


P1: FZZ
CB688-Ray-SampleDRV CB688-RAY CB688-Ray-v1.cls January 28, 2004 11:9

DATA ENVELOPMENT ANALYSIS
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based in different disciplines. The various DEA models are developed as non-
parametric alternatives to the econometric models. Apart from the standard fare
consisting of the basic input- and output-oriented DEA models formulated by
Charnes, Cooper, and Rhodes and Banker, Charnes, and Cooper, the book covers
more recent developments, such as the directional distance function, free disposal
hull (FDH) analysis, nonradial measures of efficiency, multiplier bounds, merg-
ers and breakup of firms, and measurement of productivity change through the
Malmquist total factor productivity index. The chapter on efficiency measurement
using market prices provides the critical link between DEA and the neoclassical
theory of a competitive firm. The book also covers several forms of stochastic
DEA in detail.
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Preface

Researchers from diverse fields ranging from economics to accounting, infor-
mation management, and operational research use Data Envelopment Analysis
(DEA) to measure technical efficiency of firms (often called Decision-Making
Units [DMUs]). Scholars from the different disciplines, in general, approach
the question of measuring efficiency from different perspectives. Often, an op-
erations research analyst is primarily interested in the solution algorithm of an
inequality-constrained optimization problem but is less careful in defining the
inputs and outputs. At times, the input variables may include both the number
of workers and wage expenses even though, under the implicit assumption of
competitive wages, they are broadly proportional to one another. Similarly,
sometimes both sales revenue and profits earned are defined as outputs, even
though profit maximization is the implicit objective of the firm. Clearly, the
efficiency measure derived from an optimization model becomes more mean-
ingful when the choice variables and the constraints correspond to an explicitly
conceptualized theory of firm behavior. At the other end of the spectrum, there
are numerous empirical applications in economics where some DEA model
is employed to evaluate efficiency without careful attention to the appropri-
ateness of the specific version of DEA for the production technology and the
implicit objective of the firm. For the applied researcher, a clear understanding
of the differences between the various DEA models is absolutely necessary for
a proper interpretation of the results.

My principal research interest in production economics has convinced me
over the years that one must treat the production technology and the objectives
of firm behavior under the constraints specified as fundamental to any analysis
of efficiency and, just as in econometric modeling one estimates a frontier
production, cost, or profit function for measuring efficiency, in much the same
way one has to specify the appropriate DEA model in order to obtain a proper
measure of the efficiency of a firm. Thus, the neoclassical model of production
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x Preface

economics, in its primal–dual forms, is the basic analytical framework of this
book as it provides the economic rationale of the various DEA models.

The principal objective of this book is to provide a unified and easily
comprehensible yet fairly rigorous exposition of the essential features of the
core literature on DEA for the interested readers coming from different dis-
ciplines. The standard concepts of technical, scale, and cost efficiency are
first explained using simple parametric functional forms. Subsequently, the
various DEA models are developed as nonparametric alternatives to the para-
metric models. This should be particularly helpful for the average economist
more familiar with parametrically specified production, cost, or profit func-
tions. At the same time, various numerical examples of the parametric models
have been included for the benefit of the reader whose principal background
is in operations research or management science, even though such exam-
ples may appear superfluous to readers familiar with neoclassical production
economics.

Apart from the standard fare consisting of the basic input- and output-
oriented DEA models formulated by Charnes, Cooper, and Rhodes (CCR)
and Banker, Charnes, and Cooper (BCC), the book includes detailed cover-
age of more recent developments like the directional distance function, free
disposal hull (FDH) analysis, nonradial measures of efficiency, multiplier
bounds, merger and breakup of firms, and measurement of productivity change
through the Malmquist total factor productivity index. The chapter on effi-
ciency measurement using market prices provides the critical link between
DEA and the neoclassical theory of a competitive firm. In the chapter on
nonparametric approaches to production analysis, a number of models that
complement DEA are presented to establish the common intellectual lineage
of these two approaches – one coming from economics and the other from op-
erations research. Similarly, for the interested reader, a detailed discussion of
Shephard’s distance function is provided in an appendix to Chapter 2. Finally,
several forms of stochastic DEA are discussed in detail.

This book is designed to provide the theoretical and methodological back-
ground that would enable interested readers to formulate the relevant DEA
model for the specific problem under investigation. The emphasis is on set-
ting up the appropriate linear programming models in the primal–dual forms.
Although, for most types of models, sample computer programs in SAS are
provided as examples, it is expected that readers will either write their own
programs for any software that serves their purpose or get a skilled program-
mer to translate the DEA optimization problems that they formulate into a set
of computer commands.
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Preface xi

I have personally been interested in DEA as an analytical tool in production
economics right from its inception into the literature. In 1978, while I was a
graduate student at the University of California, Santa Barbara, Llad Phillips,
who was teaching a course in Labor Economics, introduced me to the neoclas-
sical theory of duality in production. Shortly thereafter, Jati Sengupta brought
to my attention a paper by CCR published in the European Journal of Oper-
ational Research on measurement of technical efficiency using a new method
called Data Envelopment Analysis (DEA). Later, in 1979, I joined Phillips
and one of his past Ph.D. students, Manuel Olave, from INCAE, Managua,
Nicaragua, as a research assistant for their project on measuring the produc-
tive efficiency of primary health care and family planning centers in Costa Rica
and Guatemala. My own contribution to the study was to complement their
Translog cost function analysis with the new approach of DEA. The data set in-
cluded various manpower hours (physicians, nursing, and other personnel) for
inputs and different types of cases treated (like maternity, family planning, and
others) for outputs. The units observed were health care facilities from different
regions categorized as urban, rural, or tribal (Indian), and observations were
recorded for different semesters over years. In our first application, based on
our intuition from production economics, we used the regional characteristics
as ordered categorical variables, thereby anticipating a subsequent develop-
ment in the literature. Similarly, we conceptualized nonregressive technical
change and constructed a series of sequential frontiers for the chronologically
ordered time periods. Looking back, ours must have been one of the earlier
applications of DEA, which has remained unrecognized in the chronology of
the literature. This is explained largely by the fact that during the subsequent
political turmoil in Nicaragua, I lost contact with Manuel Olave and, over the
years, the project report slipped into oblivion. Over the decade that followed,
my interest in productivity analysis deepened and I continued to work on DEA
just by myself with little intellectual discourse with anyone else. This led to two
papers that appeared in Socio-Economic Planning Sciences and Management
Science, respectively. Finally, in 1991, I presented a paper in the DEA stream of
the EURO-TIMS Meetings held in Aachen, Germany. My first exposure to the
community of researchers working on productivity and efficiency analysis was
a most exciting and intellectually rewarding experience. It was at this meeting
that I first met some of the leading scholars in the field such as Bill Cooper, Knox
Lovell, and Rolf Färe. Thereafter, I became a regular participant in the Pro-
ductivity Workshops held in the United States and in Europe in alternate years.
Interaction with fellow researchers at these meetings has greatly contributed
to the development of this book. I am particularly grateful to Knox Lovell,
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xii Preface

who at various times has been a very constructive critic of my work. At a dif-
ferent level, Bill Cooper has always been a source of inspiration and encour-
agement for me. Subal Kumbhakar, a long-time friend and a leading exponent
of the stochastic frontier analysis, has always been an open-minded listener to
my ideas and has judged the essence of any research idea from the broad per-
spective of neoclassical production economics rather than through the narrow
lenses of a methodologist of a particular conviction. Steve Miller, who was a
colleague for nearly two decades here at the University of Connecticut, has
patiently read and offered valuable comments on much of what I have written
on DEA and efficiency measurement, including several of the earlier chapters
of this book.

Over the years, my own graduate students at the University of Connecticut,
many of whom have been my coauthors, also have often helped me to clear
up confusions about different aspects of DEA in particular and neoclassical
duality theory in general through many perceptive questions they have raised
in my research seminar course. In particular, Evangelia Desli and Kankana
Mukherjee have continued to offer valuable comments and suggestions on
all of my papers – even when they were not coauthors. Two of my current
graduate students, Anasua Bhattacharya and Yanna Wu, helped me by drawing
the figures in Microsoft Word.

Finally, a Fulbright Lecturer award in the fall of 2000 offered an opportunity
to teach DEA for a month at the Indian Institute of Management, Calcutta, and
for the next three months at the Indian Institute of Management, Ahmedabad,
and allowed me to organize the lectures around the planned chapters of this
book. The doctoral students at these two institutions attending my lectures
helped me to improve the exposition of the topics covered in the chapters.

Special thanks go to Scott Parris, economics editor of Cambridge University
Press at New York, for his enthusiastic support and encouragement. Although
I alone bear responsibility for whatever is presented in this book, the body of
literature dealt with is the contribution of a host of outstanding scholars from
economics, management science, and operations research. If the book helps
to bridge the gap between different strands within the literature, it will have
served its purpose.

         
 

 



P1: JYT
CB688-01 CB688-RAY CB688-Ray-v1.cls January 21, 2004 14:21

1

Introduction and Overview

1.1 Data Envelopment Analysis and Economics

Data Envelopment Analysis (DEA) is a nonparametric method of measuring
the efficiency of a decision-making unit (DMU) such as a firm or a public-
sector agency, first introduced into the Operations Research (OR) literature
by Charnes, Cooper, and Rhodes (CCR) (European Journal of Operational
Research [EJOR], 1978). The original CCR model was applicable only to tech-
nologies characterized by constant returns to scale globally. In what turned out
to be a major breakthrough, Banker, Charnes, and Cooper (BCC) (Manage-
ment Science, 1984) extended the CCR model to accommodate technologies
that exhibit variable returns to scale. In subsequent years, methodological con-
tributions from a large number of researchers accumulated into a significant
volume of literature around the CCR–BCC models, and the generic approach of
DEA emerged as a valid alternative to regression analysis for efficiency mea-
surement. The rapid pace of dissemination of DEA as an acceptable method of
efficiency analysis can be inferred from the fact that Seiford (1994) in his DEA
bibliography lists no fewer than 472 published articles and accepted Ph.D. dis-
sertations even as early as 1992. In a more recent bibliography, Tavares (2002)
includes 3,183 items from 2,152 different authors. Indeed, at the present mo-
ment, an Internet search for DEA produces no fewer than 12,700 entries!
Parallel development of computer software for solving the DEA linear pro-
gramming (LP) problems made it considerably easier to use DEA in practical
applications. Apart from the LP procedures within general-purpose packages
like SAS and SHAZAM, specialized packages like Integrated Data Envel-
opment System (IDEAS) and Data Envelopment Analysis Program (DEAP)
eliminate the need to solve one LP at a time for each set of DMUs being eval-
uated. As a result, applying DEA to measure efficiency using a large data set
has become quite routine. Unlike in Management Science where DEA became

1

         
 

 



P1: JYT
CB688-01 CB688-RAY CB688-Ray-v1.cls January 21, 2004 14:21

2 Introduction and Overview

virtually an instant success, in economics, however, its welcome has been far
less enthusiastic. There are three principal reasons for skepticism about DEA
on the part of economists.

First, DEA is a nonparametric method; no production, cost, or profit function
is estimated from the data. This precludes evaluating marginal products, partial
elasticities, marginal costs, or elasticities of substitution from a fitted model.
As a result, one cannot derive the usual conclusions about the technology,
which are possible from a parametric functional form.

Second, DEA employs LP instead of the familiar least squares regression
analysis. Whereas a basic course in econometrics centered around the classical
linear model is an essential ingredient of virtually every graduate program in
economics, familiarity with LP can by no means be taken for granted. In text-
book economics, constraints in standard optimization problems are typically
assumed to be binding and Lagrange multipliers are almost always positive.
An average economist feels uncomfortable with shadow prices that become
zero at the slightest perturbation of the parameters.

Finally, and most important of all, being nonstatistical in nature, the LP
solution of a DEA problem produces no standard errors and leaves no room
for hypothesis testing. In DEA, any deviation from the frontier is treated as
inefficiency and there is no provision for random shocks. By contrast, the far
more popular stochastic frontier model explicitly allows the frontier to move
up or down because of random shocks. Additionally, a parametric frontier
yields elasticities and other measures about the technology useful for marginal
analysis.

Of the three, the first two concerns can be easily addressed. Despite its rel-
atively recent appearance in the OR literature, the intellectual roots of DEA in
economics can be traced all the way back to the early 1950s. In the aftermath of
World War II, LP came to be recognized as a powerful tool for economic anal-
ysis. The papers in the Cowles Commission monograph, Activity Analysis of
Production and Resource Allocation, edited by Koopmans (1951), recognized
the commonality between existence of nonnegative prices and quantities in a
Walras–Cassel economy and the mathematical programming problem of op-
timizing an objective function subject to a set of linear inequality constraints.
Koopmans (1951) defined a point in the commodity space as efficient when-
ever an increase in the net output of one good can be achieved only at the cost
of a decrease in the net output of another good. In view of its obvious simi-
larity with the condition for Pareto optimality, this definition is known as the
Pareto–Koopmans condition of technical efficiency. In the same year, Debreu
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1.1 Data Envelopment Analysis and Economics 3

(1951) defined the “coefficient of resource utilization” as a measure of techni-
cal efficiency for the economy as a whole, and any deviation of this measure
from unity was interpreted as a deadweight loss suffered by the society due to
inefficient utilization of resources.

Farrell (1957) made a path-breaking contribution by constructing a LP model
using actual input–output data of a sample of firms, the solution of which
yields a numerical measure of the technical efficiency of an individual firm in
the sample. In fact, Farrell’s technical efficiency is the same as the distance
function proposed earlier by Shephard (1953). Apart from providing a measure
of technical efficiency, Farrell also identified allocative efficiency as another
component of overall economic efficiency.

Linear Programming and Economic Analysis by Dorfman, Samuelson, and
Solow (DOSSO) (1958) brought together the three branches of linear economic
analysis – game theory, input–output analysis, and LP – under a single roof. At
this point, LP came to be accepted as a computational method for measuring
efficiency in different kinds of economic decision-making problems.

Farrell recognized that a function fitted by the ordinary least squares re-
gression could not serve as a production frontier because, by construction,
observed points would lie on both sides of the fitted function. He addressed
this problem by taking a nonparametric approach and approximated the un-
derlying production possibility set by the convex hull of a cone containing
the observed input–output bundles. Farrell’s approach was further refined by
a group of agricultural economists at the University of California, Berkeley
(see the papers by Boles, Bressler, Brown, Seitz, and Sitorus in a symposium
volume of the Western Farm Economic Association published in 1967). In fact,
a paper by Seitz subsequently appeared in Journal of Political Economy, one
of the most prestigious and mainstream journals in economics.

Aigner and Chu (1968) retained a parametric specification of a production
frontier but constrained the observed data points to lie below the function. They
proposed using mathematical programming (either linear or quadratic) to fit
the specified function as close to the data as possible. In a subsequent extension
of this approach, Timmer (1971) allowed a small number of the observed data
points to lie above the frontier in an attempt to accommodate chance variation
in the data.

In a parallel strand in the literature, Afriat (1972) and Hanoch and Roth-
schild (1972) proposed a variety of tests of consistency of the observed
data with technical and economic efficiency. One could, for example, ask
whether a sample of observed input–output quantities was technically efficient.
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4 Introduction and Overview

Similarly, when input price data were also available, one could ask whether the
observed firms were choosing input bundles that minimized cost. One would,
of course, need to specify the technology to answer these questions. Further,
the answer would depend on what form of the production technology was
specified. What Afriat and Hanoch and Rothschild investigated was whether
there was any production technology satisfying a minimum number of reg-
ularity conditions like (weak) monotonicity and convexity with reference to
which the observed data could be regarded as efficient. Like Farrell (1957),
they also took a nonparametric approach and used LP to perform the various
tests. Although these regularity tests were designed for screening individual
data points prior to fitting a production, cost, or profit function econometrically,
the degree of violation of the underlying regularity conditions at an individual
data point often yields a measure of efficiency of the relevant firm. Diewert
and Parkan (1983) further extended the literature on nonparametric tests of
regularity conditions using LP. Varian (1984) offered a battery of nonparamet-
ric tests of various properties of the technology ranging from constant returns
to scale to subadditivity. Moreover, he formalized the nonparametric tests of
optimizing behavior as Weak Axiom of Cost Minimization (WACM) and Weak
Axiom of Profit Maximization (WAPM). More recently, Banker and Maindiratta
(1988) followed up on Varian to decompose profit efficiency into a technical
and an allocative component and defined upper and lower bounds on each
component.

It is clear that DEA fits easily into a long tradition of nonparametric analysis
of efficiency using LP in economics. In fact, in the very same year when the
CCR paper appeared in EJOR, Färe and Lovell (1978) published a paper in
Journal of Economic Theory in which a LP model is specified for measurement
of nonradial Pareto–Koopmans efficiency.

The problem with the nonstatistical nature of DEA is much more fundamen-
tal. In fact, the lack of sampling properties of the technical efficiency of a firm
obtained by solving a mathematical programming problem was recognized as a
limitation of this procedure virtually right from the start. Winsten (1957), in his
discussion of Farrell’s paper, speculated that the frontier relationship between
inputs and output would be parallel to but above the average relationship. This
evidently anticipated the so-called corrected ordinary least squares (COLS)
procedure that adjusts the intercept for estimating a deterministic production
frontier (see Richmond [1974]; Greene [1980]) by two decades. Similarly, the
production frontier was conceptualized as stochastic by Sturrock (1957), an-
other discussant of Farrell’s paper, who pointed out that the output producible
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from an input bundle would be subject to chance variations beyond the control
of the firm and argued against using “freakishly good” results to define 100
percent efficiency.

Lack of standard errors of the DEA efficiency measures stems from the
fact that the stochastic properties of inequality-constrained estimators are not
well established in the econometric literature. Even in a simple two-variable
linear regression with a nonnegativity constraint on the slope coefficient, the
sampling distribution of the constrained estimator is a discrete–continuous
type and the estimator is biased (see Theil [1971], pp. 353–4). Naturally, for a
DEA model with multiple inequality constraints, the problem is far more com-
plex and a simple solution is unlikely in the near future. At this point in time,
however, there are several different lines of research underway to address this
problem.

First, Banker (1993) conceptualized a convex and monotonic nonparametric
frontier with a one-sided disturbance term and showed that the DEA estima-
tor converges in distribution to the maximum likelihood estimators. He also
specified F tests for hypothesis testing. Subsequently, Banker and Maindiratta
(1992) introduced an additional two-sided component in the composite error
term and proposed an estimation procedure of the nonparametric frontier by
DEA.

Second, several researchers (e.g., Land, Lovell, and Thore [1993]) have
applied chance-constrained programming allowing the inequality constraints
to be violated only with a prespecified low probability.

Third, a line of research initiated by Simar (1992) and Simar and Wilson
(1998, 2000) combines bootstrapping with DEA to generate empirical distri-
butions of the efficiency measures of individual firms. This has generated a lot
of interest in the profession and one may expect the standard DEA software to
incorporate the bootstrapping option in the near future.

Finally, in a related but somewhat different approach, Park and Simar (1994)
and Kniep and Simar (1996) have employed semiparametric and nonparametric
estimation techniques to derive the statistical distribution of the efficiency
estimates.

1.2 Motivation for This Book

At present, an overwhelming majority of practitioners remain content with
merely feeding the data into the specialized DEA packages without much
thought about whether the LP model solved is really appropriate for the problem

         
 

 



P1: JYT
CB688-01 CB688-RAY CB688-Ray-v1.cls January 21, 2004 14:21

6 Introduction and Overview

under investigation. The more enterprising and committed researcher has to
struggle through the difficult articles (many of which appeared in OR journals)
in order to understand the theoretical underpinnings of the various types of LP
models that one has to solve for measuring efficiency. The principal objective
of this book is to deal comprehensively with DEA for efficiency measurement
in an expository fashion for economists. At the same time, it seeks to pro-
vide the economic theory behind the various DEA models for the benefit of
an OR/management science (MS) analyst unfamiliar with neoclassical pro-
duction theory. The book by Färe, Grosskopf, and Lovell (FGL) (1994) does
provide a rigorous and systematic discussion of efficiency measurement using
nonparametric LP-based methods. But their persistent use of set theoretic anal-
ysis intimidates the average reader. On the other hand, the more recent book
by Coelli, Rao, and Battese (1998) is, as the authors acknowledge, designed
to provide a lower level bridge to the more advanced books on performance
measurement.

By far the most significant book on DEA in the MS/OR strand of the lit-
erature is the recent publication by Cooper, Seiford, and Tone (2000). The
authors carefully develop the different DEA models and cover in meticu-
lous detail various mathematical corollaries that follow from the important
theorems. As such, it is essential reading for one who wants to pursue the
technical aspects of DEA. Designed primarily for the OR analyst, however,
it understandably lacks the production economic insights behind the various
models.

The present volume is designed to fill a gap in the literature by systematically
relating various kinds of DEA models to specific concepts and issues relating
to productivity and efficiency in economics. It may be viewed as a somewhat
“higher level” bridge to the more advanced material and is meant primarily for
readers who want to learn about the economic theoretical foundations of DEA
at an intuitive level without sacrificing rigor entirely. This background should
enable them to set up their own DEA LP models that best capture the essence
of the context under which efficiency is being measured.

The chapters include numerous examples using real-life data from various
empirical applications. In most cases, a typical SAS program and the output
from the program are included for the benefit of the reader.

1.3 An Overview

The following is a brief outline of the broad topics and themes around which
the different chapters have been developed.
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1.3 An Overview 7

Measurement of Productivity and Technical Efficiency
without Price Data
Productivity and technical efficiency are two closely related but different mea-
sures of performance of a firm. They are equivalent only when the technology
exhibits constant returns to scale (CRS). Chapter 2 develops the basic DEA
model formulated by CCR for measurement of technical efficiency of indi-
vidual firms under CRS using observed input–output quantity data. A simple
transformation of the variables reduces the CCR ratio model involving a linear
fractional functional programming into an equivalent LP problem. An appendix
to this chapter includes a discussion of the Shephard distance function and its
various properties for the interested reader. The CRS assumption is relaxed in
Chapter 3, in which the BCC model applicable to technologies with variable
returns to scale is presented. The maximum average productivity attained at
the most productive scale size (MPSS) is compared with the average produc-
tivity at the actual scale of production to measure scale efficiency. The chapter
also presents several alternative ways to determine the nature of returns to
scale at an observed point. These two chapters are by far the most important
in the entire volume, and a thorough grasp of the material contained in them
is essential for a complete understanding of the rest of the chapters.

Chapter 4 presents various extensions to the basic DEA models considered in
the earlier chapters. These include (1) the use of the graph hyperbolic distance
function and the directional distance function for efficiency measurement,
(2) rank ordering firms, all of which are evaluated at 100% efficiency based on
DEA models, (3) identifying influential observations in DEA, and (4) a discus-
sion of invariance properties of various DEA models to data transformation.
In many situations, there are factors influencing the technical efficiency of a
firm that are beyond the control of the producer. These are treated as nondis-
cretionary variables. One may include these variables within the constraints
but not in the objective function of the DEA model. Alternatively, in a two-step
procedure, they may be excluded from the DEA in the first stage but speci-
fied as independent variables in a second-stage regression model explaining
the efficiency scores obtained in the first stage. Chapter 4 also considers the
conceptual link between the DEA scores and the subsequent regression model
in such a two-step procedure. The reader may skip this chapter at first reading
and may choose to return to it at a later stage.

Pareto–Koopmans Technical Efficiency
Pareto–Koopmans technical efficiency is incompatible with unrealized output
potential and/or avoidable input waste. Of course, when all outputs and inputs
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have strictly positive market prices, cost minimization automatically results
in a Pareto–Koopmans efficient input bundle and profit maximization results
in a similarly efficient input–output bundle. In the absence of market prices,
however, one seeks the maximum equiproportionate increase in all outputs
or equiproportionate decrease in all inputs. This is known as radial efficiency
measurement. Both the CCR and BCC models fall into this category. But
such an efficient radial projection of an observed input–output bundle onto the
frontier does not necessarily exhaust the potential for expansion in all outputs
or potential reduction in all inputs. The projected point may be on a vertical
or horizontal segment of an isoquant, where the marginal rate of substitution
between inputs equals zero. A different and nonradial model for efficiency
measurement was first proposed by Färe and Lovell (1978) and is similar to
the invariant additive DEA model.

Chapter 5 considers nonradial projections of observed input–output bundles
onto the efficient segment of the frontier where marginal rates of substitution
(or transformation) are strictly positive. In such models, outputs and inputs are
allowed to change disproportionately.

Efficiency Measurement without Convexity
In DEA, convexity of the production possibility set is a maintained hypothe-
sis. Convexity ensures that when two or more input–output combinations are
known to be feasible, any weighted average of the input bundles can produce a
similarly weighted average of the corresponding output bundles. In Free Dis-
posal Hull (FDH) analysis, one dispenses with the convexity requirement and
retains only the assumption of free disposability of inputs and outputs. FDH
analysis relies on dominance relations between observed input–output bundles
to measure efficiency. Chapter 6 deals with FDH analysis as an alternative to
DEA and shows how FDH results in a more restricted version of the mathe-
matical programming problem in DEA. Although not essential for an overall
understanding of DEA, the material presented in this chapter helps the reader
to fully appreciate the important role of the convexity assumption.

Slacks, Multiplier Bounds, and Congestion
Presence of input and/or output slacks at the optimal solution of a radial DEA
model is an endemic problem. An alternative to the nonradial models consid-
ered in Chapter 5 is to ensure a priori that no such slacks remain at an optimal
solution. The methods of Assurance Region (AR) and Cone Ratio (CR) analy-
sis, described in Chapter 7, focus on the dual of the CCR or BCC model but put
bounds on the dual variables. This ensures that the corresponding restriction

         
 

 



P1: JYT
CB688-01 CB688-RAY CB688-Ray-v1.cls January 21, 2004 14:21

1.3 An Overview 9

in the primal problem will hold as equality. As a result, all potential for out-
put gain and input saving is fully realized and Pareto–Koopmans technical
efficiency is attained.

Underlying the horizontal or vertical segment of an isoquant or a product
transformation curve is the assumption of free or strong disposability of inputs
or outputs. Free disposability of inputs, for example, implies that increase in
the quantity of any input without any reduction in any other input will not
cause a reduction in output. One could simply leave the additional quantity
of the particular input idle. In some cases, however, input disposal is costly.
In agricultural production, for example, water for irrigation is an input with
positive marginal productivity. If, however, excessive rain causes flooding, one
needs to use capital and labor for drainage. At this stage, marginal productivity
of water has become negative and the isoquant is not horizontal but upward
sloping because additional quantities of other inputs are required to neutralize
the detrimental effects of excessive irrigation. Along the upward rising segment
of the isoquant, in the two-input case, it is possible to increase both inputs (but
not only one) without reducing output. This is known as weak disposability
of inputs and results in what is described as input congestion. The problem of
congestion is also considered in Chapter 7.

Breakup and Merger of Firms
The production technology is super-additive if the output bundles produced
individually by two firms can be produced more efficiently together by a single
firm. There is an efficiency argument in favor of merger of these two firms.
Similarly, in some cases, breaking up an existing firm into a number of smaller
firms would improve efficiency. In economics, the question of sub-/super-
additivity of the cost function and its implication for the optimal structure of
an industry was investigated in detail by Baumol, Panzar, and Willig (1982).
Maindiratta’s (1990) definition of “size efficiency” applies the same concept in
the context of DEA. Chapter 8 deals with the efficiency implications of merger
and breakup of firms.

Measurement of Economic Efficiency Using Market Prices
Attaining technical efficiency ensures that a firm produces the maximum output
possible from a given input bundle or uses a minimal input quantity to produce
a specified output level. But no account is taken of the substitution possibilities
between inputs or transformation possibilities between outputs. Full economic
efficiency lies in selecting the cost-minimizing input bundle when the output
is exogenously determined (e.g., the number of patients treated in a hospital)
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and in selecting the profit-maximizing input and output bundles when both are
choice variables, as in the case of a business firm. Chapter 9 considers first
the cost-minimization problem and then the profit-maximization problem in
DEA. Following Farrell, the cost efficiency is decomposed into technical and
allocative efficiency factors. Similarly, lost profit due to inefficiency is traced
to technical and allocative inefficiency components. Chapter 9 provides the
crucial link between DEA and standard neoclassical theory of a competitive
firm and plays a key role in the overall development of the volume.

Nonparametric Tests of Optimizing Behavior
Chapter 10 presents some of the major tests for optimizing behavior in pro-
ducer theory existing in the literature. This chapter considers Varian’s Weak
Axiom of Cost Minimization and its relation to a number of related proce-
dures. Diewert and Parkan (1983) and Varian (1984) define an outer and an
inner approximation to the production possibility set based on the quantity
and price information about inputs and outputs of firms in a sample. These
yield the lower and upper bounds of various efficiency measures. The material
presented here is primarily of a methodological interest and may be skipped
by a more empirically motivated reader.

Productivity Change over Time: Malmquist and Fisher Indexes
Caves, Christensen, and Diewert (CCD) (1982) introduced the Malmquist pro-
ductivity index to measure productivity differences over time. Färe, Grosskopf,
Lindgren, and Roos (FGLR) (1992) developed DEA models that measure
the Malmquist index. There is a growing literature on decomposition of the
Malmquist index into separate factors representing technical change, technical
efficiency change, and scale efficiency change. Apart from the Malmquist in-
dex, Chapter 11 also shows the measurement and decomposition of the Fisher
index using DEA. In light of the increasing popularity of this topic, this chapter
is highly recommended even to the average reader.

Stochastic Data Envelopment Analysis
By far the most serious impediment to a wider acceptance of DEA as a valid
analytical method in economics is that it is seen as nonstatistical, not distin-
guishing inefficiency from random shocks. Although a satisfactory resolution
of the problem is not at hand, efforts to add a stochastic dimension to DEA have
been made along several different lines. Chapter 12 presents Banker’s F tests,
Chance-Constrained Programming, Varian’s statistical test of cost minimiza-
tion, and bootstrapping for DEA as various major directions of research in this
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area. Of these, bootstrapping appears to be most promising and is becoming
increasingly popular. Chapter 12 is essential reading for every serious reader.

Beyond the standard CCR and BCC DEA models, the choice of topics that
are to be included in a standard reference textbook is largely a matter of
preference of the author. In the present case, topics that are more directly
related to neoclassical production economics have been included. Others, like
multi-criterion decision making (MCDM) and goal programming – although
by no means less important in the context of DEA – have been excluded.
Readers interested in these and other primarily OR/MS aspects of DEA should
consult Cooper, Seiford, and Tone (2000) for guidance.
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2

Productivity, Efficiency, and Data Envelopment Analysis

2.1 Introduction

Any decision-making problem faced by an economic agent (such as a consumer
or a producer) has three basic features. First, there are the variables whose
values are chosen by the agent. These are the choice or decision variables in
the problem. Second, there are the restrictions that define the set of feasible
values from which to choose. Finally, there is some criterion function that
assigns different values to the outcomes from alternative decisions.

In the context of production, the decision-making agent is the firm. The
choice variables are the quantities of outputs to be produced as well as the
quantities of inputs used. The input–output combination selected by the firm
must be technically feasible in the sense that it must be possible to produce the
output bundle selected from the associated input bundle. For a commercial firm
facing well-defined market prices of inputs and outputs, the profit measured by
the difference between revenue and cost serves as the criterion of choice. It is
possible, therefore, to rank the alternative feasible input–output combinations
in order of the profit that results from them.

When the criterion function has a finite maximum value attainable over
the feasible set of the choice variables, this maximum value can be used as
a benchmark for evaluating the efficiency of a decision-making agent. The
closer the actual profit of a firm is to the maximum attainable, the greater is its
efficiency.

It is important to recognize that the scope of decision making defines what
can be regarded as choice variables and the criterion function has to be ap-
propriately formulated. For example, in many practical situations, the output
produced may be an assigned task that is exogenously determined. The pro-
ducer then chooses only between alternative input bundles that can produce
the targeted output. In this context, efficiency lies in minimizing the cost of

12
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production. This is true for many not-for-profit service organizations such as
hospitals, schools, or disaster-relief agencies. Even within a for-profit business
organization, as one goes down the decision-making hierarchy, the number of
choice variables declines. For example, at the lower end of a manufacturing
firm is the production foreman on the shop floor, who is typically assigned a
specific input bundle and has to manage the workers under his supervision so
as to produce the maximum possible output from these inputs. Therefore, at
this level, efficiency is to be measured by a comparison of the actual output
produced with what is deemed to be maximally possible. For the foreman,
input quantities are nondiscretionary variables.

The obvious payoff from efficiency measurement is that it provides an ob-
jective basis for evaluating the performance of a decision-making agent. The
outcome at the highest level of efficiency (e.g., the maximum profit achiev-
able) provides an absolute standard for management by objectives. Further,
comparison of efficiency across decision makers at the same level provides a
basis for differential rewards. Moreover, one can assess the impact of various
institutional or organizational changes by analyzing how they affect efficiency.
For example, the economic reforms in Chinese agriculture introduced in the
post-Mao era allowed private farming to a limited extent. The farmers’ right
to appropriate the surplus (at least in part) considerably increased the output
quantities produced from the same input bundle. This increase in efficiency
provides an economic justification for these reforms.

Any attempt to measure efficiency raises two questions – one conceptual and
the other practical. At the conceptual level: What do we mean by the efficiency of
a decision maker? More specifically, where does inefficiency come from? If the
laws of production are interpreted as physical laws, identical sets of inputs must
produce identical output quantities. Therefore, if the same input bundle results
in two different output quantities on two different occasions, it must be true
that differences in some other factors relevant for production but not included
in the input–output list account for this discrepancy. In agricultural production,
for example, the maximum output producible from a given input bundle can
vary due to random differences in weather. The stochastic production frontier
models allow random shifts in the frontier to accommodate such factors. But
even after such accommodation, firms do differ in efficiency. In the spirit of
Stigler (1976), one can argue that every observed input–output combination
is efficient and any measured inefficiency is due to difference in excluded
variables. Thus, if a farmer fails to attain what is considered to be the maximum
producible level of output from a given bundle of inputs, it must be due to the
fact that he did not either put in the required level of effort or had a lower
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ability or human capital. Similarly, measured inefficiency of the production
supervisor reflects a lower level or quality of managerial input in monitoring
efforts of subordinates. Hence, a lower level of efficiency can be ascribed to
lower effort, ability, or aptitude.

At the practical level, the benchmark for efficiency measurement depends
critically on how the feasible set of input–output bundles is specified. An input–
output combination is considered feasible as long as the output quantity does
not exceed the value of an estimated function at the specified input quantities.
In the absence of any clearly defined engineering formula relating inputs to
outputs, this is essentially an empirical issue. A widely applied approach is
econometric estimation of a stochastic production frontier. A nonparametric
alternative to the econometric approach is provided by the method of Data
Envelopment Analysis (DEA), which builds on the pioneering work of Farrell
(1957).

At the lowest level of decision making, the objective is to produce the
maximum quantity of output from a specific input bundle. The benchmark
is determined by the technology itself, and comparison of the actual output
produced with the benchmark quantity yields a measure of technical effi-
ciency. This is different from economic efficiency, in which one compares
the profit resulting from the actual input–output bundle with the maximum
profit possible. Here, apart from the technology, the market prices of inputs
and outputs also play an important role. As will be shown later, technical ef-
ficiency is an important component of economic efficiency and a firm cannot
achieve full economic efficiency unless it is technically efficient. In this chap-
ter, we focus on technical efficiency and show how DEA can be used to meas-
ure it.

2.2 Productivity and Technical Efficiency

Production is an act of transforming inputs into outputs. Because the objective
of production is to create value through transformation, outputs are, in general,
desirable outcomes. Hence, more output is better. At the same time, inputs are
valuable resources with alternative uses. Unspent quantity of any input can be
used for producing more of the same output or to produce a different output.
The twin objectives of efficient resource utilization by a firm are (1) to produce
as much output as possible from a specific quantity of input and, at the same
time, (2) to produce a specific quantity of output using as little input as possible.

An input–output combination is a feasible production plan if the output
quantity can be produced from the associated input quantity. The technology
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available to a firm at a given point in time defines which input–output combi-
nations are feasible.

Two concepts commonly used to characterize a firm’s resource utilization
performance are (1) productivity, and (2) efficiency. These two concepts are
often treated as equivalent in the sense that if firm A is more productive than
firm B, then it is generally believed that firm A must also be more efficient.
This is not always true, however. Although closely related, they are fundamen-
tally different concepts. For one thing, productivity is a descriptive measure
of performance. Efficiency, on the other hand, is a normative measure. The
difference between the two can be easily understood using an example of two
firms from a single-input, single-output industry.

2.3 The Single-Output, Single-Input Technology

Suppose that firm A uses xA units of the input x to produce yA units of the
output y. Firm B, on the other hand, produces output yBfrom input xB . Then
the average productivities of the two firms are

AP(A ) = yA

xA
for firm A

and

AP(B) = yB

xB
for firm B

If APA > APB , we conclude that firm A is more productive than firm B. We
can even measure the productivity index of firm A relative to firm B as

�A,B = APA

APB
= yA/xA

yB/xB
.

If this productivity index exceeds 1, firm A is more productive than firm B.
The higher it goes above unity, the more productive is firm A relative to firm B.

Assuming that (xA, yA) = (16, 3) and (xB, yB) = (64, 7),

AP (A) = 3

16
and AP (B) = 7

64
.

Thus,

�A,B = 12

7
= 1.7.

Hence, firm A is 1.7 times as productive as firm B.
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An important point to note is that in the single-output, single-input case,
we do not need to know the technology to measure either the absolute or the
relative productivity of a firm. In this respect, APA or APB merely describes the
performance of the individual firm without evaluating such performance. Of
course, the productivity index does provide a comparison between the firms.
Nevertheless, it uses no reference technology for a benchmark.

Now suppose that we do know that the technology is described by the pro-
duction function

y∗ = f (x). (2.1)

Then, y∗
A = f (xA) is the maximum output producible from input xA. Simi-

larly, y∗
B = f (xB) is the maximum output that can be produced from xB . We

can measure the technical efficiency of a firm by comparing its actual output
with the maximum producible quantity from its observed input. This is an
output-oriented measure of efficiency. For firm A, the output-oriented techni-
cal efficiency is

TEA
O = yA

y∗
A

≤ 1. (2.2a)

Similarly, for firm B,

TEB
O = yB

y∗
B

≤ 1. (2.2b)

If firm A produced the maximum producible output (y∗
A) from input xA, its

average productivity would have been

AP∗(A) = y∗
A

xA
,

whereas at the observed input–output level, its productivity is

AP(A) = yA

xA
.

Thus, an alternative characterization of its output-oriented technical efficiency
is

TEA
O = yA

y∗
A

= yA/xA

y∗
A/xA

= AP(A)

AP∗(A)
. (2.3a)

Similarly,

AP∗(B) = y∗
B

xB

         
 

 



P1: FZZ
CB688-02 CB688-RAY CB688-Ray-v1.cls January 28, 2004 11:11

2.3 The Single-Output, Single-Input Technology 17

and

TEB
O = AP(B)

AP∗(B)
. (2.3b)

In this sense, the technical efficiency of a firm is its productivity index relative
to a hypothetical firm producing the maximum output possible from the same
input quantity that the observed firm is using.
Thus,

TEA
O = �A,A∗ (2.4a)

and

TEB
O = �B,B∗ . (2.4b)

In Figure 2.1, we measure input x along the horizontal axis and output y up
the vertical axis. Points PA and PB represent the input–output bundles of firms
A and B, respectively. Average productivity of A is equal to the slope of the
line OPA. Similarly, the slope of OPB measures the average productivity of B.
Because the input–output combinations of the two firms are actually observed,
we know that these two are feasible points.

P*
A

PB

P*B

Output (y)

y*
B

yB

y*
A

yA

O xA xB Input (x)

PA

Figure 2.1 Average productivity and output-oriented technical efficiency.
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Different information is necessary, as noted previously, to measure produc-
tivity and efficiency. First, in order to measure the average productivities of the
two firms and to compare their productivities, we do not need to know anything
beyond these two points.1 In particular, we do not need to know what other
input–output bundles are feasible. That is, no knowledge of the technology is
necessary.

To determine the efficiency of A, we need the point P∗
A showing the maxi-

mum output y∗
A producible from A’s input quantity xA. Similarly, point P∗

B

provides a benchmark for firm B. Location of these two reference points
depends on the functional form and parameters of the production frontier
f (x). For firm A,

TEA
O = yA

y∗
A

= PAxA

P∗
AxA

= slope of OPA

slope of OP ∗
A

.

Similarly, for firm B,

TEB
O = yB

y∗
B

= PB xB

P∗
B xB

= slope of OPB

slope of OP ∗
B

.

These ratios are measures of output-oriented technical efficiency. The graph of
the production function y = f (x) is the frontier of the production possibility set
defined by the underlying technology. Points P∗

A and P∗
B are vertical projections

of the points PA and PB onto the frontier. In both cases, we hold the observed
input bundle unchanged and expand the output level till we reach the frontier.
This is known as the output-augmenting or output-oriented approach.

An alternative is the input-saving or input-oriented approach. This is shown
in Figure 2.2. In this case, the output level (yA or yB) remains unchanged and
input quantities are reduced proportionately till the frontier is reached. For
firm A, the input-oriented projection onto the frontier would be the point P∗

A,
where output yA is produced from input x∗

A. Similarly, for firm B,the input-
oriented projection is the point P∗

B showing the output level yB being produced
from input x∗

B .

The pair of input-oriented technical efficiency measures for the two firms is
as follows:

TEA
I = x∗

A

xA
≤ 1

1 This is true only in the single-output, single-input case. When multiple inputs and/or
outputs are involved, we may need to use the technology for aggregation.
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   PB

P*B

 

    PA

p*A

 PB
 p*B

Output (y)

YB

YA

O XA XB  Input (x)

    PA

x*A x*B

Figure 2.2 Input-oriented technical efficiency.

and

TEB
I = x∗

B

xB
≤ 1.

As before,

TEA
I = slope of OPA

slope of OP ∗
A

= �A,A∗

and

TEB
I = slope of OPB

slope of OP ∗
B

= �B,B∗ .

In practice, whether the input- or the output-oriented measure is more appro-
priate would depend on whether input conservation is more important than
output augmentation.

Generally, the input- and output-oriented measures of technical efficiency of
a firm will be different. The exception is in the case of constant returns to scale
(CRS) when both approaches yield the same measure of efficiency. Suppose
that the observed input–output combination is (x0, y0). Further, the maximum
producible output from x0 is y∗

0 whereas the minimum input quantity that can
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produce y0 is x∗
0 . Thus, both (x0, y∗

0 ) and (x∗
0 , y0) are technically efficient points

lying on the frontier. For the input- and output-oriented technical efficiency
measures to be equal, we need

x∗
0

x0
= y0

y∗
0

.

This is equivalent to

y0

x∗
0

= y∗
0

x0
.

Thus, the average productivity at two different points on the frontier remains
the same. This, of course, implies CRS.

Before we elaborate on the case of CRS, we note that a firm may be more
productive without being more efficient than another firm. Suppose that

f (x) = √
x .

Then,

y∗
A =

√
16 = 4 and y∗

B =
√

64 = 8.

Thus,

TEA
O = yA

y∗
A

= 3

4

and

TEB
O = yB

y∗
B

= 7

8
.

Clearly, firm B is more efficient that firm A. At the same time,

AP(A) = yA

xA
= 3

16
>

yB

xB
= 7

64
= AP(B).

Thus, A is more productive without being more efficient than B.
Suppose that firm A actually produces y∗

A rather than yA from input xA. In
that case, both TEA

O and TEA
I are equal to unity. Similarly, if B also produced

y∗
B instead of yB from input xB , both TEB

O and TEB
I would also have been unity.

Nevertheless,

AP∗(A) = y∗
A

xA
>

y∗
B

xB
= AP∗(B).

In that case, firm A is more productive without being more efficient than firm B.
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    PA  RA 

       QA 

RB
  PB

   QB  

  f (x)=k(x) 

Output (y)

y*B
 

yB 

y*A

yA

 O  x*A xA  x*B xB Input (x)

Figure 2.3 Average productivity and technical efficiency under constant returns to scale.

We now consider the case of CRS. For a single-output, single-input technol-
ogy, the CRS frontier is a ray through the origin as shown in Figure 2.3. Here,
the production function is of the form

f (x) = kx, k > 0.

Along this frontier (i.e., at every point on this frontier), the average productivity
is the constant k.

As before,

TEA
O = yA

y∗
A

= slope of OPA

slope of OQA

and

TEA
I = x∗

A

xA
= slope of OPA

slope of ORA
.

Similarly,

TEB
O = yB

y∗
B

= slope of OPB

slope of OQB

.
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and

TEB
I = x∗

B

xB
= slope of OPB

slope of ORB
.

But points RA, Q A, RB, and Q B are all on the same ray through the origin.
Hence,

TEA
O = TEA

I and TEB
O = TEB

I .

Thus, when the technology exhibits CRS, input- and output-oriented mea-
sures of technical efficiency are identical. Further,

TEA
O

TEB
O

= xA PA/xA Q A

xB PB/xB Q B
= xA PA/OxA

xB PB/OxB
· OxA/xA Q A

OxB/xB Q B
= AP (A)

AP (B)
.

Hence, when the technology exhibits constant returns to scale,

�A,B = APA

APB
= TEA

O

TEB
O

= TEA
I

TEB
I

. (2.5)

Therefore, higher productivity always implies greater efficiency only under
CRS.

2.4 Multiple-Input, Multiple-Output Technology

Once we step outside the simplified world of single-input, single-output pro-
duction, the concept of average productivity measured by the output–input
quantity ratio breaks down. Even in the relatively simple case of one-output,
two-input production, we can no longer discuss average productivity in an
unequivocal manner.

Assume that firm A uses x1A of input 1 and x2A of input 2 to produce the
scalar output yA. Similarly, firm B produces output yB using x1B of input 1 and
x2B of input 2. Now we have two different sets of average productivities:

AP1
A = yA

x1A
, AP2

A = yA

x2A
for firm A

and

AP1
B = yB

x1B
, AP2

B = yB

x2B
for firm B.

It is inappropriate to treat firm A as more productive than firm B whenever
AP1

A exceeds AP1
B because it is possible that at the same time AP2

B exceeds
AP2

A.
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A firm’s average productivity relative to one input depends on the quantity
of the other input as well. Therefore, measuring a firm’s productivity relying on
a single input disregarding other inputs is wrong. Unfortunately, this was the
common practice in the U.S. Bureau of Labor Statistics and other important
agencies for many years. Major business economists often compare output
per man-hour across regions or over time to study “productivity changes” in
manufacturing. But unless one includes the quantities of capital, energy, and
other inputs, such productivity measures fail to reflect total factor productivity.

In the single-output, multiple-input case, we need to aggregate the individual
input quantities into a composite input. We can then measure productivity by
the ratio of output quantity to the quantity of this composite input. When
multiple outputs are involved, a similar aggregate measure of output is also
needed. One practical approach uses market prices of inputs for aggregation.
Suppose that r1 and r2 are the prices of the two inputs. Then,

X A = r1x1A + r2x2A (2.6a)

and

X B = r1x1B + r2x2B (2.6b)

are the aggregate input quantities for A and B, respectively. In that case,

AP(A) = yA

X A
= yA

r1x1A + r2x2A
(2.7a)

and

AP(B) = yB

X B
= yB

r1x1B + r2x2B
. (2.7b)

But, obviously, the aggregate input bundles represent the input costs of the two
firms. Thus, a firm’s average productivity is merely the inverse of its average
cost (AC). That is,

AP(A) = 1

ACA
and AP(B) = 1

ACB
.

Now suppose that each firm produced two outputs: y1 and y2. The output
prices are q1 and q2, respectively. Then, the aggregate outputs of the two firms
are measured as follows:

YA = q1 y1A + q2 y2A for firm A

and

YB = q1 y1B + q2 y2B for firm B.
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In that case,

APA = YA

X A
= q1 y1A + q2 y2A

r1x1A + r2x2A
(2.8a)

and

APB = YB

X B
= q1 y1B + q2 y2B

r1x1B + r2x2B
. (2.8b)

Thus, a firm’s average productivity is merely its (gross) rate of return on outlay.
The firm with a higher rate of return is deemed to be the more productive one.

Although this approach is simple and appealing from the perspective of a
competitive market, input and output prices are not always available. This is es-
pecially true in the service sector (such as education, public safety) where prices
are seldom available for outputs. Moreover, in the presence of a monopoly, the
market prices of inputs or outputs would be distorted. What we prefer, there-
fore, is a measure of productivity that would not require the use of market
prices.

Consider, again, a single-output, multiple-input production technology. As-
sume further that CRS holds. Let xA = (x1A, x2A, . . . , xn A) be the (vector)
input bundle and yA the (scalar) output level of firm A. Assume, further,
that

y∗ = f (x)

is the production function showing the maximum output (y∗) producible from
the input bundle x . Then, the technical efficiency of firm A is

TEA = yA

y∗
A

= yA

f (xA)
. (2.9)

But, under CRS, f (x) = ∑n
i=1 fIxi , where fi ≡ ∂ f (x)

∂xi
. Thus, it is possible to

construct the aggregate input quantity as

X A =
n∑

i=1

fi (xA)xi A. (2.10)

In this case,

AP(A) = yA

X A
= yA

f (xA)
. (2.11)
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Similarly, for firm B producing output yB from the input bundle, xB, X B =∑n
i=1 fi (xB)xi B .

AP(B) = yB

X B
= yB

f (xB)
. (2.12)

As was pointed out earlier, in this case of CRS, the productivity index of firm B
relative to firm A is merely the ratio of their respective technical efficiency
levels.

It may be noted that when market prices are actually available, optimizing
behavior of competitive firms would result in the prices of individual inputs
being equated to the corresponding values of their marginal products. Thus,

ri = q fi ; (i = 1, 2, . . . , n), (2.13)

where ri is the price of input i and q is the output price. In that case,

AP(A) = qyA∑n
i=1 ri xi A

= TRA

TCA
, (2.14)

where TRA and TCA refer to the total revenue and the total cost of firm A.

Similarly, for firm B producing output yB from input xB ,

AP(B) = qyB∑n
i=1 ri xiB

= TRB

TCB
. (2.15)

This, it may be noted, is the return to the dollar criterion proposed by
Georgescu-Roegen (1951, p. 103).

Of course, one cannot take this approach when market prices are not avail-
able. In fact, even when prices exist, they may not be the appropriate weights for
aggregation. For example, a firm with higher market power may have higher
output prices relative to a firm without market power. In such cases, using
actual prices for aggregation will exaggerate productivity or efficiency of the
former. When market prices cannot or should not be used, we need to construct
shadow prices of inputs for aggregation. For a competitive profit-maximizing
firm, the price of any input deflated by the output price equals the marginal
productivity of the input. Therefore, we can use these marginal productivities
as shadow prices. Under CRS, the production function is homogeneous of de-
gree 1 in inputs. Thus, the aggregate input quantities (like X A and X B) are
also homogeneous of degree 1. It may be noted that unlike the market prices,
the shadow prices of inputs are not uniform across firms. Rather, these shadow
prices depend on the input bundle at which the marginal productivities are
evaluated.
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To measure the technical efficiency of any observed input–output bundle,
one needs to know the maximum quantity of output that can be produced from
the relevant input bundle. One possibility is to explicitly specify a production
function. The value of this function at the input level under consideration de-
notes the maximum producible output quantity. The more common practice is
to estimate the parameters of the specified function empirically from a sample
of input–output data. The least squares procedure permits observed points to
lie above the fitted line and fails to construct a production frontier. At the
same time, specifying a one-sided distribution of the disturbance term leads
to a deterministic frontier, and any deviation from this frontier is interpreted
as inefficiency. In a stochastic frontier model2 one includes a composite error,
which is a sum of a one-sided disturbance term representing shortfalls of the
actually produced output from the frontier due to inefficiency and a two-sided
disturbance term representing upward or downward shifts in the frontier it-
self due to random factors. For the econometric procedure, one must select
a particular functional form (e.g., Cobb–Douglas) out of a number of alter-
natives. At any input bundle x0, the value attained by f (x0) will depend on
the functional form chosen. Further, the parameter estimates are also sensi-
tive to the choice of the probability distributions specified for the disturbance
terms.

DEA is an alternative nonparametric method of measuring efficiency that
uses mathematical programming rather than regression. Here, one circum-
vents the problem of specifying an explicit form of the production function
and makes only a minimum number of assumptions about the underlying tech-
nology. Farrell (1957) formulated a linear programming (LP) model to measure
the technical efficiency of a firm with reference to a benchmark technology
characterized by CRS. This efficiency measure corresponds to the coefficient
of resource utilization defined by Debreu (1951) and is the same as Shephard’s
distance function (1953).

In DEA, we construct a benchmark technology from the observed input–
output bundles of the firms in the sample. For this, we make the following
general assumptions about the production technology without specifying any
functional form. These are fairly weak assumptions and hold for all tech-
nologies represented by a quasi-concave and weakly monotonic production
function.

2 For a comprehensive exposition of the various models of stochastic frontier production,
cost, and profit functions, see Kumbhakar and Lovell (2000).
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(A1) All actually observed input–output combinations are feasible. An input–
output bundle (x, y) is feasible when the output bundle y can be produced
from the input bundle x . Suppose that we have a sample of N firms from an
industry producing m outputs from n inputs. Let x j = (xi j , x2 j , . . . , xnj ) be
the input (vector) of firm j ( j = 1, 2, . . . , N ) and y j = (y1 j , y2 j , . . . , ymj ) be
its observed output (vector). Then, by (A1) each (x j , y j ) ( j = 1, 2, . . . , N ) is
a feasible input–output bundle.

(A2) The production possibility set is convex. Consider two feasible input–
output bundles (x A, y A) and (x B, yB). Then, the (weighted) average input–
output bundle (x̄, ȳ), where x̄ = λx A + (1 − λ)x B and ȳ = λy A + (1 − λ)yB

for some λ satisfying 0 ≤ λ ≤ 1, is also feasible.

(A3) Inputs are freely disposable. If (x0, y0) is feasible, then for any x ≥
x0, (x, y0) is also feasible.

(A4) Outputs are freely disposable. If (x0, y0) is feasible, then for any
y ≤ y0, (x0, y) is also feasible.

If additionally we assume that CRS holds,
(A5) If (x, y) is feasible, then for any k ≥ 0, (kx, ky) is also feasible.

It is possible to empirically construct a production possibility set satisfying
assumptions (A1–A5) from the observed data without any explicit specification
of a production function. Consider the input–output pair (x̂, ŷ), where x̂ =∑N

j=1µ j x j , ŷ = ∑N
j=1µ j y j ,

∑N
j=1µ j = 1, andµ j ≥ 0 ( j = 1, 2, . . . , N ).By

(A1–A2), (x̂, ŷ) is feasible. If, additionally, CRS is assumed, (kx̂, k ŷ) is also a
feasible bundle for any k ≥ 0. Define x̃ = kx̂ and ỹ = k ŷ for some k ≥ 0. Next,
define λ j = kµ j . Then, λ j ≥ 0 and

∑N
j=1 λ j = k. But k is only restricted to be

nonnegative. Hence, beyond nonnegativity, there are no additional restrictions
on the λj’s.

Therefore, on the basis of the observed input–output quantities and under
the assumptions (A1–A5), we can define the production possibility set or the
technology set as follows:

T C =
{

(x, y) : x ≥
N∑

j=1

λ j x
j ; y ≤

N∑
j=1

λ j y j ; λ j ≥ 0; ( j = 1, 2, . . . , N )

}
.

(2.16)

Here, the superscript C indicates that the technology is characterized by CRS.
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Now consider the output-oriented technical efficiency of firm t producing
output yt from the input bundle xt . We want to determine what is the maximum
output (y∗) producible from the same input bundle xt . Suppose that φ∗ is the
maximum value of φ such that (xt , φyt ) lies within the technology set. Then,
y∗ = φ∗yt and the output-oriented technical efficiency of firm t is

TEt
O = TEO(xt , yt ) = 1

φ∗ . (2.17)

The LP problem for measuring the output-oriented technical efficiency is for-
mulated in the following section.

To evaluate the input-oriented technical efficiency of any firm, we examine
whether and to what extent it is possible to reduce its input(s) without reducing
the output(s). This is quite straightforward when only one input is involved. In
the presence of multiple inputs, a relevant question would be whether reducing
one input is more important than reducing some other input. When market
prices of inputs are not available, one way to circumvent this problem is to
look for equiproportionate reduction in all inputs. This amounts to scaling
down the observed input bundle without altering the input proportions. The
input-oriented technical efficiency of firm t is θ∗, where

θ∗ = min θ : (θxt , yt ) ∈ T C. (2.18)

Note that (xt , φ∗yt ) ∈ T C. Hence, (kxt , kφ∗yt ) ∈ T C. Setting k = 1
φ∗ , we

get ( 1
φ∗ xt , yt ) ∈ T C. Obviously, under CRS, θ∗ = 1

φ∗ . That is, the input- and
output-oriented technical efficiency measures are identical in this case.

2.5 Data Envelopment Analysis

CCR (1978, 1981) introduced the method of DEA to address the problem
of efficiency measurement for decision-making units (DMUs) with multiple
inputs and multiple outputs in the absence of market prices. They coined
the phrase decision-making units to include nonmarket agencies like schools,
hospitals, and courts, which produce identifiable and measurable outputs from
measurable inputs but generally lack market prices of outputs (and often of
some inputs as well). In this book, we regard a DMU as synonymous with a
firm.

Suppose that there are N firms, each producing m outputs from n inputs.
Firm t uses the input bundle xt = (x1t , x2t , . . . , xnt ) to produce the output
bundle yt = (y1t , y2t , . . . , ymt ). As noted previously, measurement of average
productivity requires aggregation of inputs and outputs. However, no prices are
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available. What we would need in this situation is to use vectors of “shadow”
prices of inputs and outputs.

Define ut = (u1t , u2t , . . . , unt ) as the shadow price vector for inputs and
vt = (v1t , v2t , . . . , vmt ) as the shadow price vector for outputs. Using these
prices for aggregation, we get a measure of average productivity of firm t as
follows:

APt =
∑m

r=1 vr t yrt∑n
i=1 uit xit

= vt ′yt

ut ′xt
(2.19)

Note that the shadow price vectors used for aggregation vary across firms.
Two restrictions are imposed, however. First, all of these shadow prices must
be nonnegative, although zero prices are admissible for individual inputs and
outputs. Second, and more important, the shadow prices have to be such that
when aggregated using these prices, no firm’s input–output bundle results
in average productivity greater than unity. This, of course, also ensures that
APt ≤ 1 for each firm t . These restrictions can be formulated as follows:

AP j = vt ′y j

ut ′x j
=

∑m
r=1 vr t yr j∑n
i=1 uit xi j

≤ 1; ( j = 1, 2, . . . , t, . . . , N ); (2.20)

uit ≥ 0; (i = 1, 2, . . . , n); vr t ≥ 0; (r = 1, 2, . . . , m).

In general, there are many shadow price vectors (ut , vt ) satisfying these restric-
tions. From them, we choose one that maximizes APt , as defined previously.

This is a linear fractional functional programming problem and is quite
difficult to solve as it is. There is, however, a simple solution.3 Note that
neither the objective function (APt ) nor the constraints is affected if all of the
shadow prices are multiplied by a nonnegative scale factor k (>0). Define

wi t = kuit (i = 1, 2, . . . , n) (2.21a)

and

prt = kvr t (r = 1, 2, . . . , m). (2.21b)

Then, the optimization problem becomes

max
pt ′yt

wt ′xt

s. t.
pt ′y j

wt ′x j
≤ 1; ( j = 1, 2, . . . , N ); (2.22)

pt ≥ 0; wt ≥ 0.

3 This approach was introduced earlier by Charnes and Cooper (1962).
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Now, set

k ≡ 1
n∑

i=1
uit xit

(2.23)

Then, wt ′xt = 1 and the problem becomes

max
m∑

r=1

prt yrt

s. t.
m∑

r=1

prt yr j −
n∑

i=1

wi t xi j ≤ 0; ( j = 1, 2, . . . , t, . . . , N );

n∑
i=1

wi t xi t = 1; (2.24)

prt ≥ 0; (r = 1, 2, . . . , m) :

wi t ≥ 0; (i = 1, 2, . . . , n).

This is a LP problem and can be solved using the simplex method.
Several important points require emphasis. First, the shadow prices of inputs

cause the value of the observed input bundle xt of the firm under evaluation to
equal unity. As a result, the value of the output bundle itself (pt , yt ) becomes
a measure of its average productivity. Second, at prices (pt , wt ), the observed
input–output bundle of no firm in the sample would result in a positive surplus
of revenue over cost. If one interpreted the input prices as the imputed values of
these scarce resources, then if the prices chosen are such that the imputed value
of any input bundle is less than the imputed valuation of the output bundle it
produces, clearly the resources are being undervalued and the imputed input
prices should be revised upward. Similarly, if the output prices reflect the cost
of the inputs drawn away from other uses to produce one unit of the output,
then a total imputed value of the output bundle exceeding the total imputed
cost of the input bundle used would imply that the output bundle is overvalued.
Finally, when CRS are assumed, the efficient production correspondence

F(x, y) = 0 (2.25)

is homogeneous of degree zero.
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Thus,

∑
i

∂ F

∂xi
xi +

∑
j

∂ F

∂y j
y j = 0. (2.26)

Further, under competitive profit maximization4, price of output j is propor-
tional to ∂ F

∂y j
whereas the price of input i is proportional to the negative of

∂ F
∂xi

. Hence, when shadow prices are derived from the technology, the imputed
profit of the firm is zero.

This constraint applies to every firm including firm t , the one under con-
sideration. As a result, the maximum value of the aggregate output Yt is unity,
implying that

�t = Yt

Y ∗
t

= Yt = pt ′yt . (2.27)

Thus, the optimal solution of this LP problem yields a measure of the output-
oriented technical efficiency of firm t .

For simplicity, consider the two-input, two-output case. Let yt = (y1t , y2t )
and xt = (x1t , x2t ). Then, the LP problem becomes

max p1t y1t + p2t y2t

s. t. p1t y11 + p2t y21 − w1t x11 − w2t x21 ≤ 0;

p1t y12 + p2t y22 − w1t x21 − w2t x22 ≤ 0;

. . . . . . .

p1t y1t + p2t y2t − w1t x1t − w2t x2t ≤ 0;

. . . . . . .

p1t y1N + p2t y2N − w1t x1N − w2t x2N ≤ 0;

w1t x1t + w2t x2t = 1;

(2.28a)

p1t , p2t , w1t , w2t ≥ 0.

4 Consider the profit maximization problem max � = ∑
j p j y j − ∑

i wi xi subject to the
constraint F(x, y) = 0. The Lagrangian takes the form

L(x, y, λ) =
∑

j

p j y j −
∑

i

wi xi − λF(x, y)

and the first-order conditions for a maximum are

p j = λFj and wi = −λFi .
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The dual of this LP is the problem

min θ

s. t. λ1 y11 + λ2 y12 + · · · + λt y1t + · · · + λN y1N ≥ y1t ;

λ1 y21 + λ2 y22 + · · · + λt y2t + · · · + λN y2N ≥ y2t ;

θx1t − λ1x11 − λ2x12 − · · · − λt x1t − · · · − λN x1N ≥ 0;

θx2t − λ1x21 − λ2x22 − · · · − λt x2t − · · · − λN x2N ≥ 0;

(2.28b)

θ free, λ j ≥ 0, ( j = 1, 2, . . . , N ).

Define φ = 1
θ

and µ j = λ j

θ
. Then, minimization of θ is equivalent to maxi-

mization of φ. In terms of the redefined variables, the LP problem now becomes

max φ

s. t.
N∑

j=1

µ j y1 j ≥ φy1t ;

N∑
j=1

µ j y2 j ≥ φy2t ;

N∑
j=1

µ j x1 j < x1t ;

N∑
j=1

µ j x2 j ≤ x2t ;

φ free; µ j ≥ 0; ( j = 1, 2, . . . , N ). (2.29)

Thus, clearly 1
φ∗ from this problem equals θ∗ from the previous problem.

Further, by standard duality results, θ∗ equals pt∗′yt .

Example 2.1

Table 2.1. The hypothetical input and output quantities for six firms.

Firm A B C D E F

Output 1 (y1) 4 9 6 8 7 11
Output 2 (y2) 2 4 3 6 5 8
Input 1 (x1) 2 7 6 5 8 6
Input 2 (x2) 3 5 7 8 4 6
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To evaluate the technical efficiency of firm C , we solve the following LP
problem:

max φ

s. t. 4λA + 9λB + 6λC + 8λD + 7λE + 11λF − 6φ ≥ 0;

2λA + 4λB + 3λC + 6λD + 5λE + 8λF − 3φ ≥ 0;

2λA + 7λB + 6λC + 5λD + 8λE + 6λF ≤ 6;

3λA + 5λB + 7λC + 8λD + 4λE + 6λF ≤ 7;

(2.30)

λA, λB, . . . , λF ≥ 0; φ free.

Note that the output quantities of firm C appear as coefficients of −φ in the
left-hand sides of the inequalities, whereas its input quantities appear on the
right-hand sides of the constraints.

The optimal solution of this problem is

λ∗
A = 1; λ∗

F = 0.667; λ∗
B = λ∗

C = λ∗
D = 0; φ∗ = 1.889.

This means that if we construct a reference firm (say C∗) by combining 66.7%
of the input–output bundles of firm F with the input–output bundle of firm A,
then this new firm would produce 11.33 units of y1 and 7.33 units of y2 using
6 units of x1 and 7 units of x2. Comparison of this potential output bundle with
the actual output levels of firm C reveals that output y1 can be expanded by a
factor of 1.889, while output y2 can be increased by a factor of 2.444. Note that
this new firm does not require more of any input than is actually used by firm
C . Thus, it is possible to expand every output by at least the factor of 1.889.
This is measured by φ∗ in the optimal solution. Hence, a measure of technical
efficiency of firm C is

TE (C) = 1

1.889
= 0.529.

This technical efficiency measure, unfortunately, fails to reflect the full ex-
tent of potential increases in all of the outputs individually. In the present case,
although y1 can be increased by only 88.9%, y2 can be expanded by 144%.
Nor does it show any potential reductions in individual inputs that are feasible
simultaneously with increases in outputs, although such is not the case here.
These LP models yield radial measures of efficiency. Although it is true that
for any individual firm, say firm t,the largest output bundle with the same
output mix as (yt

1, yt
2) that can be produced from the input bundle of firm t

is (φ∗y∗
1 , φ∗y∗

2 ), it is often possible to expand individual (although not all)
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outputs by a factor larger than φ∗. Similarly, we may not be entirely using up
all the individual components of the observed input bundle of the firm under
consideration in order to produce the expanded output bundle.

Take another look at (2.29). Suppose that the optimal solution is (φ∗;
µ∗

1, µ
∗
2, . . . , µ

∗
N ). Define

y∗
1t =

N∑
j=1

µ∗
j y1 j ; y∗

2t =
N∑

j=1

µ∗
j y2 j ; x∗

1t =
N∑

j=1

µ∗
j x1 j ; x∗

2t =
N∑

j=1

µ∗
j x2 j .

(2.31)

Then, y∗
t = (y∗

1t , y∗
2t ) can be produced from x∗

t = (x∗
1t , x∗

2t ). Note that y∗
1t ≥

φ∗y1t and y∗
2t ≥ φ∗y2t . Similarly, x1t ≥ x∗

1t and x2t ≥ x∗
2t . Thus,

φ∗ = min

(
y∗

1t

y1t
,

y∗
2t

y2t

)
. (2.32)

Define the output slack variables s+
1 = y∗

1t − φ∗y1t and s+
2 = y∗

2t − φ∗y2t .

The input slack variables can be similarly defined as s−
1 = x1t − x∗

1t and s−
2 =

x2t − x∗
2t . It may be recalled that an input–output bundle (x, y) is regarded as

Pareto efficient only when (1) it is not possible to increase any output without
either reducing some other output or increasing some input, and (2) it is not
possible to reduce any input without increasing some other input or reducing
some output. Thus, (x∗

t , y∗
t ) is Pareto efficient, but (xt , φ∗

t yt ) is not unless all
output and input slacks are equal to zero.

Including appropriate slack variables in the constraints, we get at the optimal
solution

N∑
j=1

µ∗
j y1 j − φ∗y1t = s+∗

1 ≥ 0;

N∑
j=1

µ∗
j y2 j − φ∗y2t = s+∗

2 ≥ 0;

x1t −
N∑

j=1

µ∗
j x1 j = s−∗

1 ≥ 0;

x2t −
N∑

j=1

µ∗
j x2 j = s−∗

2 ≥ 0.

(2.33)
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Here, (s+∗
1 , s+∗

2 ) are the output slacks and (s−∗
1 , s−∗

2 ) are input slacks at the
optimal solution. Whenever any output slack is strictly positive, it is possible
to expand that particular output by the amount of the output slack even after it
has been expanded by a factor φ∗ (≥ 1). Suppose that in a particular application
we get φ∗ = 1.25. This means that we can increase both outputs by 25%. In
this case, technical efficiency of the firm is 0.80. Now suppose that s+∗

1 = 10.

This implies that we can further increase output 1 by 10 units. Hence, 0.80
does not fully reflect the extent of its inefficiency. Moreover, if any one of the
input slacks is strictly positive, the implication is that the previous expansion
of the output bundle can be achieved while reducing individual inputs at the
same time.

In a revision of their original model, CCR (1979) introduced penalties in the
objective function for strictly positive input and output slacks. Their revised
output-oriented model was

max φ̃ = φ + ε(s+
1 + s+

2 + s−
1 + s−

2 )

s. t.
N∑

j=1

µ j y1 j − s+
1 = φy1t ;

N∑
j=1

µ j y2 j − s+
2 = φy2t ;

N∑
j=1

µ j x1 j + s−
1 = x1t ;

N∑
j=1

µ j x2 j + s−
2 = x2t ;

(2.34)

µ j ≥ 0 ( j = 1, 2, . . . , N ); s+
1 , s+

2 , s−
1 , s−

2 ≥ 0; φ free.

Here, ε is an infinitesimally small positive number (selected by the researcher).
By including input and output slacks in the objective function, we ensure that
φ̃ > φ∗ whenever any slack variable is strictly positive at the optimal solution.
Thus, a firm will be rated as fully efficient only when φ∗ equals 1 and all the
slacks are equal to 0 at the optimal solution. Otherwise, its efficiency will be
less than unity even when φ∗ equals 1.
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Consider the revised form of the input-oriented model:

min θ̃ = θ − ε(s+
1 + s+

2 + s−
1 + s−

2 )

s. t.
N∑

j=1

µ j y1 j − s+
1 = y1t ;

N∑
j=1

µ j y2 j − s+
2 = y2t ;

N∑
j=1

µ j x1 j + s−
1 = θx1t ;

N∑
j=1

µ j x2 j + s−
2 = θx2t ;

µ j ≥ 0 ( j = 1, 2, . . . , N ); s+
1 , s+

2 , s−
1 , s−

2 ≥ 0; φ free. (2.35a)

The dual of this LP problem is

max p1t y1t + p2t y2t

s.t. pit y1 j + p2t y2 j − w1t x1 j − w2t x2 j ≤ 0; ( j = 1, 2, . . . , N );

w1t x1t + w2t x2t = 1;

p1t ≥ ε; p2t ≥ ε; w1t ≥ ε; w2t ≥ ε.

(2.35b)

The only difference between this problem and its earlier specification is that
now we have a lower bound on the shadow prices.

On solving the primal problem, we obtain the input and output bundles

x∗∗
t = xt − s−∗

t ; y∗∗
t = φ∗yt + s+∗

t . (2.36)

The pair (x∗∗
t , y∗∗

t ) is a Pareto efficient production plan.
However, using the optimal value of the objective function from one of the

revised models (either θ̃ or φ̃) would be problematic. Computationally, θ̃ and 1
φ̃

will not be exactly equal. Conceptually, inclusion of the slacks in the objective
function raises a problem of aggregation because unlike θ or φ, the input and
output slacks are not unit free.

Finally, the efficiency measure obtained would not be invariant to the nu-
merical value of ε chosen by the analyst.

At present, the overall consensus in the literature is that presence of
positive slacks in the optimal solution should be interpreted as merely
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signifying that the efficient radial projection of (xt , yt ) is not Pareto efficient.
Beyond that, the revised objective function value should not be used to obtain
a scalar measure of technical efficiency. One should rather report the slacks
separately along with the radial efficiency measure. In a later chapter, we
will return to the question of incorporating slacks in a scalar measure of effi-
ciency.

2.6 An Example of Output-Oriented DEA on SAS

Example 2.2 Table 2.2 reports the output and input levels of a sample of
30 electric utilities from Korea. The output is measured by megawatt-hours
of power generated. The three inputs are kilowatt-hours of installed capacity,
labor (man-years), and fuels (tons of oil equivalent). For the DEA models, the
data were rescaled5 by dividing each input and output variable by its sample
mean and multiplying by 1,000. The appropriate LP problem (in SAS) for
firm 6 is shown in Exhibit 2A. Note that φ is included in the left-hand side
of the inequality for the output. The output inequality is of the “greater than
or equal to” type. The input inequalities, on the other hand, are of the “less
than or equal to” type. Output and input quantities of all firms appear on the
left-hand sides of the restrictions. The right-hand side includes the quantities
of the firm under evaluation (firm 6, in this case).

