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Foreword

This is a very basic course in econometrics, in that it only covers basic tech-
niques, although I tried to avoid the scourge of over-simplification, so some may
find it not so basic in style. What makes it perhaps a little different from others
you find on the Net is that I made a few not-so-common choices.

1. Separating clearly the properties OLS has by construction from those it
has when interpreted as an estimator.

2. Using matrix algebra whenever possible.

3. Using asymptotic inference only.

Point number one is modelled after the ideas in the two great masterpieces,
Davidson and MacKinnon (1993) and Davidson and MacKinnon (2004). I have
several reasons for this choice, but it is mainly a pedagogical one. The students I
am writing for are people who often don’t feel at ease with the tools of statistical
inference: they have learned the properties of estimators by heart, they are not
sure they can read a test, find the concept of the distribution of a statistic a little
unclear (never mind asymptotic distributions), get confused between the vari-
ance of an estimator and an estimator of the variance. In the best cases. Never
mind; no big deal.

There’s an awful lot you can say on the base tool in econometrics (OLS) even
without all this, and that’s good to know. Once a student has learned how to
handle OLS properly as a mere computational tool, the issues of its usage and
interpretation as an estimator and of how to read the associated test statistics
can be grasped more correctly. If you mix the two aspects too early, a beginner
is prone to mistake properties of least squares that are true by construction for
properties that depend on some probabilistic assumptions.

Point number two is motivated by laziness. In my teaching career, I have
found that once students get comfortable with matrices, my workload halves. Of
course, it takes some initial sunk cost to convey properly ideas such as projec-
tions and properties of quadratic forms, but the payoff is very handsome. This
book contains no systematic account of matrix algebra; we're using just the ba-
sics, so anything you find on the Net by googling “matrix algebra lecture notes”
is probably good enough. However, let me recommend appendix A in Hansen
(2019).

As for probability and statistics, I will only assume some familiarity with the
very basics: simple descriptive statistics and basic properties of probability, ran-
dom variables and expectations. Chapter 2 contains a cursory treatment of the
concepts I will use later, but I wouldn’t recommend it as a general reference on
the subject. Its purpose is mainly to make the notation explicit and clarify a few
points. For example, I will avoid any kind of reference to maximum likelihood
methods. For a more substantial read, it’s hard not to recommend, again, the



online material by Bruce Hansen: his “Probability and Statistics”, is available
online athttps://www.ssc.wisc.edu/ bhansen/probability/.

I don'’t think I have to justify point number three. I am writing this in 2023,
when typical data sets have hundreds, if not thousands observations and no-
body would ever dream of running any kind of inferential procedure with less
than 50 data points. Apart from OLS, there is no econometric technique in actual
use that does not depend vitally on asymptotics, so I guess that readers should
get familiar with the associated concepts if there is a remote chance that this
will not be put them off econometrics completely. The ¢ test, the F tests and,
in general, all kinds of degrees-of-freedom corrections are ad-hockeries of the
past; unbiasedness is overrated. Get over it.

I promise I'll try to be respectful of the readers and don'’t treat them like id-
iots. I assume that if you're reading this, you want to know more than you do
about econometrics, but this doesn’t give me the right to assume that you need
to be taken by the hand and treated like an 11-year-old.

Finally, a word of gratitude. A book like this is akin to a software project, and
there’s always one more bug to fix. So, I'd like to thank first all my students who
helped me eradicate quite a few. Then, my colleagues Stefano Fachin, Francesca
Mariani, Giulio Palomba, Luca Pedini, Matteo Picchio and Claudia Pigini for
making many valuable suggestions. Needless to say, the remaining shortcom-
ings are all mine. Claudia also allowed me to grab a few things from her slides
on IV estimation, so thanks for that too. If you want to join the list, please send
me bug reports and feature requests. Also, I'm not an English native speaker (I
suppose it shows). So, Anglophones of the world, please correct me whenever
needed.

The structure of this book is as follows: chapter 1 explores the properties
of OLS as a descriptive statistic. Inference comes into play at chapter 2 with
some general concepts, while their application to OLS is the object of chapter
3. Chapters 4 and 5 contain extensions of the basic model for cross-sectional
and time-series datasets, respectively. Finally, chapter 6 deals with instrumental
variable estimation. Each chapter has an appendix, named “Assorted results”,
where I discuss some of the material I use during the chapter in a little more
detail.

In some cases, I will use a special format for dispensable for the overall comprehension of
short pieces of texts, like this. They contain ex- the main topic.
tra stuff that I consider interesting, but not in-
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Chapter 1

OLS: algebraic and geometric
properties

1.1 Models

I won't even attempt to give the reader an account of the theory of econometric
modelling. For our present purposes, suffice it to say that we econometricians
like to call a model a mathematical description of something, that doesn’t aim
at being 100% accurate, but still, hopefully, useful.!

We have a quantity of interest, also called the dependent variable, which
we observe more than once: a collection of numbers yy, y»,..., y,, where n is the
size of our data set. These numbers can be anything that can be given a coherent
numerical representation; in this course, however, we will confine ourselves to
the case where the i-th observation y; is a real number. So for example, we could
record the income for n individuals, the export share for z firms, the inflation
rate for a given country at z points in time.

Now suppose that, for each data point, we also have a vector of k elements
containing auxiliary data possibly helpful in better understanding the differ-
ences between the y;s; we call these explanatory variables,? or x; in symbols.>
To continue the previous examples, x; may include a numerical description of
the individuals we recorded the income of (such as age, gender, educational at-
tainment and so on), or characteristics of the firms we want to study the export
propensity for (size, turnover, R&D expenditure and so on), or the conditions of
the economy at the time the inflation rate was recorded (interest rate, level of
output, and so forth).

L“All models are wrong, but some are useful” (G. E. P. Box). In fact, one may argue that, in order
to be useful, a model may have to be inaccurate. More on this in section 1.4.2.

2Terminology is very much field-specific here; statisticians traditionally tend to use the term
covariates, while people from the machine learning community like the word features.

31 will almost always use boldface symbols to indicate vectors.
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What we call a model is a formula like the following:
yi = m(x;)

where we implicitly assume that if x; is not too different from x;, then we should
expect y; to be broadly close to y;: if we pick two people of the same age, with
the same educational level and many other characteristics in common we would
expect that their income should be roughly the same. Of course this won't be
true in all cases (in fact, chances are that this will never be true exactly), but
hopefully our model won't lead us to catastrophic mistakes.

The reason why we want to build models is that, once the function m() is
known, it becomes possible to ask ourselves interesting questions by inspect-
ing the characteristics of that function. So for example, if it turned out that the
export share of a firm is increasing in the expenditure in R&D, we may make con-
jectures about the reasons why it should be so, look for some economic theory
that could explain the result, and wonder if one could improve export competi-
tiveness by giving the firms incentives to do research.

Moreover, the door is open to forecasting: given the characteristics of a hy-
pothetical firm or individual, the model makes it possible to guess what their
export share or income (respectively) should be. I don'’t think I have to convince
the reader of how useful this could be in practice.

Of course, we will want to build our model in the best possible way. In other
words, our aim will be choosing the function m(:) according to some kind of
optimality criterion. This is what the present course is about.

But there’s more: as we will see, building an optimal model is impossible in
general. At most, we may hope to build the best possible model for the data
that we have available. Of course, there is no way of knowing if the model we
built, that perhaps works rather well with our data, will keep working equally
well with new data. Imagine you built a model for the inflation rate in a country
with monthly data from January 2000 to December 2017. It may well be that your
model performs (or, as we say, “fits the data”) very well for that period, but what
guarantee do you have that it will keep doing so in 2018, or in the more distant
future? The answer is: you have none. But still, this is something that we'd like to
do; our mind has a natural tendency to generalise, to infer, to extrapolate. And
yet, there is no logical compelling basis for proving that it’s a good idea to do
so.* The way out is framing the problem in a probabilistic setting, and this is the
reason why econometrics is so intimately related with probability and statistics.

For the moment, we’ll start with the problem of choosing m(:) in a very sim-
ple case, that is when we have no extra information x;. In this case, the function
becomes a constant:

yi=mx;)=m

and the problem is very much simplified, because it means we have to pick a
number m in some optimal way, given the data y, y»,..., y,. In other words, we

4The philosophically inclined reader may at this point google for “Bertrand Russel’s turkey”.
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have to find a function of the data which returns the number m. Of course, a
function of the data is what we call a statistic. In the next section, I will prove
that the statistic we're looking for is, in this case, the average of the y;s, that is
Y=1%" y.

1.2 The average

What is a descriptive statistic? It is a function of the data which synthesises a
particular feature of interest of the data; of course, the more informative, the
better. The idea behind descriptive statistics is more or less: we have some data
on some real-world phenomenon; our data set, unfortunately, is too “large”, and
we don’t have time/can’t/don’t feel like going through the whole thing. Hence,
we are looking for a function of these data to tell us what we want, without being
bothered with unnecessary details.

The most obvious example of a descriptive statistic is, of course, the sample
average. Let’s stick our observations y, J»,...,y, into a column vector y; the
sample average is nothing but

-1
Y:Z.Zyi:_by’ (1.1)

where ¢ is a column vector full of ones. The “sum” notation is probably more
familiar to most readers; I prefer the matrix-based one not only because I find
it more elegant, but also because it’s far easier to generalise. The nice feature
of the vector ¢ is that its inner product with any conformable vector x yields the
sum of the elements of x.°

We use averages all the time. Why is the average so popular? As I said, we're
looking for a descriptive statistic m, as a synthesis of the information contained
in our data set.

In 1929, Oscar Chisini (pronounced kee-zee-nee) pro-
posed the following definition: for a function of interest
g(-), the mean of the vector y is the number m that yields
the unique solution to g(y) = g(m-¢). Powerful idea: for ex-
ample, the average is the solution of the special case when
the g(-) function is the sum of the vector’s elements, and
the reader may want to spend some time with more exotic
cases.

Chisini’s idea may be further generalised: if our aim is
to use m — that we haven't yet chosen — as an imperfect

OSCAR CHISINI

SReminder: the inner products of two vectors a and b is defined as ¥; a; b;. Mathematicians
like the notation (a,b) for the inner product, on the grounds of its greater generality (google
“Hilbert space” if you're curious), but we econometricians are more accustomed to the “matrix”
notation a’b, where the apostrophe means “transposed”.
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but parsimonious description of the whole data set, the question that naturally
arises is: how much information is lost?

If all we knew, for a given data set, was m, what could we say about each
single observation? If we lack any more information, the most sensible thing to
say is that, for a generic i, y; should more or less be m. Consider the case of
A. S. Tudent, who belongs to a class for which the “typical” grade in economet-
rics is 23;% the most sensible answer we could give to the question “What was the
grade that A. S. Tudent got in econometrics?” would be “Around 23, I guess”. If
the actual grade that A. S. got were in fact 23, OK. Otherwise, we could measure
by how much we were wrong by taking the difference between the actual grade
and our guess, e; = y; — m. We call these quantities the residuals; the vector of
residuals is, of course, e =y—¢-m.

In the ideal case, using m to summarise the data should entail no informa-
tion loss at all, and the difference between y; and m should be 0 for all i (all stu-
dents got 23). If it weren’t so, we may measure how well m does its job through
the size of the residuals. Let’s define a function, called loss function, which mea-
sures the cost we incur because of the information loss.

L(m) = Cle(m)]

In principle, there are not many properties such a function should be assumed
to have. It seems reasonable that C(0) = 0:7 if all the residuals are 0, no approxi-
mation errors occur and the cost is nil. Another reasonable idea is C(e) = 0: you
can’t gain from a mistake.? Apart from this, there is not very much you can say:
the L(-) function cannot be assumed to be convex, or symmetric, or anything
else. It depends on the context.

Whatever the shape of this function, however, we’ll want to choose m so that
is L(m) as small as possible. In math-speak: for a given problem, we can write
down the loss function and choose the statistic which minimises it. In formulae:

m = Argmin L(m) = Argmin C(y—¢-m), (1.2)
meR meR
where you read the above as: m with a hat on is that number that you find if you
choose, among all real numbers, the one that makes the function L() as small
as possible.

In practice, by finding the minimum of the L(-) function for a given prob-
lem, we can be confident that we are using our data in the best possible way. At
this point, the first thing that crosses a reasonable person’s mind is “How do I
choose L(:)? I mean, what should it look like?”. Fair point. Apart from extraordi-
nary cases when the loss function is a natural consequence of the problem itself,

6Note for international readers: in the Italian academic systems, which is what I'm used to,
grades go from 18 (barely pass) to 30 (full marks).

I use a boldface 0 to indicate a vector full of zeros, asin 0-¢ = 0.

8Warning: the converse is not necessarily true. It’s possible that the cost is nil even with non-
zero errors. For example, in some contexts “small” error may be irrelevant.



1.2. THE AVERAGE 5

writing down its exact mathematical form may be complicated. What does the
L(m) function look like for the grades in econometrics of our hypothetical class?
Hard to say.

Moreover, we often must come up with a summary statistic without know-
ing in advance what it will be used for. Obviously, in these cases finding a one-
size-fits-all optimal solution is downright impossible. We have to make do with
something that is not too misleading. A possible choice is

n
Lim =Y (yi-mP=(y-t-m)(y-t-m)=ee (1.3)
i=1
The above criterion is a function of m based on the sum of squared residuals,
that enjoys several desirable properties. Not only it’s simple to manipulate al-
gebraically: it’s symmetric and convex, so that positive and negative residuals
are penalised equally, and large errors are more costly than small ones. It’s not
unreasonable to take this loss function as an acceptable approximation. More-
over, this choice makes it extremely easy to solve the associated minimisation
problem.
Minimising L(m) with respect to m leads to the so-called least squares prob-
lem. All is needed to find the minimum in (1.3) is taking the derivative of L(m)
with respect to m;

2
dL(m) & d(yi-m) n
= =-2) (yi-m)
dm 5 dm i=1
The derivative must be 0 for a minimum, so that
n
(yvi—m)=0
i=1
which in turn implies
n
n-m=3 yi
i=1
and therefore m = n‘lzl’le yi = Y. The reader is invited to verify that /i is
2
indeed a minimum, by checking that the second derivative d dL,;l'Z“ is positive.

Things are even smoother in matrix notation:
Lim) = (y—tm) (y—tm) =yy-2m-'y+m?/s,

so the derivative is

dL(m) / / /
==-2ty+2m-tt=-2t(y—tm)=0

dm

whence
dy=0'y)-m=m=00)Wy=Y
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because of course ¢'¢ = n. The value of L(m) at the minimum, that is L(#1) =
ee= Z?zl (yi— Y)2isa quantity that in this case we call deviance, but that we
will more often call SSR, as in Sum of Squared Residuals.

The mathematically sophisticated way to say the same, that we used a few
pages back, is

m = Argmin L(m);
meR
where again, the hat (") on m indicates that, among all possible real numbers,
we are choosing the one that minimises our loss function.

The argument above, which leads to choosing the average as an optimal
summary is, in fact, much more general than it may seem: many of the descrip-
tive statistics we routinely use are special cases of the average, where the data
y are subject to some preliminary transformation. In practice: the average of z,
where z; = h(y;) can be very informative, if we choose the function h(-) wisely.
The variance is the most obvious example: the sample variance® is just the aver-
age of z; = (y; — Y)?, which measures how far y; is from Y.

Things get even more interesting when we express a frequency as an average:
define the event E = {y; € A}, where A is some subset of the possible values for
¥i; now define the variable z; = [(y; € A), where [(-) is the so-called “indicator
function”, that gives 1 when its argument is true and 0 when false. Evidently, the
average of the z;, Z, is the relative frequency of E:

n
212

7= i:K/n;

n

since z; can onlybe O or 1, K = Z;’zl z;i is just the number of times the event E
has occurred. I'm sure you can come up with more examples.

1.3 OLS as a descriptive statistic

1.3.1 OLS on a dummy variable

Now let’s bring the explanatory variables x; back in. For the moment, let’s con-
sider the special case where x; is a one-element vector, that is a scalar.

A possible way to check if y; and x; are related to each other is to see if y; is
“large” or “small” when x; is “large” or “small”. Define

zi=(yi—Y)(x;— X)

which is, in practice, a sort of indicator of “matching magnitudes”: z; is positive
when y; > Y and x; > X (both are “large”) or when y; < ¥ and x; < X (both
are “small”); on the contrary, z; is negative when magnitudes don’t match. As

9I'm not applying the “degrees of freedom correction”; I don’t see why I should, as long I'm
using the variance as a descriptive statistic.
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is well known, the average of z; is known as covariance; but this is just boring
elementary statistics.

The reason why I brought this up is to highlight the main problem with co-
variance (and correlation, that is just covariance rescaled so that it'’s guaranteed
to be between -1 and 1): it’s a symmetric concept. The variables y; and x; are
treated equally: the covariance between y; and x; is by construction the same as
between x; and y;. On the contrary, we often like to think in terms of y; = m(x;),
because what we have in mind is an interpretation where y; “depends” on x;,
and not the other way around.'? This is why we call y; the dependent variable
and x; the explanatory variable. In this context, it’s rather natural to see what
happens if you split y into several sub-vectors, according to the values that x;
takes. In a probabilistic context, we'd call this conditioning (see section 2.2.2).

Simple example: suppose our vector y includes observations on n people,
with n,, males and n¢ = n— ny;, females. The information on gender is in a vari-
able x;, that equals 1 for males and 0 for females. As is well known, a 0/1 variable
may be called “binary”, “Boolean”, “dichotomic”, but we econometricians tradi-
tionally call it a dummy variable.!!

Common sense suggests that, if we take into account the information we
have on gender, the average by gender will give us a data description which
should be slightly less concise than overall average (since we're using two num-
bers instead of one), but certainly not less accurate. Evidently, we can define

Ym:Zx,-:lyi:S_m Yf:in:Oyi:ﬁ
Nm Nm n f n f
where Sy, and Sy are the sums of y; for males and females, respectively.

Now, everything becomes more elegant and exciting if we formalise the prob-
lem in a similar way to what we did with the average. We would like to use in the
best possible way the information (that we assume we have) on the gender of the
i-th individual. So, instead of summarising the data by a number, we are going
to use a function, that is something like

m(x;) = My - x; + my - (1= Xx;)

which evidently equals m,, for men (since x; = 1) and mf for women (since x; =
0). Our summary will be a rule giving us ‘representative’ values of y; according
to x;.

Let’s go back to our definition of residuals as approximation errors: in this
case, you clearly have that e; = y; — m(x;), and therefore

Vi=mpXi+mp(l—x;)+e; (1.4)

107'm being deliberately vague here: in everyday speech, saying that A depends on B may mean
many things, not necessarily consistent. For example, “dependence” may not imply a cause-effect
link. This problem is much less trivial than it seems at first sight, and we’ll leave it to professional
epistemologists.

11 am aware that there are people who don't fit into the tradtional male/female distinction, and
I don't mean to disrespect them. Treating gender as a binary variable just makes for a nice and
simple example here, ok?
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Equation (1.4) is a simple example of an econometric model. The number
yi is split into two additive components: a systematic part, that depends on the
variable x; (alinear function of x;, to be precise), plus a remainder term, that we
just call the residual for now. In this example, m(x;) = myx; + m r(L=x;).

It is convenient to rewrite (1.4) as

mg

yisz+(mm_mf)xi+ei=[ L X ] My — My

+e;

S0 we can use matrix notation, which is much more compact and elegant

y=X0B+e, (1.5)
where
_ mg _| B
p= Mm—my ] B

and X is a matrix with n rows and 2 columns; the first column is ¢ and the second
one is X. The i-th row of X is [1, 1] if the corresponding individual is male and
[1,0] otherwise. To be explicit:

v | [1 x| [ e
Y2 1 x e
_ B1
= +
Bo
Yn-1 1 xp0 €n-1
Yn | | 1 x, ] | én

Therefore, the problem of choosing m;, and m optimally is transformed
into the problem of finding the vector 3 that minimises the loss function €’e.
The solution is not difficult: find the solutions to'?

d , d , d
— ee=—w=-X -XA3) = —
dﬁee d,B(y B3) (y—XB) a8

By using the well-known!? rules for matrix differentiation, you have

Yy-28Xy+B'XX3) =0

Xy=XX-0 (1.6)

What we have to do now is solve equation (1.6) for B The solution is unique
if X'X is invertible (if you need a refresher on matrix inversion, and related mat-
ters, subsection 1.A.3 is for you):

8= (x'x)"'Xy. (1.7)

12Need I remind the reader of the rule for transposing a matrix product, that is (AB)' = B'A"?
Obviously not.
BNot so well-known, maybe? Jump to subsection 1.A.1.
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Equation (1.7) is the single most important equation in this book, and this is
why I framed it into a box. The vector B is defined as the vector that minimises
the sum of squared residuals among all vectors with k elements (where k =2 in
this case):

B = Argmin ¢€'e,
BeRF
and the expression in equation (1.7) turns the implicit definition into an explicit
formula that you can use to calculate (3.

The coefficients B obtained from (1.7) are known as OLS coefficients, or OLS
statistic, from Ordinary Least Squares.'* A very common idiom that economists
use when referring to the calculation of OLS is “regressing y on X”. The usage of
the word “regression” here might seem odd, but will be justified in chapter 3.

The “hat” symbol has exactly the same meaning as in eq. (1.2): of all the
possible choices for 3, we pick the one that makes eq. (1.6) true, and therefore
minimises the associated loss function €’e. The vector

y=X3

is our approximation to y. The term we normally use for the elements of ¥ are
the fitted values: the closer they are to y, the better we say that the model fits
the data.

In this example, a few simple calculations suffice to show that

X/X _ n Nm
Nm Nm

Xy = zgil”]: Sm+Sy
Zx,:l)/i Sm

where Sy, = Y y,=1yi and Sy = }.y,—¢ yi: the sums of y; for males and females,
respectively. By using the standard rule for inverting (2 x 2) matrices, which I

will also assume known,1°
XX = 1 Nm —Nm,
so that
4= 1 N —Nm]| [Sm+Sp] _ 1 NSy ]
and finally
& Y
A _ ny — B f _
s Swm _ St [Ym - Yf]
Nm ny

14Why “ordinary”? Well, because there are more sophisticated variants, so we call these “ordi-
nary” as in “not extraordinary”. We'll see one of those variants in section 4.2.1.
151f you're in trouble, go to subsection 1.A.4.
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so that our model is:
f/i = Yf + (Ym - Yf) Xi

and it’s easy to see that the fitted value for males (x; = 1) is ¥;,,, while the one for
the females (x; = 0) is Y;.

Once again, opting for a quadratic loss function (and therefore minimising
€’e) delivers a solution consistent with common sense, and our approximate de-
scription of the vector y uses a function whose parameters are the statistics we
are interested in.

1.3.2 The general case

In reading the previous subsection, the discerning reader will have noticed that,
in fact, the assumption that x is a dummy variable plays a very marginal role.
There is no reason why the equation m(x;) = ; + f2x; should not hold when
x; contains generic numeric data. The solution to the problem remains un-
changed; clearly, the vector 3 will not contain the averages by sub-samples, but
the fact that the loss function is minimised by B=XX)"1X y keeps being true.

Example 1.1
Suppose that
= n
3 3
2| L2
Y= 13 s
0 1
nl- nla
The reader is invited to check that'®
o [ 6 16] o [ 07 —02 [0
XX=116 56| XX =1 02 3/a0] XY7|s33
and therefore
[ 2.3 ] [ —1.3]
1.825 1.175
go| 04] g |sas| | o6
“loa7s| YT |2.775 | 0225
0.875 -0.875
0.875] | 0.125)

Hence, the function m(x;) minimising the sum of squared residuals is m(x;) =
0.4+ 0.475x; and e'e equals 4.325. \

16Before you triumphantly shout “It’s wrong!”, remember to stick ¢ and x together.
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In traditional textbooks, at this point you always get a picture similar to the
one in Figure 1.1, which is supposed to aid intuition; I don't like it very much, and
will explain why shortly. Nevertheless, let me show it to you: in this example, we
use the same data as in the present example.

Figure 1.1: OLS on six data points

-7 m(x)=0.4+0.475x

. el \(xbfll)

- (x1, 1)

In Figure 1.1, each black dot corresponds to a (x;, y;) pair; the dashed line
plots the m(x) function and the residuals are the vertical differences between the
dots and the dashed line; the least squares criterion makes the line go through
the dots in such a way that the sum of these differences (squared) is minimal.
So, for example, for observation number 1 the observed value of x; is 4 and the
observed observed value for y; is 1; the approximation yields y; = 0.4+0.475x4 =
2.3 (observe the position of the white dot). Therefore, e; = y; — 1 = —1.3 (the
vertical distance between the black dot and the white dot).

The example above can be generalised by considering the case where we
have more than one explanatory variable, except for the fact that producing a
figure akin to Figure 1.1 becomes difficult, if not impossible. Here, the natural
thing to do is expressing our approximation as a function of the vector x;, that is
m(x;) = X3, or more explicitly,

Vi =Po+ Prx1i + Poxoi +...+ PrXki

For example, suppose we have data on each student in the class A. S. Tudent
belongs to. How many hours each student spent studying econometrics, their
previous grades in related subjects, and so on; these data, for the i-th student,
are contained in the vector x;., which brings us back to equation (1.5).

The algebraic apparatus we need for dealing with the generalised problem
is, luckily, unchanged; allow me to recap it briefly. If the residual we use for
minimising the loss function is e;(3) = y; —x;3, then the vector of residuals is

e(3) =y-XG3 (1.8)

so the function to minimise is L(3) = e(3)'e(3).
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Since the derivative of e(3) with respect to 3 is —X, we can use the chain rule
and write
X'e(3) =0 (1.9)

(a more detailed proof, should you need it, is in subsection 1.A.5). By putting
together (1.8) and (1.9) you get a system of equations sometimes referred to as
normal equations:

X'X-3=XYy (1.10)

and therefore, if X'X is invertible, 3 = (X'X) " 'X'y.

If you think that all this is very clever, well, you're right.
The inventor of this is arguably the greatest mathemati-
cians of all time: the great Carl Friedrich Gauss, also known
as the princeps mathematicorum."’

Note, again, that the average can be obtained as the
special case when X = ¢. Moreover, it’s nice to observe that
the above formulae make it possible to compute all the rel-
evant quantities without necessarily observing the matri-
ces X and y; in fact, all the elements you need are the fol-
lowing:

CARL FRIEDRICH
GAUSS

1. the scalary'y;
2. the k-element vector X'y and
3. the k x k matrix X'X)"!,

where k is the number of columns of X, the number of unknown coefficients in
our m(-) function. Given these quantities, (3 is readily computed, but also €’e:

ee=(y-XB)(y-XB) =yy-yXB-Xy+3 XXz

and using (1.10) you have
de=yy-3 Xy. (1.11)

Equation (1.11) expresses the SSR as the difference between a scalar and the
inner product of two k-element vectors 3 and (X'y). The number of rows of y,
that is the number of observation 7, never comes into play, and could well be
huge.

I guess you now understand my lack of enthusiasm for Figure 1.1: if X has
3 columns, drawing a similar picture is difficult. For 4 or more columns, it be-
comes impossible. Worse, the geometric intuition that it conveys may overlap
with another geometric interpretation of OLS, which I consider more interesting
and more useful, and is the object of section 1.4.

17To be fair, the French mathematician Adrien-Marie Legendre rediscovered it independently a
few years later.
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A nice feature of a linear function like (1.5) is that the coefficients 3 can be
interpreted as marginal effects, or partial derivatives if you prefer. In the previ-
ous example, the coefficient associated to the number of hours that each student
spent studying econometrics may be defined as

om(x) _

%, B (1.12)
and therefore can be read as the partial derivative of the m(-) function with re-
spect to the number of hours. Clearly, you may attempt to interpret these mag-
nitude by their sign (do more hours of study improve your grade?) and by their
magnitude (if so, by how much?). However, you should resist the temptation to
give the coefficients a counterfactual interpretation (If A. S. Tudent had studied
2 more hours, instead of watching that football game, by how much would their
mark have improved?); this is possible, in some circumstances, but not always
(more on this in Section 3.5).

Focusing on marginal effects is what we do
most often in econometrics, because the ques-
tion of interest is not really approximating y
given X, but rather understanding what the ef-
fect of x on y is (and, possibly, how general and
robust this effect is). In other words, the ob-
ject of interest in econometrics is much more
often 3, rather than m(x). The opposite hap-
pens in a broad class of statistical methods that
go, collectively, by the name of machine learn-
ing methods and focus much more on predic-
tion than interpretation. In order to predict cor-
rectly, these models use much more sophisti-
cated ways of handling the data than a simple
linear function, and even writing the rule that
links x to y is impossible.

Machine learning tools have been getting quite

popular at the beginning of the XXI century,
and are the tools that companies like Google
and Amazon use to predict what video you'd
like to see on Youtube or what book you'd like
to buy when you open their website. As we all
know, these models perform surprisingly well
in practice, but nobody would be able to re-
construct how their predictions come about.
The phrase some people use is that machine
learning procedures are “black boxes”: they
work very well, but they don'’t provide you with
an explanation of why you like that particular
video. The pros and cons of econometric mod-
els versus machine learning tools are still un-
der scrutiny by the scientific community, and,
if you're curious, I'll just give you a pointer to
Mullainathan and Spiess (2017).

1.3.3 Collinearity and the dummy trap

Of course, for solving equation (1.10), XX must be invertible. Now, you may ask:
what if it's singular? This is an interesting case. The solution ¥ can still be found,
but there is more than one vector (3 associated with it. In fact, there are infinitely
many. Let me give you an example. Suppose that X contain only one non-zero
column, x;. The solution is easy to find:

/
A Xy
1
ﬂIZ,

)
X1X1

so that ¥ = ;x;. Now, add to X a second column, x,, which happens to be a
multiple of x;, so x» = ax;. Evidently, X, adds no information to our model,
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because it contains exactly the same information as x; so y remains the same.
Now, however, we can write it in infinitely may ways:

37: ,31)(1 = 0.5,31)(1 + 0.5%)(2 = 0.01[31)(1 + 0.99%)(2 =...

because obviously %xz = B1Xx;. In other words, there are infinitely many ways to

combine x; and x; to obtain y, even though the latter is unique and the objective
function has a well-defined minimum.

We call this problem collinearity, or multicollinearity, and it can be solved
quite easily: all you have to do is drop the collinear columns until X has full rank.

In practice, things are not always so easy, because (as is well known) digital
computers work with finite numerical precision, but in the cases we will con-
sider we should have no problems. The interested reader may want to have a
look at section 1.A.6.

A situation where this issue may arise goes commonly under the name of
dummy trap. Suppose that you want to include in your model a qualitative vari-
able, in which we have a conventional coding. For example, the marital status of
an individual, and you conventionally code this information as 1=single, 2=mar-
ried, 3=divorced, 4=it’s complicated, etc.

Clearly, using this variable “as is” makes no sense: a function like y; = §; +
B2x; would consider x; as a proper numerical value, whereas in fact its coding is
purely conventional. The solution is recoding x; as a set of dummy variables, in
which each dummy corresponds to one category: so for example the vector

1
3
2
x=|1
2
3
3]
would be substituted by the matrix
[1 0 O
0 0 1
01 0
Z=11 0 O
01 0
0 0 1
[0 0 1

so the first column of Z is a dummy variable for x; = 1, the second one is a
dummy variable for x; = 2, and so on.
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However, using the matrix Z unmodified leads to a collinearity problem if
the model contains a constant, since the sum of the columns of the matrix Z is
by construction equal to ¢. Hence, the matrix

X=[¢ Z]

has not full rank, so X'X doesn’t have full rank either, and consequently is not
invertible.!®

The remedy you normally adopt is to drop one of the column of Z, and the
corresponding category becomes the so-called “reference” category. For exam-
ple, suppose you have a geographical variable x; conventionally coded from 1 to
3 (1=North, 2=Centre, 3=South). The model m(x;) = 1 + B2 x; is clearly mean-
ingless, but one could think to set up an alternative model like

Ji=P1+ B2N; + B3Ci + BaS;,

where Nj = 1 if the i-th observation pertains to the North, and so on. This would
make more sense, as all the variables in the model have a proper numerical in-
terpretation. However, in this case we would have a collinearity problem for the
reasons given above, that is N; + C; + S; = 1 by construction for all observations
i.

The solution is dropping one of the geographical dummies from the model:
for example, let’s say we drop the “South” dummy S;: the model would become

yi= P11+ P2N; + B3Cj;

observe that with the above formulation the fitted value for a southern observa-
tion would be

yi:ﬁ1+ﬁ2x0+[33x0=ﬁl

whereas for a northern one you would have

Ji=P1+P2x1+P3x0=p1+po,

so 3, indicates the difference between a northern observation and a southern
one, in the same way as 3 indicates the difference between Centre and South.
More in general, after dropping one of the dummies, the coefficient for each of
the remaining ones indicates the difference between that category and the one
you chose as a reference.

1.3.4 Nonlinearity

A further step in enhancing this setup would be allowing for the possibility that
the function m(x;) is non-linear. In a traditional econometric setting this idea

181f you have problems following this argument, sections 1.A.3 and 1.A.4 may be of help.
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would take us to consider the so-called NLS (Nonlinear Least Squares) tech-
nique. [ won't go into this either, for two reasons.

First, because minimising a loss function like L(3) = ?:1 [ Vi— m(x,-,,@)]z,
where m(-) is some kind of crazy arbitrary function may be a difficult problem:
it could have more than one solution, or none, or maybe one that cannot be
written in closed form.

Second, the linear model is in fact more general than it seems, since in order
to use OLS it is sufficient that the model be linear in the parameters, not nec-
essarily in the variables. For example, suppose that we have one explanatory
variable; it is perfectly possible to use a model formulation like

m(x;) = P1 + Paxi + Psx;. (1.13)

The equation above contains a non-linear transformation of x; (the square), but
the function itself is just a linear combination of observable data: in this case,
we use a formulation that implies that the effect of x; on m(x;) is nonlinear, but
this is still achieved by employing a linear combination of observable variables.
To be more explicit, the X matrix would be, in this case,

1 x xf

1 x, x5
X= .

1 x, x2

and the algebra would proceed as usual.

This device is very common in applied econometrics, where powers of ob-
servable variables are used to accommodate nonlinear effects in the model with-
out having to give up the computational simplicity of OLS. The parameter 3 is
also quite easy to read: if it's positive (negative), the m(x;) function is convex
(concave).

The only caveat we have to be aware of is that, of course, you cannot inter-
pret the 3 vector as marginal effects, as the right-hand side of equation (1.12)
is no longer a fixed scalar. In fact, the marginal effects for each variable in the
model become functions of the whole parameter vector 3 and of x;; in other
terms, marginal effects may be different for each observation in our sample. For
example, for the model in equation (1.13) the marginal effect of x; would be

om(x;)
ax,-

= B2 +2B3x;;

and its sign would depend on the condition x; > —2%, so it’s entirely possible
that the marginal effect of x; on y; is positive for some units in our sample and
negative for others.

More generally, what we can treat via OLS is the class of models where

k
mx;) =) Bjgjxi),
j=1
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where x; are our “base” explanatory variables and g; () is a sequence of arbitrary
transformations, no matter how crazy. Each element of this sequence becomes
a column of the X matrix. Clearly, once you have computed the 3 vector, the
marginal effects are easy to calculate:

am(xz k ag j (x1)

-Z 0x;

1.4 The geometry of OLS

The OLS statistic and associated concepts can be given an interpretation that
has verylittle to do with statistics; instead, it'’s a geometrical interpretation. Given
the typical audience of this book, a few preliminaries may be in order here.

The first concept we'll want to define is the concept of distance (also known
as metric). Given two objects a and b, their distance is a function that should
enjoy four properties:

1. d(a,b)=d(b,a)

2. d(a,b)=0

3. dla,b)=0<a=>b

4. d(a,b)+d(b,c) = d(a,c)

The first three are obvious; as for the last one, called triangle inequality, it just
means that the shortest way is the straight one. The objects in question may be
of various sorts, but we will only consider the case when they are vectors. The
distance of a vector from zero is its norm, written as ||x|| = d(x,0).

Many functions d(-) enjoy the four properties above, but the concept of dis-
tance we use in everyday life is the so-called Euclidean distance, defined as

dxy) =1/ x-y)x-y)

and the reader may verify that the four properties are satisfied by this definition.
Obviously, the formula for the Euclidean norm is |x|| = vVX'x.

The second concept I will use is the idea of a vector space. If you're not
familiar with vector spaces, linear combinations and the rank of a matrix, then
sections 1.A.2 and 1.A.3 are for you.! In brief, I use the expression Sp (X) to
indicate the set of all vectors that can be obtained as a linear combination of the
columns of X.

191f, on the other hand, you find the topic intriguing and want a rigorous yet very readable book
on this subject, check out Axler (2015).
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Consider the space R", where you have a vector y and a few vectors x;, with
j=1...kand k < n, all packed in a matrix X. What we want to find is the element
of Sp (X) which is closest to y. In formulae:

y = Argmin [y —x||;
x€Sp(X)

since the optimal point must belong to Sp (X), the problem can be rephrased as:
find the vector 3 such that X3 (that belongs to Sp (X) by construction) is closest
toy:
B = Argmin [ly-Xg]. (1.14)
BeRk
If we decide to adopt the Euclidean definition of distance, then the solution
is exactly the same as the one to the statistical problem of Section 1.3.2: since
the “square root” function is monotone, the minimum of ||y —X/3| is the same as
the minimum of (y—X3)'(y — X(3), and therefore

Argmin |ly—-X3| = 5’ = (X'X)_IX/Y
BeRk

from which
y=X8 =XX'X)"Xly.

Note that ¥ is a linear transform of y: you obtain ¥ by premultiplying y by the
matrix X(X’X) "1X’; this kind of transformation is called a “projection”.

1.4.1 Projection matrices

In the previous subsection I pointed out that ¥ is a linear transform of y. The
matrix that operates the transform is said to be a projection matrix.?’ To see
why, there’s an example I always use: the fly in the cinema. Imagine you're sitting
in a cinema, and there’s a fly somewhere in the room. You see a dot on the screen:
the fly’s shadow. The position of the fly is y, the space spanned by X is the screen
and the shadow of the fly is §.

The matrix that turns the position of the fly into the position of its shadow
is X(X'’X)~!X'. To be more precise, this matrix projects onto Sp (X) any vector it
premultiplies, and it’s such a handy tool that it has its own abbreviation: Px.

Px = XX'X) "X/

and ¥y can be written as ¥ = Pxy. The reader may find it amusing that in the
econometrics jargon the Px matrix is sometimes referred to as the “hat” matrix,
because Px “puts a hatony”.

201 I were pedantic, I'd have to say orthogonal projection, because you also get a tool called
oblique projection. We'll never use it in this book, apart from a passing reference in chapter 6.
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Figure 1.2: Example: projection of a vector on another one

coordinate 2
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_-- Sp(x)
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<

ke coordinate 1

In this simple example, x = (3,1) andy = (5, 3); the reader may want to check that
y=(5.4,18) ande=(-04,1.2).

The base property of Px is that, by construction, PxX =X, as you can easily
check. Moreover, it’s symmetric and idempotent.

Px =Py’ PxPx = Px.

We call idempotent something that does not change when multiplied by itself;
for example, the real numbers 0 and 1 are idempotent. A nice way to understand
the meaning of idempotency is by reflecting on its geometrical implication: the
matrix Px takes a vector from wherever it is and moves it onto the closest point of
Sp (X); but if the starting point already belongs to Sp (X), obviously no movement
takes place at all, so applying Px to a vector more than once produces no extra
effects (Pxy = PxPxy = PxPx--- Pxy).

It can also be proven that Py is singular;?!' again, this algebraic property can
be given a nice intuitive geometric interpretation: a projection entails a loss
of information, because some of the original coordinates get “squashed” onto
Sp(X): in the fly example, it’s impossible to know the exact position of the fly
from its shadow, because one of the coordinates (the distance from the screen)
is lost. In formulae, the implication of Px being singular is that no matrix A exists
such that A-Px =1, and therefore no matrix exists such that Ay =y, which means
that y is impossible to reconstruct from its projection.

In practice, when you regress y on X, you are performing exactly the same
calculations that are necessary to find the projection of y onto Sp (X), and the
vector 3 contains the coordinates for locating ¥ in that space.

21To be specific: it can be proven that rk (Px) = rk(X), so Px is a 7 x n matrix with rank k; evi-
dently, in the situation we’re considering here, n > k. Actually, it can be proven that no idempotent
matrix is invertible, the identity matrix being the only exception.
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There is another interesting matrix we’ll be using often:
My =I-Py.

By definition, therefore, Mxy = y—y = e. The Mx matrix performs a complemen-
tary task to that of Px: when you apply Mx to a vector, it returns the difference
between the original point and its projection. We may say that e = My contains
the information that is lost in the projection. It is easily checked that MxX = [0]
and as a consequence,

MxPx = PxMx = [0],

where I'm using the notation [0] for “a matrix full of zeros”.

Some more noteworthy properties: My is symmetric, idempotent and sin-
gular, just like Px.?? As for is rank, it can be proven that its rank equals 7 — k,
where 7 is the number of rows of X and r = rk (X).

A fundamental property this matrix enjoys is that every vector of the type
Mgxy is orthogonal to Sp (X), so it forms a 90° angle with any vector that can be
written as X1.23 These properties are very convenient in many cases; a notable
one is the possibility of rewriting the SSR as a quadratic form:?*.

e'e = (Mxy) (Mxy) = y MxMxy = y Mxy

where the second equality comes from symmetry and the third one from idem-
potency. By the way, the above expression could be further manipulated to re-
obtain equation (1.11):

YMxy=y 1-Px)y=yy-yPxy=yYy-yXXX 'Xy=yy-5Xy.

Example 1.2
Readers are invited to check (by hand or using a computer program of their
choice) that, with the matrices used in example 1.1, Px equals

0.3 02 0.1 0.4 0 0]
0.2 0.175 0.15 0.225 0.125 0.125
0.1 015 0.2 0.05 0.25 0.25
0.4 0.225 0.05 0.575 -0.125 -0.125

0 0.125 0.25 -0.125 0375 0.375
0 0125 025 -0.125 0375 0.375]

and that does in fact satisfy the idempotency property.

221 fact, My is itself a projection matrix, but let’s not get into this, ok?

231 et me remind the reader that two vectors are said to be orthogonal if their inner product is
0. In formulae: x L y < x'y = 0. A vector is orthogonal to a space if it's orthogonal to all the points
that belong to that space: y L Sp (X) < y'’X=0, soy L XA for any A.

247 quadratic form is an expression like x’ Ax, where x is a vector and A is a square matrix,
usually symmetric. I sometimes use the metaphor of a sandwich and call x the “bread” and A the
“cheese”.
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In the present context, the advantage of using projection matrices is that the
main quantities that appear in the statistical problem of approximating y; via x;
become easy to represent in a compact and intuitive way:

Magnitude Symbol Formula

OLS Coefficients B X'X)" X'y
Fitted values y Pxy
Residuals e Mxy

Sum of squared residuals SSR  ee=yMyy

Take for example the special case X = ¢. As we now know, the optimal solu-
tion to the statistical problem is using the sample average, so B = V: the fitted
values are P,y = ¢- Y and the residuals are simply the deviations from the mean:
e=M,y=y—¢-Y. Finally, deviance can be written as y'M,y.

1.4.2 Measures of fit

We are now ready to tackle a very important issue. How good is our model? We
know that 3 is the best we can choose if we want to approximate y; via j; =
X’ 3, but nobody guarantees that our best should be particularly good. A natural
way to rephrase this question is: how much information are we losing in the
projection? We know the information loss is minimal, but it could still be quite

large.
In order to answer this question, let us start from the following two inequal-

ities:
0<yy=yPxy<vyly; (1.15)

the first one is rather obvious, considering that y'y is a sum of squares, and
therefore non-negative. The other one, instead, can be motivated via y'Pxy =
yy-yMxy =Yy'y-¢'e; since €’e is also a sum of squares, yPxy <y'y. If we divide
everything by y'y, we get

0<>=1-—=R}<1. (1.16)

This index bears the name Rf, (“uncentred R-squared”), and, as the above
expression shows, it’s bounded by construction between 0 and 1. It can be given
a very intuitive geometric interpretation: evidently, in R” the points 0, y and y
form a right triangle (see also Figure 1.2), in which you get a “good” leg, that is ¥,
and a “bad” one, the segment linking ¥ and y, which is congruent to e: we'd like
the bad leg to be as short as possible. After Pythagoras’ theorem, the R? index
gives us (the square of) the ratio between the good leg and the hypotenuse. Of
course, we'd like this ratio to be as close to 1 as possible.
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Example 1.3
With the matrices used in example 1.1, you get thaty'y = 29 and €’e = 1.5; there-
fore,

2 1.5
R:2=1-—-==0.9483
29

The R? index makes perfect sense geometrically, but hardly any from a sta-
tistical point of view: the quantity y'y has a natural geometrical interpretation,
but statistically it doesn't mean much, unless we give it the meaning

Yy=(y-0)(y-0),

that is, the SSR for a model in which ¥ = 0. Such a model would be absolutely
minimal, but rather silly as a model. Instead, we might want to use as a bench-
mark our initial proposal described in section 1.2, where X = ¢. In this case,
the SSR is just the deviance of y, that is the sum of squared deviations from the
mean, which can be written as yM,y.

If ¢ € SpX) (typically, when the model contains a constant term, but not
necessarily), then a decomposition similar to (1.15) is possible: sincey =y +e,
then obviously

yM,y=yM,y+e'M,e=yM,y+e'e (1.17)

because if ¢ € Sp X), then M, e = e.2> Therefore,
0<ee<yMy,

where the second inequality comes from the fact that y'M, ¥ is a sum of squares
and therefore non-negative.?® The modified version of R? is known as centred

R-square:
/

R>=1-

My’ (1.18)
The concept of R? that we normally use in econometrics is the centred one, and
this is why the index defined at equation (1.16) has the “u” as a footer (from the
word uncentred).

In a way, the definition of R? is implicitly based on a comparison between
different models: one which uses all the information contained in X and another
(smaller) one, which only uses ¢, because y'M,y is just the SSR of a model in
which we regress y on ¢. Therefore, equation (1.18) can be read as a way to com-
pare the loss function for those two models.

25gubsection 1.A.8 should help the readers who want this result proven.
26Note that, in the rare but not impossible case ¢ ¢ Sp (X), it is perfectly possible thate’e <y M, y,
so the centred version of the R? index may be negative.



1.4. THE GEOMETRY OF OLS 23

In fact, this same idea can be pushed a little bit further: imagine that we
wanted to compare model A and model B, in which B contains the same ex-
planatory variables as A, plus some more. In practice:

Model A y=X3
Model B y=X3+Zvy=W0

|

The matrix Z contains additional regressors to model A. It is important to
realise that the information contained in Z could be perfectly relevant and le-
gitimate, but also ridiculously useless. For example, a model for the academic
performance of A. S. Tudent could well contain, as an explanatory variable, the
number of pets A. S. Tudent’s neighbours have, or the number of consonants in
A. S. Tudent’s mother’s surname.

