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Preface

In recent years, operations research software has be-

come widely available. Its use is illustrated throughout

this book. Like most tools, however, it is of little value

unless the user understands its application and pur-

pose. Users must ensure that the mathematical input

accurately reflects the real-life problems to be solved

and that the numerical results are correctly applied to

solve them. With this in mind, this book emphasizes

model formulation and model building as well as the

interpretation of software output.

Intended Audience and Prerequisites

This book is intended as an advanced beginning or in-

termediate text in operations research or management

science. The following groups can benefit from using it.

■ Undergraduate majors in information systems or

decision sciences in business, operations research,

management science, industrial engineering, mathe-

matics, or agricultural/resource economics.

■ MBA students or masters students in public admin-

istration enrolled in an applications-oriented opera-

tions research or management science course.

■ Graduate students who need an overview of the

major topics in operations research and manage-

ment science.

■ Practitioners who need a comprehensive reference.

For courses specializing in deterministic models or in

probabilistic models of operations research, or for

those wishing to cover state-of-the-art methods of op-

erations research (OR), the publisher offers split vol-

umes of this text that feature additional coverage.

Introduction to Mathematical Programming (Oper-

ations Research: Volume One—ISBN 0-534-35964-7)

includes Chapters 1 through 10, 11, and 14 of 

Operations Research, along with three unique chapters

covering recent developments in mathematical pro-

gramming. Unique topics include heuristic methods,

artificial intelligence, genetic algorithms, simulated

annealing, Tabu search, and neural networks.

Introduction to Probability Models (Operations

Research: Volume Two—ISBN 0-534-40572-X) in-

cludes OR Chapters 12, 13, and 15 through 24, plus

three additional chapters on financial engineering top-

ics. Topics include option pricing, real options, the

scenario approach to portfolio optimization, stochas-

tic calculus, and stochastic control.

Operations Research is designed for students who

have had some calculus, matrix algebra, and an intro-

ductory statistics course. A formal course in probabil-

ity theory is not required. Chapter 2 provides a review

of matrix algebra, and Chapter 12 reviews the proba-

bility and calculus required for the rest of the book.

Features

The following features help to make this text reader-

friendly.

■ The book is completely self-contained, with all the

necessary mathematical background reviewed in

Chapters 2 and 12. Each chapter is designed to be

modular, so the book can be tailored to the needs of

a course. Additionally, each section of the book is

written to be as self-contained as possible; instruc-

tors can be extremely flexible in designing a

course. The Instructor’s Notes identify which por-

tions of the book must be covered as prerequisites

to each section.

■ To provide immediate feedback to students, problems

are placed at the end of sections, and most chapters

conclude with review problems. There are approxi-

mately 1,500 problems, grouped by level of difficulty:

Group A for practice of basic techniques, Group B for

underlying concepts, and Group C for mastering the

theory independently.

■ The book avoids excessive theoretical exercises in

favor of applied word problems. Many problems

xii
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are based on published applications. The exposition

takes great pain, by means of several examples in

each chapter, to guide the student step by step

through even the most complex topics.

■ To help students review for exams, most chapters

have a summary of concepts and formulas.

Answers to selected problems appear in an appen-

dix. A Student Solutions Manual is available, pro-

viding worked-out solutions to selected problems.

The Student Solutions Manual may be purchased

separately or packaged with the text at a nominal

additional price.

■ Instructors who adopt this text in their courses may

receive the Instructor’s Suite CD-ROM. This CD

contains complete solutions to every problem in the

text, PowerPoint slides, and Instructor’s Notes.

■ The book is accompanied by a CD containing spe-

cial versions of LINDO, LINGO, Premium Solver,

Process Model, and @Risk.

■ The text contains instruction for using the software

contained on the CD. All of the files needed for

examples and exercises are also included on the CD.

Coverage and Organization

The linear programming section of the book is com-

pletely self-contained; all necessary mathematical

background is given in Chapter 2. Students who are

familiar with matrix multiplication should have no

problems with Chapters 2–11. Portions of the remain-

ing chapters require rudimentary knowledge of calcu-

lus and probability equivalent to that obtained from a

one-semester calculus course and a one-semester sta-

tistics course. All topics in calculus and probability

used in Chapters 13–24 are reviewed in Chapter 12.

Since not all students need a full-blown theoretical

treatment of sensitivity analysis, there are two chap-

ters on the topic. Chapter 5 is an applied approach to

sensitivity analysis, emphasizing the interpretation of

computer output. Chapter 6 contains a full discussion

of sensitivity analysis, duality, and the dual simplex

method. The instructor should cover Chapter 5 or

Chapter 6, but not both. Classes emphasizing model

building and model formulation skills should cover

Chapter 5. Those paying close attention to the algo-

rithms of mathematical programming (particularly

classes in which students will go on to further study

in operations research) should study Chapter 6. If

Chapter 5 rather than Chapter 6 is covered, then Chap-

ter 2 may be omitted.

Changes to the Fourth Edition

The fourth edition of Operations Research contains

many substantial changes. Most significant is the in-

clusion of Process Model (Chapter 22) to perform

queuing simulations and @Risk (Chapter 23) to per-

form spreadsheet-based simulations. Other major

changes include the following.

■ Over 200 new problems have been added.

■ Microsoft Excel is featured. All Lotus spreadsheets

appearing in the previous edition have been con-

verted to Excel.

■ There is more discussion of optimization with

spreadsheets. The method of solving optimization

problems with spreadsheets has been changed from

What’s Best to the Excel Solver.

■ Discussion of important Excel functions such as

MMULT, OFFSET, MINVERSE, and NPV has

been added.

■ Chapter 4 includes more extensive instruction in

the use of LINDO and LINGO.

■ Chapter 4 includes more discussion of the geome-

try of LPs.

■ Chapter 11 contains new applications of nonlinear

programming to pricing problems.

■ Eleven new cases involving mathematical pro-

gramming are included. Professor Jeff Goldberg of

the University of Arizona wrote the cases.

■ Chapter 12 contains a discussion of Excel’s normal

distribution functions and z-transforms.

■ Chapter 13 covers the applications of prospect the-

ory and framing effects in decision making.

■ Chapter 15 discusses power-of-two inventory poli-

cies and multiple-product EOQ models.

■ Chapter 20 now covers computing Poisson and

exponential probabilities with Excel, Buzen’s

method for closed queuing networks, approxima-

tions for G/G/s queuing systems, the use of data

tables in queuing optimization, and computing

transient probabilities for queuing systems.

■ Chapter 22 shows how to use the powerful, user-

friendly simulation package Process Model to sim-

ulate queuing systems.

■ Chapter 23 deals with the Excel add-in @Risk, for

Monte Carlo simulation. Application areas include

capital budgeting, project management, and relia-

bility.

■ In Chapter 24, Excel data tables and the OFFSET



function are used to optimize the number of peri-

ods in a moving-average forecast.

Use of the Computer

In deference to the virtually universal usage of Excel,

this software is featured throughout the book when

appropriate. When Excel’s native capabilities are lim-

ited, the text discusses add-in software that builds on

the capabilities of Excel, or uses stand-alone soft-

ware.

The CD accompanying the book contains several

valuable software packages.

■ LINDO and LINGO. These easy-to-use linear and

nonlinear programming software packages are pro-

vided by Lindo Systems, Inc.

■ Premium Solver for Education. Generously pro-

vided by Frontline Systems (the developers of

Microsoft Excel’s Solver), Premium Solver pro-

vides evolutionary solving techniques utilized in

nonlinear optimization problems.

■ @Risk. A professional Monte Carlo simulation

add-in for Excel by Palisade Corporation.

■ Process Model. This discrete-event simulation

software is easy to learn and use. It is illustrated in

Chapter 22. Process Model is provided by Process

Model Inc.

Software illustrations, with all the necessary step-

by-step instructions, appear at the ends of sections, to

provide maximum flexibility to instructors who wish

to employ different software packages in their courses.
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An Introduction to Model Building

1.1 An Introduction to Modeling

Operations research (often referred to as management science) is simply a scientific

approach to decision making that seeks to best design and operate a system, usually un-

der conditions requiring the allocation of scarce resources.

By a system, we mean an organization of interdependent components that work together

to accomplish the goal of the system. For example, Ford Motor Company is a system whose

goal consists of maximizing the profit that can be earned by producing quality vehicles.

The term operations research was coined during World War II when British military

leaders asked scientists and engineers to analyze several military problems such as the de-

ployment of radar and the management of convoy, bombing, antisubmarine, and mining

operations.

The scientific approach to decision making usually involves the use of one or more

mathematical models. A mathematical model is a mathematical representation of an ac-

tual situation that may be used to make better decisions or simply to understand the ac-

tual situation better. The following example should clarify many of the key terms used to

describe mathematical models.

Eli Daisy produces Wozac in huge batches by heating a chemical mixture in a pressur-

ized container. Each time a batch is processed, a different amount of Wozac is produced.

The amount produced is the process yield (measured in pounds). Daisy is interested in

understanding the factors that influence the yield of the Wozac production process. De-

scribe a model-building process for this situation.

Solution Daisy is first interested in determining the factors that influence the yield of the process.

This would be referred to as a descriptive model, because it describes the behavior of the

actual yield as a function of various factors. Daisy might determine (using regression

methods discussed in Chapter 24) that the following factors influence yield:

■ container volume in liters (V)

■ container pressure in milliliters (P)

■ container temperature in degrees Celsius (T)

■ chemical composition of the processed mixture

If we let A, B, and C be percentage of mixture made up of chemicals A, B, and C, then

Daisy might find, for example, that

(1) yield � 300 � .8V � .01P � .06T � .001T*P � .01T2
� .001P2

� 11.7A � 9.4B � 16.4C � 19A*B � 11.4A*C � 9.6B*C

Maximizing Wozac YieldE X A M P L E  1



To determine this relationship, the yield of the process would have to be measured for

many different combinations of the previously listed factors. Knowledge of this equation

would enable Daisy to describe the yield of the production process once volume, pres-

sure, temperature, and chemical composition were known.

Prescriptive or Optimization Models

Most of the models discussed in this book will be prescriptive or optimization models.

A prescriptive model “prescribes” behavior for an organization that will enable it to best

meet its goal(s). The components of a prescriptive model include

■ objective function(s)

■ decision variables

■ constraints

In short, an optimization model seeks to find values of the decision variables that opti-

mize (maximize or minimize) an objective function among the set of all values for the

decision variables that satisfy the given constraints.

The Objective Function

Naturally, Daisy would like to maximize the yield of the process. In most models, there

will be a function we wish to maximize or minimize. This function is called the model’s

objective function. Of course, to maximize the process yield we need to find the values

of V, P, T, A, B, and C that make (1) as large as possible.

In many situations, an organization may have more than one objective. For example, in

assigning students to the two high schools in Bloomington, Indiana, the Monroe County

School Board stated that the assignment of students involved the following objectives:

■ Equalize the number of students at the two high schools.

■ Minimize the average distance students travel to school.

■ Have a diverse student body at both high schools.

Multiple objective decision-making problems are discussed in Sections 4.14 and 11.13.

The Decision Variables

The variables whose values are under our control and influence the performance of the

system are called decision variables. In our example, V, P, T, A, B, and C are decision

variables. Most of this book will be devoted to a discussion of how to determine the value

of decision variables that maximize (sometimes minimize) an objective function.

Constraints

In most situations, only certain values of decision variables are possible. For example, cer-

tain volume, pressure, and temperature combinations might be unsafe. Also, A B, and C

must be nonnegative numbers that add to 1. Restrictions on the values of decision vari-

ables are called constraints. Suppose the following:
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■ Volume must be between 1 and 5 liters.

■ Pressure must be between 200 and 400 milliliters.

■ Temperature must be between 100 and 200 degrees Celsius.

■ Mixture must be made up entirely of A, B, and C.

■ For the drug to properly perform, only half the mixture at most can be product A.

These constraints can be expressed mathematically by the following constraints:

V � 5

V � 1

P � 400

P � 200

T � 200

T � 100

A � 0

B � 0

A � B � C � 1

A � 5

The Complete Optimization Model

After letting z represent the value of the objective function, our entire optimization model

may be written as follows:

Maximize z � 300 � .8V � .01P � .06T � .001T*P � .01T2
� .001P2

� 11.7A � 9.4B � 16.4C � 19A*B � 11.4A*C � 9.6B*C

Subject to (s.t.)

V � 5

V � 1

P � 400

P � 200

T � 200

T � 100

A � 0

B � 0

C � 0

A � B � C � 1

A � 5

Any specification of the decision variables that satisfies all of the model’s constraints is

said to be in the feasible region. For example, V � 2, P � 300, T � 150, A � .4, B �

.3, and C � .1 is in the feasible region. An optimal solution to an optimization model is

any point in the feasible region that optimizes (in this case, maximizes) the objective func-

tion. Using the LINGO package that comes with this book, it can be determined that the

optimal solution to this model is V � 5, P � 200, T � 100, A � .294, B � 0, C � .706,

and z � 183.38. Thus, a maximum yield of 183.38 pounds can be obtained with a 5-liter
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container, pressure of 200 milliliters, temperature of 100 degrees Celsius, and 29% A and

71% C. This means no other feasible combination of decision variables can obtain a yield

exceeding 183.38 pounds.

Static and Dynamic Models

A static model is one in which the decision variables do not involve sequences of deci-

sions over multiple periods. A dynamic model is a model in which the decision variables

do involve sequences of decisions over multiple periods. Basically, in a static model we

solve a “one-shot” problem whose solutions prescribe optimal values of decision variables

at all points in time. Example 1 is an example of a static model; the optimal solution will

tell Daisy how to maximize yield at all points in time.

For an example of a dynamic model, consider a company (call it Sailco) that must de-

termine how to minimize the cost of meeting (on time) the demand for sailboats during

the next year. Clearly Sailco’s must determine how many sailboats it will produce during

each of the next four quarters. Sailco’s decisions involve decisions made over multiple pe-

riods, hence a model of Sailco’s problem (see Section 3.10) would be a dynamic model.

Linear and Nonlinear Models

Suppose that whenever decision variables appear in the objective function and in the con-

straints of an optimization model, the decision variables are always multiplied by constants

and added together. Such a model is a linear model. If an optimization model is not lin-

ear, then it is a nonlinear model. In the constraints of Example 1, the decision variables

are always multiplied by constants and added together. Thus, Example 1’s constraints pass

the test for a linear model. However, in the objective function for Example 1, the terms

.001T*P, �.01T2, 19A*B, 11.4A*C, and �9.6B*C make the model nonlinear. In general,

nonlinear models are much harder to solve than linear models. We will discuss linear

models in Chapters 2 through 10. Nonlinear models will be discussed in Chapter 11.

Integer and Noninteger Models

If one or more decision variables must be integer, then we say that an optimization model

is an integer model. If all the decision variables are free to assume fractional values, then

the optimization model is a noninteger model. Clearly, volume, temperature, pressure,

and percentage composition of our inputs may all assume fractional values. Thus, Exam-

ple 1 is a noninteger model. If the decision variables in a model represent the number of

workers starting work during each shift at a fast-food restaurant, then clearly we have an

integer model. Integer models are much harder to solve than nonlinear models. They will

be discussed in detail in Chapter 9.

Deterministic and Stochastic Models

Suppose that for any value of the decision variables, the value of the objective function

and whether or not the constraints are satisfied is known with certainty. We then have a

deterministic model. If this is not the case, then we have a stochastic model. All mod-

els in the first 12 chapters will be deterministic models. Stochastic models are covered in

Chapters 13, 16, 17, and 19–24.
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If we view Example 1 as a deterministic model, then we are making the (unrealistic)

assumption that for given values of V, P, T, A, B, and C, the process yield will always be

the same. This is highly unlikely. We can view (1) as a representation of the average yield

of the process for given values of the decision variables. Then our objective is to find val-

ues of the decision variables that maximize the average yield of the process.

We can often gain useful insights into optimal decisions by using a deterministic model

in a situation where a stochastic model is more appropriate. Consider Sailco’s problem of

minimizing the cost of meeting the demand (on time) for sailboats. The uncertainty about

future demand for sailboats implies that for a given production schedule, we do not know

whether demand is met on time. This leads us to believe that a stochastic model is needed

to model Sailco’s situation. We will see in Section 3.10, however, that we can develop a

deterministic model for this situation that yields good decisions for Sailco.

1.2 The Seven-Step Model-Building Process

When operations research is used to solve an organization’s problem, the following seven-

step model-building procedure should be followed:

Step 1: Formulate the Problem The operations researcher first defines the organization’s

problem. Defining the problem includes specifying the organization’s objectives and the

parts of the organization that must be studied before the problem can be solved. In Ex-

ample 1, the problem was to determine how to maximize the yield from a batch of Wozac.

Step 2: Observe the System Next, the operations researcher collects data to estimate the

value of parameters that affect the organization’s problem. These estimates are used to de-

velop (in step 3) and evaluate (in step 4) a mathematical model of the organization’s prob-

lem. For example, in Example 1, data would be collected in an attempt to determine how

the values of T, P, V, A, B, and C influence process yield.

Step 3: Formulate a Mathematical Model of the Problem In this step, the operations re-

searcher develops a mathematical model of the problem. In this book, we will describe

many mathematical techniques that can be used to model systems. For Example 1, our

optimization model would be the result of step 3.

Step 4: Verify the Model and Use the Model for Prediction The operations researcher now

tries to determine if the mathematical model developed in step 3 is an accurate represen-

tation of reality. For example, to validate our model, we might check and see if (1) accu-

rately represents yield for values of the decision variables that were not used to estimate

(1). Even if a model is valid for the current situation, we must be aware of blindly ap-

plying it. For example, if the government placed new restrictions on Wozac, then we might

have to add new constraints to our model, and the yield of the process [and Equation (1)]

might change.

Step 5: Select a Suitable Alternative Given a model and a set of alternatives, the operations

researcher now chooses the alternative that best meets the organization’s objectives.

(There may be more than one!) For instance, our model enabled us to determine that yield

was maximized with V � 5, P � 200, T � 100, A � .294, B � 0, C � .706, and z �

183.38.

Step 6: Present the Results and Conclusion of the Study to the Organization In this step, the 

operations researcher presents the model and recommendation from step 5 to the decision-

making individual or group. In some situations, one might present several alternatives and

let the organization choose the one that best meets its needs. After presenting the results
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of the operations research study, the analyst may find that the organization does not ap-

prove of the recommendation. This may result from incorrect definition of the organiza-

tion’s problems or from failure to involve the decision maker from the start of the project.

In this case, the operations researcher should return to step 1, 2, or 3.

Step 7: Implement and Evaluate Recommendations If the organization has accepted the

study, then the analyst aids in implementing the recommendations. The system must be

constantly monitored (and updated dynamically as the environment changes) to ensure

that the recommendations enable the organization to meet its objectives.

In what follows, we discuss three successful management science applications. We will

give a detailed (but nonquantitative) description of each application. We will tie our discus-

sion of each application to the seven-step model-building process described in Section 1.2.

1.3 CITGO Petroleum

Klingman et al. (1987) applied a variety of management-science techniques to CITGO Pe-

troleum. Their work saved the company an estimated $70 million per year. CITGO is an

oil-refining and -marketing company that was purchased by Southland Corporation (the

owners of the 7-Eleven stores). We will focus on two aspects of the CITGO team’s work:

1 a mathematical model to optimize operation of CITGO’s refineries, and

2 a mathematical model—supply distribution marketing (SDM) system—that was used

to develop an 11-week supply, distribution, and marketing plan for the entire business.

Optimizing Refinery Operations

Step 1 Klingman et al. wanted to minimize the cost of operating CITGO’s refineries.

Step 2 The Lake Charles, Louisiana, refinery was closely observed in an attempt to es-

timate key relationships such as:

1 How the cost of producing each of CITGO’s products (motor fuel, no. 2 fuel oil, tur-

bine fuel, naptha, and several blended motor fuels) depends on the inputs used to produce

each product.

2 The amount of energy needed to produce each product. This required the installation

of a new metering system.

3 The yield associated with each input–output combination. For example, if 1 gallon of

crude oil would yield .52 gallons of motor fuel, then the yield would equal 52%.

4 To reduce maintenance costs, data were collected on parts inventories and equipment

breakdowns. Obtaining accurate data required the installation of a new database-management

system and integrated maintenance-information system. A process control system was also

installed to accurately monitor the inputs and resources used to manufacture each product.

Step 3 Using linear programming (LP), a model was developed to optimize refinery op-

erations. The model determines the cost-minimizing method for mixing or blending to-

gether inputs to produce desired outputs. The model contains constraints that ensure that

inputs are blended so that each output is of the desired quality. Blending constraints are

discussed in Section 3.8. The model ensures that plant capacities are not exceeded and al-
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lows for the fact that each refinery may carry an inventory of each end product. Sections

3.10 and 4.12 discuss inventory constraints.

Step 4 To validate the model, inputs and outputs from the Lake Charles refinery were

collected for one month. Given the actual inputs used at the refinery during that month,

the actual outputs were compared to those predicted by the model. After extensive

changes, the model’s predicted outputs were close to the actual outputs.

Step 5 Running the LP yielded a daily strategy for running the refinery. For instance, the

model might, say, produce 400,000 gallons of turbine fuel using 300,000 gallons of crude

1 and 200,000 gallons of crude 2.

Steps 6 and 7 Once the database and process control were in place, the model was used

to guide day-to-day refinery operations. CITGO estimated that the overall benefits of the

refinery system exceeded $50 million annually.

The Supply Distribution Marketing (SDM) System

Step 1 CITGO wanted a mathematical model that could be used to make supply, distri-

bution, and marketing decisions such as:

1 Where should crude oil be purchased?

2 Where should products be sold?

3 What price should be charged for products?

4 How much of each product should be held in inventory?

The goal, of course, was to maximize the profitability associated with these decisions.

Step 2 A database that kept track of sales, inventory, trades, and exchanges of all refined

products was installed. Also, regression analysis (see Chapter 24) was used to develop

forecasts for wholesale prices and wholesale demand for each CITGO product.

Steps 3 and 5 A minimum-cost network flow model (MCNFM) (see Section 7.4) is used

to determine an 11-week supply, marketing, and distribution strategy. The model makes

all decisions mentioned in step 1. A typical model run that involved 3,000 equations and

15,000 decision variables required only 30 seconds on an IBM 4381.

Step 4 The forecasting modules are continuously evaluated to ensure that they continue

to give accurate forecasts.

Steps 6 and 7 Implementing the SDM required several organizational changes. A new

vice-president was appointed to coordinate the operation of the SDM and LP refinery

model. The product supply and product scheduling departments were combined to im-

prove communication and information flow.

1.4 San Francisco Police Department Scheduling

Taylor and Huxley (1989) developed a police patrol scheduling system (PPSS). All San

Francisco (SF) police precincts use PPSS to schedule their officers. It is estimated that

PPSS saves the SF police more than $5 million annually. Other cities such as Virginia

1 . 4 San Francisco Police Department Scheduling 7



Beach, Virginia, and Richmond, California, have also adopted PPSS. Following our seven-

step model-building procedure, here is a description of PPSS.

Step 1 The SFPD wanted a method to schedule patrol officers in each precinct that

would quickly produce (in less than one hour) a schedule and graphically display it. The

program should first determine the personnel requirements for each hour of the week. For

example, 38 officers might be needed between 1 A.M. and 2 A.M. Sunday but only 14 of-

ficers might be needed from 4 A.M. to 5 A.M. Sunday. Officers should then be scheduled

to minimize the sum over each hour of the week of the shortages and surpluses relative

to the needed number of officers. For example, if 20 officers were assigned to the mid-

night to 8 A.M. Sunday shift, we would have a shortage of 38 � 20 � 18 officers from 1

to 2 A.M. and a surplus of 20 � 14 � 6 officers from 4 to 5 A.M. A secondary criterion

was to minimize the maximum shortage because a shortage of 10 officers during a sin-

gle hour is far more serious than a shortage of one officer during 10 different hours. The

SFPD also wanted a scheduling system that precinct captains could easily fine-tune to

produce the optimal schedule.

Step 2 The SFPD had a sophisticated computer-aided dispatch (CAD) system to keep

track of all calls for police help, police travel time, police response time, and so on. SFPD

had a standard percentage of time that administrators felt each officer should be busy. Us-

ing CAD, it is easy to determine the number of workers needed each hour. Suppose, for

example, an officer should be busy 80% of the time and CAD indicates that 30.4 hours

of work come in from 4 to 5 A.M. Sunday. Then we need 38 officers from 4 to 5 A.M. on

Sunday [.8*(38) � 30.4 hours].

Step 3 An LP model was formulated (see Section 3.5 for a discussion of scheduling

models). As discussed in step 1, the primary objective was to minimize the sum of hourly

shortages and surpluses. At first, schedulers assumed that officers worked five consecu-

tive days for eight hours a day (this was the policy prior to PPSS) and that there were

three shift starting times (say, 6 A.M., 2 P.M., and 10 A.M.). The constraints in the PPSS

model reflected the limited number of officers available and the relationship of the num-

ber of officers working each hour to the shortages and surpluses for that hour. Then PPSS

would produce a schedule that would tell the precinct captain how many officers should

start work at each possible shift time. For example, PPSS might say that 20 officers should

start work at 6 A.M. Monday (working 6 A.M.–2 P.M. Monday–Friday) and 30 officers

should start work at 2 P.M. Saturday (working 2 P.M.–10 P.M. Saturday–Wednesday). The

fact that the number of officers assigned to a start time must be an integer made it far

more difficult to find an optimal schedule. (Problems in which decision variables must be

integers are discussed in Chapter 9.)

Step 4 Before implementing PPSS, the SFPD tested the PPSS schedules against manu-

ally created schedules. PPSS produced an approximately 50% reduction in both surpluses

and shortages. This convinced the department to implement PPSS.

Step 5 Given the starting times for shifts and the type of work schedule [four consecu-

tive days for 10 hours per day (the 4/10 schedule) or five consecutive days for eight hours

per day (the 5/8 schedule)], PPSS can produce a schedule that minimizes the sum of short-

ages and surpluses. More important, PPSS can be used to experiment with shift times and

work rules. Using PPSS, it was found that if only three shift times are allowed, then a 5/8

schedule was superior to a 4/10 schedule. If, however, five shift times were allowed, then

a 4/10 schedule was found to be superior. This finding was of critical importance because

police officers had wanted to switch to a 4/10 schedule for years. The city had resisted

4/10 schedules because they appeared to reduce productivity. PPSS showed that 4/10

schedules need not reduce productivity. After the introduction of PPSS, the SFPD went
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to 4/10 schedules and improved productivity! PPSS also enables the department to exper-

iment with a mix of one-officer and two-officer patrol cars.

Steps 6 and 7 It is estimated that PPSS created an extra 170,000 productive hours per

year, thereby saving the city of San Francisco $5.2 million per year. Ninety-six percent of

all workers preferred PPSS generated schedules to manually generated schedules. PPSS

enabled SFPD to make strategic changes (such as adopting the 4/10 schedule), which

made officers happier and increased productivity. Response times to calls improved by

20% after PPSS was adopted.

A major reason for the success of PPSS was that the system allowed precinct captains

to fine-tune the computer-generated schedule and obtain a new schedule in less than one

minute. For example, precinct captains could easily add or delete officers and add or

delete shifts and quickly see how these changes modified the master schedule.

1.5 GE Capital

GE Capital provides credit card service to 50 million accounts. The average total out-

standing balance exceeds $12 billion. GE Capital, led by Makuch et al. (1989), developed

the PAYMENT system to reduce delinquent accounts and the cost of collecting from

delinquent accounts.

Step 1 At any one time, GE Capital has more than $1 billion in delinquent accounts. 

The company spends $100 million per year processing these accounts. Each day, workers

contact more than 200,000 delinquent credit card holders with letters, messages, or live

calls. The company’s goal was to reduce delinquent accounts and the cost of processing

them. To do this, GE Capital needed to come up with a method of assigning scarce labor

resources to delinquent accounts. For example, PAYMENT determines which delinquent

accounts receive live phone calls and which delinquent accounts receive no contact.

Step 2 The key to modeling delinquent accounts is the concept of a delinquency move-

ment matrix (DMM). The DMM determines how the probability of the payment on a

delinquent account during the current month depends on the following factors: size of un-

paid balance (either �$300 or �$300), action taken (no action, live phone call, taped

message, letters), and a performance score (high, medium, or low). The higher the per-

formance score associated with a delinquent account, the more likely the account is to be

collected. Table 1 lists the probabilities for a $250 account that is two months delinquent,

has a high performance score, and is contacted with a phone message.

TA B L E  1

Sample Entries in DMM

Event Probability

Account completely paid .30

One month is paid .40

Nothing is paid .30

Because GE Capital has millions of delinquent accounts, there is ample data to accu-

rately estimate the DMM. For example, suppose there were 10,000 two-month delinquent

accounts with balances under $300 that have a high performance score and are contacted

with phone messages. If 3,000 of those accounts were completely paid off during the cur-

rent month, then we would estimate the probability of an account being completely paid

off during the current month as 3,000/10,000 � .30.

1 . 5 GE Capital 9



Step 3 GE Capital developed a linear optimization model. The objective function for the

PAYMENT model was to maximize the expected delinquent accounts collected during the

next six months. The decision variables represented the fraction of each type of delinquent

account (accounts are classified by payment balance, performance score, and months

delinquent) that experienced each type of contact (no action, live phone call, taped mes-

sage, or letter). The constraints in the PAYMENT model ensure that available resources

are not overused. Constraints also relate the number of each type of delinquent account

present in, say, January to the number of delinquent accounts of each type present during

the next month (February). This dynamic aspect of the PAYMENT model is crucial to its

success. Without this aspect, the model would simply “skim” the accounts that are easi-

est to collect each month. This would result in few collections during later months.

Step 4 PAYMENT was piloted on a $62 million portfolio for a single department store.

GE Capital managers came up with their own strategies for allocating resources (collec-

tively called CHAMPION). The store’s delinquent accounts were randomly assigned to

the CHAMPION and PAYMENT strategies. PAYMENT used more live phone calls and

more “no action” than the CHAMPION strategies. PAYMENT also collected $180,000

per month more than any of the CHAMPION strategies, a 5% to 7% improvement. Note

that using more of the no-action strategy certainly leads to a long-run increase in cus-

tomer goodwill!

Step 5 As described in step 3, for each type of account, PAYMENT tells the credit man-

agers the fraction that should receive each type of contact. For example, for three-month

delinquent accounts with a small (�$300) unpaid balance and high performance score,

PAYMENT might prescribe 30% no action, 20% letters, 30% phone messages, and 20%

live phone calls.

Steps 6 and 7 PAYMENT was next applied to the 18 million accounts of the $4.6 billion

Montgomery-Ward department store portfolio. Comparing the collection results to the

same time period a year earlier, it was found that PAYMENT increased collections by $1.6

million per month (more than $19 million per year). This is actually a conservative esti-

mate of the benefit obtained from PAYMENT, because PAYMENT was first applied to

the Montgomery-Ward portfolio during the depths of a recession—and a recession makes

it much more difficult to collect delinquent accounts.

Overall, GE Capital estimates that PAYMENT increased collections by $37 million per

year and used fewer resources than previous strategies.

R E F E R E N C E S
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� � � � � � � � � � �2

Basic Linear Algebra

In this chapter, we study the topics in linear algebra that will be needed in the rest of the book.

We begin by discussing the building blocks of linear algebra: matrices and vectors. Then we

use our knowledge of matrices and vectors to develop a systematic procedure (the Gauss–

Jordan method) for solving linear equations, which we then use to invert matrices. We close

the chapter with an introduction to determinants.

The material covered in this chapter will be used in our study of linear and nonlinear 

programming.

2.1 Matrices and Vectors

Matrices

D E F I N I T I O N ■ A matrix is any rectangular array of numbers. ■

For example,

� �, � �, � �, [2 1]

are all matrices.

If a matrix A has m rows and n columns, we call A an m � n matrix. We refer to 

m � n as the order of the matrix. A typical m � n matrix A may be written as

A � � �
D E F I N I T I O N ■ The number in the ith row and jth column of A is called the ijth element of A

and is written aij. ■

For example, if

A � � �
then a11 � 1, a23 � 6, and a31 � 7.
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Sometimes we will use the notation A � [aij] to indicate that A is the matrix whose

ijth element is aij.

D E F I N I T I O N ■ Two matrices A � [aij] and B � [bij] are equal if and only if A and B are of the

same order and for all i and j, aij � bij. ■

For example, if

A � � � and B � � �
then A � B if and only if x � 1, y � 2, w � 3, and z � 4.

Vectors

Any matrix with only one column (that is, any m � 1 matrix) may be thought of as a column

vector. The number of rows in a column vector is the dimension of the column vector. Thus,

� �
may be thought of as a 2 � 1 matrix or a two-dimensional column vector. Rm will denote

the set of all m-dimensional column vectors.

In analogous fashion, we can think of any vector with only one row (a 1 � n matrix as

a row vector. The dimension of a row vector is the number of columns in the vector. Thus,

[9 2 3] may be viewed as a 1 � 3 matrix or a three-dimensional row vector. In this book,

vectors appear in boldface type: for instance, vector v. An m-dimensional vector (either row

or column) in which all elements equal zero is called a zero vector (written 0). Thus,

[0 0] and � �
are two-dimensional zero vectors.

Any m-dimensional vector corresponds to a directed line segment in the m-dimensional

plane. For example, in the two-dimensional plane, the vector

u � � �
corresponds to the line segment joining the point

� �
to the point

� �
The directed line segments corresponding to

u � � �, v � � �, w � � �
are drawn in Figure 1.
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The Scalar Product of Two Vectors

An important result of multiplying two vectors is the scalar product. To define the scalar prod-

uct of two vectors, suppose we have a row vector u = [u1 u2 ��� un] and a column vector

v � � �
of the same dimension. The scalar product of u and v (written u � v) is the number 

u1v1 � u2v2 � ��� � unvn.

For the scalar product of two vectors to be defined, the first vector must be a row vec-

tor and the second vector must be a column vector. For example, if

u � [1 2 3] and v � � �
then u � v � 1(2) � 2(1) � 3(2) � 10. By these rules for computing a scalar product, if

u � � � and v � [2 3]

then u � v is not defined. Also, if

u � [1 2 3] and v � � �
then u � v is not defined because the vectors are of two different dimensions.

Note that two vectors are perpendicular if and only if their scalar product equals 0.

Thus, the vectors [1 �1] and [1 1] are perpendicular.

We note that u � v � �u� �v� cos u, where �u� is the length of the vector u and u is the

angle between the vectors u and v.
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Matrix Operations

We now describe the arithmetic operations on matrices that are used later in this book.

The Scalar Multiple of a Matrix

Given any matrix A and any number c (a number is sometimes referred to as a scalar),

the matrix cA is obtained from the matrix A by multiplying each element of A by c. For

example,

if A � � �, then 3A � � �
For c � �1, scalar multiplication of the matrix A is sometimes written as �A.

Addition of Two Matrices

Let A � [aij] and B � [bij] be two matrices with the same order (say, m � n). Then the

matrix C � A � B is defined to be the m � n matrix whose ijth element is aij � bij. Thus,

to obtain the sum of two matrices A and B, we add the corresponding elements of A and

B. For example, if

A � � � and B � � �
then

A � B � � � � � �.

This rule for matrix addition may be used to add vectors of the same dimension. For ex-

ample, if u � [1 2] and v � [2 1], then u � v � [1 � 2 2 � 1] � [3 3]. Vectors

may be added geometrically by the parallelogram law (see Figure 2).

We can use scalar multiplication and the addition of matrices to define the concept 

of a line segment. A glance at Figure 1 should convince you that any point u in the 

m-dimensional plane corresponds to the m-dimensional vector u formed by joining the

origin to the point u. For any two points u and v in the m-dimensional plane, the line 

segment joining u and v (called the line segment uv) is the set of all points in the 

m-dimensional plane that correspond to the vectors cu � (1 � c)v, where 0 � c � 1 

(Figure 3). For example, if u � (1, 2) and v � (2, 1), then the line segment uv consists
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v
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of the points corresponding to the vectors c[1 2] � (1 � c)[2 1] � [2 � c 1 � c],

where 0 � c � 1. For c � 0 and c � 1, we obtain the endpoints of the line segment uv;

for c � �
1

2
�, we obtain the midpoint (0.5u � 0.5v) of the line segment uv.

Using the parallelogram law, the line segment uv may also be viewed as the points cor-

responding to the vectors u � c(v � u), where 0 � c � 1 (Figure 4). Observe that for 

c � 0, we obtain the vector u (corresponding to point u), and for c � 1, we obtain the

vector v (corresponding to point v).

The Transpose of a Matrix

Given any m � n matrix

A � � �
the transpose of A (written AT) is the n � m matrix
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� � �
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Thus, AT is obtained from A by letting row 1 of A be column 1 of AT, letting row 2 of A

be column 2 of AT, and so on. For example,

if A � � �, then AT
� � �

Observe that (AT)T
� A. Let B � [1 2]; then

BT
� � � and (BT)T

� [1 2] � B

As indicated by these two examples, for any matrix A, (AT)T
� A.

Matrix Multiplication

Given two matrices A and B, the matrix product of A and B (written AB) is defined if and

only if

Number of columns in A � number of rows in B (1)

For the moment, assume that for some positive integer r, A has r columns and B has r

rows. Then for some m and n, A is an m � r matrix and B is an r � n matrix.

D E F I N I T I O N ■ The matrix product C � AB of A and B is the m � n matrix C whose ijth

element is determined as follows:

ijth element of C � scalar product of row i of A � column j of B ■ (2)

If Equation (1) is satisfied, then each row of A and each column of B will have the

same number of elements. Also, if (1) is satisfied, then the scalar product in Equation (2)

will be defined. The product matrix C � AB will have the same number of rows as A and

the same number of columns as B.

Compute C � AB for

A � � � and B � � �
Solution Because A is a 2 � 3 matrix and B is a 3 � 2 matrix, AB is defined, and C will be a 

2 � 2 matrix. From Equation (2),

c11 � [1 1 2] � � � 1(1) � 1(2) � 2(1) � 5

c12 � [1 1 2] � � � 1(1) � 1(3) � 2(2) � 8

c21 � [2 1 3] � � � 2(1) � 1(2) � 3(1) � 7
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c22 � [2 1 3] � � � 2(1) � 1(3) � 3(2) � 11

C � AB � � �

Find AB for

A � � � and B � [1 2]

Solution Because A has one column and B has one row, C � AB will exist. From Equation (2), we

know that C is a 2 � 2 matrix with

c11 � 3(1) � 3 c21 � 4(1) � 4

c12 � 3(2) � 6 c22 � 4(2) � 8

Thus,

C � � �

Compute D � BA for the A and B of Example 2.

Solution In this case, D will be a 1 � 1 matrix (or a scalar). From Equation (2),

d11 � [1 2]� � � 1(3) � 2(4) � 11

Thus, D � [11]. In this example, matrix multiplication is equivalent to scalar multiplica-

tion of a row and column vector.

Recall that if you multiply two real numbers a and b, then ab � ba. This is called the

commutative property of multiplication. Examples 2 and 3 show that for matrix multipli-

cation, it may be that AB 	 BA. Matrix multiplication is not necessarily commutative. (In

some cases, however, AB � BA will hold.)

Show that AB is undefined if

A � � � and B � � �
Solution This follows because A has two columns and B has three rows. Thus, Equation (1) is not

satisfied.
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Many computations that commonly occur in operations research (and other branches

of mathematics) can be concisely expressed by using matrix multiplication.To illustrate

this, suppose an oil company manufactures three types of gasoline: premium unleaded,

regular unleaded, and regular leaded. These gasolines are produced by mixing two types

of crude oil: crude oil 1 and crude oil 2. The number of gallons of crude oil required to

manufacture 1 gallon of gasoline is given in Table 1.

From this information, we can find the amount of each type of crude oil needed to

manufacture a given amount of gasoline. For example, if the company wants to produce

10 gallons of premium unleaded, 6 gallons of regular unleaded, and 5 gallons of regular

leaded, then the company’s crude oil requirements would be

Crude 1 required � (�
3

4
�) (10) � (�

2

3
�) (6) � (�

1

4
�) 5 � 12.75 gallons

Crude 2 required � (�
1

4
�) (10) � (�

1

3
�) (6) � (�

3

4
�) 5 � 8.25 gallons

More generally, we define

pU � gallons of premium unleaded produced

rU � gallons of regular unleaded produced

rL � gallons of regular leaded produced

c1 � gallons of crude 1 required

c2 � gallons of crude 2 required

Then the relationship between these variables may be expressed by

c1 � (�
3

4
�) pU � (�

2

3
�) rU � (�

1

4
�) rL

c2 � (�
1

4
�) pU � (�

1

3
�) rU � (�

3

4
�) rL

Using matrix multiplication, these relationships may be expressed by

� � � � � � �
Properties of Matrix Multiplication

To close this section, we discuss some important properties of matrix multiplication. In

what follows, we assume that all matrix products are defined.

1 Row i of AB � (row i of A)B. To illustrate this property, let

A � � � and B � � �
Then row 2 of the 2 � 2 matrix AB is equal to

1

3
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TA B L E  1

Gallons of Crude Oil Required to Produce 1 Gallon 
of Gasoline

Crude Premium Regular Regular
Oil Unleaded Unleaded Leaded

1 �
3

4
� �

2

3
� �

1

4
�

2 �
1

4
� �

1

3
� �

3

4
�



[2 1 3] � � � [7 11]

This answer agrees with Example 1.

2 Column j of AB � A(column j of B). Thus, for A and B as given, the first column 

of AB is

� � � � � � �

Properties 1 and 2 are helpful when you need to compute only part of the matrix AB.

3 Matrix multiplication is associative. That is, A(BC) � (AB)C. To illustrate, let

A � [1 2], B � � �, C � � �
Then AB � [10 13] and (AB)C � 10(2) � 13(1) � [33].

On the other hand,

BC � � �
so A(BC) � 1(7) � 2(13) � [33]. In this case, A(BC) � (AB)C does hold.

4 Matrix multiplication is distributive. That is, A(B � C) � AB � AC and (B � C)D �

BD � CD.

Matrix Multiplication with Excel

Using the Excel MMULT function, it is easy to multiply matrices. To illustrate, let’s use

Excel to find the matrix product AB that we found in Example 1 (see Figure 5 and file

Mmult.xls). We proceed as follows:

Step 1 Enter A and B in D2:F3 and D5:E7, respectively.

Step 2 Select the range (D9:E10) in which the product AB will be computed.

Step 3 In the upper left-hand corner (D9) of the selected range, type the formula

� MMULT(D2:F3,D5:E7)

Then hit Control Shift Enter (not just Enter), and the desired matrix product will be

computed. Note that MMULT is an array function and not an ordinary spreadsheet func-

tion. This explains why we must preselect the range for AB and use Control Shift Enter.
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2.2 Matrices and Systems of Linear Equations

Consider a system of linear equations given by

a11x1 � a12x2 � ��� � a1nxn � b1

a21x1 � a22x2 � ��� � a2nxn � b2

� � � (3)
� � �
� � �

am1x1 � am2x2 � ��� � amnxn � bm

In Equation (3), x1, x2, . . . , xn are referred to as variables, or unknowns, and the aij’s

and bi’s are constants. A set of equations such as (3) is called a linear system of m equa-

tions in n variables.

D E F I N I T I O N ■ A solution to a linear system of m equations in n unknowns is a set of values for

the unknowns that satisfies each of the system’s m equations. ■

To understand linear programming, we need to know a great deal about the properties

of solutions to linear equation systems. With this in mind, we will devote much effort to

studying such systems.

We denote a possible solution to Equation (3) by an n-dimensional column vector x,

in which the ith element of x is the value of xi. The following example illustrates the con-

cept of a solution to a linear system.
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1 For A � � � and B � � �, find:

a �A b 3A c A � 2B

d AT e BT f AB

g BA

2 Only three brands of beer (beer 1, beer 2, and beer 3)
are available for sale in Metropolis. From time to time,
people try one or another of these brands. Suppose that at
the beginning of each month, people change the beer they
are drinking according to the following rules:

30% of the people who prefer beer 1 switch to beer 2.

20% of the people who prefer beer 1 switch to beer 3.

30% of the people who prefer beer 2 switch to beer 3.

30% of the people who prefer beer 3 switch to beer 2.

10% of the people who prefer beer 3 switch to beer 1.

For i � 1, 2, 3, let xi be the number who prefer beer i at
the beginning of this month and yi be the number who pre-
fer beer i at the beginning of next month. Use matrix mul-
tiplication to relate the following:

� � � �
x1

x2

x3

y1

y2

y3

2

�1

2

1

0

1

3

6

9

2

5

8

1

4

7

P R O B L E M S
Group A Group B

3 Prove that matrix multiplication is associative.

4 Show that for any two matrices A and B, (AB)T
� BT AT.

5 An n � n matrix A is symmetric if A � AT.

a Show that for any n � n matrix, AAT is a symmet-
ric matrix.

b Show that for any n � n matrix A, (A � AT) is a
symmetric matrix.

6 Suppose that A and B are both n � n matrices. Show
that computing the matrix product AB requires n3

multiplications and n3
� n2 additions.

7 The trace of a matrix is the sum of its diagonal
elements.

a For any two matrices A and B, show that trace 
(A � B) � trace A � trace B.

b For any two matrices A and B for which the products
AB and BA are defined, show that trace AB � trace BA.



Show that

x � � �
is a solution to the linear system

x1 � 2x2 � 5
(4)

2x1 � x2 � 0

and that

x � � �
is not a solution to linear system (4).

Solution To show that

x � � �
is a solution to Equation (4), we substitute x1 � 1 and x2 � 2 in both equations and check

that they are satisfied: 1 � 2(2) � 5 and 2(1) � 2 � 0.

The vector

x � � �
is not a solution to (4), because x1 � 3 and x2 � 1 fail to satisfy 2x1 � x2 � 0.

Using matrices can greatly simplify the statement and solution of a system of linear

equations. To show how matrices can be used to compactly represent Equation (3), let

A � � �, x � � �, b � � �
Then (3) may be written as

Ax � b (5)

Observe that both sides of Equation (5) will be m � 1 matrices (or m � 1 column vec-

tors). For the matrix Ax to equal the matrix b (or for the vector Ax to equal the vector b),

their corresponding elements must be equal. The first element of Ax is the scalar product

of row 1 of A with x. This may be written as

[a11 a12 ��� a1n] � � � a11x1 � a12x2 � ��� � a1nxn

This must equal the first element of b (which is b1). Thus, (5) implies that a11x1 �

a12x2 � ��� � a1nxn � b1. This is the first equation of (3). Similarly, (5) implies that the scalar

x1

x2

�
�
�

xn

b1

b2

�
�
�

bm

x1

x2

�
�
�

xn

a1n

a2n

�
�
�

amn

���

���

�
�
�

���

a12

a22

�
�
�

am2

a11

a21

�
�
�

am1

3

1

1

2

3

1

1

2
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product of row i of A with x must equal bi, and this is just the ith equation of (3). Our dis-

cussion shows that (3) and (5) are two different ways of writing the same linear system. We

call (5) the matrix representation of (3). For example, the matrix representation of (4) is

� � � � � � �
Sometimes we abbreviate (5) by writing

A�b (6)

If A is an m � n matrix, it is assumed that the variables in (6) are x1, x2, . . . , xn. Then

(6) is still another representation of (3). For instance, the matrix

� � �
represents the system of equations

x1 � 2x2 � 3x3 � 2

x2 � 2x3 � 3

x1 � x2 � x3 � 1

P R O B L E M
Group A

2

3

1

3

2

1

2

1

1

1

0

1

5

0

x1

x2

2

�1

1

2
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2.3 The Gauss–Jordan Method for Solving Systems of Linear Equations

We develop in this section an efficient method (the Gauss–Jordan method) for solving a

system of linear equations. Using the Gauss–Jordan method, we show that any system of

linear equations must satisfy one of the following three cases:

Case 1 The system has no solution.

Case 2 The system has a unique solution.

Case 3 The system has an infinite number of solutions.

The Gauss–Jordan method is also important because many of the manipulations used in

this method are used when solving linear programming problems by the simplex algo-

rithm (see Chapter 4).

Elementary Row Operations

Before studying the Gauss–Jordan method, we need to define the concept of an elemen-

tary row operation (ERO). An ERO transforms a given matrix A into a new matrix A


via one of the following operations.

1 Use matrices to represent the following system of
equations in two different ways:

x1 � x2 � 4

2x1 � x2 � 6

x1 � 3x2 � 8



Type 1 ERO

A
 is obtained by multiplying any row of A by a nonzero scalar. For example, if

A � � �
then a Type 1 ERO that multiplies row 2 of A by 3 would yield

A
 � � �
Type 2 ERO

Begin by multiplying any row of A (say, row i) by a nonzero scalar c. For some j 	 i, let

row j of A
 � c(row i of A) � row j of A, and let the other rows of A
 be the same as the

rows of A.

For example, we might multiply row 2 of A by 4 and replace row 3 of A by 4(row 2

of A) � row 3 of A. Then row 3 of A
 becomes

4 [1 3 5 6] � [0 1 2 3] � [4 13 22 27]

and

A
 � � �
Type 3 ERO

Interchange any two rows of A. For instance, if we interchange rows 1 and 3 of A, we 

obtain

A
 � � �
Type 1 and Type 2 EROs formalize the operations used to solve a linear equation sys-

tem. To solve the system of equations

x1 � x2 � 2
(7)

2x1 � 4x2 � 7

we might proceed as follows. First replace the second equation in (7) by �2(first equa-

tion in (7)) � second equation in (7). This yields the following linear system:

x1 � x2 � 2
(7.1)

2x2 � 3

Then multiply the second equation in (7.1) by �
1

2
�, yielding the system

x1 � x2 � 2
(7.2)

x2 � �
3

2
�

Finally, replace the first equation in (7.2) by �1[second equation in (7.2)] � first equa-

tion in (7.2). This yields the system

3

6

4

2

5

3

1

3

2

0

1

1

4

6

27

3

5

22

2

3

13

1

1

4

4

18

3

3

15

2

2

9

1

1

3

0

4

6

3

3

5

2

2

3

1

1

1

0
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x1 � �
1

2
�

(7.3)
x2 � �

3

2
�

System (7.3) has the unique solution x1 � �
1

2
� and x2 � �

3

2
�. The systems (7), (7.1), (7.2),

and (7.3) are equivalent in that they have the same set of solutions. This means that x1 �

�
1

2
� and x2 � �

3

2
� is also the unique solution to the original system, (7).

If we view (7) in the augmented matrix form (A�b), we see that the steps used to solve

(7) may be seen as Type 1 and Type 2 EROs applied to A�b. Begin with the augmented

matrix version of (7):

� � � (7
)

Now perform a Type 2 ERO by replacing row 2 of (7
) by �2(row 1 of (7
)) � row 2 of

(7
). The result is

� � � (7.1
)

which corresponds to (7.1). Next, we multiply row 2 of (7.1
) by �
1

2
� (a Type 1 ERO), re-

sulting in

� � � (7.2
)

which corresponds to (7.2). Finally, perform a Type 2 ERO by replacing row 1 of (7.2
)

by �1(row 2 of (7.2
)) � row 1 of (7.2
). The result is

� � � (7.3
)

which corresponds to (7.3). Translating (7.3
) back into a linear system, we obtain the sys-

tem x1 � �
1

2
� and x2 � �

3

2
�, which is identical to (7.3).

Finding a Solution by the Gauss–Jordan Method

The discussion in the previous section indicates that if the matrix A
�b
 is obtained from

A�b via an ERO, the systems Ax � b and A
x � b
 are equivalent. Thus, any sequence of

EROs performed on the augmented matrix A�b corresponding to the system Ax � b will

yield an equivalent linear system.

The Gauss–Jordan method solves a linear equation system by utilizing EROs in a system-

atic fashion. We illustrate the method by finding the solution to the following linear system:

2x1 � 2x2 � 2x3 � 9

2x1 � 2x2 � 2x3 � 6 (8)

x1 � 2x2 � 2x3 � 5

The augmented matrix representation is

A�b � � � � (8
)

Suppose that by performing a sequence of EROs on (8
) we could transform (8
) into

9

6

5

1

2

2

2

�1

�1

2

2

1

�
1

2
�

�
3

2
�

0

1

1

0

2

�
3

2
�

1

1

1

0

2

3

1

2

1

0

2

7

1

4

1

2
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� � � (9
)

We note that the result obtained by performing an ERO on a system of equations can

also be obtained by multiplying both sides of the matrix representation of the system of

equations by a particular matrix. This explains why EROs do not change the set of solu-

tions to a system of equations.

Matrix (9
) corresponds to the following linear system:

x1 � 1

x2 � 2 (9)

x3 � 3

System (9) has the unique solution x1 � 1, x2 � 2, x3 � 3. Because (9
) was obtained

from (8
) by a sequence of EROs, we know that (8) and (9) are equivalent linear systems.

Thus, x1 � 1, x2 � 2, x3 � 3 must also be the unique solution to (8). We now show how

we can use EROs to transform a relatively complicated system such as (8) into a relatively

simple system like (9). This is the essence of the Gauss–Jordan method.

We begin by using EROs to transform the first column of (8
) into

� �
Then we use EROs to transform the second column of the resulting matrix into

� �
Finally, we use EROs to transform the third column of the resulting matrix into

� �
As a final result, we will have obtained (9
). We now use the Gauss–Jordan method to

solve (8). We begin by using a Type 1 ERO to change the element of (8
) in the first row

and first column into a 1. Then we add multiples of row 1 to row 2 and then to row 3

(these are Type 2 EROs). The purpose of these Type 2 EROs is to put zeros in the rest of

the first column. The following sequence of EROs will accomplish these goals.

Step 1 Multiply row 1 of (8
) by �
1

2
�. This Type 1 ERO yields

A1�b1 � � � �
Step 2 Replace row 2 of A1�b1 by �2(row 1 of A1�b1) � row 2 of A1�b1. The result of

this Type 2 ERO is

A2�b2 � � � �
�
9

2
�

�3

5

�
1

2
�

1

2

1

�3

�1

1

0

1

�
9

2
�

6

5

�
1

2
�

2

2

1

�1

�1

1

2

1

0

0

1

0

1

0

1

0

0

1

2

3

0

0

1

0

1

0

1

0

0
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Step 3 Replace row 3 of A2�b2 by �1(row 1 of A2�b2 � row 3 of A2�b2. The result of this

Type 2 ERO is

A3�b3 � � � �
The first column of (8
) has now been transformed into

� �
By our procedure, we have made sure that the variable x1 occurs in only a single equation

and in that equation has a coefficient of 1. We now transform the second column of A3�b3 into

� �
We begin by using a Type 1 ERO to create a 1 in row 2 and column 2 of A3�b3. Then we

use the resulting row 2 to perform the Type 2 EROs that are needed to put zeros in the

rest of column 2. Steps 4–6 accomplish these goals.

Step 4 Multiply row 2 of A3�b3 by ��
1

3
�.The result of this Type 1 ERO is

A4�b4 � � � �
Step 5 Replace row 1 of A4�b4 by �1(row 2 of A4�b4) � row 1 of A4�b4. The result of

this Type 2 ERO is

A5�b5 � � � �
Step 6 Replace row 3 of A5�b5 by 2(row 2 of A5�b5) � row 3 of A5�b5. The result of this

Type 2 ERO is

A6�b6 � � � �
Column 2 has now been transformed into

� �
Observe that our transformation of column 2 did not change column 1.

To complete the Gauss–Jordan procedure, we must transform the third column of 

A6�b6 into

� �
0
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�
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�
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�
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We first use a Type 1 ERO to create a 1 in the third row and third column of A6�b6. Then

we use Type 2 EROs to put zeros in the rest of column 3. Steps 7–9 accomplish these

goals.

Step 7 Multiply row 3 of A6�b6 by �
6

5
�. The result of this Type 1 ERO is

A7�b7 � � � �
Step 8 Replace row 1 of A7�b7 by ��

5

6
�(row 3 of A7�b7) � row 1 of A7�b7. The result of

this Type 2 ERO is

A8�b8 � � � �
Step 9 Replace row 2 of A8�b8 by �

1

3
�(row 3 of A8�b8) � row 2 of A8�b8. The result of this

Type 2 ERO is

A9�b9 � � � �
A9�b9 represents the system of equations

x1x2x3 � 1

x1x2x3 � 2 (9)

x1x2x3 � 3

Thus, (9) has the unique solution x1 � 1, x2 � 2, x3 � 3. Because (9) was obtained from

(8) via EROs, the unique solution to (8) must also be x1 � 1, x2 � 2, x3 � 3.

The reader might be wondering why we defined Type 3 EROs (interchanging of rows).

To see why a Type 3 ERO might be useful, suppose you want to solve

2x2 � x3 � 6

x1 � x2 � x3 � 2 (10)

2x1 � x2 � x3 � 4

To solve (10) by the Gauss–Jordan method, first form the augmented matrix

A�b � � � �
The 0 in row 1 and column 1 means that a Type 1 ERO cannot be used to create a 1 in row

1 and column 1. If, however, we interchange rows 1 and 2 (a Type 3 ERO), we obtain

� � � (10
)

Now we may proceed as usual with the Gauss–Jordan method.
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Special Cases: No Solution 
or an Infinite Number of Solutions

Some linear systems have no solution, and some have an infinite number of solutions. The

following two examples illustrate how the Gauss–Jordan method can be used to recognize

these cases.

Find all solutions to the following linear system:

x1 � 2x2 � 3
(11)

2x1 � 4x2 � 4

Solution We apply the Gauss–Jordan method to the matrix

A�b � � � �
We begin by replacing row 2 of A�b by �2(row 1 of A�b) � row 2 of A�b. The result of

this Type 2 ERO is

� � � (12)

We would now like to transform the second column of (12) into

� �
but this is not possible. System (12) is equivalent to the following system of equations:

x1 � 2x2 � 3
(12
)

0x1 � 0x2 � �2

Whatever values we give to x1 and x2, the second equation in (12
) can never be satisfied.

Thus, (12
) has no solution. Because (12
) was obtained from (11) by use of EROs, (11)

also has no solution.

Example 6 illustrates the following idea: If you apply the Gauss–Jordan method to a lin-

ear system and obtain a row of the form [0 0 ��� 0�c] (c 	 0), then the original lin-

ear system has no solution.

Apply the Gauss–Jordan method to the following linear system:

x1 � x2 � 1

x2 � x3 � 3 (13)

x1 � 2x2 � x3 � 4

Solution The augmented matrix form of (13) is

A�b � � � �
1
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We begin by replacing row 3 (because the row 2, column 1 value is already 0) of A�b by

�1(row 1 of A�b) � row 3 of A�b. The result of this Type 2 ERO is

A1�b1 � � � � (14)

Next we replace row 1 of A1�b1 by �1(row 2 of A1�b1) � row 1 of A1�b1. The result of

this Type 2 ERO is

A2�b2 � � � �
Now we replace row 3 of A2�b2 by �1(row 2 of A2�b2) � row 3 of A2�b2. The result of

this Type 2 ERO is

A3�b3 � � � �
We would now like to transform the third column of A3�b3 into

� �
but this is not possible. The linear system corresponding to A3�b3 is

0x1 � 0x2 � 0x3 � �2 (14.1)

0x1 � 0x2 � 0x3 � 3 (14.2)

0x1 � 0x2 � 0x3 � 0 (14.3)

Suppose we assign an arbitrary value k to x3. Then (14.1) will be satisfied if x1 � k � �2,

or x1 � k � 2. Similarly, (14.2) will be satisfied if x2 � k � 3, or x2 � 3 � k. Of course,

(14.3) will be satisfied for any values of x1, x2, and x3. Thus, for any number k, x1 � k � 2,

x2 � 3 � k, x3 � k is a solution to (14). Thus, (14) has an infinite number of solutions (one

for each number k). Because (14) was obtained from (13) via EROs, (13) also has an infinite

number of solutions. A more formal characterization of linear systems that have an infinite

number of solutions will be given after the following summary of the Gauss–Jordan method.

Summary of the Gauss–Jordan Method

Step 1 To solve Ax � b, write down the augmented matrix A�b.

Step 2 At any stage, define a current row, current column, and current entry (the entry

in the current row and column). Begin with row 1 as the current row, column 1 as the cur-

rent column, and a11 as the current entry. (a) If a11 (the current entry) is nonzero, then

use EROs to transform column 1 (the current column) to

� �
1
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1

0
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1
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0
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Then obtain the new current row, column, and entry by moving down one row and one

column to the right, and go to step 3. (b) If a11 (the current entry) equals 0, then do a

Type 3 ERO involving the current row and any row that contains a nonzero number in the

current column. Use EROs to transform column 1 to

� �
Then obtain the new current row, column, and entry by moving down one row and one

column to the right. Go to step 3. (c) If there are no nonzero numbers in the first column,

then obtain a new current column and entry by moving one column to the right. Then go

to step 3.

Step 3 (a) If the new current entry is nonzero, then use EROs to transform it to 1 and

the rest of the current column’s entries to 0. When finished, obtain the new current row,

column, and entry. If this is impossible, then stop. Otherwise, repeat step 3. (b) If the

current entry is 0, then do a Type 3 ERO with the current row and any row that con-

tains a nonzero number in the current column. Then use EROs to transform that cur-

rent entry to 1 and the rest of the current column’s entries to 0. When finished, obtain

the new current row, column, and entry. If this is impossible, then stop. Otherwise, re-

peat step 3. (c) If the current column has no nonzero numbers below the current row,

then obtain the new current column and entry, and repeat step 3. If it is impossible, then

stop.

This procedure may require “passing over” one or more columns without transform-

ing them (see Problem 8).

Step 4 Write down the system of equations A
x � b
 that corresponds to the matrix A
�b


obtained when step 3 is completed. Then A
x � b
 will have the same set of solutions as

Ax � b.

Basic Variables and Solutions to Linear Equation Systems

To describe the set of solutions to A
x � b
 (and Ax � b), we need to define the concepts

of basic and nonbasic variables.

D E F I N I T I O N ■ After the Gauss–Jordan method has been applied to any linear system, a variable

that appears with a coefficient of 1 in a single equation and a coefficient of 0 in

all other equations is called a basic variable (BV). ■

Any variable that is not a basic variable is called a nonbasic variable (NBV). ■

Let BV be the set of basic variables for A
x � b
 and NBV be the set of nonbasic vari-

ables for A
x � b
. The character of the solutions to A
x � b
 depends on which of the

following cases occurs.

Case 1 A
x � b
 has at least one row of form [0 0 ��� 0�c] (c 	 0). Then 

Ax � b has no solution (recall Example 6). As an example of Case 1, suppose that

when the Gauss–Jordan method is applied to the system Ax � b, the following matrix

is obtained:

1

0

�
�
�

0
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A
�b
 � � � �
In this case, A
x � b
 (and Ax � b) has no solution.

Case 2 Suppose that Case 1 does not apply and NBV, the set of nonbasic variables, is

empty. Then A
x � b
 (and Ax � b) will have a unique solution. To illustrate this, we re-

call that in solving

2x1 � 2x2 � x3 � 9

2x1 � x2 � 2x3 � 6

2x1 � x2 � 2x3 � 5

the Gauss–Jordan method yielded

A
�b
 � � � �
In this case, BV � {x1, x2, x3} and NBV is empty. Then the unique solution to A
x � b


(and Ax � b) is x1 � 1, x2 � 2, x3 � 3.

Case 3 Suppose that Case 1 does not apply and NBV is nonempty. Then A
x � b
 (and

Ax � b) will have an infinite number of solutions. To obtain these, first assign each non-

basic variable an arbitrary value. Then solve for the value of each basic variable in terms

of the nonbasic variables. For example, suppose

A
�b
 � � � � (15)

Because Case 1 does not apply, and BV � {x1, x2, x3} and NBV � {x4, x5}, we have an

example of Case 3: A
x � b
 (and Ax � b) will have an infinite number of solutions. To

see what these solutions look like, write down A
x � b
:

0x1 � 0x2 � 0x3 � 0x4 � 0x5 � 3 (15.1)

0x1 � 0x2 � 0x3 � 2x4 � 0x5 � 2 (15.2)

0x1 � 0x2 � 0x3 � 0x4 � 0x5 � 1 (15.3)

0x1 � 0x2 � 0x3 � 0x4 � 0x5 � 0 (15.4)

Now assign the nonbasic variables (x4 and x5) arbitrary values c and k, with x4 � c and

x5 � k. From (15.1), we find that x1 � 3 � c � k. From (15.2), we find that x2 � 2 

� 2c. From (15.3), we find that x3 � 1 � k. Because (15.4) holds for all values of the

variables, x1 � 3 � c � k, x2 � 2 � 2c, x3 � 1 � k, x4 � c, and x5 � k will, for any

values of c and k, be a solution to A
x � b
 (and Ax � b).

Our discussion of the Gauss–Jordan method is summarized in Figure 6. We have de-

voted so much time to the Gauss–Jordan method because, in our study of linear pro-

gramming, examples of Case 3 (linear systems with an infinite number of solutions) will

occur repeatedly. Because the end result of the Gauss–Jordan method must always be one

of Cases 1–3, we have shown that any linear system will have no solution, a unique so-

lution, or an infinite number of solutions.
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Use the Gauss–Jordan method to determine whether each of
the following linear systems has no solution, a unique solu-
tion, or an infinite number of solutions. Indicate the solu-
tions (if any exist).

1 x1 � x2 � x3 � x4 � 3
1 x1 � x2 � x3 � x4 � 4
1 x1 � 2x2 � x3 � x4 � 8

2 x1 � x2 � x3 � 4
2 x1 � 2x2 � x3 � 6

3 x1 � x2 � 1
2 2x1 � x2 � 3
2 3x1 � 2x2 � 4

4 2x1 � x2 � x3 � x4 � 6
2 x1 � x2 � x3 � x4 � 4

5 x1x2 x2 � x4 � 5
2 x2x2x 2 � 2x4 � 5
2 x2x 2x3 � 0.5x4 � 1
x2 2x3 � x4 � 3

6 x1 � 2x2 � 2x3 � 4
2 x1 � 2x2 � x3 � 4
2 xx1 � 2x2 � x3 � 0

7 x1 � x2 � 2x3 � 2
2 x1 � x2 � 2x3 � 3
2 x1 � x2 � x3 � 3

8 x1 � x2 � x3 � x4 � 1
2 x1 � x2 � 2x3 � x4 � 2
2 x1 � x2 � 2x3 � x4 � 3

Group B

9 Suppose that a linear system Ax � b has more variables
than equations. Show that Ax � b cannot have a unique
solution.

2.4 Linear Independence and Linear Dependence†

In this section, we discuss the concepts of a linearly independent set of vectors, a lin-

early dependent set of vectors, and the rank of a matrix. These concepts will be useful

in our study of matrix inverses.

Before defining a linearly independent set of vectors, we need to define a linear com-

bination of a set of vectors. Let V � {v1, v2, . . . , vk} be a set of row vectors all of

which have the same dimension.

†This section covers topics that may be omitted with no loss of continuity.

YES

YES NO

NO

Does A    b  have a row [0   0  · · ·  0   c] (c ≠ 0)?

Ax  =  b has

no solution

Find BV

and NBV

Is NBV

empty?

Ax = b has a

unique solution

Ax = b has an

infinite number

of solutions

F I G U R E  6

Description of
Gauss–Jordan Method

for Solving Linear
Equations
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Group A



D E F I N I T I O N ■ A linear combination of the vectors in V is any vector of the form c1v1 � c2v2

��� � ckvk, where c1, c2, . . . , ck are arbitrary scalars. ■

For example, if V � {[1 2], [2 1]}, then

2v1 � v2 � 2([1 2]) � [2 1] � [0 3]

v1 � 3v2 � [1 2] � 3([2 1]) � [7 5]

0v1 � 3v2 � [0 0] � 3([2 1]) � [6 3]

are linear combinations of vectors in V. The foregoing definition may also be applied to

a set of column vectors.

Suppose we are given a set V � {v1, v2, . . . , vk} of m-dimensional row vectors. Let

0 � [0 0 ��� 0] be the m-dimensional 0 vector. To determine whether V is a linearly

independent set of vectors, we try to find a linear combination of the vectors in V that

adds up to 0. Clearly, 0v1 � 0v2 � ��� � 0vk is a linear combination of vectors in V that

adds up to 0. We call the linear combination of vectors in V for which c1 � c2 � ��� �

ck � 0 the trivial linear combination of vectors in V. We may now define linearly inde-

pendent and linearly dependent sets of vectors.

D E F I N I T I O N ■ A set V of m-dimensional vectors is linearly independent if the only linear

combination of vectors in V that equals 0 is the trivial linear combination. ■

A set V of m-dimensional vectors is linearly dependent if there is a nontrivial

linear combination of the vectors in V that adds up to 0. ■

The following examples should clarify these definitions.

Show that any set of vectors containing the 0 vector is a linearly dependent set.

Solution To illustrate, we show that if V � {[0 0], [1 0], [0 1]}, then V is linearly dependent,

because if, say, c1 	 0, then c1([0 0]) � 0([1 0]) � 0([0 1]) � [0 0]. Thus, there

is a nontrivial linear combination of vectors in V that adds up to 0.

Show that the set of vectors V � {[1 0], [0 1]} is a linearly independent set of vectors.

Solution We try to find a nontrivial linear combination of the vectors in V that yields 0. This re-

quires that we find scalars c1 and c2 (at least one of which is nonzero) satisfying 

c1([1 0]) � c2([0 1]) � [0 0]. Thus, c1 and c2 must satisfy [c1 c2] � [0 0]. This

implies c1 � c2 � 0. The only linear combination of vectors in V that yields 0 is the trivial

linear combination. Therefore, V is a linearly independent set of vectors.

Show that V � {[1 2], [2 4]} is a linearly dependent set of vectors.

Solution Because 2([1 2]) � 1([2 4]) � [0 0], there is a nontrivial linear combination with 

c1 � 2 and c2 � �1 that yields 0. Thus, V is a linearly dependent set of vectors.

Intuitively, what does it mean for a set of vectors to be linearly dependent? To understand

the concept of linear dependence, observe that a set of vectors V is linearly dependent (as

2 . 4 Linear Independence and Linear Dependence 33

0 Vector Makes Set LDE X A M P L E  8

LI Set of VectorsE X A M P L E  9

LD Set of VectorsE X A M P L E  1 0



long as 0 is not in V ) if and only if some vector in V can be written as a nontrivial linear

combination of other vectors in V (see Problem 9 at the end of this section). For instance, in

Example 10, [2 4] � 2([1 2]). Thus, if a set of vectors V is linearly dependent, the vec-

tors in V are, in some way, not all “different” vectors. By “different” we mean that the di-

rection specified by any vector in V cannot be expressed by adding together multiples of other

vectors in V. For example, in two dimensions it can be shown that two vectors are linearly

dependent if and only if they lie on the same line (see Figure 7).

The Rank of a Matrix

The Gauss–Jordan method can be used to determine whether a set of vectors is linearly

independent or linearly dependent. Before describing how this is done, we define the con-

cept of the rank of a matrix.

Let A be any m � n matrix, and denote the rows of A by r1, r2, . . . , rm. Also define

R � {r1, r2, . . . , rm}.

D E F I N I T I O N ■ The rank of A is the number of vectors in the largest linearly independent sub-

set of R. ■

The following three examples illustrate the concept of rank.

Show that rank A � 0 for the following matrix:

A � � �
Solution For the set of vectors R � {[0 0], [0, 0]}, it is impossible to choose a subset of R that

is linearly independent (recall Example 8).

Show that rank A � 1 for the following matrix:

A � � �1

2

1

2

0

0

0

0
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Matrix with Rank of 1E X A M P L E  1 2

Matrix with 0 RankE X A M P L E  1 1

3
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x1

1

v2v1

A

B

C

v1  = =  AB

=  AC

1 1

1

a

2 3

v2  = 2 2
3

2

x2

x1

1
v2

v1

v2  = 1 1

1

b

2 3

v1  = 1 0
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Solution Here R � {[1 1], [2 2]}. The set {[1 1]} is a linearly independent subset of R, so rank 

A must be at least 1. If we try to find two linearly independent vectors in R, we fail because 

2([1 1]) � [2 2] � [0 0]. This means that rank A cannot be 2. Thus, rank A must equal 1.

Show that rank A � 2 for the following matrix:

A � � �
Solution Here R � {[1 0], [0 1]}. From Example 9, we know that R is a linearly independent

set of vectors. Thus, rank A � 2.

To find the rank of a given matrix A, simply apply the Gauss–Jordan method to the

matrix A. Let the final result be the matrix A�. It can be shown that performing a sequence

of EROs on a matrix does not change the rank of the matrix. This implies that rank A �

rank AA�. It is also apparent that the rank of A� will be the number of nonzero rows in AA�.

Combining these facts, we find that rank A � rank A� � number of nonzero rows in A�.

Find

rank A � � �
Solution The Gauss–Jordan method yields the following sequence of matrices:

A � � � → � � → � � → � � → � �
� A�

Thus, rank A � rank A� � 3.

How to Tell Whether a Set of Vectors Is Linearly Independent

We now describe a method for determining whether a set of vectors V � {v1, v2, . . . , vm}

is linearly independent.

Form the matrix A whose ith row is vi. A will have m rows. If rank A � m, then V is

a linearly independent set of vectors, whereas if rank A � m, then V is a linearly depen-

dent set of vectors.

Determine whether V � {[1 0 0], [0 1 0], [1 1 0]} is a linearly independent set

of vectors.
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�
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0
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Solution The Gauss–Jordan method yields the following sequence of matrices:

A � � � → � � → � � � AA�

Thus, rank A � rank AA� � 2 � 3. This shows that V is a linearly dependent set of vectors. In

fact, the EROs used to transform A to AA� can be used to show that [1 1 0] �

[1 0 0] � [0 1 0]. This equation also shows that V is a linearly dependent set of vectors.

P R O B L E M S
Group A

0

0

0

0

1

0

1

0

0

0

0

0

0

1

1

1

0

0

0

0
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1

1

0

0
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Determine if each of the following sets of vectors is linearly
independent or linearly dependent.

1 V � {[1 0 1], [1 2 1], [2 2 2]}

2 V � {[2 1 0], [1 2 0], [3 3 1]}

3 V � {[2 1], [1 2]}

4 V � {[2 0], [3 0]}

5 V � �� �, � �, � �	
6 V � �� �, � �, � �	

1

0

1

0

2

1

1

0

0

5

7

9

4

5

6

1

2

3

Group B

7 Show that the linear system Ax � b has a solution if and
only if b can be written as a linear combination of the
columns of A.

8 Suppose there is a collection of three or more two-
dimensional vectors. Provide an argument showing that the
collection must be linearly dependent.

9 Show that a set of vectors V (not containing the 0 vector)
is linearly dependent if and only if there exists some vector
in V that can be written as a nontrivial linear combination
of other vectors in V.

2.5 The Inverse of a Matrix

To solve a single linear equation such as 4x � 3, we simply multiply both sides of the

equation by the multiplicative inverse of 4, which is 4�1, or �
1

4
�. This yields 4�1(4x) �

(4�1)3, or x � �
3

4
�. (Of course, this method fails to work for the equation 0x � 3, because

zero has no multiplicative inverse.) In this section, we develop a generalization of this

technique that can be used to solve “square” (number of equations � number of un-

knowns) linear systems. We begin with some preliminary definitions.

D E F I N I T I O N ■ A square matrix is any matrix that has an equal number of rows and columns. ■

The diagonal elements of a square matrix are those elements aij such that i � j. ■

A square matrix for which all diagonal elements are equal to 1 and all nondiagonal

elements are equal to 0 is called an identity matrix. ■

The m � m identity matrix will be written as Im. Thus,

I2 � � �, I3 � � �, ���

0

0

1

0

1

0

1

0

0

0

1

1

0



If the multiplications Im A and AIm are defined, it is easy to show that Im A � AIm � A.

Thus, just as the number 1 serves as the unit element for multiplication of real numbers,

Im serves as the unit element for multiplication of matrices.