Exhibit 2B reports the optimal solution of the LP problem specified in
Exhibit 2A. The objective function value (1.301866) shows that the quantity
of power generated by this firm can be expanded by 30.19%. The output-
oriented technical efficiency of firm 6 is 0.768 (which is the inverse of the
optimal value of φ). In the “variable summary” section, firms 7 and 25 have
“activity” greater than 0. Thus, at the optimal solution, only λ7 and λ25 will be
strictly positive. The hypothetical comparison unit for firm 6 is a firm that uses
5.262% of the input bundle of firm 7 and 60.527% of the inputs of firm 25 to
produce a similar linear combination of the output levels of these two firms.
This reference firm would produce 30.19% more of the output compared to
the actual performance of firm 6. The negative “reduced cost” associated with
any nonbasic firm shows how the objective function would be affected if it
entered the basis. The rows identified as OBS 1 through OBS 3 are the input
slack variables. Note that there is a positive slack (371.342 units) associated

5 We examine the effect of data transformation on the DEA efficiency score later in
Chapter 4.
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Table 2.2. Input–output data for Korean electric utilities

Firm Capacity Labor Fuel Output

1 706.70 643.39 648.95 614.66
2 1284.90 1142.20 1101.65 1128.39
3 1027.92 1749.44 531.19 533.52
4 1027.92 1019.30 640.32 611.80
5 1027.92 1033.76 640.41 619.68
6 1027.92 527.72 448.10 404.99
7 2055.85 1048.22 2136.09 2276.89
8 2055.85 1055.45 2140.03 2278.26
9 2055.85 1062.68 2140.18 2172.23

10 51.40 86.75 111.28 71.72
11 51.40 101.21 91.63 73.40
12 51.40 93.98 91.92 73.88
13 51.40 101.21 92.24 73.83
14 1669.35 1612.09 1585.23 1548.44
15 308.38 910.87 344.51 260.83
16 308.38 903.64 344.48 258.85
17 256.98 1178.34 273.29 181.65
18 256.98 1185.57 273.28 179.92
19 1027.92 1366.30 1185.60 1076.19
20 642.45 751.83 699.30 586.16
21 1027.92 838.57 1090.23 959.15
22 1027.92 824.12 1090.26 958.38
23 385.47 1655.46 362.30 278.13
24 865.64 809.66 559.96 660.53
25 906.03 780.74 554.62 673.12
26 256.98 1069.91 221.73 246.69
27 256.98 1033.76 228.01 252.86
28 2878.19 1828.96 3509.60 3708.16
29 2878.19 1821.73 3510.85 3709.64
30 2569.81 1763.90 3352.76 3528.04

Notes: In the original source, capacity is measured in kilowatt-hours, labor in man-years,
fuel in tons of oil equivalent, and output in megawatt-hours. In this table, each input or
output variable has been scaled by its sample mean and multiplied by 1000.
Source: Table 1 of S. U. Park and J. B. Lesourd, International Journal of Production Eco-
nomics, Vol. 63, 2000, pp. 59–67.

with the capital input (capacity). No slack exists in the labor or fuel inputs,
however. This implies that the 30.187% increase in the output can be achieved
while reducing the capacity input by the amount of the slack at the same
time.
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Exhibit: 2A. Output-oriented DEA LP problem for Firm 6

Firm # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8

capital 706.698 1284.90 1027.92 1027.92 1027.92 1027.92 2055.85 2055.85
labor 643.389 1142.20 1749.44 1019.30 1033.76 527.72 1048.22 1055.45
fuel 648.946 1101.65 531.19 640.32 640.41 448.10 2136.09 2140.03
output 614.660 1128.39 533.52 611.80 619.68 404.99 2276.89 2278.26
objective 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00

# 9 # 10 # 11 # 12 # 13 # 14 # 15 # 16 # 17

2055.85 51.396 51.396 51.3962 51.396 1669.35 308.377 308.377 256.98
1062.68 86.749 101.207 93.9782 101.207 1612.09 910.865 903.636 1178.34
2140.18 111.276 91.632 91.9232 92.244 1585.23 344.508 344.483 273.29
2172.23 71.720 73.405 73.8759 73.834 1548.44 260.830 258.852 181.65

0.00 0.000 0.000 0.0000 0.000 0.00 0.000 0.000 0.00

# 18 # 19 # 20 # 21 # 22 # 23 # 24 # 25 # 26

256.98 1027.92 642.452 1027.92 1027.92 385.47 865.640 906.033 256.98
1185.57 1366.30 751.825 838.57 824.12 1655.46 809.658 780.742 1069.91
273.28 1185.60 699.303 1090.23 1090.26 362.30 559.963 554.623 221.73
179.92 1076.19 586.162 959.15 958.38 278.13 660.532 673.120 246.69

0.00 0.00 0.000 0.00 0.00 0.00 0.000 0.000 0.00

# 27 # 28 # 29 # 30 phi type rhs

256.98 2878.19 2878.19 2569.81 0.000 <= 1027.92
1033.76 1828.96 1821.73 1763.90 0.000 <= 527.72
228.01 3509.60 3510.85 3352.76 0.000 <= 448.10
252.86 3708.16 3709.64 3528.04 −404.985 >= 0.00

0.00 0.00 0.00 0.00 1.000 max .

Exhibit: 2B. SAS output of output-oriented CCR DEA model for Firm 6: The
LP procedure

Solution Summary

Objective Value 1.3018661

Variable Summary
Variable Reduced

Col Name Status Type Price Activity Cost
1 COL1 NON-NEG 0 0 −0.319551
2 COL2 NON-NEG 0 0 −0.352614
3 COL3 NON-NEG 0 0 −0.672975
4 COL4 NON-NEG 0 0 −0.455153
5 COL5 NON-NEG 0 0 −0.441649
6 COL6 NON-NEG 0 0 −0.301866
7 COL7 BASIC NON-NEG 0 0.052621 0
8 COL8 NON-NEG 0 0 −0.009117
9 COL9 NON-NEG 0 0 −0.274152

(continued)
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Exhibit: .2B (continued)

Solution Summary

Objective Value 1.3018661

Variable Summary
Variable Reduced

Col Name Status Type Price Activity Cost

10 COL10 NON-NEG 0 0 −0.128571
11 COL11 NON-NEG 0 0 −0.082295
12 COL12 NON-NEG 0 0 −0.078966
13 COL13 NON-NEG 0 0 −0.082727
14 COL14 NON-NEG 0 0 −0.680701
15 COL15 NON-NEG 0 0 −0.557802
16 COL16 NON-NEG 0 0 −0.559748
17 COL17 NON-NEG 0 0 −0.686168
18 COL18 NON-NEG 0 0 −0.693319
19 COL19 NON-NEG 0 0 −0.775215
20 COL20 NON-NEG 0 0 −0.555766
21 COL21 NON-NEG 0 0 −0.621882
22 COL22 NON-NEG 0 0 −0.618105
23 COL23 NON-NEG 0 0 −0.85466
24 COL24 NON-NEG 0 0 −0.055598
25 COL25 BASIC NON-NEG 0 0.6052773 0
26 COL26 NON-NEG 0 0 −0.35681
27 COL27 NON-NEG 0 0 −0.342487
28 COL28 NON-NEG 0 0 −0.123406
29 COL29 NON-NEG 0 0 −0.119913
30 COL30 NON-NEG 0 0 −0.160087
31 phi BASIC NON-NEG 1 1.3018661 0
32 OBS1 BASIC SLACK 0 371.34196 0
33 OBS2 SLACK 0 0 −0.000398
34 OBS3 SLACK 0 0 −0.002437
35 OBS4 SURPLUS 0 0 −0.002469

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 OBS1 LE 32 1027.9237 656.58174 0
2 OBS2 LE 33 527.72356 527.72356 0.0003978
3 OBS3 LE 34 448.10376 448.10376 0.0024368
4 OBS4 GE 35 0 0 −0.002469
5 OBS5 OBJECTVE . 0 1.3018661 .

         
 

 



P1: FZZ
CB688-02 CB688-RAY CB688-Ray-v1.cls January 28, 2004 11:11

Guide to the Literature 41

Finally, the “constraint summary” section shows that the “activity” levels
for labor and fuel are equal to the “RHS” value. Thus, these input constraints
are binding. The dual activity associated with them are the shadow prices of
these inputs. On the other hand, the “activity” level for capacity is 656.582
whereas the “RHS” is 1027.924. This results in the slack of 371.342 units
shown earlier.

2.7 Summary

The productivity of a firm is measured by the ratio of the output produced
to the input used. We do not always need to know the production technology
in order to measure productivity. Efficiency, on the other hand, compares the
actual output from a given input with the maximally producible quantity of
output. Thus, knowledge of the reference technology is critical for efficiency
measurement. In the multiple-input, multiple-output case, individual inputs
and outputs need to be suitably aggregated. In the absence of market prices,
one can employ the method of DEA, which endogenously generates “shadow
prices” of inputs and outputs for aggregation.

Guide to the Literature

Debreu (1951) addressed the question of resource utilization at the aggregate
level. Subsequently, Shephard (1953) introduced the Distance function as an
alternative characterization of the technology. Farrell (1957) defined technical
and allocative efficiency as two separate components of the economic efficiency
of a firm and developed the formal LP model for measuring technical efficiency.
Introduced by CCR (1978, 1981), the method of DEA generalized Farrell’s
measure of technical efficiency from the single-output to the multiple-output
case. See Førsund and Sarafoglou (2002) for an overview of the developments
in the literature subsequent to Farrell’s paper that led to the introduction of the
DEA methodology.

Charnes, Cooper, Lewin, and Seiford (1994) offer a brief overview of the
primal and dual specifications along with a number of extensions of the basic
CCR model. They also trace the chronology of development in the literature
subsequent to the seminal CCR paper through an interesting flow chart. Ali
(1994) offers an in-depth discussion of the computational aspects of DEA in
the same volume.
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APPENDIX TO CHAPTER 2

The Output-Oriented Shephard Distance Function

Consider some production possibility set

T = {(x, y) : x can produce y}.
We assume that T is convex and both outputs and inputs are freely disposable.
Now consider some input bundle x and any arbitrary output bundle y. We do
not assume that the input–output pair (x, y) is necessarily feasible. Following
Shephard (1953), we can define the output-oriented distance function as

DO(x, y) = min δ :

(
x,

1

δ
y

)
∈ T . (2A.1)

Thus, it is a mapping from the input–output space to the nonnegative segment of
the real line. Note that when DO(x, y) is greater than unity, the output bundle
y cannot be produced from the input bundle x . Only some proportionately
scaled-down output bundle will be feasible. On the other hand, if DO(x, y) is
less than unity, then a proportionately expanded output bundle will be feasible.
Hence, by free disposability of outputs, the bundle y is also feasible. Thus, an
alternative specification of the production possibility set is

T = {(x, y) : DO(x, y) ≤ 1}. (2A.2)

Consider the following 2-input, 2-output example. Suppose that the production
possibility set is

T = {(x1, x2, y1, y2) : x1 + √
x1x2 ≥ √

y1 y2}. (2A.3)

Then, the output-oriented distance function is

DO(x1, x2, y1, y2) =
√

y1 y2

x1 + √
x1x2

. (2A.4)

Whenever x1 + √
x1x2 ≥ √

y1 y2, (x1, x2, y1, y2) is a feasible input–output
combination. Consider the input bundle x0 = (x10 = 3, x20 = 12) and the out-
put bundle y0 = (y10 = 4, y20 = 25). For the production possibility set speci-
fied previously, this input–output bundle is not feasible. The distance function
evaluated at this input–output combination is DO = 10

9 . The largest output bun-
dle with the same output mix as the bundle y0 is y∗ = (y∗

1 = 3.6, y∗
2 = 22.5).

Note that relative to the bundle y0, both outputs in the bundle y∗ are scaled
down by the factor 0.9 (i.e., deflated by the factor 10

9 .) On the other hand,
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consider the output bundle ŷ = (ŷ1 = 5, ŷ2 = 5). Clearly, this output bundle
is producible from the input bundle x0. In fact, the largest feasible output bun-
dle with the same output mix at ŷ is ỹ = (ỹ1 = 9, ỹ2 = 9). This time the output
bundle is scaled up by a factor 1.8 (i.e., deflated by the factor 5

9 .)
It is easy to see that the output-oriented distance function is the inverse

of the optimal value of the objective function ϕ in the output-oriented CCR
DEA problem.

Some Properties of the Output-Oriented Distance Function

O1. DO(x, y) is nondecreasing in y. That is, for any input bundle x , if y1 ≥ y0,
then DO(x, y1) ≤ DO(x, y0).

Proof. Let DO(x, y1) = δ1. Then (x, 1
δ1

y1) ∈ T and (x, 1
δ

y1) /∈ T for any δ <

δ1. Now, by assumption, y1 ≥ y0 and, therefore, 1
δ1

y1 ≥ 1
δ1

y0. Hence, by free

disposability of outputs, (x, 1
δ1

y0) ∈ T . Define ȳ = 1
δ0

y0. Let DO(x, ȳ) = δ̄.

Then, by feasibility of (x, ȳ), δ̄ ≤ 1. This means, of course, that (x, 1
δ1 δ̄

y0) ∈ T .

Now consider, δ0 = DO(x, y0). Clearly, δ0 ≤ δ1δ̄ ≤ δ1.

O2. DO(x, y) is nonincreasing in x . That is, for any output bundle y, if x1 ≥ x0,

then DO(x1, y) ≤ DO(x0, y).

Proof. Let DO(x0, y) = δ0. Define ȳ = 1
δ0

y. Then, (x0, ȳ) ∈ T . Now, because

x1 ≥ x0, by free disposability of inputs, (x1, ȳ) ∈ T . That is, (x1, 1
δ0

y) ∈ T .

Now, let DO(x1, y) = δ1. Clearly, δ1 ≤ δ0.

O3. DO(x, y) is homogeneous of degree 1 in y. That is, DO(x, αy) =
αDO(x, y).

Proof. Let DO(x, y) = δ. That means that δ is the smallest positive real number
such that (x, 1

δ
y) ∈ T . Now define ŷ = αy. Let DO(x, ŷ) = β. This means that,

for a given α, β is the smallest real number such that (x, α
β

y) ∈ T . We need to

show that β = αδ. Suppose that this is not true and β < αδ. That is, β

α
< δ.

But in that case, DO(x, y) cannot be δ because there exists another real number
γ = β

α
smaller than δ such that (x, 1

γ
y) ∈ T .Alternatively, assume thatβ > αδ.

But, because the input–output pair (x, 1
δ

y) is feasible, so is the input–output
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pair (x, 1
αδ

ŷ). In that case, DO(x, ŷ) cannot be β. Hence, β must be equal to
αδ.

O4. DO(x, y) is convex in y.

Proof. For this, we need to prove that for any α ∈ (0, 1),

DO(x, αy1 + (1 − α)y2) ≤ αDO(x, y1) + (1 − α)DO(x, y2).

Define y1
∗ = αy1 and y2

∗ = (1 − α)y2. Also, let

DO(x, y1
∗) = β1 and DO(x, y2

∗) = β2.

By definition, the input–output bundles (x, 1
β1

y1
∗) and (x, 1

β2
y2
∗) are both fea-

sible. Hence, by virtue of convexity of the production possibility set, for any
λ ∈ (0, 1), ((

x, λ

(
1

β1
y1
∗

)
+ (1 − λ)

(
1

β2
y2
∗

))
∈ T .

Select

λ = β1

β1 + β2
so that (1 − λ) = β2

β1 + β2
.

Then (
x,

1

β1 + β2
(y1

∗ + y2
∗)

)
∈ T .

Therefore,

DO(x, y1
∗ + y2

∗) ≤ β1 + β2.

But because the output-oriented distance function is homogeneous of degree 1
in outputs,

β1 = DO(x, αy1) = αDO(x, y1)

and

β2 = DO(x, (1 − α)y2) = (1 − α)DO(x, y2).

Thus,

DO
(
x, αy1 + (1 − α)y2

) ≤ αDO(x, y1) + (1 − α)DO(x, y2).

This concludes the proof.
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The Input-Oriented Shephard Distance Function

The input-oriented distance function is

D I(x, y) = max µ :

(
1

µ
x, y

)
∈ T .

The analogous properties of the input-oriented distance function are

I1. D I(x, y) is nondecreasing in x .

I2. D I(x, y) is nonincreasing in y.

I3. D I(x, y) is homogeneous of degree 1 in x .

I4. D I(x, y) is concave in x .

Proof of these properties is left as an exercise.
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3

Variable Returns to Scale: Separating Technical
and Scale Efficiencies

3.1 Introduction

The DEA model presented in Chapter 2 measures technical efficiency of a firm
relative to a reference technology exhibiting constant returns to scale (CRS) ev-
erywhere on the production frontier. This, of course, is rather restrictive because
it is unlikely that CRS will hold globally in many realistic cases. As a result,
the CCR–DEA model should not be applied in a wide variety of situations.
In an important extension of this approach, Banker, Charnes, and Cooper
(BCC) (1984) generalized the original DEA model for technologies exhibiting
increasing, constant, or diminishing returns to scale at different points on the
production frontier.

This chapter develops the DEA linear programming (LP) models that are
applicable when the technology does not exhibit constant returns to scale glob-
ally. Section 3.2 considers the relation between the scale elasticity and returns
to scale. Banker’s concept of the most productive scale size (MPSS) is described
in Section 3.3 followed by a discussion of scale efficiency in Section 3.4. The
BCC model for measuring technical efficiency is presented in Section 3.5.
Three alternative but equivalent approaches to identification of the nature of
returns to scale that hold locally at a specific input–output bundle on the fron-
tier are described in Section 3.6. Section 3.7 summarizes the main points in this
chapter.

3.2 Returns to Scale

Consider, to start with, a single-output, single-input technology characterized
by the production possibility set

T = {(x, y) : y ≤ f (x); x ≥ a} (3.1)

46
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where

y∗ = f (x) (3.1a)

is the production function showing the maximum quantity of output y pro-
ducible from input x , and a is the minimum input scale below which the
production function is not defined. When there is no minimum scale, a
equals 0.

At some specific point (x, y) on this production function, the average pro-
ductivity is

AP = f (x)

x
. (3.2)

Locally increasing returns to scale holds at this point if a small increase in x
results in an increase in AP. Similarly, diminishing returns to scale exist when
AP declines with an increase in x . Under constant returns, an increase in x
leaves AP unchanged. Thus, dAP

dx is positive under increasing returns, negative
under diminishing returns, and 0 under constant returns. If the production
function is differentiable,

dAP

dx
= x f ′(x) − f (x)

x2
= f (x)

x2

[
x f ′(x)

f (x)
− 1

]
(3.3)

If average productivity reaches a maximum at a finite level of x , dAP
dx equals 0

at that point. This, of course, is only the first-order condition for a maximum.
But, if the production function is concave (so that f ′′(x) < 0 over the entire
range of x), the second-order condition for a maximum is automatically
satisfied.

Define

ε = x f ′(x)

f (x)
. (3.4)

Then,

dAP

dx
= f (x)

x2
(ε − 1). (3.4a)

Hence,

ε > 1 implies increasing returns to scale,

ε = 1 implies constant returns to scale, and

ε < 1 implies diminishing returns to scale.
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Output (y)

O x0 Input (x)

f (x)

Figure 3.1 Production function under variable return to scale.

Figure 3.1 shows the familiar S-shaped production function representing a
single-output, single-input technology exhibiting variable returns to scale. In
this case, average productivity increases as the input (x) rises from 0 to x0.
This is the region of increasing returns to scale with ε > 1. Beyond the input
level x0, average productivity falls as x increases and diminishing returns to
scale holds. Here, ε < 1. Locally CRS holds at x0, where ε = 1. This is also
the input level where average productivity reaches a maximum.

It may be noted that, in the example shown in Figure 3.1, over the region
of increasing returns, the marginal productivity of x is increasing and the
production function is convex. Convexity of the production function is not
really necessary for the presence of increasing returns. Figure 3.2 shows a
single-input, single-output production function with a positive minimum input
scale. The production function is globally concave over its entire domain. But
increasing returns to scale holds at input levels between xm and x0. At x0, there
is locally constant returns, and beyond this input level diminishing returns
hold. One critical difference between the two cases is that in Figure 3.1 (unlike
Figure 3.2), the production possibility set is not convex.

Consider an efficient input–output combination (x0, y0) satisfying

y0 = f (x0). (3.5)
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f (x) 

y

O x0 xxm

Figure 3.2 Variable returns to scale and locally constant returns.

Let x1 = βx0 and f (x1) = y1. Further, assume that y1 = αy0. Thus, αy0 =
f (βx0). Clearly, α will depend on β. Thus,

α(β) = max α : (βx0, αy0) ∈ T . (3.6)

For any efficient pair (x, y),

α(β)y = f (βx). (3.7)

Differentiating with respect to β, we have

α′(β)y = x f ′(βx). (3.8)

Further, at β = 1,

α′(1) = x f ′(x)

f (x)
= ε. (3.9)
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Figure 3.3 The Technically Optimal Production Scale (TOPS).

Thus, at (x, y),

α′(1) > 1 implies increasing returns to scale,

α′(1) = 1 implies constant returns to scale, and

α′(1) < 1 implies diminishing returns to scale.

Consider, for example, the production function

f (x) = 2
√

x − 4; x ≥ 4 (3.10)

shown in Figure 3.3. For this function,

ε =
√

x

2
√

x − 4
.

For 4 < x < 16, ε > 1 and AP increases with x signifying increasing returns
to scale. At x = 16, ε = 1. Here, AP reaches a maximum. Beyond this point,
diminishing returns to scale sets in and ε < 1. The input level x∗ = 16 is of
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special significance. Because AP is the highest at this level of x , it corresponds
to what Frisch (1965) called the technically optimal scale of production. The
corresponding output level on the frontier is y∗ = 4.

In the single-input, single-output case, productivity of a firm is easily mea-
sured by the ratio of its output and input quantities. When multiple inputs
and/or multiple outputs are involved, one must first construct aggregate quan-
tity indexes of outputs and inputs. Productivity can then be measured by the
ratio of these quantity indexes of output and input.

Returns to scale characteristics of the technology relate to how produc-
tivity changes in the special case involving multiple outputs and multiple
inputs, where all the input bundles are proportional to one another and so
are all output bundles. For expository advantage, we consider, a single out-
put, two-input production function. Let x0 = (x0

1 , x0
2 ) and x1 = (x1

1 , x1
2 ) be

two different input bundles. Further, the input bundles are proportional. Thus,
x1 = t x0, t > 0. Hence, x1

1 = t x0
1 and x1

2 = t x0
2 . The maximum quantities of

output producible from these input bundles are y0 = f (x0) and y1 = f (x1).
In Figure 3.4, the input bundles x0 and x1 are shown by the points A0

y1 = f (x1)

y0 = f (x0) 

Input 2 (x2)

x2
1

x2
0

O x0
1  x1

1 Input 1(x1)

    A0 

   A1 

Figure 3.4 Radial variation in input bundles with constant mix.
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P1

x2

y2

y1

y0

O x1

w

x2

x1
*

x0
*

Output (y)

P0

Figure 3.5 Constant input mix and a composite input.

and A1 on the isoquants for the output levels y0 and y1, respectively. De-
fine the input bundle x0 = (x0

1 , x0
2 ) as one unit of a single composite input

(say, w). Now consider variations in the scale of this input without any change
in the proportion of the constituent inputs. Thus, two units of the input w

would correspond to the bundle (2x0
1 , 2x0

2 ). By this definition, the bundle
x1 = (t x0

1 , t x0
2 ) represents t units of this composite input. Note that the ray

from the origin through x0 (and also x1 in this case) itself becomes an axis along
which we can measure variations in the scale of the constant-mix composite
input w.

In Figure 3.5, we modify the diagram shown in Figure 3.4 by introducing
a third dimension to show changes in the quantity of the output y, which is
assumed to be scalar. The input bundles x0

∗ and x1
∗ produce output quantities y0

and y1, respectively. The points P0 and P1 in the y−w plane show these input–
output pairs. Both points are technically efficient and lie on the production
frontier y = f (w).

Figure 3.6 replicates the two-dimensional (y−w) cross section of the three-
dimensional diagram shown in Figure 3.5. We have effectively reduced the
one-output, two-input case to a single-output, single-input case by considering
only input bundles that differ in scale but not in the mix. In Figure 3.6, as in
Figure 3.5, points P0 and P1 are efficient input–output pairs. The productivity
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Output (y)

y1 

y0 

P1 

 O A0  A1  Input (w)

   P0

Figure 3.6 Composite input and ray average productivity.

index at P1 relative to the average productivity at P0 is the ratio of the slope
of the line OP1 to the slope of the line OP0. Note that these slopes measure
average productivity per unit of the composite input w and are known as ray
average productivities. By definition, the bundle x0 measure one unit of w and
x1 = t x0 corresponds to t units of this composite input. Hence, the productivity
index is

AP(x1)

AP(x0)
=

P1 A1
O A1

P0 A0
O A0

= y1/y0

t
. (3.11)

This is a ratio of ray average productivities in three dimensions but can be
treated as the ratio of average productivities in two dimensions where the
composite input is treated like a scalar. Therefore, the foregoing discussion
about returns to scale in the context of a single-input, single-output production
function can be carried over to this single-output, single-(composite) input
case also.
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3.3 The Most Productive Scale Size (MPSS)

Starrett (1977) generalized the concept of returns to scale in the context of a
multi-output, multi-input technology by focusing on expansion along a ray.
Suppose that the input bundle x = (x1, x2, . . . , xn) and the associated output
bundle y = ( y1, y2, . . . , ym) are an efficient pair on the transformation
function

T (x, y) = 0. (3.12)

Hence, along the transformation function,

n∑
i=1

(
∂T

∂xi
xi

)
dxi

xi
+

m∑
j=1

(
∂T

∂y j
y j

)
dy j

y j
= 0. (3.13)

Suppose that all inputs increase at the same proportionate rate β and, as a
result, all outputs increase at the rate α. Then

α

β
= −

∑n

i=1

∂T

∂xi
xi∑m

j=1

∂T

∂y j
y j

(3.14)

is a local measure of returns to scale. Starrett defines

DIR = α

β
− 1 (3.15)

as a measure of the degree of increasing returns. Locally increasing, constant,
or diminishing returns hold when DIR, respectively, exceeds, equals, or falls
below 0. In a dual approach, Panzar and Willig (1977) use a multiple-output,
multiple-input dual cost function to derive returns to scale properties of the
technology from local scale economies.

Banker (1984) utilizes Frisch’s concept of technically optimal production
scale to define the MPSS for the multiple-input, multiple-output case. With
reference to some production possibility set T , a pair of input and output
bundles (x0, y0) ∈ T is an MPSS, if for any (α, β) satisfying (βx0, αy0) ∈ T,
α
β

≤ 1. In the case of a single-output, single-input technology characterized
by T = {(x, y) : y ≤ f (x)}, d f (x)/x

dx = 0 and x f ′(x) = f (x) at the MPSS. Thus,
CRS holds at the MPSS.

Banker defined the returns-to-scale measure as follows:

ρ = lim
β→1

α(β) − 1

β − 1
. (3.16)
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Because (x0, y0) is an MPSS,

α(β)

β
≤ 1 ⇒ α(β) ≤ β ⇒ α(β) − 1 ≤ β − 1. (3.17)

Suppose that β < 1 and β − 1 < 0.

Then

α(β) − 1

β − 1
≥ 1 (3.18)

and

lim
β→1−ε

α(β) − 1

β − 1
≥ 1. (3.19)

Hence, ρ ≥ 1 when the input scale is slightly lower than x0 (β < 1). Similarly,
when the input scale exceeds the MPSS and β > 1,

lim
β→1+ε

α(β) − 1

β − 1
≤ 1. (3.20)

Thus, ρ ≤ 1 for β > 1. Finally, if lim
β→1

α(β)−1
β−1 exists, the left-hand and right-

hand limits coincide and ρ = 1 at the MPSS. Note that by L’Hôpital’s rule,
lim
β→1

α(β)−1
β−1 = α′(1). Thus, Banker’s returns to scale classification coincides

with the previous discussion if y = f (x) is a differentiable production function.

3.4 Scale Efficiency

Consider the point (x∗, y∗) on the production function defined previously in
(3.10) (see Figure 3.3). The tangent to the production function at this point is
the line

g(x) = 1

4
x, (3.21)

which is a ray through the origin. Førsund (1997) refers to this as the techni-
cally optimal production scale (TOPS) ray. Because y = g(x) is a supporting
hyperplane to the set

T = {(x, y) : y ≤ f (x); x ≥ 4, y ≥ 0}, (3.22)

f (x) ≤ g(x) over the entire admissible range of x and f (x) = g(x) at x = 16.

The set

G = {(x, y) : y ≤ g(x); x ≥ 0, y ≥ 0} (3.23)

is the smallest convex cone containing the set T . At all points (x, y) on
the TOPS ray, y = g(x), and if these points had been feasible, the average
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productivity at each of these points would have been

APTOPS = g(x)

x
. (3.24)

But, as noted previously, at the technically optimal scale x∗, g(x∗) = f (x∗).
Hence, APTOPS equals the maximum average productivity attained at any point
on the production function y∗ = f (x).

Consider, now, any point (x0, y0) on the frontier and compare it with the point
(x∗, y∗) where AP attains a maximum. Both are technically efficient points.
If either the input or the output quantity is prespecified, it is not possible to
increase the average productivity beyond y0

x0
. If the firm could alter both inputs

and outputs, however, it could move to the point (x∗, y∗), thereby raising the
average productivity to its maximum level. Thus, the scale efficiency of the
input level (x0) or the output level ( y0) is

SE = AP(x0, y0)

AP(x∗, y∗)
= f (x0)

/
x0

f (x∗)
/

x∗ (3.25)

But, as noted before,

f (x∗)

x∗ = g(x)

x

at every input level x . Hence, scale efficiency can be measured as

SE = f (x)

g(x)
, (3.26)

which is the ratio of the output level on the production frontier and the output on
the TOPS ray for the input level x . No presumption whatsoever exists that the
point on the TOPS ray is a feasible input–output combination. It nevertheless
serves as a benchmark for comparing the average productivity at a point on the
production frontier, which is feasible, with the maximum average productivity
attained at any point on the frontier.

3.5 Measuring Technical Efficiency under Variable Returns to Scale

As in Chapter 2, we hypothesize a production technology with the following
properties:

(i) the production possibility set is convex;
(ii) inputs are freely disposable; and

(iii) outputs are freely disposable.
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Thus, if (x0, y0) and (x1, y1) are both feasible input–output bundles, then
(x̄, ȳ) is also a feasible bundle, where x̄ = λx0 + (1 − λ)x1 and ȳ = λy0 +
(1 − λ)y1; 0 ≤ λ ≤ 1. Further, if (x, y) ∈ T , then (x̂, y) ∈ T , when x̂ ≥ x̂ , and
(x, ŷ) ∈ T , when ŷ ≤ y. When a sample of input–output bundles (xi , yi ) is
observed for N firms (i = 1, 2, . . . , N ), we assume, further, that

(iv) (xi , yi ) ∈ T for i = 1, 2, . . . , N .

Note that infinitely many production possibility sets exist with properties
(i)–(iv). In any practical application, we select the smallest of these sets

T V = (x, y) : x ≥
N∑

j=1

λ j x
j ; y ≤

N∑
j=1

λ j y j ;
N∑

j=1

λ j = 1;

λ j ≥ 0; ( j = 1, 2, . . . , N ). (3.27)

Here, the superscript V identifies variable returns to scale (VRS). Varian (1984)
calls it the inner approximation to the underlying technology set.

Construction of a production possibility set from observed data is illustrated
for the one-output, one-input case in Figure 3.7. The actual input–output bundle
(xi , yi ) is given by the points Pi for five firms. The area P1 P2 P3 P4 is the
convex hull of the points P1 through P5. By the convexity assumption, all
points in this region represent feasible input–output combinations. Further, by
free disposability of inputs, all points to the right of this area are also feasible.
Finally, by free disposability of outputs, all points below this enlarged set of
points (above the horizontal axis) are also feasible. The broken line P0 P1 P2 P3–
extension is the frontier of the production possibility set S in this example. This
set is known as the free-disposal convex hull of the observed bundles.

We can use the benchmark technology set S to measure the technical ef-
ficiency of the observation P5. The input-oriented projection of P5 is the
point A corresponding to the minimum input level (x∗

5 ) necessary to pro-
duce the output level y5. Thus, the input-oriented technical efficiency of
P5 is

TEV
I (x5, y5) = x∗

5

x5
. (3.28)

Similarly, the output-oriented projection is the point B showing the maxi-
mum output ( y∗

5 ) producible from input x5. The output-oriented technical
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Output (y)

y5*

y5
A

B

O P0

P1

P2

P5

P4

P3

x5* x5 Input (x)

Figure 3.7 The free-disposal convex hull and an inner approximation
of the production possibility set.

efficiency is

TEV
O(x5, y5) = y5

y∗
5

. (3.29)

As already noted in Chapter 2, the input- and output-oriented technical effi-
ciency measures will, in general, differ when VRS holds. Note that average
productivity of the input varies along the frontier of the production possibility
set in this case. It initially increases, reaching a maximum at P2, and declines
with further increase in x .

The input-oriented measure of technical efficiency of any firm t under VRS
requires the solution of the following LP problem due to BCC:

min θ

s.t.
N∑

j=1

λ j x
j ≤ θxt ;
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N∑
j=1

λ j y j ≥ yt ; (3.30)

N∑
j=1

λ j = 1;

λ j ≥ 0 ( j = 1, 2, . . . , N ).

Let (θ∗; λ∗
1, λ

∗
2, . . . , λ

∗
N ) be the optimal solution. Define xt

∗ = θ∗xt . Then
(xt

∗, yt ) is the efficient input-oriented radial projection of (xt , yt ) onto the
frontier and

TEV
I (xt , yt ) = θ∗. (3.31)

The output-oriented measure of technical efficiency is obtained from the solu-
tion of the following program:

max φ

s.t.
N∑

j=1

λ j x
j ≤ xt ;

N∑
j=1

λ j y j ≥ φyt; (3.32)

N∑
j=1

λ j = 1;

λ j ≥ 0 ( j = 1, 2, . . . , N ).

Again, define φ∗yt = yt
∗. Now (xt , yt

∗) is the efficient output-oriented radial
projection of (xt , yt ) and

TEV
O(xt , yt ) = 1

φ∗ . (3.33)

Example 3.1. Data for input (x) and output (y) are reported for five firms
A, B, C, D, and E in Table 3.1.

Under the assumption of VRS, the production frontier is the broken line
KABC-extension shown in Figure 3.8. But, if CRS is assumed, the pro-
duction frontier is the ray OR passing through the point B which is the MPSS
on the VRS frontier. Both A and C are technically efficient under the VRS as-
sumption but not under CRS. Firm B is efficient even when CRS is assumed.
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Table 3.1. Data for input (x) and output (y) for
5 firms A, B, C, D, and E

Firm A B C D E

Input (x) 2 4 6 7 5.5
Output (y) 2 6 8 4 6.5

D and E are both inefficient even under VRS. Consider firm E . Its input-
oriented projection onto the VRS frontier is F, where x∗

E (= 4.5) units of the
input produce yE (= 6.5) units of the output. The output-oriented projection, on
the other hand, is the point G, where y∗

E (= 7.5) units of the output are produced
from xE (= 5.5) units of the input. Therefore, the input- and output-oriented

A 

 K 

        C 
G 

         H 

F
  B          

 

 O 4 7 Input (x)

R 

C*

       I 

4 

2 

 9 

8

 7.5 

 6.5 

6 

Output (y)

  D 

65.54.54.32

E 

Figure 3.8 Measuring technical efficiency under variable and constant returns to scale.
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efficiency levels of firm E under VRS are

TEV
I (E) = 4.5

5.5
= 9

11
and TEV

O(E) = 6.5

7.5
= 13

15
, respectively.

On the other hand, the input-oriented projection onto the CRS frontier is the
point H, where only xC

E (= 4 1
3 ) units of the input produce the same output.

Hence, CRS technical efficiency is

TEC(E) =
13
3
11
2

= 26

33
.

The output-oriented projection of E is the point I on the CRS frontier. But com-
parison of the points E and I yields the same measure of technical efficiency
as what is obtained by comparing points E and H .

Firm C , using xC (= 6) units of the input to produce yC (= 8) units of the
output is located on the VRS frontier. Hence, its technical efficiency (both
input- and output-oriented) is 1 under VRS. Its output-oriented projection
onto the radial CRS frontier is the point C∗ where xC (= 6) units of the input
is shown to produce y∗

C (= 9) units of the output. Thus, the CRS technical
efficiency of this firm is

TEC(C) = 8

9
.

Note that scale efficiency of firm C is the ratio of average productivity at the
point C , which is efficient to the maximum average productivity that is attained
on the frontier at B. The average productivity at B is the same as the average
productivity at C∗ (which is not really a feasible point). But comparison of the
average productivities at C and at C∗ is equivalent to comparing the technical
efficiency of the point C to the VRS frontier and a hypothetical CRS frontier
shown by the ray through B.

The question of scale efficiency is relevant only when CRS does not hold.
Therefore, the ray OR does not represent a set of feasible points. The only
feasible point on OR is B, because it lies on the VRS frontier. However, because
average productivity is constant for all input–output bundles (feasible or not)
on the ray OR, we use the point C∗ (even though it is not feasible) to measure
the average productivity at the point B, which is a feasible point. Thus, the
scale efficiency of the point C is simply the ratio of average productivities at
C and at B. The scale efficiency of firm C can thus be measured as

SE(C) = TEC(C)

TEV(C)
= 8

9
.

         
 

 



P1: JYT
CB688-03 CB688-RAY CB688-Ray-v1.cls January 22, 2004 15:58

62 Variable Returns to Scale: Separating Technical and Scale Efficiencies

For a point that lies on the VRS frontier, input- and output-oriented scale
efficiencies are identical, unlike inefficient points such as E . This is because the
input- and output-oriented projections of an inefficient point are two different
points on the VRS frontier. Generally, the average productivities at these two
points are different. As a result, the input- and output-oriented scale efficiency
measures are also different. For firm E , the two measures are

SEI(E) = TEC(E)

TEV
I (E)

= (26)/(33)

(9)/(11)
= 26

27
and

SEO(E) = TEC(E)

TEV
O(E)

= (26)/(33)

(13)/(15)
= 10

11
, respectively.

Example 3.2a. Reconsider the input–output bundles from Example 2.1. For
the input-oriented technical efficiency of firm C under assumption of VRS, we
solve the following LP problem:

min θ

s.t. 4 λA + 9λB + 6λC + 8λD + 7λE + 11λF ≥ 6;

2λA + 4λB + 3λC + 6λD + 5λE + 8λF ≥ 3;

2λA + 7λB + 6λC + 5λD + 8λE + 6λF − 6θ ≤ 0; (3.34)

3λA + 5λB + 7λC + 8λD + 4λE + 6λF − 7θ ≤ 0;

λA + λB + λC + λD + λE + λF = 1;

λA, λB, . . . , λF ≥ 0.

The optimal solution for this problem is

(θ∗ = 0.54955; λ∗
A = 0.69369, λ

∗
B = 0.07207, λ

∗
F = 0.23423, λ

∗
C = λ

∗
D = 0).

For the input-oriented measure, the reference firm for C is a weighted average
of firms A, B, and F . This reference firm requires 3.29725 units of x1 and
3.8468 units of x2. Thus, both inputs can be reduced by a factor of 0.54955. At
the same time, output y2 would increase by 0.55 units whereas y1 would remain
unchanged. The input-oriented technical efficiency is 0.54955. In Chapter 2,
the technical efficiency of firm C under CRS was found to be 0.529. Imposition
of the additional constraint (

∑
j λ j = 1) has resulted in a higher value of the

objective function in this minimization problem for measuring input-oriented
technical efficiency.
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Example 3.2b. The output-oriented technical efficiency of DMU C is ob-
tained by solving the LP problem:

max φ

s.t. 4λA + 9λB + 6λC + 8λD + 7λE + 11λF − 6φ ≥ 0;

2λA + 4λB + 3λC + 6λD + 5λE + 8λF − 3φ ≥ 0;

2λA + 7λB + 6λC + 5λD + 8λE + 6λF ≤ 6;

3λA + 5λB + 7λC + 8λD + 4λE + 6λF ≤ 7; (3.35)

λA + λB + λC + λD + λE + λF = 1;

λA, λB, . . . , λF ≥ 0.

The optimal solution for this problem is φ∗ = 1.8333; λ∗
F = 1; λ∗

A = λ∗
B =

λ∗
C = λ∗

D = λ∗
E = 0. Thus, the firm F is the reference firm for C . If C’s input

bundle were utilized by this reference firm, output y1 would increase from
6 to 11 (an increase by a factor of 1.8333), while output y2 would increase
from 3 to 8 (by a factor of 2.6666). Further, the quantity of input x2 would
be reduced by 1 unit while input x1 used would remain unchanged. Thus,
φ∗ = min (1.8333, 2.3333) = 1.8333. There is an output slack of 2.5 units in
y2 and an input slack of 1 unit in x2. The output-oriented technical efficiency
of firm C under VRS is

TEV
O(C ) = 1

1.8333
= 0.54546.

Note that this measure differs from the input-oriented efficiency under VRS.
The input-oriented scale efficiency of firm C is

SEI(C) = TEC
I

TEV
I

= 0.529

0.54995
= 0.9626

while the output-oriented scale efficiency is

SEO(C) = TEC
O

TEV
O

= 0.529

0.54546
= 0.9698.

In Example 3.1, we could have directly computed the average productivi-
ties at the input- and output-oriented projections and compared them with the
average productivity at the MPSS. In that context, measuring the technical effi-
ciency relative to an inappropriate CRS frontier appeared to be an unnecessary
exercise. In multiple-input, multiple-output cases (like Examples 3.2a–3.2b),
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average productivity as a ratio of output to input does not have a meaning. We
need to compare ray average productivities. The ratio of technical efficiencies
under CRS and VRS, respectively, measures the ray average productivity at the
efficient projection of an observed input–output bundle onto the VRS frontier
relative to the maximum ray average productivity attainable at an MPSS on
this frontier.

3.6 Identifying the Nature of Returns to Scale
at Any Point on the Frontier

Scale efficiency (SE) falls below unity at any point on the VRS frontier that
is not an MPSS. This is true under both increasing and diminishing returns to
scale. Thus, SE by itself does not reveal anything about the nature of returns
to scale. Three alternative approaches to address this problem are available in
the literature.

A Primal Approach
Banker (1984) establishes the relation between an MPSS within a VRS pro-
duction possibility set and the optimal solution of the CCR DEA problem in
the following theorem:

Theorem 1: An input–output bundle (xt , yt ) is an MPSS if and only if the
optimal value of the objective function of a CCR–DEA model equals unity for
this input–output combination.

Proof. Consider the data set {(x j , y j ) : j = 1, 2, . . . , t, . . . , N }. An input-
oriented formulation of the CCR–DEA model for (xt , yt ) is

min θ

s.t.
N∑

j=1

λ j y j ≥ yt :

N∑
j=1

λ j x
j ≤ θxt ; (3.36)

λ j ≥ 0 ( j = 1, 2, . . . , N ); θ free.

Suppose that the optimal solution for this problem is (θ∗; λ∗). Note that the opti-
mal solution for this CRS problem may not be feasible for the VRS technology,
however. We need to show that θ∗ = 1 if and only if (xt , yt ) is an MPSS. Now,
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assume that (xt , yt ) is not an MPSS. Then, there exist (α, β) satisfying α
β

> 1
such that (βxt , αyt ) is in the VRS production possibility set. Define Xt ≡ βxt

and Y t ≡ αyt . Because (Xt , Y t ) is feasible under the VRS assumption, there
will exist nonnegative weights µ j ( j = 1, 2, . . . , N ) satisfying

N∑
j=1

µ j x
j ≤ Xt ;

N∑
j=1

µ j y j ≥ Y t ;
N∑

j=1

µ j = 1; µ j ≥ 0. (3.37)

Let λ j = µ j

α
. Then,

∑N
j=1 λ j x j ≤ Xt

α
= β

α
xt , and

∑N
j=1 λ j y j ≥ Y t

α
= yt .

Clearly, θ = β

α
is a feasible value of the objective function in the CCR–DEA

problem. But, because α
β

> 1 by assumption, β

α
< 1 and, in that case, θ∗ = 1

cannot be an optimal solution for this minimization problem.
Next, suppose that θ∗ < 1 at the optimal solution (θ∗; λ∗) of the CCR–DEA

problem. Then, by feasibility,
∑N

j=1 λ∗
j x

j ≤ θ∗xt and
∑N

j=1 λ∗
j y j ≥ yt . Define∑N

j=1 λ∗
j ≡ k∗ and µ j ≡ λ∗

j

k∗ . Then,

N∑
j=1

µ j x
j ≤ θ∗

k∗ xt ;
N∑

j=1

µ j y j ≥ yt

k∗ ;
N∑

j=1

µ j = 1. (3.38)

Thus, ( θ∗
k∗ xt , 1

k∗ yt ) is in the VRS technology set. Let α = 1
k∗ and β = θ∗

k∗ . Then,
(βxt , αyt ) is feasible under VRS. But, α

β
= 1

θ∗ > 1 if θ∗ < 1. In that case,
(xt , yt ) is not an MPSS. QED.

An implication of this theorem is that the CRS and VRS frontiers coincide
at an MPSS. Three important corollaries of this theorem are

Corollary 1: Firm t is operating under locally CRS if
∑N

j=1 λ∗
j = 1 at the

optimal solution of the CCR–DEA problem for (xt , yt ).

Corollary 2: Firm t is operating under locally increasing returns to scale if∑N
j=1 λ∗

j < 1 at the optimal solution of the CCR–DEA problem for (xt , yt ).

Corollary 3: Firm t is operating under locally diminishing returns to scale if∑N
j=1 λ∗

j > 1 at the optimal solution of the CCR–DEA problem for (xt , yt ).

The intuition behind Corollaries 1–3 is easily explained by means of a sim-
ple diagram in Figure 3.9 for the single-output, single-input case. Points A,
B, C, D, and E show the input–output bundles of five firms in a sample. The
VRS frontier is shown by the broken line segment FABC-extension. The CRS
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Figure 3.9 Identifying the nature of returns to scale locally.

frontier, on the other hand, is the ray OBR through the origin. Consider point D,
where the firm uses input x4 to produce output y4. The input-oriented projec-
tion of D onto the CRS frontier is the point G, where input θ∗x4 is used to
produce output y4. Note that point G is not feasible under the VRS assumption.
However, the point B on the CRS frontier is feasible under the VRS assumption
also. This corresponds to the MPSS at the input–output bundle ( θ∗

k∗ x4,
1
k∗ y4).

Clearly, when k∗ = ∑
j λ∗

j > 1, the CRS projection (θ∗x4, y4) has to be scaled
down to attain the MPSS. In this example, the point G lies to the right of B
on the CRS frontier, and the efficient projection of the firm observed at
point D onto the VRS frontier is the point H that lies in the region of di-
minishing returns to scale. Similarly, the efficient input-oriented projection of
the point E onto the CRS frontier is point J . One must scale this up (i.e., k∗ < 1)
in order to reach the MPSS at point B. The efficient projection of E onto the
VRS frontier is the point K that lies in the region of increasing returns to
scale.

One practical problem with this criterion is that there may exist alternative
optimal solutions for the CCR–DEA problem where k∗ exceeds 1 in some
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optimal solution but falls short of 1 in another optimal solution for the same
problem. Because the solution algorithm terminates whenever an optimal so-
lution is reached, the decision about returns to scale then becomes dependent
on which particular optimal solution was reached. We need to qualify the three
corollaries as follows:

Corollary 1: Firm t is operating under locally increasing returns to scale if∑N
j=1 λ∗

j < 1 at all optimal solutions of the CCR–DEA problem for (xt , yt ).

Corollary 2: Firm t is operating under locally diminishing returns to scale if∑N
j=1 λ∗

j > 1 at all optimal solutions of the CCR–DEA problem for (xt , yt ).

To implement this revised criterion in practice, we need the following two-
step procedure:

Step 1: Solve the CCR–DEA problem and obtain θ∗.

Step 2: Solve the following problem:

max
N∑

j=1

λ j

s.t.
N∑

j=1

λ j y j ≥ yt ; (3.39)

N∑
j=1

λ j x
j ≤ θ∗xt ;

λ j ≥ 0 ( j = 1, 2, . . . , N ).

Note that only the λ j ’s from the optimal solutions of the Step 1 problem are
feasible for the Step 2 problem. Hence, if the optimal value of the objective
function Step 2 problem is less than 1, we know that k∗ < 1 at all optimal
solutions of the CCR–BCC problem and, therefore, locally increasing returns
holds. To test for diminishing returns, we simply minimize (rather than maxi-
mize) the objective function in the Step 2 problem. This time, if the minimum
exceeds 1, locally diminishing returns is implied.

A Dual Approach
BCC (1984) offer a different approach to identifying returns to scale at a point
on the VRS frontier, which differs in two important respects from the previous
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approach. First, they focus on the BCC–DEA problem that explicitly assumes
VRS. Second, they focus on the dual (rather than the primal) formulation of
the problem.

For the VRS input-oriented problem evaluating DMU t with input–output
(xt , yt ), the dual LP problem is

max
m∑

r=1

ur yrt − u0

s.t.
m∑

r=1

ur yr j −
n∑

i=1

vi xi j − u0 ≤ 0; ( j = 1, 2, . . . , N ); (3.40)

m∑
i=1

vi xi t = 1;

ur , vi ≥ 0; (r = 1, 2, . . . , m; i = 1, 2, . . . , n); u0 free.

This is equivalent to

max

m∑
r=1

ur yrt − u0

n∑
i=1

vi xi t

s.t.

m∑
r=1

ur yr j − u0

n∑
i=1

vi xi j

≤ 1 : ( j = 1, 2, . . . , N ); (3.41)

ur , vi ≥ 0; (r = 1, 2, . . . , m; i = 1, 2, . . . , n); u0 free.

Consider the optimal solution (u∗; v∗; u∗
0). BCC first show that

m∑
r=1

u∗
r yr −

n∑
i=1

v∗
i xi − u∗

0 = 0

is a separating hyperplane for the VRS technology set T . Thus,

m∑
r=1

u∗
r yr0 −

n∑
i=1

v∗
i xi0 − u∗

0 ≤ 0 for any (x0, y0) ∈ T . (3.42)

         
 

 



P1: JYT
CB688-03 CB688-RAY CB688-Ray-v1.cls January 22, 2004 15:58

3.6 Identifying the Nature of Returns to Scale at Any Point on the Frontier 69

For each observation j ,

m∑
r=1

u∗
r yr j −

n∑
i=1

v∗
i xi j − u∗

0 ≤ 0. (3.43)

Hence,

m∑
r=1

u∗
r

(
N∑

j=1

λ j yr j

)
−

n∑
i=1

v∗
i

(
N∑

j=1

λ j xi j

)
−

(
N∑

j=1

λ j

)
u∗

0 ≤ 0. (3.44)

But, if (x0, y0) ∈ T, then there exist λ j ’s adding up to 1, satisfying

xi0 ≥
N∑

j=1

λ j xi j and yr0 ≤
N∑

j=1

λ j yr j .

This means that
∑m

r=1 u∗
r yr0 − ∑n

i=1 v∗
i xi0 − u∗

0 ≤ 0, which proves that it is a
separating hyperplane. If, on the other hand, (xE, yE) is an efficient projection
of (xt , yt )

m∑
r=1

u∗
r yr E −

n∑
i=1

v∗
i xi E − u∗

0 = 0 (3.45)

and it is a supporting (or tangent) hyperplane at (xE, yE).
Consider the point Zδ = ((1 + δ)xE, (1 + δ)yE) where δ is arbitrarily small

in absolute value. Then, locally increasing returns holds at (xE, yE) if there
exists δ∗ > 0 such that

(a) Zδ ∈ T for δ∗ > δ > 0 and
(b) Zδ /∈ T for −δ∗ < δ < 0.

That is, a small radial increase in scale remains a feasible input–output
bundle, but a small radial decrease is not feasible.

CRS holds if

(a) Zδ ∈ T for |δ| < δ∗ and
(b) Zδ /∈ T for |δ| > δ∗.

In this case, a small radial change – either increase or decrease in scale – leaves
the resulting input–output bundle feasible.

Locally diminishing returns to scale holds if

(a) Zδ /∈ T for δ∗ > δ > 0 and
(b) Zδ ∈ T for −δ∗ < δ < 0.
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Here, a small reduction in scale leaves the input–output bundle feasible, but a
small increase in scale will not be feasible.

Note that because (xE, yE) is efficient and lies on the supporting hyperplane,

u∗(1 + δ)yE − v∗(1 + δ)x E − u∗
0 = (1 + δ)[u∗yE − v∗x E − u∗

0]

+ δu∗
0 = δu∗

0. (3.46)

Further, when Zδ ∈ T, u∗(1 + δ)yE − v∗(1 + δ)x E − u∗
0 ≤ 0. Thus, δu∗

0 ≤ 0.

Let δ > 0. Then, Zδ ∈ T if u∗
0 < 0. Hence, in the case of locally increasing

returns, the tangent hyperplane has a negative intercept. Similarly, if u∗
0 > 0,

then Zδ ∈ T only if δ < 0. Thus, a positive intercept represents locally dimin-
ishing returns. Finally, if u∗

0 equals 0, both positive and negative values of δ

would be compatible with the feasibility of Zδ. Thus, in the case of CRS, the
tangent hyperplane is a ray through the origin. This compares directly with the
simple one-input, one-output case, where the tangent to the production func-
tion at an MPSS is a ray through the origin. This is illustrated in Figure 3.10.
The VRS frontier is shown by the broken line KABC-extension. Point A lies
in the region of increasing returns to scale on the VRS frontier. The tangent
hyperplane through A (the line R1 R1) meets the vertical axis below the origin
with a negative intercept. Point B is an MPSS where locally CRS holds. The
tangent hyperplane through B is the ray OR through the origin. Point C is in
the region of diminishing returns. The tangent through C(R2 R2) has a positive
intercept and meets the vertical axis above the origin.

As in Banker’s primal approach, in this dual approach there is also the poten-
tial problem of multiple optimal solutions. The following two-step procedure
can be adopted in this case:

Step 1: Solve the dual-maximization problem for the BCC–DEA model. Sup-
pose that the optimal value of the objective function is W ∗.

Step 2: Now, solve the problem

max u0

s.t.
m∑

r=1

ur yr j −
n∑

i=1

vi xi j−u0 ≤ 0 ( j = 1, 2, . . . , N ); (3.47)

m∑
r=1

ur yrt − u0 = W ∗;

ur ≥ 0; vi ≥ 0; (r = 1, 2, . . . , m; i = 1, 2, . . . , n); u0 free.
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Figure 3.10 Intercepts of the tangent hyperplane to the frontier and local returns to scale.

If the optimal value of the objective function is less than 0, we conclude that
u0 is negative in all of the optimal solutions for the problem in Step 1. Hence,
increasing returns holds at this input–output bundle. To test for diminishing
returns, we minimize u0 in Step 2. If the minimum value exceeds zero, dimin-
ishing returns to scale is implied.

A Nesting Approach
Färe, Grosskopf, and Lovell (FGL) (1985) exploit the hierarchical relation
between the production possibility sets under alternative assumptions about
returns to scale.

Under VRS, which allows increasing, constant, or diminishing returns at
different points on the frontier, we assume only that convex combinations of
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actually observed input–output bundles are feasible. Thus, as a first approx-
imation, we treat the convex hull of the observed points as the production
possibility set. Further, by free disposability of inputs and outputs, all points
in the free disposal convex hull of these points are also considered feasible.
Under CRS, all scalar expansions as well as nonnegative radial contractions
of feasible input–output bundles are also considered feasible. In that case, the
smallest cone containing the free disposal convex hull of the observed bundles,
often called the conical hull, constitutes the production possibility set.

In between the assumptions of VRS and CRS lies nonincreasing returns
to scale (NIRS). When the technology exhibits NIRS, all scalar contractions
of observed input–output bundles are feasible; however, scalar expansions of
bundles that are feasible under the VRS assumption are not necessarily fea-
sible. The VRS production possibility set is contained in the NIRS produc-
tion possibility set, which is itself a subset of the CRS production possibility
set.

The three different sets are shown in Figure 3.11. Points A, B, C, D, E, and
F show the observed input–output combinations of six firms. As explained

L

H

G

A

B

F

KN

C

E

R

Output (y)

M

J

O Input (x)

D

Figure 3.11 VRS, NIRS, and CRS frontiers and the nesting approach to identifying the
nature of local returns to scale.
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earlier, the broken line LABC-extension is the frontier of the production possi-
bility set (T V) under VRS. Note that points to the left of LAB are not considered
feasible under VRS. If NIRS holds, however, whenever (x, y) ∈ T V, (t x, t y)
is feasible for 0 ≤ t ≤ 1. This means that whenever any input–output bun-
dle that is feasible under VRS is scaled down, the resulting bundle would
be feasible if NIRS holds. The frontier of the production possibility set un-
der NIRS, T N, is OBC-extension. Finally, when CRS holds, the production
frontier is the ray OR passing through the point B, which is an MPSS on the
VRS frontier. Note that the NIRS and the CRS frontiers coincide over the
range where increasing returns holds along the VRS frontier. On the other
hand, the NIRS and VRS frontiers coincide when diminishing returns to scale
holds under VRS. At the MPSS (on the VRS frontier), all three frontiers co-
incide. This extremely useful relation between these frontiers can be utilized
to identify the returns to scale characteristics of the technology at any given
point.

Consider point F , which is an interior point of T V and is technically inef-
ficient. The input-oriented efficient projection of F onto the VRS frontier is
G and onto the CRS frontier is H. This is also the projection onto the NIRS
frontier. Thus, the input-oriented technical efficiency of F is

TEV
I (F) = J G

J F
, if VRS is assumed, and

TEC
I (F) = TEN

I (F) = J H

J F
, if either CRS or NIRS is assumed.

Note that the point G, the input-oriented projection of F , lies on the increasing
returns region of the VRS frontier. Therefore, if TEC

I = TEN
I < TEV

I , the
input-oriented projection onto the VRS frontier is in the increasing returns to
scale region.

Next, consider the point E . Its input-oriented projection onto the VRS fron-
tier (which is the same as the projection on the NIRS frontier) is point K ,
but its projection onto the CRS frontier is N . For this firm, the input-oriented
technical efficiency is

TEV
I (E) = TEN

I (E) = M K

M E
, under either VRS or NIRS

and

TEC
I (E) = M N

M E
under CRS.
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The input-oriented projection is a point on the region of diminishing returns in
the VRS frontier. Thus, when TEV

I = TEN
I > TEC

I , diminishing returns hold
at the input-oriented projection.

Note two things. First, the assumed technology exhibits VRS. Thus, points
outside the VRS frontier are artificial reference points that are not feasible.
Second, for some points (e.g., D), the input-oriented projection is in the in-
creasing returns region whereas the output-oriented projection is in the region
of diminishing returns on the VRS frontier. For such observations, returns-to-
scale characterization depends on the orientation.

To implement this procedure in practice, we need to measure the input-
or output-oriented technical efficiency levels using an NIRS frontier as the
benchmark. Because every radial contraction of any input–output bundle that
is feasible under VRS is feasible under NIRS,

T N =
{

(x, y) : x ≥
N∑

j=1

λ j x
j ; y ≤

N∑
j=1

λ j y j ;
N∑

j=1

λ j ≤ 1;

λ j ≥ 0; ( j = 1, 2, . . . , N )

}
. (3.48)

Note that under CRS, no restriction is imposed on the sum of the λ j ’s. Under
VRS, the sum equals unity. Under NIRS, the sum is less than or equal to unity.
Thus, the VRS technology set is the most restrictive (the smallest) and the CRS
technology set is the least restrictive (largest), whereas the NIRS technology
set lies in between.

The following theorem due to BCC (1996) shows that the alternative ap-
proaches to returns-to-scale determination are equivalent and will always yield
mutually consistent results.

Theorem 2:
(a) There exists a solution for the CCR problem (3.36) with

∑
j λ∗

j = 1 if
and only if SE = 1 (i.e., CRS holds).

(b) All alternative optimal solutions of the CCR problem have
∑

j λ∗
j > 1

if and only if SE < 1 and TEC< TEN = TEV (i.e., DRS holds).
(c) All optimal solutions of the CCR problem have

∑
j λ∗

j < 1 if and only

if SE < 1 and TEC = TEN < TEV (i.e., IRS holds).

Proof. Part (a): We know from Theorem 1 and Corollary 1(a) that in the case
of CRS, TEC = 1 and

∑
j λ∗

j = 1. Thus, this particular solution is also feasible
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for the BCC problem resulting in TEV = 1 and SE = 1. Conversely, if SE = 1,
TEV= TEC. Thus, an optimal solution for the BCC problem is also an optimal
solution for the CCR problem. However, because it is a solution for the BCC
problem, it must satisfy

∑
j λ∗

j = 1. For parts (b) and (c), we make use of the
following lemma.

Lemma 1: If the CCR problem has two alternative optimal solutions, one
with

∑
j λ∗

j > 1 and another with
∑

j λ∗
j < 1, then there exists an alternative

optimal solution to the CCR problem with
∑

j λ∗
j = 1.

Proof. Suppose that the first solution is λ∗
1 with

∑
j λ∗

1 j = α1 > 1, and the

other solution is λ∗
2 with

∑
j λ∗

2 j = α2 < 1. Define α3 = α1−1
α1−α2

. Next, de-
fine λ∗

3 = (1 − α3)λ∗
1 + α3λ

∗
2. Then, it can be easily verified that λ∗

3 pro-
vides another optimal solution to the BCC problem. Moreover,

∑
j λ∗

3 j =
(1 − α3)α1 + α3α2 = 1.

We now return to the proof of parts (b) and (c) of the theorem. Consider
part (c) first. If

∑
j λ∗

j < 1 at all optimal solutions of the CCR problem, then,
by virtue of part (a) of this theorem, SE < 1 and TEC < TEV. But, in this
case, these optimal solutions of the CCR problem are all feasible for the NIRS
problem. Therefore, TEN< TEV. On the other hand, when TEN < TEV, an
optimal solution for the NIRS problem is not feasible for the BCC problem.
Thus, for all optimal solutions of the NIRS problem,

∑
j λ∗

j < 1. These are, of
course, all feasible solutions for the less restrictive CCR problem. But because
SE < 1, an optimal solution of the CCR problem with

∑
j λ∗

j = 1 is ruled
out. Further, the lemma rules out solutions with

∑
j λ∗

j > 1. Hence, if SE <1
and TEN< TEV,

∑
j λ∗

j < 1 at all optimal solutions of the CCR problem. This
completes the proof of part (c).

Next, consider part (b). If
∑

j λ∗
j > 1 at all optimal solutions for the CCR

problem, then SE < 1 by virtue of part (a). Suppose, however, that TEN< TEV.
Let λ∗

1 with
∑

j λ∗
1 j = α1 > 1 be a solution for the CCR problem and λ∗

2

with
∑

j λ∗
2 j = α2 < 1 be a solution for the NIRS problem. Define, as in the

lemma, λ∗
3 = (1 − α3)λ∗

1 + α3λ
∗
2, where 0 < α3 = α1−1

α1−α2
< 1. As shown be-

fore,
∑

j λ∗
3 j = 1. Note that

∑
j

λ∗
3 j y j =

∑
j

[(1 − α3)λ∗
1 j + α3λ

∗
2 j ] y j ≥ (1 − α3)yt + α3 yt = yt .
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Similarly, ∑
j

λ∗
3 j x

j ≤
∑

j

[(1 − α3)θC + α3θ
N ]xt .

Hence,

θV ≤ (1 − α3)θC + α3θ
N < (1 − α3)θV + α3θ

V = θV.

This, clearly, is a contradiction. In this case, it is not possible to have θN < θV.

Therefore, θN = θV.

The converse implications for parts (b) and (c) follow immediately because
the conditions specified in the theorem are mutually exclusive.

Example 3.3. The input-oriented technical efficiency of DMU C (from Ex-
ample 2b) under NIRS is obtained by solving the problem

min θ

s.t. 4 λA + 9λB + 6λC + 8λD + 7λE + 11λF ≥ 6;

2λA + 4λB + 3λC + 6λD + 5λE + 8λF ≥ 3;

2λA + 7λB + 6λC + 5λD + 8λE + 6λF − 6θ ≤ 0; (3.49)

3λA + 5λB + 7λC + 8λD + 4λE + 6λF − 7θ ≤ 0;

λA + λB + λC + λD + λE + λF = 1;

λA, λB, . . . , λF ≥ 0.

Compared to the problem in Example 3.2a, here the restriction on the sum of
the λs is changed from equality to a “less-than-equal-to” sign.

The SAS program for this problem is as follows.

DATA EX3A;

INPUT A B C D E F THETA _TYPE_ $ _RHS_;

CARDS;

4 9 6 8 7 11 0 ≥ 6

2 4 3 6 5 8 −0 ≥ 3

2 7 6 5 8 6 −6 ≤ 0

3 5 7 8 4 6 −7 ≤ 0

1 1 1 1 1 1 −0 ≤ 1

0 0 0 0 0 0 −1 MIN.

;

PROC LP;
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Note that in the first two constraints, the output quantities of firm C appear
in the right-hand side of the inequality sign and that the input quantities of C
appear with a negative sign in the column for THETA. Further, the restriction
on the λ j ’s is a less-than-equal-to type for this NIRS problem. The optimal
solution for this problem is

λ∗
A = 0.52941; λ∗

F = 0.35294; λ∗
B = λ∗

C = λ∗
D = λ∗

E = 0; θ∗ = 0.529.

Thus, TEN
I (C) = 0.529. This is also the solution for the CRS model when

there is no restriction on the sum of the λ j ’s. Therefore, for DMU C, the
input-oriented technical efficiency level is higher than the measure obtained
under NIRS, which is the same as what we get under the CRS assumption.
Hence, we conclude that the input-oriented projection of C falls in the region
of increasing returns to scale.

To apply the two-step procedure based on Banker’s primal approach, we first
scale down the actual input bundle of C by the factor θ∗(0.529) obtained from
the CRS version of the input-oriented DEA model. The resulting values are
3.1765 for input x1 and 3.7059 for input x2. The LP problem to be solved in
the second step is

max λA + λB + λC + λD + λE + λF

s.t. 4λA + 9λB + 6λC + 8λD + 7λE + 11λF ≥ 6;

2λA + 4λB + 3λC + 6λD + 5λE + 8λF ≥ 3; (3.50)

2λA + 7λB + 6λC + 5λD + 8λE + 6λF ≤ 3.1765;

3λA + 5λB + 7λC + 8λD + 4λE + 6λF ≤ 3.7059;

λA, λB, λC , λD, λE , λF ≥ 0.

The optimal value of the objective function was 0.8824. This implies that the
sum of the λ j ’s is less than unity at all optimal solutions of the CCR–DEA
problem in Step 1. This confirms that the input-oriented projection of firm C
is in the increasing returns to scale region of the VRS frontier.

Example 3.4. We now measure the SE and the nature of returns to scale of
firm 6 from the Korean electric utility data set considered earlier in Exam-
ple 2.2 in Chapter 2. Exhibit 3.1 shows the relevant LP problem. Note that
there is an additional row called LAMBDA with 1 on the right-hand side
for the restriction

∑
j λ j = 1. Exhibit 3.2 shows the optimal solution of the

problem. The value of the objective function under VRS is 1.27137, which is
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Exhibit: 3.1. DEA-LP problem for firm #6 under VRS

Firm #1 #2 #3 #4 #5 #6 #7 #8

Capital 706.698 1284.90 1027.92 1027.92 1027.92 1027.92 2055.85 2055.85

Labor 643.389 1142.20 1749.44 1019.30 1033.76 527.72 1048.22 1055.45

Fuel 648.946 1101.65 531.19 640.32 640.41 448.10 2136.09 2140.03

Output 614.660 1128.39 533.52 611.80 619.68 404.99 2276.89 2278.26

Lambda 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Objective 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00

#9 #10 #11 #12 #13 #14 #15 #16 #17

2055.85 51.396 51.396 51.3962 51.396 1669.35 308.377 308.377 256.98

1062.68 86.749 101.207 93.9782 101.207 1612.09 910.865 903.636 1178.34

2140.18 111.276 91.632 91.9232 92.244 1585.23 344.508 344.483 273.29

2172.23 71.720 73.405 73.8759 73.834 1548.44 260.830 258.852 181.65

1.00 1.000 1.000 1.0000 1.000 1.00 1.000 1.000 1.00

0.00 0.000 0.000 0.0000 0.000 0.00 0.000 0.000 0.00

#18 #19 #20 #21 #22 #23 #24 #25 #26

256.98 1027.92 642.452 1027.92 1027.92 385.47 865.640 906.033 256.98

1185.57 1366.30 751.825 838.57 824.12 1655.46 809.658 780.742 1069.91

273.28 1185.60 699.303 1090.23 1090.26 362.30 559.963 554.623 221.73

179.92 1076.19 586.162 959.15 958.38 278.13 660.532 673.120 246.69

1.00 1.00 1.000 1.00 1.00 1.00 1.000 1.000 1.00

0.00 0.00 0.000 0.00 0.00 0.00 0.000 0.000 0.00

#27 #28 #29 #30 phi_ _type_ _rhs_

256.98 2878.19 2878.19 2569.81 0.000 <= 1027.92

1033.76 1828.96 1821.73 1763.90 0.000 <= 527.72

228.01 3509.60 3510.85 3352.76 0.000 <= 448.10

252.86 3708.16 3709.64 3528.04 −404.985 >= 0.00

1.00 1.00 1.00 1.00 0.000 = 1.00

0.00 0.00 0.00 0.00 1.000 max .

lower than the optimal value 1.30187 reported for CRS in Exhibit 2b in Chap-
ter 2. Hence, the SE of firm 6 is

SE = 1.27137

1.30187
= 0.97657.

This, it should be noted, is a measure of output-oriented SE. The input-
oriented VRS technical efficiency of firm 6 would be different leading to
a different measure of the SE of the firm. Finally, in order to determine
the nature of returns to scale, we solve the DEA problem under the NIRS
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Exhibit: 3.2. Optimal solution of the output-oriented VRS DEA-LP for firm #6

Solution Summary

Objective Value 1.2713698
Variable Summary

Variable
# Name Status Type Price Activity Reduced Cost

1 #1 NON-NEG 0 0 −0.299656
2 #2 NON-NEG 0 0 −0.387513
3 #3 NON-NEG 0 0 −0.799197
4 #4 NON-NEG 0 0 −0.48423
5 #5 NON-NEG 0 0 −0.4726
6 #6 NON-NEG 0 0 −0.27137
7 #7 BASIC NON-NEG 0 0.0456371 0
8 #8 NON-NEG 0 0 −0.009969
9 #9 NON-NEG 0 0 −0.275938
10 #10 NON-NEG 0 0 −0.048242
11 #11 NON-NEG 0 0 −0.004273
12 #12 BASIC NON-NEG 0 0.3861955 0
13 #13 NON-NEG 0 0 −0.004692
14 #14 NON-NEG 0 0 −0.765965
15 #15 NON-NEG 0 0 −0.5793
16 #16 NON-NEG 0 0 −0.580308
17 #17 NON-NEG 0 0 −0.74394
18 #18 NON-NEG 0 0 −0.752029
19 #19 NON-NEG 0 0 −0.837354
20 #20 NON-NEG 0 0 −0.548838
21 #21 NON-NEG 0 0 −0.617631
22 #22 NON-NEG 0 0 −0.611977
23 #23 NON-NEG 0 0 −0.972394
24 #24 NON-NEG 0 0 −0.059233
25 #25 BASIC NON-NEG 0 0.5681674 0
26 #26 NON-NEG 0 0 −0.401641
27 #27 NON-NEG 0 0 −0.38249
28 #28 NON-NEG 0 0 −0.194577
29 #29 NON-NEG 0 0 −0.190119
30 #30 NON-NEG 0 0 −0.226257
31 phi BASIC NON-NEG 1 1.2713698 0
32 _OBS1_ BASIC SLACK 0 399.47369 0
33 _OBS2_ SLACK 0 0 −0.000528
34 _OBS3_ SLACK 0 0 −0.002415
35 _OBS4_ SURPLUS 0 0 −0.002469

Constraint Summary

Constraint S/S Dual
Row Name Type # RHS Activity Activity

1 _OBS1_ LE 32 1027.9237 628.45001 0
2 _OBS2_ LE 33 527.72356 527.72356 0.0005276
3 _OBS3_ LE 34 448.10376 448.10376 0.0024148
4 _OBS4_ GE 35 0 0 −0.002469
5 _OBS5_ EQ . 1 1 −0.089144
6 _OBS6_ OBJECTVE . 0 1.2713698 .
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assumption. This requires changing the equality restriction in the LAMBDA
row to a “less-than-or-equal-to” inequality. The value of the objective function
for the NIRS problem is 1.30187, which coincides with the optimal value under
the CRS assumption. Thus, for firm 5, TEC = TEN < TEV. This implies that
the firm is operating in a region of increasing returns to scale.

