im-
plication that the asset price should predict a discounted sum of future dividends, (18.43),
and that the price-dividend ratio should predict a discounted sum of future changes in
dividends.

Proof. (of (18.14)—slow version) Rewrite (18.41) as

RtC1 D DtC1 C PtC1
Pt

D PtC1
Pt

�
1C DtC1

PtC1

�
or in logs

QrtC1 D ptC1 � pt C ln Œ1C exp.dtC1 � ptC1/� :

Make a first order Taylor approximation of the last term around a steady state value of
dtC1 � ptC1, denoted d � p,

ln Œ1C exp.dtC1 � ptC1/� � ln
h
1C exp.d � p/

i
C exp.d � p/
1C exp.d � p/

h
dtC1 � ptC1 �

�
d � p

�i
� constantC .1 � �/ .dtC1 � ptC1/ ;
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where � D 1=Œ1C exp.d � p/� D 1=.1CD=P /. Combine and forget about the constant.
The result is

QrtC1 � ptC1 � pt C .1 � �/ .dtC1 � ptC1/
D �ptC1 � pt C .1 � �/ dtC1;

where 0 < � < 1. Add and subtract dt from the right hand side and rearrange

QrtC1 � � .ptC1 � dtC1/ � .pt � dt/C .dtC1 � dt/ , or

pt � dt � � .ptC1 � dtC1/C .dtC1 � dt/ � QrtC1

This is a (forward looking, unstable) difference equation, which we can solve recursively
forward. Provided lims!1 �s.ptCs � dtCs/ D 0, the solution is (18.14). (Trying to
solve for the log price level instead of the log price-dividend ratio is problematic since the
condition lims!1 �sptCs D 0 may not be satisfied.)
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Chapter 30

Appendix: A Primer in Matrix Algebra�

30.0.1 Adding and Multiplying: A Matrix and a Scalar

For this appendix, let c be a scalar and define the matrices

x D
"
x1

x2

#
; z D

"
z1

z2

#
; A D

"
A11 A12

A21 A22

#
, and B D

"
B11 B12

B21 B22

#
:

Multiplying a matrix by a scalar means multiplying each element by the scalar"
A11 A12

A21 A22

#
c D

"
A11c A12c

A21c A22c

#
:

Example 30.1 (Matrix � scalar)"
1 3

3 4

#
10 D

"
10 30

30 40

#
:

Adding/subtracting a scalar to each element of a matrix can be done by"
A11 A12

A21 A22

#
C cJ D

"
A11 C c A12 C c
A21 C c A22 C c

#
;

where J is a matrix (of the same size as A) filled with ones. This is sometimes written
AC c, although that notation is not universally liked. In some applications, 1n (or just 1)
is used to denote a vector of n ones.
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Example 30.2 (Matrix˙ scalar)"
10

11

#
� 10

"
1

1

#
D
"
0

1

#
"
1 3

3 4

#
C 10

"
1 1

1 1

#
D
"
11 13

13 14

#
:

30.0.2 Adding and Multiplying: Two Matrices

Matrix addition (or subtraction) is element by element

AC B D
"
A11 A12

A21 A22

#
C
"
B11 B12

B21 B22

#
D
"
A11 C B11 A12 C B12
A21 C B21 A22 C B22

#
:

Example 30.3 (Matrix addition and subtraction/"
10

11

#
�
"
2

5

#
D
"
8

6

#
"
1 3

3 4

#
C
"
1 2

3 �2

#
D
"
2 5

6 2

#

To turn a column into a row vector, use the transpose operator like in x0

x0 D
"
x1

x2

#0
D
h
x1 x2

i
:

Matrix multiplication requires the two matrices to be conformable: the first matrix
has as many columns as the second matrix has rows. Element ij of the result is the
multiplication of the i th row of the first matrix with the j th column of the second matrix

AB D
"
A11 A12

A21 A22

#"
B11 B12

B21 B22

#
D
"
A11B11 C A12B21 A11B12 C A12B22
A21B11 C A22B21 A21B12 C A22B22

#
:

Multiplying a square matrix A with a column vector z gives a column vector

Az D
"
A11 A12

A21 A22

#"
z1

z2

#
D
"
A11z1 C A12z2
A21z1 C A22z2

#
:
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Example 30.4 (Matrix multiplication)"
1 3

3 4

#"
1 2

3 �2

#
D
"
10 �4
15 �2

#
"
1 3

3 4

#"
2

5

#
D
"
17

26

#

30.0.3 Transpose

Similarly, transposing a matrix is like flipping it around the main diagonal

A0 D
"
A11 A12

A21 A22

#0
D
"
A11 A21

A12 A22

#
:

Example 30.5 (Matrix transpose) "
10

11

#0
D
h
10 11

i
"
1 2 3

4 5 6

#0
D

2641 4

2 5

3 6

375
30.0.4 Inner and Outer Products, Quadratic Forms

For two column vectors x and z, the product x0z is called the inner product (a scalar)

x0z D
h
x1 x2

i "z1
z2

#
D x1z1 C x2z2;

and xz0 the outer product (a matrix)

xz0 D
"
x1

x2

# h
z1 z2

i
D
"
x1z1 x1z2

x2z1 x2z2

#
:

(Notice that xz does not work).
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Example 30.6 (Inner and outer products)"
10

11

#0 "
2

5

#
D
h
10 11

i "2
5

#
D 75"

10

11

#"
2

5

#0
D
"
10

11

# h
2 5

i
D
"
20 50

22 55

#

If x is a column vector and A a square matrix, then the product x0Ax is a quadratic form
(a scalar).

Example 30.7 (Quadratic form)"
10

11

#0 "
1 3

3 4

#"
10

11

#
D 1244

30.0.5 Matrix Inverse

A matrix inverse is the closest we get to “dividing” by a matrix. The inverse of a matrix
A, denoted A�1, is such that

AA�1 D I and A�1A D I;

where I is the identity matrix (ones along the diagonal, and zeros elsewhere). The matrix
inverse is useful for solving systems of linear equations, y D Ax as x D A�1y.

For a 2 � 2 matrix we have"
A11 A12

A21 A22

#�1
D 1

A11A22 � A12A21

"
A22 �A12
�A21 A11

#
:

Example 30.8 (Matrix inverse) We have"
�4=5 3=5

3=5 �1=5

#"
1 3

3 4

#
D
"
1 0

0 1

#
, so"

1 3

3 4

#�1
D
"
�4=5 3=5

3=5 �1=5

#
:
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30.0.6 Solving Systems of Linear Equations

If A is n � n and invertible and b and y are n � 1 vectors, then we can solve

Ab D y as b D A�1y:

This solution is unique."
1 3

3 4

#"
b1

b2

#
D
"
10

11

#
, gives"

b1

b2

#
D
"
1 3

3 4

#�1 "
10

11

#
D
"
�1:4
3:8

#
:

30.0.7 OLS Notation: X 0X or
PT

tD1xtx0t?

Let xt be a K � 1 vector of (of data in period t ). We can the calculate the outer product
(K�K) as xtx0t and summing each element across T observations gives theK�K matrix
Sxx D

PT
tD1xtx0t .

Alternatively, let X be a T � K matrix with x0t in row t . Then we can also calculate
Sxx as X 0X .

Example 30.9 (Sum of outer product,
PT

tD1xtx0t )

x1 D
"
1

�1

#
; x2 D

"
1

0

#
; and x3 D

"
1

1

#
:

We then have

XT

tD1 xtx
0
t D

"
1

�1

# h
1 �1

i
C
"
1

0

# h
1 0

i
C
"
1

1

# h
1 1

i
D
"
1 �1
�1 1

#
C
"
1 0

0 0

#
C
"
1 1

1 1

#

D
"
3 0

0 2

#
:

In this example, the matrix happens to be diagonal, but that is not a general result. How-

ever, it will always be symmetric.

356



Example 30.10 (Sum of outer product, X 0X ) Define

X D

2641 �11 0

1 1

375 :

It is straightforward to calculate that X 0X D
"
3 0

0 2

#
.

30.0.8 Derivatives of Matrix Expressions

Let z and x be n � 1 vectors. The derivative of the inner product is @.z0x/=@z D x.

Example 30.11 (Derivative of an inner product) With n D 2

z0x D z1x1 C z2x2, so
@.z0x/
@z

D @.z1x1 C z2x2/"
@z1

@z2

# D
"
x1

x2

#
:

Let x be n � 1 and A a symmetric n � n matrix. The derivative of the quadratic form

is @.x0Ax/=@x D 2Ax.

Example 30.12 (Derivative of a quadratic form) With n D 2, the quadratic form is

x0Ax D
h
x1 x2

i "A11 A12

A12 A22

#"
x1

x2

#
D x21A11 C x22A22 C 2x1x2A12:

The derivatives with respect to x1 and x2 are

@.x0Ax/
@x1

D 2x1A11 C 2x2A12 and
@.x0Ax/
@x2

D 2x2A22 C 2x1A12, or

@.x0Ax/"
@x1

@x2

# D 2"A11 A12

A12 A22

#"
x1

x2

#
:
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Chapter 31

Some Statistics

This section summarizes some useful facts about statistics. Heuristic proofs are given in
a few cases.

Some references: Mittelhammer (1996), DeGroot (1986), Greene (2000), Davidson
(2000), Johnson, Kotz, and Balakrishnan (1994).

31.1 Distributions and Moment Generating Functions

Most of the stochastic variables we encounter in econometrics are continuous. For a
continuous random variable X , the range is uncountably infinite and the probability that
X � x is Pr.X � x/ D R x

�1f .q/dq where f .q/ is the continuous probability density
function of X . Note that X is a random variable, x is a number (1.23 or so), and q is just
a dummy argument in the integral.

Fact 31.1 (cdf and pdf) The cumulative distribution function of the random variable X is

F.x/ D Pr.X � x/ D R x
�1f .q/dq. Clearly, f .x/ D dF.x/=dx. Note that x is just a

number, not random variable.

Fact 31.2 (Moment generating function of X ) The moment generating function of the

random variable X is mgf .t/ D E etX . The r th moment is the r th derivative of mgf .t/

evaluated at t D 0: EX r D dmgf .0/=dt r . If a moment generating function exists (that

is, E etX <1 for some small interval t 2 .�h; h/), then it is unique.

