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Lecture 1

Matrix Representation of OLS

Teng Wah Leo

1 Short Revision of Matrix Algebra

From our discussion of multiple variable ordinary least squares regression, we saw how

complicated the calculations can get. If we were to write a program line by line, you

can imagine how many lines of solution we would have to describe for the computer to

calculate. The question then is whether we can express the solution more succinctly. The

answer is in linear algebra, or matrix algebra. Before we describe the solution, let us

revise some matrix algebra. From here on, when we describe a vector of elements, we

mean a column vector. For example, let a be a n element vector, then

a =


a1

a2
...

an


Note that the usual rules of simple algebra still holds. What we will be discussing are

some operations we do not see in simple algebra.

1. (A+B) + C = A+ (B + C)

2. (AB)C = A (BC)

3. A (B + C) = AB + AC

4. IA = AI = A, where I is the identity matrix (matrix with ones on the diagonal,

and zero off the diagonal).
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1.1 Transpose

Let A, B and C be matrices. A transpose of a matrix is where we change the first row of

a matrix into the first column, the second row into the second column, ..., and is denote

with ′. Some of the properties of the operation are

1. (A′)′ = A

2. (A+B)′ = A′ +B′

3. (AB)′ = B′A′

4. A′ = A, if A is a symmetric matrix where a matrix is a symmetric matrix when the

off diagonal elements above the diagonal are the same as those below the diagonal.

1.2 Matrix Multiplication

Let a be as described above, and b be a similar n element vector. Then

a′b =
[
a1 a2 . . . an

]

b1

b2
...

bn

 =
n∑
i=1

aibi

What we are doing above is multiplying the corresponding elements of each the vectors,

that is ith element of a with the ith element of b. For example,

a′ =
[
a1 a2 . . . an

]
And

(a′)
′
= a

1.3 Scalar, Dot, or Inner Product

What do we do if we multiply matrices together? This leads to inner product, and is

described as follows; Let A and B be m × n matrix (m rows and n columns) and n × p
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matrix (n rows with p columns) respectively. That is let

A =


ã1

ã2
...

ãm

 =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn



B =
[
b̃1 b̃2 . . . b̃p

]
=


b11 b12 . . . b1p

b21 b22 . . . b2p
...

...
. . .

...

bm1 bm2 . . . bmp


Then the product of AB is

A(m×n)B(n×p) = C(n×p) =


ã1b̃1 ã1b̃2 . . . ã1b̃p

ã2b̃1 ã2b̃2 . . . ã2b̃p
...

...
. . .

...

ãmb̃1 ãmb̃2 . . . ãmb̃p



=


∑n

i=1 a1ibi1
∑n

i=1 a1ibi2 . . .
∑n

i=1 a1ibip∑n
i=1 a2ibi1

∑n
i=1 a2ibi2 . . .

∑n
i=1 a2ibip

...
...

. . .
...∑n

i=1 amibi1
∑n

i=1 amibi2 . . .
∑n

i=1 amibip


1.4 Matrix Addition

a+ b =


a1

a2
...

an

+


b1

b2
...

bn

 =


a1 + b1

a2 + b2
...

an + bn


1.5 Geometric Interpretation of Matrices and Vectors

1. Vectors can be depicted as directed line segments from the origin, and terminates

at the point described by the coordinates.

2. Parallelogram law for the addition of vectors.
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3. A vector in Rn can always be represented by a linear combination of (n× 1) vectors.

Such a vector is called basis, and they are not unique. All that is required is for

each of the vectors used in the linear combination to point in different directions.

4. A vector space is a collection of vectors with the following properties: 1. If v1 and

v2 are any two vectors in the space, then v1 + v2 is in the space. 2. If v is in the

space, and λ is a scalar constraint, then λv is in the space.

5. Two vectors are said to be linearly independent if the only solution to

λ1a+ λ2b = 0

where a and b are two vectors, and λ1 and λ2 are scalars such the λ1 = λ1 = 0.

6. The set of vectors in Rn that can be used as a linear combination to represent

another vector in the vector space is call the spanning set. The set of vectors

unlike basis need not be linearly independent, therefore, the spanning set can be

very large.

7. We can always take a subset of a basis from the set of basis describing a space

in Rn to describe another space. For example, we can always take k < n basis to

span a new space, which we call a hyperplane. Another example is when we take

2 basis from R
3, we get a plane.