It’s easy to prove that the SSR for model B is always smaller than that for A:

where W=[X Z]and @ =

SSRa=e€j e,  SSRzp=epep
where e, = Mxy and e, = Myy. Since X € Sp (W), clearly27 PwX =X and therefore
MwMx = Mw,
which implies Mye, = ej; as a consequence,
SSRp = €} e, = e, Mwe, = e,e,—e,Pye, < e, e, = SSRa.

More generally, if Sp (W) > Sp (X), then yMwy < y'Myy for any vectory.

The implication is: if we had to choose between A and B by using the SSR
as a criterion, model B would always be the winner, no matter how absurd the
choice of the variables Z is. The R? index isn't any better: proving that

SSRp < SSR4 = R4 > R5.

is a trivial exercise, so if you add any explanatory variable to an existing model,
the R? index cannot become smaller.
A possible solution could be using a slight variation of the index, which goes
by the name of adjusted R?:
—2 ee n-1
R=1-———y, (1.19)
yM,yn—-k
where 7 is the size of our dataset and k is the number of explanatory variables. It
is easy to prove that if you add silly variables to a model, so that the SSR changes

27Some may say: “well, not so clearly”. OK, here goes: X € Sp (W) implies that there is a matrix H
such that X = WH. Hence, PwX = PwWH = WH =X.
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only slightly, the n — k in the denominator should offset that effect. However,
as we will see in section 3.3.2, the best way of choosing between models is by
framing the decision in a proper inferential context.

One final thing on the R? index. Although it’s perfectly legitimate to think
that 0 is “bad” and 1 is “good”, it would be unwise to automatically consider a
number close to 0 (say, 10%) as “rather bad” or, symmetrically, a number close
to 1 (say, 90%) as “pretty good”: a model is an approximate description of the
dependent variable y; , insofar as the explanatory variables x; contain relevant
information. It may well be that the main determinants of y; are unobservable,
and therefore x; only manages to capture a small portion of the overall disper-
sion of y;. In these cases, the R? index will be very small, but it doesn’t neces-
sarily follow that our model is worthless: the relationship that it reveals between
the dependent variable and the explanatory variables may be extremely valu-
able, even if the fraction of variance we explain is small. But again, this idea is
more properly framed as a statistical inference issue, which is what chapter 3 is
about.

1.5 The Frisch-Waugh theorem

Projection matrices are also useful to illustrate a remarkable result, known as the
Frisch-Waugh theorem:?® given a model of the kind y = X3 +e, split X vertically
into two sub-matrices Z and W, and 3 accordingly

A e
=|Z W|| A
y=[z W5
Applying equation (1.7) we get the following:
B _[Zz zwW rzy
B~ Wz ww| |wWy

It would seem that finding an analytical closed form for 3; and 3, as func-
tions of Z, W and y is quite difficult; fortunately, it isn't so: start from

y=y+e=Z3, +WB, +e
and premultiply the equation above by My:
Mwy = MwZ0: +e,

since MwW = 0 (by construction) and Mwe = e (because e = Myy, but Sp (W) c
Sp X), so MwMx = Mx) 29 Now premultiply by Z':

Z'Myy = Z'MwZ3,

2811 fact, many call this theorem the Frisch-Waugh-Lovell theorem, as it was Micheal Lovell
who, in a paper appeared in 1963, generalised the original result that Frisch and Waugh had ob-
tained 30 years earlier to its present form.

291f you're getting a bit confused, you may want to take a look at section 1.A.8.
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since Z'e = 0, because Z'Mx = 0. As a consequence,

B = (ZMwZ) ™' ZMwy (1.20)
Since Myy is idempotent, an alternative way to write (1.20) could be
B = (@ Mw) Mw2)] ™ (Z'Mw) Mwy);

therefore 5’1 is the vector of the coefficients for a model in which the dependent
variable is the vector of the residuals of y with respect to W and the regressor
matrix is the matrix of residuals of Z with respect to W. For symmetry reasons,
you also obviously get a corresponding expression for 3,:

B: = (WMZW) ' WMzy
In practice, a perfectly valid algorithm for computing 3; could be:
1. regress y on W; take the residuals and call them ¥;

2. regress each column of Z on W; form a matrix with the residuals and call it
zZ

3. regress  on Z: the result is 3.

This result is not just a mathematical curiosity, nor a computational gim-
mick: it comes in handy in a variety of situations for proving theoretical results.
For example, we'll use this theorem more than once in chapters 3 and 6.

An interpretation that the Frisch-Waugh theorem can be given is the follow-
ing: the coefficients for a group of regressors measure the response of y having
taken into account the other ones or, as we say, “everything else being equal”.
The phrase normally used in the profession is “controlling for”. For example:
suppose thaty contains data on the wages for n employees, that Z is their educa-
tion level and W is a geographical dummy variable (North vs South). The vector
¥ = Mwy will contain the differences between the individual wages and the aver-
age wage of the region where they live, in the same way as Z = MyZ contains the
data on education as deviation from the regional mean. Therefore, regressing ¥
on Z is a way to implicitly take into account that differences in wages between
regions may depend on different educational levels. Consequently, by regressing
y on both the “education” variable and the regional dummy variable, the coeffi-
cient for education will measure its effect on wages controlling for geographical
effects.
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1.6 An example

For this example, I got some data from the 2016 SHIW dataset;>? our dataset
contains 1917 individuals, who are full-time employees.3! We are going to use
four variables, briefly described in Table 1.1. Our dependent variable is going to
be w, the natural logarithm of the hourly wage in Euro. The set of explanatory
variables was chosen in accordance with some vague and commonsense idea
of the factors that can account for differences in wages. We would expect that
people with higher education and/or longer work experience should command
a higher wage, but we would also use the information on gender, because we are
aware of an effect called “gender gap”, that we might want to take into account.

Variable Description Mean Median S.D. Min Max
w  Loghourly wage 2.22 2.19 0.364 0.836 4.50
g dummy male=1 0.601 1.00 0.490 0.00 1.00
e education (years) 11.7 13.0 3.60 0.00 21.0
a work experience (years) 27.4 29.0 10.9 0.00 58.0

Table 1.1: Wage example

The data that we need to compute 3 are:

1917 1153 22493 52527
XX = 1153 1153 13299 32691
B 22493 13299 288731 594479
| 52527 32691 594479 1666703
[ 4253.3716
L 2633.5507
XY = | 51038.9769
| 116972.6710
vy = 9690.62

The reader is invited to check that the inverse of X'X is (roughly)

1356.9719 -120.7648 -63.9068 —17.6027
—120.7648  220.4901 1.2056  —0.9488
—63.9068 1.2056 4.4094 0.4177
-17.6027 —0.9488 0.4177 0.4844

xXx)'=10"°.

30SHIW is the acronym for “Survey on Household Income and Wealth”, provided by the Bank of
Italy, which is a very rich and freely available dataset: see
https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/
bilanci-famiglie/.

311 can send you the details on the construction of the dataset from the raw data, if you're inter-
ested. Just send me an email.


https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/
https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/
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and therefore we have

1.3289
0.1757
0.0526
0.0061

B= e¢e=177.9738  R?>=29.76%

but it is much more common to see results presented in a table like Table 1.2.

coefficient std. error t-ratio p-value
const 1.32891 0.0355309 37.40 2.86e-230 *x**
male 0.175656 0.0143224 12.26 2.42e-33 k%%
educ 0.0526218 0.00202539 25.98 1.02e-127 *x¥x
wexp 0.00608615 0.000671303 9.066 2.97e-19  ***

Mean dependent var 2.218765 S.D. dependent var 0.363661
Sum squared resid 177.9738 S.E. of regression 0.305015
R-squared 0.297629  Adjusted R-squared 0.296528

Table 1.2: Wage example — OLS output

At this point, there are quite a few numbers in the table above that we don't
know how to read yet, but we have time for this: chapter 3 is devoted entirely to
this purpose. The important thing for now is that we have a reasonably efficient
way to summarise the information on wages via the following model:

w; =1.33+0.176g; + 0.053¢; + 0.006a;

where w; is the log wage for individual i, g; is their gender, and the rest follows.
In practice, if we had a guy who studied for 13 years and has worked for 20
years, we would guess that the log of his hourly wage would be

1.33+0.176-1+0.052-13 +0.006-20 = 2.31

which is roughly €10 an hour (which sounds reasonable).

The quality of the approximation is not bad: the R? index is roughly 30%,
which means that if we compare the loss functions for our model and the one
we get if we has just used the average wage, we get

!

0.298=1-

! .
My = e'e=0.702-yM,y;
ifyou consider the dazzling complexity of the factors that potentially dictate why
two individuals get different wages, the fact that a simple linear rule involving
only three variables manages to describe 30% of the heterogeneity between in-
dividual is surprisingly good.

Of course, nothing is stopping us from interpreting the sign and magnitude
of our OLS coefficients: for example, the coefficient for education is about 5%,
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and therefore the best way to use the educational attainment variable for sum-
marising the data we have on wages is by saying that each year of extra edu-
cation gives you a guess which is about 5% higher.3? Does this imply that you
get positive returns to education in the Italian labour market? Strictly speaking,
it doesn’t. This number yields a fairly decent approximation to our dataset of
1917 people. To assume that the same regularity should hold for others is totally
unwarranted. And the same goes for the gender gap: it would seem that being
male shifts your fitted wage by 17.5%. But again, at the risk of being pedantic,
all we can say is that among our 1917 data points, males get (on average) more
money than females with the same level of experience and education. Coinci-
dence? We should be wary of generalisations, however tempting they may be to
our sociologist self.

And yet, these thoughts are perfectly natural. The key ingredient to give sci-
entific legitimacy to this sort of mental process is to frame it in the context of
statistical inference, which is the object of the next chapter.

1.A Assorted results

This section contains several results on matrix algebra, in the simplest form pos-
sible. If you want an authoritative reference, my advice is to get one of Horn and
Johnson (2012), Abadir and Magnus (2005) or Liitkepohl (1996), which are all ex-
cellent and use a notation and style that is close to what we use in econometrics.

1.A.1 Matrix differentiation rules

The familiar concept of a derivative of a function of a scalar can be generalised
to functions of a vector

y=fx),

where you have a real number y for every possible vector x. For example, if
y = x + w?, you can define the vector x = [x, w, z]’. The generalisation of the
concept of derivative is what we call the gradient, that is a vector collecting the
partial derivatives with respect to the corresponding elements of x. We adopt the
convention by which the gradient is a row vector; hence, for the example above,
the gradient is

0y _1ay oy oy

2-[2 2 2-n a g w]

320ne of the reasons why we economists love logarithms is that they auto-magically turn abso-
lute changes into relative ones: 2 = %—f = % = %%—Vg = %. In other words, the coeffi-
cient associated with the educational variable gives you a measure of the relative change in wage

in response to a unit increase in education.
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The cases we'll need are very simple, because they generalise the simple uni-
variate functions y = ax and y = ax?. Let’s begin by

n
f®=ax=) ajx;
i=1

evidently, the partial derivative of f(x) with respect to x; is just a;; by stacking all
the partial derivatives into a vector, the result is just the vector a, and therefore
d / !/
—ax=a
dx
note that the familiar rule d%ax = a is just a special case when a and x are
scalars.
As for the quadratic form

fx) =xAx= Z Z aijxiXj;

i=1j=1

it can be proven easily (but it’s rather boring) that
d ! ) li
—XAxX=X(A+A)
dx

and of course if A is symmetric (as in most cases), then dixx’ Ax =2-x'A. Again,
note that the scalar case d%axz = 2ax is easy to spot as a special case.

One last thing: the convention by which differentiation expands “by row”
turns out to be very useful because it makes the chain rule for the derivatives
“just work” automatically. For example, suppose you have y = Ax and z = By;
of course, if you need the derivative of z with respect to x you may proceed by

defining C = B - A and observing that
0z
z=B(A&xX)=Cx=—= —=C
0x

but you may also get the same result via the chain rule, as

0z 0zdy
—=—-—"=B-A=C.
0x 0yox

1.A.2 Vector spaces

Here we will draw heavily on the fact that a vector with 7 elements can be thought
of as a point in an n-dimensional space: a scalar is a point on the real line, a vec-
tor with two elements is a point on a plane, and so on. Actually, the notation
x € R” is a concise way of saying that x has n elements.

There are two basic operations we can perform on vectors: (i) multiplying a
vector by a scalar and (ii) summing two vectors. In both cases, the result you get
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is another vector. Therefore, if you consider k vectors with n elements each, it
makes sense to define an operation called a linear combination of them:

k
Z=M01X)+AoXp + -+ ApXg = Z AjXj;
j=1

note that the above could have been written more compactly in matrix notation
as z = XA, where X is a matrix whose columns are the vectors x; and A is a k-
element vector.

The result is, of course, an n-element vector, that is a point in R”. But the
k vectors x1,..., X are also a cloud of k points in R”; so we may ask ourselves if
there is any kind of geometrical relationship between z and x;,xy, ..., Xg.

Begin by considering the special case k = 1. Here z is just a multiple of x;;
longer, if |1, > 1, shorter otherwise; mirrored across the origin if 1; < 0, in the
same quadrant otherwise. Easy, boring. Note that, if you consider the set of all
the vectors z you can obtain by all possible choices for 1;, you get a straight line
going through the origin, and of course x;; this set of points is called the space
spanned, or generated by Xx;; or, in symbols, Sp (x;). It's important to note that
this won’t work if x; = 0: in this case, Sp (x;) is not a straight line, but rather a
point (the origin).

If you have two vectors, instead, the standard case occurs when they are not
aligned with respect to the origin. In this case, Sp (x;,X2) isaplaneandz = 1,x; +
A2X is a point somewhere on that plane. Its exact location depends on 1; and
A2, but note that

* by a suitable choice of 1; and A5, no point on the plane is unreachable;
* no matter how you choose 1; and A,, you can’t end up outside the plane.

However, if X, is a multiple of x;, then x; € Sp (x;) and Sp (x3,X2) = Sp (x1), that is
aline, and not a plane. In this case, considering x, won’t make Sp (x;) “grow” in
dimension, since x; is already contained in it, so to speak.

In order to fully generalise the point, we use the concept of linear indepen-
dence: a set of k vectors xj,...,X, is said to be linearly independent if none of
them can be expressed as a linear combination of the remaining ones.3® The
case I called “standard” a few lines above happens when x; and x; are linearly
independent.

1.A.3 Rank of a matrix

If we take k vectors with 7 elements each and we arrange them side by side so as
to form an (7 x k) matrix (call it X), the maximum number of linearly indepen-

33The usual definition is that X1,...,X; are linearly independent if no linear combination
Z;?Il Ajx; is zero unless all the A; are zero. The reader is invited to check that the two defini-
tions are equivalent.
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dent columns of X is the rank of X (rk (X) in formulae). The rank function enjoys
several nice properties:3*

1. 0 =1k (X) < k (by definition);
2. tk(X) =rk(X');

3. 0 =1k (X) = min(k, n) (by putting together the previous two); but if rk (X) =
min(k, n), and the rank hits its maximal value, the matrix is said to have
“full rank”;

4. tk(A-B) < min(rk (A),rk (B)); but in the special case when A’ = B, then
equality holds, and rk (B'B) = tk(BB') = tk(B).

We can use the rank function to measure the dimension of the space spanned
by X. For example, if rk (X) = 1, then Sp (X) is a line, if rk (X) = 2, then Sp (X) is a
plane, and so on. This number may be smaller than the number of columns of
X.

A result we will not use very much (only in chapter 6), but is quite useful to
know in more advanced settings is that, if you have a matrix A with n rows, k
columns and rank r, it is always possible to write it as

A=UV'

where U is (n x r), V is (k x r), and both have rank r. For example, the matrix
1 0
A=10 O
00
can be written as

1
A=|0|[1 0]
0

where
1 1
U=|0 and V= [ ]
0 0

Note that such decomposition is not unique: there are infinitely many pairs
of matrices that satisfy the decomposition above. The example above would
have worked just as well with

-10
pP= 0 and Q= [—(()).1]
0

and the reader can easily verify that A= UV’ = PQ'.

34I'm not proving them for the sake of brevity: if you're curious, have a look at https://en.
wikipedia.org/wiki/Rank_(linear_algebra).


https://en.wikipedia.org/wiki/Rank_(linear_algebra)
https://en.wikipedia.org/wiki/Rank_(linear_algebra)
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1.A.4 Rank and inversion

A square matrix A is said to be “invertible” if there is another matrix B such that
AB = BA = I, where I is the identity matrix. if B exists, it’s also notated as Al
and called the inverse of A; otherwise, A is said to be singular.

The mathematically accepted way to say “A is non-singular” is by writing
|A|] # 0, where the symbol | A is used for the determinant of the matrix A, which
is a scalar function such that | A| = 0 if and only if A is singular.3®

The concept of matrix inversion becomes quite intuitive if you look at it ge-
ometrically. Take a vector x with n elements. If you pre-multiply it by a square
matrix A you get another vector with n elements:

y=Ax

in practice, A defines a displacement that takes you from a point in R” to a point
in the same space. Is it possible to “undo” this movement? If A takes you from
X toy, is there a matrix B that performs the return trip? If such a matrix exists,
then

X = By.

The only way to guarantee that this happens for every pair of vectors x and y is
to have
AB=BA=1.

Now, note that y is a linear combination of the columns of A4; intuition sug-
gests that all the n separate pieces of information originally contained in x can
get preserved during the trip only if the rank of A is n. In fact, it can be proven
formally that if A is an (n x n) matrix, then rk(A) = n is a necessary and suffi-
cient condition for A™! to exist: for square matrices, full rank is the same thing
as invertibility.

The world of matrix algebra is populated with
results that appear unintuitive when you're
used to the algebra of scalars. A notable one
is: any matrix A (even singular ones; even
non-square ones) admits a matrix B such that
ABA = Aand BAB = B; B is called the “Moore-
Penrose” pseudo-inverse, or “generalised” in-
0] .
is

verse. For example, the matrix A = [ 0 0

singular, and therefore has no inverse. How-
ever, it's got a pseudo-inverse, which is A it-
self. In fact, all projection matrices are their
own pseudo-inverses.

Roger Penrose has been awarded the 2020 No-
bel prize for physics. Not for the generalised in-
verse, but you get the idea of how brilliant the

guy is.

Computing an inverse in practice is very boring: this is one of those tasks

that computers are very good at, while humans are not. The only interesting
cases for which I'm giving you instructions on how to invert a matrix by hand
are:

35You almost never need to compute a determinant by hand, so I'll spare you its definition. If
you're curious, there’s always Wikipedia.
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1. when Ais 2 x 2. In this case, it’s easy to memorise the explicit formula for

the inverse: .
a b\ B 1 d -b)\
c d “ad-bc\ -¢c a )’

2. when A is block-diagonal, that is it can be written as

A, 0 .- 0

0 A, .- 0
A=| . . s

0 0 .. Ap

if the inverse exists, it has the same structure:

A0 0

-1
A—l ~ 0 A2 0
0 0 .. A}

There are many nice properties that invertible matrices enjoy. For example:
e the inverse, if it exists, is unique; that is, if AB = I = AC, then B =C;

e the inverse of a symmetric matrix is also symmetric;

« the transpose of the inverse is the inverse of the transpose ((A") ™! = (A™1)");

* if a matrix is positive definite (see section 1.A.7), then its inverse is positive
definite too;

e if Ais invertible, then the only solution to Ax = 0 is x = 0; conversely, if A
is singular, then there exists at least one non-zero vector such that Ax=0.

e if Aand B are invertible, then (AB)"1 =B 1A71.

1.A.5 Step-by-step derivation of the sum of squares function

The function we have to differentiate with respect to 3 is

L(B) =e(B)e(B);
the elegant way to do this is by using the chain rule:

oL(B) _de(B’ de(3) ]’ de(3)’

8 0P T B 70

the reason why we have to transpose the second element of the sum in the equa-
tion above is conformability: you can’t sum a row vector and a column vector.

e(B3) +

e(d);
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. XX~ XX)

0.1 9.094959—1; (1)]

oo (1) —1.16415e—1(1)]

oo 2.235176_0; 7.450586—0?]
0.0001 9.53(30%?1?39323 (1)]

le-05 0.999752 0.999872]

le-06 0'992183 0.992182]

le-07 855) (1)]

le-08 i ﬂ

Table 1.3: Numerical precision

Therefore, since e(3) is defined as e(3) =y — X3, we have

de(B)
a3
and the necessary condition for minimisation is aé—feﬁ) = —2X'e = 0, which of

course implies equation 1.9.

1.A.6 Numerical collinearity

Collinearity can sometimes be a problem as a consequence of finite precision of
computer algebra.3® For example, suppose you have the following matrix X:

For e > 0, the rank of X is, clearly, 2; nevertheless, if € is a very small number, a
computer program>’ goes berserk; technically, this situation is known as quasi-
collinearity. To give you an example, I used gretl to compute (X'X)~! (X'X) for
decreasing values of €; Table 1.3 contains the results. Ideally, the right-hand side
column in the table should only contain identity matrices. Instead, results are

361f you find this kind of things intriguing I cannot but recommend chapter 1 in Epperson
(2013); actually, the whole book!

37 should say: a computer program not explicitly designed to operate with arbitrary precision.
There are a few, but no statistical package belongs to this category, for very good reasons.
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quite disappointing for € = 1e — 05 or smaller. Note that this is not a problem
specific to gretl (which internally uses the very high quality LAPACK routines),
but a consequence of finite precision of digital computers.

This particular example is easy to follow, because X is a small matrix. But if
that matrix had contained hundreds or thousands of rows, things wouldn’t have
been so obvious.

1.A.7 Definiteness of square matrices

Figure 1.3: Square matrices

@ O

Positive Negative

semi-definite semi-definite

Positive Negative

definite definite

Invertible

o J

A square matrix A is positive definite (pd for short) if the quadratic form x’ Ax
returns a positive number for any choice of x and positive semi-definite (psd for
short) if X' Ax = 0.

If Ais positive (semi-)definite, then — A is negative (semi-)definite. Of course,
it is entirely possible that x' Ax can take positive or negative values depending
onx, in which case A is said to be indefinite. If A is semi-definite and invertible,
then it’s also definite. Figure 1.3 may be helpful.3®

There are many interesting facts on psd matrices. A nice one is: if a matrix
H exists such that A= HH’, then A is psd.3Y This, for example, gives you a quick
way to prove that that [ is pd and Px is psd.

1.A.8 A few more results on projection matrices

Consider an n-dimensional space and a matrix X with n rows, k columns and
full rank. Of course, the columns of this matrix define a k-dimensional subspace
that we call Sp (X).

381n fact, figure 1.3 contains a slight inaccuracy. Finding it is left as an exercise to the reader.
39Eas.y to prove, too. Try.
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We would like to say something about the space spanned by matrices de-
fined as W = X- A. There are two cases of interest. The first one arises when A
is square and invertible: in this case, Sp (X) = Sp (W), so Px = Pyw. The result is
easy to prove: for any y € Sp (X), there must be a vector 3 such that X3 =y. But
then, by choosing v = A™! 3, it’s easy to see that y can also be written as W~ and
thereforey € Sp (W); by a similar reasoning, it can also be proven that if y € Sp (W)
then y also belongs to Sp (X), and therefore

yeSpX) <=yeSp(W)

and the two sets are the same.
The equivalence of the two projection matrices can also be proven directly
by using elementary results on matrix inversion (see section 1.A.4):

Pw =XA[AX'XA] ' AX =XAA7 [X'X] ' (A) T AX =X [X'X] ' X = Px.

Let’s now consider the case when A is a matrix with rank less than k (for
example, a column vector). Evidently, any linear combination of the columns of
W is also a linear combination of the columns of X, and therefore each column
of Wis an element of Sp (X). As a consequence, any vector that belongs to Sp (W)
also belongs to Sp (X).

The converse is not true, however: some elements of Sp (X) do not belong
to Sp (W) (allow me to skip the proof). In short, Sp (W) is a subset of Sp (X); in
formulae, Sp (W) < Sp (X).

A typical example occurs when W contains some of the columns of X, but
not all. Let’s say, without loss of generality, that W contains the leftmost k — p
columns of X. In this case, the matrix A can be written as

I

A=
0

where the identity matrix above has k — p rows and columns, and the 0 zero
matrix below has p and k — p columns.

Pw Mw Px Mx
Pw | Pw 0 Pw 0
My | 0 My  Px—Pw My
Px | Pw Px-Pw  Px 0
Mx 0 Mx 0 Mx

Important: it is assumed that Sp (W) < Sp (X). All products commute.
Table 1.4: Projection matrices “multiplication table”

In this situation, the property PxW = PxXA = XA = W implies some interest-
ing consequences on the projection matrices for the spaces Sp (W) and Sp (X),
that can be summarised in the “multiplication table” shown in Table 1.4. The
reader is invited to prove them; it shouldn'’t take long.



Chapter 2

Some statistical inference

2.1 Why do we need statistical inference?

So far, we have followed a purely descriptive approach, trying to find the smartest
possible method for compressing as much information as we can from the orig-
inal data into a small, manageable container.

However, we are often tempted to read the evidence we have in a broader
context. Strictly speaking, any statistic we compute on a body of data tells us
something about those data, and nothing else. Thus, the OLS coefficients we
compute are nothing but a clever way to squeeze the relevant information out
of our dataset; however, we would often like to interpret the size and the mag-
nitudes of the coefficients that we get out of our OLS calculations as something
that tells us a more general story. In other words, we would like to perform what
in philosophical language is known as induction.

In the 18th century, the Scottish philosopher David
Hume famously argued against induction.

When it is asked, What is the nature of all
our reasonings concerning matter of fact? the
proper answer seems to be, that they are
founded on the relation of cause and effect.
When again it is asked, What is the foundation
of all our reasonings and conclusions concern-
ing that relation? it may be replied in one word, Experience. But if
we still carry on our sifting humour, and ask, What is the founda-
tion of all conclusions from experience? this implies a new question,
which may be of more difficult solution and explication.!

DAvVID HUME

Inductive reasoning can be broadly formalised as follows:

1. Event X has always happened.

1D, Hume, An Enquiry Concerning Human Understanding (1748).

37
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2. The future will be like the past.
3. Therefore, event X will happen in the future.

Even if you could establish statement 1 beyond any doubt, statement 2 is ba-
sically an act of faith. You may believe in it, but there is no rational argument one
could convincingly use to support it. And yet, we routinely act on the premise of
statement 2. Hume considered our natural tendency to rely on it as a biological
feature of the human mind. And it’s a good thing: if we didn’t have this fun-
damental psychological trait, we'd be unable to learn anything at all;*> the only
problem is, it’s logically unfounded.

Statistical inference is a way to make an inductive argument more rigorous
by replacing statement number 2 with some assumptions that translate into for-
mal statements our tendency to generalise, by introducing uncertainty into the
picture. Uncertainty is the concept we use to handle situations in which our
knowledge is partial. So for example we cannot predict which number will show
up when we roll a die, although in principle it would be perfectly predictable,
given initial conditions, using the laws of physics. We simply don’t have the re-
sources to perform such a monster computation, so we represent our imperfect
knowledge through the language of probability, or, more correctly, via a proba-
bilistic model; then, we assume that the same model will keep being valid in the
future. Therefore, if we rolled a die 10 times and obtained something like

x=[(1,5,4,6,3,3,2,6,3,4]

we would act on the assumption that if we keep rolling the same die we will
observe something that, in our eyes, looks “just as random” as x. To put it differ-
ently, our aim will not be to predict exactly which side the die will land on, but
rather to make statements on how surprising or unsurprising certain outcomes
will be.

Therefore, we use the idea of a Data Generating Process, or DGP. We assume
that the DGP is the mechanism that Nature (or any divinity of your choice) has
used to produce the data we observe, and will continue doing so for the data
we have not observed yet. By describing the DGP via a mathematical structure
(usually, but not necessarily, via a probability distribution), we try to come up
with statistics 7' (x) whose aim is not as much to describe the available data x,
but rather to describe the DGP that generated x, and therefore, to provide us
with some insight that goes beyond merely descriptive statistics.

Of course, in order to accomplish such an ambitious task, we need a set of
tools to represent imperfect knowledge in a mathematical way. This is why we
need probability theory.

2To be fair, this only applies to what Immanuel Kant called “synthetic” propositions. But maybe
I'm boring you?
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2.2 Acrash course in probability

Disclaimer: in this section, I'll just go quickly though a few concepts that the
reader should already be familiar with; as a consequence, it is embarrassingly
simplistic and probably quite misleading in many ways. The reader who wants
to go for the real thing might want to read (in increasing order of difficulty): Gal-
lant (1997); Bierens (2011); Davidson (1994); Billingsley (1986). Having said this,
let’s go ahead.

2.2.1 Probability and random variables

The concept of probability has been the object of philo-
sophical debate for centuries. The meaning of probability
is still open for discussion,® but fortunately the syntax of
probability is clear and undisputed since the great Soviet
mathematician Andrej Nikolaevi¢ Kolmogorov made prob-
ability a proper branch of measure theory.

The meaning I give to the word probability here is
largely operational: probability is a number between 0 and
1 that we attach to something called an event. Loosely
speaking, an event is a statement that in our eyes could be
conceivably true or false. Formally, an event is defined as a

subset of an imaginary set, called the state space, and usu- ANDRE]
ally denoted by the letter Q, whose elements w are all the NIKOLAEVIC
KOLMOGOROV

states of the world that our mind can conceive as possible.
Probability is a function of subsets of Q, which obeys a few properties the reader
should already know, such as

pPQ)=1, P(@) =0, P(AUB)=P(A)+P(B)-P(AnB)

and so forth. Event A can be defined as the subset of Q including all the states
w in which a statement A is true, and only those. P(A) is the measure of A,
where the technical word “measure” is a generalisation of our intuitive notion of
“extension” (length, area, volume).* The familiar laws of probability are simple
consequences of the way usual set operations (complement, union, intersec-
tion) work; let’s waste no time on those.®

Random variables are a convenient way to map events to segments on the
real line. That is, a random variable X is defined as a measurable function from

3The interested reader might want to have a look at Freedman and Stark (2016), section 2. You
can download it fromhttps://wuw.stat.berkeley.edu/ stark/Preprints/611.pdf.

4Warning: not all subsets can be associated with a corresponding probability: some are “non-
measurable”. Providing a simple example is difficult, this is deep measure theory: google “Vitali
set” if you're curious.

5In most cases, intuition will suffice. For tricky cases, I should explain what a o-algebra is, but
I don't think that this is the right place for this, really.
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Q to R; or, to put it differently, for any w in Q you get a corresponding real num-
ber X(w). The requisite of measurability is necessary to avoid paradoxical cases,
and simply amounts to requiring that, if we define A as the the subset of Q such
that

a<Xw)<b<—wceA,

then A is a proper event. In practice, it must be possible to define P(a < X < b)
for any a and b. 1 will sometimes adopt the convention of using the acronym
“rv” for random variables.

There are two objects that a random variable comes equipped with: the first
is its support, which is the subset of R with all the values that X can take; in
formulae, X : Q — S € R, and the set S is sometimes indicated as S(X). For a
six-sided die, S(X) = {1,2,3,4,5,6}; if X is the time before my car breaks down,
then S(X) = [0,00), and so on.

The other one is its distribution function, or cumulative distribution func-
tion (often abbreviated as cdf), defined as

Fx(a)=P(X = a),

which of course makes it easy to compute the probability of X being inside an
interval as
P(a< X = b) = Fx(b) - Fx(a).

By their definition, cdfs enjoy three basic properties:

e lim, . o Fx(a)=0;

e lim, .o Fx(a)=1;

e if b> a, then Fx(b) = Fx(a); thatis, Fx(:) is non-decreasing.

Apart from this, there’s very little that can be said in general. However, in many
cases it is assumed that Fx(a) has a known functional form, which depends on
a vector of parameters 6.

Two special cases are of interest:

1. The cdfis a function that goes up in steps; the support is a countable set,
and the corresponding rv is said to be discrete; for every member of the
support x it is possible to define p(x) = P(X = x) > 0; the function p(x) is
the so-called probability function.

2. The cdfis everywhere differentiable; the support is an interval on R, (pos-
sibly, the whole real line), and the corresponding rv is said to be continu-
ous; the derivative of Fy(a) is known as the density function of X, or fx(a)
and therefore, by definition,

b
P(a<Xsb):f fx(2)dz;
a
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in most cases, when the meaning is clear from the context, we just write
the density function for X as f (x).8

In the rest of the book, I will mostly use continuous random variables for exam-
ples; hopefully, generalisations to discrete rvs should be straightforward.

Of course, you can collect a bunch of random variables into a vector, so you
have a multivariate random variable, or random vector. The multivariate ex-
tension of the concepts I sketched above is a little tricky from a technical view-
point, but for our present needs intuition will again suffice. I will only mention
that for a multivariate random variable x with k elements you have that

F@=Plxi=sa)nx=a)n...Nn(x < ag)]

If all the k elements of x are continuous random variables, then you can define
the joint density as
O Fx(@)

K@= 0210230z}

The marginal density of the i-th element of x is just the density of x; taken in iso-
lation. For example, suppose you have a trivariate random vector w = [X, Y, Z]:
the marginal density for Y is

fr(a) :f fw(x,a,z)dzdx
sx) Js2)

2.2.2 Independence and conditioning

If P(A) is the probabilistic evaluation we give of A, we may ask ourselves if we
would change our mind when additional information becomes available. If we
receive the news that event B has occurred, then we can safely exclude the event
B from Q.7 In fact, after receiving the message “B is true’, our state space Q
shrinks to B, because states in which B is false are no longer conceivable as pos-
sible.

The consequence for A is that the subset An B is no longer possible; hence,
we must update our probability measure so that P(B) becomes 1, and conse-
quently® P(A) must be revised as

P(AnB)

61 imagine the reader doesn’t need reminding that the density at x is not the probability that
X = x; for continuous random variables, the probability is only defined for intervals by the for-
mula in the text, from which it follows that P(X = x) is 0.

“When speaking about sets, I use the bar _ to indicate the complement.

8Technically, it's more complicated that this, because P(B) may be 0, in which case the defini-
tion has to be adapted and becomes more technical. If you're interested, chapter 10 in Davidson
(1994) is absolutely splendid.
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You read the left-hand side of this definition as “the probability of A given B”,
which is of course what we call conditional probability. It should be clear that

P(A)=P(A|B) <= P(AnB)=P(A)-P(B)

Which means: “if you don’t need to revise your evaluation of A after having
received some message about B, then A and B have nothing to do with each
other”; in this situation, A and B are said to be independent, and we write A L B,
so independence can be thought of as lack of mutual information. Note that in-
dependence is a symmetric concept: if A is independent of B, then B is inde-

pendent of A, and vice versa.

Equation (2.1) has the following implication:

P(ANnB) =P(A|B)-P(B)=P(B|A)-P(A),
so that
P(B|A)-P(A)

P(B)

The expression above is interesting for many
reasons. One is: in general, P(A|B) # P(B|A),
so, for example, the probability of dying from
COVID if you're not vaccinated is not the same

P(A|B) =

thing as the probability that someone who died
from COVID was a no-vaxxer (think about it).
Another reason is that this expression is the
cornerstone of an approach to statistics known
as Bayesian, after the English statistician and
clergyman Reverend Thomas Bayes, who lived
in the 18th century; I'm not going to use any-
thing Bayesian in this book, but Bayesian meth-
ods are getting increasingly popular in many
areas of econometrics.

The same concept can be applied to random variables. If
Fy(z)=Fy(zla< X < b)

for any a and b, then evidently X carries no information about Y, and we say
that the two random variables are independent: Y I X. If this is not the case,
it makes sense to consider the conditional distribution of Y on X, which de-
scribes our uncertainty about Y once we have information about X. So for ex-
ample, if Y is the yearly expenditure on food by a household and X is the number
of its components, it seems safe to say that F(Y|X > 6) should be different from
F(Y|X < 3), because more people eat more food.

The case a = b is important?, because it gives us a tool for evaluating proba-
bilities about Y in a situation when X is not uncertain at all, because in fact we
observe its realisation X = x. In this case, we can define the conditional density

as
frx(z,x)

fx(x)
and when what we mean is clear from the context, we simply write f(y|x).
Therefore, in many cases we will use the intuitive notion of X, the set of
random variables we are conditioning Y on, as being “the relevant information

frix=x(2) = 2.2)

9Albeit special: a moment’s reflection is enough to convince the reader that if X is continuous,
the event X = x has probability 0, and our naive definition of conditioning breaks down. But
again, treating the subject rigorously implies using measure theory, o-algebras and other tools
that I'm not willing to use in this book.
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about Y that we have”; in certain contexts, this idea is expressed by the notion
of an information set. However, a formalised description of this idea is, again,
far beyond the scope of this book and I am contented to leave this to the reader’s
intuition.

2.2.3 Expectation

The expectation of a random variable is a tremendously important concept.
A rigorous definition, valid in all cases, would require a technical tool called
Lebesgue integral, that I'd rather avoid introducing. Luckily, in the two elemen-
tary special cases listed in section 2.2.1, its definition is quite simple:

ElX]= ) x-px for discrete rvs (2.3)
X€S(X)
E[X] :f z- fx(z)dz for continuous rvs. (2.4)
S(X)

The expectation of a function of X, E[h(X)], is defined simply as
E[h(X)] = f h2)- fx(2)dz
S(X)

for continuous random variables and the parallel definition for the discrete case
is obvious. The extension to multivariate rvs should also be straightforward: the
expectation of a vector is the vector of expectations.

Some care must be taken, since E [ X] may not exist, even in apparently harm-
less cases.

Example 2.1
If X is a uniform continuous random variable between 0 and 1, its density func-
tionis f(x) =1 for0 < x < 1. Its expectation is easy to find as

1

=1/2;
0

2

1
E[X]:f x-1dx =
0

however, it’s not difficult to prove that E[1/X] does not exist (the corresponding
integral diverges):

11
E[I/X]:[ ;-ldx: [logx], = oo.
0

However, it can be proven that if the support of X is finite, then E[X] is al-
ways bounded, and therefore exists. To be more specific: if S(X) = [a, b], where
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a and b are finite, then a < E[X] < b. The proof is easy and left to the reader as
an exercise.

The expectation operator E[] is linear, and therefore we have the following
simple rule for affine transforms (A and b must be non-stochastic):

E[Ax+b]=A-E[x]+b (2.5)

For nonlinear transformation, things are not so easy. Asarule, E[g(X)] # g [E[X]],
and there’s very little you can say in general.'?

The expectation of the k-th power of X is called its k-th moment, so the first
moment is E[X], the second moment is E [Xz] and so on. Of course, E [X"] (with
n = 1) may not exist, but if it does then E [ X"~!] is guaranteed to exist too.

The most egregious example of usefulness of moments is the definition of
variance:!! V[X] = E[X?] - E[X]2. The variance is always non-negative, and is
the most widely used indicator of dispersion. Of course, in order to exist, the sec-
ond moment of X must exist. Its multivariate generalisation is the covariance
matrix, defined as

Cov([x] =E[xx'] ~E[x]E[x]'; (2.6)

The properties of Cov[x] should be well known, but let’s briefly mention the
most important ones: if X = Cov [x], then

e X is symmetric;
e if x; Il xj, then Z;; = 0 (warning: the converse is not necessarily true);

* X is positive semi-definite.!?

Definition 2.6 makes it quite easy to calculate the covariance matrix of an
affine transform:!3
Cov[Ax+b] = A-Cov[x]- A". 2.7)

Note that this result makes it quite easy to prove that if X and Y are independent
rvs, then V(X + Y] = V[X]+ V[Y] (hint: put X and Y into a vector and observe
that its covariance matrix is diagonal).

2.2.4 Conditional expectation

The easiest way to see the conditional expectation of Y given X is by defining it
as the expectation of Y with respect to f(Y|X = x), thatis

E[Y|X =x] :f z- frix=x(2)dz.
S(Y)

1011 fact, there is something more general we can say, when the transformation g(X) is concave
on the whole support of X: it’s called Jensen’s lemma. We will not use this result in this book, but
the result is widely used in economics and econometrics; if you're interested, the idea is briefly
explained in section 2.A.1.

1 A alternative equivalent definition, perhaps more common, is V[X] = E [(X-EIX ])2].

12[f you're wondering what “semi-definite” means, you may want to go back to section 1.A.7.

13The proofis an easy exercise, left to the reader.
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If fy|x=x(z) changes with x, the result of the integral (if it exists) should change
with x too, so we may see E [ ylx] = m(x) as a function of x. This function is
sometimes called the regression function of Y on X.

Does E [ ylx] have a closed functional form? Not necessarily, but if it does, it
hopefully depends on a small number of parameters 6.

Example 2.2
Assume that you have a bivariate variable (Y, X) where Y is 1 if an individual
catches COVID and 0 otherwise, and X is 1 if the same individual is vaccinated.
Suppose that the joint probability is

X=0|X=1

Y=0 0.1 0.3
Y=1 0.3 0.3

The probability of catching COVID among vaccinated people is 5353 3 +0 3 = 50%,
while for unvaccinated people it’s g1=53 1 +0 3 = 75%. The same statement could have
been stated in formulae as

E[Y|X]=0.75-0.25X,

which gives 0.5 if X = 1 and 0.75 if X = 0. The regression function of Y on X is
linear (E[Y|X] =60y +6,X), and it depends on the vector@ = [0y,0,]. |

Of course, if x is a random variable, m(x) is too. Does it have an expectation?
If so,

E[E[ylx]] =E[y]. (2.8)

This is called law of iterated expectations, and is in fact more general than
it appears at first sight. For example, it applies to density functions too:

fO) =E[f(ylx)]

To continue with example 2.2, note that, since E[X] = 0.6, E[Y] =E[0.75-0.25- X] =
0.75-0.25-E[X]=0.7-0.25%x 0.6 =0.6.

Example 2.3
As a more elaborate example, suppose that

E[Y|X]=m(X)=4X -0.5X*
and thatE[X] =V[X] = 1. It follows that
E[Y]=E[m(X)]=4-E[X]-0.5-E[X*] =4-05-2=3

where I used V[X] = E[X?| -E[X]?.
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It must be stressed that expressing the relationship between two random
variables by means of the conditional expectation has no meaning on causal
relationship. Example 2.2 above should not be taken to imply, by itself, that if
you get vaccinated your chances of getting ill are lower, although the idea is very
natural. More on this in Section 3.1.

2.3 Estimation

The best way to define the concept of an estimator is to assume that we observe
some data x, and that the DGP which generated x can be described by means
of a vector of parameters f. An estimator is a statistic = T'(x) that should be
“likely” to yield a value “close to” the parameters of interest 6.

To state the same idea more formally: since x is random and 6 is a function
of x, then 0 is a random variable too, and therefore it must have a support and
a distribution function. Clearly, both will depend on those of x, but ideally, we'd
like to choose the function T'(-) so that the support S(é) contains at least a neigh-
bourhood of 6, and we'd like the probability of observing a realisation of § that
is “near” 8, P(O —e < 0<0+ €)= P(Ié —0| <e¢), to be as close to 1 as possible.

In very simple cases,'* we may be able to compute E [9] and perhaps even
\Y% [é], which leads us to the well known concepts of unbiasedness and efficiency:

« the bias of  is the difference E [§] - 0; therefore f is said to be unbiased if
E [9] =0;

« § is more efficient than 0 if V[0] —V[8] > 0 (if both are unbiased).

The problem that makes these concepts not very useful is that, in many cases of
interest, it's very hard, if not impossible, to compute the moments of § (in some
cases, § may even possess no moments at all). So we need to use something else.
Fortunately, asymptotic theory comes to the rescue.

2.3.1 Consistency

The estimator § is consistent if its probability limit is the parameter we want to
estimate. To explain what this means, let us first define convergence in proba-
bility:

X, 2 X < lim P[|X,- X|<e] =1 2.9)

n—oo

Also notated as plim (X;,) = X.
A description in words of the definition above is: given a sequence of random
variables X1, X»,..., X;;, we define a parallel sequence of events of the kind

X1 —Xl<e, |Xo—X|<e, ..., | Xp,—-Xl|<e¢

14Notably, when 6 is an affine function of x.
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the sequence above can be read as a sequence of events, where |X; — X| < €
means “X; is more or less X”.!> Convergence in probability means that the se-
quence of probabilities for those events tends to 1; that is, the probability of X,
and X being “substantially different” becomes negligible if 7 is large.!®

In general, the limit X could be a random variable, but we’ll be mostly in-
terested in the case when the limit is a constant: if X, 2, a, the chances of
X, being far from a become zero, and therefore the cdf of X;, tends to a step
function which is 0 before a and 1 after it. Or, if X}, is continuous, the density
function f(X}) collapses to a point.

This is exactly what happens, in many circumstances, when we compute the
sample average in a data set. Imagine you have n observations: you can com-
pute the average of the observations you have as they become available; that
is,

- X1+Xo - _X1+X2+X3

X=X, X=—""= X
1 1 2 2 3 3

FERE

does the sequence X;, have a limit in probability? Or, in other words, if 7 is large
enough, do we have good chances that X,, will be a number arbitrarily near to
something? The question may sound abstract and technical, but in fact this is
something that we implicitly do all the time, when we try something many times
in the hope that our knowledge stabilises with repetition.

The conditions that must occur for this idea to make sense are studied by
the so-called Laws of Large Numbers, or LLNs for short.!” There are many dif-
ferent LLNs, that cover different cases. Basically, there are three dimensions to
the problem that must be considered:

1. How heterogeneous are the X; variables?
2. Are the X; variables independent?
3. Can we assume the existence of at least some of the moments?

The simplest version of the LLN is due to the Soviet mathematician Alek-
sandr Khinchin, and sets very strong bounds on the first two conditions and
relaxes the third one as much as possible: if x1, x3,..., x;, are independent and
identically distributed (iid for short) and E [x;] = m, then X 2. m. Other ver-
sions exist: for example, a different version of the LLN can be used if obser-
vations are not independent, but in that case more stringent assumptions are
needed; allow me to skip these complications. For the curious, an example is
provided in section 2.A.2.

I5Where € > 0 is the mathematically respectable way of saying “more or less”.

16The curious reader might be interested in knowing that there are several other ways to define
a similar concept. A particularly intriguing one is the so-called “almost sure” convergence.

17Technically, these are the weak LLNs. The strong version uses a different concept of limit.
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Example 2.4
Let’s toss a coin n times. The random variable representing the i-th toss is x;,
which is assumed to obey the following probability distribution (often referred
to as a Bernoulli distribution):

_J 1 with probability =
Y7 0 with probability 1 -7

Note that the probability n is assumed to be the same for all x;; that is, the coin
we toss does not change its physical properties during the experiment. More-
over, it is safe to assume that what happens at the i-th toss has no consequences
on all the other ones. In short, the x; random variables are iid.

Does x; have a mean? Yes: E[x;] =1-71+0- (1 —n) = n. Together with the iid
property, this is enough for invoking the LLN and establishing that X = p Lo
Therefore, we can take the empirical frequency p as a consistent estimator of
the true probability 7. |

The LLN becomes enormously powerful when coupled with another won-
derful result, known as Slutsky’s Theorem: if X, L, aand g() is continuous
at a, then g(Xy) 2, g(a) (note how much easier this property makes it to work
with probability limits rather than expectations).