It would be instructive to verify that the various alternative approaches
described herein all lead to the same conclusion about the nature of returns to
scale for firm 6. This is left as an exercise for the reader.

3.7 Summary

When the technology allows VRS at different points on the frontier of the
production possibility set, the technical efficiency (either input- or output-
oriented) of a firm will differ from its SE. Technical efficiency is measured
by comparing the (ray) average productivity of a firm with the correspond-
ing average productivity at its input- or output-oriented projection onto the
VRS frontier. SE, on the other hand, compares the average productivity at
the efficient input- or output-oriented projection with the maximum average
productivity attained at the MPSS on the VRS frontier. One can ascertain the
returns-to-scale properties at any point on the frontier by looking at the optimal
solution of the CCR–DEA problem in either its primal or dual formulation.
A third alternative is to compare the technical efficiency levels of a firm mea-
sured with reference to a VRS, an NIRS, and a CRS frontier. When the NIRS
and CRS measures are equal to one another but differ from the VRS mea-
sure, increasing returns to scale holds at the corresponding efficient projection
on the VRS frontier. On the other hand, if the VRS and NIRS measures are
equal but differ from the CRS measure, diminishing returns to scale holds
at the relevant point on the frontier. The three measures coincide only at an
MPSS.

Note that in this discussion of SE, VRS is the maintained assumption. The
CRS and NIRS frontiers are mere artifacts that permit us to examine different
points on the VRS frontier. Further, input or output slacks are not included
in the technical efficiency measures. We will return to slacks and nonradial
efficiency measures later in Chapter 5.

Guide to the Literature

Farrell and Fieldhouse (1962) recognized the restrictive nature of the CRS
assumption underlying the Farrell measure of technical efficiency and proposed
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an appropriate transformation of the data that would allow nonconstant returns
to scale within an activity analysis framework. Førsund and Hjalmarsson (1979)
proposed a generalization of the Farrell efficiency measure separating SE from
the pure technical efficiency using a parametric production function. Banker
(1984) generalized the concept of the technically optimal production scale
introduced by Frisch (1965) to the multiple-output, multiple-input case. BCC
(1984) developed the DEA model for VRS technologies. Although the BCC
model has become the standard analytical format in the DEA literature, it may
be noted that Byrnes, Färe, and Grosskopf (1984) independently developed
a nonparametric model allowing scale inefficiency. Banker and Thrall (1992)
derive a number of important results relating to the MPSS. For two excellent
surveys of the nonparametric methodology, see Lovell (1993, 1994).

In the parametric literature, the primary interest has been on scale elas-
ticity rather than on scale efficiency. Ray (1998) extends the earlier approach
of Førsund and Hjalmarsson (1979) to measure SE from the more flexible
Translog production function.
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4

Extensions to the Basic DEA Models

4.1 Introduction

This chapter presents several extensions to the basic DEA models described
earlier. Both the CCR and the BCC models are either output- or input-oriented.
One has to choose between output expansion and input conservation as the cri-
terion of efficiency. Of course, in the CCR model, output- and input-oriented
measures of technical efficiency are identical. This is not true for the BCC
model, however. Two alternative technical-efficiency measures considered in
this chapter are (a) the graph hyperbolic efficiency described in Section 4.2,
and (b) the directional efficiency measure described in Section 4.3. Both of
these measures emphasize expanding outputs and contracting inputs simul-
taneously. The efficiency score computed by DEA permits us to rank-order
the performance of inefficient firms. By contrast, the efficient observations
are rated equally. Section 4.4 describes how one can rank observations that
are all equally rated at 100% efficiency. This section also explains how one
can identify influential observations in DEA. The productive performance
of any firm is affected by a number of exogenously determined factors over
which it has no control. In the DEA literature, such factors are treated as
nondiscretionary. Section 4.5 explains how the influence of these nondis-
cretionary factors can be identified as shifts in the production frontier and
provides the rationale for a second-stage regression analysis explaining the
variation in DEA efficiency scores in terms of differences in these nondis-
cretionary factors. In Section 4.6, we consider the effects of transformation
of the input and output data on the efficiency measure of a firm obtained
from the various DEA models. Section 4.7 summarizes the main points of this
chapter.

82

         
 

 



P1: FHA
CB688-04 CB688-RAY CB688-Ray-v1.cls January 22, 2004 11:15

4.2 Graph Hyperbolic Measure of Efficiency 83

4.2 Graph Hyperbolic Measure of Efficiency

Consider a single-input, single-output technology defined by the production
possibility set

T = {(x, y) : y ≤ f (x)}. (4.1)

The set

G = {(x, y) : y = f (x)} (4.2)

is the graph of the technology and any (x, y) ∈ G is technically efficient.
Suppose that a firm uses (scalar) input x0 to produce (scalar) output y0. Further,
y0 < f (x0). Thus, the firm is technically inefficient. As noted in previous
chapters, technical efficiency is measured by comparing an observed inefficient
point with its projection onto the graph of the efficient frontier.

For an output-oriented projection, we hold the input constant and expand
the output to the maximum extent possible. Thus, (x0, φ

∗y0) is the relevant
bundle on the frontier and the output-oriented technical efficiency of firm is

TEOUT = y0

y∗
0

= 1

φ∗ . (4.3)

Similarly, for an input-oriented measure, we consider the two-element bundle

(x∗
0 , y0) = (θ∗x0, y0) ∈ G

as the reference point and the input-oriented measure of technical efficiency
is

TEINP = x∗
0

x0
= θ∗. (4.4)

Note that depending on the orientation of the model we either expand output
or conserve input but do not do both simultaneously. In Figure 4.1, the point A
shows the observed input–output quantities of a firm. Point B vertically above
A is its output-oriented projection onto the graph, and the point C is its input-
oriented projection. Simultaneous increase in output and reduction in input
would lead to some point in the northwest quadrant in the region between C
and B on the graph.

         
 

 



P1: FHA
CB688-04 CB688-RAY CB688-Ray-v1.cls January 22, 2004 11:15

84 Extensions to the Basic DEA Models

y = f(x)

B

A

D

C

O x* x0 Input (x)

Output (y)

y*

y0

Figure 4.1 The graph hyperbolic measure of technical efficiency.

Now, suppose that we expand the output while contracting the input by the
same scale factor. Thus, we seek a point (x∗, y∗) ∈ G such that

y∗ = δy0 and x∗ = 1

δ
x0.

Relative to this point on the graph, the efficiency of the observed bundle (x0, y0)
is

TEGRAPH = 1

δ
. (4.5)

Note that, by construction, the observed point and its efficient projection on the
graph lie on a rectangular hyperbola. Hence, it is called the graph hyperbolic
measure of technical efficiency.

The following numerical example illustrates the difference between the
graph hyperbolic measure of technical efficiency on the one hand and output-
or input-oriented measures of technical efficiency on the other.

Suppose that the production possibility set is

T = {(x, y) : y ≤ f (x) = 6
√

x} (4.6)
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so that the graph of the technology is

G = {(x, y) : y = 6
√

x}. (4.6a)

Consider, now, the observed input–output bundle

(x0, y0) = (2, 3).

The graph hyperbolic measure can be computed from the equation

δy0 = 6

√
x0

δ
.

Thus, in this example, δ = 2. The efficient hyperbolic projection is (x∗, y∗) =
(1, 6), and

TEGRAPH = 1/2.

By contrast, for the output-oriented efficient projection, we solve for φ∗ from

φ∗y0 = 6
√

x0.

Hence, φ∗ = 2
√

2. Therefore, the output-oriented technical efficiency of
firm 0 is

1

2
√

2
= 0.3536.

On the other hand, compared to the input-oriented projection (θ∗x0, y0),

TEINP = θ∗ = y2
0

36x0
= 1

8
.

We can easily generalize the graph hyperbolic measure of efficiency to
the multiple-output, multiple-input case. Suppose that x j is the n-element
input vector of firm j and y j is its m-element output vector. Then, the graph
hyperbolic measure of its technical efficiency is

TEGRAPH = 1

δ∗ , (4.7a)

where

δ∗ = max δ :

(
1

δ
x j , δy j

)
∈ T . (4.7b)

Of course, δ∗will depend on the specification of the production possibility
set, T .
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We first consider the CRS technology. For the firm 0 – the firm under eval-
uation – the relevant DEA problem to be solved is

max δ

s.t.
N∑

j=1

λ j y j ≥ δy0;

N∑
j=1

λ j x
j ≤ 1

δ
x0; (4.8)

λ j ≥ 0 ( j = 1, 2, . . . , N ); δ unrestricted.

(Note that there are m inequalities in y j and n inequalities in x j .) This, clearly,
involves nonlinear inequality restrictions. However, defining the new vari-
ables

µ j = δλ j (4.9a)

and

φ = δ2 (4.9b)

we get the transformed problem

max φ

s.t.
N∑

j=1

µ j y j ≥ φy0; (4.10)

N∑
j=1

µ j x
j ≤ x0;

µ j ≥ 0 ( j = 1, 2, . . . , N ); φ unrestricted.

This is exactly the output-oriented CCR DEA problem. Thus, in the case of
CRS, the graph hyperbolic measure of technical efficiency is merely the square
root of the output- or input-oriented technical efficiency.
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Next, consider the VRS technology. The relevant model now becomes

max δ

s.t.
N∑

j=1

λ j y j ≥ δy0;

N∑
j=1

λ j x
j ≤ 1

δ
x0; (4.11)

N∑
j=1

λ j = 1;

λ j ≥ 0 ( j = 1, 2, . . . , N ); δ unrestricted.

The transformed problem comparable to (4.10) is

max φ

s.t.
N∑

j=1

µ j y j ≥ φy0;

N∑
j=1

µ j x
j ≤ x0; (4.12)

N∑
j=1

µ j =
√

φ;

φ, µ j ≥ 0 ( j = 1, 2, . . . , N ).

It should be noted that it remains a nonlinear problem even after the transfor-
mation.

One may, however, use a first-order Taylor’s series approximation for the
nonlinear constraint in the optimization problem in (4.11). Define f (δ) = 1

δ
.

Then, at δ = δ0,

f (δ) ≈ f (δ0) + f ′(δ0)(δ − δ0) = 2δ0 − δ

δ0
.

Hence, at δ0 = 1, f (δ) ≈ 2 − δ.

         
 

 



P1: FHA
CB688-04 CB688-RAY CB688-Ray-v1.cls January 22, 2004 11:15

88 Extensions to the Basic DEA Models

Using this linear approximation, we may replace (4.11) by the linear pro-
gramming (LP) problem:

max δ

s.t.
N∑

j=1

λ j y j ≥ δy0;

N∑
j=1

λ j x
j + δx0 ≤ 2x0; (4.13)

N∑
j=1

λ j = 1;

λ j ≥ 0 ( j = 1, 2, . . . , N ); δ unrestricted.

Exhibit 4.1 shows the DEA LP problem for measuring the graph hyperbolic
function (under VRS) for firm #6 from the Korean electrical utilities data set
considered previously in Chapter 3. Note that the actual input quantities and the
negative of the actual output quantity of the firm under evaluation appear in the
column identified as “delta” in the left-hand side of the inequality constraints
in the problem. At the same time, entries in the rows for the inputs in the
RHS column are twice the input quantities of the firm. Exhibit 4.2 shows the
output from the relevant SAS program. The optimal value of “delta” shown
in the Variable Summary section (as also in the Objective Value) is 1.11496.
This implies that one can expand the output of this firm by 11.496% while
at the same time reduce all inputs to 89.689% (or less) of their observed
levels.

4.3 Technical Efficiency Based on the Directional Distance Function

Chambers, Chung, and Färe (1996) introduced the directional distance function
based on Luenberger’s (1992) benefit function to obtain a measure of techni-
cal efficiency from the potential for increasing outputs while reducing inputs
simultaneously. Consider the pair of input–output vectors (x0, y0) and a ref-
erence input–output bundle (gx , gy). Then, with reference to some production
possibility set, T, the directional distance function can be defined as

�D (x0, y0; gx , gy) = max β : (x0 + βgx , y0 + βgy) ∈ T . (4.14)
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Exhibit: 4.1. DEA LP problem for measuring the graph hyperbolic efficiency
of firm #6 from the Korean electrical utilities data

FIRM #1 #2 #3 #4 #5

Capital 706.698 1284.90 1027.92 1027.92 1027.92
Labor 643.389 1142.20 1749.44 1019.30 1033.76
Fuel 648.946 1101.65 531.19 640.32 640.41
Output 614.661 1128.39 533.52 611.80 619.68
Lambda 1.000 1.00 1.00 1.00 1.00
Objective 0.000 0.00 0.00 0.00 0.00

#6 #7 #8 #9 #10 #11

1027.92 2055.85 2055.85 2055.85 51.396 51.396
527.72 1048.22 1055.45 1062.68 86.749 101.207
448.10 2136.09 2140.03 2140.18 111.276 91.632
404.99 2276.89 2278.26 2172.23 71.720 73.405

1.00 1.00 1.00 1.00 1.000 1.000
0.00 0.00 0.00 0.00 0.000 0.000

#12 #13 #14 #15 #16 #17

51.3962 51.396 1669.35 308.377 308.377 256.98
93.9782 101.207 1612.09 910.865 903.636 1178.34
91.9232 92.244 1585.23 344.508 344.483 273.29
73.8759 73.834 1548.44 260.830 258.853 181.65
1.0000 1.000 1.00 1.000 1.000 1.00
0.0000 0.000 0.00 0.000 0.000 0.00

#18 #19 #20 #21 #22 #23

256.98 1027.92 642.452 1027.92 1027.92 385.47
1185.57 1366.30 751.825 838.57 824.12 1655.46
273.28 1185.60 699.303 1090.23 1090.26 362.30
179.92 1076.19 586.163 959.15 958.38 278.13

1.00 1.00 1.000 1.00 1.00 1.00
0.00 0.00 0.000 0.00 0.00 0.00

#24 #25 #26 #27 #28 #29

865.640 906.033 256.98 256.98 2878.19 2878.19
809.658 780.742 1069.91 1033.76 1828.96 1821.73
559.963 554.623 221.73 228.01 3509.60 3510.85
660.533 673.120 246.69 252.86 3708.16 3709.64

1.000 1.000 1.00 1.00 1.00 1.00
0.000 0.000 0.00 0.00 0.00 0.00

#30 delta _type_ _rhs_

2569.81 1027.92 <= 2055.85
1763.90 527.72 <= 1055.45
3352.76 448.10 <= 896.21
3528.04 −404.99 >= 0.00

1.00 0.00 = 1.00
0.00 1.00 max .
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Exhibit: 4.2. SAS output of the graph efficiency problem for Firm #6

Solution Summary

Objective Value 1.1149622

Variable Summary

Variable Reduced
# Name Status Type Price Activity Cost
1 #1 NON-NEG 0 0 −0.126945
2 #2 NON-NEG 0 0 −0.164165
3 #3 NON-NEG 0 0 −0.338569
4 #4 NON-NEG 0 0 −0.205138
5 #5 NON-NEG 0 0 −0.200211
6 #6 NON-NEG 0 0 −0.114962
7 #7 BASIC NON-NEG 0 0.0380436 0
8 #8 NON-NEG 0 0 −0.004223
9 #9 NON-NEG 0 0 −0.116898
10 #10 NON-NEG 0 0 −0.020437
11 #11 NON-NEG 0 0 −0.00181
12 #12 BASIC NON-NEG 0 0.4715774 0
13 #13 NON-NEG 0 0 −0.001988
14 #14 NON-NEG 0 0 −0.324491
15 #15 NON-NEG 0 0 −0.245413
16 #16 NON-NEG 0 0 −0.24584
17 #17 NON-NEG 0 0 −0.31516
18 #18 NON-NEG 0 0 −0.318587
19 #19 NON-NEG 0 0 −0.354734
20 #20 NON-NEG 0 0 −0.232508
21 #21 NON-NEG 0 0 −0.261651
22 #22 NON-NEG 0 0 −0.259256
23 #23 NON-NEG 0 0 −0.411942
24 #24 NON-NEG 0 0 −0.025093
25 #25 BASIC NON-NEG 0 0.490379 0
26 #26 NON-NEG 0 0 −0.17015
27 #27 NON-NEG 0 0 −0.162037
28 #28 NON-NEG 0 0 −0.08243
29 #29 NON-NEG 0 0 −0.080541
30 #30 NON-NEG 0 0 −0.095851
31 delta BASIC NON-NEG 1 1.1149622 0
32 _OBS1_ BASIC SLACK 0 363.00291 0
33 _OBS2_ SLACK 0 0 −0.000224
34 _OBS3_ SLACK 0 0 −0.001023
35 _OBS4_ SURPLUS 0 0 −0.001046

Constraint Summary

Constraint S/S Dual
Row Name Type # Rhs Activity Activity

1 _OBS1_ LE 32 2055.8474 1692.8445 0
2 _OBS2_ LE 33 1055.4471 1055.4471 0.0002235
3 _OBS3_ LE 34 896.20752 896.20752 0.001023
4 _OBS4_ GE 35 0 0 −0.001046
5 _OBS5_ EQ . 1 1 −0.037765
6 _OBS6_ OBJECTVE . 0 1.1149622 .
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Figure 4.2 A directional projection onto the graph of the technology.

Clearly, the directional distance function evaluated at any specific input–
output bundle will depend on (gx , gy) as well as on the reference technology.
The arbitrarily chosen bundle (gx , gy) defines the direction along which the
observed bundle, if it is an interior point, is projected onto the efficient frontier
of the production possibility set. This is illustrated in Figure 4.2. Point A
represents the observed input–output bundle (x0, y0) of firm 0 and point B
represents the bundle (gx , gy). The point C on the frontier is the efficient
projection of A in the direction defined by the point B. Thus,

AC = (1 + β)OB and β = CD

AC
.

Choice of the bundle (gx , gy) is arbitrary. As suggested by Chambers, Chung,
and Färe (1996), we may select (−x0, y0) for (gx , gy) and, in that case, the
directional distance function becomes

�D(x0, y0) = max β : {(1 − β)x0, (1 + β)y0} ∈ T . (4.15)

In other words, we seek to increase the output and reduce the input by the
proportion β. For example, if β equals 10%, we expand all outputs by 10%,
while at the same time reducing all inputs by 10%. This is illustrated diagram-
matically in Figure 4.3. As before, the point A shows the actual input–output
bundle (x0, y0) while the point B represents (−x0, y0). Point D on the produc-
tion frontier is the projection of the point A in the direction OB. It represents
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y = f(x)

B A

D
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−x0 O x* x0 Input (x)

Output(y)

y*

y0

E

Figure 4.3 The directional distance function.

the bundle (x∗, y∗) where x∗ = (1 − β)x0, y∗ = (1 + β)y0 and

β = AD

AC
= OE

OB
.

The VRS DEA formulation for this problem is

max β

s.t.
N∑

j=1

λ j y j − βy0 ≥ y0; (4.16)

N∑
j=1

λ j x
j + βx0 ≤ x0;

N∑
j=1

λ j = 1;

λ j ≥ 0 ( j = 1, 2, . . . , N ); β unrestricted.

This is a straightforward LP problem and can be solved quite easily. The factor
β measures the level of technical inefficiency of the firm.

Exhibits 4.3 and 4.4 show, respectively, the DEA LP problem for measuring
the directional distance function and the output from the relevant SAS program.
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Exhibit: 4.3. DEA LP problem for measuring the directional distance function
for firm #6 from the Korean electrical utilities data

FIRM #1 #2 #3 #4 #5

Capital 706.698 1284.90 1027.92 1027.92 1027.92
Labor 643.389 1142.20 1749.44 1019.30 1033.76
Fuel 648.946 1101.65 531.19 640.32 640.41
Output 614.661 1128.39 533.52 611.80 619.68
Lambda 1.000 1.00 1.00 1.00 1.00
Objective 0.000 0.00 0.00 0.00 0.00

#6 #7 #8 #9 #10 #11

1027.92 2055.85 2055.85 2055.85 51.396 51.396
527.72 1048.22 1055.45 1062.68 86.749 101.207
448.10 2136.09 2140.03 2140.18 111.276 91.632
404.99 2276.89 2278.26 2172.23 71.720 73.405

1.00 1.00 1.00 1.00 1.000 1.000
0.00 0.00 0.00 0.00 0.000 0.000

#12 #13 #14 #15 #16 #17

51.3962 51.396 1669.35 308.377 308.377 256.98
93.9782 101.207 1612.09 910.865 903.636 1178.34
91.9232 92.244 1585.23 344.508 344.483 273.29
73.8759 73.834 1548.44 260.830 258.853 181.65
1.0000 1.000 1.00 1.000 1.000 1.00
0.0000 0.000 0.00 0.000 0.000 0.00

#18 #19 #20 #21 #22 #23

256.98 1027.92 642.452 1027.92 1027.92 385.47
1185.57 1366.30 751.825 838.57 824.12 1655.46
273.28 1185.60 699.303 1090.23 1090.26 362.30
179.92 1076.19 586.163 959.15 958.38 278.13

1.00 1.00 1.000 1.00 1.00 1.00
0.00 0.00 0.000 0.00 0.00 0.00

#24 #25 #26 #27 #28 #29

865.640 906.033 256.98 256.98 2878.19 2878.19
809.658 780.742 1069.91 1033.76 1828.96 1821.73
559.963 554.623 221.73 228.01 3509.60 3510.85
660.533 673.120 246.69 252.86 3708.16 3709.64

1.000 1.000 1.00 1.00 1.00 1.00
0.000 0.000 0.00 0.00 0.00 0.00

#30 beta _type_ _rhs_

2569.81 1027.92 <= 1027.92
1763.90 527.72 <= 527.72
3352.76 448.10 <= 448.10
3528.04 −404.99 >= 404.99

1.00 0.00 = 1.00
0.00 1.00 max .
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Exhibit: 4.4. SAS output of the directional distance function problem for firm #6

Solution Summary

Objective Value 0.1149622

Variable Summary

Variable Reduced
# Name Status Type Price Activity Cost

1 #1 NON-NEG 0 0 −0.126945
2 #2 NON-NEG 0 0 −0.164165
3 #3 NON-NEG 0 0 −0.338569
4 #4 NON-NEG 0 0 −0.205138
5 #5 NON-NEG 0 0 −0.200211
6 #6 NON-NEG 0 0 −0.114962
7 #7 BASIC NON-NEG 0 0.0380436 0
8 #8 NON-NEG 0 0 −0.004223
9 #9 NON-NEG 0 0 −0.116898

10 #10 NON-NEG 0 0 −0.020437
11 #11 NON-NEG 0 0 −0.00181
12 #12 BASIC NON-NEG 0 0.4715774 0
13 #13 NON-NEG 0 0 −0.001988
14 #14 NON-NEG 0 0 −0.324491
15 #15 NON-NEG 0 0 −0.245413
16 #16 NON-NEG 0 0 −0.24584
17 #17 NON-NEG 0 0 −0.31516
18 #18 NON-NEG 0 0 −0.318587
19 #19 NON-NEG 0 0 −0.354734
20 #20 NON-NEG 0 0 −0.232508
21 #21 NON-NEG 0 0 −0.261651
22 #22 NON-NEG 0 0 −0.259256
23 #23 NON-NEG 0 0 −0.411942
24 #24 NON-NEG 0 0 −0.025093
25 #25 BASIC NON-NEG 0 0.490379 0
26 #26 NON-NEG 0 0 −0.17015
27 #27 NON-NEG 0 0 −0.162037
28 #28 NON-NEG 0 0 −0.08243
29 #29 NON-NEG 0 0 −0.080541
30 #30 NON-NEG 0 0 −0.095851
31 phi BASIC NON-NEG 1 0.1149622 0
32 _OBS1_ BASIC SLACK 0 363.00291 0
33 _OBS2_ SLACK 0 0 −0.000224
34 _OBS3_ SLACK 0 0 −0.001023
35 _OBS4_ SURPLUS 0 0 −0.001046

Constraint Summary

Constraint S/S Dual
Row Name Type # Rhs Activity Activity

1 _OBS1_ LE 32 1027.9237 664.92079 0
2 _OBS2_ LE 33 527.72356 527.72356 0.0002235
3 _OBS3_ LE 34 448.10376 448.10376 0.001023
4 _OBS4_ GE 35 404.98544 404.98544 −0.001046
5 _OBS5_ EQ . 1 1 −0.037765
6 _OBS6_ OBJECTVE . 0 0.1149622
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This time, the actual input quantities and the negative of the actual output
quantity of the firm appear in the column called “beta” in the left-hand side
and the actual input and output quantities also appear on the right-hand side.
The optimal value of “beta” is 0.11496. This again shows that the output can be
expanded by 11.496% while all inputs can simultaneously be contracted by the
same percentage. Note that the presence of positive slack in the capital input
at the optimal solution implies that the efficient input–output projection is not
showing the potential contraction in all inputs and the (in)efficiency measure
obtained from the directional distance function (as also the graph efficiency
measure) is less than accurate. We consider the question of slacks at an optimal
solution in detail in Chapter 7.

4.4 Ranking Efficient Units and Influential Observations

The standard DEA models – both the CCR model for CRS and the BCC
model for VRS – provide measures of technical efficiency of a firm relative
to the others within the same sample. Firms that are found to be technically
inefficient can be ranked in order of their measured levels of efficiency. Firms
that are found to be efficient are, however, all ranked equally by this criterion.
Andersen and Petersen (1993) suggest a criterion that permits one to rank-
order firms that have all been found to be at 100% technical efficiency by
DEA. The underlying idea behind this criterion is quite simple. Consider the
single-input, single-output case. Suppose that a firm with input–output (x0, y0)
has been found to be technically efficient in an output-oriented DEA problem.
Obviously, if its output had been any larger than y0, it would have remained
efficient. But a small reduction in its output may not necessarily lower its
technical efficiency rating from 100%. In that sense, this firm may permit some
deterioration in its performance without becoming inefficient. In other words,
its observed output exceeds what is necessary for this firm to be considered
efficient relative to other firms in the sample. In that case, the firm may be
regarded as superefficient. Naturally, between two firms, both of which are
technically efficient, the one with greater room for reducing its output without
becoming inefficient is, in a sense, more superefficient than the other.

Consider a simple numerical example. Suppose that the input–output quan-
tities of seven firms are as shown in Table 4.1. In Figure 4.4, the broken
line HACDE-extension is the frontier of the VRS production possibility set
constructed from the observed points – A, B, C, D, E, F, and G. Points
A, C, D, and E are efficient, whereas points B, F, and G are inefficient. The

         
 

 



P1: FHA
CB688-04 CB688-RAY CB688-Ray-v1.cls January 22, 2004 11:15

96 Extensions to the Basic DEA Models

Table 4.1. Input–output data of hypothetical firms

Firm A B C D E F G

Input (x) 4 5 8 12 16 8 14
Output (y) 6 7 14 20 22 9 19

output-oriented technical efficiency levels of B, F, and G are 0.875, 0.643, and
0.905, respectively. Thus, B ranks above F and G ranks above B. But all the
efficient points are ranked equally at 1.0. Focus, now, on the two points C and
D. The firm at point C uses 8 units of the input x to produce 14 units of the
output y. Even if this firm allowed its output to fall to 13 units, it would still
remain efficient at the point C∗ on the new frontier HADE-extension. It will be
considered inefficient only when its output falls below this level. In this sense,
the firm at point C is superefficient. This critical output level corresponds to
the maximum output producible from the observed input of this firm within the
VRS production possibility set constructed using the input–output data from

Input (x)

Output (y)

O

22
20

18
19

14

13

7
6

B

A

C

C*

F

E
D

G

D*

1654 8 12 14

H

Figure 4.4 Measurement of superefficiency.
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all other firms. Point C∗ on the frontier HADE-extension shows this critical
input–output combination. Similarly, for the firm at point D, the critical point
is D∗ on the frontier HACE-extension, where the output from its observed
input quantity of 12 units of x needs to be only 18 units of y. Firm D can
allow its output to fall by 10% without becoming technically inefficient. By
contrast, firm C can only lose 7.14% of its output and still remain efficient.
Hence, firm D is more superefficient than firm C even though at their observed
input–output bundles, both are equally ranked at 100% technical efficiency.

In the general case of N firms with the observed input–output bundle (x j , y j )
for firm j (= 1, 2, . . . , N ), for each technically efficient firm k, we solve the
following DEA problem:

φ−
k = max φ

s.t.
∑
j �=k

λ j y j ≥ φyk ;

∑
j �=k

λ j x
j ≤ xk ; (4.17)

∑
j �=k

λ j = 1; λ j ≥ 0 ( j = 1, 2, . . . , N ; j �= k).

The output bundle y−
k = φ−

k yk is what the firm k needs to produce from the in-
put bundle xk in order to remain (output-oriented) technically efficient relative
to the other firms in the sample. Thus, (1 − φ−

k ) is a measure of its supereffi-
ciency. Hence, between two technically efficient firms i and j , both technically
efficient, j is ranked above i, if φ−

j < φ−
i .

A potential problem of feasibility with these superefficiency models has
been noted by Dulá and Hickman (1997), Seiford and Zhu (1999), Harker and
Xue (2002), and Lovell and Rouse (2003).1 For some efficient observations,
there may not exist any input- or output-oriented projection onto a frontier that
is constructed from the remaining observations in the data set. For example, if
the firm k under evaluation has the smallest quantity of any individual input
in the sample, there cannot be any convex combination of the input bundles
of the other firms that would satisfy the relevant input constraint in the prob-
lem (4.17). Thus, one cannot measure the level of superefficiency of such a
firm.

1 The problem of feasibility was noted in a general context by Chavas and Cox (1999), who
proposed a generalized distance function.
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In a more general context, the frontier of the production possibility set
in any DEA application is defined by a subset of the observed input–output
bundles. Deletion of any one of these observations from the data set results
in a revision of the frontier causing the measured efficiency level of some of
the other observations in the data set to change. Wilson (1993) suggests two
different criteria for measuring the influence of any such observation. The first
is based on the number of observations that experience a change in measured
technical efficiency due to the deletion of this observation. The other is based
on the magnitude of changes in such efficiency measures of the affected
firms. In Figure 4.4, if the observation C is deleted, the new frontier becomes
HADE-extension. This affects the technical efficiency of two firms, B and F .
But the firm G is not affected. On the other hand, if D is excluded from the data
set,2 the new frontier is HACE-extension. In this case, technical efficiency of
only one firm, G, is affected. By this criterion, firm C is more influential than
firm D.

To consider the other criterion, we need to compute the revised technical-
efficiency measures of the affected firms. Consider the maximization problem

φk
s = max φ

s.t.
∑
j �=k

λ j y j ≥ φys ;

∑
j �=k

λ j x
j ≤ xs ; (4.18)

∑
j �=k

λ j = 1; λ j ≥ 0 ( j = 1, 2, . . . , N ; j �= k).

Then

TEk
s = 1

φk
s

is the measured technical efficiency of firm s when all observed input–output
bundles except the bundle k are included. For any observation s that is influ-
enced by the observation k, this will be different from its technical efficiency,
TEs . Hence,

δk
s = TEk

s − TEs (4.19)

2 Once any observation has been deleted from the sample, the remaining observations
constitute its deleted data domain.
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is a measure of the degree of influence of observation k on the observation s.
The overall influence of observation k on the entire sample can be measured
as


k =
∑
s �=k

(
δk

s

)2
. (4.20)

For the firms shown in Figure 4.4,

δC
B = 3

3.8
− 1

2
= 0.0289; δC

F = 5.6

9
− 5

9
= 0.0667, and

δD
G = 63

74
− 63

76
= 0.0224.

All other δk
s = 0. Thus,


C = (0.0289)2 + (0.0667)2 = 0.0053 and 
D = (0.0224)2 = 0.0005.

Hence, by this criterion also, the observation C is more influential than ob-
servation D in this data set. In this discussion of influential observations, we
have focused only on the technically efficient firms. A natural question to
ask in this context is How would the distribution of technical efficiency of
firms in a sample data set be affected if a technically inefficient observation
is deleted?

We have seen before that in DEA, technical efficiency of a firm is measured
by comparing it with a hypothetical observation that is generated either as
a convex combination of the actually observed input–output bundles if VRS
is assumed, or simply a positive linear combination if CRS is specified for
the reference technology. Thus, for any observed input–output pair (xk, yk),
the benchmark for comparison is a bundle (x∗, y∗), where x∗ = ∑

j λ j x j and
y∗ = ∑

j λ j y j . The values of the λ j ’s are determined by the optimal solution
of a LP problem. At any such optimal solution, only some of the λ j ’s will be
strictly positive and the others will be zero. For any specific firm, say firm k,
its reference group consists of all such observations j such that λ j is strictly
positive. Because (x∗, y∗) is defined only by the input–output bundles of the
firms in its reference group, the technical efficiency of firm k is unaffected by
the deletion of any firm that is not in its reference group. We now prove an
extremely important theorem showing that any observed firm helps to define
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the frontier of the production possibility set only if the firm itself is technically
efficient.

Theorem: An individual firm s with input–output bundle (xs, ys) cannot be
in the reference group of any firm k (k = 1, 2, . . . , s, . . . , N ) unless it has
technical efficiency equal to unity.

Proof. Consider the primal problem output-oriented CCR model for firm k:

max φ

s.t.
N∑

j=1

λ j y j ≥ φyk ; (4.21)

N∑
j=1

λ j x
j ≤ xk ;

λ j ≥ 0 ( j = 1, 2, . . . , N ); φ unrestricted.

The corresponding dual problem is

min v′xk

s.t. v′x j ≥ u ′y j ( j = 1, 2, . . . , k, . . . , N ); (4.22)

u ′yk = 1;

u ≥ 0; v ≥ 0.

Here, u and v are multiplier or shadow price vectors commensurate with the
output and input vectors, respectively. Suppose that λ∗

s is positive at any optimal
solution. Then, by virtue of the Kuhn–Tucker theorem, at the optimal solution
of the dual problem the constraint for firm s holds as an equation. That is, an
optimal solution (u∗, v∗) of the dual problem (4.22) will satisfy

v∗′x j ≥ u∗′y j ( j = 1, 2, . . . , N ); v∗xs = u∗′ys ; u∗yk = 1;

u∗ ≥ 0; v∗ ≥ 0. (4.23)

Now, define

t = 1

u∗′ys
; u∗∗ = tu∗; v∗∗ = tv∗. (4.24)
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Then, the relations in (4.23) can be expressed as

v∗∗′x j ≥ u∗∗y j ( j = 1, 2, . . . , N ); v∗∗′xs = u∗∗ys ; u∗∗yk = 1;

u∗∗ ≥ 0; v∗∗ ≥ 0. (4.25)

Now, suppose that we were evaluating the technical efficiency of firm s rather
than firm k. In that case, in the primal–dual problems (4.21–4.22), (xk, yk)
would be replaced by (xs, ys). The relations in (4.23) imply that (u∗∗, v∗∗)
is a feasible solution for the dual form of the DEA problem evaluating the
technical efficiency of firm s. The value of the objective function for this
solution is unity. Again, by the duality theorem, the optimal value of the primal-
maximization problem cannot be greater than the objective function value
at any feasible solution of the dual-minimization problem. In other words,
φ∗ ≤ 1 for firm s. Of course, a feasible solution for the primal problem is
λ∗

j = 1 ( j = s), λ∗
j = 0 ( j �= s), φ∗ = 1. Hence, φ∗ = 1 at the optimal solution

and firm s is technically efficient. This completes the proof of this theorem. A
logical corollary of this theorem is that a technically inefficient firm cannot be
an influential observation.

It may be noted here in passing that although this theorem was formally
proven by Ray (1988), it apparently was a part of the “oral literature” on DEA
at that time. An implication of this theorem is that if a firm is not technically
efficient, it can never play a role in defining the benchmark input–output bundle
for evaluating the efficiency of any other firm. Thus, a technically inefficient
firm is never an influential observation.

4.5 Nondiscretionary Factors and Technical Efficiency

In an output-oriented DEA model, in the single-output case, one measures the
efficiency of a firm by comparing its actual output with what is considered to
be maximally feasible from its observed bundle of inputs. In practice, however,
the maximum producible quantity of output from any specific input bundle de-
pends on a number of environmental or contextual variables. In agriculture, for
example, the same input can produce a greater volume of output in a year with
good rainfall than in a drought year. Similarly, in education, the performance
of the student in standardized tests depends not only on the resources utilized
by the school but also on the pupil’s socioeconomic status. These variables are
essentially exogenous to the decision-making process of the firm. Neverthe-
less, they shift the production possibility frontier in the input–output space,
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thereby affecting the measured technical efficiency of a firm. Some of these
factors are favorable to the production process and enhance the maximum out-
put producible from a bundle of inputs within the firm’s control. Others are
detrimental to production and lower efficiency measured from the controlled
inputs and outputs alone. In the DEA literature, these factors are treated as
nondiscretionary variables. We may extend the free disposability assumption
to these nondiscretionary variables in the following manner. It may be as-
sumed that increase in a favorable factor does not reduce output. Decline in an
unfavorable factor has a similar effect.

It is, of course, possible to incorporate these nondiscretionary variables di-
rectly into an appropriately modified DEA model. Suppose the firm 0 under
review produces an output vector y0 using the input vector x0. Further, suppose
that it has the vector w0 of favorable and the vector z0 of unfavorable nondis-
cretionary variables. Thus, because (x0, y0; w0, z0) is feasible, (x0, y0; w, z0)
is feasible so long as w ≥ w0. Similarly, (x0, y0; w0, z) is feasible for any
z ≤ z0. Based on the observed data (x j , y j ; w j , z j ) for ( j = 1, 2, . . . , N ), we
may set up the following output-oriented DEA model:

max φ

s.t.
N∑

j=1

λ j y j ≥ φy0;

N∑
j=1

λ j x
j ≤ x0;

N∑
j=1

λ jw
j ≤ w0; (4.26)

N∑
j=1

λ j z
j ≥ z0;

N∑
j=1

λ j = 1;

λ j ≥ 0 ( j = 1, 2, . . . , N ); φ unrestricted.

On the other hand, if we were to take the input-oriented approach, the focus
would be on the extent of radial contraction of the discretionary input vector
x0, with (y0, w0, z0) only defining the constraints but not appearing directly in
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the objective function. Thus, the input-oriented BCC model would be

min θ

s.t.
N∑

j=1

λ j y j ≥ y0;

N∑
j=1

λ j x
j ≤ θx0;

N∑
j=1

λ jw
j ≤ w0; (4.27)

N∑
j=1

λ j z
j ≥ z0;

N∑
j=1

λ j = 1;

λ j ≥ 0 ( j = 1, 2, . . . , N ); θ unrestricted.

There are several difficulties with this approach of including the nondiscre-
tionary factors in the DEA model itself. To appropriately specify the direction
of the inequality restriction involving these variables, one needs to decide
a priori whether a specific variable is favorable or detrimental to produc-
tion. This may not always be possible in practice. At the conceptual level, the
disposability assumption may be inappropriate for a nondiscretionary vari-
able in some cases. For example, the amount of rainfall does influence pro-
duction and is nondiscretionary. Moreover, the farmer has to cope with the
actual amount of rainfall and cannot keep some part of it idle, as in the case
of a controllable input like labor. Finally, the convexity assumption also may
be questionable for such variables. This is particularly the case for categorical
variables. Often a categorical variable3 like “good” or “bad” rainfall is coded
as a binary 0–1 variable. In this case, convexity will artificially create an inter-
mediate state with a fractional value. It is much better to maintain the convexity
assumption for the controlled inputs and outputs and to allow the production
possibility frontier to shift due to differences in the nondiscretionary factors.

3 For two of the earlier applications incorporating exogenously fixed and categorical vari-
ables, see Banker and Morey (1986a, 1986b).
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The effects of these factors on the measured technical efficiency of a firm may
be then analyzed via a second-stage regression of the DEA efficiency scores
on these variables.

Ray (1988) provides a conceptual link between the DEA efficiency measure
and the nondiscretionary environmental variables faced by a firm. Consider
a single-output, multiple-input production technology, where the maximum
output (y∗) producible from any given input bundle (x) depends on the nondis-
cretionary environmental variables (a) faced by the firm. Let the production
function be

y = f (x ; a). (4.28)

Assume further that the production function is multiplicatively separable as

f (x ; a) = g(x) · h(a). (4.29)

Further, the function g(x) is nondecreasing and homogeneous of degree 1 in
x . Also, h(a) lies between 0 and 1. Then, the maximum output is produced
from a given input bundle x only when h(a) equals unity. Thus,

y∗ = g(x) (4.30)

and a measure of the technical efficiency of a firm is

TE (x, y; a) = y

y∗ = h(a). (4.31)

We now show that the output-oriented CCR technical efficiency of any firm
provides a measure of h(a) for that firm. Let (x j , a j ) be the input bundle used
and the vector of environmental variables faced by firm j and y j its observed
output. In the CCR model, the technical efficiency of firm 0 producing output
y0 from input x0 is measured by comparing it with the pair (x∗, y∗), where
y∗ = ∑N

j=1 λ j y j = φ∗y0 and x∗ = ∑N
j=1 λ j x j ≤ x0.

Thus,

y∗ =
N∑

j=1

λ j y j =
N∑

j=1

λ j g (x j ) h (a j ). (4.32)

Now, suppose that we select the λ’s such that λ j = 0 unless h(a j ) = 1. In that
case,

y∗ = φ∗y0 =
N∑

j=1

λ j y j =
N∑

j=1

λ j g (x j ) = g

(
N∑

j=1

λ j x
j

)
= g(x∗). (4.33)
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If there is no slack in any of the inputs, x∗ = x0 and g(x∗) = g(x0). Even
when there are slacks in some inputs, there will be no slack in at least one
input. If we specify a Leontief-type production function for g(x), g(x∗) equals
g(x0).
Hence,

1

φ∗ = y0

y∗ = h (a0). (4.34)

Of course, when any firm j is technically efficient, φ∗ = 1, implying h (a j )
equal to unity as well. Now recall that as shown in the previous theorem,
at the optimal solution of the DEA LP problem for any firm, λ∗

j = 0 unless
firm j is efficient. Therefore, the DEA technical efficiency score for (x0, y0)
does, indeed, measure h (a0). Hence, one can specify an appropriate functional
relation between the DEA efficiency score of a firm and the relevant nondiscre-
tionary variables and econometrically estimate the coefficients of the model.
This two-step analysis – DEA followed by regression – has two distinct ad-
vantages. First, one need not prespecify the algebraic sign of any regression
coefficient. This avoids deciding a priori whether any particular variable has a
favorable or unfavorable effect on production. Second, one can change the list
of nondiscretionary variables included in the model without having to recom-
pute the DEA efficiency scores every time any such change is made. Only the
second-stage regression model needs to be re-estimated.

The second-stage regression has its own problems, however. First, the tech-
nical efficiency of a firm can vary only between 0 and 1. This raises the problem
of a limited dependent variable problem. If we take the natural log of technical
efficiency, the lower bound goes to negative infinity but the upper bound is at
0. One can define τ j = 1

φ∗
j

and specify the model

ln τ j = γ0 +
∑

i

γi ai j + u j . (4.35)

In that case, ln τ j = 0 whenever u j ≥ −(γ0 + ∑
i γi ai j ). One must, therefore,

apply the Tobit model instead of the usual ordinary least squares regression.
Another problem is that although the coefficients of the fitted model show

how the different nondiscretionary variables influence the technical efficiency
measure obtained from DEA, we cannot get a measure of managerial ineffi-
ciency or pure waste from the residuals. This is because these residuals (e j )
may be either positive or negative. Hence, the antilog of these residuals may
exceed unity in some cases and cannot be properly used as a measure of effi-
ciency. One may apply the so-called Greene correction and subtract the largest
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positive residual from each of the residuals. These modified residuals are, by
construction, all nonpositive. The antilogs of the modified residuals can then
be used as measures of pure inefficiency not systematically related to any of
the nondiscretionary variables.

4.6 Data Transformation and Invariance of DEA Measures
of Efficiency

The input–output quantities of a firm can be measured in many different ways.
For example, the quantity of power generated by an electric utility plant may be
measured in kilowatt- or in megawatt-hours. Oil used as fuel may be measured
in liters or gallons. These represent differences in the scale or unit of measure-
ment. Similarly, in some cases, one may add a constant to the measured quantity
of any output of all of the firms. This is often the practice when some of the
measured output quantities are negative. This is equivalent to a translation of
the axes (in the input or output space) so that the origin is shifted to a point in
the positive orthant. Such transformations of the data are quite arbitrary and are
often carried out for computational convenience. It is important to recognize
that some of the DEA measures of efficiency will be affected by certain kinds
of data transformation. When a change in the unit of measurement of any input
or output quantity does not alter the DEA efficiency measure obtained from a
specific model, we call that model scale invariant. Similarly, if the change of
origin leaves the optimal solution unchanged, the model is called translation
invariant.

Consider first the question of scale invariance. Suppose that the observed in-
put vector of an individual firm j ( j = 1, 2, . . . , N ) is x j = (x1 j , x2 j , . . . , xnj )
and the output vector is y j = (y1 j , y2 j , . . . , ymj ). Now, redefine the input bun-
dles of all firms as x̃ j = (x̃1 j , x̃2 j , . . . , x̃n j ), where x̃i j = αi xi j (αi > 0) for all
j . Similarly, define the transformed output bundles as ỹ j = (ỹ1 j , ỹ2 j , . . . , ỹm j ),
where ỹr j = βr yr j (βr > 0) for all j . Now, consider the output-oriented CCR
DEA model for firm k using the transformed data:

max φ

s.t.
N∑

j=1

λ j x̃i j ≤ x̃ik (i = 1, 2, . . . , n);

N∑
j=1

λ j ỹr j ≥ φ ỹrk (r = 1, 2, . . . , m); (4.36)

λ j ≥ 0 ( j = 1, 2, . . . , N ); φ free.
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If we substitute αi xi j for x̃i j in the input constraints and βr yr j for ỹr j in the
output constraints, problem (4.36) becomes

max φ

s.t.
N∑

j=1

λ jαi xi j ≤ αi xik (i = 1, 2, . . . , n); (4.36a)

N∑
j=1

λ jβr yr j ≥ φβr yrk (r = 1, 2, . . . , m);

λ j ≥ 0 ( j = 1, 2, . . . , N ); φ free.

Cancellation of the common factors from both sides of the inequalities re-
duces this problem to the output-oriented CCR model in terms of the untrans-
formed data. It is easy to see that the similar reasoning would apply in the
case of the input-oriented CCR model as well. Also, an additional restriction
that the λ’s have to add up to unity does not involve the input–output quan-
tities and, therefore, would not be affected by any data transformation. This
implies that the input- and output-oriented BCC DEA models are also scale
invariant.

Next, consider translation invariance. For this, we define the transformed
input quantities

�

xi j = γi + xi j (i = 1, 2, . . . , n; j = 1, 2, . . . , N )

and output quantities

�

yr j = δr + yr j (r = 1, 2, . . . , m; j = 1, 2, . . . , N ).

Now, consider the output-oriented CCR DEA model in terms of the transformed
data:

max φ

s.t.
N∑

j=1

λ j
�

xi j ≤ �

xik (i = 1, 2, . . . , n);

N∑
j=1

λ j
�

yr j ≥ φ
�

yrk (r = 1, 2, . . . , m); (4.37)

λ j ≥ 0 ( j = 1, 2, . . . , N ); φ free.
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Problem (4.37) is equivalent to the following problem:

max φ

s.t.
N∑

j=1

λ j xi j + γi

(
N∑

j=1

λ j

)
≤ xik + γi (i = 1, 2, . . . , n);

N∑
j=1

λ j yr j + δr

(
N∑

j=1

λ j

)
≥ φ (yrk + δr ) (r = 1, 2, . . . , m);

(4.37a)

λ j ≥ 0 ( j = 1, 2, . . . , N ); φ free.

This does not reduce to the corresponding problem in the untransformed data.
The input-oriented CCR DEA problem would be

min θ

s.t.
N∑

j=1

λ j
�

xi j ≤ θ
�

xik (i = 1, 2, . . . , n);

N∑
j=1

λ j
�

yr j ≥ �

yrk (r = 1, 2, . . . , m); (4.38)

λ j ≥ 0 ( j = 1, 2, . . . , N ); φ free.

This is equivalent to the problem

min θ

s.t.
N∑

j=1

λ j xi j + γi

(
N∑

j=1

λ j

)
≤ θ (xik + γi ) (i = 1, 2, . . . , n);

N∑
j=1

λ j yr j + δr

(
N∑

j=1

λ j

)
≥ (yrk + δr ) (r = 1, 2, . . . , m);

(4.38a)

λ j ≥ 0 ( j = 1, 2, . . . , N ); φ free.

Again, this does not reduce to an input-oriented CCR DEA problem in terms
of the untransformed data. Thus, neither the output-oriented nor the input-
oriented CCR DEA problem is translation invariant.

For the BCC DEA problems, however, the additional restriction on the sum
of the λ’s ensures that the γi ’s disappear from the input restrictions in the output-
oriented model. Similarly, the δr ’s disappear from the output restrictions in the
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input-oriented model. Hence, if each δr equals zero (i.e., if there is no translation
of outputs), the input-oriented BCC model is invariant to input translation.
Similarly, the input-oriented BCC model is invariant to output translation.

4.7 Summary

The standard DEA models are either output- or input-oriented. The main focus
in these models is on either output augmentation or input contraction. By
contrast, the DEA models based on the graph hyperbolic distance function and
the directional distance function seek an efficient projection of an observed
input–output bundle so as to expand outputs and contract inputs simultaneously.

Although all firms with measured technical efficiency of 100% are concep-
tually ranked equally in terms of performance, it is possible to obtain a ranking
of firms even within the subset of efficient firms. This can be achieved by
evaluating the extent that the actual output of a firm exceeds what is minimally
necessary for it to produce in order to remain efficient relative to a production
frontier constructed on the basis of the observed input–output bundles of the
other firms in the sample. One can also measure the degree of influence an
efficient observation has in any specific DEA application by measuring how
the distribution of technical efficiency of the other firms in the sample would
change if this observation were to be deleted.

Usually, the technical efficiency of a firm depends on a variety of factors
outside the control of the decision maker within the firm. One may capture
the effects of differences in such external factors by a second-stage statistical
analysis, where the measured DEA efficiency scores are regressed on these
factors. This permits the analyst to isolate inefficiency from the effects of
environmental heterogeneity.

In empirical applications, the input–output data of firms to be used for DEA
can be transformed by changes of scale and origin. The CCR and BCC DEA
models – both input- and output-oriented – are scale invariant with respect
to inputs as well as outputs. The CCR model is not translation invariant. The
output-oriented BCC model is translation invariant with respect to inputs. The
input-oriented BCC model, on the other hand, is translation invariant with
respect to outputs.

Guide to the Literature

Färe, Grosskopf, and Lovell (FGL) (1985, 1994) developed the graph hy-
perbolic distance function. Chambers, Chung, and Färe (1996) introduced the
directional distance function as an extension of the Luenberger benefit function
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(1992). An application of the graph efficiency approach in the context of un-
desirable outputs can be found in Färe, Grosskopf, Lovell, and Pasurka (1989).
The method of ranking of technically efficient firms was proposed by Ander-
sen and Petersen (1993). Torgersen, Førsund, and Kittelsen (1996) propose a
method of ranking efficient firms using a slack-adjusted measure of efficiency.
Wilson (1993) developed the method of identifying influential firms and mea-
suring the degree of influence discussed in this chapter. The rationale for the
second-stage regression of DEA efficiency scores is from Ray (1988). For an
early application of the second-stage regression analysis, see Lovell, Walters,
and Wood (1994). The question of invariance of DEA efficiency scores was
first addressed by Ali and Seiford (1990). See also Lovell and Pastor (1995).
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5

Nonradial Models and Pareto–Koopmans Measures
of Technical Efficiency

5.1 Introduction

One major problem with a radial measure of technical efficiency is that it does
not reflect all identifiable potential for increasing outputs and reducing inputs.
In economics, the concept of efficiency is intimately related to the idea of Pareto
optimality. An input–output bundle is not Pareto optimal if there remains the
possibility of any net increase in outputs or net reduction in inputs. When
positive output and input slacks are present at the optimal solution of a CCR
or BCC DEA LP problem, the corresponding radial projection of an observed
input–output combination does not meet the criterion of Pareto optimality and
should not qualify as an efficient point. Note that this problem arises not only
for input- or output-oriented models but also for graph efficiency or directional
distance function models.

In this chapter, we consider a number of nonradial models that allow reduc-
tion of individual inputs and/or increase in individual outputs at different rates.
The output- and input-oriented nonradial models developed independently of
the DEA models by Färe and Lovell (FL) (1978) provide appropriately ori-
ented summary measures of technical efficiency. Although the output-oriented
nonradial projection allows no slacks in outputs, it does not exclude input
slacks, however. Similarly, the input-oriented projection permits output slacks.
The more general Pareto–Koopmans measure proposed by Pastor, Ruiz, and
Sirvent (1999), on the other hand, does not permit any slack in either any
input or any output at the efficient projection. This chapter is organized as
follows: Section 5.2 introduces two alternative, but equivalent, representations
of the set of all feasible input–output bundles, in terms of input sets and output
sets. The input- and output-oriented nonradial measures of technical efficiency
are discussed in Section 5.3. The Pareto–Koopmans measure is presented in
Section 5.4. Section 5.5 provides an example of the alternative nonradial

111
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measures of efficiency using an airlines data set constructed by Coelli, Griffel-
Tatje, and Perelman (2002). The main points of the chapter are summarized in
Section 5.6.

5.2 Input and Output Sets

Consider the production possibility set T, an m-element output vector y0, and
an n-element input vector x0. If (x0, y0) is a feasible production plan, then
(x0, y0) ∈ T, implying that y0 can be produced from x0. There will, in general,
be many input bundles other than x0, all of which can also produce y0. For the
specific output bundle y0, we can define the input (requirement) set

V ( y0) = {x : y0 can be produced from x}. (5.1)

Several points may be noted. First, while T is a set in the (m + n) dimensional
input–output space, V ( y0) is a set in the n-dimensional input space. Second,
for each specific output bundle, y, there is a specific input set V ( y). Thus, the
same production possibility set T generates a family of input sets.

Consider the following example for the one-output, two-input case. Let the
production possibility set be

T = {(x1, x2; y) : y ≤ 2
√

x1x2; (x1, x2, y ≥ 0)}. (5.2)

Then, for any given output level, y0,

V ( y0) = {(x1, x2) : 2
√

x1x2 ≥ y0; (x1, x2 ≥ 0)}. (5.3)

Figure 5.1 shows the input set for the output level y0 = 10 in the x1−x2 plane.
All points on or to the right of the curve AB represent input bundles that are in
the input set of y0.

The following properties of input sets follow from the assumptions made
about the production possibility set:

(V1) If (x j , y j ) is an actually observed input–output combination, then x j ∈
V ( y j ). Clearly, every observed (x j , y j ) ∈ T . Hence, by definition of an input
set, x j ∈ V ( y j ).

(V2) If x0 ∈ V ( y0) and x1 ≥ x0, then x0 ∈ V ( y0). This follows from the
assumption of free disposability of inputs. Because (x1, y0) ∈ T , whenever
x1 ≥ x0 and (x0, y0) ∈ T , (V2) follows. Varian (1984) calls this the mono-
tonicity property of input sets.
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Input 2 (x2) 

25

10

1

O 1 2.5 25 Input 1 (x1)

A

V(y0 = 10)

B

Figure 5.1 Input set for output y0 = 10.

(V3) If x0 ∈ V (y0) and y1 ≤ y0, then x0 ∈ V (y1). This follows from the as-
sumption of free disposability of outputs. Because (x0, y1) ∈ T , whenever
y1 ≤ y0 and (x0, y0) ∈ T , (V3) follows. Varian (1984) calls this the “nested-
ness” property of input sets. This implies that the input set of a larger output
bundle is a subset of the input set of a smaller output bundle.

(V4) Each input set V (y) is convex.

Convexity of the production possibility set is sufficient, but not necessary,
for the convexity of input sets. Consider two different input bundles x0 and x1

such that (x0, y0) ∈ T and that (x1, y0) ∈ T . Let x̄ = λx0 + (1 − λ)x1, where
0 < λ < 1. Then, by convexity of T, (x̄, y0) ∈ T . That, of course, implies
that x̄ ∈ V (y0). It should be noted, however, that the input set will be convex
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Output (y)

y0

O x0 Input (x)

V (y0) = {x : x ≥ x0}

T(x,y)

Figure 5.2 Quasi-concave production function and convex input sets.

whenever the production function is quasi-concave. But a quasi-concave pro-
duction function may quite easily correspond to a nonconvex production possi-
bility set. This is shown in Figure 5.2 for the one-input, one-output case. Here,
the area under the production function is a nonconvex production possibility
set. But, for the output level y0, the input set

V ( y0) = {x : x ≥ x0}
is a convex set.

As is apparent from (V2), many input bundles in the input set of a specific
output bundle are inefficient because it may be possible to produce the target
output from a smaller input bundle. These are strictly interior points of the
input set. By contrast, the isoquant of an output bundle y0 consists only of
boundary points of V ( y0). The isoquant of y0 is

V̄ ( y0) = {x : x ∈ V ( y0) and λx /∈ V ( y0) if λ < 1}. (5.4)

Thus, if x0 ∈ V̄ ( y0), then it is not possible to reduce all inputs simultaneously
even by the smallest amount and still produce the output level y0. The quantity
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of at least one input in the x0 bundle must be strictly binding. In Figure 5.1,
the isoquant of y0 is the set of points on the curve AB. It is obvious from the
definition of the isoquant that if x0 ∈ V̄ ( y0), then the input-oriented technical
efficiency of (x0, y0) equals unity. Indeed, every input-oriented radial projec-
tion of an inefficient input–output bundle (x, y) lies in the isoquant of the
output bundle y.

The efficient subset of the isoquant of any output bundle y0 can be defined
as

V ∗( y0) = {x : x ∈ V ( y0) and x ′ /∈ V ( y0) if x ′ ≤ x}. (5.5)

Note that if x0 ∈ V ∗( y0), then reducing any input in the x0 bundle will render
the output bundle y0 infeasible. Thus, every input bundle in the efficient subset
of the isoquant of an output bundle is technically efficient and there is no slack
in any individual input.

Consider the production possibility set implied by the piecewise linear pro-
duction function

y = min (3x1, 1.5x2) ; x1 ≤ 1
2 x2;

y = x1 + x2; 1
2 x2 ≤ x1 ≤ 2x2; (5.6)

y = min (1.5x1, 3x2) ; x1 ≥ 2x2.

The input set for the output level y = 12 consists of all points on and to the
right of the broken line ABCD shown in Figure 5.3. The isoquant consists of
the points on the line ABCD. But the efficient subset of the isoquant includes
only points on the segment BC. Now, consider the point E in V (y) showing
the input bundle (x1 = 15, x2 = 5).The input-oriented radial projection of this
point onto the isoquant would be the point F(x1 = 12, x2 = 4). Thus, the radial
technical efficiency measure would be

θ∗ = O F

O E
= 0.8.

This implies that one could reduce both inputs of the firm using the input
bundle E and still produce the output level y = 20. But the move from E to F
does not exhaust the potential for reduction in all inputs. It is possible to move
to the point C within V (y). As a result, we can achieve a reduction in input x1

by another 3 units, although no additional reduction in x2 is feasible without
reducing the output. Clearly, a movement from E to F leads to improvement in
technical efficiency. But so does a move from F to C because the same output is
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A

V ( y = 12)

Input 2 (x2)

8

5

4

15 Input (x1)

B

C

E

D

O 4 8 12

F

Figure 5.3 Radial projection onto the isoquant and input slacks.

being produced from a smaller input bundle. The input-oriented radial measure
of technical efficiency fails to capture the effect of the input slack that exists at
the radial projection onto the isoquant. One may, of course, further adjust the
projected input bundle for positive slacks in individual inputs that may exist at
the optimal solution. The resulting input bundle will be a point in the efficient
subset of the isoquant. But, as a summary measure of technical efficiency, θ∗

does not reflect the presence of such slacks. The nonradial measure proposed
by FL (1978) described herein measures the technical efficiency of a firm
relative to a point in the efficient subset of the isoquant.

In an output-oriented analysis of technical efficiency, the objective is to
produce the maximum output from a given quantity of inputs. For this we
first define the (producible) output set of any given input bundle. For the input
bundle x0, the output set

P(x0) = { y : (x0, y) ∈ T } (5.7)
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consists of all output bundles that can be produced from x0. Indeed, the familiar
production possibility frontier of a country shown in textbooks on principles
of economics shows the output set of an input bundle consisting of the total
factor endowments of a nation.

Because there are different output sets for different input bundles, the pro-
duction possibility set is equivalently characterized by a family of output sets.
Each output set is a subset of the m-dimensional output space.1 The following
properties of output sets follow from the relevant assumptions made about the
production possibility set:

(P1) If (x j , y j ) is an actually observed input–output combination, then y j ∈
P(x j ).

(P2) If y0 ∈ P(x0) and if x1 ≥ x0, then y0 ∈ P(x1). This property follows
from free disposability of inputs and can be called “reverse nestedness” of
output sets. Thus, the output set of a smaller input bundle is contained in the
output set of a bigger input bundle.

(P3) If y0 ∈ P(x0) and if y1 ≤ y0, then y1 ∈ P(x0). This property follows
from the assumption of free disposability of outputs.

(P4) Each output set P(x) is convex. Again, this follows from convexity of
the production possibility set.

The output isoquant of any input bundle x0 can be defined as

P̄(x0) = {y : y ∈ P(x0) and λy /∈ P(x0) if λ > 1}. (5.8)

Thus, if y0 ∈ P̄(x0), then the output-oriented radial technical efficiency of the
pair of vectors (x0, y0) equals unity because it is not possible to increase all
outputs holding the input bundle unchanged. This does not, of course, rule out
the possibility that some individual components of the y0 output bundle can
be increased.

The efficient subset of the output isoquant of x0, on the other hand, is

P∗(x0) = {y : y ∈ P(x0) and y′ /∈ P(x0) if y′ ≥ y0}. (5.9)

Thus, an output-oriented radial technically efficient projection of y0 produced
from x0 onto P̄(x0) may include slacks in individual outputs. But no such
slacks may exist if the projection is onto P∗(x0).

1 It can easily be seen that x ∈ V(y) if and only if y ∈ P(x).
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Output 2 (y2)

20

16

8

Output 1 (y1)

B

D

C

A

O 3 6 10

Figure 5.4 Projection onto the efficient output isoquant and absence of output slacks.

Figure 5.4 shows the output set in the one-input, two-output case for input
x0 = 400 for the production correspondence

x = 4y2
1 + y2

2 . (5.10)

In this diagram, points on the curve AB constitute the output isoquant of x0

while the output set includes all points on or to the left of the line. In this
example, the entire isoquant coincides with its efficient subset. Now, consider
the output bundle y0 shown by the point C with y1 = 3 and y2 = 8. Its radial
projection onto the output isoquant of x0 is the point D, where both outputs are
doubled. Thus, the output-oriented technical efficiency of (x0, y0) is 1

2 . Note
that in this case, no further increase in any output is feasible.

Figure 5.5 shows a different two-output case where ABCD is a piecewise
linear isoquant for some input bundle x0. In this diagram, the efficient subset of
the isoquant is only the downward sloping segment. Along the output isoquant

y2 = 12 for 0 ≤ y1 ≤ 6 over the AB segment,

y2 = 24 − 2y1 for 6 ≤ y1 ≤ 9 over the BC segment, and (5.11)

0 ≤ y2 ≤ 6 for y1 = 9 over the CD segment.
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C

D

Output 2 (y2)

12

10

6

Output 1 (y1)

F   A

E

O 4 4.8 6 9

B

Figure 5.5 Presence of slacks at the radial projection onto the output isoquant.

At the output bundle E , which is an interior point of P(x0), y1 = 4 and y2 = 10.

The radial output-oriented projection of E onto P̄(x0) is the point F , where
the output bundle has been scaled up by 20%. Thus, the radial output-oriented
technical efficiency of a firm operating at point E is 5

6 . But this radial projection
F with y1 = 4.8 and y2 = 12 is not in the efficient subset of the output isoquant
of x0. One can further increase y1 to 6 while keeping y2 at 12 by moving to
the point B, which lies in the efficient subset of the output isoquant. The radial
measure of output-oriented technical efficiency does not reflect this unutilized
potential for increasing y1. Again, as is shown herein, a nonradial output-
oriented measure does take account of all potential increase in any component
of the output bundle.

5.3 Nonradial Measures of Technical Efficiency

The problem of slacks in any optimal solution of a radial DEA model arises
because we seek to expand all outputs or contract all inputs by the same
proportion. In nonradial models, one allows the individual outputs to increase
or the inputs to decrease at different rates. By far the simplest, though not
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particularly useful, nonradial approach is the so-called additive variant of the
DEA model. In an output-oriented additive DEA model, one seeks to maximize
the total slacks in all outputs that exist in the observed input–output bundles.
Similarly, in an input-oriented model, one would maximize the total slacks in
inputs. The additive model does yield a projection onto the efficient subset of
the output isoquant of the observed input bundle.

The output-oriented additive DEA model for the VRS technology is

max S =
∑

r

s+
r

s.t.
∑

j

λ j yr j + s+
r = yr0; (r = 1, 2, . . . , m);

∑
j

λ j xi j ≤ xi0; (i = 1, 2, . . . , n); (5.12)

λ j ≥ 0; ( j = 1, 2, . . . , N ); s+
r ≥ 0; (r = 1, 2, . . . , m).

Clearly, there cannot be any remaining output slack at the projected bundle

y∗ = y0 + s+
∗

where s+
∗ = (s+

1∗, s+
2∗, . . . , s+

m∗) is obtained from the optimal solution of the
previous DEA model. Indeed, y∗ is the point in the efficient subset of the
output isoquant of x0 that is the farthest from y0. But the only usefulness of
the additive model is that it helps to determine whether or not y0 ∈ P∗(x0). We
can conclude that y0 /∈ P∗(x0) unless the objective function S equals 0 at the
optimal solution. But because S is the sum of the slacks in the various output
quantities measured in different units, it has no clear interpretation. Moreover,
the magnitude of S depends on the scale of measurement of the outputs.

FL (1978) introduced the following output-oriented nonradial measure of
technical efficiency, which they called the Russell measure:

RMy = 1

ρy
, where

ρy = max
1

m

∑
r

φr

s.t.
∑

j

λ j yr j = φr yr0; (r = 1, 2, . . . , m);

∑
j

λ j xi j ≤ xi0; (i = 1, 2, . . . , n); (5.13)
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5.3 Nonradial Measures of Technical Efficiency 121

∑
j

λ j = 1; φr ≥ 1; (r = 1, 2, . . . , m);

λ j ≥ 0; ( j = 1, 2, . . . , N ).

The output-oriented Russell measure is, in effect, a scale invariant version of
the simple additive model. To see this, define

yr0 + s+
r = yr0

(
1 + s+

r

yr0

)
≡ φr yr0; (r = 1, 2, . . . , m). (5.14)

Then, clearly,

ρy = 1 + 1

m

∑
r

s+
r

yr0
. (5.15)

Of course, the constraints of the FL model are exactly the same as those of the
additive model. Because the slacks in the individual outputs are scaled by the
respective observed quantities of those outputs, ρy (and, hence, RMy) is scale
invariant. But when output slacks do exist at the optimal solution of a radial
DEA model, the nonradial Russell measure is lower than the conventional
measure obtained from an output-oriented BCC model. In the example shown
in Figure 5.5, the optimal nonradial projection of the point E is the point B,
where y1 increases from 4 to 6 while y2 increases from 10 to 12. Thus,

φ∗
1 = 1.5 and φ∗

2 = 1.2; thus, ρy = 1.35 and RMy = 0.7407.

By contrast, the radial measure is 0.833. Thus, the presence of 3 units of output
slack in y1 at the efficient radial projection results in a lower nonradial measure
of output-oriented technical efficiency. One may be inclined to believe that if
the radial projection of y0 lies in P∗(x0), ρy coincides with φ∗ so that the non-
radial measure equals the radial measure. This is not necessarily true, however.
Figure 5.6 provides an example. The radial projection of the point E onto the
output isoqant is the point F in the efficient subset and there is no output slack
at this point. But this is not where ρy is maximized for the Russell measure.
The objective is to maximize

S =
(

1

y10

)
s+

1 +
(

1

y20

)
s+

2 . (5.16)

If we shift the origin to (y10, y20) at E , nonnegativity of the output slacks ensures
that we seek a projection onto the segment of P∗(x0) in the positive quadrant
with reference to this new origin. The objective function can be alternatively
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Figure 5.6 Efficient radial and nonradial projections of a given output bundle.

expressed as

s+
2 = (y20S) −

(
y20

y10

)
s+

1 . (5.17)

This is shown for an arbitrary value of S by the line GH that has a slope equal
to the negative of the slope of the line EF. Maximization of S occurs at the
point of tangency of a line parallel to GH with the output isoquant of x0 in the
northeast quadrant of E . In the example shown in Figure 5.6, this occurs at
the point K , which is different from the radial projection F. It is easy to see
that because the radial projection is always a feasible point for this problem,
ρy ≥ φ∗. Hence, the nonradial Russell measure of technical efficiency is never
greater than the corresponding radial measure.

The analogous input-oriented nonradial model is

RMx = ρx , where

ρx = min
1

n

∑
i

θi
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s.t.
∑

j

λ j yr j ≥ yr0; (r = 1, 2, . . . , m);

∑
j

λ j xi j − s−
i = θi xi0; (i = 1, 2, . . . , n); (5.18)

∑
j

λ j = 1; θi ≤ 1; (i = 1, 2, . . . , n);

λ j ≥ 0; ( j = 1, 2, . . . , N ).

The optimal solution projects the observed input bundle x0 onto the bundle
x∗ = (θ∗

1 x10, θ
∗
2 x20, . . . , θ

∗
n xn0) in the efficient subset of the isoquant of the

output y0.

5.4 Pareto–Koopmans Model of Nonradial Technical Efficiency

An input–output combination (x0, y0) is not Pareto–Koopmans efficient if it
violates either of the following inefficiency postulates:

(A) It is possible to increase at least one output in the bundle y0 without
reducing any other output and/or without increasing any input in the bundle
x0.

(B) It is possible to reduce at least one input in the bundle x0 without increasing
any other input and/or without reducing any output in the bundle y0.

Clearly, unless

RMx (x0, y0) = RMy(x0, y0) = 1,

at least one of the two inefficiency postulates is violated and (x0, y0) is not
Pareto–Koopmans efficient. For (x0, y0) to be Pareto–Koopmans efficient, both
of the following must be true:

(i) x0 ∈ V ∗( y0); and

(ii) y0 ∈ P∗(x0).

Consider the vectors

θ = (θ1, θ2, . . . , θn) and

φ = (φ1, φ2, . . . , φm).
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A nonradial Pareto–Koopmans measure of technical efficiency of the input–
output pair (x0, y0) can be computed as

� = min

1
n

∑
i

θi

1
m

∑
r

φr

s.t.
N∑

j=1

λ j yr j ≥ φr yr0; (r = 1, 2, . . . , m);

N∑
j=1

λ j xi j ≤ θi xi0; (i = 1, 2, . . . , n); (5.19)

φr ≥ 1; (r = 1, 2, . . . , m);

θi ≤ 1; (i = 1, 2, . . . , n);

N∑
j=1

λ j = 1; λ j ≥ 0; ( j = 1, 2, . . . , N ).

Note that the efficient input–output projection (x∗, y∗) satisfies

x∗ =
N∑

j=1

λ∗
j x

j ≤ x0 and

y∗ =
N∑

j=1

λ∗
j y j ≥ y0.

Thus, (x0, y0) is Pareto–Koopmans efficient if and only if φ∗
r = 1 for each

output r and θ∗
i = 1 for each input i implying � = 1.

The objective function in this mathematical programming problem is non-
linear. But it is possible to linearize it as

� = f (θ, φ) ≈ f (θ0, φ0) +
∑

i

(
θi − θ0

i

)( ∂ f

∂θi

)
0

+
∑

r

(
φr − φ0

r

)( ∂ f

∂φr

)
0

. (5.20)

Note that

∂ f

∂θi
=

1
n

1
m

∑
r

φr
(5.21a)
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and

∂ f

∂φr
= −

1
n

∑
i

θi

1
m

(∑
r

φr

)2 . (5.21b)

Thus, using θ0
i = 1 for all i and φ0

r = 1 for all r ,

� ≈ 1 + 1
n

∑
i

θi − 1
m

∑
r

φr . (5.22)

We may, therefore, solve the LP problem

min �̃ = 1

n

∑
i

θi − 1

m

∑
r

φr

s.t.
N∑

j=1

λ j yr j ≥ φr yr0; (r = 1, 2, . . . , m);

N∑
j=1

λ j xi j ≤ θi xi0; (i = 1, 2, . . . , n); (5.23)

φr ≥ 1; (r = 1, 2, . . . , m);

θi ≤ 1; (i = 1, 2, . . . , n);

N∑
j=1

λ j = 1; λ j ≥ 0; ( j = 1, 2, . . . , N ).