Fact 31.3 (Moment generating function of a function ofX ) IfX has the moment generat-

ing function mgfX.t/ D E etX , then g.X/ has the moment generating function E etg.X/.
The affine function a C bX (a and b are constants) has the moment generating func-

tion mgfg.X/.t/ D E et.aCbX/ D eta E etbX D etamgfX.bt/. By setting b D 1 and
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a D �EX we obtain a mgf for central moments (variance, skewness, kurtosis, etc),

mgf.X�EX/.t/ D e�t EXmgfX.t/.

Example 31.4 When X � N.�; �2/, then mgfX.t/ D exp
�
�t C �2t2=2�. Let Z D

.X��/=� so a D ��=� and b D 1=� . This givesmgfZ.t/ D exp.��t=�/mgfX.t=�/ D
exp

�
t2=2

�
. (Of course, this result can also be obtained by directly setting � D 0 and

� D 1 in mgfX .)

Fact 31.5 (Characteristic function and the pdf) The characteristic function of a random

variable x is

g.�/ D E exp.i�x/

D R
x

exp.i�x/f .x/dx;

where f .x/ is the pdf. This is a Fourier transform of the pdf (if x is a continuous random

variable). The pdf can therefore be recovered by the inverse Fourier transform as

f .x/ D 1

2�

R1
�1 exp.�i�x/g.�/d�:

In practice, we typically use a fast (discrete) Fourier transform to perform this calcula-

tion, since there are very quick computer algorithms for doing that.

Fact 31.6 The charcteristic function of a N.�; �2/ distribution is exp.i�� � �2�2=2/
and of a lognormal(�; �2) distribuion (where ln x � N.�; �2/)

P1
jD0

.i�/j

j Š
exp.j� C

j 2�2=2/.

Fact 31.7 (Change of variable, univariate case, monotonic function) Suppose X has the

probability density function fX.c/ and cumulative distribution function FX.c/. Let Y D
g.X/ be a continuously differentiable function with dg=dX > 0 (so g.X/ is increasing

for all c such that fX.c/ > 0. Then the cdf of Y is

FY .c/ D PrŒY � c� D PrŒg.X/ � c� D PrŒX � g�1.c/� D FX Œg�1.c/�;

where g�1 is the inverse function of g such that g�1.Y / D X . We also have that the pdf

of Y is

fY .c/ D fX Œg�1.c/�
ˇ̌̌̌
dg�1.c/
dc

ˇ̌̌̌
:

If, instead, dg=dX < 0 (so g.X/ is decreasing), then we instead have the cdf of Y

FY .c/ D PrŒY � c� D PrŒg.X/ � c� D PrŒX � g�1.c/� D 1 � FX Œg�1.c/�;
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but the same expression for the pdf.

Proof. Differentiate FY .c/, that is, FX Œg�1.c/� with respect to c.

Example 31.8 Let X � U.0; 1/ and Y D g.X/ D F �1.X/ where F.c/ is a strictly

increasing cdf. We then get

fY .c/ D dF.c/

dc
:

The variable Y then has the pdf dF.c/=dc and the cdf F.c/. This shows how to gen-

erate random numbers from the F./ distribution: draw X � U.0; 1/ and calculate

Y D F �1.X/.

Example 31.9 Let Y D exp.X/, so the inverse function is X D lnY with derivative

1=Y . Then, fY .c/ D fX.ln c/=c. Conversely, let Y D lnX , so the inverse function is

X D exp.Y / with derivative exp.Y /. Then, fY .c/ D fX Œexp.c/� exp.c/.

Example 31.10 Let Y D .X � �/=� and suppose X has a N.�; �2/ distribution. The

inverse function isX D Y�C� and its derivative is � . Combine this with fX.c/ in 31.56

to get fY .c/ D exp.�1
2
c2/=
p
2� , which is the N.0; 1/ pdf.

Example 31.11 Let X � U.0; 2/, so the pdf and cdf of X are then 1=2 and c=2 respec-

tively. Now, let Y D g.X/ D �X gives the pdf and cdf as 1=2 and 1C y=2 respectively.

The latter is clearly the same as 1 � FX Œg�1.c/� D 1 � .�c=2/.

Fact 31.12 (Distribution of truncated a random variable) Let the probability distribution

and density functions of X be F.x/ and f .x/, respectively. The corresponding functions,

conditional on a < X � b are ŒF .x/ � F.a/�=ŒF.b/ � F.a/� and f .x/=ŒF.b/ � F.a/�.
Clearly, outside a < X � b the pdf is zero, while the cdf is zero below a and unity above

b.

31.2 Joint and Conditional Distributions and Moments

31.2.1 Joint and Conditional Distributions

Fact 31.13 (Joint and marginal cdf) Let X and Y be (possibly vectors of) random vari-

ables and let x and y be two numbers. The joint cumulative distribution function of

X and Y is H.x; y/ D Pr.X � x; Y � y/ D R x
�1

R y
�1 h.qx; qy/dqydqx, where

h.x; y/ D @2F.x; y/=@x@y is the joint probability density function.

360



Fact 31.14 (Joint and marginal pdf) The marginal cdf ofX is obtained by integrating out

Y : F.x/ D Pr.X � x; Y anything/ D R x�1 �R1�1 h.qx; qy/dqy� dqx . This shows that the

marginal pdf of x is f .x/ D dF.x/=dx D R1�1 h.qx; qy/dqy .

Fact 31.15 (Conditional distribution) The pdf of Y conditional on X D x (a number) is

g.yjx/ D h.x; y/=f .x/. This is clearly proportional to the joint pdf (at the given value

x).

Fact 31.16 (Change of variable, multivariate case, monotonic function) The result in

Fact 31.7 still holds if X and Y are both n � 1 vectors, but the derivative are now

@g�1.c/=@dc0 which is an n � n matrix. If g�1i is the i th function in the vector g�1

then

@g�1.c/
@dc0

D

2664
@g�11 .c/

@c1
� � � @g�11 .c/

@cn
:::

:::
@g�1n .c/

@c1
� � � @g�1n .c/

@cm

3775 :
31.2.2 Moments of Joint Distributions

Fact 31.17 (Caucy-Schwartz) .EXY /2 � E.X2/E.Y 2/:

Proof. 0 � EŒ.aXCY /2� D a2 E.X2/C2a E.XY /CE.Y 2/. Set a D �E.XY /=E.X2/

to get

0 � � ŒE.XY /�
2

E.X2/
C E.Y 2/, that is,

ŒE.XY /�2

E.X2/
� E.Y 2/:

Fact 31.18 (�1 � Corr.X; y/ � 1). Let Y and X in Fact 31.17 be zero mean variables

(or variables minus their means). We then get ŒCov.X; Y /�2 � Var.X/Var.Y /, that is,

�1 � Cov.X; Y /=ŒStd.X/Std.Y /� � 1.

31.2.3 Conditional Moments

Fact 31.19 (Conditional moments) E .Y jx/ D R
yg.yjx/dy and Var .Y jx/ D R

Œy �
E .Y jx/�g.yjx/dy.

Fact 31.20 (Conditional moments as random variables) Before we observe X , the condi-

tional moments are random variables—since X is. We denote these random variables by

E .Y jX/, Var .Y jX/, etc.
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Fact 31.21 (Law of iterated expectations) EY D EŒE .Y jX/�. Note that E .Y jX/ is a

random variable since it is a function of the random variable X . It is not a function of Y ,

however. The outer expectation is therefore an expectation with respect to X only.

Proof. EŒE .Y jX/� D R �R yg.yjx/dy�f .x/dx D R R yg.yjx/f .x/dydx D R R yh.y; x/dydx D
EY:

Fact 31.22 (Conditional vs. unconditional variance) Var .Y / D Var ŒE .Y jX/�CE ŒVar .Y jX/�.
Fact 31.23 (Properties of Conditional Expectations) (a) Y D E .Y jX/CU where U and

E .Y jX/ are uncorrelated: Cov .X; Y / D Cov ŒX;E .Y jX/C U � D Cov ŒX;E .Y jX/�.
It follows that (b) CovŒY;E .Y jX/� D VarŒE .Y jX/�; and (c) Var .Y / D Var ŒE .Y jX/�C
Var .U /. Property (c) is the same as Fact 31.22, where Var .U / D E ŒVar .Y jX/�.

Proof. Cov .X; Y / D R R x.y�Ey/h.x; y/dydx D R x �R .y � Ey/g.yjx/dy�f .x/dx,
but the term in brackets is E .Y jX/ � EY .

Fact 31.24 (Conditional expectation and unconditional orthogonality) E .Y jZ/ D 0)
EYZ D 0.

Proof. Note from Fact 31.23 that E.Y jX/ D 0 implies Cov .X; Y / D 0 so EXY D
EX EY (recall that Cov .X; Y / D EXY �EX EY ). Note also that E .Y jX/ D 0 implies
that EY D 0 (by iterated expectations). We therefore get

E .Y jX/ D 0)
"

Cov .X; Y / D 0
EY D 0

#
) EYX D 0:

31.2.4 Regression Function and Linear Projection

Fact 31.25 (Regression function) Suppose we use information in some variables X to

predict Y . The choice of the forecasting function OY D k.X/ D E .Y jX/ minimizes

EŒY �k.X/�2: The conditional expectation E .Y jX/ is also called the regression function

of Y on X . See Facts 31.23 and 31.24 for some properties of conditional expectations.

Fact 31.26 (Linear projection) Suppose we want to forecast the scalar Y using the k � 1
vector X and that we restrict the forecasting rule to be linear OY D X 0ˇ. This rule is a

linear projection, denoted P.Y jX/, if ˇ satisfies the orthogonality conditions EŒX.Y �
X 0ˇ/� D 0k�1, that is, if ˇ D .EXX 0/�1 EXY . A linear projection minimizes EŒY �
k.X/�2 within the class of linear k.X/ functions.
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Fact 31.27 (Properties of linear projections) (a) The orthogonality conditions in Fact

31.26 mean that

Y D X 0ˇ C ";
where E.X"/ D 0k�1. This implies that EŒP.Y jX/"� D 0, so the forecast and fore-

cast error are orthogonal. (b) The orthogonality conditions also imply that EŒXY � D
EŒXP.Y jX/�. (c) When X contains a constant, so E " D 0, then (a) and (b) carry over to

covariances: CovŒP.Y jX/; "� D 0 and CovŒX; Y � D CovŒXP; .Y jX/�.

