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1 Introduction

If probability and statistics are the foundation of econometrics, linear algebra is something closer

to a toolbox. Vectors and matrices are an unavoidable part of the work of econometrics, and vector

and matrix operations figure prominently in our formulas and proofs. As soon as we begin talking

about vector-valued random variables, these operations grab a foothold in our work. Vectors and

matrices also come up in situations like the following:

• We store data in the computer using data vectors and data matrices.

• Tools like R, Matlab, and NumPy are optimized for matrix calculations, so speaking the

language of matrices makes our code run more quickly.1

Linear algebra also lets us think at a higher level of abstraction, and simplify our calculations

and proofs. To raise the level of abstraction yet higher, we can use tools from functional analysis

that conceptually unify the operations we perform on finite data (sample mean, variance, covariance,

ordinary least squares) with their population analogs (expectation, variance, covariance, population

regression).2

In these notes, I present results more generally than you probably saw in linear algebra, but

more concretely than any course in functional analysis would. I do this partly to allow the jump to

random variables to come naturally, but also to give a flavor of how deep these results are.

1.1 Note on references

These notes were originally written for the Harvard Economics math camp for incoming PhD stu-

dents, August 2019. They are heavily based on textbooks and notes from other math and econo-

metrics courses, including Gary Chamberlain’s lecture notes, Paul Sally’s Tools of the Trade, and

the graduate Scientific Computing course (AM205) at Harvard. Their style is originally based on

Ashesh Rambachan’s probability and statistics notes.

These notes are not intended to replace a good course in linear algebra. In particular, they

are targeted towards concepts that occur often in the econometrics course. Many standard topics

are not covered, or are only covered briefly. In addition, these notes omit proofs, which are an

essential part of learning the material. I recommend Hoffman and Kunze for an overview of linear

algebra, Luenberger for inner product spaces and the projection theorem, and Golub and Van Loan

for matrix decompositions.

2 Preliminaries

Abstract linear algebra is built on a litany of mathematical objects. Bear with me.

Definition 1. A commutative group (or abelian group), denoted (G, ∗), is a set G and an

operation ∗ : G×G→ G satisfying:

1Computational linear algebra is a large field, and all empirical economists owe it an enormous debt. For a taste,
consult Golub and Van Loan.

2“Some readers may look with great expectation toward functional analysis, hoping to discover new powerful
techniques that will enable them to solve important problems beyond the reach of simpler mathematical analysis.
Such hopes are rarely realized in practice. The primary utility of functional analysis for the purposes of this book is
its role as a unifying discipline, gathering a number of apparently diverse, specialized mathematical tricks into one or
a few general geometric principles.” —David Luenberger
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1. Closure: for all a, b ∈ G, we have a ∗ b ∈ G.

2. Associativity: for all a, b, c ∈ G, we have (a ∗ b) ∗ c = a ∗ (b ∗ c).

3. Commutativity: for all a, b ∈ G, we have a ∗ b = b ∗ a.

4. Identity element: there exists e ∈ G such that, for all a ∈ G, a ∗ e = a.

5. Inverses: for each a ∈ G, there exists a′ ∈ G such that a ∗ a′ = e.

Definition 2. A field, denoted (F,+, ·), is a set F and two operations + : F × F → F and

· : F × F → F satisfying:3

1. (F,+) forms a commutative group. We denote the additive identity element by 0 ∈ F and the

additive inverse of a ∈ F by −a.

2. Closure under ·: for all a, b ∈ F , we have a · b ∈ F .

3. Associativity of ·: for all a, b, c ∈ F , we have (a · b) · c = a · (b · c).

4. Commutativity of ·: for all a, b ∈ F , we have a · b = b · a.

5. Multiplicative identity element: there exists 1 ∈ F such that, for all a ∈ F , a · 1 = a.

6. Multiplicative inverses for nonzero elements: for each a ∈ F \ {0}, there exists a−1 ∈ F such

that a · a−1 = 1.

7. Distributivity: for all a, b, c ∈ F , a · (b+ c) = (a · b) + (a · c).

The rational numbers Q, the real numbers R, and the complex numbers4 C are all fields. This

note generally focuses on the real numbers here, though the results will generalize to the complex

numbers.

2.1 Vector spaces

Definition 3. A vector space over a field F , denoted (V,+, ·), is a set V and two operations

+ : V × V → V and · : F × V → V satisfying:

1. (V,+) forms a commutative group. We denote the additive identity element by 0 ∈ V and the

additive inverse of v ∈ V by −v.