Once we obtain the optimal (θ∗, φ∗) from this problem,2 we use

�∗ =
1
n

∑
i

θ∗
i

1
m

∑
r

φ∗
rr

(5.24)

as a measure of the Pareto–Koopmans efficiency of (x0, y0).
It is interesting to note that this LP problem is a special case of the more gen-

eral optimization problem with the same constraints but the objective function

2 Indeed, one may iterate this procedure using the (θ∗, φ∗) obtained at the optimal solution
of (5.23) as the new point of approximation.
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min 
 =
∑

i

αiθi −
∑

r

βrφr

s.t.
N∑

j=1

λ j yr j ≥ φr yr0; (r = 1, 2, . . . , m);

N∑
j=1

λ j xi j ≤ θi xi0; (i = 1, 2, . . . , n); (5.25)

φr ≥ 1; (r = 1, 2, . . . , m);

θi ≤ 1; (i = 1, 2, . . . , n);

N∑
j=1

λ j = 1; λ j ≥ 0; ( j = 1, 2, . . . , N ).

Setting αi = 1
n for all i and βr = 1

m for all r , we get the Pareto–Koopmans
problem. If, on the other hand, we set βr = 0 for all r , we get the input-
oriented Russell measure. When we further restrict each αi = α, we get the
usual input-oriented radial DEA problem. Similarly, the restrictions αi = 0 for
all i lead to the output-oriented Russell problem and further restricting βr = β,

for all r we get the usual output-oriented radial DEA problem.

5.5 An Empirical Example: Nonradial Measures of Efficiency
in the Airline Industry

This example considers the performance of 28 international airlines from North
America, Europe, and Asia–Australia during the year 1990. The data set is
taken from Coelli, Grifell-Tatje, and Perelman (2002, Table 1). Each firm pro-
duces two outputs: (a) passenger-kilometers flown (y1), and (b) freight tonne-
kilometers flown (y2). Inputs used are (i) labor (number of employees) (x1),
(ii) fuel (millions of gallons) (x2), (iii) other inputs (millions of U.S. dollar
equivalent) consisting of operating and maintenance expenses excluding la-
bor and fuel expenses (x3), and (iv) capital (sum of the maximum takeoff
weights of all aircraft flown multiplied by the number of days flown) (x4). The
input–output data set is shown in Table 5.1.

Exhibit 5.1 shows the appropriate SAS program for obtaining the Pareto–
Koopmans efficiency measure of British Airways (airline #10). The variables
PHI1 and PHI2 are the factors by which the two outputs, y1 and y2, respectively,
can be expanded. The other variables THETA1 through THETA4 are the factors
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Table 5.1. Input–output data for selected international airlines for the year 1990

Obs Name Pass Cargo Lab Fuel Matl Cap

1 NIPPON 35261 614 12222 860 2008 6074

2 CATHAY 23388 1580 12214 456 1492 4174

3 GARUDA 14074 539 10428 304 3171 3305

4 JAL 57290 3781 21430 1351 2536 17932

5 MALAYSIA 12891 599 15156 279 1246 2258

6 QUANTAS 28991 1330 17997 393 1474 4784

7 SAUDIA 18969 760 24708 235 806 6819

8 SINGAPORE 32404 1902 10864 523 1512 4479

9 AUSTRIA 2943 65 4067 62 241 587

10 BRITISH 67364 2618 51802 1294 4276 12161

11 FINNAIR 9925 157 8630 185 303 1482

12 IBERIA 23312 845 30140 499 1238 3771

13 LUFTHANSA 50989 5346 45514 1078 3314 9004

14 SAS 20799 619 22180 377 1234 3119

15 SWISSAIR 20092 1375 19985 392 964 2929

16 PORTUGAL 8961 234 10520 121 831 1117

17 AIR CANADA 27676 998 22766 626 1197 4829

18 AM. WEST 18378 169 11914 309 611 2124

19 AMERICAN 133796 1838 80627 2381 5149 18624

20 CANADIAN 24372 625 16613 513 1051 3358

21 CONTINENTAL 69050 1090 35661 1285 2835 9960

22 DELTA 96540 1300 61675 1997 3972 14063

23 EASTERN 29050 245 21350 580 1498 4459

24 NORTHWEST 85744 2513 42989 1762 3678 13698

25 PANAM 54054 1382 28638 991 2193 7131

26 TWA 62345 1119 35783 1118 2389 8704

27 UNITED 131905 2326 73902 2246 5678 18204

28 USAIR 59001 392 53557 1252 3030 8952

Source: Coelli, Griffel-Tatje, and Perelman (2002), Table 1.

by which the four respective inputs can be scaled down. Each output expansion
factor is restricted to be greater than or equal to unity. Similarly, the input
contraction factors are all restricted to be less than or equal to unity.

Exhibit 5.2 shows the DEA problem for airline #10 in the standard LP format
and Exhibit 5.3 shows the relevant SAS output. At the optimal solution, the λ∗s
are strictly positive for airline #8 (Singapore Airlines), airline #13 (Lufthansa),
and airline #27 (United Airlines). The hypothetical airline constructed by
the appropriate convex combination of these three airlines would produce
the same quantity of y1 but 69.63% more of output y2. At the same time,
x1 could be reduced by 4.91%, x2 would be unchanged, x3 reduced by 13.4%,
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Exhibit: 5.1. The SAS program for measuring the Pareto–Koopmans
efficiency of airline #10

OPTIONS NOCENTER;
DATA CORE;
INPUT NAME $ PASS CARGO LAB FUEL MATL CAP;
A1=0;A2=0;B1=0;B2=0;B3=0;B4=0;
C=1;D=0;
CARDS;
NIPPON 35261 614 12222 860 2008 6074

CATHAY 23388 1580 12214 456 1492 4174

GARUDA 14074 539 10428 304 3171 3305

JAL 57290 3781 21430 1351 2536 17932

.. ... ... ... ... ... ...

.. ... ... ... ... ... ...

SINGAPR 32404 1902 10864 523 1512 4479

AUSTRIA 2943 65 4067 62 241 587

BRITISH 67364 2618 51802 1294 4276 12161

FINNAIR 9925 157 8630 185 303 1482

IBERIA 23312 845 30140 499 1238 3771

LUFTHNSA 50989 5346 45514 1078 3314 9004

.. ... ... ... ... ... ...

.. ... ... ... ... ... ...

UNITED 131905 2326 73902 2246 5678 18204

USAIR 59001 392 53557 1252 3030 8952

;

proc print; var name pass cargo lab fuel matl cap;

PROC TRANSPOSE OUT=NEXT;

DATA MORE;

INPUT PHI1 PHI2 THETA1-THETA4 _TYPE_ $ _RHS_;
CARDS;

−1 0 0 0 0 0 >= 0

0 −1 0 0 0 0 >= 0

0 0 −1 0 0 0 <= 0

0 0 0 −1 0 0 <= 0

0 0 0 0 −1 0 <= 0

0 0 0 0 0 −1 <= 0

1 0 0 0 0 0 >= 1

0 1 0 0 0 0 >= 1

0 0 1 0 0 0 <= 1

0 0 0 1 0 0 <= 1

0 0 0 0 1 0 <= 1

0 0 0 0 0 1 <= 1

0 0 0 0 0 0 = 1

−.5 −.5 .25 .25 .25 .25 MIN .

(continued)
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Exhibit: 5.1 (continued)

;

.DATA LAST; MERGE NEXT MORE;

IF _N_=1 THEN PHI1=-COL10;

IF _N_=2 THEN PHI2=-COL10;

IF _N_=3 THEN THETA1=-COL10;

IF _N_=4 THEN THETA2=-COL10;

IF _N_=5 THEN THETA3=-COL10;

IF _N_=6 THEN THETA4=-COL10;

PROC PRINT;

PROC LP;

and x4 reduced by 12.06%. Using these optimal values of the φ’s and θ ’s, we
get a nonradial Pareto–Koopmans measure of efficiency

� = 0.9241

1.3482
= 0.6854.

This may be contrasted with what one obtains from the DEA problems for input-
and output-oriented nonradial technical efficiency measurement. For the input-
oriented Russell efficiency measure, we get θ∗

1 = 0.7117, θ∗
2 = 0.9024, θ∗

3 =
0.736, and θ∗

4 = 0.7920, leading to

RMx = ρx = 0.7856.

On the other hand, for the output-oriented problem, we get ϕ∗
1 = 1 and ϕ∗

2 =
1.0762 and the Russell efficiency measure

RMy = 1

ρy
= 1

1.3531
= 0.7390.

Finally, the input-oriented BCC model yields the radial efficiency measure
θ∗ = 0.8915 whereas the optimal φ∗ from the output-oriented BCC model is
1.1031, implying an efficiency level of 0.9065.

This example shows how the radial measures overestimate the efficiency
of a firm because they ignore the presence of input and/or output slacks at
the optimal solution of the relevant DEA LP problem. The input (output)-
oriented nonradial measures ignore output (input) slacks present at the optimal
solution. Only the Pareto–Koopmans measure ensures that neither input nor
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Exhibit: 5.2. The DEA-LP problem for airline #10

_NAME_ COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8

PASS 35261 23388 14074 57290 12891 28991 18969 32404
CARGO 614 1580 539 3781 599 1330 760 1902
LAB 12222 12214 10428 21430 15156 17997 24708 10864
FUEL 860 456 304 1351 279 393 235 523
MATL 2008 1492 3171 2536 1246 1474 806 1512
CAP 6074 4174 3305 17932 2258 4784 6819 4479
A1 0 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 0
B1 0 0 0 0 0 0 0 0
B2 0 0 0 0 0 0 0 0
B3 0 0 0 0 0 0 0 0
B4 0 0 0 0 0 0 0 0
C 1 1 1 1 1 1 1 1
D 0 0 0 0 0 0 0 0

COL9 COL10 COL11 COL12 COL13 COL14 COL15 COL16 COL17

2943 67364 9925 23312 50989 20799 20092 8961 27676
65 2618 157 845 5346 619 1375 234 998
4067 51802 8630 30140 45514 22180 19985 10520 22766
62 1294 185 499 1078 377 392 121 626
241 4276 303 1238 3314 1234 964 831 1197
587 12161 1482 3771 9004 3119 2929 1117 4829
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0

COL18 COL19 COL20 COL21 COL22 COL23 COL24 COL25 COL26

18378 133796 24372 69050 96540 29050 85744 54054 62345
169 1838 625 1090 1300 245 2513 1382 1119
11914 80627 16613 35661 61675 21350 42989 28638 35783
309 2381 513 1285 1997 580 1762 991 1118
611 5149 1051 2835 3972 1498 3678 2193 2389
2124 18624 3358 9960 14063 4459 13698 7131 8704
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0

COL27 COL28 PHI1 PHI2 THETA1 THETA2 THETA3 THETA4 _TYPE_ _RHS_

131905 59001 −67364.0 0.0 0.00 0.00 0.00 0.00 >= 0
2326 392 0.0 −2618.0 0.00 0.00 0.00 0.00 >= 0
73902 53557 0.0 0.0 −51802.00 0.00 0.00 0.00 <= 0
2246 1252 0.0 0.0 0.00 −1294.00 0.00 0.00 <= 0
5678 3030 0.0 0.0 0.00 0.00 −4276.00 0.00 <= 0
18204 8952 0.0 0.0 0.00 0.00 0.00 −12161.00 <= 0
0 0 1.0 0.0 0.00 0.00 0.00 0.00 >= 1
0 0 0.0 1.0 0.00 0.00 0.00 0.00 >= 1
0 0 0.0 0.0 1.00 0.00 0.00 0.00 <= 1
0 0 0.0 0.0 0.00 1.00 0.00 0.00 <= 1
0 0 0.0 0.0 0.00 0.00 1.00 0.00 <= 1
0 0 0.0 0.0 0.00 0.00 0.00 1.00 <= 1
1 1 0.0 0.0 0.00 0.00 0.00 0.00 = 1
0 0 −0.5 −0.5 0.25 0.25 0.25 0.25 MIN .
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Exhibit: 5.3. SAS output of the DEA-LP problem for airline #10

Solution Summary

Objective Value −0.424066

Variable Summary

Variable Reduced

Col Name Status Type Price Activity Cost

1 COL1 NON-NEG 0 0 0.8255815

2 COL2 NON-NEG 0 0 0.293577

3 COL3 NON-NEG 0 0 0.6513861

4 COL4 NON-NEG 0 0 0.5769517

5 COL5 NON-NEG 0 0 0.5292137

6 COL6 NON-NEG 0 0 0.0420388

7 COL7 NON-NEG 0 0 0.2903089

8 COL8 BASIC NON-NEG 0 0.0710373 0

9 COL9 NON-NEG 0 0 0.4765634

10 COL10 NON-NEG 0 0 0.4240662

11 COL11 NON-NEG 0 0 0.4543679

12 COL12 NON-NEG 0 0 0.5800132

13 COL13 BASIC NON-NEG 0 0.7102763 0

14 COL14 NON-NEG 0 0 0.4446172

15 COL15 NON-NEG 0 0 0.3257467

16 COL16 NON-NEG 0 0 0.3917515

17 COL17 NON-NEG 0 0 0.5970051

18 COL18 NON-NEG 0 0 0.394043

19 COL19 NON-NEG 0 0 0.2785944

20 COL20 NON-NEG 0 0 0.5212755

21 COL21 NON-NEG 0 0 0.4250352

22 COL22 NON-NEG 0 0 0.8916024

23 COL23 NON-NEG 0 0 0.6043148

24 COL24 NON-NEG 0 0 0.5372937

25 COL25 NON-NEG 0 0 0.2889633

26 COL26 NON-NEG 0 0 0.3243596

27 COL27 BASIC NON-NEG 0 0.2186864 0

28 COL28 NON-NEG 0 0 0.9723111

29 PHI1 BASIC NON-NEG −0.5 1 0

30 PHI2 BASIC NON-NEG −0.5 1.6963004 0

31 THETA1 BASIC NON-NEG 0.25 0.9509406 0

32 THETA2 BASIC NON-NEG 0.25 1 0

33 THETA3 BASIC NON-NEG 0.25 0.8659882 0

34 THETA4 BASIC NON-NEG 0.25 0.8794072 0

35 _OBS1_ SURPLUS 0 0 0.0000396

36 _OBS2_ SURPLUS 0 0 0.000191

(continued)
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Exhibit: 5.3. (continued)

Solution Summary

Objective Value −0.424066

Variable Summary

Variable Reduced

Col Name Status Type Price Activity Cost

37 _OBS3_ SLACK 0 0 4.8261E-6

38 _OBS4_ SLACK 0 0 0.0018529

39 _OBS5_ SLACK 0 0 0.0000585

40 _OBS6_ SLACK 0 0 0.0000206

41 _OBS7_ SURPLUS 0 0 2.1684644

42 _OBS8_ BASIC SURPLUS 0 0.6963004 0

43 _OBS9_ BASIC SLACK 0 0.0490594 0

44 _OBS10_ SLACK 0 0 2.1476374

45 _OBS11_ BASIC SLACK 0 0.1340118 0

46 _OBS12_ BASIC SLACK 0 0.1205928 0

Constraint Summary

Constraint S/S Dual

Row Name Type Col Rhs Activity Activity

1 _OBS1_ GE 35 0 0 0.0000396

2 _OBS2_ GE 36 0 0 0.000191

3 _OBS3_ LE 37 0 0 −4.826E-6
4 _OBS4_ LE 38 0 0 −0.001853
5 _OBS5_ LE 39 0 0 −0.000058
6 _OBS6_ LE 40 0 0 −0.000021
7 _OBS7_ GE 41 1 1 2.1684644

8 _OBS8_ GE 42 1 1.6963004 0

9 _OBS9_ LE 43 1 0.9509406 0

10 _OBS10_ LE 44 1 1 −2.147637
11 _OBS11_ LE 45 1 0.8659882 0

12 _OBS12_ LE 46 1 0.8794072 0

13 _OBS13_ EQ . 1 1 −0.444893
14 _OBS14_ OBJECTVE . 0 −0.424066 .
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output slacks will be present at the optimal solution of the relevant DEA
problem.

5.6 Summary

Presence of input and/or output slacks at the optimal solution of a CCR or
BCC DEA model can undermine the usefulness of the relevant radial efficiency
measure. The additive model does ensure that a firm is not rated efficient if any
positive slack exists in any input or output. But the usefulness of the additive
model for measuring efficiency is limited because the objective function is the
sum of input and output slacks that are expressed in heterogeneous units. A
different way to avoid input or output slacks is to allow different inputs to be
contracted at different rates in an input-oriented nonradial model or to allow
outputs to expand at unequal rates in an output-oriented nonradial model. The
resulting Russell efficiency measures may still leave positive output or input
slacks at the optimal solution. But the Pareto–Koopmans measure of technical
efficiency reflects all potential increase in outputs and reduction in inputs. A
firm cannot be found to be technically efficient by this criterion as long as there
is any slack in any input or output.

Guide to the Literature

The additive model was developed by Charnes, Cooper, Golany, Seiford, and
Stutz (1985). The nonradial Russell measure was proposed by Färe and Lovell
(1978). Russell (1984) pointed out that this measure fails to satisfy a number
of desirable properties of an efficiency measure. Zieschang (1985) proposed
an extended Russell measure that is obtained in a two-step procedure by first
obtaining the radial component and subsequently maximizing the sum of in-
put and output slacks in the second stage. Coelli (1998) proposed a multistage
procedure for maximizing slacks. A different nonradial measure called the
Range-Adjusted Measure (RAM) of efficiency was proposed by Cooper, Park,
and Pastor (1999). The Pareto–Koopmans efficiency measure was introduced
by Pastor, Ruiz, and Sirvent (1999) as an extension of an earlier Generalized
Efficiency Measure (GEM) due to Cooper and Pastor (1995). Ray (2000) pro-
posed the linear approximation of the objective function in the problem for
obtaining the Pareto–Koopmans measure.
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6

Efficiency Measurement without Convexity Assumption:
Free Disposal Hull Analysis

6.1 Introduction

Of the different assumptions made about the technology in defining the pro-
duction possibility set faced by a firm, by far the strongest is the assumption of
convexity. Clearly, the feasibility of any observed input–output bundle (x j , y j )
is demonstrated by the fact that some firm has been actually observed produc-
ing outputs y j from inputs x j . Similarly, free disposability of either inputs or
outputs can be easily justified intuitively. Both rest on the possibility of less
than full utilization of resources by a firm. After all, if a firm has been found
to have actually produced output y0 from input x0, it could produce the same
output from a larger input bundle x1 by leaving some of the input unused.
Similarly, it could produce less output than y0 from the input x0 by keeping
some of its input idle. By contrast, the assumption of convexity is much more
contentious.

Consider an example for the one-output, one-input case. Suppose two ob-
served input–output combinations are (x0 = 5, y0 = 8) and (x1 = 9, y1 = 12).
Then, convexity would imply that the simple average of these two bundles
(x̄ = 7, ȳ = 10) is feasible. Note that it is not intuitively obvious, however,
from the two observed bundles. Compared to the smaller input–output bundle,
this average bundle does use more input. But the corresponding output is also
larger and is not necessarily producible from this input level. Similarly, com-
pared to the larger bundle, the average does target a smaller quantity of output.
But the input level is also smaller and may not be adequate for producing this
target output. Thus, feasibility of the average bundle does not follow from any
“proof by way of examples.”

At a more abstract level, convexity of the production possibility set rules
out increasing marginal productivity of any input. In this chapter we consider
a modification of the standard DEA model called Free Disposal Hull (FDH)

134

         
 

 



P1: JDW
CB688-06 CB688-RAY CB688-Ray-v1.cls January 22, 2004 14:41

6.2 Free Disposal Hull and Dominant Input–Output Bundles 135

analysis introduced by Deprins, Simar, and Tulkens (1984) and further deve-
loped by Tulkens (1993). This alternative approach retains the disposability
assumptions about inputs and outputs but dispenses with the convexity as-
sumption. Section 6.2 defines the disposal hull of any input–output bundle
and explains how the concept of dominance can be utilized without additional
assumptions to measure technical efficiency. Section 6.3 describes how the
input- or the output-oriented measure of technical efficiency of any firm can
be computed by means of FDH analysis in a n-input, m-output framework.
Section 6.4 addresses the question of CRS in FDH models. Section 6.5 in-
cludes an empirical example of FDH analysis. Section 6.6 summarizes the
main points of the chapter.

6.2 Free Disposal Hull and Dominant Input–Output Bundles

We start with a single-output, single-input technology. Consider an input–
output combination (x0, y0). Note that it may or may not be a feasible produc-
tion plan. The set of input–output bundles dominated by (x0, y0) is

FDH (x0, y0) = {(x, y) : x ≥ x0; y ≤ y0}. (6.1)

Compared to (x0, y0), every input–output combination (x, y) ∈ FDH(x0, y0)
involves no less input and no more output. The set FDH (x0, y0) is the Free
Disposal Hull (FDH) of the bundle (x0, y0). Now, suppose that (x0, y0) is indeed
a feasible input–output combination. Then, by free disposability of inputs and
outputs, all bundles in the FDH of this bundle are also feasible.

Note that for any (x, y) ∈ FDH (x0, y0), at least one of the following would
be true:

(a) x > x0, y = y0;

(b) x = x0; y < y0; (6.2)

(c) x > x0; y < y0.

If (a), free disposability of inputs ensures feasibility of (x, y). If (b), feasibility
follows from free disposability of outputs. If (c), (x, y) is feasible on both
counts. Note that compared to a point in its FDH, the bundle (x0, y0) is more
efficient in the sense that it either produces the same output with less input
or produces more output from the same input, or uses less input to produce
more output. In this sense, (x0, y0) dominates (x, y). Also, because inputs get
depleted in stock in the production process, they may be treated as negative
outputs and the input–output bundle (x, y) can be expressed as the netput
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Input 2 (x2)

y4

y3

y5

y1

O x3x2x1 x4 x5 Input 1 (x1)

P4

P3

P1
A

B

P2

P5

Figure 6.1 The Free Disposal Hull (FDH) of a given input–output combination.

bundle (−x, y). Hence, if (x, y) lies in the FDH of (x0, y0), then (−x0, y0) ≥
(−x, y).

Figure 6.1 illustrates this for the single-output, single-input case. Points
P1 through P5 show the observed input–output combinations (x j , y j ) for
j = 1, 2, . . . , 5. Because any observed input–output combination (x j , y j ) is
feasible by assumption, any (x, y) that lies in the FDH of any observed input–
output combination is also feasible. All points in the southeast quadrant of
any point Pj are feasible input–output combinations. Thus, the shaded area to
the right of the broken line x1 P1AP3BP4-extension represents the production
possibility set derived from the FDH of the observed data. The frontier of this
production possibility set is a step function. Note that if we had assumed con-
vexity, the production possibility set would have been the free disposal convex
hull of the observed data points and the frontier would have been the broken
line x1 P1 P3 P4-extension.

Now consider the n-input m-output technology. The FDH of any observed
input–output combination (x j , y j ) is

FDH (x j , y j ) = {(x, y) : x ≥ x j ; y ≤ y j }. (6.3)
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The production possibility set is the union of the FDH of all the individual
input–output bundles in the data and can be specified as

TFDH = {(x, y) : x ≥ x j ; y ≤ y j ; for some j = 1, 2, . . . , N }. (6.4)

Alternatively,

TFDH =
[

(x, y) : x ≥
N∑

j=1

λ j x
j ; y ≤

N∑
j=1

λ j y j ;
N∑

j=1

λ j = 1;

λ j ∈ {0, 1}; j = 1, 2, . . . , N

]
. (6.5)

Note that each λ j must be either 0 or 1. Moreover, the λ j ’s add up to 1. Hence,
one and only one λ will be unity and the others have to be equal to 0. Thus,
TFDH differs from the production possibility set for DEA (TDEA) in respect of
how the λ j ’s are restricted.

The FDH production possibility set TFDH yields the families of input sets

VFDH(y) = {x : x ≥ x j ; y ≤ y j ; for some j = 1, 2, . . . , N } (6.6a)

and output sets

PFDH(x) = {y : y ≤ y j ; x ≥ x j ; for some j = 1, 2, . . . , N } (6.6b)

The radial input-oriented FDH technical efficiency of the input–output pair
(x0, y0) is

θ∗
FDH = min θ : (θx0) ∈ VFDH( y0). (6.7)

The corresponding radial output-oriented FDH technical efficiency can be
defined in an analogous manner.

In the multiple-input case, it is often more convenient to define the free
disposal input hull (FDHI) of an input bundle x0 as

FDHI(x0) = {x : x ≥ x0}. (6.8)

Clearly, all bundles inside FDHI(x0) are larger than the bundle x0 in some
components but smaller in none. Hence, for any output bundle y, if (x0, y)
is feasible, then (x, y) is also feasible for any x ∈ FDHI(x0). Consider the
following example for the one-output, two-input case. Suppose that we observe
the input–output bundles for five firms shown in Table 6.1.
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Table 6.1. Data for a two-input, one-output example

Firm Input 1 (x1) Input 2 (x2) Output (y)

#1 4 10 8
#2 7 12 10
#3 6 9 7
#4 10 8 6
#5 8 10 7

Figure 6.2 shows the free disposal input hulls for each of the input bundles
from Table 6.1. All points to the northeast of P1 show input bundles that include
more than 4 units of input 1 and or more than 10 units of input 2. Thus, they
are in the free disposal input hull of P1. Similar reasoning applies to the points
towards the northeast of the other input bundles from Table 6.1. Now, consider
the output level 7 produced by firm #5. All firms in this data set except firm #4
produce 7 or more units of the output. Therefore, all of these input bundles

Input 2 (x2)

         12 
    

         
10 

 

9

8

O                    4          6     7  7.2      8  10  Input 1 (x1)

(8) P1  

(10) P2 

  (7) P3  

  A 

        

D 

(7) P5 

(6) P4 

       
B

C 

Figure 6.2 The free disposal input hull.
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except P4 can produce y = 7. Thus, all input bundles in the free disposal input
hulls of P1, P2, P3, and P5 are in the input set of y = 7. This yields the shaded
area to the right of AP1BP3C as the relevant input set. Now, suppose that we
seek the input-oriented radial efficiency of firm #5. With reference to this input
set, the efficient projection is the point D on the P3C segment of the isoquant
with 7.2 units of input 1 and 9 units of input 2. It needs to be emphasized that the
principal merit of FDH analysis is that it always uses a single actually observed
input–output bundle as the basis for comparison and efficiency evaluation of
any firm. In this example, the comparison of firm #5 is with firm #3. The
input bundle P3 requires only 75% of input 1 and 90% of input 2 compared
to the bundle P5. One could demonstrably switch over to P3 and still produce
y = 7. This would lower both inputs by at least 10%. In fact, input 1 could be
lowered even further. But a radial measure ignores slacks in individual inputs.
Thus, even a generous evaluation of the technical efficiency of the bundle P5

is 0.90.
For any output bundle y0, we may define its free disposal output hull as

FDHO(y0) = {y : y ≤ y0} (6.9)

Clearly, all bundles inside FDHO(y0) are smaller than the bundle y0 in some
components but larger in none. Hence, for any input bundle x , if (x, y0) is
feasible, then (x, y) is also feasible for any y ∈ FDHO(y0). Consider the fol-
lowing example for the two-output, one-input case. Suppose that we observe
the input–output bundles for five firms shown in Table 6.2.

In Figure 6.3, points Q1 through Q5 show the output bundles of firm #1
through #5. Any point towards the southwest of point Q1 represents an output
bundle that is in the free disposal output hull of Q1. Similar reasoning applies
to the points towards the southwest of the other output bundles from Table 6.2.
Now, consider the input level 12 used by firm #4. All firms in this data set
except firm #5 use fewer units of the input. Therefore, all of these output

Table 6.2. Data for a two-output, one-input example

Firm Output 1 (y1) Output 2 (y2) Input (x)

#1 4 15 9
#2 6 10 8
#3 10 8 10
#4 7 6 12
#5 9 12 15
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Output 2 (y2)

               A
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                   8
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6 7 9.3310 Output 1 (y1)
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Q5 (15)

C E Q3 (10)

Q4 (12)

O 4 9

Q2 (8)

Figure 6.3 The free disposal output hull.

bundles except Q5 can be produced from x = 12. Thus, all output bundles
in the free disposal output hulls of Q1, Q2, Q3, and Q4 are in the output set
of x = 12. This yields the area to the left of AQ1BQ2CQ3 D as the relevant
output set. Now, suppose that we measure the output-oriented radial efficiency
of firm #4 with reference to this output set. The efficient projection of Q4

is the point E on the CQ3 segment of the output isoquant with 9.33 units of
output 1 and 8 units of output 2. As in the previous input-oriented example,
here again we use a single actually observed input–output bundle as the basis
for comparison and efficiency evaluation of any firm. In this output-oriented
example, the comparison of firm #4 is with firm #3. The output bundle Q3

produces 1 1
3 times the quantity of output 1 and 1 3

7 times the quantity of output
2 compared to the bundle Q4. One could switch over to Q3 and use 2 units less
of the input compared to firm #4. This would increase both outputs by at least
33%. Output 2 could be expanded even further. But even when we take the
lower rate at which both outputs can be expanded, the radial output-oriented
FDH measure of technical efficiency of firm #4 is 3

4 .
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6.3 The FDH Methodology

We first consider the input-oriented FDH problem

θ∗ = min θ

s.t.
N∑

j=1

λ j xi j ≤ θxi0 (i = 1, 2, . . . , n);

N∑
j=1

λ j yr j ≥ yr0 (r = 1, 2, . . . , m); (6.10)

N∑
j=1

λ j = 1;

λ j ∈ {0, 1}; ( j = 1, 2, . . . , N ); θ unrestricted.

Note that if at the optimal solution of the FDH analysis problem λ∗
k equals 1,

then x0 lies in the free disposal input hull of xk and, at the same time, y0 lies
in the free disposal output hull of yk . In other words,

(x0, y0) ∈ FDH(xk, yk).

This is a mixed-integer programming problem because the choice variables λ j

can take only 0 or 1 as admissible values. But the restriction that the λ j ’s add
up to unity makes this problem much easier to solve.

Note that these restrictions imply that at any solution (including an optimal
solution), only one of the λ j ’s will equal unity and the others will be equal to 0.
Thus, we can have at most N solutions. However, of these N possible solutions,
not all will be feasible. To see this, suppose that we selected a solution where
λ∗

k equals unity and the other λ’s are all 0. For this to be a feasible solution, yrk

must be greater than or equal to yr0 for each output r . In other words, the output
bundle y0 must lie in the free disposal output hull of the bundle yk . Hence, if,
for any firm j , yr j is less than yr0 for any individual output r , then the firm j
need not be considered as a possible benchmark for comparison. To evaluate
any observed input–output bundle for input-oriented technical efficiency using
FDH analysis, we first eliminate all observations that produce any output in
a smaller quantity than the firm under evaluation. Call the remaining set of
observations J 0. Thus,

j ∈ J 0 ⇒ y j ≥ y0. (6.11)
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Next we make a pairwise comparison of the input bundle of the firm under
evaluation with the input bundle of each of these remaining firms. Suppose that
xs observed for firm s is one such bundle. Then, for each input i we compute
the ratio

θis = xis

xi0
(i = 1, 2, . . . , n). (6.12)

If θis < 1 for every input i then compared to x0 one can reduce every input by
switching over to the bundle xs . Of course, the fact that s ∈ J 0 ensures that
one need not reduce any output while reducing inputs in this manner. In this
pairwise comparison with the firm s, let

θ∗
s = max {θ1s, θ2s, . . . . , θns}. (6.13)

Then, θ∗
s denotes the factor by which all inputs could be scaled down if the

firm switched from the input bundle x0 to the bundle xs . Of course, it may be
possible to reduce some inputs even further. In this sense, it is a conservative
estimate of the efficiency of the firm producing y0 from x0. This, however, is a
measure of input-oriented technical efficiency of the firm under evaluation if
firm s is used as the benchmark. Note that we are free to use any firm from the
set J 0 as the benchmark for comparison. Naturally, we select that particular
firm j for which θ∗

j is the lowest across all firms in J 0. It is possible that even
this lowest measure exceeds 1. In that case, the input-oriented FDH technical
efficiency firm under evaluation is 1.

The actual implementation of this procedure to measure input-oriented tech-
nical efficiency of a firm using FDH analysis consists of the following steps:

Step 1: Eliminate any observation j if yr j is less than yr0 for any output r.
Call the remaining set of observations J 0.

Step 2: Eliminate any observation j ∈ J 0 if xi0 is less than xi j for any input i .
Call the remaining set of observations J 1.

Step 3: For each observation j ∈ J 1, compute

θi j = xi j

xi0
for each input i .

Note that by virtue of step 2, θi j ≤ 1 for all i and j .

Step 4: For each j ∈ J 1, define

θ∗
j = max {θ1 j , θ2 j , . . . . , θnj }.

Again, θ∗
j ≤ 1 for all j .
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Step 5: Define

θ∗ = min {θ∗
j : j ∈ J 1}.

θ∗
FDH = min {θ∗, 1}.

Next, consider the output-oriented measure of technical efficiency. For that,
we need to solve the following mixed integer programming problem:

max φ

s.t.
N∑

j=1

λ j yr j ≥ φyr0 (r = 1, 2, . . . , m);

N∑
j=1

λ j xi j ≤ xi0 (i = 1, 2, . . . , n); (6.14)

N∑
j=1

λ j = 1; λ j ∈ {0, 1}; ( j = 1, 2, . . . , N ); φ unrestricted.

The solution procedure for the output-oriented model closely parallels the
procedure outlined herein for the input-oriented model and consists of the
following steps:

Step 1: Eliminate any observation j if yr j is less than yr0 for any output r .
Call the remaining set of observations J 0.

Step 2: Eliminate any observation j ∈ J 0 if xi0 is less than xi j for any input i .
Call the remaining set of observations J 1.

Step 3: For each observation j ∈ J 1, compute

φr j = yr j

yr0
for each output r . (6.15)

Step 2 ensures that φr j ≥ 1 for all r and j .

Step 4: For each j ∈ J 1, define

φ∗
j = min {φ1 j , φ2 j , . . . . , φmj }. (6.16)

Note that φ∗
j ≥ 1 for all j ∈ J 1.
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Step 5: Define

φ∗ = max {φ∗
j : j ∈ J 1}. (6.17)

φ∗
FDH = max {φ∗, 1}. (6.18)

The output-oriented FDH measure of technical efficiency is 1
φ∗

FDH
.

6.4 Additivity and Replication in FDH Analysis

If the technology is assumed to be additive, the sum of two or more feasible
input–output bundles is also feasible. Thus, if (x0, y0) and (x1, y1) are feasible
bundles, (x0 + x1, y0 + y1) is also a feasible input–output bundle. Further, a
basic assumption in DEA is that if a firm can produce output y0 from input x0,
so could any other firm in the same industry. That is, an observed input–output
bundle can be replicated any number of times. Thus, additivity and replication
together imply that if (x, y) is a feasible bundle, then, for any positive integer
K , the bundle (Kx, Ky) is also feasible. The free replication hull (FRH) of any
input–output bundle (x0, y0) is

FRH (x0, y0) = {(x, y) : x ≥ K x0; y ≤ K y0; K ∈ {1, 2, 3, . . .}}. (6.19)

The FRH is shown in Figure 6.4 for the single-input, single-output case. Con-
sider the bundle x0 = (x0

1 , x0
2 ) = (4, 5) shown by the point A0 in the diagram.

The point B0 = (8, 10) is a two-fold replication of A0. Similarly, C0 = (12, 15)
is a three-fold replication and so on. The shaded area to the southwest of each
of these points is the corresponding FDH of the relevant point. The union of
all of these is the FRH of A0.

For a sample data set of input–output bundles (x j , y j ) ( j = 1, 2, . . . , N ),
the FRH production possibility set is

TFRH =
{

(x, y) : x ≥
N∑
1

λ j x
j ; y ≤

N∑
1

λ j y j ; λ j ∈ {1, 2, 3, . . . .};

( j = 1, 2, . . . , N )

}
. (6.20)

Clearly, TFDH ⊂ TFRH just as the VRS production possibility set lies inside the
corresponding CRS production possibility set in DEA.
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Figure 6.4 The free replication hull.

Figure 6.5 shows the FRH production possibility set along with the FDH
production possibility set constructed from four observed input–output
bundles:

A = (xA = 4, yA = 3); B = (xB = 6, yB = 4); C = (xC = 11, yC = 5);

and D = (xD = 21, yD = 9).

The FDH frontier is the broken line EAFBGCHD-extension. By contrast, the
FRH frontier is EAFBJA2KLMA3NPQA4RSTU-extension. Here, the point A2

is a twofold replication of A, L is the sum of the bundles A and B, A3 is
a threefold replication of A, and U is a twofold replication of L . The point
D lies on the FDH frontier and is efficient relative to TFDH. But its efficient
output-oriented projection onto the FRH frontier is the point D∗, where 14
units of the output is produced from 21 units of the input. Thus,

φFRH = 14

9
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Figure 6.5 The free disposal hull and the free replication hull.

and the corresponding output-oriented efficiency is

TEFRH = 9

14
.

For the multiple-input, multiple-output case, the FRH technical efficiency of
the bundle (x0, y0) is the inverse of the optimal solution of the following mixed
integer programming problem:

max φ

s.t.
N∑

j=1

λ j yr j ≥ φyr0 (r = 1, 2, . . . , m);

N∑
j=1

λ j xi j ≤ xi0 (i = 1, 2, . . . , n); (6.21)

λ j ∈ {0, 1, 2, 3, . . .}; ( j = 1, 2, . . . , N ); φ unrestricted.
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6.5 Empirical Applications of FDH Analysis

Christensen and Greene (1976) analyzed the data from a number of electrical
utility companies in the United States for the year 1970 to estimate a dual cost
function. They conceptualized a single-output, three-input production tech-
nology for the electric power industry. Output was measured by millions of
kilowatt hours of electric power generated. Quantity indexes of labor, fuel, and
capital were constructed from the available expenditure and price information
for individual inputs at the firm level. We use their input–output quantity data
for a sample of 99 firms (shown in Table 6.3) from their 1970 data set to
illustrate the application of FDH and FRH analysis.

The SAS program measuring technical efficiency of firm #48 using input-
oriented FDH analysis is shown in Exhibit 6.1. Exhibit 6.2 shows the relevant
portion of the output of this program. Of the 51 firms producing greater output
than firm #48, only 4 used lower quantities of all inputs than this firm. These
were firms #49, #50, #51, and #54. Firm #48 is in the FDH of these firms. The
columns RL0, RK0, and RF0 show the quantities of labor, capital, and fuel
inputs of these firms as proportions of the corresponding input quantities used
by firm #48. For any firm, the entry in the column labeled THETA shows the
radial contraction possible in all of the inputs of firm #48 without reducing
output. For example, the row for firm #49 shows that if firm #48 switched to the
input–output bundle of #49, it would be using only 40.03% of labor, 54.173%
of capital, and 90.72% of fuel compared to what it is currently using. Thus,
every input could be scaled down by a factor of 0.9072 or less. The optimal
reference bundle for firm #48 is that of #50, where all inputs can be scaled
down to about 86% of its current level or lower. This factor (0.8599) measures
the input-oriented FDH efficiency of firm #48.

Exhibits 6.3 and 6.4 show the SAS program and the relevant output for the
output-oriented FDH analysis of the same firm. As in the input-oriented case,
the same four firms appear in Exhibit 6.4 as dominating firm #48. But this time
we measure the ratio of the output quantity of each of these firms to that of firm
#48. Firm #54 produces 20.13% more output without requiring any increase
in any input compared to firm #48. Thus, the output-oriented FDH efficiency
of firm #48 is 0.8324.

The SAS program file for the mixed integer programming problem to mea-
sure the FRH output-oriented technical efficiency of firm #89 is shown in
Exhibit 6.5. The commands are quite similar to those in an output-oriented
CCR model except for the integer constraints on λ j ’s incorporated by includ-
ing two additional rows. The first has the name “INTEGER” for the type of
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Table 6.3. Christensen–Greene data on U.S. electrical utilities

FIRM KWH LABOR CAPITAL FUEL

1 8 1.0204 1.376 2.973
2 14 2.6902 2.594 3.485
3 50 1.9827 0.668 11.630
4 65 2.3754 2.364 15.767
5 67 2.3251 4.013 9.717
6 90 4.5563 3.007 27.064
7 183 2.5447 4.741 24.232
8 295 4.8701 5.096 38.064
9 374 5.3485 3.008 52.592
10 378 3.9104 10.432 52.106
11 467 13.2520 11.319 94.127
12 643 13.5461 14.023 86.351
13 856 12.0581 20.379 109.640
14 869 3.7430 12.991 87.481
15 938 11.4583 16.980 133.978
16 1025 17.8433 21.046 141.289
17 1090 24.3545 39.050 147.902
18 1293 22.1513 31.356 162.186
19 1328 9.7280 30.266 150.139
20 1412 10.5273 36.221 170.815
21 1500 10.6548 25.468 173.143
22 1627 12.1292 22.705 187.082
23 1627 17.4942 30.327 191.893
24 1886 12.4658 62.022 205.627
25 1901 31.1495 32.814 248.157
26 2001 11.6434 30.695 351.391
27 2020 31.4233 37.854 266.281
28 2258 16.2611 32.008 258.602
29 2325 25.5840 35.211 279.146
30 2437 21.0152 53.581 275.995
31 2445 19.9365 42.013 293.332
32 2487 27.4192 47.906 330.088
33 2506 17.2205 41.228 267.304
34 2632 12.0355 47.353 272.244
35 2682 22.5875 47.206 271.701
36 2689 12.5604 25.877 290.122
37 2764 26.6733 35.572 289.789
38 2969 22.1125 37.176 304.568
39 3571 35.3054 52.846 381.036
40 3886 28.2969 68.947 468.661
41 3965 28.8538 60.265 420.306
42 3981 27.6883 65.972 406.980
43 4148 27.2748 48.054 482.731
44 4187 39.2059 73.337 447.717
45 4560 34.7745 65.514 481.773
46 5286 37.6939 81.114 563.110
47 5316 47.1379 57.096 555.471
48 5643 52.2177 111.490 673.429
49 5648 20.9029 60.397 610.932
50 5708 33.4168 79.428 579.140
51 5785 27.2934 60.331 601.816
52 6754 75.3867 113.461 805.255
53 6770 50.4825 147.968 724.068
54 6779 45.8872 90.295 485.152
55 6793 48.6601 112.713 718.082
56 6837 53.6128 118.976 731.155
57 6891 53.582 130.847 756.24
58 7320 62.089 94.725 762.05
59 7382 62.823 116.400 803.21
60 7484 66.475 117.207 765.06
61 7896 45.494 90.286 851.15
62 7930 55.336 184.344 858.62
63 9145 103.101 128.891 880.56
64 9275 49.801 177.613 949.23
65 9530 78.681 118.974 994.47
66 9602 39.687 108.847 1031.63
67 9660 30.006 86.530 982.08
68 10004 161.064 178.703 1198.26
69 10057 54.320 103.716 1049.70
70 10149 58.085 103.523 1115.62
71 10361 103.336 183.107 1044.31
72 10855 81.581 182.301 1119.68
73 11114 74.394 204.139 1222.35
74 11667 81.833 161.468 1187.07
75 11837 123.487 184.421 1328.30
76 12542 112.355 143.801 1334.84
77 12706 94.382 224.423 1460.51
78 12936 55.772 136.867 1431.58
79 12954 56.101 147.493 1336.88
80 13702 132.695 233.160 1485.23
81 13846 125.447 227.241 1528.59
82 16311 58.151 131.748 1595.84
83 16508 127.072 158.744 1309.70
84 17280 90.604 223.165 1792.37
85 17875 60.810 220.204 1849.23
86 18455 244.193 297.329 2091.73
87 19445 239.797 364.271 2217.38
88 21956 132.812 323.585 2306.28
89 22522 233.765 384.349 2459.34
90 23217 138.172 267.667 2393.17
91 24001 155.437 414.068 2478.45
92 27118 236.563 528.823 2832.44
93 27708 144.754 309.101 2867.48
94 29613 403.141 593.415 3687.48
95 30958 319.464 419.813 3608.86
96 34212 192.852 285.081 3318.65
97 38343 123.068 562.133 3827.24
98 46870 440.530 851.127 5047.70
99 53918 382.789 566.391 5541.24
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Exhibit: 6.1. Input-oriented FDH analysis for firm #48

OPTIONS NOCENTER;

DATA GREENE;

INPUT FIRM KWH L K F;

SELECT OUTPUT LEVEL OF THE FIRM EVALUATED (#48 HERE);

KWH0= 5643;

DELETE FIRMS WITH LOWER OUTPUT;

IF KWH < KWH0 THEN DELETE;

SELECT INPUT LEVELS OF THE FIRM EVALUATED;

L0=52.2177;K0=111.490;F0=673.429;

COMPUTE RATIOS OF INDIVIDUAL INPUTS;

RL0=L/L0;RK0=K/K0;RF0=F/F0;

COMPUTE THE RADIAL SCALEDOWN FACTOR IN PAIRWISE COMPARISON;

THETA=MAX(RL0,RK0);THETA=MAX(THETA,RF0);

DELETE FIRMS USING LARGER QUANTITY OF ANY INPUT;

IF THETA >1 THEN DELETE;

CARDS;

1 8 1.0204 1.376 2.973
2 14 2.6902 2.594 3.485
3 50 1.9827 0.668 11.630
4 65 2.3754 2.364 15.767
5 67 2.3251 4.013 9.717
. .. .. .. ..
. .. .. .. ..

46 5286 37.6939 81.114 563.110
47 5316 47.1379 57.096 555.471
48 5643 52.2177 111.490 673.429
49 5648 20.9029 60.397 610.932
50 5708 33.4168 79.428 579.140
. .. .. .. ..
. .. .. .. ..

89 22522 233.765 384.349 2459.34
90 23217 138.172 267.667 2393.17
91 24001 155.437 414.068 2478.45
92 27118 236.563 528.823 2832.44
93 27708 144.754 309.101 2867.48
94 29613 403.141 593.415 3687.48
95 30958 319.464 419.813 3608.86
96 34212 192.852 285.081 3318.65
97 38343 123.068 562.133 3827.24
98 46870 440.530 851.127 5047.70
99 53918 382.789 566.391 5541.24

;

PROC PRINT; VAR FIRM KWH RL0 RK0 RF0 THETA;

PROC MEANS MIN;VAR THETA;
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Exhibit: 6.2. Findings from input-oriented FDH analysis of firm #48

Obs FIRM KWH RL0 RK0 RF0 THETA

1 48 5643 1.00000 1.00000 1.00000 1.00000

2 49 5648 0.40030 0.54173 0.90720 0.90720

3 50 5708 0.63995 0.71242 0.85999 0.85999

4 51 5785 0.52268 0.54113 0.89366 0.89366

5 54 6779 0.87877 0.80989 0.72042 0.87877

Analysis Variable : THETA

Minimum 0.8599867

Exhibit: 6.3. SAS program for output-oriented FDH analysis of firm #48

Data Greene;

input FIRM KWH l k f;

kwh0=5643; l0=52.2177; k0=111.490; f0=673.429;

if l>l0 then delete;

if k>k0 then delete;

if f>f0 then delete;

if kwh < kwh0 then delete;

phi=kwh/kwh0;

cards;

1 8 1.0204 1.376 2.973

2 14 2.6902 2.594 3.485

3 50 1.9827 0.668 11.630

4 65 2.3754 2.364 15.767

5 67 2.3251 4.013 9.717

. . . . .

. . . . .

44 4187 39.2059 73.337 447.717

45 4560 34.7745 65.514 481.773

46 5286 37.6939 81.114 563.110

47 5316 47.1379 57.096 555.471

48 5643 52.2177 111.490 673.429

49 5648 20.9029 60.397 610.932

50 5708 33.4168 79.428 579.140

. . . . .

. . . . .

97 38343 123.068 562.133 3827.24

98 46870 440.530 851.127 5047.70

99 53918 382.789 566.391 5541.24

;

proc print; var firm kwh kwh0 phi;

proc means max; var phi;
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Exhibit: 6.4. Findings from an output-oriented FDH analysis of firm #48

Obs FIRM KWH kwh0 phi

1 48 5643 5643 1.00000

2 49 5648 5643 1.00089

3 50 5708 5643 1.01152

4 51 5785 5643 1.02516

5 54 6779 5643 1.20131

The MEANS Procedure

Analysis Variable : phi

Maximum 1.2013114

the constraint. Each entry in the left-hand side of the constraint is 1 except for
a 0 in the column for PHI. The other row, with “UPPERBD” for type, specifies
an upper bound (set equal to 100 in this example) for each integer variable
(and a missing value for the other variable PHI). As in the case of radial DEA,
the input quantities of firm #89 appear in the right-hand side of appropriate
constraints and the negative of its output quantity appears in the column for
PHI at the output row.

The objective value (1.41275) in the solution summary section in Exhibit 6.6
shows that it is possible to increase the output of firm #89 by 41.275% from
its current level of 22522. The benchmark bundle would be constructed by
adding the input–output bundles of firms #2 and #83 with two-fold replications
of the bundles of firms #14 and #54. This can be found from the entries in
the “Activity” column in the “Variable Summary” section in Exhibit 6.6 (1 for
COL2, 2 for COL14, 2 for COL54, and 1 for COL83). The “Activity” column in
the “Constraint Summary” section shows the quantities of the inputs (229.0226
of labor, 367.91 of capital, and 2458.451 of fuel) used in this benchmark bundle.
Comparison of these quantities with the entries in the corresponding rows of
the column “RHS” in the same section of the output reveals the quantities of
input slacks (shown in the bottom rows in the “Variable Summary” section).

6.6 Summary

FDH analysis provides a method of efficiency measurement without the
assumption of convexity. It is shown to be a special case of the BCC
DEA problem with additional (0, 1) constraints on the λ j ’s. The resulting
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Exhibit: 6.5. SAS program for the output-oriented free replication hull analysis
of firm #48

OPTIONS NOCENTER;

DATA CG;

INPUT OBS KWH L K F ;

C=1;D=100;E=0;

DROP OBS;

CARDS;

1 8 1.0204 1.376 2.973

2 14 2.6902 2.594 3.485

3 50 1.9827 0.668 11.630

4 65 2.3754 2.364 15.767

5 67 2.3251 4.013 9.717

85 17875 60.810 220.204 1849.23

86 18455 244.193 297.329 2091.73

87 19445 239.797 364.271 2217.38

88 21956 132.812 323.585 2306.28

89 22522 233.765 384.349 2459.34

90 23217 138.172 267.667 2393.17

91 24001 155.437 414.068 2478.45

92 27118 236.563 528.823 2832.44

93 27708 144.754 309.101 2867.48

94 29613 403.141 593.415 3687.48

95 30958 319.464 419.813 3608.86

96 34212 192.852 285.081 3318.65

97 38343 123.068 562.133 3827.24

98 46870 440.530 851.127 5047.70

99 53918 382.789 566.391 5541.24

;

PROC TRANSPOSE OUT=NEW;

DATA MORE;

INPUT PHI _TYPE_ $ _RHS_;

CARDS;

0 >= 0

0 <= 0

0 <= 0

0 <= 0

. INTEGER .

. UPPERBD .

1 MAX .

;

DATA LAST; MERGE NEW MORE;

IF _N_ <=4 THEN _RHS_=COL89;

IF _N_=1 THEN _RHS_=0;

IF _N_=1 THEN PHI=-COL89;

PROC PRINT;

PROC LP IMAXIT=1500;
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Exhibit: 6.6. SAS output of the output-oriented free replication hull analysis
of firm #48: the LP procedure

Solution Summary

Integer Optimal Solution

Objective Value 1.4127519758

Variable Summary

Variable Reduced

Col Name Status Type Price Activity Cost

1 COL1 INTEGER 0 0 0.0003552

2 COL2 INTEGER 0 1 0.0006216

3 COL3 INTEGER 0 0 0.0022201

4 COL4 INTEGER 0 0 0.0028861

5 COL5 INTEGER 0 0 0.0029749

6 COL6 INTEGER 0 0 0.0039961

7 COL7 INTEGER 0 0 0.0081254

8 COL8 INTEGER 0 0 0.0130983

9 COL9 INTEGER 0 0 0.016606

10 COL10 INTEGER 0 0 0.0167836

11 COL11 INTEGER 0 0 0.0207353

12 COL12 INTEGER 0 0 0.0285499

13 COL13 INTEGER 0 0 0.0380073

14 COL14 INTEGER 0 2 0.0385845

15 COL15 INTEGER 0 0 0.0416482

16 COL16 INTEGER 0 0 0.0455111

17 COL17 INTEGER 0 0 0.0483971

18 COL18 INTEGER 0 0 0.0574105

19 COL19 INTEGER 0 0 0.0589646

20 COL20 INTEGER 0 0 0.0626943

21 COL21 INTEGER 0 0 0.0666015

22 COL22 INTEGER 0 0 0.0722405

23 COL23 INTEGER 0 0 0.0722405

24 COL24 INTEGER 0 0 0.0837403

25 COL25 INTEGER 0 0 0.0844064

26 COL26 INTEGER 0 0 0.0888465

27 COL27 INTEGER 0 0 0.0896901

28 COL28 INTEGER 0 0 0.1002575

29 COL29 INTEGER 0 0 0.1032324

30 COL30 INTEGER 0 0 0.1082053

(continued)
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Exhibit: 6.6. (continued)

Solution Summary

Integer Optimal Solution

Objective Value 1.4127519758

Variable Summary

Variable Reduced

Col Name Status Type Price Activity Cost

31 COL31 INTEGER 0 0 0.1085605

32 COL32 INTEGER 0 0 0.1104254

33 COL33 INTEGER 0 0 0.111269

34 COL34 INTEGER 0 0 0.1168635

35 COL35 INTEGER 0 0 0.1190836

36 COL36 INTEGER 0 0 0.1193944

37 COL37 INTEGER 0 0 0.1227244

38 COL38 INTEGER 0 0 0.1318267

39 COL39 INTEGER 0 0 0.1585561

40 COL40 INTEGER 0 0 0.1725424

41 COL41 INTEGER 0 0 0.1760501

42 COL42 INTEGER 0 0 0.1767605

43 COL43 INTEGER 0 0 0.1841755

44 COL44 INTEGER 0 0 0.1859071

45 COL45 INTEGER 0 0 0.2024687

46 COL46 INTEGER 0 0 0.2347038

47 COL47 INTEGER 0 0 0.2360359

48 COL48 INTEGER 0 0 0.250555

49 COL49 INTEGER 0 0 0.250777

50 COL50 INTEGER 0 0 0.2534411

51 COL51 INTEGER 0 0 0.25686

52 COL52 INTEGER 0 0 0.2998846

53 COL53 INTEGER 0 0 0.300595

54 COL54 INTEGER 0 2 0.3009946

55 COL55 INTEGER 0 0 0.3016162

56 COL56 INTEGER 0 0 0.3035698

57 COL57 INTEGER 0 0 0.3059675

58 COL58 INTEGER 0 0 0.3250155

59 COL59 INTEGER 0 0 0.3277684

60 COL60 INTEGER 0 0 0.3322973

61 COL61 INTEGER 0 0 0.3505905

62 COL62 INTEGER 0 0 0.3521002

(continued)
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Exhibit: 6.6. (continued)

Solution Summary

Integer Optimal Solution

Objective Value 1.4127519758

Variable Summary

Variable Reduced

Col Name Status Type Price Activity Cost

63 COL63 INTEGER 0 0 0.4060474

64 COL64 INTEGER 0 0 0.4118196

65 COL65 INTEGER 0 0 0.4231418

66 COL66 INTEGER 0 0 0.4263387

67 COL67 INTEGER 0 0 0.428914

68 COL68 INTEGER 0 0 0.4441879

69 COL69 INTEGER 0 0 0.4465412

70 COL70 INTEGER 0 0 0.4506261

71 COL71 INTEGER 0 0 0.4600391

72 COL72 INTEGER 0 0 0.4819732

73 COL73 INTEGER 0 0 0.493473

74 COL74 INTEGER 0 0 0.5180268

75 COL75 INTEGER 0 0 0.525575

76 COL76 INTEGER 0 0 0.5568777

77 COL77 INTEGER 0 0 0.5641595

78 COL78 INTEGER 0 0 0.5743717

79 COL79 INTEGER 0 0 0.5751709

80 COL80 INTEGER 0 0 0.6083829

81 COL81 INTEGER 0 0 0.6147767

82 COL82 INTEGER 0 0 0.7242252

83 COL83 INTEGER 0 1 0.7329722

84 COL84 INTEGER 0 0 0.7672498

85 COL85 INTEGER 0 0 0.7936684

86 COL86 INTEGER 0 0 0.819421

87 COL87 INTEGER 0 0 0.863378

88 COL88 INTEGER 0 0 0.974869

89 COL89 INTEGER 0 0 1

90 COL90 INTEGER 0 0 1.0308587

91 COL91 INTEGER 0 0 1.0656691

92 COL92 INTEGER 0 0 1.2040671

93 COL93 INTEGER 0 0 1.2302637

94 COL94 INTEGER 0 0 1.3148477

(continued)
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Exhibit: 6.6. (continued)

Solution Summary

Integer Optimal Solution

Objective Value 1.4127519758

Variable Summary

Variable Reduced

Col Name Status Type Price Activity Cost

95 COL95 INTEGER 0 0 1.3745671

96 COL96 INTEGER 0 0 1.519048

97 COL97 INTEGER 0 0 1.7024687

98 COL98 INTEGER 0 0 2.0810763

99 COL99 INTEGER 0 0 2.3940147

100 PHI BASIC NON-NEG 1 1.412752 0

101 _OBS1_ SURPLUS 0 0 −0.000044
102 _OBS2_ BASIC SLACK 0 4.7424 0

103 _OBS3_ BASIC SLACK 0 16.439 0

104 _OBS4_ BASIC SLACK 0 0.889 0

Constraint Summary

Constraint S/S Dual

Row Name Type Col Rhs Activity Activity

1 _OBS1_ GE 101 0 0 −0.000044
2 _OBS2_ LE 102 233.765 229.0226 0

3 _OBS3_ LE 103 384.349 367.91 0

4 _OBS4_ LE 104 2459.34 2458.451 0

5 _OBS7_ OBJECTVE . 0 1.412752 .

production possibility set is a proper subset of the familiar free disposal
convex hull of the data points. As a result, the efficiency measure un-
der FDH analysis is, in general, higher than what is obtained from the
BCC model under the convexity assumption. The nonconvex counterpart
of CRS is free replication under which every integer multiple of any ob-
served input–output bundle is feasible. One can exploit this added assump-
tion to define a FRH of the data points and obtain corresponding efficiency
measures.
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Guide to the Literature

The concept of a FDH and the associated method of FDH analysis were in-
troduced by Deprins, Simar, and Tulkens (1984). Subsequently, in a number
of papers, Tulkens and his associates (especially Tulkens [1993]) have further
refined the methodology of FDH analysis within the broad framework of dom-
inance analysis. Thrall (1999) contested the economic meaningfulness of FDH
analysis on the ground that the shadow prices of all inputs and/or outputs need
not be positive at the optimal solution. For a response to Thrall, see Cherchiye,
Kuosomanen, and Post (2000).
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7

Dealing with Slacks: Assurance Region/Cone Ratio
Analysis, Weak Disposability, and Congestion

7.1 Introduction

The presence of any positive input or output slacks at the optimal solution of a
CCR or BCC DEA model has already been recognized as a potential problem
with the technical efficiency measure in such cases. The nonradial models
considered in Chapter 5 ensure that no slacks are present at the projection
of an observed input or output bundle onto the isoquant. In this chapter, we
consider several other approaches that address the problem of slacks. It may be
noted that when a slack is present at the optimal solution, the relevant input or
output constraint is nonbinding and the shadow price of the resource (i.e., the
dual variable associated with the constraint) equals 0. An alternative approach
known as assurance region (AR) analysis avoids the problem of slacks by
imposing restrictions on the shadow prices of inputs and/or outputs. This leads
to a reconstruction of the input or output isoquant in such a way that no slacks
can exist at the radial projection of any input or output bundle onto the modified
isoquant. Use of prior weight restrictions also allows incorporation of expert
opinion regarding the relative significance of individual inputs and outputs in
the production process.

The approach of AR analysis was introduced by Thompson, Singleton,
Thrall, and Smith (1986) and was applied for choosing a “best site” for the
location of a high-energy physical laboratory. Subsequently, Charnes, Cooper,
Huang, and Sun (1990) developed a different approach called Cone Ratio (CR)
analysis incorporating bounds on shadow prices or multipliers. An altogether
different approach is to modify the free disposability assumption about inputs
and outputs. If one assumes weak rather than strong disposability, no slacks
can exist in any region of the frontier. In fact, as shown by Färe, Grosskopf, and
Lovell (1994), when the radial technical efficiency measure under the weak
disposability assumption exceeds the usual radial measure under strong or free
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disposability, one may conclude that congestion is being caused by one or more
inputs or outputs.

AR analysis is explained for the one-output, two-input case in Section 7.2
followed by the multiple-output, multiple-input case in Section 7.3. CR analy-
sis is described in Section 7.4. Section 7.5 includes empirical examples of the
two approaches using the Christensen and Greene data set shown in Table 6.3.
The difference between weak and strong disposability is explained and con-
gestion efficiency is defined in Section 7.6. The main points of this chapter are
summarized in Section 7.7.

7.2 Assurance Region Analysis: The One-Output, Two-Input Case

Consider an industry producing a single output (y) from two inputs (x1 and x2)
and a sample of N firms. Let x j = (x1 j , x2 j ) be the input bundle and y j the
output level of firm j ( j = 1, 2, . . . , N ). Further assume that the technology
exhibits globally CRS. The dual or multiplier form of the input-oriented CCR
DEA model for firm k is

max uyk

s.t. uy j − v1x1 j − v2x2 j ≤ 0; ( j = 1, 2, . . . , N ); (7.1)

v1x1k + v2x2k = 1;

u, v1, v2 ≥ 0.

Note that in the single-output CCR model, the output constraint is always
binding. Thus, the shadow price of the output is strictly positive at the optimal
solution. On the other hand, although the shadow prices of the inputs are
constrained to be merely nonnegative, any one shadow price can take the
value 0 at the optimal solution. At the same time, however, the normalization
condition (i.e., the shadow value of the input bundle xk is unity) ensures that
v1 and v2 cannot be zero simultaneously.

Consider now the restrictions

c1 ≤ v2

v1
≤ c2, where 0 < c1 < c2. (7.2)

Alternatively,

c1v1 ≤ v2 (7.2a)

and

v2 ≤ c2v1. (7.2b)
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Now, if v1 = 0, v2 cannot be positive. At the same time, if v2 = 0, v1cannot
be positive. Thus, the normalization condition cannot be satisfied unless both
shadow prices are strictly positive.

We now incorporate the restrictions (7.2a–2b) into (7.1) to get the revised
LP problem:

max uyk

s.t. uy j − v1x1 j − v2x2 j ≤ 0; ( j = 1, 2, . . . , N );

v1x1k + v2x2k = 1;

c1v1 − v2 ≤ 0; (7.3)

−c2v1 + v2 ≤ 0;

u, v1, v2 ≥ 0.

The dual LP problem for (7.3) is

min θ

s.t.
N∑
1

λ j y j ≥ yk ;

N∑
1

λ j x1 j ≤ θx1k + c1δ1 − c2δ2; (7.4)

N∑
1

λ j x2 j ≤ θx2k − δ1 + δ2;

λ j ≥ 0; ( j = 1, 2, . . . , N ); δ1, δ2 ≥ 0; θ unrestricted.

Suppose that at the optimal solution of (7.2), the ratio of the shadow prices
( v2
v1

) lies strictly between c1 and c2. In that case, neither (7.2a) nor (7.2b) is
a binding constraint and both δ1 and δ2 will be 0 at the optimal solution of
(7.4). Otherwise, at most, one of the constraints (7.2a–b) can be binding and
either δ1 or δ2 (but not both) will be strictly positive. Assume arbitrarily that
v2 is 0 at the optimal solution of (7.1). This, in its turn, implies that (7.2a) is
binding in (7.3) and that δ1 is positive at the optimal solution of (7.4). Thus,
the radial projection (θ∗xk) does not lie inside the free disposal conical hull
of the observed input–output bundles. In particular, θ∗x1k includes a negative
slack of c1δ

∗
1.

The optimization problem in (7.4) is best understood from the following
numerical example shown in Table 7.1 and the accompanying Figure 7.1.
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Table 7.1. Data for the two-input CRS example

Firm 1 2 3 4 5

Input 1 4 5 6 7 10
Input 2 7 10 6 3 2

Suppose that we have the input–output data for five firms. Because CRS is
assumed, we can scale the output bundle of each firm by its output quantity.
Table 7.1 shows the quantities of the two inputs used by each firm per unit of the
output. Points P1 through P5 show the input bundles per unit of the output.
The input isoquant for output level 1 is shown by the broken line AP1 P4 P5 B.

The efficient radial projection of the bundle x2 shown by the point P2 is the
point C(x1 = 4, x2 = 8) on the vertical segment of the isoquant. The CCR

0.67 4 5 6 7 10

−1 D

Input 2 (x2)

10

8

7

6

3

2

0

A

P2

C
E

P1

P3

P4

P5 B

Input 1 (x1)

0.25

Figure 7.1 Assurance region analysis and efficient nonradial projection.
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measure of efficiency of firm 2 is (θC = 0.8). But there is a 1-unit slack in
input x2 at the point C and the shadow price v2 equals 0.

Suppose, however, that the lower bound on the ratio of the shadow prices ( v2
v1

)
is 0.25. Now, define the direction vector β = (0.25, −1) shown by the point
D in the quadrant to the southeast of the origin. Next, consider the positive
linear combination µ = θx2 + δβ. We may freely choose nonnegative values
of θ and δ subject to the constraint that the resulting bundle µ lies in the
input requirement set of the unit output level. This can be regarded as the
feasibility constraint. Clearly, the point P2 with θ equal to 1 and δ equal to
0 is a trivial solution. The objective is to select the minimum value of θ that
satisfies the feasibility constraint when supplemented by the appropriate value
of δ. Clearly, (θ = 0.8, δ = 0) corresponding to the point C is a superior but
not the optimal solution. We move towards the origin along the ray OP2 and at
the same time move the minimum distance necessary in the direction defined
by β to reach a point in the feasible region. For (θ = 0.767, δ = 0.67), one
obtains the point P1 in the feasible set. If θ is reduced any further, there is
no value of δ for which θx2 + δβ would be a feasible point. Effectively, one
needs to draw a tangent with slope defined by the direction vector β to the
isoquant. The point of intersection of the ray OP2 with this tangent (point E
in this diagram) defines the optimal value of θ in AR analysis. The tangency
point is the optimal nonradial projection of the inefficient point P2.1

7.3 AR Analysis with Multiple Outputs and Inputs

In the preceding model for measuring input-oriented technical efficiency, re-
strictions on shadow prices in order to eliminate slacks were imposed only
for the inputs. It was assumed that the constraint for the single output will
always be binding and the shadow price will be strictly positive. Although this
assumption holds for the single-output case under CRS, output slacks can exist
even in the single-output case under VRS and in the multiple-output case under
CRS. For such models, one needs to impose restrictions on the shadow prices
of outputs as well. In this section, we consider an input-oriented model with
two outputs and two inputs under VRS.

Consider again a sample of N firms each producing two outputs (y1, y2)
using two inputs (x1, x2). Let x j = (xi j , x2 j ) be the input bundle and y j =
(yi j , y2 j ) the corresponding output bundle of firm j. Then, the dual LP form

1 The input-oriented AR efficiency of a firm can be interpreted as its “shadow” cost effi-
ciency.
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of the input-oriented CCR DEA model for firm k is

max u1 y1k + u2 y2k

s.t. u1 y1 j − u2 y2 j − v1x1 j − v2x2 j ≤ 0; ( j = 1, 2, . . . , N ); (7.5)

v1x1k + v2x2k = 1;

u1, u2, v1, v2 ≥ 0.

For AR analysis, we incorporate the restrictions

d1 ≤ u2

u1
≤ d2 (7.6)

along with

c1 ≤ v2

v1
≤ c2. (7.7)

Equivalently,

d1u1 − u2 ≤ 0. (7.8a)

− d2u1 + u2 ≤ 0. (7.8b)

c1v1 − v2 ≤ 0. (7.9a)

− c2v1 + v2 ≤ 0. (7.9b)

The dual of the LP problem (7.5) with the additional restrictions (7.8a–b) and
(7.9a–b) is the input-oriented AR problem:

min θ

s.t.
N∑

j=1

λ j y1 j + d1σ1 − d2σ2 ≥ y1k ;

N∑
j=1

λ j y2 j − σ1 + σ2 ≥ y2k ;

N∑
j=1

λ j xi j − c1δ1 + c2δ2 ≤ θxik ; (7.10)

N∑
j=1

λ j x2i j − δ1 + δ2 ≤ θx2k ;

λ j ≥ 0; ( j = 1, 2, . . . , N ); δ1, δ2, σ1, σ2 ≥ 0; θ unrestricted.
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Table 7.2. Data for the two-output two-input
example of AR analysis

Firm 1 2 3 4 5

Output 1 9 10 12 14 18
Output 2 12 20 15 16 4
Input 1 6 4 3 6 2
Input 2 5 2 7 8 10

For a numerical example, consider the input–output data shown in Table 7.2.
Assume further that

0.33 ≤ u2

u1
≤ 2 and 0.25 ≤ v2

v1
≤ 4.

Then, the input-oriented AR efficiency of firm 1 is 0.4739 with (λ∗
2 =

0.6582, λ∗
5 = 0.1053) at the optimal solution. Further, σ ∗

1 equals 1.5845. This
positive value implies that the lower bound on the ratio of shadow prices of out-
puts is binding. As argued before, this happens when the unrestricted shadow
price of output 2 (u2) equals 0. The input-oriented CCR technical efficiency
of firm 1, by contrast, is 0.5031. A positive slack of 2.4224 units in output 2
exists at the optimal solution and the optimal shadow price of this output is 0.
Imposition of restrictions on the shadow prices rules out the presence of slacks
in any input or output at the optimal solution and yields a lower measure of
technical efficiency.

In the examples considered previously, shadow prices of inputs or outputs
are restricted separately. In a linked AR model, bounds are imposed on the
ratios of shadow prices of inputs and outputs. For example, in the two-input,
two-output case, we may specify the bounds

a1 ≤ u2

u1
≤ a2; (7.11)

b1 ≤ v1

u1
≤ b2; (7.12)

c1 ≤ v2

u1
≤ c2. (7.13)

Equivalently,

a1u1 − u2 ≤ 0; (7.14a)

− a2u1 + u2 ≤ 0; (7.14b)
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b1u1 − v1 ≤ 0; (7.15a)

− b2u1 + v1 ≤ 0; (7.15b)

c1u1 − v2 ≤ 0; (7.16a)

− c2u1 + v2 ≤ 0. (7.16b)

The linked AR model in the multiplier form consists of problem (7.10) with
the added restrictions (7.14a–b), (7.15a–b), and (7.16a–b). The dual of the
multiplier problem is the input-oriented linked AR problem:

min θ

s.t.
N∑

j=1

λ j y1 j + a1α1 − a2α2 + b1β1 − b2β2 + c1γ1 − c2γ2 ≥ y1k ;

N∑
j=1

λ j y2 j − α1 + α2 ≥ y2k ;

N∑
j=1

λ j xi j − β1 + β2 ≤ θxik ; (7.17)

N∑
j=1

λ j x2i j − γ1 + γ2 ≤ θx2k ;

λ j ≥ 0; ( j = 1, 2, . . . , N ); α1, α2, β1, β2, γ1, γ2 ≥ 0; θ unrestricted.

7.4 Cone Ratio Analysis

Charnes, Cooper, and Sun, Huang (1990) incorporate the upper and lower
bounds on the ratio of shadow prices in a different way. They recognize that
the restrictions define a convex cone in the positive quadrant in the multiplier of
shadow price space. This is shown in Figure 7.2 for the two-input case. Consider
the points A (v1 = 1, v2 = c1) and B (v1 = 1, v2 = c2). All points in the cone
formed by the rays OB and OA through the origin satisfy the restrictions on
the ratio of the shadow prices. Thus, the feasible set of the shadow prices can
be represented by the cone formed by all positive linear combinations of the
two points A and B :

W = {v1 = ρ1 + ρ2; v2 = c1ρ1 + c2ρ2; ρ1, ρ2 ≥ 0} (7.18)

         
 

 



P1: JsY
CB688-07 CB688-RAY CB688-Ray-v1.cls January 22, 2004 16:14

7.4 Cone Ratio Analysis 167

1

Shadow Price 2 (v2)

c2

c1

The Set W

B

A

Shadow Price 1 (v1)

Figure 7.2 Bounds on the ratio of multipliers and the cone of feasible shadow prices.