Example 31.28 (P.1jX/) When Yt D 1, then ˇ D .EXX 0/�1 EX . For instance, sup-

pose X D Œx1t ; xt2�0. Then

ˇ D
"

E x21t E x1tx2t
E x2tx1t E x22t

#�1 "
E x1t
E x2t

#
:

If x1t D 1 in all periods, then this simplifies to ˇ D Œ1; 0�0.

Remark 31.29 Some authors prefer to take the transpose of the forecasting rule, that is,

to use OY D ˇ0X . Clearly, since XX 0 is symmetric, we get ˇ0 D E.YX 0/.EXX 0/�1.

Fact 31.30 (Linear projection with a constant inX ) IfX contains a constant, thenP.aYC
bjX/ D aP.Y jX/C b.

Fact 31.31 (Linear projection versus regression function) Both the linear regression and

the regression function (see Fact 31.25) minimize EŒY � k.X/�2, but the linear projection

imposes the restriction that k.X/ is linear, whereas the regression function does not im-

pose any restrictions. In the special case when Y and X have a joint normal distribution,

then the linear projection is the regression function.

Fact 31.32 (Linear projection and OLS) The linear projection is about population mo-

ments, but OLS is its sample analogue.

31.3 Convergence in Probability, Mean Square, and Distribution

Fact 31.33 (Convergence in probability) The sequence of random variables fXT g con-

verges in probability to the random variable X if (and only if) for all " > 0

lim
T!1

Pr.jXT �X j < "/ D 1:
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We denote this XT
p! X or plimXT D X (X is the probability limit of XT ). Note: (a)

X can be a constant instead of a random variable; (b) if XT and X are matrices, then

XT
p! X if the previous condition holds for every element in the matrices.

Example 31.34 Suppose XT D 0 with probability .T � 1/=T and XT D T with prob-

ability 1=T . Note that limT!1 Pr.jXT � 0j D 0/ D limT!1.T � 1/=T D 1, so

limT!1 Pr.jXT � 0j D "/ D 1 for any " > 0. Note also that EXT D 0 � .T � 1/=T C
T � 1=T D 1, so XT is biased.

Fact 31.35 (Convergence in mean square) The sequence of random variables fXT g con-

verges in mean square to the random variable X if (and only if)

lim
T!1

E.XT �X/2 D 0:

We denote this XT
m! X . Note: (a) X can be a constant instead of a random variable;

(b) if XT and X are matrices, then XT
m! X if the previous condition holds for every

element in the matrices.

Fact 31.36 (Convergence in mean square to a constant) If X in Fact 31.35 is a constant,

then then XT
m! X if (and only if)

lim
T!1

.EXT �X/2 D 0 and lim
T!1

Var.XT 2/ D 0:

This means that both the variance and the squared bias go to zero as T !1.

Proof. E.XT �X/2 D EX2
T � 2X EXT CX2. Add and subtract .EXT /2 and recall

that Var.XT / D EX2
T �.EXT /2. This gives E.XT �X/2 D Var.XT /�2X EXT CX2C

.EXT /2 D Var.XT /C .EXT �X/2.

Fact 31.37 (Convergence in distribution) Consider the sequence of random variables

fXT gwith the associated sequence of cumulative distribution functions fFT g. If limT!1 FT D
F (at all points), then F is the limiting cdf of XT . If there is a random variable X with

cdf F , then XT converges in distribution to X : XT
d! X . Instead of comparing cdfs, the

comparison can equally well be made in terms of the probability density functions or the

moment generating functions.

Fact 31.38 (Relation between the different types of convergence) We have XT
m! X )

XT
p! X ) XT

d! X . The reverse implications are not generally true.
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Figure 31.1: Sampling distributions

Example 31.39 Consider the random variable in Example 31.34. The expected value is

EXT D 0.T � 1/=T C T=T D 1. This means that the squared bias does not go to zero,

so XT does not converge in mean square to zero.

Fact 31.40 (Slutsky’s theorem) If fXT g is a sequence of random matrices such that plimXT D
X and g.XT / a continuous function, then plimg.XT / D g.X/.
Fact 31.41 (Continuous mapping theorem) Let the sequences of random matrices fXT g
and fYT g, and the non-random matrix faT g be such thatXT

d! X , YT
p! Y , and aT ! a

(a traditional limit). Let g.XT ; YT ; aT / be a continuous function. Then g.XT ; YT ; aT /
d!

g.X; Y; a/.

31.4 Laws of Large Numbers and Central Limit Theorems

Fact 31.42 (Khinchine’s theorem) Let Xt be independently and identically distributed

(iid) with EXt D � <1. Then ˙T
tD1Xt=T

p! �.
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Fact 31.43 (Chebyshev’s theorem) If EXt D 0 and limT!1Var.˙T
tD1Xt=T / D 0, then

˙T
tD1Xt=T

p! 0.

Fact 31.44 (The Lindeberg-Lévy theorem) Let Xt be independently and identically dis-

tributed (iid) with EXt D 0 and Var.Xt/ <1. Then 1p
T
˙T
tD1Xt=�

d! N.0; 1/.

31.5 Stationarity

Fact 31.45 (Covariance stationarity) Xt is covariance stationary if

EXt D � is independent of t;

Cov .Xt�s; Xt/ D s depends only on s, and

both � and s are finite.

Fact 31.46 (Strict stationarity) Xt is strictly stationary if, for all s, the joint distribution

of Xt ; XtC1; :::; XtCs does not depend on t .

Fact 31.47 (Strict stationarity versus covariance stationarity) In general, strict station-

arity does not imply covariance stationarity or vice versa. However, strict stationary with

finite first two moments implies covariance stationarity.

31.6 Martingales

Fact 31.48 (Martingale) Let ˝t be a set of information in t , for instance Yt ; Yt�1; ::: If

E jYt j <1 and E.YtC1j˝t/ D Yt , then Yt is a martingale.

Fact 31.49 (Martingale difference) If Yt is a martingale, then Xt D Yt � Yt�1 is a mar-

tingale difference: Xt has E jXt j <1 and E.XtC1j˝t/ D 0.

Fact 31.50 (Innovations as a martingale difference sequence) The forecast errorXtC1 D
YtC1 � E.YtC1j˝t/ is a martingale difference.

Fact 31.51 (Properties of martingales) (a) If Yt is a martingale, then E.YtCsj˝t/ D Yt

for s � 1. (b) If Xt is a martingale difference, then E.XtCsj˝t/ D 0 for s � 1.

Proof. (a) Note that E.YtC2j˝tC1/ D YtC1 and take expectations conditional on ˝t :
EŒE.YtC2j˝tC1/j˝t � D E.YtC1j˝t/ D Yt . By iterated expectations, the first term equals
E.YtC2j˝t/. Repeat this for t C 3, t C 4, etc. (b) Essentially the same proof.
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Fact 31.52 (Properties of martingale differences) If Xt is a martingale difference and

gt�1 is a function of ˝t�1, then Xtgt�1 is also a martingale difference.

Proof. E.XtC1gt j˝t/ D E.XtC1j˝t/gt since gt is a function of ˝t .

Fact 31.53 (Martingales, serial independence, and no autocorrelation) (a) Xt is serially

uncorrelated if Cov.Xt ; XtCs/ D 0 for all s ¤ 0. This means that a linear projection of

XtCs on Xt ; Xt�1;::: is a constant, so it cannot help predict XtCs. (b) Xt is a martingale

difference with respect to its history if E.XtCsjXt ; Xt�1; :::/ D 0 for all s � 1. This means

that no function of Xt ; Xt�1; ::: can help predict XtCs. (c) Xt is serially independent if

pdf.XtCsjXt ; Xt�1; :::/ D pdf.XtCs/. This means than no function of Xt ; Xt�1; ::: can

help predict any function of XtCs.

Fact 31.54 (WLN for martingale difference) IfXt is a martingale difference, then plim˙T
tD1Xt=T D

0 if either (a) Xt is strictly stationary and E jxt j < 0 or (b) E jxt j1Cı <1 for ı > 0 and

all t . (See Davidson (2000) 6.2)

Fact 31.55 (CLT for martingale difference) LetXt be a martingale difference. If plim˙T
tD1.X2

t �
EX2

t /=T D 0 and either

(a) Xt is strictly stationary or

(b) maxt2Œ1;T � .E jXt j
2Cı/1=.2Cı/

˙TtD1 EX2t =T
<1 for ı > 0 and all T > 1;

then .˙T
tD1Xt=

p
T /=.˙T

tD1 EX2
t =T /

1=2
d! N.0; 1/. (See Davidson (2000) 6.2)

31.7 Special Distributions

31.7.1 The Normal Distribution

Fact 31.56 (Univariate normal distribution) If X � N.�; �2/, then the probability den-

sity function of X , f .x/ is

f .x/ D 1p
2��2

e�
1
2
.x��
�
/2 :

The moment generating function is mgfX.t/ D exp
�
�t C �2t2=2� and the moment gen-

erating function around the mean is mgf.X��/.t/ D exp
�
�2t2=2

�
.
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Figure 31.2: Normal distributions

Example 31.57 The first few moments around the mean are E.X��/ D 0, E.X��/2 D
�2, E.X � �/3 D 0 (all odd moments are zero), E.X � �/4 D 3�4, E.X � �/6 D 15�6,
and E.X ��/8 D 105�8. More generally, for even n, we have E .X � �/n D �2.n�1/ŠŠ
where .n � 1/ŠŠ is the product of all odd numbers up to and including n � 1, .n � 1/ �
.n � 3/ � : : : � 3 � 1.

Fact 31.58 (Standard normal distribution) If X � N.0; 1/, then the moment generating

function is mgfX.t/ D exp
�
t2=2

�
. Since the mean is zero, m.t/ gives central moments.