2. Closure under ·: for all a ∈ F and v ∈ V , we have a · v ∈ V .

3. For all a ∈ F and v1, v2 ∈ V , we have a · (v1 + v2) = (a · v1) + (a · v2).

4. For all a, b ∈ F and v ∈ V , we have (a+ b) · v = (a · v) + (b · v).

5. For all a, b ∈ F and v ∈ V , we have (ab) · v = a · (b · v).

6. For all v ∈ V , we have 1 · v = v.

3The · in multiplication is usually dropped.
4Numbers of the form a+ b

√
−1, where a (the ‘real part’) and b (the ‘imaginary part’) are real numbers.

3



Linear Algebra Notes January 17, 2020

Elements of a vector space are called vectors, elements of the field are called scalars, and the

operation · is called scalar multiplication.5 The most familiar example is Rn, considered as a

vector space over R; we will usually treat our data vectors as elements.6

Exercise 1. Let X and Y be random variables. Show that {αX + βY | α, β ∈ R} is a vector space

over R with the usual addition and scalar multiplication operations for random variables. What is

the additive identity element?

Definition 4. Let (V,+, ·) be a vector space over a field F , and let W ⊆ V . We say W is a

subspace of V if W is closed under addition and scalar multiplication.

2.2 Dimension and basis

Let V be a vector space over a field F , let v1, . . . , vn ∈ V , and let α1, . . . , αn ∈ F . Then

α1v1 + · · ·+ αnvn

is a linear combination of the vectors v1, . . . , vn. This is an enormously useful object. In particular,

once we have a notion of a basis, we can uniquely represent every vector as a linear combination

of basis vectors. These linear combinations are more concrete and easier to work with than the

abstract vectors they represent, especially if the basis has nice properties.

Definition 5. Let V be a vector space over a field F , and let v1, . . . , vn be nonzero vectors. The set

{v1, . . . , vn} is linearly independent if, for any α1, . . . , αn ∈ F ,

α1v1 + · · ·+ αnvn = 0 =⇒ α1 = α2 = · · · = αn = 0.

Equivalently, the set is linearly independent if no element can be written as a linear combination

of the other elements.

Definition 6. Let V be a vector space over a field F , and let v1, . . . , vn ∈ V . The set {v1, . . . , vn}
spans V if, for any v ∈ V , v can be written as a linear combination of {v1, . . . , vn}.7 That is, there

exist α1, . . . , αn ∈ F such that v = α1v1 + · · ·+ αnvn.

We also sometimes refer to the span of {v1, . . . , vn}, the set of vectors v ∈ V that can be written

as a linear combination of {v1, . . . , vn}. The span of a set of vectors forms a subspace of V .

Definition 7. Let V be a vector space over a field F and let B ⊆ V . We say B is a basis for V if

B is linearly independent and spans V .

Definition 8. Let V be a vector space over a field F . We say V is finite-dimensional if there

exists a finite S ⊆ V that spans V .

Theorem 1. Let V be a nonzero finite-dimensional vector space over a field F . Then V has a finite

basis, and every basis of V has the same number of elements.

5The · in scalar multiplication is usually dropped.
6Some authors, such as Luenberger, distinguish between the space of points in Rn and the space of n-dimensional

Euclidean vectors, which they label En.
7This definition requires n to be finite. In general, a set S spans V if every v ∈ V can be written as a linear

combination of finitely many elements of S.
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Definition 9. Let V be a nonzero finite-dimensional vector space over a field F . Let B be a set of

n vectors that forms a basis of V . Then the dimension of V , written dimV , is equal to n.

If V = {0} then define dimV = 0.

Every linearly independent set in V has at most dimV elements, and every set that spans V has

at least dimV elements. Think of a basis as the (non-unique) smallest set that spans V .8

Example 1. Consider V = Rn as a vector space over R with the usual addition and scalar multi-

plication operations. The standard basis {e1, . . . , en}, where ej is has 1 in the jth coordinate and

0 everywhere else, is a basis for V , so dimV = n.

Let V be an n-dimensional vector space over a field F , and let B = {v1, . . . , vn} be a basis of

V .9 We can write v ∈ V uniquely as a linear combination of basis vectors,

v =

n∑
i=1

αivi,

where α1, . . . , αn are the coefficients of v relative to the basis B. We conventionally write the

coefficients in a column vector or n × 1 matrix, and call this the representation of v with

respect to the basis B:10 
α1

...

αn

 .

In the case of Rn, representation with respect to the standard basis coincides with the standard

coordinate representation.11

Example 2. Consider R2 as a vector space over R. You can show that B = {(1, 0), (1, 1)} is a basis

of R2. Let (a, b) ∈ R2; its representation with respect to B is(
a− b
b

)
.