If we restrict the multipliers in (7.2) to lie in W above, we get the transformed
model:

max uyk

s.t. uy j − (ρ1 + ρ2)x1 j − (c1ρ1 + c2ρ2)x2 j ≤ 0; ( j = 1, 2, . . . , N ); (7.19)

(ρ1 + ρ2)x1k + (c1ρ1 + c2ρ2)x2k = 1;

u, ρ1, ρ2 ≥ 0.

Define the transformed variables

x̄1 j = x1 j + c1x2 j (7.20a)

and

x̄2 j = x1 j + c2x2 j (7.20b)

Then, (7.19) can be revised as

max uyk

s.t. uy j − ρ1 x̄1 j − ρ2 x̄2 j ≤ 0; ( j = 1, 2, . . . , N ); (7.21)

         
 

 



P1: JsY
CB688-07 CB688-RAY CB688-Ray-v1.cls January 22, 2004 16:14

168 Dealing with Slacks: Assurance Region/Cone Ratio Analysis

Table 7.3. Transformed data for the two-input CRS example

Firm 1 2 3 4 5

(Transformed) Input 1 5.75 7.5 7.5 7.75 10.5
(Transformed) Input 2 32 45 30 19 18

ρ1 x̄1k + ρ2 x̄2k = 1;

u, ρ1, ρ2 ≥ 0.

The dual of the problem (7.21) is

min θ

s.t.
N∑

j=1

λ j y j ≥ yk ;

N∑
j=1

λ j x̄1 j ≤ θ x̄1k ; (7.22)

N∑
j=1

λ j x̄2 j ≤ θ x̄2k ;

λ j ≥ 0; ( j = 1, 2, . . . , N ); θ unrestricted.

This is, clearly, an input-oriented CCR model. Consider again the input bundles
shown in Table 7.1. The transformed input quantities of the firms considered
in the numerical example are shown in Table 7.3 for c1 = 0.25 and c2 = 4.
In Figure 7.3, points P1 through P5 show the actual input bundles and Q1

through Q5 denote the transformed input bundles. The input isoquant defined
by these transformed input quantities is the broken line RQ1 Q4 Q5S. The radial
efficient projection of the bundle Q2 is the point T on the vertical segment
RQ1. The CCR input-oriented efficiency measure of firm 2 relative to the
transformed isoquant shown in Figure 7.3 is its CR efficiency for the upper
and lower bounds specified for the shadow price ratio of inputs.

7.5 An Empirical Application of AR Analysis

In this section, we evaluate the input-oriented AR technical efficiency of firm
#89 from the Christensen–Greene data set of U.S. electrical utilities described
earlier and shown in Chapter 6. We assume that the technology exhibits VRS
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Figure 7.3 Cone-ratio analysis, transformed inputs, and reconstruction of the isoquant.

so that the appropriate model is the restricted version of the input-oriented
BCC DEA problem.

In AR analysis, the upper and lower bounds on the shadow price ratios need to
be specified with great care. In situations where no guidance can be found from
the market, one needs to rely on the opinions of experts or the practitioners.
After all, the shadow price of any input represents the imputed value of its
marginal product. It is sensible to assume that the manager at the production
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facility would have a reasonable estimate of the marginal rate of substitution
between a pair of inputs. Alternatively, one may look at the shadow prices of
inputs from the optimal solution of the CCR or BCC model for the firms that
have no input slacks. The bounds on the relative shadow prices can be specified
as the 5th-percentile and the 95th-percentile of the empirical distribution of
the ratios of shadow prices of pairs of inputs for these firms. In the present
application, actual prices of inputs are available from the Christensen–Greene
data. The appropriate percentiles of the distribution of the actual price ratios
were used to define the following bounds:

168.610 ≤ vL

vF
≤ 381.637 and 1.4451 ≤ vK

vF
≤ 3.7812.

Here vK, vL, and vF are the shadow prices of the capital, labor, and fuel input,
respectively.

Exhibit 7.1 shows the SAS program for the input-oriented AR analysis of
firm #89. Its output quantity appears in the right-hand side of the output con-
straint and its input quantities appear (with a negative sign) in the appropriate
rows of the column for THETA. The bounds defined previously appear with
the appropriate signs in the inequality constraint for the labor input.

Exhibit 7.2 shows the SAS output from the program. The AR efficiency of
the firm is 0.7886. At the optimal solution, the variables C1 and D1 associated,
respectively, with the lower bounds of the labor–fuel price ratio and the capital–
fuel price are both positive. This implies that both the lower bounds are binding.
Indeed, at the optimal solution of the input-oriented BCC model there exist
20.969 units of slack in the labor input and 233.77 units of slack in the capital
input. Thus, shadow prices of both inputs equal 0. The standard BCC efficiency
measure of 0.8091 does not reflect the presence of these slacks.

7.6 Weak Disposability and Congestion

We have assumed so far that both inputs and outputs are freely disposable.
Thus, if the input bundle x0 can produce the output bundle y0, then any input
bundle x ≥ x0 can also produce y0. Similarly, any output bundle y ≤ y0 can
also be produced from x0 and, therefore, from all x ≥ x0. This implies that an
increase in any input cannot have a negative impact on the producible output.
In other words, negative marginal productivity of any input is ruled out. The
simple intuition behind this assumption is that the additional input quantities
can be left idle at no cost. Similarly, one can get rid of appropriate quantities
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Exhibit: 7.1. The SAS program for an AR analysis of firm #89

OPTIONS NOCENTER;

DATA UPDATED;

INPUT FIRM KWH LABOR CAPITAL FUEL;

C=1;D=0;DROP FIRM;

CARDS;
1 8 1.0204 1.376 2.973

2 14 2.6902 2.594 3.485

3 50 1.9827 0.668 11.630

4 65 2.3754 2.364 15.767

5 67 2.3251 4.013 9.717

6 90 4.5563 3.007 27.064

. .. .. .. ..

. .. .. .. ..

. .. .. .. ..

. .. .. .. ..

86 18455 244.193 297.329 2091.73

87 19445 239.797 364.271 2217.38

88 21956 132.812 323.585 2306.28

89 22522 233.765 384.349 2459.34

90 23217 138.172 267.667 2393.17

91 24001 155.437 414.068 2478.45

92 27118 236.563 528.823 2832.44

93 27708 144.754 309.101 2867.48

94 29613 403.141 593.415 3687.48

95 30958 319.464 419.813 3608.86

96 34212 192.852 285.081 3318.65

97 38343 123.068 562.133 3827.24

98 46870 440.530 851.127 5047.70

99 53918 382.789 566.391 5541.24
;

PROC TRANSPOSE OUT=NEXT;

DATA MORE;

INPUT THETA C1 C2 D1 D2 _TYPE_ $ _RHS_;

CARDS;
0 0 0 0 0 ≥ 0

0 1 −1 0 0 ≤ 0

0 −168.610 381.637 −1.4451 3.7812 ≤ 0

0 0 0 1 −1 ≤ 0

0 0 0 0 0 = 1

1 0 0 0 0 MIN .
;

DATA LAST; MERGE NEXT MORE;
IF _N_ =1 THEN _RHS_=COL89;
IF _N_ =2 THEN THETA=-COL89;
IF _N_ =3 THEN THETA=-COL89;
IF _N_ =4 THEN THETA=-COL89;
PROC PRINT;
PROC LP;
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Exhibit: 7.2. Output the SAS program for measuring the input-oriented
AR efficiency of firm #89

Solution Summary

Objective Value 0.7886086

Variable Summary

Variable Reduced

Col Name Status Type Price Activity Cost

1 COL1 NON-NEG 0 0 0.1855234

2 COL2 NON-NEG 0 0 0.1860205

3 COL3 NON-NEG 0 0 0.1870684

4 COL4 NON-NEG 0 0 0.1882051

5 COL5 NON-NEG 0 0 0.1860517

6 COL6 NON-NEG 0 0 0.191907

7 COL7 NON-NEG 0 0 0.1864775

8 COL8 NON-NEG 0 0 0.1873612

9 COL9 NON-NEG 0 0 0.1891904

10 COL10 NON-NEG 0 0 0.189171

11 COL11 NON-NEG 0 0 0.2033097

12 COL12 NON-NEG 0 0 0.1932018

13 COL13 NON-NEG 0 0 0.1927308

14 COL14 NON-NEG 0 0 0.1810987

15 COL15 NON-NEG 0 0 0.1976

16 COL16 NON-NEG 0 0 0.1986366

17 COL17 NON-NEG 0 0 0.2017502

18 COL18 NON-NEG 0 0 0.1968665

19 COL19 NON-NEG 0 0 0.1874794

20 COL20 NON-NEG 0 0 0.1922033

21 COL21 NON-NEG 0 0 0.1882481

22 COL22 NON-NEG 0 0 0.187992

23 COL23 NON-NEG 0 0 0.1919407

24 COL24 NON-NEG 0 0 0.1874827

25 COL25 NON-NEG 0 0 0.2046215

26 COL26 NON-NEG 0 0 0.2325758

27 COL27 NON-NEG 0 0 0.20667

28 COL28 NON-NEG 0 0 0.18891

29 COL29 NON-NEG 0 0 0.196365

30 COL30 NON-NEG 0 0 0.1909114

31 COL31 NON-NEG 0 0 0.1954971

32 COL32 NON-NEG 0 0 0.2097236

33 COL33 NON-NEG 0 0 0.1825299

34 COL34 NON-NEG 0 0 0.1780828

35 COL35 NON-NEG 0 0 0.1785667

36 COL36 NON-NEG 0 0 0.1802246

(continued)
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Exhibit: 7.2. (continued)

Solution Summary

Objective Value 0.7886086

Variable Summary

Variable Reduced

Col Name Status Type Price Activity Cost

37 COL37 NON-NEG 0 0 0.1816211

38 COL38 NON-NEG 0 0 0.1770918

39 COL39 NON-NEG 0 0 0.1841414

40 COL40 NON-NEG 0 0 0.2022426

41 COL41 NON-NEG 0 0 0.1804555

42 COL42 NON-NEG 0 0 0.1751253

43 COL43 NON-NEG 0 0 0.1937723

44 COL44 NON-NEG 0 0 0.1849568

45 COL45 NON-NEG 0 0 0.1793406

46 COL46 NON-NEG 0 0 0.1800274

47 COL47 NON-NEG 0 0 0.1761699

48 COL48 NON-NEG 0 0 0.211826

49 COL49 NON-NEG 0 0 0.1753318

50 COL50 NON-NEG 0 0 0.1663397

51 COL51 NON-NEG 0 0 0.1678038

52 COL52 NON-NEG 0 0 0.2185058

53 COL53 NON-NEG 0 0 0.1847202

54 COL54 NON-NEG 0 0 0.0901179

55 COL55 NON-NEG 0 0 0.1776312

56 COL56 NON-NEG 0 0 0.1824615

57 COL57 NON-NEG 0 0 0.1904422

58 COL58 NON-NEG 0 0 0.1728417

59 COL59 NON-NEG 0 0 0.1875133

60 COL60 NON-NEG 0 0 0.1702195

61 COL61 NON-NEG 0 0 0.175627

62 COL62 NON-NEG 0 0 0.1886531

63 COL63 NON-NEG 0 0 0.1517504

64 COL64 NON-NEG 0 0 0.1615404

65 COL65 NON-NEG 0 0 0.1692143

66 COL66 NON-NEG 0 0 0.1681635

67 COL67 NON-NEG 0 0 0.1427545

68 COL68 NON-NEG 0 0 0.251351

69 COL69 NON-NEG 0 0 0.1585801

70 COL70 NON-NEG 0 0 0.1797167

71 COL71 NON-NEG 0 0 0.1644214

72 COL72 NON-NEG 0 0 0.1646821

73 COL73 NON-NEG 0 0 0.1912144

74 COL74 NON-NEG 0 0 0.1523047

(continued)
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Exhibit: 7.2. (continued)

Solution Summary

Objective Value 0.7886086

Variable Summary

Variable Reduced

Col Name Status Type Price Activity Cost

75 COL75 NON-NEG 0 0 0.2101113

76 COL76 NON-NEG 0 0 0.1751041

77 COL77 NON-NEG 0 0 0.2169207

78 COL78 NON-NEG 0 0 0.1774835

79 COL79 NON-NEG 0 0 0.143184

80 COL80 NON-NEG 0 0 0.1941483

81 COL81 NON-NEG 0 0 0.2012529

82 COL82 NON-NEG 0 0 0.0919086

83 COL83 BASIC NON-NEG 0 0 0.6603028

84 COL84 NON-NEG 0 0 0.1395573

85 COL85 NON-NEG 0 0 0.1263007

86 COL86 NON-NEG 0 0 0.2470343

87 COL87 NON-NEG 0 0 0.2555104

88 COL88 NON-NEG 0 0 0.1466592

89 COL89 NON-NEG 0 0 0.2113914

90 COL90 NON-NEG 0 0 0.1200046

91 COL91 NON-NEG 0 0 0.1361634

92 COL92 NON-NEG 0 0 0.1640404

93 COL93 NON-NEG 0 0 0.1052647

94 COL94 NON-NEG 0 0 0.4203306

95 COL95 NON-NEG 0 0 0.294027

96 COL96 BASIC NON-NEG 0 0 0.3396972

97 COL97 NON-NEG 0 0 0.0154791

98 COL98 NON-NEG 0 0 0.2073829

99 COL99 NON-NEG 0 0 0.040247

100 THETA BASIC NON-NEG 1 0 0.7886086

101 C1 BASIC NON-NEG 0 0 0.0003493

102 C2 NON-NEG 0 0 31.092224

103 D1 BASIC NON-NEG 0 0 0.1014444

104 D2 NON-NEG 0 0 0.1563664

105 _OBS1_ SURPLUS 0 0 0.0000432

106 _OBS2_ SLACK 0 0 27.063275

107 _OBS3_ SLACK 0 0 0.3657694

108 _OBS4_ SLACK 0 0 0.096746

(continued)
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Exhibit: 7.2. (continued)

Constraint Summary

Constraint S/S Dual

Row Name Type Col Rhs Activity Activity

1 _OBS1_ GE 105 22522 22522 0.0000432

2 _OBS2_ LE 106 0 0 -27.06327

3 _OBS3_ LE 107 0 0 -0.365769

4 _OBS4_ LE 108 0 0 -0.096746

5 _OBS5_ EQ . 1 1 -0.184373

6 _OBS6_ OBJECTVE . 0 0.7886086 .

of individual outputs from the bundle y0 in order to obtain a smaller bundle y
from the input bundle x0 at no additional cost. Indeed, this free disposability
assumption in conjunction with convexity leads to the free disposal convex hull
of the observed input–output bundles as the empirically constructed production
possibility set under VRS.

In many practical situations, however, inputs and/or outputs may not be freely
disposable. For example, in a power plant, electricity and smoke pollution are
joint outputs. One can reduce pollution without reducing power generation
only by using additional resources for pollution control. This is a case where
free disposability of outputs fails. Similarly, in farming, although irrigation has
a positive marginal impact on output, excessive rain or flooding does lead to
crop damage. One needs to use additional labor and capital equipment to pump
out the unwanted water from the field. One cannot simply let the flood water
remain on the ground without lowering output. Here, the negative marginal
productivity of water has to be neutralized by additional application of labor
and capital inputs.

Following Färe, Grosskopf, and Lovell (1994), one can distinguish between
strong and weak disposability of inputs and outputs. Strong disposability of
inputs implies that if x0 can produce y0, then x can also produce y0 as long
as x ≥ x0. Similarly, strong disposability of outputs implies that if x0 can
produce y0, then it can also produce y as long as y ≤ y0. In other words, strong
disposability is the same as what we have so far called free disposability.

Weak disposability, on the other hand, implies that only if all inputs are
increased proportionately from x0, then y0 remains a feasible output bundle.
Thus, if the negative marginal productivity of some input(s) causes a decline
in the output, proportionate increase in the other input(s) compensates for the
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Table 7.4. Data for the example of
weak disposability

Firm A B C D E

Input 1 6 7 8 12 18
Input 2 12 20 20 8 9

loss. Therefore, if x0 can produce y0, then βx0 can also produce y0 as long as
β ≥ 1. It may be noted that weak disposability is necessary but not sufficient
for strong disposability.

The production possibility set empirically constructed from a set of N ob-
served input–output bundles (x j , y j ) under the assumption of convexity, weak
disposability, and VRS can be expressed as

T V
W =

{
(x, y) : x = β

N∑
1

λ j x
j ; y = α

N∑
1

λ j y j ;
N∑
1

λ j

= 1; 0 ≤ α ≤ 1; β ≥ 1; λ j ≥ 0; ( j = 1, 2, . . . , N )

}
. (7.23)

This may be called the weak disposal convex hull of the observed input–
output bundles. In the single-output case, of course, y = αy0 and α ≥ 1
together imply y ≥ y0 so that strong and weak disposability of output are equiv-
alent. In that case, the corresponding input requirement set for the output level
y0 is:

VW(y0) =
{

x : x = β

N∑
1

λ j x
j ;

N∑
1

λ j y j ≥ y0;
N∑
1

λ j

= 1; 0 ≤ β ≤ 1; λ j ≥ 0; ( j = 1, 2, . . . , N )

}
. (7.23a)

Consider, for a simple example, a two-input, one-output case. Suppose that
output is freely disposable and inputs are only weakly disposable. Table 7.4
shows the input quantities of 6 hypothetical firms each producing 12 units of
the output.

Points A through E in Figure 7.4 show the input bundles of the individual
firms. Because all input bundles produce 12 units of the output, they all lie
in the input requirement set for y = 12. By convexity, all points in the closed
area ABC E D also lie inside V (y = 12). By weak disposability of inputs, all
radial expansion of points in this area also lie in the input requirement set of
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Figure 7.4 Input isoquants under strong and weak disposability assumptions.

the specified output level. Thus, the truncated cone represented by the area
R1 B ADE R2 is the weak disposal input requirement set for y = 12. If, on the
other hand, inputs were assumed to be strongly rather than weakly disposable,
the usual free disposal convex hull shown by the area S1 ADS2 would be the
relevant input requirement set.

Now, consider the input-oriented technical efficiency of firm C. If free dis-
posability is assumed, its radial projection onto the free-disposability isoquant
is the point F (x1 = 6, x2 = 15) and the usual BCC measure of efficiency is
θ = 3

4 . On the other hand, if only weak rather than strong (or free) disposabil-
ity is assumed, the relevant projection is the point G (x1 = 6 6

11 , x2 = 16 4
11 )

on the weak-disposability isoquant. In that case, the technical efficiency will
be θW = 9

11 . It may be noted that at this point the isoquant is upward sloping
and the marginal productivity of x2 is negative. This corresponds to a negative
shadow price for this input.
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Färe, Grosskopf, and Lovell attribute the difference between the two iso-
quants to input congestion and measure congestion efficiency of a firm as

ψ = θ

θW
. (7.24)

The DEA LP problem for measuring input-oriented technical efficiency of
firm k in the multiple-input, multiple-output case under weak disposability of
inputs is

min θ

s.t.
N∑

j=1
λ j yr j ≥ yrk ; (r = 1, 2, . . . , m);

N∑
j=1

λ j xi j = (α) θxik ; (i = 1, 2, . . . , n); (7.25)

N∑
j=1

λ j = 1;

λ j ≥ 0; ( j = 1, 2, . . . , N ); α ≥ 1; θ free.

Note that the input constraints are nonlinear in α and θ . But, as argued by
Färe, Grosskopf, and Lovell, α can be set equal to unity without affecting the
optimal value of the objective function. That reduces (7.24) to the following
LP problem:

min θ

s.t.
N∑

j=1
λ j yr j ≥ yrk ; (r = 1, 2, . . . , m);

N∑
j=1

λ j xi j = θxik ; (i = 1, 2, . . . , n); (7.26)

N∑
j=1

λ j = 1;

λ j ≥ 0; ( j = 1, 2, . . . , N ); θ free.

Exhibit 7.3 shows the SAS program for measuring the input-oriented weak-
disposal technical efficiency of firm 89 from the Christensen–Greene data set
considered earlier. Its only difference from a standard input-oriented BCC LP
is that the input constraints are equations rather than weak inequalities. The
relevant sections of the SAS output from this program appear in Exhibit 7.4.

         
 

 



P1: JsY
CB688-07 CB688-RAY CB688-Ray-v1.cls January 22, 2004 16:14

Exhibit: 7.3. The SAS program for weak-disposal input-oriented
technical efficiency of firm #89

OPTIONS NOCENTER;
DATA UPDATED;
INPUT FIRM KWH LABOR CAPITAL FUEL;
C=1;D=0;DROP FIRM;
CARDS;
1 8 1.0204 1.376 2.973

2 14 2.6902 2.594 3.485

3 50 1.9827 0.668 11.630

4 65 2.3754 2.364 15.767

5 67 2.3251 4.013 9.717

6 90 4.5563 3.007 27.064

. .. .. .. ..

. .. .. .. ..

. .. .. .. ..

. .. .. .. ..

86 18455 244.193 297.329 2091.73

87 19445 239.797 364.271 2217.38

88 21956 132.812 323.585 2306.28

89 22522 233.765 384.349 2459.34

90 23217 138.172 267.667 2393.17

91 24001 155.437 414.068 2478.45

92 27118 236.563 528.823 2832.44

93 27708 144.754 309.101 2867.48

94 29613 403.141 593.415 3687.48

95 30958 319.464 419.813 3608.86

96 34212 192.852 285.081 3318.65

97 38343 123.068 562.133 3827.24

98 46870 440.530 851.127 5047.70

99 53918 382.789 566.391 5541.24
;
PROC TRANSPOSE OUT=NEXT;
DATA MORE;
INPUT THETA _TYPE_ $ _RHS_;
CARDS;
0 ≥ 0
0 = 0
0 = 0
0 = 0
0 = 1
1 MIN .
;
DATA LAST; MERGE NEXT MORE;
IF _N_=1 THEN _RHS_=COL89;
IF _N_=2 THEN THETA=-COL89;
IF _N_=3 THEN THETA=-COL89;
IF _N_=4 THEN THETA=-COL89;
∗PROC PRINT;
PROC LP;
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Exhibit: 7.4. SAS output of weak-disposal input-oriented DEA
problem for firm #89

Solution Summary

Objective Value 0.9017533

Variable Summary

Variable Reduced

Col Name Status Type Price Activity Cost

1 COL1 NON-NEG 0 0 0.2020575

2 COL2 NON-NEG 0 0 0.1932577

3 COL3 NON-NEG 0 0 0.2067098

4 COL4 NON-NEG 0 0 0.2057375

5 COL5 NON-NEG 0 0 0.1962883

6 COL6 NON-NEG 0 0 0.2066248

7 COL7 NON-NEG 0 0 0.2040478

8 COL8 NON-NEG 0 0 0.2033325

9 COL9 NON-NEG 0 0 0.217016

10 COL10 NON-NEG 0 0 0.2086025

11 COL11 NON-NEG 0 0 0.2098209

12 COL12 NON-NEG 0 0 0.1866098

13 COL13 NON-NEG 0 0 0.1957806

14 COL14 NON-NEG 0 0 0.2187085

15 COL15 NON-NEG 0 0 0.2267314

16 COL16 NON-NEG 0 0 0.1968015

17 COL17 NON-NEG 0 0 0.1411973

18 COL18 NON-NEG 0 0 0.1697394

19 COL19 NON-NEG 0 0 0.2078099

20 COL20 NON-NEG 0 0 0.2118756

21 COL21 NON-NEG 0 0 0.2292046

22 COL22 NON-NEG 0 0 0.23705

23 COL23 NON-NEG 0 0 0.2063667

24 COL24 NON-NEG 0 0 0.1710962

25 COL25 NON-NEG 0 0 0.1933132

26 COL26 NON-NEG 0 0 0.38369

27 COL27 NON-NEG 0 0 0.1967211

28 COL28 NON-NEG 0 0 0.2494317

29 COL29 NON-NEG 0 0 0.2243522

30 COL30 NON-NEG 0 0 0.200539

31 COL31 NON-NEG 0 0 0.2444557

32 COL32 NON-NEG 0 0 0.2407444

33 COL33 NON-NEG 0 0 0.2258599

34 COL34 NON-NEG 0 0 0.235017

35 COL35 NON-NEG 0 0 0.1890707

36 COL36 NON-NEG 0 0 0.2886648

37 COL37 NON-NEG 0 0 0.2091523

38 COL38 NON-NEG 0 0 0.2307751

(continued)
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Exhibit: 7.4. (continued)

Solution Summary

Objective Value 0.9017533

Variable Summary

Variable Reduced

Col Name Status Type Price Activity Cost

39 COL39 NON-NEG 0 0 0.2012221

40 COL40 NON-NEG 0 0 0.2797046

41 COL41 NON-NEG 0 0 0.2371327

42 COL42 NON-NEG 0 0 0.2162704

43 COL43 NON-NEG 0 0 0.3244156

44 COL44 NON-NEG 0 0 0.1895991

45 COL45 NON-NEG 0 0 0.2405099

46 COL46 NON-NEG 0 0 0.2522802

47 COL47 NON-NEG 0 0 0.2478255

48 COL48 NON-NEG 0 0 0.2390433

49 COL49 NON-NEG 0 0 0.3927564

50 COL50 NON-NEG 0 0 0.2694382

51 COL51 NON-NEG 0 0 0.3501387

52 COL52 NON-NEG 0 0 0.2285468

53 COL53 NON-NEG 0 0 0.1787674

54 COL54 NON-NEG 0 0 0.0442541

55 COL55 NON-NEG 0 0 0.2430822

56 COL56 NON-NEG 0 0 0.2233397

57 COL57 NON-NEG 0 0 0.2262268

58 COL58 NON-NEG 0 0 0.242655

59 COL59 NON-NEG 0 0 0.2414742

60 COL60 NON-NEG 0 0 0.1787925

61 COL61 NON-NEG 0 0 0.3866716

62 COL62 NON-NEG 0 0 0.1808296

63 COL63 NON-NEG 0 0 0.0507803

64 COL64 NON-NEG 0 0 0.2476015

65 COL65 NON-NEG 0 0 0.2730449

66 COL66 NON-NEG 0 0 0.4877261

67 COL67 NON-NEG 0 0 0.5117101

68 COL68 NON-NEG 0 0 0.0238304

69 COL69 NON-NEG 0 0 0.4344035

70 COL70 NON-NEG 0 0 0.4861037

71 COL71 NON-NEG 0 0 0.0679328

72 COL72 NON-NEG 0 0 0.215604

73 COL73 NON-NEG 0 0 0.3033483

74 COL74 NON-NEG 0 0 0.285594

75 COL75 NON-NEG 0 0 0.2175575

76 COL76 NON-NEG 0 0 0.3097695

77 COL77 NON-NEG 0 0 0.3636957

(continued)
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Exhibit: 7.4. (continued)

Solution Summary

Objective Value 0.9017533

Variable Summary

Variable Reduced

Col Name Status Type Price Activity Cost

78 COL78 NON-NEG 0 0 0.6391532

79 COL79 NON-NEG 0 0 0.5151

80 COL80 NON-NEG 0 0 0.1687223

81 COL81 NON-NEG 0 0 0.248997

82 COL82 NON-NEG 0 0 0.650394

83 COL83 BASIC NON-NEG 0 0 0.4920294

84 COL84 NON-NEG 0 0 0.5153106

85 COL85 NON-NEG 0 0 0.6748292

86 COL86 NON-NEG 0 0 0.0172507

87 COL87 BASIC NON-NEG 0 0 0.2626461

88 COL88 NON-NEG 0 0 0.4847004

89 COL89 NON-NEG 0 0 0.0982467

90 COL90 NON-NEG 0 0 0.5969463

91 COL91 NON-NEG 0 0 0.3122729

92 COL92 BASIC NON-NEG 0 0 0.1116816

93 COL93 NON-NEG 0 0 0.7862203

94 COL94 NON-NEG 0 0 0.0022022

95 COL95 NON-NEG 0 0 0.5107996

96 COL96 NON-NEG 0 0 0.8013073

97 COL97 NON-NEG 0 0 0.9269487

98 COL98 BASIC NON-NEG 0 0 0.1336429

99 COL99 NON-NEG 0 0 0.943849

100 THETA BASIC NON-NEG 1 0 0.9017533

101 _OBS1_ SURPLUS 0 0 0.0000492

Constraint Summary

Constraint S/S Dual

Row Name Type Col Rhs Activity Activity

1 _OBS1_ GE 101 22522 22522 0.0000492

2 _OBS2_ EQ . 0 0 0.0040911

3 _OBS3_ EQ . 0 0 −0.001081
4 _OBS4_ EQ . 0 0 0.0018285

5 _OBS5_ EQ . 1 1 −0.205927
6 _OBS6_ OBJECTVE . 0 0.9017533 .
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The optimal value of the objective function (0.90175) measures the input-
oriented weak-disposal technical efficiency of firm #89. This is substantially
higher than the efficiency measure (0.80914) that one gets from the standard
BCC model based on free disposability. Thus, a measure of its congestion
efficiency is

ψ = 0.80914

0.90175
= 0.8890.

Obviously, a value of ψ less than unity implies the presence of input congestion.
It does not, however, reveal which specific inputs are causing congestion at
the projected point on the weak-disposability isoquant. Färe, Grosskopf, and
Lovell suggest the following strategy for identifying the congestive inputs.
First, the input vector x may be arbitrarily partitioned as (xS, xW). Inputs in
the subvector xS are treated as freely (i.e., strongly) disposable whereas those
in xW are treated as weakly disposable. This implies that in the relevant DEA
problem, the input restrictions take the form of an equality for each input that is
an element of xW whereas a weak inequality restriction applies to other inputs.
If the optimal θW from this partitioned model coincides with the θ obtained from
a standard BCC model where all inputs are treated as freely disposable, one
can infer that inputs currently regarded as weakly disposable are not causing
congestion. But a value of ψ less than unity confirms that there has to be at
least one input that is not freely disposable. One would, then, have to consider a
different partition of the input vector x into freely and weakly disposable sub-
vectors.

Clearly, when there is no slack in any individual input at the optimal radial
projection under the free-disposability assumption, changing the restriction to
an equality from a weak inequality for the relevant input will not make any
difference. Hence, only inputs that exhibit positive slacks at the efficient radial
projection under free disposability are potential sources of congestion. In the
case of firm #89 considered previously, two inputs – labor and capital – had
positive slacks at the optimal solution of the BCC model. There was no input
slack in the fuel input. Thus, fuel is not a source of congestion. This is verified
by the fact that when fuel is treated as weakly disposable when labor and
capital are regarded as freely disposable, the measure of technical efficiency
does not change from what we get from a BCC model. On the other hand,
when either labor or capital is treated, in isolation, as weakly disposable, the
technical efficiency measure increases. Hence, both capital and labor are found
to be sources of congestion in the case of this firm.
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A general note of caution is strongly warranted at this point. Presence of
input congestion is quite unlikely in behavioral data. Even though the marginal
productivity of an input could eventually become negative, it is difficult to
imagine a producer actually using the input at that level – especially when it
has to be procured at a cost. In the example of crop damage due to flooding,
excessive irrigation does occur, but only as an act of Nature rather than at the
discretion of the farmer. Similarly, the frequently cited case of power generation
and air pollution as an example of weak disposability of outputs is somewhat
misleading. If one defines a smoke-free environment rather than the degree
of pollution as the relevant output, there should be no primary problem in
assuming free disposability of outputs. There can, of course, be joint products
like beef and cowhide where only weak disposability of outputs holds. In most
cases, however, the assumption of weak rather than strong disposability is likely
to rationalize simple technical inefficiency.

The diagram shown in Figure 7.5 best explains this. Suppose that we have
a sample of 5 firms, each producing output y0. The points A, B, C, D, and

S1

R1

S2

R2

A

G

H

B
C

Input (x1)

Input (x1)

J

F

E
D

0

Figure 7.5 The effect of the availability of additional observations
on efficiency measurement.
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E show their input bundles. Then, the empirically constructed isoquant for
output y0 is the broken line S1 B DS2 under free disposability and R1 AB DE R2

under weak disposability of inputs. Now, suppose that bundles shown by points
F and G also can produce y0. In that case, the isoquant would include the
segment FBDG. The efficient projection of the point A would be the point
H and the technical efficiency of the firm would be O H

O A . When points F
and G are not observed, the projection of A onto the free-disposal isoquant
is the point J and the associated efficiency measure is O J

O A . Note that this
is closer to the “true” efficiency than the 100% efficiency measure obtained
under weak disposability. The firm at point A is using more of both inputs
compared to the one at point B to produce the same level of output. Normally,
this would be evidence of inefficiency. But assumption of weak disposability
rationalizes the performance of this firm. Therefore, one should consider a
possibility of input congestion and implied negative shadow prices only in
very special situations and a priori rather than on empirical evidence from a
sample.

7.7 Summary

At a more fundamental level, availability of inputs acts as a constraint on
the producer because there are both private and social opportunity costs of
these resources. Similarly, outputs yield private and social benefits. Ideally,
shadow prices of both inputs and outputs should be strictly positive. When
input or output slacks are present at any point on the frontier, the associated
shadow prices become zero. But, in most applications, slacks arise principally
out of the limited range of variation of inputs and outputs in any sample of
observed points. A parametric characterization of the technology allows out-
of-sample extrapolation showing a strictly increasing production function or
downward-sloping isoquants. The much weaker assumption underlying DEA
can merely project a horizontal production function outside the sample range.
Thus, the zero value of the shadow price of any resource does not imply that
there is no opportunity cost to it. It merely recognizes that there is not sufficient
information in the data to evaluate its marginal contribution.

There have been many attempts in the DEA literature to handle the presence
of slacks. The earliest attempt was by Charnes, Cooper, and Rhodes (1979),
who modified the original CCR model and incorporated an infinitesimally
small penalty for slacks in the objective function. AR analysis and the com-
parable CR analysis put prior restrictions on the shadow prices. This enlarges
the production possibility set beyond the usual free disposal convex hull (or
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the conical hull, in the case of CRS) of the observed bundles and rules out
horizontal or vertical segments of input or output isoquants. Although AR/CR
analysis provides a potentially helpful tool for obtaining a more accurate mea-
sure of technical efficiency, the multiplier bounds should be specified carefully.
The weak disposability and congestion approach works in the opposite direc-
tion by actually contracting the production possibility set. Whereas vertical or
horizontal segments of isoquants are ruled out, strictly upward rising segments
are permitted. By implication, zero shadow prices are ruled out but negative
shadow prices are allowed. In the absence of compelling prior reasons, assum-
ing weak disposability may lead to rationalizing inefficiency as congestion.

Guide to the Literature

AR analysis was introduced by Thompson, Singleton, Thrall, and Smith (1986)
and was further developed by Thompson, Langemeir, Lee, Lee, and Thrall
(1990). CR analysis was developed by Charnes, Cooper, Wei, and Huang (1989)
and Charnes, Cooper, Huang, and Sun (1990). Dyson and Thanassoulis (1988);
Roll, Cook, and Golany (1991); and Roll and Golany (1993) consider the
efficiency implication of various types of restrictions on the multipliers.

Färe and Svensson (1980) introduced the concept of congestion in the con-
text of weak disposability of inputs. Färe and Grosskopf (1983) and Färe,
Grosskopf, and Lovell (1983, 1985) developed the measure of congestion effi-
ciency. The concept of weak disposability and congestion has been utilized by
Färe, Grosskopf, Lovell, and Pasurka (1989) and Färe, Grosskopf, Lovell, and
Yaiswarng (1993) for efficiency measurement and derivation of shadow prices
in the context of technologies involving some undesirable outputs. A different
approach to measuring input congestion was introduced by Brockett, Cooper,
Shin, and Wang (1998).
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8

Efficiency of Merger and Breakup of Firms

8.1 Introduction

The primary focus in technical efficiency analysis is on the observed input
and output quantities of any individual firm. A pair of input–output bundles is
deemed efficient if there is no potential for a radial increase in outputs without
any increase in inputs or for an equiproportionate reduction in inputs without
a reduction in outputs. In evaluating the technical efficiency of the merger of a
number of firms into a single firm, we go beyond the efficiency of the observed
input–output bundles of the concerned firms. Instead, we consider the output
producible by a single firm from the combined input bundles of these firms
and compare it with the total output from the efficient operation of the existing
firms operating as separate entities. Merger of firms is quite common in real
life. Megamergers between very large banks in the United States or between
major airlines like USAir and Piedmont are merely the more notable examples
of the ongoing restructuring process in many industries in recent years. There
are many reasons why firms decide to merge. But when the output from the
combined input bundle is greater than the combined output from the constituent
individual input bundles, merger improves technical efficiency.

The flip side of mergers is the breakup of a single firm into a number of
smaller firms. The best example from recent years is the breakup of the Bell
Telephone companies in the United States into a number of independent Baby
Bell firms.1 Again, whereas breakup of a firm may be justified on a variety of
grounds, such breakup would be rational on grounds of technical efficiency
when the combined output (at full efficiency) of the constituent smaller units
exceeds the technically efficient output of the large firm.

1 For two different perspectives both using a parametric approach on this restructuring of
the Bell System, see Evans and Heckman (1983) and Charnes, Cooper, and Sueyoshi
(1988).
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188 Efficiency of Merger and Breakup of Firms

In this chapter, we consider the technical efficiency gains from mergers
or breakup of firms. Potential gains from merger of two or more firms exist
when the production technology is superadditive. Similarly, in the presence of
subadditivity, breaking up an existing firm into several smaller firms would be
technically efficient. The theoretical concepts of and the conditions for super-
or subadditivity of the technology are discussed in Section 8.2. In Section 8.3,
we describe a decomposition proposed by Bogetoft and Wang (1996) of the
gain from merger into a returns to scale effect and a harmony effect. This
is followed by an empirical example in Section 8.4. The related concept of
economies of scope is considered and a relevant DEA model is introduced
in Section 8.5. Next, we consider the question of the breakup of a firm and
the related concept of “size efficiency” introduced by Maindiratta (1990) in
Section 8.6. An empirical example of measuring size efficiency is also included.
Section 8.7 summarizes the main points of this chapter.

8.2 Additivity Properties of Technologies

Consider, for simplicity, a single-output, single-input technology. Let the pro-
duction function be

y∗ = f (x) (8.1a)

where y∗ is the maximum output producible from the input x . Then, the pro-
duction possibility set is

T = {(x, y) : y ≤ f (x)}. (8.1b)

As noted earlier, the production function is locally additive, if for n input
quantities xi (i = 1, 2, . . . , n),

f (x1 + x2 + · · · + xn) = f (x1) + f (x2) + · · · + f (xn). (8.2)

If, however,

f (x1 + x2 + · · · + xn) > f (x1) + f (x2) + · · · + f (xn) (8.3)

the production function is locally superadditive. When (8.2) holds for all n-
tuples of inputs, the technology is globally additive. Similarly, superadditivity
holds globally when (8.3) holds for all n-tuples of inputs. Conversely, the
technology is subadditive, if

f (x1 + x2 + · · · + xn) < f (x1) + f (x2) + · · · + f (xn). (8.4)
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As is shown herein, the sub/superadditivity properties of the technology are
closely related to but at the same time subtly different from its returns to scale
properties.

Consider a simple example. Let the production function be

f (x) = 2
√

x − 4, x ≥ 4. (8.5)

For the input quantities x1 = 6 and x2 = 18, the corresponding efficient output
levels are f (x1) = 0.8890 and f (x2) = 4.4853. Thus, the combined output of
two firms using these two input quantities at full technical efficiency is 5.3848.
On the other hand, the efficient output of a single firm using the combined input
quantity is f (x1 + x2) = 5.7980. Thus, merger of the two firms would result
in a 7.67% increase in the producible output. For this pair of input quantities,
the production function exhibits superadditivity.

Now, take a different example. Suppose the two input quantities were x1 = 9
and x2 = 25. This time, the respective output quantities would be f (x1) = 2,

f (x2) = 6, and f (x1 + x2) = 7.6619. Thus, merger would result in a 4.23%
decline in the maximum producible output from the separate operation of the
individual firms. Hence, the production function exhibits subadditivity for this
pair of input quantities.

We now examine why, for the same underlying production function, we
get two different verdicts on the technical efficiency of mergers for these two
different pairs of input quantities. For this, we consider the expression

G(x1, x2) = f (x1 + x2) − [ f (x1) + f (x2)]. (8.6)

Define x̄ = 1
2 (x1 + x2) and f̄ (x1, x2) = 1

2 [ f (x1) + f (x2)].
Then,

G(x1, x2) = f (2x̄) − 2 f̄ (x1, x2). (8.7)

This may also be expressed as

G(x1, x2) = [ f (2x̄) − 2 f (x̄)] − 2[ f̄ (x1, x2) − f (x̄)]. (8.8)

The first expression in square brackets on the right-hand side relates to the
returns to scale at the mean input level x̄ and will be positive (negative) when
increasing (diminishing) returns to scale hold over the input range (x̄, 2x̄). The
other expression in square brackets pertains to the curvature of the production
function. If the production function is concave (convex), this expression is
negative (positive) so that (with the negative sign attached to it) it contributes
positively (negatively) to the gains from merger. This curvature component
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depends on the second derivative of the production function and also the dif-
ference between the two input levels. Assume that (x2 − x1) = δ > 0 so that
(x2 − x̄) = δ

2 and (x1 − x̄) = − δ
2 .

Then, a second-order Taylor’s series approximation of f (x) at x = x̄ is

f (x) = f (x̄) + (x − x̄) f ′(x̄) + 1

2
f ′′(x̄)(x − x̄)2. (8.9)

By this approximation,

f (x1) = f (x̄) + (x1 − x̄) f ′(x̄) + 1

2
f ′′(x̄)(x1 − x̄)2 (8.10a)

and

f (x2) = f (x̄) + (x2 − x̄) f ′(x̄) + 1

2
f ′′(x̄)(x2 − x̄)2. (8.10b)

Therefore,

f̄ (x1, x2) = f (x̄) + 1

8
f ′′(x̄)δ2. (8.11)

Hence, the curvature component can be approximated as − δ2

8 f ′′(x̄). Thus,
even when the returns-to-scale component is negative, a sufficiently positive
contribution of the curvature component may lead to overall positive gains
from a merger. When increasing returns to scale holds at both x1 and x2, gains
from merger would be positive. This can be shown as follows. Let x1+x2

x1
= β1

and x1+x2
x2

= β2. Thus, (x1 + x2) = β1x1 and (x1 + x2) = β2x2. Further, both

β1 and β2 exceed unity. Also, 1
β1

+ 1
β2

= 1. Hence, if increasing returns to scale
holds,

f (β1x1) = f (x1 + x2) > β1 f (x1) (8.12a)

and

f (β2x2) = f (x1 + x2) > β2 f (x2). (8.12b)

Thus, (
1

β1
+ 1

β2

)
f (x1 + x2) = f (x1 + x2) > f (x1) + f (x2). (8.13)

Of course, when globally increasing (decreasing) returns holds, gains from
merger will necessarily be positive (negative) for any pair of input quantities.
Hence, globally increasing returns to scale is a sufficient condition for superad-
ditivity of the technology implying positive gains from merger of smaller firms
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into a single large firm. That would be an example of natural monopoly. But,
as is evident from the numerical example provided previously, positive gains
from merger are possible in specific cases even when the production function
does not exhibit increasing returns everywhere. Indeed, in the example that
we considered, the most productive scale size was x∗ = 16. For 4 ≤ x < 16,

increasing returns to scale held, whereas diminishing returns to scale prevailed
for x > 16. Thus, in the first numerical example, x1 was in the region of in-
creasing returns but x2 was in the region of diminishing returns. Even then, gain
from merger was positive. This shows that prevalence of increasing returns at
both input levels is not necessary for merger to be technically efficient.

8.3 Measurement and Decomposition of Gains from Merger

In this section, we consider a DEA model for measuring the gain from the
merger of a number of firms. Bogetoft and Wang (1996) provide a measure of
merger efficiency and its multiplicative decomposition into a harmony effect
and a returns-to-scale effect.2

Consider the single-output, two-input technology defined by the production
function

y = g(x1, x2). (8.14)

The two firms 1 and 2 use the two input bundles x1 = (x11, x12) and x2 =
(x21, x22). Assume, initially, that the firms produce the levels of output yA

and yB , respectively, and both are technically efficient. Thus, both bundles
lie on the efficient subset of the isoquants shown in Figure 8.1. The points
A and B show the two input bundles. The point C represents the sum of the
two input bundles x1 and x2. Merger of the two firms will be efficient if the
bundle C produces greater output than yA + yD. First, define the point D
representing the input bundle x̄ = 1

2 (x1 + x2). Following Bogetoft and Wang,
we conceptualize the merger of the two firms as a two-step process. In the
first step, we consider a firm that uses the average input bundle x̄ . In the
second step, this average firm is doubled in scale to become the merged firm
shown by the point C . Define ȳ = 1

2 (yA + yB). Assuming that the isoquants
are convex, the bundle x̄ shown by the point D will produce output yD ≥ ȳ.
Bogetoft and Wang call this increase in output the harmony effect because if
the firms shared the combined input equally and used the identical (average)

2 Whereas Bogetoft and Wang consider input-oriented efficiency, the discussion of technical
efficiency here is output-oriented.
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Input (x1) 

Input (x2)

O 

yA

yB

yC

B 

C 

A D 

Figure 8.1 Output from the combined input bundles of two firms.

bundle, each would produce this higher level of output. Thus, the combined
output of two identical average firms would be 2yD . Next, consider the output
yT produced from the combined input bundle by a single firm. The efficiency
of merger can be measured as

M E (x1, x2) = yT

2ȳ
. (8.15)

When M E exceeds unity, potential gains from merger of the two firms would
be positive. We may further decompose the merger efficiency as

M E (x1, x2) =
(

yD

ȳ

)
·
(

yT

2yD

)
. (8.16)

The harmony effect is

H = yD

ȳ
(8.17a)

and the scale effect is

S = yT

2yD
. (8.17b)
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As noted previously, the harmony effect is generally greater than unity. But
the scale effect may be greater than, equal to, or less than unity depending on
whether increasing, constant, or diminishing returns holds at the average input
bundle.

We now consider the DEA model for measuring the output-oriented merger
efficiency and its components in the single-output, multiple-input case. As
before, let the vector x j = (x1 j , x2 j , . . . , xnj ) be the input bundle and the scalar
y j the output of firm j( j = 1, 2, . . . , N ). Suppose that we are considering the
potential gains from the merger of K firms – firm 1, firm 2, . . . , firm K . For
this, we proceed through the following steps:

Step 1: First solve the following output-oriented BCC DEA problem for each
firm k (k = 1, 2, . . . , K ):

max ϕk

s. t.
N∑

j=1

λ j y j ≥ ϕk yk ;

N∑
j=1

λ j x
j ≤ xk ;

N∑
j=1

λ j x
j = 1;

(8.18)

λ j ≥ 0; ( j = 1, 2, . . . , N ); ϕk free.

From the optimal solution of (8.18), construct the efficient input–output com-
bination (xk

∗, y∗
k ) where y∗

k = ϕ∗
k yk and xk

∗ is the slack-adjusted input bundle.
Note that xk

∗ lies on the efficient subset of the isoquant for the output level y∗
k .

Step 2: Construct the average input bundle

x̄ = 1

K

K∑
k=1

xk
∗

and the average output level

ȳ = 1

K

K∑
k=1

y∗
k .
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Step 3: Solve the BCC DEA problem

max ϕH

s.t.
N∑

j=1

λ j y j ≥ ϕH ȳ;

N∑
j=1

λ j x
j ≥ x̄ ;

N∑
j=1

λ j x
j = 1;

(8.19)

λ j ≥ 0; ( j = 1, 2, . . . , N ); ϕH free.

Step 4: Define the total (slack-adjusted) input bundle of the K firms,

xT = K x̄, (8.20a)

and the total output

y T = K ȳ. (8.20b)

Step 5: Solve the BCC DEA problem

max ϕT

subject to
N∑

j=1

λ j y j ≥ ϕT yT ;

N∑
j=1

λ j x
j ≤ xT;

N∑
j=1

λ j x
j = 1;

(8.21)

λ j ≥ 0; ( j = 1, 2, . . . , N ); ϕT free.

Step 6: Compute the merger efficiency as

M E = ϕT
∗ . (8.22a)

The harmony and scale components are computed as

H = ϕH
∗ (8.22b)
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and

S = ϕT
∗

ϕH∗
. (8.22c)

A value of M E greater than unity implies that gains from merger will be
positive whereas a value less than unity shows that it would be more efficient
to leave the firms as separate entities. As noted before, for a convex production
possibility set, H will be greater than unity. Finally, when S exceeds unity,
the merged firm produces more output than what two firms each using the
average input bundle would produce collectively. In this case, the returns-to-
scale effect favors a merger of the individual firms. It is possible that even
though S is less than unity, the harmony effect H dominates and overall M is
greater than unity. Several points need to be noted here. First, as emphasized
by Bogetoft and Wang, unless both bundles lie on the same isoquant, output of
the average bundle will incorporate some scale effect along with the harmony
effect.3 Second, one needs to adjust the observed input–output quantities of
the firms under consideration for merger for any technical inefficiency in the
output and for slacks in the inputs. In the multiple-output case, we need also
to adjust the optimal output bundles for slacks. However, even when output
slacks are present in the optimal solution of (8.20), no adjustment should be
made in the definition of ȳ for the DEA problem in (8.21). Otherwise, ϕT and
ϕH would not refer to radial expansion of the same output vector and, therefore,
the scale factor measure in (8.22c) will not be meaningful.

8.4 An Empirical Example of Evaluating Gain from Mergers

For this example, we consider Christensen–Greene’s electrical utilities data
set used in the earlier chapters. Specifically, we evaluate the potential gain
from the merger of utilities #43 and #53 (arbitrarily selected) from Table 6.3.
Table 8.1 shows the actual input–output quantities of the two firms considered
for merger.

Output-oriented BCC DEA models were run for each firm to eliminate
technical inefficiencies and relevant input slacks. The revised input–output
bundles, along with the aggregate and the average bundles, are shown in
Table 8.2.

3 In the differential decomposition shown in (8.9), the two output levels need not be equal.
However, when the two output bundles are far apart, the second-order approximation at
the mean output bundle will have a large approximation error.
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Table 8.1. Actual output and input quantities for U.S.
electrical utilities

Firm #43 Firm #53

Output 4148 6770
Labor 27.2748 50.4825
Fuel 48273 72407
Capital 4805.4 14797

The DEA problem (8.19) was solved for the average output and input
quantity data shown in the last column of Table 2. The optimal solution was
ϕH

∗ = 1.0152, implying the efficient output level 7252.9405 producible from
the average input bundle. Subsequently, the DEA problem (8.21) was solved
for the total input–output bundle shown in Table 8.2. The optimal solution was
ϕT

∗ = 0.981942 and the implied maximum output level of 14031.285 from the
merger of the two firms. Note that a value of ϕT

∗ less than unity implies that the
firm formed by the merger of the two separate firms being considered would
produce lower output than the combined output of the firms from their separate
input bundles. The merger efficiency is M E = 0.9819, a value less than unity.
This implies that it is more efficient to leave the two firms as separate entities
rather than to merge them into a single production unit. The harmony effect
H = ϕH

∗ = 1.0152 shows that two firms, each using the average input bun-
dle, can together produce 1.52% more output than what they would produce
collectively when using their different input bundles. But the scale effect

S = ϕT
∗

ϕH∗
= 0.98194

1.0151
= 0.96728

implies that a single firm using twice the average input bundle would produce
3.2718% lower output than what two firms could produce together if each used
the average input bundle. In this case, the negative scale effect overwhelms the
positive harmony effect.

Table 8.2. Efficient output and input quantities for U.S. electrical utilities

Firm #43 Firm #53 Total Average

Output 5314.1425 8975.1805 14289.32 7144.662
Labor 27.2748 50.4825 77.7609 38.88045
Fuel 48273 72407 120680 60340
Capital 4805.4 12341.901 17148.3 8574.151
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8.5 Economies of Scope and Gains from Diversification

In some cases, it is technically more efficient if an output bundle is produced
by a single diversified firm than if each individual output is produced by a
separate specialized firm. Such gains from a merger of several specialized
firms to form a diversified firm derive from what is known as economies of
scope. This section describes how one can use DEA to determine whether a
merger between two firms results in economies of scope.

For simplicity, consider the case of two outputs and n inputs. Further suppose
that the observed input–output data come from three groups of firms: A, B, and
C . Firms in group A produce only output 1, firms in group B produce output 2
only, and firms in group C produce both outputs. The output “bundles” of
the specialized firms can be expressed as y A = (y A

1 j , 0) and yB = (0, yB
2 j ); the

output bundle of a diversified firm is yC = (yC
1 j , yC

2 j ). Assume that firms from
all groups use all the inputs so that their input bundles are not specialized.
Next, consider two firms – one of type A and another of type B. Suppose that
their input and output bundles are

x A
0 = (

x A
10, x A

20, , . . . , x A
n0

)
and y A

0 = (
y A

10, 0
)

for the group A firm

and

x B
0 = (

x B
10, x B

20, , . . . , x B
n0

)
and yB

0 = (
0, yB

20

)
for the group B firm.

Let

θ∗A
0 = min θ : θx A

0 ∈ V
(
y A

0

)
and

θ∗B
0 = min θ : θx B

0 ∈ V
(
yB

0

)
.

Define

x∗A
0 = θ∗A

0 x A
0 − s∗A

0 , x∗B
0 = θ∗B

0 x B
0 − s∗B

0 , x AB
∗ = x∗A

0 + x∗B
0 , and

y AB
0 = y A

0 + yB
0 .

Here, the vectors s∗A
0 and s∗B

0 are the input slacks at the efficient radial projec-
tions of the input bundles of the specialized firms.
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The input set for the diversified output bundle yAB
0 can be specified as

follows:

V
(
yAB

0

) =
{

x :
∑
j∈A

λA
j x A

j +
∑
j∈B

λB
j x B

j +
∑
j∈C

λC
j xC

j ≤ x ;

∑
j∈A

λA
j y A

j +
∑
j∈B

λB
j yB

j +
∑
j∈C

λC
j yC

j ≥ yAB
0 ;

∑
j∈A

λA
j +

∑
j∈B

λB
j +

∑
j∈C

λC
j = 1; λA

j , λ
B
j , λ

C
j ≥ 0

}
.

(8.23)

There are positive economies of scope if there is any x ∈ V (yAB
0 ) : x ≤

xAB
∗ .

The efficient input bundles x∗A
0 and x∗B

0 can be obtained directly from the
optimal solution of the relevant input-oriented BCC models as follows:

θ∗A
0 = min θ

s.t.
∑
j∈A

λA
j y A

1 j +
∑
j∈C

λC
j yC

1 j ≥ y A
10;

∑
j∈A

λA
j x A

j +
∑
j∈C

λC
j xC

j − s A
0 = θx A

0 ;

∑
j∈A

λA
j +

∑
j∈C

λC
j = 1;

(8.24)

s A
0 ≥ 0; λA

j , λ
C
j ≥ 0.

and

θ∗B
0 = min θ

s.t.
∑
j∈A

λB
j yB

2 j +
∑
j∈C

λC
j yC

2 j ≥ yB
20;

∑
j∈A

λB
j x B

j +
∑
j∈C

λC
j xC

j − s B
0 = θx B

0 ;

∑
j∈A

λB
j +

∑
j∈C

λC
j = 1;

(8.25)

s B
0 ≥ 0; λB

j , λ
C
j ≥ 0.
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For the diversified model, we solve the following DEA problem:

max ι′z
s.t.

∑
j∈A

λA
j y A

1 j +
∑
j∈C

λC
j yC

1 j ≥ y A
10;

∑
j∈A

λB
j yB

2 j +
∑
j∈C

λC
j yC

2 j ≥ yB
20;

∑
j∈A

λA
j x A

j +
∑
j∈A

λB
j x B

j +
∑
j∈C

λC
j xC

j − z = xAB
∗ ;

(8.26)

z ≥ 0; λA
j , λ

B
j , λ

C
j ≥ 0.

In this problem, ι is a column vector with each element equal to 1, and z
is a vector of nonnegative input slacks. If the optimal value of the objective
function in this problem is greater than 0, then there is room for reducing at
least one input and positive economies of scope exist.

It is important to note that the DEA problem (8.26) may not have a feasi-
ble solution, even though feasible solutions do exist for the problems for the
specialized firms.

8.6 Breakup of a Large Firm

In this section, we describe a method introduced by Maindiratta (1990) to
determine whether it is technically more efficient to break up a large firm with
a specific input bundle into a number of smaller firms than to let it operate as a
single production unit. Again, consider the single-output, multiple-input case.
Clearly, when the production function is subadditive at the input bundle x0,
there exist K smaller input bundles xk (k = 1, 2, . . . , K ) such that

∑K
1 xk =

x0 and
∑K

1 f (xk) > f (x0). In this case, it is technically more efficient to break
up a single firm using the input bundle x0 into K smaller firms using the bundles
xk(k = 1, 2, . . . , K ). In that sense, a single firm using input x0 is too large.
Specifically, suppose that (x0, y0) is the observed input–output combination of
the firm. Further, let f (x0) = ϕ∗

0 y0 be the maximum output producible from
x0. Similarly, let yk

∗ = ϕ∗
k y0 = f (xk) be the maximum output producible from

the input bundle xk . Then, the K smaller bundles would collectively produce
the output

∑K
k=1 y∗

k = (
∑K

k=1 ϕ∗
k )y0 from the input bundle x0. Thus, the single

firm using the input bundle x0 is too large if
∑K

k=1 ϕ∗
k > ϕ∗

0 .
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We need to address two questions before we can proceed any further.
First, how do we decide the number of smaller firms that the existing firm
should be broken up into, if it is to be broken up at all? In other words, how
do we determine K ? Second, how do we determine the size of each con-
stituent input bundle after the breakup? We address the second question first.
To do this, set K to some positive integer value tentatively. Our objective
initially is to determine the composition of the K individual input bundles
that will maximize the collective output producible from them. Let x j be the
j th input bundle and y j the maximum output producible from x j . Clearly,
under the usual assumptions of DEA, (x j , y j ) would be a feasible input–
output combination as long as there exists some λ j = (λ1 j , λ2 j , . . . , λN j )
such that

∑N
s=1 λs j xs ≤ x j ,

∑N
s=1 λs j ys ≥ y j ,

∑N
s=1 λs j = 1, and λs j ≥ 0

(s = 1, 2, . . . , N ). The collective output from the K individual input bundles
would be

∑K
j=1 y j . The problem is to select the vectors λ j ( j = 1, 2, . . . , K )

so as to maximize ϕ where
∑K

j=1 y j ≥ ϕy0. For this, we solve the following
DEA problem:

max ϕ

s.t.
N∑

s=1

λs j x
s = x j ; ( j = 1, 2, . . . , K )

N∑
s=1

λs j ys = y j ; ( j = 1, 2, . . . , K )

K∑
j=1

x j ≤ x0;

K∑
j=1

y j ≥ ϕy0;

N∑
s=1

λs j = 1; ( j = 1, 2, . . . , K );

(8.27)

λs j ≥ 0; (s = 1, 2, . . . , N ; j = 1, 2, . . . , N ).

Suppose that the optimal solution yields the vectors λ
j
∗( j = 1, 2, . . . , K ). De-

fine the bundles x j
∗ = ∑N

s=1 λ∗
s j x

s . Then,
∑K

j=1 x j
∗ = ∑K

j=1(
∑N

s=1 λ∗
s j x

s) ≤
x0. Now, for each s (s = 1, 2, . . . , N ), define λ̄s = 1

K

∑K
j=1 λs j and construct
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an input bundle x̄ = ∑N
s=1 λ̄s xs . Then,

x̄ = 1

K

K∑
j=1

N∑
s=1

λs j x
s .

Similarly, define

ȳ =
N∑

s=1

λ̄s ys = 1

K

K∑
j=1

N∑
s=1

λs j ys .

Set each x j = x̄ and y j = ȳ. Then,

K∑
j=1

x j = K x̄ =
K∑

j=1

N∑
s=1

λs j x
s ≤ x0

and

K∑
j=1

y j = K ȳ =
K∑

j=1

N∑
s=1

λs j ys ≥ ϕ∗y0.

Hence, an alternative solution is one in which each smaller input bundle equals
x̄ and the corresponding output is ȳ, where the same optimal value of the
objective function ϕ∗ is attained. This alternative problem can be set up as

max ϕ

s.t. K

(
N∑

s=1

λ̄s xs

)
≤ x0;

K

(
N∑

s=1

λ̄s ys

)
≥ ϕy0;

(8.28)

∑N
s=1 λ̄s = 1; λ̄s ≥ 0 (s = 1, 2, . . . N ).

Of course, we still need to determine K . At this point, all we know is that K
is some positive integer. Now, define αs = K λ̄s(s = 1, 2, . . . , N ). Then, the
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DEA problem (8.28) becomes
max ϕ

s.t.
N∑

s=1

αs xs ≤ x0;

N∑
s=1

αs ys ≥ ϕy0;

N∑
s=1

αs = K ;

(8.29)

αs ≥ 0 (s = 1, 2, . . . , N ); K ∈ {1, 2, . . . .}.
At the optimal solution of this problem, K ∗ represents the desired number of

smaller units into which the single firm should be broken up. Note that this is a
mixed-integer programming problem in which one variable (K ) is constrained
to be a positive integer whereas the other variables can take any nonnegative
value. An interesting feature of this problem is that if K is preset to 1, it reduces
to the familiar BCC problem for a VRS technology. On the other hand, if K
is allowed to take any positive value (not necessarily an integer), the problem
in (8.29) reduces to the output-oriented CCR problem for a CRS technology.
Suppose that the maximum value of the objective function in problem (8.29)
is ϕK and those in the corresponding BCC and CCR problems are ϕV and
ϕC, respectively. Then, by virtue of the hierarchy of the feasible sets of the
problems,

ϕV ≤ ϕK ≤ ϕC. (8.30)

As is well known, the scale efficiency of the input bundle x0 is measured as

SE = ϕV

ϕC
≤ 1.

Maindiratta defines the size efficiency of the firm as

σ = ϕV

ϕK
≤ 1. (8.31)

It is clear from (8.31) that

SE ≤ σ ≤ 1. (8.32)

If σ = 1, there is no size inefficiency and even when we are allowed to select
any integer value for K in problem (8.29), the optimal solution selects K ∗ = 1.
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Figure 8.2 An example of size inefficiency: break up of firm leads to higher output.

If, on the other hand, K ∗ > 1, the firm is size inefficient. Deviation of the mea-
sure σ from unity shows the shortfall in output from a single-firm production
relative to a multifirm production using the same input bundle x0.

It needs to be emphasized that locally diminishing returns to scale at x0 is a
necessary but not a sufficient condition for size inefficiency. Thus, a firm that
is smaller than the MPSS for its input mix is never a candidate for breakup
into a number of smaller firms. But a firm that is larger than its MPSS is not
automatically a candidate for breakup simply because it is operating in the
region of diminishing returns to scale.

The concept of size efficiency and its difference from scale efficiency is
best explained by making use of a diagram. In Figure 8.2, the VRS production
possibility set is shown by the free disposal convex hull of the points A, B, C,

and D representing the observed input–output bundles of 4 firms. Consider
point D, where the firm produces output DxD using xD units of the input. If
technical inefficiency is eliminated, the firm moves to the point E on the frontier
and produces output ExD from the same input quantity xD . Now, suppose the
input xD is split equally and allocated to two firms. Each of the two firms uses
input x̄D = 1

2 xD and at full efficiency produces output Fx̄D. Together, the two
firms produce the output level GxD = 2Fx̄D from xD units of the input. This
is greater than the maximum output ExD that a single firm can produce using
input xD . It is, therefore, technically more efficient to break up the firm D into
two smaller identical firms. A measure of its size efficiency is

σ (D) = ExD

GxD
.
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What would happen if we broke the firm D into 3 rather than 2 smaller units?
In that case, each subunit would be using the input level ¯̄x D = 1

3 xD and (at
full efficiency) would produce the output level H ¯̄x D. Collectively, the smaller
firms would produce the output J xD from the input xD as shown in Figure 8.3.
This output is not only lower than GxD (what we get from a breakup of D into
two smaller firms) but even less than what a single efficient firm would
produce from xD. Thus, the optimal value of K (the number of units that the
firm D should be broken up into) is 2.

Note that size efficiency of the firm D is the ratio of the average producti-
vities at E (the output-oriented efficient projection of D) and F (the efficient
output for the input x̄D). Scale efficiency, on the other hand, is the ratio of the
average productivities at E and at B (the point on the frontier that corresponds
to the MPSS, x∗). Even though xD exceeds x∗, the ratio xD

x∗ is usually not an
integer. Unless we assume CRS, the point L is not attainable by any replication
of the input–output bundle observed at the MPSS. Suppose that we decided
to create one firm with input x∗ producing output Bx∗ and another firm using
the residual input x R = x D − x∗ producing output MxR , the collective output
from these two firms will not be equal to LxD.

Figure 8.3 shows the case where even though the firm D operates in the
region of diminishing returns to scale, breaking it up into two or more firms
would not be technically more efficient that allowing it to operate as a single
firm. In this example, if the firm is broken up into two smaller firms, each using
input x̄D and producing output Fx̄D, their combined output is GxD , which is
less than what a single firm could efficiently produce from input xD. Breaking
it up into 3 or more smaller firms is not efficient either. Thus, even though the

O xDxD x*

Output (y)

Input (x)

F

H

MA

C

E
B

L

G

J

D

xDxR

Figure 8.3 An example of size efficiency: break up of firm leads to lower output.
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Table 8.3. Input–output data for testing size efficiency

Firm A B C D E

Input (x) 4 6 10 12 14
Output (y) 6 11 12 9 17

firm operates under diminishing returns to scale, it is not size inefficient and,
in that sense, not “too large.”

Although the DEA problem in (8.25) is a mixed-integer programming prob-
lem, given that the integer constraint applies to only one variable, one can solve
the problem easily using the “branch and bound” algorithm. The steps are as
follows:

Step 1: Solve the CCR problem (i.e., without any restriction on the sum of the
λ j ’s).

Compute K ∗ = ∑N
j=1 λ∗

j . If K ∗ is an integer, stop; otherwise, go to step 2.

Step 2: Define K ∗
− = [K ∗] = largest integer no greater than K ∗.

Solve the problem (8.26) with the restriction K = K ∗
−.

Denote the optimal value of the objective function as ϕ∗
−.

Step 3: Define K ∗
+ = [K ∗] + 1.

Solve the problem (8.26) with the restriction K = K ∗
+.

Denote the optimal value of the objective function as ϕ∗
+.

Step 4: ϕ∗∗ = max{ϕ∗
−, ϕ∗

+}. The optimal K is correspondingly determined.

We now consider a simple example of measuring size efficiency. The input–
output quantities of five hypothetical firms are shown in Table 8.3.

We measure the size efficiency of firm C. For this, we first solve the
output-oriented CCR problem. The optimal solution was ϕ∗

E = 1.52777, λ∗
B =

1.667, λ∗
j = 0( j = A, C, D, E), K ∗ = 1.667. We next set up the following

LP problem:

max ϕ

s.t. 6λA + 11λB + 12λC + 9λD + 17λE ≥ 12ϕ;

4λA + 6λB + 10λC + 12λD + 14λE ≤ 10;

λA + λB + λC + λD + λE = K ;

(8.33)

λ j ≥ 0 ( j = A, B, C, D, E), ϕ unrestricted.
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This problem is solved twice – once for K = 1 and again for K = 2. For
K = 1, ϕ∗ = 1.1667 and for K = 2, ϕ∗ = 1.4167. Hence, the optimal value
of K is 2. Note that for K = 1, (8.29) becomes the output-oriented BCC DEA
problem. Hence, the size efficiency of this firm is

σ (C) = 1.1667

1.4167
= 0.8235.

A single firm using 10 units of the input can produce, at most, 14 units of the
output, whereas two smaller firms each using 5 units of the input can each
produce 8.5 units of output. Thus, the total output from two firms would be
17 units, thereby exceeding what can be produced by a single firm using the
same input quantity. Hence, this firm is too large and is a candidate for breakup.

We conclude this section with an empirical application. In this application,
we again use the Christensen–Greene data set for U.S. electrical utilities and
examine whether one of the larger firms in the sample (#93) should be broken
up into several smaller firms and, if so, what is its size efficiency. The firm under
consideration produces 27,708 units of the output using 144.754 units of labor,
286,748 units of fuel, and 30,910 units of capital. At the optimal solution of
the output-oriented CCR DEA problem, ϕ∗ = 1.15156 and K ∗ = ∑N

1 λ∗
j =

2.78793. Hence, the potential values of optimal K are 2 and 3. Recall that
for K = 1, we merely get the BCC DEA problem for which ϕ∗ = 1.07269.

For the other models, we merely replace the right-hand side of the constraint∑N
1 λ j = 1 in the BCC model by the 2 and 3, respectively. For K = 2, we

obtain ϕ∗ = 1.12523, and for K = 3, ϕ∗ = 1.15099. Hence, the optimal value
of K is 3. The size efficiency of firm #93 is

σ = 1.07269

1.15099
= 0.9351.

This implies that a single firm using the input bundle of firm #93 would produce
only 93.51% of what 3 identical firms would collectively produce from the same
input bundle.

8.7 Summary

Merger and breakup of firms can be justified on a variety of economic grounds.
In this chapter, we consider whether a merger of a number of specific firms
can be justified on grounds of technical efficiency alone. It should be under-
stood that there could be other reasons why such mergers may not be recom-
mended even when technical gains from merger might be positive. For example,
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merging two schools from two different parts of the state would not be mean-
ingful even when the DEA models show that the local superadditivity of the
technology would justify such mergers. Similarly, breakup of firms is techni-
cally justified when the technology is locally subadditive. But, even when that
is not the case, breaking up a monopoly in the interest of increased competition
would be valid grounds for breakup.

Guide to the Literature

The concept of sub/superadditivity of technology was introduced by Baumol,
Panzar, and Willig (1982) in the context of contestable markets and natural
monopoly. They also defined economies of scope as a special case of sub-
additivity of the cost function. In the nonparametric literature, Färe (1986)
examined the relation between additivity and efficiency. The DEA formula-
tion of merger efficiency and its decomposition is due to Bogetoft and Wang
(1996). The concept of size efficiency was introduced by Maindiratta (1990).
Ray and Hu (1997) use the size efficiency concept to determine the techni-
cally optimal number of firms in the U.S. airline industry. Ray and Mukherjee
(1998a) applied the size efficiency model in the case of a cost function using
public schools data from Connecticut. Ray and Mukherjee (1998b) used data
from U.S. banking to identify banks that are too large and are candidates for
breakup into two or more smaller banks.
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9

Efficiency Analysis with Market Prices

9.1 Introduction

In DEA models for measuring input-oriented technical efficiency, the objective
was to contract all inputs at the same rate to the extent possible without reducing
any output. In practice, however, some inputs are more valuable than other
inputs and conserving such inputs would be more efficient than saving other
inputs. When market prices of inputs are available, the firm would seek to
minimize the total input cost for a given level of output. This would mean not
only that inputs are changed by different proportions but also that some inputs
may actually be increased while others are reduced when that is necessary for
cost minimization. Our discussion of DEA, so far, has made no use whatsoever
of prices of inputs and/or outputs. Even in our discussion of nonradial measures
of efficiency, although disproportionate changes in inputs and outputs were
allowed, we did not consider the possibility that some inputs could actually be
increased or that some outputs could be reduced. This is principally due to the
fact that DEA was originally developed for use in a nonmarket environment
where prices are either not available at all or are not reliable, even if they are
available. This may give the impression that when accurate price data do exist, it
would be more appropriate to measure efficiency using econometric methods
with explicitly specified cost or profit functions and not to use DEA. This,
however, is not the case. DEA provides a nonparametric alternative to standard
econometric modeling even when prices exist; its objective is to analyze the
data in order to assess to what extent a firm has achieved the specified objective
of cost minimization or profit maximization.

In this chapter, we develop DEA models for cost minimization and profit
maximization by a firm that takes input and output prices as given. Section 9.2
begins with a brief review of the cost-minimization problem of a firm fac-
ing a competitive input market and presents Farrell’s decomposition of cost

208
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efficiency into two separate factors measuring technical and allocative effi-
ciency, respectively. Section 9.3 presents the DEA models for cost minimiza-
tion in the long run when all inputs are variable. The concept of economic scale
efficiency is introduced in Section 9.4. The problem of cost minimization in
the short run in the presence of quasi-fixed inputs is described in Section 9.5.
Section 9.6 provides an empirical example of DEA for cost minimization. In
Section 9.7, the output quantities are also treated as choice variables with out-
put prices treated as given and the cost-minimization problem is generalized to
a profit-maximization problem. The relevant DEA model is presented in Sec-
tion 9.8. An additive decomposition of profit efficiency that parallels Farrell’s
multiplicative decomposition of cost efficiency is shown in Section 9.9. Sec-
tion 9.10 includes an empirical application of DEA to a profit-maximization
problem. The main points of this chapter are summarized in Section 9.11.