The first few are EX D 0, EX2 D 1, EX3 D 0 (all odd moments are zero), and

EX4 D 3. The distribution function, Pr.X � a/ D ˚.a/ D 1=2 C 1=2 erf.a=
p
2/,

where erf./ is the error function, erf.z/ D 2p
�

R z
0

exp.�t2/dt ). The complementary error

function is erfc.z/ D 1� erf.z/. Since the distribution is symmetric around zero, we have

˚.�a/ D Pr.X � �a/ D Pr.X � a/ D 1 � ˚.a/. Clearly, 1 � ˚.�a/ D ˚.a/ D
1=2 erfc.�a=p2/. This latter is often a better method for calculating probabilities in the

far left tail.

Fact 31.59 (Multivariate normal distribution) IfX is an n�1 vector of random variables

with a multivariate normal distribution, with a mean vector � and variance-covariance

matrix ˙ , N.�;˙/, then the density function is

f .x/ D 1

.2�/n=2j˙ j1=2 exp
�
�1
2
.x � �/0˙�1.x � �/

�
:
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Figure 31.3: Density functions of normal distributions

Fact 31.60 (Conditional normal distribution) Suppose Zm�1 and Xn�1 are jointly nor-

mally distributed "
Z

X

#
� N

 "
�Z

�X

#
;

"
˙ZZ ˙ZX

˙XZ ˙XX

#!
:

The distribution of the random variable Z conditional on that X D x (a number) is also

normal with mean

E .Zjx/ D �Z C˙ZX˙�1XX .x � �X/ ;
and variance (variance of Z conditional on that X D x, that is, the variance of the

prediction error Z � E .Zjx/)

Var .Zjx/ D ˙ZZ �˙ZX˙�1XX˙XZ:

Note that the conditional variance is constant in the multivariate normal distribution

(Var .ZjX/ is not a random variable in this case). Note also that Var .Zjx/ is less than
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Var.Z/ D ˙ZZ (in a matrix sense) if X contains any relevant information (so ˙ZX is

not zero, that is, E .Zjx/ is not the same for all x).

Example 31.61 (Conditional normal distribution) Suppose Z and X are scalars in Fact

31.60 and that the joint distribution is"
Z

X

#
� N

 "
3

5

#
;

"
1 2

2 6

#!
:

The expectation of Z conditional on X D x is then

E .Zjx/ D 3C 2

6
.x � 5/ D 3C 1

3
.x � 5/ :

Similarly, the conditional variance is

Var .Zjx/ D 1 � 2 � 2
6
D 1

3
:

Fact 31.62 (Stein’s lemma) If Y has normal distribution and h./ is a differentiable func-

tion such that E jh0.Y /j <1, then CovŒY; h.Y /� D Var.Y /E h0.Y /.

Proof. EŒ.Y ��/h.Y /� D R1�1.Y ��/h.Y /�.Y I�; �2/dY , where �.Y I�; �2/ is the
pdf ofN.�; �2/. Note that d�.Y I�; �2/=dY D ��.Y I�; �2/.Y��/=�2, so the integral
can be rewritten as ��2R1�1h.Y /d�.Y I�; �2/. Integration by parts (“

R
udv D uv �R

vdu”) gives��2 �h.Y /�.Y I�; �2/ˇ̌1�1 � R1�1�.Y I�; �2/h0.Y /dY � D �2 E h0.Y /.

Fact 31.63 (Stein’s lemma 2) It follows from Fact 31.62 that if X and Y have a bivariate

normal distribution and h./ is a differentiable function such that E jh0.Y /j < 1, then

CovŒX; h.Y /� D Cov.X; Y /E h0.Y /.

Example 31.64 (a) With h.Y / D exp.Y /we get CovŒX; exp.Y /� D Cov.X; Y /E exp.Y /;
(b) with h.Y / D Y 2 we get CovŒX; Y 2� D Cov.X; Y /2EY so with EY D 0 we get a

zero covariance.

Fact 31.65 (Stein’s lemma 3) Fact 31.63 still holds if the joint distribution of X and Y is

a mixture of n bivariate normal distributions, provided the mean and variance of Y is the

same in each of the n components. (See Söderlind (2009) for a proof.)

Fact 31.66 (Truncated normal distribution) Let X � N.�; �2/, and consider truncating

the distribution so that we want moments conditional on a < X � b. Define a0 D
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.a � �/=� and b0 D .b � �/=� and let �./ be the pdf and ˚./ the cdf of a N.0; 1/

variable. Then,

E.X ja < X � b/ D � � � �.b0/ � �.a0/
˚.b0/ � ˚.a0/ and

Var.X ja < X � b/ D �2
(
1 � b0�.b0/ � a0�.a0/

˚.b0/ � ˚.a0/ �
�
�.b0/ � �.a0/
˚.b0/ � ˚.a0/

�2)
:

Fact 31.67 (Lower truncation) In Fact 31.66, let b !1, so we only have the truncation

a < X . Then, we have

E.X ja < X/ D �C � �.a0/

1 � ˚.a0/ and

Var.X ja < X/ D �2
(
1C a0�.a0/

1 � ˚.a0/ �
�

�.a0/

1 � ˚.a0/
�2)

:

(The latter follows from limb!1 b0�.b0/ D 0.)

Example 31.68 Suppose X � N.0; �2/ and we want to calculate E jxj. This is the same

as E.X jX > 0/ D 2��.0/.

Fact 31.69 (Upper truncation) In Fact 31.66, let a ! �1, so we only have the trunca-

tion X � b. Then, we have

E.X jX � b/ D � � � �.b0/
˚.b0/

and

Var.X jX � b/ D �2
(
1 � b0�.b0/

˚.b0/
�
�
�.b0/

˚.b0/

�2)
:

(The latter follows from lima!�1 a0�.a0/ D 0.)

Fact 31.70 (Delta method) Consider an estimator Ǒ
k�1

which satisfies

p
T
� Ǒ � ˇ0� d! N .0;˝/ ;

and suppose we want the asymptotic distribution of a transformation of ˇ

q�1 D g .ˇ/ ;
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where g .:/ is has continuous first derivatives. The result is

p
T
h
g
� Ǒ� � g .ˇ0/i d! N

�
0; 	q�q

�
; where

	 D @g .ˇ0/

@ˇ
0
˝
@g .ˇ0/

0

@ˇ
, where

@g .ˇ0/

@ˇ
0

is q � k:

Proof. By the mean value theorem we have

g
� Ǒ� D g .ˇ0/C @g .ˇ�/

@ˇ0
� Ǒ � ˇ0� ;

where

@g .ˇ/

@ˇ0
D

2664
@g1.ˇ/

@ˇ1
� � � @g1.ˇ/

@ˇk
:::

: : :
:::

@gq.ˇ/

@ˇ1
� � � @gq.ˇ/

@ˇk

3775
q�k

;

and we evaluate it at ˇ� which is (weakly) between Ǒ and ˇ0. Premultiply by
p
T and

rearrange as p
T
h
g
� Ǒ� � g .ˇ0/i D @g .ˇ�/

@ˇ0
p
T
� Ǒ � ˇ0� .

If Ǒ is consistent (plim Ǒ D ˇ0) and @g .ˇ�/ =@ˇ0 is continuous, then by Slutsky’s theorem
plim @g .ˇ�/ =@ˇ0 D @g .ˇ0/ =@ˇ

0, which is a constant. The result then follows from the
continuous mapping theorem.

31.7.2 The Lognormal Distribution

Fact 31.71 (Univariate lognormal distribution) If x � N.�; �2/ and y D exp.x/ then

the probability density function of y, f .y/ is

f .y/ D 1

y
p
2��2

e�
1
2
. lny��

�
/2 , y > 0:

The r th moment of y is Eyr D exp.r�C r2�2=2/. See 31.4 for an illustration.

Example 31.72 The first two moments are Ey D exp
�
�C �2=2� and Ey2 D exp.2�C

2�2/. We therefore get Var.y/ D exp
�
2�C �2� �exp

�
�2
� � 1� and Std .y/ =Ey Dp

exp.�2/ � 1.

Fact 31.73 (Moments of a truncated lognormal distribution) If x � N.�; �2/ and y D
exp.x/ then E.yr jy > a/ D E.yr/˚.r� � a0/=˚.�a0/, where a0 D .ln a � �/ =� and
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Figure 31.4: Lognormal distribution

where �./ is the pdf and ˚./ the cdf of a N.0; 1/ variable. Notice that the denominator

is Pr.y > a/ D ˚.�a0/. In contrast, E.yr jy � b/ D E.yr/˚.�r� C b0/=˚.b0/,

where b0 D .ln b � �/ =� . The denominator is Pr.y � b/ D ˚.b0/. Clearly, E.yr/ D
exp.r�C r2�2=2/
Fact 31.74 (Moments of a truncated lognormal distribution, two-sided truncation) If x �
N.�; �2/ and y D exp.x/ then

E.yr ja > y < b/ D E.yr/
˚.r� � a0/ � ˚.r� � b0/

˚.b0/ � ˚.a0/ ;

where a0 D .ln a � �/ =� and b0 D .ln b � �/ =� . Note that the denominator is Pr.a >
y < b/ D ˚.b0/ � ˚.a0/. Clearly, E.yr/ D exp.r�C r2�2=2/.
Example 31.75 The first two moments of the truncated (from below) lognormal distri-

bution are E.yjy > a/ D exp
�
�C �2=2�˚.� � a0/=˚.�a0/ and E.y2jy > a/ D

exp
�
2�C 2�2�˚.2� � a0/=˚.�a0/.

Example 31.76 The first two moments of the truncated (from above) lognormal distri-

bution are E.yjy � b/ D exp
�
�C �2=2�˚.�� C b0/=˚.b0/ and E.y2jy � b/ D

exp
�
2�C 2�2�˚.�2� C b0/=˚.b0/.

Fact 31.77 (Multivariate lognormal distribution) Let the n� 1 vector x have a mulivari-

ate normal distribution

x � N.�;˙/, where � D

2664
�1
:::

�n

3775 and ˙ D

2664
�11 � � � �1n
:::

: : :
:::

�n1 � � � �nn

3775 :
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Then y D exp.x/ has a lognormal distribution, with the means and covariances

Eyi D exp .�i C �i i=2/
Cov.yi ; yj / D exp

�
�i C �j C .�i i C �jj /=2

� �
exp.�ij / � 1

�
Corr.yi ; yj / D

�
exp.�ij / � 1

�
=

q
Œexp.�i i/ � 1�

�
exp.�jj / � 1

�
:

Cleary, Var.yi/ D exp Œ2�i C �i i � Œexp.�i i/ � 1�. Cov.y1; y2/ and Corr.y1; y2/ have the

same sign as Corr.xi ; xj / and are increasing in it. However, Corr.yi ; yj / is closer to zero.