Vector spaces that are not finite-dimensional are called infinite-dimensional. The existence of

a basis for every infinite-dimensional vector space is equivalent to the axiom of choice.12

8In a finite-dimensional vector space, any linearly independent set that is not a basis can be completed to form a
basis.

Similarly, any set that spans V and is not a basis can drop elements until it becomes linearly independent.
9Throughout this note, we will write B = {v1, . . . , vn} as if B were a set. Since the order of the basis vectors

matters, B is actually a sequence (or an ordered basis).
10Hoffman and Kunze call this the coordinate matrix of v with respect to the ordered basis B and denote

it [v]B .
11We can think of column vector representation as building an alternative coordinate system, with the basis vectors

as building blocks.
12The set of polynomials with real coefficients is an infinite-dimensional vector space over R. Can you think of a

basis for it?
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3 Linear Transformations and Matrices

Every matrix represents a function that maps one vector space to another. When thinking of the

properties of matrices, I find it helpful look for a geometric intuition in terms of that function.13

Definition 10. Let V and W be vector spaces over a field F . A linear transformation is a

function T : V →W satisfying:

1. For all v1, v2 ∈ V , T (v1 + v2) = T (v1) + T (v2).

2. For all v ∈ V and α ∈ F , T (αv) = αT (v).

3.1 Matrix representation

A linear transformation between two vector spaces can be represented as a matrix, by writing down

what the transformation does to each basis vector. Let V and W be vector spaces over a field F ,

let {v1, . . . , vn} be a basis for V , and let {w1, . . . , wm} be a basis for W . For k = 1, . . . , n, consider

the coefficients of T (vk) relative to the basis {w1, . . . , wm}:

T (vk) =

m∑
j=1

ajkwj .

Then, since any v ∈ V can be written as v =
∑n

k=1 bkvk, we can write T (v) as a linear combination

of {T (v1), . . . , T (vn)}:

T (v) =

n∑
k=1

bkT (vk) =

n∑
k=1

bk

m∑
j=1

ajkwj =

m∑
j=1

(
n∑

k=1

bkajk

)
wj .

This gives us the coefficients of T (v) relative to {w1, . . . , wm}. The results that follow just repeat

this result using matrix multiplication.

Definition 11. Let V and W be vector spaces over a field F , let {v1, . . . , vn} be a basis for V ,

and let {w1, . . . , wm} be a basis for W . Let T : V → W be a linear transformation. The matrix

representation of T with respect to {v1, . . . , vn} and {w1, . . . , wm}14 is the m×n matrix with scalar

entries 
a11 · · · a1n

...
. . .

...

am1 · · · amn


where the kth column, (a1k, . . . , amk), contains the coefficients of T (vk) relative to {w1, . . . , wm}.15

The matrix representation is unique given a basis of V and a basis of W . We will say the ijth

entry of a matrix is aij , the entry in row i and column j. We sometimes write the set of m × n
matrices with entries in F as Fm×n. An n× n matrix is called square.

13“You should be aware of the fact that an m× n matrix A with entries aij is more than just a static array of mn
numbers. It is dynamic. It can act.” —Charles Pugh

14When V = W , we will typically use the same basis for the domain and the range.
15Seeing the column vector of v as an n× 1 matrix makes more sense if you consider F as a vector space over itself,

with basis {1}, and consider a linear transformation T : F → V with T (1) = v.
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Definition 12. Let A ∈ Fm×p with entries aij and let B ∈ F p×n with entries bjk. Matrix

multiplication is defined as16

A ·B = C where C ∈ Fm×n with entries cik =

p∑
j=1

aijbjk.

Matrix multiplication represents function composition.

Theorem 2. Let V and W be vector spaces over a field F , let {v1, . . . , vn} be a basis for V , and let

{w1, . . . , wm} be a basis for W . Let T : V → W be a linear transformation, and let A be its matrix

representation with respect to {v1, . . . , vn} and {w1, . . . , wm}. For all v ∈ V , the representation of

T (v) with respect to {w1, . . . , wm} is A · v.

3.2 Properties of linear transformations

Though some results use the language of matrices, remember that linear transformations are always

working in the background.17

Definition 13. Let V be a vector space over a field F . The identity function I : V → V is the

linear transformation defined by I(v) = v.

Let dimV = n. The matrix representation of I, with respect to any basis, is the n× n identity

matrix, denoted In, with aij = 1(i = j).

Definition 14. Let V be a vector space over a field F , and let T : V → V be a linear transformation.

The inverse of T , if it exists, is the function T−1 : V → V such that

T−1(T (v)) = I(v) = v.

If T−1 exists, then T is said to be invertible.

Proposition 1. If T−1 exists, then T−1 is a linear transformation.