Recall that �
1

4
� is the multiplicative inverse of 4. This is because 4(�

1

4
�) � (�

1

4
�)4 � 1. This

motivates the following definition of the inverse of a matrix.

D E F I N I T I O N ■ For a given m � m matrix A, the m � m matrix B is the inverse of A if

BA � AB � Im (16)

(It can be shown that if BA � Im or AB � Im, then the other quantity will also equal 

Im.) ■

Some square matrices do not have inverses. If there does exist an m � m matrix B that

satisfies Equation (16), then we write B � A�1. For example, if

A � � �
the reader can verify that

� �� � � � �
and

� �� � � � �
Thus,

A�1
� � �

To see why we are interested in the concept of a matrix inverse, suppose we want to

solve a linear system Ax � b that has m equations and m unknowns. Suppose that A�1

exists. Multiplying both sides of Ax � b by A�1, we see that any solution of Ax � b must

also satisfy A�1(Ax) � A�1b. Using the associative law and the definition of a matrix in-

verse, we obtain

(A�1A)x � A�1b

or Imx � A�1b

or Imx � A�1b

This shows that knowing A�1 enables us to find the unique solution to a square linear sys-

tem. This is the analog of solving 4x � 3 by multiplying both sides of the equation by 4�1.

The Gauss–Jordan method may be used to find A�1 (or to show that A�1 does not ex-

ist). To illustrate how we can use the Gauss–Jordan method to invert a matrix, suppose

we want to find A�1 for

A � � �5
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This requires that we find a matrix

� � � A�1

that satisfies

� �� � � � � (17)

From Equation (17), we obtain the following pair of simultaneous equations that must

be satisfied by a, b, c, and d:

� �� � � � �; � �� � � � �
Thus, to find

� �
(the first column of A�1), we can apply the Gauss–Jordan method to the augmented matrix

� � �
Once EROs have transformed

� �
to I2,

� �
will have been transformed into the first column of A�1. To determine

� �
(the second column of A�1), we apply EROs to the augmented matrix

� � �
When

� �
has been transformed into I2,

� �
will have been transformed into the second column of A�1. Thus, to find each column of

A�1, we must perform a sequence of EROs that transform

� �5
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into I2. This suggests that we can find A�1 by applying EROs to the 2 � 4 matrix

A�I2 � � � �
When

� �
has been transformed to I2,

� �
will have been transformed into the first column of A�1, and

� �
will have been transformed into the second column of A�1. Thus, as A is transformed into

I2, I2 is transformed into A�1. The computations to determine A�1 follow.

Step 1 Multiply row 1 of A�I2 by �
1

2
�. This yields

A
�I
2� � � �
Step 2 Replace row 2 of A
�I
2 by �1(row 1 of A
�I
2) � row 2 of A
�I
2. This yields

A��I�2 � � � �
Step 3 Multiply row 2 of A��I�2 by 2. This yields

A�I2 � � � �
Step 4 Replace row 1 of A�I2 by ��

5

2
�(row 2 of A�I2) � row 1 of A�I2. This yields

� � �
Because A has been transformed into I2, I2 will have been transformed into A�1. Hence,

A�1
� � �

The reader should verify that AA�1
� A�1 A � I2.

A Matrix May Not Have an Inverse

Some matrices do not have inverses. To illustrate, let

A � � � and A�1
� � � (18)
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To find A�1 we must solve the following pair of simultaneous equations:

� �� � � � � (18.1)

� �� � � � � (18.2)

When we try to solve (18.1) by the Gauss–Jordan method, we find that

� � �
is transformed into

� � �
This indicates that (18.1) has no solution, and A�1 cannot exist.

Observe that (18.1) fails to have a solution, because the Gauss–Jordan method trans-

forms A into a matrix with a row of zeros on the bottom. This can only happen if rank 

A � 2. If m � m matrix A has rank A � m, then A�1 will not exist.

The Gauss–Jordan Method for Inverting an m � m Matrix A

Step 1 Write down the m � 2m matrix A�Im.

Step 1 Use EROs to transform A�Im into Im�B. This will be possible only if rank A � m.

In this case, B � A�1. If rank A � m, then A has no inverse.

Using Matrix Inverses to Solve Linear Systems

As previously stated, matrix inverses can be used to solve a linear system Ax � b in which

the number of variables and equations are equal. Simply multiply both sides of Ax � b

by A�1 to obtain the solution x � A�1b. For example, to solve

2x1 � 5x2 � 7
(19)

x1 � 3x2 � 4

write the matrix representation of (19):

� �� � � � � (20)

Let

A � � �
We found in the previous illustration that

A�1
� � ��5
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Multiplying both sides of (20) by A�1, we obtain

� �� �� � � � �� �7
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A B C D E F G H
Inverting

a

Matrix 2 0 -1

A 3 1 2
-1 0 1

1 0 1

A
-1

-5 1 -7

1 0 2F I G U R E  8

Find A�1 (if it exists) for the following matrices:

1 � � 2 � �
3 � � 4 � �
5 Use the answer to Problem 1 to solve the following
linear system:

x1 � 3x2 � 4

2x1 � 5x2 � 7

1
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2
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1

1
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1

1

1

1
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1
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�1

0

1

1

1

4

3

3

5

1

2

6 Use the answer to Problem 2 to solve the following
linear system:

x1 � x � 2x3 � 4

4x1 � x2 � 2x3 � 0

3x1 � x2 � x3 � 2

Group B

7 Show that a square matrix has an inverse if and only if
its rows form a linearly independent set of vectors.

8 Consider a square matrix B whose inverse is given by B�1.

a In terms of B�1, what is the inverse of the matrix
100B?

� � � � �
Thus, x1 � 1, x2 � 1 is the unique solution to system (19).

Inverting Matrices with Excel

The Excel �MINVERSE command makes it easy to invert a matrix. See Figure 8 and

file Minverse.xls. Suppose we want to invert the matrix

A � � �
Simply enter the matrix in E3:G5 and select the range (we chose E7:G9) where you want A�1

to be computed. In the upper left-hand corner of the range E7:G9 (cell E7), we enter the formula

� MINVERSE(E3:G5)

and select Control Shift Enter. This enters an array function that computes A�1 in the

range E7:G9. You cannot edit part of an array function, so if you want to delete A�1, you

must delete the entire range where A�1 is present.
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2.6 Determinants

Associated with any square matrix A is a number called the determinant of A (often ab-

breviated as det A or �A�). Knowing how to compute the determinant of a square matrix

will be useful in our study of nonlinear programming.

For a 1 � 1 matrix A � [a11],

det A � a11 (21)

For a 2 � 2 matrix

A � � � (22)

det A � a11a22 � a21a12

For example,

det � � � 2(5) � 3(4) � �2

Before we learn how to compute det A for larger square matrices, we need to define the

concept of the minor of a matrix.

D E F I N I T I O N ■ If A is an m � m matrix, then for any values of i and j, the ijth minor of A

(written Aij) is the (m � 1) � (m � 1) submatrix of A obtained by deleting row i

and column j of A. ■

For example,

if A � � �, then A12 � � � and A32 � � �
Let A be any m � m matrix. We may write A as

A � � �
To compute det A, pick any value of i (i � 1, 2, . . . , m) and compute det A:

det A � (�1)i�1ai1(det Ai1) � (�1)i�2ai2(det Ai2) � ��� � (�1)i�maim(det Aim) (23)
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b Let B
 be the matrix obtained from B by doubling
every entry in row 1 of B. Explain how we could obtain
the inverse of B
 from B�1.

c Let B
 be the matrix obtained from B by doubling
every entry in column 1 of B. Explain how we could ob-
tain the inverse of B
 from B�1.

9 Suppose that A and B both have inverses. Find the inverse
of the matrix AB.

10 Suppose A has an inverse. Show that (AT)�1
� (A�1)T.

(Hint: Use the fact that AA�1
� I, and take the transpose of

both sides.)

11 A square matrix A is orthogonal if AAT
� I. What

properties must be possessed by the columns of an
orthogonal matrix?
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Formula (23) is called the expansion of det A by the cofactors of row i. The virtue of (23) is

that it reduces the computation of det A for an m � m matrix to computations involving only

(m � 1) � (m � 1) matrices. Apply (23) until det A can be expressed in terms of 2 � 2 

matrices. Then use Equation (22) to find the determinants of the relevant 2 � 2 matrices.

To illustrate the use of (23), we find det A for

A � � �
We expand det A by using row 1 cofactors. Notice that a11 � 1, a12 � 2, and a13 � 3.

Also

A11 � � �
so by (22), det A11 � 5(9) � 8(6) � �3;

A12 � � �
so by (22), det A12 � 4(9) � 7(6) � �6; and

A13 � � �
so by (22), det A13 � 4(8) � 7(5) � �3. Then by (23),

det A � (�1)1�1a11(det A11) � (�1)1�2a12(det A12) � (�1)1�3a13(det A13)

� (1)(1)(�3) � (�1)(2)(�6) � (1)(3)(�3) � �3 � 12 � 9 � 0

The interested reader may verify that expansion of det A by either row 2 or row 3 cofac-

tors also yields det A � 0.

We close our discussion of determinants by noting that they can be used to invert

square matrices and to solve linear equation systems. Because we already have learned to

use the Gauss–Jordan method to invert matrices and to solve linear equation systems, we

will not discuss these uses of determinants.
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4 a Show that for any 1 � 1 and 3 � 3 matrix, det �
A � �det A.

b Show that for any 2 � 2 and 4 � 4 matrix, det �
A � det A.

c Generalize the results of parts (a) and (b).



S U M M A R Y Matrices

A matrix is any rectangular array of numbers. For the matrix A, we let aij represent the

element of A in row i and column j.

A matrix with only one row or one column may be thought of as a vector. Vectors ap-

pear in boldface type (v). Given a row vector u � [u1 u2 ��� un] and a column

v � � �
of the same dimension, the scalar product of u and v (written u � v) is the number 

u1v1 � u2v2 � ��� � unvn.

Given two matrices A and B, the matrix product of A and B (written AB) is defined

if and only if the number of columns in A � the number of rows in B. Suppose this is the

case and A has m rows and B has n columns. Then the matrix product C � AB of A and

B is the m � n matrix C whose ijth element is determined as follows: The ijth element of

C � the scalar product of row i of A with column j of B.

Matrices and Linear Equations

The linear equation system

a11x1 � a12x2 � ��� � a1nxn � b1

a21x1 � a22x2 � ��� � a2nxn � b2

� � � � �
� � � � �
� � � � �

am1x1 � am2x2 � ��� � amnxn � bm

may be written as Ax � b or A�b, where

A � � �, x � � �, b � � �
The Gauss–Jordan Method

Using elementary row operations (EROs), we may solve any linear equation system.

From a matrix A, an ERO yields a new matrix A
 via one of three procedures.

Type 1 ERO

Obtain A
 by multiplying any row of A by a nonzero scalar.

Type 2 ERO

Multiply any row of A (say, row i) by a nonzero scalar c. For some j 	 i, let row j of 

A
 � c(row i of A) � row j of A, and let the other rows of A
 be the same as the rows of A.
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Type 3 ERO

Interchange any two rows of A.

The Gauss–Jordan method uses EROs to solve linear equation systems, as shown in the

following steps.

Step 1 To solve Ax � b, write down the augmented matrix A�b.

Step 2 Begin with row 1 as the current row, column 1 as the current column, and a11 as

the current entry. (a) If a11 (the current entry) is nonzero, then use EROs to transform

column 1 (the current column) to

� �
Then obtain the new current row, column, and entry by moving down one row and one

column to the right, and go to step 3. (b) If a11 (the current entry) equals 0, then do a

Type 3 ERO switch with any row with a nonzero value in the same column. Use EROs

to transform column 1 to

� �
and proceed to step 3 after moving into a new current row, column, and entry. (c) If there

are no nonzero numbers in the first column, then proceed to a new current column and

entry. Then go to step 3.

Step 3 (a) If the current entry is nonzero, use EROs to transform it to 1 and the rest of

the current column’s entries to 0. Obtain the new current row, column, and entry. If this

is impossible, then stop. Otherwise, repeat step 3. (b) If the current entry is 0, then do a

Type 3 ERO switch with any row with a nonzero value in the same column. Transform

the column using EROs and move to the next current entry. If this is impossible, then stop.

Otherwise, repeat step 3. (c) If the current column has no nonzero numbers below the cur-

rent row, then obtain the new current column and entry, and repeat step 3. If it is impos-

sible, then stop.

This procedure may require “passing over” one or more columns without transform-

ing them.

Step 4 Write down the system of equations A
x � b
 that corresponds to the matrix A
�b


obtained when step 3 is completed. Then A
x � b
 will have the same set of solutions as

Ax � b.

To describe the set of solutions to A
x � b
 (and Ax � b), we define the concepts of

basic and nonbasic variables. After the Gauss–Jordan method has been applied to any lin-

ear system, a variable that appears with a coefficient of 1 in a single equation and a co-

efficient of 0 in all other equations is called a basic variable. Any variable that is not a

basic variable is called a nonbasic variable.

1
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�

0

2 . 5 Summary 45



Let BV be the set of basic variables for A
x � b
 and NBV be the set of nonbasic vari-

ables for A
x � b
.

Case 1 A
x � b
 contains at least one row of the form [0 0 ��� 0�c](c 	 0). In this

case, Ax � b has no solution.

Case 2 If Case 1 does not apply and NBV, the set of nonbasic variables, is empty, then

Ax � b will have a unique solution.

Case 3 If Case 1 does not hold and NBV is nonempty, then Ax � b will have an infi-

nite number of solutions.

Linear Independence, Linear Dependence, 
and the Rank of a Matrix

A set V of m-dimensional vectors is linearly independent if the only linear combination

of vectors in V that equals 0 is the trivial linear combination. A set V of m-dimensional

vectors is linearly dependent if there is a nontrivial linear combination of the vectors in

V that adds to 0.

Let A be any m � n matrix, and denote the rows of A by r1, r2, . . . , rm. Also define

R � {r1, r2, . . . , rm}. The rank of A is the number of vectors in the largest linearly in-

dependent subset of R. To find the rank of a given matrix A, apply the Gauss–Jordan

method to the matrix A. Let the final result be the matrix A�. Then rank A � rank A� �

number of nonzero rows in A�.

To determine if a set of vectors V � {v1, v2, . . . , vm} is linearly dependent, form the

matrix A whose ith row is vi. A will have m rows. If rank A � m, then V is a linearly in-

dependent set of vectors; if rank A � m, then V is a linearly dependent set of vectors.

Inverse of a Matrix

For a given square (m � m) matrix A, if AB � BA � Im, then B is the inverse of A (writ-

ten B � A�1). The Gauss–Jordan method for inverting an m � m matrix A to get A�1 is

as follows:

Step 1 Write down the m � 2m matrix A�Im.

Step 2 Use EROs to transform A�Im into Im�B. This will only be possible if rank A � m.

In this case, B � A�1. If rank A � m, then A has no inverse.

Determinants

Associated with any square (m � m) matrix A is a number called the determinant of A

(written det A or �A�). For a 1 � 1 matrix, det A � a11. For a 2 � 2 matrix, det A �

a11a22 � a21a12. For a general m � m matrix, we can find det A by repeated application

of the following formula (valid for i � 1, 2, . . . , m):

det A � (�1)i�1ai1(det Ai1) � (�1)i�2ai2(det Ai2) � ��� � (�1)i�maim(det Aim)

Here Aij is the ijth minor of A, which is the (m � 1) � (m � 1) matrix obtained from A

after deleting the ith row and jth column of A.
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1 Find all solutions to the following linear system:

x1 � x2 � x3 � 2

x1 � 2x2 � x3 � 3

x1 � 2x2 � x3 � 5

2 Find the inverse of the matrix � �.

3 Each year, 20% of all untenured State University faculty
become tenured, 5% quit, and 75% remain untenured. Each
year, 90% of all tenured S.U. faculty remain tenured and
10% quit. Let Ut be the number of untenured S.U. faculty
at the beginning of year t, and Tt the tenured number.

Use matrix multiplication to relate the vector � � to

the vector � �.

4 Use the Gauss–Jordan method to determine all solutions
to the following linear system:

2x1 � 3x2 � 3

x1 � x2 � 1

x1 � 2x2 � 2

5 Find the inverse of the matrix � �.

6 The grades of two students during their last semester at
S.U. are shown in Table 2.

Courses 1 and 2 are four-credit courses, and courses 3
and 4 are three-credit courses. Let GPAi be the semester
grade point average for student i. Use matrix multiplication

to express the vector � � in terms of the information
given in the problem.

7 Use the Gauss–Jordan method to find all solutions to the
following linear system:

2x1 � x2 � 3

3x1 � x2 � 4

x1 � x2 � 0

8 Find the inverse of the matrix � �.

9 Let Ct � number of children in Indiana at the beginning
of year t, and At � number of adults in Indiana at the
beginning of year t. During any given year, 5% of all children
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become adults, and 1% of all children die. Also, during any
given year, 3% of all adults die. Use matrix multiplication

to express the vector � � in terms of � �.

10 Use the Gauss–Jordan method to find all solutions to
the following linear equation system:

x1 � x2� x3 � 4

x1 �x2 � x3 � 2

x1 � x2 � x3� 5

11 Use the Gauss–Jordan method to find the inverse of the

matrix � �.

12 During any given year, 10% of all rural residents move
to the city, and 20% of all city residents move to a rural area
(all other people stay put!). Let Rt be the number of rural
residents at the beginning of year t, and Ct be the number
of city residents at the beginning of year t. Use matrix

multiplication to relate the vector � � to the vector � �.

13 Determine whether the set V � {[1 2 1], 
[2 0 0]} is a linearly independent set of vectors.

14 Determine whether the set V � {[1 0 0], [0 1 0],
[�1 �1 0]} is a linearly independent set of vectors.

15 Let A � � �.
a For what values of a, b, c, and d will A�1 exist?

b If A�1 exists, then find it.

16 Show that the following linear system has an infinite
number of solutions:

� �� � � � �
17 Before paying employee bonuses and state and federal
taxes, a company earns profits of $60,000. The company
pays employees a bonus equal to 5% of after-tax profits.
State tax is 5% of profits (after bonuses are paid). Finally,
federal tax is 40% of profits (after bonuses and state tax are
paid). Determine a linear equation system to find the
amounts paid in bonuses, state tax, and federal tax.

18 Find the determinant of the matrix A � � �.

19 Show that any 2 � 2 matrix A that does not have an
inverse will have det A � 0.
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Course

Student 1 2 3 4

1 3.6 3.8 2.6 3.4

2 2.7 3.1 2.9 3.6
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Group A



Group B

20 Let A be an m � m matrix.

a Show that if rank A � m, then Ax � 0 has a unique
solution. What is the unique solution?

b Show that if rank A � m, then Ax � 0 has an infi-
nite number of solutions.

21 Consider the following linear system:

[x1 x2 ��� xn] � [x1 x2 ��� xn]P

where

P � � �
If the sum of each row of the P matrix equals 1, then use
Problem 20 to show that this linear system has an infinite
number of solutions.

22† The national economy of Seriland manufactures three
products: steel, cars, and machines. (1) To produce $1 of
steel requires 30¢ of steel, 15¢ of cars, and 40¢ of machines.
(2) To produce $1 of cars requires 45¢ of steel, 20¢ of cars,
and 10¢ of machines. (3) To produce $1 of machines requires
40¢ of steel, 10¢ of cars, and 45¢ of machines. During the
coming year, Seriland wants to consume ds dollars of steel,
dc dollars of cars, and dm dollars of machinery.

For the coming year, let

s � dollar value of steel produced

c � dollar value of cars produced

m � dollar value of machines produced
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Define A to be the 3 � 3 matrix whose ijth element is the
dollar value of product i required to produce $1 of product
j (steel � product 1, cars � product 2, machinery � prod-
uct 3).

a Determine A.

b Show that

� � � A� � � � � (24)

(Hint: Observe that the value of next year’s steel production
� (next year’s consumer steel demand) � (steel needed to
make next year’s steel) � (steel needed to make next year’s
cars) � (steel needed to make next year’s machines). This
should give you the general idea.)

c Show that Equation (24) may be rewritten as

(I � A)� � � � �
d Given values for ds, dc, and dm, describe how you
can use (I � A)�1 to determine if Seriland can meet
next year’s consumer demand.

e Suppose next year’s demand for steel increases by
$1. This will increase the value of the steel, cars, and
machines that must be produced next year. In terms of
(I � A)�1, determine the change in next year’s produc-
tion requirements.
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R E F E R E N C E S

The following references contain more advanced discus-
sions of linear algebra. To understand the theory of lin-
ear and nonlinear programming, master at least one of
these books:

Dantzig, G. Linear Programming and Extensions. Prince-
ton, N.J.: Princeton University Press, 1963.

Hadley, G. Linear Algebra. Reading, Mass.: Addison-
Wesley, 1961.

Strang, G. Linear Algebra and Its Applications, 3d ed. Or-
lando, Fla.: Academic Press, 1988.

Leontief, W. Input–Output Economics. New York: Oxford
University Press, 1966.

Teichroew, D. An Introduction to Management Science: De-
terministic Models. New York: Wiley, 1964. A more ex-
tensive discussion of linear algebra than this chapter
gives (at a comparable level of difficulty).

†Based on Leontief (1966). See references at end of chapter.
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E X A M P L E  1 Giapetto’s Woodcarving

3

Introduction to Linear Programming

Linear programming (LP) is a tool for solving optimization problems. In 1947, George Dantzig de-

veloped an efficient method, the simplex algorithm, for solving linear programming problems (also

called LP). Since the development of the simplex algorithm, LP has been used to solve optimiza-

tion problems in industries as diverse as banking, education, forestry, petroleum, and trucking. In

a survey of Fortune 500 firms, 85% of the respondents said they had used linear programming.

As a measure of the importance of linear programming in operations research, approximately 70%

of this book will be devoted to linear programming and related optimization techniques.

In Section 3.1, we begin our study of linear programming by describing the general char-

acteristics shared by all linear programming problems. In Sections 3.2 and 3.3, we learn how

to solve graphically those linear programming problems that involve only two variables. Solv-

ing these simple LPs will give us useful insights for solving more complex LPs. The remainder

of the chapter explains how to formulate linear programming models of real-life situations.

3.1 What Is a Linear Programming Problem?

In this section, we introduce linear programming and define important terms that are used

to describe linear programming problems.

Giapetto’s Woodcarving, Inc., manufactures two types of wooden toys: soldiers and trains.

A soldier sells for $27 and uses $10 worth of raw materials. Each soldier that is manu-

factured increases Giapetto’s variable labor and overhead costs by $14. A train sells for

$21 and uses $9 worth of raw materials. Each train built increases Giapetto’s variable la-

bor and overhead costs by $10. The manufacture of wooden soldiers and trains requires

two types of skilled labor: carpentry and finishing. A soldier requires 2 hours of finishing

labor and 1 hour of carpentry labor. A train requires 1 hour of finishing and 1 hour of car-

pentry labor. Each week, Giapetto can obtain all the needed raw material but only 100 fin-

ishing hours and 80 carpentry hours. Demand for trains is unlimited, but at most 40 sol-

diers are bought each week. Giapetto wants to maximize weekly profit (revenues � costs).

Formulate a mathematical model of Giapetto’s situation that can be used to maximize Gi-

apetto’s weekly profit.

Solution In developing the Giapetto model, we explore characteristics shared by all linear pro-

gramming problems.

Decision Variables We begin by defining the relevant decision variables. In any linear

programming model, the decision variables should completely describe the decisions to

be made (in this case, by Giapetto). Clearly, Giapetto must decide how many soldiers and

trains should be manufactured each week. With this in mind, we define



x1 � number of soldiers produced each week

x2 � number of trains produced each week

Objective Function In any linear programming problem, the decision maker wants to max-

imize (usually revenue or profit) or minimize (usually costs) some function of the deci-

sion variables. The function to be maximized or minimized is called the objective func-

tion. For the Giapetto problem, we note that fixed costs (such as rent and insurance) do

not depend on the values of x1 and x2. Thus, Giapetto can concentrate on maximizing

(weekly revenues) � (raw material purchase costs) � (other variable costs).

Giapetto’s weekly revenues and costs can be expressed in terms of the decision vari-

ables x1 and x2. It would be foolish for Giapetto to manufacture more soldiers than can

be sold, so we assume that all toys produced will be sold. Then

Weekly revenues � weekly revenues from soldiers

� weekly revenues from trains
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� 27x1 � 21x2

Also,

Weekly raw material costs � 10x1 � 9x2

Other weekly variable costs � 14x1 � 10x2

Then Giapetto wants to maximize

(27x1 � 21x2) � (10x1 � 9x2) � (14x1 � 10x2) � 3x1 � 2x2

Another way to see that Giapetto wants to maximize 3x1 � 2x2 is to note that

Weekly revenues � weekly contribution to profit from soldiers

� weekly nonfixed costs � weekly contribution to profit from trains

� � � ��so

w

ld

ee

ie

k

rs
��

� � � ��tw
ra

e

i

e

n

k

s
��

Also,

� 27 � 10 � 14 � 3

� 21 � 9 � 10 � 2

Then, as before, we obtain

Weekly revenues � weekly nonfixed costs � 3x1 � 2x2

Thus, Giapetto’s objective is to choose x1 and x2 to maximize 3x1 � 2x2. We use the vari-

able z to denote the objective function value of any LP. Giapetto’s objective function is

Maximize z � 3x1 � 2x2 (1)

(In the future, we will abbreviate “maximize” by max and “minimize” by min.) The co-

efficient of a variable in the objective function is called the objective function coefficient

of the variable. For example, the objective function coefficient for x1 is 3, and the objec-

tive function coefficient for x2 is 2. In this example (and in many other problems), the ob-

Contribution to profit
���

Contribution to profit
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contribution to profit
���

contribution to profit
���
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jective function coefficient for each variable is simply the contribution of the variable to

the company’s profit.

Constraints As x1 and x2 increase, Giapetto’s objective function grows larger. This means

that if Giapetto were free to choose any values for x1 and x2, the company could make an

arbitrarily large profit by choosing x1 and x2 to be very large. Unfortunately, the values of

x1 and x2 are limited by the following three restrictions (often called constraints):

Constraint 1 Each week, no more than 100 hours of finishing time may be used.

Constraint 2 Each week, no more than 80 hours of carpentry time may be used.

Constraint 3 Because of limited demand, at most 40 soldiers should be produced each

week.

The amount of raw material available is assumed to be unlimited, so no restrictions have

been placed on this.

The next step in formulating a mathematical model of the Giapetto problem is to ex-

press Constraints 1–3 in terms of the decision variables x1 and x2. To express Constraint

1 in terms of x1 and x2, note that
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Now Constraint 1 may be expressed by

2x1 � x2 � 100 (2)

Note that the units of each term in (2) are finishing hours per week. For a constraint to

be reasonable, all terms in the constraint must have the same units. Otherwise one is

adding apples and oranges, and the constraint won’t have any meaning.

To express Constraint 2 in terms of x1 and x2, note that
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Then Constraint 2 may be written as

x1 � x2 � 80 (3)

Again, note that the units of each term in (3) are the same (in this case, carpentry hours

per week).

Finally, we express the fact that at most 40 soldiers per week can be sold by limiting the

weekly production of soldiers to at most 40 soldiers. This yields the following constraint:

x1 � 40 (4)

Thus (2)–(4) express Constraints 1–3 in terms of the decision variables; they are called

the constraints for the Giapetto linear programming problem. The coefficients of the de-

cision variables in the constraints are called technological coefficients. This is because

the technological coefficients often reflect the technology used to produce different prod-

ucts. For example, the technological coefficient of x2 in (3) is 1, indicating that a soldier

requires 1 carpentry hour. The number on the right-hand side of each constraint is called

Total carpentry hrs.
���

Total finishing hrs.
��
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the constraint’s right-hand side (or rhs). Often the rhs of a constraint represents the quan-

tity of a resource that is available.

Sign Restrictions To complete the formulation of a linear programming problem, the fol-

lowing question must be answered for each decision variable: Can the decision variable

only assume nonnegative values, or is the decision variable allowed to assume both pos-

itive and negative values?

If a decision variable xi can only assume nonnegative values, then we add the sign re-

striction xi � 0. If a variable xi can assume both positive and negative (or zero) values,

then we say that xi is unrestricted in sign (often abbreviated urs). For the Giapetto prob-

lem, it is clear that x1 � 0 and x2 � 0. In other problems, however, some variables may

be urs. For example, if xi represented a firm’s cash balance, then xi could be considered

negative if the firm owed more money than it had on hand. In this case, it would be ap-

propriate to classify xi as urs. Other uses of urs variables are discussed in Section 4.12.

Combining the sign restrictions x1 � 0 and x2 � 0 with the objective function (1) and

Constraints (2)–(4) yields the following optimization model:

max z � 3x1 � 2x2 (Objective function) (1)

subject to (s.t.)

2x1 � x2 � 100 (Finishing constraint) (2)

x1 � x2 � 80 (Carpentry constraint) (3)

x1 � x2 � 40 (Constraint on demand for soldiers) (4)

x1 � x2 � 0 (Sign restriction)† (5)

x1 � x2 � 0 (Sign restriction) (6)

“Subject to” (s.t.) means that the values of the decision variables x1 and x2 must satisfy

all constraints and all sign restrictions.

Before formally defining a linear programming problem, we define the concepts of linear

function and linear inequality.

D E F I N I T I O N ■ A function f (x1, x2, . . . , xn) of x1, x2, . . . , xn is a linear function if and only if

for some set of constants c1, c2, . . . , cn, f(x1, x2, . . . , xn) � c1x1 � c2x2 � ��� �

cnxn. ■

For example, f (x1, x2) � 2x1 � x2 is a linear function of x1 and x2, but f (x1, x2) � x2
1x2

is not a linear function of x1 and x2.

D E F I N I T I O N ■ For any linear function f (x1, x2, . . . , xn) and any number b, the inequalities f (x1,

x2, . . . , xn) � b and f (x1, x2, . . . , xn) � b are linear inequalities. ■

Thus, 2x1 � 3x2 � 3 and 2x1 � x2 � 3 are linear inequalities, but x2
1x2 � 3 is not a

linear inequality.
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†The sign restrictions do constrain the values of the decision variables, but we choose to consider the sign re-

strictions as being separate from the constraints. The reason for this will become apparent when we study the

simplex algorithm in Chapter 4.



D E F I N I T I O N ■ A linear programming problem (LP) is an optimization problem for which we

do the following:

1 We attempt to maximize (or minimize) a linear function of the decision vari-

ables. The function that is to be maximized or minimized is called the objective

function.

2 The values of the decision variables must satisfy a set of constraints. Each con-

straint must be a linear equation or linear inequality.

3 A sign restriction is associated with each variable. For any variable xi, the sign

restriction specifies that xi must be either nonnegative (xi � 0) or unrestricted in

sign (urs). ■

Because Giapetto’s objective function is a linear function of x1 and x2, and all of Gia-

petto’s constraints are linear inequalities, the Giapetto problem is a linear programming

problem. Note that the Giapetto problem is typical of a wide class of linear programming

problems in which a decision maker’s goal is to maximize profit subject to limited resources.

The Proportionality and Additivity Assumptions

The fact that the objective function for an LP must be a linear function of the decision

variables has two implications.

1 The contribution of the objective function from each decision variable is proportional

to the value of the decision variable. For example, the contribution to the objective func-

tion from making four soldiers (4 	 3 � $12) is exactly four times the contribution to

the objective function from making one soldier ($3).

2 The contribution to the objective function for any variable is independent of the val-

ues of the other decision variables. For example, no matter what the value of x2, the man-

ufacture of x1 soldiers will always contribute 3x1 dollars to the objective function.

Analogously, the fact that each LP constraint must be a linear inequality or linear equa-

tion has two implications.

1 The contribution of each variable to the left-hand side of each constraint is propor-

tional to the value of the variable. For example, it takes exactly three times as many fin-

ishing hours (2 	 3 � 6 finishing hours) to manufacture three soldiers as it takes to man-

ufacture one soldier (2 finishing hours).

2 The contribution of a variable to the left-hand side of each constraint is independent

of the values of the variable. For example, no matter what the value of x1, the manufac-

ture of x2 trains uses x2 finishing hours and x2 carpentry hours.

The first implication given in each list is called the Proportionality Assumption of Lin-

ear Programming. Implication 2 of the first list implies that the value of the objective

function is the sum of the contributions from individual variables, and implication 2 of

the second list implies that the left-hand side of each constraint is the sum of the contri-

butions from each variable. For this reason, the second implication in each list is called

the Additivity Assumption of Linear Programming.

For an LP to be an appropriate representation of a real-life situation, the decision vari-

ables must satisfy both the Proportionality and Additivity Assumptions. Two other as-

sumptions must also be satisfied before an LP can appropriately represent a real situation:

the Divisibility and Certainty Assumptions.
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The Divisibility Assumption

The Divisibility Assumption requires that each decision variable be allowed to assume

fractional values. For example, in the Giapetto problem, the Divisibility Assumption im-

plies that it is acceptable to produce 1.5 soldiers or 1.63 trains. Because Giapetto can-

not actually produce a fractional number of trains or soldiers, the Divisibility Assump-

tion is not satisfied in the Giapetto problem. A linear programming problem 

in which some or all of the variables must be nonnegative integers is called an integer 

programming problem. The solution of integer programming problems is discussed in

Chapter 9.

In many situations where divisibility is not present, rounding off each variable in the

optimal LP solution to an integer may yield a reasonable solution. Suppose the optimal

solution to an LP stated that an auto company should manufacture 150,000.4 compact cars

during the current year. In this case, you could tell the auto company to manufacture

150,000 or 150,001 compact cars and be fairly confident that this would reasonably ap-

proximate an optimal production plan. On the other hand, if the number of missile sites

that the United States should use were a variable in an LP and the optimal LP solution

said that 0.4 missile sites should be built, it would make a big difference whether we

rounded the number of missile sites down to 0 or up to 1. In this situation, the integer

programming methods of Chapter 9 would have to be used, because the number of mis-

sile sites is definitely not divisible.

The Certainty Assumption

The Certainty Assumption is that each parameter (objective function coefficient, right-

hand side, and technological coefficient) is known with certainty. If we were unsure of the

exact amount of carpentry and finishing hours required to build a train, the Certainty As-

sumption would be violated.

Feasible Region and Optimal Solution

Two of the most basic concepts associated with a linear programming problem are feasi-

ble region and optimal solution. For defining these concepts, we use the term point to

mean a specification of the value for each decision variable.

D E F I N I T I O N ■ The feasible region for an LP is the set of all points that satisfies all the LP’s

constraints and sign restrictions. ■

For example, in the Giapetto problem, the point (x1 � 40, x2 � 20) is in the feasible

region. Note that x1 � 40 and x2 � 20 satisfy the constraints (2)–(4) and the sign re-

strictions (5)–(6):

Constraint (2), 2x1 � x2 � 100, is satisfied, because 2(40) � 20 � 100.

Constraint (3), x1 � x2 � 80, is satisfied, because 40 � 20 � 80.

Constraint (4), x1 � 40, is satisfied, because 40 � 40.

Restriction (5), x1 � 0, is satisfied, because 40 � 0.

Restriction (6), x2 � 0, is satisfied, because 20 � 0.
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1 Farmer Jones must determine how many acres of corn
and wheat to plant this year. An acre of wheat yields 25
bushels of wheat and requires 10 hours of labor per week.
An acre of corn yields 10 bushels of corn and requires 4
hours of labor per week. All wheat can be sold at $4 a
bushel, and all corn can be sold at $3 a bushel. Seven acres
of land and 40 hours per week of labor are available.
Government regulations require that at least 30 bushels of
corn be produced during the current year. Let x1 � number
of acres of corn planted, and x2 � number of acres of wheat
planted. Using these decision variables, formulate an LP
whose solution will tell Farmer Jones how to maximize the
total revenue from wheat and corn.

2 Answer these questions about Problem 1.

a Is (x1 � 2, x2 � 3) in the feasible region?

b Is (x1 � 4, x2 � 3) in the feasible region?

c Is (x1 � 2, x2 � �1) in the feasible region?

d Is (x1 � 3, x2 � 2) in the feasible region?

3 Using the variables x1 � number of bushels of corn

On the other hand, the point (x1 � 15, x2 � 70) is not in the feasible region, because even

though x1 � 15 and x2 � 70 satisfy (2), (4), (5), and (6), they fail to satisfy (3): 15 � 70

is not less than or equal to 80. Any point that is not in an LP’s feasible region is said to

be an infeasible point. As another example of an infeasible point, consider (x1 � 40, 

x2 � �20). Although this point satisfies all the constraints and the sign restriction (5), it

is infeasible because it fails to satisfy the sign restriction (6), x2 � 0. The feasible region

for the Giapetto problem is the set of possible production plans that Giapetto must con-

sider in searching for the optimal production plan.

D E F I N I T I O N ■ For a maximization problem, an optimal solution to an LP is a point in the

feasible region with the largest objective function value. Similarly, for a

minimization problem, an optimal solution is a point in the feasible region with

the smallest objective function value. ■

Most LPs have only one optimal solution. However, some LPs have no optimal 

solution, and some LPs have an infinite number of solutions (these situations are 

discussed in Section 3.3). In Section 3.2, we show that the unique optimal solution to 

the Giapetto problem is (x1 � 20, x2 � 60). This solution yields an objective function 

value of

z � 3x1 � 2x2 � 3(20) � 2(60) � $180

When we say that (x1 � 20, x2 � 60) is the optimal solution to the Giapetto problem, we

are saying that no point in the feasible region has an objective function value that exceeds

180. Giapetto can maximize profit by building 20 soldiers and 60 trains each week. If Gi-

apetto were to produce 20 soldiers and 60 trains each week, the weekly profit would be

$180 less weekly fixed costs. For example, if Giapetto’s only fixed cost were rent of $100

per week, then weekly profit would be 180 � 100 � $80 per week.

P R O B L E M S
Group A

produced and x2 � number of bushels of wheat produced,
reformulate Farmer Jones’s LP.

4 Truckco manufactures two types of trucks: 1 and 2.
Each truck must go through the painting shop and assembly
shop. If the painting shop were completely devoted to
painting Type 1 trucks, then 800 per day could be painted;
if the painting shop were completely devoted to painting
Type 2 trucks, then 700 per day could be painted. If the
assembly shop were completely devoted to assembling truck
1 engines, then 1,500 per day could be assembled; if the
assembly shop were completely devoted to assembling truck
2 engines, then 1,200 per day could be assembled. Each
Type 1 truck contributes $300 to profit; each Type 2 truck
contributes $500. Formulate an LP that will maximize
Truckco’s profit.

Group B

5 Why don’t we allow an LP to have 
 or � constraints?



3.2 The Graphical Solution of Two-Variable Linear Programming Problems

Any LP with only two variables can be solved graphically. We always label the variables

x1 and x2 and the coordinate axes the x1 and x2 axes. Suppose we want to graph the set

of points that satisfies

2x1 � 3x2 � 6 (7)

The same set of points (x1, x2) satisfies

3x2 � 6 � 2x1

This last inequality may be rewritten as

x2 � �
1

3
�(6 � 2x1) � 2 � �

2

3
�x1 (8)

Because moving downward on the graph decreases x2 (see Figure 1), the set of points that

satisfies (8) and (7) lies on or below the line x2 � 2 � �
2

3
�x1. This set of points is indicated 

by darker shading in Figure 1. Note, however, that x2 � 2 � �
2

3
�x1, 3x2 � 6 � 2x1, and 2x1 �

3x2 � 6 are all the same line. This means that the set of points satisfying (7) lies on or be-

low the line 2x1 � 3x2 � 6. Similarly, the set of points satisfying 2x1 � 3x2 � 6 lies on or

above the line 2x1 � 3x2 � 6. (These points are shown by lighter shading in Figure 1.)

Consider a linear inequality constraint of the form f(x1, x2) � b or f(x1, x2) � b. In

general, it can be shown that in two dimensions, the set of points that satisfies a linear in-

equality includes the points on the line f(x1, x2) � b, defining the inequality plus all points

on one side of the line.

There is an easy way to determine the side of the line for which an inequality such as 

f(x1, x2) � b or f(x1, x2) � b is satisfied. Just choose any point P that does not satisfy the line

f(x1, x2) � b. Determine whether P satisfies the inequality. If it does, then all points on the

same side as P of f(x1, x2) � b will satisfy the inequality. If P does not satisfy the inequality,

then all points on the other side of f(x1, x2) � b, which does not contain P, will satisfy the in-

equality. For example, to determine whether 2x1 � 3x2 � 6 is satisfied by points above or be-

low the line 2x1 � 3x2 � 6, we note that (0, 0) does not satisfy 2x1 � 3x2 � 6. Because (0,

0) is below the line 2x1 � 3x2 � 6, the set of points satisfying 2x1 � 3x2 � 6 includes the

line 2x1 � 3x2 � 6 and the points above the line 2x1 � 3x2 � 6. This agrees with Figure 1.
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Finding the Feasible Solution

We illustrate how to solve two-variable LPs graphically by solving the Giapetto problem.

To begin, we graphically determine the feasible region for Giapetto’s problem. The feasi-

ble region for the Giapetto problem is the set of all points (x1, x2) satisfying

2x1 � x2 � 100 (Constraints) (2)

x1 � x2 � 80 (3)

x1 � x2 � 40 (4)

x1 � x2 � 0 (Sign restrictions) (5)

x1 � x2 � 0 (6)

For a point (x1, x2) to be in the feasible region, (x1, x2) must satisfy all the inequalities

(2)–(6). Note that the only points satisfying (5) and (6) lie in the first quadrant of the x1–x2

plane. This is indicated in Figure 2 by the arrows pointing to the right from the x2 axis

and upward from the x1 axis. Thus, any point that is outside the first quadrant cannot be

in the feasible region. This means that the feasible region will be the set of points in the

first quadrant that satisfies (2)–(4).

Our method for determining the set of points that satisfies a linear inequality will also

identify those that meet (2)–(4). From Figure 2, we see that (2) is satisfied by all points

below or on the line AB (AB is the line 2x1 � x2 � 100). Inequality (3) is satisfied by all

points on or below the line CD (CD is the line x1 � x2 � 80). Finally, (4) is satisfied by

all points on or to the left of line EF (EF is the line x1 � 40). The side of a line that sat-

isfies an inequality is indicated by the direction of the arrows in Figure 2.

From Figure 2, we see that the set of points in the first quadrant that satisfies (2), (3),

and (4) is bounded by the five-sided polygon DGFEH. Any point on this polygon or in

its interior is in the feasible region. Any other point fails to satisfy at least one of the in-

equalities (2)–(6). For example, the point (40, 30) lies outside DGFEH because it is above

the line segment AB. Thus (40, 30) is infeasible, because it fails to satisfy (2).
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An easy way to find the feasible region is to determine the set of infeasible points. Note

that all points above line AB in Figure 2 are infeasible, because they fail to satisfy (2).

Similarly, all points above CD are infeasible, because they fail to satisfy (3). Also, all

points to the right of the vertical line EF are infeasible, because they fail to satisfy (4).

After these points are eliminated from consideration, we are left with the feasible region

(DGFEH).

Finding the Optimal Solution

Having identified the feasible region for the Giapetto problem, we now search for the op-

timal solution, which will be the point in the feasible region with the largest value of z �

3x1 � 2x2. To find the optimal solution, we need to graph a line on which all points have

the same z-value. In a max problem, such a line is called an isoprofit line (in a min prob-

lem, an isocost line). To draw an isoprofit line, choose any point in the feasible region

and calculate its z-value. Let us choose (20, 0). For (20, 0), z � 3(20) � 2(0) � 60. Thus,

(20, 0) lies on the isoprofit line z � 3x1 � 2x2 � 60. Rewriting 3x1 � 2x2 � 60 as x2 �

30 � �
3

2
�x1, we see that the isoprofit line 3x1 � 2x2 � 60 has a slope of ��

3

2
�. Because all

isoprofit lines are of the form 3x1 � 2x2 � constant, all isoprofit lines have the same

slope. This means that once we have drawn one isoprofit line, we can find all other iso-

profit lines by moving parallel to the isoprofit line we have drawn.

It is now clear how to find the optimal solution to a two-variable LP. After you have

drawn a single isoprofit line, generate other isoprofit lines by moving parallel to the drawn

isoprofit line in a direction that increases z (for a max problem). After a point, the iso-

profit lines will no longer intersect the feasible region. The last isoprofit line intersecting

(touching) the feasible region defines the largest z-value of any point in the feasible re-

gion and indicates the optimal solution to the LP. In our problem, the objective function

z � 3x1 � 2x2 will increase if we move in a direction for which both x1 and x2 increase.

Thus, we construct additional isoprofit lines by moving parallel to 3x1 � 2x2 � 60 in a

northeast direction (upward and to the right). From Figure 2, we see that the isoprofit line

passing through point G is the last isoprofit line to intersect the feasible region. Thus, G

is the point in the feasible region with the largest z-value and is therefore the optimal so-

lution to the Giapetto problem. Note that point G is where the lines 2x1 � x2 � 100 and

x1 � x2 � 80 intersect. Solving these two equations simultaneously, we find that (x1 �

20, x2 � 60) is the optimal solution to the Giapetto problem. The optimal value of z may

be found by substituting these values of x1 and x2 into the objective function. Thus, the

optimal value of z is z � 3(20) � 2(60) � 180.

Binding and Nonbinding Constraints

Once the optimal solution to an LP has been found, it is useful (see Chapters 5 and 6) to

classify each constraint as being a binding constraint or a nonbinding constraint.

D E F I N I T I O N ■ A constraint is binding if the left-hand side and the right-hand side of the

constraint are equal when the optimal values of the decision variables are

substituted into the constraint. ■

Thus, (2) and (3) are binding constraints.
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D E F I N I T I O N ■ A constraint is nonbinding if the left-hand side and the right-hand side of the

constraint are unequal when the optimal values of the decision variables are

substituted into the constraint. ■

Because x1 � 20 is less than 40, (4) is a nonbinding constraint.

Convex Sets, Extreme Points, and LP

The feasible region for the Giapetto problem is an example of a convex set.

D E F I N I T I O N ■ A set of points S is a convex set if the line segment joining any pair of points in

S is wholly contained in S. ■

Figure 3 gives four illustrations of this definition. In Figures 3a and 3b, each line seg-

ment joining two points in S contains only points in S. Thus, in both these figures, S is

convex. In Figures 3c and 3d, S is not convex. In each figure, points A and B are in S, but

there are points on the line segment AB that are not contained in S. In our study of linear

programming, a certain type of point in a convex set (called an extreme point) is of great

interest.

D E F I N I T I O N ■ For any convex set S, a point P in S is an extreme point if each line segment that

lies completely in S and contains the point P has P as an endpoint of the line

segment. ■

For example, in Figure 3a, each point on the circumference of the circle is an extreme

point of the circle. In Figure 3b, points A, B, C, and D are extreme points of S. Although

point E is on the boundary of S in Figure 3b, E is not an extreme point of S. This is be-

cause E lies on the line segment AB (AB lies completely in S), and E is not an endpoint of

the line segment AB. Extreme points are sometimes called corner points, because if the

set S is a polygon, the extreme points of S will be the vertices, or corners, of the polygon.

The feasible region for the Giapetto problem is a convex set. This is no accident: It can

be shown that the feasible region for any LP will be a convex set. From Figure 2, we see

that the extreme points of the feasible region are simply points D, F, E, G, and H. It can

be shown that the feasible region for any LP has only a finite number of extreme points.

Also note that the optimal solution to the Giapetto problem (point G) is an extreme point

of the feasible region. It can be shown that any LP that has an optimal solution has an

extreme point that is optimal. This result is very important, because it reduces the set of

points that yield an optimal solution from the entire feasible region (which generally con-

tains an infinite number of points) to the set of extreme points (a finite set).
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For the Giapetto problem, it is easy to see why the optimal solution must be an extreme

point of the feasible region. We note that z increases as we move isoprofit lines in a northeast

direction, so the largest z-value in the feasible region must occur at some point P that has no

points in the feasible region northeast of P. This means that the optimal solution must lie some-

where on the boundary of the feasible region DGFEH. The LP must have an extreme point

that is optimal, because for any line segment on the boundary of the feasible region, the largest

z-value on that line segment must be assumed at one of the endpoints of the line segment.

To see this, look at the line segment FG in Figure 2. FG is part of the line 2x1 �

x2 � 100 and has a slope of �2. If we move along FG and decrease x1 by 1, then x2 will

increase by 2, and the value of z changes as follows: 3x1 goes down by 3(1) � 3, and 2x2

goes up by 2(2) � 4. Thus, in total, z increases by 4 � 3 � 1. This means that moving

along FG in a direction of decreasing x1 increases z. Thus, the value of z at point G must

exceed the value of z at any other point on the line segment FG.

A similar argument shows that for any objective function, the maximum value of z on

a given line segment must occur at an endpoint of the line segment. Therefore, for any

LP, the largest z-value in the feasible region must be attained at an endpoint of one of the

line segments forming the boundary of the feasible region. In short, one of the extreme

points of the feasible region must be optimal. (To test your understanding, show that if

Giapetto’s objective function were z � 6x1 � x2, point F would be optimal, whereas if

Giapetto’s objective function were z � x1 � 6x2, point D would be optimal.)

Our proof that an LP always has an optimal extreme point depended heavily on the fact

that both the objective function and the constraints were linear functions. In Chapter 11,

we show that for an optimization problem in which the objective function or some of the

constraints are not linear, the optimal solution to the optimization problem may not occur

at an extreme point.

The Graphical Solution of Minimization Problems

Dorian Auto manufactures luxury cars and trucks. The company believes that its most

likely customers are high-income women and men. To reach these groups, Dorian Auto

has embarked on an ambitious TV advertising campaign and has decided to purchase 

1-minute commercial spots on two types of programs: comedy shows and football games.

Each comedy commercial is seen by 7 million high-income women and 2 million high-

income men. Each football commercial is seen by 2 million high-income women and 12

million high-income men. A 1-minute comedy ad costs $50,000, and a 1-minute football

ad costs $100,000. Dorian would like the commercials to be seen by at least 28 million

high-income women and 24 million high-income men. Use linear programming to deter-

mine how Dorian Auto can meet its advertising requirements at minimum cost.

Solution Dorian must decide how many comedy and football ads should be purchased, so the de-

cision variables are

x1 � number of 1-minute comedy ads purchased

x2 � number of 1-minute football ads purchased

Then Dorian wants to minimize total advertising cost (in thousands of dollars).

Total advertising cost � cost of comedy ads � cost of football ads

� ��com

c

e

o

d

s

y

t

ad
�� � � � � � � �

� 50x1 � 100x2

total

football ads

cost
��

total

comedy ads
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Thus, Dorian’s objective function is

min z � 50x1 � 100x2 (9)

Dorian faces the following constraints:

Constraint 1 Commercials must reach at least 28 million high-income women.

Constraint 2 Commercials must reach at least 24 million high-income men.

To express Constraints 1 and 2 in terms of x1 and x2, let HIW stand for high-income

women viewers and HIM stand for high-income men viewers (in millions).

HIW � ��com

H

e

I

d

W

y ad
�� � � � ��foo

H

tb

I

a
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ll ad
�� � �
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HIM � ��com
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I

d
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y ad
�� � � � ��foo

H
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I

a

M

ll ad
�� � �

� 2x1 � 12x2

Constraint 1 may now be expressed as

7x1 � 2x2 � 28 (10)

and Constraint 2 may be expressed as

2x1 � 12x2 � 24 (11)

The sign restrictions x1 � 0 and x2 � 0 are necessary, so the Dorian LP is given by:

min z � 50x1 � 100x2

s.t. 7x1 � 2x2 � 28 (HIW)

s.t. 2x1 � 12x2 � 24 (HIM)

x1, x2 � 0

This problem is typical of a wide range of LP applications in which a decision maker

wants to minimize the cost of meeting a certain set of requirements. To solve this LP

graphically, we begin by graphing the feasible region (Figure 4). Note that (10) is satis-

fied by points on or above the line AB (AB is part of the line 7x1 � 2x2 � 28) and that

total
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(11) is satisfied by the points on or above the line CD (CD is part of the line 2x1 �

12x2 � 24). From Figure 4, we see that the only first-quadrant points satisfying both 

(10) and (11) are the points in the shaded region bounded by the x1 axis, CEB, and the x2 axis.

Like the Giapetto problem, the Dorian problem has a convex feasible region, but the

feasible region for Dorian, unlike Giapetto’s, contains points for which the value of at least

one variable can assume arbitrarily large values. Such a feasible region is called an un-

bounded feasible region.

Because Dorian wants to minimize total advertising cost, the optimal solution to the

problem is the point in the feasible region with the smallest z-value. To find the optimal

solution, we need to draw an isocost line that intersects the feasible region. An isocost

line is any line on which all points have the same z-value (or same cost). We arbitrarily

choose the isocost line passing through the point (x1 � 4, x2 � 4). For this point, z �

50(4) � 100(4) � 600, and we graph the isocost line z � 50x1 � 100x2 � 600.

We consider lines parallel to the isocost line 50x1 � 100x2 � 600 in the direction of

decreasing z (southwest). The last point in the feasible region that intersects an isocost

line will be the point in the feasible region having the smallest z-value. From Figure 4,

we see that point E has the smallest z-value of any point in the feasible region; this is the

optimal solution to the Dorian problem. Note that point E is where the lines 7x1 � 2x2 �

28 and 2x1 � 12x2 � 24 intersect. Simultaneously solving these equations yields the op-

timal solution (x1 � 3.6, x2 � 1.4). The optimal z-value can then be found by substitut-

ing these values of x1 and x2 into the objective function. Thus, the optimal z-value is z �

50(3.6) � 100(1.4) � 320 � $320,000. Because at point E both the HIW and HIM con-

straints are satisfied with equality, both constraints are binding.

Does the Dorian model meet the four assumptions of linear programming outlined in

Section 3.1?

For the Proportionality Assumption to be valid, each extra comedy commercial must

add exactly 7 million HIW and 2 million HIM. This contradicts empirical evidence, which

indicates that after a certain point advertising yields diminishing returns. After, say, 500

auto commercials have been aired, most people have probably seen one, so it does little

good to air more commercials. Thus, the Proportionality Assumption is violated.

We used the Additivity Assumption to justify writing (total HIW viewers) � (HIW

viewers from comedy ads) � (HIW viewers from football ads). In reality, many of the

same people will see a Dorian comedy commercial and a Dorian football commercial. We

are double-counting such people, and this creates an inaccurate picture of the total num-

ber of people seeing Dorian commercials. The fact that the same person may see more

than one type of commercial means that the effectiveness of, say, a comedy commercial

depends on the number of football commercials. This violates the Additivity Assumption.

If only 1-minute commercials are available, then it is unreasonable to say that Dorian

should buy 3.6 comedy commercials and 1.4 football commercials, so the Divisibility As-

sumption is violated, and the Dorian problem should be considered an integer program-

ming problem. In Section 9.3, we show that if the Dorian problem is solved as an integer

programming problem, then the minimum cost is attained by choosing (x1 � 6, x2 � 1)

or (x1 � 4, x2 � 2). For either solution, the minimum cost is $400,000. This is 25% higher

than the cost obtained from the optimal LP solution.

Because there is no way to know with certainty how many viewers are added by each type

of commercial, the Certainty Assumption is also violated. Thus, all the assumptions of lin-

ear programming seem to be violated by the Dorian Auto problem. Despite these drawbacks,

analysts have used similar models to help companies determine their optimal media mix.†
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P R O B L E M S
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1 Graphically solve Problem 1 of Section 3.1.

2 Graphically solve Problem 4 of Section 3.1.

3 Leary Chemical manufactures three chemicals: A, B,
and C. These chemicals are produced via two production
processes: 1 and 2. Running process 1 for an hour costs $4
and yields 3 units of A, 1 of B, and 1 of C. Running process
2 for an hour costs $1 and produces 1 unit of A and 1 of B.
To meet customer demands, at least 10 units of A, 5 of B,
and 3 of C must be produced daily. Graphically determine
a daily production plan that minimizes the cost of meeting
Leary Chemical’s daily demands.

4 For each of the following, determine the direction in
which the objective function increases:

a z � 4x1 � x2

b z � �x1 � 2x2

c z � �x1 � 3x2

5 Furnco manufactures desks and chairs. Each desk uses
4 units of wood, and each chair uses 3. A desk contributes

$40 to profit, and a chair contributes $25. Marketing
restrictions require that the number of chairs produced be at
least twice the number of desks produced. If 20 units of
wood are available, formulate an LP to maximize Furnco’s
profit. Then graphically solve the LP.

6 Farmer Jane owns 45 acres of land. She is going to plant
each with wheat or corn. Each acre planted with wheat
yields $200 profit; each with corn yields $300 profit. The
labor and fertilizer used for each acre are given in Table 1.
One hundred workers and 120 tons of fertilizer are available.
Use linear programming to determine how Jane can
maximize profits from her land.

3.3 Special Cases

The Giapetto and Dorian problems each had a unique optimal solution. In this section,

we encounter three types of LPs that do not have unique optimal solutions.

1 Some LPs have an infinite number of optimal solutions (alternative or multiple opti-

mal solutions).

2 Some LPs have no feasible solutions (infeasible LPs).

3 Some LPs are unbounded: There are points in the feasible region with arbitrarily large

(in a max problem) z-values.

Alternative or Multiple Optimal Solutions

An auto company manufactures cars and trucks. Each vehicle must be processed in the

paint shop and body assembly shop. If the paint shop were only painting trucks, then 40

per day could be painted. If the paint shop were only painting cars, then 60 per day could

be painted. If the body shop were only producing cars, then it could process 50 per day.

If the body shop were only producing trucks, then it could process 50 per day. Each truck

contributes $300 to profit, and each car contributes $200 to profit. Use linear program-

ming to determine a daily production schedule that will maximize the company’s profits.

Solution The company must decide how many cars and trucks should be produced daily. This leads

us to define the following decision variables:

x1 � number of trucks produced daily

x2 � number of cars produced daily

TA B L E  1

Wheat Corn

Labor 3 workers 2 workers

Fertilizer 2 tons 4 tons

Alternative Optimal SolutionsE X A M P L E  3



The company’s daily profit (in hundreds of dollars) is 3x1 � 2x2, so the company’s ob-

jective function may be written as

max z � 3x1 � 2x2 (12)

The company’s two constraints are the following:

Constraint 1 The fraction of the day during which the paint shop is busy is less than or

equal to 1.

Constraint 2 The fraction of the day during which the body shop is busy is less than or

equal to 1.

We have

Fraction of day paint shop works on trucks � ��fracti

t

o
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f day
�� ��trd
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y
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��

� �
4

1

0
� x1

Fraction of day paint shop works on cars � �
6

1

0
� x2

Fraction of day body shop works on trucks � �
5

1

0
� x1

Fraction of day body shop works on cars � �
5

1

0
� x2

Thus, Constraint 1 may be expressed by

�
4

1

0
� x1 � �

6

1

0
� x2 � 1 (Paint shop constraint) (13)

and Constraint 2 may be expressed by

�
5

1

0
� x1 � �

5

1

0
� x2 � 1 (Body shop constraint) (14)

Because x1 � 0 and x2 � 0 must hold, the relevant LP is

max z � 3x1 � 2x2 (12)

s.t. �
4

1

0
� x1 � �

6

1

0
� x2 � 1 (13)

�
5

1

0
� x1 � �

5

1

0
� x2 � 1 (14)

x1, x2 � 0

The feasible region for this LP is the shaded region in Figure 5 bounded by AEDF.†

For our isoprofit line, we choose the line passing through the point (20, 0). Because

(20, 0) has a z-value of 3(20) � 2(0) � 60, this yields the isoprofit line z � 3x1 �

2x2 � 60. Examining lines parallel to this isoprofit line in the direction of increasing z

(northeast), we find that the last “point” in the feasible region to intersect an isoprofit line

is the entire line segment AE. This means that any point on the line segment AE is opti-

mal. We can use any point on AE to determine the optimal z-value. For example, point A,

(40, 0), gives z � 3(40) � 120.

In summary, the auto company’s LP has an infinite number of optimal solutions, or

multiple or alternative optimal solutions. This is indicated by the fact that as an isoprofit
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line leaves the feasible region, it will intersect an entire line segment corresponding to the

binding constraint (in this case, AE).

From our current example, it seems reasonable (and can be shown to be true) that if

two points (A and E here) are optimal, then any point on the line segment joining these

two points will also be optimal.

If an alternative optimum occurs, then the decision maker can use a secondary crite-

rion to choose between optimal solutions. The auto company’s managers might prefer

point A because it would simplify their business (and still allow them to maximize prof-

its) by allowing them to produce only one type of product (trucks).

The technique of goal programming (see Section 4.14) is often used to choose among

alternative optimal solutions.

Infeasible LP

It is possible for an LP’s feasible region to be empty (contain no points), resulting in an

infeasible LP. Because the optimal solution to an LP is the best point in the feasible re-

gion, an infeasible LP has no optimal solution.

Suppose that auto dealers require that the auto company in Example 3 produce at least 30

trucks and 20 cars. Find the optimal solution to the new LP.

Solution After adding the constraints x1 � 30 and x2 � 20 to the LP of Example 3, we obtain the

following LP:

max z � 3x1 � 2x2

s.t. �
4

1

0
� x1 � �

6

1

0
� x2 � 1 (15)

�
5

1

0
� x1 � �

5

1

0
� x2 � 1 (16)
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x1  � 50 x2 � 30 (17)

x2 � 20 (18)

x1, x2 � 0

The graph of the feasible region for this LP is Figure 6.

Constraint (15) is satisfied by all points on or below AB (AB is �
4

1

0
�x1 � �

6

1

0
�x2 � 1).

Constraint (16) is satisfied by all points on or below CD (CD is �
5

1

0
�x1 � �

5

1

0
�x2 � 1).

Constraint (17) is satisfied by all points on or to the right of EF (EF is x1 � 30).

Constraint (18) is satisfied by all points on or above GH (GH is x2 � 20).

From Figure 6 it is clear that no point satisfies all of (15)–(18). This means that Example

4 has an empty feasible region and is an infeasible LP.

In Example 4, the LP is infeasible because producing 30 trucks and 20 cars requires

more paint shop time than is available.

Unbounded LP

Our next special LP is an unbounded LP. For a max problem, an unbounded LP occurs if

it is possible to find points in the feasible region with arbitrarily large z-values, which cor-

responds to a decision maker earning arbitrarily large revenues or profits. This would in-

dicate that an unbounded optimal solution should not occur in a correctly formulated LP.

Thus, if the reader ever solves an LP on the computer and finds that the LP is unbounded,

then an error has probably been made in formulating the LP or in inputting the LP into

the computer.

For a minimization problem, an LP is unbounded if there are points in the feasible re-

gion with arbitrarily small z-values. When graphically solving an LP, we can spot an un-

bounded LP as follows: A max problem is unbounded if, when we move parallel to our

original isoprofit line in the direction of increasing z, we never entirely leave the feasible

region. A minimization problem is unbounded if we never leave the feasible region when

moving in the direction of decreasing z.
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Graphically solve the following LP:

max z � 2x1 � x2

s.t. x1 � x2 � 1 (19)

2x1 � x2 � 6 (20)

x1, x2 � 0

Solution From Figure 7, we see that (19) is satisfied by all points on or above AB (AB is the line

x1 � x2 � 1). Also, (20) is satisfied by all points on or above CD (CD is 2x1 � x2 � 6).

Thus, the feasible region for Example 5 is the (shaded) unbounded region in Figure 7,

which is bounded only by the x2 axis, line segment DE, and the part of line AB beginning

at E. To find the optimal solution, we draw the isoprofit line passing through (2, 0). This

isoprofit line has z � 2x1 � x2 � 2(2) � 0 � 4. The direction of increasing z is to the

southeast (this makes x1 larger and x2 smaller). Moving parallel to z � 2x1 � x2 in a

southeast direction, we see that any isoprofit line we draw will intersect the feasible re-

gion. (This is because any isoprofit line is steeper than the line x1 � x2 � 1.)

Thus, there are points in the feasible region that have arbitrarily large z-values. For ex-

ample, if we wanted to find a point in the feasible region that had z � 1,000,000, we could

choose any point in the feasible region that is southeast of the isoprofit line z � 1,000,000.

From the discussion in the last two sections, we see that every LP with two variables

must fall into one of the following four cases:

Case 1 The LP has a unique optimal solution.

Case 2 The LP has alternative or multiple optimal solutions: Two or more extreme points

are optimal, and the LP will have an infinite number of optimal solutions.

Case 3 The LP is infeasible: The feasible region contains no points.

Case 4 The LP is unbounded: There are points in the feasible region with arbitrarily large

z-values (max problem) or arbitrarily small z-values (min problem).

In Chapter 4, we show that every LP (not just LPs with two variables) must fall into one

of Cases 1–4.
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In the rest of this chapter, we lead the reader through the formulation of several more

complicated linear programming models. The most important step in formulating an LP

model is the proper choice of decision variables. If the decision variables have been prop-

erly chosen, the objective function and constraints should follow without much difficulty.

Trouble in determining an LP’s objective function and constraints is usually the result of

an incorrect choice of decision variables.

P R O B L E M S
Group A
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Identify which of Cases 1–4 apply to each of the follow-
ing LPs:

1 max z � x1 � x2

s.t. x1 � x2 � 4

x1 � x2 � 5

x1, x2 � 0

2 max z � 4x1 � x2

s.t. 8x1 � 2x2 � 16

5x1 � 2x2 � 12

x1, x2 � 0

3 max z � �x1 � 3x2

s.t. x1 � 2x2 � 4

x1 � 2x2 � 4

x1, x2 � 0

4 max z � 3x1 � x2

s.t. 2x1 � 3x2 � 6

x1 � 3x2 � 9

x1, x2 � 0

5 True or false: For an LP to be unbounded, the LP’s
feasible region must be unbounded.

6 True or false: Every LP with an unbounded feasible
region has an unbounded optimal solution.

7 If an LP’s feasible region is not unbounded, we say the
LP’s feasible region is bounded. Suppose an LP has a
bounded feasible region. Explain why you can find the
optimal solution to the LP (without an isoprofit or isocost
line) by simply checking the z-values at each of the feasible
region’s extreme points. Why might this method fail if the
LP’s feasible region is unbounded?

8 Graphically find all optimal solutions to the follow-
ing LP:

min z � x1 � x2

s.t. x1 � x2 � 6

x1 � x2 � 0

x2 � x1 � 3

x1, x2 � 0

9 Graphically determine two optimal solutions to the
following LP:

min z � 3x1 � 5x2

s.t. 3x1 � 2x2 � 36

3x1 � 5x2 � 45

x1, x2 � 0

Group B

10 Money manager Boris Milkem deals with French
currency (the franc) and American currency (the dollar). At
12 midnight, he can buy francs by paying .25 dollars per
franc and dollars by paying 3 francs per dollar. Let x1 �

number of dollars bought (by paying francs) and x2 �

number of francs bought (by paying dollars). Assume that
both types of transactions take place simultaneously, and
the only constraint is that at 12:01 A.M. Boris must have a
nonnegative number of francs and dollars.

a Formulate an LP that enables Boris to maximize 
the number of dollars he has after all transactions are
completed.

b Graphically solve the LP and comment on the 
answer.

3.4 A Diet Problem

Many LP formulations (such as Example 2 and the following diet problem) arise from 

situations in which a decision maker wants to minimize the cost of meeting a set of 

requirements.



My diet requires that all the food I eat come from one of the four “basic food groups”

(chocolate cake, ice cream, soda, and cheesecake). At present, the following four foods

are available for consumption: brownies, chocolate ice cream, cola, and pineapple cheese-

cake. Each brownie costs 50¢, each scoop of chocolate ice cream costs 20¢, each bottle

of cola costs 30¢, and each piece of pineapple cheesecake costs 80¢. Each day, I must in-

gest at least 500 calories, 6 oz of chocolate, 10 oz of sugar, and 8 oz of fat. The nutri-

tional content per unit of each food is shown in Table 2. Formulate a linear programming

model that can be used to satisfy my daily nutritional requirements at minimum cost.

Solution As always, we begin by determining the decisions that must be made by the decision

maker: how much of each type of food should be eaten daily. Thus, we define the deci-

sion variables:

x1 � number of brownies eaten daily

x2 � number of scoops of chocolate ice cream eaten daily

x3 � bottles of cola drunk daily

x4 � pieces of pineapple cheesecake eaten daily

My objective is to minimize the cost of my diet. The total cost of any diet may be deter-

mined from the following relation: (total cost of diet) � (cost of brownies) � (cost of ice

cream) � (cost of cola) � (cost of cheesecake). To evaluate the total cost of a diet, note

that, for example,

Cost of cola � ��bottle

co

o

s

f

t

cola
�� � � � 30x3

Applying this to the other three foods, we have (in cents)

Total cost of diet � 50x1 � 20x2 � 30x3 � 80x4

Thus, the objective function is

min z � 50x1 � 20x2 � 30x3 � 80x4

The decision variables must satisfy the following four constraints:

Constraint 1 Daily calorie intake must be at least 500 calories.

Constraint 2 Daily chocolate intake must be at least 6 oz.

Constraint 3 Daily sugar intake must be at least 10 oz.

Constraint 4 Daily fat intake must be at least 8 oz.

bottles of

cola drunk
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TA B L E  2

Nutritional Values for Diet

Type of Food Calories Chocolate (Ounces) Sugar (Ounces) Fat (Ounces)

Brownie 400 3 2 2

Chocolate ice cream
(1 scoop) 200 2 2 4

Cola (1 bottle) 150 0 4 1

Pineapple cheesecake
(1 piece) 500 0 4 5



To express Constraint 1 in terms of the decision variables, note that (daily calorie intake) �

(calories in brownies) � (calories in chocolate ice cream) � (calories in cola) � (calories

in pineapple cheesecake).

The calories in the brownies consumed can be determined from

Calories in brownies � ��b
c

r

a

o

lo

w

r

n

ie

i

s

e
�� � � � 400x1

Applying similar reasoning to the other three foods shows that

Daily calorie intake � 400x1 � 200x2 � 150x3 � 500x4

Constraint 1 may be expressed by

400x1 � 200x2 � 150x3 � 500x4 � 500 (Calorie constraint) (21)

Constraint 2 may be expressed by

3x1 � 2x2 � 6 (Chocolate constraint) (22)

Constraint 3 may be expressed by

2x1 � 2x2 � 4x3 � 4x4 � 10 (Sugar constraint) (23)

Constraint 4 may be expressed by

2x1 � 4x2 � x3� 5x4 � 8 (Fat constraint) (24)

Finally, the sign restrictions xi � 0 (i � 1, 2, 3, 4) must hold.

Combining the objective function, constraints (21)–(24), and the sign restrictions

yields the following:

min z � 50x1 � 20x2 � 30x3 � 80x4

s.t. 400x1 � 200x2 � 150x3 � 500x4 � 500 (Calorie constraint) (21)

s.t. 403x1 � 2x2 � 150x3 � 500x4 � 6 (Chocolate constraint) (22)

s.t. 402x1 � 2x2 � 4x3 � 4x4 � 10 (Sugar constraint) (23)

s.t. 402x1 � 4x2 � x3 � 5x4 � 8 (Fat constraint) (24)

s.t. 40xi � 0 (i � 1, 2, 3, 4) (Sign restrictions)

The optimal solution to this LP is x1 � x4 � 0, x2 � 3, x3 � 1, z � 90. Thus, the 

minimum-cost diet incurs a daily cost of 90¢ by eating three scoops of chocolate ice cream

and drinking one bottle of cola. The optimal z-value may be obtained by substituting the

optimal value of the decision variables into the objective function. This yields a total cost

of z � 3(20) � 1(30) � 90¢. The optimal diet provides

200(3) � 150(1) � 750 calories

2(3) � 6 oz of chocolate

2(3) � 4(1) � 10 oz of sugar

4(3) � 1(1) � 13 oz of fat

Thus, the chocolate and sugar constraints are binding, but the calories and fat constraints

are nonbinding.

A version of the diet problem with a more realistic list of foods and nutritional require-

ments was one of the first LPs to be solved by computer. Stigler (1945) proposed a diet

brownies

eaten
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problem in which 77 types of food were available and 10 nutritional requirements (vitamin

A, vitamin C, and so on) had to be satisfied. When solved by computer, the optimal solu-

tion yielded a diet consisting of corn meal, wheat flour, evaporated milk, peanut butter, lard,

beef, liver, potatoes, spinach, and cabbage. Although such a diet is clearly high in vital nu-

trients, few people would be satisfied with it because it does not seem to meet a minimum

standard of tastiness (and Stigler required that the same diet be eaten each day). The opti-

mal solution to any LP model will reflect only those aspects of reality that are captured by

the objective function and constraints. Stigler’s (and our) formulation of the diet problem

did not reflect people’s desire for a tasty and varied diet. Integer programming has been used

to plan institutional menus for a weekly or monthly period.† Menu-planning models do con-

tain constraints that reflect tastiness and variety requirements.

P R O B L E M S
Group A

1 There are three factories on the Momiss River (1, 2, and
3). Each emits two types of pollutants (1 and 2) into the
river. If the waste from each factory is processed, the
pollution in the river can be reduced. It costs $15 to process
a ton of factory 1 waste, and each ton processed reduces the
amount of pollutant 1 by 0.10 ton and the amount of
pollutant 2 by 0.45 ton. It costs $10 to process a ton of
factory 2 waste, and each ton processed will reduce the
amount of pollutant 1 by 0.20 ton and the amount of
pollutant 2 by 0.25 ton. It costs $20 to process a ton of
factory 3 waste, and each ton processed will reduce the
amount of pollutant 1 by 0.40 ton and the amount of
pollutant 2 by 0.30 ton. The state wants to reduce the amount
of pollutant 1 in the river by at least 30 tons and the amount
of pollutant 2 in the river by at least 40 tons. Formulate an
LP that will minimize the cost of reducing pollution by the
desired amounts. Do you think that the LP assumptions
(Proportionality, Additivity, Divisibility, and Certainty) are
reasonable for this problem?

2‡ U.S. Labs manufactures mechanical heart valves from
the heart valves of pigs. Different heart operations require
valves of different sizes. U.S. Labs purchases pig valves
from three different suppliers. The cost and size mix of the
valves purchased from each supplier are given in Table 3.
Each month, U.S. Labs places one order with each supplier.
At least 500 large, 300 medium, and 300 small valves must
be purchased each month. Because of limited availability of
pig valves, at most 700 valves per month can be purchased
from each supplier. Formulate an LP that can be used to
minimize the cost of acquiring the needed valves.

3 Peg and Al Fundy have a limited food budget, so Peg is
trying to feed the family as cheaply as possible. However,
she still wants to make sure her family members meet their
daily nutritional requirements. Peg can buy two foods. Food

1 sells for $7 per pound, and each pound contains 3 units of
vitamin A and 1 unit of vitamin C. Food 2 sells for $1 per
pound, and each pound contains 1 unit of each vitamin.
Each day, the family needs at least 12 units of vitamin A and
6 units of vitamin C.

a Verify that Peg should purchase 12 units of food 2
each day and thus oversatisfy the vitamin C requirement
by 6 units.

b Al has put his foot down and demanded that Peg ful-
fill the family’s daily nutritional requirement exactly by
obtaining precisely 12 units of vitamin A and 6 units of
vitamin C. The optimal solution to the new problem will
involve ingesting less vitamin C, but it will be more ex-
pensive. Why?

4 Goldilocks needs to find at least 12 lb of gold and at
least 18 lb of silver to pay the monthly rent. There are two
mines in which Goldilocks can find gold and silver. Each
day that Goldilocks spends in mine 1, she finds 2 lb of gold
and 2 lb of silver. Each day that Goldilocks spends in mine
2, she finds 1 lb of gold and 3 lb of silver. Formulate an LP
to help Goldilocks meet her requirements while spending as
little time as possible in the mines. Graphically solve the LP.

TA B L E  3

Cost Percent Percent Percent
Supplier Per Value ($) Large Medium Small

1 5 40 40 20

2 4 30 35 35

3 3 20 20 60

†Balintfy (1976).
‡Based on Hilal and Erickson (1981).