In the context of estimation, obviously we will want our estimators to be con-
sistent:

020 lim P|I0-6]<e]=1; (2.10)
n—oo

that is, we will want to use as estimators statistics that become increasingly un-
likely to be grossly wrong. Fortunately, the combination of the LLN and Slutsky’s
Theorem provides a very nice way to devise estimators that are consistent by
construction. If the average has a probability limit that is a continuous, invert-
ible function of the parameter we want, we just apply a suitable transformation
the the average and we're done: so for example if E[x;] = 1/6, then O=1/X s if
E[x;] = Y, then 0= log(X); if E[x;] = 62, then 6 = ﬁ; and so on.

More generally, the extension to the case when 0 is a vector is technically
messier, but conceptually identical. This is known as the method of moments:
it is by no means the only one used in inferential statistics, but it will suffice for
our purposes. The core intuition that motivates it is relatively straightforward:

1. express the moments of the observables as continuous functions of the
parameters of interest 8: m = m(@).

2. Estimate m via the corresponding sample moments i, using the LLN, so
that rh —- m.

3. Estimate 6 by inverting the correspondence between parameters and mo-
ments: 6 = m™! (). This should guarantee consistency: 6L 0.
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Example 2.5
Suppose you have a sample of iid random variables for which you know that
Elx] = 2
a
+1
E[X?] = pp+1) ,

a?

and define the two statistics m; = X =n"' ¥; x; and my = n™' ¥; x2. Clearly

m 2 P
a
+1
no L —p(pz )
a

2

. e e A m . A . . .
Now consider the statistic p = ——. Since p is a continuous function of
2=

both m; and my,

mi  p p*la? p’

my — mj T pp+DiaZ—p2aZ prep-p?

p= p,

So p is a consistent estimator of p.
But then, by the same token, by dividing p by m; you get that

p m p —a
- - ’
m my—m? pla
so you get a second statistic, & = mmlmz which estimates a consistently. |
2=

From the discussion above, the meaning of an estimator being consistent
should be rather clear: a consistent estimator is a statistic that becomes arbi-
trarily precise if your dataset is large enough, because its distribution tends to
collapse to a single point if n goes to infinity. Interestingly, there are two ways in
which an estimator may not be consistent: one case arises when 6 has a prob-
ability limit, but is different from the desired point; in other words, 6L ¢ #0.
However, it may be the case that § does not have a probability limit at all. In that
case, lack of consistency is a consequence of the distribution of our statistic not
collapsing to a single point, but rather remaining spread across a set of values
no matter how large n is.

2.3.2 Asymptotic normality

Consistency is important because we want our estimators to be reasonably pre-
cise for large samples, but this is almost never enough, as we may need to make
more precise statements on the distribution of our estimators.
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For example, imagine that we have two consistent estimators for the same
quantity: that is, two different statistics 0 and 0 that have the same probability
limit 8. How do we choose which one to use? Consistency can't be used as a
criterion, since they are both consistent: if we define

P[16-61<¢]
P[l16-06|<e]

Py
Py,

clearly lim,, .o, P, = lim,, .o, P, = 1, so a decision can’t be made on these grounds.
Nevertheless, if we could establish that, for n large enough, P,, > P,,, so that our
probability of being grossly wrong is lower if we use 6 instead of 8, our preferred
course of action would be obvious. Unfortunately, this is not an easy check: P,
is defined as
O+e
P, = f fx)dx,
0—¢
where f(x) is the density function for § (clearly, a parallel definition holds for
ﬁn). In most cases, the analytical form of f (x) is very hard to establish, if not at
all impossible. However, we could try to approximate the actual densities with
something good enough to perform the required check. This is almost invari-
ably achieved by resorting to a property called asymptotic normality, by which
the unknown density f (x) can be approximated via a suitably chosen Gaussian
density.'®

At first sight, this sounds like a very ambitious task: how can we hope to
make general statements on the distribution of an arbitrary function of arbitrar-
ily distributed random variables? Besides, why the Gaussian density, rather than
something else? What'’s so special about the bell-shaped curve?

And yet, there is a result that applies in a surprisingly large number of cases,
and goes under the name of Central Limit Theorem, or CLT for short. Basically,
the CLT says that, under appropriate conditions, when you observe a random
variable X that can be conceivably thought of as the accumulation of a large
number of random causes that are reasonably independent of each other, with
none of them dominating the others in magnitude, there are very good chances
that the distribution of X should be approximately normal.

The practical effect of this theorem is ubiquitous in nature; most natural
phenomena follow (at least approximately) a Gaussian distribution; the width
of leaves, the length of fish, the height of humans. The French mathematician
Henri Poincaré is credited with the following remark:

Everyone is sure of this, Mr. Lippman told me one day, since the
experimentalists believe that it is a mathematical theorem, and the
mathematicians that it is an experimentally determined fact.!®

181 assume that the reader is reasonably comfortable with the Gaussian distribution, but section
2.A.4 is there, just in case.
French original: Tout le monde y croit cependant, me disait un jour M. Lippmann, car les ex-
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In order to illustrate the concept, we have to begin by
defining convergence in distribution:

X, -4 X <> Fx (2) — Fx(2) 2.11)

When X, converges in distribution to X, the difference

between P(a < X, < b) and P(a < X < b) becomes negli-

gible for large n. So, for large n, we can approximate quite

accurately the probability of events defined for X;, via the
corresponding event defined for X.2°

HENRI POINCARE
Note the fundamental difference between convergence in probability and in

distribution: if X, Pox , then for large n each time we observe a realisation of
X, and X we can be fairly confident that the two numbers will be very close. If

Xn L x instead, there is no guarantee that | X;, — X| will be small: the only thing
we know is that they come from (nearly) the same probability distribution.

Convergence in distribution is a much weaker
concept than convergence in probability: for
example, take a sequence Xi,X»,... Xy of iid
random variable with the same distribution F.
Of course, by the definition we can say that

Xn 4, X, where the distribution of X is, again,

On the other hand, if X, b, X, the fact that
limy;,—oo P[I1 Xy — X| < € implies that, when 7 is
large, P(a < X;, < b) = P(a < X < b) for every
interval (a, b), and therefore X, 4, X. This
result is often spelt “convergence in probabil-
ity implies convergence in distribution, but not

F, but there is very little we can say about the

vice versa”, or X Pox= Xn 4 X
behaviour of the sequence itself.

Now imagine that the LLN holds and X - m. Clearly, X — m —- 0. In many
cases, it can be proven that multiplying that quantity by /7 gives you something
that doesn’t collapse to 0 but does not diverge to infinity either. The Central
Limit Theorems analyse the conditions under which

VX -m - 40,0, 2.12)
so that we can use a Gaussian density to approximate the distribution of the

average. A multivariate version also exists, which is slightly more intricate from
a technical point of view, but the intuition carries over straightforwardly.?!

périmentateurs s'imaginent que c’est un théoreme de mathématiques, et les mathématiciens que
c'est un fait expérimental.

201f 1 had wanted to interrupt the flow of the argument for the sake of accuracy, I should have
said at this point that in many cases we should take into account the fact that the support of X,
may be discrete, and special care is needed to interpret what happens when F, (z) “takes a step”.
As you can see, I thought that would have been rather pedantic, so this remark is confined to a
footnote.

21 At this point, the inquisitive reader may ask: why the square root of n2 Why not 7 itself, or
the cube root, or some other function of n? Section 2.A.3 offers an intuitive explanation of why it
should be so.
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The approximation provided by the CLT can also be stated by using the sym-
bol £, which means “approximately distributed as” (where the approximation
gets better and better as n grows):

Viw-m) -5 40,5 =w?2 W(m,%z)

If a certain quantity w converges in distribution to a Normal rv with covari-
ance X, then we call Z the asymptotic variance of w, by which we mean that the
distribution of w resembles more and more one of a normal rv whose variance
is X so we can take X as an approximation of the variance of w.?? This is usually
notated as AV[w] = X.

In the same way as the LLN, there are many versions of the CLT, designed
to cover different cases. A simple version, close in spirit to Khinchin’s LLN,
was provided by Lindeberg and Lévy: if x1,xo,...,x, are iid, E[x;] = m, and
V[x;] = v, then equation (2.12) holds. In practice, the conditions are the same as
in Khinchin’s LLN, with the additional requirement that the variance of x; must
exist.

Example 2.6
Let’s go back to example 2.4 (the coin-tossing experiment). Here not only the
mean exists, but also the variance:

Vix;] :E[xl?] —Exjl?=n-n’=n(1-n)

Therefore, the Lindeberg-Lévy version of the CLT is readily applicable, and we
have

Va(p-n) -5 40,71 -1)),

so the corresponding asymptotic approximation is

p 2 Jy(n, M) )

In practice, if you toss a fair coin (r = 0.5) n = 100 times, the distribution
of the relative frequency you get is very well approximated by a Gaussian ran-
dom variable with mean 0.5 and variance 0.0025. Just so you appreciate how
well the approximation works, consider that the event 0.35 < p < 0.45 has a true
probability of 18.234%, while the approximation the CLT gives you is 18.219%. If
you're interested in reproducing these numbers, Section 2.A.5 contains a small
gretl script with all the necessary steps. Of course, you're strongly encouraged to
translate it to any other software you like better. |

22Note that, from a technical point of view, w may not have a variance for any n, although its
limit distribution does. But let’s not be pedantic.



2.3. ESTIMATION 53

The CLT, by itself, describes the convergence in distribution of averages. How-
ever, we need to see what happens to our estimators, that are usually functions
of those averages. There are two tools that come in especially handy. The first

one is sometimes called Cramér’s theorem: if X, L, aand Y, q, Y, then
d
X, Y,—a-Y. (2.13)

The second result we will often use is the deltamethod: if your estimator 6 is
defined as a differentiable transformation of a quantity which obeys a LLN and
a CLT, there is a relatively simple rule to obtain the limit in distribution of 6;

xLm 0=g(X) = 0=g(m)
_ d = . d (2.14)
vn(X-m)— #0,%) Vvn(0-6)— #(0,J2))

where 7 is the sample size and J is the Jacobian O%Ef)

xX=m

Example 2.7
Given a sample of iid random variables x; for which E[x;] = 1/a and V[x;] =
1/a?, it is straightforward to construct a consistent estimator of the parameter a
as

1 p 1
d=— — —=

=a
X 1/a
Its asymptotic distribution is easy to find: start from the CLT:

Va(X-1/a) & #(0,1/d%).

All we need is the Jacobian term, which is

J= limda—— lim ! =— 1 =—a®
S TP R T T2 T

therefore, the asymptotic variance of a is given by

1
AV[d] = (-a*) = (-a) = &,
a
and therefore .
vn(a—a) — A (0,a?)

. . A a 2
so we can use the approximation a ~ JV(a, %) .

By using these tools, we construct estimators satisfying not only the consis-
tency property, but also asymptotic normality. These estimators are sometimes
termed CAN estimators (Consistent and Asymptotically Normal). Asymptotic
normality is important for three reasons:
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1. it can be used to compare two consistent estimators in terms of their rel-

ative asymptotic efficiency. Given two consistent estimators a and b for
the same parameter m, we'll say that a is asymptotically more efficient
than b if AV[b] — AV|[a] is positive semi-definite (see page 35). This cri-
terion is easy to understand when a and b are scalars: AV [b] = AV[a].
The vector case is more subtle: if our object of interest is estimating some
scalar function of m (say, g(m)), then the two natural competing estima-
tors would be g(a) and g(b), respectively, that are both consistent by Slut-
sky’s theorem. However, by applying the delta method, it can be proven
that AV[g(b)] = AV[g(@)] in all cases.

. It provides a fairly general way to construct statistics for testing hypothe-

ses, which is probably the most useful thing an applied scientist might
want to do with data. The next section is just about this.

. asymptotic normality makes it quite easy to construct confidence inter-

vals: in order to illustrate the concept, suppose we have a scalar estimator
0, whose asymptotic distribution is

Vi(h-0)-L 4 0,0);

this means that, for a decently large value of n, we can approximate the
distribution of @ as 6 & N 6, %) This, in turn, implies that

09|

— >1.96
vwln

therefore, the chances that the interval

O+1.96xVolin

P ~5%;

contains the true value of 6 are roughly 95%. This is what is called a 95%
confidence interval. Of course, a 99% confidence interval would be some-
what larger. Generalising this to a vector of parameters would lead us to
speaking of confidence sets; for example, when 0 is a 2-parameter vector,
the confidence set would be an ellipse.

2.4 Hypothesis Testing

The starting point is a tentative conjecture (called the null hypothesis, or Hyp)
that we make about the parameters of a DGP;?® we would like to check whether

ZDisclaimer: this section is horribly simplistic. Any decent statistics textbook is far better than
this. My aim here is just to lay down a few concepts that I will use in subsequent chapters, with no
claim to rigour or completeness. My advice to the interested reader is to get hold of Casella and
Berger (2002) or Gourieroux and Monfort (1995, volume 2). Personally, I adore Spanos’ historical
approach to the matter.
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our belief is consistent with the observed data. If what we see is at odds with our
hypothesis, then reason dictates we should drop it in favour of something else.
The coin toss is a classic example. We presume that the coin is fair, but it'd
be nice if we could check. What we can do is flip it a number of times, and
then decide, on the basis of the results, if our original conjecture is still tenable.
The probability of the coin showing the “heads” side when we flip it (say, 7) is a
number between 0 and 1. Our conjecture is Hy : 7 = 0.5. After flipping the coin
n times, we obtain a vector x of zeros and ones. What we want is a function T (x)
(called a test statistic) such that we can decide whether to reject Hy or not.

Figure 2.1: Types of Error

Type I error Type II error
(false positive) (false negative)
f \ : f ~ | You're not

__pregnant

|
sprey l“tlm
I:-n

o

‘[ _pregnant

Note: in this case, Hy is that the person is not pregnant.

By fixing beforehand a subset R of the the support of T'(x) (called the “rejec-
tion region”), we can follow a simple rule: we reject Hy if and only if T(x) € R.
Since T'(x) is a random variable, the probability of rejecting Hy will be between 0
and 1 regardless of the actual truth of Hy.?* Therefore, there is a possibility that
we'll end up rejecting Hy while it’s in fact true, but the opposite case, when we
don'’t reject while in fact we should, is also possible. These two errors are known
as type I and type II errors, respectively, and the following 4-way table appears
in all statistics textbooks, but memorising the difference could be easier if you
look at figure 2.1:

Not Reject Reject
Hj true OK Type I error
Hj false | Type Il error OK

This situation is not unlike the job of a judge in a criminal case. The judge
starts from the premise that the defendant is not guilty, and then evidence is ex-

24Unless, of course, we do something silly such as deciding to always reject, or never. But in that
case, what'’s the point of performing the experiment at all?



56 CHAPTER 2. SOME STATISTICAL INFERENCE

amined. By the “presumption of innocence” principle, the judge declares the
defendant guilty only if the available evidence is overwhelmingly against Hj.
Thus, type I error happens when an innocent person goes to jail; type II error
is when a criminal gets acquitted.

This line of thought is very much in line with the idea philosophers call fal-
sificationism, whose most notable exponent was the Austrian-British philoso-
pher Karl Popper (see eg Popper (1968)). According to the falsificationist point
of view, scientific progress happens via a series of rejections of previously made
conjectures.

The hallmark of science (as opposed to other kinds of
perfectly respectable mental endeavours, such as literary
criticism, musical composition or political analysis) is that
a conjecture can be falsified: we don't use evidence to verify
a theory, but we can use it to prove that it's wrong.

Scientific theories always sound like: “when A, then
B’. Clearly, you can never verify a theory, because you can
never rule out the possibility of observing A and not B; at
most, you can say “the theory holds so far”. But once you've
observed one single case that disproves it, then you need
no more evidence to decide on the theory. When a theory is proved to be in-
consistent with the available evidence, we move on to something better, and
progress is made; but until a conjecture is not rejected, we adopt it as a tentative
(and possibly wrong) explanation.

KARL POPPER

I am fully aware that the debate on philoso- hypothesis testing borrows quite a few ideas
phy of science has long established that fal- from the falsificationist approach. For a fuller
sificationism is untenable, as a description of account, check out Andersen and Hepburn
scientific progress, on several accounts. What (2016).

I'm saying is just that the statistical theory of

Therefore, strictly speaking, “not rejecting” doesn’'t mean “accepting”. Rejec-
tion is always final; failure to reject is always provisional. That said, it is quite
common (although incorrect) to use the word “accept” instead of “not reject”,
and I will do the same here. However, the reader should bear in mind is that
“accepting” really means “accepting for now”.?®

The recipe we are going to use for constructing test statistics is simple: first,
we will formulate our hypothesis of interest as Hy : g(6) = 0, where 6 are the DGP
parameters and g(-) is a differentiable function. Then, given a CAN estimator é,
we evaluate the function at that point. Given consistency, we would expect g(0)
to be “small” if H) is true, since under H, g(é) L2.o.

In order to build a rejection region, we need some criterion for deciding
when g(0) is large enough to force us to abandon Hy; we do so by exploiting

2530me people use the word “retain” instead of “accept”, which is certainly more correct, but
unfortunately not very common.
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asymptotic normality. By using the delta method, we can find an asymptotic
approximation to the distribution of g(0) as

g6 2 ¥ (g),%);

under consistency,  should tend to a zero matrix; as for g(@), that should be
0 if and only if Hj is true. These two statement imply that the quadratic form
2(0)'="1g() should behave very differently in the two cases: if Hy is false, it
should diverge to infinity, since plim [g(é)] # 0; if Hy is true, instead, approxi-
mate normality implies that6.

w=g®0'z7"g0) * x5

where p = 1k(X). Hence, under Hy, the W statistic should take values typical
of a y? random variable.?’ Therefore, we should expect to see “small” values
of W when Hj is true and large values when it’s false. The natural course of
action is, therefore, to set the rejection region as R = (c¢,00), where c, the critical
value, is some number to be determined. Granted, there is always the possibility
that W > c even if Hj is true. In that case, we would be committing a type I
error. But since we can calculate the distribution function for W, we can set ¢
to a prudentially large value. What is normally done is to set ¢ such that the
probability of a type I error (called the size of the test, and usually denoted by
the Greek letter @) is a small number, typically 5%.

What people do in most cases is deciding which a they want to use and then
set ¢ accordingly, so that in many cases you see ¢ expressed as a function if a
(and written cg), rather than the other way around.

But, I hear you say, what about type II error? Well, if W in fact diverges when
H, is false, the the probability of rejection (also known as the power of the test)
should approach 1, and we should be OK, at least when our dataset is reasonably
large.?® There are many interesting things that could and should be said about
the power of tests, especially a truly marvellous result known as the Neyman-
Pearson lemma, but I'm afraid this is not the place for this. See the literature
cited at footnote 23.

Example 2.8
Let’s continue example 2.6 here. So we have that the relative frequency is a CAN
estimator for the probability of a coin showing “heads’”.

Vip-m) 5 A 0,701 - 7).

26T see why, see section 2.A.4

27The reason why I'm using the letter W to indicate the test is that, in a less cursory treatment
of the matter, the test statistic constructed in this way could be classified as a “Wald-type” test.

28When the power of a test goes to 1 asymptotically, the test is said to be consistent. I know, it’s
confusing.
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Let’s use this result for building a test for the “fair coin” hypothesis, Hy : 7 = 0.5.
We need a differentiable function g(x) such that g(x) = 0 if and only if x = 0.5.
One possible choice is

gm)=2n-1

What we have to find is the asymptotic variance of g(p), which is AV [g(p)] =

J-n(1-m)-J' = w, where J = plim (6%;)5)) =2,50

Vrgp) - gm) -5 4 (0,0).

Under the null, g(r) = 0 and w = 1; therefore, the approximate distribution for
g(p)is
g 2 /(0nh

and our test statistic is easy to build as

-1

W =g(p) gp)=n-2p-1)>°

n

A simple numerical example: suppose n = 100 and p = 46%. The value of
W equals W = 100-0.08% = 0.64. Is the number 0.64 incompatible with the pre-
sumption that the coin is fair? Not at all: if the coin is in fact fair W should come
from a random variable that in 95% of the cases takes values below 3.84. There-
fore, there is no reason to change our mind about Hy. The reader may want to
check what happens if the sample size of our experiment is set to n = 1000. __|

2.4.1 The p-value

The way to make decisions on Hy that I illustrated in the previous section is per-
fectly legitimate, but what people do in practice is slightly different, and involves
a quantity known as the p-value.

The traditional method of checking the null hypothesis is based on the con-
struction of a test statistic with a known distribution under Hy; once the size of
the test (most often, 5%) is decided, the corresponding critical value c is found
and then the realised statistic W is compared to c. If W > ¢, reject; otherwise,
don't. This method makes perfect sense if finding the critical value for a given
size a is complicated: you compile a table of critical values for a given a once
and for all, and then every time you perform a test you just check your realised
value of W against the number in the table. All 20th century statistics textbooks
contained an appendix with tables of critical values for a variety of distributions.

With the advent of cheap computing, it has become easy to compute c as
a function of a, as well as performing the inverse calculation, since algorithms
for computing the cdf of a y> random variable are fast, precise and efficient.
Thus, an equivalent route is often followed: after computing W, you calculate
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the probability that a y? variable should take values greater than W. If you pre-
fer, the lowest significance level you would need to reject.

That number is called the p-value for the test statistic W. Clearly, if W > ¢,
the p-value must be smaller than a, so the decision rule can be more readily
stated as “reject Hy if the p-value is smaller than a”.

In fact, according to its inventor, Sir Ronald Aylmer
Fisher (arguably, the greatest statistician of all time), the p-
value can be seen as a continuous (or monotonous) sum-
mary statistic of how well the data are compatible with
the hypothesis;?® in Fisher’s own words, when we see a
small p-value, “[e]ither an exceptionally rare chance has
occurred or the theory [...] is not true”.3° Figure 2.2 shows
an example in which W =9, and is compared against a X%
distribution. The corresponding 95% percentile is 7.815, RoNALD FISHER
so with a = 0.05 the null should be rejected. Alternatively,
we could compute the area to the right of the number 9 (shaded in the Figure),
which is 2.92%; obviously, 2.92% < 5%, so we reject.

Figure 2.2: p-value example

0.25

0.2

critical value at 5%
0.1

realised W

0.054 p-value area

To make results even quicker to read, most statistical packages adopt a graph-
ical convention, based on ornating the test statistic with a variable number of '+’
characters, usually called “stars”. Their meaning is as follows:

29Thanks to Sven Schreiber for putting it so clearly and concisely.
30Fisher RA. Statistical Methods and Scientific Inference. Ed 2, 1959. On this subject, if you're
into the history of statistics, you might like Biau et al. (2009).
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Stars Meaning
(none) p-value greater than 10%

* p-value between 5% and 10%
o p-value between 1% and 5%
o p-value under 1%

Therefore, when you see 3 stars you “strongly” reject the null, but you don’t
reject H, where no stars are printed. One star means “use your common sense”.

In fact, I'd like add a few words on “using your common sense”: relying on
the p-value for making decisions is OK; after all, that’s what it was invented for.
However, you should avoid blindly following the rule “above 5% — yes, below
5% — no”. You should always be aware of the many limitations of this kind of
approach: for example,

* even if all the statistical assumption of your model are met, the y? distri-
bution is just an approximation to the actual density of the test. Therefore,
the quantiles of the y? density may be (slightly) misleading, especially so
when your sample is not very large;

* even if the test was in fact exactly distributed as a y? variable, type I and
type Il errors are always possible; actually, if you choose 5% as your signif-
icance level (like everybody does), you will make a mistake in rejecting Hy
one time out of twenty;

¢ and besides, why 5%? Why not 6%? Or 1%? In fact, someone once said:

Q: Why do so many colleges and grad schools teach p = 0.05?

A: Because that’s still what the scientific community and jour-
nal editors use.

Q: Why do so many people still use p = 0.05?

A: Because that's what they were taught in college or grad school.

(for more details, see Wasserstein and Lazar (2016)).

That said, I don’t want you to think “OK, the p-value is rubbish”: it isn’t. Ac-
tually, it’s the best tool we have for the purpose. But like any other tool (be it a
screwdriver, a microwave oven or a nuclear reactor), in order to use it effectively,
you must be aware of its shortcomings.

2.5 Identification

A common problem in econometrics is identification of a model. The issue is
quite complex, and I cannot do justice to it in an introductory book such as this,
so I'll just sketch the main ideas with no pretence to rigour or completeness.
Basically, a model is said to be identified with reference to a question of interest
if the model’s probabilistic structure is informative on that question.



2.5. IDENTIFICATION 61

A statistical model is, essentially, a probabilistic description of the data that
we observe. When we perform inference on a dataset we assume that

 our available dataset is a realisation of some probabilistic mechanism (the
DGP — see section 2.1);

¢ the salient features of the DGP can be described by a parameter vector 6;

* the data we observe are such that asymptotic theory is applicable (for ex-
ample, n is large and the data are iid) and we can define statistics that we
can use as estimators or tests;

¢ our question of interest can be phrased as a statement on the vector 6.

The importance of the first three items in the list should be clear to the reader
from the past sections of this chapter. In this section, we will discuss the fourth
one.

The vector 6 contains parameters that describe the probability distribution
of our data, but in principle the empirical problem we are ultimately interested
in is expressed as a vector of parameters of interest . That is, the parameters
0 characterise the DGP while v is a formalised description of the aspect of re-
ality we are trying to analyse. For example, in a typical econometric model, v
may contain quantities such as the elasticity of demand for a certain good to
its own price, the causal effect of a policy on a target variable, the risk aversion
parameter for the representative individual in a macroeconomic model, and so
on.

What is the relationship between 1y and 6? If we take 1 as being a stylised
description of reality, and 0 as a stylised description of what we observe, then 6
should be a known function of v, that we assume known:

0= M).

In some cases, the relationship is trivial; often, M(-) is just the identity function,
0 = v, but sometimes this is not the case.

Statistics gives us the tools to estimate 0; is this enough to estimate y? It
depends on the function M(-); if the function is invertible, and we have a CAN
estimator 6, a possible estimator for v is

=M.

If M(-) is continuous and differentiable, then its inverse will share these prop-
erties, so we can use Slutsky’s theorem and the delta method and 1 is a CAN
estimator too. In this case, we say that the model is identified.

In some cases, however, the function M(-) is not invertible, typically when
different values of v give rise to the same 0.3! In other terms, two alternative

31The technical way to say this would be “the M(-) function is not injective”.
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descriptions of the world give rise to the same observable consequences: if

M(y1) = M(y2)

for v, # y», we would observe data from the same DGP (described by 8) in both
cases; this situation is known as observational equivalence, and y; and v, are
said to be observationally equivalent. In these cases, being able to estimate 0,
even in an arbitrarily precise way, doesn't tell us if the “true” description of the
world is ¥, or ¥,. This unfortunate case is known in econometrics as under-
identification.

Example 2.9
Suppose you have an urn full of balls, some white and some red. Call w the
number of white balls and r the number of red balls. We want to estimate both
wandr.

Suppose also that the only experiment we can perform works as follows: we
can extract one ball from the urn as many times as we want, but we must put it
back after extraction (statisticians call this “sampling with replacement”). De-
fine the random variable x; as 1 if the ball is red. Clearly

w+r

1 with probability m = —L
Xi =
"o with probability (1-m;)= "~

In this case, the probability distribution of our data is completely characterised
by the parameter n; as we know, we have a perfectly good way to estimate 7;
since the data are iid, X is a CAN estimator of  and testing hypotheses on 7 is
easy.

If, however, the parameters of interest are v = [r, w], there is no way to es-
timate them separately, because the function 0 = M(y) is not invertible, for the
very simple reason that the relationship between the DGP parameter n and our

parameters of interest w and r
r

w+r
is one equation in two unknowns. Therefore, in the absence of extra information
we are able to estimate  (the proportion of red balls) as precisely as wanted, but
there is no way to estimate r (the number of red balls).

Even if we knew the true value of nr, there would still be an infinite array of
observationally equivalent descriptions of the urn. If, say, m = 0.3 the alterna-
tives ¢, = [3,10], w» = [15,50], w3 = [3000,10000], etc would all be observation-
ally equivalent. \

Identification of a model can be a very serious concern in some settings:
if a model is under-identified, we may be able to estimate consistently the pa-
rameters that describe the data, but this wouldn’t be helpful for the economic
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question we are ultimately after. In this book, we will not encounter any of these
cases, except for the models I will describe in chapter 6, but you should be aware
of the potential importance of the problem.

2.A Assorted results

2.A.1 Jensen’slemma

As we argued in Section 2.2.3, if g(-) is not a linear function, generally E [ g(X)] #
g [E[X]]. However, when g(:) is concave, we have a usable result that comes as
an inequality:

E[g(X)] =g E[X])

For example, if E[X] = 1, we can be sure that E [log(X)] is negative, just because
the logarithm is a concave function (provided, of course, that E [log(X)] exists),
since E [log(X)] <log(1) = 0.

This remarkable result is easy to prove if g(:) is also differentiable, since in
this case g(-) is said to be concave between a and b if

gx)<gx™)+g (x*)(x—x" (2.15)

for each x* € (a, b). Now assume that the interval (a, b) is the support of the rv
X, which possesses an expectation. Clearly, a < u = E[X] < b; this implies that
equation (2.15) holds when x* = y, and therefore

E[gX]<E[gw+g WX -w]=gw+g' W E[(X-w]

Since obviously E[ X — u] = 0, it follows that

E[g(X)] = g(w) = glE[X]],
as required. Note that

* by linearity, E[—X] = —E[X], so if the function is convex instead of con-
cave, you can flip the inequality, because the negative of a concave func-
tion is convex: E[g(X)] = g (E[X]);

e itis possible to prove Jensen’s lemma in the more general case when g(-) is
not everywhere differentiable in (a, b), but that’s a bit more intricate (see
for example Williams (1991), page 61).

2.A.2 More on consistency

We stated in section 2.3.1 that if x;, x»,...,x, are independent and identically

distributed (iid for short) and E[x;] = m, then X 2. m. However, this is only a
sufficient condition, and is by no means necessary.
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In this subsection, I will provide an example of an alternative scenario under
which X -2 m even though the x; variables may not be iid: let’s just say that
E[x;] = m, although nothing is said about heterogeneity or independence. In
this example, however, it is crucial that they all possess a variance v; = V[x;].

Let’s begin by a technical result, called Markov’s inequality. It states that if
W is a random variable with positive support and expectation E[W] = m, then

PIW = a] s%. 2.16)

for any a. The proof is surprisingly easy:

(e}

foowf(w)dw:fawf(w)dw+foowf(w)dw2f wf(w)dw =
0 0

a a

m

v

f af(w)dw=af fw)dw =a-P[W = a

a
So for example if you knew that the expectation of a non-negative random vari-
able X was 4, you could safely say that P[X > 8] < 1/2 without knowing anything
on the distribution of X. Nice.
Now let’s have a look at the moments of X; its first moment is trivial to find,
since

- 1 1 nm
E[X] _E[;in _EZE[xi]—T—m,

as for its variance, just assume that it exists (which in turn requires existence of
all the variances v;) and that

lim V[X]=0;

n—oo
that is, its variance shrinks as the dataset grows larger (this may be tricky: see
also Section 2.A.3).

Now define W = (X — m)?2, so E[W] is the variance of X. But the most impor-

tant thing is that W cannot be negative (it’s a square), so we can use Markov’s
inequality (2.16) directly and say>?

VI[X
P[W = £?] s#;
E

of course, the left-hand side of this inequality can be rewritten as P |1 X—m|=¢],
which is in turn equal to 1 — P[| X — m| < €]. Therefore,
V[X]

PIX-ml<elz1-—
&

If we assume that V[ X| — 0, then we have the desired result:
lim P[[X—m|<e]l=1= X 2 m.
n—oo
Note that this case is nearly useless in practice, because being able to com-

pute the moments of our quantities of interest is extremely rare, but still gives
you a nice idea of the kind of conditions can be used to prove consistency.

32This special case of Markov’s inequality is sometimes called Chebyshev’s inequality.
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2.A.3 Why y7n?

Here I'll give you an intuitive account of the reason why, in the standard cases,
the Central Limit Theorem works by using /7 as the normalising transforma-
tion instead of some other power of n. Suppose we have a vector x of size n
containing our observations, that are not necessarily independent nor identi-
cal. However, we do require that they possess second moments and use Z to
indicate the covariance matrix of x:

Vix] Cov[xy,x2] ... Cov[xy,xy,]
Cov[x1, x2] Vixo] ... Covlxy,x,]
Vix|=Z= . .
Covixy,xn] Covixg, xye] ... Vix,]

Suppose also that X has a probability limit that we call m: X 2. m. Now
note that the average X can be written as X = %L/ x, and therefore its variance
can be easily calculated by the rule (2.7). Therefore,

1,
V([X]= VI

What can we say about ¢/Z¢? First, given the properties of ¢, this is simply
the sum of all the elements of X; second, since X is positive semi-definite by
construction, this cannot be a negative number, but it may be a large positive
one. Especially so, considering that the size of £ grows with n.

We must now examine what happens to ¢'2¢ as n — co. When the x; rvs
are iid, this is easy, since in this special case Z is just a multiple of the identity
matrix; hence, in the iid case, £ = v-I1and ¢/Z¢ = n- v. In a more general case, the
non-diagonal elements may be non-zero (which could happen for dependent
observations), or the elements on the diagonal may be heterogeneous (which
could happen in the non-identical case). However, it may still be that, despite
these complications, ¢'2¢ behaves asymptotically as a linear function of n. To be
more precise, it may happen that

)
=K,

lim
n—oo n
where K is some constant. For example, in the iid case, K would just be equal to
v. In all these cases, you have that
-, K
lim V[X] ==
n—oo n
The most immediate consequence of the equation above is that V| X] tends to 0
for large n, which is what you would expect from a consistent estimator. A less
immediate upshot of the above is that

V[X-m|=V[X]|=K/n
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and therefore
V[v7(X - m)] =K.

When observations are not iid, there may be cases when ¢'X¢ grows at a rate that
is different from 7. In these cases, the normalising factor needed to achieve con-
vergence in distribution is actually different from the square root. This typically
happens when the x; rvs come from a time-series sample, and the degree of de-
pendence between nearby observations can be substantial. The beginning of
chapter 5 contains a brief discussion of “persistence” in time series.

2.A.4 The normal and y? distributions

A continuous random variable X is a standard normal random variable when
its support is R, and its density function is

(x) = Lex {_x_z}

as depicted in figure 2.3.

0.4 |- |

0.3 -

@ (x)

0.1 -

Figure 2.3: Standard normal density function

As is well known, ¢(x) has no closed-form in-
definite integral: that is, it can be proven that
the function ®(x), whose derivative is ¢(x),
does exist, but cannot be written as a combi-
nation of “simple” functions (the proof is very
technical). Nevertheless, it's quite easy to ap-

proximate numerically, so every statistical pro-
gram (heck, even spreadsheets) will give you
excellent approximations via clever numeri-
cal methods. If you're into this kind of stuff,
Marsaglia (2004) is highly recommended.
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As the reader certainly knows, this object was discovered®® by C. E Gauss
(the guy on page 12), so it’s also also known as a Gaussian random variable. By
playing with integrals a little3*, it can be proven that E[X] = 0 and V[X] = 1. One
of the many nice properties of Gaussian rvs is that an affine transformation of a
normal rv is also normal. Therefore, by the rules for expected values (see section
2.2.3), if X is a standard normal rv, then Y = m + s- X is a normal rv with mean
m and variance s. Its density function is

_ 1 _(y-m)? }
Tw= V27 s? exp{ 252

A compact way to say thisis Y ~ A (m, 52).
In fact, one can define a multivariate normal random variable as a random
vector x with density

f@=em "z P exp {x-m)'z T x-m)},

or, in short, x ~ A" (m, X), where n is the dimension of x, m is its expectation and
Y its covariance matrix. The multivariate version of this random variable also
enjoys the linearity property, so if x ~ A (m, Z), then

y=Ax+b~ .4 (Am+b, ATA"). 2.17)

It is easy to overlook how amazing this result is: the fact that E[Ax+b] =
AE [x] + b is true for any distribution and does not depend on Gaussianity; and
the same holds for the parallel property of the variance. The special thing about
the Gaussian distribution is that a linear transformation of a Gaussian rv is itself
Gaussian. And this is a very special property, that is only shared by a few distri-
butions (for example: if you take a linear combination of two Bernoulli rvs, the
result is not Bernoulli-distributed).

The Gaussian distribution has a very convenient feature: contrary to what
happens in general, if X and Y have a joint normal distribution (that is, the vec-
tor x = [Y, X] is a bivariate normal rv), absence of correlation implies indepen-
dence (again, this can be proven quite easily: nice exercise left to the reader).
Together with the linearity property, this also implies another very important
result: if y and x are jointly Gaussian, then the conditional density f(y|x) is Gaus-
sian as well. In formulae:

fiylx = m) "2z 2exp {(y-m)T 7 x-m)},
where
m = E[ylx]=E[y]+B x-E[x])
B = XI5y
T o= V[ykx]=Zy-2 S Ty

X,y <X

330r invented? Interesting point.
341f you want to have some fun with the moments of the standard normal distribution, you'll

find the result % = —x@(x) very useful, because it implies that [ x¢(x)dx = —¢@(x).
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where Zy is the covariance matrix of y, Zy is the covariance matrix of x and Zyy
is the matrix of covariances between x and y.

Example 2.10
For example, suppose that the joint distribution of y and x = [x, X»] is normal,
with

| X2 ]

—_ o W W N -

— - O
N — =

| X2 ]
then you have

11
1 2

Il
w

E[y]=1 ExI=1[23]" Zy zx=[ ] Iy =10,1]

and therefore

R

T = 3-[0 1][1 ;] [?]:3—1:2,

1
2 -1
since ] 2] = [_1 1] . Thus, the conditional expectation of y givenx equals
X1 — 2
E =1+[-1,1) =—x+
[yIx] [-1,1] s 3] X1+ X2

and in conclusion
yIx~ Nl[x2—x1,2].

Note that:

* the conditional mean is a linear function of the x; this needn’t happen in
general: it's a miraculous property of Gaussian random variables;

¢ the conditional variance is not a function of the x variables (its a con-
stant); again, this doesn’t happen in general, but with Gaussian random
variables, it does;

* if you apply the Law of Iterated Expectations (eq. (2.8)) you (unsurpris-
ingly) get

E[E[ylx]] =—E[x1]+E[x2]:—2+3=1:E[y];
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Figure 2.4: Density function of X%, forp=1...4
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If one instead needs to investigate the distribution of quadratic forms of
Gaussian rvs, then another distribution arises, namely the chi-square distribu-
tion (y2 in symbols). The general result is that, if x ~ A4(0,X), then X' 1x ~ y2,
where 7 is the number of elements of X, commonly known as the “degrees of
freedom” parameter.

The support of the y? density is over the non-negative reals; its shape de-
pends on 7 (the degrees of freedom) in the following way:

0.51’1/2
f(x) — xn/2—le—x/2'

The most common cases, where n ranges from 1 to 4, are shown in Figure 2.4.3%
Like the normal density, there is no way to write down the distribution function
of )(2 random variables, but numerical approximations work very well, so critical
values are easy to compute via appropriate software. The 95% critical values for
thecasesn=1...4 are

degrees of freedom 1 2 3 4
critical value at 95% 3.84 5.99 7.81 9.49

For example, a ﬁ random variable takes values from 0 to 3.84 with probabil-
ity 95%. Memorising them may turn out to be handy from time to time.

35In case you're wondering what I'(1/2) is, just google for “gamma function”; it's a wonderful
object, you won't be disappointed. Suffice it to say that, if x is a positive integer, then I'(x) = (x+1)!,
but the gamma function is defined for all real numbers, except nonpositive integers.
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2.A.5 Gretl script to reproduce example 2.6

Input:

set verbose off
clear

# characteristics of the event
scalar p = 0.5
scalar n = 100
scalar lo = 36
scalar hi = 45

# true probability via the binomial distribution

matrix bin = pdf(B, p, n, seq(lo, hi)’) # Binomial probabilities
scalar true = sumc(bin)

# approximation via the Central Limit Theorem

scalar m = p*n # mean

scalar s = sqrt(p*(1-p)+*n) # standard error

scalar z0 = (lo - 0.5 - m)/s # subtract 0.5 to compensate for continuity
scalar z1 = (hi + 0.5 - m)/s # add 0.5 to compensate for continuity

# "cnorm" = Normal distribution function

scalar appr = cnorm(zl) - cnorm(z0)

# printout

printf "probability of \"heads\" = %g\n", p

printf "number of tosses = %g\n", n

printf "probability of heads between %d and %d:\n", lo, hi
printf "true = %g, approximate via CLT = %g\n", true, appr

Output:

probability of "heads" = 0.5

number of tosses = 100

probability of heads between 36 and 45:

true = 0.182342, approximate via CLT = 0.182194




Chapter 3

Using OLS as an inferential tool

3.1 The regression function

In this chapter, we well revisit the OLS statistic and give it an inferential interpre-
tation. As we will see, under many circumstances OLS is a consistent and asymp-
totically normal estimator. The first question that springs to mind is: whatis OLS
an estimator of, exactly?

Generally speaking, statistical inference can be a very useful tool when an
observable variable y can be thought of as being influenced by a vector of ob-
servables x, but only via a complicated causal chain, that possibly includes sev-
eral other unobservable factors. Thus, we represent y as a random variable, so
as to acknowledge our uncertainty about it; however, we have reasons to be-
lieve that y may not be independent from x, so further insight can be gained by
studying the conditional distribution f(y[x).

Figure 3.1: Conditional distribution of the stature of children given their parents’
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Figure 3.1 is my rendition of a celebrated dataset, that was studied by Galton
(1886). Galton assembled data on the body height of 928 individuals (y), and

71
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matched them against the average height of their parents (x). Data are in inches.

It is natural to think that somebody’s stature is the re-
sult of a multiplicity of causes, but surely the hereditary
component cannot be negligible. Therefore, the interest
in f(yIx). For each observed value in of x in the sample,
Figure 3.1 shows the corresponding boxplot.

Maybe not all readers are familiar with boxplots, so al-
low me to explain how to read the “candlesticks” in the fig-
ure: each vertical object consists of a central “box”, from
which two “whiskers” depart, upwards and downwards.
The central box encloses the middle 50% of the data, i.e.
it is bounded by the first and third quartiles. The “whiskers” extend from each
end of the box for a range equal at most to 1.5 times the interquartile range. Ob-
servations outside that range are considered outliers' and represented via dots.
Aline is drawn across the box at the median. Additionally, a black dot indicates
the average.

The most notable feature of Figure 3.1 is that the boxes seem to go up to-
gether with x; that is, the distribution of y shifts towards higher values as x grows.
However, even considering the subset of observations defined as the children
whose parents were of a certain height, some dispersion remains. For example,
if we focus on x = 65.5, you see from the third candlestick from the left that the
minimum height is about 62 and the maximum is about 72, while the mean is
between 66 and 68 (in fact, the precise figure is 67.059).

FRANCIS GALTON

Historical curiosity: if you use OLS to go have children who were taller than the average,

through those points such as to minimise the
SSR, you will find that the fitted line is ¢; =
23.9+0.646p;, where c; stands for “child” and
p; for “parent”. The fact that the slope of the

but not as much as themselves (and of course
the same, in reverse, happened to shorter par-
ents). Galton described this state of things as
“Regression towards Mediocrity”, and the term

fitted line is less than 1 prompted Galton to ob-  stuck.

serve that the tendency for taller parents was to

This method of inquiry is certainly interesting, but also very demanding: if
x had been a vector of characteristics, rather than a simple scalar, the analysis
would have been too complex to undertake. However, we may focus on a more
limited problem, that is hopefully amenable to a neat and tidy solution.

Instead of studying f(ylx), we could focus on the conditional expectation
E[ylx] (assuming it exists): this object contains the information on how the cen-
tre of the distribution of y varies across different values of x, and in most cases is
just what we want. If you join the dots in figure 3.1, you get an upward-sloping
line like in Figure 3.2, that suits very well our belief that taller parents should
have, as a rule, taller children.

1An “outlier” is a data point that is far away from the rest.
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Figure 3.2: Regression function of the stature of children given their parents’
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The first step for making this intuition operational is to define the random
variable € = y — E[ylx], so that y can be written (by definition) as E[y[x] + ¢.
For historical reasons, the random variable ¢ is called the disturbance (see also
section 3.A.2). A very important property of the random variable ¢ is that it’s
orthogonal to x by construction:?

Elx-e]=0 (3.1)
The proof is simple: call E [ y|x] = m(x). Since € = y — m(x), clearly
Elelx] =E[ylx] —E[mX)|x] = mx) — m(x) = 0;
therefore, by the law of iterated expectations (see Section 2.2.4),
Ex-e]=E[x-E[elx]] =E[x-0] =0.

Finally, assume that m(x) is a simple function, whose shape is governed by a
few parameters.> The choice that is nearly universally made is that of a linear*
function: E[ylx] = x'3. If we observe multiple realisations of y and x, then we
can write

Vi=X;B+¢; (3.2)
or, in matrix form,
y=XB+¢ (3.3)

Note the difference between equation (3.3) and the parallel OLS decompo-
sition y = X3 + e, where everything on the right-hand side of the equation is an

2Warning: as shown in the text, E[¢]x] = 0 = E[x-¢] = 0, but the converse is not necessarily
true.

3In fact, there are techniques for estimating the regression function directly, without resorting
to assumptions on its functional form. These techniques are grouped under the term nonpara-
metricregression. Their usage in econometrics is rather limited, however, chiefly because of their
greater computational complexity and of the difficulty of computing marginal effects.

4As for what we mean exactly by “linear”, see 1.3.2.
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observable statistic. Instead, the only observable item in the right-hand side of
(3.3) is X: B is an unobservable vector of parameters and € is an unobservable
vector of random variables. Still, the similarity is striking; it should be no sur-
prise that, under appropriate conditions, ,3 is a CAN estimator of 3, which we
prove in the next section.

3.2 Main statistical properties of OLS
A handy consequence of equation (3.3) is that the OLS statistic can be written as
B=XX)"Xy=8+XX"Xe (3.4)

As any estimator, 3 has a distribution, and its finite-sample properties can be
studied, in some cases. For example, its unbiasedness is very easy to prove: if
E [e]X] = 0, then

E[BIX] = B+E[XX) ' XeX] = B8+ XX)'XE[elX] = 8.
And therefore, by the law of iterated expectations,
E[B] =E[E[BIX]] =E[B] =B.

However, nobody cares about unbiasedness nowadays. Moreover, in order
to say something on the distribution of B we'd need assumptions on the distri-
bution of €, which is something we'd rather avoid doing. Therefore, we’ll use
asymptotic results. Of course, we will assume that the data are such that limit
theorems apply (iid being but an example).

3.2.1 Consistency

In order to prove consistency, start from equation (3.4) and rewrite matrix prod-
ucts as sums:

1 -1
R 1
B=B+ 2 xigi =+ ZZ.X"E"' (3.5)

inx;
1

]' '~/
in:Xlxi

Let’s analyse the two terms on the right-hand side separately: in order to do so,
it will be convenient to define the vector

Z; =X;Ej; (3.6)

given equation (3.1), E[z] = 0, so a straightforward application of the LLN gives

1
—Y xie Y 3.7)
n=
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As for the limit of the first term, assume that n~!X'X has one, and call it Q:°
1
Y xx, 2@ (3.8)
n=

if Qis invertible, then we can exploit the fact that inversion is a continuous trans-

formation as follows .