31.7.3 The Chi-Square Distribution

Fact 31.78 (The �2n distribution) If Y � �2n, then the pdf of Y is f .y/ D 1
2n=2� .n=2/

yn=2�1e�y=2,
where � ./ is the gamma function. The moment generating function is mgfY .t/ D .1 �
2t/�n=2 for t < 1=2. The first moments of Y are EY D n and Var.Y / D 2n.

Fact 31.79 (Quadratic forms of normally distribution random variables) If the n � 1
vector X � N.0;˙/, then Y D X 0˙�1X � �2n. Therefore, if the n scalar random

variables Xi , i D 1; :::; n, are uncorrelated and have the distributions N.0; �2i /, i D
1; :::; n, then Y D ˙n

iD1X
2
i =�

2
i � �2n.

Fact 31.80 (Distribution ofX 0AX ) If the n�1 vectorX � N.0; I /, andA is a symmetric

idempotent matrix (A D A0 and A D AA D A0A D AA0) of rank r , then Y D X 0AX �
�2r .

Fact 31.81 (Distribution of X 0˙CX ) If the n � 1 vector X � N.0;˙/, where ˙ has

rank r � n then Y D X 0˙CX � �2r where ˙C is the pseudo inverse of ˙ .

Proof. ˙ is symmetric, so it can be decomposed as ˙ D C�C 0 where C are the
orthogonal eigenvectors (C 0C D I ) and � is a diagonal matrix with the eigenvalues
along the main diagonal. We therefore have ˙ D C�C 0 D C1�11C

0
1 where C1 is an

n � r matrix associated with the r non-zero eigenvalues (found in the r � r matrix �11).
The generalized inverse can be shown to be

˙C D
h
C1 C2

i " ��111 0
0 0

# h
C1 C2

i0
D C1��111C 01;
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We can write ˙C D C1��1=211 �
�1=2
11 C 01. Consider the r � 1 vector Z D ��1=211 C 01X , and

note that it has the covariance matrix

EZZ0 D ��1=211 C 01 EXX 0C1��1=211 D ��1=211 C 01C1�11C
0
1C1�

�1=2
11 D Ir ;

since C 01C1 D Ir . This shows that Z � N.0r�1; Ir/, so Z0Z D X 0˙CX � �2r .

Fact 31.82 (Convergence to a normal distribution) Let Y � �2n and Z D .Y � n/=n1=2.
Then Z

d! N.0; 2/.

Example 31.83 If Y D ˙n
iD1X

2
i =�

2
i , then this transformation meansZ D .˙n

iD1X
2
i =�

2
i �

1/=n1=2.

Proof. We can directly note from the moments of a �2n variable that EZ D .EY �
n/=n1=2 D 0, and Var.Z/ D Var.Y /=n D 2. From the general properties of moment
generating functions, we note that the moment generating function of Z is

mgfZ.t/ D e�t
p
n

�
1 � 2 t

n1=2

��n=2
with lim

n!1mgfZ.t/ D exp.t2/:

This is the moment generating function of a N.0; 2/ distribution, which shows that Z
d!

N.0; 2/. This result should not come as a surprise as we can think of Y as the sum of
n variables; dividing by n1=2 is then like creating a scaled sample average for which a
central limit theorem applies.

Fact 31.84 (Non-central Chi-square) If the n � 1 vector X � N.�;˙/, then Y D
X 0˙�1X � �2n.�/ where � D �0˙�1�. This is a non-central Chi-square distribution

with n degrees of freedom and the non-centrality parameter �. (Warning: some authors

instead define � as �0˙�1�=2.) If � D 0, then it is the same as a �2n distribution.

31.7.4 The t and F Distributions

Fact 31.85 (The F.n1; n2/ distribution) If Y1 � �2n1 and Y2 � �2n2 and Y1 and Y2 are

independent, thenZ D .Y1=n1/=.Y2=n2/ has an F.n1; n2/ distribution. This distribution

has no moment generating function, but EZ D n2=.n2 � 2/ for n > 2.

Fact 31.86 (Convergence of an F.n1; n2/ distribution) In Fact (31.85), the distribution of

n1Z D Y1=.Y2=n2/ converges to a �2n1 distribution as n2 !1. (The idea is essentially
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Figure 31.5: t, �2, and F distributions

that n2 ! 1 the denominator converges to the mean, which is EY2=n2 D 1. Only the

numerator is then left, which is a �2n1 variable.)

Fact 31.87 (The tn distribution) If X � N.0; 1/ and Y � �2n and X and Y are indepen-

dent, then Z D X=.Y=n/1=2 has a tn distribution. The moment generating function does

not exist, but EZ D 0 for n > 1 and Var.Z/ D n=.n � 2/ for n > 2.

Fact 31.88 (Convergence of a tn distribution) The t distribution converges to a N.0; 1/

distribution as n!1.

Fact 31.89 (tn versus F.1; n/ distribution) If Z � tn, then Z2 � F.1; n/.

31.7.5 The Bernouilli and Binomial Distributions

Fact 31.90 (Bernoulli distribution) The random variable X can only take two values:

1 or 0, with probability p and 1 � p respectively. The moment generating function is

mgf .t/ D pet C 1 � p. This gives E.X/ D p and Var.X/ D p.1 � p/.
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Example 31.91 (Shifted Bernoulli distribution) Suppose the Bernoulli variable takes the

values a or b (instead of 1 and 0) with probability p and 1�p respectively. Then E.X/ D
paC .1 � p/b and Var.X/ D p.1 � p/.a � b/2.

Fact 31.92 (Binomial distribution). Suppose X1; X2; :::; Xn all have Bernoulli distribu-

tions with the parameter p. Then, the sum Y D X1 C X2 C ::: C Xn has a Binomial

distribution with parameters p and n. The pdf is pdf.Y / D nŠ=ŒyŠ.n� y/Š�py.1� p/n�y
for y D 0; 1; :::; n. The moment generating function is mgf .t/ D Œpet C 1 � p�n. This

gives E.Y / D np and Var.Y / D np.1 � p/.

Example 31.93 (Shifted Binomial distribution) Suppose the Bernuolli variablesX1; X2; :::; Xn
take the values a or b (instead of 1 and 0) with probability p and 1 � p respectively.

Then, the sum Y D X1 C X2 C :::C Xn has E.Y / D nŒpa C .1 � p/b� and Var.Y / D
nŒp.1 � p/.a � b/2�.

31.7.6 The Skew-Normal Distribution

Fact 31.94 (Skew-normal distribution) Let � and ˚ be the standard normal pdf and cdf

respectively. The pdf of a skew-normal distribution with shape parameter ˛ is then

f .z/ D 2�.z/˚.˛z/:

If Z has the above pdf and

Y D �C !Z with ! > 0;

then Y is said to have a SN.�; !2; ˛/ distribution (see Azzalini (2005)). Clearly, the pdf

of Y is

f .y/ D 2� Œ.y � �/ =!�˚ Œ˛ .y � �/ =!� =!:
The moment generating function is mgfy.t/ D 2 exp

�
�t C !2t2=2�˚.ı!t/ where ı D

˛=
p
1C ˛2. When ˛ > 0 then the distribution is positively skewed (and vice versa)—and

when ˛ D 0 the distribution becomes a normal distribution. When ˛ ! 1, then the

density function is zero for Y � �, and 2� Œ.y � �/ =!� =! otherwise—this is a half-

normal distribution.

Example 31.95 The first three moments are as follows. First, notice that EZ Dp2=�ı,
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Var.Z/ D 1 � 2ı2=� and E.Z � EZ/3 D .4=� � 1/p2=�ı3. Then we have

EY D �C ! EZ

Var.Y / D !2 Var.Z/

E .Y � EY /3 D !3 E.Z � EZ/3:

Notice that with ˛ D 0 (so ı D 0), then these moments of Y become �, !2 and 0

respecively.

31.7.7 Generalized Pareto Distribution

Fact 31.96 (Cdf and pdf of the generalized Pareto distribution) The generalized Pareto

distribution is described by a scale parameter (ˇ > 0) and a shape parameter (�). The

cdf (Pr.Z � z/, where Z is the random variable and z is a value) is

G.z/ D
(
1 � .1C �z=ˇ/�1=� if � ¤ 0
1 � exp.�z=ˇ/ � D 0;

for 0 � z and 0 � z � �ˇ=� in case � < 0. The pdf is therefore

g.z/ D
(

1
ˇ
.1C �z=ˇ/�1=��1 if � ¤ 0
1
ˇ

exp.�z=ˇ/ � D 0:

The mean is defined (finite) if � < 1 and is then E.z/ D ˇ=.1 � �/, the median is

.2� � 1/ˇ=� and the variance is defined if � < 1=2 and is then ˇ2=Œ.1� �/2.1� 2�/�. To

include also a “location” parameter (�), substitute x � � for z.

31.7.8 Uniform Distribution

Fact 31.97 (Cdf and pdf of a uniform distribution on the interval a � X � b). The cdf

(G) and pdf (g) are (between a and b)

G.x/ D x � a
b � a

g.x/ D 1

b � a:
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The cdf is zero below a and unity above b. The pdf is zero outside the interval Œa; b�. The

first three central moments are

EX D .aC b/=2;Var.X/ D .b � a/2=12 and E .X � EX/3 D 0:

31.7.9 Mixture Distributions

Fact 31.98 (Pdf of mixture distribution) Let fi.x/ be a pdf for some continuous distribu-

tion and 0 � �i � 1 be a constant. A mixture distribution with n components has the pdf

f .x/ D ˙n
iD1�ifi.x/, where ˙n

iD1�i D 1.

Fact 31.99 (Uncentered moments of mixture distribution) The j th uncentered moment of

X is EXj D R1
�1f .q/q

jdq. By the definition of the pdf, we can write this as EXj D
˙n
iD1�i EXj

i , where EXj
i is the j th uncentered moment of the i th component. (To see

this, notice that the integral can be written
R1
�1˙

n
iD1�ifi.q/q

jdq and that we can switch

the order of the summation and the integration.)