3.5 A Work-Scheduling Problem

Many applications of linear programming involve determining the minimum-cost method

for satisfying workforce requirements. The following example illustrates the basic features

common to many of these applications.

A post office requires different numbers of full-time employees on different days of the

week. The number of full-time employees required on each day is given in Table 4. Union

rules state that each full-time employee must work five consecutive days and then receive

two days off. For example, an employee who works Monday to Friday must be off on Sat-

urday and Sunday. The post office wants to meet its daily requirements using only full-

time employees. Formulate an LP that the post office can use to minimize the number of

full-time employees who must be hired.

Solution Before giving the correct formulation of this problem, let’s begin by discussing an incor-

rect solution. Many students begin by defining xi to be the number of employees working

on day i (day 1 � Monday, day 2 � Tuesday, and so on). Then they reason that (number

of full-time employees) � (number of employees working on Monday) � (number of em-

ployees working on Tuesday) � ��� � (number of employees working on Sunday). This

reasoning leads to the following objective function:

min z � x1 � x2 � ��� � x6 � x7

To ensure that the post office has enough full-time employees working on each day, they

add the constraints xi � (number of employees required on day i). For example, for Mon-

day add the constraint x1 � 17. Adding the sign restrictions xi � 0 (i � 1, 2, . . . , 7) yields

the following LP:

min z � x1 � x2 � x3 � x4 � x5 � x6 � x7

s.t. x1x1x1x1x1x1x1 � 17

s.t. x1x2x1x1x1x1x1 � 13

s.t. x1x1x3x1x1x1x1 � 15

s.t. x1x1x1x4x1x1x1 � 19

s.t. x1x1x1x1x5x1x1 � 14

s.t. x1x1x1x1x1x6x1 � 16

s.t. x1x1x1x1x1x1x7 � 11

xi � 0 (i � 1, 2, . . . , 7)

There are at least two flaws in this formulation. First, the objective function is not the

number of full-time post office employees. The current objective function counts each em-

ployee five times, not once. For example, each employee who starts work on Monday

works Monday to Friday and is included in x1, x2, x3, x4, and x5. Second, the variables x1,

x2, . . . , x7 are interrelated, and the interrelation between the variables is not captured by

the current set of constraints. For example, some of the people who are working on Mon-

day (the x1 people) will be working on Tuesday. This means that x1 and x2 are interrelated,

but our constraints do not indicate that the value of x1 has any effect on the value of x2.

The key to correctly formulating this problem is to realize that the post office’s pri-

mary decision is not how many people are working each day but rather how many peo-

ple begin work on each day of the week. With this in mind, we define
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xi � number of employees beginning work on day i

For example, x1 is the number of people beginning work on Monday (these people work

Monday to Friday). With the variables properly defined, it is easy to determine the cor-

rect objective function and constraints. To determine the objective function, note that

(number of full-time employees) � (number of employees who start work on Monday) �

(number of employees who start work on Tuesday) ����� (number of employees who

start work on Sunday). Because each employee begins work on exactly one day of the

week, this expression does not double-count employees. Thus, when we correctly define

the variables, the objective function is

min z � x1 � x2 � x3 � x4 � x5 � x6 � x7

The post office must ensure that enough employees are working on each day of the

week. For example, at least 17 employees must be working on Monday. Who is working

on Monday? Everybody except the employees who begin work on Tuesday or on Wednes-

day (they get, respectively, Sunday and Monday, and Monday and Tuesday off). This

means that the number of employees working on Monday is x1 � x4 � x5 � x6 � x7. To

ensure that at least 17 employees are working on Monday, we require that the constraint

x1 � x4 � x5 � x6 � x7 � 17

be satisfied. Adding similar constraints for the other six days of the week and the sign re-

strictions xi � 0 (i � 1, 2, . . . , 7) yields the following formulation of the post office’s

problem:

min z � x1 � x2 � x3 � x4� x5� x6� x7

s.t. x1 � x2 � x3 � x4 � x5 � x6 � x7 � 17 (Monday constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � x7 � 13 (Tuesday constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � x7 � 15 (Wednesday constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � x7 � 19 (Thursday constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � x7 � 14 (Friday constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � x7 � 16 (Saturday constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � x7 � 11 (Sunday constraint)

xi � 0 (i � 1, 2, . . . , 7) (Sign restrictions)

The optimal solution to this LP is z � �
6

3

7
�, x1 � �

4

3
�, x2 � �

1

3

0
�, x3 � 2, x4 � �

2

3

2
�, x5 � 0, x6 �

�
1

3

0
�, x7 � 5. Because we are only allowing full-time employees, however, the variables must

be integers, and the Divisibility Assumption is not satisfied. To find a reasonable answer in

which all variables are integers, we could try to round the fractional variables up, yielding
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TA B L E  4

Requirements for Post Office

Number of Full-time
Day Employees Required

1 � Monday 17

2 � Tuesday 13

3 � Wednesday 15

4 � Thursday 19

5 � Friday 14

6 � Saturday 16

7 � Sunday 11



the feasible solution z � 25, x1 � 2, x2 � 4, x3 � 2, x4 � 8, x5 � 0, x6 � 4, x7 � 5. It

turns out, however, that integer programming can be used to show that an optimal solution

to the post office problem is z � 23, x1 � 4, x2 � 4, x3 � 2, x4 � 6, x5 � 0, x6 � 4, 

x7 � 3. Notice that there is no way that the optimal linear programming solution could

have been rounded to obtain the optimal all-integer solution.

Baker (1974) has developed an efficient technique (that does not use linear program-

ming) to determine the minimum number of employees required when each worker re-

ceives two consecutive days off.

If you solve this problem using LINDO, LINGO, or the Excel Solver, you may get a

different workforce schedule that uses 23 employees. This shows that Example 7 has al-

ternative optimal solutions.

Creating a Fair Schedule for Employees

The optimal solution we found requires 4 workers to start on Monday, 4 on Tuesday, 2 on

Wednesday, 6 on Thursday, 4 on Saturday, and 3 on Sunday. The workers who start on

Saturday will be unhappy because they never receive a weekend day off. By rotating the

schedules of the employees over a 23-week period, a fairer schedule can be obtained. To

see how this is done, consider the following schedule:

■ weeks 1–4: start on Monday

■ weeks 5–8: start on Tuesday

■ weeks 9–10: start on Wednesday

■ weeks 11–16: start on Thursday

■ weeks 17–20: start on Saturday

■ weeks 21–23: start on Sunday

Employee 1 follows this schedule for a 23-week period. Employee 2 starts with week 2

of this schedule (starting on Monday for 3 weeks, then on Tuesday for 4 weeks, and clos-

ing with 3 weeks starting on Sunday and 1 week on Monday). We continue in this fash-

ion to generate a 23-week schedule for each employee. For example, employee 13 will

have the following schedule:

■ weeks 1–4: start on Thursday

■ weeks 5–8: start on Saturday

■ weeks 9–11: start on Sunday

■ weeks 12–15: start on Monday

■ weeks 16–19: start on Tuesday

■ weeks 20–21: start on Wednesday

■ weeks 22–23 start on Thursday

This method of scheduling treats each employee equally.

Modeling Issues

1 This example is a static scheduling problem, because we assume that the post office

faces the same schedule each week. In reality, demands change over time, workers take

vacations in the summer, and so on, so the post office does not face the same situation

each week. A dynamic scheduling problem will be discussed in Section 3.12.
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2 If you wanted to set up a weekly scheduling model for a supermarket or a fast-food

restaurant, the number of variables could be very large and the computer might have dif-

ficulty finding an exact solution. In this case, heuristic methods can be used to find a

good solution to the problem. See Love and Hoey (1990) for an example of scheduling a

fast-food restaurant.

3 Our model can easily be expanded to handle part-time employees, the use of overtime,

and alternative objective functions such as maximizing the number of weekend days off.

(See Problems 1, 3, and 4.)

4 How did we determine the number of workers needed each day? Perhaps the post of-

fice wants to have enough employees to ensure that 95% of all letters are sorted within

an hour. To determine the number of employees needed to provide adequate service, the

post office would use queuing theory, which is discussed in Stochastic Models in Opera-

tions Research: Applications and Algorithms; and forecasting, which is discussed in Chap-

ter 14 of this book.

Real-World Application

Krajewski, Ritzman, and McKenzie (1980) used LP to schedule clerks who processed

checks at the Ohio National Bank. Their model determined the minimum-cost combina-

tion of part-time employees, full-time employees, and overtime labor needed to process

each day’s checks by the end of the workday (10 P.M.). The major input to their model was

a forecast of the number of checks arriving at the bank each hour. This forecast was pro-

duced using multiple regression (see Stochastic Models in Operations Research: Appli-

cations and Algorithms). The major output of the LP was a work schedule. For example,

the LP might suggest that 2 full-time employees work daily from 11 A.M. to 8 P.M., 33

part-time employees work every day from 6 P.M. to 10 P.M., and 27 part-time employees

work from 6 P.M. to 10 P.M. on Monday, Tuesday, and Friday.

P R O B L E M S
Group A
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1 In the post office example, suppose that each full-time
employee works 8 hours per day. Thus, Monday’s re-
quirement of 17 workers may be viewed as a requirement of
8(17) � 136 hours. The post office may meet its daily labor
requirements by using both full-time and part-time
employees. During each week, a full-time employee works
8 hours a day for five consecutive days, and a part-time
employee works 4 hours a day for five consecutive days. A
full-time employee costs the post office $15 per hour,
whereas a part-time employee (with reduced fringe benefits)
costs the post office only $10 per hour. Union requirements
limit part-time labor to 25% of weekly labor requirements.
Formulate an LP to minimize the post office’s weekly labor
costs.

2 During each 4-hour period, the Smalltown police force
requires the following number of on-duty police officers: 12
midnight to 4 A.M.—8; 4 to 8 A.M.—7; 8 A.M. to 12 noon—
6; 12 noon to 4 P.M.—6; 4 to 8 P.M.—5; 8 P.M. to 12
midnight—4. Each police officer works two consecutive 

4-hour shifts. Formulate an LP that can be used to minimize
the number of police officers needed to meet Smalltown’s
daily requirements.

Group B

3 Suppose that the post office can force employees to
work one day of overtime each week. For example, an
employee whose regular shift is Monday to Friday can also
be required to work on Saturday. Each employee is paid $50
a day for each of the first five days worked during a week
and $62 for the overtime day (if any). Formulate an LP
whose solution will enable the post office to minimize the
cost of meeting its weekly work requirements.

4 Suppose the post office had 25 full-time employees and
was not allowed to hire or fire any employees. Formulate an
LP that could be used to schedule the employees in order to
maximize the number of weekend days off received by the
employees.



3.6 A Capital Budgeting Problem

In this section (and in Sections 3.7 and 3.11), we discuss how linear programming can be

used to determine optimal financial decisions. This section considers a simple capital bud-

geting model.†

We first explain briefly the concept of net present value (NPV), which can be used to

compare the desirability of different investments. Time 0 is the present.

Suppose investment 1 requires a cash outlay of $10,000 at time 0 and a cash outlay of

$14,000 two years from now and yields a cash flow of $24,000 one year from now. In-

vestment 2 requires a $6,000 cash outlay at time 0 and a $1,000 cash outlay two years

from now and yields a cash flow of $8,000 one year from now. Which investment would

you prefer?

Investment 1 has a net cash flow of

�10,000 � 24,000 � 14,000 � $0

and investment 2 has a net cash flow of

�6,000 � 8,000 � 1,000 � $1,000

On the basis of net cash flow, investment 2 is superior to investment 1. When we com-

pare investments on the basis of net cash flow, we are assuming that a dollar received at
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5 Each day, workers at the Gotham City Police Department
work two 6-hour shifts chosen from 12 A.M. to 6 A.M., 6 A.M.
to 12 P.M., 12 P.M. to 6 P.M., and 6 P.M. to 12 A.M. The
following number of workers are needed during each shift:
12 A.M. to 6 A.M.—15 workers; 6 A.M. to 12 P.M.—5 workers;
12 P.M. to 6 P.M.—12 workers; 6 P.M. to 12 A.M.—6 workers.
Workers whose two shifts are consecutive are paid $12 per
hour; workers whose shifts are not consecutive are paid $18
per hour. Formulate an LP that can be used to minimize the
cost of meeting the daily workforce demands of the Gotham
City Police Department.

6 During each 6-hour period of the day, the Bloomington
Police Department needs at least the number of policemen
shown in Table 5. Policemen can be hired to work either 12
consecutive hours or 18 consecutive hours. Policemen are
paid $4 per hour for each of the first 12 hours a day they
work and are paid $6 per hour for each of the next 6 hours
they work in a day. Formulate an LP that can be used to
minimize the cost of meeting Bloomington’s daily police
requirements.

7 Each hour from 10 A.M. to 7 P.M., Bank One receives
checks and must process them. Its goal is to process all the
checks the same day they are received. The bank has 13
check-processing machines, each of which can process up
to 500 checks per hour. It takes one worker to operate each
machine. Bank One hires both full-time and part-time
workers. Full-time workers work 10 A.M.–6 P.M., 11 A.M.–
7 P.M., or Noon–8 P.M. and are paid $160 per day. Part-time
workers work either 2 P.M.–7 P.M. or 3 P.M.–8 P.M. and are
paid $75 per day. The number of checks received each hour
is given in Table 6. In the interest of maintaining continuity,
Bank One believes it must have at least three full-time
workers under contract. Develop a cost-minimizing work
schedule that processes all checks by 8 P.M.

TA B L E  5

Time Period Number of Policemen Required

12 A.M.–6 A.M. 12

6 A.M.–12 P.M. 8

12 P.M.–6 P.M. 6

6 P.M.–12 A.M. 15

TA B L E  6

Time Checks Received

10 A.M. 5,000

11 A.M. 4,000

Noon 3,000

1 P.M. 4,000

2 P.M. 2,500

3 P.M. 3,000

4 P.M. 4,000

5 P.M. 4,500

6 P.M. 3,500

7 P.M. 3,000

†This section is based on Weingartner (1963).



any point in time has the same value. This is not true! Suppose that there exists an in-

vestment (such as a money market fund) for which $1 invested at a given time will yield

(with certainty) $(1 � r) one year later. We call r the annual interest rate. Because $1

now can be transformed into $(1 � r) one year from now, we may write

$1 now � $(1 � r) one year from now

Applying this reasoning to the $(1 � r) obtained one year from now shows that

$1 now � $(1 � r) one year from now � $(1 � r)2 two years from now

and

$1 now � $(1 � r)k k years from now

Dividing both sides of this equality by (1 � r)k shows that

$1 received k years from now � $(1 � r)�k now

In other words, a dollar received k years from now is equivalent to receiving $(1 � r)�k

now.

We can use this idea to express all cash flows in terms of time 0 dollars (this process

is called discounting cash flows to time 0). Using discounting, we can determine the to-

tal value (in time 0 dollars) of the cash flows for any investment. The total value (in time

0 dollars) of the cash flows for any investment is called the net present value, or NPV,

of the investment. The NPV of an investment is the amount by which the investment will

increase the firm’s value (as expressed in time 0 dollars).

Assuming that r � 0.20, we can compute the NPV for investments 1 and 2.

NPV of investment 1 � � 10,000 � �
1

2

�

4,0

0

0

.2

0

0
� � �

(1

1

�

4,0

0

0

.2

0

0)2�

� $277.78

This means that if a firm invested in investment 1, then the value of the firm (in time 0

dollars) would increase by $277.78. For investment 2,

NPV of investment 2 � �6,000 � �
1

8

�

,0

0

0

.

0

20
� � �

(1 �

1,0

0

0

.

0

20)2�

� �$27.78

If a firm invested in investment 2, then the value of the firm (in time 0 dollars) would be

reduced by $27.78.

Thus, the NPV concept says that investment 1 is superior to investment 2. This con-

clusion is contrary to the one reached by comparing the net cash flows of the two invest-

ments. Note that the comparison between investments often depends on the value of r. For

example, the reader is asked to show in Problem 1 at the end of this section that for r �

0.02, investment 2 has a higher NPV than investment 1. Of course, our analysis assumes

that the future cash flows of an investment are known with certainty.

Computing NPV with Excel

If we receive a cash flow of ct in t years from now (t � 1, 2, . . . T ) and we discount cash

flows at a rate r, then the NPV of our cash flows is given by

�
t�T

t�1

�
(1 �

ct

r)t�
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The basic idea is that $1 today equals $(1 � r) a year from now, so

�
1 �

1

r
� today � $1 a year from now

The Excel function � NPV makes this computation easy. The syntax is

� NPV (r, range of cash flows)

The formula assumes that cash flows occur at the end of the year.

Projects with NPV � 0 add value to the company, while projects with negative NPV

reduce the company’s value.

We illustrate the computation of NPV in the file NPV.xls.

For a discount rate of 15%, consider a project with the cash flows shown in Figure 8.

a Compute project NPV if cash flows are at the end of the year.

b Compute project NPV if cash flows are at the beginning of the year.

c Compute project NPV if cash flows are at the middle of the year.

Solution a We enter in cell C7 the formula

� NPV(C1,C4:I4)

and obtain $375.06.

b Because all cash flows are received a year earlier, we multiply each cash flow’s value

by (1 � 1.15), so the answer is obtained in C8 with formula

� (1 � C1) � C7

NPV is now larger: $431.32.

We checked this in cell D8 with the formula

� C4 � NPV(C1,D4:I4)

c Because all cash flows are received six months earlier, we multiply each cash flow’s

value by �1.15�. NPV is now computed in C9 with the formula

� (1.15)^0.5 � C7

Now NPV is $402.21.
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Computing NPVE X A M P L E  8

2
3
4

5
6

7
8

9

B C D E F G H

Time 1 2 3 4 5 6        7
-400 200 600 -900 1000 250

end of yr. $375.06
beg. of yr . $431.32 $431.32

middle of yr. $402.21

end of year
beginning of yr.

middle of year

A I

230

1 dr 0.15

F I G U R E  8

NPV.xls



The XNPV Function

Often cash flows occur at irregular intervals. This makes it difficult to compute the NPV

of these cash flows. Fortunately, the Excel XNPV function makes computing NPVs of ir-

regularly timed cash flows a snap. To use the XNPV function, you must first have added

the Analysis Toolpak. To do this, select Tools Add-Ins and check the Analysis Toolpak and

Analysis Tookpak VBA boxes. Here is an example of XNPV in action.

Suppose on April 8, 2001, we paid out $900. Then we receive

■ $300 on 8/15/01

■ $400 on 1/15/02

■ $200 on 6/25/02

■ $100 on 7/03/03.

If the annual discount rate is 10%, what is the NPV of these cash flows?

Solution We enter the dates (in Excel date format) in D3:D7 and the cash flows in E3:E7 (see Fig-

ure 9). Entering the formula

� XNPV(A9,E3:E7,D3:D7)

in cell D11 computes the project’s NPV in terms of April 8, 2001, dollars because that is

the first date chronologically. What Excel did was as follows:

1 Compute the number of years after April 8, 2001, that each date occurred. (We did

this in column F). For example, August 15, 2001, is .3534 years after April 8.

2 Then discount cash flows at a rate ��1 �

1

rate
��years after

. For example, the August 15,

2001, cash flow is discounted by ��1 �

1

.1
��.3534

� .967.

3 We obtained Excel dates in serial number form by changing format to General.

If you want the XNPV function to determine a project’s NPV in today’s dollars, insert

a $0 cash flow on today’s date and include this row in the XNPV calculation. Excel will

then return the project’s NPV as of today’s date.
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Finding NPV of Nonperiodic Cash FlowsE X A M P L E  9

F I G U R E  9

Example of 
XNPV Function

1

2
3

4
5

6
7

8
9

10
11

12
13

14

A B C D E F G

XNPV Function Code Date Cash Flow Time df
36989.00 4/8/01 -900 1

37118.00 8/15/01 300 0.353425 0.966876
37271.00 1/15/02 400 0.772603 0.929009

37432.00 6/25/02 200 1.213699 0.890762
37805.00 7/3/03 100 2.235616 0.808094

Rate
0.1

XNPV Direct
20.62822 20.628217

XIRR

12.97%



With this background information, we are ready to explain how linear programming

can be applied to problems in which limited investment funds must be allocated to in-

vestment projects. Such problems are called capital budgeting problems.

Star Oil Company is considering five different investment opportunities. The cash out-

flows and net present values (in millions of dollars) are given in Table 7. Star Oil has $40

million available for investment now (time 0); it estimates that one year from now (time

1) $20 million will be available for investment. Star Oil may purchase any fraction of each

investment. In this case, the cash outflows and NPV are adjusted accordingly. For exam-

ple, if Star Oil purchases one-fifth of investment 3, then a cash outflow of �
1

5
�(5) � $1 mil-

lion would be required at time 0, and a cash outflow of �
1

5
�(5) � $1 million would be re-

quired at time 1. The one-fifth share of investment 3 would yield an NPV of �
1

5
�(16) � $3.2

million. Star Oil wants to maximize the NPV that can be obtained by investing in invest-

ments 1–5. Formulate an LP that will help achieve this goal. Assume that any funds left

over at time 0 cannot be used at time 1.

Solution Star Oil must determine what fraction of each investment to purchase. We define

xi � fraction of investment i purchased by Star Oil (i � 1, 2, 3, 4, 5)

Star’s goal is to maximize the NPV earned from investments. Now, (total NPV) � (NPV

earned from investment 1) � (NPV earned from investment 2) � ��� � (NPV earned from

investment 5). Note that

NPV from investment 1 � (NPV from investment 1)(fraction of investment 1 purchased)

� 13x1

Applying analogous reasoning to investments 2–5 shows that Star Oil wants to maximize

z � 13x1 � 16x2 � 16x3 � 14x4 � 39x5 (25)

Star Oil’s constraints may be expressed as follows:

Constraint 1 Star cannot invest more than $40 million at time 0.

Constraint 2 Star cannot invest more than $20 million at time 1.

Constraint 3 Star cannot purchase more than 100% of investment i (i � 1, 2, 3, 4, 5).

To express Constraint 1 mathematically, note that (dollars invested at time 0) � (dollars

invested in investment 1 at time 0) � (dollars invested in investment 2 at time 0) � ��� �

(dollars invested in investment 5 at time 0). Also, in millions of dollars,

� � � � �
� 11x1

fraction of

investment 1 purchased

dollars required for

investment 1 at time 0

Dollars invested in investment 1

at time 0
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TA B L E  7

Cash Flows and Net Present Value for Investments in Capital Budgeting

Investment ($)

1 2 3 4 5

Time 0 cash outflow 11 53 5 5 29

Time 1 cash outflow 3 6 5 1 34

NPV 13 16 16 14 39



3 . 6 A Capital Budgeting Problem 81

Similarly, for investments 2–5,

Dollars invested at time 0 � 11x1 � 53x2 � 5x3 � 5x4 � 29x5

Then Constraint 1 reduces to

11x1 � 53x2 � 5x3 � 5x4 � 29x5 � 40 (Time 0 constraint) (26)

Constraint 2 reduces to

3x1 � 6x2 � 5x3 � x4 � 34x5 � 20 (Time 1 constraint) (27)

Constraints 3–7 may be represented by

xi � 1 (i � 1, 2, 3, 4, 5) (28–32)

Combining (26)–(32) with the sign restrictions xi � 0 (i � 1, 2, 3, 4, 5) yields the fol-

lowing LP:

max z � 13x1 � 16x2 � 16x3 � 14x4 � 39x5

s.t. 11x1 � 53x2 � 5x3 � 5x4 � 29x5 � 40 (Time 0 constraint)

s.t. 3x1 � 6x2 � 5x3 � x4 � 34x5 � 20 (Time 1 constraint)

s.t. x1 � 6x2 � 5x3 � x4 � 34x5 � 1

s.t. 3x1 � 6x2 � 5x3 � x4 � 34x5 � 1

s.t. 3x1 � 6x2 � 5x3 � x4 � 34x5 � 1

s.t. 3x1 � 6x2 � 5x3 � x4 � 34x5 � 1

s.t. 3x1 � 6x2 � 5x3 � x4 � 34x5 � 1

xi � 0 (i � 1, 2, 3, 4, 5)

The optimal solution to this LP is x1 � x3 � x4 � 1, x2 � 0.201, x5 � 0.288, z � 57.449.

Star Oil should purchase 100% of investments 1, 3, and 4; 20.1% of investment 2; and 28.8%

of investment 5. A total NPV of $57,449,000 will be obtained from these investments.

It is often impossible to purchase only a fraction of an investment without sacrificing

the investment’s favorable cash flows. Suppose it costs $12 million to drill an oil well just

deep enough to locate a $30-million gusher. If there were a sole investor in this project

who invested $6 million to undertake half of the project, then he or she would lose the

entire investment and receive no positive cash flows. Because, in this example, reducing

the money invested by 50% reduces the return by more than 50%, this situation would vi-

olate the Proportionality Assumption.

In many capital budgeting problems, it is unreasonable to allow the xi to be fractions:

Each xi should be restricted to 0 (not investing at all in investment i) or 1 (purchasing all of

investment i). Thus, many capital budgeting problems violate the Divisibility Assumption.

A capital budgeting model that allows each xi to be only 0 or 1 is discussed in Section 9.2.

P R O B L E M S
Group A

1 Show that if r � 0.02, investment 2 has a larger NPV
than investment 1.

2 Two investments with varying cash flows (in thousands
of dollars) are available, as shown in Table 8. At time 0,

$10,000 is available for investment, and at time 1, $7,000 is
available. Assuming that r � 0.10, set up an LP whose
solution maximizes the NPV obtained from these
investments. Graphically find the optimal solution to the LP.



3.7 Short-Term Financial Planning‡

LP models can often be used to aid a firm in short- or long-term financial planning (also

see Section 3.11). Here we consider a simple example that illustrates how linear pro-

gramming can be used to aid a corporation’s short-term financial planning.§

Semicond is a small electronics company that manufactures tape recorders and radios. The

per-unit labor costs, raw material costs, and selling price of each product are given in

Table 10. On December 1, 2002, Semicond has available raw material that is sufficient to

manufacture 100 tape recorders and 100 radios. On the same date, the company’s balance

sheet is as shown in Table 11, and Semicond’s asset–liability ratio (called the current ra-

tio) is 20,000/10,000 � 2.

Semicond must determine how many tape recorders and radios should be produced

during December. Demand is large enough to ensure that all goods produced will be sold.

All sales are on credit, however, and payment for goods produced in December will not
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(Assume that any fraction of an investment may be
purchased.)

3 Suppose that r, the annual interest rate, is 0.20, and that
all money in the bank earns 20% interest each year (that is,
after being in the bank for one year, $1 will increase to
$1.20). If we place $100 in the bank for one year, what is
the NPV of this transaction?

4 A company has nine projects under consideration. The
NPV added by each project and the capital required by each
project during the next two years is given in Table 9. All

figures are in millions. For example, Project 1 will add $14
million in NPV and require expenditures of $12 million
during year 1 and $3 million during year 2. Fifty million is
available for projects during year 1 and $20 million is
available during year 2. Assuming we may undertake a
fraction of each project, how can we maximize NPV?

Group B

5† Finco must determine how much investment and debt
to undertake during the next year. Each dollar invested
reduces the NPV of the company by 10¢, and each dollar of
debt increases the NPV by 50¢ (due to deductibility of
interest payments). Finco can invest at most $1 million
during the coming year. Debt can be at most 40% of
investment. Finco now has $800,000 in cash available. All
investment must be paid for from current cash or borrowed
money. Set up an LP whose solution will tell Finco how to
maximize its NPV. Then graphically solve the LP.

TA B L E  8

Cash Flow (in $ Thousands) at Time

Investment 0 1 2 3

1 �6 �5 7 9

2 �8 �3 9 7

TA B L E  9

Project

1 2 3 4 5 6 7 8 9

Year 1 Outflow 12 54 6 6 30 6 48 36 18

Year 2 Outflow 3 7 6 2 35 6 4 3 3

NPV 14 17 17 15 40 12 14 10 12

†Based on Myers and Pogue (1974).
‡This section covers material that may be omitted with no loss of continuity.
§This section is based on an example in Neave and Wiginton (1981).



be received until February 1, 2003. During December, Semicond will collect $2,000 in

accounts receivable, and Semicond must pay off $1,000 of the outstanding loan and a

monthly rent of $1,000. On January 1, 2003, Semicond will receive a shipment of raw

material worth $2,000, which will be paid for on February 1, 2003. Semicond’s manage-

ment has decided that the cash balance on January 1, 2003, must be at least $4,000. Also,

Semicond’s bank requires that the current ratio at the beginning of January be at least 2.

To maximize the contribution to profit from December production, (revenues to be re-

ceived) � (variable production costs), what should Semicond produce during December?

Solution Semicond must determine how many tape recorders and radios should be produced dur-

ing December. Thus, we define

x1 � number of tape recorders produced during December

x2 � number of radios produced during December

To express Semicond’s objective function, note that

� 100 � 50 � 30 � $20

� 90 � 35 � 40 � $15

As in the Giapetto example, this leads to the objective function

max z � 20x1 � 15x2 (33)

Semicond faces the following constraints:

Constraint 1 Because of limited availability of raw material, at most 100 tape recorders

can be produced during December.

Constraint 2 Because of limited availability of raw material, at most 100 radios can be

produced during December.

Contribution to profit
���

Contribution to profit
���
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TA B L E  10

Cost Information for Semicond

Tape Recorder Radio

Selling price $100 $90

Labor cost $ 50 $35

Raw material cost $ 30 $40

TA B L E  11

Balance Sheet for Semicond

Assets Liabilities

Cash $10,000

Accounts receivable§ $ 3,000

Inventory outstanding¶ $ 7,000

Bank loan $10,000

§Accounts receivable is money owed to Semicond by customers

who have previously purchased Semicond products.
¶Value of December 1, 2002, inventory � 30(100) � 40(100) �

$7,000.



Constraint 3 Cash on hand on January 1, 2002, must be at least $4,000.

Constraint 4 (January 1 assets)/(January 1 liabilities) � 2 must hold.

Constraint 1 is described by

x1 � 100 (34)

Constraint 2 is described by

x2 � 100 (35)

To express Constraint 3, note that

January 1 cash on hand � December 1 cash on hand

� accounts receivable collected during December

� portion of loan repaid during December

� December rent � December labor costs

� 10,000 � 2,000 � 1,000 � 1,000 � 50x1 � 35x2

� 10,000 � 50x1 � 35x2

Now Constraint 3 may be written as

10,000 � 50x1 � 35x2 � 4,000 (36�)

Most computer codes require each LP constraint to be expressed in a form in which all

variables are on the left-hand side and the constant is on the right-hand side. Thus, for

computer solution, we should write (36�) as

50x1 � 35x2 � 6,000 (36)

To express Constraint 4, we need to determine Semicond’s January 1 cash position, ac-

counts receivable, inventory position, and liabilities in terms of x1 and x2. We have already

shown that

January 1 cash position � 10,000 � 50x1 � 35x2

Then

January 1 accounts receivable � December 1 accounts receivable

� accounts receivable from December sales

� accounts receivable collected during December

� 3,000 � 100x1 � 90x2 � 2000

� 1,000 � 100x1 � 90x2

It now follows that

Value of January 1 inventory � value of December 1 inventory

� value of inventory used in December

� value of inventory received on January 1

� 7,000 � (30x1 � 40x2) � 2,000

� 9,000 � 30x1 � 40x2

We can now compute the January 1 asset position:

January 1 asset position � January 1 cash position � January 1 accounts receivable

� January 1 inventory position

� (10,000 � 50x1 � 35x2) � (1,000 � 100x1 � 90x2)

� (9,000 � 30x1 � 40x2)

� 20,000 � 20x1 � 15x2
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Finally,

January 1 liabilities � December 1 liabilities � December loan payment

� amount due on January 1 inventory shipment

� 10,000 � 1,000 � 2,000

� $11,000

Constraint 4 may now be written as

� 2

Multiplying both sides of this inequality by 11,000 yields

20,000 � 20x1 � 15x2 � 22,000

Putting this in a form appropriate for computer input, we obtain

20x1 � 15x2 � 2,000 (37)

Combining (33)–(37) with the sign restrictions x1 � 0 and x2 � 0 yields the follow-

ing LP:

max z � 20x1 � 15x2

s.t. 20x1 � 15x2 � 100 (Tape recorder constraint)

s.t. 20x1 � 15x2 � 100 (Radio constraint)

s.t. 50x1 � 35x2 � 6,000 (Cash position constraint)

s.t. 20x1 � 15x2 � 2,000 (Current ratio constraint)

x1, x2 � 0 (Sign restrictions)

When solved graphically (or by computer), the following optimal solution is obtained: 

z � 2,500, x1 � 50, x2 � 100. Thus, Semicond can maximize the contribution of De-

cember’s production to profits by manufacturing 50 tape recorders and 100 radios. This

will contribute 20(50) � 15(100) � $2,500 to profits.

P R O B L E M S
Group A

20,000 � 20x1 � 15x2
���

11,000
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1 Graphically solve the Semicond problem. 2 Suppose that the January 1 inventory shipment had been
valued at $7,000. Show that Semicond’s LP is now infeasible.

3.8 Blending Problems

Situations in which various inputs must be blended in some desired proportion to produce

goods for sale are often amenable to linear programming analysis. Such problems are

called blending problems. The following list gives some situations in which linear pro-

gramming has been used to solve blending problems.

1 Blending various types of crude oils to produce different types of gasoline and other

outputs (such as heating oil)



2 Blending various chemicals to produce other chemicals

3 Blending various types of metal alloys to produce various types of steels

4 Blending various livestock feeds in an attempt to produce a minimum-cost feed mix-

ture for cattle

5 Mixing various ores to obtain ore of a specified quality

6 Mixing various ingredients (meat, filler, water, and so on) to produce a product like

bologna

7 Mixing various types of papers to produce recycled paper of varying quality

The following example illustrates the key ideas that are used in formulating LP models

of blending problems.

Sunco Oil manufactures three types of gasoline (gas 1, gas 2, and gas 3). Each type is

produced by blending three types of crude oil (crude 1, crude 2, and crude 3). The sales

price per barrel of gasoline and the purchase price per barrel of crude oil are given in

Table 12. Sunco can purchase up to 5,000 barrels of each type of crude oil daily.

The three types of gasoline differ in their octane rating and sulfur content. The crude oil

blended to form gas 1 must have an average octane rating of at least 10 and contain at most

1% sulfur. The crude oil blended to form gas 2 must have an average octane rating of at least

8 and contain at most 2% sulfur. The crude oil blended to form gas 3 must have an octane rat-

ing of at least 6 and contain at most 1% sulfur. The octane rating and the sulfur content of the

three types of oil are given in Table 13. It costs $4 to transform one barrel of oil into one bar-

rel of gasoline, and Sunco’s refinery can produce up to 14,000 barrels of gasoline daily.

Sunco’s customers require the following amounts of each gasoline: gas 1—3,000 bar-

rels per day; gas 2—2,000 barrels per day; gas 3—1,000 barrels per day. The company

considers it an obligation to meet these demands. Sunco also has the option of advertis-

ing to stimulate demand for its products. Each dollar spent daily in advertising a partic-

ular type of gas increases the daily demand for that type of gas by 10 barrels. For exam-

ple, if Sunco decides to spend $20 daily in advertising gas 2, then the daily demand for

gas 2 will increase by 20(10) � 200 barrels. Formulate an LP that will enable Sunco to

maximize daily profits (profits � revenues � costs).

Solution Sunco must make two types of decisions: first, how much money should be spent in ad-

vertising each type of gas, and second, how to blend each type of gasoline from the three

types of crude oil available. For example, Sunco must decide how many barrels of crude

1 should be used to produce gas 1. We define the decision variables

ai � dollars spent daily on advertising gas i (i � 1, 2, 3)

xij � barrels of crude oil i used daily to produce gas j (i � 1, 2, 3; j � 1, 2, 3)

For example, x21 is the number of barrels of crude 2 used each day to produce gas 1.
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TA B L E  12

Gas and Crude Oil Prices for Blending

Sales Price Purchase Price
Gas per Barrel ($) Crude per Barrel ($)

1 70 1 45

2 60 2 35

3 50 3 25



Knowledge of these variables is sufficient to determine Sunco’s objective function and con-

straints, but before we do this, we note that the definition of the decision variables implies that

x11 � x12 � x13 � barrels of crude 1 used daily

x21 � x22 � x23 � barrels of crude 2 used daily (38)

x31 � x32 � x33 � barrels of crude 3 used daily

x11 � x21 � x31 � barrels of gas 1 produced daily

x12 � x22 � x32 � barrels of gas 2 produced daily (39)

x13 � x23 � x33 � barrels of gas 3 produced daily

To simplify matters, let’s assume that gasoline cannot be stored, so it must be sold on the

day it is produced. This implies that for i � 1, 2, 3, the amount of gas i produced daily

should equal the daily demand for gas i. Suppose that the amount of gas i produced daily

exceeded the daily demand. Then we would have incurred unnecessary purchasing and

production costs. On the other hand, if the amount of gas i produced daily is less than the

daily demand for gas i, then we are failing to meet mandatory demands or incurring un-

necessary advertising costs.

We are now ready to determine Sunco’s objective function and constraints. We begin

with Sunco’s objective function. From (39),

Daily revenues from gas sales � 70(x11 � x21 � x31) � 60(x12 � x22 � x32)

� 50(x13 � x23 � x33)

From (38),

Daily cost of purchasing crude oil � 45(x11 � x12 � x13) � 35(x21 � x22 � x23)

� 25(x31 � x32 � x33)

Also,

Daily advertising costs � a1 � a2 � a3

Daily production costs � 4(x11 � x12 � x13 � x21 � x22 � x23 � x31 � x32 � x33)

Then,

Daily profit � daily revenue from gas sales

� daily cost of purchasing crude oil

� daily advertising costs � daily production costs

� (70 � 45 � 4)x11 � (60 � 45 � 4)x12 � (50 � 45 � 4)x13

� (70 � 35 � 4)x21 � (60 � 35 � 4)x22 � (50 � 35 � 4)x23

� (70 � 25 � 4)x31 � (60 � 25 � 4)x32

� (50 � 25 � 4)x33 � a1 � a2 � a3
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TA B L E  13

Octane Ratings and Sulfur Requirements
for Blending

Octane Sulfur
Crude Rating Content (%)

1 12 0.5

2 6 2.0

3 8 3.0



Thus, Sunco’s goal is to maximize

z � 21x11 � 11x12 � x13 � 31x21 � 21x22 � 11x23 � 41x31

� 31x32 � 21x33 � a1 � a2 � a3 (40)

Regarding Sunco’s constraints, we see that the following 13 constraints must be satis-

fied:

Constraint 1 Gas 1 produced daily should equal its daily demand.

Constraint 2 Gas 2 produced daily should equal its daily demand.

Constraint 3 Gas 3 produced daily should equal its daily demand.

Constraint 4 At most 5,000 barrels of crude 1 can be purchased daily.

Constraint 5 At most 5,000 barrels of crude 2 can be purchased daily.

Constraint 6 At most 5,000 barrels of crude 3 can be purchased daily.

Constraint 7 Because of limited refinery capacity, at most 14,000 barrels of gasoline can

be produced daily.

Constraint 8 Crude oil blended to make gas 1 must have an average octane level of at

least 10.

Constraint 9 Crude oil blended to make gas 2 must have an average octane level of at

least 8.

Constraint 10 Crude oil blended to make gas 3 must have an average octane level of at

least 6.

Constraint 11 Crude oil blended to make gas 1 must contain at most 1% sulfur.

Constraint 12 Crude oil blended to make gas 2 must contain at most 2% sulfur.

Constraint 13 Crude oil blended to make gas 3 must contain at most 1% sulfur.

To express Constraint 1 in terms of decision variables, note that

Daily demand for gas 1 � 3,000 � gas 1 demand generated by

advertising

Gas 1 demand generated by advertising � ��gd

a

o

s

l

1

lar

de

s

m

pe

a

n

n

t

d
�� � �

� 10a1
†

Thus, daily demand for gas 1 � 3,000 � 10a1. Constraint 1 may now be written as

x11 � x21 � x31 � 3,000 � 10a1 (41�)

which we rewrite as

x11 � x21 � x31 � 10a1 � 3,000 (41)

Constraint 2 is expressed by

x12 � x22 � x32 � 10a2 � 2,000 (42)

dollars

spent
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†Many students believe that gas 1 demand generated by advertising should be written as �
1

1

0
�a1. Analyzing the

units of this term will show that this is not correct. �
1

1

0
� has units of dollars spent per barrel of demand, and a1

has units of dollars spent. Thus, the term �
1

1

0
�a1 would have units of (dollars spent)2 per barrel of demand. This

cannot be correct!



Constraint 3 is expressed by

x13 � x23 � x33 � 10a3 � 1,000 (43)

From (38), Constraint 4 reduces to

x11 � x12 � x13 � 5,000 (44)

Constraint 5 reduces to

x21 � x22 � x23 � 5,000 (45)

Constraint 6 reduces to

x31 � x32 � x33 � 5,000 (46)

Note that

Total gas produced � gas 1 produced � gas 2 produced � gas 3 produced

� (x11 � x21 � x31) � (x12 � x22 � x32) � (x13 � x23 � x33)

Then Constraint 7 becomes

x11 � x21 � x31 � x12 � x22 � x32 � x13 � x23 � x33 � 14,000 (47)

To express Constraints 8–10, we must be able to determine the “average” octane level in

a mixture of different types of crude oil. We assume that the octane levels of different

crudes blend linearly. For example, if we blend two barrels of crude 1, three barrels of

crude 2, and one barrel of crude 3, the average octane level in this mixture would be

� � � 8

Generalizing, we can express Constraint 8 by

� � 10 (48�)

Unfortunately, (48�) is not a linear inequality. To transform (48�) into a linear inequality,

all we have to do is multiply both sides by the denominator of the left-hand side. The re-

sulting inequality is

12x11 � 6x21 � 8x31 � 10(x11 � x21 �x31)

which may be rewritten as

2x11 � 4x21 � 2x31 � 0 (48)

Similarly, Constraint 9 yields

� 8

Multiplying both sides of this inequality by x12 � x22 � x32 and simplifying yields

4x12 � 2x22 � 0 (49)

Because each type of crude oil has an octane level of 6 or higher, whatever we blend to

manufacture gas 3 will have an average octane level of at least 6. This means that any val-

ues of the variables will satisfy Constraint 10. To verify this, we may express Constraint

10 by

� 6
12x13 � 6x23 � 8x33
���

x13 � x23 � x33

12x12 � 6x22 � 8x32
���

x12 � x22 � x32

12x11 � 6x21 � 8x31
���

x11 � x21 � x31

Total octane value in gas 1
���

1
�

50
�

12(2) � 6(3) � 8(1)
���

2 � 3 � 1

Total octane value in mixture
����
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Multiplying both sides of this inequality by x13 � x23 � x33 and simplifying, we obtain

6x13 � 2x33 � 0 (50)

Because x13 � 0 and x33 � 0 are always satisfied, (50) will automatically be satisfied and

thus need not be included in the model. A constraint such as (50) that is implied by other

constraints in the model is said to be a redundant constraint and need not be included

in the formulation.

Constraint 11 may be written as

� 0.01

Then, using the percentages of sulfur in each type of oil, we see that

Total sulfur in gas 1 mixture � Sulfur in oil 1 used for gas 1

� sulfur in oil 2 used for gas 1

� sulfur in oil 3 used for gas 1

� 0.005x11 � 0.02x21 � 0.03x31

Constraint 11 may now be written as

� 0.01

Again, this is not a linear inequality, but we can multiply both sides of the inequality by

x11 � x21 � x31 and simplify, obtaining

�0.005x11 � 0.01x21 � 0.02x31 � 0 (51)

Similarly, Constraint 12 is equivalent to

� 0.02

Multiplying both sides of this inequality by x12 � x22 � x32 and simplifying yields

�0.015x12 � 0.01x32 � 0 (52)

Finally, Constraint 13 is equivalent to

� 0.01

Multiplying both sides of this inequality by x13 � x23 � x33 and simplifying yields the

LP constraint

�0.005x13 � 0.01x23 � 0.02x33 � 0 (53)

Combining (40)–(53), except the redundant constraint (50), with the sign restrictions 

xij � 0 and ai � 0 yields an LP that may be expressed in tabular form (see Table 14). In

Table 14, the first row (max) represents the objective function, the second row represents

the first constraint, and so on. When solved on a computer, an optimal solution to Sunco’s

LP is found to be

z � 287,500

x11 � 2222.22 x12 � 2111.11 x13 � 666.67

x21 � 444.44 x22 � 4222.22 x23 � 333.34

x31 � 333.33 x32 � 3166.67 x33 � 0

a1 � 0 a2 � 750 a3 � 0

0.005x13 � 0.02x23 � 0.03x33
����

x13 � x23 � x33

0.005x12 � 0.02x22 � 0.03x32
����

x12 � x22 � x32

0.005x11 � 0.02x21 � 0.03x31
����

x11 � x21 � x31

Total sulfur in gas 1 mixture
����
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Thus, Sunco should produce x11 � x21 � x31 � 3,000 barrels of gas 1, using 2222.22

barrels of crude 1, 444.44 barrels of crude 2, and 333.33 barrels of crude 3. The firm

should produce x12 � x22 � x32 � 9,500 barrels of gas 2, using 2,111.11 barrels of crude

1, 4222.22 barrels of crude 2, and 3,166.67 barrels of crude 3. Sunco should also pro-

duce x13 � x23 � x33 � 1,000 barrels of gas 3, using 666.67 barrels of crude 1 and 333.34

barrels of crude 2. The firm should also spend $750 on advertising gas 2. Sunco will earn

a profit of $287,500.

Observe that although gas 1 appears to be most profitable, we stimulate demand for

gas 2, not gas 1. The reason for this is that given the quality (with respect to octane level

and sulfur content) of the available crude, it is difficult to produce gas 1. Therefore, Sunco

can make more money by producing more of the lower-quality gas 2 than by producing

extra quantities of gas 1.

Modeling Issues

1 We have assumed that the quality level of a mixture is a linear function of each input

used in the mixture. For example, we have assumed that if gas 3 is made with �
2

3
� crude 1

and �
1

3
� crude 2, then octane level for gas 3 � (�

2

3
�) � (octane level for crude 1) � (�

1

3
�) � (oc-

tane level for crude 2). If the octane level of a gas is not a linear function of the fraction

of each input used to produce the gas, then we no longer have a linear programming prob-

lem; we have a nonlinear programming problem. For example, let gi3 � fraction of gas

3 made with oil i. Suppose that the octane level for gas 3 is given by gas 3 octane level �

g13
.5

� (oil 1 octane level) � g23
.4

� (oil 2 octane level) � g33
.3

� (oil 3 octane level). Then

we do not have an LP problem. The reason for this is that the octane level of gas 3 is not

a linear function of g13, g23, and g33. We discuss nonlinear programming in Chapter 11.

2 In reality, a company using a blending model would run the model periodically (each

day, say) and set production on the basis of the current inventory of inputs and current

demand forecasts. Then the forecast levels and input levels would be updated, and the

model would be run again to determine the next day’s production.
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TA B L E  14

Objective Function and Constraints for Blending

x11 x12 x13 x21 x22 x23 x31 x32 x33 a1 a2 a3

21 11 1 31 21 11 41 31 21 �1 �1 �1 (max)

1 0 0 1 0 0 1 0 0 �10 0 0 � 3,000

0 1 0 0 1 0 0 1 0 0 �10 0 � 2,000

0 0 1 0 0 1 0 0 1 0 0 �10 � 1,000

1 1 1 0 0 0 0 0 0 0 0 0 � 5,000

0 0 0 1 1 1 0 0 0 0 0 0 � 5,000

0 0 0 0 0 0 1 1 1 0 0 0 � 5,000

1 1 1 1 1 1 1 1 1 0 0 0 � 14,000

2 0 0 �4 0 0 �2 0 0 0 0 0 � 0

0 4 0 0 �2 0 0 0 0 0 0 0 � 0

�0.005 0 0 0.01 0 0 0.02 0 0 0 0 0 � 0

0 �0.015 0 0 0 0 0 0.01 0 0 0 0 � 0

0 0 �0.005 0 0 0.01 0 0 0.02 0 0 0 � 0



Real-World Applications

Blending at Texaco

Texaco (see Dewitt et al., 1980) uses a nonlinear programming model (OMEGA) to plan

and schedule its blending applications. The company’s model is nonlinear because blend

volatilities and octanes are nonlinear functions of the amount of each input used to pro-

duce a particular gasoline.

Blending in the Steel Industry

Fabian (1958) describes a complex LP model that can be used to optimize the production

of iron and steel. For each product produced there are several blending constraints. For

example, basic pig iron must contain at most 1.5% silicon, at most .05% sulphur, between

.11% and .90% phosphorus, between .4% and 2% manganese, and between 4.1% and

4.4% carbon. See Problem 6 (in the Review Problems section) for a simple example of

blending in the steel industry.

Blending in the Oil Industry

Many oil companies use LP to optimize their refinery operations. Problem 14 contains an

example (based on Magoulas and Marinos-Kouris [1988]) of a blending model that can

be used to maximize a refinery’s profit.

P R O B L E M S
Group A
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1 You have decided to enter the candy business. You are
considering producing two types of candies: Slugger Candy
and Easy Out Candy, both of which consist solely of sugar,
nuts, and chocolate. At present, you have in stock 100 oz
of sugar, 20 oz of nuts, and 30 oz of chocolate. The mixture
used to make Easy Out Candy must contain at least 20%
nuts. The mixture used to make Slugger Candy must contain
at least 10% nuts and 10% chocolate. Each ounce of Easy
Out Candy can be sold for 25¢ , and each ounce of Slugger
Candy for 20¢. Formulate an LP that will enable you to
maximize your revenue from candy sales.

2 O.J. Juice Company sells bags of oranges and cartons
of orange juice. O.J. grades oranges on a scale of 1 (poor)
to 10 (excellent). O.J. now has on hand 100,000 lb of grade
9 oranges and 120,000 lb of grade 6 oranges. The average
quality of oranges sold in bags must be at least 7, and the
average quality of the oranges used to produce orange juice
must be at least 8. Each pound of oranges that is used for
juice yields a revenue of $1.50 and incurs a variable cost
(consisting of labor costs, variable overhead costs, inventory
costs, and so on) of $1.05. Each pound of oranges sold in
bags yields a revenue of 50¢ and incurs a variable cost of
20¢. Formulate an LP to help O.J. maximize profit.

3 A bank is attempting to determine where its assets
should be invested during the current year. At present,
$500,000 is available for investment in bonds, home loans,
auto loans, and personal loans. The annual rate of return on

each type of investment is known to be: bonds, 10%; home
loans, 16%; auto loans, 13%; personal loans, 20%. To ensure
that the bank’s portfolio is not too risky, the bank’s
investment manager has placed the following three
restrictions on the bank’s portfolio:

a The amount invested in personal loans cannot ex-
ceed the amount invested in bonds.

b The amount invested in home loans cannot exceed
the amount invested in auto loans.

c No more than 25% of the total amount invested may
be in personal loans.

The bank’s objective is to maximize the annual return on its
investment portfolio. Formulate an LP that will enable the
bank to meet this goal.

4 Young MBA Erica Cudahy may invest up to $1,000. She
can invest her money in stocks and loans. Each dollar
invested in stocks yields 10¢ profit, and each dollar invested
in a loan yields 15¢ profit. At least 30% of all money invested
must be in stocks, and at least $400 must be in loans.
Formulate an LP that can be used to maximize total profit
earned from Erica’s investment. Then graphically solve 
the LP.

5 Chandler Oil Company has 5,000 barrels of oil 1 and
10,000 barrels of oil 2. The company sells two products:
gasoline and heating oil. Both products are produced by
combining oil 1 and oil 2. The quality level of each oil is



as follows: oil 1—10; oil 2—5. Gasoline must have an
average quality level of at least 8, and heating oil at least 6.
Demand for each product must be created by advertising.
Each dollar spent advertising gasoline creates 5 barrels of
demand and each spent on heating oil creates 10 barrels of
demand. Gasoline is sold for $25 per barrel, heating oil for
$20. Formulate an LP to help Chandler maximize profit.
Assume that no oil of either type can be purchased.

6 Bullco blends silicon and nitrogen to produce two types
of fertilizers. Fertilizer 1 must be at least 40% nitrogen and
sells for $70/lb. Fertilizer 2 must be at least 70% silicon and
sells for $40/lb. Bullco can purchase up to 80 lb of nitrogen
at $15/lb and up to 100 lb of silicon at $10/lb. Assuming
that all fertilizer produced can be sold, formulate an LP to
help Bullco maximize profits.

7 Eli Daisy uses chemicals 1 and 2 to produce two drugs.
Drug 1 must be at least 70% chemical 1, and drug 2 must
be at least 60% chemical 2. Up to 40 oz of drug 1 can be
sold at $6 per oz; up to 30 oz of drug 2 can be sold at $5
per oz. Up to 45 oz of chemical 1 can be purchased at $6
per oz, and up to 40 oz of chemical 2 can be purchased at
$4 per oz. Formulate an LP that can be used to maximize
Daisy’s profits.

8 Highland’s TV-Radio Store must determine how many
TVs and radios to keep in stock. A TV requires 10 sq ft of
floorspace, whereas a radio requires 4 sq ft; 200 sq ft of
floorspace is available. A TV will earn Highland $60 in
profits, and a radio will earn $20. The store stocks only TVs
and radios. Marketing requirements dictate that at least 60%
of all appliances in stock be radios. Finally, a TV ties up
$200 in capital, and a radio, $50. Highland wants to have at
most $3,000 worth of capital tied up at any time. Formulate
an LP that can be used to maximize Highland’s profit.

9 Linear programming models are used by many Wall
Street firms to select a desirable bond portfolio. The
following is a simplified version of such a model. Solodrex
is considering investing in four bonds; $1,000,000 is
available for investment. The expected annual return, the
worst-case annual return on each bond, and the “duration”
of each bond are given in Table 15. The duration of a bond
is a measure of the bond’s sensitivity to interest rates.
Solodrex wants to maximize the expected return from its
bond investments, subject to three constraints.

Constraint 1 The worst-case return of the bond portfolio
must be at least 8%.
Constraint 2 The average duration of the portfolio must be
at most 6. For example, a portfolio that invested $600,000
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in bond 1 and $400,000 in bond 4 would have an average
duration of

� 5.4

Constraint 3 Because of diversification requirements, at
most 40% of the total amount invested can be invested in a
single bond.

Formulate an LP that will enable Solodrex to maximize the
expected return on its investment.

10 Coalco produces coal at three mines and ships it to
four customers. The cost per ton of producing coal, the ash
and sulfur content (per ton) of the coal, and the production
capacity (in tons) for each mine are given in Table 16. The
number of tons of coal demanded by each customer are
given in Table 17.

The cost (in dollars) of shipping a ton of coal from a
mine to each customer is given in Table 18. It is required
that the total amount of coal shipped contain at most 5% ash
and at most 4% sulfur. Formulate an LP that minimizes the
cost of meeting customer demands.

11 Eli Daisy produces the drug Rozac from four
chemicals. Today they must produce 1,000 lb of the drug.
The three active ingredients in Rozac are A, B, and C. By
weight, at least 8% of Rozac must consist of A, at least 4%
of B, and at least 2% of C. The cost per pound of each
chemical and the amount of each active ingredient in 1 lb
of each chemical are given in Table 19.

It is necessary that at least 100 lb of chemical 2 be used.
Formulate an LP whose solution would determine the cheap-
est way of producing today’s batch of Rozac.

600,000(3) � 400,000(9)
���

TA B L E  15

Expected Worst-Case
Bond Return (%) Return (%) Duration

1 13 6% 3

2 8 8% 4

3 12 10% 7

4 14 9% 9

TA B L E  16

Production Ash Sulfur
Mine Cost ($) Capacity Content (Tons) Content (Tons)

1 50 120 .08 .05

2 55 100 .06 .04

3 62 140 .04 .03

TA B L E  17

Customer 1 Customer 2 Customer 3 Customer 4

80 70 60 40

TA B L E  18

Customer

Mine 1 2 3 4

1 4 6 8 12

2 9 6 7 11

3 8 12 3 5
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12 (A spreadsheet might be helpful on this problem.) The
risk index of an investment can be obtained from return on
investment (ROI) by taking the percentage of change in the
value of the investment (in absolute terms) for each year,
and averaging them.

Suppose you are trying to determine what percentage of
your money should be invested in T-bills, gold, and stocks.
In Table 20 (or File Inv68.xls) you are given the annual re-
turns (change in value) for these investments for the years
1968–1988. Let the risk index of a portfolio be the weighted
(according to the fraction of your money assigned to each
investment) average of the risk index of each individual in-
vestment. Suppose that the amount of each investment must
be between 20% and 50% of the total invested. You would
like the risk index of your portfolio to equal .15, and your
goal is to maximize the expected return on your portfolio.
Formulate an LP whose solution will maximize the expected
return on your portfolio, subject to the given constraints.
Use the average return earned by each investment during
the years 1968–1988 as your estimate of expected return.†

Group B

13 The owner of Sunco does not believe that our LP
optimal solution will maximize daily profit. He reasons,
“We have 14,000 barrels of daily refinery capacity, but your
optimal solution produces only 13,500 barrels. Therefore, it
cannot be maximizing profit.” How would you respond?

14 Oilco produces two products: regular and premium
gasoline. Each product contains .15 gram of lead per liter.
The two products are produced from six inputs: reformate,
fluid catalytic cracker gasoline (FCG), isomerate (ISO),
polymer (POL), MTBE (MTB), and butane (BUT). Each
input has four attributes:

Attribute 1 Research octane number (RON)
Attribute 2 RVP
Attribute 3 ASTM volatility at 70°C
Attribute 4 ASTM volatility at 130°C

The attributes and daily availability (in liters) of each in-
put are given in Table 21.

The requirements for each output are given in Table 22.
The daily demand (in thousands of liters) for each prod-

uct must be met, but more can be produced if desired. The
RON and ASTM requirements are minimums. Regular gaso-
line sells for 29.49¢/liter, premium gasoline for 31.43¢. Be-
fore being ready for sale, .15 gram/liter of lead must be re-

moved from each product. The cost of removing .1 gram/liter
is 8.5¢. At most 38% of each type of gasoline can consist
of FCG. Formulate and solve an LP whose solution will tell
Oilco how to maximize their daily profit.‡

TA B L E  19

Chemical Cost ($ per Lb) A B C

1 8 .03 .02 .01

2 10 .06 .04 .01

3 11 .10 .03 .04

4 14 .12 .09 .04 TA B L E  20

Year Stocks Gold T-Bills

1968 11 11 5

1969 �9 8 7

1970 4 �14 7

1971 14 14 4

1972 19 44 4

1973 �15 66 7

1974 �27 64 8

1975 37 0 6

1976 24 �22 5

1977 �7 18 5

1978 7 31 7

1979 19 59 10

1980 33 99 11

1981 �5 �25 15

1982 22 4 11

1983 23 �11 9

1984 6 �15 10

1985 32 �12 8

1986 19 16 6

1987 5 22 5

1988 17 �2 6

TA B L E  21

Availability RON RVP ASTM(70) ASTM(130)

Reformate 15,572 98.9 7.66 �5 46

FCG 15,434 93.2 9.78 57 103

ISO 6,709 86.1 29.52 107 100

POL 1,190 97 14.51 7 73

MTB 748 117 13.45 98 100

BUT Unlimited 98 166.99 130 100

TA B L E  22

Demand RON RVP ASTM(70) ASTM(130)

Regular 9.8 90 21.18 10 50

Premium 30 96 21.18 10 50

†Based on Chandy (1987).
‡Based on Magoulas and Marinos-Kouris (1988).



3.9 Production Process Models

We now explain how to formulate an LP model of a simple production process.† The key

step is to determine how the outputs from a later stage of the process are related to the

outputs from an earlier stage.

Rylon Corporation manufactures Brute and Chanelle perfumes. The raw material needed

to manufacture each type of perfume can be purchased for $3 per pound. Processing 1 lb

of raw material requires 1 hour of laboratory time. Each pound of processed raw mate-

rial yields 3 oz of Regular Brute Perfume and 4 oz of Regular Chanelle Perfume. Regular

Brute can be sold for $7/oz and Regular Chanelle for $6/oz. Rylon also has the option of

further processing Regular Brute and Regular Chanelle to produce Luxury Brute, sold at

$18/oz, and Luxury Chanelle, sold at $14/oz. Each ounce of Regular Brute processed fur-

ther requires an additional 3 hours of laboratory time and $4 processing cost and yields

1 oz of Luxury Brute. Each ounce of Regular Chanelle processed further requires an ad-

ditional 2 hours of laboratory time and $4 processing cost and yields 1 oz of Luxury

Chanelle. Each year, Rylon has 6,000 hours of laboratory time available and can purchase

up to 4,000 lb of raw material. Formulate an LP that can be used to determine how Ry-

lon can maximize profits. Assume that the cost of the laboratory hours is a fixed cost.

Solution Rylon must determine how much raw material to purchase and how much of each type

of perfume should be produced. We therefore define our decision variables to be

x1 � number of ounces of Regular Brute sold annually

x2 � number of ounces of Luxury Brute sold annually

x3 � number of ounces of Regular Chanelle sold annually

x4 � number of ounces of Luxury Chanelle sold annually

x5 � number of pounds of raw material purchased annually

Rylon wants to maximize

Contribution to profit � revenues from perfume sales � processing costs

� costs of purchasing raw material

� 7x1 � 18x2 � 6x3 � 14x4 � (4x2 � 4x4) � 3x5

� 7x1 � 14x2 � 6x3 � 10x4 � 3x5

Thus, Rylon’s objective function may be written as

max z � 7x1 � 14x2 � 6x3 � 10x4 � 3x5 (54)

Rylon faces the following constraints:

Constraint 1 No more than 4,000 lb of raw material can be purchased annually.

Constraint 2 No more than 6,000 hours of laboratory time can be used each year.

Constraint 1 is expressed by

x5 � 4,000 (55)

Brute Production ProcessE X A M P L E  1 3

†This section is based on Hartley (1971).
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To express Constraint 2, note that

Total lab time used annually � time used annually to process raw material

� time used annually to process Luxury Brute

� time used annually to process Luxury Chanelle

� x5 � 3x2 � 2x4

Then Constraint 2 becomes

3x2 � 2x4 � x5 � 6,000 (56)

After adding the sign restrictions xi � 0 (i � 1, 2, 3, 4, 5), many students claim that Ry-

lon should solve the following LP:

max z � 7x1 � 14x2 � 6x3 � 10x4 � 3x5

s.t. x5 � 4,000

3x2 � 2x4 � x5 � 6,000

xi � 0 (i � 1, 2, 3, 4, 5)

This formulation is incorrect. Observe that the variables x1 and x3 do not appear in any

of the constraints. This means that any point with x2 � x4 � x5 � 0 and x1 and x3 very

large is in the feasible region. Points with x1 and x3 large can yield arbitrarily large prof-

its. Thus, this LP is unbounded. Our mistake is that the current formulation does not in-

dicate that the amount of raw material purchased determines the amount of Brute and

Chanelle that is available for sale or further processing. More specifically, from Figure 10

(and the fact that 1 oz of processed Brute yields exactly 1 oz of Luxury Brute), it follows

that

� � � � �
� 3x5

This relation is reflected in the constraint

x1 � x2 � 3x5 or x1 � x2 � 3x5 � 0 (57)

Similarly, from Figure 10 it is clear that

Ounces of Regular Chanelle sold � ounces of Luxury Chanelle sold � 4x5

This relation yields the constraint

x3 � x4 � 4x5 or x3 � x4 � 4x5 � 0 (58)

Constraints (57) and (58) relate several decision variables. Students often omit con-

straints of this type. As this problem shows, leaving out even one constraint may very well

pounds of raw

material purchased

ounces of Brute produced
���

Ounces of Regular Brute Sold

� ounces of Luxury Brute sold
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x5 lb

Raw material

3x5 oz

Brute
x2 oz Reg. Brute processed into Lux. Brute

x1 oz Reg. Brute sold

4x5 oz

Chanelle
x4 oz Reg. Chanelle into Lux. Chanelle

x3 oz Reg. Chanelle sold
F I G U R E  10

Production Process for
Brute and Chanelle



lead to an unacceptable answer (such as an unbounded LP). If we combine (53)–(58) with

the usual sign restrictions, we obtain the correct LP formulation.

max z � 7x1 � 14x2 � 6x3 � 10x4 � 3x5

s.t. x5 � 4,000

s.t. 3x2 � 6x3 � 2x4 � x5 � 6,000

x1 � x2 � 6x3 � 2x4 � 3x5 � 0

s.t. x3 � x4 � 4x5 � 0

xi � 0 (i � 1, 2, 3, 4, 5)

The optimal solution is z � 172,666.667, x1 � 11,333.333 oz, x2 � 666.667 oz, x3 �

16,000 oz, x4 � 0, and x5 � 4,000 lb. Thus, Rylon should purchase all 4,000 lb of avail-

able raw material and produce 11,333.333 oz of Regular Brute, 666.667 oz of Luxury

Brute, and 16,000 oz of Regular Chanelle. This production plan will contribute

$172,666.667 to Rylon’s profits. In this problem, a fractional number of ounces seems rea-

sonable, so the Divisibility Assumption holds.

We close our discussion of the Rylon problem by discussing an error that is made by

many students. They reason that

1 lb raw material � 3 oz Brute � 4 oz Chanelle

Because x1 � x2 � total ounces of Brute produced, and x3 � x4 � total ounces of

Chanelle produced, students conclude that

x5 � 3(x1 � x2) � 4(x3 � x4) (59)

This equation might make sense as a statement for a computer program; in a sense, the

variable x5 is replaced by the right side of (59). As an LP constraint, however, (59) makes

no sense. To see this, note that the left side has the units “pounds of raw material,” and

the term 3x1 on the right side has the units

� � (ounces of Brute)

Because some of the terms do not have the same units, (59) cannot be correct. If there

are doubts about a constraint, then make sure that all terms in the constraint have the

same units. This will avoid many formulation errors. (Of course, even if the units on both

sides of a constraint are the same, the constraint may still be wrong.)

P R O B L E M S
Group A

Ounces of Brute
���
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1 Sunco Oil has three different processes that can be used
to manufacture various types of gasoline. Each process
involves blending oils in the company’s catalytic cracker.
Running process 1 for an hour costs $5 and requires 2
barrels of crude oil 1 and 3 barrels of crude oil 2. The
output from running process 1 for an hour is 2 barrels of
gas 1 and 1 barrel of gas 2. Running process 2 for an hour
costs $4 and requires 1 barrel of crude 1 and 3 barrels of
crude 2. The output from running process 2 for an hour is
3 barrels of gas 2. Running process 3 for an hour costs $1
and requires 2 barrels of crude 2 and 3 barrels of gas 2. The

output from running process 3 for an hour is 2 barrels of
gas 3. Each week, 200 barrels of crude 1, at $2/barrel, and
300 barrels of crude 2, at $3/barrel, may be purchased. All
gas produced can be sold at the following per-barrel prices:
gas 1, $9; gas 2, $10; gas 3, $24. Formulate an LP whose
solution will maximize revenues less costs. Assume that
only 100 hours of time on the catalytic cracker are available
each week.

2 Furnco manufactures tables and chairs. A table requires
40 board ft of wood, and a chair requires 30 board ft of



wood. Wood may be purchased at a cost of $1 per board ft,
and 40,000 board ft of wood are available for purchase. It
takes 2 hours of skilled labor to manufacture an unfinished
table or an unfinished chair. Three more hours of skilled
labor will turn an unfinished table into a finished table, and
2 more hours of skilled labor will turn an unfinished chair
into a finished chair. A total of 6,000 hours of skilled labor
are available (and have already been paid for). All furniture
produced can be sold at the following unit prices: unfinished
table, $70; finished table, $140; unfinished chair, $60;
finished chair, $110. Formulate an LP that will maximize
the contribution to profit from manufacturing tables and
chairs.

3 Suppose that in Example 11, 1 lb of raw material could
be used to produce either 3 oz of Brute or 4 oz of Chanelle.
How would this change the formulation?

4 Chemco produces three products: 1, 2, and 3. Each
pound of raw material costs $25. It undergoes processing
and yields 3 oz of product 1 and 1 oz of product 2. It costs
$1 and takes 2 hours of labor to process each pound of raw
material. Each ounce of product 1 can be used in one of
three ways.

It can be sold for $10/oz.

It can be processed into 1 oz of product 2. This re-
quires 2 hours of labor and costs $1.

It can be processed into 1 oz of product 3. This re-
quires 3 hours of labor and costs $2.

Each ounce of product 2 can be used in one of two ways.

It can be sold for $20/oz.

It can be processed into 1 oz of product 3. This re-
quires 1 hour of labor and costs $6.

Product 3 is sold for $30/oz. The maximum number of
ounces of each product that can be sold is given in Table 23.
A maximum of 25,000 hours of labor are available.
Determine how Chemco can maximize profit.
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6 Daisy Drugs manufactures two drugs: 1 and 2. The
drugs are produced by blending two chemicals: 1 and 2. By
weight, drug 1 must contain at least 65% chemical 1, and
drug 2 must contain at least 55% chemical 1. Drug 1 sells
for $6/oz, and drug 2 sells for $4/oz. Chemicals 1 and 2 can
be produced by one of two production processes. Running
process 1 for an hour requires 3 oz of raw material and 2
hours skilled labor and yields 3 oz of each chemical.
Running process 2 for an hour requires 2 oz of raw material
and 3 hours of skilled labor and yields 3 oz of chemical 1
and 1 oz of chemical 2. A total of 120 hours of skilled labor
and 100 oz of raw material are available. Formulate an LP
that can be used to maximize Daisy’s sales revenues.

7† Lizzie’s Dairy produces cream cheese and cottage
cheese. Milk and cream are blended to produce these two
products. Both high-fat and low-fat milk can be used to
produce cream cheese and cottage cheese. High-fat milk is
60% fat; low-fat milk is 30% fat. The milk used to produce
cream cheese must average at least 50% fat and that for
cottage cheese, at least 35% fat. At least 40% (by weight)
of the inputs to cream cheese and at least 20% (by weight)
of the inputs to cottage cheese must be cream. Both cottage
cheese and cream cheese are produced by putting milk and
cream through the cheese machine. It costs 40¢ to process
1 lb of inputs into a pound of cream cheese. It costs 40¢ to
produce 1 lb of cottage cheese, but every pound of input for
cottage cheese yields 0.9 lb of cottage cheese and 0.1 lb of
waste. Cream can be produced by evaporating high-fat and
low-fat milk. It costs 40¢ to evaporate 1 lb of high-fat milk.
Each pound of high-fat milk that is evaporated yields 0.6 lb
of cream. It costs 40¢ to evaporate 1 lb of low-fat milk.
Each pound of low-fat milk that is evaporated yields 0.3 lb
of cream. Each day, up to 3,000 lb of input may be sent
through the cheese machine. Each day, at least 1,000 lb of
cottage cheese and 1,000 lb of cream cheese must be
produced. Up to 1,500 lb of cream cheese and 2,000 lb of
cottage cheese can be sold each day. Cottage cheese is sold
for $1.20/lb and cream cheese for $1.50/lb. High-fat milk is
purchased for 80¢/lb and low-fat milk for 40¢/lb. The
evaporator can process at most 2,000 lb of milk daily.
Formulate an LP that can be used to maximize Lizzie’s daily
profit.

8 A company produces six products in the following
fashion. Each unit of raw material purchased yields four
units of product 1, two units of product 2, and one unit of
product 3. Up to 1,200 units of product 1 can be sold, and
up to 300 units of product 2 can be sold. Each unit of
product 1 can be sold or processed further. Each unit of
product 1 that is processed yields a unit of product 4.
Demand for products 3 and 4 is unlimited. Each unit of
product 2 can be sold or processed further. Each unit of
product 2 that is processed further yields 0.8 unit of product
5 and 0.3 unit of product 6. Up to 1,000 units of product 5
can be sold, and up to 800 units of product 6 can be sold.
Up to 3,000 units of raw material can be purchased at $6 per
unit. Leftover units of products 5 and 6 must be destroyed.
It costs $4 to destroy each leftover unit of product 5 and $3

†Based on Sullivan and Secrest (1985).

TA B L E  23

Product Oz

1 5,000

2 5,000

3 3,000

Group B

5 A company produces A, B, and C and can sell these
products in unlimited quantities at the following unit prices:
A, $10; B, $56; C, $100. Producing a unit of A requires 1
hour of labor; a unit of B, 2 hours of labor plus 2 units of
A; and a unit of C, 3 hours of labor plus 1 unit of B. Any
A that is used to produce B cannot be sold. Similarly, any
B that is used to produce C cannot be sold. A total of 40
hours of labor are available. Formulate an LP to maximize
the company’s revenues.



to destroy each leftover unit of product 6. Ignoring raw
material purchase costs, the per-unit sales price and
production costs for each product are shown in Table 24.
Formulate an LP whose solution will yield a profit-
maximizing production schedule.

9 Each week Chemco can purchase unlimited quantities
of raw material at $6/lb. Each pound of purchased raw
material can be used to produce either input 1 or input 2.
Each pound of raw material can yield 2 oz of input 1,
requiring 2 hours of processing time and incurring $2 in
processing costs. Each pound of raw material can yield 3 oz
of input 2, requiring 2 hours of processing time and incurring
$4 in processing costs.

Two production processes are available. It takes 2 hours
to run process 1, requiring 2 oz of input 1 and 1 oz of in-
put 2. It costs $1 to run process 1. Each time process 1 is
run 1 oz of product A and 1 oz of liquid waste are produced.
Each time process 2 is run requires 3 hours of processing
time, 2 oz of input 2 and 1 oz of input 1. Process 2 yields
1 oz of product B and .8 oz of liquid waste. Process 2 in-
curs $8 in costs.

Chemco can dispose of liquid waste in the Port Charles
River or use the waste to produce product C or product D.
Government regulations limit the amount of waste Chemco
is allowed to dump into the river to 1,000 oz/week. One
ounce of product C costs $4 to produce and sells for $11.
One hour of processing time, 2 oz of input 1, and .8 oz of
liquid waste are needed to produce an ounce of product C.
One unit of product D costs $5 to produce and sells for $7.
One hour of processing time, 2 oz of input 2, and 1.2 oz of
liquid waste are needed to produce an ounce of product D.

At most 5,000 oz of product A and 5,000 oz of product
B can be sold each week, but weekly demand for products
C and D is unlimited. Product A sells for $18/oz and prod-
uct B sells for $24/oz. Each week 6,000 hours of process-
ing time is available. Formulate an LP whose solution will
tell Chemco how to maximize weekly profit.

10 LIMECO owns a lime factory and sells six grades of
lime (grades 1 through 6). The sales price per pound is
given in Table 25. Lime is produced by kilns. If a kiln is run
for an 8-hour shift, the amounts (in pounds) of each grade
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of lime given in Table 26 are produced. It costs $150 to run
a kiln for an 8-hour shift. Each day the factory believes it
can sell up to the amounts (in pounds) of lime given in
Table 27.

Lime that is produced by the kiln may be reprocessed by
using any one of the five processes described in Table 28.

For example, at a cost of $1/lb, a pound of grade 4 lime
may be transformed into .5 lb of grade 5 lime and .5 lb of
grade 6 lime.

Any extra lime leftover at the end of each day must be
disposed of, with the disposal costs (per pound) given in
Table 29.

Formulate an LP whose solution will tell LIMECO how
to maximize their daily profit.

11 Chemco produces three products: A, B, and C. They
can sell up to 30 pounds of each product at the following
prices (per pound): product A, $10; product B, $12; product
C, $20. Chemco purchases raw material at $5/lb. Each pound
of raw material can be used to produce either 1 lb of A or
1 lb of B. For a cost of $3/lb processed, product A can be
converted to .6 lb of product B and .4 lb of product C. For
a cost of $2/lb processed, product B can be converted to 
.8 lb of product C. Formulate an LP whose solution will tell
Chemco how to maximize their profit.