8. Each vector in Rn may be expressed as a unique linear combination of some appro-

priate set of n linearly independent vectors.

9. Let a and b be two vectors, then they are orthogonal (at right angles to each other)

if and only if a′b = 0

1.6 Rank of a Matrix

1. The maximum number of linearly independent rows is equal to the maximum num-

ber of linearly independent columns. The number is the rank of the matrix, denoted

by ρ (A).

2. For Am×n, ρ (A) ≤ min (m,n)

3. ρ (A) = ρ (A′)
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4. If ρ (A) = m = n, which implies that A is nonsingular, then a unique inverse A−1

exists.

5. ρ (A′A) = ρ (AA′) = ρ (A)

6. ρ (AB) ≤ min [ρ (A) , ρ (B)]

1.7 Matrix Inverse

We will now cover the calculation of an inverse, but note the rules (assuming all matrices

below are nonsingular);

1. (AB)−1 = B−1A−1

2. (A−1)
−1

= A

3. (A′)−1 = (A−1)
′

4. |A−1| = 1
|A|

5. The inverse of an upper (lower) triangular matrix is also an upper (lower) triangular

matrix.

6. Inverse of a block diagonal matrix; Let A be

A =

[
A11 0

0 A22

]

A−1 =

[
A−111 0

0 A−122

]

7. A is a m by n matrix, and let B be another matrix. A kronecker product is

A⊗B =


a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
. . .

...

am1B am2B . . . amnB


then

(A⊗B)−1 = A−1 ⊗B−1
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1.8 Quadratic Forms & max and min

A quadratic formulation in the Rn space is a real value function (you can say it is a matrix

counterpart to a simple linear equation) of the form,

F (x1, x2, . . . , xn) =
∑
i≤j

αijxixj

where i, j = {1, 2, . . . , n}. This function can be written in matrix form as

F (x) = x′Ax

where A is symmetric matrix. Just as in your experience with linear equation, when

optimizing, you need to know whether the function you are working on is concave or

convex, so too do you need a similar concept in Rn.

Consider a single variable equation, y = αx2. The second order derivative is just 2α,

and as you should recall, you would be maximizing if α < 0, and minimizing if α > 0.

If the equation conforms to the former, we say that it is positive definite, and in the

latter case it is negative definite. Of course the equation need not be that “perfect”,

and an intermediate concept exists. This occurs when the second order derivatives are ≥ 0

and ≤ 0, and they correspond with positive semidefinite and negative semidefinite.

But this discussion relates to simple functional equations. How about in matrices? What

are the rules, or truths that will help you figure out whether you are maximizing or

minimizing?

We will be dealing with principally symmetric matrices, and consequently will be

defining the concepts with reference to them. For a k × k symmetric matrix A, and x

being a k × 1 column vector, it is,

1. Positive Definite if x′Ax > 0,∀x 6= 0 in Rk,

2. Positive Semi-Definite if x′Ax ≥ 0, ∀x 6= 0 in Rk,

3. Negative Definite if x′Ax < 0,∀x 6= 0 in Rk,

4. Negative Semi-Definite if x′Ax ≤ 0,∀x 6= 0 in Rk, and

5. Indefinite if x′Ax > 0 for some x ∈ Rk, and x′Ax < 0 for other x ∈ Rk.

Further, note that a matrix that is positive (negative) definite is also by definition a

positive (negative) semi-definite matrix.
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There is however a simple test for the definiteness of a quadratic form or a symmetric

matrix by focusing on the matrix A. However, before we describe this test, we need to

know additional notation about matrices. For a n×n matrix A, a submatrix or the subset

of the matrix A that is obtained from the elimination of n− k rows and the same n− k
columns is known as a kth order principal submatrix of A. The determinant of a

k × k kth order principal submatrix is known as a kth order principal minor of A. As

an example, consider a 3× 3 matrix such as that below,

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


In the case above there are 3 first order submatrix, 3 second order submatrix, and 1 third

order submatrix with the same number of principal minors for each order of submatrix.