9.2 Cost Efficiency and its Decomposition

Consider the cost-minimization problem of a firm that is a price-taker in the
input markets and produces a prespecified output level. Many not-for-profit
organizations like hospitals, schools, and so forth fit this description. A hospital,
for example, does not select the number of patients treated. The output level
is exogenously determined. It still has to select the inputs so as to provide this
level of care at the minimum cost. For simplicity, we consider a single-output,
two-input production technology. Suppose that an observed firm uses the input
bundle x0 = (x0

1 , x0
2 ) and produces the scalar output level y0. The prices of the

two inputs are w1 and w2, respectively. Thus, the cost incurred by the firm is
C0 = w1x0

1 + w2x0
2 . The firm is cost efficient if and only if there is no other

input bundle that can produce the output level y0 at a lower cost.
Define the production possibility set

T = {(x1, x2; y) : (x1, x2) can produce y} (9.1a)

and the corresponding input requirement set for output y0

V (y0) = {(x1, x2) : (x1, x2) can produce y0} (9.1b)

Then, the cost minimization problem of the firm can be specified as

min w1x1 + w2x2

s.t. (x1, x2) ∈ V (y0). (9.2)
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Suppose that an optimal solution of this problem is x∗ = (x∗
1 , x∗

2 ). Then, the
minimum cost is

C∗ ≡ C(w1, w2; y0) = w1x∗
1 + w2x∗

2 .

Note that, by assumption, x0 ∈ V (y0) and is, therefore, a feasible solution
for the minimization problem (9.2). Hence, by the definition of a minimum,
C(w1, w2; y0) = w1x∗

1 + w2x∗
2 ≤ C0 = w1x0

1 + w2x0
2 . The firm is cost effi-

cient if and only if C0 = C∗. Following Farrell (1957), the cost efficiency of
the firm can be measured as

γ = C∗

C0
≤ 1. (9.3)

Now consider, as an aside, the input bundle xT = βx0, which is the efficient
radial projection of the input bundle x0 for the output level y0. The cost of this
technically efficient bundle xT = (βx1, βx2) is

CT = β∗(w1x1 + w2x2) = β∗C0. (9.4)

Because β ≤ 1, CT ≤ C0. Again, because xT ∈ V (y0), C∗ ≤ CT .
Farrell introduced the decomposition of cost efficiency

C∗

C0
=

(
CT

C0

)(
C∗

CT

)
. (9.5)

The two components of cost efficiency (γ ) are (i) (input-oriented) technical
efficiency β, and (ii) allocative efficiency α, where

α = γ

β
. (9.6)

Note that both factors, α and β, lie in the (0, 1) interval. The overall cost
efficiency (γ ) measures the factor by which the cost can be scaled down if
the firm selects the optimal input bundle x∗ and performs at full technical
efficiency. When technical efficiency is eliminated, both inputs are scaled down
by the factor β, and that by itself would lower the cost by this factor. The
allocative efficiency factor (α) shows how much the cost of the firm can be
further scaled down when it selects the input mix that is most appropriate for the
input price ratio faced by the firm in a given situation. The two distinct sources
of cost inefficiency are (a) technical inefficiency in the form of wasteful use
of inputs, and (b) allocative inefficiency due to selection of an inappropriate
input mix.

Cost efficiency and its decomposition are illustrated diagrammatically in
Figure 9.1. The point A represents the observed input bundle x0 of a firm and
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Figure 9.1 Technical, allocative, and overall cost efficiency.

the curve q0q0 is the isoquant for the output level y0 produced by the firm. Thus,
all points on and above this line represent bundles in the input requirement
set V (y0). The point B where the line OA intersects the isoquant q0q0 is the
efficient radial projection of x0. It represents the bundle xT = (βx0

1 , βx0
2 ). The

expenditure line GH through the point A is the isocost line

w1x1 + w2x2 = C0 = w1x0
1 + w2x0

2 .

Similarly, the line through B shows the cost (CT ) of the technically efficient
bundle xT at these prices. Finally, the point C where the expenditure line JK
is tangent to the isoquant q0q0 shows the bundle that produces output y0 at the
lowest cost. The line JK is the isocost line

w1x1 + w2x2 = C∗ = w1x∗
1 + w2x∗

2 .

Therefore, the cost of the bundle represented by the point D on the line OA is
also C∗.

Hence, the cost efficiency of the firm using input x0 to produce output y0 is

γ = C∗

C0
= OJ

OG
= OD

OA
.

This is decomposed into the two factors

OE

OG
= OB

OA
= β representing technical efficiency, and

OJ

OE
= OD

OB
= α representing allocative efficiency.
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To minimize cost, the firm would have to move from point A to point C ,
switching from the input bundle x0 to the optimal bundle x∗. This can be
visualized as a two-step move. First, it moves to the point B by eliminating
technical inefficiency. This lowers the cost from C0 to CT. But, even though all
points on the line q0q0 are technically efficient, they are not equally expensive.
At the input prices considered in this example, C∗ is the least-cost bundle.
Compared to CT, the firm can lower cost even further by substituting input 1
for input 2 till it reaches the point C∗. Of course, when the input price ratio is
such that point B itself is the tangency point with the correspondingly sloped
expenditure line, B itself is the optimal point. In that case, there is no need to
alter the input mix, and allocative efficiency equals unity.

We now consider a numerical example of measurement and decomposition
of cost efficiency. Suppose that the production function is

f (x1, x2) = √
x1 + 2

√
x2. (9.7)

A firm uses the input bundle (x0
1 = 4, x0

2 = 9) to produce output y0 = 6. The
input prices are (w1 = 3, w2 = 2). Thus, its actual cost is C0 = 30. We want
to find out what is the least cost of producing the output y0 at these input prices
when the technology is represented by the production function specified in
(9.7).

We first solve the cost-minimization problem of the firm for arbitrary values
of the parameters (w1, w2, y). Minimization of w1x1 + w2x2 s.t. (9.7) yields
the optimal input bundles

x∗
1 =

(
w2

4w1 + w2

)2

y2 (9.8)

and

x∗
2 =

(
4w1

4w1 + w2

)2

y2 (9.9)

and the minimum cost

C∗ = w1x∗
1 + w2x∗

2 =
(

w1w2

4w1 + w2

)
y2 (9.10)

Thus, for y0 = 6 and (w1 = 3, w2 = 2), C∗ = 108
7 . A measure of the cost

efficiency of the firm is

γ = C∗

C0
= 18

35
.
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That is, the firm can reduce its cost to nearly half of what it is spending on the
bundle x0 by selecting instead the input bundle (x1 = 36

49 , x2 = 81
49 ).

To obtain the measure of technical efficiency, we solve for the value of β

that satisfies √
βx0

1 + 2
√

βx0
2 = y0. (9.11)

In the present example,√
β = 6√

4 + 2
√

9
= 3

4
and β = 9

16
.

Therefore, a measure of the firm’s allocative efficiency is

α =
18

35
9

16

= 32

35
.

The measures of technical and allocative efficiency imply that firm can reduce
its cost by more than 43% of its actual expenses by eliminating technical
efficiency and further by about 10% of this lower cost by appropriately changing
its input mix.

9.3 DEA for Cost Minimization

In the previous numerical example, the technology was represented by an
explicit production function. It is possible, however, to leave the functional
form of the technology unspecified and yet to obtain a nonparametric measure
of the cost efficiency of a firm using DEA. For this, we define the production
possibility set as the free disposal convex hull of the observed input–output
bundles, if VRS is assumed. In the case of CRS, we use, instead, the free
disposal conical hull of the data points.

As in the previous chapters, we start with the observed input–output data
from N firms. Let y j = ( y1 j , y2 j , . . . , ymj ) be the m-element output vector
of firm j while x j = (x1 j , x2 j , . . . , xnj ) is the corresponding n-element input
vector. Recall that the empirically constructed production possibility set under
VRS is

T V =
{

(x, y) : x ≥
N∑

j=1

λ j x
j ; y ≤

N∑
j=1

λ j y j ;
N∑

j=1

λ j = 1;

λ j ≥ 0 ( j = 1, 2, . . . , N )

}
(9.12a)
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and the corresponding input requirement set for any output vector y is

V (y) =
{

(x) : x ≥
N∑

j=1

λ j x
j ; y ≤

N∑
j=1

λ j y j ;
N∑

j=1

λ j = 1;

λ j ≥ 0 ( j = 1, 2, . . . , N )

}
. (9.12b)

Then, for a target output bundle y0 and at a given input price vector w0, the
minimum cost under the assumption of VRS is

C∗ = min w0 ′x : x ∈ V (y0). (9.13)

The minimum cost is obtained by solving the DEA LP problem:

min
n∑

i=1

w0
i xi

s.t.
n∑

i=1

λ j xi j ≤ xi (i = 1, 2, . . . , n);

n∑
i=1

λ j yr j ≥ yr0 (r = 1, 2, . . . , m); (9.14)

n∑
i=1

λ j = 1;

λ j ≥ 0 ( j = 1, 2, . . . , N ).

The optimal solution of this problem yields the cost-minimizing input bundle
x∗ = (x∗

1 , x∗
2 , . . . , x∗

n ) and the objective function value shows the minimum
cost. It should be noted that at the optimal solution, all the inequality constraints
involving the inputs are binding. That is, there cannot be any input slacks at
the optimal bundle. This is intuitively obvious. When any slack is present in
any input, it is possible to reduce the relevant input by the amount of the slack
without reducing any output. Because all inputs have strictly positive prices,
this would lower the cost without affecting outputs. That, of course, would
imply that the input bundle unadjusted for slacks could not have been cost
minimizing. Thus, the optimal input bundle will necessarily lie in the efficient
subset of the isoquant for the target output bundle. Unlike the input constraints,
the output constraints need not be binding. The dual variable associated with
the constraint for any individual output is the marginal cost of that output.
When the constraint is nonbinding, the relevant marginal cost is zero.
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Table 9.1. Output and input quantity data for cost minimization

Firm 1 2 3 4 5 6 7

Output (y) 12 8 17 5 14 11 9
Input 1 (x1) 8 6 12 4 11 8 7
Input 2 (x2) 7 5 8 6 9 7 10

We now consider a simple example of cost minimization for the one-output,
two-input case. Table 9.1 shows the output and input data from 7 hypothetical
firms.

Suppose that we want to evaluate the cost efficiency of firm #5 that faces
input prices w1 = 10 and w2 = 5. The actual cost of firm #5 is C0 = 155. The
DEA problem to be solved is

min 10x1 + 5x2

s.t. 8λ1 + 6λ2 + 12λ3 + 4λ4 + 11λ5 + 8λ6 + 7λ7 ≤ x1;

7λ1 + 5λ2 + 8λ3 + 6λ4 + 9λ5 + 7λ6 + 10λ7 ≤ x2; (9.15)

12λ1 + 8λ2 + 17λ3 + 5λ4 + 14λ5 + 11λ6 + 9λ7 ≥ 14;

λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 = 1;

λ j ≥ 0; ( j = 1, 2, . . . . , 7).

The optimal solution of (9.15) is

x∗
1 = 9.6, x∗

2 = 7.4, λ∗
1 = 0.6, λ∗

3 = 0.4, λ∗
j = 0 ( j 
= 1, 3), C∗ = 133.

Thus, the cost efficiency of this firm is

γ = 133

155
= 0.85806.

The input-oriented BCC DEA for firm #5 yields a measure of technical effi-
ciency

β = 0.87273.

Hence, the allocative efficiency is

α = 0.85806

0.87273
= 0.9832.

         
 

 



P1: JDW
CB688-09 CB688-RAY CB688-Ray-v1.cls January 22, 2004 15:26

216 Efficiency Analysis with Market Prices

9.4 Economic Scale Efficiency

Consider the average cost of a single-output firm

AC (w, y) = C(w, y)

y
. (9.16)

Economies of scale are present at any given output level if AC(w, y) falls as
y increases. Similarly, when AC(w, y) rises with y, diseconomies of scale are
present. In the multi-output case, average cost is not defined in the usual sense.
We may, however, define the ray average cost for a given output bundle y0

as

RAC (w, t ; y0) = C(w, t y0)

t
. (9.17)

As in the single-output case, scale economies (diseconomies) are present when
the ray average cost declines (increases) with an increase in the output scale.
In production economics, the output level (scale) where the average cost (ray
average cost) reaches a minimum is called the efficient scale of production.
The dual or economic scale efficiency of a firm is measured by the ratio of the
minimum (ray) average cost attained at this efficient scale and the average cost
at its actual production scale. This measure shows by what factor a firm can
reduce its average cost (ray average cost) by altering its output scale to fully
exploit economies of scale.

The minimum average cost can be obtained by exploiting the following two
useful propositions:

(P1) Locally constant returns to scale holds at the output where the average
cost (ray average cost) is minimized.

(P2) When CRS holds everywhere, the average cost (ray average cost) remains
constant.

Consider, first, the MPSS of a given input mix (x) in the single-output case.
Recall that a feasible input–output combination (x0, y0) is an MPSS for the
specific input and output mix if for every feasible input–output combination
(x, y) satisfying x = τ x0 and y = µy0,

µ

τ
≤ 1. Further, locally CRS holds at

(x0, y0) if it is an MPSS (Banker [1984], proposition 1).
Next, note that if the input bundle x∗ minimizes the average cost at the

output level y∗, then (x∗, y∗) is an MPSS. Suppose this were not true. Then,
by the definition of an MPSS, there exist nonnegative scalars (τ , µ) such that
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(τ x∗, µy∗) is a feasible input–output combination satisfying µ

τ
> 1. Define

x∗∗ = τ x∗ and C∗∗ = w′x∗∗. Then, at input price w, the minimum cost of
producing the output bundle (µy∗) cannot be any greater than C∗∗. This implies
that

AC (w, µy∗) = C(w, µy∗)

µy∗ ≤ C∗∗

µy∗ = τw′x∗

µy∗ = τ

µ
AC(w, y∗).

But, by assumption, τ
µ

< 1. Thus,

AC(w, µy∗) < AC(w, y∗).

Hence, y∗ cannot be the output level where average cost reaches a minimum.
This shows that the average cost-minimizing input–output combination must
be an MPSS and, therefore, exhibit locally CRS. The proof of this proposition
in the multiple-output case is quite analogous.

Now, consider (P2). For this, we need to show that, under globally CRS,
the dual cost function C∗ = C(w, y) is homogeneous of degree 1 in y. Again,
consider the single-output case. Suppose that the input bundle x∗

0 minimizes the
cost of producing the output level y0. Now, consider the output level y1 = t y0

and the input bundle x∗
1 = t x∗

0 . We need to show that x∗
1 minimizes the cost

of the output y1. Suppose that this were not true. Then, there must exist some
other input bundle x∗∗

1 that produces the output y1 at a lower cost. Hence,
w′x∗∗

1 < w′x∗
1 = t w′x∗

0 . Now, define x∗∗
0 = 1

t x∗∗
1 . Then w′x∗∗

1 < w′x∗
0 . But,

by virtue of globally CRS, the input x∗∗
0 = 1

t x∗∗
1 can produce the output y0 =

1
t y1. That means that x∗

0 does not minimize the cost of the output y0. This
results in a contradiction. Therefore, if x∗

0 minimizes the cost of the output
y0, then tx∗

0 must minimize the cost of output ty0. This proves that the dual
cost function is homogeneous of degree 1 in y and the average cost remains
constant.

Figure 9.2 illustrates the relation between the average cost curves under the
alternative assumptions of VRS and CRS, respectively. The U-shaped curve
ACA shows the average cost curve under the VRS assumption. The horizontal
line ACB , on the other hand, shows the constant average cost under CRS. The
two curves are tangent to one another at output y∗. The average cost at this
output level is ρ. This will also be the average cost at any output level when
CRS is assumed.

Suppose that C∗∗ is the minimum cost of producing the output level y0

relative to a CRS production possibility set. Then, a measure of the minimum
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ACB

ACA

D

E

O y0 y* Output ( y)

Figure 9.2 Locally constant returns to scale at the minimum of the average cost curve.

average cost under VRS is

ρ = C∗∗

y0
. (9.18)

The average cost at output y0 is shown in Figure 9.2 by the point D on the ACA

curve and is

Dy0 = C∗

y0

and the minimum average cost is

Ey0 = C∗∗

y0
= ρ.

Thus, the economic scale efficiency of the firm is

ESE = C∗∗

C∗ = Ey0

Dy0
.

At the most productive scale size, the ray average productivity for a given input
mix reaches a maximum. It is not clear, however, why one would like to change
all inputs proportionately altering only the scale of the input bundle but not the
input mix. When input prices are available, the total cost of an input bundle
can be regarded as an input quantity index. Then, minimizing average cost is
the same as maximizing the average productivity of this composite input. This
is also equivalent to maximizing the “return for the dollar.”

To obtain the minimum average cost in the single-output case, one
solves the following DEA problem for the unit output level under the CRS
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assumption:

c∗∗ = min
n∑

i=1

w0
i xi

s.t.
n∑

i=1

λ j xi j ≤ xi (i = 1, 2, . . . , n);

n∑
i=1

λ j y j ≥ 1; (9.19)

λ j ≥ 0 ( j = 1, 2, . . . , N ).

Note that the optimal value of the objective function in (9.19) yields
the minimum cost of producing one unit of the output and is the constant
average cost for all output levels under CRS. But, as shown previously, this
will also be the minimum average cost under VRS. Thus, the economic scale
efficiency of the firm under investigation is

ESE = c∗∗y0

C∗ . (9.20)

But, under CRS, the minimum cost of producing output y0 is

C∗∗ = c∗∗y0.

Hence,

ESE = C∗∗

C∗ . (9.21)

This means that the economic scale efficiency of the output level y0 can be
measured simply by the ratio of its minimum cost under the assumption of
CRS and the minimum cost under the assumption of VRS, respectively.

9.5 Quasi-Fixed Inputs and Short-Run Cost Minimization

In the discussion of the cost-minimization problem of a firm, we have so far
treated all inputs as choice variables. By implication, all inputs are variable
inputs. In reality, however, some inputs may be quasi-fixed in the short run.
For example, a firm may not alter the plant size even though the output level
has changed because the adjustment cost entailed by the desired change in
the capital input may overweigh the cost savings that might be derived from
such change. In such situations, the quasi-fixed input will be treated as an
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exogenously determined parameter (like the level of output) rather than as a
choice variable.

For simplicity, we consider the case of a single quasi-fixed input, K, and
partition the input vector as x = (xv, K ), where xv = (x1, x2, . . . , xn−1) is the
vector of the (n − 1) variable inputs and K is the only quasi-fixed input. Let
wv = (w1, w2, . . . , wn−1) be the corresponding vector of variable input prices
and r be the price of the quasi-fixed input.

From the previous definition of an input requirement set, we may define the
conditional input requirement set for a given level of the quasi-fixed input K0

and a specific output level y0 as

V (y0|K0) = {xv : (xv, K0) ∈ V (y0)}. (9.22)

The short-run cost-minimization problem of the firm is to minimize wv ′xv +
r K0 subject to the restriction that xv ∈ V (y0|K0). But rK0 is a fixed cost that
plays no role in the minimization process. Hence, the firm needs to minimize
the cost only of its variable inputs.

The DEA problem for variable cost minimization under VRS is

min
n−1∑
i=1

wi xi

s.t.
N∑

j=1

λ j xi j ≤ xi (i = 1, 2, . . . , n − 1);

N∑
j=1

λ j K j ≤ K0;

N∑
j=1

λ j yr j ≥ y0 (9.23)

N∑
j=1

λ j = 1;

λ j ≥ 0 ( j = 1, 2, . . . , N ).

The dual variable associated with the output constraint is nonnegative. It shows
the short-run marginal cost of the output. On the other hand, the dual variable
for the quasi-fixed input constraint is nonpositive. It shows by how much
the total variable cost would decline with a marginal increase in the quantity
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of the quasi-fixed input. The negative of this dual variable is the shadow price
of the quasi-fixed input. When this shadow price exceeds the market price (r ),
the firm is using too little of the quasi-fixed input for the output it is producing.
On the other hand, if the market price exceeds the shadow price, it is using too
much of the fixed input.

9.6 An Empirical Application: Cost Efficiency in U.S. Manufacturing

In this example, we use data on input and output quantities per establishment
from the 1992 Census of Manufacturers in the United States. There are 51
observations – one each for the 50 states and one for Washington, D.C. Output
(Q) in total manufacturing is measured by the gross value of production. The
inputs included are (a) production workers (L), (b) nonproduction workers or
employees (EM), (c) building and structures (BS), (d) machinery and equip-
ment (ME), (e) materials consumed (MC), and (e) energy (ENER). The output
and input quantities along with input prices are shown in Table 9.2. Prices of
materials consumed (MC) and machinery and equipment (ME) are assumed
to be constant across states. The SAS program for the cost-minimization LP
problem for California (State #5) under the assumption of VRS is shown in
Exhibit 9.1. Note that the variables X1 through X6 are decision variables that
represent the optimal quantities of the inputs. In the constraint for the output,
the actual output quantity of State #5 appears on the right-hand side of the
inequality. The objective function coefficients for the X1–X6 columns are the
corresponding (actual) input prices in State #5 and the TYPE for this row is
specified as MIN, indicating that it is a minimization problem.

Exhibit 9.2 shows the relevant sections of the SAS output for this program.
The objective function value shows that the minimum cost (3.80177) and the
optimal input bundle is

X1
∗(L) = 0.01762; X2

∗(E M) = 0.01978; X3
∗(BS) = 0.00055;

X4
∗(M E) = 0.13325; X5

∗(MC) = 1.80707; X6
∗(E) = 0.00655.

The cost of the observed bundle for State #5 was 4.5143. Thus, the cost effi-
ciency is

C E = 3.8018

4.5143
= 0.8421.

Comparison of the actual and the optimal input bundles shows that the average
firm in California uses more than the optimal quantities of L, ME, MC, and E
but less than the optimal quantities of EM and BS.
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Table 9.2. Output and input quantities from U.S. Census of Manufacturers 1992

STATE LEVEL DATA

OBS V L EM BS ME MC ENER

1 8.2572 0.044045 0.014848 .0014270 0.25796 4.1684 0.03118
2 7.1181 0.023669 0.007101 .0005064 0.20237 4.0830 0.03286
3 5.3844 0.021087 0.016471 .0005407 0.15661 2.1395 0.00718
4 8.7708 0.045719 0.012190 .0009661 0.22014 4.7153 0.02010
5 5.9327 0.022092 0.016479 .0005150 0.16738 2.5902 0.00686
6 5.5128 0.019770 0.014464 .0005793 0.13482 2.4787 0.00800
7 6.3889 0.027221 0.023846 .0005381 0.17822 2.2152 0.00635
8 17.7167 0.042334 0.048168 .0007485 0.35834 10.4651 0.02789
9 4.4072 0.008297 0.020087 .0004932 0.09563 0.9293 0.00121

10 3.9262 0.017605 0.011232 .0003930 0.10792 1.7552 0.00720
11 9.2876 0.040340 0.016513 .0007278 0.23170 4.7781 0.01976
12 3.7374 0.012647 0.007549 .0003712 0.07814 1.9261 0.00284
13 5.8745 0.024932 0.011184 .0008848 0.18020 3.1690 0.02067
14 8.4058 0.031226 0.020374 .0007339 0.21677 4.0254 0.01463
15 11.3526 0.046810 0.020047 .0012852 0.33154 5.5030 0.03144
16 11.8150 0.040276 0.017812 .0010513 0.24163 6.0035 0.02718
17 10.4075 0.036487 0.017825 .0010862 0.20940 5.6884 0.01876
18 13.8676 0.046924 0.017181 .0010407 0.28718 7.0584 0.04122
19 15.1141 0.031077 0.013068 .0011361 0.43197 9.2702 0.10789
20 5.3115 0.030318 0.011091 .0011113 0.21364 2.3552 0.01828
21 7.1500 0.026391 0.018379 .0006293 0.19245 3.1956 0.01510
22 6.4034 0.026999 0.020363 .0008557 0.17705 2.5310 0.00579
23 9.6275 0.034741 0.020719 .0008788 0.24166 5.0341 0.01350
24 7.2206 0.028344 0.020994 .0005960 0.18535 3.4894 0.01097
25 8.7361 0.049867 0.013417 .0011271 0.23175 4.5963 0.02217
26 9.2734 0.033049 0.019100 .0007464 0.15388 4.7200 0.01333
27 3.0190 0.011410 0.004288 .0003503 0.06526 1.7887 0.02228
28 10.7881 0.035422 0.013962 .0007106 0.14460 6.2015 0.01554
29 2.6890 0.014171 0.007846 .0003186 0.10184 1.1323 0.00602
30 4.8364 0.025912 0.014200 .0005300 0.16890 1.8446 0.00481
31 6.5414 0.022855 0.020534 .0005148 0.15037 2.7226 0.00981
32 5.3512 0.016928 0.007712 .0008420 0.10940 2.7275 0.01050
33 5.7122 0.022230 0.017085 .0006359 0.16363 2.2301 0.00731
34 10.8546 0.051310 0.018716 .0010185 0.25026 4.9404 0.01831
35 5.2859 0.018891 0.008696 .0005183 0.14123 3.1663 0.01635
36 10.0225 0.037233 0.019894 .0010454 0.23080 4.8511 0.02604
37 7.4102 0.026747 0.011614 .0007084 0.16284 3.7284 0.02129
38 4.7141 0.021040 0.009835 .0005035 0.13538 2.3499 0.01536
39 7.6928 0.033601 0.018907 .0007585 0.18576 3.4622 0.01474
40 3.5574 0.022131 0.011065 .0004225 0.09209 1.4362 0.00571
41 10.8181 0.056375 0.019446 .0011567 0.34648 5.0809 0.03657
42 6.7800 0.028459 0.011136 .0009940 0.10990 4.0206 0.00822
43 10.0773 0.048212 0.017390 .0009848 0.28077 4.8329 0.01991
44 9.8220 0.026881 0.017154 .0008011 0.28424 5.3972 0.04413
45 6.1665 0.026337 0.014772 .0008359 0.16238 2.9833 0.01630
46 4.7367 0.022057 0.011103 .0004603 0.24948 1.8513 0.00598
47 10.1611 0.043470 0.018945 .0007116 0.23755 4.2401 0.02136
48 8.5364 0.023504 0.016322 .0007443 0.16075 4.9492 0.03010
49 7.4723 0.031352 0.012675 .0008429 0.22872 3.3199 0.04817
50 8.7849 0.036621 0.017508 .0009759 0.20659 4.2414 0.01719
51 4.1237 0.011073 0.004498 .0003655 0.16799 2.4042 0.02559

INPUT PRICE DATA

OBS PL PEM PBS PME PMC PENER

1 20.9181 58.7455 52.045 1 1 7.8745
2 25.55 57.2222 122.683 1 1 7.4601
3 22.9045 56.651 97.368 1 1 12.7827
4 18.7602 58.7966 53.488 1 1 9.05
5 24.0879 63.8647 151.622 1 1 13.7183
6 25.4766 57.4295 84.186 1 1 7.9193
7 27.8053 67.8758 124.39 1 1 15.8455
8 27.2436 67.138 94.444 1 1 9.1559
9 30.6842 58.9674 129.706 1 1 16.4462
10 20.0558 55.038 103.077 1 1 9.0456
11 20.7316 58.0602 78.182 1 1 9.227
12 22.4884 49.8182 161.892 1 1 19.6685
13 22.3961 53.639 59.318 1 1 6.0062
14 25.4314 62.3123 87.857 1 1 9.7544
15 26.848 69.3505 66.136 1 1 6.9283
16 24.408 62.6686 56.739 1 1 7.0938
17 24.1202 61.1812 63.333 1 1 7.6703
18 23.139 64.8892 58.14 1 1 6.994
19 26.3959 67.1134 61.905 1 1 5.4851
20 23.8261 63.3074 85.238 1 1 13.2558
21 26.2966 60.7399 105.111 1 1 11.8719
22 26. 63.2228 92. 1 1 16.7225
23 32.1999 72.9258 79.767 1 1 10.8921
24 23.9791 58.3015 96. 1 1 8.8392
25 17.9185 56.8238 48.864 1 1 8.3507
26 23.2535 58.2437 65.581 1 1 8.6638
27 23.2038 57.2034 57.045 1 1 6.1162
28 21.656 54.3922 61.304 1 1 7.3294
29 21.7401 54.5204 117.105 1 1 11.043
30 24.3808 60.9154 114.048 1 1 18.978
31 25.3903 61.7404 130.25 1 1 11.9889
32 20.8296 52.0488 76.098 1 1 8.3613
33 24.2428 61.2633 112.632 1 1 12.6816
34 19.4408 58.6925 64.545 1 1 10.1348
35 20.4206 50.4655 60.455 1 1 5.2167
36 28.3533 68.3305 67.273 1 1 8.3725
37 23.9503 59.947 60.233 1 1 6.4092
38 23.9114 59.36 81.905 1 1 6.6651
39 24.26 61.8184 74.884 1 1 11.5317
40 20.8085 59.7593 101.463 1 1 11.317
41 20.8563 62.4463 62.727 1 1 8.4472
42 17.8379 48.2626 55. 1 1 7.9414
43 21.145 61.226 63.488 1 1 9.9394
44 24.3591 60.2699 82. 1 1 5.5978
45 21.5895 53.9732 68.182 1 1 6.4299
46 22.2399 64.0537 87.907 1 1 15.8117
47 22.5561 61.0526 91.333 1 1 7.7345
48 27.5966 66.1366 93.415 1 1 5.1643
49 26.4562 69.6283 48.043 1 1 6.471
50 24.8468 60.8194 60.182 1 1 7.7693
51 22.8594 52.5769 58.696 1 1 6.3005

9.6 An Empirical Application: Cost Efficiency in U.S. Manufacturing 223
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Exhibit: 9.1. The SAS program for measuring the cost efficiency of State #5
(California)

DATA QUAN9292;

INPUT OBS V L EM BS ME MC ENER ;

*RV=V*102.6/117.4;

*RME=ME*110.4/123.4;

*RMC=MC*105.3/117.9;

c=1;d=0;

DROP OBS;

CARDS;

1 8.2572 0.044045 0.014848 .0014270 0.25796 4.1684 0.03118
2 7.1181 0.023669 0.007101 .0005064 0.20237 4.0830 0.03286
3 5.3844 0.021087 0.016471 .0005407 0.15661 2.1395 0.00718
4 8.7708 0.045719 0.012190 .0009661 0.22014 4.7153 0.02010
5 5.9327 0.022092 0.016479 .0005150 0.16738 2.5902 0.00686
. ... ... ... ... ... ... ...
. ... ... ... ... ... ... ...
46 4.7367 0.022057 0.011103 .0004603 0.24948 1.8513 0.00598
47 10.1611 0.043470 0.018945 .0007116 0.23755 4.2401 0.02136
48 8.5364 0.023504 0.016322 .0007443 0.16075 4.9492 0.03010
49 7.4723 0.031352 0.012675 .0008429 0.22872 3.3199 0.04817
50 8.7849 0.036621 0.017508 .0009759 0.20659 4.2414 0.01719
51 4.1237 0.011073 0.004498 .0003655 0.16799 2.4042 0.02559

;

PROC transpose out=next;

dATA MORE; INPUT OBS X1 X2 X3 X4 X5 X6 _TYPE_ $ _RHS_;

CARDS;

1 0 0 0 0 0 0 >= 5.9327

2 -1 0 0 0 0 0 <= 0

3 0 -1 0 0 0 0 <= 0

4 0 0 -1 0 0 0 <= 0

5 0 0 0 -1 0 0 <= 0

6 0 0 0 0 -1 0 <= 0

7 0 0 0 0 0 -1 <= 0

8 0 0 0 0 0 0 = 1

9 24.0879 63.8647 151.622 1 1 13.7183 MIN .

;

DATA LAST; MERGE NEXT MORE;

;

DROP OBS;

PROC PRINT;

PROC LP;
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Exhibit: 9.2. The SAS output of the cost minimization DEA problem for State #5
(California)

Solution Summary

Objective Value 3.8017721

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 COL1 NON-NEG 0 0 1.4451897
2 COL2 NON-NEG 0 0 1.1001931
3 COL3 NON-NEG 0 0 0.6669724
4 COL4 NON-NEG 0 0 1.1980196
5 COL5 NON-NEG 0 0 0.712577
6 COL6 NON-NEG 0 0 0.740349
7 COL7 NON-NEG 0 0 0.5792778
8 COL8 NON-NEG 0 0 2.3228306
9 COL9 BASIC NON-NEG 0 0.7348755 0
10 COL10 NON-NEG 0 0 0.9430949
11 COL11 NON-NEG 0 0 0.9706397
12 COL12 NON-NEG 0 0 0.8153125
13 COL13 NON-NEG 0 0 1.3258494
14 COL14 NON-NEG 0 0 0.855845
15 COL15 NON-NEG 0 0 0.7935547
16 COL16 NON-NEG 0 0 0.4455407
17 COL17 NON-NEG 0 0 1.0072757
18 COL18 NON-NEG 0 0 0.2384873
19 COL19 NON-NEG 0 0 1.8969621
20 COL20 NON-NEG 0 0 1.1147312
21 COL21 NON-NEG 0 0 0.7385528
22 COL22 NON-NEG 0 0 0.6951602
23 COL23 NON-NEG 0 0 1.0393762
24 COL24 NON-NEG 0 0 1.1219336
25 COL25 NON-NEG 0 0 1.3490749
26 COL26 NON-NEG 0 0 0.75012
27 COL27 NON-NEG 0 0 1.2568986
28 COL28 NON-NEG 0 0 0.7820128
29 COL29 NON-NEG 0 0 0.963133
30 COL30 NON-NEG 0 0 0.7534767
31 COL31 NON-NEG 0 0 0.6658366
32 COL32 NON-NEG 0 0 0.6655944
33 COL33 NON-NEG 0 0 0.5891071
34 COL34 NON-NEG 0 0 0.3451474
35 COL35 NON-NEG 0 0 1.3290086
36 COL36 NON-NEG 0 0 0.7387113
37 COL37 NON-NEG 0 0 0.7100325
38 COL38 NON-NEG 0 0 1.0662666
39 COL39 NON-NEG 0 0 0.7925463
40 COL40 NON-NEG 0 0 0.9814283

(continued)
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Exhibit: 9.2. (continued)

Solution Summary

Objective Value 3.8017721

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

41 COL41 NON-NEG 0 0 1.050722
42 COL42 NON-NEG 0 0 1.3208796
43 COL43 NON-NEG 0 0 0.7385375
44 COL44 NON-NEG 0 0 1.2831078
45 COL45 NON-NEG 0 0 1.0877336
46 COL46 NON-NEG 0 0 0.6341981
47 COL47 BASIC NON-NEG 0 0.2651245 0
48 COL48 NON-NEG 0 0 1.389668
49 COL49 NON-NEG 0 0 0.8862771
50 COL50 NON-NEG 0 0 0.7814991
51 COL51 NON-NEG 0 0 1.1571522
52 X1 BASIC NON-NEG 24.0879 0.0176222 0
53 X2 BASIC NON-NEG 63.8647 0.0197842 0
54 X3 BASIC NON-NEG 151.622 0.0005511 0
55 X4 BASIC NON-NEG 1 0.1332565 0
56 X5 BASIC NON-NEG 1 1.8070743 0
57 X6 BASIC NON-NEG 13.7183 0.0065523 0
58 _OBS1_ SURPLUS 0 0 0.7884336
59 _OBS2_ SLACK 0 0 24.0879
60 _OBS3_ SLACK 0 0 63.8647
61 _OBS4_ SLACK 0 0 151.622
62 _OBS5_ SLACK 0 0 1
63 _OBS6_ SLACK 0 0 1
64 _OBS7_ SLACK 0 0 13.7183

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 _OBS1_ GE 58 5.9327 5.9327 0.7884336
2 _OBS2_ LE 59 0 0 −24.0879
3 _OBS3_ LE 60 0 0 −63.8647
4 _OBS4_ LE 61 0 0 −151.622
5 _OBS5_ LE 62 0 0 −1
6 _OBS6_ LE 63 0 0 −1
7 _OBS7_ LE 64 0 0 −13.7183
8 _OBS8_ EQ . 1 1 −0.875768
9 _OBS9_ OBJECTVE . 0 3.8017721 .
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The input-oriented BCC DEA solution shows a value of technical efficiency
(β) equal to 0.9731. Hence, the level of allocative efficiency (α) is 0.8654.
This means that there is little room for cost reduction through elimination of
technical inefficiency (only by 2.7%) without changing the input mix. The
average firm in State #5 operates at close to full technical efficiency. There is,
however, considerable room for cost reduction through a change in the input
proportions (about 13.5%). In fact, most of the observed cost inefficiency in
this case derives from allocative inefficiency.

For an analysis of cost efficiency in the short run, the two capital inputs,
BS and ME, can be treated as quasi-fixed. The optimal solution of the variable
cost minimization problem yields an objective function value of 3.6801. The
actual cost of the bundle of variable inputs used was 4.2689. This shows that
in the short run, when the machinery and equipment (ME) and building and
structures (BS) are treated as quasi-fixed, the firm can lower its variable cost by
about 13.8%. It is interesting to note that when the two types of capital inputs
are treated as given, the optimal solution shows that the firm should reduce its
consumption of materials while increasing the other variable inputs in order to
minimize total cost in the short run.

9.7 Profit Maximization and Efficiency

In the discussion of cost efficiency, the output quantities of a firm are treated
as parameters and the focus is on the choice of variable inputs in the short
run and all inputs in the long run. This is not an inappropriate analytical
framework for nonprofit organizations like hospitals, schools, and so forth. But
an overwhelming proportion of the economic activities in a developed economy
(and also of most developing economies) is carried out by commercial firms
operating for profit. For such firms, quantities of output to be produced are
also choice variables like the input quantities. The objective of the firm is to
select the input–output combination that results in the maximum profit at the
applicable market prices of outputs and inputs. The only constraint is that the
input–output combination selected must constitute a feasible production plan.

The profit-maximization problem of a competitive firm is

max � = p′y − w′x

subject to (x, y) ∈ T , (9.24)

where p = (p1, p2, . . . , pm) is the vector of output prices and w = (w1,

w2, . . . , wn) is the vector of input prices.
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Consider, first, the single-input, single-output case. Let the production func-
tion be

y∗ = f (x). (9.25a)

Define the production possibility set

T = {(x, y) : y ≤ f (x)} (9.25b)

The firm maximizes the profit by selecting the optimal pair (x, y) within T .
The Lagrangian for this constrained optimization problem is

L(x, y, λ) = py − wx − λ(y − f (x)) (9.26)

and the first-order conditions for a maximum are

∂L

∂y
= p − λ = 0; (9.27a)

∂L

∂x
= −w + λ f ′(x) = 0; (9.27b)

and
∂L

∂λ
= y − f (x) = 0. (9.27c)

From (9.27a–b), we obtain

f ′(x) = w

p
. (9.28a)

This can be inverted to derive the input demand function

x∗ = x

(
w

p

)
. (9.28b)

The output supply function is

y∗ = f (x∗) = f

(
x

(
w

p

))
= y

(
w

p

)
(9.28c)

and the profit function is

�∗ = py∗ − wx∗ = py

(
w

p

)
− wx

(
w

p

)
= �(w, p). (9.28d)

This is the dual-profit function showing the maximum profit that a firm facing
the production function defined in (9.25a) earns at prices p for the output and
w for the input.
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Figure 9.3 Profit maximization and profit efficiency.

Define the normalized variables π = �
p and ω = w

p . Consider, now, all
input–output combinations (not all of which need to be feasible) that yield
the same normalized profit (say π̄ ) at a given pair of prices (w, p). The equa-
tion of this normalized isoprofit line would be

π̄ = y − ωx (9.29a)

that can be alternatively expressed as

y = π̄ + ωx . (9.29b)

Given that both input prices and the output price will be strictly positive,
ω > 0. The intercept in (9.29b) represents the level of normalized profit for
any isoprofit line.

In Figure 9.3, the curve OQ shows the production function. The actual
input–output combination of the firm is (x0, y0) shown by the point A. The
profit earned here is �0 = py0 − wx0 with the normalized profit π0 = �0

p .

The line CD through the point A shows input–output bundles, all of which
yield the normalized profit π0. The slope of this line measures the normalized
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input price (ω) and its intercept OC equals π0. The firm’s objective is to reach
the highest isoprofit line parallel to the line CD that can be attained at any
point on or below the curve OQ. The highest such isoprofit line is reached
at the point B representing the tangency of the isoprofit line EF with the
production function. The optimal input–output bundle is (x∗, y∗). The intercept
of this line OE equals the maximum normalized profit π∗ = y∗ − ωx∗. The
line OG is a ray through the origin with slope equal to ω. It represents the
zero profit line y − ωx = 0. At any input level x , the vertical distance between
the production function and the point on the OG line shows the normalized
profit earned if the firm produced the maximum output from the given input.
At the actual input–output bundle (x0, y0), the firm does exhibit considerable
technical inefficiency. The efficient input-oriented projection of the point A
onto the production function OQ is the point H where the same output quantity
y0 is produced from input x∗

0 . The intercept of the isoprofit line JK through
this technically efficient point measures the normalized profit

πT = y0 − ωx∗
0 = y0 − β(ωx0) (9.30)

where β = x∗
0

x0
is the measure of the input-oriented technical efficiency of the

firm. The firm earns the normalized profit πT if it eliminates technical in-
efficiency from its observed input use. Note that all points on the production
function OQ represent input–output combinations that are technically efficient.
There is no reason to choose one over another on grounds of technical effi-
ciency alone. Given the normalized input price (ω) equal to the slope of the
line OG, the firm can increase its profit, however, by moving from the point
H to the point B along OQ. This increase in profit is due to an improvement
in the allocative efficiency of the firm. The firm maximizes profit by moving
from point A to point B. This can be visualized as a two-step process. First,
it eliminates technical inefficiency to move to the point H . As a result, the
normalized profit increases from π0 to πT . In the second step, the firm moves
from H to B. As a result, its normalized profit rises further from πT to π∗.

Next, consider a single-output, two-input example. Recall the production
function (9.7) and the input prices (w1 = 3, w2 = 2). Assume further that the
output price is p = 8. Then, the profit earned by a firm producing output y0 = 6
from the input bundle (x0

1 = 4, x0
2 = 9) is �0 = 18. For the parametrically

given input and output prices (w1, w2, p), the profit maximization problem is:

max � = py − w1x1 − w2x2
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subject to
√

x1 + 2
√

x2 ≥ y. (9.31)

For the optimal solution of this constrained optimization problem, we get the
input demand functions

x∗
1 = x1(w1, w2, p) = p2

4w2
1

(9.32a)

and

x∗
2 = x2(w1, w2, p) = p2

w2
2

, (9.32b)

the output supply function

y∗ = y(w1, w2, p) = p

(
1

2w1
+ 2

w2

)
, (9.33)

and the profit function

�∗ = �(w1, w2, p) = p2

(
4w1 + w2

4w1w2

)
. (9.34)

Evaluated at the output and input prices specified herein,

x∗
1 = 16

3
, x∗

2 = 16, y∗ = 11

3
, and �∗ = 112

3
.

Thus, the unrealized or lost profit is

� = �∗ − �0 = 112

3
− 18 = 58

3
.

Alternatively, the firm’s profit efficiency is

γ� = �0

�∗ = 18
112/3

= 27

56
.

Thus, the firm has an unrealized potential profit of 19 1
3 . Alternatively, its

actual profit is a little under 50% of the maximum profit it can earn at these
prices.

9.8 DEA for Profit Maximization

The profit-maximization problem of a multiple-output, multiple-input firm
facing input and output prices w and p, respectively, can be formulated as the
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following DEA problem:

max
m∑

r=1

pr yr −
n∑

i=1

wi xi

subject to
N∑

j=1

λ j yr j ≥ yr (r = 1, 2, . . . . , m);

N∑
j=1

λ j xi j ≤ xi (i = 1, 2, . . . . , n); (9.35)

N∑
j=1

λ j = 1;

λ j ≥ 0; ( j = 1, 2, . . . . , N ).

The profit-maximizing input and output quantities x∗
i (I = 1, 2, . . . , n) and

y∗
r (r = 1, 2, . . . , m) are obtained along with the other decision variables

λ∗
j ( j = 1, 2, . . . , N ) at the optimal solution of this problem. The optimal value

of the objective function �∗ = p′y∗ − w′x∗ is the maximum profit that the
firm can earn. An important point needs to be noted in this context. For a
bounded solution of the LP problem in (9.35), we must allow VRS. Without
the restriction

∑N
1 λ j = 1, if (λ∗, x∗, y∗) is a feasible solution, then, for any

arbitrary t > 0, (tλ∗, t x∗, t y∗) is also a feasible solution. But, in that case, �∗

also gets multiplied by t . Therefore, by making t arbitrarily large, we can in-
crease the maximum profit indefinitely. Hence, for a finite (nonzero) profit, we
must assume VRS.

9.9 Decomposition of Profit Efficiency

Banker and Maindiratta (1988) proposed a multiplicative decomposition of
profit efficiency that parallels Farrell’s decomposition of cost efficiency. They
decompose the ratio measure of profit efficiency as

γ� = �0

�∗ =
(

�0

�T

)(
�T

�∗

)
. (9.36)

The first factor is the ratio of the actual profit to what the firm would earn if
it eliminated (input-oriented) technical inefficiency and moved to the point H
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on the curve OQ. They define technical efficiency as

β� =
(

�0

�T

)
= p′y0 − w′x0

p′y0 − βw′x0
. (9.37)

In Figure 9.3, this technical-efficiency factor is measured by the ratio OC
O J .

The other factor

α� =
(

�T

�∗

)
= p′y0 − βw′x0

p′y∗ − w′x∗ (9.38)

is defined by Banker and Maindiratta as allocative efficiency. In Figure 9.3,
this component of profit efficiency is measured by the ratio O J

O E .

A potential problem with the ratio measure of profit efficiency is that if the
actual profit is negative when the maximum profit is positive, the ratio becomes
negative. On the other hand, if both actual and maximum profits are negative,
the ratio exceeds unity. In the long run, when all inputs and outputs are treated
as choice variables, with free entry and exit, zero profit is always possible.
Thus, the maximum profit of a firm that has stayed in business should not be
negative. But negative actual profit is still possible due to inefficiency.

A more serious problem with this decomposition by Banker and Maindiratta,
however, is that their technical-efficiency measure is not independent of prices.
This is a serious limitation because the technical efficiency of any firm should
be determined by the technology only and should not depend on prices. To
overcome this problem, Färe et al. (2000) offer an additive decomposition of
the difference measure of profit efficiency (�) that circumvents the problem
of price dependence of the technical-efficiency component. One can exploit
the identity

� = �∗ − �0 = (�T − �0) + (�∗ − �T )

to get

δ ≡ �

C0
=

(
(�T − �0)

C0

)
+

(
(�∗ − �T )

C0

)
. (9.39)

Here, δ represents the lost or unrealized part of the maximum return on outlay.
The first of the two individual components of δ is

δT = (p′y0 − βw′x0) − (p′y0 − w′x0)

w′x0
= (1 − β). (9.40)
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It is the measure of technical inefficiency. The other component

δA = p′(y∗ − y0) − w′(x∗ − βx0)

w′x0
(9.41)

denotes the return on outlay lost due to allocative inefficiency.
Note that because the input-oriented technical efficiency lies between 0 and

1, so does δT . But δA, which is nonnegative by construction, can actually exceed
unity. As a result, the normalized difference measure of profit inefficiency can
also exceed unity.

9.10 An Empirical Application to U.S. Banking

This section presents an example of using SAS to solve the DEA model for
profit maximization using data relating to the operations of 50 large banks in
the United States during the year 1996. The five outputs considered are (i)
commercial and industrial loans (y1), (ii) consumer loans (y2), (iii) real estate
loans (y3), (iv) investments, and (v) other income. All outputs are measured
in millions of current dollars. The inputs included are (i) transaction deposits,
(ii) nontransaction deposits, (iii) labor, and (iv) capital. Labor is measured in
full-time equivalent employees. Other inputs are measured in dollars. Follow-
ing the usual practice in the banking literature, output prices are measured
by dividing the revenue by the dollar value of the appropriate output. Simi-
larly, prices of nonlabor items are measured by dividing the relevant item of
expenditure by the dollar value of the input. For price of labor, we divide the
total wages and salaries by the number of employees. The output and input
quantity and price data for the banks included in this example are reported in
Table 9.3.

Exhibit 9.3 shows the SAS program for the profit maximization problem for
Bank #1. The variables A1 through A5 are the quantities of the output and B1

through B4 are the input quantities that the firm chooses in order to maximize
profit. Note that in the objective function row, the actual output prices faced
by Bank #1 appear in the columns for the variables A1–A5. At the same time,
the input prices appear in the objective function row with a negative sign in
the columns for the variables B1–B4. To solve the problem for other banks,
one needs only to replace the output and (negatives of the) input prices in the
objective function row.

Exhibit 9.4 shows the relevant sections of the SAS output for the profit maxi-
mization problem. The objective function value 49.12418 shows the maximum

         
 

 



P1: JDW
CB688-09 CB688-RAY CB688-Ray-v1.cls January 22, 2004 15:26

9.10 An Empirical Application to U.S. Banking 235

Table 9.3. Data for 50 large U.S. banks (1996)

BANK OUTPUT QUANTITY DATA

Obs Y1 Y2 Y3 Y4 Y5

1 42.654 281.660 141.454 75.657 14.688
2 32.985 70.183 109.357 191.057 4.318
3 75.474 8.832 290.180 155.438 0.944
4 57.935 74.259 196.960 98.871 2.433
5 39.382 49.084 316.682 48.674 3.138
6 41.054 33.290 247.589 148.686 3.751
7 50.278 75.520 286.727 53.148 3.015
8 87.693 52.779 165.261 56.463 9.432
9 28.026 55.779 239.118 208.537 6.249
10 58.602 31.585 278.365 128.449 4.912
11 35.884 44.263 174.700 256.871 4.111
12 44.125 48.241 210.124 158.738 3.225
13 55.637 64.486 150.870 185.250 4.470
14 31.702 105.386 200.102 85.255 6.652
15 34.788 50.011 246.324 159.393 3.236
16 56.553 6.625 222.897 157.066 6.156
17 18.520 222.234 165.645 66.920 3.985
18 44.031 29.020 243.223 171.917 5.783
19 52.169 36.165 119.370 205.256 1.862
20 120.032 87.585 208.670 87.041 6.371
21 19.113 28.154 262.832 162.963 6.074
22 45.141 14.585 225.703 169.499 4.402
23 61.691 101.368 180.709 90.164 6.773
24 65.723 86.496 249.611 52.840 11.689
25 44.266 88.868 235.361 116.791 4.256
26 38.908 75.033 229.876 111.597 2.511
27 109.580 33.155 184.179 176.744 5.741
28 159.743 35.745 156.233 107.137 3.785
29 72.329 53.262 137.252 140.817 7.591
30 106.340 23.693 226.540 161.803 5.431
31 54.868 69.261 168.534 166.432 3.497
32 32.195 35.251 209.341 143.877 4.257
33 78.170 118.097 209.424 103.907 11.349
34 84.317 54.948 229.375 99.756 6.116
35 81.401 55.116 180.483 149.994 5.789
36 40.884 10.652 233.734 186.361 4.739
37 61.556 73.014 263.974 103.391 8.075
38 112.470 105.948 239.786 139.941 3.848
39 14.875 109.965 62.685 131.780 6.642
40 59.532 78.519 187.906 59.538 9.140
41 85.824 73.366 191.824 207.116 5.657
42 79.859 100.083 230.688 88.693 4.363
43 48.902 4.890 333.867 56.814 7.527
44 30.466 42.900 289.771 156.866 3.087
45 40.999 5.203 304.792 114.665 4.191
46 279.037 0.428 28.666 27.217 9.760
47 40.818 30.847 191.266 206.572 9.231
48 63.333 86.147 167.996 280.677 16.237
49 51.656 107.739 228.967 57.192 77.482
50 17.836 6.684 204.330 321.243 4.704

(continued)
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Table 9.3. (continued)

BANK INPUT QUANTITY DATA

Obs X1 X2 X3 X4

1 111.805 434.194 0.411 19.356
2 154.721 311.423 0.203 8.266
3 76.975 396.428 0.083 5.795
4 77.369 361.009 0.205 7.576
5 33.051 424.549 0.189 9.207
6 130.316 363.854 0.178 5.670
7 95.421 369.313 0.185 11.238
8 141.980 284.723 0.248 8.822
9 84.012 422.808 0.192 7.861

10 79.081 354.272 0.256 6.988
11 36.780 382.783 0.142 10.189
12 94.138 284.341 0.218 10.237
13 64.621 316.446 0.144 3.070
14 101.855 338.586 0.210 11.547
15 99.539 316.927 0.270 20.199
16 181.594 304.163 0.205 8.888
17 79.715 382.693 0.255 7.698
18 171.637 297.141 0.191 8.668
19 108.916 287.656 0.184 6.237
20 215.757 279.379 0.195 8.010
21 116.651 340.618 0.214 5.253
22 78.890 351.791 0.212 9.458
23 171.298 285.875 0.251 5.186
24 131.046 282.000 0.229 5.471
25 129.676 316.831 0.226 10.430
26 136.549 310.071 0.275 9.483
27 168.394 301.344 0.261 18.676
28 174.401 274.875 0.207 9.586
29 174.940 302.552 0.247 5.857
30 231.463 330.746 0.209 12.092
31 108.419 327.439 0.251 11.223
32 144.217 336.406 0.273 15.439
33 221.628 294.729 0.259 10.933
34 85.677 354.134 0.180 7.776
35 139.870 337.857 0.280 3.926
36 187.583 294.983 0.241 8.219
37 118.168 369.407 30.273 9.955
38 3155.287 430.204 0.299 8.993
39 223.944 283.096 0.186 38.244
40 154.830 3280.436 0.263 9.201
41 131.127 365.442 0.320 16.014
42 94.432 368.091 0.229 8.505
43 222.651 282.545 0.299 15.718
44 116.617 326.074 0.231 8.274
45 193.806 236.212 0.175 5.151
46 73.233 486.438 0.220 3.460
47 151.344 349.154 0.359 8.551
48 161.773 549.270 0.257 6.580
49 179.098 354.372 1.313 12.878
50 95.447 321.750 0.264 11.692

(continued)
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Table 9.3. (continued)

BANK OUTPUT PRICE DATA

Obs P1 P2 P3 P4 P5

1 0.21967 0.13250 0.05154 0.063770 1
2 0.07849 0.10477 0.06728 0.024000 1
3 0.09960 0.07892 0.07404 0.060260 1
4 0.09431 0.09999 0.07976 0.055500 1
5 0.12155 0.12601 0.06853 0.068110 1
6 0.08245 0.08567 0.08244 0.054700 1
7 0.09453 0.07766 0.09412 0.069330 1
8 0.09712 0.13740 0.05984 0.063564 1
9 0.09591 0.09400 0.08016 0.057088 1
10 0.29330 0.15533 0.03119 0.054917 1
11 0.09380 0.09191 0.08498 0.051870 1
12 0.10701 0.09200 0.08069 0.052900 1
13 0.07427 0.14135 0.07607 0.064092 1
14 0.09170 0.09085 0.08456 0.062401 1
15 0.10423 0.07970 0.08195 0.055000 1
16 0.10938 0.19668 0.07467 0.052700 1
17 0.11134 0.08149 0.08404 0.076100 1
18 0.12314 0.08218 0.06223 0.066590 1
19 0.08449 0.08199 0.06468 0.055570 1
20 0.08048 0.07669 0.08122 0.078040 1
21 0.08743 0.12531 0.08745 0.065150 1
22 0.10492 0.09640 0.07889 0.063493 1
23 0.25077 0.07519 0.03253 0.056985 1
24 0.08810 0.09345 0.07759 0.066976 1
25 0.09987 0.10655 0.07983 0.069517 1
26 0.12327 0.08522 0.07660 0.068174 1
27 0.06890 0.11045 0.08624 0.068421 1
28 0.08646 0.08351 0.08051 0.058400 1
29 0.09664 0.11355 0.10683 0.073620 1
30 0.10021 0.10328 0.08419 0.053299 1
31 0.11752 0.09523 0.07430 0.060139 1
32 0.07625 0.10590 0.08361 0.062129 1
33 0.09687 0.11053 0.08966 0.059920 1
34 0.08989 0.09938 0.07628 0.067625 1
35 0.08437 0.09975 0.07544 0.054800 1
36 0.08568 0.08271 0.09283 0.061853 1
37 0.10053 0.10191 0.08727 0.046300 1
38 0.09438 0.06856 0.08076 0.057238 1
39 0.08760 0.13264 0.07739 0.060426 1
40 0.10070 0.08664 0.07836 0.069367 1
41 0.20274 0.08764 0.03422 0.061444 1
42 0.09003 0.09947 0.07976 0.055920 1
43 0.09431 0.20716 0.08438 0.077740 1
44 0.09607 0.10193 0.08328 0.062289 1
45 0.08456 0.12839 0.08187 0.066167 1
46 0.10653 0.09346 0.03436 0.055150 1
47 0.16385 0.18400 0.05278 0.057956 1
48 0.09663 0.11140 0.07650 0.069500 1
49 0.07426 0.09884 0.07540 0.067107 1
50 0.07053 0.07346 0.08183 0.064001 1

(continued)
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Table 9.3. (continued)

BANK INPUT PRICE DATA

Obs W1 W2 W3 W4

1 0.006905 0.054842 34.8856 0.22928
2 0.010044 0.029718 32.3448 0.46443
3 0.008522 0.049931 55.8070 0.12045
4 0.013326 0.052387 29.3659 0.18598
5 0.010741 0.046960 32.3120 0.23297
6 0.001727 0.046073 28.3483 0.21746
7 0.009547 0.058695 30.2270 0.11799
8 0.008776 0.052089 37.4435 0.38540
9 0.008606 0.043124 38.1719 0.24539

10 0.013315 0.040720 31.3477 0.32055
11 0.023355 0.045605 37.9507 0.14516
12 0.007383 0.048108 28.8119 0.21520
13 0.005184 0.044077 28.6736 0.20651
14 0.002278 0.034839 30.4857 0.22517
15 0.006148 0.041928 31.5185 0.15149
16 0.010061 0.032657 50.4537 0.28904
17 0.010299 0.035185 27.9412 0.20512
18 0.015632 0.046608 40.7853 0.20558
19 0.024422 0.051249 29.9565 0.24964
20 0.013436 0.052527 32.8510 0.26841
21 0.012207 0.049539 31.0280 0.45764
22 0.006515 0.046061 34.9434 0.26390
23 0.007875 0.042718 35.6892 0.61955
24 0.005555 0.039862 35.3974 0.26595
25 0.017027 0.045340 29.2080 0.21055
26 0.008297 0.041249 34.3200 0.24096
27 0.006633 0.049667 43.5402 0.18082
28 0.000872 0.038396 42.7633 0.26966
29 0.009243 0.046518 34.0810 0.45433
30 0.006558 0.039988 43.5789 0.27464
31 0.013881 0.047810 27.8486 0.18337
32 0.008515 0.046685 29.3956 0.15804
33 0.019831 0.047260 37.9380 0.16811
34 0.010003 0.052525 30.1222 0.19792
35 0.009652 0.048334 29.0357 0.68161
36 0.012618 0.043379 48.0747 0.31099
37 0.007904 0.043545 35.8901 0.25364
38 0.012158 0.048689 31.0970 0.35316
39 0.014352 0.046807 50.6290 0.29415
40 0.004741 0.043525 35.4791 0.35811
41 0.006627 0.048002 29.9063 0.18446
42 0.009700 0.052302 34.5109 0.31193
43 0.004905 0.034143 38.7590 0.29648
44 0.009741 0.046244 29.1515 0.29236
45 0.018446 0.044308 43.6743 0.56688
46 0.007032 0.049080 49.7050 0.82601
47 0.015567 0.024725 34.1309 0.42042
48 0.004179 0.042660 35.5681 0.49635
49 0.010257 0.047176 36.8104 0.81760
50 0.008832 0.045887 36.4924 0.17918
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Exhibit: 9.3. SAS program for the DEA-LP for profit maximization by Bank #1

data qout;

input obs y1-y5;

drop obs;

cards;

1 42.654 281.660 141.454 75.657 14.688

2 32.985 70.183 109.357 191.057 4.318

3 75.474 8.832 290.180 155.438 0.944

4 57.935 74.259 196.960 98.871 2.433

5 39.382 49.084 316.682 48.674 3.138

. ... ... ... ... ...

. ... ... ... ... ...

45 40.999 5.203 304.792 114.665 4.191

46 279.037 0.428 28.666 27.217 9.760

47 40.818 30.847 191.266 206.572 9.231

48 63.333 86.147 167.996 280.677 16.237

49 51.656 107.739 228.967 57.192 77.482

50 17.836 6.684 204.330 321.243 4.704

;

DATA QIN; INPUT OBS X1-X4;

drop obs;c=1;d=0;

1 111.805 434.194 0.411 19.356

2 154.721 311.423 0.203 8.266

3 76.975 396.428 0.083 5.795

4 77.369 361.009 0.205 7.576

5 33.051 424.549 0.189 9.207

. ... ... ... ...

. ... ... ... ...

45 193.806 236.212 0.175 5.151

46 73.233 486.438 0.220 3.460

47 151.344 349.154 0.359 8.551

48 161.773 549.270 0.257 6.580

49 179.098 354.372 1.313 12.878

50 95.447 321.750 0.264 11.692

;

data qty; merge qout qin;

proc transpose out=next;

data more1;

input a1-a5;

cards;

(continued)
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Exhibit: 9.3 (continued)

-1 0 0 0 0

0 -1 0 0 0

0 0 -1 0 0

0 0 0 -1 0

0 0 0 0 -1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.21967 0.13250 0.05154 0.063770 1

;

data more2;

input b1-b4 _type_ $ _rhs_;

cards;

0 0 0 0 >= 0

0 0 0 0 >= 0

0 0 0 0 >= 0

0 0 0 0 >= 0

0 0 0 0 >= 0

-1 0 0 0 <= 0

0 -1 0 0 <= 0

0 0 -1 0 <= 0

0 0 0 -1 <= 0

0 0 0 0 = 1

-0.006905 -0.054842 -34.8856 -0.22928 max .

;

data last; merge next more1 more2;

proc print;

proc lp;

run;

profit that a bank can earn at the output and input prices faced by Bank #1. In
this particular example, λ∗

49 equals unity while all other λ j ’s are equal to 0. This
means that the firm should merely select the actual input–output quantities of
Bank #49 in order to earn this level of profit. The actual amounts of revenue
earned and cost incurred by the bank under examination are 73.4929 and
43.3600, respectively. Thus, the amount of actual profit earned is 30.1329. The
actual (gross) return on outlay is 1.6949. The amount of unrealized profit is
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Exhibit: 9.4. The SAS output for the profit-maximization problem for Bank #1

Solution Summary

Objective Value 49.124182

Variable Summary

Variable Reduced

Col Name Status Type Price Activity Cost

1 COL1 NON-NEG 0 0 −18.99125
2 COL2 NON-NEG 0 0 −37.56557
3 COL3 NON-NEG 0 0 −32.05901
4 COL4 NON-NEG 0 0 −36.89022
5 COL5 NON-NEG 0 0 −43.62147
6 COL6 NON-NEG 0 0 −38.06545
7 COL7 NON-NEG 0 0 −36.83429
8 COL8 NON-NEG 0 0 −28.58673
9 COL9 NON-NEG 0 0 −35.97359
10 COL10 NON-NEG 0 0 −35.12391
11 COL11 NON-NEG 0 0 −34.41744
12 COL12 NON-NEG 0 0 −35.05785
13 COL13 NON-NEG 0 0 −27.82693
14 COL14 NON-NEG 0 0 −35.04011
15 COL15 NON-NEG 0 0 −40.87838
16 COL16 NON-NEG 0 0 −35.28736
17 COL17 NON-NEG 0 0 −31.01896
18 COL18 NON-NEG 0 0 −32.45639
19 COL19 NON-NEG 0 0 −36.14552
20 COL20 NON-NEG 0 0 −13.92601
21 COL21 NON-NEG 0 0 −39.33829
22 COL22 NON-NEG 0 0 −39.8338
23 COL23 NON-NEG 0 0 −27.11086
24 COL24 NON-NEG 0 0 −20.91604
25 COL25 NON-NEG 0 0 −32.33759
26 COL26 NON-NEG 0 0 −38.87563
27 COL27 NON-NEG 0 0 −25.2314
28 COL28 NON-NEG 0 0 −16.32598
29 COL29 NON-NEG 0 0 −30.29374
30 COL30 NON-NEG 0 0 −25.00067
31 COL31 NON-NEG 0 0 −35.13317
32 COL32 NON-NEG 0 0 −45.6683
33 COL33 NON-NEG 0 0 −16.77182
34 COL34 NON-NEG 0 0 −27.09754

(continued)
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Exhibit: 9.4 (continued)

Solution Summary

Objective Value 49.124182

Variable Summary

Variable Reduced

Col Name Status Type Price Activity Cost

35 COL35 NON-NEG 0 0 −29.44642
36 COL36 NON-NEG 0 0 −37.82651
37 COL37 NON-NEG 0 0 −30.53558
38 COL38 NON-NEG 0 0 −22.40739
39 COL39 NON-NEG 0 0 −38.46062
40 COL40 NON-NEG 0 0 −30.7549
41 COL41 NON-NEG 0 0 −27.58092
42 COL42 NON-NEG 0 0 −27.18967
43 COL43 NON-NEG 0 0 −40.44378
44 COL44 NON-NEG 0 0 −37.36575
45 COL45 NON-NEG 0 0 −33.79494
46 COL46 NON-NEG 0 0 −10.44939
47 COL47 NON-NEG 0 0 −38.48636
48 COL48 NON-NEG 0 0 −22.71743
49 COL49 BASIC NON-NEG 0 1 0

50 COL50 NON-NEG 0 0 −38.7947
51 A1 BASIC NON-NEG 0.21967 51.656 0

52 A2 BASIC NON-NEG 0.1325 107.739 0

53 A3 BASIC NON-NEG 0.05154 228.967 0

54 A4 BASIC NON-NEG 0.06377 57.192 0

55 A5 BASIC NON-NEG 1 77.482 0

56 b1 BASIC NON-NEG −0.006905 179.098 0

57 b2 BASIC NON-NEG −0.054842 354.372 0

58 b3 BASIC NON-NEG −34.8856 1.313 0

59 b4 BASIC NON-NEG −0.22928 12.878 0

60 OBS1 SURPLUS 0 0 −0.21967
61 OBS2 SURPLUS 0 0 −0.1325
62 OBS3 SURPLUS 0 0 −0.05154
63 OBS4 SURPLUS 0 0 −0.06377
64 OBS5 SURPLUS 0 0 −1
65 OBS6 SLACK 0 0 −.006905
66 OBS7 SLACK 0 0 −.054842
67 OBS8 SLACK 0 0 −4.8856
68 OBS9 SLACK 0 0 −.22928

(continued)
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Exhibit: 9.4 (continued)

Constraint Summary

Constraint S/S Dual

Row Name Type Col Rhs Activity Activity

1 OBS1 GE 60 0 0 −0.21967
2 OBS2 GE 61 0 0 −0.1325
3 OBS3 GE 62 0 0 −0.05154
4 OBS4 GE 63 0 0 −0.06377
5 OBS5 GE 64 0 0 −1
6 OBS6 LE 65 0 0 0.006905

7 OBS7 LE 66 0 0 0.054842

8 OBS8 LE 67 0 0 34.8856

9 OBS9 LE 68 0 0 0.22928

10 OBS10 EQ . 1 1 49.124182

11 OBS11 OBJECTVE . 0 49.124182 .

18.9913, implying

δ = 49.1242 − 30.1329

43.3600
= 0.4380.

It should be noted that the input-oriented technical efficiency (β) equals unity.
Hence, δT equals zero. No part of the unrealized profit is due to technical
inefficiency. By implication, all of the profit inefficiency is allocative.

9.11 Summary

When market prices of inputs and outputs are available, one can use DEA
to measure the level of economic efficiency of a firm. The minimum cost of
producing the observed output level of a firm can be obtained from the optimal
solution of the relevant cost-minimization problem. The ratio of this minimum
cost and the actual cost of the firm measures its cost efficiency, which can be
decomposed into two separate factors representing its technical and allocative
efficiency, respectively. When outputs as well as inputs are choice variables,
the appropriate format for efficiency analysis is the DEA model for profit
maximization. The difference between the maximum and the actual profit
normalized by the actual cost of a firm measures the return on outlay lost due
to inefficiency. It is possible to separately identify the contribution of technical
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and allocative inefficiency in a differential decomposition of the lost return on
outlay.

Guide to the Literature

A dual representation of the technology through an indirect aggregator func-
tion like the cost or the profit function is at the core of neoclassical production
economics. Building on the earlier work of Hotelling (1932) and Shephard
(1953), researchers have introduced various innovative specifications (e.g., the
Translog and the Generalized Leontief form) of the dual cost and profit func-
tions to analyze the characteristics of the technology. Decomposition of cost
efficiency into the technical and allocative efficiency components is due to
Farrell (1957). Banker and Maindiratta (1988) carried out a parallel decom-
position of profit efficiency. The additive decomposition of profit inefficiency
(measured as the lost return on outlay) is due to Färe, Grosskopf, Ray, Miller,
and Mukherjee (2000).
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Nonparametric Approaches in Production Economics

10.1 Introduction

There are two distinct strands in the literature on nonparametric analysis of
productivity and efficiency. One, identifiable as the Charnes–Cooper school,
builds on the DEA models with primary focus on observed input and output
quantity data. In a sense, it is a continuation of the mathematical programming
approach to optimization developed by Charnes and Cooper in various papers
prior to the introduction of DEA and forms a part of the overall operational
research/management science methodology. The other, often identified as the
Afriat school, uses both quantity and price information and makes use of the
neoclassical theory of duality between direct and indirect aggregator func-
tions like the production, cost, and profit functions. Building on earlier work
by Debreu, Shephard, and Farrell and developed by Afriat (1972), Hanoch
and Rothschild (1972), Diewert and Parkan (1983), and Varian (1984), among
others, the nonparametric approach to production analysis fits right into the
standard neoclassical tradition while, at the same time, providing a nonpara-
metric alternative to the ubiquitous econometric methodology. An implication
of the duality theorems is that the important characteristics of the technologi-
cal relationship between inputs and outputs (e.g., the elasticity of substitution
between a pair of inputs, returns to scale, homotheticity of the technology) can
be analyzed through the cost function instead of the production function. For
duality theory to be valid, however, one must assume optimizing behavior of
producers.

Researchers in the Afriat school (e.g., Varian [1984]) address the following
questions using behavioral data on input and output prices and quantities of
firms:

• Are the data consistent with profit maximization (cost minimization) by
price-taking firms for any regular production technology satisfying the

245
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assumptions of free disposability of inputs and outputs (with or without
convexity)?

• How can we recover the underlying technological constraints faced by the
firm from the observed data?

• How can we test restrictions on the underlying technology (e.g., separa-
bility or homogeneity)?

• Can we make extrapolations for out-of-sample data?

Varian developed the Weak Axiom of Cost Minimization (WACM) and the
Weak Axiom of Profit Maximization (WAPM) to test the consistency of the data
with cost minimization and profit maximization, respectively. He also showed
how one can utilize the data to construct an outer and an inner approximation of
the underlying production possibility set faced by firms in an industry. These
may, in turn, be used to define upper and lower bounds on the production
efficiency of a firm. This chapter explores the links between Varian’s axioms
of optimizing behavior and other nonparametric models of efficiency analysis.
Section 10.2 provides the rationale behind the WACM and examines how it
relates to FDH analysis on the one hand and the standard cost-minimization
DEA model on the other.

In econometric analysis, the neoclassical dual cost function can be esti-
mated from total expenditure, input price, and output quantity data. One does
not need information on input quantities. To apply the WACM, however, one
must have input quantity data along with input price and output quantity data.
Section 10.3 presents a nonparametric test due to Diewert and Parkan (1983)
that can be applied even when input quantity data are not available. Section
10.4 describes the Weak Axiom of Cost Dominance (WACD) developed by
Ray (1997). The relation among WACD, WACM, and an FDH-type dominance
analysis is examined in Section 10.5. Section 10.6 presents Varian’s WAPM
and defines an outer approximation of the production possibility set. In Sec-
tion 10.7, the inner and outer approximations are employed to define upper and
lower bounds on the technical efficiency of a firm. Section 10.8 summarizes
the main points of the chapter.

10.2 Weak Axiom of Cost Minimization

Consider a data set relating to N firms from an industry. For any individual
firm i(i = 1, 2, . . . , N ), let yi denote its scalar output, xi its actual input vector,
and wi the vector of input prices paid by this firm. Thus, its actual cost is
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Ci = wi ′xi . The question is whether the firm is producing its output using the
least-cost input bundle. To answer this question, one needs to define the input
requirement set

V (yi ) = {x : x can produce yi }. (10.1)

It is possible, of course, to derive V (yi ) from the free disposal convex hull
of the observed input–output bundles. One would, then, solve the relevant
LP problem to determine the minimum cost C(wi , yi ) and compare it with
the actual cost Ci . Varian (1984) proposes a simple alternative to this LP
procedure. Suppose that the observations are rearranged in ascending order of
the output quantities produced. Thus, j ≥ i implies y j ≥ yi . Now, if there is
some firm j ≥ i such that wi ′x j < wi ′xi , then firm i cannot be minimizing
cost. The intuition behind this test is quite straightforward. Note that x j actually
produces y j . Hence, by free disposability of output, x j can also produce yi .