12 Chemco produces 3 chemicals: B, C, and D. They begin
by purchasing chemical A for a cost of $6/100 liters. For an

TA B L E  24

Sales Production
Product Price ($) Cost ($)

1 7 4

2 6 4

3 4 2

4 3 1

5 20 5

6 35 5

TA B L E  25

Grade 1 2 3 4 5 6

Price($) 12 14 10 18 20 25

TA B L E  26

Grade 1 2 3 4 5 6

Amount produced 2 3 1 1.5 2 3

TA B L E  27

Grade 1 2 3 4 5 6

Maximum demand 20 30 40 35 25 50

TA B L E  28

Input (1 Lb) Output Cost ($ per Lb of Input)

Grade 1 .3 lb Grade 3

.2 lb Grade 4 2

.3 lb Grade 5

.2 lb Grade 6

Grade 2 .1 lb Grade 6 1

Grade 3 .8 lb Grade 4 1

Grade 4 .5 lb Grade 5 1

.5 lb Grade 6

Grade 5 .9 lb Grade 6 2

TA B L E  29

Grade 1 2 3 4 5 6

Cost of Disposition ($) 3 2 3 2 4 2



additional cost of $3 and the use of 3 hours of skilled labor,
100 liters of A can be transformed into 40 liters of C and
60 liters of B. Chemical C can either be sold or processed
further. It costs $1 and takes 1 hour of skilled labor to
process 100 liters of C into 60 liters of D and 40 liters of
B. For each chemical the sales price per 100 liters and the
maximum amount (in 100s of liters) that can be sold are
given in Table 30.

A maximum of 200 labor hours are available. Formulate
an LP whose solution will tell Chemco how to maximize
their profit.

13 Carrington Oil produces two types of gasoline, gas 1
and gas 2, from two types of crude oil, crude 1 and crude
2. Gas 1 is allowed to contain up to 4% impurities, and gas
2 is allowed to contain up to 3% impurities. Gas 1 sells for
$8 per barrel, whereas gas 2 sells for $12 per barrel. Up to
4,200 barrels of gas 1 and up to 4,300 barrels of gas 2 can
be sold. The cost per barrel of each crude, availability, and
the level of impurities in each crude are as shown in Table
31. Before blending the crude oil into gas, any amount of
each crude can be “purified” for a cost of $0.50 per barrel.
Purification eliminates half the impurities in the crude oil.
Determine how to maximize profit.

14 You have been put in charge of the Melrose oil refinery.
The refinery produces gas and heating oil from crude oil.
Gas sells for $8 per barrel and must have an average “grade
level” of at least 9. Heating oil sells for $6 a barrel and must
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TA B L E  30

B C D

Price ($) 12 16 26

Maximum demand 30 60 40

have an average grade level of at least 7. At most, 2,000
barrels of gas and 600 barrels of heating oil can be sold.
Incoming crude can be processed by one of three methods.
The per barrel yield and per barrel cost of each processing
method are shown in Table 32. For example, if we refine 1
barrel of incoming crude by method 1, it costs us $3.40 and
yields .2 barrels of grade 6, .2 barrels of grade 8, and .6
barrels of grade 10.

Before being processed into gas and heating oil,
processed grades 6 and 8 may be sent through the catalytic
cracker to improve their quality. For $1.30 per barrel, a bar-
rel of grade 6 may be “cracked” into a barrel of grade 8. For
$2 per barrel, a barrel of grade 8 may be cracked into a bar-
rel of grade 10. Any leftover processed or cracked oil that
cannot be used for heating oil or gas must be disposed of at
a cost of $0.20 per barrel. Determine how to maximize the
refinery’s profit.

TA B L E  31

Cost per Impurity Availability 
Oil Barrel ($) Level (%) (Barrels)

Crude 1 6 10% 5,000

Crude 2 8 2% 4,500

TA B L E  32

Method Grade 6 Grade 8 Grade 10 Cost ($)

1 .2 .2 .6 3.40

2 .3 .3 .4 3.00

3 .4 .4 .2 2.60

3.10 Using Linear Programming to Solve Multiperiod 
Decision Problems: An Inventory Model

Up to this point, all the LP formulations we have discussed are examples of static, or one-

period, models. In a static model, we assume that all decisions are made at a single point

in time. The rest of the examples in this chapter show how linear programming can be

used to determine optimal decisions in multiperiod, or dynamic, models. Dynamic mod-

els arise when the decision maker makes decisions at more than one point in time. In a

dynamic model, decisions made during the current period influence decisions made dur-

ing future periods. For example, consider a company that must determine how many units

of a product should be produced during each month. If it produced a large number of units

during the current month, this would reduce the number of units that should be produced

during future months. The examples discussed in Sections 3.10–3.12 illustrate how ear-

lier decisions affect later decisions. We will return to dynamic decision models when we

study dynamic programming in Chapters 18 and 19.



Sailco Corporation must determine how many sailboats should be produced during each

of the next four quarters (one quarter � three months). The demand during each of the

next four quarters is as follows: first quarter, 40 sailboats; second quarter, 60 sailboats;

third quarter, 75 sailboats; fourth quarter, 25 sailboats. Sailco must meet demands on

time. At the beginning of the first quarter, Sailco has an inventory of 10 sailboats. At the

beginning of each quarter, Sailco must decide how many sailboats should be produced

during that quarter. For simplicity, we assume that sailboats manufactured during a quar-

ter can be used to meet demand for that quarter. During each quarter, Sailco can produce

up to 40 sailboats with regular-time labor at a total cost of $400 per sailboat. By having

employees work overtime during a quarter, Sailco can produce additional sailboats with

overtime labor at a total cost of $450 per sailboat.

At the end of each quarter (after production has occurred and the current quarter’s de-

mand has been satisfied), a carrying or holding cost of $20 per sailboat is incurred. Use

linear programming to determine a production schedule to minimize the sum of produc-

tion and inventory costs during the next four quarters.

Solution For each quarter, Sailco must determine the number of sailboats that should be produced

by regular-time and by overtime labor. Thus, we define the following decision variables:

xt � number of sailboats produced by regular-time labor (at $400/boat)

during quarter t (t � 1, 2, 3, 4)

yt � number of sailboats produced by overtime labor (at $450/boat)

during quarter t (t � 1, 2, 3, 4)

It is convenient to define decision variables for the inventory (number of sailboats on

hand) at the end of each quarter:

it � number of sailboats on hand at end of quarter t (t � 1, 2, 3, 4)

Sailco’s total cost may be determined from

Total cost � cost of producing regular-time boats

� cost of producing overtime boats � inventory costs

� 400(x1 � x2 � x3 � x4) � 450(y1 � y2 � y3 � y4)

� 20(i1 � i2 � i3 � i4)

Thus, Sailco’s objective function is

min z � 400x1 � 400x2 � 400x3 � 400x4 � 450y1 � 450y2

� 450y3 � 450y4 � 20i1 � 20i2 � 20i3 � 20i4 (60)

Before determining Sailco’s constraints, we make two observations that will aid in for-

mulating multiperiod production-scheduling models.

For quarter t,

Inventory at end of quarter t � inventory at end of quarter (t � 1)

� quarter t production � quarter t demand

This relation plays a key role in formulating almost all multiperiod production-scheduling

models. If we let dt be the demand during period t (thus, d1 � 40, d2 � 60, d3 � 75, and

d4 � 25), our observation may be expressed in the following compact form:

it � it�1 � (xt � yt) � dt (t � 1, 2, 3, 4) (61)

3 . 1 0 Using Linear Programming to Solve Multiperiod Decision Problems 101

Sailco InventoryE X A M P L E  1 4



In (61), i0 � inventory at end of quarter 0 � inventory at beginning of quarter 1 � 10.

For example, if we had 20 sailboats on hand at the end of quarter 2 (i2 � 20) and pro-

duced 65 sailboats during quarter 3 (this means x3 � y3 � 65), what would be our end-

ing third-quarter inventory? Simply the number of sailboats on hand at the end of quar-

ter 2 plus the sailboats produced during quarter 3, less quarter 3’s demand of 75. In this

case, i3 � 20 � 65 � 75 � 10, which agrees with (61). Equation (61) relates decision

variables associated with different time periods. In formulating any multiperiod LP model,

the hardest step is usually finding the relation (such as (61)) that relates decision variables

from different periods.

We also note that quarter t’s demand will be met on time if and only if (sometimes

written iff ) it � 0. To see this, observe that it�1 � (xt � yt) is available to meet period

t’s demand, so that period t’s demand will be met if and only if

it�1 � (xt � yt) � dt or it � it�1 � (xt � yt) � dt � 0

This means that the sign restrictions it � 0 (t � 1, 2, 3, 4) will ensure that each quarter’s

demand will be met on time.

We can now determine Sailco’s constraints. First, we use the following four constraints

to ensure that each period’s regular-time production will not exceed 40: x1, x2, x3, x4 �

40. Then we add constraints of the form (61) for each time period (t � 1, 2, 3, 4). This

yields the following four constraints:

i1 � 10 � x1 � y1 � 40 i2 � i1 � x2 � y2 � 60

i3 � i2 � x3 � y3 � 75 i4 � i3 � x4 � y4 � 25

Adding the sign restrictions xt � 0 (to rule out negative production levels) and it � 0 (to

ensure that each period’s demand is met on time) yields the following formulation:

min z � 400x1 � 400x2 � 400x3 � 400x4 � 450y1 � 450y2 � 450y3 � 450y4

� 20i1 � 20i2 � 20i3 � 20i4

s.t. x1 � 40, x2 � 40, x3 � 40, x4 � 40

i1 � 10 � x1 � y1 � 40, i2 � i1 � x2 � y2 � 60

i3 � i2 � x3 � y3 � 75, i4 � i3 � x4 � y4 � 25

it � 0, yt � 0, and xt � 0 (t � 1, 2, 3, 4)

The optimal solution to this problem is z � 78,450; x1 � x2 � x3 � 40; x4 � 25; y1 �

0; y2 � 10; y3 � 35; y4 � 0; i1 � 10; i2 � i3 � i4 � 0. Thus, the minimum total cost

that Sailco can incur is $78,450. To incur this cost, Sailco should produce 40 sailboats

with regular-time labor during quarters 1–3 and 25 sailboats with regular-time labor dur-

ing quarter 4. Sailco should also produce 10 sailboats with overtime labor during quarter

2 and 35 sailboats with overtime labor during quarter 3. Inventory costs will be incurred

only during quarter 1.

Some readers might worry that our formulation allows Sailco to use overtime produc-

tion during quarter t even if period t’s regular production is less than 40. True, our for-

mulation does not make such a schedule infeasible, but any production plan that had yt �

0 and xt 
 40 could not be optimal. For example, consider the following two production

schedules:

Production schedule A � x1 � x2 � x3 � 40; x4 � 25;

y2 � 10; y3 � 25; y4 � 0

Production schedule B � x1 � 40; x2 � 30; x3 � 30; x4 � 25;

y2 � 20; y3 � 35; y4 � 0
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Schedules A and B both have the same production level during each period. This means

that both schedules will have identical inventory costs. Also, both schedules are feasible,

but schedule B incurs more overtime costs than schedule A. Thus, in minimizing costs,

schedule B (or any schedule having yt � 0 and xt 
 40) would never be chosen.

In reality, an LP such as Example 14 would be implemented by using a rolling hori-

zon, which works in the following fashion. After solving Example 14, Sailco would im-

plement only the quarter 1 production strategy (produce 40 boats with regular-time labor).

Then the company would observe quarter 1’s actual demand. Suppose quarter 1’s actual

demand is 35 boats. Then quarter 2 begins with an inventory of 10 � 40 � 35 � 15 boats.

We now make a forecast for quarter 5 demand (suppose the forecast is 36). Next deter-

mine production for quarter 2 by solving an LP in which quarter 2 is the first quarter,

quarter 5 is the final quarter, and beginning inventory is 15 boats. Then quarter 2’s pro-

duction would be determined by solving the following LP:

min z � 400(x2 � x3 � x4 � x5) � 450( y2 � y3 � y4 � y5) � 20(i2 � i3 � i4 � i5)

s.t. x2 � 40, x3 � 40, x4 � 40, x5 � 40

i2 � 15 � x2 � y2 � 60, i3 � i2 � x3 � y3 � 75

i4 � i3 � x4 � y4 � 25, i5 � i4 � x5 � y5 � 36

it � 0, yt � 0, and xt � 0 (t � 2, 3, 4, 5)

Here, x5 � quarter 5’s regular-time production, y5 � quarter 5’s overtime production, and

i5 � quarter 5’s ending inventory. The optimal values of x2 and y2 for this LP are then

used to determine quarter 2’s production. Thus, each quarter, an LP (with a planning hori-

zon of four quarters) is solved to determine the current quarter’s production. Then current

demand is observed, demand is forecasted for the next four quarters, and the process re-

peats itself. This technique of “rolling planning horizon” is the method by which most dy-

namic or multiperiod LP models are implemented in real-world applications.

Our formulation of the Sailco problem has several other limitations.

1 Production cost may not be a linear function of the quantity produced. This would vi-

olate the Proportionality Assumption. We discuss how to deal with this problem in Chap-

ters 9 and 13.

2 Future demands may not be known with certainty. In this situation, the Certainty As-

sumption is violated.

3 We have required Sailco to meet all demands on time. Often companies can meet de-

mands during later periods but are assessed a penalty cost for demands that are not met

on time. For example, if demand is not met on time, then customer displeasure may re-

sult in a loss of future revenues. If demand can be met during later periods, then we say

that demands can be backlogged. Our current LP formulation can be modified to incor-

porate backlogging (see Problem 1 of Section 4.12).

4 We have ignored the fact that quarter-to-quarter variations in the quantity produced

may result in extra costs (called production-smoothing costs.) For example, if we in-

crease production a great deal from one quarter to the next, this will probably require the

costly training of new workers. On the other hand, if production is greatly decreased from

one quarter to the next, extra costs resulting from laying off workers may be incurred. In

Section 4.12, we modify the present model to account for smoothing costs.

5 If any sailboats are left at the end of the last quarter, we have assigned them a value

of zero. This is clearly unrealistic. In any inventory model with a finite horizon, the in-

ventory left at the end of the last period should be assigned a salvage value that is in-

dicative of the worth of the final period’s inventory. For example, if Sailco feels that each

sailboat left at the end of quarter 4 is worth $400, then a term �400i4 (measuring the

worth of quarter 4’s inventory) should be added to the objective function.
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P R O B L E M S
Group A
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1 A customer requires during the next four months,
respectively, 50, 65, 100, and 70 units of a commodity (no
backlogging is allowed). Production costs are $5, $8, $4,
and $7 per unit during these months. The storage cost from
one month to the next is $2 per unit (assessed on ending
inventory). It is estimated that each unit on hand at the end
of month 4 could be sold for $6. Formulate an LP that will
minimize the net cost incurred in meeting the demands of
the next four months.

2 A company faces the following demands during the next
three periods: period 1, 20 units; period 2, 10 units; period
3, 15 units. The unit production cost during each period is
as follows: period 1—$13; period 2—$14; period 3—$15.
A holding cost of $2 per unit is assessed against each period’s
ending inventory. At the beginning of period 1, the company
has 5 units on hand.

In reality, not all goods produced during a month can be
used to meet the current month’s demand. To model this
fact, we assume that only one half of the goods produced
during a period can be used to meet the current period’s de-
mands. Formulate an LP to minimize the cost of meeting
the demand for the next three periods. (Hint: Constraints
such as i1 � x1 � 5 � 20 are certainly needed. Unlike our
example, however, the constraint i1 � 0 will not ensure that
period 1’s demand is met. For example, if x1 � 20, then i1
� 0 will hold, but because only �

1

2
�(20) � 10 units of period

1 production can be used to meet period 1’s demand, x1 �

20 would not be feasible. Try to think of a type of constraint
that will ensure that what is available to meet each period’s
demand is at least as large as that period’s demand.)

Group B

3 James Beerd bakes cheesecakes and Black Forest cakes.
During any month, he can bake at most 65 cakes. The costs
per cake and the demands for cakes, which must be met on
time, are listed in Table 33. It costs 50¢ to hold a cheesecake,
and 40¢ to hold a Black Forest cake, in inventory for a
month. Formulate an LP to minimize the total cost of
meeting the next three months’ demands.

4 A manufacturing company produces two types of
products: A and B. The company has agreed to deliver the
products on the schedule shown in Table 34. The company
has two assembly lines, 1 and 2, with the available
production hours shown in Table 35. The production rates
for each assembly line and product combination, in terms of

hours per product, are shown in Table 36. It takes 0.15 hour
to manufacture 1 unit of product A on line 1, and so on. It
costs $5 per hour of line time to produce any product. The
inventory carrying cost per month for each product is 20¢
per unit (charged on each month’s ending inventory).
Currently, there are 500 units of A and 750 units of B in
inventory. Management would like at least 1,000 units of
each product in inventory at the end of April. Formulate an
LP to determine the production schedule that minimizes the
total cost incurred in meeting demands on time.

5 During the next two months, General Cars must meet
(on time) the following demands for trucks and cars: month
1—400 trucks, 800 cars; month 2—300 trucks, 300 cars.
During each month, at most 1,000 vehicles can be produced.
Each truck uses 2 tons of steel, and each car uses 1 ton of
steel. During month 1, steel costs $400 per ton; during
month 2, steel costs $600 per ton. At most, 1,500 tons of
steel may be purchased each month (steel may only be used

TA B L E  33

Month 1 Month 2 Month 3

Item Demand Cost/Cake ($) Demand Cost/Cake ($) Demand Cost/Cake ($)

Cheesecake 40 3.00 30 3.40 20 3.80

Black Forest 20 2.50 30 2.80 10 3.40

TA B L E  34

Date A B

March 31 5,000 2,000

April 30 8,000 4,000

TA B L E  35

Production Hours
Available

Month Line 1 Line 2

March 800 2,000

April 400 1,200

TA B L E  36

Production Rate

Product Line 1 Line 2

A 0.15 0.16

B 0.12 0.14



during the month in which it is purchased). At the beginning
of month 1, 100 trucks and 200 cars are in inventory. At the
end of each month, a holding cost of $150 per vehicle is
assessed. Each car gets 20 mpg, and each truck gets 
10 mpg. During each month, the vehicles produced by the
company must average at least 16 mpg. Formulate an LP to
meet the demand and mileage requirements at minimum
cost (include steel costs and holding costs).

6 Gandhi Clothing Company produces shirts and pants.
Each shirt requires 2 sq yd of cloth, each pair of pants, 3.
During the next two months, the following demands for
shirts and pants must be met (on time): month 1—10 shirts,
15 pairs of pants; month 2—12 shirts, 14 pairs of pants.
During each month, the following resources are available:
month 1—90 sq yd of cloth; month 2—60 sq yd. (Cloth that
is available during month 1 may, if unused during month 1,
be used during month 2.)

During each month, it costs $4 to make an article of
clothing with regular-time labor and $8 with overtime labor.
During each month, a total of at most 25 articles of cloth-
ing may be produced with regular-time labor, and an un-
limited number of articles of clothing may be produced with
overtime labor. At the end of each month, a holding cost of
$3 per article of clothing is assessed. Formulate an LP that
can be used to meet demands for the next two months (on
time) at minimum cost. Assume that at the beginning of
month 1, 1 shirt and 2 pairs of pants are available.

7 Each year, Paynothing Shoes faces demands (which
must be met on time) for pairs of shoes as shown in Table
37. Workers work three consecutive quarters and then receive
one quarter off. For example, a worker may work during
quarters 3 and 4 of one year and quarter 1 of the next year.
During a quarter in which a worker works, he or she can
produce up to 50 pairs of shoes. Each worker is paid $500
per quarter. At the end of each quarter, a holding cost of $50
per pair of shoes is assessed. Formulate an LP that can be
used to minimize the cost per year (labor � holding) of
meeting the demands for shoes. To simplify matters, assume
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that at the end of each year, the ending inventory is zero.
(Hint: It is allowable to assume that a given worker will get
the same quarter off during each year.)

8 A company must meet (on time) the following demands:
quarter 1—30 units; quarter 2—20 units; quarter 3—40
units. Each quarter, up to 27 units can be produced with
regular-time labor, at a cost of $40 per unit. During each
quarter, an unlimited number of units can be produced with
overtime labor, at a cost of $60 per unit. Of all units
produced, 20% are unsuitable and cannot be used to meet
demand. Also, at the end of each quarter, 10% of all units
on hand spoil and cannot be used to meet any future
demands. After each quarter’s demand is satisfied and
spoilage is accounted for, a cost of $15 per unit is assessed
against the quarter’s ending inventory. Formulate an LP that
can be used to minimize the total cost of meeting the next
three quarters’ demands. Assume that 20 usable units are
available at the beginning of quarter 1.

9 Donovan Enterprises produces electric mixers. During
the next four quarters, the following demands for mixers
must be met on time: quarter 1—4,000; quarter 2—2,000;
quarter 3—3,000; quarter 4—10,000. Each of Donovan’s
workers works three quarters of the year and gets one quarter
off. Thus, a worker may work during quarters 1, 2, and 4
and get quarter 3 off. Each worker is paid $30,000 per year
and (if working) can produce up to 500 mixers during a
quarter. At the end of each quarter, Donovan incurs a holding
cost of $30 per mixer on each mixer in inventory. Formulate
an LP to help Donovan minimize the cost (labor and
inventory) of meeting the next year’s demand (on time). At
the beginning of quarter 1, 600 mixers are available.

TA B L E  37

Quarter 1 Quarter 2 Quarter 3 Quarter 4

600 300 800 100

3.11 Multiperiod Financial Models

The following example illustrates how linear programming can be used to model multi-

period cash management problems. The key is to determine the relations of cash on hand

during different periods.

Finco Investment Corporation must determine investment strategy for the firm during the

next three years. Currently (time 0), $100,000 is available for investment. Investments A,

B, C, D, and E are available. The cash flow associated with investing $1 in each invest-

ment is given in Table 38.

For example, $1 invested in investment B requires a $1 cash outflow at time 1 and re-

turns 50¢ at time 2 and $1 at time 3. To ensure that the company’s portfolio is diversified,

Finco requires that at most $75,000 be placed in any single investment. In addition to in-

vestments A–E, Finco can earn interest at 8% per year by keeping uninvested cash in

Finco Multiperiod InvestmentE X A M P L E  1 5



money market funds. Returns from investments may be immediately reinvested. For ex-

ample, the positive cash flow received from investment C at time 1 may immediately be

reinvested in investment B. Finco cannot borrow funds, so the cash available for invest-

ment at any time is limited to cash on hand. Formulate an LP that will maximize cash on

hand at time 3.

Solution Finco must decide how much money should be placed in each investment (including

money market funds). Thus, we define the following decision variables:

A � dollars invested in investment A

B � dollars invested in investment B

C � dollars invested in investment C

D � dollars invested in investment D

E � dollars invested in investment E

St � dollars invested in money market funds at time t (t � 0, 1, 2)

Finco wants to maximize cash on hand at time 3. At time 3, Finco’s cash on hand will be

the sum of all cash inflows at time 3. From the description of investments A–E and the

fact that from time 2 to time 3, S2 will increase to 1.08S2,

Time 3 cash on hand � B � 1.9D � 1.5E � 1.08S2

Thus, Finco’s objective function is

max z � B � 1.9D � 1.5E � 1.08S2 (62)

In multiperiod financial models, the following type of constraint is usually used to relate

decision variables from different periods:

Cash available at time t � cash invested at time t

� uninvested cash at time t that is carried over to time t � 1

If we classify money market funds as investments, we see that

Cash available at time t � cash invested at time t (63)

Because investments A, C, D, and S0 are available at time 0, and $100,000 is available

at time 0, (63) for time 0 becomes

100,000 � A � C � D � S0 (64)

At time 1, 0.5A � 1.2C � 1.08S0 is available for investment, and investments B and S1

are available. Then for t � 1, (63) becomes
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TA B L E  38

Cash Flow ($) at Time*

0 1 2 3

A �1 �0.50 �1 0

B 0 �1 �0.50 �1

C �1 �1.2 0 0

D �1 0 0 �1.9

E 0 0 �1 �1.5

*Note: Time 0 � present; time 1 � 1 year from now; time

2 � 2 years from now; time 3 � 3 years from now.



0.5A � 1.2C � 1.08S0 � B � S1 (65)

At time 2, A � 0.5B � 1.08S1 is available for investment, and investments E and S2 are

available. Thus, for t � 2, (63) reduces to

A � 0.5B � 1.08S1 � E � S2 (66)

Let’s not forget that at most $75,000 can be placed in any of investments A–E. To take

care of this, we add the constraints

A � 75,000 (67)

B � 75,000 (68)

C � 75,000 (69)

D � 75,000 (70)

E � 75,000 (71)

Combining (62) and (64)–(71) with the sign restrictions (all variables � 0) yields the fol-

lowing LP:

max z � B � 1.9D � 1.5E � 1.08S2

s.t. A � C � D � S0 � 100,000

0.5A � 1.2C � 1.08S0 � B � S1

A � 0.5B � 1.08S1 � E � S2

A � 75,000

B � 75,000

C � 75,000

D � 75,000

E � 75,000

A, B, C, D, E, S0, S1, S2 � 0

We find the optimal solution to be z � 218,500, A � 60,000, B � 30,000, D � 40,000,

E � 75,000, C � S0 � S1 � S2 � 0. Thus, Finco should not invest in money market

funds. At time 0, Finco should invest $60,000 in A and $40,000 in D. Then, at time 1, the

$30,000 cash inflow from A should be invested in B. Finally, at time 2, the $60,000 cash

inflow from A and the $15,000 cash inflow from B should be invested in E. At time 3,

Finco’s $100,000 will have grown to $218,500.

You might wonder how our formulation ensures that Finco never invests more money

at any time than the firm has available. This is ensured by the fact that each variable Si

must be nonnegative. For example, S0 � 0 is equivalent to 100,000 � A � C � D � 0,

which ensures that at most $100,000 will be invested at time 0.

Real-World Application

Using LP to Optimize Bond Portfolios

Many Wall Street firms buy and sell bonds. Rohn (1987) discusses a bond selection model

that maximizes profit from bond purchases and sales subject to constraints that minimize

the firm’s risk exposure. See Problem 4 for a simplified version of this model.
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P R O B L E M S
Group A
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1 A consultant to Finco claims that Finco’s cash on hand
at time 3 is the sum of the cash inflows from all investments,
not just those investments yielding a cash inflow at time 3.
Thus, the consultant claims that Finco’s objective function
should be

max z � 1.5A � 1.5B � 1.2C � 1.9D � 1.5E

� 1.08S0 � 1.08S1 � 1.08S2

Explain why the consultant is incorrect.

2 Show that Finco’s objective function may also be written as

max z � 100,000 � 0.5A � 0.5B � 0.2C � 0.9D � 0.5E

� 0.08S0 � 0.08S1 � 0.08S2

3 At time 0, we have $10,000. Investments A and B are
available; their cash flows are shown in Table 39. Assume
that any money not invested in A or B earns no interest.
Formulate an LP that will maximize cash on hand at time
3. Can you guess the optimal solution to this problem?

Group B

4† Broker Steve Johnson is currently trying to maximize
his profit in the bond market. Four bonds are available for
purchase and sale, with the bid and ask price of each bond
as shown in Table 40. Steve can buy up to 1,000 units of
each bond at the ask price or sell up to 1,000 units of each
bond at the bid price. During each of the next three years,
the person who sells a bond will pay the owner of the bond
the cash payments shown in Table 41. 

Steve’s goal is to maximize his revenue from selling
bonds less his payment for buying bonds, subject to the
constraint that after each year’s payments are received, his
current cash position (due only to cash payments from bonds
and not purchases or sale of bonds) is nonnegative. Assume

that cash payments are discounted, with a payment of $1
one year from now being equivalent to a payment of 90¢
now. Formulate an LP to maximize net profit from buying
and selling bonds, subject to the arbitrage constraints previ-
ously described. Why do you think we limit the number of
units of each bond that can be bought or sold?

5 A small toy store, Toyco projects the monthly cash flows
(in thousands of dollars) in Table 42 during the year 2003.
A negative cash flow means that cash outflows exceed cash
inflows to the business. To pay its bills, Toyco will need to
borrow money early in the year. Money can be borrowed in
two ways:

a Taking out a long-term one-year loan in January. In-
terest of 1% is charged each month, and the loan must
be paid back at the end of December.

b Each month money can be borrowed from a short-
term bank line of credit. Here, a monthly interest rate of
1.5% is charged. All short-term loans must be paid off
at the end of December.

At the end of each month, excess cash earns 0.4% in-
terest. Formulate an LP whose solution will help Toyco
maximize its cash position at the beginning of January,
2004.

6 Consider Problem 5 with the following modification:
Each month Toyco can delay payments on some or all of the
cash owed for the current month. This is called “stretching
payments.” Payments may be stretched for only one month,
and a 1% penalty is charged on the amount stretched. Thus,
if it stretches payments on $10,000 cash owed in January,
then it must pay 10,000(1.01) � $10,100 in February. With
this modification, formulate an LP that would help Toyco
maximize its cash on hand at the beginning of January 1,
2004.†Based on Rohn (1987).

TA B L E  39

Time A B

0 �$1 $0

1 $0.2 �$1

2 $1.5 $0

3 $0 $1.0

TA B L E  40

Bond Bid Price Ask Price

1 980 990

2 970 985

3 960 972

4 940 954

TA B L E  41

Year Bond 1 Bond 2 Bond 3 Bond 4

1 100 80 70 60

2 110 90 80 50

3 1,100 1,120 1,090 1,110

TA B L E  42

Month Cash Flow Month Cash Flow

January �12 July �7

February �10 August �2

March �8 September 15

April �10 October 12

May �4 November �7

June 5 December 45



7 Suppose we are borrowing $1,000 at 12% annual interest
with 60 monthly payments. Assume equal payments are
made at the end of month 1, month 2, . . . month 60. We
know that entering into Excel the function

� PMT(.01, 60, 1,000)

would yield the monthly payment ($22.24).
It is instructive to use LP to determine the montly pay-

ment. Let p be the (unknown) monthly payment. Each month
we owe .01 � (our current unpaid balance) in interest. The
remainder of our monthly payment is used to reduce the un-
paid balance. For example, suppose we paid $30 each month.
At the beginning of month 1, our unpaid balance is $1,000.
Of our month 1 payment, $10 goes to interest and $20 to
paying off the unpaid balance. Then we would begin month
2 with an unpaid balance of $980. The trick is to use LP to
determine the monthly payment that will pay off the loan at
the end of month 60.

8 You are a CFA (chartered financial analyst). Madonna
has come to you because she needs help paying off her credit
card bills. She owes the amounts on her credit cards shown
in Table 43. Madonna is willing to allocate up to $5,000 per
month to pay off these credit cards. All cards must be paid
off within 36 months. Madonna’s goal is to minimize the
total of all her payments. To solve this problem, you must
understand how interest on a loan works. To illustrate,
suppose Madonna pays $5,000 on Saks during month 1.
Then her Saks balance at the beginning of month 2 is

20,000 � (5,000 � .005(20,000))

This follows because during month 1 Madonna incurs
.005(20,000) in interest charges on her Saks card. Help
Madonna solve her problems!

9 Winstonco is considering investing in three projects. If
we fully invest in a project, the realized cash flows (in
millions of dollars) will be as shown in Table 44. For
example, project 1 requires cash outflow of $3 million today
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and returns $5.5 million 3 years from now. Today we have
$2 million in cash. At each time point (0, .5, 1, 1.5, 2, and
2.5 years from today) we may, if desired, borrow up to $2
million at 3.5% (per 6 months) interest. Leftover cash earns
3% (per 6 months) interest. For example, if after borrowing
and investing at time 0 we have $1 million we would receive
$30,000 in interest at time .5 years. Winstonco’s goal is to
maximize cash on hand after it accounts for time 3 cash
flows. What investment and borrowing strategy should be
used? Remember that we may invest in a fraction of a
project. For example, if we invest in .5 of project 3, then we
have cash outflows of �$1 million at time 0 and .5.

TA B L E  43

Card Balance ($) Monthly Rate (%)

Saks Fifth Avenue 20,000 .5

Bloomingdale’s 50,000 1

Macys 40,000 1.5

TA B L E  44

Cash Flow

Time (Years) Project 1 Project 2 Project 3

0 �3.0 �2 �2.0

0.5 �1.0 �.5 �2.0

1 �1.8 1.5 �1.8

1.5 1.4 1.5 1

2 1.8 1.5 1

2.5 1.8 1.2 1

3 5.5 �1 6

3.12 Multiperiod Work Scheduling

In Section 3.5, we saw that linear programming could be used to schedule employees in

a static environment where demand did not change over time. The following example (a

modified version of a problem from Wagner [1975]) shows how LP can be used to sched-

ule employee training when a firm faces demand that changes over time.

CSL is a chain of computer service stores. The number of hours of skilled repair time that

CSL requires during the next five months is as follows:

Month 1 (January): 6,000 hours

Month 2 (February): 7,000 hours

Month 3 (March): 8,000 hours

Month 4 (April): 9,500 hours

Month 5 (May): 11,000 hours

Multiperiod Work SchedulingE X A M P L E  1 6
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At the beginning of January, 50 skilled technicians work for CSL. Each skilled technician

can work up to 160 hours per month. To meet future demands, new technicians must be

trained. It takes one month to train a new technician. During the month of training, a

trainee must be supervised for 50 hours by an experienced technician. Each experienced

technician is paid $2,000 a month (even if he or she does not work the full 160 hours).

During the month of training, a trainee is paid $1,000 a month. At the end of each month,

5% of CSL’s experienced technicians quit to join Plum Computers. Formulate an LP

whose solution will enable CSL to minimize the labor cost incurred in meeting the ser-

vice requirements for the next five months.

Solution CSL must determine the number of technicians who should be trained during month t

(t � 1, 2, 3, 4, 5). Thus, we define

xt � number of technicians trained during month t (t � 1, 2, 3, 4, 5)

CSL wants to minimize total labor cost during the next five months. Note that

Total labor cost � cost of paying trainees � cost of paying experienced technicians

To express the cost of paying experienced technicians, we need to define, for t � 1, 2, 

3, 4, 5,

yt � number of experienced technicians at the beginning of month t

Then

Total labor cost � (1,000x1 � 1,000x2 � 1,000x3 � 1,000x4 � 1,000x5)

� (2,000y1 � 2000y2 � 2,000y3 � 2,000y4 � 2,000y5)

Thus, CSL’s objective function is

min z � 1,000x1 � 1,000x2 � 1,000x3 � 1,000x4 � 1,000x5

� 2,000y1 � 2,000y2 � 2,000y3 � 2,000y4 � 2,000y5

What constraints does CSL face? Note that we are given y1 � 50, and that for t � 1, 2,

3, 4, 5, CSL must ensure that

Number of available technician hours during month t

� Number of technician hours required during month t (72)

Because each trainee requires 50 hours of experienced technician time, and each skilled

technician is available for 160 hours per month,

Number of available technician hours during month t � 160yt � 50xt

Now (72) yields the following five constraints:

160y1 � 50x1 � 6,000 (month 1 constraint)

160y2 � 50x2 � 7,000 (month 2 constraint)

160y3 � 50x3 � 8,000 (month 3 constraint)

160y4 � 50x4 � 9,500 (month 4 constraint)

160y5 � 50x5 � 11,000 (month 5 constraint)

As in the other multiperiod formulations, we need constraints that relate variables from

different periods. In the CSL problem, it is important to realize that the number of skilled

technicians available at the beginning of any month is determined by the number of skilled

technicians available during the previous month and the number of technicians trained

during the previous month:



� (73)

� technicians trained during month (t � 1)

� experienced technicians who quit during

month (t � 1)

For example, for February, (73) yields

y2 � y1 � x1 � 0.05y1 or y2 � 0.95y1 � x1

Similarly, for March, (73) yields

y3 � 0.95y2 � x2

and for April,

y4 � 0.95y3 � x3

and for May,

y5 � 0.95y4 � x4

Adding the sign restrictions xt � 0 and yt � 0 (t � 1, 2, 3, 4, 5), we obtain the follow-

ing LP:

min z � 1,000x1 � 1,000x2 � 1,000x3 � 1,000x4 � 1,000x5

� 2,000y1 � 2,000y2 � 2,000y3 � 2,000y4 � 2,000y5

s.t. 160y1 � 50x1 � 6,000 y1 � 50

160y2 � 50x2 � 7,000 0.95y1 � x1 � y2

160y3 � 50x3 � 8,000 0.95y2 � x2 � y3

160y4 � 50x4 � 9,500 0.95y3 � x3 � y4

160y5 � 50x5 � 11,000 0.95y4 � x4 � y5

xt, yt � 0 (t � 1, 2, 3, 4, 5)

The optimal solution is z � 593,777; x1 � 0; x2 � 8.45; x3 � 11.45; x4 � 9.52; x5 � 0;

y1 � 50; y2 � 47.5; y3 � 53.58; y4 � 62.34; and y5 � 68.75.

In reality, the yt’s must be integers, so our solution is difficult to interpret. The prob-

lem with our formulation is that assuming that exactly 5% of the employees quit each

month can cause the number of employees to change from an integer during one month

to a fraction during the next month. We might want to assume that the number of em-

ployees quitting each month is the integer closest to 5% of the total workforce, but then

we do not have a linear programming problem!

P R O B L E M S
Group A

Experienced technicians available

at beginning of month (t � 1)

Experienced technicians available

at beginning of month t
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1 If y1 � 38, then what would be the optimal solution to
CSL’s problem?

2 An insurance company believes that it will require the
following numbers of personal computers during the next
six months: January, 9; February, 5; March, 7; April, 9;
May, 10; June, 5. Computers can be rented for a period of
one, two, or three months at the following unit rates: one-
month rate, $200; two-month rate, $350; three-month rate,
$450. Formulate an LP that can be used to minimize the

cost of renting the required computers. You may assume that
if a machine is rented for a period of time extending beyond
June, the cost of the rental should be prorated. For example,
if a computer is rented for three months at the beginning of
May, then a rental fee of �

2

3
�(450) � $300, not $450, should

be assessed in the objective function.

3 The IRS has determined that during each of the next 12
months it will need the number of supercomputers given in
Table 45. To meet these requirements, the IRS rents
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supercomputers for a period of one, two, or three months.
It costs $100 to rent a supercomputer for one month, $180
for two months, and $250 for three months. At the beginning
of month 1, the IRS has no supercomputers. Determine the
rental plan that meets the next 12 months’ requirements at
minimum cost. Note: You may assume that fractional rentals
are okay, so if your solution says to rent 140.6 computers
for one month we can round this up or down (to 141 or 140)
without having much effect on the total cost.

Group B

4 You own a wheat warehouse with a capacity of 20,000
bushels. At the beginning of month 1, you have 6,000 bushels

TA B L E  45

Month Computer Requirements

1 800

2 1,000

3 600

4 500

5 1,200

6 400

7 800

8 600

9 400

10 500

11 800

12 600

of wheat. Each month, wheat can be bought and sold at the
price per 1000 bushels given in Table 46.

The sequence of events during each month is as follows:

a You observe your initial stock of wheat.

b You can sell any amount of wheat up to your initial
stock at the current month’s selling price.

c You can buy (at the current month’s buying price) as
much wheat as you want, subject to the warehouse size
limitation.

Your goal is to formulate an LP that can be used to deter-
mine how to maximize the profit earned over the next 10
months.

TA B L E  46

Month Selling Price ($) Purchase Price ($)

1 3 8

2 6 8

3 7 2

4 1 3

5 4 4

6 5 3

7 5 3

8 1 2

9 3 5

10 2 5

S U M M A R Y Linear Programming Definitions

A linear programming problem (LP) consists of three parts:

1 A linear function (the objective function) of decision variables (say, x1, x2, . . . , xn)

that is to be maximized or minimized.

2 A set of constraints (each of which must be a linear equality or linear inequality) that

restrict the values that may be assumed by the decision variables.

3 The sign restrictions, which specify for each decision variable xj either (1) variable

xj must be nonnegative—xj � 0; or (2) variable xj may be positive, zero, or negative—xj

is unrestricted in sign (urs).

The coefficient of a variable in the objective function is the variable’s objective func-

tion coefficient. The coefficient of a variable in a constraint is a technological coefficient.

The right-hand side of each constraint is called a right-hand side (rhs).

A point is simply a specification of the values of each decision variable. The feasible

region of an LP consists of all points satisfying the LP’s constraints and sign restrictions.

Any point in the feasible region that has the largest z-value of all points in the feasible re-

gion (for a max problem) is an optimal solution to the LP. An LP may have no optimal

solution, one optimal solution, or an infinite number of optimal solutions.
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A constraint in an LP is binding if the left-hand side and the right-hand side are equal

when the values of the variables in the optimal solution are substituted into the constraint.

Graphical Solution of Linear Programming Problems

The feasible region for any LP is a convex set. If an LP has an optimal solution, there is

an extreme (or corner) point of the feasible region that is an optimal solution to the LP.

We may graphically solve an LP (max problem) with two decision variables as follows:

Step 1 Graph the feasible region.

Step 2 Draw an isoprofit line.

Step 3 Move parallel to the isoprofit line in the direction of increasing z. The last point

in the feasible region that contacts an isoprofit line is an optimal solution to the LP.

LP Solutions: Four Cases

When an LP is solved, one of the following four cases will occur:

Case 1 The LP has a unique solution.

Case 2 The LP has more than one (actually an infinite number of ) optimal solutions.

This is the case of alternative optimal solutions. Graphically, we recognize this case

when the isoprofit line last hits an entire line segment before leaving the feasible region.

Case 3 The LP is infeasible (it has no feasible solution). This means that the feasible re-

gion contains no points.

Case 4 The LP is unbounded. This means (in a max problem) that there are points in the

feasible region with arbitrarily large z-values. Graphically, we recognize this case by the

fact that when we move parallel to an isoprofit line in the direction of increasing z, we

never lose contact with the LP’s feasible region.

Formulating LPs

The most important step in formulating most LPs is to determine the decision variables

correctly.

In any constraint, the terms must have the same units. For example, one term cannot

have the units “pounds of raw material” while another term has the units “ounces of raw

material.”

R E V I E W  P R O B L E M S
Group A

1 Bloomington Breweries produces beer and ale. Beer
sells for $5 per barrel, and ale sells for $2 per barrel.
Producing a barrel of beer requires 5 lb of corn and 2 lb of
hops. Producing a barrel of ale requires 2 lb of corn and 1
lb of hops. Sixty pounds of corn and 25 lb of hops are
available. Formulate an LP that can be used to maximize
revenue. Solve the LP graphically.

2 Farmer Jones bakes two types of cake (chocolate and
vanilla) to supplement his income. Each chocolate cake can
be sold for $1, and each vanilla cake can be sold for 50¢.
Each chocolate cake requires 20 minutes of baking time and
uses 4 eggs. Each vanilla cake requires 40 minutes of baking
time and uses 1 egg. Eight hours of baking time and 30 eggs
are available. Formulate an LP to maximize Farmer Jones’s



TA B L E  47

Alloy 1 Alloy 2

Cost per ton ($) $190 $200

Percent silicon 2 2.5

Percent nickel 1 1.5

Percent carbon 3 4

Tensile strength (psi) 42,000 50,000
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revenue, then graphically solve the LP. (A fractional number
of cakes is okay.)

3 I now have $100. The following investments are available
during the next three years:

Investment A Every dollar invested now yields $0.10 a
year from now and $1.30 three years from now.
Investment B Every dollar invested now yields $0.20 a
year from now and $1.10 two years from now.
Investment C Every dollar invested a year from now yields
$1.50 three years from now.

During each year, uninvested cash can be placed in money
market funds, which yield 6% interest per year. At most $50
may be placed in each of investments A, B, and C. Formulate
an LP to maximize my cash on hand three years from now.

4 Sunco processes oil into aviation fuel and heating oil. It
costs $40 to purchase each 1,000 barrels of oil, which is
then distilled and yields 500 barrels of aviation fuel and 500
barrels of heating oil. Output from the distillation may be
sold directly or processed in the catalytic cracker. If sold
after distillation without further processing, aviation fuel
sells for $60 per 1,000 barrels, and heating oil sells for $40
per 1,000 barrels. It takes 1 hour to process 1,000 barrels of
aviation fuel in the catalytic cracker, and these 1,000 barrels
can be sold for $130. It takes 45 minutes to process 1,000
barrels of heating oil in the cracker, and these 1,000 barrels
can be sold for $90. Each day, at most 20,000 barrels of oil
can be purchased, and 8 hours of cracker time are available.
Formulate an LP to maximize Sunco’s profits.

5 Finco has the following investments available:

Investment A For each dollar invested at time 0, we re-
ceive $0.10 at time 1 and $1.30 at time 2. (Time 0 � now;
time 1 � one year from now; and so on.)
Investment B For each dollar invested at time 1, we re-
ceive $1.60 at time 2.
Investment C For each dollar invested at time 2, we re-
ceive $1.20 at time 3.

At any time, leftover cash may be invested in T-bills, which
pay 10% per year. At time 0, we have $100. At most, $50
can be invested in each of investments A, B, and C. For-
mulate an LP that can be used to maximize Finco’s cash on
hand at time 3.

6 All steel manufactured by Steelco must meet the
following requirements: 3.2–3.5% carbon; 1.8–2.5% silicon;
0.9–1.2% nickel; tensile strength of at least 45,000 pounds
per square inch (psi). Steelco manufactures steel by
combining two alloys. The cost and properties of each alloy
are given in Table 47. Assume that the tensile strength of a

mixture of the two alloys can be determined by averaging
that of the alloys that are mixed together. For example, a
one-ton mixture that is 40% alloy 1 and 60% alloy 2 has a
tensile strength of 0.4(42,000) � 0.6(50,000). Use linear
programming to determine how to minimize the cost of
producing a ton of steel.

7 Steelco manufactures two types of steel at three different
steel mills. During a given month, each steel mill has 200
hours of blast furnace time available. Because of differences
in the furnaces at each mill, the time and cost to produce a
ton of steel differs for each mill. The time and cost for each
mill are shown in Table 48. Each month, Steelco must
manufacture at least 500 tons of steel 1 and 600 tons of steel
2. Formulate an LP to minimize the cost of manufacturing
the desired steel.

8† Walnut Orchard has two farms that grow wheat and
corn. Because of differing soil conditions, there are
differences in the yields and costs of growing crops on the
two farms. The yields and costs are shown in Table 49. Each
farm has 100 acres available for cultivation; 11,000 bushels
of wheat and 7,000 bushels of corn must be grown.
Determine a planting plan that will minimize the cost of
meeting these demands. How could an extension of this
model be used to allocate crop production efficiently
throughout a nation?

9 Candy Kane Cosmetics (CKC) produces Leslie Perfume,
which requires chemicals and labor. Two production
processes are available: Process 1 transforms 1 unit of labor
and 2 units of chemicals into 3 oz of perfume. Process 2
transforms 2 units of labor and 3 units of chemicals into 
5 oz of perfume. It costs CKC $3 to purchase a unit of labor
and $2 to purchase a unit of chemicals. Each year, up to
20,000 units of labor and 35,000 units of chemicals can be
purchased. In the absence of advertising, CKC believes it
can sell 1,000 oz of perfume. To stimulate demand for

TA B L E  48

Producing a Ton of Steel

Steel 1 Steel 2

Time Time
Mill Cost (Minutes) Cost (Minutes)

1 $10 20 $11 22

2 $12 24 $ 9 18

3 $14 28 $10 30

†Based on Heady and Egbert (1964).

TA B L E  49

Farm 1 Farm 2

Corn yield/acre (bushels) 500 650

Cost/acre of corn ($) 100 120

Wheat yield/acre (bushels) 400 350

Cost/acre of wheat ($) 90 80



Leslie, CKC can hire the lovely model Jenny Nelson. Jenny
is paid $100/hour. Each hour Jenny works for the company
is estimated to increase the demand for Leslie Perfume by
200 oz. Each ounce of Leslie Perfume sells for $5. Use
linear programming to determine how CKC can maximize
profits.

10 Carco has a $150,000 advertising budget. To increase
automobile sales, the firm is considering advertising in
newspapers and on television. The more Carco uses a
particular medium, the less effective is each additional ad.
Table 50 shows the number of new customers reached by
each ad. Each newspaper ad costs $1,000, and each
television ad costs $10,000. At most, 30 newspaper ads and
15 television ads can be placed. How can Carco maximize
the number of new customers created by advertising?

11 Sunco Oil has refineries in Los Angeles and Chicago.
The Los Angeles refinery can refine up to 2 million barrels
of oil per year, and the Chicago refinery up to 3 million.
Once refined, oil is shipped to two distribution points:
Houston and New York City. Sunco estimates that each
distribution point can sell up to 5 million barrels per year.
Because of differences in shipping and refining costs, the
profit earned (in dollars) per million barrels of oil shipped
depends on where the oil was refined and on the point of
distribution (see Table 51). Sunco is considering expanding
the capacity of each refinery. Each million barrels of annual
refining capacity that is added will cost $120,000 for the Los
Angeles refinery and $150,000 for the Chicago refinery. Use
linear programming to determine how Sunco can maximize
its profits less expansion costs over a ten-year period.

12 For a telephone survey, a marketing research group
needs to contact at least 150 wives, 120 husbands, 100
single adult males, and 110 single adult females. It costs $2
to make a daytime call and (because of higher labor costs)
$5 to make an evening call. Table 52 lists the results. Because
of limited staff, at most half of all phone calls can be evening
calls. Formulate an LP to minimize the cost of completing
the survey.
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13 Feedco produces two types of cattle feed, both
consisting totally of wheat and alfalfa. Feed 1 must contain
at least 80% wheat, and feed 2 must contain at least 60%
alfalfa. Feed 1 sells for $1.50/lb, and feed 2 sells for $1.30/lb.
Feedco can purchase up to 1,000 lb of wheat at 50¢/lb and
up to 800 lb of alfalfa at 40¢/lb. Demand for each type of
feed is unlimited. Formulate an LP to maximize Feedco’s
profit.

14 Feedco (see Problem 13) has decided to give its
customer (assume it has only one customer) a quantity
discount. If the customer purchases more than 300 lb of
feed 1, each pound over the first 300 lb will sell for only
$1.25/lb. Similarly, if the customer purchases more than 300
pounds of feed 2, each pound over the first 300 lb will sell
for $1.00/lb. Modify the LP of Problem 13 to account for
the presence of quantity discounts. (Hint: Define variables
for the feed sold at each price.)

15 Chemco produces two chemicals: A and B. These
chemicals are produced via two manufacturing processes.
Process 1 requires 2 hours of labor and 1 lb of raw material
to produce 2 oz of A and 1 oz of B. Process 2 requires 3
hours of labor and 2 lb of raw material to produce 3 oz of
A and 2 oz of B. Sixty hours of labor and 40 lb of raw
material are available. Demand for A is unlimited, but only
20 oz of B can be sold. A sells for $16/oz, and B sells for
$14/oz. Any B that is unsold must be disposed of at a cost
of $2/oz. Formulate an LP to maximize Chemco’s revenue
less disposal costs.

16 Suppose that in the CSL computer example of Section
3.12, it takes two months to train a technician and that
during the second month of training, each trainee requires
10 hours of experienced technician time. Modify the
formulation in the text to account for these changes.

17 Furnco manufactures tables and chairs. Each table and
chair must be made entirely out of oak or entirely out of
pine. A total of 150 board ft of oak and 210 board ft of pine
are available. A table requires either 17 board ft of oak or
30 board ft of pine, and a chair requires either 5 board ft of
oak or 13 board ft of pine. Each table can be sold for $40,
and each chair for $15. Formulate an LP that can be used
to maximize revenue.

18† The city of Busville contains three school districts.
The number of minority and nonminority students in each
district is given in Table 53. Of all students, 25% (�

2

8

0

0

0

0
�) are

minority students.

TA B L E  50

Number New
of Ads Customers

Newspaper 1–10 900

11–20 600

21–30 300

Television 1–5 10,000

6–10 5,000

11–15 2,000

TA B L E  51

Profit per Million Barrels ($)

From To Houston To New York

Los Angeles 20,000 15,000

Chicago 18,000 17,000

TA B L E  52

Person Percent of Percent of
Responding Daytime Calls Evening Calls

Wife 30 30

Husband 10 30

Single male 10 15

Single female 10 20

None 40 5

†Based on Franklin and Koenigsberg (1973).



The local court has decided that both of the town’s two
high schools (Cooley High and Walt Whitman High) must
have approximately the same percentage of minority stu-
dents (within 5%) as the entire town. The distances (in
miles) between the school districts and the high schools are
given in Table 54. Each high school must have an enroll-
ment of 300–500 students. Use linear programming to de-
termine an assignment of students to schools that minimizes
the total distance students must travel to school.

19† Brady Corporation produces cabinets. Each week, it
requires 90,000 cu ft of processed lumber. The company
may obtain lumber in two ways. First, it may purchase
lumber from an outside supplier and then dry it in the
supplier’s kiln. Second, it may chop down logs on its own
land, cut them into lumber at its sawmill, and finally dry the
lumber in its own kiln. Brady can purchase grade 1 or grade
2 lumber. Grade 1 lumber costs $3 per cu ft and when dried
yields 0.7 cu ft of useful lumber. Grade 2 lumber costs $7
per cubic foot and when dried yields 0.9 cu ft of useful
lumber. It costs the company $3 to chop down a log. After
being cut and dried, a log yields 0.8 cu ft of lumber. Brady
incurs costs of $4 per cu ft of lumber dried. It costs $2.50
per cu ft of logs sent through the sawmill. Each week, the
sawmill can process up to 35,000 cu ft of lumber. Each
week, up to 40,000 cu ft of grade 1 lumber and up to 60,000
cu ft of grade 2 lumber can be purchased. Each week, 40
hours of time are available for drying lumber. The time it
takes to dry 1 cu ft of grade 1 lumber, grade 2 lumber, or
logs is as follows: grade 1—2 seconds; grade 2—0.8 second;
log—1.3 seconds. Formulate an LP to help Brady minimize
the weekly cost of meeting the demand for processed lumber.

20‡ The Canadian Parks Commission controls two tracts
of land. Tract 1 consists of 300 acres and tract 2, 100 acres.
Each acre of tract 1 can be used for spruce trees or hunting,
or both. Each acre of tract 2 can be used for spruce trees or
camping, or both. The capital (in hundreds of dollars) and
labor (in worker-days) required to maintain one acre of each
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TA B L E  53

Minority Nonminority
District Students Students

1 50 200

2 50 250

3 100 150

TA B L E  54

Cooley Walt Whitman
District High High

1 1 2

2 2 1

3 1 1

tract, and the profit (in thousands of dollars) per acre for
each possible use of land are given in Table 55. Capital of
$150,000 and 200 man-days of labor are available. How
should the land be allocated to various uses to maximize
profit received from the two tracts?

21§ Chandler Enterprises produces two competing
products: A and B. The company wants to sell these products
to two groups of customers: group 1 and group 2. The value
each customer places on a unit of A and B is as shown in
Table 56. Each customer will buy either product A or product
B, but not both. A customer is willing to buy product A if
she believes that

Value of product A � price of product A

� Value of product B � price of product B

and

Value of product A � price of product A � 0

A customer is willing to buy product B if she believes that

Value of product B � price of product B

� value of product A � price of product A

and

Value of product B � price of product B � 0

Group 1 has 1,000 members, and group 2 has 1,500 mem-
bers. Chandler wants to set prices for each product that en-
sure that group 1 members purchase product A and group 2
members purchase product B. Formulate an LP that will
help Chandler maximize revenues.

22¶ Alden Enterprises produces two products. Each
product can be produced on one of two machines. The length
of time needed to produce each product (in hours) on each
machine is as shown in Table 57. Each month, 500 hours of
time are available on each machine. Each month, customers
are willing to buy up to the quantities of each product at the

†Based on Carino and Lenoir (1988).
‡Based on Cheung and Auger (1976).

§Based on Dobson and Kalish (1988).
¶Based on Jain, Stott, and Vasold (1978).

TA B L E  55

Tract Capital Labor Profit

1 Spruce 3 0.1 0.2

1 Hunting 3 0.2 0.4

1 Both 4 0.2 0.5

2 Spruce 1 0.05 0.06

2 Camping 30 5 0.09

2 Both 10 1.01 1.1

TA B L E  56

Group 1 Group 2
Customer Customer

Value of A to $10 $12

Value of B to $80 $15



prices given in Table 58. The company’s goal is to maximize
the revenue obtained from selling units during the next two
months. Formulate an LP to help meet this goal.

23 Kiriakis Electronics produces three products. Each
product must be processed on each of three types of
machines. When a machine is in use, it must be operated by
a worker. The time (in hours) required to process each
product on each machine and the profit associated with each
product are shown in Table 59. At present, five type 1
machines, three type 2 machines, and four type 3 machines
are available. The company has 10 workers available and
must determine how many workers to assign to each
machine. The plant is open 40 hours per week, and each
worker works 35 hours per week. Formulate an LP that will
enable Kiriakis to assign workers to machines in a way that
maximizes weekly profits. (Note: A worker need not spend
the entire work week operating a single machine.)

24 Gotham City Hospital serves cases from four
diagnostic-related groups (DRGs). The profit contribution,
diagnostic service use (in hours), bed-day use (in days),
nursing care use (in hours), and drug use (in dollars) are
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TA B L E  57

Product Machine 1 Machine 2

1 4 3

2 7 4

TA B L E  58

Demands Prices

Product Month 1 Month 2 Month 1 Month 2

1 100 190 $55 $12

2 140 130 $65 $32

TA B L E  59

Product 1 Product 2 Product 3

Machine 1 2 3 4

Machine 2 3 5 6

Machine 3 4 7 9

Profit ($) 6 8 10

TA B L E  60

Diagnostic
DRG Profit Services Bed-Day Nursing Use Drugs

1 2,000 7 5 30 800

2 1,500 4 2 10 500

3 500 2 1 5 150

4 300 1 0 1 50

given in Table 60. The hospital now has available each week
570 hours of diagnostic services, 1,000 bed-days, 50,000
nursing hours, and $50,000 worth of drugs. To meet the
community’s minimum health care demands at least 10
DRG1, 15 DRG2, 40 DRG3, and 160 DRG4 cases must be
handled each week. Use LP to determine the hospital’s
optimal mix of DRGs.†

25 Oliver Winery produces four award-winning wines
in Bloomington, Indiana. The profit contribution, labor
hours, and tank usage (in hours) per gallon for each type
of wine are given in Table 61. By law, at most 100,000
gallons of wine can be produced each year. A maximum
of 12,000 labor hours and 32,000 tank hours are available
annually. Each gallon of wine 1 spends an average of �

1

3
�

year in inventory; wine 2, an average of 1 year; wine 3,
an average of 2 years; wine 4, an average of 3.333 years.
The winery’s warehouse can handle an average inventory
level of 50,000 gallons. Determine how much of each
type of wine should be produced annually to maximize
Oliver Winery’s profit.

26 Graphically solve the following LP:

min z � 5x1 � x2

s.t. 2x1 � x2 � 6

x1 � x2 � 4

2x1 � 10x2 � 20

x1, x2 � 0

27 Grummins Engine produces diesel trucks. New
government emission standards have dictated that the
average pollution emissions of all trucks produced in the
next three years cannot exceed 10 grams per truck.
Grummins produces two types of trucks. Each type 1 truck
sells for $20,000, costs $15,000 to manufacture, and emits
15 grams of pollution. Each type 2 truck sells for $17,000,
costs $14,000 to manufacture, and emits 5 grams of
pollution. Production capacity limits total truck production
during each year to at most 320 trucks. Grummins knows
that the maximum number of each truck type that can 
be sold during each of the next three years is given in
Table 62.

Thus, at most, 300 type 1 trucks can be sold during
year 3. Demand may be met from previous production or
the current year’s production. It costs $2,000 to hold 1
truck (of any type) in inventory for one year. Formulate an
LP to help Grummins maximize its profit during the next
three years.

†Based on Robbins and Tuntiwonpiboon (1989).

TA B L E  61

Wine Profit ($) Labor (Hr) Tank (Hr)

1 6 .2 1.5

2 12 .3 1.5

3 20 .3 1.5

4 30 .5 1.5



28 Describe all optimal solutions to the following LP:

min z � 4x1 � x2

s.t. 3x1 � x2 � 6

4x1 � x2 � 12

x1 � x2 � 2

x1, x2 � 0

29 Juiceco manufactures two products: premium orange
juice and regular orange juice. Both products are made by
combining two types of oranges: grade 6 and grade 3. The
oranges in premium juice must have an average grade of at
least 5, those in regular juice, at least 4. During each of the
next two months Juiceco can sell up to 1,000 gallons of
premium juice and up to 2,000 gallons of regular juice.
Premium juice sells for $1.00 per gallon, while regular juice
sells for 80¢ per gallon. At the beginning of month 1, Juiceco
has 3,000 gallons of grade 6 oranges and 2,000 gallons of
grade 3 oranges. At the beginning of month 2, Juiceco may
purchase additional grade 3 oranges for 40¢ per gallon and
additional grade 6 oranges for 60¢ per gallon. Juice spoils at
the end of the month, so it makes no sense to make extra juice
during month 1 in the hopes of using it to meet month 2
demand. Oranges left at the end of month 1 may be used to
produce juice for month 2. At the end of month 1 a holding
cost of 5¢ is assessed against each gallon of leftover grade 3
oranges, and 10¢ against each gallon of leftover grade 6
oranges. In addition to the cost of the oranges, it costs 10¢ to
produce each gallon of (regular or premium) juice. Formulate
an LP that could be used to maximize the profit (revenues �
costs) earned by Juiceco during the next two months.

30 Graphically solve the following linear programming
problem:

max z � 5x1 � x2

s.t. 2x1 � 3x2 � 12

x1 � 3x2 � 0

x1 � 0, x2 � 0

31 Graphically find all solutions to the following LP:

min z � x1 � 2x2

s.t. x1 � x2 � 4

x1 � x2 � 8

x1 � x2 � 6

x1, x2 � 0

32 Each day Eastinghouse produces capacitors during
three shifts: 8 A.M.–4 P.M., 4 P.M.–midnight, midnight–8 A.M.
The hourly salary paid to the employees on each shift, the
price charged for each capacitor made during each shift, and
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TA B L E  62

Maximum Demand for Trucks

Year Type 1 Type 2

1 100 200

2 200 100

3 300 150

TA B L E  63

Defects
Shift Hourly Salary (per Capacitor) Price

8 A.M.–4 P.M. $12 4 $18

4 P.M.–Midnight $16 3 $22

Midnight–8 A.M. $20 2 $24

the number of defects in each capacitor produced during a
given shift are shown in Table 63. Each of the company’s 25
workers can be assigned to one of the three shifts. A worker
produces 10 capacitors during a shift, but because of
machinery limitations, no more than 10 workers can be
assigned to any shift. Each day, at most 250 capacitors can
be sold, and the average number of defects per capacitor for
the day’s production cannot exceed three. Formulate an LP
to maximize Eastinghouse’s daily profit (sales revenue �

labor cost).

33 Graphically find all solutions to the following LP:

max z � 4x1 � x2

s.t. 8x1 � 2x2 � 16

x1 � x2 � 12

x1, x2 � 0

34 During the next three months Airco must meet (on
time) the following demands for air conditioners: month 1,
300; month 2, 400; month 3, 500. Air conditioners can be
produced in either New York or Los Angeles. It takes 1.5
hours of skilled labor to produce an air conditioner in Los
Angeles, and 2 hours in New York. It costs $400 to produce
an air conditioner in Los Angeles, and $350 in New York.
During each month, each city has 420 hours of skilled labor
available. It costs $100 to hold an air conditioner in inventory
for a month. At the beginning of month 1, Airco has 200 air
conditioners in stock. Formulate an LP whose solution will
tell Airco how to minimize the cost of meeting air
conditioner demands for the next three months.

35 Formulate the following as a linear programming
problem: A greenhouse operator plans to bid for the job of
providing flowers for city parks. He will use tulips, daffodils,
and flowering shrubs in three types of layouts. A Type 1
layout uses 30 tulips, 20 daffodils, and 4 flowering shrubs.
A Type 2 layout uses 10 tulips, 40 daffodils, and 3 flowering
shrubs. A Type 3 layout uses 20 tulips, 50 daffodils, and 2
flowering shrubs. The net profit is $50 for each Type 1
layout, $30 for each Type 2 layout, and $60 for each Type 3
layout. He has 1,000 tulips, 800 daffodils, and 100 flowering
shrubs. How many layouts of each type should be used to
yield maximum profit?

36 Explain how your formulation in Problem 35 changes
if both of the following conditions are added:

a The number of Type 1 layouts cannot exceed the
number of Type 2 layouts.

b There must be at least five layouts of each type.



37 Graphically solve the following LP problem:

min z � 6x1 � 2x2

s.t. 3x1 � 2x2 � 12

2x1 � 4x2 � 12

x2 � 1

x1, x2 � 0

38 We produce two products: product 1 and product 2 on
two machines (machine 1 and machine 2). The number of
hours of machine time and labor depends on the machine
and the product as shown in Table 64.

The cost of producing a unit of each product is shown in
Table 65.

The number of labor hours and machine time available
this month are in Table 66.

This month, at least 200 units of product 1 and at least
240 units of product 2 must be produced. Also, at least half
of product 1 must be made on machine 1, and at least half
of product 2 must be made on machine 2. Determine how
we can minimize the cost of meeting our monthly demands.

39 Carrotco manufactures two products: 1 and 2. Each
unit of each product must be processed on machine 1 and
machine 2 and uses raw material 1 and raw material 2. The
resource usage is as in Table 67.
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TA B L E  64

Product 1 Product 2 Product 1 Product 2
Machine 1 Machine 1 Machine 2 Machine 2

Machine time 0.75 0.75 0.8 0.9

Labor 0.75 0.75 1.2 1.9

TA B L E  65

Product 1 Product 2 Product 1 Product 2
Machine 1 Machine 1 Machine 2 Machine 2

$1.50 $0.40 $2.20 $4.00

TA B L E  66

Resource Hours Available

Machine 1 200

Machine 2 200

Labor 400

TA B L E  67

Product 1 Product 2

Machine 1 0.6 0.4

Machine 2 0.4 0.3

Raw material 1 2 1

Raw material 2 1 2

Thus, producing one unit of product 1 uses .6 unit of
machine 1 time, .4 unit of machine 2 time, 2 units of raw
material 1, and 1 unit of raw material 2. The sales price per
unit and demand for each product are in Table 68.

It costs $4 to purchase each unit of raw material 1 and
$5 to produce each unit of raw material 2. Unlimited
amounts of raw material can be purchased. Two hundred
units of machine 1 time and 300 units of machine 2 time are
available. Determine how Carrotco can maximize its profit.

40 A company assembles two products: A and B. Product
A sells for $11 per unit, and product B sells for $23 per unit.
A unit of product A requires 2 hours on assembly line 1 and
1 unit of raw material. A unit of product B requires 2 units
of raw material, 1 unit of A, and 2 hours on line 2. For line
1, 1,300 hours of time are available and 500 hours of time
are available on line 2. A unit of raw material may be bought
(for $5 a unit) or produced (at no cost) by using 2 hours of
time on line 1. Determine how to maximize profit.

41 Ann and Ben are getting divorced and want to
determine how to divide their joint property: retirement
account, home, summer cottage, investments, and mis-
cellaneous assets. To begin, Ann and Ben are told to allocate
100 total points to the assets. Their allocation is as shown
in Table 69. 

Assuming that all assets are divisible (that is, a fraction
of each asset may be given to each person), how should the
assets be allocated? Two criteria should govern the asset al-
location:

Criteria 1 Each person should end up with the same num-
ber of points. This prevents Ann from envying Ben and Ben
from envying Ann.
Criteria 2 The total number of points received by Ann and
Ben should be maximized.

If assets could not be split between people, what problem
arises?

42 Eli Daisy manufactures two drugs in Los Angeles and
Indianapolis. The cost of manufacturing a pound of each
drug is shown in Table 70.

TA B L E  68

Product 1 Product 2

Demand 400 300

Sales Price 30 35

TA B L E  69

Points

Item Ann’s Ben’s

Retirement account 50 40

Home 20 30

Summer cottage 15 10

Investments 10 10

Miscellaneous 5 10



The machine time (in hours) required to produce a pound
of each drug at each city is as in Table 71.

Daisy needs to produce at least 1,000 pounds of drug 1
and 2,000 pounds of drug 2 per week. The company has 500
hours per week of machine time in Indianapolis and 400
hours per week of machine time in Los Angeles. Determine
how Lilly can minimize the cost of producing the needed
drugs.

43 Daisy also produces Wozac in New York and Chicago.
Each month, it can produce up to 30 units in New York and
up to 35 units in Chicago. The cost of producing a unit each
month at each location is shown in Table 72.

The customer demands shown in Table 73 must be met
on time.

The cost of holding a unit in inventory (measured against
ending inventory) is shown in Table 74.
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TA B L E  70

City Drug 1 Cost ($) Drug 2 Cost ($)

Indianapolis 4.10 4.50

Los Angeles 4.00 5.20

TA B L E  71

City Drug 1 Time (Hr) Drug 2 Time (Hr)

Indianapolis .24 .33

Los Angeles .24 .33

TA B L E  72

Cost ($)

Month New York Chicago

1 8.62 8.40

2 8.70 8.75

3 8.90 9.00

TA B L E  73

Month Demand (Units)

1 50

2 60

3 40

TA B L E  74

Month Holding Cost ($)

1 0.26

2 0.12

3 0.12

At the beginning of month 1, we have 10 units of Wozac
in inventory. Determine a cost-minimizing schedule for the
next three months.

44 You have been put in charge of the Dawson Creek oil
refinery. The refinery produces gas and heating oil from
crude oil. Gas sells for $11 per barrel and must have an
average grade level of at least 9. Heating oil sells for $6 a
barrel and must have an average grade level of at least 7. At
most, 2,000 barrels of gas and 600 barrels of heating oil can
be sold.

Incoming crude can be processed by one of three meth-
ods. The per barrel yield and per barrel cost of each pro-
cessing method are shown in Table 75.

For example, if we refine one barrel of incoming crude
by method 1, it costs us $3.40 and yields .2 barrels of grade
6, .2 barrels of grade 8, and .6 barrels of grade 10. These
costs include the costs of buying the crude oil.

Before being processed into gas and heating oil, grades
6 and 8 may be sent through the catalytic cracker to improve
their quality. For $1 per barrel, one barrel of grade 6 can be
“cracked” into a barrel of grade 8. For $1.50 per barrel, a
barrel of grade 8 can be cracked into a barrel of grade 10.
Determine how to maximize the refinery’s profit.

45 Currently we own 100 shares each of stocks 1 through
10. The original price we paid for these stocks, today’s price,
and the expected price in one year for each stock is shown
in Table 76.

We need money today and are going to sell some of our
stocks. The tax rate on capital gains is 30%. If we sell 50
shares of stock 1, then we must pay tax of .3 � 50(30 �

20) � $150. We must also pay transaction costs of 1% on
each transaction. Thus, our sale of 50 shares of stock 1
would incur transaction costs of .01 � 50 � 30 � $15. After
taxes and transaction costs, we must be left with $30,000
from our stock sales. Our goal is to maximize the expected
(before-tax) value in one year of our remaining stock. What
stocks should we sell? Assume it is all right to sell a frac-
tional share of stock.

Group B

46 Gotham City National Bank is open Monday–Friday
from 9 A.M. to 5 P.M. From past experience, the bank knows
that it needs the number of tellers shown in Table 77. The
bank hires two types of tellers. Full-time tellers work 9–5
five days a week, except for 1 hour off for lunch. (The bank
determines when a full-time employee takes lunch hour, but
each teller must go between noon and 1 P.M. or between 
1 P.M. and 2 P.M.) Full-time employees are paid (including
fringe benefits) $8/hour (this includes payment for lunch
hour). The bank may also hire part-time tellers. Each part-

TA B L E  75

Grade

Method 6 8 10 Cost ($ per Barrel)

1 .2 .3 .5 3.40

2 .3 .4 .3 3.00

3 .4 .4 .2 2.60



time teller must work exactly 3 consecutive hours each day.
A part-time teller is paid $5/hour (and receives no fringe
benefits). To maintain adequate quality of service, the bank
has decided that at most five part-time tellers can be hired.
Formulate an LP to meet the teller requirements at minimum
cost. Solve the LP on a computer. Experiment with the LP
answer to determine an employment policy that comes close
to minimizing labor cost.

47† The Gotham City Police Department employs 30
police officers. Each officer works 5 days per week. The
crime rate fluctuates with the day of the week, so the number
of police officers required each day depends on which day
of the week it is: Saturday, 28; Sunday, 18; Monday, 18;
Tuesday, 24; Wednesday, 25; Thursday, 16; Friday, 21. The
police department wants to schedule police officers to
minimize the number whose days off are not consecutive.
Formulate an LP that will accomplish this goal. (Hint: Have
a constraint for each day of the week that ensures that the
proper number of officers are not working on the given day.)
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TA B L E  76

Price ($)

Stock Shares Owned Purchase Current In One Year

1 100 20 30 36

2 100 25 34 39

3 100 30 43 42

4 100 35 47 45

5 100 40 49 51

6 100 45 53 55

7 100 50 60 63

8 100 55 62 64

9 100 60 64 66

10 100 65 66 70

Tax rate (%) 0.3

Transaction cost (%) 0.01

TA B L E  77

Time Tellers
Period Required

9–10 4

10–11 3

11–Noon 4

Noon–1 6

1–2 5

2–3 6

3–4 8

4–5 8

†Based on Rothstein (1973).

48‡Alexis Cornby makes her living buying and selling corn.
On January 1, she has 50 tons of corn and $1,000. On the
first day of each month Alexis can buy corn at the following
prices per ton: January, $300; February, $350; March, $400;
April, $500. On the last day of each month, Alexis can sell
corn at the following prices per ton: January, $250; February,
$400; March, $350; April, $550. Alexis stores her corn in a
warehouse that can hold at most 100 tons of corn. She must
be able to pay cash for all corn at the time of purchase. Use
linear programming to determine how Alexis can maximize
her cash on hand at the end of April.

49§At the beginning of month 1, Finco has $400 in cash. At
the beginning of months 1, 2, 3, and 4, Finco receives certain
revenues, after which it pays bills (see Table 78). Any money
left over may be invested for one month at the interest rate
of 0.1% per month; for two months at 0.5% per month; for
three months at 1% per month; or for four months at 2% per
month. Use linear programming to determine an investment
strategy that maximizes cash on hand at the beginning of
month 5.

50 City 1 produces 500 tons of waste per day, and city 2
produces 400 tons of waste per day. Waste must be
incinerated at incinerator 1 or 2, and each incinerator can
process up to 500 tons of waste per day. The cost to incinerate
waste is $40/ton at incinerator 1 and $30/ton at 2.

‡Based on Charnes and Cooper (1955).
§Based on Robichek, Teichroew, and Jones (1965).

TA B L E  78

Month Revenues ($) Bills ($)

1 400 600

2 800 500

3 300 500

4 300 250



Incineration reduces each ton of waste to 0.2 tons of debris,
which must be dumped at one of two landfills. Each landfill
can receive at most 200 tons of debris per day. It costs $3
per mile to transport a ton of material (either debris or
waste). Distances (in miles) between locations are shown in
Table 79. Formulate an LP that can be used to minimize the
total cost of disposing of the waste of both cities.

51† Silicon Valley Corporation (Silvco) manufactures
transistors. An important aspect of the manufacture of
transistors is the melting of the element germanium (a major
component of a transistor) in a furnace. Unfortunately, the
melting process yields germanium of highly variable quality.

Two methods can be used to melt germanium; method 1
costs $50 per transistor, and method 2 costs $70 per tran-
sistor. The qualities of germanium obtained by methods 1
and 2 are shown in Table 80. Silvco can refire melted ger-
manium in an attempt to improve its quality. It costs $25 to
refire the melted germanium for one transistor. The results
of the refiring process are shown in Table 81. Silvco has suf-
ficient furnace capacity to melt or refire germanium for at
most 20,000 transistors per month. Silvco’s monthly de-
mands are for 1,000 grade 4 transistors, 2,000 grade 3 tran-
sistors, 3,000 grade 2 transistors, and 3,000 grade 1 tran-
sistors. Use linear programming to minimize the cost of
producing the needed transistors.
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†Based on Smith (1965).