The three first order principal minors are, |a11|, |a22| and |a33|. The three second order

principal minors are,

1. ∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣
2. ∣∣∣∣∣ a11 a13

a31 a33

∣∣∣∣∣
3. ∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣
Finally, with reference to the same n × n matrix. The kth order principal submatrix

of A obtained by deleting the last n − k rows and columns from the matrix A is called

the kth order leading principal submatrix, and the determinant of this submatrix

is known as the kth order leading principal minor. Typically, the leading principal

submatrix is denoted by the matrix name and including its order as a subscript. Refering

to the 3× 3 example, the 3 leading principal minors are,
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1. |A1| = |a11|

2.

|A2| =

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣
3.

|A3| =

∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣
Theorem 1 For a n× n symmetric matrix A, we have the following,

1. A is positive definite if and only if all the n leading principal minors are strictly

positive.

2. A is negative definite if and only if its n leading principal minors alternate in sign

as follows, |A1| < 0, |A2| > 0, |A3| < 0, . . . . All more succinctly (−1)k|Ak| where

k = {1, 2, . . . , n}.

3. When the matrix A does not abide by the above rules or signs, it is said to be a

indefinite matrix.

A possibility that the matrix may fail, in some sense marginally, is when one or some

of the leading principal minors are equal to zero. In those cases, we have to check all the

principal minors as opposed to just the leading principal minors.

Theorem 2 For a n× n symmetric matrix A,

1. A is positive semi-definite if and only if every principal minor is greater than or

equal to zero, ≥ 0.

2. A is negative semi-definite if and only if every principal minor of odd order is less

than or equal to 0, and every principal minor of even order is greater than or equal

to 0.

3. If neither of the above is fulfilled, A is indefinite.
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Consider the 3× 3 matrix again,

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


So A is positive semi-definite if and only if |a11| ≥ 0, |a22| ≥ 0 and |a33| ≥ 0, and for the

three second order principal minors,

1. ∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣ ≥ 0

2. ∣∣∣∣∣ a11 a13

a31 a33

∣∣∣∣∣ ≥ 0

3. ∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣ ≥ 0

And finally that the determinant of the entire matrix is ≥ 0.

The same matrix is negative semi-definite if and only if, |a11| ≤ 0, |a22| ≤ 0 and

|a33| ≤ 0, and for the three second order principal minors,

1. ∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣ ≥ 0

2. ∣∣∣∣∣ a11 a13

a31 a33

∣∣∣∣∣ ≥ 0

3. ∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣ ≥ 0

And that the determinant of the entire matrix is ≤ 0.
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1.9 Matrix Differentiation

Let

f (b) = a′(1×k)b(k×1)

The
∂a′b

∂b
=
∂b′a

∂b
= a(k×1)

If

f (b) = b′Ab

if A is symmetric
∂b′Ab

∂b
= 2Ab
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2 Ordinary Least Squares Revisited

Our typical k variable regression is written as follows,

yi = b0 + b1xi1 + b2xi2 + ...+ bkxik + ei

Or in the population form

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi

You should realize that this could easily be represented in matrix form for all the n

observations. That is

y1 = b0 + b1x11 + b2x12 + · · ·+ bkx1k + e1

y2 = b0 + b1x21 + b2x22 + · · ·+ bkx2k + e2
...

yn = b0 + b1xn1 + b2xn2 + · · ·+ bkxnk + en

can be written as

y = Xb + e (1)

where y is a vector of yi, X is the matrix of variables where the rows are for each

observation, and each column is for a particular variable in question, b is the vector of

slope coefficients, and e is a vector of residuals or idiosyncratic error terms.
y1

y2
...

yn

 =


x11 x12 . . . x1k

x21 x22 . . . x2k
...

...
. . .

...

xn1 xn2 . . . xnk




b1

b2
...

bn

+


e1

e2
...

en


For the population form, we write

y = Xβ + ε (2)

Where β and ε are column vectors of the slope coefficient and the population error terms.

Recall that we would like to minimize the sum of square residuals. While that would

be equivalent to

min
b

e′e = min
b

(y −Xb)′ (y −Xb)

= min
b

(y′y − 2b′X ′y + b′X ′Xb)
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Therefore the first order condition is

∂e′e
∂b

= −2X ′y + 2X ′Xb = 0

⇒ X ′Xb = X ′y

⇒ b = (X ′X)−1X ′y

(3)

And we have a very succinct way of describing the solution! And that is what you tell

the computer to find. Further note that

∂2 (e′e)

∂b2
= 2X ′X > 0

The matrix is positive definite (actually all we need is for it to be positive semi-definite),

which means the objective function is convex, and consequently we know that we are

minimizing the objective function.