That is, x j ∈ V (yi ). Hence, if wi ′x j < wi ′xi , obviously xi is not the least-
cost bundle in the input requirement set of output yi . That is, firm i is not
minimizing cost. This is a remarkably powerful test that can be carried out
with the very little computation.

Varian formalized this test as the Weak Axiom of Cost Minimization
(WACM) that can be stated as follows:

For an observed data set to be consistent with competitive cost minimiz-
ing hypothesis, we must have wi ′xi ≤ wi ′x j for all i = 1, 2, . . . , N , and
j ≥ i.

Figure 10.1 illustrates the WACM for the two-input, one-output case. The
points P1 through P5 show the observed input bundles of five firms that have
been arranged in ascending order of the output levels. That is, y5 ≥ y4 ≥
· · · ≥ y1. Focus on firm 3 and its input bundle x3 = (x3

1 , x3
2 ) shown by the

point P3. The line AB is the expenditure line w3′x = C3 = w3′x3. All input
bundles shown by points to the left of this line would cost less than C3. In
this diagram, point P4 showing the input bundle x4 (used by firm 4) that
produces output y4 ≥ y3 lies to the left of AB and is, therefore, less expensive
than x3 at price w3. Thus, firm 3 violates WACM and cannot be minimizing
cost.

It may be noted that in deriving WACM it was not necessary to assume
convexity of the input requirement set. The relation between WACM and the
standard DEA model for cost minimization under VRS can be best understood
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w3'x = C3

P5
P3

P4

P2
P1

O Input 1 (x1)

Input 2 (x2)

Figure 10.1 Violation of WACM.

by considering the following mixed-integer programming problem:

min wi ′x

s.t.
N∑

j=1

λ j x
j ≤ x ;

N∑
j=1

λ j y j ≥ yi ;

N∑
j=1

λ j = 1;

(10.2)

x ≥ 0; λ j ∈ {0, 1} ( j = 1, 2, . . . , N ).

Note that the constraints on the λ j ’s ensure that only one λ j will take the
value 1 whereas all others will be 0 at the optimal solution. Further, the output
constraint requires j ≥ i. Clearly, there will not be any input slack in the
optimal bundle x∗. That means that x∗ will be the observed input bundle of
some firm j satisfying j ≥ i. In other words, applying WACM to test for
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cost-minimizing behavior on the part of firm i is equivalent to solving the
mixed integer programming problem (10.2). This is a restricted version of the
standard DEA LP model for cost minimization under the VRS assumption,
where the λ j ’s are allowed to take any nonnegative value as long as they add
up to unity.

It can be easily shown that using WACM is equivalent to applying FDH
analysis with aggregated inputs. Suppose that one uses the input price vector
wi to define the aggregate input bundles

X j = wi ′x j ( j = 1, 2, . . . , N ).

Then, the input–output combination (x j , y j ) can be expressed as the single-
input, single-output pair (X j , y j ). Now, consider the input-oriented FDH effi-
ciency of firm i. For this, we only consider firms with output at least as large
as yi . Firm i is evaluated as 100% FDH efficient if and only if X j ≥ Xi for all
j ≥ i. This is equivalent to the condition wi ′x j ≥ wi ′xi for j ≥ i. But that is
exactly the WACM.

Consider again the optimization problem (10.2) and the constraints

N∑
j=1

λ j x
j ≤ x .

Now, premultiply multiply both sides by wi to get

N∑
j=1

λ j (w
i ′x j ) ≤ wi ′x .

This can be expressed as
∑N

j=1 λ j X j ≤ X.

Define

θ = wi ′x
wi ′xi

= X

Xi
.

Then, the objective function in (10.2) is θ Xi . Because Xi = wi ′xi is a constant,
minimizing wi ′x is equivalent to minimizing θ . Thus, the optimization problem
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in (10.2) can be expressed as

min θ

s.t.
N∑

j=1

λ j X j ≤ θ Xi ;

N∑
j=1

λ j y j ≥ yi ;

N∑
j=1

λ j = 1;

(10.2a)

x ≥ 0; λ j ∈ {0, 1}( j = 1, 2, . . . , N ); θ free.

This is, clearly, the FDH problem in the aggregated input.

10.3 Testing Cost-Minimizing Behavior without Input Quantity Data

An advantage of estimating the dual cost function parametrically is that
one does not need information on input quantities. By contrast, one needs
the input quantity data to apply WACM as a test for cost-minimizing be-
havior. Diewert and Parkan (1983) proposed the following nonparamet-
ric test of consistency of the observed output, expenditure, and input
price data with cost-minimizing behavior when input quantities are not
known.

Suppose that observations are arranged in ascending order of the output
quantities produced. Focus on firm i producing output yi and consider all
firms k with output yk ≤ yi . Now, consider the LP problem

C̃i = min wi ′x
s.t. wk′x ≤ Ck(k ≤ i);

x ≥ 0.

(10.3)

Diewert and Parkan show that if C̃i > Ci for any observation i , then the data
cannot be consistent with cost minimization for any regular technology. The
underlying logic is easily explained by means of a diagram. Suppose that there
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A1

P1

A2

A3

P2

Input 2 (x2)

B3B2B1O Input 1 (x1)

Figure 10.2 An application of the Diewert-Parkan test of cost minimization.

are only three firms and consider the LP problem for i = 3:

C̃3 = min w3′x
s.t. w1′x ≥ C1;

w2′x ≥ C2;

w3′x ≥ C3;

x ≥ 0.

(10.4)

For the two-input case, the constraints are shown in Figure 10.2. The line A1 B1

shows the expenditure line of firm 1 (w1′x = C1). Similarly, the lines A2 B2

and A3 B3 correspond to the expenditure lines of firms 2 and 3, respectively. If
the optimal solution x∗ lies on the line A3 B3, then C̃3 = C3. By construction,
C̃3 ≥ C3. But if C̃3 > C3, then the entire feasible set lies strictly above the line
A3 B3. This implies that at least one of the other two lines A1 B1 and A2 B2 lies
entirely above the line A3 B3. In Figure 10.3, A2 B2 lies above A3 B3. Now, the
unobserved input bundles of firms 2 and 3 lie somewhere on the expenditure
lines A2 B2 and A3 B3, respectively. But all input bundles below the line A2 B2

cost less than C2 at the input price vector w2. This means that the input bundle
of firm 3 costs less than the input bundle of firm 2. Thus, the input bundle of
firm 2 violates WACM with respect to the input bundle of firm 3. Hence, a
necessary condition for the data to be consistent with WACM is that C̃i = Ci
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O

P

B2B3B1

A1

A2

A3

Input 1 (x1)

Input 2 (x2)

Figure 10.3 Violation of cost-minimizing behavior.

for each observation i. Diewert and Parkan have shown that this is also a
sufficient condition for the data to be consistent with cost minimization for a
regular technology characterized by the family of input requirement sets:

Ṽ (yi ) = {x : wk′x ≥ Ck : k ≤ i}. (10.5)

Although this test provides a check of consistency of the data with cost-
minimizing behavior by the relevant firms, if any violation is detected, it fails
to provide a measure of the degree of inefficiency of any individual firm.
Diewert and Parkan (1983) suggest the ratio

β̃i = C̃i

Ci
(10.6)

to measure the degree of violation of cost minimization. This ratio has no natu-
ral efficiency interpretation, however. Clearly, β̃i ≥ 1 by construction. Hence,
it cannot be a measure of efficiency of firm i. Nor can it be a measure of the
level of efficiency of any other firm k < i. In fact, even when Ci < C̃i = Ck

for some firm k, this does not indicate that firm k has violated the assumption
of cost-minimizing behavior. This is illustrated in Figure 10.3. In this example,
the feasible area is the set of points on or above the broken line A1PB2. The
minimum of w3′x is attained at the point P representing the input bundle z.
Thus, C̃3 = w3′z > C3. But the point P also lies on both the lines A1 B1 and
A2 B2. Hence, C̃3 = C1 = C2. When we look at the diagram, however, we find
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that a segment of the line A1 B1 lies below both the lines A2 B2 and A3 B3 and
the unobserved input bundle of firm 1 could be located in this segment of its
expenditure line. In that case, there is no violation of cost-minimizing behavior
by firm 1. On the other hand, the line A2 B2 lies entirely above the line A3 B3.
Hence, firm 2 is definitely cost inefficient. But the optimal solution of the LP
problem fails to distinguish between firm 1 and firm 2. In any case, β̃3 does
not measure the degree of violation of WACM by firm 2.

10.4 Weak Axiom of Cost Dominance

Consider any firm j producing the output y j.. It faces the input price vector
w j and incurs the cost C j . Now, consider the set of input bundles

E( j) = {x : w j ′x = C j ; x ≥ 0}. (10.7)

This is the set of all input bundles that lie on the expenditure line of firm j .
Now, consider the input price vector wi faced by the firm i producing output
yi ≤ y j and define

C∗
i j = max wi ′x

s.t. x ∈ E( j). (10.8)

Clearly, the true but unobserved input bundle of firm j(z j ) is in E( j). Hence,
wi ′z j ≤ C∗

i j . But z j ∈ V (yi ). Thus, by free disposability of output, z j ∈ V (yi ).
Next, consider the minimum cost of firm output yi at input price wi :

C∗
i = min wi ′x

s.t. x ∈ V (yi ). (10.9)

We know that z j ∈ V (yi ). Hence, C∗
i ≤ wi ′z j . But wi ′z j ≤ C∗

i j . Thus, C∗
i j is

an upper bound on C∗
i . For each j ≥ i, we can compute C∗

i j . Of course, for
j = i, C∗

i j = Ci . We can find the lowest upper bound

C∗∗
i = min [Ci ; C∗

i j ( j > i)]. (10.10)
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Consider the one-output, n-input case. Let i = 1 and j = 2. In this case,

C∗
12 =

n∑
i=1

w1
i xi

s.t.
n∑

i=1

w2
i xi = C2.

xi ≥ 0 (i = 1, 2, . . . , n).

(10.11)

The dual of this problem is

min αC2

s.t. αw2
i ≥ w1

i (i = 1, 2, . . . , n);

α unrestricted.

(10.12)

Clearly,

α∗ = max

{
w1

1

w2
1

,
w1

2

w2
2

, . . . ,
w1

n

w2
n

}
. (10.13)

By duality,

C∗
12 = α∗C2 = max

{
w1

1C2

w2
1

,
w1

2C2

w2
2

, . . . ,
w1

nC2

w2
n

}
. (10.14)

For any observation k, define the normalized input prices

vk
r = wk

r

Ck
(r = 1, 2, . . . , n). (10.15)

Then,

C∗
12 = max

{
v1

1

v2
1

,
v1

2

v2
2

, . . . ,
v1

n

v2
n

}
· C1. (10.16)

When only firms 1 and 2 are considered,

C∗
1 = min {C1, C∗

12}. (10.17)

Hence, an upper bound on the cost efficiency of firm 1 is

C∗
1

C1
= min

{
1,

C∗
12

C1

}
. (10.18)

Clearly, if v1
r < v2

r for every input r , then the cost efficiency of firm 1 must be
less than 1.
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O B1B2 Input 1 (x1)

A1

A2

Input 2 (x2)

Figure 10.4 An application of WACD.

Here, we have looked at only two firms. In the general case for any firm i,
its minimum cost is bounded from above by

C∗∗
i = min {C∗

i j ; j ≥ i} (10.19a)

where

C∗
i j = max

{
vi

1

v
j
1

,
vi

2

v
j
2

, . . . ,
vi

n

v
j
n

}
· Ci . (10.19b)

We have now derived the following WACD:

If, for any firm i producing output yi , there is any other firm j producing output
y j ≥ yi such that for every input r (r = 1, 2, . . . , n)

wi
r

Ci
<

w
j
r

C j
,

then firm i cannot be cost minimizing.

For the two-input case, this result is quite obvious and is illustrated in Fig-

ure 10.4. Assume that w1
1

C1
<

w2
1

C2
and w1

2
C1

<
w2

2
C2

. Let the expenditure line of firm
1 be A1 B1. Similarly, A2 B2 shows the expenditure line of firm 2. Hence,

OB1 = C1

w1
1

; OB2 = C2

w2
1

.
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Thus,

OB2 < OB1.

Similarly,

OA2 = C2

w2
2

< OA1 = C1

w1
2

.

This implies that the line A2 B2 lies entirely to the left of the line A1 B1. Thus,
firm 1 cannot be cost minimizing.

A practical application of the proposed test of consistency would involve
the following steps:

1. For any firm i , delete all observations with lower levels of output.
2. For each remaining firm k (including firm i), compute the normalized

input prices

vk
r = wk

r

Ck
(r = 1, 2, . . . , n).

3. Obtain the ratios

f ki
1 = vk

1

vi
1

; f ki
2 = vk

2

vi
2

, . . . , vki
m = vk

m

vi
m

. (10.20)

4. If for any k �= i, f ki
r > 1 for all r (r = 1, 2, . . . , n), then firm i is not

cost efficient.

If firm i is found to be inefficient, its cost efficiency can be obtained as

θi = min
{

f ki
r ; r = 1, 2, . . . , n; k ≥ i

}
(10.21)

10.5 Relation among WACM, WACD, and Dominance Analysis

Consistency with WACM requires that for j ≥ i, that is, for y j ≥ yi ,

wi ′xi ≤ wi ′x j . (10.22)

Dividing both sides of this inequality by Ci , we get

wi ′xi

Ci
≤ wi ′x j

Ci
. (10.23)

But

wi ′xi

Ci
= 1 = w j ′x j

C j
. (10.24)
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Thus, WACM implies

w j ′x j

C j
− wi ′x j

Ci
≤ 0. (10.25)

This is the same as
m∑

r=1

(
v j

r − vi
r

)
x j

r ≤ 0. (10.26)

Of course, when WACD is violated, vi
r < v

j
r for all r. In that case, this last

inequality cannot hold for any semipositive input vector x j . Thus, violation
of WACD is sufficient for violation of WACM. With quantity information,
however, we can detect violation of WACM even when WACD has not been
violated.

We now show that in implementing WACD, we essentially apply the domi-
nance criterion and our approach is similar to the method of FDH analysis but
is applied in the context of the cost-indirect technology defined by Shephard
(1974).

Consider an output vector1 y and its input requirement set V (y) consisting
of all input vectors x that can produce y. Now, consider some input price vector
w and a specified expenditure level C. As before, let v = w

C be the resulting
normalized input price vector. Define the budget set

B(v) = {x : v′x ≤ 1}. (10.27)

Now, consider the intersection of V (y) and B(v). If, for a given pair of y and v,
V (y) ∩ B(v) �= ∅, then there is at least one input bundle x that can produce the
output bundle y and costs no more than C at input price w. If this is the case,
we may say that y is affordable at normalized input prices v. The cost-indirect
technology can be characterized by the input price requirement set

IV (y) = {v : V (y) ∩ B(v) �= ∅}. (10.28)

It is easy to show that input price requirement sets are monotonic in the nor-
malized input price vector: If v0 ∈ IV (y0) and v1 ≤ v0, then v1 ∈ IV(y0). It
should be emphasized here that we do not need to assume free disposabil-
ity of inputs for this monotonicity property. Suppose that x0 ∈ V (y0) sat-
isfies v0′x0 ≤ 1 ⇔ w0′x0 ≤ C. Now, suppose that w1 ≤ w0. Then clearly,

1 Varian considered the single-output case. But, generalization to multiple outputs is quite
straightforward.
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v1 = (w/C)1

v2 = (w/C)2

v1
i

v1
t

v1
j

v1
j v1

i v1
tO

R

T

W

S

Figure 10.5 Free affordability hull and dominance analysis.

w1′x0 ≤ w0′x ≤ C. Thus, v1′x0 ≤ 1 ⇒ x0 ∈ B(v1). Hence, v1 ∈ IV(y0). Be-
cause the same input bundle x0 is considered for the production of y0 under
two different input price situations, the question of free disposability of in-
puts is irrelevant here. We do continue to assume free disposability of outputs,
however. This assumption ensures that input price requirement sets are nested.
That is, if v ∈ IP (y) and ỹ ≤ y, then v ∈ IP (ỹ).

Suppose that firm j faces the input price w j and produces output y j at cost
C j . The actual input bundle of firm j(x j ) is not observed. We know, however,

that v j = w j

C j
∈ IV(y j ). Now, define the free affordability hull (FAH) of v j :

FAH (v j ) = {v : v ≤ v j }. (10.29)

We may say that firm i facing input price wi and producing output yi at cost
Ci dominates firm j if yi ≥ y j and v j = w j

C j
∈ FAH (vi ).

An example of cost dominance2 in the two-input case is given is Figure
10.5. The normalized input prices faced by firm i (vi

1, v
i
2) are represented by

the point R. Similarly, points S and T represent (v j
1 , v

j
2 ) and (vt

1, v
t
2), the

normalized input prices of firm j and firm t , respectively. Assume that both

2 The concept of cost-dominance was first introduced by Van den Eeckaut, Tulkens, and
Jamar (1993). However, they did not formally construct a model of cost-dominance when
input prices vary across firms.
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output levels yi and yt are at least as large as the output y j because v j is
in the FAH of both vi and vt , the firms i and t cost dominate firm j. Now,
consider the point W , showing the maximum radial expansion of v j within
the FAH of vi . Let the scale of expansion be κ1 = OW

O S . Thus, the point W
represents the normalized input price vector vW = (κ1v

j
1 , κ1v

j
2 ). Because W

is in the FAH of R, there exists at least one input bundle x satisfying vW ′x ≤
1 ⇒ κ1(w j ′

C x) ≤ 1 such that x ∈ V (yi ). But, by free disposability of outputs
vW ∈ IP (y j ). Therefore, there exists some input bundle x ∈ V (y j ) satisfying
w j x ≤ C j

κ1
. Hence, the minimum cost of producing y j at input price w j cannot

be any more than C j

κ1
. In other words, 1

κ1
is an upper bound of the cost efficiency

of firm j.
In the two-input case illustrated in Figure 10.5,

κ1 = min

{
vi

1

v
j
1

,
vi

2

v
j
2

}
. (10.30)

In a perfectly analogous manner,

κ2 = min

{
vt

1

v
j
1

,
vt

2

v
j
2

}
(10.31)

is also an upper bound of the cost efficiency of firm j. In this example, an
estimate of the cost efficiency of firm j is min{κ1, κ2}. Generalization of this
criterion to multiple comparisons and to the n-input case is quite straightfor-
ward. Let the set D consist of firms that cost dominate the firm j. Thus,

D =
{

i : yi ≥ y j ,
w j

C j
≤ wi

Ci

}
. (10.32)

Then, an upper bound of the cost efficiency of firm j is

min
i∈D

[
max

{
vi

1

v
j
1

,
vi

2

v
j
2

, . . . ,
vi

m

v
j
m

}]
(10.33)

This is clearly equivalent to the measure obtained earlier using WACD.
It should be noted here that efficiency based on FDH analysis is a primal

measure because it uses output and input quantities. On the other hand, WACD
(or, equivalently, FAH analysis) yields a dual efficiency measure because out-
put, input price, and cost data are utilized but input quantities are not required.
Moreover, this dual approach does not require free disposability of inputs and
is, therefore, even less restrictive about the admissible technology.
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10.6 Weak Axiom of Profit Maximization

We now add output price information to the input price, input quantity, and
output quantity data. The objective is to test whether the observed input–
output choices of the firms are consistent with competitive profit-maximizing
behavior by these firms. A profit-maximizing firm can choose any input–output
combination (x, y) as long as it lies in the production possibility set and is
a feasible production plan. Because all observed input–output bundles are
feasible by assumption, any firm in the sample could choose the actual input–
output bundle of any other firm if it found it more profitable to do so. Consider
firm i and its actual input–output bundle (xi , yi ). It faces the output price pi

and the input price vector wi . Thus, the actual profit earned by this firm is


i = pi yi − wi ′xi . (10.34)

If this firm selected some other input–output combination (x j , y j ), at prices
(pi , w

i ), it would earn the profit


i j = pi y j − wi ′x j . (10.35)

Clearly, if 
i < 
i j for any j �= i, then firm i is not maximizing profit. Varian
(1984) formalized this simple but extremely powerful result as the WAPM:

If pi yi − wi ′xi ≥ pi y j − wi ′x j for i, j = 1, 2, . . . , N , then there exists a pro-
duction possibility set that rationalizes the data.

Here, rationalization implies that the input–output bundles are consistent
with competitive profit-maximizing behavior at the relevant input–output
prices. Despite its computational simplicity, WAPM is by far the most pow-
erful nonparametric test of optimizing behavior. As has been shown herein,
consistency with WAPM is a necessary condition for profit maximization by
the observed firms over any production possibility set containing the observed
input–output bundles. At the same time, if the data are indeed consistent with
WAPM, then there exists a convex production possibility set containing the
data points, for which the actual input–output combinations of the individual
firms are profit maximizing at the applicable prices. In fact, the free disposal
convex hull of the observed input–output bundles is one such production pos-
sibility set. In other words, if firm j satisfies WAPM, then its actual profit is
what one would obtain at the optimal solution of the DEA LP problem for
profit maximization specified previously in Chapter 9.
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The proof is quite straightforward. Suppose that

pi yi − wi ′xi ≥ pi y j − wi ′x j ( j = 1, 2, . . . , N ). (10.36)

Then, for any λ j > 0,

λ j (pi yi − wi ′xi ) ≥ pi ′(λ j y j ) − wi ′(λ j x
j ) ( j = 1, 2, . . . , N ). (10.37)

Now, suppose
∑N

j=1 λ j = 1. Define
∑N

j=1 λ j y j = ȳ and
∑N

j=1 λ j x j = x̄ .

Then,

pi yi − wi ′xi ≥ pi ȳ − wi ′ x̄ (10.38)

for any x̄ = ∑N
j=1 λ j x j and ȳ = ∑N

j=1 λ j y j satisfying
∑N

j=1 λ j = 1. Hence,
by free disposability of inputs and output, pi yi − wi ′xi ≥ pi y − wi ′x for all
(x, y) satisfying x ≥ x̄ and y ≤ ȳ. This proves that the actual input–output
bundle of firm i maximizes profit for prices (pi , w

i ) over the free disposal
convex hull of the observed bundles.

What is more interesting is that even when a firm fails to satisfy WAPM,
one can get a measure of the maximum profit without having to solve the
DEA LP. This is because the free disposal convex hull is a finite polytope and
the optimal solution will be one of the extreme points of the set. But each
extreme point represents some actually observed input–output bundle. Hence,
the optimal solution is merely the input–output combination (x j , y j ) for which

i j = pi y j − wi ′x j is the maximum for all j( j = 1, 2, . . . , N ).

It should be noted that one does not get the optimal value of the DEA LP
problem for cost minimization by merely applying WACM. In particular, if
firm k does satisfy WACM, its actual cost need not be what one would get at
the optimal solution of the DEA problem. This is because in the application
of WACM, all firms producing strictly smaller quantities of output than yk are
deleted. This reduces the set of feasible bundles for cost minimization.

Apart from providing a direct way to measure the maximum profit 
(pi , w
i ),

WAPM helps to define a unique “outer approximation” of the production pos-
sibility set that serves as a complement to the “inner approximation” defined
by the free disposal convex hull of the input–output data points. As is shown
in the following section, the alternative approximations of the production pos-
sibility set can be used to define upper and lower bounds on the efficiency of
a firm.
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10.7 Upper and Lower Bounds on Efficiency

Efficiency of a firm is measured with reference to a specific production pos-
sibility set. In nonparametric analysis, we assume only free disposability of
inputs and outputs along with convexity of the production possibility set. In
this section, we show how to construct two different production possibility sets
from observed input–output data that satisfy these assumptions.

Consider, first, the following one-input, one-output production function,
y = f (x). Assume that f (x) is concave and nondecreasing in x . Then, the
production possibility set

A = {(x, y) : y ≤ f (x)} is convex.

Now, suppose that (x0, y0) satisfies f (x0) = y0 and thus lies on the production
function. Then, convexity of the production possibility set ensures that there
exists a tangent line

y = α0 + β0x ; β0 ≥ 0

such that

y0 = α0 + β0x0,

and for any (x, y) satisfying y = f (x),

y ≤ α0 + β0x .

Clearly, this tangent line y = α0 + β0x is a linear approximation of the pro-
duction function and the half-space

B0 = {(x, y) : y ≤ α0 + β0x}
is one such production possibility set that satisfies all the regularity assump-
tions. It should be noted further that the production possibility set A is a subset
of B0. Of course, (x0, y0) is only one point on the production function. Sup-
pose that we have k different points (x j , y j ) ( j = 1, 2, . . . , k) all lying on the
production function. Then, for each such point (x j , y j ), there exists a tangent
line

y = α j + β j x

such that

y j = α j + β j x j ,
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and for any (x, y) satisfying y = f (x),

y ≤ α j + β j x .

Each associated half-space

B j = {(x, y) : y ≤ α j + β j x} ( j = 1, 2, . . . , k) (10.39)

is a valid estimate of the underlying production possibility set. Thus, an outer
approximation to the true production possibility set A is the set

L = ∩k
j=1 B j . (10.40)

Correspondingly, an outer approximation to the true production function is

f +(x) = min {α j + β j x ; ( j = 1, 2, . . . , k)}. (10.41)

Diewert and Parkan (1983) and Varian (1984) call this the overproduction func-
tion because f +(x) ≥ f (x) for all values of x . If one uses the overproduction
function to measure the efficiency of an actual input–output pair (x̂, ŷ), then
the measured efficiency

TE+ = ŷ

f +(x̂)
(10.42)

underestimates the true efficiency

TE = ŷ

f (x̂)
. (10.43)

In this sense, it is a lower bound of the efficiency of the firm. This is best
explained with the help of a numerical example and an accompanying diagram.
Consider the production function

f (x) = 2
√

x − 1; x ≥ 1

4
. (10.44)

This is shown by the curve AQ in Figure 10.6. The corresponding production
possibility set is

A =
{

(x, y) : x ≥ 1

4
; y ≤ 2

√
x − 1

}
. (10.45)

Suppose that we observe the following input–output quantities of six firms:

Firm 1: (x = 1, y = 1); Firm 2: (x = 4, y = 3); Firm 3: (x = 9, y = 5);

Firm 4: (x = 16, y = 7); Firm 5: (x = 2.25, y = 1.5); Firm 6:(6.25, y = 3.6).
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Figure 10.6 Inner and outer approximations of the production function.

These input–output bundles are shown by the points P1 through P6. Of these,
firms 1 through 4 are fully efficient and the corresponding points all lie on the
production frontier. By contrast, firms 5 and 6 are inefficient and points P5 and
P6 both lie below the frontier. The tangents to the production possibility set
are

y = x at point P1 shown by the line O S1,

y = 1 + 1

2
x at point P2 shown by the line R2S2,

y = 2 + 1

3
x at point P3 shown by the line R3S3, and

y = 3 + 1

4
x at point P4 shown by the line R4S4.

Thus, the outer approximation of the true production possibility set A is the
area lying on or below all four tangent lines. The overproduction function is
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the broken line segment OKLMS4. In this case, is the function

f +(x) = x, 0 ≤ x ≤ 2;

f +(x) = 1 + 1

2
x, 2 ≤ x ≤ 6; (10.46)

f +(x) = 2 + 1

3
x, 6 ≤ x ≤ 12;

f +(x) = 3 + 1

4
x, 12 ≤ x .

Note that f +(x) equals f (x) at the tangency points and exceeds f (x) at all
other levels of x . Thus, for firms 1 through 4, TE+ = TE = 1. On the other
hand, for firm 5, f (x) = 2 and f +(x) = 2.125. Hence,

TE+(P5) = 1.5

2.125
= 0.70588 and TE (P5) = 1.5

2
= 0.75.

Similarly, for firm 6, f +(x) = 4.125 and f (x) = 4. Thus,

TE+(P6) = 3.6

4.125
= 0.87273 and TE (P6) = 3.6

4
= 0.9.

Next, consider the familiar free disposable convex hull of the observed points
P1 through P6 shown by the area under the broken line P0 P1 P2 P3 P4T
in Figure 10.6. Obviously, it is a subset of the true production possibility
set.

However, when the number of observed points lying on the frontier increases,
the free disposal convex hull converges to the true production possibility set
A. In this sense, it provides an inner approximation. The boundary points of
this set constitute the underproduction function:

f −(x) = max y : y ≤
6∑

j=1

λ j y j ; x ≥
6∑

j=1

λ j x j ;
6∑

j=1

λ j = 1;

λ ≥ 0 ( j = 1, 2, . . . , 6).

It is called the underproduction function because f −(x) ≤ f (x) for all values
of x . One gets an upper bound of technical efficinency of any firm producing
output y from input x as

TE− = y

f −(x)
. (10.47)
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In the present example,

f −(x) ≤ 1 for x = 1;

f −(x) = 1

3
+ 2

3
x for 1 ≤ x ≤ 4;

f −(x) = 7

5
+ 2

5
x for 4 ≤ x ≤ 9; (10.48)

f −(x) = 17

7
+ 2

7
x for 9 ≤ x ≤ 16;

f −(x) = 7 for x ≥ 16.

It may be noted that for the efficient points P1 through P4, f −(x) = f (x) =
f +(x). But for the inefficient points, f −(x) < f (x) < f +(x). For firm 5,
f −(x) = 1.67 and TE− = 1.5

1.67 = 9
10 . Similarly, for firm 6, f −(x) = 3.9 and

TE− = 3.6
3.9 = 12

13 .

Of course, when, as in this example, the true production function is known,
an exact measure of the technical efficiency of a firm is directly available and
there is no need to bother about any upper or lower bound. In any empirical
application, the true production technology is unknown and has to be estimated
from the data. Consider a sample of input–output bundles shown in Figure 10.7
as isolated data points without the production function. We do not need to know
the production function to obtain the free disposal convex hull of these points.
Hence, a unique inner approximation of the production possibility set along
with the underproduction function f −(x) is obtained from this sample. But the
outer approximation now becomes problematic. Without specific knowledge
of the production function, it is not possible to precisely draw a tangent to the
production possibility set at any given point. We do know, however, that no
feasible point from the production possibility set lies above the tangent. Hence,
any straight line y = α + βx satisfying β ≥ 0 and α + βx j ≥ y j for all input–
output bundles (x j , y j ) ( j = 1, 2, . . . , N ) in the data set could potentially be
a tangent to the production possibility set. To be a tangent to the unknown
production possibility set at the point (xk, yk), it would have to actually pass
through this point. If (xk, yk) is not an efficient input–output bundle, it would
be an interior point of the production possibility set and no straight line through
this point can be a tangent to the production possibility set. It is not known
beforehand whether any point is on or below the frontier. Hence, an appropriate
strategy is to draw the line y = α + βx as close as possible to the point ensuring
at the same time that no observed point lies above it. For each observed input–
output bundle (x j , y j ), we will draw the specific line y = α j + β j x that lies
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Figure 10.7 Nonuniqueness of the overproduction function.

above all of the data points. The half-space B j = {(x, y) : α j + β j x ≥ y} is a
valid estimate of the production possibility set with the regularity properties
assumed previously. The intersection of these half-spaces is an outer approx-
imation of the unobserved true production possibility set. It is easy to see
that, unlike the inner approximation, the outer approximation is not unique.
As is shown in Figure 10.7, there are multiple tangent lines going through
the efficient points like P2 and P3 resulting in alternative estimates of the
overproduction function and the outer approximation of the production possi-
bility set. It is precisely in this context that WAPM helps to construct an outer
approximation that is also economically meaningful.

When firm k satisfies WAPM, pk yk − wk xk ≥ pk y j − wk x j for all firms j
( j = 1, 2, . . . , N ). Define 
k = pk yk − wk xk, αk = 
k

pk
, βk = wk

pk
. Then, αk +

βk xk = yk and αk + βk x j ≥ y j for all (x j , y j ) in the data set. Hence, as shown
before, αk + βk x ≥ y for all (x, y) in the free disposal convex hull of the ob-
served input bundles. Thus, y = αk + βk x is a tangent hyperplane to the pro-
duction possibility set. Define the index set E = { j : observation j is consistent
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with WAPM}. Then, an outer approximation to the production possibility set
is

L = {(x, y) : y ≤ α j + β j x ; j ∈ E}. (10.49)

Correspondingly, the overproduction function is

f +(x) = min (αk + βk x} : k ∈ E}. (10.50)

Similarly, the outer approximation to the input requirement set for a specific
output level y0 is

VO(y0) = {x : (x, y0) ∈ L}. (10.51)

The inner approximation, on the other hand, is

VI(y0) =
{

x :
N∑

j=1

λ j x j ≤ x ;
N∑

j=1

λ j y j ≥ y0;
N∑

j=1

λ j = 1; λ j ≥ 0

}
.

(10.52)

The outer approximation to the input requirement set defined here is based on
WAPM and is derived from the underlying outer approximation of the produc-
tion possibility set. Varian, on the other hand, uses input prices of observations
satisfying WACM to define the outer approximation of the input requirement
set directly. The two definitions do not lead to the same set of input bundles
for any given output level.

We conclude this section with an example using input and output quantity
and price data for 21 U.S. airlines for the year 1984. The data form a part of a
much larger data set constructed by Caves, Christensen, and Tretheway (1984).
The output is a quantity index (QYI) constructed from (a) revenue passenger
miles flow on scheduled flights, (b) revenue passenger miles flown on char-
tered flights, (c) revenue ton-miles of mail carried, and (d) revenue ton-miles of
other cargo flown. The inputs included are quantity indexes of (a) labor (QLI),
(b) fuel (QFI), (c) materials (QMI), (d) flight capital (QFLI), and (e) ground
capital (QGRI). The corresponding price indexes are PYI (output price), PLI
(labor price), PFI (fuel price), PMI (materials price), PFLI (flight capital price),
and PGRI (ground capital price). One can use the IML procedure in SAS to
check the consistency of the input–output data of the firms with WAPM. This
is shown in Exhibit 10.1. The SAS data sets QTY84 and PRICE84 contain
the input–output quantity and price data, respectively. For computational con-
venience, the input prices are entered with negative signs attached to them
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Exhibit: 10.1. Profitability study for 21 U.S. airlines (1984)

OPTIONS NOCENTER;

DATA QTY84;

INPUT YI QLI QFI QMI QFLI QGRI;

CARDS;

0.0816 1.2518 0.0702 1.2631 1.2579 0.0784

1.9365 0.3344 1.3036 0.3931 0.3273 2.1644

0.5455 0.2778 0.3906 0.3431 0.3012 0.4303

1.3897 0.6984 1.1230 0.6272 0.6006 1.7945

1.5157 1.1117 1.1765 1.1327 0.9668 1.4440

0.2133 0.1210 0.1524 0.1095 0.0859 0.1961

0.0370 0.1164 0.0456 0.1275 0.0791 0.0233

0.0439 0.1128 0.0395 0.0893 0.0774 0.0323

1.2485 0.1291 0.7906 0.1674 0.1071 0.6194

0.0458 0.0833 0.0459 0.0766 0.0672 0.0339

0.1387 1.2552 0.1236 1.5153 1.1490 0.1266

1.5685 0.1045 0.9764 0.0690 0.0670 1.2589

0.3277 0.0632 0.2154 0.0645 0.0545 0.2064

0.3040 0.0813 0.3004 0.0778 0.0611 0.2591

0.1550 1.4780 0.1168 1.5579 1.2602 0.2274

0.4332 1.6912 0.4369 1.5600 1.7614 0.3107

0.1997 0.1703 0.1806 0.1770 0.1387 0.1587

1.5134 0.2983 0.9349 0.3558 0.3177 1.5457

2.4424 1.2481 1.5965 1.2830 1.2726 2.7084

0.4214 0.3209 0.3740 0.3812 0.2898 0.4883

0.4933 0.2892 0.3547 0.3677 0.3239 0.3141
;

DATA PRICE84;

INPUT OBS PY PL PF PM PFL PGR;

DROP OBS;

CARDS;
1 3564205 -383249.19 -894019.31 -283203.25 -194992.50 -86208.00

2 2419225 -344729.88 -823391.00 -283819.63 -199609.44 -86158.31

3 2098122 -353894.00 -843951.31 -283779.50 -175142.38 -86153.19

4 3173110 -345456.00 -821327.56 -283797.00 -186283.00 -86154.19

5 2781221 -338026.19 -814236.88 -283207.38 -169123.56 -86154.06

6 2698588 -336276.88 -844862.81 -284970.81 -137560.88 -86159.31

7 3851513 -348559.56 -855663.06 -284983.56 -131301.75 -86121.06

8 2281389 -348071.38 -790689.50 -284858.56 -129331.38 -86281.44

9 1952129 -366434.63 -860378.25 -283768.25 -196795.69 -86149.94

10 3820698 -333140.38 -824780.75 -285004.19 -128801.19 -86168.56

11 3302877 -359895.31 -819571.50 -283820.19 -204325.88 -86178.56

12 2072299 -308360.19 -867325.31 -285030.94 -136297.88 -86154.19

13 1782716 -308486.31 -825227.81 -284879.56 -128931.38 -86165.94

14 3697954 -338440.06 -819421.06 -284863.75 -129227.50 -86157.63

15 3202013 -331526.75 -834531.06 -283208.06 -202811.94 -86145.75

(continued)
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Exhibit: 10.1. (continued)

16 3482475 -391499.38 -828228.88 -283208.63 -194647.19 -86161.00

17 2675433 -351176.75 -808326.44 -284839.56 -129386.50 -86165.50

18 2212803 -346849.44 -835999.50 -283792.69 -198661.88 -86155.25

19 2364884 -414678.69 -831375.13 -296689.00 -184200.56 -86155.88

20 3781303 -355947.38 -831339.50 -297321.81 -186006.19 -86151.44

21 2290557 -382666.00 -844183.69 -297305.56 -172419.88 -86144.31

;

PROC IML;

USE QTY84; READ ALL VAR _NUM_ INTO X;

USE PRICE84; READ ALL VAR _NUM_ INTO Y;

PRINT X;

PRINT Y;

PI=X*T(Y);

PI1=PI[1:21,1:5];

PRINT PI1;

MPI1=PI1[<:>,];

PRINT MPI1;

PI2=PI[1:21,6:10];

PRINT PI2;

MPI2=PI2[<:>,];

PRINT MPI2;

PI3=PI[1:21,11:16];

PRINT PI3;

MPI3=PI3[<:>,];

PRINT MPI3;

PI4=PI[1:21,17:21];

PRINT PI4;

MPI4=PI4[<:>,];

PRINT MPI4;

already. Once we call the matrix procedure through PROC IML, the matri-
ces X and Y are created from the quantity and price data sets. Each row of
the X matrix contains the output and input quantity data of one airline. The
corresponding row of the Y matrix has the relevant price information. The
Y matrix is transposed so that the prices faced by each firm are now con-
tained in a column (rather than a row). This is premultiplied by the X matrix.
The resulting matrix has been called the PI matrix. It is a square matrix with
21 rows and columns. The diagonal elements of the PI matrix show the actual
profit earned by any airline. The element in the ith row and the jth column
shows the profit that firm j would earn if it selected the input–output bundle
of firm i. The input–output combination chosen by airline j is found to be
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consistent with WAPM if and only if the j th diagonal element is the maximum
element of column j . For this we need only to identify the row containing the
maximum element in each column. This is done by the command following the
relevant comment in the program. In the present case, for all columns except
column 13, the maximum element was in row 19. For column 13, however,
the maximum element was in row 2. This means that only airline 19 satisfies
WAPM. Thus, the overproduction function is defined by the actual profit and
input–put prices of firm 19 alone. The actual profit earned by airline 19 was
3,082,731. The output and input prices were

PY = 2364884; PL = −414678.69; PF = 831375.13;

PM = 296689.00; PFL = 184200.56; PGR = 86155.88.

Deflating the profit by the output price to get the intercept and using simi-
larly deflated input prices as the slope coefficients, we get the overproduction
function

YI+ = 1.30354 + 0.17534 QLI + 0.35155 QFI + 0.12546 QMI

+ 0.07789 QFLI + 0.036431 QGRI.

One can use the ratio

TE− = YI

YI+

as the lower bound of the technical efficiency of an individual airline.
Exhibit 10.2 reports the actual output, along with the value of the overpro-

duction function and the resulting lower bound of technical efficiency. Also
reported alongside are the values of the underproduction function and the
upper bound of technical efficiency obtained from the output-oriented BCC
DEA models. The upper and lower bounds of technical efficiency differ con-
siderably. Interestingly, the smaller airlines with YI less than unity have the
lowest values of TE− but are much closer to full efficiency when we consider
TE+.

10.8 Summary

The nonparametric approach in production economics was introduced much
earlier than DEA and is a quite well-developed strand in the literature. Although
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Exhibit: 10.2. Lower and upper bounds on efficient output and technical
efficiencies of U.S. airlines, 1984

Obs YI Y∗− Y∗+ TE− TE+
1 0.0816 0.09407 1.80702 0.04516 0.86741

2 1.9365 1.93650 1.97412 0.98094 1.00000

3 0.5455 0.61254 1.57175 0.34707 0.89055

4 1.3897 1.77680 2.01164 0.69083 0.78213

5 1.5157 1.71977 2.18209 0.69461 0.88134

6 0.2133 0.22810 1.40591 0.15172 0.93510

7 0.0370 0.03700 1.36299 0.02715 1.00000

8 0.0439 0.04390 1.35561 0.03238 1.00000

9 1.2485 1.24850 1.65602 0.75391 1.00000

10 0.0458 0.04580 1.35036 0.03392 1.00000

11 0.1387 0.18007 1.85131 0.07492 0.77026

12 1.5685 1.56850 1.72486 0.90935 1.00000

13 0.3277 0.32770 1.41020 0.23238 1.00000

14 0.3040 0.44418 1.44736 0.21004 0.68441

15 0.1550 0.17076 1.90566 0.08134 0.90770

16 0.4332 0.62111 2.09792 0.20649 0.69747

17 0.1997 0.27094 1.43568 0.13910 0.73707

18 1.5134 1.51340 1.81021 0.83604 1.00000

19 2.4424 2.44240 2.44240 1.00000 1.00000

20 0.4214 0.58888 1.57948 0.26680 0.71559

21 0.4933 0.55104 1.56175 0.31586 0.89522

the DEA methodology has greatly facilitated the viability of the nonparametric
approach in empirical applications, there are other models like the WACM and
WAPM that provide computationally simple tests of optimizing behavior by
firms. Even when input quantity data are unavailable, one may use the WACD to
test whether the behavior of an individual firm in the sample is consistent with
cost minimization. The WAPM not only provides a test of profit-maximizing
behavior but also provides a lower bound on technical efficiency of a firm using
an overproduction function for a benchmark.

Guide to the Literature

Nonparametric analysis of optimizing behavior on the part of an economic
agent was introduced by Samuelson (1948) in his Weak Axiom of Revealed
Preference in the context of consumer’s choice. Afriat (1967) extended this
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approach to construct a utility function from observed price and consumption
data. Subsequently, a set of tests of consistency of production data with various
regularity properties of an underlying production technology was introduced by
Afriat (1972) and Hanoch and Rothschild (1972). Diewert and Parkan (1983)
introduced additional tests along the same lines. Varian (1984) formalized
many of these tests as axioms of optimizing behavior and developed new
ones. Banker and Maindiratta (1988) used Varian’s nonparametric framework
to define upper and lower bounds on technical and allocative efficiency of a
firm. Although in the initial phase, the objective of the tests was to screen
out observations inconsistent with optimizing behavior prior to any statistical
analysis, many of the nonparametric tests also yield measures of efficiency as
well. For more recent contributions to the literature, one should refer to Färe,
Grosskopf, and Lovell (1994), and Färe and Primont (1995).
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11

Measuring Total Productivity Change over Time

11.1 Introduction

Back in Chapter 2, quite early in this book, we distinguished between produc-
tivity and efficiency as two different measures of performance of a firm – the
former descriptive and the latter normative. In all of the chapters in this book,
we have so far dealt only with efficiency. Yet, in the macroeconomics literature
as well as in the business economic press, there is a keen interest in variation
in productivity across countries and over time. Unfortunately, increase in out-
put per hour (or labor productivity), the most widely used measure, ignores
differences in other inputs used and fails to measure Total Factor Productivity
Growth (TFPG). To address this problem, one needs to construct measures of
input and output changes that incorporate changes in all individual outputs and
inputs. Two of the popular measures of total factor productivity (TFP) are the
Tornqvist and the Fisher productivity indexes. Both use price information along
with quantity data to construct quantity indexes of output and input. The ratio
of the output and input quantity indexes is the TFP index. Both Tornqvist and
Fisher indexes are descriptive measures of productivity change. Neither of the
two measures requires any knowledge of the underlying production technology
faced by the firm. By contrast, the Malmquist productivity index introduced
by Caves, Christensen, and Diewert (CCD) (1982) is a normative measure
that constructs a production frontier representing the technology and uses the
corresponding distance functions evaluated at different input–output combi-
nations for productivity comparison. In this chapter, we focus primarily on the
measurement and decomposition of the Malmquist productivity index using
DEA followed by a similar decomposition of the Fisher productivity index. It
should be emphasized, however, that although virtually all empirical applica-
tions of the Malmquist productivity index have used the nonparametric DEA
methodology, there is no reason why one cannot use instead a parametrically

274
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specified frontier production function and estimate it by the maximum likeli-
hood procedure.

The concept of multifactor productivity growth is introduced and the
Tornqvist and Fisher indexes are described in Section 11.2. This is followed
by a more detailed description of the Malmquist productivity index and its
decomposition into several factors measuring the contributions of technical
change, technical efficiency change, and scale change in Section 11.3. The
relevant DEA models for measurement and decomposition of the Malmquist
productivity index are described in Section 11.4. A comparable nonparametric
decomposition of the Fisher productivity index is shown in Section 11.5. An
empirical application using data from Indian manufacturing is presented in
Section 11.6. Section 11.7 summarizes the main points from this chapter.

11.2 Multifactor Productivity Indexes

Productivity of a firm is measured by the quantity of output produced per unit
of input. In the single-output, single-input case, it is merely the ratio of the
firm’s output and input quantities. Thus, if in period 0 a firm produces output
y0 from input x0, its productivity is

�0 = y0

x0
. (11.1a)

Similarly, in period 1, when output y1 is produced from input x1, the produc-
tivity is

�1 = y1

x1
. (11.1b)

Moreover, the productivity index in period 1, with period 0 as the base, is

π1 = �1

�0
= y1/x1

y0/x0
= y1/y0

x1/x0
. (11.2)

This productivity index shows how productivity of the firm has changed from
the base period. The rate of productivity growth is the difference in the growth
rates of the output and input quantities, respectively.

When multiple inputs and/or multiple outputs are involved, one must replace
the simple ratios of the output and input quantities in (11.2) by a ratio of quantity
indexes of output and input. In this case, the index of multifactor productivity
(MFP) is

π1 = �1

�0
= Qy

Qx
, (11.3)
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where Qy and Qx are, respectively, output and input quantity indexes of the
firm in period 1 with period 0 as the base. Different measures of the multifactor
productivity index are obtained, however, when one uses alternative quantity
index numbers available in the literature.

The Tornqvist Productivity Index
By far, the most popular quantity index number is the Tornqvist index mea-
sured by a weighted geometric mean of the relative quantities from the two
periods. Consider the output quantity index first. Suppose that m outputs are
involved. The output vectors produced in periods 0 and 1 are, respectively,
y0 = (y0

1 , y0
2 , . . . , y0

m) and y1 = (y1
1 , y1

2 , . . . , y1
m). The corresponding output

price vectors are p0 = ( p0
1, p0

2, . . . , p0
m) and p1 = ( p1

1, p1
2, . . . , p1

m), respec-
tively.

Then, the Tornqvist output quantity index is

TQy =
(

y1
1

y0
1

)v1 (
y1

2

y0
2

)v2

. . .

(
y1

m

y0
m

)vm

;
m∑

j=1

v j = 1. (11.4)

Here,

v j = p j y j
m∑

k=1
pk yk

is the share of output j in the total value of the output bundle. Of course,
the value shares of the individual outputs are, in general, different in the two
periods. In practical applications, for v j one uses the arithmetic mean of v0

j

and v1
j , where

v0
j = p0

j y0
j

m∑
k=1

p0
k y0

k

and v1
j = p1

j y1
j

m∑
k=1

p1
k y1

k

.

It may be noted that in the single-output case, the Tornqvist output quantity
index trivially reduces to the ratio of output quantities in the numerator of
(11.2). This is also true when the quantity ratio remains unchanged across all
outputs.

Similarly, let the input vectors in the two periods be x0 = (x0
1 , x0

2 , . . . , x0
n )

and x1 = (x1
1 , x1

2 , . . . , x1
n ). The corresponding input price vectors are w0 =

(w0
1, w

0
2, . . . , w

0
n) and w1 = (w1

1, w
1
2, . . . , w

1
n). Then, the Tornqvist input

         
 

 



P1: JXR
CB688-11 CB688-RAY CB688-Ray-v1.cls January 22, 2004 15:36

11.2 Multifactor Productivity Indexes 277

quantity index is

TQx =
(

x1
1

x0
1

)s1 (
x1

2

x0
2

)s2

. . .

(
x1

n

x0
n

)sn

;
n∑

j=1

s j = 1. (11.5)

Here,

s j = w j x j
n∑

k=1
wk xk

is the share of input j in the total cost of the input bundle. Again, in practice,
one uses the average of the cost share of any input in the two periods.

The Tornqvist productivity index is the ratio of the Tornqvist output and
input quantity indexes. Thus,

πTQ = TQy

TQx

. (11.6)

When TQy > TQx , output in period 1 has grown faster (or declined slower)
than input as a result of which productivity has increased in period 1 compared
to what it was in period 0.

It may be noted that the Tornqvist productivity index can be measured with-
out any knowledge of the underlying technology as long as data are available
for the input and output quantities as well as the shares of the individual inputs
and outputs in the total cost and total revenue, respectively.

The Fisher Productivity Index
An alternative to the Tornqvist index of productivity is the Fisher index, where
one uses Fisher indexes of output and input quantity in the multifactor produc-
tivity index measure. It may be noted that the Fisher quantity (or price) index
is itself the geometric mean of the relevant Laspeyres and Paasche indexes.

The Laspeyres output quantity index is the value ratio of the two output
vectors at base period prices and is measured as

LQy =

m∑
j=1

p0
j y1

j

m∑
j=1

p0
j y0

j

. (11.7)
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It is easy to see that LQy =
m∑

j=1
λ0

j

(
y1

j

y0
j

)
where λ0

j = p0
j y0

j
m∑

k=1
p0

k y0
k

is the same as v0
j defined previously.

Thus, while the Tornqvist quantity index is a weighted geometric mean of the
quantity relatives, the corresponding Laspeyres index is a similarly weighted
arithmetic mean.

The Paasche output quantity index, for which we evaluate the current and
base period output bundles at current period prices, is measured as

PQy =

m∑
1

p1
j y1

j

m∑
j=1

p1
j y0

j

. (11.8)

Thus, PQy =
m∑

j=1
µ1

j

(
y1

j

y0
j

)
, where µ1

j = p1
j y0

j
m∑

k=1
p1

k y0
k

.

The Fisher output quantity index is the geometric mean of the Laspeyres
and Paasche output quantity indexes. Hence,

FQy =
√

LQy · PQy .

In an analogous manner, the Laspeyres, Paasche, and Fisher input quantity
indexes are obtained as

LQx =

n∑
j=1

w0
j x1

j

n∑
j=1

w0
j x0

j

, (11.10a)

PQx =

n∑
j=1

w1
j x1

j

n∑
j=1

w1
j x0

j

, (11.10b)

and
FQx = √

LQx · PQx , (11.10c)

respectively. The resulting Fisher productivity index is

πF = FQy

FQx

. (11.11)
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It may be noted that because the Tornqvist and Fisher indexes are derived from
the geometric and arithmetic means of ratios of the output and input quantities,
in practical applications, their numerical values are generally quite close.

11.3 The Production Technology and the Malmquist Productivity
Index: One-Output, One-Input Case

Now, suppose that the production function is y∗ = f 0(x) in period 0 and
f 1(x) in period 1. Because each observed input–output bundle is by definition
feasible in the relevant period, we know that f 0(x0) ≥ y0 and f 1(x1) ≥ y1. But
y1 may not be producible from x1 in period 0. Similarly, the output y0 may not
be feasible from input x0 in period 1. Now, in the absence of constant returns to
scale (CRS), the average productivity varies with the input level as one moves
along the production function. Frisch (1965) defined the technically optimal
scale (TOPS) of input as one where average productivity reaches a maximum.
Recall that along a production function y = f (x), the average productivity at
any input level x is

AP(x) = f (x)

x
.

From the first-order condition for a maximum, at the TOPS x∗,

x∗ f ′(x∗) = f (x∗).

Thus, at the TOPS, the tangent to the production function is also a ray through
the origin. The slope of this ray is merely the marginal productivity of x at x∗.
Define w∗ ≡ f ′(x∗) and R(x) = w∗x . Then, the ray y = R(x) is a tangent to
production function at x = x∗. This is the TOPS ray defined in Chapter 3. If
we assume that the production possibility set is convex, then

R(x) ≥ f (x) over the entire domain of the production function and

R(x) = f (x) at x = x∗.

As noted before, for the production possibility set

T = {(x, y) : y ≤ f (x)},
the (output-oriented) Shephard distance function evaluated at any input–output
pair (x, y) is

D(x, y) = min δ :
(

x,
y

δ

)
∈ T . (11.12)
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Thus,

δ = y

f (x)
. (11.13)

Clearly, when y < f (x), D(x, y) < 1. But, in this case, the actual output y
is less than the maximum producible output f (x). Hence, the input–output
pair (x, y) is technically inefficient. For an efficient pair, y = f (x) and
D(x, y) = 1. The distance function exceeds unity when y > f (x). But, by
definition, f (x) is the maximum output quantity producible from input x .

Thus, if D(x, y) > 1, (x, y) is an infeasible input–output pair. Therefore, an
equivalent characterization of the production possibility set is

T = {(x, y) : D(x, y) ≤ 1}. (11.14)

Recall that the output-oriented technical efficiency is

TE (x, y) = 1

φ∗

where

φ∗ = max φ : (x, φy) ∈ T .

Thus, the output-oriented Shephard distance function D(x, y) coincides with
the Farrell measure of technical efficiency, TE(x, y).

We may use the TOPS ray to define the pseudo production possibility set

T C = {(x, y) : y ≤ R(x)}. (11.15)

The set T C is the smallest convex cone that contains the true production pos-
sibility set T . The function y = R(x) is the pseudo production function that
corresponds to the true production function y = f (x). Note that the pseudo
production function exhibits CRS globally. Further, when CRS holds every-
where along the true production function, T C = T and R(x) = f (x) for all
admissible values of x . We may use T C to define the pseudo distance function

DC(x, y) = min δ :
(

x,
y

δ

)
∈ T C. (11.16)

The corresponding technical efficiency would then be TEC(x, y). Obviously,

DC(x, y) = TEC(x, y) = y

R(x)
. (11.17)
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The productivity index can also be written as

π1 =
y1

R(x1)
y0

R(x0)

·
R(x1)

x1

R(x0)

x0

. (11.18)

But, because y = R(x) is a ray through the origin,

R(x1)

x1
= R(x0)

x0
. (11.19)

Hence,

π1 =
y1

R(x1)
y0

R(x0)

. (11.20)

Alternatively,

π1 = D C(x1, y1)

D C(x0, y0)
= TEC(x1, y1)

TEC(x0, y0)
. (11.21)

This ratio of pseudo distance functions (or, equivalently, of pseudo technical
efficiencies) is the Malmquist productivity index. In the single-output, single-
input case, it is computationally equivalent to the ratio of average productivities
in the two periods. But the essential characteristic of the Malmquist index is
that it is a normative measure and uses a pseudo production function as a
benchmark to compute efficiency or distance function. It will be shown later
how the Malmquist index can be measured even in the multiple-input case,
where average productivity cannot be measured in the usual sense. We will
also consider how the Malmquist index can be geometrically interpreted.

Whenever TE (x, y) = 1, we know that (x, y) is a point on the production
function. However, the average productivity at this point need not be the max-
imum average productivity attainable along the production function. We can
measure the scale efficiency of the input level x by comparing the average
productivity at x with the maximum average productivity attainable at the
TOPS x∗.

Thus,

SE(x) = f (x)/x

f (x∗)/x∗ . (11.22)
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But, as explained earlier,

f (x∗) = R(x∗) = w∗x∗ and
f (x∗)

x∗ = f ′(x∗) = w∗.

Thus,

SE(x) = f (x)

w∗x
. (11.23a)

Further, from the definition of the TOPS ray, w∗x = R(x). Hence,

SE(x) = f (x)

R(x)
. (11.23b)

Alternatively,

SE(x) =
y

R(x)
y

f (x)

= DC(x, y)

D(x, y)
(11.23c)

We now focus on the period 0 production function y = f 0(x). The TOPS
corresponding to this production function is x∗

0 satisfying

x∗
0 f 0′(x∗

0 ) = f 0(x∗
0 ).

The corresponding TOPS ray is

y = R0(x) = w∗
0 x,

where w∗
0 = f 0′(x∗

0 ).

We may now express the productivity index π1 as

π0 =
y1

x1
y0

x0

=
y1

f 0(x1)

f 0(x1)

x1

y0

f 0(x0)

f 0(x0)

x0

. (11.24)

But,

f 0(x1)

x1
= f 0(x1)

R0(x1)
· R0(x1)

x1
= f 0(x1)

R0(x1)
· w∗

0 . (11.25a)

Similarly,

f 0(x0)

x0
= f 0(x0)

R0(x0)
· R0(x0)

x0
= f 0(x0)

R0(x0)
· w∗

0 . (11.25b)
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Therefore, the productivity index is

π0 =
y1

f 0(x1)
· f 0(x1)

R0(x1)
y0

f 0(x0)
· f 0(x0)

R0(x0)

. (11.26a)

Hence,

π0 = TE0(x1, y1)

TE0(x0, y0)
· SE0(x1)

SE0(x0)
. (11.26b)

Similarly, we can use the period 1 production function y = f 1(x) as the refer-
ence technology to obtain the TOPS x∗

1 and, correspondingly, w∗
1 = f 1′(x∗

1 ).
The TOPS ray would then be R1(x) = w∗

1 x . Hence, an alternative decompo-
sition of the productivity index is

π1 =
y1

f 1(x1)
· f 1(x1)

R1(x1)
y0

f 1(x0)
· f 1(x0)

R1(x0)

. (11.27)

Using the geometric mean of the alternative expressions,

π =




y1

f 0(x1)

y1

f 1(x1)
y0

f 0(x0)

y0

f 1(x0)

·
f 0(x1)

R0(x1)

f 1(x1)

R1(x1)
f 0(x0)

R0(x0)

f 1(x0)

R1(x0)




1
2

. (11.28)

This can be expressed as

π =
[

f 1(x1)

f 0(x1)

f 1(x0)

f 0(x0)

] 1
2
.




y1

f 1(x1)
y0

f 0(x0)


 .




f 0(x1)

R0(x1)

f 1(x1)

R1(x1)
f 0(x0)

R0(x0)

f 1(x0)

R1(x0)




1
2

. (11.29)
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Define

TC =
[

f 1(x1)

f 0(x1)

f 1(x0)

f 0(x0)

] 1
2

=
[

D0(x1, y1)

D1(x1, y1)

D0(x0, y0)

D1(x0, y0)

] 1
2

, (11.30a)

TEC =




y1

f 1(x1)
y0

f 0(x0)


 = D1(x1, y1)

D0(x0, y0)
, (11.30b)

and

SCF =




f 0(x1)

R0(x1)

f 1(x1)

R1(x1)

f 0(x0)

R0(x0)

f 1(x0)

R1(x0)




1
2

=




D0
C (x1, y1)

D0(x1, y1)
D0

C (x0, y0)

D0(x0, y0)

·
D1

C (x1, y1)

D1(x1, y1)
D1

C (x0, y0)

D1(x0, y0)




1
2

. (11.30c)

Then, the productivity index becomes

π1 = TC · TEC · SCF. (11.31)

Ray and Desli (RD) (1997) proposed this decomposition of the Malmquist
productivity index. In the first factor, TC, the ratio f 1(x0)

f 0(x0) shows how the max-
imum producible output from input x0 changes between periods 0 and 1. Be-
cause the input level remains unchanged, the ratio captures the autonomous
shift in the production function due to technical change. Similarly, f 1(x1)

f 0(x1)
mea-

sures the proportionate shift at input level x1. TC is the geometric mean of
these two terms and represents the contribution of technical change. The sec-
ond term, TEC, is merely the ratio of the technical efficiencies of the observed
input–output pairs in the two periods. Clearly, it shows the contribution of
technical efficiency change. The last term, SCF, is less easy to interpret. Each
component under the square-root sign shows the scale efficiency of input x1

relative to x0 – one for period 0 technology and the other for the period 1
technology. This can be called the scale (efficiency) change factor. Before we
examine this component of the Malmquist productivity index in further detail,
let us consider two earlier decompositions: one due to Färe, Grosskopf, Lind-
gren, and Roos (FGLR) (1992) and the other due to Färe, Grosskopf, Norris,
and Zhang (FGNZ) (1994).

FGLR (1992) assumed that the true production technology was character-
ized by CRS. Therefore, for their case, the pseudo production function was the
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same as the true production function. They started with the geometric mean

π =




y1

R0(x1)
y0

R0(x0)

·
y1

R1(x1)
y0

R1(x0)




1
2

(11.32a)

This easily reduces to

π =
[

R1(x0)

R0(x0)
· R1(x1)

R0(x1)

] 1
2

·
y1

R1(x1)
y0

R0(x0)

. (11.32b)

The first factor shows technical change measured by the geometric mean of the
shift in the true (CRS) production function at input levels x0 and x1. The other
component is the technical efficiency change – again using the true (CRS)
production function as the benchmark. Note, further, that when CRS holds,
the last component in the RD decomposition disappears whereas the other two
factors are identical with the corresponding factor in this FGLR decomposition.

Of course, globally CRS is a restrictive assumption about the underlying
technology and when CRS does not hold everywhere, the FGLR decomposition
is not particularly meaningful. For example, neither the numerator nor the
denominator in their second factor represents the technical efficiency of the
observed input–output bundle in any period. In an effort to accommodate
variable returns to scale (VRS), FGNZ proposed the extended decomposition

π =
[

R1(x0)

R0(x0)
· R1(x1)

R0(x1)

] 1
2

·

y1

f 1(x1)
y0

f 0(x0)

·
f 1(x1)

R1(x1)

f 0(x0)

R0(x0)

. (11.33)

In the FGNZ decomposition, the measure of technical efficiency change (TEC)
is the same as that in RD. But the technical change measure

TCFGNZ =
[

R1(x0)

R0(x0)
· R1(x1)

R0(x1)

] 1
2

(11.34a)

corresponds to the shift in the CRS pseudo production function. As argued
by RD, this is not an appropriate measure of technical change when the techno-
logy does not exhibit globally CRS. On the other hand, their scale efficiency
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change measure

SECFGNZ =
f 1(x1)

R1(x1)
f 0(x0)

R0(x0)

(11.34b)

is, indeed, the ratio of actual levels of scale efficiency experienced by the firm
in the two periods.

By contrast, the SCF component of the Malmquist productivity index in the
Ray–Desli decomposition has a different interpretation. One can compare the
levels of scale efficiency of any two different input quantities with reference
to a production function irrespective of whether the input levels were actually
selected by a firm.

The two ratios

f 0(x1)

R0(x1)
f 0(x0)

R0(x0)

and

f 1(x1)

R1(x1)
f 1(x0)

R1(x0)

measure the scale efficiency of input x1 relative to the scale efficiency of input
x0 using, respectively, the period 0 and the period 1 production functions. The
geometric mean of the two ratios is SCF. As Lovell (2001) points out, it pertains
to the difference in the scale efficiency of the input levels rather than a change
in the scale efficiency of the firm.

The following example shows how one can measure the Malmquist pro-
ductivity index and perform the Ray–Desli decomposition. Assume that the
production function is

f 0(x) = 2
√

x − 4; x ≥ 4 in period 0 (11.35)

and changes to

f 1(x) = 2
√

x − 3, x ≥ 9
4 in period 1. (11.36)

Note that this is merely a parallel shift and there is no change in the curvature
of the production function. The corresponding production possibility sets are

T 0
V = {(x, y) : x ≥ 4, y ≤ 2

√
x − 4} in period 0, (11.37)

and

T 1
V = {

(x, y) : x ≥ 9
4 , y ≤ 2

√
x − 3

}
in period 1. (11.38)
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The functions y = f 0(x) and y = f 1(x) are the production frontiers in periods
0 and 1, respectively. It can be seen that average productivity varies with the
input level along the production frontier, implying VRS in each period. Follow-
ing Frisch (1965), one could define the input scale where average productivity
reaches a maximum, as the TOPS. Note that at the TOPS, average and marginal
productivities are equal. Hence, in period 0, the TOPS is x∗

0 , satisfying

f 0(x∗
0 ) = x∗

0

d f 0(x∗
0 )

dx
.

Thus, x∗
0 = 16. The marginal productivity at this input level is 1

4 . Consider the
straight line

y = R0(x) = 1

4
x . (11.39)

This ray through the origin is the tangent to the period 0 production frontier at
the TOPS and the set

T 0
C = {

(x, y) : x ≥ 0, y ≤ 1
4 x

}
(11.40)

is the smallest convex cone containing T 0
V . The upper boundary of T 0

C is
y = R0(x). We may regard it as the pseudo production frontier in period 0
and, in the same spirit, T 0

C is the pseudo production possibility set. Note that
unlike the true frontier f 0(x) and T 0

V , which corresponds to it, R0(x) and T 0
C

are characterized by CRS.
Recall that the output-oriented distance function is defined as

D(x, y) = min δ :
(
x, 1

δ
y
) ∈ T

where T is the relevant production possibility set. Hence, with reference to
T 0

V , the distance function is

D0 (x, y) = min δ : 1
δ

y ≤ f 0(x) = 2
√

x − 4. (11.41)

Thus,

D0 (x, y) = y

f 0(x)
= y

2
√

x − 4
. (11.42)

If, instead, one used T 0
C as the reference, we would get the pseudo distance

function

D0
C (x, y) = y

R0(x)
= 4y

x
. (11.43)
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Using the condition

f 1(x∗
1 ) = x∗

1

d f 1(x∗
1 )

dx

we get x∗
1 = 9 as the TOPS in period 1. The marginal productivity at this input

level in period 1 is

d f 1(x∗
1 )

dx
= 1√

x∗
1

= 1

3
.

Hence, the ray

y = R1(x) = 1

3
x (11.44)

is the tangent to the period 1 frontier at the TOPS. Thus,

y = R1(x)

is the pseudo production function and

T 1
C (x, y) = {

(x, y) : x ≥ 9
4 ; y ≤ 1

3 x
}

(11.45)

is the pseudo production possibility set in period 1.
The corresponding distance and pseudo distance functions in period 1 are

D1(x, y) = y

2
√

x − 3
(11.46a)

and

D1
C(x, y) = 3y

x
. (11.46b)

Note that in this example,

D0(x, y)

D0
C(x, y)

= x

8
√

x − 16

and

D1(x, y)

D1
C(x, y)

= x

6
√

x − 9
.

In the single-output case, neither of the two ratios depends upon y.
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Suppose that the observed input–output bundles are (x0 = 6.25, y0 = 0.75)
in period 0 and (x1 = 25, y1 = 4) in period 1. Then, in this example,

AP0 = y0

x0
= 0.75

6.25
= 3

25
and AP1 = y1

x1
= 4

25
.

The productivity index is

π = AP1

AP0
= 4

3
.

Further,

f 0(x0) = 1, f 0(x1) = 6, f 1(x0) = 2, f 1(x1) = 7, R0(x0) = 25

16
,

R0(x1) = 25

4
, R1(x0) = 25

12
, and R1(x1) = 25

3
.

Thus,

TC =
[

f 1(x1) f 1(x0)

f 0(x1) f 0(x0)

] 1
2

=
[(

7

6

) (
2

1

)] 1
2 =

√
7

3
,

TEC =




y1

f 1(x1)
y0

f 0(x0)


 =




4

7
0.75

1


 = 16

21
,

SCF =




f 0(x1)

R0(x1)

f 1(x1)

R1(x1)

f 0(x0)

R0(x0)

f 1(x0)

R1(x0)




1
2

=




24

25
· 21

25
16

25
· 24

25




1
2

=
√

21

16
.

In this example, the input–output bundle (x1, y1), shows a 33% increase in
productivity over the bundle (x0, y0). The detailed decomposition reveals that
technical change (resulting in an outward shift in the production function) by
itself would have led to a 52.75% increase whereas the effect of a decline in
technical efficiency alone would be a 23.81% decrease in productivity. Finally,
the scale change factor would cause a 14.56% increase in productivity. The
combined effect of all these three factors is the 33% rise in productivity.

In this example, we used an explicit parametric specification of the produc-
tion function to measure and decompose the Malmquist productivity index.
Alternatively, one can evaluate the various distance functions using DEA to
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Figure 11.1 Geometry of the Malmquist productivity index and its decomposition.

measure and decompose the Malmquist productivity index nonparametrically.
This is illustrated geometrically in Figure 11.1. Suppose that the points A0,
B0, C0, and D0 show the input–output combinations of four firms in period 0.
Similarly, input–output combinations of these firms in period 1 are shown by
the points A1, B1, C1, and D1. The broken line segment E0 B0C0 D0S0 is the
boundary of the free disposal convex hull of the observed bundles in period
0 and is the production frontier in period 0. Similarly, E1 B1C1 D1S1 is the
production frontier in period 1. The ray OR0 passing through the point C0

is the pseudo production frontier in period 0 and the ray OR1 through C1 is
the pseudo production function in period 1. Consider the points A0 and A1

showing the input–output quantities of firm A in the two periods. The firm
produces output y0

A from input x0 in period 0 and output y1
A from input x1 in

period 1.
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Note that the point T0 is the output-oriented projection of the point A0 onto
the (VRS) frontier in period 0. Similarly, P0 is the output-oriented projection
on to the pseudo (CRS) frontier. Thus,

D0
V

(
x0, y0

A

) = A0x0

T0x0
and D0

C

(
x0, y0

A

) = A0x0

P0x0
.

In an analogous manner,

D0
V

(
x1, y1

A

) = A1x1

T1x1
and D0

C

(
x1, y1

A

) = A1x1

P1x1
.

The average productivity levels of the firm are

AP0
A = A0x0

Ox0
in period 0 and

AP1
A = A1x1

Ox1
in period 1.

Thus, the productivity index of firm A is

πA = AP1
A

AP0
A

=
A1x1

Ox1

A0x0

Ox0

=
A1x1

P1x1

P1x1

Ox1

A0x0

P0x0

P0x0

Ox0

· =
A1x1

P1x1

A0x0

P0x0

= D0
C

(
x1, y1

A

)
D0

C

(
x0, y0

A

) (11.47)

Two alternative ways to factorize this productivity index are

πA =
A1x1

T1x1

T1x1

P1x1

A0x0

T0x0

T0x0

P0x0

=
A1x1

U1x1

U1x1

T1x1

T1x1

P1x1

A0x0

T0x0

T0x0

P0x0

(11.47a)

and

πA =
A1x1

U1x1

U1x1

Q1x1

A0x0

U0x0

U0x0

Q0x0

=
A1x1

U1x1

U1x1

Q1x1

A0x0

T0x0

T0x0

U0x0

U0x0

Q0x0

. (11.48b)

Taking the geometric mean of the two, we get

πA =




A1x1

U1x1

A0x0

T0x0


 .

[
U1x1

T1x1
· U0x0

T0x0

] 1
2




T1x1

P1x1

T0x0

P0x0

U1x1

Q1x1

U0x0

Q0x0




1
2

. (11.49)

         
 

 



P1: JXR
CB688-11 CB688-RAY CB688-Ray-v1.cls January 22, 2004 15:36

292 Measuring Total Productivity Change over Time

The first term on the right-hand side

A1x1

U1x1

A0x0

T0x0

= D1
(
x1, y1

A

)
D0

(
x0, y0

A

) (11.50a)

measures the ratio of technical efficiencies of the firm in the two periods and
is the TEC factor.

The ratio

U0x0

T0x0
= D0

(
x0, y0

A

)
D1

(
x0, y0

A

) (11.50b)

measures the shift in the production function between the two periods evaluated
at the input level x0.

Similarly,

U1x1

T1x1
= D0

(
x1, y1

A

)
D1

(
x1, y1

A

) (11.51)

shows the production function shift at input x1. The geometric mean of the two
is the second factor on the right-hand side and represents the technical change
(TC) factor.