TA B L E  81

Refired Grade
Percent Yielded by Refiring

of Germanium Defective Grade 1 Grade 2 Grade 3

Defective 30 0 0 0

1 25 30 0 0

2 15 30 40 0

3 20 20 30 50

4 10 20 30 50

TA B L E  80

Grade of‡
Percent Yielded

Melted
by Melting

Germanium Method 1 Method 2

Defective 30 20

1 30 20

2 20 25

3 15 20

4 5 15

‡Note: Grade 1 is poor; grade 4 is excellent.

The quality of the germanium dictates the

quality of the manufactured transistor.

TA B L E  79

Incinerator

City 1 2

1 30 5

2 36 42

Landfill

Incinerator 1 2

1 5 8

2 9 6

52‡ A paper-recycling plant processes box board, tissue
paper, newsprint, and book paper into pulp that can be used
to produce three grades of recycled paper (grades 1, 2, and
3). The prices per ton and the pulp contents of the four
inputs are shown in Table 82. Two methods, de-inking and
asphalt dispersion, can be used to process the four inputs
into pulp. It costs $20 to de-ink a ton of any input. The
process of de-inking removes 10% of the input’s pulp,
leaving 90% of the original pulp. It costs $15 to apply
asphalt dispersion to a ton of material. The asphalt dispersion
process removes 20% of the input’s pulp. At most, 3,000
tons of input can be run through the asphalt dispersion
process or the de-inking process. Grade 1 paper can only be
produced with newsprint or book paper pulp; grade 2 paper,
only with book paper, tissue paper, or box board pulp; and
grade 3 paper, only with newsprint, tissue paper, or box
board pulp. To meet its current demands, the company needs
500 tons of pulp for grade 1 paper, 500 tons of pulp for
grade 2 paper, and 600 tons of pulp for grade 3 paper.
Formulate an LP to minimize the cost of meeting the
demands for pulp.

53 Turkeyco produces two types of turkey cutlets for sale
to fast-food restaurants. Each type of cutlet consists of white
meat and dark meat. Cutlet 1 sells for $4/lb and must consist
of at least 70% white meat. Cutlet 2 sells for $3/lb and must
consist of at least 60% white meat. At most, 50 lb of cutlet
1 and 30 lb of cutlet 2 can be sold. The two types of turkey
used to manufacture the cutlets are purchased from the
GobbleGobble Turkey Farm. Each type 1 turkey costs $10
and yields 5 lb of white meat and 2 lb of dark meat. Each
type 2 turkey costs $8 and yields 3 lb of white meat and 
3 lb of dark meat. Formulate an LP to maximize Turkeyco’s
profit.

54 Priceler manufactures sedans and wagons. The number
of vehicles that can be sold each of the next three months

‡Based on Glassey and Gupta (1975).

TA B L E  82

Input Cost ($) Pulp Content (%)

Box board 5 15

Tissue paper 6 20

Newsprint 8 30

Book paper 10 40



are listed in Table 83. Each sedan sells for $8,000, and each
wagon sells for $9,000. It costs $6,000 to produce a sedan
and $7,500 to produce a wagon. To hold a vehicle in
inventory for one month costs $150 per sedan and $200 per
wagon. During each month, at most 1,500 vehicles can be
produced. Production line restrictions dictate that during
month 1 at least two-thirds of all cars produced must be
sedans. At the beginning of month 1, 200 sedans and 100
wagons are available. Formulate an LP that can be used to
maximize Priceler’s profit during the next three months.

55 The production-line employees at Grummins Engine
work four days a week, 10 hours a day. Each day of the
week, (at least) the following numbers of line employees are
needed: Monday–Friday, 7 employees; Saturday and Sunday,
3 employees. Grummins has 11 production-line employees.
Formulate an LP that can be used to maximize the number
of consecutive days off received by the employees. For
example, a worker who gets Sunday, Monday, and
Wednesday off receives two consecutive days off.

56 Bank 24 is open 24 hours per day. Tellers work two
consecutive 6-hour shifts and are paid $10 per hour. The
possible shifts are as follows: midnight–6 A.M., 6 A.M.–noon,
noon–6 P.M., 6 P.M.–midnight. During each shift, the
following numbers of customers enter the bank: midnight–
6 A.M., 100; 6 A.M.–noon, 200; noon–6 P.M., 300; 
6 P.M.–midnight, 200. Each teller can serve up to 50
customers per shift. To model a cost for customer
impatience, we assume that any customer who is present at
the end of a shift “costs” the bank $5. We assume that by
midnight of each day, all customers must be served, so each
day’s midnight–6 A.M. shift begins with 0 customers in the
bank. Formulate an LP that can be used to minimize the
sum of the bank’s labor and customer impatience costs.

57† Transeast Airlines flies planes on the following route:
L.A.–Houston–N.Y.–Miami–L.A. The length (in miles) of
each segment of this trip is as follows: L.A.–Houston, 1,500
miles; Houston–N.Y., 1,700 miles; N.Y.–Miami, 1,300
miles; Miami–L.A., 2,700 miles. At each stop, the plane
may purchase up to 10,000 gallons of fuel. The price of fuel
at each city is as follows: L.A., 88¢; Houston, 15¢; N.Y.,
$1.05; Miami, 95¢. The plane’s fuel tank can hold at most
12,000 gallons. To allow for the possibility of circling over
a landing site, we require that the ending fuel level for each
leg of the flight be at least 600 gallons. The number of
gallons used per mile on each leg of the flight is

1 � (average fuel level on leg of flight/2,000)
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To simplify matters, assume that the average fuel level on
any leg of the flight is

Formulate an LP that can be used to minimize the fuel cost
incurred in completing the schedule.

58‡ To process income tax forms, the IRS first sends each
form through the data preparation (DP) department, where
information is coded for computer entry. Then the form is
sent to data entry (DE), where it is entered into the computer.
During the next three weeks, the following number of forms
will arrive: week 1, 40,000; week 2, 30,000; week 3, 60,000.
The IRS meets the crunch by hiring employees who work
40 hours per week and are paid $200 per week. Data
preparation of a form requires 15 minutes, and data entry of
a form requires 10 minutes. Each week, an employee is
assigned to either data entry or data preparation. The IRS
must complete processing of all forms by the end of week
5 and wants to minimize the cost of accomplishing this
goal. Formulate an LP that will determine how many workers
should be working each week and how the workers should
be assigned over the next five weeks.

59 In the electrical circuit of Figure 11, It � current (in
amperes) flowing through resistor t, Vt � voltage drop (in
volts) across resistor t, and Rt � resistance (in ohms) of
resistor t. Kirchoff’s Voltage and Current Laws imply that
V1 � V2 � V3 and I1 � I2 � I3 � I4. The power dissipated
by the current flowing through resistor t is It

2Rt. Ohm’s Law
implies that Vt � ItRt. The two parts of this problem should
be solved independently.

a Suppose you are told that I1 � 4, I2 � 6, I3 � 8, and
I4 � 18 are required. Also, the voltage drop across each
resistor must be between 2 and 10 volts. Choose the Rt’s
to minimize the total dissipated power. Formulate an LP
whose solution will solve your problem.

b Suppose you are told that V1 � 6, V2 � 6, V3 � 6,
and V4 � 4 are required. Also, the current flowing
through each resistor must be between 2 and 6 amperes.
Choose the Rt’s to minimize the total dissipated power.
Formulate an LP whose solution will solve your 

problem. (Hint: Let �
R

1

t

� (t � 1, 2, 3, 4) be your decision
variables.)

60 The mayor of Llanview is trying to determine the
number of judges needed to handle the judicial caseload.

(Fuel level at start of leg) � (fuel level at end of leg)
������

TA B L E  83

Month Sedans Wagons

1 1,100 600

2 1,500 700

3 1,200 50

†Based on Darnell and Loflin (1977).
‡Based on Lanzenauer et al. (1987).

R1        I1

R2        I2

R3        I3

R4        I4

F I G U R E  11



During each month of the year it is estimated that the number
of judicial hours needed is as given in Table 84.

a Each judge works all 12 months and can handle as
many as 120 hours per month of casework. To avoid cre-
ating a backlog, all cases must be handled by the end of
December. Formulate an LP whose solution will deter-
mine how many judges Llanview needs.

b If each judge received one month of vacation each
year, how would your answer change?

Group C

61† E.J. Korvair Department Store has $1,000 in available
cash. At the beginning of each of the next six months, E.J.
will receive revenues and pay bills as shown in Table 85. It
is clear that E.J. will have a short-term cash flow problem
until the store receives revenues from the Christmas
shopping season. To solve this problem, E.J. must borrow
money.

At the beginning of July, E.J. may take out a six-month
loan. Any money borrowed for a six-month period must be
paid back at the end of December along with 9% interest
(early payback does not reduce the interest cost of the loan).
E.J. may also meet cash needs through month-to-month bor-
rowing. Any money borrowed for a one-month period incurs
an interest cost of 4% per month. Use linear programming
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to determine how E.J. can minimize the cost of paying its
bills on time.

62‡ Olé Oil produces three products: heating oil, gasoline,
and jet fuel. The average octane levels must be at least 4.5
for heating oil, 8.5 for gas, and 7.0 for jet fuel. To produce
these products Olé purchases two types of oil: crude 1 (at
$12 per barrel) and crude 2 (at $10 per barrel). Each day, at
most 10,000 barrels of each type of oil can be purchased.

Before crude can be used to produce products for sale,
it must be distilled. Each day, at most 15,000 barrels of oil
can be distilled. It costs 10¢ to distill a barrel of oil. The re-
sult of distillation is as follows: (1) Each barrel of crude 1
yields 0.6 barrel of naphtha, 0.3 barrel of distilled 1, and 0.1
barrel of distilled 2. (2) Each barrel of crude 2 yields 0.4
barrel of naphtha, 0.2 barrel of distilled 1, and 0.4 barrel of
distilled 2. Distilled naphtha can be used only to produce
gasoline or jet fuel. Distilled oil can be used to produce
heating oil or it can be sent through the catalytic cracker (at
a cost of 15¢ per barrel). Each day, at most 5,000 barrels of
distilled oil can be sent through the cracker. Each barrel 
of distilled 1 sent through the cracker yields 0.8 barrel of
cracked 1 and 0.2 barrel of cracked 2. Each barrel of dis-
tilled 2 sent through the cracker yields 0.7 barrel of cracked
1 and 0.3 barrel of cracked 2. Cracked oil can be used to
produce gasoline and jet fuel but not to produce heating oil.

The octane level of each type of oil is as follows: naph-
tha, 8; distilled 1, 4; distilled 2, 5; cracked 1, 9; cracked 2, 6.

All heating oil produced can be sold at $14 per barrel;
all gasoline produced, $18 per barrel; and all jet fuel pro-
duced, $16 per barrel. Marketing considerations dictate that
at least 3,000 barrels of each product must be produced
daily. Formulate an LP to maximize Olé’s daily profit.

63 Donald Rump is the international funds manager for
Countribank. Each day Donald’s job is to determine how the
bank’s current holdings of dollars, pounds, marks, and yen
should be adjusted to meet the day’s currency needs. Today
the exchange rates between the various currencies are given
in Table 86. For example, one dollar can be converted to
.58928 pounds, or one pound can be converted to 1.697
dollars.

At the beginning of the day, Countribank has the cur-
rency holdings given in Table 87.

At the end of the day, Countribank must have at least the
amounts of each currency given in Table 88.

Donald’s goal is to each day transfer funds in a way that
makes currency holdings satisfy the previously listed mini-

TA B L E  84

Month Hours

January 400

February 300

March 200

April 600

May 800

June 300

July 200

August 400

September 300

October 200

November 100

December 300

TA B L E  85

Month Revenues ($) Bills ($)

July 1,000 5,000

August 2,000 5,000

September 2,000 6,000

October 4,000 2,000

November 7,000 2,000

December 9,000 1,000

‡Based on Garvin et al. (1957).†Based on Robichek, Teichroew, and Jones (1965).

TA B L E  86

To

From Dollars Pounds Marks Yen

Dollars 1 .58928 1.743 138.3

Pounds 1.697 1 2.9579 234.7

Marks .57372 .33808 1 79.346

Yen .007233 .00426 .0126 1



mums, and maximizes the dollar value of the currency hold-
ings at the end of the day.

To figure out the dollar value of, say, one pound, aver-
age the two conversion rates. Thus, one pound is worth ap-
proximately

� 1.696993 dollars
1.697 � (1/.58928)
���
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TA B L E  87

Units
Currency (in Billions)

Dollars 8

Pounds 1

Marks 8

Yen 0

TA B L E  88

Units
Currency (in Billions)

Dollars 6

Pounds 3

Marks 1

Yen 10
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The Simplex Algorithm 
and Goal Programming

In Chapter 3, we saw how to solve two-variable linear programming problems graphically. Un-

fortunately, most real-life LPs have many variables, so a method is needed to solve LPs with

more than two variables. We devote most of this chapter to a discussion of the simplex algo-

rithm, which is used to solve even very large LPs. In many industrial applications, the simplex

algorithm is used to solve LPs with thousands of constraints and variables.

In this chapter, we explain how the simplex algorithm can be used to find optimal solutions

to LPs. We also detail how two state-of-the-art computer packages (LINDO and LINGO) can

be used to solve LPs. Briefly, we also discuss Karmarkar’s pioneering approach for solving

LPs. We close the chapter with an introduction to goal programming, which enables the de-

cision maker to consider more than one objective function.

4.1 How to Convert an LP to Standard Form

We have seen that an LP can have both equality and inequality constraints. It also can

have variables that are required to be nonnegative as well as those allowed to be un-

restricted in sign (urs). Before the simplex algorithm can be used to solve an LP, the

LP must be converted into an equivalent problem in which all constraints are equa-

tions and all variables are nonnegative. An LP in this form is said to be in standard

form.†

To convert an LP into standard form, each inequality constraint must be replaced by

an equality constraint. We illustrate this procedure using the following problem.

Leather Limited manufactures two types of belts: the deluxe model and the regular model.

Each type requires 1 sq yd of leather. A regular belt requires 1 hour of skilled labor, and

a deluxe belt requires 2 hours. Each week, 40 sq yd of leather and 60 hours of skilled la-

bor are available. Each regular belt contributes $3 to profit and each deluxe belt, $4. If

we define

x1 � number of deluxe belts produced weekly

x2 � number of regular belts produced weekly

Leather LimitedE X A M P L E  1

†Throughout the first part of the chapter we assume that all variables must be nonnegative (�0). The conver-

sion of urs variables to nonnegative variables is discussed in Section 4.12.



the appropriate LP is

max z � 4x1 � 3x2 (LP 1)

s.t. x1 � x2 � 40 (Leather constraint) (1)

s.t. 2x1 � x2 � 60 (Labor constraint) (2)

x1, x2 � 0

How can we convert (1) and (2) to equality constraints? We define for each � constraint

a slack variable si(si � slack variable for ith constraint), which is the amount of the re-

source unused in the ith constraint. Because x1 � x2 sq yd of leather are being used, and

40 sq yd are available, we define s1 by

s1 � 40 � x1 � x2 or x1 � x2 � s1 � 40

Similarly, we define s2 by

s2 � 60 � 2x1 � x2 or 2x1 � x2 � s2 � 60

Observe that a point (x1, x2) satisfies the ith constraint if and only if si � 0. For example,

x1 � 15, x2 � 20 satisfies (1) because s1 � 40 � 15 � 20 � 5 � 0.

Intuitively, (1) is satisfied by the point (15, 20), because s1 � 5 sq yd of leather are

unused. Similarly, (15, 20) satisfies (2), because s2 � 60 � 2(15) � 20 � 10 labor hours

are unused. Finally, note that the point x1 � x2 � 25 fails to satisfy (2), because s2 �

60 � 2(25) � 25 � �15 indicates that (25, 25) uses more labor than is available.

In summary, to convert (1) to an equality constraint, we replace (1) by s1 � 40 �

x1 � x2 (or x1 � x2 � s1 � 40) and s1 � 0. To convert (2) to an equality constraint, we

replace (2) by s2 � 60 � 2x1 � x2 (or 2x1 � x2 � s2 � 60) and s2 � 0. This converts

LP 1 to

max z � 4x1 � 3x2

s.t. x1 � x2 � s1 � s2 � 40
(LP 1�)

s.t. 2x1 � x2 � s1 � s2 � 60

x1, x2, s1, s2 � 0

Note that LP 1� is in standard form. In summary, if constraint i of an LP is a � constraint,

then we convert it to an equality constraint by adding a slack variable si to the ith con-

straint and adding the sign restriction si � 0.

To illustrate how a � constraint can be converted to an equality constraint, let’s con-

sider the diet problem of Section 3.4.

min z � 50x1 � 20x2 � 30x3 � 80x4

s.t. 400x1 � 200x2 � 150x3 � 500x4 � 500 (Calorie constraint) (3)

s.t. 3x1 � 2x2 � 6 (Chocolate constraint) (4)

s.t. 2x1 � 2x2 � 4x3 � 4x4 � 10 (Sugar constraint) (5)

s.t. 2x1 � 4x2 � x3 � 5x4 � 8 (Fat constraint) (6)

x1, x2, x3, x4 � 0

To convert the ith � constraint to an equality constraint, we define an excess variable

(sometimes called a surplus variable) ei. (ei will always be the excess variable for the ith
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constraint.) We define ei to be the amount by which the ith constraint is oversatisfied.

Thus, for the diet problem,

e1 � 400x1 � 200x2 � 150x3 � 500x4 � 500, or (3�)

400x1 � 200x2 � 150x3 � 500x4 � e1 � 500

e2 � 3x1 � 2x2 � 6, or 3x1 � 2x2 � e2 � 6 (4�)

e3 � 2x1 � 2x2 � 4x3 � 4x4 � 10, or 2x1 � 2x2 � 4x3 � 4x4 � e3 � 10 (5�)

e4 � 2x1 � 4x2 � x3 � 5x4 � 8, or 2x1 � 4x2 � x3 � 5x4 � e4 � 8 (6�)

A point (x1, x2, x3, x4) satisfies the ith � constraint if and only if ei is nonnegative. For

example, from (4�), e2 � 0 if and only if 3x1 � 2x2 � 6. For a numerical example, con-

sider the point x1 � 2, x3 � 4, x2 � x4 � 0, which satisfies all four of the diet problem’s

constraints. For this point,

e1 � 400(2) � 150(4) � 500 � 900 � 0

e2 � 3(2) � 6 � 0 � 0

e3 � 2(2) � 4(4) � 10 � 10 � 0

e4 � 2(2) � 4 � 8 � 0 � 0

As another example, consider x1 � x2 � 1, x3 � x4 � 0. This point is infeasible; it vio-

lates the chocolate, sugar, and fat constraints. The infeasibility of this point is indicated by

e2 � 3(1) � 2(1) � 6 � �1 � 0

e3 � 2(1) � 2(1) � 10 � �6 � 0

e4 � 2(1) � 4(1) � 8 � �2 � 0

Thus, to transform the diet problem into standard form, replace (3) by (3�); (4) by (4�);

(5) by (5�); and (6) by (6�). We must also add the sign restrictions ei � 0 (i � 1, 2, 3, 4).

The resulting LP is in standard form and may be written as

min z � 50x1 � 20x2 � 30x3 � 80x4

s.t. 400x1 � 200x2 � 150x3 � 500x4 � e1 � e1 � e1 � e1 � 500

s.t. 3x1 � 2x2 � 150x3 � 500x4 � e1 � e2 � e2 � e2 � 6

s.t. 2x1 � 2x2 � 4x3 � 4x4 � e1 � e2 � e3 � e2 � 10

s.t. 2x1 � 4x2 � x3 � 5x4 � e1 � e2 � e3 � e4 � 8

xi, ei � 0 (i � 1, 2, 3, 4)

In summary, if the ith constraint of an LP is a � constraint, then it can be converted

to an equality constraint by subtracting an excess variable ei from the ith constraint and

adding the sign restriction ei � 0.

If an LP has both � and � constraints, then simply apply the procedures we have de-

scribed to the individual constraints. As an example, let’s convert the short-term financial

planning model of Section 3.7 to standard form. Recall that the original LP was

max z � 20x1 � 15x2

s.t. x1 � 35x2 � 100

s.t. x1 � 35x2 � 100

s.t. 50x1 � 35x2 � 6,000

s.t. 20x1 � 15x2 � 2,000

x1, x2 � 0
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Following the procedures described previously, we transform this LP into standard form

by adding slack variables s1, s2, and s3, respectively, to the first three constraints and sub-

tracting an excess variable e4 from the fourth constraint. Then we add the sign restrictions

s1 � 0, s2 � 0, s3 � 0, and e4 � 0. This yields the following LP in standard form:

max z � 20x1 � 15x2

s.t. x1 � 15x2 � s1 � s1 � s1 � e4 � 100

s.t. 50x1 � 15x2 � s1 � s2 � s1 � e4 � 100

s.t. 50x1 � 35x2 � s1 � s1 � s3 � e4 � 6,000

s.t. 20x1 � 15x2 � s1 � s1 � s1 � e4 � 2,000

xi � 0 (i � 1, 2); si � 0 (i � 1, 2, 3); e4 � 0

Of course, we could easily have labeled the excess variable for the fourth constraint e1

(because it is the first excess variable). We chose to call it e4 rather than e1 to indicate that

e4 is the excess variable for the fourth constraint.

P R O B L E M S
Group A
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1 Convert the Giapetto problem (Example 1 in Chapter 3)
to standard form.

2 Convert the Dorian problem (Example 2 in Chapter 3)
to standard form.

3 Convert the following LP to standard form:

min z � 3x1 � x2

s.t. x1 � x2 � 3

s.t. x1 � x2 � 4

s.t. 2x1 � x2 � 3

x1, x2 � 0

4.2 Preview of the Simplex Algorithm

Suppose we have converted an LP with m constraints into standard form. Assuming that

the standard form contains n variables (labeled for convenience x1, x2, . . . , xn), the stan-

dard form for such an LP is

max z � c1x1 � c2x2 � 			 � cnxn

(or min)

s.t. a11x1 � a12x2 � 			 � a1nxn � b1

s.t. a21x1 � a22x2 � 			 � a2nxn � b2 (7)

	 	 		 	 		 	 	

s.t. am1x1 � am2x2� 			 � amnxn � bm

xi � 0 (i � 1, 2, . . . , n)

If we define

A � � �
a1n

a2n

			

amn

			

			

			

a12

a22

			

am2

a11

a12

			

a1n



and

x � � �, b � � �
the constraints for (7) may be written as the system of equations Ax � b. Before pro-

ceeding further with our discussion of the simplex algorithm, we must define the concept

of a basic solution to a linear system.

Basic and Nonbasic Variables

Consider a system Ax � b of m linear equations in n variables (assume n � m).

D E F I N I T I O N ■ A basic solution to Ax � b is obtained by setting n � m variables equal to 0 and

solving for the values of the remaining m variables. This assumes that setting the 

n � m variables equal to 0 yields unique values for the remaining m variables or,

equivalently, the columns for the remaining m variables are linearly independent. ■

To find a basic solution to Ax � b, we choose a set of n � m variables (the nonbasic

variables, or NBV) and set each of these variables equal to 0. Then we solve for the val-

ues of the remaining n � (n � m) � m variables (the basic variables, or BV) that sat-

isfy Ax � b.

Of course, the different choices of nonbasic variables will lead to different basic solu-

tions. To illustrate, we find all the basic solutions to the following system of two equa-

tions in three variables:

x1 � x2 � x3 � 3
(8)

x1 � x2 � x3 � �1

We begin by choosing a set of 3 � 2 � 1 (3 variables, 2 equations) nonbasic variables.

For example, if NBV � {x3}, then BV � {x1, x2}. We obtain the values of the basic vari-

ables by setting x3 � 0 and solving

x1 � x2 � 3

x1 �x2 � �1

We find that x1 � 2, x2 � 1. Thus, x1 � 2, x2 � 1, x3 � 0 is a basic solution to (8). How-

ever, if we choose NBV � {x1} and BV � {x2, x3}, we obtain the basic solution x1 � 0,

x2 � 3, x3 � 2. If we choose NBV � {x2}, we obtain the basic solution x1 � 3, x2 � 0,

x3 � �1. The reader should verify these results.

Some sets of m variables do not yield a basic solution. For example, consider the fol-

lowing linear system:

x1 � 2x2 � x3 � 1

2x1 � 4x2 � x3 � 3

If we choose NBV � {x3} and BV � {x1, x2}, the corresponding basic solution would

be obtained by solving

x1 � 2x2 � 1

2x1 � 4x2 � 3

b1

b2

			

bm

x1

x2

			

xn
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Because this system has no solution, there is no basic solution corresponding to BV �

{x1, x2}.

Feasible Solutions

A certain subset of the basic solutions to the constraints Ax � b of an LP plays an im-

portant role in the theory of linear programming.

D E F I N I T I O N ■ Any basic solution to (7) in which all variables are nonnegative is a basic feasible

solution (or bfs). ■

Thus, for an LP with the constraints given by (8), the basic solutions x1 � 2, x2 � 1,

x3 � 0, and x1 � 0, x2 � 3, x3 � 2 are basic feasible solutions, but the basic solution 

x1 � 3, x2 � 0, x3 � �1 fails to be a basic solution (because x3 � 0).

In the rest of this section, we assume that all LPs are in standard form. Recall from

Section 3.2 that the feasible region for any LP is a convex set. Let S be the feasible re-

gion for an LP in standard form. Recall that a point P is an extreme point of S if all line

segments that contain P and are completely contained in S have P as an endpoint. It turns

out that the extreme points of an LP’s feasible region and the LP’s basic feasible solutions

are actually one and the same. More formally,

A point in the feasible region of an LP is an extreme point if and only if it is a ba-

sic feasible solution to the LP.

See Luenburger (1984) for a proof of Theorem 1.

To illustrate the correspondence between extreme points and basic feasible solutions

outlined in Theorem 1, let’s look at the Leather Limited example of Section 4.1. Recall

that the LP was

max z � 4x1 � 3x2

s.t. x1 � x2 � 40 (LP 1)

s.t. 2x1 � x2 � 60 (1)

x1, x2 � 0 (2)

By adding slack variables s1 and s2, respectively, to (1) and (2), we obtain LP 1 in stan-

dard form:

max z � 4x1 � 3x2

s.t. x1 � x2 � s1 � s2 � 40
(LP 1�)

s.t. 2x1 � x2 � s1 � s2 � 60

x1, x2, s1, s2 � 0

The feasible region for the Leather Limited problem is graphed in Figure 1. Both in-

equalities are satisfied: (1) by all points below or on the line AB(x1 � x2 � 40), and 

(2) by all points on or below the line CD(2x1 � x2 � 60). Thus, the feasible region for

LP 1 is the shaded region bounded by the quadrilateral BECF. The extreme points of the

feasible region are B � (0, 40), C � (30, 0), E � (20, 20), and F � (0, 0).
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Table 1 shows the correspondence between the basic feasible solutions to LP 1� and

the extreme points of the feasible region for LP 1. This example should make it clear that

the basic feasible solutions to the standard form of an LP correspond in a natural fashion

to the LP’s extreme points.

In the context of the Leather Limited example, it is easy to show why any bfs is an ex-

treme point. The converse is harder! We now show that for the LL problem, any bfs is 

an extreme point. Any point in the feasible region for LL may be specified as a four-

dimensional column vector with the four elements of the vector denoting x1, x2, s1, and

s2, respectively. Consider the bfs B with BV � {x2, s2}. If B is not an extreme point, then

there exists two distinct feasible points v1 and v2 and non-negative numbers 
1 and 
2 sat-

isfying 0 � 
i � 1 and 
1 � 
2 � 1 such that

� � � 
1v1 � 
2v2

Clearly, both v1 and v2 must both have x1 � s2 � 0. But because v1 and v2 are both

feasible, the values of x2 and s2 for both v1 and v2 can be determined by solving x2 � 40

and x2 � s2 � 60. These equations have a unique solution (because columns corre-

sponding to basic variables x2 and s2 are linearly independent). This shows that v1 � v2,

so B is indeed an extreme point.

0

40

0

20
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Feasible Region for
Leather Limited

TA B L E  1

Correspondence between Basic Feasible Solutions and Corner Points for Leather Limited

Basic Nonbasic Basic Corresponds to
Variables Variables Feasible Solution Corner Point

x1, x2 s1, s2 s1 � s2 � 0, x1 � x2 � 20 E

x1, s1 x2, s2 x2 � s2 � 0, x1 � 30, s1 � 10 C

x1, s2 x2, s1 x2 � s1 � 0, x1 � 40, s2 � �20 Not a bfs because s2 � 0

x2, s1 x1, s2 x1 � s2 � 0, s1 � �20, x2 � 60 Not a bfs because s1 � 0

x2, s2 x1, s1 x1 � s1 � 0, x2 � 40, s2 � 20 B

s1, s2 x1, x2 x1 � x2 � 0, s1 � 40, s2 � 60 F



We note that more than one set of basic variables may correspond to a given extreme

point. If this is the case, then we say the LP is degenerate. See Section 4.11 for a dis-

cussion of the impact of degeneracy on the simplex algorithm.

We will soon see that if an LP has an optimal solution, then it has a bfs that is 

optimal. This is important because any LP has only a finite number of bfs’s. Thus we

can find the optimal solution to an LP by searching only a finite number of points.

Because the feasible region for any LP contains an infinite number of points, this

helps us a lot!

Before explaining why any LP that has an optimal solution has an optimal bfs, we need

to define the concept of a direction of unboundedness.

4.3 Direction of Unboundedness

Consider an LP in standard form with feasible region S and constraints Ax � b and x �

0. Assuming that our LP has n variables, 0 represents an n-dimensional column vector

consisting of all 0’s. A nonzero vector d is a direction of unboundedness if for all x�S

and any c � 0, x � cd�S. In short, if we are in the LP’s feasible region, then we can

move as far as we want in the direction d and remain in the feasible region. Figure 2 dis-

plays the feasible region for the Dorian Auto example (Example 2 of Chapter 3). In stan-

dard form, the Dorian example is

min z � 50x1 � 100x2

7x1 � 2x2 � e1 � 28

2x1 � 12x2 � e2 � 24

x1, x2, e1, e2 � 0

Looking at Figure 2 it is clear that if we start at any feasible point and move up 

and to the right at a 45-degree angle, we will remain in the feasible region. This means

that
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d � � �
is a direction of unboundedness for this LP. It is easy to show (see Problem 6) that d is a

direction of unboundedness if and only if Ad � 0 and d � 0.

The following Representation Theorem [for a proof, see Nash and Sofer (1996)] is the

key insight needed to show why any LP with an optimal solution has an optimal bfs.

Consider an LP in standard form, having bfs b1, b2, . . . , bk. Any point x in the LP’s

feasible region may be written in the form

x � d � �
i�k

i�1 
ibi

where d is 0 or a direction of unboundedness and �i�k
i�1 
i � 1 and 
i � 0.

If the LP’s feasible region is bounded, then d � 0, and we may write x � �
i�k
i�1 
ibi,

where the 
i are nonnegative weights adding to 1. In this case, we see that any feasible 

x may be written as a convex combination of the LP’s bfs. We now give two illustrations

of Theorem 2.

Consider the Leather Limited example. The feasible region is bounded. To illustrate

Theorem 2, we can write the point G � (20, 10) (G is not a bfs!) in Figure 3 as a convex

combination of the LP’s bfs. Note from Figure 3 that point G may be written as 
�
1

6
�F � �

5

6
�H [here H � (24, 12)]. Then note that point H may be written as .6E � .4C. Putting

these two relationships together, we may write point G as �
1

6
�F � �

5

6
�(.6E � .4C) � �

1

6
�F �

�
1

2
�E � �

1

3
�C. This expresses point G as a convex combination of the LP’s extreme points.

To illustrate Theorem 2 for an unbounded LP, let’s consider Example 2 of Chapter 3

(the Dorian example; see Figure 4) and try to express the point F � (14, 4) in the repre-

sentation given in Theorem 2. Recall that in standard form the constraints for the Dorian

example are given by

7x1 � 2x2 � e1 � 28

1

1

9

14
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2x1 � 12x2 � e2 � 24

From Figure 4, we see that to move from bfs C to point F we need to move up and to

the right along a line having slope �
1

4

4

�

�

0

12
� � 2. This line corresponds to the direction of

unboundedness

d � � �
Letting

b1 � � � and x � � �
we may write x � d � b1, which is the desired representation.

4.4 Why Does an LP Have an Optimal bfs?

Consider an LP with objective function max cx and constraints Ax � b. Suppose this LP

has an optimal solution. We now sketch a proof of the fact that the LP has an optimal bfs.

If an LP has an optimal solution, then it has an optimal bfs.

Proof Let x be an optimal solution to our LP. Because x is feasible, Theorem 2 tells

us that we may write x � d � �
i�k
i�1 
ibi, where d is 0 or a direction of unbound-

edness and b1, b2, . . . , bk are the LP’s bfs. Also, �i�k
i�1 
i � 1 and 
i � 0. If cd 

14

4

78

52

12

0

56

0

2

4

22

52
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0, then for any k  0, kd � �
i�k
i�1 
ibi is feasible, and as k grows larger and larger,

the objective function value approaches infinity. This contradicts the fact that the LP

has an optimal solution. If cd � 0, then the feasible point �i�k
i�1 
ibi has a larger ob-

jective function value than x. This contradicts the optimality of x. In short, we have

shown that if x is optimal, then cd � 0. Now the objective function value for x is

given by

cx � cd � �
i�k
i�1 
icbi � �

i�k
i�1 
icbi

Suppose that b1 is the bfs with the largest objective function value. Because �i�k
i�1


i � 1 and 
i � 0,

cb1 � cx

Because x is optimal, this shows that b1 is also optimal, and the LP does indeed

have an optimal bfs.

Adjacent Basic Feasible Solutions

Before describing the simplex algorithm in general terms, we need to define the concept

of an adjacent basic feasible solution.

D E F I N I T I O N ■ For any LP with m constraints, two basic feasible solutions are said to be adjacent

if their sets of basic variables have m � 1 basic variables in common. ■

For example, in Figure 3, two basic feasible solutions will be adjacent if they have 

2 � 1 � 1 basic variable in common. Thus, the bfs corresponding to point E in Figure 3

is adjacent to the bfs corresponding to point C. Point E is not, however, adjacent to bfs F.

Intuitively, two basic feasible solutions are adjacent if they both lie on the same edge of

the boundary of the feasible region.

We now give a general description of how the simplex algorithm solves LPs in a max

problem.

Step 1 Find a bfs to the LP. We call this bfs the initial basic feasible solution. In general,

the most recent bfs will be called the current bfs, so at the beginning of the problem the

initial bfs is the current bfs.

Step 2 Determine if the current bfs is an optimal solution to the LP. If it is not, then find

an adjacent bfs that has a larger z-value.

Step 3 Return to step 2, using the new bfs as the current bfs.

If an LP in standard form has m constraints and n variables, then there may be a ba-

sic solution for each choice of nonbasic variables. From n variables, a set of n � m non-

basic variables (or equivalently, m basic variables) can be chosen in

� � �

different ways. Thus, an LP can have at most

� �
basic solutions. Because some basic solutions may not be feasible, an LP can have at most

n

m

n!
��

n

m
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� �
basic feasible solutions. If we were to proceed from the current bfs to a better bfs (with-

out ever repeating a bfs), then we would surely find the optimal bfs after examining at most

� �
basic feasible solutions. This means (assuming that no bfs is repeated) that the simplex

algorithm will find the optimal bfs after a finite number of calculations. We return to this

discussion in Section 4.11.

In principle, we could enumerate all basic feasible solutions to an LP and find the bfs

with the largest z-value. The problem with this approach is that even small LPs have a very

large number of basic feasible solutions. For example, an LP in standard form that has 20

variables and 10 constraints might have (if each basic solution were feasible) up to

� � � 184,756

basic feasible solutions. Fortunately, vast experience with the simplex algorithm indicates

that when this algorithm is applied to an n-variable, m-constraint LP in standard form, an

optimal solution is usually found after examining fewer than 3m basic feasible solutions.

Thus, for a 20-variable, 10-constraint LP in standard form, the simplex will usually find the

optimal solution after examining fewer than 3(10) � 30 basic feasible solutions. Compared

with the alternative of examining 184,756 basic solutions, the simplex is quite efficient!†

Geometry of Three-Dimensional LPs

Consider the following LP:

max z � 2x1 � 2x2 � 2x3 � 8

s.t. 2x1 � x2 � 2x3 � 8

x3 � 10

x1, x2, x3 � 0

The set of points satisfying a linear inequality in three (or any number of) dimensions

is a half-space. For example, the set of points in three dimensions satisfying 2x1 � x2 �

8 is a half-space. Thus, the feasible region for our LP is the intersection of the following

five half-spaces: 2x1 � x2 � 8, x3 � 10, x1 � 0, x2 � 0, and x3 � 0. The intersection of

half-spaces is called a polyhedron. The feasible region for our LP is the prism pictured

in Figure 5.

On each face (or facet) of the feasible region, one constraint (or sign restriction) is

binding for all points on that face. For example, the constraint 2x1 � x2 � 8 is binding

for all points on the face ABCD; x3 � 0 is binding on face ABF; x3 � 10 is binding on

face DEC; x2 � 0 is binding on face ADEF; x1 � 0 is binding on face CBFE.

Clearly, the corner (or extreme) points of the LP’s feasible region are A, B, C, D, E,

and F. In this case, the correspondence between the bfs and corner points is as shown in

Table 2.

To illustrate the concept of adjacent basic feasible solutions, note that corner points A,

20

10

n

m

n

m
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†In solving many LPs with 50 variables and m � 50 constraints, Chvàtal (1983) found that the simplex algo-

rithm examined an average of 2m basic feasible solutions before finding an LP’s optimal solution.



E, and B are adjacent to corner point F. Thus, if the simplex algorithm begins at F, then

we can be sure that the next bfs to be considered will be A, E, or B.
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C

E

F A

D

B

x3

x1

x2

(0, 0, 10)

(0, 0, 0) (4, 0, 0)

(0, 8, 10)

(4, 0, 10)

(0, 8, 0)

F I G U R E  5

Feasible Region in
Three Dimensions

TA B L E  2

Correspondence between bfs and Corner Points

Basic Corresponds to
Variables Basic Feasible Solution Corner Point

x1, x3 x1 � 4, x3 � 10, x2 � s1 � s2 � 0 D

s1, s2 s1 � 8, s2 � 10, x1 � x2 � x3 � 0 F

s1, x3 s1 � 8, x3 � 10, x1 � x2 � s2 � 0 E

x2, x3 x2 � 8, x3 � 10, x1 � s1 � s2 � 0 C

x2, s2 x2 � 8, s2 � 10, x1 � x3 � s1 � 0 B

x1, s2 x1 � 4, s2 � 10, x2 � x3 � s1 � 0 A

P R O B L E M S
Group A

1 For the Giapetto problem (Example 1 in Chapter 3),
show how the basic feasible solutions to the LP in standard
form correspond to the extreme points of the feasible region.

2 For the Dorian problem (Example 2 in Chapter 3), show
how the basic feasible solutions to the LP in standard form
correspond to the extreme points of the feasible region.

3 Widgetco produces two products: 1 and 2. Each requires
the amounts of raw material and labor, and sells for the
price given in Table 3.

Up to 350 units of raw material can be purchased at $2
per unit, while up to 400 hours of labor can be purchased at
$1.50 per hour. To maximize profit, Widgetco must solve
the following LP:

max z � 2x1 � 2.5x2

s.t. x1 � 2x2 � 350 (Raw material)

2x1 � x2 � 400 (Labor)

x1, x2 � 0

Here, xi � number of units of product i produced. Demon-
strate the correspondence between corner points and basic
feasible solutions.

4 For the Leather Limited problem, represent the point
(10, 20) in the form cd � �

i�k
i�1 
ibi.

5 For the Dorian problem, represent the point (10,40) in
the form cd � �

i�k
i�1 
ibi.

Group B

6 For an LP in standard form with constraints Ax � b and
x � 0, show that d is a direction of unboundedness if and

TA B L E  3

Product 1 Product 2

Raw material 1 unit 2 units

Labor 2 hours 1 hour

Sales price $7 $8



only if Ad � 0 and d � 0.

7 Recall that Example 5 of Chapter 3 is an unbounded LP. Find a direction of unboundedness along which we can move for
which the objective function becomes arbitrarily large.

4.5 The Simplex Algorithm

We now describe how the simplex algorithm can be used to solve LPs in which the goal

is to maximize the objective function. The solution of minimization problems is discussed

in Section 4.4.

The simplex algorithm proceeds as follows:

Step 1 Convert the LP to standard form (see Section 4.1).

Step 2 Obtain a bfs (if possible) from the standard form.

Step 3 Determine whether the current bfs is optimal.

Step 4 If the current bfs is not optimal, then determine which nonbasic variable should

become a basic variable and which basic variable should become a nonbasic variable to

find a new bfs with a better objective function value.

Step 5 Use EROs to find the new bfs with the better objective function value. Go back

to step 3.

In performing the simplex algorithm, write the objective function

z � c1x1 � c2x2 � 			 � cnxn

in the form

z � c1x1 � c2x2 � 			 � cnxn � 0

We call this format the row 0 version of the objective function (row 0 for short).

The Dakota Furniture Company manufactures desks, tables, and chairs. The manufacture

of each type of furniture requires lumber and two types of skilled labor: finishing and car-

pentry. The amount of each resource needed to make each type of furniture is given in

Table 4.

Currently, 48 board feet of lumber, 20 finishing hours, and 8 carpentry hours are avail-

able. A desk sells for $60, a table for $30, and a chair for $20. Dakota believes that de-

mand for desks and chairs is unlimited, but at most five tables can be sold. Because the

available resources have already been purchased, Dakota wants to maximize total revenue.
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Dakota Furniture CompanyE X A M P L E  2

TA B L E  4

Resource Requirements for Dakota Furniture

Resource Desk Table Chair

Lumber (board ft) 8 6.5 1.5

Finishing hours 4 2.5 1.5

Carpentry hours 2 1.5 0.5



Defining the decision variables as

x1 � number of desks produced

x2 � number of tables produced

x3 � number of chairs produced

it is easy to see that Dakota should solve the following LP:

max z � 60x1 � 30x2 � 20x3

s.t. 8x1 � 6x2 � x3 � 48 (Lumber constraint)

4x1 � 2x2 � 1.5x3 � 20 (Finishing constraint)

2x1 � 1.5x2 � 0.5x3 � 8 (Carpentry constraint)

x2 � 5 (Limitation on table demand)

x1, x2, x3 � 0

Convert the LP to Standard Form

We begin the simplex algorithm by converting the constraints of the LP to the standard

form discussed in Section 4.1. Then we convert the LP’s objective function to the row 0

format. To put the constraints in standard form, we simply add slack variables s1, s2, s3,

and s4, respectively, to the four constraints. We label the constraints row 1, row 2, row 3,

and row 4, and add the sign restrictions si � 0 (i � 1, 2, 3, 4). Note that the row 0 for-

mat for our objective function is

z � 60x1 � 30x2 � 20x3 � 0

Putting rows 1–4 together with row 0 and the sign restrictions yields the equations and

basic variables shown in Table 5. A system of linear equations (such as canonical form 0,

shown in Table 5) in which each equation has a variable with a coefficient of 1 in that

equation (and a zero coefficient in all other equations) is said to be in canonical form. We

will soon see that if the right-hand side of each constraint in a canonical form is non-

negative, a basic feasible solution can be obtained by inspection.†
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†If a canonical form with nonnegative right-hand sides is not readily available, however, then the techniques

described in Sections 4.12 and 4.13 can be used to find a canonical form and a basic feasible solution.

TA B L E  5

Canonical Form 0

Basic
Row Variable

0 z � 60x1 � .30x2 � .20x3 � s1 � s2 � s3 � s4 � 0 z1 � 0

1 z � 68x1 � 1.6x2 � 1.6x3 � s1 � s2 � s3 � s4 � 48 s1 � 48

2 z � 64x1 � 1.2x2 � 1.5x3 � s1 � s2 � s3 � s4 � 20 s2 � 20

3 z � 62x1 � 1.5x2 � 0.5x3 � s1 � s2 � s3 � s4 � 8 s3 � 8

4 z � 60x1 � 1.5x2 � 1.5x3 � s1 � s2 � s3 � s4 � 5 s4 � 5



From Section 4.2, we know that the simplex algorithm begins with an initial basic fea-

sible solution and attempts to find better ones. After obtaining a canonical form, we there-

fore search for the initial bfs. By inspection, we see that if we set x1 � x2 � x3 � 0, we

can solve for the values of s1, s2, s3, and s4 by setting si equal to the right-hand side of

row i.

BV � {s1, s2, s3, s4} and NBV � {x1, x2, x3}

The basic feasible solution for this set of basic variables is s1 � 48, s2 � 20, s3 � 8, 

s4 � 5, x1 � x2 � x3 � 0. Observe that each basic variable may be associated with the

row of the canonical form in which the basic variable has a coefficient of 1. Thus, for

canonical form 0, s1 may be thought of as the basic variable for row 1, as may s2 for row

2, s3 for row 3, and s4 for row 4.

To perform the simplex algorithm, we also need a basic (although not necessarily non-

negative) variable for row 0. Because z appears in row 0 with a coefficient of 1, and z

does not appear in any other row, we use z as its basic variable. With this convention, the

basic feasible solution for our initial canonical form has

BV � {z, s1, s2, s3, s4} and NBV � {x1, x2, x3}

For this basic feasible solution, z � 0, s1 � 48, s2 � 20, s3 � 8, s4 � 5, x1 � x2 � x3 � 0.

As this example indicates, a slack variable can be used as a basic variable for an equa-

tion if the right-hand side of the constraint is nonnegative.

Is the Current Basic Feasible Solution Optimal?

Once we have obtained a basic feasible solution, we need to determine whether it is op-

timal; if the bfs is not optimal, then we try to find a bfs adjacent to the initial bfs with a

larger z-value. To do this, we try to determine whether there is any way that z can be in-

creased by increasing some nonbasic variable from its current value of zero while hold-

ing all other nonbasic variables at their current values of zero. If we solve for z by re-

arranging row 0, then we obtain

z � 60x1 � 30x2 � 20x3 (9)

For each nonbasic variable, we can use (9) to determine whether increasing a nonbasic

variable (and holding all other nonbasic variables at zero) will increase z. For example,

suppose we increase x1 by 1 (holding the other nonbasic variables x2 and x3 at zero). Then

(9) tells us that z will increase by 60. Similarly, if we choose to increase x2 by 1 (holding

x1 and x3 at zero), then (9) tells us that z will increase by 30. Finally, if we choose to in-

crease x3 by 1 (holding x1 and x2 at zero), then (9) tells us that z will increase by 20. Thus,

increasing any of the nonbasic variables will increase z. Because a unit increase in x1

causes the largest rate of increase in z, we choose to increase x1 from its current value of

zero. If x1 is to increase from its current value of zero, then it will have to become a ba-

sic variable. For this reason, we call x1 the entering variable. Observe that x1 has the

most negative coefficient in row 0.

Determine the Entering Variable

We choose the entering variable (in a max problem) to be the nonbasic variable with the

most negative coefficient in row 0 (ties may be broken in an arbitrary fashion). Because

each one-unit increase of x1 increases z by 60, we would like to make x1 as large as pos-

sible. What limits how large we can make x1? Note that as x1 increases, the values of the
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current basic variables (s1, s2, s3, and s4) will change. This means that increasing x1 may

cause a basic variable to become negative. With this in mind, we look at how increasing

x1 (while holding x2 � x3 � 0) changes the values of the current set of basic variables.

From row 1, we see that s1 � 48 � 8x1 (remember that x2 � x3 � 0). Because the sign

restriction s1 � 0 must be satisfied, we can only increase x1 as long as s1 � 0, or 48 �

8x1 � 0, or x1 � �
4

8

8
� � 6. From row 2, s2 � 20 � 4x1. We can only increase x1 as long as

s2 � 0, so x1 must satisfy 20 � 4x1 � 0 or x1 � �
2

4

0
� � 5. From row 3, s3 � 8 � 2x1 so 

x1 � �
8

2
� � 4. Similarly, we see from row 4 that s4 � 5. Thus, whatever the value of x1, s4

will be nonnegative. Summarizing,

s1 � 0 for x1 � �
4

8

8
� � 6

s2 � 0 for x1 � �
2

4

0
� � 5

s3 � 0 for x1 � �
8

2
� � 4

s4 � 0 for all values of x1

This means that to keep all the basic variables nonnegative, the largest that we can make

x1 is min {�
4

8

8
�, �

2

4

0
�, �

8

2
�} � 4. If we make x1  4, then s3 will become negative, and we will

no longer have a basic feasible solution. Notice that each row in which the entering vari-

able had a positive coefficient restricted how large the entering variable could become.

Also, for any row in which the entering variable had a positive coefficient, the row’s ba-

sic variable became negative when the entering variable exceeded

(10)

If the entering variable has a nonpositive coefficient in a row (such as x1 in row 4), the row’s

basic variable will remain positive for all values of the entering variable. Using (10), we can

quickly compute how large x1 can become before a basic variable becomes negative.

Row 1 limit on x1 � �
4

8

8
� � 6

Row 2 limit on x1 � �
2

4

0
� � 5

Row 3 limit on x1 � �
8

2
� � 4

Row 4 limit on x1 � no limit (Because coefficient of x1 in row 4 is nonpositive)

We can state the following rule for determining how large we can make an entering variable.

The Ratio Test

When entering a variable into the basis, compute the ratio in (10) for every constraint in

which the entering variable has a positive coefficient. The constraint with the smallest ra-

tio is called the winner of the ratio test. The smallest ratio is the largest value of the en-

tering variable that will keep all the current basic variables nonnegative. In our example,

row 3 was the winner of the ratio test for entering x1 into the basis.

Find a New Basic Feasible Solution: 
Pivot in the Entering Variable

Right-hand side of row
����
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Returning to our example, we know that the largest we can make x1 is 4. For x1 to equal 4,

it must become a basic variable. Looking at rows 1–4, we see that if we make x1 a basic

variable in row 1, then x1 will equal �
4

8

8
� � 6; in row 2, x1 will equal �

2

4

0
� � 5; in row 3, x1

will equal �
8

2
� � 4. Also, because x1 does not appear in row 4, x1 cannot be made a basic vari-

able in row 4. Thus, if we want to make x1 � 4, then we have to make it a basic variable in

row 3. The fact that row 3 was the winner of the ratio test illustrates the following rule.

In Which Row Does the Entering Variable Become Basic?

Always make the entering variable a basic variable in a row that wins the ratio test (ties

may be broken arbitrarily).

To make x1 a basic variable in row 3, we use elementary row operations to make x1 have

a coefficient of 1 in row 3 and a coefficient of 0 in all other rows. This procedure is called

pivoting on row 3; and row 3 is the pivot row. The final result is that x1 replaces s3 as the

basic variable for row 3. The term in the pivot row that involves the entering basic variable

is called the pivot term. Proceeding as we did when we studied the Gauss–Jordan method

in Chapter 2, we make x1 a basic variable in row 3 by performing the following EROs.

ERO 1 Create a coefficient of 1 for x1 in row 3 by multiplying row 3 by �
1

2
�. The resulting

row (marked with a prime to show it is the first iteration) is

x1 � 0.75x2 � 0.25x3 � 0.5s3 � 4 (row 3�)

ERO 2 To create a zero coefficient for x1 in row 0, replace row 0 with 60(row 3�) � row 0.

z � 15x2 � 5x3 � 30s3 � 240 (row 0�)

ERO 3 To create a zero coefficient for x1 in row 1, replace row 1 with �8(row 3�) � row 1.

�x3 � s1 � 4s3 � 16 (row 1�)

ERO 4 To create a zero coefficient for x1 in row 2, replace row 2 with �4(row 3�) � row 2.

�x2 � 0.5x3 � s2 � 2s3 � 4 (row 2�)

Because x1 does not appear in row 4, we don’t need to perform an ero to eliminate x1

from row 4. Thus, we may write the “new” row 4 (call it row 4� to be consistent with other

notation) as

x2 � s4 � 5 (row 4�)

Putting rows 0�–4� together, we obtain the canonical form shown in Table 6.

Looking for a basic variable in each row of the current canonical form, we find that

BV � {z, s1, s2, x1, s4} and NBV � {s3, x2, x3}
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TA B L E  6

Canonical Form 1

Basic
Row Variable

Row 0� z � 0.15x2 � 0.25x3 � s1 � s2 � .30s3 � s4 � 240 z � 240

Row 1� z1 � 0.15x2 � 0.25x3 � s1 � s2 � .34s3 � s4 � 16 s1 � 16

Row 2� z1 � 0.15x2 � 00.5x3 � s1 � s2 � .32s3 � s4 � 4 s2 � 4

Row 3� x1 � 0.75x2 � 0.25x3 � s1 � s2 � 0.5s3 � s4 � 4 x1 � 4

Row 4� z1 � 0.15x2 � 0.25x3 � s1 � s2 � .30s3 � s4 � 5 s4 � 5
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Thus, canonical form 1 yields the basic feasible solution z � 240, s1 � 16, s2 � 4, x1 �

4, s4 � 5, x2 � x3 � s3 � 0. We could have predicted that the value of z in canonical

form 1 would be 240 from the fact that each unit by which x1 is increased increases z by

60. Because x1 was increased by 4 units (from x1 � 0 to x1 � 4), we would expect that

Canonical form 1 z-value � initial z-value � 4(60)

� 0 � 240 � 240

In obtaining canonical form 1 from the initial canonical form, we have gone from one bfs

to a better (larger z-value) bfs. Note that the initial bfs and the improved bfs are adjacent.

This follows because the two basic feasible solutions have 4 � 1 � 3 basic variables (s1, s2,

and s4) in common (excluding z, which is a basic variable in every canonical form). Thus,

we see that in going from one canonical form to the next, we have proceeded from one bfs

to a better adjacent bfs. The procedure used to go from one bfs to a better adjacent bfs is

called an iteration (or sometimes, a pivot) of the simplex algorithm.

We now try to find a bfs that has a still larger z-value. We begin by examining canon-

ical form 1 (Table 6) to see if we can increase z by increasing the value of some nonba-

sic variable (while holding all other nonbasic variables equal to zero). Rearranging row

0� to solve for z yields

z � 240 � 15x2 � 5x3 � 30s3 (11)

From (11), we see that increasing the nonbasic variable x2 by 1 (while holding x3 � s3 �

0) will decrease z by 15. We don’t want to do that! Increasing the nonbasic variable s3 by

1 (holding x2 � x3 � 0) will decrease z by 30. Again, we don’t want to do that. On the

other hand, increasing x3 by 1 (holding x2 � s3 � 0) will increase z by 5. Thus, we choose

to enter x3 into the basis. Recall that our rule for determining the entering variable is to

choose the variable with the most negative coefficient in the current row 0. Because x3 is

the only variable with a negative coefficient in row 0�, it should be entered into the basis.

Increasing x3 by 1 will increase z by 5, so it is to our advantage to make x3 as large as

possible. We can increase x3 as long as the current basic variables (s1, s2, x1, and s4) re-

main nonnegative. To determine how large x3 can be, we must solve for the values of the

current basic variables in terms of x3 (holding x2 � s3 � 0). We obtain

From row 1�: s1 � 16 � x3

From row 2�: s2 � 4 � 0.5x3

From row 3�: x1 � 4 � 0.25x3

From row 4�: s4 � 5

These equations tell us that s1 � 0 and s4 � 0 will hold for all values of x3. From row

2�, we see that s2 � 0 will hold if 4 � 0.5x3 � 0, or x3 � �
0

4

.5
� � 8. From row 3�, x1 � 0

will hold if 4 � 0.25x3 � 0, or x3 � �
0.

4

25
� � 16. This shows that the largest we can make

x3 is min {�
0

4

.5
�, �

0.

4

25
�} � 8. This fact could also have been discovered by using (10) and the

ratio test, as follows:

Row 1�: no ratio (x3 has negative coefficient in row 1)

Row 2�: �
0

4

.5
� � 8

Row 3�: �
0.

4

25
� � 16

Row 4�: no ratio (x3 has a nonpositive coefficient in row 4)

Thus, the smallest ratio occurs in row 2�, and row 2� wins the ratio test. This means that

we should use EROs to make x3 a basic variable in row 2�.



ERO 1 Create a coefficient of 1 for x3 in row 2� by replacing row 2� with 2(row 2�):

�2x2 � x3 � 2s2 � 4s3 � 8 (row 2�)

ERO 2 Create a coefficient of 0 for x3 in row 0� by replacing row 0� with 5(row 2)� �

row 0�:

z � 5x2 � 10s2 � 10s3 � 280 (row 0�)

ERO 3 Create a coefficient of 0 for x3 in row 1� by replacing row 1� with row 2� �

row 1�:

�2x2 � s1 � 2s2 � 8s3 � 24 (row 1�)

ERO 4 Create a coefficient of 0 for x3 in row 3�, by replacing row 3� with ��
1

4
�(row 2�) � 3�:

x1 � 1.25x2 � 0.5s2 � 1.5s3 � 2 (row 3�)

Because x3 already has a zero coefficient in row 4�, we may write

x2 � s4 � 5 (row 4�)

Combining rows 0�– 4� gives the canonical form shown in Table 7.

Looking for a basic variable in each row of canonical form 2, we find

BV � {z, s1, x3, x1, s4} and NBV � {s2, s3, x2}

Canonical form 2 yields the following bfs: z � 280, s1 � 24, x3 � 8, x1 � 2, s4 � 5, 

s2 � s3 � x2 � 0. We could have predicted that canonical form 2 would have z � 280

from the fact that each unit of the entering variable x3 increased z by 5, and we have 

increased x3 by 8 units. Thus,

Canonical form 2 z-value � canonical form 1 z-value � 8(5)

� 240 � 40 � 280

Because the bfs’s for canonical forms 1 and 2 have (excluding z) 4 � 1 � 3 basic vari-

ables in common (s1, s4, x1), they are adjacent basic feasible solutions.

Now that the second iteration (or pivot) of the simplex algorithm has been completed,

we examine canonical form 2 to see if we can find a better bfs. If we rearrange row 0�

and solve for z, we obtain

z � 280 � 5x2 � 10s2 � 10s3 (12)

From (12), we see that increasing x2 by 1 (while holding s2 � s3 � 0) will decrease z by

5; increasing s2 by 1 (holding s3 � x2 � 0) will decrease z by 10; increasing s3 by 1 (hold-

ing x2 � s2 � 0) will decrease z by 10. Thus, increasing any nonbasic variable will cause

z to decrease. This might lead us to believe that our current bfs from canonical form 2 is

146 C H A P T E R 4 The Simplex Algorithm and Goal Programming

TA B L E  7

Canonical Form 2

Basic
Row Variable

0� z � 0.15x2 � x3 � s1 � .10s2 � .10s3 � s4 � 280 z � 280

1� z1 � 0.12x2 � x3 � s1 � 0.2s2 � .38s3 � s4 � 24 s1 � 24

2� z1 � 0.12x2 � x3 � s1 � 0.2s2 � .34s3 � s4 � 8 x3 � 8

3� x1 � 1.25x2 � x3 � s1 � 0.5s2 � 1.5s3 � s4 � 2 x1 � 2

4� z1 � 0.15x2 � x3 � s1 � 0.5s2 � .30s3 � s4 � 5 s4 � 5



an optimal solution. This is indeed correct! To see why, look at (12). We know that any

feasible solution to the Dakota Furniture problem must have x2 � 0, s2 � 0, and s3 � 0,

and �5x2 � 0, �10s2 � 0, and �10s3 � 0. Combining these inequalities with (12), it is

clear that any feasible solution must have z � 280 � terms that are � 0, and z � 280.

Our current bfs from canonical form 2 has z � 280, so it must be optimal.

The argument that we just used to show that canonical form 2 is optimal revolved

around the fact that each of its nonbasic variables had a nonnegative coefficient in row 0�.

This means that we can determine whether a canonical form’s bfs is optimal by applying

the following simple rule.

Is a Canonical Form Optimal (Max Problem)?

A canonical form is optimal (for a max problem) if each nonbasic variable has a non-

negative coefficient in the canonical form’s row 0.

R E M A R K S 1 The coefficient of a decision variable in row 0 is often referred to as the variable’s reduced cost.
Thus, in our optimal canonical form, the reduced costs for x1 and x3 are 0, and the reduced cost for
x2 is 5. The reduced cost of a nonbasic variable is the amount by which the value of z will decrease
if we increase the value of the nonbasic variable by 1 (while all the other nonbasic variables remain
equal to 0). For example, the reduced cost for the variable “tables” (x2) in canonical form 2 is 5.
From (12), we see that increasing x2 by 1 will reduce z by 5. Note that because all basic variables
(except z, of course) must have zero coefficients in row 0, the reduced cost for a basic variable will
always be 0. In Chapters 5 and 6, we discuss the concept of reduced costs in much greater detail.

These comments are correct only if the values of all the basic variables remain nonnegative af-
ter the nonbasic variable is increased by 1. Increasing x2 to 1 leaves x1, x3, and s1 all nonnegative,
so our comments are valid.
2 From canonical form 2, we see that the optimal solution to the Dakota Furniture problem is to
manufacture 2 desks (x1 � 2) and 8 chairs (x3 � 8). Because x2 � 0, no tables should be made.
Also, s1 � 24 is reasonable because only 8 � 8(2) � 24 board feet of lumber are being used. Thus,
48 � 24 � 24 board feet of lumber are not being used. Similarly, s4 � 5 makes sense because, al-
though up to 5 tables could have been produced, 0 tables are actually being produced. Thus, the
slack in constraint 4 is 5 � 0 � 5. Because s2 � s3 � 0, all available finishing and carpentry hours
are being utilized, so the finishing and carpentry constraints are binding.
3 We have chosen the entering variable to be the one with the most negative coefficient in row 0,
but this may not always lead us quickly to the optimal bfs (see Review Problem 11). Actually, even
if we choose the variable with the smallest (in absolute value) negative coefficient, the simplex al-
gorithm will eventually find the LP’s optimal solution.
4 Although any variable with a negative row 0 coefficient may be chosen to enter the basis, the
pivot row must be chosen by the ratio test. To show this formally, suppose that we have chosen to
enter xi into the basis, and in the current tableau xi is a basic variable in row k. Then row k may be
written as

a�kixi � 			 � b�k

Consider any other constraint (say, row j) in the canonical form. Row j in the current canonical form
may be written as

a�jixi � 			 � b�j

If we pivot on row k, row k becomes

xi � 			 � �
a�
b�

k

k

i

�

The new row j after the pivot will be obtained by adding �a�ji times the last equation to row j of
the current canonical form. This yields a new row j of

0xi � 			 � b�j � �
b�
a�

ka�
ki

ji
�

We know that after the pivot, each constraint must have a nonnegative right-hand side. Thus, 
a�ki  0 must hold to ensure that row k has a nonnegative right-hand side after the pivot. Suppose
a�ji  0. Then, to ensure that row j will have a nonnegative right-hand side after the pivot, we 
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must have

�
b�j �

a�k

b�

i

ka�ji
� � 0

or (because a�ji  0)

�
a�

b�

j

j

i

� � �
a�

b�

k

k

i

�

Thus, row k must be a “winner” of the ratio test to ensure that row j will have a nonnegative right-
hand side after the pivot is completed.

If a�ji � 0, then the right-hand side of row j will surely be nonnegative after the pivot. This fol-
lows because

� �
b�
a�

ka�
ki

ji
� � 0

will now hold.

As promised earlier, we have outlined an algorithm that proceeds from one bfs to a

better bfs. The algorithm stops when an optimal solution has been found. The convergence

of the simplex algorithm is discussed further in Section 4.11.

Summary of the Simplex Algorithm for a Max Problem

Step 1 Convert the LP to standard form.

Step 2 Find a basic feasible solution. This is easy if all the constraints are � with non-

negative right-hand sides. Then the slack variable si may be used as the basic variable for

row i. If no bfs is readily apparent, then use the techniques discussed in Sections 4.12 and

4.13 to find a bfs.

Step 3 If all nonbasic variables have nonnegative coefficients in row 0, then the current

bfs is optimal. If any variables in row 0 have negative coefficients, then choose the vari-

able with the most negative coefficient in row 0 to enter the basis. We call this variable

the entering variable.

Step 4 Use EROs to make the entering variable the basic variable in any row that wins

the ratio test (ties may be broken arbitrarily). After the EROs have been used to create a

new canonical form, return to step 3, using the current canonical form.

When using the simplex algorithm to solve problems, there should never be a constraint

with a negative right-hand side (it is okay for row 0 to have a negative right-hand side;

see Section 4.6). A constraint with a negative right-hand side is usually the result of an

error in the ratio test or in performing one or more EROs. If one (or more) of the con-

straints has a negative right-hand side, then there is no longer a bfs, and the rules of the

simplex algorithm may not lead to a better bfs.

Representing Simplex Tableaus

Rather than writing each variable in every constraint, we often used a shorthand display

called a simplex tableau. For example, the canonical form

z � 3x1 � x2 � s1 � s1 � 6

z � 3x1 � x2 � s1 � s1 � 4
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z � 2x1 � x2 � s1 � s2 � 3

would be written in abbreviated form as shown in Table 8 (rhs � right-hand side). This

format makes it very easy to spot basic variables: Just look for columns having a single
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TA B L E  8

A Simplex Tableau

Basic
z x1 x2 s1 s2 rhs Variable

1 3 1 0 0 6 z2 � 6

0 1 0 1 0 4 s1 � 4

0 2 1 0 1 3 s2 � 3

entry of 1 and all other entries

equal to 0 (s1 and s2). In our

use of simplex tableaus, we

will encircle the pivot term

and denote the winner of the

ratio test by *.

P R O B L E M S
Group A

1 Use the simplex algorithm to solve the Giapetto problem
(Example 1 in Chapter 3).

2 Use the simplex algorithm to solve the following LP:

max z � 2x1 � 3x2 � 6

s.t. x1 � 2x2 � 6

s.t. 2x1 � x2 � 8

x1, x2 � 0

3 Use the simplex algorithm to solve the following
problem:

max z � 2x1 � x2 � x3 � 60

s.t. 3x1 � x2 � x3 � 60

s.t. x1 � x2 � 2x3 � 10

s.t. x1 � x2 � x3 � 20

x1, x2, x3 � 0

4 Suppose you want to solve the Dorian problem (Example
2 in Chapter 3) by the simplex algorithm. What difficulty
would occur?

5 Use the simplex algorithm to solve the following LP:

max z � x1 � x2 � 100

s.t. 4x1 � x2 � 100

s.t. 4x1 � x2 � 80

s.t. 4x1 � x1 � 40

x1, x2 � 0

6 Use the simplex algorithm to solve the following LP:

max z � x1 � x2 � x3

s.t. x1 � 2x2 � 2x3 � 20

s.t. 2x1 � x2 � 2x3 � 20

s.t. 2x1 � 2x2 � x3 � 20

x1, x2, x3 � 0

Group B

7 It has been suggested that at each iteration of the simplex algorithm, the entering variable should be (in a maximization
problem) the variable that would bring about the greatest increase in the objective function. Although this usually results in
fewer pivots than the rule of entering the most negative row 0 entry, the greatest increase rule is hardly ever used. Why not?



4.6 Using the Simplex Algorithm to Solve Minimization Problems

There are two different ways that the simplex algorithm can be used to solve minimiza-

tion problems. We illustrate these methods by solving the following LP:

min z � 2x1 � 3x2

s.t. x1 � x2 � 4
(LP 2)

s.t. x1 � x2 � 6

x1, x2 � 0

Method 1

The optimal solution to LP 2 is the point (x1, x2) in the feasible region for LP 2 that makes

z � 2x1 � 3x2 the smallest. Equivalently, we may say that the optimal solution to LP 2 is

the point in the feasible region that makes �z � �2x1 � 3x2 the largest. This means that

we can find the optimal solution to LP 2 by solving LP 2�:

max � z � �2x1 � 3x2

s.t. x1 � x2 � 4
(LP 2�)

s.t. x1 � x2 � 6

x1, x2 � 0

In solving LP 2�, we will use �z as the basic variable for row 0. After adding slack vari-

ables s1 and s2 to the two constraints, we obtain the initial tableau in Table 9. Because x2 is

the only variable with a negative coefficient in row 0, we enter x2 into the basis. The ratio

test indicates that x2 should enter the basis in the first constraint, row 1. The resulting tableau

is shown in Table 10. Because each variable in row 0 has a nonnegative coefficient, this is

an optimal tableau. Thus, the optimal solution to LP 2� is �z � 12, x2 � 4, s2 � 10, x1 �

s1 � 0. Then the optimal solution to LP 2 is z � �12, x2 � 4, s2 � 10, x1 � s1 � 0. Sub-

stituting the values of x1 and x2 into LP 2’s objective function, we obtain
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TA B L E  9

Initial Tableau for LP 2—Method 1

Basic
�z x1 x2 s1 s2 rhs Variable Ratio

1 2 �3 0 0 0 �z2 � 0

0 1 1 1 0 4 �s1 � 4 �
4

1
� � 4*

0 1 �1 0 1 6 �s2 � 6 None

TA B L E  10

Optimal Tableau for LP 2—Method 1

Basic
�z x1 x2 s1 s2 rhs Variable

1 5 0 3 0 12 �z2 � 12

0 1 1 1 0 14 �x2 � 41

0 2 0 1 1 10 �s2 � 10
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z � 2x1 � 3x2 � 2(0) � 3(4) � �12

In summary, multiply the objective function for the min problem by �1 and solve the

problem as a maximization problem with objective function �z. The optimal solution to the

max problem will give you the optimal solution to the min problem. Remember that (opti-

mal z-value for min problem) � �(optimal objective function value z for max problem).

Method 2

A simple modification of the simplex algorithm can be used to solve min problems di-

rectly. Modify Step 3 of the simplex as follows: If all nonbasic variables in row 0 have

nonpositive coefficients, then the current bfs is optimal. If any nonbasic variable in row

0 has a positive coefficient, choose the variable with the “most positive” coefficient in row

0 to enter the basis.

This modification of the

simplex algorithm works be-

cause increasing a nonbasic

variable with a positive coef-

ficient in row 0 will decrease

z. If we use this method to

solve LP 2, then our initial

tableau will be as shown in

Table 11. Because x2 has the

most positive coefficient in

row 0, we enter x2 into the ba-

sis. The ratio test says that x2

should enter the basis in row

1, resulting in Table 12. Be-

cause each variable in row 0

has a nonpositive coefficient,

this is an optimal tableau.†

Thus, the optimal solution to

LP 2 is (as we have already

seen) z � �12, x2 � 4, s2 �

10, x1 � s1 � 0.

TA B L E  11

Initial Tableau for LP 2—Method 2

Basic
z x1 x2 s1 s2 rhs Variable Ratio

1 �2 �3 0 0 0 z2 � 0

0 �1 1 1 0 4 s1 � 4 �
4

1
� � 4*

0 �1 �1 0 1 6 s2 � 6 None

TA B L E  12

Optimal Tableau for LP 2—Method 2

Basic
z x1 x2 s1 s2 rhs Variable

1 �5 0 �3 0 �12 z2 � �12

0 �1 1 �1 0 �14 x2 � 4

0 �2 0 �1 1 �10 s2 � 10

†To see that this tableau is optimal, note that from row 0, z � �12 � 5x1 � 3s1. Because x1 � 0 and s1 � 0,

this shows that z � �12. Thus, the current bfs (which has z � �12) must be optimal.



P R O B L E M S
Group A

1 Use the simplex algorithm to find the optimal solution to the following LP:

min z � 4x1 � x2

s.t. 2x1 � x2 � 8

s.t. 2x1 � x2 � 5

x1 � x2 � 4

x1, x2 � 0

2 Use the simplex algorithm to find the optimal solution to the following LP:

min z � �x1 � x2

s.t. x1 � x2 � 1

x1 � x2 � 2
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TA B L E  13

Initial Tableau for Dakota Furniture ($35/Table)

Basic
z x1 x2 x3 s1 s2 s3 s4 rhs Variable Ratio

1 �60 �35.5 �20.5 0 0 0 0 20 z2 � 0

0 �68 �36.5 �21.5 1 0 0 0 48 s1 � 48 �
4

8

8
� � 6*

0 �64 �32.5 �21.5 0 1 0 0 20 s2 � 20 �
2

4

0
� � 5*

0 �62 �31.5 �20.5 0 0 1 0 28 s3 � 8 �
8

2
� � 4*

0 �60 �31.5 �20.5 0 0 0 1 25 s4 � 5 None

TA B L E  14

First Tableau for Dakota Furniture ($35/Table)

Basic
z x1 x2 x3 s1 s2 s3 s4 rhs Variable Ratio

1 0 10.75 �5.25 0 0 30.5 0 240 z2 � 240

0 0 0.75 �1.25 1 0 �4.5 0 16 s1 � 16 None

0 0 �1.75 0.55 0 1 �2.5 0 4 s2 � 4 �
0

4

.5
� � 8*

0 1 0.75 0.25 0 0 �0.5 0 24 x1 � 4 �
0.

4

25
� � 16

0 0 1.75 0.25 0 0 �0.5 1 25 s4 � 5 None

TA B L E  15

Second (and Optimal) Tableau for Dakota Furniture ($35/Table)

Basic
z x1 x2 x3 s1 s2 s3 s4 rhs Variable

1 0 0.75 0 0 10.5 10.5 0 280 z2 � 280

0 0 �2.75 0 1 2.5 �8.5 0 24 s1 � 24

0 0 �2.75 1 0 2.5 �4.5 0 8 x3 � 8

0 1 1.25 0 0 �0.5 �1.5 0 22 x1 � 2*

0 0 1.75 0 0 0.5 �0.5 1 25 s4 � 5



x1, x2 � 0

3 Use the simplex algorithm to find the optimal solution to the following LP:

min z � 2x1 � 5x2

s.t. 3x1 � 8x2 � 12

2x1 � 3x2 � 6

x1, x2 � 0

4 Use the simplex algorithm to find the optimal solution to the following LP:

min z � �3x1 � 8x2

s.t. 4x1 � 2x2 � 12

2x1 � 3x2 � 6

x1, x2 � 0

4.7 Alternative Optimal Solutions

Recall from Example 3 of Section 3.3 that for some LPs, more than one extreme point is

optimal. If an LP has more than one optimal solution, then we say that it has multiple or

alternative optimal solutions. We show now how the simplex algorithm can be used to

determine whether an LP has alternative optimal solutions.

Reconsider the Dakota Furniture example of Section 4.3, with the modification that ta-

bles sell for $35 instead of $30 (see Table 13). Because x1 has the most negative coeffi-

cient in row 0, we enter x1 into the basis. The ratio test indicates that x1 should be entered

in row 3. Now only x3 has a negative coefficient in row 0, so we enter x3 into the basis

(see Table 14). The ratio test indicates that x3 should enter the basis in row 2. The result-

ing, optimal, tableau is given in Table 15. As in Section 4.3, this tableau indicates that the

optimal solution to the Dakota Furniture problem is s1 � 24, x3 � 8, x1 � 2, s4 � 5, and

x2 � s2 � s3 � 0.

Recall that all basic variables must have a zero coefficient in row 0 (or else they wouldn’t

be basic variables). However, in our optimal tableau, there is a nonbasic variable, x2, which

also has a zero coefficient in row 0. Let us see what happens if we enter x2 into the basis. The

ratio test indicates that x2 should enter the basis in row 3 (check this). The resulting tableau is

given in Table 16. The important thing to notice is that because x2 has a zero coefficient in the

optimal tableau’s row 0, the pivot that enters x2 into the basis does not change row 0. This

means that all variables in our new row 0 will still have nonnegative coefficients. Thus, our

new tableau is also optimal. Because the pivot has not changed the value of z, an alternative

optimal solution for the Dakota example is z � 280, s1 � 27.2, x3 � 11.2, x2 � 1.6, s4 � 3.4,

and x1 � s3 � s2 � 0.