Let dimV = n and let A be the matrix representation of T with respect to some basis. The

inverse matrix of A, denoted A−1, is the matrix representation of T−1 with respect to the same

basis, and

A−1A = In.

If A−1 exists, then A is said to be invertible.18

We will now give some of the (many) conditions that are equivalent to the invertibility of T .

Definition 15. Let V and W be vector spaces over a field F and let T : V → W be a linear

transformation. The null space (or kernel) of T is the set of vectors that T maps to the zero

vector, {v ∈ V | T (v) = 0}. If V is finite-dimensional, the nullity of T is the dimension of the null

space of T .

16The · in matrix multiplication is usually dropped.
17To see these results in full generality using the language of linear transformations, see Hoffman and Kunze.
18Calculate the matrix inverse using solve in R, inv in Matlab, and np.linalg.inv in NumPy. To solve a system

of linear equations Ax = b, instead use solve(A, b) in R, A\b in Matlab, and np.linalg.solve(A, b) in NumPy.

7
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Definition 16. If V is finite-dimensional, the rank of T is the dimension of the subspace T (V ) ⊆W .

Theorem 3. Rank-nullity theorem

Let V and W be vector spaces over a field F and let T : V → W be a linear transformation.

Suppose that V is finite-dimensional. Then

rank(T ) + nullity(T ) = dimV.

The notion of rank for linear transformations corresponds to the familiar notion of rank for

matrices.

Definition 17. Let A ∈ Fm×n, where F is a field. Write the jth column as vj = (a1j , . . . , amj) ∈
Fm. The column space of A is the subspace of Fm spanned by the columns, {v1, . . . , vn}, and the

column rank of A is the dimension of its column space.

Likewise, write the ith row of A as wi = (ai1, . . . , ain) ∈ Fn. The row space of A is the subspace

of Fn spanned by the rows, {w1, . . . , wm}, and the row rank of A is the dimension of its row space.

Proposition 2. Let V and W be vector spaces over a field F and let T : V → W be a linear

transformation. Let A be a matrix representation of T ; then A ∈ Fm×n. The rank of T is equal to

the row rank of A and to the column rank of A.

It follows that the row rank and the column rank are equal. We call this the rank of A.

Theorem 4. Let V be a vector space over a field F with dimV = n and let T : V → V be a linear

transformation. Let A be the matrix representation of T with respect to a basis. The following are

equivalent:

1. T is invertible.

2. T is full rank; that is, rank(T ) = n.

3. T is nonsingular; that is, nullity(T ) = 0.

4. A is an invertible matrix.

5. A is full rank; that is, rank(A) = n.

6. A is nonsingular; that is, Av = 0 implies v = 0.

As a result, ‘nonsingular’ is sometimes used interchangeably with ‘invertible’.

3.3 Transpose

The familiar notion of a matrix transpose is described below.19

Definition 18. Let A ∈ Fm×n with entries aij. The transpose of A, denoted A′ or Aᵀ, is the

n×m matrix whose ijth entry is aji.

A square matrix A for which A′ = A is called symmetric. You can show that, if A is m× p and

B is p× n, then (AB)′ = B′A′.

19See Sections 3.5–3.7 of Hoffman and Kunze for the definition of the transpose of a linear transformation.
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3.4 Diagonal and triangular matrices

Definition 19. Let A ∈ Fm×n with entries aij. A is diagonal if aij = 0 when i 6= j.

A square n× n diagonal matrix takes the form
c1 0 · · · 0

0 c2 · · · 0
...

...
. . .

...

0 0 · · · cn

 .

It represents the linear transformation T : V → V that scales each basis vector vi by the scalar

ci. It is clearly symmetric, and if all the ci 6= 0, then the inverse is the diagonal matrix with

diagonal entries c−11 , c−12 , . . . , c−1n . In this case, the system of linear equations Ax = b is easy to

solve: xi = c−1i bi.

The computational simplicity remains if we add entries above or below the diagonal, but not

both.20

Definition 20. Let A ∈ Fn×n with entries aij.

A is lower triangular if all entries above the diagonal are zero, that is, aij = 0 when i < j.

A is upper triangular if all entries below the diagonal are zero, that is, aij = 0 when i > j.

A diagonal matrix is both lower and upper triangular. The product of upper triangular matrices

is upper triangular, and the product of lower triangular matrices is lower triangular.

3.5 Trace, determinant, and eigenvalues

Trace and determinant occur all the time in matrix computations and proofs, but will not recur

for the rest of this note. Eigenvalues, a fascinating and rich topic in linear algebra, will only be

discussed briefly.

Definition 21. Let A ∈ Fn×n and label its entries by aij. The trace of A, denoted trace(A), is the

sum of the diagonal entries,
∑n

i=1 aii.