Next substituting the population regression expression into our solution for the slope

coefficient

b = (X ′X)
−1
X ′y = (X ′X)

−1
X ′ (Xβ + ε)

= (X ′X)
−1

(X ′X) β + (X ′X)
−1
X ′ε

= β + (X ′X)
−1
X ′ε

⇒ E (b) = β

Since

E
(

(X ′X)
−1
X ′ε
)

= (X ′X)
−1
X ′E (ε) = 0(k×1)

Further the variance-covariance matrix of our OLS estimators is;

b− E (b) = (X ′X)−1X ′ε

⇒ Var (β) = E
(
(X ′X)−1X ′ε

) (
(X ′X)−1X ′ε

)′
= E

(
(X ′X)−1X ′εε′X (X ′X)−1

)
= (X ′X)−1X ′E (εε′)X (X ′X)−1

= (X ′X)−1X ′σ2
ε IX (X ′X)−1

= σ2
ε (X ′X)−1 (X ′X) (X ′X)−1

= σ2
ε (X ′X)−1

Where I is an identity matrix, and σ2
ε is a scalar since if you recall, OLS relies on ho-

mogeneity, i.e. the error terms are all normally distributed with mean zero, and variance

of σ2
ε . Further note that εε′ is an n × n matrix, and the off diagonals are all zero since

12



we have also assumed that errors between observations are uncorrelated with each other.

That is 
σ2
ε 0 . . . 0

0 σ2
ε . . . 0

...
...

. . . 0

0 0 . . . σ2
ε

 = σ2
ε


1 0 . . . 0

0 1 . . . 0
...

...
. . . 0

0 0 . . . 1


What this means then is that there are essentially two lines to write in a program;

b = (X ′X)
−1
X ′y

Var (b) = σ2
ε (X ′X)

−1

Note that the off diagonal elements of the (X ′X) matrix are nonzero. Essentially, the

explanatory variables or covariates are very likely correlated. Further as you recall, since

we typically do not know σ2
ε we would estimate is as follows

(e′e)

n− (k + 1)

which adds a third line to the program. To find the vector of t statistics, you will need

t =
(
diag (s.d. (b))(k×k)

)−1
b(k×1)

where (s.d. (b)) would be the vector of standard deviations, and diag (.) changes the off

diagonal elements to 0, and this is the final line.

This is just the technical element to ordinary least squares. We will discuss the

geometry of OLS in the next section. Before we begin, there are two note worthy points

you should keep in mind.

Remark 1 From our understanding of the geometry of vectors, there is something inter-

esting that can be said about the ordinary least squares method of estimation. We know

that

y = Xb + e

⇒ e = y −Xb

We can think of X as the k + 1 column vectors that span the Rk+1 space. Essentially,

as noted in the idea of OLS, we are trying to minimize the errors from our estimation.

This is equivalent to choosing a b vector that minimizes the distance between the Xb
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vector, and that of y. That distance is e. Well, this is achieved only when the vector e

is perpendicular to the hyperplane generated by the k + 1 columns of X. Thus e must be

orthogonal to any linear combination of X. Let c be a vector such that Xc is an arbitrary

linear combination of the k + 1 columns in the k variable regression. Then

c′X ′ (y −Xb) = c′ (X ′y −X ′Xb) = 0

⇒ X ′y = X ′Xb

⇒ b = (X ′X)−1X ′y

which is what OLS does!

Remark 2 There is another concern, although I have assumed that (X ′X) is a nonsin-

gular matrix, implying a unique inverse exists, as noted in the rank of a matrix, this need

not be true. If so, we may face problems in obtaining our parameter estimates. The trick

is to use decompositions that eliminate the need for finding an inverse. As a matter of

computation, if a program eliminates the need for finding an inverse, it is in fact computa-

tionally more efficient. The most commonly used decomposition is the QR decomposition,

the idea of which I will barely graze. The reason I am bringing this up is because this

will affect the manner in which we should write our program (specifically in MATLAB).

QR decomposition decomposes a matrix X into the product of an orthonormal matrix Q

(Q′Q = I) and a upper triangular matrix R.

X ′y = X ′Xb

⇒ (QR)′ y = (QR)′QRb

⇒ R′Q′y = R′Q′QRb

= R′Rb

⇒ b = (R′R) \R′Q′y
⇒ b = R′\Q′y

In this form there is no need to calculate any inverse. We will be doing this in MATLAB.