P -1
—>Q ’

1 !
— Zx,-xl.
n=
so, after putting the two pieces together,
5 D -1
B—pB+Q -0=0.

The OLS statistic, therefore, is a consistent estimator of the parameters of
the conditional mean, or to be more technical, of the derivative of E [ ylx] with
respect to x, which is constant by the linearity hypothesis.

One may think that the whole argument would parameters of an object called Optimal Linear
break down if the assumption of linearity were  Predictor, which includes the linearity as a spe-
violated. This is not completely true: even in cial case. But this is far too advanced for a book
many cases when E[ylx] is non linear, it may like this.

be proven that B is a consistent estimator of the

It’s important here to ensure that % Y x,-x’l. converges to an invertible matrix;
there are two main reasons while this requirement may fail to hold:

1. it may not converge to any limit; this would be the case if, for example, the
vector x possessed no second moments;®

2. it may converge to a singular matrix; this, for example, would happen in
cases such as x; = ¢, where || < 1.

However, in ordinary circumstances, such problems should not arise.

3.2.2 Asymptotic normality

From equation (3.5),

1
Vi(3-p)= [%zxix; T2 Y

50rdinarily, Q will be equal to E (xix’l.). It may be interesting to know that the proeprties of
OLS can be worked out in more exotic cases, where Q is more complicated or may even not exist.
These, cases, however, are far too complicated to be analysed here.

6In fact, there are cases when this situation may be handled by using a scaling factor other than
n~1: butlets ignore such acrobatics.
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we already know from the previous subsection that [%Zixix;]_l £, Q7 !, but
what happens to the second term as 7 grows to infinity? Define z; as in equation
(3.6). Therefore, by the CLT,

1 - d
— € =vVnlZ— N(0,Q),
ﬁ;xz i \/_ ( )

where Q = Vz;] = E [z;z}]. Therefore, we can use Cramér’s theorem (see (2.13))
as follows: since

-1
Va(B-8) = [%;xix; T Txe
-1 L Q_l

1 /
—inxi
nw
1
N

Y xiei —— N(0,Q)
i

the quantity v/n (B — 3) converges to a normal rv multiplied by the nonstochas-
tic matrix Q!; therefore, the linearity property for Gaussian rvs applies (see eq.
(2.17)), and as a consequence

va(B-8)-L #(0,Q7'0Q™). 3.9)

In order to say something on , we can use the law of iterated expectations
(see section 2.2.4) to re-write it as follows:

Q=E[z;z;|]=E [ef -x;X;| =E[E [Elz.lxi] “XiX; |

The quantity E [slz.lxl-] is a bit of a problem here. We proved quite easily that
E[e]x] = 0 as a natural consequence of the way ¢ is defined (see section 3.1, page
73) . However, we know nothing about its conditional second moment (the con-
ditional variance of y, if you like). For all we know, it may even not exist; or if it
does, it could be an arbitrary (and possibly quite weird) function of x. The only
thing we can be sure of is that the function h(x) = E [€?|x] (sometimes called the
skedastic function) must be positive, since it’s the expectation of a square and
of course the support of £ is the positive real line, or possibly a subset.

That said, there are certain situations where the
main object of interest is the conditional vari-

In some cases, one could be tempted to set up
a model in which we assume a functional form

for the skedastic function in the same way as
we do for the regression function. This, how-
ever, is very seldom done: the computational
complexity is greater than OLS and there is lit-
tle interest in the parameters of the conditional
variance.

ance instead of the conditional mean, like for
example in certain models used in finance. A
fuller discussion of this topic would lead to a
concept called heteroskedasticity, which is the
object of section 4.2.
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In the present chapter, we will assume that E [¢?|x] is a positive constant,
traditionally labelled o
E[e*x] = 0% (3.10)

the most important implication of this assumption is that the conditional vari-
ance V[ y,-lxi] is constant for all observations i = 1...n; this idea is known as
homoskedasticity.” This assumption can be visualised in terms of Figure 3.1 as
the idea that all the boxplots look roughly the same, and all you get by moving
along the horizontal axis is that they may go up and down as an effect of E [ y|x]
not being constant, but never change their shape and size. How realistic this
assumption is in practice remains to be seen, and a sizeable part of chapter 4
will be devoted to this issue, but for the moment let’s just pretend this is not a
problem.
Therefore, under the homoskedasticity assumption,

Q=E[zZ}] =E[0* -x;x}] = 0% -E[x;X;] = 0°Q
and equation (3.9) simplifies to

Vi (B-8)-L #(0,6207Y). 3.11)

This result is also important because it provides the basis for justifying the usage
of OLS as an estimator of 3 on the grounds of its efficiency. Traditionally, this is
proven via the so-called Gauss-Markov theorem, which, however, relies quite
heavily on small-sample results that I don’t like very much.? In fact, there is
a much more satisfactory proof that OLS is asymptotically semiparametrically
efficient, but it’s considerably technical, so it’s way out of scope here.? Suffice it
to say that, under homoskedasticity, OLS is hard to beat in terms of efficiency.
We can estimate consistently Q via n~'X'X and o via'”
2_€e p

6°=— >0 (3.12)
n

so the approximate distribution for OLS that we use is
BAN[BV]

where V = 62(X'X) L.
A word of warning: the expression above V is not the one used by the major-
ity of econometrics textbooks, and by none of the major econometric software

“From the Greek prefix “homo” (same); “skedastic”, in an econometric context, means “that
has to do with variance”.
81f you really really care, a proof is given in section 3.A.3, but I don't care about it very much
myself.
9See Hansen (2019), sections 7.20 and 7.21 if you're interested.
10proof of this is unnecessary, but if you insist, go to subsection 3.A.1.



78 CHAPTER 3. USING OLS AS AN INFERENTIAL TOOL

packages. Instead, in the more popular variant an alternative estimator of o is
used:
, ¢€e
-k’

where k is the number of elements of 3; the number n — k is commonly known
as degrees of freedom. It’s easy to prove that s? is also consistent, but (as can be
proven via some neat algebra trick that I'm sparing you here) it’s also unbiased:
E[s?] =02

The difference between the two variants is negligible if the sample size 7 is
reasonably large, so you can use either; or to put it otherwise, if using s? instead
of 62 makes a substantial difference, then 7 is probably so small that in my opin-
ion you shouldn’t be using statistical inference in the first place. And besides, I
see no convincing reason why unbiasedness should be considered a virtue in
this context. The usage of 62, instead, makes many things easier and is con-
sistent with all the rest of procedures that econometricians use beyond OLS, in
which asymptotic results are uniformly used. Having said this, let’s move on.

N

3.2.3 Inshort

To summarise: a set of conditions that are necessary for OLS to be interpreted
as a CAN estimator of something meaningful are:

1. we have a sample of n observations on y; (our dependent variable) and
x; (our explanatory variables) that satisfies some basic requirements so
that asymptotic theory is applicable as a reasonable approximation of the
behaviour of sample statistics. For example, the observation are iid and
all moments exist.

2. The conditional expectation of y on x exists and is linear: E[y|x| = x'8.
3. The matrix n~'X'X converges in probability to an invertible matrix Q.
4. The conditional variance V[y|x] is a constant, that we call 6.

If the above is true, then B can be regarded as a CAN estimator of the parameters
of the conditional mean, that can be used, in turn, to compute marginal effects
or, as we shall see in the next section, to perform hypothesis tests. Note that
the above hypotheses are sufficient, but some of them may be relaxed to some
degree, and we will do so in the next chapters.

The reader may also find it interesting that an alternative set of assumptions
customarily known as the classical assumptions was traditionally made when
teaching econometrics in the twentieth century. In my opinion, using the clas-
sical assumptions for justifying the usage of OLS as an estimator is a relic of the
past, but if you're into the history of econometric thought, I wrote a brief de-
scription in section 3.A.2.
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3.3 Specification testing

3.3.1 Tests on asingle coefficients

Sometimes, we would like to test hypotheses on elements of 3, so that we can
decide optimally on which explanatory variables we must include in our regres-
sion function. This is often called “specification testing”.

Let’s begin by testing a very simple hypothesis: Hy : ; = 0. The practical
implication of Hy in a model like

k
E[ylx] = x1B1+ x2B2+ -+ xifr = ) X;B;
j=1

is that the impact of x; on E[y[x] is 0, and therefore that the i-th explanatory
variable is irrelevant, since it has no effect on the regression function.

Note that under Hj there are two equally valid representations of the regres-
sion function; one that includes x;, the other one that doesn’'t. For example, for
i=2and k=3,

Model A Vi=x1;01+ X2 B2+ x3: B3+ &; (3.13)
Model B yi=x1:P1 + x3i B3+ €; (3.14)

Clearly, if Hy was true, model B would be preferable, chiefly on the grounds of
parsimony;11 however, if Hy was false, only model A would be a valid represen-
tation of the regression function.

As I explained in section 2.4, in order to test Hy we need to find a differen-
tiable function of 3 such that g(3) = 0 if and only if H is true. In this case, this is
very easy: define u; as the “extraction vector”, that is a vector of zeros, except for
the i-th element, which is 1.2 The extraction vector takes its name by the fact
that the inner product of u; by any vector a returns the j-element of a. More
generally, the product A-u; yields the j-th column of A, while u’; A yields its i-th
row.'® Evidently, u’ Au; = A;, the element of A on row i and column j.

By defining g(3) = u;3, the hypothesis Hp : §; = 0 can be written as Hy :
u;3 =0, and the Jacobian term is simply u};. Hence

A d
Vvn|u,8-u;3] — N[0,u;Vu;]
SO our test statistic is

A2
Fi

W =8"y; (u’qu,-)_lu’lﬂ =
12}

=17 (3.15)

1n fact, we will argue in section 3.6 that OLS on model B would produce a more efficient esti-
mator of the remaining coefficients.

1250me call the vector u; a basis vector. Others simply say “the i-th column of the identity
matrix”.

13 A5 always, the reader should verify the claim, instead of trusting me blindly.
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where t; = Sﬁ—;, v;; is the i-th element on the diagonal of V and se; = /v;;. The
quantity se; is usually referred to as the standard error of f;. Of course, the null
hypothesis would be rejected if W > 3.84 (the 5% critical value for a )(% distribu-
tion). Of course, this implies that we'd reject when |#| > V/3.84 =1.96.

In fact, it’s rather easy to prove that we could use a slight generalisation of
the above for constructing a test for Hy : §; = a, where a is any real number you
want, and that such a test takes the form

0= P2 (3.16)
se;
Clearly, we can use the ¢ statistic to decide whether a certain explanatory vari-
able is irrelevant or not, and therefore choose between model A and model B. In
the next subsection, I will show how this idea can be nicely generalised so as to
frame the decision on the best specification via hypothesis testing.

Note, also, that the  statistic can also be used “in reverse” to construct confi-
dence intervals in the same way as discussed at the end of Section 2.3.2: instead
of asking ourselves what the decision on Hy would be for a given a, we may look
for the values of a that would lead us to a given decision. A hypothesis of the
kind Hy : B = a is not rejected whenever

N

—a
-1.96 < Piza <1.96;

se;

therefore, the range of values for a that would lead to accepting Hj is
Bj—1.96-se;<a<pfj+1.96-se;.

In other words, the interval j+1.96-se; contains all the values of a that we may
consider not contradictory to the observed data.

3.3.2 More general tests

The general idea [ will pursue here can be stated as follows: we assume we have
a true representation of the conditional mean, that I will call the unrestricted
model; in the previous subsection, that was called “model A”. Additionally, we
conjecture that the parameters 3 may obey some restrictions (also known as
constraints); by incorporating those into our unrestricted model, we would ob-
tain a more compact representation of the regression function. This, however,
would be valid only if our conjecture was true. This model is known as the re-
stricted model, and was labelled “model B” in the previous subsection. We make
our decision on the model to adopt by testing if our conjecture via a standard hy-
pothesis test.
In order to exemplify this idea, I will use the following unrestricted model:

Vi = X111+ x2i P2 + X3i 3 + €3 (3.17)
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in the previous subsection, we saw the the restricted model corresponding to
the constraint 8, =0 is

yi = Xx1iPp1+x3; 03 + €;.

Suppose now that instead of 8, = 0, our conjecture was 31 = 1; by inserting this
equality into (3.17) we obtain

Vi=X1i+X2i B2+ x3i B3 + &;

and therefore the restricted version of (3.17) would become
Yi—X1i = X2i 2 + X3i B3 + €,

so that, in fact, we would be studying the regression function of the observable
variable 7; = y; — x1; on x»; and x3;. Note that in this case we would have to
redefine the dependent variable of our model.

One more example: suppose we combine (3.17) with the restriction f,+ 3 =
0: in this case, the constrained model turns out to be

Vi =X1iP1+ (x2; — x31) B2 + €.

Of course you can combine more than one restriction into a system:

{ p1=1
B2+ pB3=0,

and if you applied these to (3.17), the constrained model would turn into

Vi—x1; = (x2; — x37) P2 + €;.

The best way to represent constraints of the kind we just analysed is via the ma-
trix equation
RB=d,

where the matrix R and the vector d are chosen so as to express the constraints
we want to test. The examples above on model (3.17) are translated into the
R3 =d form in the following table:

Constraint d Restricted model

R
B3=0 [0 0 1] 0 Elyilxi] = x1:81 + x2: 2
Bi=1 [1 0 0] 1 E[yi—x1ilxi] = x2i 2 + x3i B3
B2+P3=0 [0 1 1] 0 E[yilxi]=x181+ (x2 —x3:) B2

{g;}sg [(1) (1) _01] [1] E[yi = x1il%;] = (x2; — x3/) B2




82 CHAPTER 3. USING OLS AS AN INFERENTIAL TOOL

Since the Jacobian of R3 — d with respect to 3 is just the matrix R, we can
adapt the apparatus of Section 3.3.1 to the present case and decide on the ap-
propriateness of the restriction by computing the statistic

W=RB-d'[RVR] ™ (RB-d) (3.18)

and matching it to the y? distribution with p degrees of freedom, p being the
number of constraints (the number of rows of the R matrix, if you prefer).

It should be noted, at this point, that checking for the compatibility of a con-
jecture such as R3 = d may be a good idea for several reasons that go beyond the
simple task of choosing the most parsimonious representation for the regression
function. The hypothesis itself could be of interest: for example, the coefficient
B could measure the response of the incidence of autism to the percentage of
vaccinated children. From a policy perspective, it would be extremely important
if Hy : B = 0 were rejected (I'd be very surprised if it were).

Additionally, econometric models are often written in terms of parameters
that can be given a direct interpretation in terms of economic theory. As an
example, take a Cobb-Douglas production function: Q = AK*'L*2. The reader
is doubtlessly familiar enough with microeconomics to need no reminder that
scale economies are constant if and only if a + a» = 1. The production function,
in logs, reads

g=a+ak+al,

where k =log(K) and ! =log(L). If we could perform an experiment in which we
vary k and [ to our liking and observe the resulting g, it would be very natural to
estimate the parameter vector

by means of an OLS regression, and the hypothesis “constant returns to scale”
would simply amount to R3 = d, with

R=[0 1 1] d=1.

Nevertheless, if we knew for certain (by some supernatural revelation) that
our production function displays in fact constant returns to scale, we would like
our estimate of 3 to incorporate the information a; + a, = 1, and there is no
reason why 3 should.

In section 3.6, we will develop an alternative estimator, known as the Re-
stricted Least Squares estimator (or RLS for short), which integrates sample
data with one or more a priori constraints on the parameter vector. As we will
see, this will have the additional advantage of providing us with to calculate the
W test statistic, by comparing the SSRs for the two versions of the model.



3.4. EXAMPLE: READING THE OUTPUT OF A SOFTWARE PACKAGE 83

3.4 Example: reading the output of a software package

Now it’s time for a hands-on example:!* Table 3.1 contains a regression on a
dataset containing data about 2610 home sales in Stockton, CA from Oct 1, 1996
to Nov 30, 1998;'® the dependent variable is the natural logarithm of their sale
price. For this example, the software package I used is gretl, but the output is
more or less the same with every other program.

The model we're going to estimate can be written as follows:

pi =PBo+ P1si+ Pabi+ Pza; + Pax; +¢; (3.19)

where p; is the log price of the i-th house and the explanatory variables are:

Legend
lsize s; logofliving area, hundreds of square feet
baths b; number of baths
age a; ageofhome attime of sale, years
pool  x; =1ifhome haspool, 0 otherwise

Models of this type, where the dependent variable is the price of a good and
the explanatory variables are its features, are commonly called hedonic models.
In this case (like in most hedonic models), the dependent variable is in loga-
rithm; therefore, the effect of all coefficients must be interpreted as the impact
on that variable on the relative change in the house price (see footnote 32 in
Chapter 1).

As you can see, the output is divided into two tables; the most interesting is
the top one, which contains B3 and some more statistics. I'll describe the con-
tents of the bottom table in section 3.4.2.

3.4.1 The top table: the coefficients

The top table contains one row for each regressor. In the five columns you have:
1. the regressor name

2. the corresponding element of B, that is ,Bi;

3. the corresponding standard error, that is se; = /s? - (X'X) l.‘il;

4. the ratio of those two numbers, that is the ¢-ratio (see eq. 3.15)

14 After reading this section, the reader might want to go back to section 1.6 and read it again
from a different perspective.

15Data are taken from Hill et al. (2018); if you use gretl, you can find the data in gdt format
athttp://www.learneconometrics.com/gretl/poe5/data/stockton5.gdt. This is part of
the rich offering you find on Lee Adkins’ excellent website http://www.learneconometrics.
com/gretl/, which also contains Lee’s book. Highly recommended.


http://www.learneconometrics.com/gretl/poe5/data/stockton5.gdt
http://www.learneconometrics.com/gretl/
http://www.learneconometrics.com/gretl/
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Dependent variable: lprice

coefficient std. error t-ratio p-value
const 8.85359 0.0483007 183.3 0.0000  **x*
lsize 1.03696 0.0232121 44.67 0.0000  *xx
baths -0.00515142  0.0130688 -0.3942 0.6935
age -0.00238675  0.000270997 -8.807 2.29e-18 **x
pool 0.106793 0.0226757 4.710 2.61e-06 *xx*

Mean dependent var 11.60193 S.D. dependent var  0.438325
Sum squared resid 157.8844 S.E. of regression 0.246187

R-squared 0.685027  Adjusted R-squared 0.684544
F(4, 2605) 1416.389  P-value(F) 0.000000
Log-likelihood -42.58860  Akaike criterion 95.17721
Schwarz criterion 124.5127 Hannan-Quinn 105.8041

Table 3.1: Example: house prices in the US

5. the corresponding p-value, possibly with the little stars on the right (see
section 2.4.1).

Note that gretl, like all econometric packages I know, gives you the “finite-
sample” version of the standard errors, that is those computed by using s? as
a variance estimator instead of 62, which is what I personally prefer, but the
difference would be minimal.

For the interpretation of each row, let’s begin by the 1size variable:'® the
coefficient is positive, so that in our dataset bigger houses sell for higher prices,
which of course stands to reason. However, the magnitude of the coefficient is
also interesting: 1.037 is quite close to one. Since the house size is also expressed
in logs, we could say that the relative response of the house price to a relative
variation in the house size is 1.037. For example, if we compared two houses
where house A is bigger than house B by 10% (and all other characteristics were
the same), we would expect the value of house A to be 10.37% higher than that
of house B.

As the reader knows, this is what in economics we call an elasticity: for a
continuous function you have that

_dy x dlogy
= dx y dlogx
because % = 1 and therefore dlogy = d—yy. So, any time you see something

like log(y) = a + blog(x), you can safely interpret b as the elasticity of y to x.
From an economic point of view, therefore, we would say that the elasticity
of the house price to its size is about 1. What is more interesting, the standard

16«“yWhy not the constant?” you may ask. Nobody cares about the constant.
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error for that coefficient is about 0.023, which gives a ¢-ratio of 44.67, and the
corresponding p-value is such an infinitesimal number that the software just
gives you 0.17 If we conjectured that there was no effect of size on price, that
hypothesis would be strongly rejected on the grounds of empirical evidence. In
the jargon of applied economists, we would say that size is significant (in this
case, very significant).

If, instead, we wanted to test the more meaningful hypotheses Hy: f; =1, it
would be quite easy to compute the appropriate ¢ statistic as per equation (3.16):

-1 1.03696—1
= = =1.592
se;  0.0232121

and the corresponding p-value would be about 11.1%, so we wouldn'’t reject Hy.

On the other hand, we get a slightly negative effect for the number of baths
(—0.00515142). At first sight, this does not make much sense, since you would
expect that the more baths you have in the house, the more valuable your prop-
erty is. How come we observe a negative effect?

There are two answers to this question: first, the p-value associated to the
coefficient is 0.6935, which is way over the customary 0.05 level. In other words,
an applied economist would say that the baths variable is not significant. This
does not mean that we can conclusively deduce that there is no effect. It means
that, if there is one, it’s too weak for us to detect (and, for all we know, it might as
well be positive instead, albeit quite limited). Moreover, this is the effect of the
number of baths other things being equal, as we know from the Frisch-Waugh
theorem (see section 1.5). In this light, the result is perhaps less surprising: why
should the number of baths matter, given the size of the house? Actually, a small
house filled with baths wouldn’t seem such a great idea, at least to me.

On the contrary, the two variables age and pool are highly significant. The
coefficient for age, for example, is about -0.002: each year of age decreases the
house value by about 0.2%, which makes sense. The coefficient for the dummy
variable pool is about 0.107, so it would seem that having a pool increases the
house value by a little over 10%, which, again, makes sense.

3.4.2 The bottom table: other statistics

Let’s begin with the easy bits; the first line of the bottom table contains descrip-
tive statistics for the dependent variable: mean (about 11.6) and standard de-
viation (about 0.43). The next line contains the sum of squared residuals e’e
(157.88) and the square root of s> =e'e/(n— k), which is in this case about 0.246.
Since our dependent variable is in logs, this means that the “typical” size of the
approximation errors for our model is roughly 25%. The line below contains
the R? index and its adjusted variant (see eq. 1.19). Both versions are around
68.5%, so that our model, all in all, does a fair job at describing price differen-
tials between houses, especially given how little information on each properties

171n case you're curious: I can’t compute the number exactly, but it’s smaller than 107310,
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we have. However, since our estimate of o is quite sizeable, we shouldn’t expect
our model to give us a detailed description of individual house prices.

The line below contains a test'® commonly called “overall specification test”:
it is a joint test for all coefficient being zero apart from the constant. The null
hypothesis is, basically, that none of your regressors make any sense and your
model is utter rubbish. Luckily, in our case the p-value is infinitesimal, so we
reject.

On the next line, you get the log-likelihood for the model:

L= —g [1+In@m) +1n@?)].

This number is of very little use by itself;!? in this book, it’s only important be-
cause it provides the essential ingredient for calculating the so-called Informa-
tion Criteria (IC), that are widely used tools for comparing non-nested models.
We say that a model nests another one when the latter is a special case of
the former. For example, the two models (3.13) and (3.14) are nested, because
model (3.14) is just model (3.13) in the special case f, = 0. If model B is nested
in model A, choosing between A and B is rather easy: all you need is a proper
test statistic; I will provide a detailed exposition in Section 3.6. However, we may
have to choose between the two alternatives in which nesting is impossible:

!
x;3

!/
z.y

1§

Vi
Vi

1§

Information criteria start from the value of the log-likelihood (multiplied by -2)
and add a penalty function, which is increasing in the number of parameters.
The gretl package, that I'm using here, reports three criteria: the Akaike IC (AIC),
the Schwartz IC (BIC, where B is for “Bayesian”) and the one by Hannan and
Quinn (HQC), which differ by the choice of penalty function:

AIC = -2L+2k (3.20)
BIC = -2L+klogn 3.21)
HQC = -2L+2kloglogn (3.22)

The rule is to pick the model that minimises information criteria. It may be
interesting to know that, for the case of linear model that we are examining in
the present context, the quantity —2L equals

—2L=n[K-log(6%)],

18This test, technically, is of the F variety — see section 3.6.1 for its definition.

191f the data are iid and f(y|x) is Gaussian, then (3 and 62 are the maximum likelihood estima-
tors of 3 and 2. 1 chose not to include this topic into this book, but the interested reader will find
anice and compact exposition in Verbeek (2017), chapter 6. Other excellent treatments abound,
but the curious reader may want to check out chapters 14-15 of Ruud (2000). If you want to go for
the real thing, grab Gourieroux and Monfort (1995), volume 1, chapter 7.
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where K is a not particularly interesting constant. Therefore, minimising the in-
formation criteria amounts to choosing a model that fits the data “well” without
using “too many” parameters.

At times, it may happen that this algorithm gives conflicting results depend-
ing on which IC you choose. There is a huge literature on this, but my advice in
these cases is “don't trust the AIC much”.2? An alternative to information criteria
that has become very popular in recent years (especially because the machine
learning people are crazy about it) is the so-called cross-validation criterion:
you'll find more about it in Section 3.A.4.2!

3.5 Exogeneity and causal effects

This section is short, but very important: The 2021 Nobel Prize for Economics
was awarded to David Card, Joshua Angrist and Guido Imbens, precisely for
their work on causal effects, which has been enormously influential, especially
in labour economics. The issue here is not about the statistical properties of B,
but rather on its interpretation as an estimator of 3, so it fits in well at this point
of the book, although the point we pursue here will be discussed in much greater
detail in Chapter 6.
What does (3 measure? If E [ y|x] = x'(3, then 3 is simply defined as

_OE[ylx]

P ox

therefore, in a wage equation, the coefficient for education tells us simply by
how much, on average, wage varies across different education levels.

It would be tempting to say “by how much your wage would change if you
got one extra year of education”, but unfortunately this statement would be un-
warranted.?? There are many reasons why the conditional mean may not be a
good indicator of causality: for example, people may just stop attending school,
or university, the moment they are able to earn a decent wage. If that were the
case, the regression function of wage with respect to education would be flat, if
not negative (because the smartest people would spend a shorter time in edu-
cation). But this wouldn’'t mean that education has a negative effect on wages.
In fact, quite the contrary: people who get more education would do so to com-
pensate for their lesser ability. Of course, this example is a bit of a stretch, but

201f you want some more detail, see section 15.4 in Davidson and MacKinnon (2004) or section
3.2.2 in Verbeek (2017). However, the literature on statistical methods for selecting the “best”
model (whatever that may mean) is truly massive; see for example the “model selection” entry in
(Durlauf and Blume, 2008).

21 fact, the cross validation criterion can be shown to be roughly equivalent to the AIC.

22The ongoing debate in contemporary econometrics on the issue of differentiating between
correlation and causation is truly massive. For a quick account, read chapter 3 in the latest best-
seller in econometrics, that is Angrist and Pischke (2008), or simply google for “Exogeneity”.
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should give you a hint as to why inferring causality from a regression coefficient
may be a very bad idea.

More in general, there are situations when the causal relationship between
y and x works in such a way that the conditional mean does not capture causal-
ity, but only the outcome of the process, which can be quite different, as in the
example I just made.

In these cases, the traditional phrase that we use in the economics commu-
nity is “x is endogenous” (as opposed to exogenous). If regressors are endoge-
nous, then the regression parameters have nothing to do with causal effects;
put another way, the parameters of interest 3 are not those that describe the
conditional mean, and therefore, if you define €; as y; —x3, the first conse-
quence is that the property E [¢;]x;] = 0 doesn’t hold anymore, and so E[e;x;] =
Covlej, x;] #0. This is why in many cursory treatment of the subject, endogene-
ity is described as an “illness” that happens when the regressors are correlated
with the disturbance term. Of course, that is an oversimplification: a more rig-
orous statement would be that in some cases the causal effects can be different
from the conditional mean; if you define the disturbances as deviations from
the causal effects, non-zero correlation between regressors and disturbances
follows by construction.

Note that this problem is not a shortcoming of OLS per se: the job of OLS is

to estimate consistently the parameters of the conditional expectation %};{lx}. If
the nature of the problem is such that our parameters of interest 3 are a different
object and we insist on equating them with what OLS returns (thereby giving
OLS a misleading interpretation), it's a hermeneutical problem, not a statistical
one.

The preferred tool in the econometric tradition for estimating causal effects
is an estimator called Instrumental Variable estimator (or IV for short), but
you’ll have to wait until chapter 6 for it.

3.6 Restricted Least Squares and hypothesis testing

The Restricted Least Squares statistic (or RLS for short) is an estimator of the
parameter vector that, like OLS, uses the available data in the most effective way
but at the same time, unlike OLS, satisfies by construction a set of p restrictions
of the type R3 = d. In other words, we are looking for a vector 3 that minimises
the SSR under the condition that a certain set of linear constraints are satisfied:

B = Argmin [ly-Xgl; (3.23)
RpB=d

compare (3.23) with equation (1.14): OLS is defined as the unconstrained SSR
minimiser (we can choose ,3 among all k-element vectors); RLS, instead, can
only be chosen among those vectors 3 that satisfy R3 = d. Figure 3.3 exemplifies
the situation for k = 2.
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Define the restricted residuals as & = y — X3; we will be interested in com-
paring them with the OLS residuals, so in this section we will denote them as
& =y—X03 = My to make the distinction typographically evident.

Figure 3.3: Example: two-parameter vector

B2
[ B1=3p2
52 iiiiiiiiiiiiiii 777:\77 7777\

,31 51 B

The ellipses are the contour lines of the function €'e. The constraint is 1 = 3f2. The
number of parameters k is 2 and the number of constraint p is 1. The unconstrained
minimum is ,31, Bg; the constrained minimum is 51, ,32.

A couple of remarks can already be made even without knowing what the
solution to the problem in (3.23) is. First, since B is an unrestricted minimiser,
&'é cannot be larger than the constrained minimum &'é. However, the inequality
é’é < &'é can be made more explicit by noting that

Mxé = Mx [y -X3] = Mxy = &

and therefore

so that

ée—ée=ePxé (3.24)

where the right-hand side of the equation is non-negative, since &€ Pxé can be
written as (Pxe)’ (Pxé), which is a sum of squalres.23

In order to solve (3.23) for B, we need to solve a constrained optimisation
problem, which is not complicated once you know how to set up a Lagrangean.

231n fact, the same claim follows more elegantly by the fact that Py is, by construction, positive
semi-definite.
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The details, however, are not important here and I'll give you the solution straight
away:

B=B-XX"'R [R(X'X)_lR’]J (RB-d); (3.25)
derivation of this result is provided in the separate subsection 3.A.5, so you can
skip it if you want.

The statistical properties of 3 are proven in section 3.A.6, but the most im-
portant point to make here are: if R =d, then 3 is consistent just like the OLS
estimator 3, but has the additional advantage of being more efficient. If, on the
contrary, RB #d, then /3 is inconsistent. The practical consequence of this fact
is that, if we were certain that the equation RB = d holds, we would be much
better off by using an estimator that incorporates this information; but if our
conjecture is wrong, our inference would be invalid.

It’s also worth noting that nobody uses expression (3.25) as a computational
device. The simplest way to compute 3 is to run OLS on the restricted model and
then “undo” the restrictions: for example, if you take model (3.17), reproduced
here for your convenience

Vi =X1iP1+x2i P2 + x3i B3 + &;

and want to impose the set of restrictions f; = 1 and 8, = 3, what you would
do is estimating the constrained version

Yi—x1; = (X2; + x3;) B2 + €;, (3.26)
that can be “unravelled” as
Vi=X1i-1+X2if2 + X3 B2 + &;

and then forming B as [1, B2, B], where f, is the OLS estimate of equation (3.26).
Nevertheless, equation (3.25) is useful for proving an important result. Let’s
define the vector A as

A=[RXX)'R] ™ (RB- d);
by premultiplying (3.25) by X we get:
XB=y=y-XXX)"'R'A

which in turn implies
e=e+XXX)'RA

By using & = Mxy = &€'X = 0, we can use the above equation to get
ge=ee+ VRX'X) 'R'A
but by the definition of A,

VRX'X)'R'A=RB-d) [RXX) 'R RB-d)
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so finally
de—ee=RA-d'[RXX)'R] " RB-d. (3.27)
Note that the right-hand side of equation (3.27) is very similar to (3.18). In

fact, if our estimator for o2 is 6% = & &/ n, we can combine equations (3.18), (3.24)
and (3.27) to write the W statistic as:

RA-d) [RXX) 'R ' RB-d) &e-éee
W:(B ) [RX'X) | RB ):neeee

6° e'e

(3.28)

Therefore, we can compute the same number in two different ways: one im-
plies a rather boring sequence of matrix operations, using only ingredients that
are available after the estimation of the unrestricted model. The other one, in-
stead, requires estimating both models, but at that point 3 scalars (the SSRs and
the number of observations) are sufficient for computing W.

3.6.1 Two alternative test statistics

There are two other statistics that can be used to perform a test on Hj instead of
the W test. One is the so-called F test, which is the traditional statistic taught in
all elementary econometric courses, treated with reverence in all introductory
econometrics books and the one that all software packages report. It can be
written as
de-éel ee-éée n-k
F = > —_= ~ A . 5 (329)
s p é'e p

it can be easily seen that there are two differences between F and W: F uses
s?, the unbiased estimator of o that I showed you at the end of section 3.2.2,
instead of 6; moreover, you also have the number of restrictions p in the de-
nominator. Of course, it’s easy to compute them from one another:

n n—-k

so in the standard case, when n is much larger than k, you have that W = p - F.
Since their p-values are always practically the same, there is no statistical ground
for preferring either. The reason why the econometricians of yore were attached
to the F test was because its distribution is known even for small samples if ¢; is
normal, so you don’t need asymptotics. In my opinion, however, small samples
are something you should steer clear of anyway, and postulating normality of ¢;
is, as a rule, just wishful thinking. So, my advice is: use W.

The other statistic we can use is more interesting: if Hj is true, the restricted
model is just as correct as the unrestricted one. Therefore, one could conceiv-
ably estimate o2 by using & instead of é:

o
o

G2 (3.30)

3|
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It can be proven that intuition is right, and if Hy is true 62 is indeed consistent
for o2. If we use 62 instead of 62 in equation (3.28), we obtain the so-called LM
statistic:2* .

ee—é'e  ePxe

LM=n ) (3.31)

e | ee
where equality comes from (3.24). Since €& cannot be less than &'é, in finite
samples LM will always be smaller than W. However, under Hy they tend to the
same probability limit, and therefore under the null LM will also by asymptoti-
cally distributed as y5.%

The nice feature of the LM statistic is that it can be computed via a neat trick,
known as auxiliary regression:

1. run OLS on the constrained model and compute the residuals &;

2. run OLS on a model where the dependent variable is € and the regressors
are the same as in the unconstrained model;

3. take R? from this regression and multiply it by n. What you get is the LM
statistic.

The last step is motivated by the fact that you can write R? as ’/;;y, so in the

present case égfgé is R? from the auxiliary regression.
Example 3.1
As an example, let’s go back to the house pricing model we used as an example
in Section 3.4. In Section 3.4.1 we already discussed two hypotheses of interest,
namely:

¢ The price elasticity is 1, and
¢ the number of baths has no effect.

Testing for these two hypotheses separately is easy, via t-tests, which is just what
we did a few pages back. As for the joint hypothesis, the easiest thing to do is
setting up the resticted model as follows: combine equation (3.19) with f; =1
and B, = 0. The restricted model becomes

pi—Si=Po+Psa; + Pax; +€;. (3.32)

Note the redefinition of the dependent variable: if p; is the log of the house
price and s; is its size in square feet, then p; — s; is the log of is price per square

24The reason for the name is that this test statistic can be shown to be a “Lagrange Multiplier”
test if normality of £; was assumed. Its validity, however, does not depend on this assumption. A
fuller discussion of this point would imply showing that OLS is a maximum likelihood estimator
under normality, which is something I'm not willing to do. See also footnote 19 in Section 3.4.2.

25The reader may want to verify that alternative formulations of the W and LM statistics are
possible using 62 and 62, or the R? indices from the two models.
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foot, or unit price if you prefer. In fact, the hypothesis 1 = 1 implies that if
you have two houses (A and B) that are identical on all counts, except that A is
twice as big as B, then the price of A should be twice that for B. Therefore, this
hypothesis says implicitly that you can take into account appropriately the size
of the property simply by focusing on its price per square foot, which is what we
do in model (3.32). Estimating (3.32) via OLS gives

Dependent variable: lup

coefficient std. error t-ratio p-value
const 8.94603 0.00833147 1074 0.0000  *xxx*
age -0.00247396  0.000232353 -10.65 6.07e-26 *xx*
pool 0.115810 0.0221914 5.219  1.94e-07 **x

Mean dependent var 8.881042 S.D. dependent var 0.253030
Sum squared resid 1568.1204 S.E. of regression  0.246277
R-squared 0.053395 Adjusted R-squared 0.052669

Superficially, one may think that our restricted model is much worse than
the unrestricted one, as the R? drops from 68.5% to 5.3%. However, this is not a
fair comparison, because in the restricted model the dependent variable is rede-
fined and the denominator of the two R? indices is not the same. The SSRs are,
instead, perfectly comparable, and the change you have between the full model
and the unrestricted one is 157.88 — 158.12, which looks far less impressive, so
we are drawn to think that the restricted model is not much worse in terms of
fit. We could take this as an indication that our maintained hypothesis is not
particularly at odds with the data.

This argument can be made rigorous by computing the W statistic:

158.1204 — 157.8844

W =2610- =3.9014
157.8844

you get a statistic that is smaller than the critical value at 5% of x5 = 5.99, so we
accept both hypotheses again (the p-value is about 0.124). This time, however,
the test was performed on the joint hypothesis. It may well happen (examples
are not hard to construct) that you may accept two hypotheses separately but
reject them jointly (the converse should never happen, though).

The LM test, instead, can be computed via an auxiliary regression as follows:
take the residuals form model (3.32) and regress them against the explanatory
variables of the unrestricted model (3.19). In this case, you get

coefficient std. error t-ratio p-value
const -0.0924377 0.0483007 -1.914 0.0558 *
lsize 0.0369564 0.0232121 1.592 0.1115
baths -0.00515142 0.0130688 -0.3942 0.6935
age 8.72115e-05  0.000270997 0.3218 0.7476

pool -0.00901706 0.0226757 -0.3977 0.6909
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SSR = 157.884, R-squared = 0.001493

The auxiliary regression per se is not particularly interesting: its parameters
don’t have any meaningful interpretation.?®. For us, it’s just a computational
device we use to compute the LM test statistic: take R?> = 0.001493 and multiply
it by the number of observations (2610); you get

LM =0.001493 x 2610 = 3.89558,

which is practically identical to W, hence the conclusion is the same. ____|

3.7 Prediction

Once a model is estimated and we have CAN estimators of 3 and o2, we may
want to answer to the following question: if we were given a new datapoint for
which the vector of covariates is known and equal to X, what could we say about
the value of the dependent variable y for that new observation?

In order to give a sensible answer, let’s begin by noting a few obvious facts:
of course, y is a random variable, so we cannot predict it exactly. If we knew the
true DGP parameters (3 and o we could say, however, that

E[jix] =B  V[yi]=0"

If we were willing to entertain the claim that ¢ is normal, we could even build a
confidence interval?’ and say

P(lj— m| < 1.960) ~ 95% (3.33)

where m = X' 3. The problem is that we don’t observe 3; instead, we observe ,3,
so, assuming that the best way to make a point prediction of a random variable
is to take its expectation,?® the best we can do to predict y is computing

y=xp.

Note, however, that 3 is a random variable, with its own variance, so the confi-
dence interval around § has to take this into account. Formally, let us define the
prediction error as

e" =y-y)=FB+8-XP= &+X(B-P);

26For curiosity: the SSR is the same as in the restricted model. Can you prove why analytically?
It’s not difficult.

27If you need to refresh the notion of confidence interval, go back to the end of section 2.3.2.

28This may seem obvious, but actually isn't: this choice is optimal if the loss function we employ
for evaluating prediction is quadratic (see section 1.2). If the loss function was linear, for example,
we'd have to use the median. But let’s just stick to what everybody does.
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the expression above reveals that our prediction can be wrong for two reasons:
(a) because ¢ is inherently unpredictable: our model does not contain all the
feaures that describe the dependent variable and its variance is a measure of
how bad our model is and (b) our sample is not infinite, and therefore we don'’t
observe the DGP parameter 3, but only its estimate (3.

If € can be assumed independent of B (as is normally safe to do), then the
variance of the difference is the sum of the variances:

Vie*] =V[({- K] =V +V[X (B-B)] =0 +X V.

Of course, when computing this quantity with real data, we replace variances
with their estimates, so we use 42 (or s2) in place of o2, and V for V.

Example 3.2
Suppose we use the model shown in section 3.4.1 to predict the price for a house
built 5 years ago, with 1500 square feet of living area, 2 baths and no pool. In this
case,

X'=[1 2708 2 5 0l;
(the number 2.708 is just1og(1500/100); since

6'2[8.8536 1.037 -0.00515 -0.00239 0.107]

simple multiplication yields y = 11.6395. Therefore the predicted price is about
US$ 113491 (that is, exp(11.6395)).2
As for the variance,®® we need V, that is s*(X'X) "

23.330 -9.914  2.288 -0.025 1.724

-9.914 5388 -2.245 -0.010 -0.705

V =0.0001 x 2.288 -2.245 1.708 0.016 -0.021
-0.025 -0.010 0.016 0.001 -0.001

1.724 -0.705 -0.021 -0.001 5.142

It turns out that
V[jx] = 6% +X Vx = 0.0606082 + 6.28845 - 10~*° = 0.0606711;

since v/0.0606711 =~ 0.2463, we can even calculate a 95% confidence interval
around our prediction as

7+1.961/V[y] =11.6395+1.96 x 0.2463

29 Actually, the expectation of the exponential is not the exponential of the expectation, since
the exponential function is everywhere convex (see Section 2.A.1), but details are not important
here.

300f course, we could have used the asymptotic version 4%(X’X)~! and very little would have
changed.
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so we could expect that, with a probability of 0.95, the log price of our hypothet-
ical house would be between 11.157 and 12.122, and therefore the price itself
between $ 70000 and $ 180000 (roughly). You may feel unimpressed by such a
wide range, and I wouldn't disagree. But on the other hand, consider that this
is a very basic model, which only takes into account very few features of the
property, so it would be foolish to expect it to be razor-sharp when it comes to
prediction. |

One last thing: you may have noticed, in the example above, that the vari-
ance of the predictor depends almost entirely on the “model uncertainty” com-
ponent 2 and very little on the “parameter uncertainty” component X' Vx. This
is not surprising, in the light of the fact that, as n — oo, the latter component
should vanish, since 3 is consistent. Therefore, in many settings (notably, in
time-series models, that we’ll deal with in Chapter 5), the uncertainty on the

prediction is tacitly assumed to come only from o?.

3.8 The so-called “omitted-variable bias”

In many econometrics textbooks, you can find an argument that goes more or
less like this: assume that the true model is

Vi =Xif1+2zif2+€;; (3.34)

if you try to estimate 3, via a regression of y; on x; alone, you're going to end up
with a bad estimate. The proof is rather easy:3!

N Yoxiyi X xi(xiPi+ziPo+€)
B = = = (3.35)
n x2 n x2
i=1 i=1
xlzl Z, 1 Xi€i
- '6 '62 n + noy2
i=1 i=1"i

If you take probability limits, you'll find that, even if E[g;|x;] =0,

Elx;z;
E[x 2]

and the estimator would be inconsistent unless 2 = 0 and/or E[x;z;] = 0. The
solemn maxim the student receives at this point is “if you omit a relevant regres-
sor (z; in our case, that is relevant if 8, # 0) then your estimates will be incorrect,
unless the omitted variable miraculously happens to be uncorrelated with x;”.
The phenomenon is usually called omitted variable bias.

B2 Br+ fo—

311 could extend this example to matrices, but it would be totally unnecessary to grasp my point.
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I've always considered this remark quite useless, if not outright misleading,
and seeing econometricians, who are far better than myself, repeating it over
and over to generations of students is a constant source of wonder to me. I'll try
to illustrate why, and convince you of my point.

The parameter f; in (3.34) is defined as the partial effect of x; on the condi-
tional mean of y; on both x; and z;; that is, the effect of x on y given z. It would
be silly to think that this quantity could be estimated consistently without us-
ing any information on z;.3% The statistic ﬁl, as defined in (3.35) (which does
ignore z;), is nevertheless a consistent estimator of a different quantity, namely
the partial effect of x; on the conditional mean of y; on x; alone, that is

E [y,-lxi] = B1x; + B2E [zi]x;].

The objection that some put forward, at this point, is: “OK; but assume that
equation (3.34) is my object of interest, and z; is unobservable, or unavailable.
Surely, you must be aware that the estimate you get by using x; only is bogus.”
Granted. But then, I may reply, do you ever get a real-life case when you observe
all the variables you would like to have in your conditioning set? I don’t think
so; take for example the model presented in section 3.4: in order to set up a truly
complete model, you would have to have data on the state of the building, on
the quality of life in the neighbourhood, on the pleasantness of the view, and
so on. You should always keep in mind that the parameters of your model only
make sense in the context of the observable explanatory variable that you use
for conditioning.33

This doesn’t mean that you should not worry about omitted variable bias at
all. The message to remember is: the quantity we would like to measure (ideally)
is “the effect of x on y all else being equal”; but what we measure by OLS is the
effect of x on y conditional on z. Clearly, in order to interpret our estimate the
way we would like to, z should be as close to “all else” as possible, and if you omit
relevant factors from your analysis (by choice, or impossibility) you have to be
extra careful in interpreting your results.

Example 3.3
Idownloaded some data from the World Development Indicators®* website. The
variables I'm using for this example are

321 should add that if we had an observable variable w;, which we knew for certain to be uncor-
related with z;, you could estimate 7 consistently via a technique called instrumental variable
estimation, which is the object of Chapter 6.

331n fact, there is an interesting link the bias you get from variable omission and the one you get
from endogeneity (see section 3.5). Maybe I'll write it down at some point.

34The World Development Indicator (or WDI for short) is a wonderful database, maintained
by the World Bank, that collects a wide variety of variables for over 200 countries over a large
time span. It is one of the most widely used resources in development economics and is publicly
available at http://wdi.worldbank. org or through DBnomics https://db.nomics.world/.


http://wdi.worldbank.org
https://db.nomics.world/
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Variable name Description

NY.GDP.PCAP.PP.KD GDP per capita based on purchasing
power parity (PPP).

SH.MED.BEDS.ZS Hospital beds (per 1,000 people)

NV.AGR.TOTL.ZS Agriculture, value added (% of GDP)

For each country, I computed the logarithm of the average (between 2014
and 2018) of the available data, which left me with data for 69 countries. The
three resulting variables are called 1_gdp, 1_hbeds and 1_agri. Now consider
Table 3.2, which reports two OLS regressions. In the first one, we regress the
number of hospital beds on the share of GDP from agriculture. As you can see,
the parameter is negative and significant. However, when we add GDP to the
equation, the coefficient of 1_agri becomes insignificant (and besides, its sign
changes). On the contrary, you find that GDP matters a lot.