Fact 31.100 (Centered moments of mixture distribution) To calculate the j th centered

moment, first calculate the first j uncentered moments (the EX i for i D 1; 2; ::; j ) and

define the grand mean as � D ˙n
iD1�i EXi . Then use the binomial theorem E.X��/j D

˙
j

kD0
�
j

k

�
EXj�k.��/k, where EXj�k denotes the (j � k)th uncentered moment.

Example 31.101 (Centered moments) For j D 1 we get E.X � �/ D 0, for j D 2 we

get E.X ��/2 D EX2��2 and for j D 3 we get E.X ��/3 D EX3� 3EX2�C 2�3.

31.8 Inference

Fact 31.102 (Comparing variance-covariance matrices) Let Var. Ǒ/ and Var.ˇ�/ be the

variance-covariance matrices of two estimators, Ǒ and ˇ�, and suppose Var. Ǒ/�Var.ˇ�/
is a positive semi-definite matrix. This means that for any non-zero vectorR thatR0Var. Ǒ/R �
R0Var.ˇ�/R, so every linear combination of Ǒ has a variance that is as large as the vari-

ance of the same linear combination of ˇ�. In particular, this means that the variance of

every element in Ǒ (the diagonal elements of Var. Ǒ/) is at least as large as variance of

the corresponding element of ˇ�.

Fact 31.103 (The Bonferroni inequality) Suppose we perform i D 1:::n different tests,

each at the significance level pi . The Bonferroni inequality then says that if the null
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hypotheses are all true, then

Pr.not rejecting in any of the n tests/ � 1 �˙n
iD1pi .

It follows that rejecting in at least one of the n tests has a probability of less than or equal

to ˙n
iD1pi . For instance, with pi D 0:05=n, there is 5% chance of rejecting in at least

one test: Pr.rejecting in at least one of the n tests/ � 0:05.
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Chapter 32

Some Facts about Matrices

Some references: Greene (2000), Golub and van Loan (1989), Björk (1996), Anton
(1987), Greenberg (1988).

32.1 Rank

Fact 32.1 (Submatrix) Any matrix obtained from the m � n matrix A by deleting at most

m � 1 rows and at most n � 1 columns is a submatrix of A.

Fact 32.2 (Rank) The rank of the m � n matrix A is � if the largest submatrix with non-

zero determinant is � � �. The number of linearly independent row vectors (and column

vectors) of A is then �.

32.2 Vector Norms

Fact 32.3 (Vector p-norm) Let x be an n � 1 matrix. The p-norm is defined as/

kxkp D
 

nX
iD1
jxi jp

!1=p
:

The Euclidian norm corresponds to p D 2

kxk2 D
 

nX
iD1

x2i

!1=2
D
p
x0x:
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32.3 Systems of Linear Equations and Matrix Inverses

Fact 32.4 (Linear systems of equations) Consider the linear system Ax D c where A is

m � n, x is n � 1, and c is m � 1. A solution is a vector x such that Ax D c. It has

a unique solution if and only if rank.A/ D rank.Œ A c �/ D n; an infinite number of

solutions if and only if rank.A/ D rank.Œ A c �/ < n; and no solution if and only if

rank.A/ ¤ rank.Œ A c �/.

Example 32.5 (Linear systems of equations, unique solution whenm D n) Let x be 2�1,

and consider the linear system

Ax D c with A D
"
1 5

2 6

#
and c D

"
3

6

#
:

Here rank .A/ D 2 and rank.Œ A c �/ D 2. The unique solution is x D Œ 3 0 �0:

Example 32.6 (Linear systems of equations, no solution when m > n) Let x be a scalar,

and consider the linear system

Ax D c with A D
"
1

2

#
and c D

"
3

7

#
:

Here rank .A/ D 1 and rank.Œ A c �/ D 2. There is then no solution.

Example 32.7 (Inverse of 2 � 2 matrices). For a 2 � 2 matrix we have"
a b

c d

#�1
D 1

ad � bc

"
d �b
�c a

#
:

In particular, for a triangular matrix we have"
a 0

c d

#�1
D
"

1=a 0

�c=.ad/ 1=d

#
:

Fact 32.8 (Least squares) Suppose that no solution exists to Ax D c. The best approxi-

mate solution, in the sense of minimizing (the square root of) the sum of squared errors,�
.c � A Ox/0 .c � A Ox/�1=2 D kc � A Oxk2, is Ox D .A0A/�1A0c, provided the inverse exist.
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This is obviously the least squares solution. In the example with c D Œ 3 7 �0, it is

Ox D
0@" 1

2

#0 "
1

2

#1A�1 " 1
2

#0 "
3

7

#

D 17

5
or 3:4:

(Translation to OLS notation: c is the vector of dependent variables for m observations,

A is the matrix with explanatory variables with the t th observation in row t , and x is the

vector of parameters to estimate).

Fact 32.9 (Pseudo inverse or generalized inverse) Suppose that no solution exists to

Ax D c, and that A0A is not invertible. There are then several approximations, Ox, which

all minimize kc � A Oxk2. The one with the smallest k Oxk2 is given by Ox D ACc, where AC

is the Moore-Penrose pseudo (generalized) inverse of A. See Fact 32.58.

Example 32.10 (Linear systems of equations, unique solution when m > n) Change c

in Example 32.6 to c D Œ 3 6 �0. Then rank .A/ D 1 and rank.Œ A c �/ D 1, and the

unique solution is x D 3:
Example 32.11 (Linear systems of equations, infinite number of solutions, m < n) Let x

be 2 � 1, and consider the linear system

Ax D c with A D
h
1 2

i
and c D 5:

Here rank .A/ D 1 and rank.Œ A c �/ D 1. Any value of x1 on the line 5 � 2x2 is a

solution.

Example 32.12 (Pseudo inverses again) In the previous example, there is an infinite

number of solutions along the line x1 D 5 � 2x2. Which one has the smallest norm

k Oxk2 D Œ.5 � 2x2/2 C x22 �1=2? The first order condition gives x2 D 2, and therefore

x1 D 1. This is the same value as given by Ox D ACc, since AC D Œ0:2; 0:4� in this case.

Fact 32.13 (Rank and computers) Numerical calculations of the determinant are poor

indicators of whether a matrix is singular or not. For instance, det.0:1 � I20/ D 10�20.
Use the condition number instead (see Fact 32.55).

Fact 32.14 (Some properties of inverses) If A, B , and C are invertible, then .ABC/�1 D
C�1B�1A�1; .A�1/0 D .A0/�1; if A is symmetric, then A�1 is symmetric; .An/�1 D�
A�1

�n.
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Fact 32.15 (Changing sign of column and inverting) Suppose the square matrix A2 is the

same as A1 except that the i th and j th columns have the reverse signs. Then A�12 is the

same as A�11 except that the i th and j th rows have the reverse sign.

32.4 Complex matrices

Fact 32.16 (Modulus of complex number) If � D a C bi , where i D p�1, then j�j D
jaC bi j D pa2 C b2.

Fact 32.17 (Complex matrices) Let AH denote the transpose of the complex conjugate of

A, so that if

A D
h
1 2C 3i

i
then AH D

"
1

2 � 3i

#
:

A square matrix A is unitary (similar to orthogonal) if AH D A�1, for instance,

A D
"

1Ci
2

1Ci
2

1�i
2

�1Ci
2

#
gives AH D A�1 D

"
1�i
2

1Ci
2

1�i
2

�1�i
2

#
:

and it Hermitian (similar to symmetric) if A D AH , for instance

A D
"

1
2

1Ci
2

1�i
2

�1
2

#
:

A Hermitian matrix has real elements along the principal diagonal andAj i is the complex

conjugate of Aij . Moreover, the quadratic form xHAx is always a real number.

32.5 Eigenvalues and Eigenvectors

Fact 32.18 (Homogeneous linear system). Consider the linear system in Fact 32.4 with

c D 0: Am�nxn�1 D 0m�1. Then rank.A/ D rank.Œ A c �/, so it has a unique solution

if and only if rank.A/ D n; and an infinite number of solutions if and only if rank.A/ < n.

Note that x D 0 is always a solution, and it is the unique solution if rank.A/ D n. We

can thus only get a nontrivial solution (not all elements are zero), only if rank .A/ < n.

Fact 32.19 (Eigenvalues) The n eigenvalues, �i , i D 1; : : : ; n, and associated eigenvec-

tors, zi , of the n � n matrix A satisfy

.A � �iI / zi D 0n�1:
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We require the eigenvectors to be non-trivial (not all elements are zero). From Fact 32.18,

an eigenvalue must therefore satisfy

det.A � �iI / D 0:

Fact 32.20 (Right and left eigenvectors) A “right eigenvector” z (the most common) sat-

isfies Az D �z, and a “left eigenvector” v (seldom used) satisfies v0A D �v0, that is,

A0v D �v.

Fact 32.21 (Rank and eigenvalues) For any m � n matrix A, rank .A/ D rank .A0/ D
rank .A0A/ D rank .AA0/ and equals the number of non-zero eigenvalues of A0A or AA0.

Example 32.22 Let x be an n � 1 vector, so rank .x/ D 1. We then have that the outer

product, xx0 also has rank 1.

Fact 32.23 (Determinant and eigenvalues) For any n � n matrix A, det.A/ D ˘n
iD1�i .

32.6 Special Forms of Matrices

32.6.1 Triangular Matrices

Fact 32.24 (Triangular matrix) A lower (upper) triangular matrix has zero elements

above (below) the main diagonal.

Fact 32.25 (Eigenvalues of triangular matrix) For a triangular matrix A, the eigenvalues

equal the diagonal elements of A. This follows from that

det.A � �I/ D .A11 � �/ .A22 � �/ : : : .Ann � �/ :

Fact 32.26 (Squares of triangular matrices) If T is lower (upper) triangular, then T T is

as well.

32.6.2 Orthogonal Vector and Matrices

Fact 32.27 (Orthogonal vector) The n � 1 vectors x and y are orthogonal if x0y D 0.