In truth, what I have done above is uninformative for you. What you need to realize is

that what we are doing here is for computational reasons as opposed to algebraic.
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3 Geometry of OLS Estimation

We have solved the Ordinary Least Squares problem twice now, and we have a good idea

about the intuition of the method. We will go a little further now by understanding

the geometry behind it, more precisely, we will use your knowledge of Matrix & Linear

Algebra now. The following notes are culled from both Johnston (1984) and Davidson

and MacKinnon (2004).

Before we go on, we will formally introduce some terms, notations, and concepts. A

real number is said to be lying on a real line, and is denoted as R. In the case, of a

n−vector, which is just a column vector with n elements (or a n × 1 matrix), we say

it that belongs to a set of n−vectors in Rn. We can also say the the n−vector is in a

Euclidean space of n dimensions, and we denote it as En. All operations in the Rn

space still applies in En, but in addition there is the scalar or inner product. For two

vectors x and y ∈ En, the scalar product as you know is

〈x,y〉 ≡ x′y

Recall also that 〈x,y〉 = 〈y,x〉, which as you should know, is because the scalar product

is commutative.

The importance of the scalar product is that it allows us to link matrix algebra, and

the geometry of vectors, or more precisely, it allows us to define length or distance of any

vector in En. The length of a vector x is also known is its norm and is written as,

||x|| ≡ (x′x)
1
2

≡

(
n∑
i=1

x2i

) 1
2

Each n−vector essentially defines a point on En. This means then that y, and each

column of the matrix X in a regression model defines a point in En, which then allows

us to represent the regression model geometrically. The obvious superficial limitation is

that we would have problem representing a n−vector diagrammatically. However, if we

look close at our population regression equation (2), you should notice that there are only

three vectors in the equation. Further, since the left hand side of equation (2) has only

Xβ and ε only, we can represent the equation in 2 dimensions.

Before we can try to understand how it works, we have to know additional definitions

and notations. In Euclidean space En, there are infinitely numerous points. Any collection
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of such vectors would span (or make) a space in En. We call this space, a subspace, and

the vectors that span this subspace, basis vectors. For k vectors xi, i ∈ {1, 2, . . . , k},
that span a subspace, we denote it as S(X) ≡ S(x1,x2, . . . ,xk). This is a k−dimensional

subspace. Further, the subspace S(x1,x2, . . . ,xk) includes all vectors that can be formed

as linear combinations of (x1,x2, . . . ,xk), or precisely,

S(x1, x2, . . . , xk) ≡

{
z ∈ En| z =

k∑
i=1

bixi, bi ∈ R

}
(4)

We can also say that the subspace defined above is span of X or the column space of

X. The orthogonal complement of the space S(X) is denoted as S⊥(X), which is simply

the set of all vectors w in En that are orthogonal to everything in S(X). In other words,

〈w, z〉 = w′z = 0. More precisely, we define,

S⊥(X) ≡ {w ∈ En|w′z = 0,∀z ∈ S(X)} (5)

Further, if the dimension of S(X) is k, then the dimension of its complement is n− k.

Let us go through an example in two dimensions. Let x1 and x2 be two arbitrary

vectors where x1 6= x2 with respective length ||x1|| and ||x2|| extending from a common

origin. This is depicted below in figure 1, Then the subspace is just the plane formed by

Figure 1: 2−Dimensional Subspace
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all the linear combinations of the two vectors x1 and x2. This idea extends to technically

n−dimensions.
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Using this idea, we can then represent the regression equation geometrically as in

the diagram below in figure 2. Note that we have drawn this diagram with the error

Figure 2: Geometry of OLS
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vector ε not being orthogonal to the Xβ vector, but that is not to say that the solution

is represented this way. We will next define how the solution will look like geometrically.

Let X be the n× k matrix of sample variables, now it becomes clear that Xb is just

an n−vector in S(X) (recall that b is a k × 1 vector), which in turn is a k−dimensional

subspace of En. From equation (3) recall that the OLS solution is,

X ′y −X ′Xb = 0 (6)

⇒ X ′(y −Xb) = 0 (7)

Note that the left hand side above is a k × 1 matrix, and each element of the vector is a

scalar product,

x′i(y −Xb) = 〈xi,y −Xb〉 = 0 (8)

What this means is that each vector of X, which represents each one of the k explanatory

variables, is orthogonal to y−Xb. Recall the Gauss-Markov assumption that the errors

(since e = ε̂ = y − Xb) must be independent of the explanatory variables? For this

reason, the first order condition of the OLS’s objective function is also commonly referred

to as the orthogonality conditions. Another way to think of this is as follows. Since

17



Xb is in S(X), e is in fact orthogonal to every vector of S(x), the span of X. So that,

〈Xb, e〉 = (Xb)′e = b′X ′e = 0 (9)

Since y = Xb + e, and because of the orthogonality condition, the relationship between

Xb and e is as follows in figure 3. This idea can be further consolidated in 3 dimensions.