In summary, if tables sell for $35, Dakota can obtain $280 in sales revenue by manu-
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TA B L E  16

Another Optimal Tableau for Dakota Furniture ($35/Table)

Basic
z x1 x2 x3 s1 s2 s3 s4 rhs Variable

1 �0.6 0 0 0 10.5 10.5 0 280 z � 280

0 �1.6 0 0 1 1.2 �5.6 0 227.2 s1 � 27.2

0 �1.6 0 1 0 1.2 �1.6 0 211.2 x3 � 11.2

0 �0.8 1 0 0 �0.4 �1.2 0 221.6 x2 � 1.6

0 �0.8 0 0 0 0.4 �1.2 1 223.4 s4 � 3.4



facturing 2 desks and 8 chairs or by manufacturing 1.6 tables and 11.2 chairs. Thus,

Dakota has multiple (or alternative) optimal extreme points.

As stated in Chapter 3, it can be shown that any point on the line segment joining two

optimal extreme points will also be optimal. To illustrate this idea, let’s write our two op-
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timal extreme points:

Opti-

mal extreme point 1 � � �
� � �

Optimal extreme point 2 �

� � � � �
Thus, for 0 � c � 1,

� � � c � � � (1 � c)

� � �

� �
will be optimal. This shows

that although the Dakota Fur-

niture example has only two

2c

1.6 � 1.6c

11.2 � 3.2c

0

1.6

11.2

2

0

8

x1

x2

x3

0

1.6

11.2

x1

x2

x3

2

0

8

x1

x2

x3

optimal extreme points, there

are an infinite number of op-

timal solutions to the Dakota

problem. For example, by

choosing c � 0.5, we obtain

the optimal solution x1 � 1,

x2 � 0.8, x3 � 9.6.

If there is no nonbasic vari-

able with a zero coefficient in

row 0 of the optimal tableau,

then the LP has a unique op-

timal solution (see Problem

3). Even if there is a nonbasic

variable with a zero coefficient in row 0 of the optimal tableau, it is possible that the LP

may not have alternative optimal solutions (see Review Problem 25).

P R O B L E M S
Group A

1 Show that if a toy soldier sold for $28, then the Giapetto problem would have alternative optimal solutions.

2 Show that the following LP has alternative optimal solutions; find three of them.

max z � �3x1 � 6x2

s.t. 5x1 � 7x2 � 35

s.t. �x1 � 2x2 � 2

x1, x2 � 0

TA B L E  17

z x1 x2 s1 s2 rhs

1 0 0 2 3 10

0 1 0 3 2 14

0 0 1 1 1 13

TA B L E  18

z x1 x2 x3 x4 rhs

1 0 0 �0 2 2

0 1 0 �1 1 2

0 0 1 �2 3 3

Breadco Bakeries: An Unbounded LPE X A M P L E  3



3 Find alternative optimal solutions to the following LP:

max z � x1 � x2

s.t. x1 � x2 � 2x3 � 1

x1 � x2 � 2x3 � 1

All xi � 0

4 Find all optimal solutions to the following LP:

max z � 3x1 � 3x2

s.t. x1 � x2 � 1

All xi � 0

5 How many optimal basic feasible solutions does the following LP have?

max z � 2x1 � 2x2

s.t. x1 � x2 � 6

s.t. 2x1 � x2 � 13

All xi � 0

Group B

6 Suppose you have found this optimal tableau (Table 17) for a maximization problem. Use the fact that each nonbasic
variable has a strictly positive coefficient in row 0 to show that x1 � 4, x2 � 3, s1 � s2 � 0 is the unique optimal solution to
this LP. (Hint: Can any extreme point having 
s1  0 or s2  0 have z � 10?)

7 Explain why the set of optimal solutions to an LP is a convex set.

8 Consider an LP with the optimal tableau shown in 
Table 18.

a Does this LP have more than one bfs that is optimal?

b How many optimal solutions does this LP have? (Hint: If the value of x3 is increased, then how does this change the
values of the basic variables and the z-value?)

9 Characterize all optimal solutions to the following LP:

max z � �8x5

s.t. x1 � x2 � x3 � 3x4 � 2x5 � 2

s.t. x1 � x2 � 2x3 � 4x4 � 5x5 � 5

All xi � 0

4.8 Unbounded LPs

Recall from Section 3.3 that for some LPs, there exist points in the feasible region for

which z assumes arbitrarily large (in max problems) or arbitrarily small (in min problems)

values. When this situation occurs, we say that LP is unbounded. In this section, we show
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TA B L E  19

Initial Tableau for Breadco

Basic
z x1 x2 x3 x4 s1 s2 rhs Variable Ratio

1 �36 �30 �3 �4 0 0 10 z2 � 0

0 �61 �61 �1 �0 1 0 15 s1 � 5 �
5

1
� � 5

0 �66 �65 �0 �1 0 1 10 s2 � 10 �
1

6

0
� � �

5

3
�*



how the simplex algorithm can be used to determine whether an LP is unbounded.

Breadco Bakeries bakes two kinds of bread: French and sourdough. Each loaf of French

bread can be sold for 36¢, and each loaf of sourdough bread for 30¢. A loaf of French

bread requires 1 yeast packet and 6 oz of flour; sourdough requires 1 yeast packet and 

5 oz of flour. At present, Breadco has 5 yeast packets and 10 oz of flour. Additional yeast

packets can be purchased at 3¢ each, and additional flour at 4¢/oz. Formulate and solve

an LP that can be used to maximize Breadco’s profits (� revenues � costs).

Solution Define

x1 � number of loaves of French bread baked

x2 � number of loaves of sourdough bread baked

x3 � number of yeast packets purchased

x4 � number of ounces of flour purchased

Then Breadco’s objective is to maximize z � revenues � costs, where

Revenues � 36x1 � 30x2 and Costs � 3x3 � 4x4

Thus, Breadco’s objective function is

max z � 36x1 � 30x2 � 3x3 � 4x4

Breadco faces the following two constraints:

Constraint 1 Number of yeast packages used to bake bread cannot exceed available yeast

plus purchased yeast.

Constraint 2 Ounces of flour used to bake breads cannot exceed available flour plus pur-

chased flour.

Because
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TA B L E  20

First Tableau for Breadco

Basic
z x1 x2 x3 x4 s1 s2 rhs Variable Ratio

1 0 0 3 �2 0 6 60 z2 � 60

0 0 �
1

6
� �1 �

1

6
� 1 ��

1

6
� �

1

3

0
� s1 � �

1

3

0
� (�

1

3

0
�)/(�

1

6
�) � 20*

0 1 �
5

6
� 0 ��

1

6
� 0 �

1

6
� �

5

3
� s2 � �

5

3
� None

TA B L E  21

Second Tableau for Breadco

Basic
z x1 x2 x3 x4 s1 s2 rhs Variable Ratio

1 0 2 �9 0 12 4 100 z2 � 100

0 0 1 �6 1 6 �1 20 x4 � 20 None

0 1 1 �1 0 1 0 5 x1 � 5 None



Available yeast � purchased yeast � 5 � x3

Available flour � purchased flour � 10 � x4

Constraint 1 may be written as

x1 � x2 � 5 � x3 or x1 � x2 � x3 � 5

and Constraint 2 may be written as

6x1 � 5x2 � 10 � x4 or 6x1 � 5x2 � x4 � 10

Adding the sign restrictions xi � 0 (i � 1, 2, 3, 4) yields the following LP:

max z � 36x1 � 30x2 � 3x3 � 4x4

s.t. x1 � x2 � x3 � x4 � 5 (Yeast constraint)

s.t. 6x1 � 5x2 � x3 � x4 � 10 (Flour constraint)

x1, x2, x3, x4 � 0

Adding slack variables s1 and s2 to the two constraints, we obtain the tableau in Table 19.

Because �36 � �30, we enter x1 into the basis. The ratio test indicates that x1 should

enter the basis in row 2. Entering x1 into the basis in row 2 yields the tableau in Table 20.

Because x4 has the only negative coefficient in row 0, we enter x4 into the basis. The ra-

tio test indicates that x4 should enter the basis in row 1, with the resulting tableau in Table

21. Because x3 has the most negative coefficient in row 0, we would like to enter x3 into

the basis. The ratio test, however, fails to indicate the row in which x3 should enter the

basis. What is happening? Going back to the basic ideas that led us to the ratio test, we

see that as x3 is increased (holding the other nonbasic variables at zero), the current ba-

sic variables, x4 and x1, change as follows:

x4 � 20 � 6x3 (13)

x1 � 5 � x3 (14)

As x3 is increased, both x4 and x1 increase. This means that no matter how large we make

x3, the inequalities x4 � 0 and x1 � 0 will still be true. Because each unit by which we increase

x3 will increase z by 9, we can find points in the feasible region for which z assumes an arbi-

trarily large value. For example, can we find a feasible point with z � 1,000? To do this, we

need to increase z by 1,000 � 100 � 900. Each unit by which x3 is increased will increase z

by 9, so increasing x3 by �
90

9

0
� � 100 should give us z � 1,000. If we set x3 � 100 (and hold

the other nonbasic variables at zero), then (13) and (14) show that x4 and x1 must now equal

x4 � 20 � 6(100) � 620

x1 � 5 � 6(100) � 105

Thus, x1 � 105, x3 � 100, x4 � 620, x2 � 0 is a point in the feasible region with z �

1,000. In a similar fashion, we can find points in the feasible region having arbitrarily

large z-values. This means the Breadco problem is an unbounded LP.

From the Breadco example, we see that an unbounded LP occurs in a max problem if

there is a nonbasic variable with a negative coefficient in row 0 and there is no constraint that

limits how large we can make the nonbasic variable. This situation will occur if a nonbasic

variable (such as x3) has a negative coefficient in row 0 and nonpositive coefficients in each

constraint. To summarize, an unbounded LP for a max problem occurs when a variable with

a negative coefficient in row 0 has a nonpositive coefficient in each constraint.

If an LP is unbounded, one will eventually come to a tableau where one wants to en-

ter a variable (such as x3) into the basis, but the ratio test will fail. This is probably the

easiest way to spot an unbounded LP.
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As we noted in Chapter 3, an unbounded LP is usually caused by an incorrect formu-

lation. In the Breadco example, we obtained an unbounded LP because we allowed

Breadco to pay 3 � 6(4) � 27¢ for the ingredients in a loaf of French bread and then sell

the loaf for 36¢. Thus, each loaf of French bread earns a profit of 9¢. Because unlimited

purchases of yeast and flour are allowed, it is clear that our model allows Breadco to man-

ufacture as much French bread as it desires, thereby earning arbitrarily large profits. This

is the cause of the unbounded LP.

Of course, our formulation of the Breadco example ignored several aspects of reality.
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First, we assumed that de-

mand for Breadco’s products

is unlimited. Second, we ig-

nored the fact that certain re-

sources to make bread (such

as ovens and labor) are in lim-

ited supply. Finally, we made

the unrealistic assumption

that unlimited quantities of

yeast and flour could be pur-

chased.

Unbounded LPs and
Directions of
Unboundedness

Consider an LP with an ob-

jective function c1x1 � c2x2 �

			 � cnxn. Let c � [c1 c2 . .

. cn]. If the LP is a maximiza-

tion problem, then the LP will

be unbounded if and only if it

has a direction of unbounded-

ness d satisfying cd  0. If

the LP is a minimization prob-

lem, then the LP will be un-

bounded if and only if it has a

direction of unboundedness d

satisfying cd � 0. I[n Example 3, the last tableau shows us that if we start at the point

� �
(the variables are listed in the same order they are listed in the tableau), we can find a di-

rection of unboundedness as follows. Every unit by which x3 is increased will maintain

feasibility if we increase x1 by one unit and x4 by six units and leave x2, s1, and s2 un-

changed. Because we can increase x3 without limit, this indicates that

5

0

0

20

0

0

TA B L E  22

z x1 x2 x3 x4 rhs

1 �3 �2 0 0 0

0 1 �1 1 0 3

0 2 0 0 1 4

†See Chapter 9 for a discussion of integer programming and Chapter 11 for a discussion of quadratic 

programming.



d � � �
is a direction of unboundedness. Because

cd � [36 30 �3 �4 0 0] � � � 9

we know that LP is unbounded. This follows because each time we move in the direction

d an amount that increases x3 by one unit, we increase z by 9, and we can move as far as

we want in the direction d.

P R O B L E M S
Group A

1 Show that the following LP is unbounded:

max z � 2x2

s.t. �x1 � x2 � 4

s.t. �x1 � x2 � 1

x1, x2 � 0

Find a point in the feasible region with z � 10,000.

2 State a rule that can be used to determine if a min problem has an unbounded optimal solution
(that is, z can be made arbitrarily small). Use the rule to show that

1

0

1

6

0

0

1

0

1

6

0

0
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F I G U R E  6

LINDO Output for
Dakota Furniture

Dakota



min z � �2x1 � 3x2

s.t. x1 � x2 � 1

s.t. x1 � 2x2 � 2

x1, x2 � 0

is an unbounded LP.

3 Suppose that in solving an LP, we obtain the tableau in Table 22. Although x1 can enter the basis, this LP is unbounded.
Why?

4 Use the simplex method to solve Problem 10 of Sec-
tion 3.3.

5 Show that the following LP is unbounded:

max z � x1 � 2x2

s.t. �x1 � x2 � 2

s.t. �2x1 � x2 � 1

x1, x2 � 0

6 Show that the following LP is unbounded:

min z � �x1 � 3x2

s.t. �x1 � 2x2 � 4

s.t. �x1 � x2 � 3

x1, x2 � 0

4.9 The LINDO Computer Package

LINDO (Linear Interactive and Discrete Optimizer) was developed by Linus Schrage

(1986). It is a user-friendly computer package that can be used to solve linear, integer,

and quadratic programming problems.† Appendix A to this chapter gives a brief explana-

tion of how LINDO can be used to solve LPs. In this section, we explain how the infor-

mation on a LINDO printout is related to our discussion of the simplex algorithm.

We begin by discussing the LINDO ouput for the Dakota Furniture example (see Fig-

ure 6). LINDO allows the user to name the variables, so we define

DESKS � number of desks produced
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TABLES � number of tables produced

CHAIRS � number of chairs produced

Then the Dakota formulation in the first block of Figure 6 is

max 60 DESKS � 30 TABLES � 20 CHAIRS � 48 (Row 1)

s.t. 8 DESKS � 6 TABLES � CHAIRS � 48 (Row 2) (Lumber constraint)

s.t. 4 DESKS � 2 TABLES � 1.5 CHAIRS � 20 (Row 3) (Finishing constraint)

s.t. 2 DESKS � 1.5 TABLES � 0.5 CHAIRS � 8 (Row 4) (Carpentry constraint)

TABLES � 0.5 CHAIRS � 5 (Row 5)

DESKS, TABLES, CHAIRS � 0

(LINDO assumes that all variables are nonnegative, so the nonnegativity constraints need

not be input to the computer.) To be consistent with LINDO, we have labeled the objec-

tive function row 1 and the constraint rows 2–5.

To enter this problem in LINDO, make sure the screen contains a blank window, or

work area, with “Untitled” at the top of the work area. If necessary, a new window can

be opened by selecting New from the File menu or by clicking on the New File button.

The first statement in a LINDO model is always the objective. Enter the objective much

like you would write it in equation form:

MAX 60 DESKS � 30 TABLES � 20 CHAIRS

This tells LINDO to maximize the objective function. Proceed by entering the constraints

as follows:

SUBJECT TO (OR s.t.)

8 DESKS � 1.6 TABLES � CHAIRS � 48

4 DESKS � 1.2 TABLES � 1.5 CHAIRS � 20

2 DESKS � 1.5 TABLES � .5 CHAIRS � 8

TABLES � 5

Your screen will now look like the one in Figure 6. Note that LINDO automatically as-
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sumes that all decision variables are nonnegative.

To save the file for later use, select Save from the File menu and when asked for a file

name replace the * symbol with a name of your choice (we chose Dakota). Do not type over

the characters .LTX. You may now use the File Open command to retrieve the problem.

To solve the model, proceed as follows:

1 From the Solve menu, select the Solve command or click the button with a bull’s-eye.

2 When asked if you want to do a range (sensitivity analysis) choose No. We will ex-

plain how to interpret a range or sensitivity analysis in Chapter 6.

3 When the solution is completed, a display showing the status of the Solve command

will be present. After reviewing the displayed information, select Close.

4 You should now see your input data overlaying a display labeled “Reports Window.”

Click anywhere in the Reports window, and your input data will be removed from the

foreground. Move to the top of the screen using the single arrow at the right of the screen,

and your screen should now look like that in Figure 7.

Looking now at the LINDO output in Figure 7, we see

LP OPTIMUM FOUND AT STEP 2

F I G U R E  9

THE TABLEAU
     ROW   (BASIS)      DESKS      TABLES      CHAIRS      SLK   2      SLK   3
       1  ART            .000       5.000        .000         .000       10.000
       2  SLK    2       .000      -2.000        .000        1.000        2.000
       3    CHAIRS       .000      -2.000       1.000         .000        2.000
       4     DESKS      1.000       1.250        .000         .000        -.500
       5  SLK    5       .000       1.000        .000         .000         .000

     ROW   SLK    4      SLK    5
       1    10.000          .000      280.000
       2    -8.000          .000       24.000
       3    -4.000          .000        8.000
       4     1.500          .000        2.000
       5      .000         1.000        5.000

F I G U R E  10

Example of TABLEAU
Command



indicating that LINDO found the optimal solution after two iterations (or pivots) of the

simplex algorithm.

OBJECTIVE FUNCTION VALUE 280.000000

indicates that the optimal z-value is 280.

VALUE

gives the value of the variable in the optimal LP solution. Thus, the optimal solution calls

for Dakota to produce 2 desks, 0 tables, and 8 chairs.

SLACK OR SURPLUS

gives the value of the slack or excess (“surplus variable” is another name for excess vari-

able) in the optimal solution. Thus,

s1 � slack for row 2 on LINDO output � 24

s2 � slack for row 3 on LINDO output � 0

s3 � slack for row 4 on LINDO output � 0

s4 � slack for row 5 on LINDO output � 5

REDUCED COST

gives the coefficient of the variable in row 0 of the optimal tableau (in a max problem).

As discussed in Section 4.3, the reduced cost for each basic variable must be 0. For a non-

basic variable xj, the reduced cost is the amount by which the optimal z-value is decreased

if xj is increased by 1 unit (and all other nonbasic variables remain equal to 0). In the

LINDO output for the Dakota problem, the reduced cost is 0 for each of the basic vari-

ables (DESKS and CHAIRS). Also, the reduced cost for TABLES is 5. This means that

if Dakota were forced to produce a table, revenue would decrease by $5.

For a minimization problem, the LP Optimum, Objective Function Value, and Slack

and Surplus columns are interpreted as described. But the reduced cost for a variable is

�(coefficient of variable in optimal row 0). Thus, in a min problem, the reduced cost for

a basic variable will again be zero, but the reduced cost for a nonbasic variable xj will be

the amount by which the optimal z-value increases if xj is increased by 1 unit (and all

other nonbasic variables remain equal to 0).

To illustrate the interpretation of the LINDO output for a minimization problem, let’s

look at the LINDO output for the diet problem of Section 3.4 (see Figure 9). If we let

BR � brownies eaten daily

IC � scoops of chocolate ice cream eaten daily

COLA � number of bottles of soda drunk daily

PC � pieces of pineapple cheesecake eaten daily

then the diet problem may be formulated as

min 50 BR � 20 IC � 30 COLA � 80 PC

s.t. 400 BR � 200 IC � 150 COLA � 500 PC � 500 (Calorie constraint)

s.t. 3 BR � 2 IC � 6 (Chocolate constraint)

s.t. 2 BR � 2 IC � 4 COLA � 4 PC � 10 (Sugar constraint)

s.t. 2 BR � 4 IC � COLA � 5 PC � 8 (Fat constraint)

BR, IC, COLA, PC � 0

The Value column shows that the optimal solution is to eat three scoops of chocolate ice

cream daily and drink one bottle of soda daily. The Objective Function Value on the

LINDO output indicates that the cost of this diet is 90¢. The Slack or Surplus column
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shows that the first constraint (calories) has an excess of 250 calories and that the fourth

constraint (fat) has an excess of 5 oz. Thus, the calorie and fat constraints are nonbinding.

The chocolate and sugar constraints have no excess and are therefore binding constraints.

From the Reduced Cost column, we see that if we were forced to eat a brownie (while

keeping PC � 0), the minimum cost of the daily diet would increase by 27.5¢, and if we

were forced to eat a piece of pineapple cheesecake (while holding BR � 0), the minimum

cost of the daily diet would increase by 50¢.

The Tableau Command

If, after obtaining the optimal solution to the Dakota furniture problem, you close the Re-

ports window and select the Tableau command (under the Reports menu), LINDO will

display the optimal tableau (see Figure 10). Remembering that the first constraint is row

2 in LINDO, we see that BV � {s1, CHAIRS, DESKS, s4}. Thus, for example, SLK5 on

the LINDO output corresponds to s4. The artificial variable (ART) listed as basic in row

1 is z; thus, row 0 of the optimal tableau is z � 5TABLES � 10s2 � 10s3 � 280.

When you have installed LINDO on your hard drive, the LINDO formulation for the

Dakota and Diet problems will be in the directory C:\WINSTON\LINDO\SAMPLES.

See Appendix A of Chapter 4 for further discussion of LINDO.

4.10 Matrix Generators, LINGO, and Scaling of LPs

Many LPs solved in practice contain thousands of constraints and decision variables. Few

users of linear programming would want to input the constraints and objective function

each time such an LP is to be solved. For this reason, most actual applications of LP use

a matrix generator to simplify the inputting of the LP. A matrix generator allows the user

to input the relevant parameters that determine the LP’s objective function and constraints;

it then generates the LP formulation from that information. For example, let’s consider

the Sailco example from Section 3.10. If we were dealing with a planning horizon of 200

periods, then this problem would involve 400 constraints and 600 decision variables—

clearly too many for convenient input. A matrix generator for this problem would require

the user to input only the following information for each period: cost of producing a sail-

boat with regular-time labor, cost with overtime labor, demand, and holding costs. From

this information, the matrix generator would generate the LP’s objective function and con-

straints, call up an LP software package (such as LINDO) and solve the problem. Finally,

an output analyzer would be written to display the output in a user-friendly format.

The LINGO Package

The package LINGO is an example of a sophisticated matrix generator (and much more!).

LINGO is an optimization modeling language that enables the user to create many (per-

haps thousands) of constraints or objective function terms by typing one line. To illustrate

how LINGO works, we will solve the Sailco problem (Example 12 of Chapter 3).

Solving the Sailco Problem

The LINGO model follows (it is the file Sail.lng on your disk).
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MODEL:
1] SETS:
2] QUARTERS/Q1,Q2,Q3,Q4/:TIME,DEM,RP,OP,INV;
3] ENDSETS
4] MIN=@SUM(QUARTERS:400*RP+450*OP+20*INV);
5] @FOR(QUARTERS(I):RP(I)<40);
6] @FOR(QUARTERS(I)|TIME(I)#GT#1:
7] INV(I)=INV(I-1)+RP(I)+OP(I)-DEM(I););
8] INV(1)=10+RP(1)+OP(1)-DEM(1);
9] DATA:

10] DEM=40,60,75,25;
11] TIME=1,2,3,4;
12] ENDDATA

END

To begin setting up a model with LINGO, think of the objects or sets that define the

problem. For Sailco, the four quarters (Q1, Q2, Q3, and Q4) help define the problem. For

each quarter we determine the objects that must be known to find an optimal production

schedule—demand (DEM), regular-time production (RP), overtime production (OP), and

end-of-quarter inventory (INV). The first three lines of the Sailco program define these

objects. SETS: begins the definition of the sets needed to model the problem and END-

SETS ends it. The effect of line 2 is to define four quarters: Q1, Q2, Q3, and Q4. For

each quarter, line 2 creates time (indicating if the quarter is the first, second, third, or

fourth quarter); the demand for sailboats; the regular-time and overtime production lev-

els; and the ending inventory. Now that these sets and objects have been defined, we can

use them to build a model (containing an objective function and constraints). LINGO will

solve for the RP, OP, and INV once we input (in the DATA section of the program) the

demands and numbers of the quarters.

Line 4 creates the objective function; MIN � indicates that we are minimizing.

@SUM(QUARTERS: followed by 400*RP � 450*OP � 20*INV means sum 400*RP �

450*OP � 20*INV over all quarters. Thus for each quarter we compute 400*(regular-

time production) � 450*(overtime production) � 20*(ending inventory). Notice that line

4 creates the proper objective function whether there are 4, 40, 400, or 4,000 quarters!

Line 5 says that for each quarter, RP cannot exceed 40. Again, if there were 400 quar-

ters in the planning horizon, this statement would generate 400 constraints.

Together, lines 6 and 7 create constraints for all quarters (except the first) that ensure

that

Ending Inventory for Quarter i � (Ending Inventory for Quarter i � 1)

� (Quarter i Production) � (Quarter i Demand)

Notice that unlike LINDO, variables are allowed on the right side of a constraint (and

numbers are allowed on the left side).

Line 8 creates the constraint ensuring that

(Ending Quarter 1 Inventory) � (Beginning Quarter 1 Inventory)

� (Quarter 1 Production) � (Quarter 1 Demand)

Lines 9–12 input the needed data (the number of the quarter and the demand for each

quarter). The DATA section must begin with a DATA: statement and end with an END-

DATA statement. As with LINDO, a LINGO program ends with an END statement.

Notice that once we have created the LINGO model to solve the Sailco example, we

can easily edit the model to solve any n-period production-scheduling model. If we were

solving a 12-quarter problem, we would simply edit (see Remark 3 later) line 2 to QUAR-

TERS/1..12/:TIME,DEM,RP,OP,INV;. Then enter the 12 quarterly demands in line 10 and

change Line 11 to TIME�1,2,3,4,5,6,7,8,9,10,11,12;. To find the optimal solution to the

problem either select the Solve command from the LINGO menu or click the button with

Sail.lng

Post.lng



a bull’s-eye.

In this example, we will also look at how to use some of the editing capabilities of

LINGO. Type the first four lines of this model just as you normally would. This will de-

fine the sets section and the objective function, and should appear as follows:

SETS:
QUARTERS/Q1,Q2,Q3,Q4/:TIME,DEM,RP,OP,INV;

ENDSETS
MIN = @SUM(QUARTERS:400*RP+450*OP+20*INV);
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MODEL:
SETS:
QUARTERS/Q1,Q2,Q3,Q4/:TIME,DEM,RP,OP,INV;
ENDSETS
MIN=@SUM(QUARTERS:400*RP+450*OP+20*INV);
@FOR(QUARTERS(I):RP(I)<40);
@FOR(QUARTERS(I)|TIME(I)#GT#1:
INV(I)=INV(I-1)+RP(I)+OP(I)-DEM(I););
INV(1)=10+RP(1)+OP(1)-DEM(1);
DATA:
DEM=40,60,75,25;
TIME=1,2,3,4;
ENDDATA
 END

MIN     400 RP( Q1) + 450 OP( Q1) + 20 INV( Q1) + 400 RP( Q2)
      + 450 OP( Q2) + 20 INV( Q2) + 400 RP( Q3) + 450 OP( Q3)
      + 20 INV( Q3) + 400 RP( Q4) + 450 OP( Q4) + 20 INV( Q4)
 SUBJECT TO
 2]  RP( Q1) <=   40
 3]  RP( Q2) <=   40
 4]  RP( Q3) <=   40
 5]  RP( Q4) <=   40
 6]- INV( Q1) - RP( Q2) - OP( Q2) + INV( Q2) =  - 60
 7]- INV( Q2) - RP( Q3) - OP( Q3) + INV( Q3) =  - 75
 8]- INV( Q3) - RP( Q4) - OP( Q4) + INV( Q4) =  - 25
 9]- RP( Q1) - OP( Q1) + INV( Q1) =  - 30
 END

Global optimal solution found at step:             7
 Objective value:                            78450.00

                       Variable           Value        Reduced Cost
                      TIME( Q1)        1.000000           0.0000000
                      TIME( Q2)        2.000000           0.0000000
                      TIME( Q3)        3.000000           0.0000000
                      TIME( Q4)        4.000000           0.0000000
                       DEM( Q1)        40.00000           0.0000000
                       DEM( Q2)        60.00000           0.0000000
                       DEM( Q3)        75.00000           0.0000000
                       DEM( Q4)        25.00000           0.0000000
                        RP( Q1)        40.00000           0.0000000
                        RP( Q2)        40.00000           0.0000000
                        RP( Q3)        40.00000           0.0000000
                        RP( Q4)        25.00000           0.0000000
                        OP( Q1)       0.0000000            20.00000
                        OP( Q2)        10.00000           0.0000000
                        OP( Q3)        35.00000           0.0000000
                        OP( Q4)       0.0000000            50.00000
                       INV( Q1)        10.00000           0.0000000
                       INV( Q2)       0.0000000            20.00000
                       INV( Q3)       0.0000000            70.00000
                       INV( Q4)       0.0000000            420.0000

                            Row    Slack or Surplus      Dual Price
                              1        78450.00            1.000000
                              2       0.0000000            30.00000
                              3       0.0000000            50.00000
                              4       0.0000000            50.00000
                              5        15.00000           0.0000000
                              6       0.0000000            450.0000
                              7       0.0000000            450.0000
                              8       0.0000000            400.0000
                              9       0.0000000            430.0000F I G U R E  11



The next line required is the @FOR statement that restricts regular-time production (RP)

to values less than 40. Instead of typing in this entire statement, use LINGO’s Paste Func-

tion command as follows:

1 From the Edit menu, select Paste Function. Notice that you do not have to click on

this, but only highlight it, and a submenu appears.

2 From the submenu, select Set, and another submenu appears listing various @ functions.

3 Select the @FOR function, and a general form of the @FOR statement will appear in

your input window.

4 Replace the general terms of the function with your specific parameters. This state-

ment should then appear as follows:

@FOR(QUARTERS(I):RP(I)<40);
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Because another @FOR state-

ment is needed to further de-

fine constraints on all quar-

ters, you could type this in or

use the Paste Function com-

mand again. Using additional

Edit commands, however, will

allow you to copy and paste a

portion of the previous @FOR

statement instead of retyping

it. Do this as follows:

1 Place your cursor at the

beginning of the @FOR state-

ment previously typed.

2 Hold down the left mouse

button and drag the mouse to

highlight the portion of the

statement that can be reused,

as shown below:

@FOR(QUARTERS(I):RP(I)<40
);

3 From the Edit menu, select

Copy (or use the shortcut

Ctrl�C) to copy the high-

lighted text.

4 Place the cursor at the be-

ginning of the next blank line

and press Ctrl�V to paste the

copied text.

You can now type in the re-

TA B L E  23

Labor
Product Profit ($) Usage (Hrs) Pollution (Lb)

1 6 4 0.000003 lb

2 4 3 0.000002 lb

3 3 2 0.000001 lb

TA B L E  24

Cars Trucks Trains

Steel used (tons) 2 3 5

Rubber used (tons) .3 .7 .2

Labor used (hrs) 10 12 20

Unit profit ($) 800 1,500 2,500

TA B L E  25

Resource Quantity Available

Steel 50 tons

Rubber 10 tons

Labor 150 hours

TA B L E  26

Group Needed Exposures (in Millions)

Children 15

Men 40

Women 50

TA B L E  27

No. Program

Watching (million) Sponge Bob Friends Dawson’s Creek

Children 3 1 0

Men 1 15 4

Women 2 20 9

Unit cost ($) 30,000 360,000 80,000



4.11 Degeneracy and the Convergence of the Simplex Algorithm

Theoretically, the simplex algorithm (as we have described it) can fail to find the optimal

solution to an LP. However, LPs arising from actual applications seldom exhibit this un-

pleasant behavior. For the sake of completeness, however, we now discuss the type of sit-

uation in which the simplex can fail. Our discussion depends crucially on the following

relationship (for a max problem) between the z-values for the current bfs and the new bfs

(that is, the bfs after the next pivot):

z-value for new bfs � z-value of current bfs

� (value of entering variable in new bfs)(coefficient (15)

of entering variable in row 0 of current bfs)

Equation (15) follows, because each unit by which the entering variable is increased will

increase z by � (coefficient of entering variable in row 0 of current bfs). Recall that (co-

efficient of entering variable in row 0) � 0 and (value of entering variable in new bfs) �

0. Combining these facts with (15), we can deduce the following facts:

1 If (value of entering variable in new bfs)  0, then (z-value for new bfs)  (z-value

for current bfs).

2 If (value of entering variable in new bfs) � 0, then (z-value for new bfs) � (z-value

for current bfs).

For the moment, assume that the LP we are solving has the following property: In each

of the LP’s basic feasible solutions, all of the basic variables are positive (positive means

 0). An LP with this property is a nondegenerate LP.

If we are using the simplex to solve a nondegenerate LP, fact 1 in the foregoing list

tells us that each iteration of the simplex will increase z. This implies that when the sim-

plex is used to solve a nondegenerate LP, it is impossible to encounter the same bfs twice.
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mainder of this line, and the

following lines as shown be-

low.

@FOR(QUARTERS(I)|TIME(I)
#GT#1:
INV(I)=INV(I-
1)+RP(I)+OP(I)-DEM(I););
INV(1)=10+RP(1)+OP(1)-

DEM(1);
DATA:
DEM=40,60,75,25;
TIME=1,2,3,4;

ENDDATA
END

While the Copy command

only saved a few keystrokes

in this example, it can save

TA B L E  28

District

1 2 3 4 5 6 7 8 9 10

Whites 400 200 150 300 400 100 200 300 250 150

Blacks 200 150 100 120 480 490 140 160 100 160

Distance (Miles)

1 2 3 4 5 6 7 8 9 10

High School 1 1 2 3 2 3 4 2 3 1 2

High School 2 2 1 3 3 4 2 1 2 2 3

High School 3 3 3 2 1 2 3 2 2 3 1



To see this, suppose that we are at a basic feasible solution (call it bfs 1) that has z � 20.

Fact 1 shows that our next pivot will take us to a bfs (call it bfs 2) and has z  20. Be-

cause no future pivot can decrease z, we can never return to a bfs having z � 20. Thus,

we can never return to bfs 1. Now recall that every LP has only a finite number of basic

feasible solutions. Because we can never repeat a bfs, this argument shows that when we

use the simplex algorithm to solve a nondegenerate LP, we are guaranteed to find the op-

timal solution in a finite number of iterations. For example, suppose we are solving a non-

degenerate LP with 10 variables and 5 constraints. Such an LP has at most

� � � 252

basic feasible solutions. We will never repeat a bfs, so we know that for this problem, the

simplex is guaranteed to find an optimal solution after at most 252 pivots.

However, the simplex may fail for a degenerate LP.

D E F I N I T I O N ■ An LP is degenerate if it has at least one bfs in which a basic variable is equal to

zero. ■

The following LP is degenerate:

max z � 5x1 � 2x2

s.t. x1 � x2 � 6
(16)

s.t. x1 � x2 � 0

x1, x2 � 0

What happens when we use the simplex algorithm to solve (16)? After adding slack

variables s1 and s2 to the two constraints, we obtain the initial tableau in Table 29. In this

bfs, the basic variable s2 � 0. Thus, (16) is a degenerate LP. Any bfs that has at least one

basic variable equal to zero (or, equivalently, at least one constraint with a zero right-hand

side) is a degenerate bfs. Because �5 � �2, we enter x1 into the basis. The winning ra-

tio is 0. This means that after x1 enters the basis, x1 will equal zero in the new bfs. After

doing the pivot, we obtain the tableau in Table 30. Our new bfs has the same z-value as

10

5
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TA B L E  29

A Degenerate LP

Basic
z x1 x2 s1 s2 rhs Variable Ratio

1 �5 �2 0 0 0 z2 � 0

0 �1 1 1 0 6 s1 � 6 6*

0 �1 �1 0 1 0 s2 � 0 0*

TA B L E  30

First Tableau for (16)

Basic
z x1 x2 s1 s2 rhs Variable Ratio

1 0 �7 0 �5 0 z2 � 0

0 0 2 1 �1 6 s1 � 6 �
6

2
� � 3*

0 1 �1 0 �1 0 x1 � 0 None



the old bfs. This is consistent with fact 2. In the new bfs, all variables have exactly the

same values as they had before the pivot! Thus, our new bfs is also degenerate. Continu-

ing with the simplex, we enter x2 in row 1. The resulting tableau is shown in Table 31.

This is an optimal tableau, so the optimal solution to (16) is z � 21, x2 � 3, x1 � 3, 

s1 � s2 = 0.

We can now explain why the simplex may have problems in solving a degenerate LP.

Suppose we are solving a degenerate LP for which the optimal z-value is z � 30. If we

begin with a bfs that has, say, z � 20, we know (look at the LP we just solved) that it is

possible for a pivot to leave the value of z unchanged. This means that it is possible for a

sequence of pivots like the following to occur:

Initial bfs (bfs 1): z � 20

After first pivot (bfs 2): z � 20

After second pivot (bfs 3): z � 20

After third pivot (bfs 4): z � 20

After fourth pivot (bfs 1): z � 20

In this situation, we encounter the same bfs twice. This occurrence is called cycling. If

cycling occurs, then we will loop, or cycle, forever among a set of basic feasible solutions

and never get to the optimal solution (z � 30, in our example). Cycling can indeed occur

(see Problem 3 at the end of this section). Fortunately, the simplex algorithm can be mod-

ified to ensure that cycling will never occur [see Bland (1977) or Dantzig (1963) for de-

tails].† For a practical example of cycling, see Kotiah and Slater (1973).

If an LP has many degenerate basic feasible solutions (or a bfs with many basic vari-

ables equal to zero), then the simplex algorithm is often very inefficient. To see why, look

at the feasible region for (16) in Figure 12, the shaded triangle BCD. The extreme points

of the feasible region are B, C, and D. Following the procedure outlined in Section 4.2,

let’s look at the correspondence between the basic feasible solutions to (16) and the ex-

treme points of its feasible region (see Table 32). Three sets of basic variables correspond

to extreme point C. It can be shown that for an LP with n decision variables to be de-

generate, n � 1 or more of the LP’s constraints (including the sign restrictions xi � 0 as

constraints) must be binding at an extreme point.

In (16), the constraints x1 � x2 � 0, x1 � 0, and x2 � 0 are all binding at point C.

Each extreme point at which three or more constraints are binding will correspond to

more than one set of basic variables. For example, at point C, s1 must be one of the ba-

sic variables, but the other basic variable may be x2, x1, or s2.
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TA B L E  31

Optimal Tableau for (16)

Basic
z x1 x2 s1 s2 rhs Variable

1 0 0 3.5 �1.5 21 z2 � 21

0 0 1 0.5 �0.5 13 x2 � 3

0 1 0 0.5 �0.5 13 x1 � 3

†Bland showed that cycling can be avoided by applying the following rules (assume that slack and excess

variables are numbered xn�1, xn�2, . . .):

1 Choose as the entering variable (in a max problem) the variable with a negative coefficient in row 0 that

has the smallest subscript.

2 If there is a tie in the ratio test, then break the tie by choosing the winner of the ratio test so that the vari-

able leaving the basis has the smallest subscript.



We can now discuss why the simplex algorithm often is an inefficient method for solv-

ing degenerate LPs. Suppose an LP is degenerate. Then there may be many sets (maybe

hundreds) of basic variables that correspond to some nonoptimal extreme point. The sim-

plex algorithm might encounter all these sets of basic variables before it finds that it was

at a nonoptimal extreme point. This problem was illustrated (on a small scale) in solving

(16): The simplex took two pivots before it found that point C was suboptimal. Fortu-

nately, some degenerate LPs have a special structure that enables us to solve them by

methods other than the simplex (see, for example, the discussion of the assignment prob-

lem in Chapter 7).

P R O B L E M S
Group A
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C

B

D

A

x2

x1

6

x1 + x2 = 6

x1 – x2 = 0

5

1 2 3 4 5 6

4

3

2

1
F I G U R E  12

Feasible Region for the
LP (16)

TA B L E  32

Three Sets of Basic Variables Correspond to Corner Point C

Basic Corresponds to
Variables Basic Feasible Solution Extreme Point

x1, x2 x1 � x2 � 3, s1 � s2 � 0 D

x1, s1 x1 � 0, s1 � 6, x2 � s2 � 0 C

x1, s2 x1 � 6, s2 � �6, x2 � s1 � 0 Infeasible

x2, s1 x2 � 0, s1 � 6, x1 � s2 � 0 C

x2, s2 x2 � 6, s2 � 6, s1 � x1 � 0 B

s1, s2 s1 � 6, s2 � 0, x1 � x2 � 0 C

1 Even if an LP’s initial tableau is nondegenerate, later
tableaus may exhibit degeneracy. Degenerate tableaus often
occur in the tableau following a tie in the ratio test. To
illustrate this, solve the following LP:

max z � 5x1 � 3x2

s.t. 4x1 � 2x2 � 12

s.t. 4x1 � x2 � 10

s.t. x1 � x2 � 4

x1, x2 � 0

Also graph the feasible region and show which extreme
points correspond to more than one set of basic variables.

2 Find the optimal solution to the following LP:

min z � �x1 � x2

s.t. �x1 � x2 � 1

s.t. �x1 � x2 � 0

x1, x2 � 0



4.12 The Big M Method

Recall that the simplex algorithm requires a starting bfs. In all the problems we have

solved so far, we found a starting bfs by using the slack variables as our basic variables.

If an LP has any � or equality constraints, however, a starting bfs may not be readily ap-

parent. Example 4 will illustrate that a bfs may be hard to find. When a bfs is not read-

ily apparent, the Big M method (or the two-phase simplex method of Section 4.13) may

be used to solve the problem. In this section, we discuss the Big M method, a version of

the simplex algorithm that first finds a bfs by adding “artificial” variables to the problem.

The objective function of the original LP must, of course, be modified to ensure that the

artificial variables are all equal to 0 at the conclusion of the simplex algorithm. The fol-

lowing example illustrates the Big M method.

Bevco manufactures an orange-flavored soft drink called Oranj by combining orange soda

and orange juice. Each ounce of orange soda contains 0.5 oz of sugar and 1 mg of vita-

min C. Each ounce of orange juice contains 0.25 oz of sugar and 3 mg of vitamin C. It

costs Bevco 2¢ to produce an ounce of orange soda and 3¢ to produce an ounce of or-

ange juice. Bevco’s marketing department has decided that each 10-oz bottle of Oranj

must contain at least 20 mg of vitamin C and at most 4 oz of sugar. Use linear program-

ming to determine how Bevco can meet the marketing department’s requirements at min-

imum cost.

Solution Let

x1 � number of ounces of orange soda in a bottle of Oranj

x2 � number of ounces of orange juice in a bottle of Oranj

Then the appropriate LP is

min z � 2x1 � 3x2

s.t. �
1

2
�x1 � �

1

4
� x2 � 4 (Sugar constraint) (17)

s.t. �
1

2
�x1 � 3x2 � 20 (Vitamin C constraint)

Group B

3 Show that if ties in the ratio test are broken by favoring
row 1 over row 2, then cycling occurs when the following
LP is solved by the simplex:

max z � 2x1 � 3x2 � x3 � 12x4

s.t �2x1 � 9x2 � x3 � 9x4 � 0
� �

x

3
1
� � x2 � �

x

3
3
� � 2x4 � 0

xi � 0 (i � 1, 2, 3, 4)

4 Show that if ties are broken in favor of lower-numbered
rows, then cycling occurs when the simplex method is used
to solve the following LP:

max z � �3x1 � x2 � 6x3

9x1 � x2 � 9x3 � 2x4 � 0

x1 � �
x

3
2
� � 2x3 � �

x

3
4
� � 0

�9x1 � x2 � 9x3 � 2x4 � 1

xi � 0 (i � 1, 2, 3, 4)
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BevcoE X A M P L E  4

5 Show that if Bland’s Rule to prevent cycling is applied
to Problem 4, then cycling does not occur.

6 Consider an LP (maximization problem) in which each
basic feasible solution is nondegenerate. Suppose that xi is
the only variable in our current tableau having a negative
coefficient in row 0. Show that any optimal solution to the
LP must have xi  0.



s.t. �
1

2
�x1 � x2 � 10 (10 oz in bottle of Oranj)

x1, x2 � 0

(The solution will be continued later in this section.)

To put (17) into standard form, we add a slack variable s1 to the sugar constraint and

subtract an excess variable e2 from the vitamin C constraint. After writing the objective

function as z � 2x1 � 3x2 � 0, we obtain the following standard form:

Row 0: z � 2x1 � 3x2 � s1 � e2 � 0

Row 1: z � �
1

2
�x1 � �

1

4
�x2 � s1 � e2 � 4

Row 2: z � x1 � 3x2 � s1 � e2 � 20

(18)

Row 3: z � x1 � x2 � s1 � e2 � 10

All variables nonnegative

In searching for a bfs, we see that s1 � 4 could be used as a basic (and feasible) variable

for row 1. If we multiply row 2 by �1, we see that e2 � �20 could be used as a basic

variable for row 2. Unfortunately, e2 � �20 violates the sign restriction e2 � 0. Finally,

in row 3 there is no readily apparent basic variable. Thus, in order to use the simplex to

solve (17), rows 2 and 3 each need a basic (and feasible) variable. To remedy this prob-

lem, we simply “invent” a basic feasible variable for each constraint that needs one. Be-

cause these variables are created by us and are not real variables, we call them artificial

variables. If an artificial variable is added to row i, we label it ai. In the current problem,

we need to add an artificial variable a2 to row 2 and an artificial variable a3 to row 3. The

resulting set of equations is

z � 2x1 � 3x2 � s1 � e2 � a2 � a2 � 0

z � �
1

2
�x1 � �

1

4
�x2 � s1 � e2 � a2 � a2 � 4

(18)
z � x1 � 3x2 � s1 � e2 � a2 � a2 � 20

z � x1 � x2 � s1 � e2 � a2 � a3 � 10

We now have a bfs: z � 0, s1 � 4, a2 � 20, a3 � 10. Unfortunately, there is no guaran-

tee that the optimal solution to (18) will be the same as the optimal solution to (17). In

solving (18), we might obtain an optimal solution in which one or more artificial variables

are positive. Such a solution may not be feasible in the original problem (17). For exam-

ple, in solving (18), the optimal solution may easily be shown to be z � 0, s1 � 4, a2 �

20, a3 � 10, x1 � x2 � 0. This “solution” contains no vitamin C and puts 0 ounces of soda

in a bottle, so it cannot possibly solve our original problem! If the optimal solution to (18)

is to solve (17), then we must make sure that the optimal solution to (18) sets all artificial

variables equal to zero. In a min problem, we can ensure that all the artificial variables will

be zero by adding a term Mai to the objective function for each artificial variable ai. (In a

max problem, add a term �Mai to the objective function.) Here M represents a “very large”

positive number. Thus, in (18), we would change our objective function to

min z � 2x1 � 3x2 � Ma2 � Ma3

Then row 0 will change to

z � 2x1 � 3x2 � Ma2 � Ma3 � 0

Modifying the objective function in this way makes it extremely costly for an artificial

variable to be positive. With this modified objective function, it seems reasonable that the

optimal solution to (18) will have a2 � a3 � 0. In this case, the optimal solution to (18)

will solve the original problem (17). It sometimes happens, however, that in solving the
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analog of (18), some of the artificial variables may assume positive values in the optimal

solution. If this occurs, the original problem has no feasible solution.

For obvious reasons, the method we have just outlined is often called the Big M

method. We now give a formal description of the Big M method.

Description of Big M Method

Step 1 Modify the constraints so that the right-hand side of each constraint is non-

negative. This requires that each constraint with a negative right-hand side be multiplied

through by �1. Remember that if you multiply an inequality by any negative number, the

direction of the inequality is reversed. For example, our method would transform the in-

equality x1 � x2 � �1 into �x1 � x2 � 1. It would also transform x1 � x2 � �2 into

�x1 � x2 � 2.

Step 1� Identify each constraint that is now (after step 1) an � or � constraint. In step

3, we will add an artificial variable to each of these constraints.

Step 2 Convert each inequality constraint to standard form. This means that if constraint

i is a � constraint, we add a slack variable si, and if constraint i is a � constraint, we sub-

tract an excess variable ei.

Step 3 If (after step 1 has been completed) constraint i is a � or � constraint, add an

artificial variable ai. Also add the sign restriction ai � 0.

Step 4 Let M denote a very large positive number. If the LP is a min problem, add (for

each artificial variable) Mai to the objective function. If the LP is a max problem, add (for

each artificial variable) �Mai to the objective function.

Step 5 Because each artificial variable will be in the starting basis, all artificial variables

must be eliminated from row 0 before beginning the simplex. This ensures that we begin

with a canonical form. In choosing the entering variable, remember that M is a very large

positive number. For example, 4M � 2 is more positive than 3M � 900, and �6M � 5

is more negative than �5M � 40. Now solve the transformed problem by the simplex. If

all artificial variables are equal to zero in the optimal solution, then we have found the

optimal solution to the original problem. If any artificial variables are positive in the op-

timal solution, then the original problem is infeasible.†

When an artificial variable leaves the basis, its column may be dropped from future

tableaus because the purpose of an artificial variable is only to get a starting basic feasi-

ble solution. Once an artificial variable leaves the basis, we no longer need it. Despite this

fact, we often maintain the artificial variables in all tableaus. The reason for this will be-

come apparent in Section 6.7.

Solution Example 4 (Continued)

Step 1 Because none of the constraints has a negative right-hand side, we don’t have to

multiply any constraint through by �1.
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†We have ignored the possibility that when the LP (with the artificial variables) is solved, the final tableau

may indicate that the LP is unbounded. If the final tableau indicates the LP is unbounded and all artificial

variables in this tableau equal zero, then the original LP is unbounded. If the final tableau indicates that the

LP is unbounded and at least one artificial variable is positive, then the original LP is infeasible. See Bazaraa

and Jarvis (1990) for details.



Step 1� Constraints 2 and 3 will require artificial variables.

Step 2 Add a slack variable s1 to row 1 and subtract an excess variable e2 from row 2.

The result is

min z � 2x1 � 3x2

Row 1: �
1

2
�x1 � �

1

4
�x2 � s1 � e2 � 4

Row 2: �
1

2
�x1 � 3x2 � s1 � e2 � 20

Row 3: �
1

2
�x1 � x2 � s1 � e2 � 10

Step 3 Add an artificial variable a2 to row 2 and an artificial variable a3 to row 3. The

result is

min z � 2x1 � 3x2

Row 1: �
1

2
�x1 � �

1

4
� x2 � s1 � e2 � a2 � a3 � 4

Row 2: �
1

2
�x1 � 3x2 � s1 � e2 � a2 � a3 � 20

Row 3: �
1

2
�x1 � x2 � s1 � e2 � a2 � a3 � 10

From this tableau, we see that our initial bfs will be s1 � 4, a2 � 20, and a3 � 10.

Step 4 Because we are solving a min problem, we add Ma2 � Ma3 to the objective func-

tion (if we were solving a max problem, we would add �Ma2 � Ma3). This makes a2 and

a3 very unattractive, and the act of minimizing z will cause a2 and a3 to be zero. The ob-

jective function is now

min z � 2x1 � 3x2 � Ma2 � Ma3

Step 5 Row 0 is now

z � 2x1 � 3x2 � Ma2 � Ma3 � 0

Because a2 and a3 are in our starting bfs (that’s why we introduced them), they must be

eliminated from row 0. To eliminate a2 and a3 from row 0, simply replace row 0 by row

0 � M(row 2) � M(row 3). This yields

Row 0: z � 2x1 � 3x2 � Ma2 � Ma3 � 0

M(row 2): Mx1 � 3Mx2 � Me2 � Ma2 � Ma3 � 20M

M(row 3): Mx1 � Mx2 � Ma3 � 10M

New row 0: z � (2M � 2)x1 � (4M � 3)x2 � Me2 �Ma2 � Ma3 � 30M

Combining the new row 0 with rows 1–3 yields the initial tableau shown in Table 33.

We are solving a min problem, so the variable with the most positive coefficient in row

0 should enter the basis. Because 4M � 3  2M � 2, variable x2 should enter the basis.

The ratio test indicates that x2 should enter the basis in row 2, which means the artificial

variable a2 will leave the basis. The most difficult part of doing the pivot is eliminating
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TA B L E  33

Initial Tableau for Bevco

Basic
z x1 x2 s1 e2 a2 a3 rhs Variable Ratio

1 2M � 2 4M � 3 0 �M 0 0 30M z2 � 30M

0 �
1

2
� �

1

4
� 1 0 0 0 4 s1 � 4 16

0 1 3 0 �1 1 0 20 a2 � 20 �
2

3

0
�*

0 1 1 0 0 0 1 10 a3 � 10 10



x2 from row 0. First, replace row 2 by �
1

3
�(row 2). Thus, the new row 2 is

�
1

3
�x1 � x2 � �

1

3
�e2 � �

1

3
�a2 � �

2

3

0
�

We can now eliminate x2 from row 0 by adding �(4M � 3)(new row 2) to row 0 or

(3 � 4M)(new row 2) � row 0. Now

(3 � 4M)(new row 2) �

�
(3 �

3

4M)x1
� � (3 � 4M)x2 � �

(3 �

3

4M)e2
� � �

(3 �

3

4M)a2
� � �

20(3 �

3

4M)
�

Row 0: z � (2M � 2)x1 � (4M � 3)x2 � Me2 � 30M

New row 0: z � �
(2M �

3

3)x1
� � �

(M �

3

3)e2
� � �

(3 �

3

4M)a2
� � �

60 �

3

10M
�

After using EROs to eliminate x2 from row 1 and row 3, we obtain the tableau in Table

34. Because �
2M

3

�3
�  �

M�

3

3
�, we next enter x1 into the basis. The ratio test indicates that x1

should enter the basis in the third row of the current tableau. Then a3 will leave the ba-

sis, and our next tableau will have a2 � a3 � 0. To enter x1 into the basis in row 3, we

first replace row 3 by �
3

2
�(row 3). Thus, new row 3 will be

x1 � �
e

2
2
� � �

a

2
2
� � �

3

2

a3
� � 5

To eliminate x1 from row 0, we replace row 0 by row 0 � (3 � 2M)(new row 3)/3.

Row 0: z � �
(2M �

3

3)x1
� � �

(M �

3

3)e2
� � �

(3 �

3

4M)a2
� � �

60 �

3

10M
�

: �
(3 �

3

2M)x1
� � �

(3 �

6

2M)e2
� � �

(2M �

6

3)a2
�

� �
(3 �

2

2M)a3
� � �

15 �

3

10M
�

New row 0: z � �
e

2
2
� � �

(1 �

2

2M)a2
� � �

(3 �

2

2M)a3
� � 25

New row 1 and new row 2 are computed as usual, yielding the tableau in Table 35. Be-

cause all variables in row 0 have nonpositive coefficients, this is an optimal tableau; all

artificial variables are equal to zero in this tableau, so we have found the optimal solution

to the Bevco problem: z � 25, x1 � x2 � 5, s1 � �
1

4
�, e2 � 0. This means that Bevco can

hold the cost of producing a 10-oz bottle of Oranj to 25¢ by mixing 5 oz of orange soda

and 5 oz of orange juice. Note that the a2 column could have been dropped after a2 left

the basis (at the conclusion of the first pivot), and the a3 column could have been dropped

after a3 left the basis (at the conclusion of the second pivot).

(3 � 2M)(new row 3)
���

3
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TA B L E  34

First Tableau for Bevco

Basic
z x1 x2 s1 e2 a2 a3 rhs Variable Ratio

1 �
2M

3

�3
� 0 0 �

M�

3

3
� �

3�

3

4M
� 0 �

60�

3

10M
� z2 � �

60�

3

10M
�

0 �
1

5

2
� 0 1 �

1

1

2
� ��

1

1

2
� 0 �

7

3
� s1 � �

7

3
� �

2

5

8
�

0 �
1

3
� 1 0 ��

1

3
� ��

1

3
� 0 �

2

3

0
� x2 � �

2

3

0
� 20*

0 �
2

3
� 0 0 ��

1

3
� ��

1

3
� 1 �

1

3

0
� a3 � �

1

3

0
� 25*



How to Spot an Infeasible LP

We now modify the Bevco problem by requiring that a 10-oz bottle of Oranj contain at

least 36 mg of vitamin C. Even 10 oz of orange juice contain only 3(10) � 30 mg of vi-

tamin C, so we know that Bevco cannot possibly meet the new vitamin C requirement.

This means that Bevco’s LP should now have no feasible solution. Let’s see how the Big

M method reveals the LP’s infeasibility. We have changed Bevco’s LP to

min z � 2x1 � 3x2

s.t. �
1

2
�x1 � �

1

4
�x2 � 4 (Sugar constraint)

s.t. �
1

2
�x1 � 3x2 � 36 (Vitamin C constraint) (19)

s.t. �
1

2
�x1 � x2 � 10 (10 oz constraint)

x1, x2 � 0

After going through Steps 1–5 of the Big M method, we obtain the initial tableau in Table

36. Because 4M � 3  2M � 2, we enter x2 into the basis. The ratio test indicates that

x2 should be entered in row 3, causing a3 to leave the basis. After entering x2 into the ba-

sis, we obtain the tableau in Table 37. Because each variable has a nonpositive coefficient

in row 0, this is an optimal tableau. The optimal solution indicated by this tableau is z �

30 � 6M, s1 � �
3

2
�, a2 � 6, x2 � 10, a3 � e2 � x1 � 0. An artificial variable (a2) is 

positive in the optimal tableau, so Step 5 shows that the original LP has no feasible so-

lution.† In summary, if any artificial variable is positive in the optimal Big M tableau,

then the original LP has no feasible solution.
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TA B L E  35

Optimal Tableau for Bevco

Basic
z x1 x2 s1 e2 a2 a3 rhs Variable

1 0 0 0 ��
1

2
� �

1�

2

2M
� �

3�

2

2M
� 25 z2 � 25

0 0 0 1 ��
1

8
� �

1

8
� ��

5

8
� �

1

4
� s1 � �

1

4
�

0 0 1 0 ��
1

2
� �

1

2
� ��

1

2
� 5 x2 � 5

0 1 0 0 ��
1

2
� ��

1

2
� �

3

2
� 5 x1 � 5

†To explain why (19) can have no feasible solution, suppose that it does (x�1, x�2). Clearly, if we set a3 � a2 �

0, (x�1, x�2) will be feasible for our modified LP (the LP with artificial variables). If we substitute (x�1, x�2) into

the modified objective function (z � 2x�1 � 3x�2 � Ma2 � Ma3), we obtain z � 2x�1 � 3x�2 (this follows be-

cause a3 � a2 � 0). Because M is large, this z-value is certainly less than 6M � 30. This contradicts the fact

that the best z-value for our modified objective function is 6M � 30. This means that our original LP (19)

must have no feasible solution.

TA B L E  36

Initial Tableau for Bevco (Infeasible)

Basic
z x1 x2 s1 e2 a2 a3 rhs Variable Ratio

1 2M � 2 4M � 3 0 �M 0 0 46M z2 � 46M

0 �
1

2
� �

1

4
� 1 0 0 0 4 s1 � 4 16

0 1 3 0 �1 1 0 36 a2 � 36 12

0 1 1 0 0 0 1 10 a3 � 10 10*



Note that when the Big M method is used, it is difficult to determine how large M should

be. Generally, M is chosen to be at least 100 times larger than the largest coefficient in the

original objective function. The introduction of such large numbers into the problem can

cause roundoff errors and other computational difficulties. For this reason, most computer

codes solve LPs by using the two-phase simplex method (described in Section 4.13).

P R O B L E M S
Group A
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TA B L E  37

Tableau Indicating Infeasibility for Bevco (Infeasible)

Basic
z x1 s2 s1 e2 a2 a3 rhs Variable

1 1 � 2M 0 0 �M 0 3 � 4M 30 � 6M z2 � 6M � 30

0 ��
1

4
� 0 1 0 0 ��

1

4
� �

3

2
� s1 � �

3

2
�

0 �2 0 0 �1 1 �3 6 a2 � 6

0 �1 1 0 0 0 1 10 x2 � 10

Use the Big M method to solve the following LPs:

1 min z � 4x1 � 4x2 � x3

s.t. 2x1 � x2 � 3x3 � 2

2x1 � x2 � 3

2x1 � x2 � 3x3 � 3

x1, x2, x3 � 0

2 min z � 2x1 � 3x2

s.t. 2x1 � x2 � 4�

s.t. x1 � x2 � �1

x1, x2 � 0

3 max z � 3x1 � x2

s.t. x1 � x2 � 3

2x1 � x2 � 4

x1 � x2 � 3

x1, x2 � 0

4 min z � 3x1

s.t. 2x1 � 2x2 � 6

3x1 � 2x2 � 4

x1, x2 � 0

5 min z � x1 � x2

s.t. 2x1 � x2 � 2x3 � 4

x1 � x2 � 2x3 � 2

x1, x2, x3 � 0

6 min z � x1 � x2

s.t. x1 � 2x2 � 2

2x1 � 2x2 � 4

x1, x2 � 0

4.13 The Two-Phase Simplex Method†

When a basic feasible solution is not readily available, the two-phase simplex method may

be used as an alternative to the Big M method. In the two-phase simplex method, we add ar-

tificial variables to the same constraints as we did in the Big M method. Then we find a bfs

to the original LP by solving the Phase I LP. In the Phase I LP, the objective function is to

minimize the sum of all artificial variables. At the completion of Phase I, we reintroduce the

original LP’s objective function and determine the optimal solution to the original LP.

The following steps describe the two-phase simplex method. Note that steps 1–3 for

the two-phase simplex are identical to steps 1–3 for the Big M method.

†This section covers topics that may be omitted with no loss of continuity.



Step 1 Modify the constraints so that the right-hand side of each constraint is nonnegative.

This requires that each constraint with a negative right-hand side be multiplied through by �1.

Step 1� Identify each constraint that is now (after step 1) an � or � constraint. In step

3, we will add an artificial variable to each constraint.

Step 2 Convert each inequality constraint to the standard form. If constraint i is a � constraint,

then add a slack variable si. If constraint i is a � constraint, subtract an excess variable ei.

Step 3 If (after step 1�) constraint i is a � or � constraint, add an artificial variable ai.

Also add the sign restriction ai � 0.

Step 4 For now, ignore the original LP’s objective function. Instead solve an LP whose

objective function is min w� � (sum of all the artificial variables). This is called the Phase

I LP. The act of solving the Phase I LP will force the artificial variables to be zero.

Because each ai � 0, solving the Phase I LP will result in one of the following three cases:

Case 1 The optimal value of w� is greater than zero. In this case, the original LP has no

feasible solution.

Case 2 The optimal value of w� is equal to zero, and no artificial variables are in the op-

timal Phase I basis. In this case, we drop all columns in the optimal Phase I tableau that

correspond to the artificial variables. We now combine the original objective function with

the constraints from the optimal Phase I tableau. This yields the Phase II LP. The opti-

mal solution to the Phase II LP is the optimal solution to the original LP.

Case 3 The optimal value of w� is equal to zero and at least one artificial variable is in

the optimal Phase I basis. In this case, we can find the optimal solution to the original LP

if at the end of Phase I we drop from the optimal Phase I tableau all nonbasic artificial

variables and any variable from the original problem that has a negative coefficient in row

0 of the optimal Phase I tableau.

Before solving examples illustrating Cases 1–3, we briefly discuss why w�  0 corre-

sponds to the original LP having no feasible solution and w� � 0 corresponds to the orig-

inal LP having at least one feasible solution.

Phases I and II Feasible Solutions

Suppose the original LP is infeasible. Then the only way to obtain a feasible solution to the

Phase I LP is to let at least one artificial variable be positive. In this situation, w�  0 (Case

1) will result. On the other hand, if the original LP has a feasible solution, then this feasible

solution (with all ai � 0) is feasible in the Phase I LP and yields w� � 0. This means that if

the original LP has a feasible solution, the optimal Phase I solution will have w� � 0. We

now work through examples of Cases 1 and 2 of the two-phase simplex method.

First we use the two-phase simplex to solve the Bevco problem of Section 4.12. Recall

that the Bevco problem was

min z � 2x1 � 3x2

s.t. �
1

2
�x1 � �

1

4
�x2 � 4

x1 � 3x2 � 20

x1 � 3x2 � 10

x1, x2 � 0
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Solution As in the Big M method, steps 1–3 transform the constraints into

�
1

2
�x1 � �

1

4
�x2 � s1 � e2 � a2 �a3 � 4

�
1

2
�x1 � 3x2 � s1 � e2 � a2 � a3 � 20

�
1

2
�x1 � x2 � s1 � e2 � a2� a3 � 10

Step 4 yields the following Phase I LP:

min w� � a2 � a3

s.t. �
1

2
�x1 � �

1

4
�x2 � s1 � e2 � a2 � a � 4

s.t. �
1

2
�x1 � 3x2 � s1 � e2 � a2 � a3 � 20

s.t. �
1

2
�x1 � x2 � s1 � e2 � a2 � a3 � 10

This set of equations yields a starting bfs for Phase I (s1 � 4, a2 � 20, a3 � 10).

Note, however, that the row 0 for this tableau (w� � a2 � a3 � 0) contains the basic

variables a2 and a3. As in the Big M method, a2 and a3 must be eliminated from row 0

before we can solve Phase I. To eliminate a2 and a3 from row 0, simply add row 2 and

row 3 to row 0:

� Row 0: w� � 2x1 � 4x2 � e2 � a2 � a3 � 0

� Row 2: x1 � 3x2 � e2 � a2 � a3 � 20

� Row 3: x1 � x2 � e2 � a2 � a3 � 10

� New row 0: w� � 2x1 � 4x2 � e2 � a2 � a3 � 30

Combining the new row 0 with the Phase I constraints yields the initial Phase I tableau

in Table 38. Because the Phase I problem is always a min problem (even if the original

LP is a max problem), we enter x2 into the basis. The ratio test indicates that x2 will en-

ter the basis in row 2, with a2 exiting the basis. After performing the necessary EROs, we

obtain the tableau in Table 39. Because 5 � 20 and 5 � �
2

5

8
�, x1 enters the basis in row 3.

Thus, a3 will leave the basis. Because a2 and a3 will be nonbasic after the current pivot

is completed, we already know that the next tableau will be optimal for Phase I. A glance

at the tableau in Table 40 confirms this fact.

Because w� � 0, Phase I has been concluded. The basic feasible solution s1 � �
1

4
�, x2 �

5, x1 � 5 has been found. No artificial variables are in the optimal Phase I basis, so the

problem is an example of Case 2. We now drop the columns for the artificial variables a2

and a3 (we no longer need them) and reintroduce the original objective function.

min z � 2x1 � 3x2 or z � 2x1 � 3x2 � 0

Because x1 and x2 are both in the optimal Phase I basis, they must be eliminated from the

Phase II row 0. We add 3(row 2) � 2(row 3) of the optimal Phase I tableau to row 0.

� Phase II row 0: z � 2x1 � 3x2 � �
1

2
�e2 � 0

� 3(row 2): 3x2 � �
3

2
�e2 � 15

� 2(row 3): 2x1 �
1

2
�e2 � 10

� New Phase II row 0: z � 2x1 � 3x2 � �
1

2
�e2 � 25

We now begin Phase II with the following set of equations:

min z � �
1

2
�e2 � 25

s1 � �
1

8
�e2 � �

1

4
�

x2 � �
1

2
�e2 � 5

x1x2s1 � �
1

2
�e2 � 5



This is optimal. Thus, in this problem, Phase II requires no pivots to find an optimal so-

lution. If the Phase II row 0 does not indicate an optimal tableau, then simply continue

with the simplex until an optimal row 0 is obtained. In summary, our optimal Phase II

tableau shows that the optimal solution to the Bevco problem is z � 25, x1 � 5, x2 � 5,

s1 � �
1

4
�, and e2 � 0. This agrees, of course, with the optimal solution found by the Big M

method in Section 4.12.

To illustrate Case 1, we now modify Bevco’s problem so that 36 mg of vitamin C are re-

quired. From Section 4.12, we know that this problem is infeasible. This means that the

optimal Phase I solution should have w�  0 (Case 1). To show that this is true, we be-

gin with the original problem:

min z � 2x1 � 3x2

s.t. �
1

2
�x1 � �

1

4
�x2 � 4

x1 � 3x2 � 36

x1 � x2 � 10

x1, x2 � 0
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TA B L E  38

Initial Phase I Tableau for Bevco

Basic
w� x1 x2 s1 e2 a2 a3 rhs Variable Ratio

1 2 4 0 �1 0 0 30 w� � 30

0 �
1

2
� �

1

4
� 1 0 0 0 24 s1 � 4 16*

0 1 3 0 �1 1 0 20 a2 � 20 �
2

3

0
�*

0 1 1 0 0 0 1 10 a3 � 10 10*

TA B L E  39

Phase I Tableau for Bevco after One Iteration 

Basic
w� x1 x2 s1 e2 a2 a3 rhs Variable Ratio

1 �
2

3
� 0 0 �

1

3
� ��

4

3
� 0 �

1

3

0
� w� � �

1

3

0
�

0 �
1

5

2
� 0 1 �

1

1

2
� ��

1

1

2
� 0 �

7

3
� s1 � �

7

3
� �

2

5

8
�

0 �
1

3
� 1 0 ��

1

3
� �

1

3
� 0 �

2

3

0
� x2 � �

2

3

0
� 20*

0 �
2

3
� 0 0 �

1

3
� ��

1

3
� 1 �

1

3

0
� a3 � �

1

3

0
� 25*

TA B L E  40

Optimal Phase I Tableau for Bevco

Basic
w� x1 x2 s1 e2 a2 a3 rhs Variable

1 0 0 0 0 �1 �1 0 w� � 0

0 0 0 1 ��
1

8
� �

1

8
� ��

5

8
� �

1

4
� s1 � �

1

4
�

0 0 1 0 ��
1

2
� �

1

2
� ��

1

2
� 5 x2 � 5

0 1 0 0 ��
1

2
� ��

1

2
� �

3

2
� 5 x1 � 5



Solution After completing steps 1–4 of the two-phase simplex, we obtain the following Phase I

problem:

min w� � a2 � a3

s.t. �
1

2
�x1 � �

1

4
�x2 � s1 � e2 � a2 � a3 � 4

s.t. �
1

2
�x1 � 3x2 � s1 � e2 � a2 � a3 � 36

s.t. �
1

2
�x1 � x2 � s1 � e2 � a2 � a3 � 10

From this set of equations, we see that the initial Phase I bfs is s1 � 4, a2 � 36, and 

a3 � 10. Because the basic variables a2 and a3 occur in the Phase I objective function, they

must be eliminated from the Phase I row 0. To do this, we add rows 2 and 3 to row 0:

� Row 0: w� � 2x1 � 4x2 � e2 � a2 � a3 � 0

� Row 2: x1 � 3x2 � e2 � a2 � a3 � 36

� Row 3: x1 � x2 � e2 � a2 � a3 � 10

� New row 0: w� � 2x1 � 4x2 � e2 � a2 � a3 � 46

With the new row 0, the initial Phase I tableau is as shown in Table 41. Because 4  2,

we should enter x2 into the basis. The ratio test indicates that x2 should enter the basis in

row 3, forcing a3 to leave the basis. The resulting tableau is shown in Table 42. No vari-

able in row 0 has a positive coefficient, so this is an optimal Phase I tableau, and since

the optimal value of w� is 6  0, the original LP must have no feasible solution. This is

reasonable, because if the original LP had a feasible solution, it would have been feasible

in the Phase I LP (after setting a2 � a3 � 0). This feasible solution would have yielded

w� � 0. Because the simplex could not find a Phase I solution with w� � 0, the original

LP must have no feasible solution.

R E M A R K S 1 As with the Big M method, the column for any artificial variable may be dropped from future
tableaus as soon as the artificial variable leaves the basis. Thus, when we solved the Bevco prob-
lem, a2’s column could have been dropped after the first Phase I pivot, and a3’s column could have
been dropped after the second Phase I pivot.
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TA B L E  41

Initial Phase I Tableau for Bevco (Infeasible)

Basic
w� x1 x2 s1 e2 a2 a3 rhs Variable Ratio

1 2 4 0 �1 0 0 46 w� � 46

0 �
1

2
� �

1

4
� 1 0 0 0 4 s1 � 4 16

0 1 3 0 �1 1 0 36 a2 � 36 12

0 1 1 0 0 0 1 10 a3 � 0 10*

TA B L E  42

Tableau Indicating Infeasibility for Bevco (Infeasible)

Basic
w� x1 x2 s1 e2 a2 a3 rhs Variable

1 �2 0 0 �1 0 �4 6 w� � 6

0 �
1

4
� 0 1 0 0 ��

1

4
� �

3

2
� s1 � �

3

2
�

0 �2 0 0 �1 1 �3 6 a2 � 6

0 1 1 0 0 0 1 10 x2 � 10



2 It can be shown that (barring ties for the entering variable and in the ratio test) the Big M method
and Phase I of the two-phase method make the same sequence of pivots. Despite this equivalence,
most computer codes utilize the two-phase method to find a bfs. This is because M, being a large
positive number, may cause roundoff errors and other computational difficulties. The two-phase
method does not introduce any large numbers into the objective function, so it avoids this problem.

Use the two-phase simplex method to solve the following LP:

min z � 40x1 � 10x2 � 7x5 � 14x6

s.t. �2x1 � x2 � x3 � x4 � 2x5 � x6 � 0

s.t. �2x1 � x2 � x3 � x4 � 2x5 � x6 � 0

s.t. �2x1 � x2 � x3 � x4 � x5 � x6 � 3

s.t. �2x1 � 2x2 � x3 � x4 � 2x5 � x6 � 4

All xi � 0

Solution We may use x4 as a basic variable for the fourth constraint and use artificial variables a1,

a2, and a3 as basic variables for the first three constraints. Our Phase I objective is to min-

imize w � a1 � a2 � a3. After adding the first three constraints to w � a1 � a2 � a3 �

0, we obtain the initial Phase I tableau shown in Table 43.

Even though x5 has the most positive coefficient in row 0, we choose to enter x3 into

the basis (as a basic variable in row 3). We see that this will immediately yield w � 0.

Our final Phase I tableau is shown in Table 44.

Because w � 0, we now have an optimal Phase I tableau. Two artificial variables re-

main in the basis (a1 and a2) at a zero level. We may now drop the artificial variable a3

from our first Phase II tableau. The only original variable with a negative coefficient in

the optimal Phase I tableau is x1, so we may drop x1 from all future tableaus. This is be-

cause from the optimal Phase I tableau we find w � x1. This implies that x1 can never be-

come positive during Phase II, so we may drop x1 from all future tableaus. Because z �

40x1 � 10x2 � 7x5 � 14x6 � 0 contains no basic variables, our initial tableau for Phase

II is as in Table 45.
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TA B L E  43

Basic
w x1 x2 x3 x4 x5 x6 a1 a2 a3 rhs Variable

1 0 0 1 0 1 �1 0 0 0 3 w � 3

0 1 �1 0 0 2 0 1 0 0 0 a1 � 0

0 �2 1 0 0 �2 0 0 1 0 0 a2 � 0

0 1 0 1 0 1 �1 0 0 1 3 a3 � 3

0 0 2 1 1 2 1 0 0 0 4 x4 � 4

TA B L E  44

Basic
w x1 x2 x3 x4 x5 x6 a1 a2 a3 rhs Variable

1 �1 0 0 0 0 0 0 0 �1 0 w � 0

0 1 �1 0 0 2 0 1 0 �0 0 a1 � 0

0 �2 1 0 0 �2 0 0 1 �0 0 a2 � 0

0 1 0 1 0 1 �1 0 0 �1 3 x3 � 3

0 �1 2 0 1 1 2 0 0 �1 1 x4 � 1



We now enter x6 into the basis in row 4 and obtain the optimal tableau shown in 

Table 46.