Dependent variable: |_hbeds

1) 2)

const 1.090** —-4.876**
(0.1168) (1.231)
Lagri —0.2916**  0.08467
(0.05794) (0.09217)
1_gdp 0.5655%*
(0.1163)
R? 0.2635 0.4496

(standard error in parentheses)

Table 3.2: Two regressions on WDI data

The correct interpretation for this result is: there is a significant link between
medical quality (as measured by the number of hospital beds per 1000 inhabi-
tants) and the share of GDP from agriculture. In other words, if you travel to a
country where everybody works in the fields, you'd better not get ill. However,
this fact is simply a by-product of differences between countries in terms of eco-
nomic development.

Once you consider the conditional expectation of 1_hbeds on a wider infor-
mation set, which includes GDP per capita,®® the effect disappears. That is, for
a given level of economic development3® there is no visible link between hospi-
tal beds and agriculture. To put it more explicitly: if you compare two countries

35In the applied economic jargon: “once you control for GDP”.

360K, GDP per capita is not a perfect measure of economic development, nor of happiness, nor
of well-being. I know. I know about the Human Development Index. I know about that Latouche
guy. I know about all these things. Just give me a break, will you?
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where the agricultural sectors have a different size (say, Singapore and Burundi),
you're likely to find differences in their health system quality. However, if you
compare two countries with the same per capita GDP (say, Croatia vs Greece, or
Vietnam vs Bolivia) you shouldn’t expect to find any association between agri-
culture and hospital beds.

Does this mean that model (1) is “wrong”? No: it simply means that the two
coefficients in the two models measure two different things: a “gross” effect in
equation (1) and a “net” effect in equation (2).3” Does this mean that model (2)
is preferable? Yes: model (2) gives you a richer picture (see how much larger R?
is) because it’s based on a larger information set. |

3.A Assorted results

3.A.1 Consistency of 6

From (3.3), e = Mxy = Mxe. Therefore, the sum of squared residuals can be writ-
ten as
ee=¢Mxe =e'e —'XX'X) ' X'e;

now, given the definition of 2,

divide everything by n and take probability limits; the first bit is easy:

I

s_l” 2
__ng‘ (€3] = o>

On the other hand, equations (3.7) and (3.8) say that

e'’X X'X
Xre,y XX,

n n

and therefore

= — == L. o2-0Qt0=0%

62_5’Mx€ e'e ’X(X’X) 'Xe

n n n n n

3.A.2 The classical assumptions

The classical assumptions were used in the infancy of econometrics to justify
OLS as an inferential method. They reflect a point of view that was quite natural
in those days, that is the idea that statistical methods could be borrowed from

37The discerning reader will doubtlessly spot the parallel with the discussion we had on the
Frisch-Waugh theorem in section 1.5.
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other sciences and be employed on economic data with little or no modification.
The starting point is the linear model in matrix form

y=X3+¢
which of course implies y; = x’l. 3+ ¢€;. The classical assumptions are:
1. Xis a n x k non-stochastic matrix, with n > k and rk(X) = k;
2. e~A(0,0%0)

In this context, x;3 is interpreted as a “law of nature”, which describes what
happens to y; under certain conditions, described by x;; this idea is borrowed
directly from experimental science, where y; is the outcome of the i-th experi-
ment and Xx; are the conditions under which the i-th experiment took place.

The disturbance term ¢; is just “random noise”, coming from experimental
errors, bad measurement or some other factor that is impossible to control fully;
the idea here is that if €; was 0, by observing y; we would observe the “law of
Nature” x’l. 3 in its “uncontaminated” form.

In a controlled experiment, these hypotheses are perfectly natural: the x; are
obviously non-random (because are decided by the experimenter); to surmise
that ¢; is Gaussian is also quite natural, since it is the outcome of a multitude
of a large number of small imperfections and some faith in the Central Limit
Theorem is not totally unjustified.

In the adaptation to economic data, the “fixed-X” assumption was recog-
nised as untenable, so a second version of the classical assumptions allows for
the possibility that X may be random, In that case, assumption 2 is replaced by

elX~.#(0,6°1),

which in turn implies E[e;X] = E[g;]x;] = 0, and as a consequence E [y;[x;] =
x.3.

Finally, note that in the classical world ¢ is assumed to be Gaussian, while
no assumption of that kind was made in Section 3.3. Normality is necessary to
derive the distribution of hypothesis tests such as the ¢ test or the F test when
the sample size is small; needless to say, this is neither necessary nor desirable
in modern econometrics, where datasets are almost always rather large and the
normality assumption is, at best, questionable. This is why in contemporary
econometrics (and, as a result, in this book) we mainly rely on asymptotic infer-
ence, where Gaussianity is nearly useless.

3.A.3 The Gauss-Markov theorem

The Gauss-Markov theorem states that, under homoskedasticity, OLS is the most
efficient estimator among all those that are (a) unbiased and (b) linear. Unbi-
asedness means that E[3] = 3; linearity means that (3 can be written as 3 = Ly.



3.A. ASSORTED RESULTS 101

The OLS statistic enjoys both properties (L’ being equal to (X'X) "X/ for OLS), but
other statistics may too. This property is often condensed in the phrase “OLS is
BLUE”, where BLUE stands for “Best Linear Unbiased Estimator”.

The proofis simple if we concentrate on the case when X is a matrix of fixed
constants and does not contain random variables, because in this case we can
shuffle X in and out of the expectation operator E [-] any way we want. Consider-
ing the case when X contains random variables makes the proof more involved.

Here goes: take a linear estimator 3 defined as 3 = L'y. In order for it to be
unbiased, the following must hold

E[B] =E[L' (XB+¢)] =L'XB+LE[e] = B;

it is safe to assume that E [e] = 0, so the unbiasedness requirement amounts to
L'X = I. Note that, in the standard case, there are infinitely many matrices that
satisfy this requirement, since n > k and X is a “tall” matrix. In the OLS case,
L' = X’X)"'X/, and the requirement is met. Therefore, under unbiasedness, 3
can be written as 3 =3 + L'e.

Now consider the variance of 3:

V[B]=E[(B-B(B-B)]=E[L'ee'L] =L'E[e'|]L=LV[e] L;
under homoskedasticity, V[e] = 01, so
V(3] =o’L'L; (3.36)
again, OLS isjust a special case, so the variance of Bis easy to compute as vV [B | =

o? (XXX [XX'X) 7] = 0?2 (X'X) 7L
The gist of the theorem lies in proving that the difference

V[B]-V[B] =o’LL-0*XX) " = 0* [LL- XX) ']

is positive semidefinite any time L # (X'X)"'X’, and therefore OLS is more effi-
cient than 3. This is relatively easy: define D = L’ — (X’X) "X/, which has to be
nonzero unless 3 = 3. Therefore, D'D must be positive semidefinite (see section
1.A.7).

D'D=[L' - XX X][L-XXX) ] =L'L- XX 'XL-LXXX '+ XX}
under unbiasedness, L'X = X'L = I, so the expression above becomes
D'D=LL-XX)! (3.37)

and the claim is proven.

Having said this, let me add that the relevance of the Gauss-Markov theorem
in modern econometrics is quite limited: the assumption that X is a fixed matrix
makes sense in the context of a randomised experiment, but the data we have
in economics are rarely compatible with this idea; the same goes, perhaps even
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more strongly, for homoskedasticity. Moreover, one does not see why the linear-
ity requirement should be important, aside from computational convenience;
and a similar remark holds for unbiasedness, that is nice to have but not really
important if our dataset is of a decent size and we can rely on consistency.

One may see why people insisted so much on the Gauss-Markov theorem
in the early days of econometrics, when samples were small, computers were
rare and statistical methods were borrowed from other disciplines with very few
adjustments. Nowadays, it’s just a nice exercise in matrix algebra.

3.A.4 Cross-validation and leverage

Given our usual regression model
y=X3+e, (3.38)

we may indulge in the following thought exercise: “We have n datapoints, and
we use all the available information to compute all the OLS-related statistics.
But what if we had only n —1? We could pretend that the value of y,, was un-
available. What happens if we compute 3 only using the first 7 — 1 datapoints?
How different would it be from its full-sample equivalent? And if we used 3 and
X, to predict y,, what should we expect?”. As we will see, pursuing this idea will
lead us to developing useful tools for identifying influential observations and
testing the specification of our model.

Suppose we have n observations but we leave the i-th one aside, and in-
troduce the following convention: the “(-i)” index means “excluding the i-th
observation”; hence, X(_;) is a (n — 1) x k matrix, equal to X with the i-th row
dropped, and the same interpretation holds for y(_;).>® The reason why we may
want to do this is to check what happens to our model if a certain observation
had not been available. There are several insights we can gain from doing so.

In order to perform the necessary calculations, it is useful to consider a model
where you add to X a dummy variable identifying the i-th observation, that is an
additional column d, containing all zeros save for the i-th row, that contains 1.
In pratice, our model becomes

Vi=XB+diA+ei =Wy +e;. (3.39)

For example, if i = nn, d would be a vector of zeros with one 1 at the bottom and

in matrix form the model would look like this:

Yi-i) X 0 _|B
Vi ;o1 ] e [ﬂ '

X;

:

Clearly, our original model 3.38 is just the special case A = 0. Here are a few

38Note: this is not standard notation. I adopted it just for this section.
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results that will be useful later on:3?

XMg = [X(, 0]
XMgX = XX =2 XjX]
J#i
XMay = X(_jVin= 2 Xy
J#i
d,de = m;
d,Mxy = d,é = éi
where € are the OLS residuals for the full-sample model, that is equation (3.38);
m; is the i-th element on the diagonal of My, that is 1 - X X'X)"!x;. Let’s also

define h; =1—-m; = x;. (X'X)"1x;, the i-th element on the diagonal of Px. It can
be proven that 0 < m; < 1, so that the same holds for h; t00.4

Some readers may find the choice of symbols for the diagonal of Px. The reason for using h;
surprising: if the m; values are the diagonal of instead comes from calling Px the “hat matrix”
My, then it would have been natural to use p; (see section 1.4.1).

The Frisch-Waugh theorem (see section 1.5) makes it easy to compute the
OLS estimates for model (3.39):

. Y -1
B = [XMgX] XMgy = [XLUXPD] Xi-p¥-i)
. é;
A= @Mxd) 'dMyy = —

m

The 3 vector is nothing but the OLS statistic you would have found after
dropping the i-th observation. The A parameter is more interesting: let’s begin
by considering the residuals of (3.39): € = Mwy. Its i-th element, é;, is defined as

éi=yi—-x;8-A\

This quantity is identically 0; to see why, note that d is an extraction vector (see
section 3.3.1), so you can write

é;=d'é=d'Myy=0;

since d € Sp (W), then d' My = 0/, and therefore d'é = é; = 0. By putting the two
equations above together, you get

A=y -x,B.

39These are easy to prove, and provide a nice exercise on matrix algebra. Hint: start by comput-
ingd’dand dd’.

40The proof is surprisingly easy: m; lies on the diagonal of My; since My is positive semi-
definite, the diagonal elements cannot be negative. But the same holds for h; and Px. Since
h; + m; =1, the proof is complete.
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which, in turn, means that A is the prediction error you get if you try to pre-
dict the i-th observation by using all the other ones. Or, put another way, if you
want to compute what the prediction error for y; would be (based on the re-
maining observations) all you have to do is stick an appropriate dummy into
your model and take its coefficient. Note that in fact there is an even easier way:
since A = %’ you may just as well run OLS on the full-sample model (3.38), save
its residuals and the m; series, and divide one by the other.

The cross-validation criterion is a model selection tool that is based on just
that: you simulate the out-of-sample performance of your model by adding the
squares of the n prediction errors you find by omitting each observation in turn:

n ) no( g 2
cv=Yy =) (E)
When you compare two models (say, A and B), it may well happen that model A
yields a smaller sum of squared residuals than B, but B outperforms A in terms of
the cross-validation criterion. Usually, this happens when A has a richer struc-
ture than B (in the OLS context, more regressors); in these cases, the canonical
interpretation is that A is only apparently a better model than B: some of the
apparently significant regressors catch in fact spurious regularities than cannot
be expected to hold in general. In these cases, the term we customarily use is
overfitting.

Data scientists are inordinately fond of the
cross-validation concept, and in many cases
they use sophisticated variations of this idea
to pick the best forecasting model for a given
problem.

The variant of the cross-validation method I
just illustrated, where you exclude one obser-
vation at a time, has a lot in common with an
old and established statistical technique called

jackknifing, which in turn is a close relative of
boostrapping (see Section 4.A.4).

In statistical learning and similar disciplines,
the approach presented here is often gener-
alised by excluding entire subsets of the entire
dataset instead of one observation only, possi-
bly choosing them in very elaborate ways. They
call this folding.

In the light of the discussion above, there is something interesting we can say
on the interpretation of the magnitude m; and its complementto 1, h; =1 —m;:

from the definition of & we have

y=Xﬁ+d)AL+é;

by premultiplying the above by My, you get

Myxy = é = MxdA +&.

Therefore, since Mxé =0,

é'é=d'MxdA’ +é'e

so, finally,

~2
e; i

Im; =
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Which means: if you compare the SSR for the two models you get by using the
full sample or omitting the i-th observation, you get that their difference is al-
ways non-negative, and equals él?/ m;. Clearly, if the difference is large, the re-
sults you get by adding/removing the i-th observation are dramatically different,
so that data point deserves special attention.

The quantity é?/mi may be large either because (a) é; is large in absolute
value and/or (b) m; is close to 0 (which implies that A; is close to 1). This is why
the h; values are sometimes used as descriptive statistics to check for “influen-
tial observations”, and are sometimes referred to as leverage values. Note that
h; only depends on the regressors X, and not on y. Therefore, large values of
h; indicate observations for which the combination of explanatory variables we
have is uncommon enough to exert a substantial effect on the final estimates.

3.A.5 Derivation of RLS

As the reader doubtlessly already knows, the standard method for finding the
extrema of a function subject to constraints is the so called “Lagrange multipliers
method”. For a full description of the method, the reader had better refer to one
of the many existing texts of mathematics for economists*!, but here I'll give you
a super-simplified account for your convenience.

If you have to find maxima and/or minima of a func-
tion f(x) subject to a system of constraints g(x) = 0, you
set up a function, called the Lagrangean, in which you sum
the objective function to a linear combination of the con-
straints, like this:

LX) = fx) +1 gx).

The elements of the vector A are known as “Lagrange mul- JOSEPH LOUIS
tipliers”. LAGRANGE

For example, the classic microeconomic problem of a utility-maximising con-
sumer is represented as

LxN=UX+A-(Y-p'x)

where x is the bundle of goods, U(:) is the utility function, Y is disposable in-
come and p is the vector of prices. In this example, the only constraint you have
is the budget constraint, so A is a scalar.
The solution has to obey two conditions, known as the “first order condi-
tions”:
0% _, 0L _
ox or
so in practice you differentiate the Lagrangean with respect to your variables
and A, and then check if there are any solutions to the system of equations you

0, (3.40)

410ne1 especially like is Dixit (1990), but for a nice introductory treatment I find Dadkhah (2011)
hard to beat.
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get by setting the partial derivatives to 0. If the solution is unique, you're all
set. In the utility function example, applying equations (3.40) gives the standard
microeconomic textbook solution to the problem:

U®
ox

Ap  Y=px

in words: at the maximum, (a) marginal utilities are proportional to prices (or

g—g g—g = Z—; if you prefer) and (b) you should spend all your income.
42

In the case of RLS, the Lagrangean is
]‘ / !/
NACIE Ee e+ A (RG-d).

where of course e = y—X3. The derivative of £ with respect to A is just the
constraint; as for the other one, since the derivative of e with respect to 3 is —X,
we can use the chain rule like in section 1.A.5, arranging all the products in an
appropriate way so as to obtain column vectors, which gives

0L _
B

so the first order condition with respect to 3 can be written as

—X'e+R'A

X'e=R'1, (3.41)

where é is the vector that satisfies equation (3.41), defined as y —X/3. By premul-
tiplying (3.41) by (X'X) ™! we get

XXX (y-XB8) =8-8=XX"'R'A,

which of course implies
B=B-XX'RA (3.42)

So the constrained solution (3 can be expressed as the OLS vector B, plus a “cor-
rection factor”, proportional to A. If we premultiply (3.42) by R we get

A=[RXX)'R] T (RB-d) (3.43)
because R3 = d by construction. Interestingly, A itselfis proportional to (R3—d),
that is precisely the quantity we use for the construction of the W statistic in

(3.18). Finally, equation (3.25) is obtained by combining (3.42) and (3.43):

B=pB-XX) 'R [RXX'R] T RB-4).

42Note that I divided the objective function by 2. Clearly, the solution is the same, but the alge-
bra is somewhat simplified.
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3.A.6 Asymptotic properties of the RLS estimator
Begin by (3.25)
B=B-XX'R [RXX 'R (RE-d);
from this equation, it is quite easy to see that 3 is an affine function of 3; this
will be quite useful. Now define H as
H=plim (XX 'R [RXX 'R ) =Q 'R [RQ'R] " 349

normally, this is a (k x p) matrix with rank p; also note that HR is idempotent.
If 3 is consistent, then

B8-L.B3-H-RB-q)

so if R3 = d, consistency is guaranteed; otherwise, it isn't.

As for efficiency, let me briefly remind you what we mean by “efficiency”:*3
an estimator a is more efficient than a competing estimator b if the difference
V(b)—V (a) is positive. If the two estimators are vectors, then the criterion gener-
alises to the requirement that V(b) — V' (a) is a positive semi-definite matrix (psd
for short — see section 1.A.7, especially figure 1.3).

There are a few matrix algebra results that we are going to need here:**

1. if Ais pd, then A~ is pd too;
2. if Ais psd, then B’ AB is also psd for any matrix B.

Using these, we will prove that the asymptotic variance of B is smaller (in a ma-
trix sense) than that of 3:

AV[B]=U-HR)-AV[B]-(I-R H)
if AV[3] = 02Q"}, then note that
HRQ '=Q7 'R [RQ_IR’]_IRQ_I, (3.45)

which is evidently symmetric, so HRQ™! = Q™' R'H'; furthermore, by using the
fact that HR is idempotent, you get

HRQ '=HRHRQ '=HRQ'R'H'.
As a consequence, the asymptotic variance of 3 can be written as
AV[B] = 0*{Q'-HRQ'-Q'R'H'+HRQ'R'H'}=
0.2 [Q—l _HRQ—I] —
AV[B] -a*HRQ™!

43 A slightly fuller discussion is at the end of section 2.3.2.
44They’re both easy to prove; try!
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the last thing we need do prove is that HRQ™! is also positive semi-definite: for
this, we’ll use the right-hand side of (3.45).

Since Q is pd, then Q7! is pd as well (property 1); therefore, RQ™' R’ is also
pd (property 2), and so is [RQ‘IR’ ]_1 (property 1). Finally, by using property
1 again, we find that Q"'R’ [RQ_IR’]_1 RQ7! is positive semi-definite and the
result follows.



Chapter 4

Diagnostic testing in
Cross-sections

In order to justify the usage of OLS as an estimator, we made some assumptions
in section 3.2. Roughly:

1. the data we observe are realisations of random variables such that it makes
sense to assume that we are observing the same DGP in all the n cases
in our dataset; or, more succinctly, there are no structural breaks in our
dataset.

2. We can trust asymptotic results as a reliable guide to the distribution of
our estimators, as the n observations we have are sufficiently homoge-
neous and sufficiently independent, so that the LLN and the CLT can be
taken as valid;

3. the conditional expectation E [y|x] exists and is linear: E [y|x] =x'3;

4. the conditional variance V|[y|x| exists and does not depend on x at all, so
it’s a positive constant: V[ ylx| = 0.

Assumption number 2 may be inappropriate for two reasons: one is that our
sample size is too small to justify asymptotic results as a reasonable approxima-
tion to the actual properties of our statistics; the other one is that our observa-
tion may not be identical, nor independent. The first case cannot really be tested
formally; in most cases, the data we have are given and economists almost never
enjoy the privileges of experimenters, who can have as many data points as they
want (of course, given sufficient resources). Therefore, we just assume that our
dataset is good enough for our purposes, and hope for the best. Certainly, intel-
lectual honesty dictates that we should be quite wary of drawing conclusions on
the basis of few data points, but there is not much more we can do. As for the
second problem, we will defer the possible lack of independence to chapter 5,
since the issue is most likely to arise with time-series data.

109
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In the next section, we will consider a way of testing assumptions 1 (to some
extent) and 3. If they fail, consistency of B may be at risk. Conversely, assump-
tion number 4 is crucial for our hypothesis testing apparatus, and will need
some extra tools; this will be the object of section 4.2.

4.1 Diagnostics for the conditional mean

Our main tool in proving that 3 <~ 3 was that E[y|x] = X3 (see section 3.2.1).
But this statement may be false. We will not explore the problem in its full gen-
erality: we'll just focus on two possible issues that often arise in practice.

1. the regression function is nonlinear, but can be approximated via a lin-
ear function (see the discussion in section 1.3.2). In the case of a scalar
regressor,

a
Elyilxi] = m(xi) = Bo+ Prxi + Poxi +-- Pgx] = ;)ﬁjx{.
]:

2. Our data comprise observations for which the DGP is partly different. That
is, we have j = 1...m separate sub-populations, for which

Elyilx;] =x;3;

where j is the class that observation i belongs to. For example, we have
data on European and American firms, and the vector 3 is different on the
two sides of the Atlantic (in this case, m = 2).

4.1.1 The RESET test

AsIrepeatedly said earlier, the hypothesis of linearity simply means that E [ y;|x;]
can be written as a linear combination of observable variables. The short phrase
we use is: the model has to be linear in the parameters, not necessarily in the
variables (see Section 1.3.4 for a fuller discussion).

For example, suppose x; is a scalar; it is perfectly possible to accommodate
something like

E[yilxi] = Bixi + Bax5;

(to ease exposition, I am assuming here that the conditional mean has no con-
stant term). Suppose that the expression above holds, but in the model we esti-
mate the quadratic term xlg is dropped. That is, we estimate a model like

Yi=yXi+ Ui
by OLS, so that we would obtain a statistic ¥ defined as
Y XiYi

n 2
i=1%i

,)/} — (x/x)—lx/y —
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Clearly, there is no value of y that can make u; the difference between y; and
E|[yilx;i], so we can’t expect 7 to have all the nice asymptotic properties that OLS
has. In fact, it can be proven that (in standard cases) the statistic ¥ does have a
limit in probability, but the number it tends to is neither $; nor a simple function
of it, so technically there is no way we can use 7 to estimate 3; consistently.

The limit in probability of y is technically to have alook at Cameron and Trivedi (2005),
known as a pseudo-true value, which is far too  section 4.7 or (more technical) Gourieroux and
complex a concept for me to attempt an expo- Monfort (1995). The ultimate bible on this is
sition here. The inquisitive reader may want White (1994).

In the present case, the remedy is elementary: add xlg to the list of your re-
gressors and, voila, you get perfectly good CAN estimates of 1 and 8,.! How-
ever, in a real-life case, where you have a vector of explanatory variables x;,
things are not so simple. In order to have quadratic effects, you should include
all possible cross-products between regressors. For example, a model like

Vi=PBo+Prxi+ Pz +€;
would become

yi=Po+Prxi +ﬁzzg+ﬁ3x§ + Baxi - zi + 527 +€i

-~

linear part quadratic part

and it’s very easy to show that the number of quadratic terms becomes rapidly
unmanageable for a realistic model: if the original model has k regressors the
quadratic one can have up to @ additional terms.?. I don’t think I have to
warn the reader on how much of a headache it would be to incorporate cubic or
quartic terms.

The RESET test (stands for REgression Specification Error Test) is a way to
check whether a given specification needs additional nonlinear effects or not.
The intuition is simple and powerful: instead of augmenting our model with all
the possible order 2 terms (squares and cross-products), we just use the square
of the fitted values, that is instead of xl?, X;j - z; and zl? in the example above, we
would use

2= (Brxi + Pazi)”.
Clearly, a similar strategy could be extended to cubic terms; in the example
above, we would replace the linear combination of x?, xl? ~Zi, X - zf and z? with
the simple scalar term j/?. Then, we just check if the added terms are significant;
since this is a test for addition of variables to a pre-existing model, the most con-
venient way to perform the test is by using the LM statistic (see section 3.6.1).
The procedure is then:

1Of course, you'd have to be careful in computing your marginal effects, but if you have read
section 1.3.4, you know that, don’'t you?
2The reader is invited to work out what happens for various values of k.
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1. Run OLS, save the residuals e; and the fitted values j;;
2. generate squares and cubes jZ, §?;
3. run the auxiliary regression

/ ~2 A3 .
ei =YX +017; +629; + uy;

4. compute LM =n-R*> 2 X%

Example 4.1
Let us compute the RESET test to check the hedonic model used as an exam-
ple in Section 3.4 for possible neglected nonlinearities; the auxiliary regression
yields

Dependent variable: ehat

coefficient std. error t-ratio p-value

const 195.825 81.6622 2.398 0.0166  *x*
lsize 38.9198 17.1107 2.275 0.0230 **
baths -0.205739 0.0861412  -2.388 0.0170 *x
age -0.0900385 0.0393760  -2.287 0.0223 **
pool 3.97729 1.76245 2.2567 0.0241 *x
yh2 -3.42319 1.40727 -2.433 0.0151  *x
yh3 0.103615 0.0399778 2.592 0.0096  **x

Mean dependent var 0.000000 S.D. dependent var  0.245999
Sum squared resid 1562.9225 S.E. of regression  0.242381
R-squared 0.031428  Adjusted R-squared 0.029195

In this case, the LM statistic equals n-R%2=2610x0.031 = 82.0263, which is much
bigger than 5.99 (the 5% critical value for the )(% density); in fact, the p-value is
a puny 1.54243 - 10718, Therefore, we reject the null and we conclude that the
model has a specification problem. \

One final note: the usage of powers to model nonlinearity is widespread
in applied econometrics, but it is by no means the only available choice. If
you're interested, you may want to spend some time googling for “cubic splines”
or “fractional polynomials”, the former being hugely popular among data sci-
entists; these techniques are useful for approximating arbitrary smooth func-
tion via linear combinations of observable variables, and are therefore perfectly
suited for OLS estimation. If you're into even more exotic stuff, try “loess” or
“Nadaraya-Watson”.
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4.1.2 Interactions and the Chow test

The problem of possible differences in the parameters between sub-samples is
best illustrated in a simple setting: we have a scalar regressor x; and two sub-
populations. A dummy variable d; tells us which group observation i belongs
to. Suppose that the DGP could be described as follows:

Subsample 1 yi=PBo+Prxi+¢€;
Subsample 2 Vi =Po+ Paxi+&;

with d; = 0 in subsample 1 and d; = 1 in subsample 2. Note that the model could
be rewritten as

Bo+[B1+ (B2—P1)di| xi+€; = .1
Bo+Prxi+ydi-xi+e;i=Po+P1xi+yzi+€;

Vi

where y = 82 — 1. Again, note that model (4.1) is perfectly fit for OLS estimation,
since the product z; = d; - x; is just another observable variable, which happens
to be equal to x; when d; = 1 and 0 otherwise.

If the effect of x; on y; is in fact homogeneous across the two categories,
then y = 0; therefore, testing for the equality of 8; and S, is easy: all you need to
do is check whether the regressor z; is significant. Explanatory variables of this
kind, that you obtain by multiplying a regressor by a dummy variable, are of-
ten called interactions in the applied economics jargon. If the interaction term
turns out to be significant, then the effect of x on y is different across the two
subcategories, since the interaction term in your model measures how different
the effect is across the two subgroups.

Clearly, you can interact as many regressors as you want: in the example
above, you could also imagine that the intercept could be different across the
two subpopulations as well, so the model would become something like

Yi=Po+P1xi+yod; +v1d; - xi + €5,

because interacting the constant by d; just gives you d;.

It should be noted that interactions can be viewed as including a peculiar
form of nonlinearity, so you should keep this in mind when computing marginal
effects. The marginal effect for x; in equation (4.1), for example, would be

OE [yilx;]
am

thatis, fifd; =0and f+yifd; =1.

When you interact all the parameters by a dummy, then the test for equality
of coefficients across the two subsamples is particularly simple, and amounts to
what is known as the Chow test, since the SSR for the unrestricted model (that is,
the one with all the interactions) is just the sum of the two separate regressions:
if you have two subgroups, you can compute

=pB+vyd;,
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1. the SSR for the OLS model on the whole sample (call it St);

2. the SSR for the OLS model using only the data in subsample 1 (call it S;);
3. the SSR for the OLS model using only the data in subsample 2 (call it S»).
Then, the Chow test is simply

Sr=(S1+5))
S1+ S,

W=n 4.2)
because the SSR for the model with all the interactions is equal to the sum of the
SSRs for the separate submodels. Of course, the appropriate number of degrees
of freedom to use for the p-value would be k, the difference between the number
of parameters in the unrestricted model (k + k) and those in the restricted one
(k). The proof is contained in section 4.A.1, where I also generalise this idea to
the case when you have more than 2 subsamples.

Example 4.2 (bike sharing and the weather)
Figure 4.1 comes from a dataset on bike sharing provided in Fanaee-T and Gama
(2014) and depicts the relationship between the temperature on a given day (in
Celsius, x; in formulae) and the number of bikes rented (in thousands, y; in
formulae).

Figure 4.1: Relationship between temperature and bikes rented
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Once you fit a quadratic model to the data, things appear to be basically OK:
R? is not at all bad, and the estimated regression lines makes perfect sense, with
the negative concavity indicating that most people want to ride a bike when the
weather is warm, but not too hot.
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Table 4.1: Various models for bike rentals

Full sample Sunnydays Cloudy/rainy Full + interactions
const -1.902*** —2.659*** —0.6698 —0.6698
(—4.974) (—6.281) (—0.9444) (=1.009)
X 0.5221*** 0.6563*** 0.3165*** 0.3165***
(12.70) (14.54) (4.005) (4.279)
x? —-0.008956"**  —0.01243***  —0.003717" —-0.003717*
(—8.895) (=11.41) (—1.835) (=1.960)
d —-1.989**
(—2.494)
d-x 0.3398***
(3.876)
d-x? —0.008712***
(—3.940)
n 731 463 268 731
R? 0.4532 0.5222 0.3965 0.5115
SSR 1498.035 779.7312 558.5052 1338.2364

Note: ¢-statistics in parenthesis.

However, we may surmise that what happens on sunny days may be differ-
ent from rainy days. Fortunately, we also have the dummy variable d;, which
equals 1 if the weather on that day was sunny and 0 if it was cloudy or rainy.
Splitting the sample in two gives the estimates in Table 4.1: the first column
gives the estimates on the full sample (the same as in Figure 4.1). Column 2, in-
stead, contains the estimates obtained using only the sunny days and column 3
only the ones for the bad weather days.

As you can see, the estimates for sunny days are numerically different from
the ones for cloudy days. For example, the quadratic effect in column 3 seems to
be much less significant than the one in column 2. However, the real question
is: are they statistically different? Or, in other words: is there a reason to believe
that the relationship between the number of rented bikes and air temperature
depends on the weather?

In order to do so, we can run a Chow test. The mechanical way to do this
would be adding to the base model all the interactions with the “sunny” dummy.
The corresponding estimates are found in column 4 of Table 4.1. Note that the
first three coefficients in column 4 are exactly equal to those in column 3,° and
that the coefficients in column 2 can be obtained by summing the correspon-

3The standard errors are not: this is a side effect of the fact that model 3 and model 4 use
different estimators for o2 and hence the two coefficient covariance matrices are different.
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dent coefficients in column 4 to its “interacted” counterpart. For example, the
coefficient for x; reported in column 2 (0.6563) can be calculated as the two en-
tries in column 4 for x and its interaction with d (0.3165 + 0.3398). Put differently,
the interaction terms contain the differences between the “good weather” and
“bad weather” coefficients. Another point worth noting is that the SSR for col-
umn 4 is exactly the sum for those in columns 2 and 3, as dictated by equation
(4.2).

Of course, the fact that those interaction terms are individually significant
would be enough to conclude that the null hypothesis of homogeneity between
the two regimes has to be rejected. However, the Chow test is easy to compute
using the SSRs:

1498.035 — (779.7312 + 558.5052)
W =731x =87.2888,
779.7312 + 558.5052

where W is a rather astronomical value for a )(% distribution (the correspond-
ing p value is 8.37114e-19), so we have to reject the null: we conclude that the
regression function for sunny days is different from the one for rainy days. ____|

Historically, the Chow test has mostly been used with time-series data, where
each row of the dataset refers to a certain time period and the rows are consec-
utive. For example, data on the economy of a certain country (GDDP, interest rate
etc.) in which each row refers to a quarter, so for example the dataset starts
in 1980q1, the next row is 1980g2, and so on. Regressions on data of this kind
present the user with special issues, that have to be analysed separately, and we
will do so in Chapter 5. However, it can be seen rather easily that the Chow test
lends itself very naturally to testing whether a model remains stable before and
after a certain event: just imagine that in equation (4.1) d; equals 0 up to a cer-
tain point in time and d; = 1 after that. It is for this reason that the Chow test
is sometimes referred to as the structural stability test. Rejection of the Chow
test would in this case point to something we economists often call structural
break or regime change, obvious examples being the introduction of the single
currency in the Euro Area, the COVID pandemic, etc.

In a time series context, assuming that the pu- cedures are available (one is the so-called
tative date for the break is known a priori may CUSUM test), as well as methods for estimat-
be unwarranted. In some case, we may sup- ing the timing of the break. These, however, are
pose that a structural break has occurred at too advanced for this book, since they require a
some point, without knowing exactly when. fairly sophisticated inferential apparatus.

For these situations, some clever test pro-
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4.2 Heteroskedasticity and its consequences

As the reader might recall, the homoskedasticity assumption was a fundamen-
tal ingredient in the derivation of the asymptotic covariance matrix of the OLS
estimator (see 3.2). While the linearity assumption E [ ylx] = x'(3 makes consis-

tency almost automatic (E [ -x] = 0 implies B 2, (3 if some kind of LLN can be
invoked), it’s impossible to derive the parallel result for asymptotic normality

vn(B-p8) & 4 (0,02Q7")

without assuming homoskedasticity, that is E [¢*[x] = 0.

Like all assumptions, homoskedasticity is easier to justify in certain circum-
stances than others. If data come from controlled experiments, €; can often be
interpreted as the disturbance term that contaminated the i-th experiment; it
is normally safe to think that &; should be independent from x;, the conditions
under which the experiment was performed. Therefore, if ¢; Il x;, no moments
of ¢; can depend on x;, and homoskedasticity follows.

This is almost never the case in economics, where virtually all data come
from non-experimental settings. This is particularly true for cross-sectional data,
where we collect data about individuals who did not take part in an experiment
at all. When we estimate a wage equation, our dependent variable y; (typically,
the log wage for individual i) will be matched against a vector of explanatory
variables x; that contain a description of that individual (education, age, work
experience and so on), and ¢; is simply defined as the deviation of y; from its
conditional expectation, so in principle there is no reason to think that it should
enjoy any special properties except E[¢;|x;] = 0, which holds by construction
under the linearity hypothesis.

Therefore, assuming that ¢; has a finite second moment, in general all we
can say is that E [¢|x;] is some function of x;:

E [8?|Xi] =h(x;) = U?, (4.3)
where the function h(:) is of unknown form (but certainly non-linear, since Ulz.
can never be negative). Since the variances 0'? may be different across observa-
tions, we use the term heteroskedasticity.

The reader may recall (see page 76) that this function is known as the “skedas-
tic” function, and in principle one could try to carry out an inferential analysis of
the h(x;) function very much like we do with the regression function. However,
in this section we will keep to the highest level of generality and simply allow
for the possibility that the sequence U%, 0'% .-+,02 contains potentially different
numbers, without committing to a specific formula for h(x;).
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Contrary to what many people think, het- If, however, you estimate the model
eroskedasticity is not a property of the data, but

only of the model we use, since it depends on Vi =Po+P1x;+¢;,
the conditioning set you use. For example, as-
sume that E [y;|x;] is a constant, so the linear
model we would use is

that is a perfectly valid representation of the
data, since the true value of f; is 0, then the
model becomes heteroskedastic, since the vari-
ance of ¢; is a function of the explanatory vari-
ables.

but the variance of ¢; depends on x; (for exam- Having said this, it is very common for applied
ple, U? = x?). If you estimate a model in which  economists to say “the data are heteroskedas-
the only regressor is the constant, the model is  tic”, when you can'’t get rid of heteroskedasticity
homoskedastic. in any meaningful model you may think of.

yi=Po+e;,

To simplify notation, in this section all expectation operators will be implic-
itly understood as conditional on X. In other words, we will treat X as if it were a
matrix of constants. Therefore,

y=XB+e VIel=E[ee'| =2

If our model is heteroskedastic, then X is a diagonal matrix, where elements
along the main diagonal need not be equal to each other, and it would look like
this:*

2
On

The variance of 3 can be simply computed as
V[B] =V[B+ XX 'Xe] = XX XZXXX) ™! (4.4)

and clearly if = = 01 we go back to o?(X’X)"!. But under heteroskedasticity
the V = 6%(X'X) ! matrix may be very far from the actual asymptotic covariance
matrix of B (shown in equation (4.4)), even asymptotically; therefore, our test
statistics are very unlikely to be y?-distributed under Hy, which makes our p-
values all wrong and inference impossible.

In order to see how the situation can be remedied, it’s instructive to consider
a case of limited practical relevance, but that provides a few insights that may
help later: the case when X is known.

4In fact, some of our considerations carry over to more general cases, in which X is a generic
symmetric, positive semi-definite matrix, but let’s not complicate matters.
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4.2.1 IfX were known

If the matrix X were observable, then the 0‘? variances would be known (they are
just the diagonal elements of X), and getting rid of heteroskedasticity would be
easy: define

. _ Vi .1 _Ei
Yi=— Xj=—X; U =—
g; g; (o))}
and the model becomes
. ./
Yi= xiﬁ +u;

but clearly V[u;] = 1 by construction,® so you can happily run OLS on the trans-
formed variables, since y; and x; would both be observable. The resulting esti-
mator

-1

~ n . . .

B= 2 xiyi= XXXy
i=1

n
2 XiX;
i=1

could also be written as

_ln

1
Y —%iYi = X'z Ix)" X'z ly
i=1%Y;

<

A= (4.5)

i .
—X;X;
2 1
i=1 U,’

and is called GLS. It can be proven that GLS is more efficient than OLS (the proof
is in subsection 4.A.2), and that its covariance matrix equals

VBl =Xz x)!

Since GLS is just OLS on suitably transformed variables, all standard properties
of OLS in the homoskedastic case remain valid, so for example you could test
hypotheses by the usual techniques.®

Some readers may find it intriguing to know
that GLS has more or less the geometrical inter-
pretation of OLS that I described in Section 1.4,
once a more general definition of “distance” is
adopted. GLS arises if ordinary Euclidean dis-
tance is generalised to

dxy,xp) = \/(Xl -%2)/ 271 (x) —x0)

which obviously becomes Euclidean distance if
Y = 1. (The fact that OLS equals GLS if X is a
scalar multiple of I is a trivial consequence.)
You can apply all the usual concepts of projec-
tions etc, with the only difference that the space
you're considering is somewhat “distorted”.

Of course, in ordinary circumstances X is unknown, but we could use this

idea to explore alternative avenues:

5Readers would hopefully not feel offended if I reminded them that a straightforward applica-

tion of equation (2.7) yields V[X/b] =V [X] /b2,

8In fact, we wouldn't even have to observe =, as long as we had a matrix which is proportional
to Z by a (possibly unknown) scalar factor. If we had Q = c¢- X, where c is an unknown positive
scalar, we could use Q instead of X in equation (4.5), since the scalar ¢ would cancel out.
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1. In some cases, you may have reason to believe that cr? should be roughly
proportional to some observable variable. For example, if y; is an average
from some sampled values and n; is the size of the i-th sample, it would
be rather natural to conjecture that 0? ~K nl._l, where K is some constant.
Therefore, by dividing all the observables by \/7; you get an equivalent
representation of the model, in which heteroskedasticity is less likely to be
a problem, since in the transformed model all variances should be roughly
equal to K. The resulting estimator is sometimes called WLS (for Weighted
Least Squares), because you “weight” each observation by an observable
quantity w;. In our example, w; = v/1/n;.

2. Theidea above can be generalised: one could try to reformulate the model
in such a way that the heteroskedasticity problem might be attenuated.
For example, it is often the case that, rather than a model like

Yi=ao+a1 X +u;,
a formulation in natural logs, like
InY;=6o+p1InX; +¢;

not only leads to a more natural interpretation of the parameters (since f;
can be read as an elasticity), but also alleviates heteroskedasticity prob-
lems.

3. Even more generally, it can be proven that, if we have 2 2. ¥, we can use
it in the so-called “feasible” version of GLS, or FGLS for short:

6 — (X/i_IX)_IX/i_ly

but this is normally accomplished by setting an explicit functional form
for the conditional variance (the function h(-) in 4.3). It can be done, but
in most cases it’s much more difficult computationally: the resulting esti-
mator cannot be written in closed form as an explicit function of the ob-
servables, but only in implicit form as the minimiser of the least squares
function. This in turn, involves computational techniques that are stan-
dard nowadays, but are far beyond the scope of an introductory treatment
like this one.

In many cases, however, neither strategy is possible, so we may have to do
with OLS; the next section illustrates how you can make good use of OLS even
under heteroskedasticity.

4.2.2 Robust estimation

As the previous section should have made clear, heteroskedasticity doesn't af-
fect consistency of OLS, which therefore remains a perfectly valid estimator (it
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wouldn't be as efficient as GLS, but this is something we can live with). The real
problem is that using the “regular” estimator for V3], that is

V=6"Xx"

for hypothesis testing yields statistics that are not asymptotically y?-distributed,
so all our p-values would be wrong. On the other hand, if we could use the
correct variance for OLS (given in equation (4.4) that I'm reporting here for your
convenience)
V(8] = XX XXX,

or anything asymptotically equivalent, inference would be perfectly standard.
This seems impossible, given that X is unobservable: the middle matrix in the
equation above could be written as

2 !
O'1 ) X1
!
g X2 n
2
X'IX=[x; X ... Xyl . S =Y okxx, (4.6
r : i=1
2 !
Un xn

and itwould seem that in order to compute an asymptotically equivalent expres-
sion we would need the U? variances (or at the very least consistent estimates).

However, although X does in fact contain n distinct unknown elements, the
size of X'ZX is k x k,” a fixed number of elements about which, in principle, we
may hope to say something as n — co. In other words, even if we can’t estimate
consistently the individual variances Uf, we may be able to estimate consistently
the individual elements of the matrix X'XX.

This is the basic idea that was put forward in White (1980): first, observe that

under heteroskedasticity, OLS is still consistent, so

ps -
ei—¢i=(yi—x;B) - (yi —x;8) =x;(3- ) = x;0=0 =

p P
e, —¢€ — e?—»e?:

the difference between the OLS residuals e; and the disturbances &; should be
“small” in large samples, and likewise for their squares.
Next, define a random variable n; as

2 2
ni =&; —E[¢;Ix]
and by a similar argument to that used in Section 3.1, you get that
2_ 2
€7 =07 +1n;

where E[n;Ix;] = 0 by definition. Therefore, in large samples, you can approxi-
mate 0% by e7 —1);.

"In fact, it's a symmetric matrix, so the number of its distinct elements is k(k + 1)/2.
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If you substitute this into (4.6), you get

n n
X3X= Y efxix, - ) mixix.
i=1 i=1
The two elements of the right-hand side are interesting,
because the former is observable, while the latter can be
easily proven8 to be a sum of zero-mean variables, which
should converge in probability to [0] if divided by n, where
I'm using the [0] notation for “a matrix full of zeros”. HAL WHITE

As a consequence, we'd expect that the average of ef —
a? should be a small quantity, so that

(€2 — o2)x;x;, 2 (0.

1

S|=

n
=1

Now rewrite (4.4) as

V[B] = xx! xx)~!

= 2
/
D OXiX;
i=1
Therefore, asymptotically you can estimate V [B | via

V=XX"Y efxx; | XX)! 4.7)

i=1

In fact, many variants have been proposed since White’s 1980 paper, that
seem to have better performance in finite samples, and most packages use one
of the later solutions. The principle they are based on, however, is the original
one.’

An even more radical solution for dealing with heteroskedasticity has be-
come quite popular over the recent past because of the enormous advancement
of our computing capabilities: it’s called the bootstrap. In many respects, the
bootstrap is a very ingenious solution for performing inference with estimators
whose covariance matrix could be unreliable, for various reasons. In a book like
this, giving a full account of the bootstrap is far too ambitious a task, and I'll just
give you a cursory description in section 4.A.4. Nevertheless, the reader ought
to be aware that “bootstrapped standard errors” are becoming more and more
widely used in the applied literature.

81t’s easy, really: E[n;1x;] = 0 means that E [nixl-x’i] =E [E [milx;] XiX’,-] =10].

9A clever variation on the same principle that goes under the name of cluster-robust variance
estimation has become inexplicably popular in recent years. I'm not going to describe it in this
book, but you should be aware that in some circles you will be treated like the village idiot if
you don't “cluster your standard errors”. For more details, read Cameron and Miller (2015) or
MacKinnon et al. (2023).
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Heteroskedasticity-robust standard errors, variant HCO

coefficient std. error t-ratio p-value
const 8.85359 0.0557726 158.7 0.0000 *kok
lsize 1.03696 0.0270429 38.34 1.85e-255 *xx
baths -0.00515142  0.0150608 -0.3420 0.7323
age -0.00238675  0.000300502 -7.943 2.92e-15  *xx
pool 0.106793 0.0239646 4.456 8.69e-06 xxx

Mean dependent var 11.60193 S.D. dependent var 0.438325
Sum squared resid 157.8844 S.E. of regression 0.246187

R-squared 0.685027 Adjusted R-squared 0.684544
F(4, 2605) 929.7044  P-value(F) 0.000000
Log-likelihood -42.58860  Akaike criterion 95.17721
Schwarz criterion 124.5127 Hannan-Quinn 105.8041

Table 4.2: Example: houses prices in the US (with robust standard errors)

Example 4.3
The hedonic model presented in section 3.4 was re-estimated with robust stan-
dard errors, and the results are shown in Table 4.2.

As the reader can check, all the figures in Table 4.2 are exactly the same as
those in Table 3.1, except for those that depend on the covariance matrix of
the parameters: the standard errors (and therefore, the t-statistics and their p
values) and the overall specification test. In this case, I instructed gretl to use
White’s original formula, but this is not the software’s default choice (although
results would change but marginally). \

4.2.3 White’s test

Is it possible to test for homoskedasticity? Yes. In fact, many tests exist, and
they all have in common the fact that, under Hy, 0% = 05 = ... = 0% (that is,
homoskedasticity). In this section, I will focus on one of the mostly widely used,
also due to Hal White.

The idea is both simple and powerful: if €; is homoskedastic, then both es-
timators of the parameters covariance matrix are consistent, so V = %(X'X)™!
and its robust counterpart V should be similar in large samples. Otherwise, the
two matrices should diverge from one another. Therefore, one can indirectly
spot the problem by comparing the two matrices.'?