Definition 22. If B ∈ Fn×n is invertible and A = B−1CB, then A and C are similar.

If two matrices are similar, they have the same trace. In addition, if A is m× n and B is n×m,

then trace(AB) = trace(BA).

To get intuition for the determinant, consider A ∈ Rn×n. Label its columns v1, . . . , vn and

picture the convex hull of its columns, {α1v1 + · · ·+αnvn | αi ∈ [0, 1]}. This is a figure in Rn (called

a parallelepiped; see Figure 1), and the determinant of A is its oriented volume.

Definition 23. Let A ∈ Fn×n with entries aij. The determinant of A, denoted detA or |A|, is

defined as follows.21 If n = 1, then detA = a11. For n > 1, let Aij be the (n− 1)× (n− 1) matrix

generated by deleting the ith row and jth column of A. Then, for any i ∈ {1, . . . , n},

detA =

n∑
j=1

(−1)i+jaij detAij .

20Lower triangular systems are easy to solve by forward substitution, and upper triangular systems are easy to solve
by back substitution. See Golub and Van Loan.

21See Hoffman and Kunze, Chapter 5, for other equivalent characterizations.
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Figure 1: Parallelepiped in R3. (Claudio Rocchini, Wikimedia Commons)

Familiar facts about determinants can be guessed from the picture.

• det In = 1. In general, the determinant of a diagonal matrix is the product of the diagonal

entries.

• detA 6= 0 if and only if A is invertible.22

• If A and B are square, then detAB = detA · detB. It follows that if A is invertible, then

detA−1 = 1/ detA.

• detA = detA′.

Next we discuss eigenvectors and eigenvalues, which measure the ways that a linear transformation

shrinks, grows, flips, or deforms the shapes it acts on.

Definition 24. Let A ∈ Fn×n. An eigenvalue of A is a scalar λ ∈ F for which there exists some

v ∈ Fn \ {0}, called an eigenvector, such that

Av = λv.

Any nonzero scalar multiple of v is also an eigenvector corresponding to λ.

Theorem 5. The eigenvalues of A are the roots of the characteristic polynomial of A,

p(x) = det(A− xIn).

Suppose F = C. Then, because p is an n-order polynomial over C, it follows from the fundamental

theorem of algebra that p has n complex roots, counted with multiplicity.23 We can label the

eigenvalues (repeating with multiplicity) by (λ1, . . . , λn).

The following result is surprisingly useful.

Theorem 6. Let A ∈ Cn×n. Then

trace(A) =

n∑
i=1

λi and detA =

n∏
i=1

λi.

22The dimension of the parallelepiped is the column rank of A; if A is not full rank, then the parallelepiped is a
zero-measure set in Rn.

23A root λ has multiplicity k if we can factor p(x) = (x − λ)ks(x), where s(x) is a polynomial and s(λ) 6= 0. The
multiplicity of the root is called the algebraic multiplicity of the corresponding eigenvalue.

10
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Exercise 2. Prove that if two matrices are similar, then they have the same characteristic polyno-

mial, and therefore the same eigenvalues.

The eigendecomposition anticipates the matrix decompositions we will consider later. It is some-

times helpful in computations and proofs, and gives insight into the workings of a linear transfor-

mation.24

Definition 25. Let A ∈ Fn×n. A is diagonalizable if there exists a basis of Fn whose elements

are all eigenvectors of A.

For A to be diagonalizable, it is sufficient that (1) A has n distinct eigenvalues, or (2) A is

symmetric with real entries.25

Theorem 7. Eigendecomposition (or spectral decomposition)

Let A ∈ Cn×n be diagonalizable. Write its eigenvalues, with multiplicity, as (λ1, . . . , λn). Then

A = BCB−1, where C is the diagonal matrix with diagonal elements λ1, . . . , λn, and the columns of

B are eigenvectors of A corresponding to those eigenvalues.

4 Inner Products

From now on, we will restrict ourselves to vector spaces over R.

Definition 26. An inner product space (or pre-Hilbert space) over R is a vector space V over

R together with a function 〈·, ·〉 : V × V → R, known as an inner product (or positive definite

symmetric bilinear form), satisfying:26

1. Symmetry: for all v, w ∈ V , 〈v, w〉 = 〈w, v〉.

2. Bilinearity (I): for all v1, v2, w ∈ V , 〈v1 + v2, w〉 = 〈v1, w〉+ 〈v2, w〉.

3. Bilinearity (II): for all v, w ∈ V and α ∈ R, 〈αv,w〉 = α〈v, w〉.

4. Positive definiteness: for all v ∈ V , 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0.

Definition 27. A normed linear vector space over a field F is a vector space V over F together

with a function ‖ · ‖ : V → F , known as a norm, satisfying:

1. For all v ∈ V , ‖v‖ ≥ 0, with ‖v‖ = 0 if and only if v = 0.

2. Triangle inequality: for all v, w ∈ V , ‖v + w‖ ≤ ‖v‖+ ‖w‖.

3. For all v ∈ V and α ∈ F , ‖αv‖ = |α|‖v‖.

Theorem 8. Let V be an inner product space over R. Then the function ‖ · ‖ : V → R defined by

‖v‖ =
√
〈v, v〉 is a norm.