The optimal solution to our original LP is z � 7, x3 � 7/2, x4 � �
1

2
�, x2 � x5 � x6 �

x3 � 0.

P R O B L E M S
Group A

184 C H A P T E R 4 The Simplex Algorithm and Goal Programming

TA B L E  45

Basic
z x2 x3 x4 x5 x6 a1 a2 rhs Variables

1 �10 0 0 �7 �14 0 0 0 z1 � 0

0 �1 0 0 2 0 1 0 0 a1 � 0

0 1 0 0 �2 0 0 1 0 a2 � 0

0 0 1 0 1 �1 0 0 3 x3 � 3

0 2 0 1 1 2 0 0 1 x4 � 1

TA B L E  46

Basic
z x2 x3 x4 x5 x6 a1 a2 rhs Variables

1 4 0 7 0 0 0 0 7 z1 � 7

0 0 0 0 2 0 1 0 0 a1 � 0

0 1 0 0 0 0 0 1 0 a2 � 0

0 1 1 �
1

2
� �

3

2
� 0 0 0 �

7

2
� x3 � �

7

2
�

0 0 0 �
1

2
� �

1

2
� 1 0 0 �

1

2
� x4 � �

1

2
�

1 Use the two-phase simplex method to solve the Section
4.12 problems.

2 Explain why the Phase I LP will usually have alternative
optimal solutions.

4.14 Unrestricted-in-Sign Variables

In solving LPs with the simplex algorithm, we used the ratio test to determine the row in which

the entering variable became a basic variable. Recall that the ratio test depended on the fact

that any feasible point required all variables to be nonnegative. Thus, if some variables are 

allowed to be unrestricted in sign (urs), the ratio test and therefore the simplex algorithm are

no longer valid. In this section, we show how an LP with unrestricted-in-sign variables can be

transformed into an LP in which all variables are required to be nonnegative.

For each urs variable xi, we begin by defining two new variables xi� and xi�. Then sub-

stitute xi� � xi� for xi in each constraint and in the objective function. Also add the sign

restrictions xi� � 0 and xi� � 0. The effect of this substitution is to express xi as the dif-

ference of the two nonnegative variables xi� and xi�. Because all variables are now required

to be nonnegative, we can proceed with the simplex. As we will soon see, no basic fea-

sible solution can have both xi�  0 and xi�  0. This means that for any basic feasible

solution, each urs variable xi must fall into one of the following three cases:



Case 1 xi�  0 and xi� � 0. This case occurs if a bfs has xi  0. In this case, xi � xi� �

xi� � xi�. Thus, xi � xi�. For example, if xi � 3 in a bfs, this will be indicated by xi�� 3

and xi� � 0.

Case 2 xi� � 0 and xi�  0. This case occurs if xi � 0. Because xi � xi� � xi�, we obtain

xi � �xi�. For example, if xi � �5 in a bfs, we will have xi� � 0 and xi� � 5. Then xi �

0 � 5 � �5.

Case 3 xi� � xi� � 0. In this case, xi � 0 � 0 � 0.

In solving the following example, we will learn why no bfs can ever have both xi�  0

and xi�  0.

A baker has 30 oz of flour and 5 packages of yeast. Baking a loaf of bread requires 5 oz

of flour and 1 package of yeast. Each loaf of bread can be sold for 30¢. The baker may

purchase additional flour at 4¢/oz or sell leftover flour at the same price. Formulate and

solve an LP to help the baker maximize profits (revenues � costs).

Solution Define

x1 � number of loaves of bread baked

x2 � number of ounces by which flour supply is increased by cash transactions

Therefore, x2  0 means that x2 oz of flour were purchased, and x2 � 0 means that �x2

ounces of flour were sold (x2 � 0 means no flour was bought or sold). After noting that

x1 � 0 and x2 is urs, the appropriate LP is

max z � 30x1 � 4x2

s.t. 5x1 � 30 � x2 (Flour constraint)

s.t. 5x1 � 5 � x2 (Yeast constraint)

x1 � 0, x2 urs

Because x2 is urs, we substitute x�2 � x2� for x2 in the objective function and constraints.

This yields

max z � 30x1 � 4x�2 � 4x2�

s.t. 5x1 � 30 � x�2 � x2�

s.t. 5x1 � 5

s.t. 5x1, x�2, x2� � 0

After transforming the objective function to row 0 form and adding slack variables s1

and s2 to the two constraints, we obtain the initial tableau in Table 47. Notice that the x�2

column is simply the negative of the x2� column. We will see that no matter how many piv-

ots we make, the x�2 column will always be the negative of the x2� column. (See Problem 6

for a proof of this assertion.)

Because x1 has the most negative coefficient in row 0, x1 enters the basis—in row 2.

The resulting tableau is shown in Table 48. Again note that the x�2 column is the negative

of the x2� column.

Because x2� now has the most negative coefficient in row 0, we enter x2� into the basis

in row 1. The resulting tableau is shown in Table 49. Observe that the x�2 column is still

the negative of the x2� column. This is an optimal tableau, so the optimal solution to the

baker’s problem is z � 170, x1 � 5, x 2� � 5, x�2 � 0, s1 � s2 � 0. Thus, the baker can

earn a profit of 170¢ by baking 5 loaves of bread. Because x2 � x�2 � x2� � 0 � 5 � �5,
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the baker should sell 5 oz of flour. It is optimal for the baker to sell flour, because hav-

ing 5 packages of yeast limits the baker to manufacturing at most 5 loaves of bread. These

5 loaves of bread use 5(5) � 25 oz of flour, so 30 � 25 � 5 oz of flour are left to sell.

The variables x�2 and x2� will never both be basic variables in the same tableau. To see

why, suppose that x2� is basic (as it is in the optimal tableau). Then the x2� column will con-

tain a single 1 and have every other entry equal to 0. The x�2 column is always the nega-

tive of the x2� column, so the x�2 column will contain a single �1 and have all other en-

tries equal to 0. Such a tableau cannot also have x�2 as a basic feasible variable. The same

reasoning shows that if xi is urs, then xi� and xi� cannot both be basic variables in the same

tableau. This means that in any tableau, xi�, xi�, or both must equal 0 and that one of Cases

1–3 must always occur.

The following example shows how urs variables can be used to model the production-

smoothing costs discussed in the Sailco example of Section 3.10.

Mondo Motorcycles is determining its production schedule for the next four quarters. De-

mand for motorcycles will be as follows: quarter 1—40; quarter 2—70; quarter 3—50;

quarter 4—20. Mondo incurs four types of costs.

1 It costs Mondo $400 to manufacture each motorcycle.
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TA B L E  47

Initial Tableau for urs LP

Basic
z x1 x�2 x �2 s1 s2 rhs Variable Ratio

1 �30 4 �4 0 0 0 z2 � 0

0 5 �1 1 1 0 30 s1 � 30 6*

0 1 0 0 0 1 5 s2 � 5 5*

TA B L E  48

First Tableau for urs LP

Basic
z x1 x�2 x �2 s1 s2 rhs Variable Ratio

1 0 4 �4 0 30 150 z2 � 150

0 0 �1 1 1 �5 175 s1 � 5 5*

0 1 0 0 0 1 175 x1 � 5 None

TA B L E  49

Optimal Tableau for urs LP

Basic
z x1 x�2 x �2 s1 s2 rhs Variable

1 0 0 0 4 10 170 z2 � 170

0 0 �1 1 1 �5 175 x�2 � 5

0 1 0 0 0 1 175 x1 � 5



2 At the end of each quarter, a holding cost of $100 per motorcycle is incurred.

3 Increasing production from one quarter to the next incurs costs for training employ-

ees. It is estimated that a cost of $700 per motorcycle is incurred if production is increased

from one quarter to the next.

4 Decreasing production from one quarter to the next incurs costs for severance pay, de-

creasing morale, and so forth. It is estimated that a cost of $600 per motorcycle is in-

curred if production is decreased from one quarter to the next.

All demands must be met on time, and a quarter’s production may be used to meet de-

mand for the current quarter. During the quarter immediately preceding quarter 1, 50 Mon-

dos were produced. Assume that at the beginning of quarter 1, no Mondos are in inventory.

Formulate an LP that minimizes Mondo’s total cost during the next four quarters.

Solution To express inventory and production costs, we define for t � 1, 2, 3, 4,

pt � number of motorcycles produced during quarter t

it � inventory at end of quarter t

To determine smoothing costs (costs 3 and 4), we define

xt � amount by which quarter t production exceeds quarter t � 1 production

Because xt is unrestricted in sign, we may write xt � xt� � xt�, where xt� � 0 and xt� � 0.

We know that if xt � 0, then xt � xt� and xt� � 0. Also, if xt � 0, then xt � �xt� and 

xt� � 0. This means that

xt� � increase in quarter t production over quarter t � 1 production

(xt� � 0 if period t production is less than period t � 1 production)

xt� � decrease in quarter t production from quarter t � 1 production

(xt� � 0 if period t production is more than period t � 1 production)

For example, if p1 � 30 and p2 � 50, we have x2 � 50 � 30 � 20, x�2 � 20, x�2 � 0.

Similarly, if p1 � 30 and p2 � 15, we have x2 � 15 � 30 � �15, x�2 � 0, and x�2 � 15.

The variables xt� and xt� can now be used to express the smoothing costs for quarter t.

We may now express Mondo’s total cost as

Total cost � production cost � inventory cost

� smoothing cost due to increasing production

� smoothing cost due to decreasing production

� 400(p1 � p2 � p3 � p4) � 100(i1 � i2 � i3 � i4)

� 700(x�1 � x�2 � x�3 � x�4) � 600(x�1 � x�2 � x�3 � x�4)

To complete the formulation, we add two types of constraints. First we need inventory

constraints (as in the Sailco problem of Section 3.10) that relate the inventory from the

current quarter to the past quarter’s inventory and the current quarter’s production. For

quarter t, the inventory constraint takes the form

Quarter t inventory � (quarter t � 1 inventory) � (quarter t production)

� (quarter t demand)

For t � 1, 2, 3, 4, respectively, this yields the following four constraints:

i1 � 0 � p1 � 40 i2 � i1 � p2 � 70

i3 � i2 � p3 � 50 i4 � i3 � p4 � 20
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The sign restrictions it � 0 (t � 1, 2, 3, 4) ensure that each quarter’s demands will be met

on time.

The second type of constraint reflects the fact that pt, pt�1, xt�, and xt� are related. This

relationship is captured by

(quarter t production) � (quarter t � 1 production) � xt � xt� � xt�

For t � 1, 2, 3, 4, this relation yields the following four constraints:

p1 � 50 � x�1 � x�1 p2 � p1 � x�2 � x�2

p3 � p2 � x�3 � x�3 p4 � p3 � x�4 � x�4

Combining the objective function, the four inventory constraints, the last four constraints,

and the sign restrictions (it, pt, xt�, xt� � 0 for t � 1, 2, 3, 4), we obtain the following LP:

min z � 400p1 � 400p2 � 400p3 � 400p4 � 100i1 � 100i2 � 100i3 � 100i4

� 700x�1 � 700x�2 � 700x�3 � 700x�4 � 600x�1 � 600x�2 � 600x�3 � 600x�4

s.t. i1 � 0 � p1 � 40

s.t. i2 � i1 � p2 � 70

s.t. i3 � i2 � p3 � 50

s.t. i4 � i3 � p4 � 20

s.t. p1 � 50 � x�1 � x�1

s.t. p2 � p1 � x�2 � x�2

s.t. p3 � p2 � x�3 � x�3

s.t. p4 � p3 � x�4 � x�4

s.t. it, pt, xt�, xt� � 0 (t � 1, 2, 3, 4)

As in Example 7, the column for xt� in the constraints is the negative of the xt� column.

Thus, as in Example 7, no bfs to Mondo’s LP can have both xt�  0 and xt�  0. This

means that xt� actually is the increase in production during quarter t, and xt� actually is the

amount by which production decreases during quarter t.

There is another way to show that the optimal solution will not have both xt�  0 and

xt�  0. Suppose, for example, that p2 � 70 and p1 � 60. Then the constraint

p2 � p1 � 70 � 60 � x�2 � x�2 (20)

can be satisfied by many combinations of x�2 and x�2. For example, x�2 � 10 and x�2 � 0 will

satisfy (20), as will x�2 � 20, and x�2 � 10; x�2 � 40 and x�2 � 30; and so on. If p2 � p1 � 10,

the optimal LP solution will always choose x�2 � 10 and x�2 � 0 over any other possibility. To

see why, look at Mondo’s objective function. If x�2 � 10 and x�2 � 0, then x�2 and x�2 contribute

10(700) � $7,000 in smoothing costs. On the other hand, any other choice of x�2 and x�2 satis-

fying (20) will contribute more than $7,000 in smoothing costs. For example, x�2 � 20 and 

x�2 � 10 contributes 20(700) � 10(600) � $20,000 in smoothing costs. We are minimizing 

total cost, so the simplex will never choose a solution where xt�  0 and xt�  0 both hold.

The optimal solution to Mondo’s problem is p1 � 55, p2 � 55, p3 � 50, p4 � 50. This

solution incurs a total cost of $95,000. The optimal production schedule produces a total

of 210 Mondos. Because total demand for the four quarters is only 180 Mondos, there

will be an ending inventory of 210 � 180 � 30 Mondos. Note that this is in contrast to

the Sailco inventory model of Section 3.10, in which ending inventory was always 0. The

optimal solution to the Mondo problem has a nonzero inventory in quarter 4, because for

the quarter 4 inventory to be 0, quarter 4 production must be lower than quarter 3 pro-

duction. Rather than incur the excessive smoothing costs associated with this strategy, the

optimal solution opts for holding 30 Mondos in inventory at the end of quarter 4.
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P R O B L E M S
Group A

4 . 1 4 Unrestricted-in-Sign Variables 189

1 Suppose that Mondo no longer must meet demands on
time. For each quarter that demand for a motorcycle is
unmet, a penalty or shortage cost of $110 per motorcycle
short is assessed. Thus, demand can now be backlogged. All
demands must be met, however, by the end of quarter 4.
Modify the formulation of the Mondo problem to allow for
backlogged demand. (Hint: Unmet demand corresponds to
it � 0. Thus, it is now urs, and we must substitute it � it� �

it�. Now it� will be the amount of demand that is unmet at
the end of quarter t.)

2 Use the simplex algorithm to solve the following LP:

max z � 2x1 � x2

s.t. 3x1 � x2 � 6

s.t. 3x1 � x2 � 4

x1 � 0, x2 urs

Group B

3 During the next three months, Steelco faces the
following demands for steel: 100 tons (month 1); 200 tons
(month 2); 50 tons (month 3). During any month, a worker
can produce up to 15 tons of steel. Each worker is paid
$5,000 per month. Workers can be hired or fired at a cost of
$3,000 per worker fired and $4,000 per worker hired (it
takes 0 time to hire a worker). The cost of holding a ton of
steel in inventory for one month is $100. Demand may be
backlogged at a cost of $70 per ton month. That is, if 1 ton
of month 1 demand is met during month 3, then a
backlogging cost of $140 is incurred. At the beginning of
month 1, Steelco has 8 workers. During any month, at most
2 workers can be hired. All demand must be met by the end
of month 3. The raw material used to produce a ton of steel
costs $300. Formulate an LP to minimize Steelco’s costs.

4 Show how you could use linear programming to solve
the following problem:

max z � |2x1 � 3x2|

s.t. 4x1 � x2 � 4

s.t. 2x1 � x2 � 0.5

x1, x2 � 0

5† Steelco’s main plant currently has a steel manufacturing
area and shipping area located as shown in Figure 13
(distances are in feet). The company must determine where
to locate a casting facility and an assembly and storage
facility to minimize the daily cost of moving material
through the plant. The number of trips made each day are
as shown in Table 50.

Assuming that all travel is in only an east–west or
north–south direction, formulate an LP that can be used to de-
termine where the casting and assembly and storage plants
should be located in order to minimize daily transportation
costs. (Hint: If the casting facility has coordinates (c1, c2), how
should the constraint c1 � 700 � e1 � w1 be interpreted?)

6 Show that after any number of pivots the coefficient of
xi� in each row of the simplex tableau will equal the negative
of the coefficient of xi� in the same row.

7 Clothco manufactures pants. During each of the next six
months they can sell up to the numbers of pants given in
Table 51.

Demand that is not met during a month is lost. Thus, for
example, Clothco can sell up to 500 pants during month 1.
A pair of pants sells for $40, requires 2 hours of labor, and
uses $10 of raw material. At the beginning of month 1,
Clothco has 4 workers. A worker can work at making pants
up to 200 hours per month, and is paid $2,000 per month
(irrespective of how many hours worked). At the beginning
of each month, workers can be hired and fired. It costs

†Based on Love and Yerex (1976).

Steel manufacturing area

(700, 600)

(0, 0) (1000, 0)

Shipping area

F I G U R E  13

TA B L E  50

Cost (¢) Per
Daily Number 100 Feet

From To of Trips Traveled

Casting Assembly and storage 40 10

Steel manufacturing Casting 8 10

Steel manufacturing Assembly and storage 8 10

Shipping Assembly and storage 2 20

TA B L E  51

Month Maximum Demand

1 500

2 600

3 300

4 400

5 300

6 800



$1,500 to hire and $1,000 to fire a worker. A holding cost
of $5 per pair of pants is assessed against each month’s end-
ing inventory.
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4.15 Karmarkar’s Method for Solving LPs

We now give a brief description of Karmarkar’s method for solving LPs. For a more de-

tailed explanation, see Section10.6. Karmarkar’s method requires that the LP be placed in

the following form:

min z � cx

s.t. Kx � 0

s.t. x1 � x2 � 			 xn � 1

xi � 0

and that

1 The point x0
� [�

1

n
� �

1

n
� 			 �

1

n
�] must be feasible for this LP.

2 The optimal z-value for the LP equals 0.

Surprisingly, any LP can be put in this form. Karmarkar’s method uses a transformation

from projective geometry to create a set of transformed variables y1, y2, . . . , yn. This

transformation (call it f ) will always transform the current point into the “center” of the

feasible region in the space defined by the transformed variables. If the transformation

takes the point x into the point y, we write f (x) � y. The algorithm begins in the trans-

formed space by moving from f (x0) in the transformed space in a “good” direction (a di-

rection that tends to improve z and maintains feasibility). This yields a point y1 in the

transformed space, which is close to the boundary of the feasible region. Our new point

is x1, satisfying f (x1) � y1. The procedure is repeated (this time x1 replaces x0) until the

z-value for xk is sufficiently close to 0.

If our current point is xk, then the transformation will have the property that f (xk) �

[�
1

n
� �

1

n
� 			 �

1

n
�]. Thus, in transformed space, we are always moving away from the “cen-

ter” of the feasible region.

Karmarkar’s method has been shown to be a polynomial time algorithm. This implies

that if an LP of size n is solved by Karmarkar’s method, then there exist positive numbers

a and b such that for any n, an LP of size n can be solved in a time of at most anb.†

In contrast to Karmarkar’s method, the simplex algorithm is an exponential time al-

gorithm for solving LPs. If an LP of size n is solved by the simplex, then there exists a

positive number c such that for any n, the simplex algorithm will find the optimal solu-

tion in a time of at most c2n. For large enough n (for positive a, b, and c), c2n
 anb.

This means that, in theory, a polynomial time algorithm is superior to an exponential time

algorithm. Preliminary testing of Karmarkar’s method (by Karmarkar) has shown that for

large LPs arising in actual application, this method may be up to 50 times as fast as the

simplex algorithm. Hopefully, Karmarkar’s method will enable researchers to solve many

large LPs that currently require a prohibitively large amount of computer time when

solved by the simplex. If Karmarkar’s method lives up to its early promise, the ability to

formulate LP models will be even more important in the near future than it is today.

Karmarkar’s method has recently been utilized by the Military Airlift Command to de-

termine how often to fly various routes, and which aircraft to use. The resulting LP con-

Determine how Clothco can maximize its profit for the
next six months. Ignore the fact that during each month the
number of hired and fired workers must be an integer.

†The size of an LP may be defined as the number of symbols needed to represent the LP in binary notation.



tained 150,000 variables and 12,000 constraints and was solved in one hour of computer

time using Karmarkar’s method. Using the simplex method, an LP with similar structure

containing 36,000 variables and 10,000 constraints required four hours of computer time.

Delta Airlines has used Karmarkar’s method to develop monthly schedules for 7,000 pi-

lots and more than 400 aircraft. When the project is completed, Delta expects to have

saved millions of dollars.

4.16 Multiattribute Decision Making in the Absence 
of Uncertainty: Goal Programming

In some situations, a decision maker may face multiple objectives, and there may be no

point in an LP’s feasible region satisfying all objectives. In such a case, how can the de-

cision maker choose a satisfactory decision? Goal programming is one technique that

can be used in such situations. The following example illustrates the main ideas of goal

programming.

The Leon Burnit Advertising Agency is trying to determine a TV advertising schedule for

Priceler Auto Company. Priceler has three goals:

Goal 1 Its ads should be seen by at least 40 million high-income men (HIM).

Goal 2 Its ads should be seen by at least 60 million low-income people (LIP).

Goal 3 Its ads should be seen by at least 35 million high-income women (HIW).

Leon Burnit can purchase two types of ads: those shown during football games and those

shown during soap operas. At most, $600,000 can be spent on ads. The advertising costs

and potential audiences of a one-minute ad of each type are shown in Table 52. Leon Bur-

nit must determine how many football ads and soap opera ads to purchase for Priceler.

Solution Let

x1 � number of minutes of ads shown during football games

x2 � number of minutes of ads shown during soap operas

Then any feasible solution to the following LP would meet Priceler’s goals:

min (or max) z � 0x1 � 0x2 (or any other objective function)

s.t. 7x1 � 3x2 � 40 (HIM constraint)

s.t. 10x1 � 5x2 � 60 (LIP constraint)
(21)

s.t. 5x1 � 4x2 � 35 (HIW constraint)

s.t. 100x1 � 60x2 � 600 (Budget constraint)

x1, x2 � 0

From Figure 14, we find that no point that satisfies the budget constraint meets all three

of Priceler’s goals. Thus, (21) has no feasible solution. It is impossible to meet all of

Priceler’s goals, so Burnit might ask Priceler to identify, for each goal, a cost (per-unit

short of meeting each goal) that is incurred for failing to meet the goal. Suppose Priceler

determines that
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Each million exposures by which Priceler falls short of the HIM goal costs Priceler a

$200,000 penalty because of lost sales.

Each million exposures by which Priceler falls short of the LIP goal costs Priceler a

$100,000 penalty because of lost sales.

Each million exposures by which Priceler falls short of the HIW goal costs Priceler

a $50,000 penalty because of lost sales.

Burnit can now formulate an LP that minimizes the cost incurred in deviating from

Priceler’s three goals. The trick is to transform each inequality constraint in (21) that rep-

resents one of Priceler’s goals into an equality constraint. Because we don’t know whether

the cost-minimizing solution will undersatisfy or oversatisfy a given goal, we need to de-

fine the following variables:

si
�

� amount by which we numerically exceed the ith goal

si
�

� amount by which we are numerically under the ith goal

The si
� and si

� are referred to as deviational variables. For the Priceler problem, we as-

sume that each si
� and si

� is measured in millions of exposures. Using the deviational vari-

ables, we can rewrite the first three constraints in (21) as

7x1 � 3x2 � s1
�

� s1
�

� 40 (HIM constraint)

10x1 � 5x2 � s2
�

� s2
�

� 60 (LIP constraint)

5x1 � 4x2 � s3
�

� s3
�

� 35 (HIW constraint)
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TA B L E  52

Cost and Number of Viewers of Ads for Priceler

Millions of Viewers

Ad HIM LIP HIW Cost ($)

Football 7 10 5 100,000

Soap opera 3 5 4 160,000

C is point (3, 5)

C

B

x2

x1

2 4 6 8

2

4

6

8

10

12

14

(LIP)

(HIM)

(HIW)

(Budget)

F I G U R E  14

Constraints for Priceler



For example, suppose that x1 � 5 and x2 � 2. This advertising schedule yields 7(5) �

3(2) � 41 million HIM exposures. This exceeds the HIM goal by 41 � 40 � 1 million

exposures, so s1
�

� 0 and s1
�

� 1. Also, this schedule yields 10(5) � 5(2) � 60 million

LIP exposures. This exactly meets the LIP requirement, and s2
�

� s2
�

� 0. Finally, this

schedule yields 5(5) � 4(2) � 33 million HIW exposures. We are numerically under the

HIW goal by 35 � 33 � 2 million exposures, so s3
�

� 2 and s3
�

� 0.

Suppose Priceler wants to minimize the total penalty from the lost sales.  In terms of

the deviational variables,  the total penalty from lost sales (in thousands of dollars) caused

by deviation from the three goals is 200s1
�

� 100s2
�

� 50s3
�. The objective function co-

efficient for the variable associated with goal i is called the weight for goal i. The most

important goal has the largest weight, and so on. Thus, in the Priceler example, goal 1

(HIM) is most important, goal 2 (LIP) is second most important, and goal 3 (HIW) is

least important.

Burnit can minimize the penalty from Priceler’s lost sales by solving the following LP:

min z � 200s1
�

� 100s2
�

� 50s3
�

s.t. 7x1 � 3x2 � s1
�

� s1
�

� 40 (HIM constraint)

s.t. 10x1 � 5x2 � s2
�

� s2
�

� 60 (LIP constraint)
(22)

s.t. 5x1 � 4x2 � s3
�

� s3
�

� 35 (HIW constraint)

s.t. 100x1 � 60x2 � 600 (Budget constraint)

All variables nonnegative

The optimal solution to this LP is z � 250, x1 � 6, x2 � 0, s1
�

� 2, s2
�

� 0, s3
�

� 0, 

s1
�

� 0, s2
�

� 0, s3
�

� 5. This meets goal 1 and goal 2 (the goals with the highest costs,

or weights, for each unit of deviation from the goal) but fails to meet the least important

goal (goal 3).

R E M A R K S If failure to meet goal i occurs when the attained value of an attribute is numerically smaller than
the desired value of goal i, then a term involving si

� will appear in the objective function. If fail-
ure to meet goal i occurs when the attained value of an attribute is numerically larger than the de-
sired value of goal i, then a term involving si

� will appear in the objective function. Also, if we want
to meet a goal exactly and a penalty is assessed for going both over and under a goal, then terms
involving both si

� and si
� will occur in the objective function.

Suppose we modify the Priceler example by deciding that the budget restriction of $600,000 is
a goal. If we decide that a $1 penalty is assessed for each dollar by which this goal is unmet, then
the appropriate goal programming formulation would be

min z � 200s1
�

� 100s2
�

� 50s3
�

� s4
�

s.t. 7x1 � 3x2 � s1
�

� s1
�

� 40 (HIM constraint)

s.t. 10x1 � 5x2 � s2
�

� s2
�

� 60 (LIP constraint)

s.t. 5x1 � 4x2 � s3
�

� s3
�

� 35 (HIW constraint)

s.t. 100x1 � 60x2 � s4
�

� s4
�

� 600 (Budget constraint)

All variables nonnegative

In contrast to our previous optimal solution, the optimal solution to this LP is z � 33�
1

3
�, x1 � 4�

1

3
�, 

x2 � 3�
1

3
�, s1

�
� �

1

3
�, s2

�
� 0, s3

�
� 0, s4

�
� 33�

1

3
�, s1

�
� 0, s2

�
� 0, s3

�
� 0, s4

�
� 0. Thus, when we de-

fine the budget restriction to be a goal, the optimal solution is to meet all three advertising goals
by going $33�

1

3
� thousand over budget.
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Preemptive Goal Programming

In our LP formulation of the Burnit example, we assumed that Priceler could exactly de-

termine the relative importance of the three goals. For instance, Priceler determined that the

HIM goal was �
2

1

0

0

0

0
� � 2 times as important as the LIP goal, and the LIP goal was �

1

5

0

0

0
� �

2 times as important as the HIW goal. In many situations, however, a decision maker may

not be able to determine precisely the relative importance of the goals. When this is the

case, preemptive goal programming may prove to be a useful tool. To apply preemptive

goal programming, the decision maker must rank his or her goals from the most impor-

tant (goal 1) to least important (goal n). The objective function coefficient for the variable

representing goal i will be Pi. We assume that

P1  P2  P3  			  Pn

Thus, the weight for goal 1 is much larger than the weight for goal 2, the weight for goal 

2 is much larger than the weight for goal 3, and so on. This definition of the P1, P2, . . . , 

Pn ensures that the decision maker first tries to satisfy the most important (goal 1) goal. Then,

among all points that satisfy goal 1, the decision maker tries to come as close as possible to

satisfying goal 2, and so forth. We continue in this fashion until the only way we can come

closer to satisfying a goal is to increase the deviation from a higher-priority goal.

For the Priceler problem, the preemptive goal programming formulation is obtained

from (22) by replacing (22)’s objective function by P1s1
�

� P2s2
�

� P3s3
�. Thus, the pre-

emptive goal programming formulation of the Priceler problem is

min z � P1s1
�

� P2s2
�

� P3s3
�

s.t. 7x1 � 3x2 � s1
�

� s1
�

� 40 (HIM constraint)

s.t. 10x1 � 5x2 � s2
�

� s2
�

� 60 (LIP constraint)
(23)

s.t. 5x1 � 4x2 � s3
�

� s3
�

� 35 (HIW constraint)

s.t. 100x1 � 60x2 � s3
�

� s3
�

� 600 (Budget constraint)

All variables nonnegative

Assume the decision maker has n goals. To apply preemptive goal programming, we must

separate the objective function into n components,  where component i consists of the ob-

jective function term involving goal i. We define

zi � objective function term involving goal i

For the Priceler example, z1 � P1s1
�, z2 � P2s2

�, and z3 � P3s3
�. Preemptive goal pro-

gramming problems can be solved by an extension of the simplex known as the goal pro-

gramming simplex. To prepare a problem for solution by the goal programming simplex,

we must compute n row 0’s, with the ith row 0 corresponding to goal i. Thus, for the

Priceler problem, we have

Row 0 (goal 1): z1 � P1s1
�

� 0

Row 0 (goal 2): z2 � P2s2
�

� 0

Row 0 (goal 3): z3 � P3s3
�

� 0

From (23), we find that BV � {s1
�, s2

�, s3
�, s4} (s4 � slack variable for fourth constraint)

is a starting basic feasible solution that could be used to solve (23) via the simplex algo-

rithm (or goal programming simplex algorithm). As with the regular simplex, we must

first eliminate all variables in the starting basis from each row 0. Adding P1 (HIM con-

straint) to row 0 (goal 1) yields

Row 0 (goal 1): z1 � 7P1x1 � 3P1x2 � P1s1
�

� 40P1 (HIM)
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Adding P2 (LIP constraint) to row 0 (goal 2) yields

Row 0 (goal 2): z2 � 10P2x1 � 5P2x2 � P2s2
�

� 60P2 (LIP)

Adding P3 (HIW constraint) to row 0 (goal 3) yields

Row 0 (goal 3): z3 � 5P3x1 � 4P3x2 � P3s3
�

� 35P3 (HIW)

The Priceler problem can now be solved by the goal programming simplex.

The differences between the goal programming simplex and the ordinary simplex are

as follows:

1 The ordinary simplex has a single row 0, whereas the goal programming simplex re-

quires n row 0’s (one for each goal).

2 In the goal programming simplex, the following method is used to determine the en-

tering variable: Find the highest-priority goal (goal i�) that has not been met (or find the

highest-priority goal i� having zi�  0). Find the variable with the most positive coeffi-

cient in row 0 (goal i�) and enter this variable (subject to the following restriction) into

the basis. This will reduce zi� and ensure that we come closer to meeting goal i�. If, how-

ever, a variable has a negative  coefficient in row 0 associated with a goal having a higher

priority than i�, then the variable cannot enter the basis. Entering such a variable in the

basis would increase the deviation from some higher-priority goal. If the variable with the

most positive coefficient in row 0 (goal i�) cannot be entered into the basis, then try to

find another variable with a positive coefficient in row 0 (goal i�). If no variable for row

0 (goal i�) can enter the basis, then there is no way to come closer to meeting goal i� with-

out increasing the deviation from some higher-priority goal. In this case, move on to row

0 (goal i� � 1) in an attempt to come closer to meeting goal i� � 1.

3 When a pivot is performed, row 0 for each goal must be updated.

4 A tableau will yield the optimal solution if all goals are satisfied (that is, z1 � z2 �

			 � zn � 0), or if each variable that can enter the basis and reduce the value of zi� for

an unsatisfied goal i� will increase the deviation from some goal i having a higher prior-

ity than goal i�.

We now use the goal programming simplex to solve the Priceler example. In each

tableau, the row 0’s are listed in order of the goal’s priorities (from highest priority to low-

est priority). The initial tableau is Table 53. The current bfs is s1
�

� 40, s2
�

� 60, s3
�

� 35,

s4 � 600. Because z1 � 40P1, goal 1 is not satisfied. To reduce the penalty associated with

not meeting goal 1, we enter the variable with the most positive coefficient (x1) in row 0

(HIM). The ratio test indicates that x1 should enter the basis in the HIM constraint.

After entering x1 into the basis, we obtain Table 54. The current basic solution is x1 �

�
4

7

0
�, s�

2 � �
2

7

0
�, s3

�
� �

4

7

5
�, s4 � �

20

7

0
�. Because s1

�
� 0 and z1 � 0, goal 1 is now satisfied. We

now try to satisfy goal 2 (while ensuring that the higher-priority goal 1 is still satisfied).

The variable with the most positive coefficient in row 0 (LIP) is s1
�. Observe that enter-

ing s1
� into the basis will not increase z1 [because the coefficient of s1

� in row 0 (HIM) is

0]. Thus, after entering  s1
� into the basis, goal 1 will still be satisfied. The ratio test in-

dicates that s1
� could enter the basis in either the LIP or the budget constraint. We arbi-

trarily choose to enter s1
� into the basis in the budget constraint.

After pivoting s1
� into the basis, we obtain Table 55. Because z1 � z2 � 0, goals 1 and

2 are met. Because z3 � 5P3, however, goal 3 is unmet. The current bfs is x1 � 6, s2
�

�

0, s3
�

� 5, s1
�

� 2. We now try to come closer to meeting goal 3 (without violating ei-

ther goal 1 or goal 2). Because x2 is the only variable with a positive coefficient in row 0

(HIW), the only way to come closer to meeting goal 3 (HIW) is to enter x2 into the ba-

sis. Observe, however, that x2 has a negative coefficient in row 0 for goal 2 (LIP). Thus,
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the only way we can come closer to meeting goal 3 (HIW) is to violate a higher-priority

goal, goal 2 (LIP). This is therefore an optimal tableau. The preemptive goal program-

ming solution is to purchase 6 minutes of football ads and no soap opera ads. Goals 1 and

2 (HIM and LIP) are met, and Priceler falls 5 million exposures short of meeting goal 3

(HIW).

If the analyst has access to a computerized goal programming code, then by reorder-

ing the priorities assigned to the goals, many solutions can be generated. From among

these solutions, the decision maker can choose a solution that she feels best fits her pref-

erences. Table 56 lists the solutions found by the preemptive goal programming method

for each possible set of priorities. Thus, we see that different ordering of priorities can

lead to different advertising strategies.
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TA B L E  53

Initial Tableau for Preemptive Goal Programming for Priceler

x1 x2 s1
� s2

� s3
� s1

� s2
� s3

� s4 rhs

Row 0 (HIM) 7P1 3P1 �P1 0 0 0 0 0 0 z1 � 40P1

Row 0 (LIP) 10P2 5P2 0 �P2 0 0 0 0 0 z2 � 60P2

Row 0 (HIW) 5P3 4P3 0 0 �P3 0 0 0 0 z3 � 35P3

HIM 7 3 �1 0 0 1 0 0 0 40

LIP 10 5 0 �1 0 0 1 0 0 60

HIW 5 4 0 0 �1 0 0 1 0 35

Budget 100 60 0 0 0 0 0 0 1 600

TA B L E  54

First Tableau for Preemptive Goal Programming for Priceler

x1 x2 s1
� s2

� s3
� s1

� s2
� s3

� s4 rhs

Row 0 (HIM) 0 0 0 0 0 �P1 0 0 0 z1 � 0

Row 0 (LIP) 0 �
5

7

P2
� �

10

7

P2
� �P2 0 ��

10

7

P2
� 0 0 0 z2 � �

20

7

P2
�

Row 0 (HIW) 0 �
13

7

P3
� �

5

7

P3
� 0 �P3 ��

5

7

P3
� 0 0 0 z3 � �

45

7

P3
�

HIM 1 �
3

7
� ��

1

7
� 0 0 �

1

7
� 0 0 0 �

4

7

0
�

LIP 0 �
5

7
� �

1

7

0
� �1 0 ��

1

7

0
� 1 0 0 �

2

7

0
�

HIW 0 �
1

7

3
� �

5

7
� 0 �1 ��

5

7
� 0 1 0 �

4

7

5
�

Budget 0 �
12

7

0
� �

10

7

0
� 0 0 ��

10

7

0
� 0 0 1 �

20

7

0
�

TA B L E  55

Optimal Tableau for Preemptive Goal Programming for Priceler

x1 x2 s1
� s2

� s3
� s1

� s2
� s3

� s4 rhs

Row 0 (HIM) 0 0 0 0 0 �P1 0 0 0 z1 � 0

Row 0 (LIP) 0 �P2 0 �P2 0 0 0 0 ��
1

P

0
2
� z2 � 0

Row 0 (HIW) 0 P3 0 0 �P3 0 0 0 ��
2

P

0
3
� z3 � 5P3

HIM 1 �
3

5
� 0 0 0 0 0 0 �

1

1

00
� 6

LIP 0 �1 0 �1 0 0 1 0 ��
1

1

0
� 0

HIW 0 1 0 0 �1 0 0 1 ��
2

1

0
� 5

Budget 0 �
6

5
� 1 0 0 �1 0 0 �

1

7

00
� 2



When a preemptive goal programming problem involves only two decision variables,

the optimal solution can be found graphically. For example, suppose HIW is the highest-

priority goal, LIP is the second-highest, and HIM is the lowest. From Figure 14, we find

that the set of points satisfying the highest-priority goal (HIW) and the budget constraint

is bounded by the triangle ABC. Among these points, we now try to come as close as we

can to satisfying the second-highest-priority goal (LIP). Unfortunately, no point in trian-

gle ABC satisfies the LIP goal. We see from the figure, however, that among all points sat-

isfying the highest-priority goal, point C (C is where the HIW goal is exactly met and the

budget constraint is binding) is the unique point that comes the closest to satisfying the

LIP goal. Simultaneously solving the equations

5x1 � 4x2 � 35 (HIW goal exactly met)

100x1 � 60x2 � 600 (Budget constraint binding)

we find that point C � (3, 5). Thus, for this set of priorities, the preemptive goal pro-

gramming solution is to purchase 3 football game ads and 5 soap opera ads.

Goal programming is not the only approach used to analyze multiple objective decision-

making problems under certainty. See Steuer (1985) and Zionts and Wallenius (1976) for

other approaches to multiple objective decision making under certainty.

Using LINDO or LINGO to Solve Preemptive 
Goal Programming Problems

Readers who do not have access to a computer program that will solve preemptive goal

programming problems may still use LINDO (or any other LP package) to solve them. To

illustrate how LINDO can be used to solve a preemptive goal programming problem, let’s

look at the Priceler example with our original set of priorities (HIM followed by LIP fol-

lowed by HIW).

We begin by asking LINDO to minimize the deviation from the highest-priority (HIM)

goal by solving the following LP:

min z � s1
�

s.t. 7x1 � 3x2 � s1
�

� s1
�

� 40 (HIM constraint)

s.t. 10x1 � 5x2 � s2
�

� s2
�

� 60 (LIP constraint)

s.t. 5x1 � 4x2 � s3
�

� s3
�

� 35 (HIW constraint)

s.t. 100x1 � 60x2 � s3
�

� s3
�

� 600 (Budget constraint)

All variables nonnegative
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TA B L E  56

Optimal Solutions for Priceler Found by Preemptive Goal Programming

Priorities Optimal

Second x1 x2

Deviations from

Highest Highest Lowest Value Value HIM LIP HIW

HIM LIP HIW 6 0 0 0 5

HIM HIW LIP 5 �
5

3
� 0 �

5

3
� �

1

3

0
�

LIP HIM HIW 6 0 0 0 5

LIP HIW HIM 6 0 0 0 5

HIW HIM LIP 3 5 4 5 0

HIW LIP HIM 3 5 4 5 0



Goal 1 (HIM) can be met, so LINDO reports an optimal z-value of 0. We now want to

come as close as possible to meeting goal 2 while ensuring that the deviation from goal

1 remains at its current level (0). Using an objective function of s2
� (to minimize goal 2)

we add the constraint s1
�

� 0 (to ensure that goal 1 is still met) and ask LINDO to solve

min z � s2
�

s.t. 7x1 � 3x2 � s1
�

� s1
�

� 40 (HIM constraint)

s.t. 10x1 � 5x2 � s2
�

� s2
�

� 60 (LIP constraint)

s.t. 5x1 � 4x2 � s3
�

� s3
�

� 35 (HIW constraint)

s.t. 100x1 � 60x2 � s3
�

� s3
�

� 600 (Budget constraint)

s1
�

� 0

All variables nonnegative

Because goals 1 and 2 can be simultaneously met, this LP will also yield an optimal z-value

of 0. We now come as close as possible to meeting goal 3 (HIW) while keeping the deviations

from goals 1 and 2 at their current levels. This requires LINDO to solve the following LP:

min z � s3
�

s.t. 7x1 � 3x2 � s1
�

� s1
�

� 40 (HIM constraint)

s.t. 10x1 � 5x2 � s2
�

� s2
�

� 60 (LIP constraint)

s.t. 5x1 � 4x2 � s3
�

� s3
�

� 35 (HIW constraint)

s.t. 100x1 � 60x2 � s3
�

� s3
�

� 600 (Budget constraint)

s1
�

� 0

s2
�

� 0

All variables nonnegative

Of course, the LINDO (or LINGO) full-screen editor makes it easy to go from one step

of the goal programming problem to the next. To go from step i to step i � 1, simply mod-

ify your objective function to minimize the deviation from the i � 1 highest-priority goal

and add a constraint that ensures that the deviation from the ith highest-priority goal remains

at its current level.

R E M A R K S 1 The optimal solution to this LP is z � 5, x1 � 6, x2 � 0, s1
�

� 0, s2
�

� 0, s3
�

� 5, s1
�

� 2, 
s2

�
� 0, s3

�
� 0, which agrees with the solution obtained by the preemptive goal programming

method. The z-value of 5 indicates that if goals 1 and 2 are met, then the best that Priceler can do
is to come within 5 million exposures of meeting goal 3.
2 By the way, suppose we could only have come within two units of meeting goal 1. When solv-
ing our second LP, we would have added the constraint s1

�
� 2 (instead of s1

�
� 0).

3 The goal programming methodology of this section can be applied without any changes when
some or all of the decision variables are restricted to be integer or 0–1 variables (see Problems 11,
12, and 14).
4 Using LINGO, the goal programming methodology of this section can be applied without any
changes even if the objective function or some of the constraints are nonlinear.

P R O B L E M S
Group A
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1 Graphically determine the preemptive goal progamming
solution to the Priceler example for the following priorities:

a LIP is highest-priority goal, followed by HIW and
then HIM.

b HIM is highest-priority goal, followed by LIP and
then HIW.

c HIM is highest-priority goal, followed by HIW and
then LIP.



d HIW is highest-priority goal, followed by HIM and
then LIP.

2 Fruit Computer Company is ready to make its annual
purchase of computer chips. Fruit can purchase chips (in
lots of 100) from three suppliers. Each chip is rated as being
of excellent, good, or mediocre quality. During the coming
year, Fruit will need 5,000 excellent chips, 3,000 good chips,
and 1,000 mediocre chips. The characteristics of the chips
purchased from each supplier are shown in Table 57. Each
year, Fruit has budgeted $28,000 to spend on chips. If Fruit
does not obtain enough chips of a given quality, then the
company may special-order additional chips at $10 per
excellent chip, $6 per good chip, and $4 per mediocre chip.
Fruit assesses a penalty of $1 for each dollar by which the
amount paid to suppliers 1–3 exceeds the annual budget.
Formulate and solve an LP to help Fruit minimize the penalty
associated with meeting the annual chip requirements. Also
use preemptive goal programming to determine a purchasing
strategy. Let the budget constraint have the highest priority,
followed in order by the restrictions on excellent, good, and
mediocre chips.

3 Highland Appliance must determine how many color
TVs and VCRs should be stocked. It costs Highland $300
to purchase a color TV and $200 to purchase a VCR. A
color TV requires 3 sq yd of storage space, and a VCR
requires 1 sq yd of storage space. The sale of a color TV
earns Highland a profit of $150, and the sale of a VCR earns
Highland a profit of $100. Highland has set the following
goals (listed in order of importance):

Goal 1 A maximum of $20,000 can be spent on purchas-
ing color TVs and VCRs.
Goal 2 Highland should earn at least $11,000 in profits
from the sale of color TVs and VCRs.
Goal 3 Color TVs and VCRs should use no more than 200
sq yd of storage space.

Formulate a preemptive goal programming model that High-
land could use to determine how many color TVs and VCRs
to order. How would the preemptive goal formulation be modified
if Highland’s goal were to have a profit of exactly $11,000?

4 A company produces two products. Relevant information
for each product is shown in Table 58. The company has a
goal of $48 in profits and incurs a $1 penalty for each dollar
it falls short of this goal. A total of 32 hours of labor are
available. A $2 penalty is incurred for each hour of overtime
(labor over 32 hours) used, and a $1 penalty is incurred for
each hour of available labor that is unused. Marketing
considerations require that at least 10 units of product 2 be
produced. For each unit (of either product) by which
production falls short of demand, a penalty of $5 is assessed.

a Formulate an LP that can be used to minimize the
penalty incurred by the company.

b Suppose the company sets (in order of importance)
the following goals:

Goal 1 Avoid underutilization of labor.
Goal 2 Meet demand for product 1.
Goal 3 Meet demand for product 2.
Goal 4 Do not use any overtime.

Formulate and solve a preemptive goal programming model
for this situation.
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5† Deancorp produces sausage by blending together beef
head, pork chuck, mutton, and water. The cost per pound, fat
per pound, and protein per pound for these ingredients is given
in Table 59. Deancorp needs to produce 100 lb of sausage and
has set the following goals, listed in order of priority:

Goal 1 Sausage should consist of at least 15% protein.
Goal 2 Sausage should consist of at most 8% fat.
Goal 3 Cost per pound of sausage should not exceed 8¢.

Formulate a preemptive goal programming model for 
Deancorp.

6‡ The Touche Young accounting firm must complete three
jobs during the next month. Job 1 will require 500 hours of
work, job 2 will require 300 hours of work, and job 3 will
require 100 hours of work. Currently, the firm consists of 5
partners, 5 senior employees, and 5 junior employees, each
of whom can work up to 40 hours per month. The dollar
amount (per hour) that the company can bill depends on the
type of accountant who is assigned to each job, as shown in
Table 60. (The X indicates that a junior employee does not
have enough experience to work on job 1.) All jobs must be
completed. Touche Young has also set the following goals,
listed in order of priority:

Goal 1 Monthly billings should exceed $68,000.
Goal 2 At most, 1 partner should be hired.
Goal 3 At most, 3 senior employees should be hired.
Goal 4 At most, 5 junior employees should be hired.

TA B L E  57

Characteristics of a
PriceLot of 100 Chips

Per 100
Supplier Excellent Good Mediocre Chips ($)

1 60 20 20 400

2 50 35 15 300

3 40 20 40 250

TA B L E  58

Product 1 Product 2

Labor required 4 hours 2 hours

Contribution to profit $4 $2

†Based on Steuer (1984).
‡Based on Welling (1977).

TA B L E  59

Head Chuck Mutton Moisture

Fat (per lb) .05 .24 .11 0

Protein (per lb) .20 .26 .08 0

Cost (in ¢) .12 .96 8 0



Formulate a preemptive goal programming model for this
situation.

7 There are four teachers in the Faber College Business
School. Each semester, 200 students take each of the
following courses: marketing, finance, production, and
statistics. The “effectiveness” of each teacher in teaching
each class is given in Table 61. Each teacher can teach a
total of 200 students during the semester. The dean has set
a goal of obtaining an average teaching effectiveness level
of about 6 in each course. Deviations from this goal in any
course are considered equally important. Formulate a goal
programming model that can be used to determine the
semester’s teaching assignments.

Group B

8† Faber College is admitting students for the class of
2008. It has set four goals for this class, listed in order of
priority:

Goal 1 Entering class should be at least 5,000 students.
Goal 2 Entering class should have an average SAT score
of at least 640.
Goal 3 Entering class should consist of at least 25 percent
out-of-state students.
Goal 4 At least 2,000 members of the entering class should
not be nerds.

The applicants received by Faber are categorized in Table
62. Formulate a preemptive goal programming model that
could determine how many applicants of each type should
be admitted. Assume that all applicants who are admitted
will decide to attend Faber.

9‡ During the next four quarters, Wivco faces the following
demands for globots: quarter 1—13 globots; quarter 2—14
globots; quarter 3—12 globots; quarter 4—15 globots.
Globots may be produced by regular-time labor or by
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overtime labor. Production capacity (number of globots)
and production costs during the next four quarters are shown
in Table 63. Wivco has set the following goals in order of
importance:

Goal 1 Meet each quarter’s demand on time.
Goal 2 Inventory at the end of each quarter cannot exceed
3 units.
Goal 3 Total production cost should be held below $250.

Formulate a preemptive goal programming model that could
be used to determine Wivco’s production schedule during
the next four quarters. Assume that at the beginning of the
first quarter 1 globot is in inventory.

10 Ricky’s Record Store now employs five full-time
employees and three part-time employees. The normal
workload is 40 hours per week for full-time and 20 hours
per week for part-time employees. Each full-time employee
is paid $6 per hour for work up to 40 hours per week and
can sell 5 records per hour. A full-time employee who works
overtime is paid $10 per hour. Each part-time employee is
paid $3 per hour and can sell 3 records per hour. It costs
Ricky $6 to buy a record, and each record sells for $9.
Ricky has weekly fixed expenses of $500. He has established
the following weekly goals, listed in order of priority:

Goal 1 Sell at least 1,600 records per week.
Goal 2 Earn a profit of at least $2,200 per week.
Goal 3 Full-time employees should work at most 100 hours
of overtime.
Goal 4 To increase their sense of job security, the number
of hours by which each full-time employee fails to work 40
hours should be minimized.

Formulate a preemptive goal programming model that could
be used to determine how many hours per week each em-
ployee should work.

TA B L E  60

Job 1 Job 2 Job 3

Partner 160 120 110

Senior employee 120 190 170

Junior employee X 150 140

TA B L E  61

Teacher Marketing Finance Production Statistics

1 7 5 8 2

2 7 8 9 4

3 3 5 7 9

4 5 5 6 7

†Based on Lee and Moore, “University Admissions Planning”

(1974).
‡Based on Lee and Moore, “Production Scheduling” (1974).

TA B L E  62

Home SAT No. of No. of
State Score Nerds Non-Nerds

In-state 700 1500 400

In-state 600 1300 700

In-state 500 500 500

Out-of-state 700 350 450

Out-of-state 600 400 400

Out-of-state 500 400 600

TA B L E  63

Regular-Time Overtime

Quarter Capacity Cost/Unit Capacity Cost/Unit

1 9 $4 5 $6

2 10 $4 5 $7

3 11 $5 5 $8

4 12 $6 5 $9



11 Gotham City is trying to determine the type and
location of recreational facilities to be built during the next
decade. Four types of facilities are under consideration: golf
courses, swimming pools, gymnasiams, and tennis courts.
Six sites are under consideration. If a golf course is built, it
must be built at either site 1 or site 6. Other facilities may
be built at sites 2–5. The available land (in thousands of
square feet) at each site is given in Table 64.

The cost of building each facility (in thousands of dol-
lars), the annual maintenance cost (in thousands of dollars)
for each facility, and the land (in thousands of square feet)
required for each facility are given in Table 65.

The number of user days (in thousands) for each type of
facility depends on where it is built. The dependence is
given in Table 66.

a Consider the following set of priorities:

Priority 1 Limit land use at each site to the land available.
Priority 2 Construction costs should not exceed $1.2 
million.
Priority 3 User days should exceed 200,000.
Priority 4 Annual maintenance costs should not exceed
$200,000.

For this set of priorities, use preemptive goal programming
to determine the type and location of recreation facilities in
Gotham City.

b Consider the following set of priorities:

Priority 1 Limit land use at each site to the land available.
Priority 2 User days should exceed 200,000.
Priority 3 Construction costs should not exceed $1.2 
million.
Priority 4 Annual maintenance costs should not exceed
$200,000.

For this set of priorities, use preemptive goal programming
to determine the type and location of recreation facilities in
Gotham City.†
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12 A small aerospace company is considering eight
projects:

Project 1 Develop an automated test facility.
Project 2 Barcode all company inventory and machinery.
Project 3 Introduce a CAD/CAM system.
Project 4 Buy a new lathe and deburring system.
Project 5 Institute FMS (flexible manufacturing system).
Project 6 Install a LAN (local area network).
Project 7 Develop AIS (artificial intelligence simulation).
Project 8 Set up a TQM (total quality management) 
initiative.

Each project has been rated on five attributes: return on
investment (ROI), cost, productivity improvement, worker
requirements, and degree of technological risk. These rat-
ings are given in Table 67.

The company has set the following five goals (listed in
order of priority:

Goal 1 Achieve a return on investment of at least $3,250.
Goal 2 Limit cost to $1,300.
Goal 3 Achieve a productivity improvement of at least 6.
Goal 4 Limit manpower use to 108.
Goal 5 Limit technological risk to a total of 4.

Use preemptive goal programming to determine which proj-
ects should be undertaken.

13 The new president has just been elected and has set the
following economic goals (listed from highest to lowest
priority):

Goal 1 Balance the budget (this means revenues are at
least as large as costs).
Goal 2 Cut spending by at most $150 billion.
Goal 3 Raise at most $550 billion in taxes from the rich.
Goal 4 Raise at most $350 billion in taxes from the poor.

Currently, the government spends $1 trillion (a trillion �

1,000 billion) per year. Revenue can be raised in two ways:
through a gas tax and an income tax. You must determine

G � per gallon tax rate (in cents)

LTR � % tax rate charged on first $30,000 of income

HTR � % tax rate charged on any income earned
more than $30,000

C � cut in spending (in billions)

If the government chooses G, LTR, and HTR, then the
revenue given in Table 68 (in billions) is raised. Of course,
the tax rate on income more than $30,000 must be at least
as large as the tax rate on the first $30,000 of income. For-
mulate a preemptive goal programming model to help the
president meet his goals.

TA B L E  64

Site

2 3 4 5

Land 70 80 95 120

TA B L E  65

Construction Maintenance Land
Site Cost Cost Required

Golf 340 80 Not relevant

Swimming 300 36 29

Gymnasium 840 50 38

Tennis courts 85 17 45

TA B L E  66

Site 1 2 3 4 5 6

Golf 31 X X X X 27

Swimming X 25 21 32 32 X

Gymnasium X 37 29 28 38 X

Tennis courts X 20 23 22 20 X

†Based on Taylor and Keown (1984).



14 HAL computer must determine which of seven research
and development (R&D) projects to undertake. For each
project four quantities are of interest:

a the net present value (NPV in millions of dollars) of
the project

b the annual growth rate in sales generated by the 
project

c the probability that the project will succeed

d the cost (in millions of dollars) of the project

The relevant information is given in Table 69. HAL has
set the following four goals:

Goal 1 The total NPV of all chosen projects should be at
least $200 million.
Goal 2 The average probability of success for all projects
chosen should be at least .75.
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Goal 3 The average growth rate of all projects chosen
should be at least 15%.
Goal 4 The total cost of all chosen projects should be at
most $1 billion.

For the following sets of priorities, use preemptive (integer)
goal programming to determine which projects should be
selected.

Priority Set 1 2413
Priority Set 2 1342

TA B L E  67

Project

1 2 3 4 5 6 7 8

ROI ($) 2,070 456 670 350 495 380 1,500 480

Cost ($) 900 240 335 700 410 190 500 160

Productivity improvement 3 2 2 0 1 0 3 2

Manpower needed 18 18 27 36 42 6 48 24

Degree of risk 3 2 4 1 1 0 2 3

TA B L E  68

Low Income High Income

Gas tax G .5G

Tax on income up to $30,000 20LTR 5LTR

Tax on income above $30,000 0 15HTR

4.17 Using the Excel Solver to Solve LPs

Excel has the capability to solve linear (and often nonlinear) programming problems. In

this section, we show how to use the Excel Solver† to find the optimal solution to the diet

problem of Section 3.4 and the inventory example of Section 3.10.

The key to solving an LP on a spreadsheet is to set up a spreadsheet that tracks every-

thing of interest (costs or profits, resource usage, etc.). Next, identify the cells of interest

that can be varied. These are called changing cells. After defining the changing cells,

identify the cell that contains your objective function as the target cell. Next, we identify

our constraints and tell the Solver to solve the problem. At this point, the optimal solu-

tion to our problem will be placed in the spreadsheet.

TA B L E  69

NPV Annual Growth Probability Cost
Project (in millions) Rate of Success (in millions)

1 40 20 .75 220

2 30 16 .70 140

3 60 12 .75 280

4 45 8 .90 240

5 55 18 .65 300

6 40 18 .60 200

7 90 19 .65 440

†To activate the Excel Solver for the first time, select Tools and then select Add-Ins. Checking the Solver

Add-in box will cause Excel to open Solver whenever you check Tools and then Solver.



Using the Excel Solver to Solve the Diet Problem

In file Diet1.xls, we set up a spreadsheet model of the diet problem (Example 6 of Chap-

ter 3). To begin (see Figure 15) we enter headings for each type of food in B3:E3. In the

range B4:E4, we input trial values for the amount of each food eaten. For example, Fig-

ure 15 indicates that we are considering eating three brownies, four scoops of chocolate

ice cream, five bottles of cola, and six pieces of pineapple cheesecake. To see if the diet

in Figure 15 is an “optimal” diet, we must determine its cost as well as the calories, choco-

late, sugar, and fat it provides. In the range B5:E5, we input the per-unit cost for each

available food. Then we compute the cost of the diet in cell F5.

We could compute the cost of the diet in cell F5 with the formula

�B4 	 B5 � C4 	 C5 � D4 	 D5 � E4 	 E5

but it is easier to enter the formula

�SUMPRODUCT(B$4:E$4, B5:E5)

The �SUMPRODUCT function requires two ranges as inputs. The first cell in the first

range is multiplied by the first cell in the second range; then the second cell in the first

range is multiplied by the second cell in the second range; and so on. All of these prod-

ucts are then added. Essentially, the �SUMPRODUCT function duplicates the notion of

scalar products of vectors discussed in Section 2.1. Thus, in cell F5 the �SUMPROD-

UCT function computes total cost as (3)(50) � 4(20) � 5(30) � 6(80) � 860 cents.

In the range B6:E6, we enter the calories in each food; in B7:E7, the chocolate content;

in B8:E8, the sugar content; and in B9:E9, the fat content. Copying the formula in F5 to

the cell range F6:F9 now computes the calories, chocolate, sugar, and fat contained in the

diet defined by the values in B4:E4. Note that the �SUMPRODUCT function makes it

easy to create many constraints by entering one formula and using the copy command.

In the cell range H6:H9, we have listed the minimum daily requirement for each nu-

trient. From Figure 15, we see that our current diet is feasible (meets daily requirements

for each nutrient) and costs $8.70. We now describe how to use Solver to find the opti-

mal solution to the diet problem.

Step 1 From the Tools menu, select Solver. The dialog box in Figure 16 will appear.

Step 2 Move the mouse to the Set Target Cell portion of the dialog box and click (or

type in the cell address) on your target cell (total cost in cell F5) and select Min. This tells

Solver to minimize total cost.

Step 3 Move the mouse to the By Changing Cells portion of the dialog box and click on

the changing cells (B4:E4). This tells Solver it can change the amount eaten of each food.

Step 4 Click on the Add button to add constraints. The screen in Figure 17 will appear.

Move to the Cell Reference part of the Add Constraint dialog box and select F6:F9. Then

move to the dropdown box and select �. Finally, click on the constraint portion of the

dialog box and select H6:H9. Choose OK because there are no more constraints. If you
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2
3

4

5

6
7
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9

A B C D E F G H
Feasible

solution to Diet Problem

Brownie Choc IC Cola Pine Cheese Totals Required

Eaten 3 4 5 6

Cost 50 20 30 80 860

Calories 400 200 150 500 5750 >= 500
Chocolate 3 2 0 0 17 >= 6

Sugar 2 2 4 4 58 >= 10

Fat 2 4 1 5 57 >= 8F I G U R E  15

Diet1.xls



need to add more constraints, choose Add. From the main Solver box you may change a

constraint by selecting Change or delete a constraint by selecting Delete.

We have now created four constraints. Solver will ensure that the changing cells are

chosen so F6�H6, F7�H7, F8�H8, and F9�H9. In short, the diet will be cho-

sen to ensure that enough calories, chocolate, sugar, and fat are eaten.

Our Solver window should now look like Figure 18.

Step 5 Before solving the problem, we need to tell Solver that all changing cells must

be nonnegative. We must also tell Solver that we have a linear model. If we do not tell

Solver the model is linear, then Solver will not know it should use the simplex method to

solve the problem, and Solver may get an incorrect answer. We may accomplish both of

these goals by selecting options. The screen in Figure 19 will appear. Checking Assume

Non-Negative ensures that all changing cells will be nonnegative. Checking the Assume

Linear Model box ensures that Solver will use the simplex method to solve our LP. Some-

times in a poorly scaled LP (one with both large and small numbers present in the ob-

jective function, right-hand sides, or constraints), the Solver will not recognize an LP as

a linear model. Checking the Use Automatic Scaling box minimizes the chances that a

poorly scaled LP will be interpreted as a nonlinear model. By the way, Max Time is the

maximum time the Solver will run before prompting the user about whether to terminate

the solution procedure. Iterations is the maximum number of simplex pivots the Solver

will make before asking the user whether the solution procedure will continue. The Pre-

cision setting describes how much “error” is tolerated before deciding a constraint is not

satisfied. For example, with a precision of .001, a changing cell with a value of �.0009

would be deemed to satisfy a nonnegativity constraint. The Tolerance and Convergence

settings will be discussed in Chapter 8.
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F I G U R E  16

F I G U R E  17



Step 6 After choosing OK from the Solver Options box, we then select Solve. Solver

yields the optimal solution shown in Figure 20.

Just like LINDO, the Solver says the minimum cost is 90 cents. The minimum cost is ob-

tained by eating no brownies, 3 oz of chocolate ice cream, 1 bottle of cola, and no pineap-

ple cheesecake.

Using the Solver to Solve the Sailco Example

We now set up a spreadsheet (Sailco.xls) to solve the Sailco example (Example 12 of

Chapter 3). See Figure 21. For each month, we need to keep track of our beginning in-

ventory, ending inventory, and cost. Note that for each month
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F I G U R E  18
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Sailco.xls
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Monthly cost � 400(regular-time production) � 450(overtime production)

� 20(unit holding cost)

Ending inventory � beginning inventory � monthly production � monthly demand

Step 1 Enter unit costs in I1:I3, regular-time monthly capacities in F5:F8, demands in

G5:G8, and beginning month 1 inventory in B5.

Step 2 Enter trial values of each month’s overtime and regular-time production in C5:D8.

Step 3 Determine month 1 ending inventory in H5 with the formula

�B5 � C5 � D5 � G5

This implements the following relationship:

Ending inventory � beginning inventory � monthly production � monthly demand

Step 4 Set month 2 beginning inventory to month 1 ending inventory by entering in cell

B6 the formula

�H5

Step 5 Copying the formula from B5 to B6:B8 computes beginning inventory for months

2–4. Copying the formula from H5 to H6:H8 computes ending inventory for months 2–4.

Step 6 In cell K5, we compute the month 1 cost with the formula

�$I$1*D5 � C5*$I$2 � $I$3*H5

This implements the fact that each month’s cost is given by

Monthly cost � 400(regular-time production) � 450(overtime production) 

� 20(unit holding cost)

Copying this formula from K5 to K6:K8 computes costs for months 2–4. We compute to-

tal cost in cell K9 with the formula

�SUM(K5:K8)

Step 7 We now fill in our Solver dialog box as shown in Figure 22. Our goal is to min-

imize total cost (cell K9). Our changing cells are overtime and regular-time production

1

2
3

4

5

6
7

8

9

A B C D E F G H
Optimal Solution

to the Diet Problem

Brownie Choc IC Cola Pine Cheese Totals Required

Eaten 0 3 1 0

Cost 50 20 30 80 90

Calories 400 200 150 500 750 >= 500
Chocolate 3 2 0 0 6 >= 6

Sugar 2 2 4 4 10 >= 10

Fat 2 4 1 5 13 >= 8F I G U R E  20

1
2
3

4
5
6

7
8
9

A B C D E F G H I J K
Optimal solution RT unit cost 400.00$  
to Sailco problem OT unit cost 450.00$  

Unit Holding cost 20.00$    

Month

Beg 
Inventory

OT 
Production

RT 
Production

RT 
Capacity Demand Ending Inventory Monthly Cost

1 10 0 40 <= 40 40 10 >= 0 16,200.00$    
2 10 10 40 <= 40 60 0 >= 0 20,500.00$    

3 0 35 40 <= 40 75 0 >= 0 31,750.00$    
4 0 0 25 <= 40 25 0 >= 0 10,000.00$    

Total Cost 78,450.00$    
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(C5:D8). We must ensure that each month’s regular-time production is at most 40 

(D5:D8 ��F5:F8). Finally, constraining each month’s ending inventory to be non-

negative (H5:H8 � J5:J8) ensures that each month’s demand is met on time. In Options

we check Assume Linear Model, Assume Non-Negative, and Use Automatic Scaling. 

After choosing Solve, we find the optimal solution shown in Figure 21. A minimum cost

of $78,450 is achieved by producing 40 units with regular-time production during months

1–3, 25 units of regular-time production during month 4, 10 units of overtime production

during month 2, and 35 units of overtime production during month 3.

Using the Value of Option

Recall that in the Sailco problem the minimum cost was $78,450. Suppose that we wanted

to find a solution that yielded a cost of exactly $90,000. Then we may use the Solver’s

Value of option. Simply fill in the Solver dialog box as shown in Figure 23 (see the sheet

titled Cost of $90,000 in file Sailco.xls).

Solver yields the solution in Figure 24. Note that Solver found a feasible solution hav-

ing a total cost of exactly $90,000.
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Sailco.xls



Solver and Infeasible LPs

Recall that if at least 36 mg of vitamin C are needed, then the Bevco problem (Example

4 of this chapter) is infeasible. We have set this problem up in Solver in file Bevco.xls.

Figure 25 shows the spreadsheet, and Figure 26 shows the Solver window.

When we choose Solve, we obtain the message shown in Figure 27. This indicates that

the LP has no feasible solution.

Solver and Unbounded LPs

Recall that Example 3 of this chapter was an unbounded LP. The file Breadco.xls (see Fig-

ure 28) contains a Solver formulation of this LP. Figure 29 contains the Solver window

for the Breadco example. When we choose Solve, we obtain the message in Figure 30.
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1
2
3

4
5
6

7
8
9

A B C D E F G H I J K
Optimal solution RT unit cost 400.00$  
to Sailco problem OT unit cost 450.00$  

Unit Holding cost 20.00$    

Month

Beg 
Inventory

OT 
Production

RT 
Production

RT 
Capacity Demand Ending Inventory Monthly Cost

1 10 179.090909 0 <= 40 40 149.0909091 >= 0 83,572.73$    
2 149.0909 0 0 <= 40 60 89.09090909 >= 0 1,781.82$      

3 89.09091 0 0 <= 40 75 14.09090909 >= 0 281.82$         
4 14.09091 0 10.909091 <= 40 25 0 >= 0 4,363.64$      

Total Cost 90,000.00$    
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1
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3

4
5
6

7
8

9
10

11

A B C D E F

Infeasible LP

Total Cost
Soda Juice 3 0

Amount 0 10

Unit cost 2 3
Available Needed

Sugar 0.5 0.25 2.5 >= 4
Vitamin C 1 3 30 >= 36

Total oz. 1 1 10 = 10F I G U R E  25
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Bevco.xls

Breadco.xls
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1

2

3

4

5

6

7

8

9

10

11

12

13

A B C D E F G H

Unbounded 

LP

FB Baked SD Baked 

Yeast 

bought

Flour 

bought

Originally we 

have

5 0 0 20

Price or 

cost 36 30 3 4

Yeast 

needed 1 1 5

Flour 

needed 6 5 10

Profit 100

Used Available

Yeast 5 <= 5

Flour 30 <= 30
F I G U R E  28
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The message “Set Cell values do not converge” indicates an unbounded LP; that is, there

are values of the changing cells that satisfy all constraints and yield arbitrarily large profit.

P R O B L E M S
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F I G U R E  30

Group B

6 Problem 4 of Section 3.11

7 Problem 5 of Section 3.11

8 Problem 3 of Section 3.12

9 Problem 5 of Section 3.12

S U M M A R Y Preparing an LP for Solution by the Simplex

An LP is in standard form if all constraints are equality constraints and all variables are

nonnegative. To place an LP in standard form, we do the following:

Step 1 If the ith constraint is a � constraint, then we convert it to an equality constraint

by adding a slack variable si and the sign restriction si � 0.

Step 2 If the ith constraint is a � constraint, then we convert it to an equality constraint

by subtracting an excess variable ei and adding the sign restriction ei � 0.

Step 3 If the variable xi is unrestricted in sign (urs), replace xi in both the objective func-

tion and constraints by xi� � xi�, where xi� � 0 and xi� � 0.

Suppose that once an LP is placed in standard form, it has m constraints and n variables.

A basic solution to Ax � b is obtained by setting n � m variables equal to 0 and solv-

ing for the values of the remaining m variables. Any basic solution in which all variables

are nonnegative is a basic feasible solution (bfs) to the LP.

For any LP, there is a unique extreme point of the LP’s feasible region corresponding to

each bfs. Also, at least one bfs corresponds to each extreme point of the feasible region.

If an LP has an optimal solution, then there is an extreme point that is optimal. Thus,

in searching for an optimal solution to an LP, we may restrict our search to the LP’s ba-

sic feasible solutions.

Group A

Use Excel Solver to find the optimal solution to the follow-
ing problems:

1 Problem 2 of Section 3.4

2 Example 7 of Chapter 3

3 Example 11 of Chapter 3

4 Problem 3 of Section 3.10

5 Example 14 of Section 3.12



The Simplex Algorithm

If the LP is in standard form and a bfs is readily apparent, then the simplex algorithm (for

a max problem) proceeds as follows:

Step 1 If all nonbasic variables have nonnegative coefficients in row 0, then the current

bfs is optimal. If any variables in row 0 have negative coefficients, then choose the vari-

able with the most negative coefficient in row 0 to enter the basis.

Step 2 For each constraint in which the entering variable has a positive coefficient, com-

pute the following ratio:

Any constraint attaining the smallest value of this ratio is the winner of the ratio test. Use

EROs to make the entering variable a basic variable in any constraint that wins the ratio

test. Return to step 1.

If the LP (a max problem) is unbounded, then we eventually reach a tableau in which

a nonbasic variable has a negative coefficient in row 0 and a nonpositive coefficient in

each constraint. Otherwise (barring the extremely rare occurrence of cycling), the simplex

algorithm will find an optimal solution to an LP.

If a bfs is not readily apparent, then the Big M method or the two-phase simplex

method must be used to obtain a bfs.

The Big M Method

Step 1 Modify the constraints so that the right-hand side of each constraint is nonnegative.

Step 1� Identify each constraint that is now (after step 1) an � or � constraint. In step

3, we will add an artificial variable to each of these constraints.

Step 2 Convert each inequality constraint to standard form.

Step 3 If (after step 1 has been completed) constraint i is a � or � constraint, then add

an artificial variable ai and the sign restriction ai � 0.

Step 4 Let M denote a very large positive number. If the LP is a min problem, then add

(for each artificial variable) Mai to the objective function. For a max problem, add �Mai.

Step 5 Because each artificial variable will be in the starting basis, each must be eliminated

from row 0 before beginning the simplex. If all artificial variables are equal to 0 in the opti-

mal solution, then we have found the optimal solution to the original problem. If any artifi-

cial variables are positive in the optimal solution, then the original problem is infeasible.

The Two-Phase Method

Step 1 Modify the constraints so that the right-hand side of each constraint is nonnegative.

Step 1� Identify each constraint that is now (after step 1) an � or � constraint. In step

3, we will add an artificial variable to each of these constraints.

Step 2 Convert each inequality constraint to the standard form.

Step 3 If (after step 1�) constraint i is a � or � constraint, then add an artificial variable

ai and the sign restriction ai � 0.

Right-hand side of constraint
�����
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Step 4 For now, ignore the original LP’s objective function. Instead, solve an LP whose

objective function is min w� � (sum of all the artificial variables). This is called the Phase

I LP.

Because each ai � 0, solving the Phase I LP will result in one of the following three

cases:

Case 1 The optimal value of w� is greater than zero. In this case, the original LP has no

feasible solution.

Case 2 The optimal value of w� is equal to zero, and no artificial variables are in the op-

timal Phase I basis. In this case, drop all columns in the optimal Phase I tableau that cor-

respond to the artificial variables and combine the original objective function with the

constraints from the optimal Phase I tableau. This yields the Phase II LP. The optimal

solution to the Phase II LP and the original LP are the same.

Case 3 The optimal value of w� is equal to zero, and at least one artificial variable is in

the optimal Phase I basis. In this case, we can find the optimal solution to the original LP

if, at the end of Phase I, we drop from the optimal Phase I tableau all nonbasic artificial

variables and any variable from the original problem that has a negative coefficient in row

0 of the optimal Phase I tableau.

Solving Minimization Problems

To solve a minimization problem by the simplex, choose as the entering variable the non-

basic variable in row 0 with the most positive coefficient. A tableau or canonical form is

optimal if each variable in row 0 has a nonpositive coefficient.

Alternative Optimal Solutions

If a nonbasic variable has a zero coefficient in row 0 of an optimal tableau and the non-

basic variable can be pivoted into the basis, the LP may have alternative optimal solu-

tions. If two basic feasible solutions are optimal, then any point on the line segment join-

ing the two optimal basic feasible solutions is also an optimal solution to the LP.

Unrestricted-in-Sign Variables

If we replace a urs variable xi with xi� � xi�, the LP’s optimal solution will have xi�, xi� or

both xi� and xi� equal to zero.