If we re-write V as

V=X (XX XX =xx"! XX,

L 2
A !
> G°XiX;
i=1

105 generalisation of the same principle is known among econometricians as the Hausman test,
after the great Jerry Hausman. More on this in Section 6.4.
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and compare this expression to (4.7), it’s clear to see that any difference between
the two variance estimators comes from the matrix in the middle, which equals
Y 6%x;x for Vand Y| e?x;x| for V. Therefore, the difference between them

1 ¢ 2 A2 !

=) (e; —69)x;X;]

ni=1

is the quantity of interest. We need a test for the hypothesis that the proba-
bility limit of the expression above is a matrix of zeros. If it were so, then the
two estimators would converge to the same limit, and therefore the two esti-
mators would coincide asymptotically; this, of course, wouldn't happen under
heteroskedasticity. Therefore, the null hypothesis of White’s test is homoskedas-
ticity.

Note that the alternative hypothesis is left unspecified: that is, the alterna-
tive hypothesis is simply the there is at least one variance 012. that differs from
the other ones. This has two implications, one good and one bad. The good
one is that this is a fairly general test and is not specific to any assumption we
may make on the skedastic function k(x;). The bad one is that the test is “non-
constructive”: if the null is rejected the test gives us no indication on what to
do.

It would seem that performing such a test is difficult; fortunately, an asymp-
totically equivalent test is easy to compute by means of an auxiliary regression:

2 _ / .
e =Yotz; ¥+ Ui
the vector z; can be defined, technically, as
z; = vech (x;x}).

The definition of the vech (-) operator is given in Subsection 4.A.3, but in prac-
tice, z; contains the non-duplicated cross-products of x;, that is all combina-
tions of the kind xj; - x,,,; (with [, m = 1... k); some of them could cause collinear-
ity, so they must be dropped from the auxiliary regression (see below for an ex-
ample). Of course, if X; contains a constant term, then z; would contain all the
elements of x;, as the products 1- x;.

Like in all auxiliary regression, we don't really care about its results; running
itis just a computationally convenient way to calculate the test statistic we need,
namely

LM=n-R%.

Under the null of homoskedasticity, this statistic will be asymptotically distributed
as )(‘;‘,, where p is the size of the vector z;.
For example: suppose that x; contains:

1. the constant;

2. two continuous variables x; and w;;
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3. adummy variable d;

The cross products could be written as per the following “multiplication ta-
ble”

X wi di
1 1 Xi Wi di
Xi Xi x? Xi - Wi xi-di
wi w; Xiji-Ww;i u@ uq-di

1

di di xi~di lUi'di di

where I indicated the elements to keep by shading the corresponding cell in grey.
Of course the lower triangle is redundant, because it reproduces the upper one,
but the element in the South-East corner must be dropped too: since d; is a
dummy variable, it only contains zeros and ones, so its square dl? contains the
same entries as d; itself; clearly, inserting both d; and d? into z; would make the
auxiliary regression collinear.

Therefore, the vector z; would contain

2
Xi-wi, xi-di, w;, wi-d;l

! 2
z;=[x;, wi, di x; O

1 )
so the auxiliary regression would read
2 _ . ) d:
i Yo+Yi1Xi +Y2Wi+Ysd; +
2
YaX; +Ys5Xiwi +yeXid; +

e

+

2
Y7wi +yswid; + u;

+

where u; is the error term of the auxiliary regression. In this case, p = 8.1!

Example 4.4
Running White's heteroskedasticity test on the hedonic model for houses (see
section 3.4) yields:

White’s test for heteroskedasticity
OLS, using observations 1-2610
Dependent variable: uhat~2

coefficient std. error t-ratio p-value
const 0.806236 0.160351 5.028 5.30e-07 *x*x*
lsize -0.710993 0.134434 -5.289 1.33e-07 *x%*
baths 0.0936181 0.0514158 1.821 0.0688  *
age 0.00464135 0.00119047 3.899 9.91e-05 *x*x*
pool 0.267089 0.110699 2.413 0.0159  *x
sq_lsize 0.159277 0.0307527 5.179 2.40e-07 *xx
X2_X3 -0.0409056 0.0240448 -1.701 0.0890  *
X2_X4 -0.00163418 0.000527404  -3.099 0.0020  **x

H7¢s easy to prove that, if you have k regressors, then p < @ -1
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X2_X5 -0.164525 0.0498979 -3.297 0.0010  **x
sq_baths 0.00360873 0.00513648 0.7026 0.4824
X3_X4 0.000204179  0.000252621 0.8082 0.4190
X3_X5 0.0653657 0.0290985 2.246 0.0248  **
sq_age -4.93515e-08  4.95338e-06 -0.009963 0.9921
X4_X5 0.00245662 0.000753929 3.258 0.0011 *kok

Unadjusted R-squared = 0.054056

Test statistic: TR™2 = 141.085963,
with p-value = P(Chi-square(13) > 141.085963) = 0.000000

The cross-products are: (a) the original regressors first (because the original
model has a constant) and (b) all the cross-products, except for the square of
pool, which is a dummy variable. The total number of regressors in the auxiliary
modelis 14 including the constant, so the degrees of freedom for our test statistic
isl4—-1=13.

Since the LM statistic is 141.1 (which is a huge number, compared to the
ﬁg distribution), the null hypothesis of homoskedasticity is strongly rejected.
Therefore, the standard errors presented in Table 4.2 are a much better choice
than those in Table 3.1. |

4.2.4 So,in practice...

In practice, when you estimate a model in which heteroskedasticity is a possi-
ble problem (in practice, every time you have cross-sectional data), you should
in principle strive for maximal efficiency, and you can do so by employing the
following algorithm, graphically depicted in Figure 4.2.

1. Start with OLS on a tentative model
2. Perform White’s test; if it doesn’t reject Hy, fine. Otherwise

3. can you reformulate the model so as to achieve homoskedasticity? If you
can, try a different formulation and start back from the top. Otherwise,

4. see if you can use FGLS. If you can, do it; otherwise

5. stick to OLS with robust standard errors.

The things you can do at points 3 and 4 are many: for example, you can try
transforming your dependent variable and/or use weighting; for more details,
go back to section 4.2.1.

Note, however, that this algorithm often ends at point 5; this is so com-
mon that many people, in the applied economics community, don’t even bother
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estimate
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Figure 4.2: Heteroskedasticity flowchart
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checking for heteroskedasticity and start directly from there.'? This is especially
true in some cases, where you know from the outset what the situation is. The
so-called linear probability model (often abbreviated as LPM) is a notable ex-
ample.

The LPM is what you get when your dependent variable is a dummy. So for
example you may want to set up a model where y; is the employment status of an
individual, so y; = 1 if the i-th person has a job and y; = 0 otherwise. Contrary
to what happens in most cases, we know exactly what the distribution of the
dependent variable is: it's a Bernoulli random variable:

Ji {1 w%th probab%l?ty b8 48
0 with probability 1 - 7;

The linearity hypothesis implies that E [ y;|x;] = 7; = x.(3, since the expected
value of a Bernoulli rv is, by construction, the probability of success. This is quite
weird already, because 7 is a probability, and therefore has to be between 0 and
1, whereas if it really was a linear function of the x variables, you could always
imagine to find an observation for which the predicted probability is outside
the [0, 1] interval. Many applied econometricians are OK with that: they con-
cede that the linearity assumption is inappropriate after all, but assume that it
shouldn’t be a problem in practice, and use it as a convenient approximation.'3

But then, you also have that for a Bernoullirv V[ y;| = 7; - (1-7;), and there-
fore

V(yilxi] =n; =x;8-1-x,3))

so the conditional variance cannot be constant unless the conditional mean is
constant too. The vector of parameters 3 enjoys a special nature, being the vec-
tor of parameters that determine both the conditional mean and the conditional
variance. In theory, it is possible to estimate 3 by an elaborate FGLS strategy, but
in these cases practitioners always just use OLS with robust standard errors.

4. A Assorted results

4.A.1 Proof that full interactions are equivalent to split-sample esti-
mation

Suppose you have m categories in which you can split your sample and that all
the parameters in your model are liable to be different between the m subsam-

1211 fact, some researchers show sometimes an inclination to disregard specification issues in
hope that robust inference will magically take care of everything, which is of course not the case.
For an insightful analysis, see King and Roberts (2015).

13Models that overcome this questionable approach have existed for a long time: you’ll find a
thorough description of logit and probit models in any decent econometrics textbook, but for
some bizarre reason they are going out of fashion.
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ples.'* Then, you can write the model as

m

yi=) (dji-x)'Bj+¢€; (4.9)

j=1

where d; = 1 if observation i belongs to sub-population j, and 0 otherwise.
This model can be written in matrix notation as

Y1 X1 0 0 ,31 €1
Y2 0 Xg 0 ,32 €2

=0 .. . . +1 . (4.10)
ym 0 0 e Xm ,Bm Em

where y; is the segment of the y vector containing the observations for the j-th
subsample, and so forth. If you apply the OLS formula to equation (4.10), you
get

-1

@‘1 X} 0 ... 0 X; 0 ... 0
B> 0 X, ... 0 0 X ... 0
. = . . ° . X
Bm 0 0 .. X, 0 0 .. Xp
X, o0 0 Vi
0 X, 0 y2
X . . =
0 0 X, Ym
-1
X’lxl 0 0 X,IY1
0 X’ZXZ 0 Xéyg
0 0 ... X, Xp X, ¥m
(X:1X1)_1X:1Y1
X, X2) "X} y»
X Xm) ™ X} ym

So clearly each B ;i coefficient can be calculated by an OLS regression using the
data for subsample j only. Therefore, the residuals for subsample j are e; =
y; —X;3;. As a consequence,

m
ee=) ejej,

Jj=1

which in words reads: the SSR for model (4.9) is the same as the sum of the SSRs
you get for the m separate submodels. Equation (4.2) is a simple special case

14The classic Chow test occurs when m = 2; in order to study the argument below, I suggest you
to start with the special case m = 2 and generalise later.
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when m = 2; the corresponding generalisation for a generic m is
Sr— Z;n: 1 S j

Z71:1 Sj
and the degrees of freedom for the test equals k- (m —1).

Now note that if you take g to be the “reference” category'®, you can rewrite
equation (4.9) as

W=n- (4.11)

Vi=X;B+ Y (djixX;yj) +€i
j#a
where ~v; = 3 — B4 by a simple generalisation of the argument at the start of
section 4.1.2. As a consequence, you can compare the model above with the
model where all the «; vectors are 0 by comparing the SSR for the restricted
model y; = X3 +¢; (call it e’e) against the sum of the SSRs of the m separate
submodels (call them e’e;, with j = 1...m), and they corresponding Wald-type
statistic would be exactly equation (4.11).

4.A.2 Proof that GLS is more efficient than OLS

In order to prove that V3] =V [3] is psd, I'll use the properties on psd matrices
that I listed in section 3.A.6, plus a few more

1. if A and B are invertible and A — B is psd, then B l1— A lisalso psd;
2. if Ais psd, there always exists a matrix H such that A= HH' ;16

3. all idempotent matrices are psd.

Therefore, to check the relative efficiency of 3 and 3, we'll perform an equiv-
alent checkon A =V [3] oy (8] ! (by property 1 above). To prove that A is psd,
start from its definition:

A=V[B] T -V[3] T =X T IX - XX X' ZX) L XX);
since X is pd, we can write itas = = HH' (by property2), so that Z~! = (H") "' H™!:
A = XHEHYTHX-XXNXHAX) XX =
= (H'X)'[I- HXX HH'X) X' H] (H'X).
Now define W = H'X and re-express A as:
A= HX'[I-WWW) W] (H'X) = (H'X)'Mw(H'X),

since My is idempotent, it is psd (property 3); but then, the same is true of
(H™'X)'Mw(H'X); therefore, the claim follows.

Note that under heteroskedasticity Z is assumed to be diagonal, but the above
proof holds for any non-singular covariance matrix X.

151 will not offend the reader’s intelligence by writing the obvious double inequality 1 < g < m.
16Note: H is not unique, but that doesn’t matter here. By the way, it is also true that if a matrix
H exists such that A= HH', then A is psd, but we won't use this result here.
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4.A.3 The “vec” and “vech” operators

In some cases, it can be useful to reshape the contents of a matrix so as to trans-
form it into a vector. The “vec” operator does just that: it stacks the columns of
a matrix below one another. For example,

a

vec = |?

b d|] |c

d

or more generally

X1
X2

vec([x1 X2 ... x¢])=
Xf

The “vech” operator works in a similar way, but is generally applied to sym-
metric matrices: the difference from “vec” is that the redundant elements are
not considered. For example:

X

s 2)-

Z

More generally, if A is an n x n symmetric matrix, vech (A) is a vector holding the

22+1) elements on and below its diagonal.

4.A.4 The bootstrap

For a reliable account, get hold of Efron and Hastie (2016) (Bradley Efron is
none other than the inventor of the technique), or MacKinnon (2006) for a more
econometrics-oriented approach. Here, I'm just giving you a basic intuition on
what the bootstrap is. Suppose you have an estimator

H=TX,

where X is a data matrix with n rows. Clearly, in order to perform inference,
you need to have an idea of what the distribution of the random variable 0 is.
Asymptotically, the CLT may be of help, but perhaps your sample size is not
large enough to trust the asymptotic approximation given by the CLT; and even
if you're willing to take the asymptotic distribution as an acceptable approxima-
tion, the covariance matrix of § may be unknown, or difficult to compute.

Of course, given your data X you can compute 0 just once, but if you could
observe many different datasets with the same distribution, then you could com-
pute your estimator many times and get an idea of the distribution of your statis-
tic by looking at the different values of § you get each time.



132 CHAPTER 4. DIAGNOSTIC TESTING IN CROSS-SECTIONS

The ideais to use your observed data X to produce, with the aid of computer-
generated pseudo random numbers, H alternative datasets X, with h =1... H,
and compute your estimator for each of them, so you end up with a collection
91,92, .. ,é g. This procedure is what we call bootstrapping,17 and the H realisa-
tions you get of your statistic are meant to give you an idea of the actual, finite-
sample distribution of the statistic itself.

Then, one possible way of computing V () is just to take the sample variance
of the bootstrap estimates:

o - Ly
= —= h
Hp5
SN 1 & . .
Vo = - (0, -0)°
h=1

How do you generate your artificial datasets X;,? There is a myriad of ways
to do this, but when the observations are iid,'® the simplest solution is just to
resample from the rows of X with replacement, as exemplified in Table 4.3; the
example uses the scripting language of gretl, but it should be relatively easy to
translate this into any language that you like better.!® Note that the rows are
picked with replacement, which means that you have near-certainty that some
of the rows of X will be present in your “fake” dataset X; more than once and
some others won't be there at all.

You may find it puzzling, but a simple argument should give you an idea of
why this is done. Suppose you have only 3 data points; x;, x» and x3. If your
data are iid, then each of your observations is equally likely, so you could have
observed, with the same probability, each of the following 27 datasets:

Xi = (x1,%x1,%1)
Xo = (x1,x1,%2)
X3 = (x1,X1,x3)
Xy = (x1,X%,x1)
X5 = (x1,%2,X2)
X = (x1,X2,X3)
X6 = (x3,X3,12)
Xo7 = (x3,x3,X3)

17 According to Efron, “[i]ts name celebrates Baron Munchausen’s success in pulling himself up
by his own bootstraps from the bottom of a lake” (Efron and Hastie, 2016, p. 177), although the
story is reportedly a little different. However, the name was chosen to convey the idea of the
accomplishment of something apparently impossible without external help.

18When data are not independent, things get a bit more involved.

19Warning: the algorithm in Table 4.3 wouldn't be a computationally efficient way to get the job
done. It’s just meant to illustrate the procedure in the most transparent way possible.



4.A. ASSORTED RESULTS 133

ad it’s only by chance that you observed Xg instead of any of the others. The
number 27 comes from the fact that the number of possible datasets is n", so in
this case 3% = 27. Clearly, the estimator §;, can be computed for each of the 27
cases and various descriptive statistics can be computed easily. In realistic cases,
computing 0}, for each possible sample is impossible, since n" is astronomical:
therefore, we just randomly extract H samples and use those.

# allocate space for H estimates (H is the number of bootstrap replications)
matrix thetas = zeros(H, 1)

# generate H simulated datasets and corresponding estimators
loop h=1 .. H

Xh = zeros(n, k) # start with a matrix of zeros
loopi=1..n # for each row of our dataset
k = randgenl (i, 1, n) # pick a random number between 1 and n

# put the k-th row of the true data into the i-th row of
# the simulated data
Xhli, ] = X[k, ]

endloop

# now compute the estimator on the generated data Xh and store it
thetas [h] = estimator (Xh) # this would be the T(X) function
endloop

# compute the variance of the simulated thetas
V = mcov(thetas)

Note: this is not meant to run “out of the box”. The script above assumes that a
few objects, such as the scalars n or H, or the function estimator () have already
been defined.

Table 4.3: Elementary example of bootstrap
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Chapter 5

Dynamic Models

5.1 Dynamic regression

In cross sectional datasets, it is quite natural to assume that the most useful in-
formation set on which to condition the distribution of y; is x;. Why should we
consider, for the conditional distribution of y;, the information available for in-
dividual j as relevant (with i # j)? In some cases, there could be something to
this; perhaps individuals i and j have some unobservable feature in common,
but in most cross-sectional datasets this shouldn’t be something to worry about.

This argument does not apply to time-series datasets. Here, we have two
fundamental differences from cross-sectional datasets:

1. Data have a natural ordering.

2. At any given point in time, we can take as known what happened in the
past (and, possibly, at present time), but the future remains unknown.

This means that, if we want to condition y; to something!, we may proceed
as in chapter 3 and consider E[y;|x;], but this is unlikely to be a good idea, es-
pecially in the light of a feature that most economics time series display, that is,
they are very persistent.

Persistence is a loose term we use for describing the quality, that time se-
ries often possess, whereby contiguous observations look more like each other
than distant ones. In other words, persistence is the observable consequence of
the fact that most phenomena evolve gradually through time.? In fact, you may
think of time series as something with “memory” of the past. The information
embodied in a time series dataset is not only in the numbers it contains, but

1 Attention: for this chapter, I'm going to switch to a slightly different notation convention than
what I used in the previous chapters. Since we're dealing with time series, I will use the symbols ¢
and T instead of i and n, so for example the dependent variable has values y1,..., yz,..., yT-

2In fact, the econometric treatment of time series data has become, since the 1980s, such a
vast and complex subject that we may legitimately treat time-series econometrics as a relatively
autonomous scientific field (with financial econometrics as a notable sub-field).

135
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also in the sequence in which they come, as if the data told you a story. If you
scramble the ordering of the rows in a cross-sectional dataset, the information
remains intact; in a time series dataset, most of it is gone.

For example: figure 5.1 shows log of real GDP and log of private consump-
tion in the Euro area between 1970 and 2017 (y and c, respectively).3 By looking
at the plot, it just makes sense to surmise that ¢;—; may contain valuable infor-
mation about c;, even more than y; does.

14.6 T T T T T

14.4

14.2

14

13.8

13.6

13.4 E
132 | .

13 7 1

128 1 1 1 1 1
1970 1980 1990 2000 2010

Figure 5.1: Consumption and income in the Euro area (in logs)

Therefore:

e the choice of x; as the conditioning set for E[y;|x;] says implicitly that
information on what happened before time  is not of our interest (which
is silly);

* since observations are very unlikely to be independent, there is no ground
for assuming that covariance matrix of y; — E [y;|x;] is diagonal.

In the early days of econometrics, this situation was treated in pretty much
the same way as we did with heteroskedasticity in section 4.2, that is, by consid-
ering a model like

ye=X,B+¢e; (5.1)

and working out solutions to deal with the fact that E [e€’] = £ is not a diagonal
matrix (although the elements on the diagonal might well be constant).

The presence of non-zero entries outside the diagonal was commonly called
the “autocorrelation” or “serial correlation” problem. In order to define this con-
cept,? let us begin by defining what the autocovariance of a sequence of random

3Source: EACBN, Area Wide Model database, vers. 18.
4You may also want to take a look at Section 5.A.2.
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variables is: suppose you have T random variables observed through time
Z19&2yeeeyltyeeey&T .

The covariance between z; and z; is an autocovariance, since it’s the covariance
of a random variable “with itself at a different time”, so to speak. Clearly, if this
quantity is different from 0, the two random variables z; and z; cannot be inde-
pendent. If we standardise this covariance as

Cov|zs, z¢]

Pt AN TZIViz)

we have something called autocorrelation. In most cases, it makes sense to as-
sume that the correlation between z; and z; is only a function of how far they
are from each other; that is, assume that p; ; is just a function of | ¢ — s|; if this is
the case, the quantity Corr [z;_1, z¢] = Corr [z, z¢+1] = ... is called first-order au-
tocorrelation or autocorrelation of order 1. Generalisation is straightforward.

Clearly, if the autocorrelation between €, and € is nonzero for some ¢ and s,
2 cannot be diagonal, so GLS solutions have been devised®, and a clever general-
isation of White’s robust estimator (due to Whitney Newey and Kenneth West) is
also available, but instead of “fixing” OLS, a much better strategy is to rethink our
conditioning strategy. That is, instead of employing clever methods to perform
acceptable inference on equation (5.1), we'd be much better off if we redefined
our object of interest altogether.

What we want to do is using all the possibly relevant available information
as our conditioning set; to this end, define the information set at time ¢ as®

(\\S‘[ = {XI)XZ"HXD_VI,_VZ’”-;yl’—l};

(note that §; includes x;). For example, in order to build a model where con-
sumption is the dependent variable and the only explanatory variable is income
(a dynamic consumption function, if you will), it may make sense to condition
consumption on the whole information set ;.

Therefore, the conditioning operation will be done by using all the variables
relevant for the distribution of y; that can be assumed to be known at that time.
Clearly, that includes the current value of x;, but also the past of both y; and x;.
Possibly, even future variables that are known with certainty at time ¢ ; variables
such as these are normally said to be deterministic. Apart from the constant
term (x; = 1), popular examples include time trends (eg x; = ), seasonal dummy

5For the readers who are into the history of econometrics: the so-called Cochrane-Orcutt es-
timator and its refinements are totally forgotten today, but they were a big thing back in the 1960s
and 1970s.

5To be rigorous, we should define the information set by using a technical tool called a o-
field. This ensures that S contains all possible functions of the elements listed above (Ay;_1, for
example). But in an introductory treatment such as this, I'll just use the reader’s intuition and use
Q¢ as “all the things we knows at time ¢”.
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variables (eg x; = 1 if ¢ is the month of May), or more exotic choices, such as the
number of days in a given month, that is known in advance. Note that (this will
be very important) 3; is an element of a sequence where 3;_1 € S € S¢4; in
other words, the sequence of information sets is increasing.7

Now consider the conditional expectation E [ y;|S; |; even under the linearity
assumption, this object may have two potentially troublesome characteristics:

1. since the sequence 3 is increasing, E[y|S;] may contain information
that goes indefinitely back into the past, and

2. E[y:IS¢] could be different for each .

If none of the above is true, things are much simplified; under the additional
assumption of linearity of the conditional mean,

14 q
E[yelSe] =) aiye-i+ ) Bixi—i,
i=1 i=0

where p and q are finite numbers. Although in principle S, contains all the past,
no matter how remote, only the most recent elements of S, actually enter the
conditional expectation. A slightly more technical way of expressing the same
concept is: we are assuming that there is a subset of S (call it %;), that contains
only recent information, such that conditioning on 3, or &; makes no differ-
ence:

E(yS:] =E[y:| %], (5.2)

where §; > &;. In practice, &; is the relevant information at time t.

The linearity assumption makes the regression function of y; on S; a differ-
ence equation, that is, a relationship in which an element of a sequence y; is
determined by a linear combination of its own past and the present and past of
another sequence x;; if we proceed in a similar way as in chapter 3, and define
et = y: — E[y¢IS¢], we can write the so-called ADL model:

p q
Vi= ) @iyi-i+ ) PBixei+es (5.3)
i=1 i=0

The ADL acronym is for Autoregressive Distributed Lags (some people prefer the
ARDL acronym): in many cases, we call the above an ADL(p, g) model, to make
it explicit that the conditional mean contains p lags of the dependent variable

and g lags of the explanatory variables.
Of course, it would be very nice if we could estimate the above parameters
via OLS. Clearly, the first few observations would have to be discarded, but once

70r, if you will, we are assuming that we always learn and never forget.
8Note: this definition works for our present purposes, but in some cases you may want to con-
sider non-linear relationships, or cases which involve future values.
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this is done, we may construct our y and X matrices as®

431
(4%]
/ / ’ .
yp+1 yp J/p—l e N Xp_'_1 Xp Xp_q_'_1 : Ep+l
/ ’ ’
Yp+2 Yp+1 Vp e 2 Xp+2 Xp+1 Xp—q+2 ap Ep+2
= ! ! / +
Vp+3 Yp+2  Yp+1 - V3 Xpz Xpn o o X, 03| B Ep+3
: : 51 :
Bq]

y = Wry+e
where w; is defined as

/ !/ !/ !/
wt = [_Vt—b yt—Z)«”)yt—pyxtyxt_1)~-~)xt—q])

and
'7, = [al;aZ)u"apnB(,)’/B;wwnB:]]‘

Given this setup, clearly the OLS statistic can be readily computed with the
usual formula (W'W)~'W'y, but given the nature of the conditioning, one may
wonder if OLS is a CAN estimator of the @ and 3 parameters. As we will see in
section 5.3, the answer is positive, under certain conditions.

Before we focus on the possible inferential difficulties, however, it is instruc-
tive to consider another problem. Even if the parameters of the conditional ex-
pectation E [ Vel t] were known and didn’t have to be estimated, how do we in-
terpret them?

5.2 Manipulating difference equations

Given the difference equation

p q
Y= Z XiYe—i+ Z B;xt—i
i=1 i=0

we may ask ourselves: what is the effect of x on y after a given period? That is:
how does x; affect y;,,? Since the coefficients @; and 3; do not depend on f,
we may rephrase the question as: what is the impact on y; of something that
happened & periods ago, that is x;,_;? Clearly, if & = 0 we have a quantity that
is straightforward to interpret, that is the instantaneous impact of x; in y;, but
much is to be gained by considering magnitudes like

d — ayt zayl""h_
h axt_h aXt ’

(5.4)

91 assumed for simplicity that p = g; of course, potentially collinear deterministic terms would
have to be dropped.
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the dj, parameters take the name of dynamic multipliers, or just multipliers for
short. In order to find a practical and general way to compute them, we will need
a few extra tools. Read on.

5.2.1 The lagoperator

Time series are nothing but sequences of numbers, with a natural ordering given
by time. In many cases, we may want to manipulate sequences by means of
appropriate operators. The lag operator is generally denoted by the letter L by
econometricians (statisticians prefer B — savages!); it’s an operator that turns
a sequence x; into another sequence, that contains the same objects as x;, but
shifted back by one period.'? If you apply L to a constant, the result is the same
constant. In formulae,

Lx;=xt-1

Repeated application of the L operator n times is indicated by L”, and therefore
L"x; = x¢—5,. By convention, I19=1.The L operator is linear, which means that,
if a and b are constant, then L(ax;+ b) = aLx;+ b = ax;_; + b. These simple
properties have the nice consequence that, in many cases, we can manipulate
the L operator algebraically as if it was a number. This trick is especially useful
when dealing with polynomialsin L. Allow me to exemplify:

Example 5.1
Call b; the money you have at time t, and s; the difference between the money
you earn and the money you spend between t —1 and t (in other words, your
savings). Of course,

b[ = bl’—l + Sg¢.

Now the same thing with the lag operator::
bt:th‘FSt—’ bt—th: (].—L)bt:Abt: St

The A operator, which I suppose not unknown to the reader, is defined as (1- L),
that is a polynomial in L of degree 1. The above expression simply says that the
variation in the money you have is your net saving.

Example 5.2
Call g; the GDP for the Kingdom of Verduria in quarter t. Obviously, yearly GDP
is given by

Ye=qirtqi-1tgr—2+qr-3= (1+L+L2+L3)qt

1011 certain cases, you might want to use the lead operator, usually notated as F, which is de-
fined as the inverse to the lag operator (Fx; = x;41, or F = L™1). 'm not using it in this book, but
its usage is very common in economic models with rational expectations.



5.2. MANIPULATING DIFFERENCE EQUATIONS 141

Since (1+ x+ x% + x3)(1 - x) = (1 - x*), if you “multiply” the equation above'! by
(1-1L) you get

Ayr=0-LYG: =G = qi-s;
The variation in yearly GDP between quarters is just the difference between the
quarterly figures a year apart from each other. |

A polynomial P(x) may be evaluated at any value, but two cases are of special
interest. Obviously, if you evaluate P(x) for x = 0 you get the “constant” coeffi-
cient of the polynomial, since P(0) = pg+ p1-0+ p2-0+--- = py; instead, if you
evaluate P(1) you get the sum of the polynomial coefficients:

n ) n
P =} pjl'=} pj.
j=0 j=0

This turns out to be quite handy when you apply a lag polynomial to a constant,
since
n n
P(p=) pjp=p) pj=POp
j=0 Jj=0
There are two more routine results that come in very handy: the first one has
to do with inverting polynomials of order 1. It can be proven that, if |a| < 1,

O . .
A-al) '=+al+a®L*+---)=) a'L} (5.5)
i=0

the other one is that a polynomial P(x) is invertible if and only if all its roots are
greater than one in absolute value:

1
——  existsiff P(x)=0=|x|>1. (5.6)
P(x)

The proofs are in subsection 5.A.1.

Example 5.3 (The Keynesian multiplier)
Let me illustrate a possible use of polynomial manipulation by a very old-school
macro example: the simplest possible version of the Keynesian multiplier idea.
Suppose that

Yt = Ct+IZ; (57)
C: = aYey; (5.8)

where Y; is GDE C; is aggregate consumption and I, is investment; 0 < @ < 1 is
the marginal propensity to consume.

o be precise, we should say: ‘if you apply the (1 — L) operator to the expression above'.
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By combining the two equations,
Yt = Oth_l + I[ —(1- (XL)Y[ = Il"

therefore, by applying the first degree polynomial A(L) = (1 — aL) to the Y; se-
quence (national income), you get the time series for investments, simply be-
causeI; =Y—Ci=Y;—aY; ;.

Ifyou now invert the A(L) = (1 — aL) operator,

w .
Yi=(+al+a’L*+--); =) a'l,_;:
i=0

aggregate demand at time t can be seen as a weighted sum of past and present
investment. Suppose that investment goes from 0 to 1 at time 0. This brings
about a unit increase in GDP via equation (5.7); but then, at time 1 consumption
goes up by a, by force of equation (5.8), so at time 2 it increases by a? and so on.
Since 0 < a < 1, the effect dies out eventually.

If investments were constant through time, then I, = I; therefore, A(L)Y; = I

becomes _

1 - 1 . 1
= I = I =
A(L) A1) l-a

Y;

where the second equality comes from the fact that I is constant. The rightmost
expression is nothing but the familiar “Keynesian multiplier” formula. |

A word of caution: in many cases, it’s OK to manipulate L algebraically as if
it was a number, but sometimes it’s not: the reader should always keep in mind
that the expression Lx; does not mean ‘L times x;, but ‘L applied to x;. The
following example should, hopefully, convince you.

Example 5.4
Given two sequence x; and y;, define the sequence z; as z; = X; - y;. Obviously,
z¢—1 = Xt—1Y:—1, however, one may be tempted to argue that

2 2
Zt-1 =X 1Yr-1=Lxe Ly = L°xtyr = L2t = 24—

which is obviously absurd.

5.2.2 Dynamic multipliers

When considering an ADL model, the problem that we are ultimately after is:
how do we interpret its parameters? Let’s start from a difference equation like
the following:

ALy = B(L)x;
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where the degrees of the A(L) and B(L) polynomials are p and g, respectively.
If the polynomial A(L) is invertible, the difference equation is said to be stable.
In this case, we may define D(L) = A(L)"'B(L) = B(L)/ A(L); as a rule, D(L) is of
infinite order (although not necessarily so):

o0
vi=DL)x; = Z diXi—;.
i=0

This is all we need for dealing with our problem, if you consider that the dynamic
multipliers as defined in equation (5.4),

di = oyt :aJ’Hi
! axt,i axt ’

are simply the coefficients of the D(L) polynomial.!? It is possible to calculate
them analytically by inverting the A(L) polynomial, but doing so is neither in-
structive nor enjoyable. On the contrary, the same effect can be achieved by
using a nice recursive algorithm.

The impact multiplier dj is easy to find, since dy = D(0) = B(0)/ A(0), which
simply equals By (since A(0) = 1). All other multipliers can be found by means of
(5.4), which can be used to express d; in terms of d;_1,d;_» etc. Once you have
dp, the rest of the sequence follows.

Let me show you a practical example. For an ADL(1,1) model,

Ye=ayi1+ Poxs+ P1xe1, (5.9)

use the definition of a multiplier as a derivative and write

6_)/; 0
dy = ——=— 1+ + 1) =
o ax,  oxs (a@yi—1 + Boxi + Brxi—1) = Po
0y; 0yr-1
d = 1+ + 1) = + B1 =ady+ P,
1 ox  oxi (@yi—1+ Boxi+ Prxi-1) adxt_l p1=ady+

where we used the property

v _oni _
axt_l axt

do

in such a way that d; is expressed as a function of dy; similarly,

0yt 0 0yr-1
d, = = 1+ + )=
ol . (ayi-1+ Boxi + Prxi-1) Oéaxt_z

= (Xdl

and so on, recursively.

12 A5 we will see in section 5.3.1, invertibility of A(L) is not only required for the calculation of
the multipliers, but also for the CAN property of OLS.
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A nice and cool way to express the above is by saying that the multipliers can
be calculated through a difference equation with the same polynomials as the
original one; the sequence of multipliers obeys the relationship

A(L)d; = B(L)u;, (5.10)

where u; is a sequence that contains 1 for 1, and 0 everywhere else. This makes
it easy to calculate the multipliers numerically, given the polynomial coefficients,
via appropriate software.

Example 5.5 (Multiplier calculation)
Take for example the following difference equation:

Ve = O.Zyt_l +0.4x;+0.3x;5.

In this case, A(L) =1-0.2L and B(L) = 0.4+ 0.3L2. The inverse of A(L) is
(&) . .
A(L) ™' =1+0.2L+0.04L% +0.008L% +---= " 0.2'L;
i=0

therefore,

B(L) ) , .
_A(L) =(0.4+0.3L°) x(1+0.2L+0.04L" +0.008L" +---).

The two polynomials can be multiplied directly, as in

B(L) 2 3
—— = 04x(1+0.2L+0.04L2+0.008L% +---) +
A(L)
+0.3L% x (1+0.2L+0.04L + 0.008L> +---) =
= 0.4+0.08L+0.016L% +0.0032L3 +--- +
+0.3L% +0.06L3 +0.012L* +0.0024L° - -- =

= 0.4+0.08L+0.316L%+0.0632L% +---
but it’s really boring. The recursive approach is much quicker:

dy = B(0)/A(0)=0.4/1=0.4

d, = 0.2-dy=0.08
d, = 0.2-d;+0.03=0.016+0.3=0.316
ds = 0.2-dy=0.0632

and so on.
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In certain cases, the multipliers d; may all have

the same sign. If so, the sequence r; = %
has all the characteristics of a discrete probabil-
ity distribution: all the 7; coefficients are non-
negative and sum to 1.

Therefore, it makes sense to compute quanti-
ties such as the mean lag or the median lag.

For example, the mean lag can be defined as

m= Z?io i-m;, and can be given a nice inter-
pretation as the “average” time span it takes x;
to affect y;.

Note, however, that in general the sequence d;
may well include positive and negative num-
bers, and the long-run multiplier ¢ could even
be 0; in those cases, the notion itself of mean
lag is meaningless.

5.2.3 Interim and long-run multipliers

If you go back to the definition of the multipliers, (5.4), thatis d; = aax_{i,- = ag’ ;",
it is quite natural to interpret the magnitude dj, as the effect of something that
happened & periods ago on what we see today. The implicit idea in this defini-
tion is that the source of the dynamic behaviour in our system is a one-off event.

In many cases, instead, we could be interested in computing the effect on
y: of a permanent change in x;. Clearly, at time 0 the effect will be equal to the
impact multiplier dy, but after one period the instantaneous effect will overlap
with the lagged one, so the effect will be equal to dy + d;. By induction, we may
define a new sequence of multipliers as

i
Cj=d0+d1+"'+dj=;)di.
i=

(5.11)

These are called interim multipliers and measure the effect on y; of a perma-
nent change in x, that took place j periods ago. In order to see what happens in
the long run after a permanent change, we may also want to consider the long-
run multiplier ¢ = lim;_. ¢;. Calculating c is much easier than what may seem,
since

cj= ;)d,- =D(1);
1=

thatis: ¢ is the number you get by evaluating the polynomial D(z) in z = 1; since

— ; — — B
D(2) = B(z)/ A(2), ¢ can be easily computed as ¢ = D(1) = Z3-

Example 5.6 (interim multipliers)
Let’s go back to the difference equation we used in example 5.5:

Y= 0.2_}/;;_1 +0.4x;+0.3x7-9.

Interim multipliers are easily computed:

dp=04
d()+d1=60+d1=0.48
d()+d1+d2=(,‘1+d2=0.796

Co

C1

C2
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and so on. The limit of this sequence (the long-run multiplier) is also easy to

compute:

B(1)
c=D(1)=——=0.7/0.8=0.875
A1)

Et voila.

The long-run multiplier ¢ is very important, because it describes the rela-
tionship between y; and x; in steady state. The concept of steady state is of
paramount importance in econometrics, because is the closest you get to what
you refer to as “equilibrium” in theoretical economics: by “equilibrium”, we usu-
ally mean that there is no internal force that pushes the state of the system away
from where it currently is. Therefore, if a system is in equilibrium, all the vari-
ables that describe it will remain stable through time until an external shock
occurs.

When the dynamic behaviour of a system is described by a difference equa-
tion, the concept of steady state can be explained as follows: suppose we fix x;
at a certain value that stays the same forever. Is there a limit value for y,? It
can be shown that the limit exists as long as the difference equation is stable; if
this condition is met, then the system admits a steady state. The steady state is
a long-run equilibrium: in steady state, neither y; nor x; change until external
shocks come from outside the system to perturb it.

Mathematically, if the system is in steady state, both variables are invariant
through time, so in steady state y; = Y and x; = X (note that Y and X bear no
subscript); as a consequence,

B(1)

AD)y:=BL)x; > ALY =B()X=>A1)Y=B1)X=>Y= mX =cX,
where we used the property that, if X is a constant sequence, L"X = X. There-
fore, the system is not in equilibrium any time y; # cx;. As we will see, this trivial
observation will become important later.

5.3 Inference on OLS with time-series data

At this point, we know how to interpret the coefficients of a difference equation.
An ADL model (equation (5.3), reproduced here for the reader’s convenience in
lag-polynomial notation)

A(L)y; = B(L)x; +¢&; (5.12)

is basically a difference equation plus an error term; therefore, the coefficients
of the two polynomials A(L) and B(L) are unobservable, but perhaps we could
find a CAN estimator.

We showed in section 5.1 how OLS can be applied to a dynamic model by
defining the X matrix and the y vector appropriately. The question now is: is
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OLS a CAN estimator of the ADL parameters? The answer is positive, if certain
conditions are satisfied.

5.3.1 Martingale differences

Define w; like at the end of section 5.1, as
/o ! !
w[‘ - [yl’—lr yl’—Z)---)yl’—prxpxt_ly---)xt_q];
so that we can write our dynamic model as
Vi=Wy+e

where of course v/ = a1, ag,...,ap,ﬁé,ﬁi,...,ﬁg].
The first important requirement is that the second moments of w; exist and
that

T
- P
! Zth’t —Q
=1

where Q is invertible. The conditions under which we can expect this to happen
are quite tricky to lay down formally. Here, I'll just say that in order for every-
thing to work as expected, it is sufficient that our observed data are realisations
of covariance-stationary and ergodic stochastic processes.'® For a summary de-
scription of what this means, I have written subsection 5.A.2 at the end of this
chapter. If you can't be bothered, just take this to mean that all moments up to
the fourth order of all the observables exist and are stable through time.

On top of this, a fundamental ingredient for OLS being a CAN estimator of
the parameters in equation (5.12) is that £; be a martingale difference sequence
(or MDS for short). 1

Roughly speaking, a MDS is a sequence of random variables whose expected
value (conditional to a certain information set) meets certain requirements:

* a martingale with respect to $;_ is a sequence of random variables X;
such that E [ X{|S—1] = X;—1;

* If X;is a martingale, then AX; is a MDS: E[AX;|S;-1] =0

Of course, if we could condition y; on S, then &, would be a MDS by con-
struction:

EleS¢] = E[J’t—E[J/HC\\Yt] |(\\9t] ZE[J/H%L‘] -E [yt|(\\9t] =0

13'm being very vague and unspecific here: if you want an authoritative source on the asymp-
totics for dynamic models, you'll want to check chapters 6 and 7 in Davidson (2000).

14MDSs arise quite naturally in inter-temporal optimisation problems, so their usage in eco-
nomic and finance models with uncertainty is very common. In this contexts, an MDS is, so to
speak, something that cannot be predicted in any way from the past. For a thorough discussion,
see Hansen and Sargent (2013), chapter 2.
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(this is essentially the same argument we used in section 3.1). But of course we
can't use J; in practice; however, we're assuming (see equation 5.2) that there
exists a subset &; c S, such that E [y|S;| = E[y:|%;], so & (which is usable,
because it’s finite) is just as good. So if you condition y; on %;, the quantity
€t =yt —E[y:F] is aMDS and all is well.

However, what happens if you use a conditioning set ¢; that is “too small”?
That is, that doesn’t contain %,? In that case, the difference u; = y, —E[y/|%;] is
not a MDS with respect to S;: if E[y¢|%;] # E[y:|F;], then

EluSd =E[y: —E[y:l%:]1S:) = B[yl Ft] —E[y:1%:] # 0.

On the contrary, it is easy to prove that in the opposite case, when you condition
on a subset of S that is larger than &;, no problems arise.

This remark is extremely important in practice because the order of the poly-
nomials A(L) and B(L) (p and g, respectively) are not known: what happens if
we get them wrong? Well, if they are larger than the “true” ones, then our con-
ditioning set contains %, and all is well. But if they’re smaller, the disturbance
term of our model is not a MDS, and all inference collapses. For example, if
p =2 and g = 3, then &, contains y;_1, yt—2, Xs, X¢—1, X;—2 and x;_3. Any set of
regressors that doesn't include at least these renders inference invalid.

Therefore, €, is a MDS, if we pick p and g large enough. The obvious impli-
cation is that E [e//w;] = 0 (since w; is contained in ;7). If we also add a ho-
moskedasticity assumption E [¢2|w;] = 02, then we have a set of results that par-
allel completely those in section 3.2. To put it simply, everything works exactly
the same way as in cross-sectional models: the martingale property ensures that
E[w;-&/S¢] =0, and therefore 4 2, ~; additionally,

VTH -7 -% #(0,6°Q7Y).

In practice, the whole testing apparatus we set up for cross sectional datasets
remains valid; the ¢ statistic, the W statistic, everything. Nice, isn’t it? In addi-
tion, since the dynamic multipliers are continuous and differentiable functions
of the ADL parameters -, we can simply compute the multipliers from the esti-
mated parameters 4 and get automatically CAN estimators of the multipliers.'®

The homoskedasticity assumption is not nor- model, which I will not consider here, but are
mally a problem, except for financial data at extremely important in the field of financial
high frequencies (eg daily); for those cases, you econometrics. In case we want to stick with
get a separate class of models, the most no- OLS, robust estimation is perfectly viable.
table example of which is the so-called GARCH

I5Unfortunately, the function linking multipliers and parameters is nonlinear, so you need the
delta method to compute their asymptotic variance. See section 2.3.2.
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5.3.2 Testing for autocorrelation and the general-to-specific approach

Basically, we need a test for deciding, on the basis of the OLS residuals, whether
&, is a MDS or not. Because if it were not, the OLS estimator would not be con-
sistent for the ADL parameters, let alone have the asymptotic distribution we
require for carrying out tests. As I argued in the previous section, £, cannot be a
MDS if we estimate a model in which the orders p and g that we use for the two
polynomials A(L) and B(L) are too small.

Most tests hinge on the fact that a MDS cannot be autocorrelated:!® for the
sake of brevity, I don’t prove this here, but the issue is discussed in section 5.A.3
if you're interested. Therefore, in practice, the most important diagnostic check
on a dynamic regression model is checking for autocorrelation: if we reject the
null of no autocorrelation, then £; cannot be a MDS.

All econometric software pays tribute to tradition by reporting a statistic in-
vented by James Durbin and Geoffrey Watson in 1950, called DW statistic in their
honour. Its support is, by construction, the interval between 0 and 4, and ide-
ally it should be close to 2. It is practically useless, because it only checks for
autocorrelation of order 1, and there are several cases in which it doesn’'t work
(notably, when lags of the dependent variable are among the regressors); there-
fore, nobody uses it anymore, although all software packages routinely print it
out as a homage to tradition.

The Godfrey test (also known as the Breusch-Godfrey test, or the LM test for
autocorrelation) is much better:

ALy =B(L)X;+y1€-1+Y2er2+ - +typer_pt&;

where e; is the ¢-th OLS residual and # is known as the order of the test. There
is no precise rule for choosing /; the most important aspect to consider is “how
long is the period we can reasonably expect to consider long enough for dynamic
effects to show up?”. When dealing with macro time series, a common choice is
2 years. That is, it is tacitly assumed that nothing can happen now, provoke no
effects for two years, and then suddenly do something.!” Therefore, you would
use h =2 for yearly data, h = 8 for quarterly data, and so on. But clearly, this is a
very subjective criterion, so take it with a pinch of salt and be ready to adjust it
to your particular dataset.

This test, being a variable addition test, is typically implemented as an LM
test (see section 3.6.1) and is asymptotically distributed (under Hy) as xi In
practice, you carry out an auxiliary regression of the OLS residuals e; against w;
and & lags of e;; you multiply R? by T and you're done.

The Godfrey test is the cornerstone of the so-called general-to-specific esti-
mation strategy: since the polynomial orders p and g are not known in practice,
one has to make a guess. There are three possible situations:

161f 1 were insufferably pedantic, I would say “a MDS with finite second moments”,
17« Mi ha detto mio cuggino che sa un colpo segreto. ..”, EELST.
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1. your guess is exactly right; you're a lucky bastard.

2. Your guess is wrong because you overestimated p and/or ¢g: in this case,
your model contains the “true” one and the disturbance term will still be a
MDS; hence, the probability of the Godfrey test rejecting the null hypoth-
esis is 5%. The only slight inconvenience is that you're using too many pa-
rameters. This is not a problem, however, because asymptotic inference is
valid and you can trim your model down by using ordinary specification
tests (see section 3.3).

3. Your guess is wrong because you underestimated one of p and g: your
model does not contain the “true” one and the disturbance term will not
be a MDS. In this case, the Godfrey test should reject the null.

So the idea of the general-to-specific approach is: start from a large model,
possibly ridiculously oversized. Then you can start refining it by ordinary hy-
pothesis tests, running diagnostics'® at each step to make sure your reduction
was not too aggressive.