Fact 32.28 (Orthogonal matrix) The n�nmatrixA is orthogonal ifA0A D I . Properties:

IfA is orthogonal, then det .A/ D ˙1; ifA andB are orthogonal, thenAB is orthogonal.
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Example 32.29 (Rotation of vectors (“Givens rotations”).) Consider the matrix G D In
except that Gik D c, Gik D s, Gki D �s, and Gkk D c. If we let c D cos � and

s D sin � for some angle � , then G 0G D I . To see this, consider the simple example

where i D 2 and k D 3264 1 0 0

0 c s

0 �s c

375
0264 1 0 0

0 c s

0 �s c

375 D
264 1 0 0

0 c2 C s2 0

0 0 c2 C s2

375 ;
which is an identity matrix since cos2 � C sin2 � D 1. G is thus an orthogonal matrix. It

is often used to “rotate” an n � 1 vector " as in u D G 0", where we get

ut D "t for t ¤ i; k
ui D "ic � "ks
uk D "is C "kc:

The effect of this transformation is to rotate the i th and kth vectors counterclockwise

through an angle of � .

32.6.3 Positive Definite Matrices

Fact 32.30 (Positive definite matrix) The n � n matrix A is positive definite if for any

non-zero n � 1 vector x, x0Ax > 0. (It is positive semidefinite if x0Ax � 0.)

Fact 32.31 (Some properties of positive definite matrices) If A is positive definite, then

all eigenvalues are positive and real. (To see why, note that an eigenvalue satisfies Ax D
�x. Premultiply by x0 to get x0Ax D �x0x. Since both x0Ax and x0x are positive real

numbers, � must also be.)

Fact 32.32 (More properties of positive definite matrices) If B is a r �n matrix of rank r

and A is a n� n positive definite matrix, then BAB 0 is also positive definite and has rank

r . For instance, B could be an invertible n � n matrix. If A D In, then we have that BB 0

is positive definite.

Fact 32.33 (More properties of positive definite matrices) If A is positive definite, then

det .A/ > 0 and all diagional elements are positive; if A is positive definite, then A�1 is

too.

Fact 32.34 (Cholesky decomposition) See Fact 32.44.

386



32.6.4 Symmetric Matrices

Fact 32.35 (Symmetric matrix) A is symmetric if A D A0.

Fact 32.36 (Properties of symmetric matrices) If A is symmetric, then all eigenvalues are

real, and eigenvectors corresponding to distinct eigenvalues are orthogonal.

Fact 32.37 If A is symmetric, then A�1 is symmetric.

32.6.5 Idempotent Matrices

Fact 32.38 (Idempotent matrix) A is idempotent if A D AA. If A is also symmetric, then

A D A0A D AA0.

32.7 Matrix Decompositions

Fact 32.39 (Diagonal decomposition) An n� n matrix A is diagonalizable if there exists

a matrix C such that C�1AC D � is diagonal. We can thus write A D C�C�1. The

n� n matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.

We can then take C to be the matrix of the eigenvectors (in columns), and � the diagonal

matrix with the corresponding eigenvalues along the diagonal.

Fact 32.40 (Inverting by using a diagonal decomposition) The inverse of the square ma-

trix A is found by noting that if A is square, then from the diagonal decomposition we

have

AA�1 D I or

C�C�1A�1 D I , so

A�1 D C�1��1C:

Fact 32.41 (Spectral decomposition.) If the eigenvectors are linearly independent, then

we can decompose A as

A D Z�Z�1, where � D diag.�1; :::; �n/ and Z D
h
z1 z2 � � � zn

i
;

where � is a diagonal matrix with the eigenvalues along the principal diagonal, and

Z is a matrix with the corresponding eigenvalues in the columns. In this case, A�1 D
Z�1��1Z.
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Fact 32.42 (Diagonal decomposition of symmetric matrices) If A is symmetric (and pos-

sibly singular) then the eigenvectors are orthogonal, C 0C D I , so C�1 D C 0. In

this case, we can diagonalize A as C 0AC D �, or A D C�C 0. It follows that A DPn
iD1�iziz

0
i . If A is n � n but has rank r � n, then we can write

A D
h
C1 C2

i " �1 0
0 0

# h
C1 C2

i0
D C1�1C 01;

where the n � r matrix C1 contains the r eigenvectors associated with the r non-zero

eigenvalues in the r � r matrix �1. Also, A�1 D C 0��1C .

Fact 32.43 (Quadratic form) If A is a convariance matrix (symmetric and positive defi-

nite, then x0A�1x and be rewritten as y 0y where y Ddiag.1=
p
�1; :::; 1=

p
�n/Cx.

Fact 32.44 (Cholesky decomposition) Let ˝ be an n � n symmetric positive definite

matrix. The Cholesky decomposition gives the unique lower triangular P such that

˝ D PP 0 (some software returns an upper triangular matrix, that is, Q in ˝ D Q0Q
instead). Note that each column of P is only identified up to a sign transformation; they

can be reversed at will.

Example 32.45 (2�2 matrix) For a 2�2 matrix we have the following Cholesky decom-

position

chol

 "
a b

b d

#!
D
" p

a 0

b=
p
a

p
d � b2=a

#
:

Fact 32.46 (Triangular Decomposition) Let ˝ be an n � n symmetric positive definite

matrix. There is a unique decomposition ˝ D ADA0, where A is lower triangular with

ones along the principal diagonal, and D is diagonal with positive diagonal elements.

This decomposition is usually not included in econometric software, but it can easily be

calculated from the commonly available Cholesky decomposition since P in the Cholesky

decomposition is of the form

P D

266664
p
D11 0 � � � 0p
D11A21

p
D22 0

:::
: : :

:::p
D11An1

p
D22An2 � � �

p
Dnn

377775 :

388



Fact 32.47 (Schur decomposition) The decomposition of the n � n matrix A gives the

n � n matrices T and Z such that

A D ZTZH

where Z is a unitary n�n matrix and T is an n�n upper triangular Schur form with the

eigenvalues along the diagonal. Note that premultiplying by Z�1 D ZH and postmulti-

plying by Z gives

T D ZHAZ;
which is upper triangular. The ordering of the eigenvalues in T can be reshuffled, al-

though this requires thatZ is reshuffled conformably to keepA D ZTZH , which involves

a bit of tricky “book keeping.”

Fact 32.48 (Generalized Schur Decomposition) The decomposition of the n�n matrices

G and D gives the n � n matrices S , T , Q and Z such that Q and Z are unitary and S

and T upper triangular. They satisfy

G D QSZH and D D QTZH :

The generalized Schur decomposition solves the generalized eigenvalue problem Dx D
�Gx, where � are the generalized eigenvalues (which will equal the diagonal elements in

T divided by the corresponding diagonal element in S ). Note that we can write

QHGZ D S and QHDZ D T:

Example 32.49 If G D I in the generalized eigenvalue problem Dx D �Gx, then we

are back to the standard eigenvalue problem. Clearly, we can pick S D I and Q D Z in

this case, so G D I and D D ZTZH , as in the standard Schur decomposition.

Fact 32.50 (QR decomposition) Let A be m � n with m � n. The QR decomposition is

Am�n D Qm�mRm�n

D
h
Q1 Q2

i " R1
0

#
D Q1R1:

where Q is orthogonal (Q0Q D I ) and R upper triangular. The last line is the “thin

QR decomposition,” where Q1 is an m � n orthogonal matrix and R1 an n � n upper
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triangular matrix.

Fact 32.51 (Inverting by using the QR decomposition) Solving Ax D c by inversion of

A can be very numerically inaccurate (no kidding, this is a real problem). Instead, the

problem can be solved with QR decomposition. First, calculate Q1 and R1 such that

A D Q1R1. Note that we can write the system of equations as

Q1Rx D c:

Premultply by Q01 to get (since Q01Q1 D I )

Rx D Q01c:

This is an upper triangular system which can be solved very easily (first solve the first

equation, then use the solution is the second, and so forth.)

Fact 32.52 (Singular value decomposition) Let A be an m � n matrix of rank �. The

singular value decomposition is

A D Um�mSm�nV 0n�n

where U and V are orthogonal and S is diagonal with the first � elements being non-zero,

that is,

S D
"
S1 0
0 0

#
, where S1 D

2664
s11 � � � 0
:::

: : :
:::

0 � � � s��

3775 :
Fact 32.53 (Singular values and eigenvalues) The singular values of A are the nonnega-

tive square roots of AAH if m � n and of AHA if m � n.

Remark 32.54 If the square matrix A is symmetric and idempotent (A D A0A), then

the singular values are the same as the eigevalues. From Fact (32.42) we know that a

symmetric A can be decomposed as A D C�C 0. It follows that this is the same as the

singular value decomposition.

Fact 32.55 (Condition number) The condition number of a matrix is the ratio of the

largest (in magnitude) of the singular values to the smallest

c D jsi i jmax = jsi i jmin :
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For a square matrix, we can calculate the condition value from the eigenvalues of AAH

or AHA (see Fact 32.53). In particular, for a square matrix we have

c D
ˇ̌̌p
�i

ˇ̌̌
max
=
ˇ̌̌p
�i

ˇ̌̌
min
;

where �i are the eigenvalues of AAH and A is square.

Fact 32.56 (Condition number and computers) The determinant is not a good indicator

of the realibility of numerical inversion algorithms. Instead, let c be the condition number

of a square matrix. If 1=c is close to the a computer’s floating-point precision (10�13 or

so), then numerical routines for a matrix inverse become unreliable. For instance, while

det.0:1�I20/ D 10�20, the condition number of 0:1�I20 is unity and the matrix is indeed

easy to invert to get 10 � I20.

Fact 32.57 (Inverting by using the SVD decomposition) The inverse of the square matrix

A is found by noting that if A is square, then from Fact 32.52 we have

AA�1 D I or

USV 0A�1 D I , so

A�1 D VS�1U 0;

provided S is invertible (otherwise A will not be). Since S is diagonal, S�1 is also

diagonal with the inverses of the diagonal elements in S , so it is very easy to compute.

Fact 32.58 (Pseudo inverse or generalized inverse) The Moore-Penrose pseudo (gener-

alized) inverse of an m � n matrix A is defined as

AC D VSCU 0; where SC
nxm
D
"
S�111 0

0 0

#
;

where V and U are from Fact 32.52. The submatrix S�111 contains the reciprocals of the

non-zero singular values along the principal diagonal. AC satisfies the AC satisfies the

Moore-Penrose conditions

AACA D A, ACAAC D AC,
�
AAC

�0 D AAC, and
�
ACA

�0 D ACA:
See Fact 32.9 for the idea behind the generalized inverse.