Finally,




T1x1

P1x1

T0x0

P0x0

U1x1

Q1x1

U0x0

Q0x0




1
2

=




D0
C

(
x1, y1

A

)
D0

(
x1, y1

A

)
D0

C

(
x0, y0

A

)
D0

(
x0, y0

A

) ·

D1
C

(
x1, y1

A

)
D1

(
x1, y1

A

)
D1

C

(
x0, y0

A

)
D1

(
x0, y0

A

)




1
2

(11.52)

is the scale change factor (SCF). As was explained before, distance functions
can be evaluated using the CCR and BCC DEA models without specifying any
production function.

11.4 Measurement and Decomposition of the Malmquist Productivity
Index: One-Output, Multiple-Input Case

Although the one-input, one-output example was quite useful as an illustration
of the decomposition of the Malmquist productivity index, actual measurement
of the productivity index is a trivial arithmetic job. This is not the case when
multiple inputs are involved and the input proportions differ across bundles.
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One has to construct aggregate quantities of inputs in order to make any pro-
ductivity comparison. Of course, for the multiple-output, multiple-input case,
output aggregation will also be necessary. Earlier, in Section 11.2, we have
seen how one constructs output and input quantity indexes for productivity
measurement using the Tornqvist and Fisher indexes. This section extends the
Malmquist methodology introduced herein and shows how one can use the
underlying production technology to construct aggregate input quantities for
productivity measurement. For this, we consider the one-output ( y), two-input
(x1, x2) case. Suppose that the production functions in the two periods are

y = f 0(x1, x2) = 2
√

x1 + √
x2 − 2; x1 ≥ 1

4 , x2 ≥ 1 in period 0

(11.53a)

and

y = f 1(x1, x2) = 2
√

x1 + √
x2 − 1; x1 ≥ 1

4 , x2 ≥ 1 in period 1.

(11.53b)

Assume further that the observed input bundles are x A = (x A
1 , x A

2 ) = (9, 16) in
period 0 and x B = (x B

1 , x B
2 ) = (16, 9) in period 1. The corresponding output

levels are yA = 5 and yB = 6. It is important to realize that there will be a
different TOPS ray for each input mix and also for each production function.
Consider the bundle x A and the period 0 production function. The optimal
scale is attained at bundle x0

∗ = (x0
∗1, x0

∗2) that satisfies the conditions

∂ f 0(x0
∗)

∂x1
x0

∗1 + ∂ f 0(x0
∗)

∂x2
x0

∗2 = f 0(x0
∗) and

x0
∗1

x0
∗2

= x0
1

x0
2

.

In this example,

∂ f 0(x)

∂x1
≡ f 0

1 = 1√
x1

,
∂ f 0(x)

∂x2
≡ f 0

2 = 1

2
√

x2
, and

x0
1

x0
2

= 9

16
.

Hence, the scale efficient input bundle is

x0
∗ =

(
36

25
,

64

25

)
.

Further,

f 0
1 (x0

∗) = 5

6
and f 0

2 (x0
∗) = 5

16
.
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Hence, the relevant TOPS ray or the pseudo production function is

R0
∗(x1, x2) = 5

6
x1 + 5

16
x2. (11.55a)

Thus,

yA

R0∗(x A)
= D0

C(x A, yA) = 5

12.5
. (11.54b)

Consider next the input bundle x B and the period 0 production function. In
this case, the scale efficient input bundle is x0

∗∗ = (x0
∗∗1, x0

∗∗2), satisfying

∂ f 0(x0
∗∗)

∂x1
x0

∗∗1 + ∂ f 0(x0
∗∗)

∂x2
x0

∗∗2 = f 0(x0
∗∗) and

x0
∗∗1

x0
∗∗2

= x B
1

x B
2

= 16

9
.

Using the relevant information, we obtain the scale efficient input bundle
x0

∗∗ = ( 256
121 · 144

121 ). The relevant TOPS ray or the pseudo production function is

R0
∗∗(x1, x2) = 11

16
x1 + 11

24
x2. (11.54c)

Thus,

yB

R0∗∗(x B)
= D0

C(x B, yB) = 6

15.125
. (11.54d)

Next, we use the period 1 production function and the input bundle x B . This
time, the scale efficient input bundle is x1

∗∗ = (x1
∗∗1, x1

∗∗2), satisfying

∂ f 1(x1
∗∗)

∂x1
x1

∗∗1 + ∂ f 1(x1
∗∗)

∂x2
x1

∗∗2 = f 1(x1
∗∗) and

x1
∗∗1

x1
∗∗2

= x B
1

x B
2

= 16

9
.

For the input bundle x B , the efficient scale in period 1 is attained at the bundle
x1

∗∗ = ( 64
121 , 256

121 ) and the relevant TOPS ray is

R0
∗∗(x1, x2) = 11

8
x1 + 11

12
x2. (11.55a)

Thus,

yB

R1∗∗(x B)
= D1

C(x B, yB) = 6

30.25
. (11.55b)
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Finally, consider the input bundle x A and the production function from period 1.
This time, the scale efficient bundle is x1

∗ = ( 9
25 , 16

25 ) and the relevant TOPS ray
is

R1
∗(x) = 5

3
x1 + 5

8
x2. (11.56a)

Thus,

yA

R1∗(x A)
= D1

C(x A, yA) = 5

25
. (11.56b)

Hence, the Malmquist productivity index is

π =




6

30.25
5

25

6

15.25
5

12.5




1
2

= 0.99173. (11.57)

This shows a 0.827% decline in total factor productivity in period 1 compared
to period 0. The Malmquist productivity index can be decomposed as

TEC = D1
(
x1, y1

A

)
D0

(
x0, y0

A

) =
6

10
5
8

= 0.96; (11.58a)

TC =
[

D0(x A, yA)

D1
(
x A, yA

) · D0(x B, yB)

D1(x B, yB)

] 1
2

=
√

9

8
· 10

9
= 1.11803; (11.58b)

and

SCF =




D0
C

(
x1, y1

A

)
D0

(
x1, y1

A

)
D0

C

(
x0, y0

A

)
D0

(
x0, y0

A

) ·

D1
C

(
x1, y1

A

)
D1

(
x1, y1

A

)
D1

C

(
x0, y0

A

)
D0

(
x0, y0

A

)




1
2

=




9

15.25
· 10

30.25
8

12.25
· 9

25




1
2

= 0.92399.

(11.58c)

The TC factor shows technical progress at the rate of 11.8% in period 1 relative
to period 0. TEC shows a 4% decline in technical efficiency. The contribution
of SCF is a 7.601% decline in productivity. The total outcome is the 0.827%
productivity decline.
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11.5 DEA Methodology for Measuring the
Malmquist Productivity Index

Consider a multiple-output, multiple-input technology. Suppose that we have
the input–output data for N firms observed over two different time periods. Let
yt

j = (yt
1 j , yt

2 j , . . . , yt
mj ) be the output bundle and xt

j = (xt
1 j , xt

2 j , . . . , xt
nj ) the

input bundle for firm j (j = 1, 2, . . . , N ) in period t(t = 0, 1). As explained
before, the free disposal convex hull of the input–output vectors observed in that
period approximates the production possibility set exhibiting VRS in period
t(Tt ). Correspondingly, the pseudo production possibility set (T t

C) showing
globally CRS is the free disposal conical hull of these points. In principle,
one can evaluate the distance function at a specific input–output bundle (x, y)
with reference to any arbitrary production possibility set. We may describe the
distance function as the same-period distance function, if one uses the Tt (or
T t

C) to evaluate the distance function at an input–output combination observed
in period t . On the other hand, if the distance function based on the technology
from one period is evaluated at an input–output bundle from another period, it
can be described as a cross-period distance function.

As noted before, the (Shephard) distance function is the same as the Farrell
measure of technical efficiency and can, therefore, be obtained straightaway
from the optimal solution of the appropriate BCC or CCR DEA problem. In
particular, the same-period (VRS) distance function is

Dt
(
xt

k, yt
k

) = 1

φ∗
k

,

where φ∗
k = max φ

s.t.
N∑

j=1

λ j yt
j ≥ φyt

k ;

N∑
j=1

λ j x
t
j ≤ xt

k ; (11.59)

N∑
j=1

λ j = 1;

λ j ≥ 0; ( j = 1, 2, . . . , N ).

This, obviously, is the standard BCC model.
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For the cross-period (VRS) distance function Ds(xt
k, yt

k) , one needs to solve
the BCC problem

max δ

s.t.
N∑

j=1

λ j ys
j ≥ φyt

k ;

N∑
j=1

λ j x
s
j ≤ xt

k ; (11.60)

N∑
j=1

λ j = 1;

λ j ≥ 0; ( j = 1, 2, . . . , N ).

This, it may be noted, is quite different from the usual BCC model. Although
the input–output quantities of firm k observed in period t appear on the right-
hand sides of the inequality constraints, they do not appear on the left-hand
sides of these constraints. An implication of this feature of the problem is that,
unlike the BCC problem, it may not have a feasible solution. This will be true
if the quantity of any individual input of firm k in period t is smaller than the
smallest quantity of the corresponding input across all firms in period s.

For the cross-period (CRS) distance function Ds
C(xt

k, yt
k), one solves the

previous problem without the constraint that the λ j ’s have to add up to unity.
Note that in the case of CRS, the DEA problem will always have a feasible
solution.

11.6 Nonparametric Decomposition of the Fisher Productivty Index

We now consider an analogous decomposition of the Fisher productivity in-
dex introduced by Ray and Mukherjee (1996). As was recognized before, the
Fisher productivity index is a descriptive rather than a normative measure. It
is, nonetheless, possible to use the dual representation of an empirically con-
structed best practice technology to decompose the Fisher productivity index
into a number of economically meaningful factors.

As explained before, the Fisher productivity index is the geometric mean
of Laspeyres and Paasche productivity indexes. Consider the Laspeyres index
first. For simplicity, assume that the firm produces a single output from multiple
inputs. Suppose that we are measuring the productivity index for firm k. The
output quantities produced by the firm are y0

k in period 0 (the base period) and
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y1
k in period 1 (the current period). The observed input bundles are x0

k and x1
k

in the two periods. The corresponding input price vectors are w0
k and w1

k . Then,
the Laspeyres productivity index becomes

L =
y1

k

y0
k

w0′
k x1

k

w0′
k x0

k

(11.61)

At this point, recall the dual cost function for period t:

Ct (w, y) = min w′x : (x, y) ∈ T t , (11.62)

where T t is the production possibility set in period t . In the present context, we
can use the free disposal convex hull of the observed input–output quantities
in any period to construct the production possibility set for that period. Then,
the Laspeyres productivity index can be expressed as

L =

y1
k

C1
(
w0

k , y1
k

) C1
(
w0

k , y1
k

)
w0′

k x1
k

y0
k

C0
(
w0

k , y0
k

) C0
(
w0

k , y0
k

)
w0′

k x0
k

. (11.63)

But, following the Farrell decomposition of the cost efficiency, we can write

C1
(
w0

k , y1
k

)
w0′

k x1
k

= TE1
(
x1

k , y1
k

) · AE1
(
x1

k , y1
k ; w0

k

)
, (11.64a)

where TE1(x1
k , y1

k ) is the technical efficiency of the input–output pair (x1
k , y1

k )
in period 1 and AE1(x1

k , y1
k ; w0

k ) is the allocative efficiency of the input mix
of the bundle x1

k at input price w0
k in period 1. In an analogous manner,

C0
(
w0

k , y0
k

)
w0′

k x0
k

= TE0
(
x0

k , y0
k

) · AE 0
(
x0

k , y0
k ; w0

k

)
. (11.64b)

Thus,

L =
TE1

(
x1

k , y1
k

) · AE1
(
x1

k , y1
k ; w0

k

) · C0
(
w0

k , y0
k

)
y0

k

TE0
(
x0

k , y0
k

) · AE0
(
x0

k , y0
k ; w0

k

) · C1
(
w0

k , y1
k

)
y1

k

. (11.65)
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This can be further manipulated to get

L =
[

TE1
(
x1

k , y1
k

)
TE0

(
x0

k , y0
k

)
] [

AE1
(
x1

k , y1
k ; w0

k

)
AE0

(
x0

k , y0
k ; w0

k

)
][

C0
(
w0

k , y0
k

)
C1

(
w0

k , y0
k

)
]


C1
(
w0

k , y0
k

)
y0

k

C1
(
w0

k , y1
k

)
y1

k


 .

(11.66)

Similar manipulations of the Paasche productivity index

P =
y1

k

y0
k

w1′
k x1

k

w1′
k x0

k

(11.67)

lead to the decomposition

P =
[

TE1
(
x1

k , y1
k

)
TE0

(
x0

k , y0
k

)
] [

AE1
(
x1

k , y1
k ; w1

k

)
AE0

(
x0

k , y0
k ; w1

k

)
][

C0
(
w1

k , y1
k

)
C1

(
w1

k , y1
k

)
]


C0
(
w1

k , y0
k

)
y0

k

C0
(
wk, y1

k

)
y1

k


.

(11.68)

Now, define

TEI = TE1
(
x1

k , y1
k

)
TE0

(
x0

k , y0
k

) ; (11.69)

AEI =
[

AE1
(
x1

k , y1
k ; w0

k

)
AE0

(
x0

k , y0
k ; w0

k

) · AE1
(
x1

k , y1
k ; w1

k

)
AE0

(
x0

k , y0
k ; w1

k

)
] 1

2

; (11.70)

TCI =
[

C0
(
w0

k , y0
k

)
C1

(
w0

k , y0
k

) · C0
(
w1

k , y1
k

)
C1

(
w1

k , y1
k

)
] 1

2

; (11.71)
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and

ACI =




C1
(
w0

k , y0
k

)
y0

k

C1
(
w0

k , y1
k

)
y1

k

·

C0
(
w1

k , y0
k

)
y0

k

C0
(
w1

k , y1
k

)
y1

k




1
2

. (11.72)

Then,

F =
√

L · P = (TEI) · (AEI) · (TCI) · (ACI). (11.73)

In this factorization, the four terms on the right-hand side relate to (a)
technical efficiency change, (b) allocative efficiency change, (c) technical
change, and (d) change in scale economies, respectively. The first, TEI, obvi-
ously shows the increase (decrease) in technical efficiency in period 1 rel-
ative to what it was in period 0. The factor AEI is itself the geometric
mean of two ratios, each of which shows the relative allocative efficiency
of the input bundle from period 1 compared to the bundle from period 0.
The allocative efficiencies are measured using the same technology and in-
put prices for both bundles. TCI is a dual measure of technical change. It
shows the autonomous shift of the cost function between the two periods
evaluated alternatively at the input price and output quantity levels from the
two periods. Finally, the factor ACI shows the relative (dual) scale efficien-
cies of the output levels from the two periods. When any one of the two
ratios under the square-root sign in this factor is greater than unity, it im-
plies that along the dual cost curve for the technology and input prices spec-
ified, the average cost is lower at the output level in the current period than
at the output level from the base period. That is, the current period output
is relatively more scale efficient. This contributes positively to productivity
growth.

A note of caution is in order here. As with all nonparametric models based
on cross-period DEA, some components of this decomposition of the Fisher
productivity index may be unavailable. This will be the case when the output
level from one period is larger than the maximum output observed in the other
period. In that case, the input requirement set relevant for the cross-period cost
minimization problem would be empty.
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11.7 Productivity Growth in Indian Manufacturing: An Application
of the Malmquist Index

In this example, (per establishment) input–output data from 22 states (and
union territories) constructed from the Annual Survey of Indian Industries for
the years 1987–88 and 1993–94 have been used to measure and decompose
the Malmquist productivity index for the state of West Bengal (WB). Output
was measured by the gross value of production at constant prices. The inputs
included were (a) production workers (Labor), (b) nonproduction workers
(Employees), (c) capital used (Capital), (d) fuel and power (Fuel), and
(e) raw materials consumed (Materials). Labor inputs are measured by num-
bers of workers. Capital is measured by the sum of expenses on depreciation,
interest, and rent deflated by the price index of capital equipment. Fuel and
material inputs are measured by the expenditure on these two inputs deflated
by appropriate price indexes. The data for the 22 states included in this
example are reported for the years 1987–88 and 1993–94 in Table 11.1. To
measure the same-period VRS and CRS distance functions for any one year,
we solve the (output-oriented) BCC and CCR DEA problems for WB using
the data for the particular year.

The SAS program for a cross-period DEA is shown in Exhibit 11.1. Note
that there are 44 rows of data. The first 22 are for the individual states in the
year 1987–88 and the other 22 are for the same states in 1993–94. The 1987–
88 data for WB are in row 17 and the 1993–94 data for the same states are
in row 34. Once we transpose the data, the rows become columns. Thus, the
input–output data for WB are now contained in COL17 and COL34 in the new
data set called NEXT. After the data sets NEXT and MORE have been merged
into the new data set LAST, the input data from COL17 (i.e., the 1987–88 data
for WB) are moved to the right-hand sides of the relevant constraints and the
output value from COL17 appears with a negative sign attached in the column
for PHI. Finally, we delete COL1 through COL22 from this data set. Thus, only
COL23 through COL44 (the 1993–94) input–output data are used to define
the production possibility set. Programs for other cross-period DEA problems
can be written with appropriate changes.

The various distance functions evaluated at the input–output quantities of
WB from 1987–88 and 1993–94 were

D87(x87, y87) = 0.86352; D 93(x93, y93) = 1.0; D87
C (x87, y87) = 0.862313;

D93
C (x93, y93) = 0.972720;

D87(x93, y93) = 1.16808; D 93(x87, y87) = 0.98449;

D87
C (x93, y93) = 0.991609; D93

C (x87, y87) = 0.984489.
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Table 11.1. Manufacturing output and input quantity data for selected
Indian states (1987–88 and 1993–94)

OBS NAME YEAR Y K L EM F M
1 AP 8788 46.614 24.254 42.784 7.770 4.0769 29.920
2 AS 8788 86.794 29.856 53.139 11.143 5.0706 53.499
3 BI 8788 167.179 129.631 86.371 24.508 18.0124 87.173
4 GU 8788 110.697 54.941 49.793 13.246 12.5116 64.629
5 HA 8788 139.545 63.827 64.209 21.094 11.6412 90.793
6 HP 8788 204.535 313.583 134.520 61.956 10.9886 112.843
7 JK 8788 87.880 81.027 94.108 24.186 3.1358 56.658
8 KA 8788 82.362 40.753 50.878 16.785 6.5360 47.433
9 KE 8788 98.234 45.126 66.378 14.170 5.0056 61.369
10 MP 8788 168.560 153.145 77.630 32.229 21.6828 84.330
11 MH 8788 155.768 60.845 58.626 21.918 12.4070 93.010
12 OR 8788 132.912 181.199 78.216 23.839 15.5687 72.518
13 PU 8788 90.793 48.095 49.707 12.792 7.7376 60.323
14 RA 8788 106.959 83.136 62.058 17.929 11.0055 63.136
15 TN 8788 89.155 37.459 53.910 13.234 8.0536 53.586
16 UP 8788 113.911 75.359 69.421 17.781 10.0384 68.193
17 WB 8788 149.677 72.141 108.084 29.772 12.6083 86.244
18 AN 8788 46.956 13.462 105.481 16.019 1.8424 22.956
19 CH 8788 45.112 7.326 33.876 9.736 1.3390 30.449
20 DE 8788 73.077 13.091 30.332 11.745 6.4656 44.771
21 GO 8788 175.185 59.511 50.686 18.292 9.8116 116.737
22 PO 8788 86.090 43.685 84.170 20.733 6.2500 49.623
23 AP 9394 76.687 50.724 47.413 9.919 8.3907 53.170
24 AS 9394 105.616 36.756 66.085 13.052 5.1927 75.890
25 BI 9394 214.200 105.728 69.892 20.713 19.9078 111.976
26 GU 9394 163.286 70.369 48.094 16.235 10.8751 116.073
27 HA 9394 180.607 59.434 59.164 22.689 10.5558 146.136
28 HP 9394 236.891 189.549 112.953 62.117 12.7376 122.290
29 JK 9394 119.287 11.675 44.079 12.540 2.5349 91.492
30 KA 9394 126.697 42.263 54.983 18.837 7.5110 85.712
31 KE 9394 89.892 33.036 61.666 13.232 3.6991 68.200
32 MP 9394 252.038 139.716 77.599 35.033 25.7707 161.420
33 MH 9394 202.865 72.287 50.422 19.903 11.3195 138.533
34 OR 9394 212.668 189.112 85.886 28.530 28.9937 125.945
35 PU 9394 129.839 55.903 54.061 17.673 11.6865 99.027
36 RA 9394 137.258 50.861 44.461 15.917 14.2284 96.014
37 TN 9394 101.391 37.198 47.868 11.944 8.3237 66.075
38 UP 9394 160.067 79.411 58.159 17.098 9.7695 115.728
39 WB 9394 160.145 116.611 97.336 28.246 12.5743 104.580
40 AN 9394 92.351 59.181 155.265 38.470 3.3229 65.816
41 CH 9394 71.982 6.641 19.267 7.958 0.9910 64.063
42 DE 9394 81.735 9.259 25.375 10.587 3.2155 58.160
43 GO 9394 279.303 65.184 46.304 18.688 12.8889 219.392
44 PO 9394 190.522 88.118 77.753 22.366 11.7984 135.438
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Exhibit: 11.1. SAS program for measuring cross-period CRS efficiency

OPTIONS NOCENTER;

DATA INDIA;

INPUT NAME $ YEAR Y K L EM F M;

C=1;OBJ=0;

*IF YEAR NE 8788 THEN DELETE;

DROP YEAR;

CARDS;

AP 8788 46.614 24.254 42.784 7.770 4.0769 29.920

AS 8788 86.794 29.856 53.139 11.143 5.0706 53.499

BI 8788 167.179 129.631 86.371 24.508 18.0124 87.173

GU 8788 110.697 54.941 49.793 13.246 12.5116 64.629

HA 8788 139.545 63.827 64.209 21.094 11.6412 90.793

HP 8788 204.535 313.583 134.520 61.956 10.9886 112.843

. .. .. .. .. .. .. ..

. .. .. .. .. .. .. ..

. .. .. .. .. .. .. ..

TN 8788 89.155 37.459 53.910 13.234 8.0536 53.586

UP 8788 113.911 75.359 69.421 17.781 10.0384 68.193

WB 8788 149.677 72.141 108.084 29.772 12.6083 86.244

AN 8788 46.956 13.462 105.481 16.019 1.8424 22.956

CH 8788 45.112 7.326 33.876 9.736 1.3390 30.449

DE 8788 73.077 13.091 30.332 11.745 6.4656 44.771

GO 8788 175.185 59.511 50.686 18.292 9.8116 116.737

PO 8788 86.090 43.685 84.170 20.733 6.2500 49.623

AP 9394 76.687 50.724 47.413 9.919 8.3907 53.170

AS 9394 105.616 36.756 66.085 13.052 5.1927 75.890

BI 9394 214.200 105.728 69.892 20.713 19.9078 111.976

GU 9394 163.286 70.369 48.094 16.235 10.8751 116.073

HA 9394 180.607 59.434 59.164 22.689 10.5558 146.136

HP 9394 236.891 189.549 112.953 62.117 12.7376 122.290

. .. .. .. .. .. .. ..

. .. .. .. .. .. .. ..

. .. .. .. .. .. .. ..

TN 8788 89.155 37.459 53.910 13.234 8.0536 53.586

TN 9394 101.391 37.198 47.868 11.944 8.3237 66.075

UP 9394 160.067 79.411 58.159 17.098 9.7695 115.728

WB 9394 160.145 116.611 97.336 28.246 12.5743 104.580

AN 9394 92.351 59.181 155.265 38.470 3.3229 65.816

CH 9394 71.982 6.641 19.267 7.958 0.9910 64.063

DE 9394 81.735 9.259 25.375 10.587 3.2155 58.160

GO 9394 279.303 65.184 46.304 18.688 12.8889 219.392

PO 9394 190.522 88.118 77.753 22.366 11.7984 135.438

(continued)
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Exhibit: 11.1. (continued)

PROC TRANSPOSE OUT=NEXT;
DATA MORE;
INPUT PHI TYPE $ RHS ;
CARDS;
0 >= 0
0 <= 0
0 <= 0
0 <= 0
0 <= 0
0 <= 0
0 = 1
1 MAX .
DATA LAST; MERGE NEXT MORE;
IF N =1 THEN PHI = − COL17;
IF N >= 2 AND N <= 6 THEN RHS = COL17;
IF N = 7 THEN DELETE;
DROP COL1 − COL22;
PROC PRINT;
PROC LP;

Using these figures, we obtain

π =
√

0.9916088

0.862313

0.9727195

0.9583383
= 1.080369.

This implies a productivity increase of 8.0369% over the seven-year period.
The individual components of the Malmquist productivity index are

TEC = 1

0.8635813
= 1.158053;

TC =
√

0.8635183

0.9844894

1.1680771

1
= 1.0121998;

and

SCF =

√√√√√√
0.9916088

1.1680771
0.862313

0.8635183

0.9727195

1
0.9583383

0.9844894

= 0.9216746.
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This shows that

(a) technical efficiency in 1993–94 was 15.8% higher than what it was in
1987–88;

(b) there was technical progress of 1.22% over this period; and
(c) the scale change factor resulted in a 7.83% decline in productivity.

The total effect was the 8.039% productivity increase measured by the
Malmquist productivity index.

11.8 Summary

A multifactor index of productivity change involves aggregation of the individ-
ual components of output and input bundles into composite measures of total
output and total input. Both the Tornqvist and Fisher indexes are measured
as the ratio of the quantity indexes of output and input. These are essentially
descriptive measures and use only accounting information relating to input and
output quantities and prices. No information about the technology is necessary.
By contrast, the Malmquist productivity index is a normative measure in the
sense that it is measured by the ratio of distance functions pertaining to some
benchmark technology. The Malmquist productivity index can be decomposed
to isolate the specific contributions of technical efficiency change, technical
change, and scale efficiency change towards the overall productivity change.
The relevant distance functions for measuring the Malmquist productivity in-
dex can be evaluated by DEA. Even though the Fisher index is descriptive in
nature, one can perform a similar decomposition of the Fisher productivity
index using DEA in order to separate the different components of the overall
productivity index.

Guide to the Literature

In the parametric literature, the practice is to measure rates rather than indexes
of productivity change. Denney, Fuss, and Waverman (1981) offer a decompo-
sition of the rate of productivity change into two separate components measur-
ing the rate of technical change and a returns to scale factor.1 Nishimizu and
Page (1982) identified technical change and change in technical efficiency as

1 See also Nadiri and Schankerman (1981) in the same volume. Orea (2002) offers a
decomposition of the total factor productivity growth along the lines of Denney, Fuss,
and Waverman (1981) using a distance function.
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two distinct components of productivity change. The Malmquist productivity
index was defined in terms of the distance functions by Caves, Christensen,
and Diewert (1982) and later operationalized in the DEA framework by Färe,
Grosskopf, Lindgren, and Roos (1992) using a CRS production technology for
a benchmark. Subsequently, Färe, Grosskopf, Norris, and Zhang (1994) ex-
tended the decomposition to a VRS technology. Ray and Desli (1997) pointed
out an inherent contradiction in the FGNZ decomposition and offered an alter-
native. In an earlier paper, Griffel-Tatje and Lovell (1995) had considered the
decomposition of the Malmquist productivity index for the VRS technology.
See, in this regard, Färe, Grosskopf, and Norris (1997) for their response to
Ray and Desli. Lovell (2001) argues in favor of the Ray–Desli decomposition.
An extended decomposition of the scale efficiency change factor of RD was
proposed by Wheelock and Wilson (1997). The same decomposition was pro-
posed independently but interpreted differently by Zofio and Lovell (1997).
Balk (2001) proposes a different decomposition that separately identifies the
contribution of change in the output or input mix. For an example of what
Diewert (1992a) calls a Hicks–Moorsteen approach, see Bjurek (1996), where
the Malmquist productivity index is measured by the ratio of a (Malmquist)
output quantity index and a (Malmquist) input quantity index. Diewert (1992b)
describes in detail a number of desirable properties of the Fisher productivity
index. Färe and Grosskopf (1992) and Balk (1993) consider the conditions for
equivalence between the Malmquist and the Fisher productivity indexes. The
decomposition of the Fisher productivity index considered in this chapter is
due to Ray and Mukherjee (1996). For an excellent survey of the Malmquist
productivity index, see Färe, Grosskopf, and Roos (1998).
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12

Stochastic Approaches to Data Envelopment Analysis

12.1 Introduction

The most important impediment to a more widespread acceptance of DEA
as analytical methodology for productivity and efficiency analysis is that it is
viewed as lacking any statistical foundation. After all, the measured value of
the maximum (or frontier) output (y∗

0 ) producible from a given input bundle
(x0) obtained by DEA will depend on the particular set of input–output bundles
that define the production technology. A different sample with the same input
bundles producing a different set of output quantities would lead to a different
measure of the maximum output producible from that particular input bundle.
Given this sampling variation, a specific value of y∗

0 obtained from a single
sample is of limited use. One would prefer a confidence interval instead. For
this, of course, one would need the sampling distribution of the frontier output.
In contrast to the case of econometric models of the stochastic frontier produc-
tion function, in the case of mathematical programming models the statistical
properties of the estimators are not well developed.

In this chapter, we consider a number of different approaches to stochastic
DEA. Section 12.2 considers Banker’s interpretation of DEA as the maximum
likelihood estimation procedure for a deterministic frontier and the paramet-
ric F tests proposed by him. Next, in Section 12.3, we describe the chance-
constrained DEA, an approach based on the chance-constrained programming
(CCP) models developed by Charnes and Cooper (1963) as introduced by Land,
Lovell, and Thore (1993). A statistical test of WACM for cost-minimizing be-
havior proposed by Varian (1985) is described in Section 12.4. Finally, the
resampling and bootstrap approach popularized by Simar (1992) and Simar
and Wilson (1998a, 1998b, 2000) is presented in Section 12.5. The main points
of the chapter are summarized in Section 12.6.

307
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12.2 DEA as the Maximum Likelihood Estimator of a Deterministic
Frontier Production Function

We start with N observed input–output bundles. The pair (x j , y j ) represents the
input bundle x j used by firm j to produce the scalar output y j . Next, following
Banker (1993), consider the production function mapping from the n-element
input bundle x0 ∈ X ⊆ Rn

+ onto the nonnegative scalar output y0:

y0 = g(x0). (12.1)

We assume that the production function satisfies the following postulates:

(P1) g(x) is monotonic in x . That is, if x ′′ ≥ x ′, then g(x ′′) ≥ g(x ′).

(P2) g(x) is concave. Hence, if x1, x2 ∈ X and x∗ = λx1 + (1 − λ)x2, 0 <

λ < 1, then g(x∗) ≥ λg(x1) + (1 − λ)g(x2).

(P3) For each observation (x j , y j ), g(x j ) ≥ y j ; ( j = 1, 2, . . . , N ).

(P4) For any other function g̃(x) also satisfying (P1–P3), g̃(x) ≥ g(x) for all
x ∈ X.

Now, consider the set X∗ = {
x : x ≥ ∑N

j=1 λ j x j ;
∑N

j=1 λ j = 1; λ j ≥ 0
} ⊆

X. Clearly, X∗ is the free disposal convex hull of the observed input bundles.
Banker has shown that the unique function y = g(x) determined for x ∈ X∗

by the postulates (P1–P4) corresponds to that estimated by DEA.
We first note that if the function y = ĝ(x) satisfies properties (P1–P4) and

if ŷ0 = ĝ(x0) for x0 ∈ X∗, then ŷ0 = g∗(x0), where

g∗(x0) = y∗
0 = max

N∑
j=1

λ j y j

s.t.
N∑

j=1
λ j x j ≤ x0;

N∑
j=1

λ j = 1;

λ j ≥ 0.

(12.2)

It is easy to see that g∗(.) satisfies (P1–P3). First, consider the input bundle
x̃ ≥ x0. Clearly, the optimal solution for the DEA problem for x0 is a feasible
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solution of the DEA problem for x̃ . Thus, g∗(x̃) ≥ y∗
0 = g∗(x0). Next, we show

that g∗(x) is concave. Suppose that λ′ = (λ′
1, λ

′
2, . . . , λ

′
N ) and g∗(x ′) is the

optimal solution of the DEA LP problem for the input bundle x ∈ X∗.Similarly,
λ′′ = (λ′′

1, λ
′′
2, . . . , λ

′′
N ) and g∗(x ′′) is the optimal solution for x ′′ ∈ X∗. For

any arbitrary θ ∈ [0, 1], define λ̄ = θλ′ + (1 − θ )λ′′ and x̄ = θx ′ + (1 − θ )x ′′.
Clearly, λ̄ is a feasible solution for the DEA LP for x̄ leading to the objective
function value θg∗(x ′) + (1 − θ )g∗(x ′′). Obviously, the optimal solution g∗(x̄)
satisfies g∗(x̄) ≥ θg∗(x ′) + (1 − θ )g∗(x ′′). This verifies that g∗(x) is a concave
function.

Let y∗
0 = g∗(x0) = ∑N

j=1 λ∗
j y j be the optimal solution of the DEA LP for x0.

Next, suppose that some other function ĝ(x) satisfies the postulates (P1–P3).
Then,

ĝ

(
N∑

j=1

λ∗
j x

j

)
≥

N∑
j=1

λ∗
j ĝ (x j ) ≥

N∑
j=1

λ∗
j y j = g∗(x0).

Further, because x0 ≥ ∑N
j=1 λ∗

j x
j , ĝ (x0) ≥ ĝ

( ∑N
j=1 λ∗

j x
j
) ≥ g∗(x0). Thus,

the function g∗(x) ≤ g̃(x) over the set X∗ for any function g̃(x) satisfying
(P1–P3). This implies that the deviation ε j = g̃(x j ) − y j is minimized for
each observation j by the function g∗(x).

Now, consider the frontier production function

y = g(x) − ε; ε ≥ 0. (12.3)

Here, the nonnegative deviation of the observed output y from the frontier
g(x) has some one-sided probability distribution f (ε). Then, the likelihood
maximization problem can be specified as

max L =
N∏

j=1

f (ε j = g (x j ) − y j )

f (.), g(.)

subject to g (x j ) − y j ≥ 0; (12.4)

g(.) is a monotonically increasing and concave function.

It may be noted that the DEA efficiency residuals ε j are obtained indepen-
dently of each other. This is in contrast with the frontier production function
model proposed by Aigner and Chu (1968). In their case, a single parametric
function is fitted to the entire data set and the efficiency residuals are jointly
derived and, therefore, are not independent of one another. Now, suppose that

         
 

 



P1: JTH
CB688-12 CB688-RAY CB688-Ray-v1.cls January 22, 2004 16:13

310 Stochastic Approaches to Data Envelopment Analysis

we choose a probability density function f (.) such that f (ε j ) is monotonically
decreasing in the efficiency residuals. In that case, because the DEA estimate
of the production function minimizes each ε j , it thereby maximizes each f (ε j ).
Hence, the DEA frontier g∗(x) maximizes the likelihood function subject to
the constraints specified herein.

It should be noted, however, that the DEA estimator of the frontier production
function is biased. Suppose that the true frontier production function is g(x).
Thus, the maximum output producible from some observed input bundle is
g(x0) and the DEA estimator is g∗(x0). As shown previously, g(x0) ≥ g∗(x0) =
y∗

0 . Define δ0 = g(x0) − g∗(x0) ≥ 0. We have assumed that the inefficiency
residuals are identically distributed. Then, for any 	 > 0, the probability that
for any observation j ,

Pr (ε j < 	) =
∫ 	

0
f (ε) dε = F(	). (12.5)

Thus, the probability that any realized ε j is at least as large as 	 is 1 − F(	).
Next, let εmin = min j {ε j ; j = 1, 2, . . . , N }. If εmin > 	, then each ε j > 	.

The probability that each ε j > 	 simultaneously is [1 − F(	)]N . Consider the
DEA solution for the input bundle x0,

y∗
0 =

N∑
j=1

λ∗
j y j =

N∑
j=1

λ∗
j [g (x j ) − ε j ]. (12.6)

But g(x) is a monotonically increasing and concave function. Hence,∑N
j=1 λ∗

j g (x j ) ≤ g
( ∑N

j=1 λ∗
j x

j
)
.

Further,
∑N

j=1 λ∗
j x

j ≤ x0. Also,
∑N

j=1 λ∗
jε j ≥ ∑N

j=1 λ∗
jεmin = εmin. Hence,

δ0 = g(x0) − g∗(x0) ≥ εmin (12.7a)

and

Pr {δ0 > 	} ≥ Pr {εmin > 	} = [1 − F(	)]N . (12.7b)

An implication of this inequality is that if F(	) < 1 for 	 = 0, then the DEA
estimator is biased.

It can be shown, however, that the DEA estimator is weakly consistent.
Consider the relation y = g(x) − ε for x ∈ X , where X is a compact subset
of Rn

+. Assume that the input bundle x and the inefficiency component ε are
independently distributed. The input vector x has the multivariate probability
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density function h(x) > 0 for all x ∈ X. Also, the density function of ε satisfies

f (ε) = 0 for ε < 0 and F(ε) =
∫ ε

−∞
f (t) dt > 0 for all ε > 0.

Initially, consider the single-input case. Because the function g(x) is continu-
ous, for any value of x , say x0, in the interior of the domain of the function,
for any arbitrary 	 > 0 there exists a δ > 0 such that for all x ∈ (x0 − δ,

x0 + δ), g(x) ∈ (g(x0) − 	, g(x0) + 	). Hence, for all values of x in the in-
terval (x0 − δ, x0 + δ), g(x) > g(x0) − 	. Now, consider a randomly drawn
observation (x, y) where y = g(x) − ε. As already assumed, x is distributed
independently of ε and has some density function h(.). The probability that x
lies in the interval (x0 − δ, x0) is

Pr {x ∈ (x0 − δ, x0)} =
∫ x0

x0−δ

h(x) dx > 0. (12.8)

Moreover, because g(x) > g(x0) − 	 for x ∈ (x0 − δ, x0) and F(ε) > 0 for
all ε > 0, it follows that

Pr {ε < g(x) − g(x0) + 	} > 0. (12.9)

Define the event A1 = {x ∈ (x0 − δ, x0) and ε < g(x) − g(x0) + 	}. Because
x and ε are independently distributed, the joint probability that x ∈ (x0 − δ, x0)
and, at the same time, ε < g(x) − g(x0) + 	 is the product of the probabilities
of these two independent events. Call this joint probability p1. Clearly, p1 > 0.

Now, define the event, A2 = {x ∈ (x0, x0 + δ) and ε < g(x) − g(x0) + 	}.
By similar reasoning, the probability of the event A2 is Pr(A2) = Pr{x ∈
(x0, x0+δ)} · Pr{ε < g(x) − g(x0) + 	} = p2 > 0. Next, consider a sample of
N independent observations. Clearly, the probability that event A1 does not
occur for any observation is (1 − p1)N . Similarly, the probability that event A2

does not occur for any observation in the sample is (1 − p2)N . Now suppose
that both of the events A1 and A2 occur for at least one observation each in the
sample. In particular, there are two observations (x1, y1) and (x2, y2), such
that x1 ∈ (x0 − δ, x0) and x2 ∈ (x0, x0 + δ) while both y1 and y2 are greater
than g(x0) − 	. In this case, the DEA estimator g∗

N (x0) based on the spe-
cific sample of size N must be at least as large as min {y1, y2}. This implies
that g∗

N (x0) > min{y1, y2} > g(x0) − 	. Hence, g(x0) − g∗
N (x0) < 	. Thus,

the probability that g(x0) − g∗
N (x0) < 	 is the probability that the events A1

and A2 occur for less than all of the N observations in the sample. Hence,
Pr{g(x0) − g∗

N (x0) < 	} ≤ (1 − p1)N + (1 − p2)N . Clearly, this probability
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goes to 0 as N goes to ∞. This can be formally expressed as

lim
N→∞

Pr{|g(x0) − g∗
N (x0)| > 	} = 0. (12.10)

In other words, the DEA estimator g∗
N (x0) is weakly consistent. It is important

to note at this point that we need not impose any special restrictions on the
probability density function f (ε). In particular, we do not need to assume that
f (ε) is monotonically decreasing in ε. Extension of this consistency result to
the multiple-input case is quite straightforward. Now, we need to consider an
open ball with radius δ such that g(x) > g(x0) − 	 for all input bundles x
satisfying ‖x − x0‖ < 	 and note that there is a positive probability that an
observation (x, y) will be such that x is in a specific orthant (relative to x0)
of the open ball with y > g(x0) − 	. An implication of the consistency of the
DEA estimator g∗

N (x) is that for any given 	 > 0 and any realized pair (x j , y j ),

lim
N→∞

Pr
{
ε j − ε

∗(N )
j > 	

} = 0. (12.11)

Thus, the DEA residual ε∗
j based on a sample of size N is asymptotically

distributed as the true ε j itself. In particular, if the ε j ’s have the exponential or

the half-normal distribution, the DEA residual ε
∗(N )
j will also be so distributed

in large samples.
Banker has proposed a number of statistical tests for comparing two groups

of firms to assess whether one group is more efficient than the other. Assume
that there are N firms in the sample of which m1 are in group 1 and m2 are in
group 2. Firms in group 1 have the exponential distribution of (in)efficiency
ε j with parameter σ1 and those in group 2 also have the exponential distribu-
tion but with parameter σ2. Designate the first group of firms as M1 and the
second group as M2. Consider the DEA residuals ε∗

j ( j = 1, . . . . , N ). Under
the maintained hypothesis,

∑
j∈Mi

ε∗
j

σi

has the χ2 distribution with 2mi (i = 1, 2) degrees of freedom.
Under the null hypothesis σ1 = σ2, the test statistic

F =

∑
j∈M1

ε∗
j

/
m1

∑
j∈M2

ε∗
j

/
m2

(12.12)

has the F distribution with (2m1, 2m2) degrees of freedom.
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On the other hand, if the ε j ’s have the half-normal distribution,
∑

j∈M1

( ε∗
j

σ1

)2

has the χ2 distribution with m1 degrees of freedom. Similarly,
∑

j∈M2

( ε∗
j

σ2

)2
has

the χ2 distribution with m2 degrees of freedom. Hence, in this case, under the
null hypothesis σ1 = σ2, the statistic

F =

∑
j∈M1

(ε∗
j )

2
/

m1

∑
j∈M2

(ε∗
j )

2
/

m2

(12.13)

has the F distribution with (m1, m2) degrees of freedom.

12.3 Chance-Constrained DEA

The production function estimated by DEA is a deterministic frontier. For any
input bundle x0, the value of the DEA estimate g∗(x0) defines the maximum
output producible from x0 under all circumstances. In this sense, it is com-
parable to the parametric frontier with one-sided deviations estimated using
mathematical programming methods by Aigner and Chu (1968). In economet-
ric analysis also, Richmond (1974) specified a log gamma distribution of the
stochastic component of the output to formulate a deterministic production
frontier. Any deviation of the observed output from this frontier output is, by
implication, ascribed to inefficiency. It is common knowledge, however, that
shortfalls in actual output from the benchmark can be due to a variety of ran-
dom factors beyond the control of and unrelated to the efficiency of the firm.
For example, poor rainfall in farming or unexpected machine breakdown in
manufacturing may result in low output. In fact, the stochastic frontier produc-
tion function introduced independently by Aigner, Lovell, and Schmidt (1977)
and Meeusen and van den Broeck (1977) allows the frontier to move up or
down because of random influences that may be either favorable or detrimen-
tal. This is achieved through a composite stochastic term that is the sum of
a two-sided and a one-sided disturbance term. The two-sided term captures
random shifts in the frontier either up or down. The one-sided term, on the
other hand, corresponds to the level of technical efficiency of the firm. Note
that the actual output must always lie below the frontier that is relevant for
the firm given the realized value of the random shock. It is, nonetheless, possi-
ble that the actual output, in spite of inefficiency, would lie above the average
frontier that corresponds to a zero realized value of the random shock. Thus,
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the average frontier does not necessarily envelop all of the observed points in
the sample.

Land, Lovell, and Thore (1993) modified the standard DEA model to mea-
sure technical efficiency in the presence of random variation in the output
produced from a given input bundle. Their chance-constrained DEA model
builds on the method of chance-constrained programming (CCP) developed
by Charnes and Cooper (1963). The essence of a CCP model is that it allows
a positive (although low) probability that one or more inequality restrictions
will be violated at the optimal solution of the problem.

Consider, as usual, the input–output observation (x j , y j ) ( j = 1, 2, . . . , N ).
As in econometric analysis, assume that the inputs are deterministic while
the output is random. This implies that a convex combination of the output
quantities associated with the corresponding convex combination of the input
bundles will also be randomly variable. As a result, the boundary of the free
disposal convex hull of the observed input–output bundles will define a random
frontier. Hence, the restriction involving the output quantities in the DEA model
will be a random inequality that may at times be violated. Because an inequality
involving a number of random variables can never be imposed with certainty,
the strategy in CCP is to ensure that the probability that the inequality holds
for a random sample of these variables does not fall below a certain level.

The chance-constrained output-oriented BCC DEA model for firm k can be
specified as follows:

max φ

s.t. Pr

{
N∑

j=1

λ j y j ≥ φyk

}
≥ (1 − α);

N∑
j=1

λ j x
j ≤ xk ; (12.14)

N∑
j=1

λ j = 1; λ j ≥ 0 ( j = 1, 2, . . . , N ).

At this point, assume that each output y j is normally distributed with mean µ j

and variance σ 2
j . Further assume that Cov(yi , y j ) = 0. Now, define the random

variable

u =
N∑

j=1

λ j y j − φyk . (12.15)
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Then,

E(u) =
N∑

j=1

λ jµ j − φµk ≡ µu (12.16a)

and

Var(u) =
N∑

j=1, j �=k

λ2
jσ

2
j + (λk − φ)2σ 2

k ≡ σ 2
u . (12.16b)

Because the yj’s have the normal distribution, so does the variable u. Therefore,
the variable

z = u − µu

σu

has the standard normal distribution. Hence,

Pr

{
N∑

j=1

λ j y j ≥ φyk

}
= Pr {u ≥ 0} = Pr

{
z ≥ −µu

σu

}
. (12.17)

But, because of the symmetry property of the normal distribution,

Pr

{
z ≥ −µu

σu

}
= Pr

{
z ≤ µu

σu

}
= �

(
µu

σu

)
, (12.18)

where �(.) is the cumulative standard normal distribution function. Thus, the
random inequality restriction in the chance-constrained DEA problem can be
replaced by the equivalent restriction

�

(
µu

σu

)
≥ (1 − α). (12.19)

Suppose that we set α at the conventional level of 0.05. That is, we require
the inequality restriction involving the outputs to hold with probability 95%
or higher. The critical value of the standard normal distribution at the 5% level
of significance is 1.96. Thus, the previous inequality becomes

µu ≥ 1.96σu . (12.20)

That is,

N∑
j=1

λ jµ j− φµk ≥ 1.96

√√√√ N∑
j=1, j �=k

λ2
jσ

2
j + (λk − φ)2σ 2

k . (12.21)

         
 

 



P1: JTH
CB688-12 CB688-RAY CB688-Ray-v1.cls January 22, 2004 16:13

316 Stochastic Approaches to Data Envelopment Analysis

The revised DEA problem can be specified as

max φ

s.t.
N∑

j=1

λ jµ j ≥ φµk + 1.96

√√√√ N∑
j=1, j �=1

λ2
jσ

2
j + (λk − φ)2σ 2

k ;

N∑
j=1

λ j x
j ≤ xk ; (12.22)

N∑
j=1

λ j = 1; λ j ≥ 0 ( j = 1, 2, . . . , N ).

This, of course, is a nonlinear programming problem and one needs to apply
an appropriate solution algorithm. We do not attempt that in this chapter.
Several features of this problem may be highlighted, however. First, instead of
the observed output quantities of the firms, one uses the expected values of
the output levels. Additionally, we need information about the variances of the
random output levels. Further, we have assumed Cov(yi , y j ) = σi j = 0. If that
is not the case, the variance of u would have to be suitably modified to include
the σi j’s. On the other hand, if we assume that σi j = 0 and also that σ 2

j = σ 2

for all j , the output restriction becomes

N∑
j=1

λ jµ j ≥ φµk + 1.96σ

√√√√ N∑
j=1, j �=k

λ2
j + (λk − φ)2 (12.23)

and the value of only one additional parameter (namely σ ) will be needed.
In fact, the assumption of constant variance and absence of covariance is
quite standard in the econometric production frontier literature and may quite
reasonably be made in the present context as well. In practical applications,
ideally one would like to collect repeated data for each firm over a short period
of time (e.g., over several months within a quarter) so that the input bundle of
the firm remains (more or less) unchanged and variation in the observed output
is due to random factors. One may use the sample mean of the output data of a
firm j as a measure of µ j . Deviations of the observed outputs of firms from the
firm means can be utilized to estimate a pooled variance as a measure of σ 2.

Another interesting point may be noted. Suppose that the outputs of all
of the firms were observed at their mean values so that y j = µ j for each
observation j . But, it is known that σ 2

j = σ 2 �= 0. In that case, the output
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inequality restriction in the chance-constrained DEA problem becomes

N∑
j=1

λ j y j − 1.96σ

√√√√ N∑
j=1, j �=k

λ2
j + (λk − φ)2 ≥ φyk . (12.24)

Note that the presence of the negative term on the left-hand side of the inequality
implies that compared to the basic BCC DEA model, the chance-constrained
DEA effectively uses a production frontier that is shifted inwards and, therefore,
results in a lower optimal value of φ.

12.4 Varian’s Statistical Test of Consistency with the WACM

It was shown in Chapter 10 that unless the observed economic behavior of a
firm is consistent with the WACM, the firm under consideration cannot have
been minimizing cost. Varian (1985) proposed a statistical test of consistency
of the data with WACM when the observed input quantities in the data set
are random. Such random elements in the input data may be introduced, for
example, by measurement errors. The randomness may also arise from the fact
that the firm may not have complete control over the input quantities chosen.
As a result, the actual input quantities may differ from the desired quantities.
When the observed input quantities are random, the proper test of WACM
should involve the true (or desired) input quantities. The problem, of course,
is that the true quantities are not known and one must use the observed input
quantities. Varian proposed a χ2 type test of WACM for this case.

Suppose that the observed input bundle of firm j is x j = (x1 j , x2 j , . . . , xnj )
and its true but unobserved input bundle is z j = (z1 j , z2 j , . . . , znj ). The output
produced by the firm is y j and the vector of input prices paid by the firm is
w j = (w1 j , w2 j , . . . , wnj ). Similarly, the true input bundle of firm i is zi and
the output produced is yi . Then, the behavior of firm j is consistent with
WACM only when w j ′z j ≤ w j ′zi whenever y j ≤ yi . Now, suppose that

xk j = zk j + εk j , (12.25)

where the random error εk j has the normal distribution with mean 0 and vari-
ance σ 2 for each input k (k = 1, 2, . . . , n) and all firms j ( j = 1, 2, . . . , N ).
Now, consider the test statistic

T =
N∑

j=1

n∑
k=1

(xk j − zk j )2

σ 2
. (12.26)
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If the true input quantities were observable, then under the null hypothesis,
this statistic would have the χ2 distribution with m · n degrees of freedom.
Suppose that the critical value of the χ2 distribution at the significant level α

for the relevant degrees of freedom is Cα . Then, the null hypothesis would be
rejected if the test statistic T exceeded Cα . Of course, T is not observable. We
do not know either the true input quantities (zk j ’s) or the variance σ 2. There is,
nevertheless, a way to define a lower bound on T for a test of cost-minimizing
behavior through WACM.

Consider the following quadratic programming (QP) problem:

min S =
N∑

j=1

n∑
k=1

(xk j − zk j )
2

s.t.
n∑

k=1

wk j zk j ≤
n∑

k=1

wk j zki (for y j ≤ yi ) (12.27)

zk j ≥ 0 (k = 1, 2, . . . , n; j = 1, 2, . . . , N ).

Note that because

T = S

σ 2
, if S < σ 2Cα, then T < Cα.

Of course, without a priori knowledge of σ 2, this test cannot be applied in
practice. But it is possible to perform this test conditionally on some assumed
value of σ 2. Suppose that for some specific data set the optimal value of S is
S∗

0 . Then, the data would be consistent with WACM for a given value of the
variance σ 2

0 if S∗
0 < σ 2

0 Cα. Alternatively, the minimum value of σ 2, for which
the data would be consistent with WACM, is σ 2

∗ = S∗
0

Cα
. Note that a low value of

the variance σ 2 implies lower noise in the data so that violation of WACM is
less likely to be due to random variation in the observed input quantities. On the
other hand, if the variance is large, the probability that violation of WACM is
due to random noise in the observed input data will be higher. In any empirical
application, if any prior measure of σ 2 is available, one would compare that
with the critical value σ 2

∗ . Otherwise, one needs to decide whether the degree
of possible noise in the data would be consistent with a value of the variance
greater than σ 2

∗ .
The fact that a value of the variance parameter has to be specified a priori

in order to perform this test does not make it any more demanding in terms
of data requirement than chance-constrained DEA. After all, a value of the
variance of the output quantities also must be specified. But the assumption
that the random components in all of the inputs have the same variance is
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rather strong. In most cases, some inputs are more controllable and/or are
better measured than other inputs. This argues for differences in the variance
across inputs. At the computational level, the problem quickly becomes quite
unwieldy with even a moderate sample size and a limited number of inputs.
For example, with 50 firms and only 5 inputs, there are 250 decision variables
in the QP problem. Finally, it is a test of consistency of the entire data set with
WACM and says nothing about individual firm behavior.

12.5 Bootstrap

The idea of the bootstrap1 was first introduced by Efron (1979), who proposed
the use of computer-based simulations to obtain the sampling properties of
random variables. The starting point of any bootstrap procedure is a sample
of observed data X = {x1, x2, . . . , xn} drawn randomly from some population
with an unknown probability distribution f . The basic assumption behind the
bootstrap method is that the random sample actually drawn “mimics” its parent
population.

Suppose that a sample of observed data X = {x1, x2, . . . , xn} is drawn ran-
domly from some population with an unknown probability distribution f .
The sample statistic θ̂ = θ (X ) computed from this state of observed values
is merely an estimate of the corresponding population parameter θ = θ ( f ).
When it is not possible to analytically derive the sampling distribution of that
statistic, one examines its empirical density function. Unfortunately, however,
the researcher has access to only one sample rather than multiple samples
drawn from the same population. As noted before, the basic assumption be-
hind the bootstrap method is that the random sample actually drawn “mimics”
its parent population. Therefore, if one draws a random sample with replace-
ment from the observed values in the original sample, it can be treated like a
sample drawn from the underlying population itself. Repeated samples with
replacement yield different values of the sample statistic under investigation
and the associated empirical distribution (over these samples) can provide the
sampling distribution of this statistic. For reasons explained later, this is known
as a naı̈ve bootstrap.

The bootstrap sample X∗ = {x∗
1 , x∗

2 , . . . , x∗
n } is an unordered collection of

n items drawn randomly from the original sample X with replacement, so
that any x∗

i (i = 1, 2, . . . , n) has 1/n probability of being equal to any x j ( j =
1, 2, . . . , n). Some observations from the original sample X may not appear

1 Materials in this and the next section are based on Desli (1999).
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in the bootstrap sample, while other observations may drawn repeatedly. Let
f̂ denote the empirical density function of the observed sample X from which
X∗ was drawn. Then, it can take the form

f̂ (t) =
{

1/n if t = x∗
i , i = 1, 2, . . . , n

0 otherwise
. (12.28)

If f̂ is a consistent estimator of f , then the bootstrap distributions will
mimic the original unknown sampling distributions of the estimators that we
are interested in. Let θ̂∗ = θ (X∗) be the estimated parameter from the bootstrap
sample X∗. Then, the distribution of θ̂∗ around θ̂ in f̂ is the same as that of
θ̂ around θ in f . That is,

(θ̂∗ − θ̂ ) | f̂ ∼ (θ̂ − θ )| f. (12.29)

Because every time that we replicate the bootstrap sample we get a different
sample X∗, we will also get a different estimate of θ̂∗ = θ (X∗). Thus, we need
to select a large number of bootstrap samples, B, in order to extract as many
combinations of x j ( j = 1, 2, . . . , n) as possible. The bootstrap algorithm has
the following steps:

i) Compute the statistic θ̂ = θ (X ) from the observed sample X .
ii) Select bth (b = 1, 2, . . . , B) independent bootstrap sample X∗

b , which
consists of n data values drawn with replacement from the observed
sample X .

iii) Compute the statistic θ̂∗ = θ (X∗
b) from the bth bootstrap sample X∗

b .
iv) Repeat steps (ii)–(iii) a large number of times (say, B times).
v) Calculate the average of the bootstrap estimates of θ as the arithmetic

mean

θ̂∗(·) = 1

B

B∑
b=1

θ̂∗
b . (12.30)

A measure of the accuracy of an estimator θ̂ of the parameter θ is the bias
measure

bias f = bias f (θ̂ , θ ) = E f (θ̂ ) − θ. (12.31)

The bias-corrected estimator is

θ̂bc = θ̂ − bias f . (12.32)

The bias of the bootstrap estimator θ̂∗
b (b = 1, 2, . . . , B) as an estimate of θ̂

can be measured as bias f̂ = E f̂ (θ̂∗
b ) − θ̂ , where we use the average of the
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bootstrap estimators θ̂∗(·) for the expectation of each bootstrap estimator θ̂∗
b .

The estimated bias of the bootstrap estimator based on B replications is

biasB = θ̂∗(·) − θ̂ . (12.33)

Taking biasB as an estimate for the unknown bias f , the bias-corrected esti-
mator of θ is

θ̂bc = θ̂ − biasB = 2θ̂ − θ̂∗(·). (12.34)

The intuition behind this is quite simple. It is believed that if θ̂∗(.) overestimates
(underestimates) the statistic θ̂ from the original sample, then θ̂ itself also
overestimates (underestimates) the true population parameter θ. Thus, if θ̂∗(·)
is greater than θ̂ , then the bias-corrected estimate θ̂bc should be less than the
sample statistic θ̂ .

Efron and Tibshirani (1993) point out that bias correction can be problematic
in some situations. Even if θ̂∗

bc is less biased than θ̂ , it might have substantially
greater standard error due to high variability in biasB . The standard error of
θ̂∗(·) is measured as

seB = se(θ̂∗) =
√√√√ 1

B − 1

B∑
b=1

(θ̂∗
b − θ̂∗(·))2. (12.35)

Correcting for the bias may result in a larger root-mean-squared error. If
biasB is small compared to the estimated standard error of θ̂∗(·), then it is
safer to use θ̂ than θ̂bc. As a rule of thumb, Efron and Tibshirani (1993) sug-
gest the computation of the ratio of the estimated bootstrap bias to standard
error, biasB/seB . If the ratio does not exceed 0.25, bias correction may not be
recommended.

The corrected empirical density function of θ̂∗
b , (b = 1, 2, . . . , B) should

be centered around θ̂bc, the bias-corrected estimate of θ , that is E(θ̂∗
b,bc) =

θ̂bc (b = 1, 2, . . . , B), where the bias-corrected estimate from each bootstrap
is

θ̂∗
b,bc = θ̂∗

b − 2 biasB, (b = 1, 2, . . . , B). (12.36)

Once we have the bias-corrected estimates, we can use the percentile method
to construct the (1 − 2a)% confidence intervals for θ as(

θ̂
∗(a)
bc , θ̂

∗(1−a)
bc

)
, (b = 1, 2, . . . , B), (12.37)

where θ̂
∗(a)
bc is the (100∗ath) percentile of the empirical density of θ̂∗

b,bc (b =
1, 2, . . . , B).
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One major drawback of the bootstrap procedure outlined is that even when
sampling with replacement, a bootstrap sample will not include observations
from the parent population that were not drawn in the initial sample. The em-
pirical distribution f̂ is effectively a histogram that looks like a collection of
boxes of width h, a small number, centered at the observations and zero any-
where else. Thus, the bootstrap samples are effectively drawn from a discrete
population and they fail to reflect the fact that the underlying population density
function f is continuous. Hence, the empirical distribution from the bootstrap
samples as they were drawn in this section is an inconsistent estimator of the
population density function. This is why it is known as a naı̈ve bootstrap.

12.5.1 Smooth Bootstrap Methodology
One way to overcome this problem is to use kernel estimators as weight func-
tions. The empirical distribution f̂ will take the form

f̂ (t) = 1

nh

n∑
i=1

K

(
t − xi

h

)
, (12.38)

where h is the window width or smoothing parameter for the density function.
K (.) is a kernel function, which satisfies the condition∫ ∞

−∞
K (x) dx = 1. (12.39)

Usually, K is a symmetric probability density function like the normal den-
sity function. If we use the standard normal density function as the kernel
density function, then the smoothing is called Gaussian smoothing. The em-
pirical density function then can be written as

f̂ (t) = 1

nh

n∑
i=1

φ

(
t − xi

h

)
. (12.40)

Here, φ (.) is the standard density function.
By virtue of the convolution theorem (Efron and Tibshirani, 1993), we can

generate the smoothed bootstrap sample X∗∗ = {x∗∗
1 , x∗∗

2 , . . . , x∗∗
n } as

x∗∗
i = x∗

i + h εi ∼ f ; i = 1, 2, . . . , n, (12.41)

where x∗
i is from the naı̈ve bootstrap sample in the previous section.

Sometimes it is the case that the natural domain of the definition of the
density function to be estimated is not the whole real line but an interval
bounded on one side or both sides. For example, we might be interested in
obtaining density estimates f̂ for which f̂ (x) is zero for all negative x . One
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possible way to solve this problem is to calculate f̂ (x) ignoring the boundary
restrictions and then to set the empirical density function equal to zero for
values of x that are out of the boundary domain. A drawback of this approach
is that the estimates of the empirical density function will no longer integrate
to unity.

Silverman (1986) suggests the use of the negative reflection technique to
handle such problems. Suppose that we are interested in values of x such that
x ≥ α. If the resulting value from the bootstrap is x∗∗

i < α, then we will reflect
the x∗∗

i , such that 2α − x∗∗
i ≥ α. The empirical density function will be

f̂ (t) = 1

nh

n∑
i=1

[
φ

(
t − xi

h

)
+ φ

(
t − 2α + xi

h

)]
. (12.42)

Again, by the convolution theorem, we can generate the smoothed bootstrap
sample X∗∗ = {x∗∗

1 , x∗∗
2 , . . . , x∗∗

n } as

x∗∗
i =




x∗
i + hεi ∼ 1

nh

n∑
i=1

φ

(
t − xi

h

)
if x∗

i + hεi ≥ α

2α − (x∗
i + hεi ) ∼ 1

nh

n∑
i=1

φ

(
t − 2α + xi

h

)
otherwise,

(12.43)

where x∗
i is from the naı̈ve bootstrap sample in the previous section.

Choice of the smoothing parameter (h) is crucial to the estimated empirical
density function. Following Silverman (1986), we can select the value of the
window width that minimizes the approximate mean integrated square error.
This leads to

h = 0.9An−1/5, (12.44)

where A = min (standard deviation of X, interquartile range of X/1.34).
The bootstrap algorithm can be rewritten as follows:

i) Compute the statistic θ̂ = θ (X ) from the observed sample X .
ii) Select bth (b = 1, 2, . . . , B) independent naive bootstrap sample X∗

b =
{x∗

1,b, x∗
2,b, . . . , x∗

n,b}, which consists of n data values drawn with re-
placement from the observed sample X .

iii) Construct the smoothed bootstrap sample X∗∗
b = {x∗∗

1,b, x∗∗
2,b, . . . , x∗∗

n,b},
from the naı̈ve bootstrap sample.

vi) Compute the statistic θ̂∗ = θ (X∗
b) from the bth bootstrap sample X∗

b .
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v) Repeat steps (ii)–(iii) a large number of times (say, B times).
vi) Calculate the average of the bootstrap estimates of θ as the arithmetic

mean

θ̂∗(·) = 1

B

B∑
b=1

θ̂∗
b . (12.45)

We can now calculate the bias and bias-corrected estimates and construct
confidence intervals following the same steps described in Section 12.5.

12.6 DEA and Bootstrap

Simar (1992) and Simar and Wilson (1998a, 1998b) set the foundation for the
consistent use of bootstrap techniques to generate empirical distributions of
efficiency scores and have developed tests of hypotheses relating to returns to
scale of bootstrapping. Following Simar and Wilson (1997a), we can describe
the existing bootstrap techniques for the output-oriented technical efficiency
measure given in (1.32) with the following algorithm:

i) Solve the DEA problem to obtain φ̂ j for each DMU j = 1, 2, . . . , n.
ii) Select the bth (b = 1, 2, . . . , B) independent naı̈ve bootstrap sample

{φ∗
1,b, φ

∗
2,b, . . . , φ

∗
n,b}, which consists of n data values drawn with re-

placement from the estimated values φ̂ j s.
iii) Construct the smoothed bootstrap sample {φ∗∗

1,b, φ
∗∗
2,b, . . . , φ

∗∗
nb} from the

naı̈ve bootstrap sample. Notice that all the φ j s are greater than or equal
to 1. Therefore, the smoothed bootstrap sample should be appropriately
bounded. It will be computed according to

φ∗∗
j,b =

{
φ∗

j + hε j if φ∗
j + hε j ≥ 1; for j = 1, 2, . . . , n.

2 − (φ∗
j + hε j ) otherwise

(12.46)

As before, h is the optimal width that minimizes the approximate mean
integrated square error of φ̂ j ’s distribution, given by h = 0.9An−1/5,
where A = min (standard deviation of φ, interquartile range of φ/1.34).

iv) Create the bth pseudo-data set as {(x j∗, y∗
j = y j φ̂ j/φ

∗∗
j ); j = 1,

2, . . . , n}.
v) Use the pseudo-data set to compute new ϕ̂∗

j s.
vi) Repeat steps (ii)–(iv) B times to obtain {ϕ̂∗

j,b; b = 1, 2, . . . , B} for each
DMU j, j = 1, 2, . . . , n.

vii) Calculate the average of the bootstrap estimates of φ’s, the bias, and the
confidence intervals as they are described in the previous section.
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It should be noted here that an interpretation of the results obtained from
the bootstrap procedure is not always clear. For example, in the bth replication
using the pseudo-data consisting of the actual input bundles coupled with
the fictitious output levels of firms, the optimal solution ϕ∗ shows that the
scalar expansion factor for the fictitious output quantity and its inverse is not a
measure of the efficiency of the actual input–output bundle. It is possible that the
actual input–output bundle may lie above the production frontier constructed
from the pseudo-data obtained in any one bootstrap sample. One may, of course,
use the optimal solutions from the (bootstrap) DEA problems to construct
measures of the frontier output level producible from the fixed input bundle
of a firm. Thus, it is more meaningful to construct a 95% confidence interval
of the maximum output with lower and upper bounds [y∗

L, y∗
U]. In principle,

the upper bound (y∗
U) may be used to derive a probabilistic measure of the

technical efficiency of an observed input–output bundle. It should be noted
that the actually observed output from a given input bundle may exceed its
corresponding upper bound.

12.7 Summary

When a deterministic frontier is conceptualized, all deviation of any observed
input–output bundle from the output-oriented projection onto the frontier is
treated as inefficiency. As shown by Banker, the DEA efficiency scores yield
consistent measures of inefficiency relative to a deterministic frontier and
one may employ F tests for hypothesis testing. The chance-constrained pro-
gramming approach to DEA considers a two-sided normal distribution for
the random component in the output and replaces the probabilistic inequality
constraint on the output in a DEA model by its certainty equivalent. Varian’s
approach provides a statistical test of WACM conditional on a specified value
of the variance of the random error in the inputs. The bootstrap approach gen-
erates an empirical density function for the DEA efficiency score of any firm,
constructing a confidence interval of desired width for its efficiency. This ap-
proach has gained wide acceptance in the literature and has virtually become
the new orthodoxy. As noted previously, the bootstrap efficiency measures
should be interpreted carefully.

Guide to the Literature

In the parametric literature, Aigner and Chu (1968) formulated the mathemat-
ical programming models for a nonstatistical production frontier. Building on
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Afriat (1972), Richmond (1974) specified the one-sided (log) gamma distri-
bution of the disturbance term in the linear-regression model for a frontier
production function. In the nonparametric literature, Timmer (1971) extended
Farrell’s original model and tried to accommodate random noise in the out-
put data by excluding a number of efficient observations and recomputing the
Farrell efficiency of the remaining firms. Banker’s F tests parallel Richmond’s
deterministic frontier analysis.

Aigner, Lovell, and Schmidt (1977) and Meeusen and van den Broeck (1977)
proposed the stochastic production frontier. For an excellent survey of this
parametric strand of production-efficiency literature, see Greene (1993). The
recent book on stochastic frontier models by Kumbhakar and Lovell (2000) is
an excellent reference and a required reading for understanding the voluminous
and rich literature in this area. Banker and Maindiratta (1992) proposed a
maximum-likelihood procedure for pointwise estimation of a concave and
montone stochastic production frontier using mathematical programming.

Chance-constrained LP was introduced by Charnes and Cooper (1963).
Land, Lovell, and Thore (1993) applied chance-constrained programming to
DEA. Further extensions of this approach can be found in Olesen and Petersen
(1995) and Cooper, Huang, Li, and Olesen (1998).

The bootstrap approach was introduced by Simar (1992) and further de-
veloped by Simar and Wilson (1998a). For a survey of the DEA bootstrap
literature, see Simar and Wilson (2000).

The various two-stage DEA regression models provide yet another method
of handling the presence of random factors along with nondiscretionary factors
where relevant. Gstach (1998) and Banker, Janakiraman, and Natarajan (2002)
impose restrictions on the probability distribution of the random disturbance.
Fried, Lovell, Schmidt, and Yaiswarng (2002) propose a three-stage procedure
that uses input–output variables to perform DEA in the first stage, performs
a stochastic frontier analysis on the total (radial plus nonradial) slacks in the
individual inputs in the second stage, and utilizes an adjusted set of input
quantities that are purged of the effects of variation in nondiscretionary inputs
for another DEA in the third stage.

Triantis and Girod (1998) combine DEA and fuzzy parametric program-
ming to handle random measurement errors in input and output data. Sen-
gupta (1987) uses the nonparametric Kolmogrov–Smirnov tests for hypothesis
testing in the context of DEA. For a selective survey of various stochastic
approaches to DEA, see Grosskopf (1996).
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13

Looking Ahead

Over the past quarter of a century since its inception, Data Envelopment Anal-
ysis has burgeoned into a rich and luxuriant field of research within the broad
area of productivity and efficiency analysis. Valuable contributions in the form
of new models, creative extensions of existing models, and innovative empir-
ical applications to new areas continuously add to the voluminous literature.
In such a vibrant and dynamic context, no book on the subject of DEA can
remain current or up to date very long.

As stated at the outset, the objective of this book was to familiarize the
reader with the economic foundations of the various DEA models that are
currently available and widely used in the literature which, in turn, should
make the technical details of the relevant mathematical programming models
more easily understandable. With the background provided in this book, the
interested reader should be able to follow the new contributions appearing in
various journals without much difficulty.

The major outlets for research in DEA include, among others, Management
Science, European Journal of Operational Research, Journal of Productiv-
ity Analysis, and Socio-Economic Planning Sciences. In particular, Journal
of Productivity Analysis (under the editorship of Knox Lovell) has played a
significant role in bridging the gap between the economics and OR/MS strands
on the one hand and the stochastic frontier and DEA practitioners on the other.
The North American and European Productivity Workshops held in alternate
years on the two sides of the Atlantic provide an important forum for intellec-
tual exchange between researchers in the field of productivity and efficiency
analysis. Indeed, many of the most influential papers in the field were first
articulated in preliminary form in these meetings.

We conclude this book with the following short list of open questions in
DEA that remain unfinished business before the researchers.
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• Despite the growing popularity of the bootstrap procedure, DEA in the
presence of random errors in inputs or outputs is not by any measure
as well developed as the alternative parametric approach of stochastic
frontier analysis. Even in the DEA literature, there is no major application
of the bootstrap procedure in the context of cost minimization.

• Presence of input and/or output slacks at the optimal solution of a BCC or
CCR DEA model undermines the economic validity of a radial measure of
technical efficiency. Moreover, the need to choose an input- or an output-
orientation is an added constraint. The directional distance function and
other graph efficiency measures do eliminate the orientation problem. But
slacks may still remain at the optimal projection.

• Standard DEA models are essentially one-period problems and efficiency
is computed from current inputs and outputs only. In reality, however, in-
puts often contribute to outputs over multiple production periods. In the
parametric literature, intertemporal models are quite common. Compara-
ble models are not yet well developed in the DEA literature.

• Input and output data for efficiency evaluation are often reported as ag-
gregates at the regional level. For example, in many studies, states or even
countries are treated as individual firms. Similarly, outputs may be aggre-
gated over individual goods or inputs aggregated over individual factors.
Lastly, the data may be reported as aggregates over several production
periods. Effects of such different types of aggregation on measured effi-
ciency remain to be carefully analyzed.

It is only to be expected that future research in DEA will address these and
other unresolved questions.
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Färe, R., S. Grosskopf, and C. A. K. Lovell (1994) Production Frontiers. Cambridge:
Cambridge University Press.
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