5.4 An example, perhaps?

If we were to ignore the points I raised at the beginning of this chapter, we could
simply use the data depicted in Figure 5.1 to estimate the parameters of what an
economist in the 1970s would have called a “consumption function” and regress
consumption at time ¢ on DGP at time ¢. If we did, we'd obtain a “static model”

ct=Po+Pry:e+e€r

whose output is in Table 5.1.

Superficially, it would look as if the static model is a rather good one: R?
looks great, but this is common with trending data (as macro time series typi-
cally are). The important thing is that p = 0.944 and the Godfrey test rejects the
null hypothesis with a vengeance. In an equation like the one above, there is no
way the disturbance term ¢; can be thought of as an MDS. Therefore, not only
inference is invalid. There’s much more than can be said about income affects
consumption through time.

If instead, we enlarge the information set to 3, the model we come up with
is an ADL(1,3) model. In practice:

ct=k+ac1+Poyi+P1ye-1+P2yi-2+P3yi-3;

table 5.2 contains the OLS estimates, that is @ = 0.956, ,30 =0.609, and so on.

Note that in this case the Godfrey test cannot reject the null, so we may be
confident that inference is correct. The next thing we want to do now is inter-
preting the output from an economic point of view.

18The most important test to run at this stage is of course the Godfrey test, but other diagnostics,
such as the RESET test for example, won't hurt.
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static: OLS, using observations 1970:1-2016:4 (T = 188)

Dependent variable: c

ent st

coeffici
const -0.1284
y 0.9680

Mean dependent var
Sum squared resid
R-squared

F(1, 186)
Log-likelihood
Schwarz criterion -
rho

64
85

0.
0.

13.52892
0.039639
0.997176
65677.98
528.8912
1047.309
0.944271

Breusch-Godfrey test for autocorrelation up to order 8:

TR"2 = 167.119254, with p-value =

Table 5.1: Static regression example

adl: OLS, using observations 1970:4-2016:4 (T = 185)

Dependent variable: c

coefficient st

const 0.0641617 0
c_1 0.956403 0

y 0.609142 0
y_1 -0.746166 0
y_2 0.298760 0
y_3 -0.124319 0
Mean dependent var  13.53849
Sum squared resid 0.002388
R-squared 0.999816
F(5, 179) 194416.1
Log-likelihood 778.8122
Schwarz criterion -1526.302
rho 0.026086

d. error t-ratio p-value
0533021 -2.410 0.0169 *
00377749  256.3 4.98e-239 *xxx*
S.D. dependent var 0.273974
S.E. of regression 0.014598
Adjusted R-squared 0.997161
P-value(F) 5.0e-239
Akaike criterion -10563.782
Hannan-Quinn -1051.160
Durbin-Watson 0.097794
5.18e-32
d. error t-ratio p-value
.0149459 4.293 2.88e-05 *xx
.0197744 48.37 1.05e-104 *xx
.0502371 12.13 4.36e-25  xxk
.0842171 -8.860 7.82e-16  *xxx
.0840154 3.556 0.0005 *kok
.0499439 -2.489 0.0137 *ok
S.D. dependent var 0.265530
S.E. of regression 0.003653
Adjusted R-squared 0.999811
P-value(F) 0.000000
Akaike criterion -1545.624
Hannan-Quinn -1537.794
Durbin’s h 0.368384

Breusch-Godfrey test for autocorrelation up to order 8:

TR"2 =

14.103154, with p-value =

0.0791

Table 5.2: Dynamic regression example
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Example 5.7 (Multipliers for the Euro consumption function)
The calculation of the sequence of multipliers for the model in Table 5.2 can be
undertaken by using equation (5.10); the estimates of two polynomials we need
are

A(L) = 1-0.956403L
B(I) = 0.609142—0.746166L+0.298760L% —0.1243191°,

so in this case we have
d; =0.956403d;_1 +0.6091421; —0.7461661;_1 +0.2987601;_» —0.124319u;_3,
where uy =1 and u; =0 for i # 0. Therefore, dy equals
dp =0.609142
while for d, and d, we have

dy
d

0.956403 - dy — 0.746166 = —0.16358
0.956403 - d; +0.298760 = 0.14231,

and so on. With a little effort (and appropriate software), you get the following
results:

d,’ Ci
0.60914 0.60914
-0.16358 0.44556
0.14231 0.58787
0.011787 0.59966
0.011273 0.61093
0.010782 0.62171
0.010312 0.63202
7 0.0098620 0.64189
0.0094320 0.65132

SR WN ~ O~

(o4}

Where I also added a column for the interim (cumulated) multipliers. Moreover,
you have that A(1) =1-0.956403 = 0.043597, B(1) = 0.037416, and therefore the
long-run multiplier equals ¢ = 0.037416/0.043597 = 0.85823. |

5.5 The ECM representation

As I argued in section 5.2.2, the best way to interpret the parameters of an ADL
model is by computing the dynamic multipliers (and possibly cumulating them).
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The multipliers that are presumably of most interest from an economic view-
point are (a) the impact multiplier dy (because it measures what happens in-
stantaneously) and (b) the long run-multiplier (because it measures what hap-
pens when all adjustment has taken place).

Both are easy to compute, since dy = B(0)/ A(0) and ¢ = B(1)/ A(1). Neverthe-
less, there is a way to rewrite an ADL model in such a way that these quantities
are even more evident: the so-called ECM representation. This device amounts,
essentially, to expressing a difference equation in a slightly modified form, so
that certain quantities appear more clearly. In fact, one can also use the word
“reparametrisation” for the ECM, since the difference equation that underlies
the statistical model is exactly the same, just written in a different way.

As for what the acronym means... it’s a long story. Sir
David Hendry, who is considered the father of ECM (or at
least, one of the fathers) is adamant on Equilibrium Correc-
tion Mechanism, which is probably the most precise way to
express the concept. Unfortunately, this is not the original
choice. Back in the day, when the phrase was introduced in
the deservedly famous article by Davidson et al. (1978), the
original expansion was Error Correction Model, and most
people I know (including myself) keep using the old name.

To illustrate how the ECM representation works, let’s
start from the simple case of an ADL(1,1) (here x; is a vector):

é4 v-'.xV ;4‘

DAvVID HENDRY

/ / .
Vi =ayr1+BoXs + B1X¢-1;

from the definition of the A operator, evidently y; = y;—; + Ay; and x; =X, +
Ax;. After substitution,

Ay = (a—Dyi1+ByAx; + (Bo + B1) X1
which, after rearranging terms, yields

(Bo+B1)
—X

-1 (5.13)
l-a

Ay =ByAx;+(@—1) | yr1—

Which means: the time variation in y; (on the left-hand side) may come

from variation in x;, with response (3 (the impact multiplier); however, even if

Ax; = 0 there may be some variation in y; if the term in square brackets is non-
zero. This term can also be written as

!
YVt-1 —CXy—1

where ¢ = ﬁi’%fl, that is the long-run multiplier vector. In practice, the above
expression, commonly referred to as ECM term, gives you the difference (at t —
1) between the actual value y;_; and the value that (given x,_;) the dependent
variable should have taken if the system had been in equilibrium.
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If |a| < 1, then (a — 1) is negative: if the ECM term is positive (so y;—; was
larger than its equilibrium value), then Ay; will be negative, so y; would tend
to get closer to equilibrium. Evidently, this situation is reversed when the ECM
term is negative, so if (@« — 1) < 0, the dynamic system has an inherent tendency
to go back to a steady state. To be more precise, the number 1 — @ can be seen
as the fraction of disequilibrium that get re-absorbed in one period, so that the
closer «a is to 0, the faster adjustment occurs.

You can always go from the ADL representation to the ECM representation
(and back), for polynomials A(L) e B(L) of any order: for the algebra-loving
reader, the formal proofis in section 5.A.4. In general, however, if

A(L)yt =my +B(L)Xt+8t

where the order of A(L) is p and the order of B(L) is g, then the ECM represen-
tation is
H@L)Ay;=my+ K(DAx; — A(D) ys—1 + B(X;—1 + €4,

where the orders of H(L) and K(L) are g—1 and p — 1, respectively. For example:

Example 5.8 (ECM Representation)
Let'’s take another look at the difference equation I used in example 5.6:

Vr=02y;1+04x;+03x;_»

and compute the ECM representation. The quickest way to do this is to re-
express all the terms relative to time ¢ —1:

Ve = Ye1+Ay;
Xt = Xp—1+Ax;
X2 = Xpe—1—Axe-y;

now substitute
Yi-1+ Ayt = 0.2_)/[_1 +0.4(xp—1+Axp) +0.3(x-1 —Axs_1)

and collect
Ay;=-0.8y;-1+0.7x;-1 +0.4Ax; — 0.3Ax,

so finally
Ay;=0.4Ax; —0.3Ax;—1 — 0.8 y;—1 — 0.875x,-1];

the impact multiplier is 0.4, the long-run multiplier is 0.875; the fraction of dis-
equilibrium that re-adjusts each period is 0.8. |

Note that the ADL model and the ECM are not two different models, but are
simply two ways of expressing the same difference equation. As a consequence,
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you can use OLS on either and get the same residuals. The only difference be-
tween them is that the ECM forms makes it more immediate for the human eye
to calculate the parameters that are most likely to be important for the dynamic
properties of the model: that is the long-run multipliers and the convergence
speed. On the other hand, the ADL form allows for simple (and, most impor-
tantly, mechanical) calculation of the whole sequence of dynamic multipliers.

ecm: OLS, using observations 1970:4-2016:4 (T = 185)
Dependent variable: d_c

coefficient std. error t-ratio p-value

const 0.0641617 0.0149459 4.293 2.88e-05 **x
d_y 0.609142 0.0502371 12.13 4.36e-25 *%*
d_y_1 -0.174441 0.0524806 -3.324 0.0011 *kk
d_y_2 0.124319 0.0499439 2.489 0.0137  *x*
c_1 -0.0435972 0.0197744 -2.205 0.0287  *x
y_1 0.0374165 0.0191006 1.959 0.0517  *

Mean dependent var 0.005008 S.D. dependent var 0.005592
Sum squared resid 0.002388 S.E. of regression 0.003653

R-squared 0.584832 Adjusted R-squared 0.573235
F(5, 179) 50.43006 P-value(F) 1.99e-32
Log-likelihood 778.8122  Akaike criterion -1545.624
Schwarz criterion -1526.302 Hannan-Quinn -1537.794

Table 5.3: Dynamic regression in ECM form

Example 5.9 (ECM on real data)
The ECM representation of the model shown in table 5.2 is easily computed after
performing the following substitutions:

¢t = Ci—1+Acy
Vi = Ye1+Ay;
Yi—2 = YVe-1— Ay
Vi3 = Yi-1—Ayi-1—Ayi-o.

Hence,

1

3
Acy=k+(@—-1)ci—1+ oAy, + ( ,Bi) Vi-1— B2+ P3)Ayi—1— P3Ayi—2 + €y,
-0

that is

Acr=k+ BoAyr— AQ) [ci—1 —cyi-1] — (B2 + B3)AYi—1 — P3AYi—2 + €1
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so, after substituting the estimated numerical values (and rounding results a lit-
tle),

Ac; = 0.064+0.609Ay; —0.174Ay; 1 +0.124Ay; > +
—0.044 [c;—1 —0.858y,_1] + €.

Note, however, that this representation could have been calculated directly
by applying OLS to the model in ECM form: it is quite clear from Table 5.3 that
what gets estimated is the same model in a different form. Not only the parame-
ters for each representation can be calculated from the other one: the objective
function (the SSR) is identical for both models (and equals 0.002388); clearly, the
same happens for all the statistics based on the SSR. The only differences (eg the
R? index) come from the fact that the model is transformed in such a way that
the dependent variable is not the same (it’s ¢; in the ADL form and Ac; in the
ECM form). |

5.6 Hypothesis tests on the long-run multiplier

In some cases, it may be of interest to test hypotheses on ¢, such as Hy : ¢ =
k. One way to do this could be to use the estimator of ¢ provided by the OLS
estimates R

B(1)

A)

and then working out its asymptotic distribution, but this is complicated by the
fact that ¢ is a nonlinear function of the estimated parameters,'® so the delta
method (see section 2.3.2, particularly equation (2.14)) would be required. A
much simpler way comes from observing that

¢=

c=k<=B(1)-k-A(1)=0

which is a linear test and, as such, falls under the R3 = d jurisdiction.

It may be worth mentioning here that tests of There are some important cases when this may
this type behave in the ordinary way only if the not be true, notably when the data we are work-
assumptions we made in section 5.3.1 are valid. ~ ing with are generated by non-stationary DGPs.

The test is particularly easy when k = 1, which is a common hypothesis to
test, since it implies, if true, that the two variables under considerations are pro-
portional to each other in the long run. In this case, the hypothesis becomes

Ho:ap+--+ap+Po+-+p4=1

Bo+p1

19you have A(1) in the denominator, so for example in an ADL(1,1) ¢ = —a and the Jacobian

term would be J = ﬁ[l 1 .
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that can be tested quite easily.

The test is even easier if you start from the estimates of the model in ECM
form: all you have to do is set up a test that involves just 2 parameters, since the
parameter for y;_ is just —A(1) (note the minus sign) and the parameter for x;_;
is B(1).

Example 5.10
Suppose that we have the following estimates:

j)t = 0.75_)/[_1 + 0.53)6[ - 0.24x[_1

with the following covariance matrix:

5 05 -2
‘A/ADL =0.001 x 5 4
5

The hypothesis ¢ = 1 implies a + By + 1 = 1. Therefore, a Wald test can be set up
withR=[1 1 1]andd=1 (see section 3.3.2 for details). Therefore

0.75
RB-d = [1 1 11| 053[-1=0.04
-0.24
R-Vupr-R' = 0.001x20=0.02
0.042
W = =0.08
0.02

which leads of course to accepting Hy, since its p-value is way larger than 5%
(P(X% > 0.08) = 0.777)). The same test could have been performed even more
easily from the ECM representation:

—~

Ay,;=0.53Ax;—0.25y;1+0.29x;1

with the associated covariance matrix

5 0.5 9
Veem = 0.001 x 5 —-1.5
18

In this case the hypothesis can be written as Hy : B(1) — A(1) =0, so for the ECM
form

0.53
RB-d = [0 1 1]1|-0.25(=0.04
0.29
R-Vgcp-R' = 0.001 x20=0.02

and of course the W statistic is the same as above.
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5.7 Forecasting and Granger causality

One of the cool things you can do with an ADL model is forecasting. Here’s how
it works: suppose we have data that goes from ¢ =1 to ¢t = T, and that our model
of choice is an ADL(1,1). What we can say, on these premises, about yr.1, that
we haven't yet observed? The random variable yr.; can be represented as

Yr+1 = @yr + PoXT1 + P1XT +ET11; (5.14)

of all the objects that appear on the right-hand side of the equation, the only
ones that are known with certainty at time T are yr and x7. Suppose we also
know for certain what the future value xr,; will be, and call it x74; = X741.
Therefore, since ¢; is a martingale difference sequence, its conditional expec-
tation with respect to S, is 0,20 so0

Elyr+11St] = ayr+Bokrs1+pixr

V[yr+11S7] 2

g

Following the same logic as in Section 3.7, we can use the conditional expecta-
tion as predictor and the estimated values for the parameters instead of the true
ones. Therefore, our prediction will be

Jr+1=ayr+ PoXr+1 + Prxr
and a 95% confidence interval can be constructed as
P41 +£1.96x &

where it is implicitly assumed that ¢; is normal and uncertainty about the pa-
rameters is ignored.

Now, there are two points I'd like to draw your attention on. First: in order to
predict yr+1 we need x741; but then, we could generalise this idea and imagine
that we could make guesses about xr;2,X1+3,... as well. What keeps us from
predicting y, farther into the future? To cut a long story short, performing multi-
step forecasts is rather easy if you use your own predictions in lieu of the future
values of y; and proceed recursively. In other words, once you have jr,; you
can push equation (5.14) one step ahead in time and write

Y742 = aY7r+1+ PoXT42 + P1XT41 +ET12;

next, we operate in a similar way as we just did, using the conditional expecta-
tion as predictor

J1+2 = aPr+1+ PoXr+2 + P1X741,

20we're sticking to the definition of S74 I introduced in Section 5, so S+ includes x4 but
not yr41; later in this section, we’ll use a different convention.



5.7. FORECASTING AND GRANGER CAUSALITY 159

repeating the process with the obvious adjustments for T +3, T +4 etc. It can be
proven (nice exercise for the reader) that the variance you should use for con-
structing confidence interval for multi-step forecasts would be in this case

1-— (a2)k

V[J,)T-I-k]: l_az

Extending the formulae above to the general ADL(p, q) case is trivial but boring,
and I'll just skip it.

The second point I want to make comes by considering the possibility that
the o and fB; coefficients were 0 in equation (5.14). In this case, there would be
no need to conjecture anything about x;, in order to forecast y;. In other words,
x; has no predicting power for y;. This is a hypothesis we may want to test.

As a general rule, in the context of dynamic regression
models, it is difficult to formulate hypotheses of economic
interest that can be tested through restrictions on coeffi-
cients, since the coefficients of the A(L) and B(L) polyno-
mials normally don’t have a natural economic interpreta-
tion per se, and this is why we compute multipliers.

However, there are exceptions: we just saw one of
them in the previous section. Another one is the so-called
Granger-causality test, after the great Clive Granger, Nobel
Prize winner in 2003.2! The idea on which the test is built
is that, whenever A causes B, the cause should come, in
time, before the effect. Therefore, if A does not cause B, it
should have no effect on the quantity we normally use for prediction, i. e. the
conditional expectation.

The only difference with the ADL models we've considered so far is that,
since we're dealing with predictions about the future, we will want to base our
inference on an information set that collects everything that is known at time
t—1, namely

CLIVE GRANGER

* .
C\\st—l = {yt—l:y[—27---,x[—l,x[—2v---};

note that, contrary to the concept of information set &, we used so far (defined
in section 5.1), %;‘ does not include x,.1; in practice, it collects all information
on y; and x; that is available up to time t. Forecasting, therefore, amounts to
finding

Jreur =E[yr+1197].

The subscript “T + 1|T” is customarily read as “at time T + 1, based on the infor-
mation available at time 7"

21C. W. Granger is one of the founding fathers of modern time series econometrics; his most fa-
mous brainchild, that earned him the Nobel Prize, is a concept called cointegration, that I will skip
in this book, but is absolutely indispensable if you want to engage in applied macroeconomics.
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There is no doubt that the discerning reader
has spotted, by now, a fundamental difference
between the information set E‘y’}_l that we are
using here and the information set 31 we use
in the rest of this chapter: the latter includes x¢,
while the former does not.

Since %}_1 c ST, predictions on y; made using
%*T_lare obviously going to be less accurate,
but have the advantage of being possible one
period earlier. Moreover, this makes also pos-

sible to forecast X717 = E [xT+1|T|%;2]. This
seemingly innocent remark paves the way to
multi-step forecasts, where we use the predic-
tions for T to forecast T + 1, which in turn we
use for forecasting T + 2, and so on.

This is the principle used in the so-called VAR
model, which is probably the main empirical
tool in modern macroeconometrics. If you're
curious, check out Liitkepohl (2005).

As a consequence, our ADL model
AL)y:=B(L)x; +&;
will not include x;, but only its lags:

/ ! *
Vi= a1y 1+ @Yo+ + B1X 1+ BpXp o+ + g

where €7 is defined as y; —E [ yT+1|<\‘s’}]. Clearly, this can also be written as an
ordinary ADL model in which B(0) = 0. The idea that x; does not cause y; is
equivalent to the idea B(L) = 0; since a polynomial is 0 if and only if all its coef-
ficients are, it is easy to formulate the hypothesis of no-Granger-causality as

Hy:f1=P2=...=4=0

which is of course a system of linear restrictions, that we can handle just fine via
the R3 = d machine we described in Section 3.3.2.

In the late 1960s, when this idea was introduced, it was hailed as a break-
through in economic theory, because for a while this seemed to provide a data-
based way to ascertain causal links. For example, a hotly debated point among
macroeconomists in the 1970 and 80s was: is there a causality direction between
the quantity of money and GDP in an economy? If there is, the repercussions on
economic policy (notably, on the effectiveness of monetary policy) are huge. In
those days, the concept of Granger-causality seemed to provide a convincing

answer .22

Example 5.11

In a humorous article, Thurman and Fisher (1988) collected data on the produc-

tion of chickens and eggs from 1930 to 2004, that are depicted in Figure 5.2.
After taking logs, we estimate by OLS the following 2 equations:

(5.15)
(5.16)

Cr=my+a1C1+ Q22+ Pre 1+ Prer 2 +e;

er=M1+Y1C1+Y2Cr2t A1 1+ Arer 2+
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Figure 5.2: Thurman & Fisher data on chickens and eggs

Dependent variable: 1_chicken

Coefficient  Std. Error  t-ratio  p-value

const 2.1437 0.7715 2.7788 0.0070

L_chicken_1 0.4037 0.1389 2.9054 0.0049

1_chicken_2 0.4362 0.1320 3.3037 0.0015

lLegg 1 0.8627 0.2011 4.2906 0.0001

Legg 2 -0.8724 0.1999 —-4.3642 0.0000
Mean dependentvar  12.92290  S.D. dependentvar  0.100867
Sum squared resid 0.125953  S.E. of regression 0.043038
R? 0.828060  Adjusted R? 0.817946

Granger-causality test egg — chicken: F(2,68) = 9.57089, p-value = 0.000217573

Dependent variable: 1_egg

Coefficient  Std. Error  t-ratio  p-value

const 0.8816 0.5292 1.6660 0.1003

L_chicken_1 -0.1196 0.0953 —-1.2548 0.2139

1 _chicken_2 0.0695 0.0906 0.7673 0.4456

lLegg 1 1.5302 0.1379 11.0961 0.0000

Legg 2 —0.5570 0.1371 -4.0624 0.0001
Mean dependentvar  8.577181  S.D.dependentvar  0.204279
Sum squared resid 0.059259  S.E. of regression 0.029520
R? 0.980277  Adjusted R? 0.979117

Granger-causality test chicken — egg: F(2,68) = 1.28907, p-value = 0.282174

Table 5.4: Granger causality tests between chickens and eggs

161
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where c; is the log of chickens at time t and e; is the log of eggs.

The hypothesis that chickens don’t Granger-cause eggs is Hy : y1 =2 = 0;
the opposite hypothesis, that eggs don't Granger-cause chickensis Hy : 1 = f, =
0. The results are in Table 5.4. As can be seen, the hypothesis of absence of
Granger-causality is rejected in the egg — chicken direction, but not the other
way round; hence, the perennial question “what comes first?” has finally found
an answer: it's the egg that comes first. |

There are a few issues that may be raised here: one is statistical, and pertains
to the fact that the test is relative to a certain conditioning set. You may see this
as a variation on the same theme I discussed in Section 3.8, especially example
3.3. It may well be that A turns out to be Granger-causal for B in a model, and the
reverse happens in another model, in which some other variables are included
or excluded. This is why, in some cases, people perform Granger-causality tests
on models in which the only variables considered are the ones that come directly
into play. I'll leave it to the reader to judge whether this approach leads to results
that have a sensible statistical interpretation.

Another one is more substantial in nature, and has to do with the fact that
in economics it may well be that the cause comes after the effect, because ex-
pectations play a major role in human behaviour; people may do something at
a certain time in view of something that they expect to happen in the future. In
fact, standard economic theory assumes that agents are rational and forward-
looking: they base all their choices on the expectations they have about the fu-
ture.

There are many examples I could give you, but I'll simply hint at a widely
used one: if people anticipate that a company is going to go bust, everyone
will sell that stock, causing its price to drop. If one should mechanically assess
causality from time precedence, it would be legitimate to say that the drop in the
stock price drove the company bankrupt, rather than the other way around. The
problem here is that in this case the statistical concept of Granger causality does
not agree very much with the notion of causality we use in everyday life (and is
arguably what we care about in economics). In fact, it is much more accurate
to consider the Granger-causality test as a device for assessing predictive power;
whether predictive power can be considered a sign of a causal chain depends on
the circumstances.

22Readers who are into the history of economics and econometrics might want to take a look at
Sims (1972).
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5.A Assorted results

5.A.1 Inverting polynomials

Let us begin by noting that, for any a # 1,

noo. 1-— an+1
al=———, (5.17)
i=0 l-a
which is easy to prove: call
n .
S=Y a=1+a+a*+---+a" (5.18)
i=0
of course
a-S=a+a*+---+a""! (5.19)

and therefore, by subtracting (5.19) from (5.18), S(1—a) = 1 - a"*!, and hence
equation (5.17).

If a is a small number (|a| < 1), then a” — 0, and therefore Y52 al = ﬁ By
setting a = a L, you may say that, for |a| < 1, the inverse of (1-aL) is (1 +aL+
a’I?+---), that is

(1-al)Q+alL+a’l*+--)=1,

or, alternatively,

provided that |a| < 1. Now consider a n-th degree polynomial P(x):
n .
Px)=) pjx’
j=0

If P(0) = po = 1, then P(x) can be written as the product of # first-degree poly-

nomials as follows:23

Px)=1]] (1 - ix) (5.20)
j=1 Aj

where the numbers A; are the roots of P(x): if x = A1;, then 1 - Aljx =0 and con-
sequently P(x) = 0. Therefore, if P(x)~! exists, it must satisfy

but if at least one of the roots A; is smaller than 1 in modulus,?* then 1/|1 jlis

-1
larger than 1 and, as a consequence, (1 - %x) does not exist, and neither does
]

Px)~L

Z31fyou don't believe me, google for “Fundamental theorem of algebra”.
24Warning: the roots may be complex, but this is not particularly important. If z is a complex
number of the form z = a + bi (where i = v/—1), then |z| = Va2 + b2.
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Example 5.12
Consider the polynomial A(x) =1-1.2x+ 0.32x2; is it invertible? Let’s check its
roots:
1.2++1.44-1.28
Ax)=0<=x= 064 =(1.2+0.4)/0.64

so Ay =2.5 and A, = 1.25. Both are larger than 1 in modulus, so the polynomial
is invertible. Specifically,

AX)=1-A"00-2,"%) = (1-0.4x)(1 - 0.8x)
and

A (1-0.4x)"1(1-0.80)" = (1+0.4x+0.16x>+---)(1 +0.8x + 0.64x% +---)

= 1+1.2x+1.12x%>+0.96x% +0.7936x* + - --

In practice: if the sequence a, is defined as the result of the application of
the operator P(L) to the sequence u;, that is a; = P(L)u;, then reconstructing
the sequence u; from a; is only possible if P(L) is invertible. In this case,

u,=PWL) a, = a;.

P

5.A.2 Basic concepts on stochastic processes

This section is just meant to give you a rough idea of some of the concept I hinted
at in section 5.3.1; if you want the real thing, go for Brockwell and Davis (1991).
Suppose you have an infinitely long sequence of random variables

e X1 Xty Xt 415 -+

where the index ¢ is normally taken to mean “time” (although not necessarily).
This sequence is a stochastic process.>> When we observe a time series, we ob-
serve a part of the realisation of a stochastic process (also called a trajectory
of the process). Just in the same way as the DGP for the toss of a coin can be
thought of as the machine that nature uses for giving us a binary number that
we cannot predict, a stochastic process is a machine that nature uses for giving
us an infinitely long trajectory through time, and what we observe is just a short
segment of it. This idea may be unintuitive at start (it certainly was for me, back
in the day), but I find it very useful.

25It's not inappropriate to think of stochastic processes as infinite-dimensional random
variables. Using the same terminology as in section 2.2.1, we may think of the sequence
ooy X1 (@), X¢ (W), Xg4+1 (w), ... as the infinite-dimensional outcome of one point in the state space
w € Q.



5.A. ASSORTED RESULTS 165

If we take two different elements of the sequence, say x; and x; (with s # 1),
we could wonder what their joint distribution is. The two fundamental proper-
ties of the joint distribution that we are interested in are:

1. is the joint distribution stable through time? That is, is the joint distribu-
tion of (xg, x;) the same as (X511, X4+1) 2

2. Is it likely that x; and x; become independent (or nearly so) if |z — s| is
large?

Property number 1 refers to the idea that the point in time when we ob-
serve the process should be irrelevant: the probability distribution of the data
we see today (x;, x;) should be the same as the one for an observer in the past
(Xs—100, Xr—100) or in the future (xs1100, Xr+100). This gives rise to the concept of
stationarity. A stochastic process is said to be weakly stationary, or covariance
stationary, or second-order stationary if the covariance between x; and x; (also
known as autocovariance) exists and is independent of time. In formulae:

Yn = Cov [xg, X4 1]

note that vy, the autocovariance of order £, is a function of & only, not of ¢; of
course, Yy is just V[x]. If this is the case, the internal structure of correlation
between points in time is often described via the autocorrelation sequence (or
autocorrelation function, often abbreviated as ACF), defined as

_Yn

Pn Yo

Property number 2, instead, is what we realistically imagine should happen
when we observe many phenomena through time: if s and ¢ are very far apart,
what happened at time s one should contain little or no information on what
happened at time ¢. For example: the temperature at Cape North on May 29th,
1453 at 12am should contain no useful information on the temperature at Cape
North right now. This intuition can be translated into maths in a number of dif-
ferent ways. A common one is ergodicity. While a formal definition of ergodicity
would require a hefty investment in measure theory, if a process is covariance
stationary, ergodicity amounts to absolute summability of its autocovariances.
The property

18

lyil=M <oo
i=0

~
Il

ensures that limy_.., |yl = 0 (so correlation between distant events should be
negligible), but most importantly, that the sample mean of an observed stochas-
tic process is a consistent estimator of the true mean of the process:

T

1 P
=Y x; —Elx,].
Tt:I
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Note that the above expression can be considered as one of the many versions
of the Law of Large Numbers, applicable when observations are not necessarily
independent.

It goes without saying that, in the same way as we can define multivariate
random variables, it is perfectly possible to define multivariate stochastic pro-
cesses, that is, sequences of random vectors: modern macroeconometrics is pri-
marily built upon these objects. A large part of the statistical analysis of time
series is based on the idea that the time series we observe are realisations of sta-
tionary and ergodic processes (or can be transformed to this effect).

How do you adapt statistical inference to such a context? The main idea un-
derlying most approaches is to describe the a DGP in such a way that the whole
autocovariance structure of a stochastic process (the sequence vy,y1,72,...) can
be expressed as a function of a finite set of parameters 0; if the process is sta-
tionary and ergodic, then maybe the available data x;,...,xr can be used to
construct CAN estimators of 6. ARIMA models are one of the most celebrated
instances of this approach, and the literature that has developed after their in-
troduction in the late 1960s is truly gigantic. If you're interested, Brockwell and
Davis (1991) is an excellent starting point.

5.A.3 Why martingale difference sequences are serially uncorrelated

Here’s a rapid proof: if €, is a MDS with respect to S, then
E[gtlgt] =E [51|Xt,xt—1,---,J/t—lyJ/t—zy---] =0.

Now, observe that €;_; is defined as €,-; = y;—1 —E [yt_lli‘s;_l]; since both ele-
ments of the right-hand side of the equation are contained in S, then €, € Sy;
moreover, 3; 23— 2 Sy-2..., so clearly all lags of ; are all contained in 3¢ (see
footnote 6 in this chapter). As a consequence, we can use the law of iterated
expectations (2.8) as follows:

Covles,er—k] = Eler-er k] =E[E[er-€,]I1S¢] =
E[E[e¢|S¢] €1kl =E[0-€; 4] =
0

A second argument, perhaps more intuitive, rests directly on the definition
of a MDS: if €; is a MDS with respect to 3y, then its expectation conditional on
S_k (for k > 0) must also be 0, because 3;_j is a subset of ;. But that means
that the expectation of any fufture element €. ; conditional on the present infor-
mation set S is 0. In formulae:

ElelS¢] =0

& = Q] =
S, SSfor k>0 } = Ele/Si—k] =Ele/4£IS¢] =0

This is tantamount to saying that €, is effectively unpredictable. But then, if
Covles, e4-k] # 0, €, wouldn't be totally unpredictable, because there would be
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some information in the past about the future. Therefore, the autocorrelations
of a MDS must be 0 for any k.

5.A.4 From ADL to ECM

Let’s begin with a preliminary result (which I'm not going to prove):

If P(x) is a polynomial whose degree is n > 0 and a is a scalar, you can always find
a polynomial Q(x), whose degree is (n — 1), such that

P(x)=P(a) + Q(x)(a— x);
ifn=0, obviously Q(x) = 0.

For example, the reader is invited to check that, if we choose a = 1, the poly-
nomial P(x) = 0.8x% — 1.8x + 1.4 can be written as

Px)=04+(1-0.8x)(1-x)

where P(1) =0.4 and Q(x) =1-0.8x.
Now consider P(L), a polynomial in the lag operator of degree n = 1, and
apply the result above twice in a row, once with a = 0 and then with a = 1:

P(L) = PO)-QW)-L (5.21)
Q) = Q+P (L(A-L) (5.22)

If n =1, evidently P*(L) = 0. Otherwise, the order of Q(L) is (n — 1) and the
order of P*(L) is (n—2). If you evaluate equation (5.21) in L = 1, you have P(1) =
P(0) - Q(1), so that equation (5.22) becomes

QL) =P0O)-P)+P*(LYQA-L)
and therefore, using equation (5.21) again,
P(L)=P(0) - [P(O) -PLH+P (L)1 - L)] -L=PO)A+P(Q)L-P*(L)A-L.

The actual form of the P* (L) polynomial is not important: all we need is know-
ing that it exists, so that the decomposition of P(L) we just performed is always
possible. As a consequence, every sequence P(L)z; can be written as:

P(L)z; =P0)Az;+ P(1)z;—1 — P*(L)Az;_1.
Now apply this result to both sides of the ADL model A(L) y; = B(L)X; + &;:
Ay + Ay — A" (L)Ay;—1 = B(O)AX; + B* (L) AX; 1 + B(1)X;—1 + €43

(note that A(0) = 1 by construction). After rearranging terms, you obtain the
ECM representation proper:

Ay = BO)AX; + A" (L)Ay;-1 + B* (L) AX;—1 — AQ) [yr-1 — €'X-1] + &

where ¢’ = % contains the long-run multipliers. In other words, the variation

of y; over time is expressed as the sum of three components:
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. the external unpredictable shock &;

. ashort-run transitory component: B(0)Ax;+A*(L)Ay;—1+B* (L)Ax;_1; the

first coefficient, B(0), gives you the instantaneous effect of x; on y;;

. along-run component whose base ingredient is the long-run multiplier c.



Chapter 6

Instrumental Variables

The arguments I presented in chapter 3 should have convinced the reader that
OLS is an excellent solution to the problem of estimating linear models of the
kind
y=XB+e,

where ¢ is defined as y — E [y|X], with the appropriate adjustments for dynamic
models; the derived property E [e|X] = 0 is the key ingredient for guaranteeing
consistency of OLS as an estimator of 3. With some extra effort, we can also
derive asymptotic normality and have all the hypothesis testing apparatus at
our disposal.

In some cases, however, this is not what we need. What we have implicitly
assumed so far is that the parameters of economic interest are the same as the
statistical parameters that describe the conditional expectation (or functions
thereof, like for example marginal effects or multipliers in dynamic models).

Sometimes, this might not be the case. As anticipated in section 3.5, this
happens when the model we have in mind contains explanatory variables that,
in common economics parlance, are said to be endogenous. In the next section,
I will give you a few examples where the quantities of interpretative interest are
not computable from the regression parameters. Hence, it should come as no
surprise that OLS is not a usable tool for this purpose: this is why we’ll want to
use a different estimator, known as instrumental variables estimator, or IV for
short.

6.1 Examples

6.1.1 Measurement error

Measurement error is what you get when one or more of your explanatory vari-
able are measured imperfectly. Suppose you have the simplest version of a linear
model, where everything is a scalar:

Vi=xip+e; 6.1)

169
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where E [ y; Ix;."] = x; f and f is our parameter of interest. The problem is that we
do not observe x;‘ directly; instead, all we have is a version of xl’f that is contam-
inated by some measurement error:

X=X +1; (6.2)

where 7); is a zero-mean random variable, independent of x;‘ and &;, with vari-
ance 0% > 0; clearly, the larger 0127 > 0 is, the worse is the quality of our measure-
ment for the variable of interest x}. One may think that, since 7; is, so to speak,
“neutral”, setting up a model using x; instead of x;‘ would do no harm. Instead,
this is not the case: unfortunately, OLS regression y; on x; won'’t give you a con-
sistent estimator of 8. This is quite easy to prove: combine the two equations
above to get

yi=xif+(ei—Bni) = xif+u; 6.3)
)
fe Yioxiyi XigxiPrw) X xiu
- 2 2 - N~n L2
i1 %X i1 X i1 X

From the assumptions above, you get

E[(x} +ni)(ei—Pnid)] =E[x]e;| - BE[x]n;]| +E[ni€;] — BE [nf] =
= —ﬁo‘%

E[x;ju;]
If we define Q = E [x?], clearly

5 P pos &
ptp-—ot=p (1 5 ) 4B
It can be proven that 0 < 0;27 < Q,! so two main conclusions can be drawn from
the equation above: first, the degree of inconsistency of OLS is proportional to
the size of measurement error 0'% relative to Q; second, the asymptotic bias is
such that [plim (,B)I < |Bl; that is, the estimated effect is smaller than the true
one. This is often called attenuation.

As the rest of this chapter should hopefully make clear, the reason why OLS
doesn’t work as we'd like it to work lies in the fact that equation (6.3) does not
split y; into a conditional expectation and a disturbance term. It can be shown
that the regression function E [ y;|x;| is not equal to x; §: if it were, E [x; u;] would
be zero, but we just showed it isn't. Since OLS is programmed to estimate the
parameters of a conditional expectation, you can't expect it to come up with
anything else.

1Come on, it’s easy, do it by yourself.
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This argument came out as important in an economic
theory controversy in the 1950s about the consumption
function. In those days, orthodoxy was Keynes’ idea that

[T]he fundamental psychological law |[...] is
that men are disposed, as a rule and on the av-
erage, to increase their consumption as their
income increases but not by as much as the in-
crease in the income.?

JOHN MAYNARD
In formulae, this was translated as KEYNES

C=Cy+cY.

with 0 < ¢ < 1. As the reader knows, c is the “marginal propensity to consume”,
that is a key ingredient in mainstream Keynesian macroeconomics.

In the 1950s, few people would dissent from the received wisdom: one of
them was Milton Friedman, who would argue that ¢ should not be less than 1 (at
least in the long run), since the only thing income is good for is buying things.
Over the span of your life, it would be silly to save money unconditionally: a
rational individual with perfect foresight should die penniless.®

Back in the day, economists thought of measuring ¢ by running regressions
on the consumption function, and regularly found estimates that were signif-
icantly smaller than 1. Friedman, however, put forward a counter-argument,
based on the “permanent income” concept: consumption is not based on cur-
rent income, but rather on a concept of income that takes into account your ex-
pectations about the future. For example, if you knew with certainty that you're
going to inherit a disgustingly large sum from a moribund distant uncle, you
would probably start squandering money today (provided, of course, you find
somebody willing to lend you money), far beyond your level of current income.

In this case, your observed actual income x; does not coincide with your
permanent income xl’." (which is unobservable), and estimated values of ¢ lower
than 1 could well be the product of attenuation.

6.1.2 Simultaneous equation systems

Simultaneous equation systems make for another nice example. Inclined as I
am to put econometric concepts in a historical context, I would love to inflict on
the reader a long, nostalgic account about the early days of econometrics, the
great Norwegian pioneer Trygve Haavelmo and Lawrence Klein* and the Cowles
Commission, but this is not the place for it. Suffice it to say that estimation of

2Keynes, J.M. (1936) The General Theory of Employment, Interest and Money

S«“pvaritia vero senilis quid sibi velit, non intellego; potest enim quicquam esse absurdius
quam, quo viae minus restet, eo plus viatici quaerere?” Marcus Tullius Cicero, De senectute.

4Klein and Haavelmo got the Nobel Prize for their work in 1980 and 1989, respectively.



172 CHAPTER 6. INSTRUMENTAL VARIABLES

systems of equations is the first autonomous contribution of econometrics to
the general arsenal of statistical tools.

The reason why the estimation of parameters in simul-
taneous systems may be tricky is relatively easy to see by
focusing on the distinction between parameters of interest
and parameters of the conditional mean.

Consider one of the simplest examples of simultane-
ous equation system in economics: a two-equation linear
model of supply and demand for a good.

qg: = Qo—a1pr+u (6.4)
= + + Uy, 6.5
Pt Bo+P1q:+ vy (6.5) TRYGVE
equation (6.4) is the demand equation (quantity at time ¢ HAAVELMO

as a function of price at time ¢), (6.5) is supply (price as a function of quan-
tity); the two disturbance terms u; and v; represent random shocks to the two
curves. For example, u; could incorporate random fluctuations in demand
due to shifting customer preferences, fluctuations in disposable income and so
forth; vy, instead could be non-zero because of productivity shifts due to ran-
dom events (think for example weather for agricultural produce). Assume that
Elu;] =E[v/]=0.

If you considered the two equations separately, one may think of estimat-
ing their parameters by using OLS, but this would be a big mistake, since the
“systematic part” of each of the two equations is not a conditional expectation.

One simple way to convince yourself is simply to consider that if E [g;|p;] is
upward (downward) sloping, the correlation between g; and p; must be posi-
tive (negative), and therefore there’s no way the reverse conditional expectation
E[p/lqgi] can be downward (upward) sloping. Since the demand function goes
down and the supply function goes up, at least one of them cannot be a condi-
tional expectation.

However, a more rigorous proof can be given: take the demand curve (6.4):
if the expression (ag — a1 p;) were in fact the conditional expectation of g, to p;,
then E [u;|p;] should be 0. Now substitute (6.4) into equation (6.5):

pr = Po+Prlao—ar1ps+u)+uv;
= (Bo+Prag) — (Brar) pe+ (Ve + Prug) =
A+ pra)pr = (Bo+Prag) + (e + Pruy) = (6.6)
pr = W1+Ng (6.7)
where the constant 77 is % and n; = % is a zero-mean random vari-

able. The covariance between p; and u; is easy to compute:

E[p:-us]| =E[wemi+um:| =0+E[u;- (v + frug)] =
Cov[vy, ug] + B1V(uys)

Cov|py, u]
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Now, unless the covariance between v; and u; happens to be exactly equal to
—pB1V(uy) (and there is no reason why it should), Cov [ Pt ut] # 0. Borrowing on
the definition I gave in Section 3.5, the variable p; is clearly endogenous.

But if Cov [ py, u;]| # 0, then E[u;|p;] can't be 0 either; therefore, (ag — a1 p;)
can'tbe E[q;|p;], and as a consequence there’s no way that OLS applied to equa-
tion (6.4) (that is, regressing quantity on a constant and price) could be a con-
sistent estimator of @y and a;.

To be more specific: even assuming that E [g;|p;] is a linear function like

E[q:lpt] =rvo+v1p8s

OLS gives you an excellent estimate of the coefficients y( and y;; unfortunately,
they are not the same thing as @y and a;.

Of course, the same argument in reverse could be applied to the supply
equation so regressing p; on ¢q; won't give you good estimates of 8y and S, ei-
ther. This example will be generalised in section 6.6.2.

6.2 ThelV estimator

In a standard linear model y; = X3+ ¢;. As we argued in chapter 3, the assump-
tionx'[3 = E [ ylx] is crucial for the consistency of the OLS statistic as an estimator
of 3; in fact, you could see this assumption as a definition of 3, in that 3 is the
only vector for which the following equation is true:

E[X'(y-X3)]=0. (6.8)
The OLS statistic B, instead, is implicitly defined by the relationship
X (y-XB) =0. (6.9)

which corresponds to the first-order conditions for the minimisation of the sum
of squared residuals (see section 1.3.2, especially equation (1.10)); note that equa-
tion (6.9) can be seen as the sample equivalent of equations (6.8). The fact that
the OLS statistic 3 works quite nicely as an estimator of its counterpart 3 just
agrees with common sense.

If, on the contrary, the parameter of interest 3 satisfies an equation other
than (6.8), then we may proceed by analogy and use, as an estimator, a statistic
B that satisfies the corresponding sample property. In this chapter, we assume
we have a certain number of observable variables W for which

E[W(y-X3)]=0. (6.10)
The corresponding statistic will then be implicitly defined by

W (y-X3) =0. (6.11)
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The variables W are known as instrumental variables, or, more concisely, in-
struments. The so-called “simple” IV estimator can then be defined as follows:
if we had a matrix W, of the same size as X, satisfying (6.10), then we may define
a statistic B such that (6.11) holds:

Wy-X8)=0 = WX G=WYy.

In a parallel fashion, the difference € = y— X3 is not defined as the difference
between y and it conditional mean, but rather as a zero-mean random variable
which describes how much y deviates from its “standard” value, as described by
the “structural” relationship X3. A term that we use in this context is structural
disturbance, or just “disturbance” when no confusion arises. Given this defini-
tion, there is no guarantee that the structural disturbance should be orthogonal
to the regressors.
Since W has as many columns as X, then the matrix WX is square; if it’s also
invertible, then ,@ is
B=WX"Wy, (6.12)

this is sometimes called the “simple” IV estimator.

The actual availability of the variables W may be a problem, sometimes. In
fact, collecting observable data that can be used as instrument is a bit of an art,
although in many cases the choice of instruments is dictated by economic in-
tuition. In Section 6.6, we will look at the examples provided in Section 6.1 and
suggest possible solutions. However, before doing so, it is convenient to con-
sider a generalisation.

6.2.1 The generalised IV estimator

What if the number of columns of W (call it m) was different from number of
columns from X (call it k)? Of course, the matrix WX wouldn’t be square and
therefore not invertible. While there’s no remedy for the case m < k, one may
argue that in the opposite case we could just drop m — k columns from W and
proceed as above. While this makes sense, the reader will probably feel uneasy
at the thought of dumping information deliberately. And besides, how do we
choose which columns to drop from W?

Fortunately, there is a solution: assume, for simplicity, that the covariance
matrix of the structural disturbances is a multiple of the identity matrix:

Elee'|W] = 0’1
By hypothesis, E [e|W] = 0; therefore,

E[Wee' WIW] = 0?W'W = 02Q.

5In fact, this assumption is not strictly necessary, but makes for a cleaner exposition.
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Now define v, C and e as

v =Wy C =WX e =Wk;

mx1 mxk mxk

so the following equality holds:
v=CpB+e, (6.13)

Equation (6.13) may be seen as a linear model where the disturbance term has
zero mean and covariance matrix 02Q. The number of explanatory variables is
k (the column size of X) but the peculiar feature of this model is that the number
of “observations” is m (the column size of W).

Since Q) is observable (up to a constant), we may apply the GLS estimator
(see 4.2.1) to (6.13) and write

B = [calc] ' daty=[XWWW) 'WX] XWWW) 'Wy=
= X'PwX) 'X'Pyy. (6.14)

This clever idea is due to the English econometrician
Denis Sargan,® whose name will also crop up later, in sec-
tion 6.7.1.

The estimator 3 in the equation above is technically
called the Generalised IV Estimator, or GIVE for short.
However, proving that (6.12) is just a special case of (6.14)
when m = k is a simple exercise in matrix algebra, left to
the reader as an exercise, so when I speak of the IV estima-
tor, what I mean is (6.14).