24Calculate the eigendecomposition using eigen in R, eig in Matlab, and np.linalg.eig in NumPy.
25If A ∈ Cn×n is symmetric and every entry has imaginary part zero, then all its eigenvalues have imaginary part

zero.
26The notion of an inner product space over C is also well-defined, if we replace symmetry with conjugate symmetry.

All the results below hold for inner product spaces over R or C, so I will usually drop “over R”.
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We make this distinction because some normed linear vector spaces have norms that do not come

from an inner product. The proof of the triangle inequality uses the following result:

Theorem 9. Cauchy-Schwarz inequality

Let V be an inner product space. For all v, w ∈ V , we must have that |〈v, w〉| ≤ ‖v‖‖w‖.

Furthermore, equality holds if and only if one of the vectors is a scalar multiple of the other.

4.1 Dot product and positive definiteness

In the geometry of Rn, the familiar dot product is an inner product. It provides much of the

geometric intuition we will lean on for inner product spaces.

Example 3. Rn with the dot product is an inner product space over R. Let x = (x1, . . . , xn) and

y = (y1, . . . , yn). The dot product of x and y, denoted x · y or x′y,27 is x1y1 + · · ·+ xnyn.

The norm induced by the dot product has a nice interpretation as the length or Euclidean

distance. The dot product itself also has a geometric interpretation. Let x, y ∈ Rn, and let θ be the

angle between x and y (0◦ ≤ θ ≤ 180◦). Then

cos θ =
x · y
‖x‖‖y‖

.

Definition 28. Let A ∈ Rn×n.

A is positive semidefinite if, for all x ∈ Rn, x ·Ax ≥ 0.

A is positive definite if, for all nonzero x ∈ Rn, x ·Ax > 0.

That is, the angle between x and Ax is (weakly) less than 90◦. Objects of the form x′Ax are

called quadratic forms.

Proposition 3. If A is symmetric and positive definite, then its eigenvalues are positive. If A is

symmetric and positive semidefinite, then its eigenvalues are nonnegative.

4.2 Generalizations of dot product

The dot product generalizes conveniently to inner products in infinite-dimensional vector spaces over

R. These are useful when we move to sequences, functions, and random variables.

Example 4. Consider infinite sequences of numbers.28 Define l2 as the space of real-valued infinite

sequences (xn) where
∑∞

i=1 |xi|2 <∞ , with the inner product as an infinite dot product,

〈(xn), (yn)〉 =

∞∑
i=1

xiyi.

Example 5. Now consider well-behaved functions.29 For any a < b define L2[a, b] as the space of

functions x : [a, b] → R for which |x(t)|2 is Lebesgue integrable.30 The inner product is a Lebesgue

27We snuck in matrix multiplication here, by representing x and y as column vectors with respect to the standard
basis.

28This generalizes to discrete random variables with (countably) infinite support.
29This generalizes to well-behaved continuous random variables.
30Because the Lebesgue integral is not sensitive to the behavior of x on zero-measure sets, we need to consider two

functions x and y the same if they are the same almost everywhere (they only differ on a set of measure zero).
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integral,

〈x, y〉 =

∫ b

a

x(t)y(t) dt.

4.3 Orthogonality

The notion of orthogonality is useful in two ways. First, it is closely connected to linear projection.

Second, an orthogonal set (and particularly an orthonormal set) makes for a convenient basis.

Definition 29. Let V be an inner product space and let v, w ∈ V . We say v and w are orthogonal

(or perpendicular) if 〈v, w〉 = 0.

A vector v is orthogonal to a set W ⊆ V if 〈v, w〉 = 0 for all w ∈W .

Definition 30. Let V be an inner product space. We say {v1, . . . , vn} ⊆ V is an orthonormal set

if it is pairwise orthogonal (that is, 〈vi, vj〉 = 0 whenever i 6= j) and 〈vi, vi〉 = 1 for all i.

If n = dimV , then {v1, . . . , vn} forms an orthonormal basis of V . The standard basis is an

example.31

Definition 31. Let Q ∈ Rn×n. Q is an orthogonal matrix if its columns32 form an orthonormal

basis of Rn with the dot product.