Figure 3: Geometric Relationship between Xb and e
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Consider two regressors x1 and x2 which spans S(x1,x2) (which is just a two dimensional

horizontal plane). Further, as before y is a vector with length ||y|| that extends from

the same origin. Since e is orthogonal to the horizontal plane spanned by x1 and x2,

it must be a line segment that extends vertically from the horizontal plane S(x1,x2)

to y, as depicted in figure 4. You might be asking yourself if this is really what the

minimization of the sum of squared errors is doing? Is it really minimizing the distance

between the y vector and the subspace spanned by X? First note that the length/norm of

e is ||e|| = (
∑n

i=1 e
2
i )

1/2
. But the objective function of the ordinary least squares problem

is just ||e||2. Since minimizing the norm is the same as minimizing the square of the norm,

this implies the estimator b of β of OLS does minimize the length e.

Finally, by the Pythagoras’ Theorem,

||y||2 = ||Xb||2 + ||e||2 (10)

⇒ y′y = (Xb)′Xb + e′e

= b′X ′Xb + (y −Xb)′(y −Xb) (11)
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Figure 4: 3−Dimensional Geometric Relationship between Xb & e
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where the left hand side is the total sum of squares, and it is equal to the right hand side,

which is the sum of the explained sum of squares and the residual sum of squares as we

have learned earlier.

4 Extension: Orthogonal Projections

What we have described geometrically is essentially an orthogonal projection when we

mapped the vector of y onto the subspace spanned by X. “A projection is a mapping

that takes each point of En into a point in a subspace of En, while leaving all points in that

subspace unchanged.” (Davidson and MacKinnon 2004) Since the points in this subspace

remains unadultered, it is called the invariant subspace of the projection. Then a

orthogonal projection is a projection that maps all points of En into a point on the

subspace that is closest to it. Obviously, there are points in En that are already in the

invariant subspace, so that an orthogonal projection would leave such points unchanged.

An orthogonal projection formalizes the mapping we performed when we mapped

in the previous section the vector y onto subspace S(X) perpendicularly. Technically,

we can always perform the procedure by pre−multiplying the vector to be mapped by a

projection matrix. What is the projection matrix for the OLS procedure we performed?

19



Recall first your OLS solution for β,

b = (X ′X)−1(X ′y) (12)

⇒ X ′b = (X ′(X ′X)−1X ′)y

= PXy (13)

so that PX = (X ′(X ′X)−1X ′) is the projection matrix that projects y onto S(X). Note

that PXX = X(X ′X)−1X ′X = X which fulfils the definition of an orthogonal projection

since X is already on S(X), and it is easy to show that the same is true for PXXb, since

Xb is in S(X). In other words, the image of PX is S(X) itself.

We also know that the definition of the residual is,

e = y −Xb (14)

= y − (X ′(X ′X)−1X ′)y

= (I− (X ′(X ′X)−1X ′))y (15)

= (I− PX)y (16)

= MXy (17)

So that MX is an orthogonal projection onto the complement of S(X), S⊥(X). Put

another way, the image of MX is the orthogonal complement of PX . Note that MX is a

symmetric matrix. To see that MX is an orthogonal projection onto the complement,

MXX = (I − PX)X = X −X = 0 (18)

where 0 is a (n×k) zero matrix. MX is sometimes referred to as the projection off S(X).

Note that a projection matrix must be idempotent. A matrix is idempotent when

multiplying the matrix by itself, gives itself again. That is PXPX = PX and MXMX =

MX . This condition is quite intuitive, since the second projection cannot possibly affect,

or do anything more than what the first projection has already done. Nonetheless, you

can show this yourself, i.e. that PX and MX are idempotent.

Finally, from equation (17),

I− PX = MX

⇒MX + PX = I (19)

so that (MX + PX)y = y and we say that the pair of projections PX and MX are

complementary projections that together restores the vector, in this case y, it was

meant to project.
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