391



Fact 32.59 (Some properties of generalized inverses) If A has full rank, then AC D A�1;
.BC/C D CCBC; if B , and C are invertible, then .BAC/�1 D C�1ACB�1; .AC/0 D
.A0/C; if A is symmetric, then AC is symmetric.

Example 32.60 (Pseudo inverse of a square matrix) For the matrix

A D
"
1 2

3 6

#
, we have AC D

"
0:02 0:06

0:04 0:12

#
:

Fact 32.61 (Pseudo inverse of symmetric matrix) If A is symmetric, then the SVD is

identical to the spectral decomposition A D Z�Z0 whereZ is a matrix of the orthogonal

eigenvectors (Z
0

Z D I ) and � is a diagonal matrix with the eigenvalues along the main

diagonal. By Fact 32.58) we then have AC D Z�CZ0, where

�C D
"
��111 0

0 0

#
;

with the reciprocals of the non-zero eigen values along the principal diagonal of ��111 .

32.8 Matrix Calculus

Fact 32.62 (Matrix differentiation of non-linear functions, @y=@x0) Let the vector yn�1
be a function of the vector xm�12664

y1
:::

yn

3775 D f .x/ D
2664
f1 .x/
:::

fn .x/

3775 :
Then, let @y=@x0 be the n �m matrix

@y

@x0
D

2664
@f1.x/

@x0

:::
@fn.x/

@x0

3775 D
2664

@f1.x/

@x1
� � � @f1.x/

@xm
:::

:::
@fn.x/

@x1
� � � @fn.x/

@xm

3775 :
This matrix is often called the Jacobian of the f functions. (Note that the notation implies

that the derivatives of the first element in y, denoted y1, with respect to each of the

elements in x0 are found in the first row of @y=@x0. A rule to help memorizing the format

of @y=@x0: y is a column vector and x0 is a row vector.)
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Fact 32.63 (@y 0=@x instead of @y=@x0) With the notation in the previous Fact, we get

@y 0

@x
D
h
@f1.x/

@x
� � � @fn.x/

@x

i
D

2664
@f1.x/

@x1
� � � @fn.x/

@x1
:::

:::
@f1.x/

@xm
� � � @fn.x/

@xm

3775 D � @y@x0
�0
:

Fact 32.64 (Matrix differentiation of linear systems) When yn�1 D An�mxm�1; then

f .x/ is a linear function2664
y1
:::

yn

3775 D
2664
a11 � � � a1m
:::

:::

an1 � � � anm

3775
2664
x1
:::

xm

3775 :
In this case @y=@x0 D A and @y 0=@x D A0.

Fact 32.65 (Matrix differentiation of inner product) The inner product of two column

vectors, y D z0x, is a special case of a linear system with A D z0. In this case we get

@ .z0x/ =@x0 D z0 and @ .z0x/ =@x D z. Clearly, the derivatives of x0z are the same (a

transpose of a scalar).

Example 32.66 (@ .z0x/ =@x D z when x and z are 2 � 1 vectors)

@

@x

 h
z1 z2

i "x1
x2

#!
D
"
z1

z2

#
:

Fact 32.67 (First order Taylor series) For each element fi .x/ in the n� vector f .x/, we

can apply the mean-value theorem

fi .x/ D fi .c/C @fi .bi/

@x0
.x � c/ ;

for some vector bi between c and x. Stacking these expressions gives2664
f1 .x/
:::

fn .x/

3775 D
2664
f1 .c/
:::

fn .c/

3775C
2664

@f1.b1/

@x1
� � � @f1.b1/

@xm
:::

:::
@fn.bn/

@x1
� � � @fn.bn/

@xm

3775
2664
x1
:::

xm

3775 or

f .x/ D f .c/C @f .b/

@x0
.x � c/ ;

where the notation f .b/ is a bit sloppy. It should be interpreted as that we have to

evaluate the derivatives at different points for the different elements in f .x/.
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Fact 32.68 (Matrix differentiation of quadratic forms) Let xm�1 be a vector, Am�m a

matrix, and f .x/n�1 a vector of functions. Then,

@f .x/0Af .x/
@x

D
�
@f .x/

@x0

�0 �
AC A0�f .x/

D 2
�
@f .x/

@x0

�0
Af .x/ if A is symmetric.

If f .x/ D x, then @f .x/ =@x0 D I , so @ .x0Ax/ =@x D 2Ax if A is symmetric.

Example 32.69 (@ .x0Ax/ =@x D 2Ax when x is 2 � 1 and A is 2 � 2)

@

@x

 h
x1 x2

i "A11 A12

A21 A22

#"
x1

x2

#!
D
 "
A11 A12

A21 A22

#
C
"
A11 A21

A12 A22

#!"
x1

x2

#
;

D 2
"
A11 A12

A12 A22

#"
x1

x2

#
if A21 D A12:

Example 32.70 (Least squares) Consider the linear model Ym�1 D Xm�nˇn�1 C um�1.
We want to minimize the sum of squared fitted errors by choosing the n� 1 vector ˇ. The

fitted errors depend on the chosen ˇ: u .ˇ/ D Y �Xˇ, so quadratic loss function is

L D u.ˇ/0u.ˇ/
D .Y �Xˇ/0 .Y �Xˇ/ :

In thus case, f .ˇ/ D u .ˇ/ D Y �Xˇ, so @f .ˇ/ =@ˇ0 D �X . The first order condition

for u0u is thus

�2X 0
�
Y �X Ǒ

�
D 0n�1 or X 0Y D X 0X Ǒ;

which can be solved as
Ǒ D �X 0X��1X 0Y:

Fact 32.71 (Matrix of 2nd order derivatives of of a non-linear function, @2y=@x@x0) Let

the scalar y be a function of the vector xm�1

y D f .x/ :

Then, let @2y=@x@x0 be the m �m matrix with @2y=@xi@xj in cell .i; j /

@2y

@x@x0
D

2664
@2f .x/

@x1@x1
� � � @2f .x/

@x1@xm
:::

:::
@2f .x/

@xm@x1
� � � @2f .x/

@xm@xm

3775 :
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This matrix is often called the Hessian of the f function. This is clearly a symmetric

matrix.

32.9 Miscellaneous

Fact 32.72 (Some properties of transposes) .AC B/0 D A0CB 0; .ABC/0 D C 0B 0A0 (if
conformable).

Fact 32.73 (Kronecker product) If A and B are matrices, then

A˝ B D

2664
a11B � � � a1nB
:::

:::

am1B � � � amnB

3775 :
Some properties: .A ˝ B/�1 D A�1 ˝ B�1 (if conformable); .A ˝ B/.C ˝ D/ D
AC ˝ BD (if conformable); .A ˝ B/0 D A0 ˝ B 0; if a is m � 1 and b is n � 1, then

a˝b D .a˝In/b; ifA is symmetric and positive definite, then chol.A˝I / Dchol.A/˝I
and chol.I ˝ A/ D I˝chol.A/.

Fact 32.74 (Cyclical permutation of trace) Trace.ABC/ DTrace.BCA/ DTrace.CAB/,

if the dimensions allow the products.

Fact 32.75 (The vec operator). vecA where A is m � n gives an mn � 1 vector with the

columns in A stacked on top of each other. For instance, vec

"
a11 a12

a21 a22

#
D

266664
a11

a21

a12

a22

377775.

Properties: vec .AC B/ D vecAC vecB; vec .ABC/ D .C 0 ˝ A/ vecB; if a and b

are column vectors, then vec .ab0/ D b ˝ a.

Fact 32.76 (The vech operator) vechA where A ism�m gives anm.mC1/=2�1 vector

with the elements on and below the principal diagonal A stacked on top of each other

(columnwise). For instance, vech

"
a11 a12

a21 a22

#
D

264 a11

a21

a22

375, that is, like vec, but uses

only the elements on and below the principal diagonal.
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Fact 32.77 (Duplication matrix) The duplication matrix Dm is defined such that for any

symmetric m � m matrix A we have vecA D DmvechA. The duplication matrix is

therefore useful for “inverting” the vech operator (the step from vecA to A is trivial).

For instance, to continue the example of the vech operator266664
1 0 0

0 1 0

0 1 0

0 0 1

377775
264 a11

a21

a22

375 D
266664
a11

a21

a21

a22

377775 or D2vechA D vecA:

Fact 32.78 (OLS notation) Let xt be k � 1 and yt be m � 1. Suppose we have T such

vectors. The sum of the outer product (a k �m matrix) is

S D
TX
tD1

xty
0
t :

Create matrices XT�k and YT�m by letting x0t and y 0t be the t th rows

XT�k D

2664
x01
:::

x0T

3775 and YT�m D

2664
y 01
:::

y 0T

3775 :
We can then calculate the same sum of outer product, S , as

S D X 0Y:

(To see this, let X.i; W/ be the i th row of X , and similarly for Y , so

X 0Y D
TX
tD1

X.t; W/0Y.t; W/;

which is precisely ˙T
tD1xty 0t .) For instance, with

xt D
"
at

bt

#
and yt D

264ptqt
rt

375 ;
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and T D 2 we have

X 0Y D
"
a1 a2

b1 b2

#"
p1 q1 r1

p2 q2 r2

#
DPT

tD1

"
at

bt

# h
pt qt rt

i
:

Fact 32.79 (Matrix geometric series) Suppose the eigenvalues to the square matrix A are

all less than one in modulus. Then,

I C AC A2 C � � � D .1 � A/�1 :

To see why this makes sense, consider .1 � A/˙T
tD1At (with the convention thatA0 D I ).

It can be written as

.1 � A/˙T
tD1A

t D �I C AC A2 C � � � � � A �I C AC A2 C � � � � D I � ATC1:
If all the eigenvalues are stable, then limT!1ATC1 D 0, so taking the limit of the

previous equation gives

.1 � A/ lim
T!1

˙T
tD1A D I:

Fact 32.80 (Matrix exponential) The matrix exponential of an n � n matrix A is defined

as

exp .At/ D
1X
sD0

.At/s

sŠ
:
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