If Q is an orthogonal matrix, then

Q′Q = QQ′ = In.

That is, Q′ = Q−1. Orthogonal matrices represent functions that perform rotation or reflection. In

particular, they preserve length:

‖Qv‖2 = (Qv)′Qv = v′Q′Qv = v′v = ‖v‖2.

5 Linear Projections

In econometrics we are often faced with problems of the form

v̂ = arg min
w∈W

‖v − w‖

asking us to find the best approximation to a vector.33 The projection theorem gives us simple

conditions that guarantee existence and uniqueness of solutions. Furthermore, it gives us a simple

way to compute them as the solution to a system of equations.34

The best approximation problem asks us to find the projection of a vector on a subspace. From

geometry in Rn, we have an intuition that the line connecting the projection with the original vector

should be perpendicular to the subspace. Start with the projection of one vector onto another.

31As is any rotation or reflection thereof.
32We could equivalently define it using the rows.
33For example, ordinary least squares.
34No calculus or second order conditions required.
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Definition 32. Let V be an inner product space over R and let v, w ∈ V . The projection of v

onto w is defined by

projw(v) =
〈v, w〉
‖w‖2

w.

This is the closest point to v in the subspace spanned by w. Furthermore, v − projw(v) is

orthogonal to w.

5.1 Gram–Schmidt orthogonalization

This is the insight that allows us to generate a basis of orthonormal vectors for any finite-dimensional

inner product space. The Gram–Schmidt orthogonalization procedure takes any finite linearly

independent set of vectors, labeled {v1, . . . , vn}, and generates an orthonormal set that spans the

same subspace. It works by iteratively projecting vk on the vectors that came before, keeping only

the orthogonal residual. For k = 1, . . . , n:

z1 = v1, e1 =
z1
‖z1‖

z2 = v2 − 〈v2, e1〉e1, e2 =
z2
‖z2‖

...

zk = vk −
k−1∑
i=1

〈vk, ej〉ej , ek =
zk
‖zk‖

.

Notice the similarity to residual regression.35

Proposition 4. Let {v1, . . . , vn} be a set of linearly independent vectors in an inner product space

V . For each k = 1, . . . , n, the subspace spanned by {v1, . . . , vk} is also spanned by the orthogonal set

{z1, . . . , zk} and by the orthonormal set {e1, . . . , ek}.

5.2 Uniqueness of the projection

Here we generalize from projections onto one-dimensional subspaces to multidimensional subspace

W . If the projection is possible, the fact that v − projw(v) is orthogonal to w generalizes nicely.

Theorem 10. Let V be an inner product space, let W be a subspace of V , and let v ∈ V . If there

exists v̂ ∈W such that ‖v − v̂‖ ≤ ‖v − w‖ for all w ∈W , then v̂ is unique.

A necessary and sufficient condition for v̂ to be the unique minimizing vector is that v − v̂ is

orthogonal to W .

The orthogonality condition, 〈v− v̂, w〉 = 0 for all w ∈W , is often much easier to solve than the

original minimization problem.

5.3 Hilbert spaces and the projection theorem

We need further assumptions to guarantee that v̂ exists. The tools we need should be familiar from

real analysis.

35Gram–Schmidt is one way to calculate the QR decomposition, which reduces ordinary least squares to the exact
solution of a triangular system of equations. R and Matlab use the QR decomposition to calculate OLS because it is
more stable than the traditional formula when X′X is almost singular.
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Definition 33. Let X be a space equipped with a norm ‖ · ‖. A sequence (xn) of elements in X is

Cauchy if, for each ε > 0, there exists an N such that ‖xn − xm‖ ≤ ε for all n,m > N .

Definition 34. We say X is complete if every Cauchy sequence in X converges to a point in X.

Definition 35. A complete inner product space is called a Hilbert space.

Rn, l2, and L2[a, b] are all Hilbert spaces.

Theorem 11. Classical projection theorem

Let V be a Hilbert space and let W be a closed subspace36 of V . For each v ∈ V , there exists a

unique v̂ ∈W such that ‖v − v̂‖ ≤ ‖v − w‖ for all w ∈W .

As before, a necessary and sufficient condition for v̂ to be the unique minimizing vector is that

v − v̂ is orthogonal to W .

We call v̂ the orthogonal projection of v onto W .

Exercise 3. Let {e1, . . . , en} be an orthonormal basis of W . Show that the orthogonal projection of

v onto W is
∑n

k=1〈v, ek〉ek.

The projection theorem can be framed in another way, which might make the connection to

linear regression easier to see.

Definition 36. Let V be an inner product space, and let W be a subspace of V . The orthogonal

complement of W , denoted W⊥, is the set of vectors orthogonal to W .