When m = k, the model is said to be exactly identified,
as the estimator is based on solving (6.11), which is a sys-
tem of m equations in m unknowns; if W'X is invertible, it has one solution.

On the contrary, if m > k, (6.11) becomes a system with more equations than
unknowns, so a solution does not ordinarily exist. The statistic we use is not a
solution of (6.11), but is rather defined by re-casting the problem as a sui generis
OLS model as in (6.13).

In this case, we say the model is over-identified and the difference (m — k)
is referred to as over-identification rank. The opposite case, when m < k, is a
textbook case of under-identification, which I described in section 2.5. In short,
one may say that a necessary condition for the existence of the IV estimator is
that m = k; this is known as the order condition.

DENIS SARGAN

8For historical accuracy, it must be said that the idea of IV estimation was first put forward
as early as 1953 by the Dutch genius Henri Theil. But it was Sargan who created the modern
approach, in an article appeared in 1958.
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As a by-product from estimating 3, you also get a residual vector & = y—X/3,
so that an estimator of o is readily available:

6_2

= |t

As shown in section 6.A.1, it can be proven that, under the set of assumptions I
just made, the statistics 3 and 2 are CAN estimators. Therefore, the whole test-
ing apparatus we developed in Chapter 3 can be applied without modifications
since

ViB-p) -+ ¥ 0,v).

The precise form of the asymptotic covariance matrix V is not important here;
see 6.A.1. What is important in practice is that, under homoskedasticity, we have
an asymptotically valid matrix we can use for hypothesis testing, which is

V=5*XPwX) .

In more general cases, robust alternatives (see section 4.2.2) are available.

Just like OLS, the IV estimator may be defined would be the first step towards seeing it as a

as the solution of an optimisation problem: member of a very general category of estima-
3 =Argmin e(3) Pwe (8) tors known a§ GMM (Geriiem.llsed Method t.)f
BeRk Moments) estimators, which includes practi-

cally all estimators used in modern economet-
rics. The theory of GMM is beautiful: as a
starting point, I heartily recommend Hayashi
(2000).

(compare the above expression with equation
(1.14)).

In this book, we will not make much use of
this property. However, defining 3 in this way

6.2.2 The instruments

I'will not distract the reader here with technicalities on the asymptotics of the IV
estimator; you'll find those in Section 6.A.1. Here, I'm going to focus on two nec-
essary conditions for consistency of 3 and explore what requisites they imply
for the variables we choose as instruments. The two conditions are:

1. %Zwiei 2, 0
2. %inw’i £, A, where A is a k x m matrix with rank k.

Condition 1 is more or less guaranteed by (6.10), that is by w; being exoge-
nous, which basically means “uncorrelated with the structural disturbance” ¢;;
if this requirement isn’t met, the limit in probability of 3 is not 3. End of story.

The implications of condition 2 are more subtle. The first one is: since the
rank of A cannot be k if m < k, you need to have at least as many instruments
as regressors. The good news is, this condition is not as stringent as it may seem
at first sight: the fact that E[x; - €;] is not a vector of zeros does not necessarily
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mean that all its elements are nonzero. Some of the explanatory variables may
be exogenous; in fact, in empirical models the subset of explanatory variables
that may be suspected of endogeneity is typically rather small. Therefore, the
exogenous subset of x; is perfectly adequate to serve as an instrument, obvious
examples being deterministic variables such as the constant. What the order
condition really means is that, for each endogenous explanatory variable, we
need at least one instrument not also used as a regressor.

Clearly, m = k is not a sufficient condition for A to have rank k. For exam-
ple, A may be square but have a column full of zeros. This would happen, for
example, if the corresponding instrument was independent of all regressors x.
The generalisation of this idea leads to the concept of relevance.’ The instru-
ments must not only be exogenous, but must also be related to the explanatory
variables.?

Note a fundamental difference between the order condition and the rele-
vance condition: the order condition can be checked quite easily (all you have
to do is count the variables); and even if you can’t be bothered with checking, if
the order condition fails the IV estimator B is not computable, since X'PwX) is
singular and your software will complain about this.

The relevance condition, instead, is much trickier to spot, since (with prob-
ability 1) % inw’i Will have rank k even if A doesn’t. Hence, if rk (A) < k, you will
be able to compute 3, but unfortunately it will be completely useless as an esti-
mator. It can be proven that, in such an unfortunate case, the limit in probability
of 5’ is not a constant, but rather a random variable, so there’s no way it can be a
consistent estimator for any parameter.

In order to make this point clearer, let me give you an example. Suppose
that the three random variables y;, x; and w; were continuous and scalar and
imagine that that w; is not relevant. The IV estimator would simply be

5= n' YL iy

Y wixg

now focus on the denominator of the expression above: clearly, the probability
that n~! Y, wix; = 01is 0, so the probability that B exists is 1 for any finite 7.
However, if you compute its probability limit, you see the problem very quickly:
if w; is not relevant, then n= 'Y, L WiXi L2oa=0 (which has, of course, rank 0
instead of 1, as we would require). Therefore the denominator will be a nonzero
number which becomes smaller and smaller as n — oco. The reader should easily
see that in this case we can't expect the asymptotic distribution of 3 to collapse
to a point. In this case the estimator is not inconsistent because it converges to

the wrong value, but rather because it doesn’t converge at all.

"In other contexts, what I call the relevance condition is known as the rank condition.

8t should be noted that these properties are, to some extent, contradictory: if X and € are
correlated, any variable perfectly correlated to X could not be orthogonal to €. The trick here is
that W is not perfectly correlated to X.
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Finally, instruments should be as “strong” as possible. The precise mean-
ing of this phrase is the object of Section 6.7.2: here, I'll just mention the fact
that inference with IV models could be quite problematic in finite samples, since
the asymptotic approximations that we ordinarily use may work quite poorly. A
common source of problems is the case of weak instruments: variables that are
relevant, but whose connection with the regressors is so feeble that you need an
inordinately large data set to use them for your purposes. This point will (hope-
fully) become clearer later, in the context of “two-stage” estimation (Section 6.5).

6.3 An example with real data

For this example, we are going to use a great classic from applied labour eco-
nomics: the “Mincer wage equation”; the idea is roughly to have a model like
the following:

vi=2z;B0+eip1+e (6.15)

where y; is the log wage for an individual, e; is their education level and the
vector z; contains other characteristics we want to control for (gender, work ex-
perience, etc). The parameter of interest is §;, which measures the returns to
education and that we would expect to be positive.

The reader, at this point, may dimly recall that we already estimated an equa-
tion like this, in section 1.6. Back then, we did not have the tools yet for interpret-
ing the results from an inferential perspective, but the results were in agreement
with commons sense. Why would we want to go back to a wage equation here?

The literature has long recognised that education may be endogenous, be-
cause the amount of education individuals receive is (ordinarily) decided by the
individuals themselves. In practice, if the only reason to get an education is to
have access to more lucrative jobs, individuals solve an optimisation problem
where they decide, among other things, their own education level. This gives
rise to a an endogeneity problem.’

For the reader’s convenience, I'll reproduce here OLS estimates in Table 6.1.
If education is endogenous, as economic theory suggests may be, then the “re-
turns to education” parameter we find in the OLS output (about 5.3%) is a valid
estimate of the marginal effect of education on the conditional expectation of
wage, but is not a valid measure of the causal effect of education on wages, that
is the increment in wage that an individual would have had if they had received
an extra year of education.

I will now estimate the same equation via IV: the instruments I chose for
this purpose are (apart from the three regressors other than education, which
I take as exogenous) two variables that I will assume, for the moment, as valid
instruments:

9The literature on this topic is truly massive. A good starting point is Card (1999).
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OLS, using observations 1-1917
Dependent variable: 1w

coefficient std. error t-ratio p-value
const 1.32891 0.0355309 37.40 2.86e-230 **x
male 0.175656 0.0143224 12.26 2.42e-33 kx%
wexp 0.00608615 0.000671303 9.066 2.97e-19 **x
educ 0.0526218 0.00202539 25.98 1.02e-127 *xx

Mean dependent var  2.218765 S.D. dependent var 0.363661
Sum squared resid 177.9738 S.E. of regression 0.305015

R-squared 0.297629  Adjusted R-squared 0.296528
F(3, 1913) 270.2107  P-value(F) 3.3e-146
Log-likelihood -441.8652  Akaike criterion 891.7304
Schwarz criterion 913.9645 Hannan-Quinn 899.9118

Table 6.1: Wage equation on the SHIW dataset — OLS estimates

e the individual’s age: the motivation for this is that you don’t choose when
you're born, and therefore age can be safely considered exogenous; at the
same time, regulations on compulsory education have changed over time,
so it is legitimate to think that older people may have spent less time in
education, so there are good chances age may be relevant.

* Parents’ education level (measured as the higher between mother’s and
father’s): it is a known fact that family environment is a powerful factor in
educational choice. Yet, individuals can’t decide on the educational level
of their parents, so we may conjecture that this variable is both exogenous
and relevant.

Table 6.2 shows the output from IV estimation; in fact, gretl (that is what I
used) gives you richer output than this, but I'll focus on the part of immediate
interest.

As you can see from the output, you get substantially different coefficients:
not only you get that the returns from education appear to be quite stronger
(7.9% versus 5.3%), but the other coefficients become larger too. Clearly, the
question at this point becomes: OK, the two methods give different numbers.
But are they significantly different? The tool we use to answer this question is
the so-called Hausman test, which is the object of the next section.

6.4 The Hausman test

So far, we have taken as given that some of the variables in the regressor matrix
X were endogenous, and that, as a consequence, OLS wouldn't yield consistent
estimates of the parameters of interest. But of course, we don't know with cer-
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TSLS, using observations 1-1917
Dependent variable: 1w

Instrumented: educ

Instruments: const male wexp age peduc

coefficient std. error t-ratio p-value
const 0.943553 0.0684539 13.78 2.80e-41 *xx
male 0.182926 0.0149929 12.20 5.02e-33 *x*x
wexp 0.00860475 0.000795375 10.82 1.62e-26 **xx*
educ 0.0792106 0.00449758 17.61 1.85e-64 **x*

Mean dependent var 2.218765 S.D. dependent var 0.363661
Sum squared resid 194.0070 S.E. of regression  0.318457
R-squared 0.292476  Adjusted R-squared 0.291366
F(3, 1913) 144.8624  P-value(F) 1.38e-84

Table 6.2: Wage equation on the SHIW dataset — IV estimates

tainty. One may argue that, if we have instruments whose quality we’re confi-
dent about, we might as well stay on the safe side and use IV anyway. If we do,
however, we may be using an inefficient estimator: it can be proven that, if X is
exogenous, OLS is more efficient that IV under standard conditions.?

The Hausman test!! is based on the idea of comparing
the two estimators and checking if their difference is statis-
tically significant. If it is, we conclude that OLS and IV have
different probability limits, and therefore OLS can’t be con-
sistent, so our estimator of choice has to be IV. Otherwise,
there is no ground for considering X endogenous, and we
may well opt for OLS, which is more efficient.!?

This idea can be generalised: if you have two estima-
tors, one of which (6) is robust to some problem and the
other one isn't (8), the difference § = 6 — 0 should converge
to a non-zero value if the problem is there, and to 0 otherwise. Therefore, we
could set up a Wald-like statistic

JERRY HAUSMAN

H=26 [V(E)]_la; 6.16)

where V() is a consistent estimator of AV[5], and, under some standard reg-
ularity conditions, it can be proven that H is asymptotically y? under the null

0ffyou're curious, the proof is in section 6.A.2.

1 As always, there is some paternity debate; some people call this the Wu-Hausman test; some
others, the Durbin-Wu-Hausman test.

121 know what you're thinking: this is the same logic we used in section 4.2.3 for the White test
for heteroskedasticity. You're right.
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(Hp : plim (6) = 0).13

The problem is, how do you compute V(6)? For the special case when the
non-robust estimator is also efficient, we have a very nice result: the variance of
the difference is the difference of the variances. A general proofis quite involved,
but a for a sketch in the scalar case you can jump to section 6.A.3. In practice, if
you have two estimators, and the situation is the one described in Table 6.3, an
asymptotically valid procedure is just to compute H as

H=[0-6] (AV[A]-AV[0]) " [0-6].

Table 6.3: Hausman Test — special case

if Hy is true if Hy is false

>

CAN and efficient | Inconsistent

1

CAN but not efficient

In our case, the two estimators to compare are ,@ and 3,508 = Ei - B. If we
assume that OLS is efficient (which would be under homoskedasticity), then

Vs =V[B]-VI[3].

2 is a consistent estimator of a2 and we

Since under Hy OLS is consistent, then &
can use the matrix

62 [(X,PWX)_I _ (X’X)_l] :
therefore, .
(B-8) [xPwi - x| (3-5)
&2
In practice, actual computation of the test is performed even more simply,
via an auxiliary regression: consider the model

H= . (6.17)

y=XpB + X~ +residuals. (6.18)
where X = PyX. By the Frisch-Waugh theorem (see section 1.5)
4= [X’MXX]_IX'MXy;
now rewrite the two matrices on the right-hand side of the equation above as

XMxX = XX-XPxX=XX-XX(XX)'XX=

= X% [(XR) - (xx) | (XK) (6.19)
XMxy = Xy-XX(XX)'Xy=(XX)(8-28) (6.20)

13The number of degrees of freedom for the test is not as straightforward to figure out as it may
seem. See below.
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where we repeatedly used the equality X'X = X'PwX = X'X; therefore,
~ 10— [ oo -1 v\ —1 -1 A
¥=&%) &Y -(xx) ] (3-8). 6.21)

A Wald test for v =0 s
W Y EMK] Y

)

&2
so, after performing a few substitutions, you get

B-8) [x%)" - xx)| " (3-9)

W =
62

=H.

Of course, the possibility of X and W having some columns in common com-
plicates slightly the setup above, and X should only contain the projection on W
of the endogenous regressors, because if a regressor is also contained in W its
projection is obviously identical to the original. This means that the degrees of
freedom for the Hausman test is equal to the number of explanatory variables
that are effectively treated as endogenous (that is, are not present in the instru-
ment matrix W).

Example 6.1
Let us go back to the wage equation example illustrated in Section 6.3. While
commenting Table 6.2, I mentioned the fact that my software of choice (gretl)
offers richer output than what I reported. Part of it is the outcome of the Haus-
man test, that compares IV vs OLS:

Hausman test -
Null hypothesis: OLS estimates are consistent
Asymptotic test statistic: Chi-square(l) = 50.2987
with p-value = 1.32036e-12

As you can see, our original impression that the two sets of coefficients were
substantially different was definitely right. The p-value for the test leads to re-
jecting the null hypothesis very strongly. Therefore, IV and OLS have different
limits in probability, which we take as a sign that education is, in fact, endoge-
nous.

Note that the test statistic is matched against a y* distribution with 1 degree
of freedom, because there is one endogenous variable in the regressors list (that
is, education). \

6.5 Two-stage estimation

The IV estimator is also called two-stage estimator (hence the acronyms TSLS,
for Two-Stage Least Squares or 2SLS, for 2-Stage Least Squares).
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The reason is that the 3 statistic may be computed by two successive ap-
plications of OLS, called the two “stages”.!* In the era when computation was
expensive, this was a nice trick to calculate 3 without the need for other soft-
ware than OLS, but seeing IV as the product of a two-stage procedure has other
advantages too.

In order to see what the two stages are, define X = PwX and rewrite (6.14) as
follows:

B =XX) "Xy, (6.22)

The matrix X contains, in the j-th column, the fitted value of a regression of the
j-th column of X on W; the regression

x; = IIw; +u; (6.23)

is what we call the first stage regression. In the second stage, you just regress y
on X: the OLS coefficient equals 3. Note: this is a numerically valid procedure
for computing (3, but the standard errors you get are not valid for inference. This
is because second stage residuals are e = y— X3, which is a different vector from
the IV residuals & = y-X/3. Consequently, the statistic ine does not provide a valid
estimator of g2, which in turn makes the estimated covariance matrix invalid.

Readers who liked the geometrical interpreta- the GIVE estimator can be written as
tion of OLS as a projection might like to con- ~ _ i 1o
sider a different way of writing equation (6.22), y=XB=XXX)" Xy= Qg xY

thatis . . .
The matrix Qg x is square and idempotent (but

3 _ -1/
B=&XX "Xy, not necessarily symmetric) and performs what
from which you have that the fitted values from is called an oblique projection.

So, if the only computing facility you have is OLS (which was often the case
in the 1950s and 1960s), you can compute the IV estimator via a repeated appli-
cation of OLS. Moreover, you don'’t really have to run as many first-stage regres-
sions as the number of regressors. You just have to run one first-stage regression
for each endogenous element of X (recall the discussion in subsection 6.4 on the
degrees of freedom for the Hausman test).

Example 6.2
Let’s estimate the same model we used in section 6.3 via the two-stage method:
the output from the first stage regression is in Table 6.4: as you can see, the de-
pendent variable here is education, while the explanatory variables are the full
instrument matrix W. There is not much to say about the first stage regression,
except noting that the two “real” instruments (age and parents’ education) are
both highly significant. This will be important in the context of weak instru-
ments (see section 6.7.2).

1411 fact, the word Henri Theil used when he invented this method was “rounds”, but subse-
quent literature has settled on “stages”.
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OLS, using observations 1-1917
Dependent variable: educ

coefficient std. error t-ratio p-value
const 5.43051 0.491957 11.04 1.65e-27 *x*x
male -0.137838 0.142828 -0.9651  0.3346
wexp -0.205149 0.0129572 -15.83 3.78e-53 *x*x
age 0.192950 0.0146614 13.16 6.26e-38 **x
peduc 0.386233 0.0207287 18.63 2.47e-T1 **x

Mean dependent var 11.73344 S.D. dependent var 3.598508
Sum squared resid 17665.37 S.E. of regression  3.039607

R-squared 0.287996  Adjusted R-squared 0.286507
F(4, 1912) 193.3448 P-value(F) 2.6e-139
Log-likelihood -4848.785  Akaike criterion 9707.570
Schwarz criterion 9735.363 Hannan-Quinn 9717 .797

Table 6.4: Wage equation on the SHIW dataset — first stage

OLS, using observations 1-1917
Dependent variable: 1w

coefficient std. error t-ratio p-value
const 0.943553 0.0711035 13.27 1.64e-38 x*x
male 0.182926 0.0155733 11.75 8.22e-31 **x*
Wexp 0.00860475 0.000826161 10.42 9.55e-25 *xx*
hat_educ 0.0792106 0.00467166 16.96 3.48e-60 *xx*

SSR = 209.316, R-squared = 0.173936

Table 6.5: Wage equation on the SHIW dataset — second stage
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Once the first stage regression is computed, we save the fitted values into
a new variable called hat_educ. Then, we replace the original education educ
variable with hat_educ in the list of regressors and perform the second stage.
Results are in Table 6.5; a comparison of these results with those reported in
Table 6.2 reveals that:

1. the coefficients are identical;

2. the standard error are not, because the statistic you obtain by dividing the
SSR from the second-stage regression (209.316) by the number of obser-
vations (1917) is not a consistent estimator for o%; therefore, the standard
errors reported in table 6.5 differ from the correct ones by a constant scale
factor (1.0387 in this case).

6.5.1 The control function approach

The method I described in the previous subsection to compute the IV estimator
via two successive stages is the traditional one. A slight variation on that proce-
dure gives rise to what is sometimes called the control function approach.

The main idea can be grasped by considering a minimal model such as

Vi = Xi-p+eg; (6.24)
w; T+ u;, (6.25)

Xi

where equation (6.25) is a “proper” linear model, and Cov[u;,€;] is some real
number, not necessarily 0. If w; is exogenous, the only way x; can be correlated
with ¢; is if Cov[u;,g;] # 0. It is easy to show that OLS will overestimate f§ if
Covlu;, ;] >0 and underestimate it if Cov[u;, £;] < 0. If, however, we defined

vi=¢&; —Elei|uy]

and assumed linearity of E [¢;|u;], we could write €; = u; -0 + v; and recast (6.24)
as
Vi=Xi-f+ui-0+v; (6.26)

If we could observe u;, we wouldn’t need the IV estimator at all, because v; is
orthogonal to both x; and u;,'® so OLS would be our tool of choice to estimate
B and 0 at the same time.

Unfortunately, we don’t observe u; directly, but once we've run the first stage
regression (6.25), we have the first-stage residuals #i;, which hopefully shouldn’t
be too different: after all, (6.25) is a perfectly valid regression model, and the OLS
estimate of 7 is consistent. Therefore, the difference

Ui — i = (x; —wim) — (x; — w;iA) = (A — 1) w;

151 azy writers like myself love the sentence: “the proof is left to the reader as an exercise”.
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should go to 0 asymptotically, since 7 2, 7; on these premises, the possibility of
using #; in place of the “true” u; is tempting.

From a computational point of view, hence, the control function approach
differs from the traditional two-stage method only in the second stage. Once you
have performed the first stage, you use, in the second stage, the residuals from
the first stage and add them as extra explanatory variables to the main equation.
Call E the first-stage residuals and perform an OLS regression of y on X and E
together:

y=XB+E0+v; (6.27)

the estimates we get have a very nice interpretation.
Let’s begin with 3: by the Frisch-Waugh theorem (see section 1.5), the OLS
estimate of 3 is
(X'MgX) ™' X'Mgy;

now focus on the matrix X'Mg:
X'Mg =X -X'Pg =X -XEEE)"'E.
Since, by definition, E = MyX, by substitution we have
X'Mg =X - X' My XX MwX) 'X'My = X' - X'My = X Py;
therefore, the coefficient vector becomes
X'MgX) " 'X' Mgy = X'PwX) 'X'Pwy =

So the OLS estimate of the coefficients associated with X in equation (6.27)
is exactly equal to the IV estimator 8. Warning: just like the two-stage proce-
dure, the control function approach does not yield correct standard errors for 3;
explaining precisely why is far beyond the scope of this book, and readers will
have to content themselves with knowing that this is a consequence of using the
first-stage residuals #i; in place of the true u; series.!®

Moreover, the control function regression gives you, as a nice by-product,
the Hausman test, as an exclusion test for the first-stage residuals: by applying
the Frisch-Waugh theorem again, the OLS estimate of 6 in (6.27) is

6 = [E'MxE] ' E'Myxy;
of course & = My are the OLS residuals. Now use the definition of E as E = MyX

again:
E'Myy = E'é¢ =X'Myeé = X'é - X'Pyé = —-X'Pyé;

161f you really want to know, the problem arises because we are using 7 to compute #; by treat-
ing it as if it was the true 7, and hence ignoring the fact that 7 is an estimate with a non-zero
variance. This is a case of generated regressors; section 6.1 of Wooldridge (2010) is where you
want to start from. Besides, Section 6.2 of the same book contains a much more accurate and
thorough treatment of the control function approach than what I'm giving you here.
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where the last equality comes from the OLS residuals & being orthogonal to X;
therefore

E'Myxy = —X'Pyy +X'PyX- 3 = [X'PyX]| (B-0),
and as a consequence 0 is just
6 = [EMxE] "' [X'PwX] (B-3);

since the matrix [E'MxE] " [X'PwX] is invertible, 8 it can be zero if and only if
B = B. Therefore, the hypothesis kg : @ = 0 is logically equivalent to the null
hypothesis of the Hausman test, and the test can be performed by a simple zero
restriction on . If (as often happens) @ is a scalar, the result of the Hausman test
is immediately visible as the significance ¢-test associated with that coefficient.

A very nice feature of the control function approach is that this approach is
very natural to generalise to settings where our estimator of choice is not a least
squares estimator, which happens quite often in applied work. But this book is
entitled “basic econometrics”, and I think I'll just stop here.

OLS, using observations 1-1917
Dependent variable: 1w

coefficient std. error t-ratio p-value
const 0.943553 0.0647377 14.58 1.04e-45 *x*x
male 0.182926 0.0141790 12.90 1.42e-36 **x
wexp 0.00860475 0.000752195 11.44 2.34e-29 **x
educ 0.0792106 0.00425341 18.62 2.89e-7T1 *%x%
resid -0.0341349 0.00481934 -7.083 1.98e-12 **x

SSR = 173.423, R-squared = 0.315587

Table 6.6: Wage equation on the SHIW dataset — control function

Example 6.3
Using the SHIW data again, after storing the residuals from the first-stage regres-
sion (see Table 6.4) under the name resid, you can run an OLS regression like
the one in Table 6.1, with resid added to the list of regressors. The results are in
Table 6.6. Again, the coefficients for the original regressors are (3 and again, the
standard errors are not to be trusted (they’re a bit smaller than the correct ones,
listed in Table 6.2). The t-test for the resid variable, instead, is interpretable as
a perfectly valid Hausman test, and the fact that we strongly reject the null again
is no coincidence. |
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6.6 The examples, revisited

6.6.1 Measurement error

A typical way to use IV techniques to overcome measurement error is the usage
of a second measurement of the latent variable, whose contamination error is
independent of the first one. In formulae: together with the two equations (6.1)
and (6.2)

Vi xX;B+e;

Xi

X; +1;
suppose you have a third observable variable w; such that
w; =X} +v;
If n; and v; are uncorrelated, then w; is a valid instrument and the statistic

5: Y Wwiyi

> WiX;

is a consistent estimator of f.

One famous application of this principle is provided in Griliches (1976), a
landmark article in labour economics, where the author has two measurements
of individual ability and uses one for instrumenting the other.

6.6.2 Simultaneous equation systems
Consider again equations (6.4)—(6.5):

qr = Qo—a1pr+u;

Pt Bo+P1G: + vy

As we proved in section 6.1.2, the systematic part of these two equations are not
conditional means, so there’s no way we can estimate their parameters consis-
tently via OLS.

On the other hand, we can use (6.7) to deduce that E [ pt] = m; clearly, the
parameter 1 can be estimated consistently very simply by taking the average of
p: (or regressing p; on a constant, if you will). The same holds for E[g;] = .

Can we use these two parameters to estimate the structural ones? The an-
swer is no: the relationship between the (¢, 1) pair and the structural parame-
ters is
nozao—ﬁoal mzﬁo*‘ﬁlao,

1+ ﬁuxl 1+ ,61 a1
which is a system of 2 equations in 4 unknowns; as such, it has infinitely many
solutions. This is exactly the under-identification scenario we analysed in sec-
tion 2.5.
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Let us now consider this example in greater generality: a system of linear
equations can be written as
Fyt = th + €&y (6.28)

the y; vector contains the g endogenous variables, while x; is an m-vector hold-
ing the exogenous variables. The matrix I' (assumed non-singular) is g x g and
Bis a g x m matrix. In the demand-supply example,

1 aq (o))
I'=
[ —pr 1 Bo

Equation (6.28) is known as the structural form of the system, because its pa-
rameters have a behavioural interpretation and are our parameters of interest.
By pre-multiplying (6.28) by I'"!, you get the so-called reduced form:

B=

Ve =IIx; +uy, (6.29)

where I1=T"!Bandu, = I'"'e,. In our example, the matrix ITis a column vector,
containing ng and 7.

If x; is exogenous, then Cov[x;,&], so the correlation between x; and u; is
zero; hence, OLS is a consistent estimator for the parameters of the reduced
form. However, by postmultiplying (6.29) by x|, you get:

!/ !/ /
yvix, = XX, +upX,,

which implies E[y;x;| = IIE [x,X}]|. Ordinarily, this matrix should not contain
zeros; if variables were centred in mean, it would be the covariance matrix be-
tween the vector y; and the vector x;. Therefore, each element of x; is correlated
with each y; despite being uncorrelated with €;. In other words, Xx; is both rele-
vant and exogenous and, as such, is a perfect instrument.

In the example above, x; contains only the constant term, and the reduced

form looks like:
o
m

q:
14

it should be clear where under-identification comes from: in the demand equa-

tion you have 2 regressors (the constant and p;) but only one instrument (the

constant), and the same goes, mutatis mutandis, for the supply equation.
Consider now a different formulation, where:

1+uy

qr = Qo—a1prtazyr+ Uy (6.30)
Pt Bo + P14 + P2my + vy, (6.31)

where we use the two new variables y;, the per-capita income at time ¢ and m;,
the price of raw materials at time ¢; assume both are exogenous.

In this case, both equations are estimable via IV, because we have three re-
gressors and three instruments for each (the same for both: constant, y; and
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m;). In the context of simultaneous systems, the order condition I stated in sec-
tion 6.2.2 is often translated as: for each equation in the system the number of
included endogenous variables cannot be greater than the number of excluded
exogenous variables. I'll leave it to the reader to work out the equivalence.

6.7 Are my instruments OK?

A fundamental requirement for the whole IV strategy is that the variables that
we choose to use as instruments are (i) exogenous and (ii) relevant. Of course,
we cannot assume that they are just because we say so, and it'd be nice to have
some way of testing these assumptions. It turns out that neither property can be
verified directly, but we do have statistics that we can interpret in a useful way.

6.7.1 The Sargan test

The Sargan test is often interpreted as a test for exogeneity of the instruments,
but in fact things are a bit more subtle.

Exogeneity, in our context, means uncorrelatedness between the instruments
w; and the structural disturbances €;. Assume we are in the simplest case, where
Vle] = 0®I and %W’ W - B. If the structural disturbances £; were observable, a
test would be straightforward to construct: under Hy,

—We— 4(0, 0c°B
and it can be proven that, under Hy,

e'Pwe d
5 Ko (6.32)

where m is the size of w;. Unfortunately, € is unobservable, and therefore the
quantity above is not a statistic and cannot be used as a test.

The idea of substituting disturbances with residuals like we did in section
6.5.1 takes us to the Sargan test. Its most important feature is that this test has
a different asymptotic distribution than (6.32), since the degrees of freedom of
the limit )(2 is not m (the number of instruments), but rather m — k, where k is
the number of elements in 3: in other terms, the over-identification rank (see
section 6.2.1). In formulae,

— Xk (6.33)

This result may appear surprising at first. Consider, however, that under ex-
actidentification the numerator of S is identically zero,” so, in turn, the S statis-
tic is identically 0, not a y2, variable. Can this result be generalised?

17Blitz proof: if m = k, then B = (W'X)"'W'y. Therefore, Pw& = Pw(y — X3); however, observe
that PwX3 = W (W'W) " 'WX(W'X) "Wy = Pwy. As a consequence, Py& = Pyy — Pyy = 0.
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Take the conditional expectation E [ y;|w; |; assuming linearity, if w; is exoge-
nous we could estimate its parameters via OLS in a model like

Vi =WiT + Uj; (6.34)

in the simultaneous system jargon, equation (6.34) would be the reduced-form
equation for y;. To see how the parameters 7 relate to 3, write the first-stage
equation (6.25) in matrix form as

X=WII+E

so that the i-th row of X can be written as x; = w'IT + €’; now substitute in the
structural equation:

Vi :x'lﬂ+£i:w’iﬂﬁ+(£i+e;ﬂ); (6.35)

clearly, the two models (6.34) and (6.35) become equivalent only if 7 = II3; in
fact, the expression II[3 can be seen as a restricted version of 7r, where the con-
straint is that = must be a linear combination of the columns of II (or, more
concisely, that 7 € Sp (I)).

The Sargan test is precisely a test for those restrictions: this begs three ques-
tions:

1. how do we compute the test statistic?
2. What is its limit distribution?
3. Which interpretation must be given to a rejection?

Number 1 is quite easy: the IV residuals € are the residuals from the restricted
model. All we have to do is apply the LM principle (see Section 3.6.1) and regress
those on the explanatory variables from the unrestricted model. Compute nR?,
and your job is done. If you do, you end up exactly with the statistic I called S in
equation (6.33).

As for its limit distribution, the fact that the number of degrees of freedom of
the y? limit distribution is m— k can be intuitively traced back to the fact that the
number of parameters of the unrestricted model (6.34) is m, while the number
of the restricted parameters is k. Therefore, the number of constraints is m—k.'8

Now we can tackle point 3: the null hypothesis in the Sargan test is that the
m relationships implicit in the equation 7w = I13 are non-contradictory; if they
were, it would mean that at least one element of the vector E [w;¢;] is non-zero,

18 A more rigorous argument goes as follows: if the restriction is true, then Pyy7r = 7, or, equiva-
lently, Mpy7 = 0. Since the rank of Myy is m — k, we can write

Mpr=UV'm=0

where V and U are matrices with k rows and m — k columns (see section 1.A.3). So, the null
hypothesis implicit in the restriction is Hy : V't = 0, which is a system of m — r constraints.
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and therefore at least one instrument in not exogenous. Unfortunately, the test
cannot identify the culprit.

To clarify the matter, take for example a simple DGP where y; = x; f+¢; and
we have two potential instruments, w; ; and w; ;. We can choose among three
possible IV estimators for f:

1. asimple IV estimator using w; ; only (call it 5;);
2. asimple IV estimator using w, ; only (call it §,);

3. the GIVE estimator using both w, ; and w»; (call it B;2).

Suppose f; turns out to be positive (and very significant), and f, turns out to
be negative (and very significant); clearly, there must be something wrong. At
least one between 1 and f, cannot be consistent. The Sargan test, applied to
the third model, would reject the null hypothesis and inform us that at least one
of our two instruments is probably not exogenous. Hence, ;2> would be cer-
tainly inconsistent, and we'd have to decide which one to keep between ; and
B2 (usually, on the basis of some economic reasoning). If, on the other hand, we
were unable to reject the null, then we would probably want to use ., for effi-
ciency reasons, since it’s the one that incorporates all the information available
from the data.

In view of these features, the Sargan test is often labelled overidentification
test, since what it can do is, at most, finding whether there is a contradiction
between the m assumptions we make when we say “I believe instrument i is
exogenous”.

Sargan over-identification test -
Null hypothesis: all instruments are valid

Test statistic: LM = 0.138522
with p-value = P(Chi-square(1) > 0.138522) = 0.709755

Table 6.7: Wage equation — Sargan test

Example 6.4
Table 6.7 is, again, an excerpt from the full output that gretl gives you after IV
estimation (the main table is 6.2) and shows the Sargan test for the wage equa-
tion we've been using as an example; in this case, we have 1 endogenous vari-
able (education) and two instruments (age and parents’ education), so the over-
identification rank is 2 — 1 = 1. The p-value for the test is over 70%, so the null
hypothesis cannot be rejected. Hence, we conclude that our instruments form a
coherent set and the estimates that we would have obtained by using age alone
or parents’ education alone would not have been statistically different from one
another. Either our instruments are all exogenous or they are all endogenous,
but in the latter case they would all be wrong in exactly the same way, which
seems quite unlikely. |
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6.7.2 Weak instruments

The relevance condition for instruments looks deceptively simple to check: in-
struments are relevant if the matrix A = E [x;w,] is full-rank. Of course, this ma-
trix is quite easy to estimate consistently, so in principle testing for relevance is
straightforward.

In fact, the point above is subtler than it looks: areal number) break down. Constructing a test
estimating the rank of a matrix is not exactly for the hypothesis rk (A) = m is possible, but re-
trivial, because the rank is an integer, so most quires some mathematical tools I chose not to
of our intuitive ideas on the relationship be- include in this book. The interested reader may
tween an estimator and the unknown param- want to google for “canonical correlations”.
eter (that make perfect sense when the latter is

The practical problem we are often confronted with is that, although an in-
strument is technically relevant, its correlation with the regressors could be so
small that finite-sample effects may become important. In this case, that instru-
ment is said to be weak.!®

The problem is best exemplified by a little simulation study: consider the
same model we used in section 6.5.1:

Vi = Xi-fteg; (6.36)
X, = W;-m+u; (6.37)
€ 1 075

u; ‘/V(o’ 0.75 1 )

with the added stipulation that w; ~ U(0,1). Of course, equation (6.36) is our
equation of interest, while (6.37) is the “first stage” equation. Since €; and u;
are correlated, then x; is itself correlated with ¢;, and therefore endogenous;
however, we have the variable w;, which meets all the requirements for being
a perfectly valid instrument: it is exogenous (uncorrelated with ;) and relevant
(correlated with x;), as long as the parameter 7 is nonzero.

However, if 7 is a small number the correlation between x; and w; is very
faint, so w; is weak, despite being relevant. In this experiment, the IV estimator
is simply
i wiyi

n
i=1

B=WX 'Wy= :
Wi X

if you scale the denominator by %, it'’s easy to see that its probability limit is
non-zero; however, its finite-sample distribution could well be spread out over
a wide interval of the real axis, so you can end up dividing the numerator by

19Compared to the rest of the material contained in this book, inference under weak instru-
ments is a fairly recent strand in econometric research. A recent review article I heartily recom-
mend is Andrews et al. (2019), but a fairly accessible introductory treatment can also be found
in Hill et al. (2018), Chapter 10. Chapter 12 of Hansen (2019) is considerably more technical, but
highly recommended.
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an infinitesimally small number and have an inordinately large statistic (not to
mention the possibility of getting a wrong sign). Let me stress that this is a finite-
sample issue: asymptotically, there are no problems at all; but since all we ever
have are finite samples, the problem deserves consideration.

In order to show you what the consequences are, I generated 10000 artifi-
cial samples with 400 observations each and ran OLS and IV on equation (6.36),
settingf=1and 7 =1.

The results of the experiment are plotted in the left picture in Figure 6.1. If
you want to repeat the experiment on your PC, the gretl code is at subsection
6.A.4. As you can see, everything works as expected: OLS has a smaller vari-
ance, but is inconsistent (none of the simulated f gets anywhere near the true
value f = 1); IV, on the other hand, shows larger dispersion, but its distribution
is nicely centred around the true value.

—_—

0.8

N
& 0 A& b N B o =N

0.6

n=1 n=1/3

Figure 6.1: Weak instruments: simulation study

If instead you set = = 1/3, the simulation gives you the results plotted in the
right-hand panel. Asymptotically, nothing changes: however, the finite-sample
distribution of f is worrying. Not only its dispersion is rather large (and there are
quite a few cases when the estimated value for § is negative): its distribution is
very far from being symmetric, which makes it questionable to use asymptotic
normality for hypothesis testing. I'll leave it to the reader to figure out what
happens if the instrumental variable w; becomes very weak, which is what you
would get by setting 7 to a very small value, such as = = 0.1.

More generally, the most troublesome finite-sample consequences of weak
instruments are:

* the IV estimator is severely biased; that is, the expected value of its finite
sample distribution may be very far from the true value 3;*°

* even more worryingly, the asymptotic approximations we use for our test
statistics may be very misleading.

201 should add “provided it exists”; there are cases when the distribution of the IV estimator has
no finite moments.
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How do we spot the problem? Since this is a small-sample problem, it is not
easy to construct a test for weak instruments: what should its null hypothesis be,
precisely? What we can do, at most, is using some kind of descriptive statistic
telling us if the potential defects of the IV estimator are likely to be an actual
problem for the data we have.

For the simplest case, where you only have one endogenous variable in your
model, the tool everybody uses is the so-called “first-stage F test”, also labelled
partial F statistic. You compute it as follows: take the first-stage regression
(6.23) and perform an F-test (see Section 3.6.1) for the exclusion of the “true”
instruments (that is, the elements of w; not contained in x;). The suggestion
contained in Staiger and Stock (1997) was that a value less than 10 could be taken
as an indication of problems related to weak instruments.

Example 6.5
The weak instrument test for the example on the SHIW data we've been using in
this chapter gives:

Weak instrument test -
First-stage F-statistic (2, 1912) = 271.319
Critical values for desired TSLS maximal size, when running
tests at a nominal 5% significance level:

size 10% 15% 20% 259,
value 19.93 11.59 8.75 7.25

Maximal size is probably less than 10%

The first-stage F statistic for the wage equation, as reported by gretlis 271.319,
which is way above 10, so we don’t have to worry. \

The generalisation of this statistic is the so-called Cragg-Donald statistic,
whose description and interpretation is somewhat more involved, and I'll just
point you to the bibliographic references I made at the start of this section.

Finally, a warning: problems similar to weak instruments may also arise
when the overidentification rank becomes large: the over-identification range
is usually a rather small number, but in some contexts it could happen that we
have an abundance of instruments. Common sense dictates that we should use
as much information as we have available, but in finite samples things may not
be so straightforward. A thorough analysis of the problem quickly becomes very
technical, so I'll just quote Hall (2005), which contains an excellent treatment of
the issue.

There is a far more complex relationship between the behaviour of
the [IV] estimator and the properties of the instrument vector in fi-
nite samples than is predicted by asymptotic theory.
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6.A.1 Asymptotic properties of the IV estimator

The limit in probability of the IV estimator (see 6.2.1 for its derivation)

B = X'PywX) X Pyy,

can be calculated by rewriting the equation above as a function of statistics for
which the probability limits can be computed easily. Clearly, some regularity
conditions (such as the observations being iid, for example) are assumed to hold

so that convergence occurs; we'll take

these as given and assume that sample

moments converge in probability to the relevant moments.
Given the linear model y; = x;ﬂ + £;, we assume that:

T
t=1

1 _XW
1 iy = X\

X W),

2, A, whererk (A) = k;

4 . . .
2. %ZITZI wWW, = %" -2, B, where B is invertible;

p

1T _ We .
3. gl Wil ="F —0;

then 3 = X'PwX) ' X'Pywy 2, 3. The proof is a simple application of Slutsky’s

theorem:
B = B+XPwX) XPye-=
! I -1
= oS
n n
so that

BL.8+[AB' A AB . 0=3.

wX

n

We
n

X'wW

n

wWWw

n

ISR

I )

(6.38)

Itis instructive to consider the role played by the ranks of A and B; the matrix
B must be invertible, because otherwise AB~! A’ wouldn't exist. Since B is the
probability limit of the second moments of the instruments, this requirement is
equivalent to saying that all instruments must carry separate information, and

cannot be collinear.

Note that the requisite is only that the instru-
ments shouldn’t be collinear: the stronger req-
uisite of independence is not needed. As a
consequence, it is perfectly OK to use nonlin-
ear transformations of one instrument to create
additional ones.

For example, if you have a variable w; that
you assume independent of ¢;, you can use
as instruments w;, w%,log(wi), ... (provided of

course that the transformed variables have fi-
nite moments).

This strategy is a special case of something
called identification through nonlinearity; al-
though it feels a bit like cheating (and is
frowned upon by some), it is perfectly legiti-
mate, at least asymptotically, as long as each
transformation carries some extra amount of
information.
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The rank of 4, instead, must be k for [AB~! A'] to be invertible. This means
that instruments w; must be relevant (see Section 6.2.2) for all the regressors
x;. If [AB71A'] is not invertible, then the probability limit in (6.38) does not
exist. If, instead, it’s invertible, but very close to being singular (as in the case
of weak instruments — see Section 6.7.2), then its inverse will be a matrix with
inordinately large values. This is mainly a problem for the distribution of 3: if
we also assume

e d
4. \/iﬁZthlwtut = % — H(0,Q);

then /n(3 - ) 4, H(0,%), where
>=[AB'A| ' ABT'QB A [AB7' A7,

In the standard case Q = 6* B (from the homoskedasticity assumption E [e€'[W] =
021), and therefore

VaB-/ - 4 (0,0%[AB7 A7), 6.39)
So the precision of the IV estimator is severely impaired any time the matrix

[AB~1A'] is close to being singular.
The last thing is proving that 62 is consistent: from

you get

and therefore

By taking probability limits,
1
2= 0Q0+2-0\+02=0?
n

where Q = plim (5%3() and A = plim (’%) Note that 6 is consistent even though
A # 0. Consistency of 62 is important because it implies that we can use the
empirical counterparts of the asymptotic covariance matrix in equation (6.39)
and use 6% X'PwX) ! as a valid covariance matrix for Wald tests.
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6.A.2 Proof that OLS is more efficient than IV

In the OLS vs IV case, the proof that OLS is more efficient than IV if X is exoge-
nous can be given as follows: given the model y; =x/3 + ¢;, define the following
quantities:

!

. (XX .
Q= phm(T) A= pllm(

!

wW'X )
) B:phm(
n

’

W'W)
n

under homoskedasticity, we have that AV[3] = 02Q™! (see section 3.2.2) and
AV([B] = 62[A'B71A] ™" (see 6.A.1), where 02 = V[g;]. In order to prove that
AV[B] - AV (] is positive semi-definite, we re-use two of the results on positive
definite matrices that we employed in section 4.A.2:

1. if Q and P are invertible and Q — P is psd, then P~! — Q™! is also psd;
2. if Qis psd, then P'QP is also psd for any matrix P.

Begin by applying property 1 above and define
A=o?[av[B] T -av[8] | = Q- AB T 4

Since o2 > 0, it is sufficient to prove that A is psd. Now define the vector zZ, =
/

[x; w;] and consider the probability limit of its second moments:
. (ZZ) [Q A
c=pim(%7)=[3 3]

where C is clearly psd; now define H as
H=[I -A'B7!]

so, by property 2, the product HCH' is also psd; but

‘11 _ap11]Q A
HCH'=[1 -AB']|Y

—Bl‘lA] =Q-AB A=A,
and the proof is complete.

6.A.3 Covariance matrix for the Hausman test (scalar case)

Suppose we have two consistent estimators of a scalar parameter 6; call them 8
and 0; assume also that the joint asymptotic distribution of 6 and 6 is normal.
Then,
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Consider now the statistic (1) = A0 + (1 — 1)8, where A € R. Obviously, 8(A) is
also a consistent estimator for any A:

O 220+ (1-1)0=0.
Its asymptotic variance is

a b

AV[OW]=(A 1-1)- b

1-1

( A ):A2a+2/1(1—/1)b+(1—/1)20.

If you choose A so that AV [#(1)] is minimised, you get

— C_b .
T a-2b+c’

*

Now, if 0 is efficient, the optimal value of A* must be 1, because §(1*) cannot
be more efficient than 0, so the two statistics must coincide. Butif 1* = 1, then
a = b. Therefore, if 0 is efficient, the joint asymptotic covariance matrix is

é a da
AV[ =157
SO
AV[H-0]=(1 -1) Z ‘c’ .(_i):c—azAV[é]—AV[é].

6.A.4 Hansl script for the weak instrument simulation study

function matrix run_experiment(scalar pi)
# function to generate the simulations

scalar rho = 0.75 # correlation betweeen u and eps
series w = uniform () # generate the instrument
scalar H = 10000 # number of replications

matrix b = zeros(H, 2) # allocate space for the statistics

loop h =1 .. H ——quiet
# the structural disturbances (unit variance)
series eps = normal()
# the reduced form disturbances (unit variance,
# correlated with eps by construction)
series u = rho * eps + sqrt(l-rho”~2) * normal/()
# generate x via the first-stage equation
series x = pi*w + u
# generate y via the structural equation
series y = X + eps
# estimate beta by OLS
ols y x ——quiet
# store OLS estimate into the 1st column of b
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b(h,1] = $coeff
# estimate beta by IV
tsls y x ; w ——quiet
# store IV estimate into the 2nd column of b
b(h,2] = $coeff
endloop

cnameset(b, strsplit("OLS IV")) # set column names for matrix b
return b
end function

##t#
### main
H###

set verbose off
nulldata 400
set seed 1234 # set random seed for replicability

# run experiment with pi = 1.0 and plot results
bl10 = run_experiment(1.0)

boxplot ——matrix=b10 —-output=display

# run experiment with pi = 0.333 and plot results
b03 = run_experiment(1/3)

boxplot ——matrix=b03 --output=display
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