Proposition 5. From the projection theorem: for any Hilbert space V and any closed subspace W

of V , any v ∈ V can be written uniquely in the form v = v̂ + ε, where v̂ ∈W and ε ∈W⊥.

6 Matrix Decompositions

6.1 Singular value decomposition

The singular value decomposition is used in proofs, and can also be helpful in computations.37 The

idea is that every linear transformation from Rn to Rm does the following three things, in order:

1. A rotation and/or reflection in Rn.

2. A scaling along each basis vector in Rn, with the output in Rm.

3. A rotation and/or reflection, now in Rm.

Consider the unit sphere in Rn. Its image under any linear transformation is a hyperellipse. The

lengths of the ellipse’s axes capture the scaling in the second step, and are called singular values.

Theorem 12. Singular value decomposition (SVD)

Let A ∈ Rm×n. Then there exist an m×m orthogonal matrix U and an n×n orthogonal matrix

V such that

A = UΣV ′

where Σ is a diagonal matrix with p = min{n,m} diagonal entries.

36In the sense that W contains all its limit points.
37Calculate it using svd in R and Matlab, and np.linalg.svd in NumPy.
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The diagonal entries of Σ are called singular values and labeled (σ1, . . . , σp). They are uniquely

determined,38 all nonnegative, and conventionally sorted so that σ1 ≥ · · · ≥ σp ≥ 0. The columns

of U are called left singular vectors and the columns of V are called right singular vectors.

Theorem 13. Reduced SVD

Suppose that m ≥ n. Then there exist an m × n matrix U1 with orthonormal columns and an

n× n orthogonal matrix V such that

A = U1Σ̂V ′

where Σ̂ is an n× n diagonal matrix.

Note that U1 just contains the first n columns of U ; we could partition U =
(
U1 U2

)
. Intu-

itively, we go from the reduced SVD to the full SVD by stuffing U1 with m−n orthonormal vectors

and adding m− n zero rows to the bottom of Σ̂.

It follows in the m ≥ n case that, letting {v1, . . . , vn} be the columns of V and letting {u1, . . . , un}
be the columns of U1,

Avi = σiui, A′ui = σivi.

An interesting consequence is that (σ2
1 , . . . , σ

2
p) are the eigenvalues of A′A and AA′.

6.2 Cholesky factorization

The Cholesky factorization can be helpful for sampling from multivariate normal distributions.39

Theorem 14. Cholesky factorization

Let A ∈ Rn×n be symmetric and positive definite. Then there exists a unique lower triangular

matrix L ∈ Rn×n with positive diagonal entries such that A = LL′.

Remark 1. Matrix square root

Suppose A is a symmetric positive definite matrix and we are interested in finding B such that

B2 = A.40 Construct it as follows. Let A = LL′ using the Cholesky factorization. Let L = UΣV ′

using the singular value decomposition. Then take

A1/2 = UΣU ′.

You can check that A1/2 is symmetric positive definite, and A1/2A1/2 = A.

7 Matrix Stacking and the Kronecker Product

When working with matrices as data objects, it is often convenient to move around entries of the

matrix to support calculations. The vec operator and the Kronecker product can be useful toward

this end.41

38That is, every SVD of A has the same singular values, though perhaps in a different order.
39Calculate it using chol in R and Matlab, and np.linalg.cholesky in NumPy.
40This is easy if A is diagonal.
41Calculate the Kronecker product using kronecker in R, kron in Matlab, and np.kron in NumPy.

16



Linear Algebra Notes January 17, 2020

Definition 37. Let B ∈ Rm1×n1 with entries bij and C ∈ Rm2×n2 . Their Kronecker product (or

Kronecker tensor product) B⊗C is the m1m2×n1n2 matrix given in the following block matrix

form:

B ⊗ C =


b11C · · · b1n1C

...
. . .

...

bm11C · · · bm1n1
C

 .

The Kronecker product has the following useful properties:

• (B ⊗ C)′ = B′ ⊗ C ′.

• (B ⊗ C)(D ⊗ F ) = BD ⊗ CF , if the matrices are conformable.42

• (B ⊗ C)−1 = B−1 ⊗ C−1.

When is this useful? The operation of matrix stacking gives a hint.

Definition 38. Let A ∈ Rm×n and denote its columns by v1, . . . , vn. The vec operator vec(A)

maps A to the nm× 1 column vector generated by stacking its columns:

vec(A) =


v1
...

vn

 .

Proposition 6. If B ∈ Rm1×n1 , C ∈ Rm2×n2 , and X ∈ Rn1×m2 , then

Y = CXB′ ⇐⇒ vec(Y ) = (B ⊗ C) vec(X).
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