R E V I E W  P R O B L E M S
Group A
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1 Use the simplex algorithm to find two optimal solutions
to the following LP:

max z � 5x1 � 3x2 � x3

s.t. x1 � x2 � 3x3 � 6

s.t. 5x1 � 3x2 � 6x3 � 15

x3, x1, x2 � 0

2 Use the simplex algorithm to find the optimal solution
to the following LP:

min z � �4x1 � x2

s.t. 3x1 � x2 � 6

s.t. �x1 � 2x2 � 0

x1, x2 � 0



3 Use the Big M method and the two-phase method to
find the optimal solution to the following LP:

max z � 5x1 � x2

s.t. 2x1 � x2 � 6

s.t. x1 � x2 � 4

s.t. x1 � 2x2 � 5

x1, x2 � 0

4 Use the simplex algorithm to find the optimal solution
to the following LP:

max z � 5x1 � x2

s.t. x1 � 3x2 � 1

s.t. x1 � 4x2 � 3

s.t. x1, x2 � 0

5 Use the simplex algorithm to find the optimal solution
to the following LP:

min z � �x1 � 2x2

s.t. 2x1 � x2 � 5

s.t. x1 � x2 � 3

x1, x2 � 0

6 Use the Big M method and the two-phase method to
find the optimal solution to the following LP:

max z � x1 � x2

s.t. 2x1 � x2 � 3.5

s.t. 3x1 � x2 � 3.5

s.t. x1 � x2 � 1

x1, x2 � 0

7 Use the simplex algorithm to find two optimal solutions
to the following LP. How many optimal solutions does this
LP have? Find a third optimal solution.

max z � 4x1 � x2

s.t. 2x1 � 3x2 � 4

s.t. x1 � x2 � 1

s.t. 4x1 � x2 � 2

x1, x2 � 0

8 Use the simplex method to find the optimal solution to
the following LP:

max z � 5x1 � x2

s.t. 2x1 � x2 � 6

s.t. x1 � x2 � 0

x1, x2 � 0

9 Use the Big M method and the two-phase method to
find the optimal solution to the following LP:

min z � �3x1 � x2

s.t. �x1 � 2x2 � 2

s.t. �x1 � x2 � 3

x1, x2 � 0

10 Suppose that in the Dakota Furniture problem, 10 types
of furniture could be manufactured. To obtain an optimal
solution, how many types of furniture (at the most) would
have to be manufactured?
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11 Consider the following LP:

max z � 10x1 � x2

s.t. x1 � x2 � 1

s.t. 20x1 � x2 � 100

x1, x2 � 0

a Find all the basic feasible solutions for this LP.

b Show that when the simplex is used to solve this LP,
every basic feasible solution must be examined before
the optimal solution is found.

By generalizing this example, Klee and Minty (1972)
constructed (for n � 2, 3, . . .) an LP with n decision vari-
ables and n constraints for which the simplex algorithm ex-
amines 2n

� 1 basic feasible solutions before the optimal so-
lution is found. Thus, there exists an LP with 10 variables
and 10 constraints for which the simplex requires 210

� 1 �
1,023 pivots to find the optimal solution. Fortunately, such
“pathological” LPs rarely occur in practical applications.

12 Productco produces three products. Each product
requires labor, lumber, and paint. The resource requirements,
unit price, and variable cost (exclusive of raw materials) for
each product are given in Table 70. Currently, 900 labor
hours, 1,550 gallons of paint, and 1,600 board feet of lumber
are available. Additional labor can be purchased at $6 per
hour, additional paint at $2 per gallon, and additional lumber
at $3 per board foot. For the following two sets of priorities,
use preemptive goal programming to determine an optimal
production schedule. For set 1:

Priority 1 Obtain profit of at least $10,500.
Priority 2 Purchase no additional labor.
Priority 3 Purchase no additional paint.
Priority 4 Purchase no additional lumber.

For set 2:

Priority 1 Purchase no additional labor.
Priority 2 Obtain profit of at least $10,500.
Priority 3 Purchase no additional paint.
Priority 4 Purchase no additional lumber.

13 Jobs at Indiana University are rated on three factors:

Factor 1 Complexity of duties
Factor 2 Education required
Factor 3 Mental and or visual demands

For each job at IU, the requirement for each factor has been
rated on a scale of 1–4, with a 4 in factor 1 representing
high complexity of duty, a 4 in factor 2 representing high
educational requirement, and a 4 in factor 3 representing
high mental and/or visual demands.

TA B L E  70

Variable
Product Labor Lumber Paint Price ($) Cost ($)

1 1.5 2 3 26 10

2 �3 3 2� 28 6

3 2 4 2 31 7
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IU wants to determine a formula for grading each job.
To do this, it will assign a point value to the score for each
factor that a job requires. For example, suppose level 2 of
factor 1 yields a point total of 10, level 3 of factor 2 yields
a point total of 20, and level 3 of factor 3 yields a point
value of 30. Then a job with these requirements would have
a point total of 10 � 20 � 30. A job’s hourly salary equals
half its point total.

IU has two goals (listed in order of priority) in setting
up the points given to each level of each job factor.

Goal 1 When increasing the level of a factor by one, the
points should increase by at least 10. For example, level 2
of factor 1 should earn at least 10 more points than level 1
of factor 1. Goal 1 is to minimize the sum of deviations
from this requirement.
Goal 2 For the benchmark jobs in Table 71, the actual
point total for each job should come as close as possible to
the point total listed in the table. Goal 2 is to minimize the
sum of the absolute deviations of the point totals from the
desired scores.

Use preemptive goal programming to come up with appro-
priate point totals. What salary should a job with skill lev-
els of 3 for each factor be paid?

14 A hospital outpatient clinic performs four types of
operations. The profit per operation, as well as the minutes
of X-ray time and laboratory time used are given in Table
72. The clinic has 500 private rooms and 500 intensive care
rooms. Type 1 and Type 2 operations require a patient to
stay in an intensive care room for one day while Type 3 and
Type 4 operations require a patient to stay in a private room
for one day. Each day the hospital is required to perform at
least 100 operations of each type. The hospital has set the
following goals:

Goal 1 Earn a daily profit of at least $100,000.
Goal 2 Use at most 50 hours daily of X-ray time.
Goal 3 Use at most 40 hours daily of laboratory time.

The cost per unit deviation from each goal is as follows:

Goal 1 Cost of $1 for each dollar by which profit goal is
unmet
Goal 2 Cost of $10 for each hour by which X-ray goal is
unmet
Goal 3 Cost of $8 for each hour by which laboratory goal
is unmet

Formulate a goal programming model to minimize the daily
cost incurred due to failing to meet the hospital’s goals.

Group B

15 Consider a maximization problem with the optimal
tableau in Table 73. The optimal solution to this LP is z �

10, x3 � 3, x4 � 5, x1 � x2 � 0. Determine the second-best
bfs to this LP. (Hint: Show that the second-best solution
must be a bfs that is one pivot away from the optimal
solution.)

16 A camper is considering taking two types of items on
a camping trip. Item 1 weighs a1 lb, and item 2 weighs a2

lb. Each type 1 item earns the camper a benefit of c1 units,
and each type 2 item earns the camper c2 units. The knapsack
can hold items weighing at most b lb.

a Assuming that the camper can carry a fractional
number of items along on the trip, formulate an LP to
maximize benefit.

b Show that if

�
a

c2

2

� � �
a

c1

1

�

then the camper can maximize benefit by filling a knap-
sack with �

a

b

2

� type 2 items.

C Which of the linear programming assumptions are
violated by this formulation of the camper’s problem?

17 You are given the tableau shown in Table 74 for a
maximization problem. Give conditions on the unknowns
a1, a2, a3, b, and c that make the following statements true:

a The current solution is optimal.

b The current solution is optimal, and there are alter-
native optimal solutions.

c The LP is unbounded (in this part, assume that b � 0).

18 Suppose we have obtained the tableau in Table 75 for
a maximization problem. State conditions on a1, a2, a3, b,
c1, and c2 that are required to make the following statements
true:

a The current solution is optimal, and there are alter-
native optimal solutions.

b The current basic solution is not a basic feasible 
solution.

TA B L E  71

Factor Level

Job 1 2 3 Desired Score

1 4 4 4 105

2 3 3 2 93

3 2 2 2 75

4 1 1 2 68

TA B L E  72

Type of Operation

1 2 3 4

Profit ($) 200 150 100 80

X-ray time (minutes) 206 155 154 3

Laboratory time (minutes) 205 154 153 2

TA B L E  73

z x1 x2 x3 x4 rhs

1 2 1 0 0 10

0 3 2 1 0 3

0 4 3 0 1 5



c The current basic solution is a degenerate bfs.

d The current basic solution is feasible, but the LP is
unbounded.

e The current basic solution is feasible, but the objec-
tive function value can be improved by replacing x6 as
a basic variable with x1.

19 Suppose we are solving a maximization problem and
the variable xr is about to leave the basis.

a What is the coefficient of xr in the current row 0?

b Show that after the current pivot is performed, the
coefficient of xr in row 0 cannot be less than zero.

c Explain why a variable that has left the basis on a
given pivot cannot re-enter the basis on the next pivot.

20 A bus company believes that it will need the following
number of bus drivers during each of the next five years:
year 1—60 drivers; year 2—70 drivers; year 3—50 drivers;
year 4—65 drivers; year 5—75 drivers. At the beginning of
each year, the bus company must decide how many drivers
should be hired or fired. It costs $4,000 to hire a driver and
$2,000 to fire a driver. A driver’s salary is $10,000 per year.
At the beginning of year 1, the company has 50 drivers. A
driver hired at the beginning of a year may be used to meet
the current year’s requirements and is paid full salary for the
current year. Formulate an LP to minimize the bus company’s
salary, hiring, and firing costs over the next five years.

21 Shoemakers of America forecasts the following demand
for each of the next six months: month 1—5,000 pairs;
month 2—6,000 pairs; month 3—5,000 pairs; month 4—
9,000 pairs; month 5—6,000 pairs; month 6—5,000 pairs. It
takes a shoemaker 15 minutes to produce a pair of shoes.
Each shoemaker works 150 hours per month plus up to 40
hours per month of overtime. A shoemaker is paid a regular
salary of $2,000 per month plus $50 per hour for overtime.
At the beginning of each month, Shoemakers can either hire
or fire workers. It costs the company $1,500 to hire a worker
and $1,900 to fire a worker. The monthly holding cost per
pair of shoes is 3% of the cost of producing a pair of shoes
with regular-time labor. (The raw materials in a pair of shoes
cost $10.) Formulate an LP that minimizes the cost of
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meeting (on time) the demands of the next six months. At
the beginning of month 1, Shoemakers has 13 workers.

22 Monroe County is trying to determine where to place
the county fire station. The locations of the county’s four
major towns are given in Figure 31. Town 1 is at (10, 20);
town 2 is at (60, 20); town 3 is at (40, 30); town 4 is at (80,
60). Town 1 averages 20 fires per year; town 2, 30 fires;
town 3, 40 fires; and town 4, 25 fires. The county wants to
build the fire station in a location that minimizes the average
distance that a fire engine must travel to respond to a fire.
Since most roads run in either an east–west or a north–south
direction, we assume that the fire engine can only do the
same. Thus, if the fire station were located at (30, 40) and
a fire occurred at town 4, the fire engine would have to
travel (80 � 30) � (60 � 40) � 70 miles to the fire. Use
linear programming to determine where the fire station
should be located. (Hint: If the fire station is to be located
at the point (x, y) and there is a town at the point (a, b),
define variables e, w, n, s (east, west, north, south) that
satisfy the equations x � a � w � e and y � b � n � s.
It should now be easy to obtain the correct LP formulation.)

23† During the 1972 football season, the games shown in
Table 76 were played by the Miami Dolphins, the Buffalo
Bills, and the New York Jets. Suppose that on the basis of
these games, we want to rate these three teams. Let M �

Miami rating, J � Jets rating, and B � Bills rating. Given
values of M, J, and B, you would predict that when, for
example, the Bills play Miami, Miami is expected to win by
M � B points. Thus, for the first Miami–Bills game, your
prediction would have been in error by |M � B � 1| points.
Show how linear programming can be used to determine
ratings for each team that minimize the sum of the prediction
errors for all games.

TA B L E  74

z x1 x2 x3 x4 x5 rhs

1 �c 2 0 0 0 10

0 �1 a1 1 0 0 4

0 a2 �4 0 1 0 1

0 a3 3 0 0 1 b

TA B L E  75

z x1 x2 x3 x4 x5 x6 rhs

1 c1 c2 0 0 0 0 10

0 4 a1 1 0 a2 0 b

0 �1 �5 0 1 �1 0 2

0 a3 �3 0 0 �4 1 3

†Based on Wagner (1954).

TA B L E  76

Miami Bills Jets

27 — 17

28 — 24

24 23 —

30 16 —

— 24 41

— 3 41

4

3

1 2

F I G U R E  31



At the conclusion of the season, this method has been
used to determine ratings for college football and college
basketball. What problems could be foreseen if this method
were used to rate teams early in the season?

24 During the next four quarters, Dorian Auto must meet
(on time) the following demands for cars: quarter 1—4,000;
quarter 2—2,000; quarter 3—5,000; quarter 4—1,000. At
the beginning of quarter 1, there are 300 autos in stock, and
the company has the capacity to produce at most 3,000 cars
per quarter. At the beginning of each quarter, the company
can change production capacity by one car. It costs $100 to
increase quarterly production capacity. It costs $50 per
quarter to maintain one car of production capacity (even if
it is unused during the current quarter). The variable cost of
producing a car is $2,000. A holding cost of $150 per car is
assessed against each quarter’s ending inventory. It is
required that at the end of quarter 4, plant capacity must be
at least 4,000 cars. Formulate an LP to minimize the total
cost incurred during the next four quarters.

25 Ghostbusters, Inc., exorcises (gets rid of) ghosts.
During each of the next three months, the company will
receive the following number of calls from people who want
their ghosts exorcised: January, 100 calls; February, 300
calls; March, 200 calls. Ghostbusters is paid $800 for each
ghost exorcised during the month in which the customer
calls. Calls need not be responded to during the month they
are made, but if a call is responded to one month after it is
made, then Ghostbusters loses $100 in future goodwill, and
if a call is responded to two months after it is made,
Ghostbusters loses $200 in goodwill. Each employee of
Ghostbusters can exorcise 10 ghosts during a month. Each
employee is paid a salary of $4,000 per month. At the
beginning of January, the company has 8 workers. Workers
can be hired and trained (in 0 time) at a cost of $5,000 per
worker. Workers can be fired at a cost of $4,000 per worker.
Formulate an LP to maximize Ghostbusters’ profit (revenue
less costs) over the next three months. Assume that all calls
must be handled by the end of March.

26 Carco uses robots to manufacture cars. The following
demands for cars must be met (not necessarily on time, but
all demands must be met by end of quarter 4): quarter 1—
600; quarter 2—800; quarter 3—500; quarter 4—400. At
the beginning of the quarter, Carco has two robots. Robots
can be purchased at the beginning of each quarter, but a
maximum of two per quarter can be purchased. Each robot
can build as many as 200 cars per quarter. It costs $5,000
to purchase a robot. Each quarter, a robot incurs $500 in
maintenance costs (even if it is not used to build any cars).
Robots can also be sold at the beginning of each quarter for
$3,000. At the end of each quarter, a holding cost of $200
per car is incurred. If any demand is backlogged, then a cost
of $300 per car is incurred for each quarter the demand is
backlogged.

At the end of quarter 4, Carco must have at least two ro-
bots. Formulate an LP to minimize the total cost incurred in
meeting the next four quarters’ demands for cars.

27 Suppose we have found an optimal tableau for an LP,
and the bfs for that tableau is nondegenerate. Also suppose
that there is a nonbasic variable in row 0 with a zero
coefficient. Prove that the LP has more than one optimal
solution.
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28 Suppose the bfs for an optimal tableau is degenerate,
and a nonbasic variable in row 0 has a zero coefficient.
Show by example that either of the following cases may
hold:

Case 1 The LP has more than one optimal solution.
Case 2 The LP has a unique optimal solution.

29 You are the mayor of Gotham City, and you must
determine a tax policy for the city. Five types of taxes are
used to raise money:

a Property taxes. Let p � property tax percentage rate.

b A sales tax on all items except food, drugs, and
durable  goods. Let s � sales tax percentage rate.

c A sales tax on durable goods. Let d � durable goods
sales tax percentage rate.

d A gasoline sales tax. Let g � gasoline tax sales per-
centage rate.

e A sales tax on food and drugs. Let f � sales tax  on
food and drugs.

The city consists of three groups of people: low-income
(LI), middle-income (MI), and high-income (HI). The
amount of revenue (in millions of dollars) raised from each
group by setting a particular tax at a 1% level is given in
Table 77.

For example, a 3% tax on durable good sales will raise
$360 million from low-income people. Your tax policy must
satisfy the following:

Restriction 1 The tax burden on MI people cannot exceed
$2.8 billion.
Restriction 2 The tax burden on HI people cannot exceed
$2.4 billion.
Restriction 3 The total revenue raised must exceed the
current level of $6.5 billion.
Restriction 4 s must be between 1% and 3%.

Given these restrictions, the mayor has set the following
three goals:

Goal P Keep the property tax rate less than 3%.
Goal LI Limit the tax burden on LI people to $2 billion.
Goal Suburbs If their tax burden becomes too high, 20%
of the LI people, 20% of the MI people, and 40% of the HI
people may consider moving to the suburbs. Suppose that
this will happen if their total tax burden exceeds $1.5 bil-
lion. To discourage this exodus, the suburb goal is to keep
the total tax burden on these people below $1.5 billion.

Use goal programming to determine an optimal tax pol-
icy if the mayor’s goals follow the following set of priorities:

LI  P  Suburbs†

TA B L E  77

p s d g f

LI 1,900 300 120 30 90

MI 1,200 400 100 20 60

HI 1,000 250 60 10 40

†Based on Chrisman, Fry, Reeves, Lewis, and Weinstein (1989).



A P P E N D I X  A LINDO Menu Commands and Statements

Menu Commands

LINDO’s commands can be accessed from a convenient menu similar to those of other

Windows programs. The main menu includes six submenus along the top of the screen

that list the various commands. When you click on one of the submenus—File, Edit,

Solve, Reports, Window, or Help—a pull-down menu appears with the various com-

mands. You can select commands just like you would in most Window programs—by ei-

ther clicking on the command with your mouse or pressing the underlined letter in the

command name when the appropriate submenu is highlighted. Many commands also have

shortcut keys assigned to them (F2, Ctrl�Z, etc.). As an added convenience, some of the

most often used commands also may be accessed with icons located in a tool bar at the

top of the screen. The following sections briefly describe the various menu commands and

list the applicable shortcuts and icons.

File Menu

The File menu commands allow you to manipulate your LINDO data files in various

ways. You can use this menu to open, close, save, and print files, as well as perform var-

ious tasks unique to LINDO. A description of the File commands follows.

C O M M A N D D E S C R I P T I O N

New F2 Creates a new window for entering input data.

Open F3 Opens an existing file. Dialog boxes allow you to select from various file types and 

locations.

View F4 Opens an existing file for viewing only. No changes can be made to the file.

Save F5 Saves the window. You can save input data (a model), a Reports window, or a command

window. Data can be saved in the following formats: *.LTX, a text format that can be

edited with word processing software; *.LPK, for saving compiled models in a

“packed” format, but without any special formatting or comments; and *.MPS, the 

machine-independent industry standard format for transferring LP problems between

LINDO and other LP software.

Save As... F6 Saves the active window with a specified file name. This is useful for renaming a re-

vised file, while keeping the original file intact.

Close F7 Closes the active window. If the window contains new input data, then you will be

asked if you want to save the changes.

Print F8 Sends the active window to your printer.

Printer Setup... F9 Selects the printer and various options for print format.

Log Output... F10 Sends all subsequent screen activity that would normally be sent to the Reports window

to a text file. When you have specified a log file location, a check will appear in the

File menu by the Log Output line. To disable Log Output, simply select the command

again.
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C O M M A N D D E S C R I P T I O N

Take Commands... “Takes” a LINGO batch file with commands and text for automated operation. A model

F11 could be put in memory, solved, and the solution placed in the Reports window and

saved to a file. If you use the Batch command before the beginning of the model text,

the model and the commands contained in the file, as well as the solution, would be

visible in the Reports window.

Basis Read F12 Retrieves a solution to a model that was saved using the Basis Save command.

Basis Save Saves the solution for the active model to disk with a specified file name.

Shift+F2

Title Shift+F3 Displays the title of the active model, if one has been included with the optional Title

statement in the model.

Date Shift+F4 Opens a Reports window and displays the current date and time based on your com-

puter’s clock.

Elapsed Time Opens a Reports window and displays the total time elapsed in your current LINDO

Shift+F5 session.

Exit Shift+F6 Quits LINDO.

Edit Menu

The Edit menu commands allow you to perform basic editing tasks common to most Win-

dows applications, as well as perform various tasks unique to LINDO. A description of

the Edit commands follows.

C O M M A N D D E S C R I P T I O N

Undo Ctrl+Z Reverses the last action.

Cut Ctrl+X Removes any selected text and places it on the clipboard for pasting.

Copy Ctrl+C Copies selected text to the clipboard for pasting.

Paste Ctrl+V Inserts or pastes clipboard contents at the insertion point.

Clear Delete Deletes selected text without placing it on the clipboard.

Find/Replace... Searches the active window to find selected text and replaces it with text entered in the 

Ctrl+F “Replace with” box.

Options Alt+O Allows viewing and changing of various parameters used in LINDO sessions.

Go To Line...Ctrl+T Allows you to move the cursor to any specified line in the active window.

Paste Symbol... Allows you to paste variable names and reserved symbols into the active window.

Ctrl+P

Select All Ctrl+A Selects all of the active window for cutting and copying.

Clear All Deletes the entire contents of the active window.

Choose New Font Selects a new font for the text in the active window.
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Solve Menu

The Solve menu commands are used after you have entered data and are ready to obtain

a solution. A description of the Solve command follows.

C O M M A N D D E S C R I P T I O N

Solve Ctrl+S Sends the model in the active window to the LINDO solver to obtain the solution.

Compile Model Translates the model into the arithmetic format required by the LINDO solver. Models

Ctrl+E are also automatically compiled when you use the Solve command.

Debug Ctrl+D Helps determine problems with infeasible and unbounded models. Sufficient and neces-

sary sets (rows) can be identified, as can crucial constraints—those that make an infea-

sible model feasible if dropped from the model.

Pivot Ctrl+N Causes LINDO to perform the next step in the solution process, allowing linear pro-

gramming problems to be solved step-by-step.

Preemptive Goal Performs Lexico optimization (a form of goal programming) on a model.

Ctrl+G

Reports Menu

The Reports menu commands allow you to specify how LINDO reports are generated.

Descriptions of the Reports commands follow.

C O M M A N D D E S C R I P T I O N

Solution Alt+0 Opens the Solution Report Options dialog box, which allows you to specify how you

want a solution report to appear.

Range Alt+1 Creates a range report, or sensitivity analysis, for the active model window.

Parametrics Alt+2 Performs a parametric analysis on the right-hand side of a constraint.

Statistics Alt+3 Displays key statistics for the model in the active window.

Peruse Alt+4 Used to view reports on selected portions of the current model’s solution or structure.

Picture Alt+5 Creates a display of the current model in matrix form. The nonzero coefficients of the

matrix may be displayed as either text or graphic.

Basis PictureAlt+6 Displays a text-format report with a “picture” of the current basis, ordering the rows

and columns according to the last inversion or triangularization performed by the

solver. The Basis Picture report is sent to the Reports window.

Tableau Alt+7 Displays the simplex tableau for the active model. This permits observation of the sim-

plex algorithm at each step.

Formulation Alt+8 Displays all, or selected segments, of your model in the Reports window.

Show ColumnAlt+9 Displays a selected column without the rest of the model.

Positive Definite Checks for a guarantee of global optimality in a quadratic model.

Window Menu

The Window menu commands allow you to adjust active command and status windows,

as well as organize the display of multiple windows. Descriptions of the Window com-

mands follow.
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C O M M A N D D E S C R I P T I O N

Open Command Window Provides access to LINDO’s command-line interface, where you may enter 

Alt+C commands at the colon prompt.

Open Status Window Opens LINDO’s Solver Status window, which displays information about the optimizer 

status, such as number of iterations and elapsed run time. This window also appears

when you select Solve from the Solve menu.

Send to Back Sends the frontmost window to the back.

Ctrl+B

Cascade Alt+A Arranges all open windows in a cascade fashion from upper left to lower right, with the

active window on top.

Tile Alt+T Arranges all open windows so they each occupy equivalent space within the program

window.

Close All Alt+X Closes all active windows.

Arrange Icons Moves icons representing minimized windows so that they are arranged across the 

Alt+I bottom of the screen.

List of Windows At the bottom of the Window menu, a list of the open windows is displayed. The active

window is checked.

Help Menu

The Help menu commands provide access to LINDO’s online help. Descriptions of the

Help commands follow.

C O M M A N D D E S C R I P T I O N

Contents Displays the contents of the help section. The second icon (with the arrow and question 

F1 mark) enables context-sensitive help, where the cursor indicator will change to a ques-

tion mark, and help will be provided specifically for a command selected.

Search for Help on... Searches the help section for a word or topic.

Alt+F1

How to Use Help Provides assistance in learning to use the online help system.

Ctrl+F1

About LINDO... Displays the initial startup screen with general information about LINDO.

Optional Modeling Statements

Besides the basic elements of a model, LINDO recognizes several optional statements that

may appear after the END statement. These statements provide additional modeling ca-

pabilities, such as placing additional limits on variables. Descriptions of these statements

follow.

S TAT E M E N T D E S C R I P T I O N

FREE <Variable> Removes all bounds on a variable, allowing it to take on any real value—positive

or negative.

GIN <Variable> Restricts a variable to be a general integer (i.e., in the set of non-negative integers).

INT <Variable> Restricts a variable to be a binary integer (i.e., either 0 or 1).

SLB <Variable> <Value> Sets a simple lower bound for a variable (i.e., SLB X 10 would required that X be

greater than or equal to 10).
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SUB <Variable> <Value> Sets a simple upper bound for a variable (i.e., SUB X 10 would require that X be

less than or equal to 10).

QCP <Constraint> Indicates the first “real” constraints in a quadratic programming model.

TITLE <Title> Allows you to attach a title to your model. The title can then be displayed using the

Title command in the File menu.

A P P E N D I X  B Getting Started with LINGO

Welcome to the LINGO portion of this text. This appendix will give you brief background

information on LINGO and help you install the software. Subsequent chapters will de-

scribe features of the software and how to apply the software on sample problems.

What Is LINGO?

LINGO is an interactive computer-software package that can be used to solve linear, in-

teger, and nonlinear programming problems. It can be applied in similar situations to

those of LINDO, but it offers more flexibility in terms of how models are expressed. Un-

like LINDO, LINGO allows parentheses and variables on the right-hand side of an equa-

tion. Constraints can therefore be written in original form and do not have to be rewrit-

ten with constants on the right-hand side. LINGO is also capable of generating large

models with relatively few lines of input. The program also provides a vast library of

mathematical, statistical, and probability functions and greater ability to read data from

external files and worksheets.

LINGO Fundamentals

Much like LINDO, LINGO can be used to solve problems interactively from the keyboard

or solve problems using files created elsewhere—either self-contained or as part of an in-

tegrated program containing customized code and LINGO optimization libraries. This ap-

pendix will primarily focus on the first method, that of solving problems interactively.

More information on the other methods is available from LINDO Systems, Inc.

Entering a model in the Windows version of LINGO is similar to typing in a Windows

word-processing format: You simply type in model data much as you would write it if

solving a problem manually. The inner window initially labeled “untitled” is provided to

accept input data. LINGO also contains basic editing commands for cutting, copying, and

pasting text. These tools, and other features, are found in the window commands dis-

cussed in Appendix C.

The required elements of LINGO are similar to those of LINDO: LINGO also requires

an objective, one or more variables, and one or more constraints. Unlike LINDO, how-

ever, LINGO constraints are not preceded by any special terms such as SUBJECT TO or

SUCH THAT.

LINGO follows a syntax similar to that of LINDO, with the following differences:

■ LINGO statements end with semicolons.

■ LINGO includes additional mathematical operators, as discussed in Appendix C.

An asterisk is required to denote multiplication.

■ Parentheses may be included to define the order of mathematical operations if you

wish.

■ Variable names can be up to 32 characters long.
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A P P E N D I X  C LINGO Menu Commands and Functions

Menu Commands

LINGO’s commands can be accessed from a convenient menu similar to those of other

Windows programs. The main menu includes five submenus along the top of the screen

that list the various commands. When you click on one of the submenus—File, Edit,

LINGO, Window, or Help—a pull-down menu appears with the various commands. You

can select commands just like you would in most Window programs—by either clicking

on the command with your mouse or pressing the underlined letter in the command name

when the appropriate submenu is highlighted. Many commands also have shortcut keys

assigned to them (F2, Ctrl1�Z, etc.). As an additional convenience, some of the most of-

ten used commands may also be accessed with icons located in a tool bar at the top of

the screen.

File Menu

The File menu commands allow you to manipulate your LINGO data files in various

ways. You can use this menu to open, close, save, and print files, as well as perform var-

ious tasks unique to LINGO. Descriptions of the File commands follow.

C O M M A N D D E S C R I P T I O N

New F2 Creates a new window for entering input data.

Open F3 Opens an existing file. Dialog boxes allow you to select from various file types and 

locations.

Save F4 Saves the active window. You can save input data (a model), a reports window, or a

command window.

Save As... F5 Saves the active window with a specified file name. This is useful for renaming a re-

vised file while keeping the original file intact.

Close F6 Closes the active window. If the window contains new input data, then you will be

asked if you want to save the changes.

Print F7 Sends the active window to your printer.

Printer Setup... F8 Selects the printer and various options for print format.

Log Output... F9 Sends all subsequent screen activity that would normally be sent to the Reports window

to a text file. When you have specified a log file location, a check will appear in the

File menu by the Log Output line. To disable Log Output, simply select the command

again.

Take Commands “Takes” a LINGO batch file with commands and model text for automated operation. A

F11 model could be put in memory, solved, and the solution placed in the Reports window

saved to a file. If you use the BATCH command before the beginning of the model text,

then the model and the commands contained in the file would be visible in the Reports

window, as well as the solution.

Import LINDO file Opens a file that contains a LINDO model in LINDO TAKE format, translating the

F12 model into a format acceptable to LINGO.

Exit F10 Quits LINGO.
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Edit Menu

The Edit menu commands allow you to perform basic editing tasks common to most Win-

dows applications, as well as perform various tasks unique to LINGO. Descriptions of the

Edit commands follow.

C O M M A N D D E S C R I P T I O N

Undo Ctrl+Z Reverses the last action.

Cut Ctrl+X Removes any selected text and places it on the clipboard for pasting.

Copy Ctrl+C Copies selected text to the clipboard for pasting.

Paste Ctrl+V Inserts clipboard contents at the insertion point.

Clear Delete Deletes selected text without placing it on the clipboard.

Find/Replace... Searches the active window to find selected text and replace it with text entered in the 

Ctrl+F “Replace with” box.

Go To Line... Allows you to move the cursor to any specified line in the active window.

Ctrl+T

Match Parenthesis Finds the close parenthesis that corresponds to the selected open parenthesis.

Ctrl+P

Paste Function Pastes any of LINGO’s built-in functions at the current insertion point. After selecting

this command, another submenu appears with the various function categories.

Select All Ctrl+A Selects all of the active window for cutting and copying.

Choose New Font Selects a new font for the text in the active window.

LINGO Menu

The LINGO menu commands are used after you have entered data and are ready to ob-

tain a solution. Descriptions of the LINGO commands follow.

C O M M A N D D E S C R I P T I O N

Solve Ctrl+S Sends the model in the active window to the LINGO solver.

Solution... Ctrl+O Opens the Solution Report Options dialog box, which allows you to specify how you

want a solution report to appear.

Range Ctrl+R Displays a range report, which shows over what ranges you can change coefficients

without changing optimal values.

Look... Ctrl+L Displays all or selected lines of a model.

Generate... Ctrl+S Creates another version of the current model in algebraic, LINDO, or MPS format. Can

be used to number rows and display the model in a more readable format. The GEN

command provides a similar capability from the command window.

Export to Spreadsheet Exports selected variable values to named ranges in a spreadsheet. A spreadsheet must

Ctrl+E first be created with ranges sized to accommodate the exported values. The ranges must

contain numbers. Selecting this command will produce a dialog box that requests the
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template and output worksheets (spreadsheet file names), variables to export, and the

range to which the values are to be exported. The variables and range are entered in

pairs and added to the list of variable and range pairs by clicking the add button.

Options Alt+O Allows viewing and changing of various parameters used in LINGO sessions.

Workspace Limit Allocates memory to LINGO. If you enter “None,” LINGO will use all available

Ctrl+S memory.

Window Menu

The Window menu commands allow you to adjust any open command and status win-

dows, as well as organize the display of multiple windows. Descriptions of the Window

commands follow.

C O M M A N D D E S C R I P T I O N

Open Command Window Provides access to LINGO’s command-line interface, where you may enter

commands at the colon prompt.

Open Status Window Opens LINGO’s Solver Status window, which displays information about the optimizer

status, such as number of iterations and elapsed run time. This window also appears

when you select Solve from the LINGO menu.

Send to Back Sends the frontmost window to the back.

Alt+B

Close All Alt+X Closes all active windows.

Cascade Alt+A Arranges all open windows in a cascade fashion from upper left to lower right, with the

active window on top.

Tile Alt+T Arranges all open windows so they each occupy equivalent space within the program

window.

Arrange Icons Arranges icons representing minimized windows across the bottom of the screen.

Alt+I

List of Windows At the bottom of the Window menu, a list of the open windows is displayed. The active

window is checked.

Help Menu

The Help menu commands provide access to LINGO’s on-line help. Descriptions of the

Help commands follow.

C O M M A N D D E S C R I P T I O N

Contents Displays the contents of the help section. The second icon (the arrow with the question 

mark) enables context-sensitive help; the cursor indicator will change to a question 

F1 mark, and help will be provided specifically for a command selected.

Search for Help on... Searches the help section for a word or topic.

Alt+F1

How to Use Help Provides assistance in learning to use the online help system.

Ctrl+F1

About LINGO... Displays the initial startup screen with general information about LINGO.
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Functions

LINGO has seven main functions—standard operators, file import, financial, mathemati-

cal, set-looping, variable-domain, and probability, and an assortment of other functions.

Most of these functions are available through the menu commands. The LINGO software

includes a detailed description of its functions in online help screens; therefore, only a

brief description of LINGO functions is offered here.

Standard Operators

Standard operators include arithmetic operators (i.e., ^, *, /, �, and �), logical operators

(#EQ#, #NE#, #GT#, #GE#, #LT#, and #L3#) for determining set membership, and

equality–inequality operators (�, �, , ��, and �) for specifying whether the left-

hand side of an expression should be less than, equal to, or greater than the right-hand

side. These operators constitute some of the most basic functions available in LINGO.

Note that the “greater than” and “less than” symbols ( and ) are interpreted as “loose”

inequalities [i.e., greater than or equal to (�) and less than or equal to (�), respectively].

You typically type these operators in at the keyboard rather than access them from a win-

dow command.

File Import Functions

File import functions allow you to import text and data from external sources. The @FILE

function lets you import text or data from an ASCII file, and the @IMPORT function lets

you import data only from a worksheet.

Financial Functions

Financial functions include the @FPA(I,N) function, which returns the present value of

an annuity; and the @FPL(I,N) function, which returns the present value of a lump sum

of $1 N periods from now if the interest rate is I per period. I is not a percentage but rather

a non-negative number representing the interest rate.

Mathematical Functions

Mathematical functions include the following general and trigonometric functions:

@ABS(X), @COS(X), @EXP(X), @LGM(X), @LOG(X), @SIGN(X), @SIN(X),

@SMAX(list), @SMIN(list), @TAN(X). Combinations of the three basic trigonometric

functions (sine, cosine, and tangent) may be used to obtain other trigonometric functions.

Set-Looping Functions

Set-looping functions include @FOR (set_name : constraint_expressions), @MAX

(set_name : expression), @MIN (set_name : expression), and @SUM (set_name : ex-

pression). These functions operate over an entire set, producing a single result in all cases,

except the @FOR function, which generates constraints independently for each element

of the set.

Variable Domain Functions

The variable domain functions place additional restrictions on variables and attributes.

They include the following: @BND(L, X, U), @BIN(X), @FREE(X), and @GIN(X).

Probability Functions

LINGO provides common statistical capabilities through its probability functions:

@PSN(X), @PSL(X), @PPS(A,X), @PPL(A,X), @PBN(P,N,X), @PHG(POP,G,N,X),

@PEL(A,X), @PEB(A,X), @PFS(A,X,C), @PFD(N,D,X), @PFD(N,D,X), @PCX(N,X),

@PTD(N,X), and @RAND(X).
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Other Functions

Other functions provided by LINGO include @IN (set_name, set_element), @SIZE

(set_name), @WARN(‘text’, condition), @WRAP(I,N), and @USER. These functions

provide a variety of capabilities in addition to those of the categories above.

R E F E R E N C E S
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basic feasible solution before finding the optimal solution.
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21(1973):597–603. Describes an actual application that
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Wagner, H. “Linear Programming Techniques for Regres-
sion Analysis,” Journal of the American Statistical Asso-
ciation 54(1954):206–212.



� � � � � � � � � � �5

Sensitivity Analysis: 
An Applied Approach

In this chapter, we discuss how changes in an LP’s parameters affect the optimal solution. This

is called sensitivity analysis. We also explain how to use the LINDO output to answer ques-

tions of managerial interest such as “What is the most money a company would be willing to

pay for an extra hour of labor?” We begin with a graphical explanation of sensitivity analysis.

5.1 A Graphical Introduction to Sensitivity Analysis

Sensitivity analysis is concerned with how changes in an LP’s parameters affect the op-

timal solution.

Reconsider the Giapetto problem of Section 3.1:

max z � 3x1 � 2x2

s.t. 2x1 � x2 � 100 (Finishing constraint)

s.t. s.t. 2x1 � x2 � 80 (Carpentry constraint)

s.t. s.t. x1 � x2 � 40 (Demand constraint)

s.t. 2 �x1, x2 � 0

where

x1 � number of soldiers produced per week

x2 � number of trains  produced per week

The optimal solution to this problem is z � 180, x1 � 20, x2 � 60 (point B in Figure 1),

and it has x1, x2, and s3 (the slack variable for the demand constraint) as basic variables.

How would changes in the problem’s objective function coefficients or right-hand sides

change this optimal solution?

Graphical Analysis of the Effect of a Change 
in an Objective Function Coefficient

If the contribution to profit of a soldier were to increase sufficiently, then it seems rea-

sonable that it would be optimal for Giapetto to produce more soldiers (that is, s3 would

become nonbasic). Similarly, if the contribution to profit of a soldier were to decrease suf-

ficiently, then it would become optimal for Giapetto to produce only trains (x1 would now

be nonbasic). We now show how to determine the values of the contribution to profit for

soldiers for which the current optimal basis will remain optimal.

Let c1 be the contribution to profit by each soldier. For what values of c1 does the cur-

rent basis remain optimal?



Currently, c1 � 3, and each isoprofit line has the form 3x1 � 2x2 � constant, or

x2 � ��
3

2

x1
� � �

con

2

stant
�

and each isoprofit line has a slope of ��
3

2
�. From Figure 1, we see that if a change in c1

causes the isoprofit lines to be flatter than the carpentry constraint, then the optimal so-

lution will change from the current optimal solution (point B) to a new optimal solution

(point A). If the profit for each soldier is c1, the slope of each isoprofit line will be ��
c

2
1
�.

Because the slope of the carpentry constraint is �1, the isoprofit lines will be flatter than

the carpentry constraint if ��
c

2
1
� � �1, or c1 	 2, and the current basis will no longer be

optimal. The new optimal solution will be (0, 80), point A in Figure 1.

If the isoprofit lines are steeper than the finishing constraint, then the optimal solution

will change from point B to point C. The slope of the finishing constraint is �2. If ���
c

2
1
�

	 �2, or c1 � 4, then the current basis is no longer optimal and point C, (40, 20), will

be optimal. In summary, we have shown that (if all other parameters remain unchanged)

the current basis remains optimal for 2 � c1 � 4, and Giapetto should still manufacture

20 soldiers and 60 trains. Of course, even if 2 � c1 � 4, Giapetto’s profit will change.

For instance, if c1 � 4, then Giapetto’s profit will now be 4(20) � 2(60) � $200 instead

of $180.

Graphical Analysis of the Effect of a Change 
in a Right-Hand Side on the LP’s Optimal Solution

A graphical analysis can also be used to determine whether a change in the right-hand

side of a constraint will make the current basis no longer optimal. Let b1 be the number

of available finishing hours. Currently, b1 � 100. For what values of b1 does the current

basis remain optimal? From Figure 2, we see that a change in b1 shifts the finishing con-

straint parallel to its current position. The current optimal solution (point B in Figure 2)

228 C H A P T E R 5 Sensitivity Analysis: An Applied Approach

40

60

80

D

C

A

B

Finishing constraint

Slope = –2

Demand constraint

Carpentry constraint

Slope = –1

3
2

Isoprofit line z = 120

Slope =  –

x2

x1

20

20 40 60

100

80

F I G U R E  1

Analysis of Range of
Values for Which c1

Remains Optimal in
Giapetto Problem



is where the carpentry and finishing constraints are binding. If we change the value of b1,

then as long as the point where the finishing and carpentry constraints are binding re-

mains feasible, the optimal solution will still occur where the finishing and carpentry con-

straints intersect. From Figure 2, we see that if b1 > 120, then the point where the fin-

ishing and carpentry constraints are both binding will lie on the portion of the carpentry

constraint below point D. Note that at point D, 2(40) � 40 � 120 finishing hours are used.

In this region, x1 � 40, and the demand constraint for soldiers is not satisfied. Thus, for

b1 � 120, the current basis will no longer be optimal. Similarly, if b1 	 80, then the car-

pentry and finishing constraints will be binding at an infeasible point having x1 	 0, and

the current basis will no longer be optimal. Note that at point A, 0 � 80 � 80 finishing

hours are used. Thus (if all other parameters remain unchanged), the current basis remains

optimal if 80 � b1 � 120.

Note that although for 80 � b1 � 120, the current basis remains optimal, the values

of the decision variables and the objective function value change. For example, if 80 �

b1 � 100, then the optimal solution will change from point B to some other point on the

line segment AB. Similarly, if 100 � b1 � 120, then the optimal solution will change from

point B to some other point on the line BD.

As long as the current basis remains optimal, it is a routine matter to determine how

a change in the right-hand side of a constraint changes the values of the decision vari-

ables. To illustrate the idea, let b1 � number of available finishing hours. If we change b1

to 100 � 
, then we know that the current basis remains optimal for �20 � 
 � 20.

Note that as b1 changes (as long as �20 � 
 � 20), the optimal solution to the LP is

still the point where the finishing-hour and carpentry-hour constraints are binding. Thus,

if b1 � 100 � 
, we can find the new values of the decision variables by solving

2x1 � x2 � 100 � 
 and x1 � x2 � 80
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This yields x1 � 20 � 
 and x2 � 60 �
. Thus, an increase in the number of available

finishing hours results in an increase in the number of soldiers produced and a decrease

in the number of trains produced.

If b2 (the number of available carpentry hours) equals 80 � 
, then it can be shown

(see Problem 2) that the current basis remains optimal for �20 � 
 � 20. If we change

the value of b2 (keeping �20 � 
 � 20), then the optimal solution to the LP is still the

point where the finishing and carpentry constraints are binding. Thus, if b2 � 80 � 
,

the optimal solution to the LP is the solution to

2x1 � x2 � 100 and x1 � x2 � 80 � 


This yields x1 � 20 � 
 and x2 � 60 � 2
, which shows that an increase in the amount

of available carpentry hours decreases the number of soldiers produced and increases the

number of trains produced.

Suppose b3, the demand for soldiers, is changed to 40 � 
. Then it can be shown (see

Problem 3) that the current basis remains optimal for 
 � �20. For 
 in this range, the

optimal solution to the LP will still occur where the finishing and carpentry constraints

are binding. Thus, the optimal solution will be the solution to

2x1 � x2 � 100 and x1 � x2 � 80

Of course, this yields x1 � 20 and x2 � 60, which illustrates an important fact. Consider

a constraint with positive slack (or positive excess) in an LP’s optimal solution; if we

change the right-hand side of this constraint in the range where the current basis remains

optimal, then the optimal solution to the LP is unchanged.

Shadow Prices

As we will see in Sections 5.2 and 5.3, it is often important for managers to determine how

a change in a constraint’s right-hand side changes the LP’s optimal z-value. With this in

mind, we define the shadow price for the ith constraint of an LP to be the amount by which

the optimal z-value is improved—increased in a max problem and decreased in a min prob-

lem—if the right-hand side of the ith constraint is increased by 1. This definition applies

only if the change in the right-hand side of Constraint i leaves the current basis optimal.

For any two-variable LP, it is a simple matter to determine each constraint’s shadow

price. For example, we know that if 100 � 
 finishing hours are available (assuming the

current basis remains optimal), then the LP’s optimal solution is x1 � 20 � 
 and x2 �

60 � 
. Then the optimal z-value will equal 3x1 � 2x2 � 3(20 � 
) � 2(60 � 
) �

180 � 
. Thus, as long as the current basis remains optimal, a one-unit increase in the

number of available finishing hours will increase the optimal z-value by $1. So the shadow

price of the first (finishing hours) constraint is $1.

For the second (carpentry hours) constraint, we know that if 80 � 
 carpentry hours

are available (and the current basis remains optimal), then the optimal solution to the 

LP is x1 � 20 � 
 and x2 � 60 � 2
. Then the new optimal z-value is 3x1 � 2x2 �

3(20 � 
) � 2(60 � 2
) � 180 � 
. So a one-unit increase in the number of finishing

hours will increase the optimal z-value by $1 (as long as the current basis remains 

optimal). Thus, the shadow price of the second (carpentry hour) constraint is $1.

We now find the shadow price of the third (demand) constraint. If the right-hand side

is 40 � 
, then (as long as the current basis remains optimal) the optimal values of the

decision variables remain unchanged. Then the optimal z-value will also remain un-

changed, which shows that the shadow price of the third (demand) constraint is $0. It turns

out that whenever the slack or excess variable for a constraint is positive in an LP’s opti-

mal solution, the constraint will have a zero shadow price.
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Suppose that the current basis remains optimal as we increase the right-hand side of

the ith constraint of an LP by 
 bi. (
 bi 	 0 means that we are decreasing the right-hand

side of the ith constraint.) Then each unit by which Constraint i’s right-hand side is in-

creased will increase the optimal z-value (for a max problem) by the shadow price. Thus,

the new optimal z-value is given by

(New optimal z-value) � (old optimal z-value) � (Constraint i’s shadow price) 
bi (1)

For a minimization problem,

(New optimal z-value) � (old optimal z-value) � (Constraint i’s shadow price) 
bi (2)

For example, if 95 carpentry hours are available, then 
b2 � 15, and the new z-value is

given by

New optimal z-value � 180 � 15(1) � $195

We will continue our discussion of shadow prices in Sections 5.2 and 5.3.

Importance of Sensitivity Analysis

Sensitivity analysis is important for several reasons. In many applications, the values of

an LP’s parameters may change. For example, the prices at which soldiers and trains are

sold or the availability of carpentry and finishing hours may change. If a parameter

changes, then sensitivity analysis often makes it unnecessary to solve the problem again.

For example, if the profit contribution of a soldier increased to $3.50, we would not have

to solve the Giapetto problem again, because the current solution remains optimal. Of

course, solving the Giapetto problem again would not be much work, but solving an LP

with thousands of variables and constraints again would be a chore. A knowledge of sen-

sitivity analysis often enables the analyst to determine from the original solution how

changes in an LP’s parameters change its optimal solution.

Recall that we may be uncertain about the values of parameters in an LP. For exam-

ple, we might be uncertain about the weekly demand for soldiers. With the graphical

method, it can be shown that if the weekly demand for soldiers is at least 20, then the op-

timal solution to the Giapetto problem is still (20, 60) (see Problem 3 at the end of this

section). Thus, even if Giapetto is uncertain about the demand for soldiers, the company

can be fairly confident that it is still optimal to produce 20 soldiers and 60 trains.

P R O B L E M S
Group A
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1 Show that if the contribution to profit for trains is
between $1.50 and $3, the current basis remains optimal. If
the contribution to profit for trains is $2.50, then what would
be the new optimal solution?

2 Show that if available carpentry hours remain between
60 and 100, the current basis remains optimal. If between
60 and 100 carpentry hours are available, would Giapetto
still produce 20 soldiers and 60 trains?

3 Show that if the weekly demand for soldiers is at least
20, then the current basis remains optimal, and Giapetto
should still produce 20 soldiers and 60 trains.

4 For the Dorian Auto problem (Example 2 in Chapter 3),

a Find the range of values on the cost of a comedy ad
for which the current basis remains optimal.

b Find the range of values on the cost of a football ad
for which the current basis remains optimal.

c Find the range of values for required HIW exposures
for which the current basis remains optimal. Determine
the new optimal solution if 28 � 
 million HIW expo-
sures are required.

d Find the range of values for required HIM exposures
for which the current basis remains optimal. Determine



5.2 The Computer and Sensitivity Analysis

If an LP has more than two decision variables, the range of values for a right-hand side

(or objective function coefficient) for which the current basis remains optimal cannot be

determined graphically. These ranges can be computed by hand calculations (see Section

6.3), but this is often tedious, so they are usually determined by packaged computer pro-

grams. In this section, we discuss the interpretation of the sensitivity analysis information

on the LINDO output.

To obtain a sensitivity report in LINDO, select Yes when asked (after solving LP) whether

you want a Range analysis. To obtain sensitivity report in LINGO, go to Options and select

Range (after solving LP). If this does not work, then go to Options and choose the General

Solver tab. Then go to Dual Computations and select the Ranges and Values option.

Winco sells four types of products. The resources needed to produce one unit of each and

the sales prices are given in Table 2. Currently, 4,600 units of raw material and 5,000 la-

bor hours are available. To meet customer demands, exactly 950 total units must be pro-

duced. Customers also demand that at least 400 units of product 4 be produced. Formu-

late an LP that can be used to maximize Winco’s sales revenue.

Solution Let xi � number of units of product i produced by Winco.

max z � 4x1 � 6x2 � 7x3 � 8x4

s.t. 2x1 � 3x2 � 4x3 � 7x4 � 950

s.t. 2x1 � 3x2 � 4x3 � 7x4 � 400

s.t. 2x1 � 3x2 � 4x3 � 7x4 � 4,600

s.t. 3x1 � 4x2 � 5x3 � 6x4 � 5,000

s.t. 3 �4 �5 �6x1, x2, x3, x4 � 0

the new optimal solution if 24 � 
 million HIM expo-
sures are required.

e Find the shadow price of each constraint.

f If 26 million HIW exposures are required, determine
the new optimal z-value.

5 Radioco manufactures two types of radios. The only
scarce resource that is needed to produce radios is labor. At
present, the company has two laborers. Laborer 1 is willing
to work up to 40 hours per week and is paid $5 per hour.
Laborer 2 will work up to 50 hours per week for $6 per
hour. The price as well as the resources required to build
each type of radio are given in Table 1.

Letting xi be the number of Type i radios produced each
week, Radioco should solve the following LP:

max z � 3x1 � 2x2

s.t. 2x1 � 2x2 � 40
s.t. s.t. 2x1 � 2x2 � 50
s.t. 2 �2x1, x2 � 0

a For what values of the price of a Type 1 radio would
the current basis remain optimal?

b For what values of the price of a Type 2 radio would
the current basis remain optimal?
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c If laborer 1 were willing to work only 30 hours per
week, then would the current basis remain optimal? Find
the new optimal solution to the LP.

d If laborer 2 were willing to work up to 60 hours per
week, then would the current basis remain optimal? Find
the new optimal solution to the LP.

e Find the shadow price of each constraint.

TA B L E  1

Radio 1 Radio 2

Resource Resource
Price ($) Required Price ($) Required

25 Laborer 1: 22 Laborer 1:
1 hour 2 hours

Laborer 2: Laborer 2:
2 hours 2 hours

Raw material Raw material
cost: $5 cost: $4



The LINDO output for this LP is given in Figure 3.

When we discuss the interpretation of the LINDO output for minimization problems,

we will refer to the following example.

Tucker Inc. must produce 1,000 Tucker automobiles. The company has four production

plants. The cost of producing a Tucker at each plant, along with the raw material and la-

bor needed, is shown in Table 3.
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Tucker Inc.E X A M P L E  2

TA B L E  2

Costs and Resource Requirements for Winco

Resource Product 1 Product 2 Product 3 Product 4

Raw material 2 3 4 7

Hours of labor 3 4 5 6

Sales price ($) 4 6 7 8

MAX       4  X1 + 6  X2  + 7  X3  + 8  X4
SUBJECT TO
       2)     X1  +  X2  +  X3  +  X4  =       950
       3)     X4   >=     400
       4)     2  X1  +  3  X2  +  4  X3 + 7  X4  <=     4600
       5)     3  X1  +  4  X2  +  5  X3 + 6  X4  <=     5000
END

LP OPTIMUM FOUND AT STEP               4
                 OBJECTIVE FUNCTION VALUE
                 1)  6650.00000

VARIABLE         VALUE               REDUCED COST
      X1         .000000                 1.000000
      X2      400.000000                  .000000
      X3      150.000000                  .000000
      X4      400.000000                  .000000

     ROW        SLACK OR SURPLUS      DUAL PRICES
      2)             .000000             3.000000
      3)             .000000            -2.000000
      4)             .000000             1.000000
      5)          250.000000              .000000

NO. ITERATIONS=         4

RANGES IN WHICH THE BASIS IS UNCHANGED:

                      OBJ COEFFICIENT RANGES
VARIABLE   CURRENT           ALLOWABLE          ALLOWABLE
             COEF            INCREASE           DECREASE
      X1   4.000000           1.000000           INFINITY                 
      X2   6.000000            .666667            .500000
      X3   7.000000           1.000000            .500000
      X4   8.000000           2.000000           INFINITY

                      RIGHTHAND SIDE RANGES
     ROW   CURRENT           ALLOWABLE          ALLOWABLE
             RHS             INCREASE           DECREASE
       2   950.000000        50.000000         100.000000
       3   400.000000        37.000000         125.000000
       4  4600.000000       250.000000         150.000000
       5  5000.000000         INFINITY         250.000000

F I G U R E  3

LINDO Output 
for Winco



The autoworkers’ labor union requires that at least 400 cars be produced at plant 3;

3,300 hours of labor and 4,000 units of raw material are available for allocation to the

four plants. Formulate an LP whose solution will enable Tucker Inc. to minimize the cost

of producing 1,000 cars.

Solution Let xi � number of cars produced at plant i. Then, expressing the objective function in

thousands of dollars, the appropriate LP is

min z � 15x1 � 10x2 � 9x3 � 7x4

s.t. 2x1 � 3x2 � 4x3 � 5x4 � 1000

s.t. 2x1 � 3x2 � 4x3 � 5x4 � 400

s.t. 2x1 � 3x2 � 4x3 � 5x4 � 3300

s.t. 3x1 � 4x2 � 5x3 � 6x4 � 4000

s. t. 2� 4� 5� 6x1, x2, x3, x4 � 0

The LINDO output for this LP is given in Figure 4.

Objective Function Coefficient Ranges

Recall from Section 5.1 that (at least in a two-variable problem) we can determine the

range of values for an objective function coefficient for which the current basis remains

optimal. For each objective function coefficient, this range is given in the OBJECTIVE

COEFFICIENT RANGES portion of the LINDO output. The ALLOWABLE INCREASE

(AI) section indicates the amount by which an objective function coefficient can be in-

creased with the current basis remaining optimal. Similarly, the ALLOWABLE DE-

CREASE (AD) section indicates the amount by which an objective function coefficient

can be decreased with the current basis remaining optimal. To illustrate these ideas, let ci

be the objective function coefficient for xi in Example 1. If c1 is changed, then the cur-

rent basis remains optimal if

�� � 4 � � � c1 � 4 � 1 � 5

If c2 is changed, then the current basis remains optimal if

5.5 � 6 � 0.5 � c2 � 6 � 0.666667 � 6.666667

We will refer to the range of variables of ci for which the current basis remains optimal

as the allowable range for ci. As discussed in Section 5.1, if ci remains in its allowable

range then the values of the decision variables remain unchanged, although the optimal 

z-value may change. The following examples illustrate these ideas.
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Cost and Requirements for Producing a Tucker

Cost
Plant (in Thousands of Dollars) Labor Raw Material

1 15 2 3

2 10 3 4

3 19 4 5

4 17 5 6



a Suppose Winco raises the price of product 2 by 50¢ per unit. What is the new opti-

mal solution to the LP?

b Suppose the sales price of product 1 is increased by 60¢ per unit. What is the new op-

timal solution to the LP?

c Suppose the sales price of product 3 is decreased by 60¢. What is the new optimal so-

lution to the LP?

Solution a Because the AI for c2 is $0.666667, and we are increasing c2 by only $0.5, the cur-

rent basis remains optimal. The optimal values of the decision variables remain unchanged

(x1 � 0, x2 � 400, x3 � 150, and x4 � 400 is still optimal). The new optimal z-value may

be determined in two ways. First, we may simply substitute the optimal values of the de-

cision variables into the new objective function, yielding

New optimal z-value � 4(0) � 6.5(400) � 7(150) � 8(400) � $6,850

Another way to see that the new optimal z-value is $6,850 is to observe the only differ-

ence in sales revenue: Each unit of product 2 brings in 50¢ more in revenue. Thus, total

revenue should increase by 400(.50) � $200, so

New z-value � original z-value � 200  � $6,850
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MIN       15  X1 + 10  X2  + 9  X3  + 7  X4
SUBJECT TO
       2)     X1  +  X2  +  X3  +  X4  =      1000
       3)     X3   >=     400
       4)     2  X1  +  3  X2  +  4  X3 + 5  X4  <=     3300
       5)     3  X1  +  4  X2  +  5  X3 + 6  X4  <=     4000
END

LP OPTIMUM FOUND AT STEP               3
                 OBJECTIVE FUNCTION VALUE
                 1)  11600.0000

VARIABLE             VALUE        REDUCED COST
      X1          400.000000           .000000
      X2          200.000000           .000000
      X3          400.000000           .000000
      X4             .000000          7.000000

     ROW     SLACK OR SURPLUS      DUAL PRICES
      2)             .000000        -30.000000
      3)             .000000         -4.000000
      4)          300.000000           .000000
      5)             .000000          5.000000

NO. ITERATIONS=         3

RANGES IN WHICH THE BASIS IS UNCHANGED:

                      OBJ COEFFICIENT RANGES
VARIABLE   CURRENT        ALLOWABLE          ALLOWABLE
             COEF         INCREASE           DECREASE
      X1  15.000000        INFINITY           3.500000                 
      X2  10.000000        2.000000           INFINITY
      X3   9.000000        INFINITY           4.000000
      X4   7.000000        INFINITY           7.000000
      
                       RIGHTHAND SIDE RANGES
     ROW   CURRENT        ALLOWABLE          ALLOWABLE
             RHS          INCREASE           DECREASE
       2  1000.000000     66.666660         100.000000
       3   400.000000    100.000000         400.000000
       4  3300.000000      INFINITY         300.000000
       5  4000.000000    300.000000         200.000000

F I G U R E  4

LINDO Output 
for Tucker



b The AI for c1 is 1, so the current basis remains optimal, and the optimal values of the

decision variables remain unchanged. Because the value of x1 in the optimal solution is

0, the change in the sales price for product 1 will not change the optimal z-value—it will

remain $6,650.

c For c3, AD � .50, so the current basis is no longer optimal. Without resolving the

problem by hand or on the computer, we cannot determine the new optimal solution.

Reduced Costs and Sensitivity Analysis

The REDUCED COST portion of the LINDO output gives us information about how

changing the objective function coefficient for a nonbasic variable will change the LP’s

optimal solution. For simplicity, let’s assume that the current optimal bfs is nondegener-

ate (that is, if the LP has m constraints, then the current optimal solution has m variables

assuming positive values). For any nonbasic variable xk, the reduced cost is the amount

by which the objective function coefficient of xk must be improved before the LP will have

an optimal solution in which xk is a basic variable. If the objective function coefficient of

a nonbasic variable xk is improved by its reduced cost, then the LP will have alternative

optimal solutions—at least one in which xk is a basic variable, and at least one in which

xk is not a basic variable. If the objective function coefficient of a nonbasic variable xk is

improved by more than its reduced cost, then (barring degeneracy) any optimal solution

to the LP will have xk as a basic variable and xk � 0. To illustrate these ideas, note that

in Example 1 the basic variables associated with the optimal solution are x2, x3, x4, and

s4 (the slack for the labor constraint). The nonbasic variable x1 has a reduced cost of $1.

This implies that if we increase x1’s objective function coefficient (in this case, the sales

price per unit of x1) by exactly $1, then there will be alternative optimal solutions, at least

one of which will have x1 as a basic variable. If we increase x1’s objective function coef-

ficient by more than $1, then (because the current optimal bfs is nondegenerate) any op-

timal solution to the LP will have x1 as a basic variable (with x1 � 0). Thus, the reduced

cost for x1 is the amount by which x1 “misses the optimal basis.” We must keep a close

watch on x1’s sales price, because a slight increase will change the LP’s optimal solution.

Let’s now consider Example 2, a minimization problem. Here the basic variables as-

sociated with the optimal solution are x1, x2, x3, and s3 (the slack variable for the labor

constraint). Again, the optimal bfs is nondegenerate. The nonbasic variable x4 has a re-

duced cost of 7 ($7,000), so we know that if the cost of producing x4 is decreased by 7,

then there will be alternative optimal solutions. In at least one of these optimal solutions,

x4 will be a basic variable. If the cost of producing x4 is lowered by more than 7, then

(because the current optimal solution is nondegenerate) any optimal solution to the LP

will have x4 as a basic variable (with x4 � 0).

Right-Hand Side Ranges

Recall from Section 5.1 that we can determine (at least for a two-variable problem) the

range of values for a right-hand side within which the current basis remains optimal. This

information is given in the RIGHTHAND SIDE RANGES section of the LINDO output.

To illustrate, consider the first constraint in Example 1. Currently, the right-hand side of

this constraint (call it b1) is 950. The current basis remains optimal if b1 is decreased by

up to 100 (the allowable decrease, or AD, for b1) or increased by up to 50 (the allowable

increase, or AI, for b1). Thus, the current basis remains optimal if
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850 � 950 � 100 � b1 � 950 � 50 � 1,000

We call this the allowable range for b1. Even if a change in the right-hand side of a con-

straint leaves the current basis optimal, the LINDO output does not provide sufficient in-

formation to determine the new values of the decision variables. However, the LINDO

output does allow us to determine the LP’s new optimal z-value.

Shadow Prices and Dual Prices

In Section 5.1, we defined the shadow price of an LP’s ith constraint to be the amount by

which the optimal z-value of the LP is improved if the right-hand side is increased by one

unit (assuming this change leaves the current basis optimal). If, after a change in a constraint’s

right-hand side, the current basis is no longer optimal, then the shadow prices of all con-

straints may change. We will discuss this further in Section 5.4. The shadow price for each

constraint is found in the DUAL PRICES section of the LINDO output. If we increase the

right-hand side of the ith constraint by an amount 
bi —a decrease in bi implies that 


bi 	 0—and the new right-hand side value for Constraint i remains within the allowable

range for the right-hand side given in the RIGHTHAND SIDE RANGES section of the out-

put, then formulas (1) and (2) may be used to determine the optimal z-value after a right-

hand side is changed. The following example illustrates how shadow prices may be used to

determine how a change in a right-hand side affects the optimal z-value.

a In Example 1, suppose that a total of 980 units must be produced. Determine the new

optimal z-value.

b In Example 1, suppose that 4,500 units of raw material are available. What is the new

optimal z-value? What if only 4,400 units of raw material are available?

c In Example 2, suppose that 4,100 units of raw material are available. Find the new op-

timal z-value.

d In Example 2, suppose that exactly 950 cars must be produced. What will be the new

optimal z-value?

Solution a 
b1 � 30. Because the allowable increase is 50, the current basis remains optimal,

and the shadow price of $3 remains applicable. Then (1) yields

New optimal z-value � 6,650 � 30(3) � $6,740

Here we see that (as long as the current basis remains optimal) each additional unit of de-

mand increases revenues by $3.

b 
b3 � �100. Because the allowable decrease is 150, the shadow price of $1 remains

valid. Then (1) yields

New optimal z-value � 6,650 � 100(1) � $6,550

Thus (as long as the current basis remains optimal), a decrease in available raw material

of one unit decreases revenue by $1. If only 4,400 units of raw material are available, then


b3 � �200. Because the allowable decrease is 150, we cannot determine the new opti-

mal z-value.

c 
b4 � 100. The dual (or shadow) price is 5 (thousand). The current basis remains op-

timal, so (2) yields

New optimal z-value � 11,600 � 100(5) � 11,100 ($11,100,000)

5 . 2 The Computer and Sensitivity Analysis 237

Interpretation of RHS Sensitivity AnalysisE X A M P L E  4



Thus, as long as the current basis remains optimal, each additional unit of raw material

decreases costs by $5,000.

d 
b1 � �50. The allowable decrease is 100, so the shadow price of �30 (thousand)

and (2) yield

New optimal z-value � 11,600 � (�50)(�30) � 10,100 � $10,100,000

Thus, each unit by which demand is reduced (as long as the current basis remains opti-

mal) decreases costs by $30,000.

Let’s give an interpretation to the shadow price for each constraint in Examples 1 and

2. Again, all discussions are assuming that we are within the allowable range where the

current basis remains optimal. The shadow price of $3 for Constraint 1 in Example 1 im-

plies that each one-unit increase in total demand will increase sales revenues by $3. The

shadow price of �$2 for Constraint 2 implies that each unit increase in the requirement

for product 4 will decrease revenue by $2. The shadow price of $1 for Constraint 3 im-

plies that an additional unit of raw material given to Winco (for no cost) increases total

revenue by $1. Finally, the shadow price of $0 for Constraint 4 implies that an additional

unit of labor given to Winco (at no cost) will not increase total revenue. This is reason-

able; at present, 250 of the available 5,000 labor hours are not being used, so why should

we expect additional labor to raise revenues?

The shadow price of �$30 (thousand) for Constraint 1 of Example 2 means that each

extra car that must be produced  will decrease costs by �$30,000 (or increase costs by

$30,000). The shadow price of �$4 (thousand) for Constraint 2 means that an extra car

that the firm is forced to produce at plant 3 will decrease costs by �$4,000 (or increase

costs by $4,000). The shadow price of $0 for the third constraint means that an extra hour

of labor given to Tucker will decrease costs by $0. Thus, if Tucker is given an additional

hour of labor then costs are unchanged. This is reasonable; now 300 hours of available la-

bor are unused. The shadow price for Constraint 4 is $5 (thousand), which means that if

Tucker were given an additional unit of raw material, then costs would decrease by

$5,000.

Signs of Shadow Prices

A � constraint will always have a nonpositive shadow price; a � constraint will always

have a nonnegative shadow price; and an equality constraint may have a positive, nega-

tive, or zero shadow price. To see why this is true, observe that adding points to an LP’s

feasible region can only improve the optimal z-value or leave it the same. Eliminating

points from an LP’s feasible region can only make the optimal z-value worse or leave it

the same. For example, let’s look at the shadow price of the raw-material constraint (a �

constraint) in Example 1. Why must this shadow price be nonnegative? The shadow price

of the raw-material constraint represents the improvement in the optimal z-value if 4,601

units (instead of 4,600) of raw material are available. Having an additional unit of raw

material available adds points to the feasible region—points for which Winco uses �

4,600 but � 4,601 units of raw material—so we know that the optimal z-value must in-

crease or stay the same. Thus, the shadow price of this � constraint must be nonnegative.

Similarly, let’s consider the shadow price of the x4 � 400 constraint in Example 1. In-

creasing the right-hand side of this constraint to 401 eliminates points from the feasible

region (points for which Winco produces � 400 but 	 401 units of product 4). Thus, the

optimal z-value must decrease or stay the same, implying that the shadow price of this

constraint must be nonpositive. Similar reasoning shows that for a minimization problem,
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a � constraint will have a nonpositive shadow price, and a � constraint will have a non-

negative shadow price.

An equality constraint’s shadow price may be positive, negative, or zero. To see why,

consider the following two LPs:

max z � x1 � x2

s.t. x1 � x2 � 1 (LP 1)

s.t. � x1, x2 � 0

max z � x1 � x2

s.t. �x1 � x2 � �1 (LP 2)

s.t. � �x1, x2 � 0

Both LPs have the same feasible region and set of optimal solutions (the portion of the

line segment x1 � x2 � 1 in the first quadrant). However, LP 1’s constraint has a shadow

price of �1, whereas LP 2’s constraint has a shadow price of �1. Thus, the sign of the

shadow price for an equality constraint may either be positive, negative, or zero.

Sensitivity Analysis and Slack and Excess Variables

It can be shown (see Section 6.10) that for any inequality constraint, the product of the

values of the constraint’s slack or excess variable and the constraint’s shadow price must

equal 0. This implies that any constraint whose slack or excess variable is � 0 will have

a zero shadow price. It also implies that any constraint with a nonzero shadow price must

be binding (have slack or excess equal to 0). To illustrate these ideas, consider the labor

constraint in Example 1. This constraint has positive slack, so its shadow price must be 0.

This is reasonable, because slack � 250 for this constraint indicates that 250 hours of cur-

rently available labor are unused at present. Thus, an extra hour of labor would not in-

crease revenues. Now consider the raw material constraint of Example 1. Because this

constraint has a nonzero shadow price, it must have slack � 0. This is reasonable; the

nonzero shadow price means that additional raw material will increase revenue. This can

be the case only if all currently available raw material is now being used.

For constraints with nonzero slack or excess, the value of the slack or excess variable

is related to the ALLOWABLE INCREASE and ALLOWABLE DECREASE sections of

the RIGHTHAND SIDE RANGES portion of the LINDO output. This relationship is de-

tailed in Table 4.

For any constraint having positive slack or excess, the optimal z-value and values of

the decision variables remain unchanged within the right-hand side’s allowable range. To

illustrate these ideas, consider the labor constraint in Example 1. Because slack � 250,

we see from Table 4 that AI � � and AD � 250. Thus, the current basis remains optimal
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Allowable Increases and Decreases for Constraints
with Nonzero Slack or Excess

Type of Al AD
Constraint for rhs for rhs

� ∞ � Value for slack

� � Value of excess � ∞



for 4,750 � available labor � �. Within this range, both the optimal z-value and values

of the decision variables remain unchanged.

Degeneracy and Sensitivity Analysis

When the optimal solution to an LP is degenerate, caution must be used when interpret-

ing the LINDO output. Recall from Section 4.11 that a bfs is degenerate if at least one

basic variable in the optimal solution equals 0. For an LP with m constraints, if the

LINDO output indicates that less than m variables are positive, then the optimal solution

is a degenerate bfs. To illustrate, consider the following LP:

max z � 6x1 � 4x2 � 3x3 � 2x4

s.t. 2x1 � 3x2 � 2x3 � .2x4 � 400

s.t. 2x1 � 3x2 � 2x3 � .2x4 � 150

s.t. 2x1 � 3x2 � 2x3 � .5x4 � 200

s.t. 3x1 � 3x2 � 2x3 � .5x4 � 250

s.t. 3 �3 �3 �.5x1, x2, x3, x4 � 0

The LINDO output for this LP is in Figure 5. The LP has four constraints and in the

optimal solution only two variables are positive, so the optimal solution is a degenerate

bfs. By the way, using the TABLEAU command indicates that the optimal basis is BV �

{x2, x3, s3, x1}.

We now discuss three “oddities” that may occur when the optimal solution found by

LINDO is degenerate.

Oddity 1 In the RANGES IN WHICH THE BASIS IS UNCHANGED, at least one con-

straint will have a 0 AI or AD. This means that for at least one constraint, the DUAL

PRICE can tell us about the new z-value for either an increase or decrease in the right-

hand side, but not both.

To understand Oddity 1, consider the first constraint. Its AI is 0. This means that the

first constraint’s DUAL PRICE of .50 cannot be used to determine a new z-value result-

ing from any increase in the first constraint’s right-hand side.

Oddity 2 For a nonbasic variable to become positive, its objective function coefficient

may have to be improved by more than its REDUCED COST.

To understand Oddity 2, consider the nonbasic variable x4; its REDUCED COST is

1.5. If we increase its objective function coefficient by 2, however, we still find that the

new optimal solution has x4 � 0. This oddity occurs because the increase changes the set

of basic variables but not the LP’s optimal solution.

Oddity 3 Increasing a variable’s objective function coefficient by more than its AI or de-

creasing it by more than its AD may leave the optimal solution to the LP the same.

Oddity 3 is similar to Oddity 2. To understand it, consider the nonbasic variable x4. Its

AI is 1.5. If we increase its objective function coefficient by 2, however, we still find that

the new optimal solution is unchanged. This oddity occurs because the increase changes

the set of basic variables but not the LP’s optimal solution.

We close this section by noting that our discussions apply only if one objective func-

tion coefficient or one right-hand side is changed. If more than one objective function co-

efficient or the right-hand side is changed, it is sometimes still possible to use the LINDO

output to determine whether the current basis remains optimal. See Section 6.4 for details.
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P R O B L E M S
Group A
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MAX       6  X1 + 4  X2  + 3  X3  + 2  X4
SUBJECT TO
       2)     2  X1  +  3 X2  +  X3  +  2  X4  <= 400
       3)     X1  +  X2  +  2  X3  +  X4  <=     150
       4)     2  X1  +  X2  +  X3  +  0.5  X4  <=     200
       5)     3  X1  +  X2  +  X4  <=     250
END

LP OPTIMUM FOUND AT STEP               3
                 OBJECTIVE FUNCTION VALUE
                 1)  700.00000

VARIABLE          VALUE           REDUCED COST
      X1          50.000000            .000000
      X2         100.000000            .000000
      X3            .000000            .000000
      X4            .000000           1.500000

     ROW     SLACK OR SURPLUS      DUAL PRICES
      2)            .000000            .500000
      3)            .000000           1.250000
      4)            .000000            .000000
      5)            .000000           1.250000

NO. ITERATIONS=         3

RANGES IN WHICH THE BASIS IS UNCHANGED:

                    OBJ COEFFICIENT RANGES
VARIABLE   CURRENT        ALLOWABLE        ALLOWABLE
             COEF         INCREASE         DECREASE
      X1   6.000000        3.000000         3.000000
      X2   4.000000        5.000000         1.000000
      X3   3.000000        3.000000         2.142857
      X4   2.000000        1.500000         INFINITY

                    RIGHTHAND SIDE RANGES
     ROW   CURRENT        ALLOWABLE        ALLOWABLE
             RHS          INCREASE         DECREASE
       2  400.000000        .000000       200.000000
       3  150.000000        .000000          .000000
       4  200.000000       INFINITY          .000000
       5  250.000000        .000000       120.000000

THE TABLEAU
      ROW   (BASIS)   X1      X2      X3      X4   SLK  2
        1  ART      .000    .000    .000   1.500     .500
        2      X2   .000   1.000    .000    .500     .500
        3      X3   .000    .000   1.000    .167    -.167
        4  SLK  4   .000    .000    .000   -.500     .000
        5      X1  1.000    .000    .000    .167    -.167

      ROW    SLK    3    SLK    4    SLK    5
        1      1.250        .000       1.250     700.000
        2      -.250        .000       -.250     100.000
        3       .583        .000       -.083        .000
        4      -.500       1.000       -.500        .000
        5       .083        .000        .417      50.000F I G U R E  5

1 Farmer Leary grows wheat and corn on his 45-acre
farm. He can sell at most 140 bushels of wheat and 120
bushels of corn. Each acre planted with wheat yields 5
bushels, and each acre planted with corn yields 4 bushels.
Wheat sells for $30 per bushel, and corn sells for $50 per
bushel. To harvest an acre of wheat requires 6 hours of
labor; 10 hours are needed to harvest an acre of corn. Up to
350 hours of labor can be purchased at $10 per hour. Let 
A1 � acres planted with wheat; A2 � acres planted with

corn; and L � hours of labor that are purchased. To maximize
profits, Leary should solve the following LP:

max z � 150A1 � 200A2 � 10L
s.t. 6A1 � 10A2 � L � 45
s.t. 6A1 � 10A2 � L � 0
s.t. 6A1 � 10A2 � L � 350
s.t. 5A1 � 10A2 � L � 140
s.t. 5A1 � 4A2 � L � 120

s.t. 5 � � A1, A2, L � 0



Use the LINDO output in Figure 6 to answer the following
questions:

a If only 40 acres of land were available, what would
Leary’s profit be?

b If the price of wheat dropped to $26, what would be
the new optimal solution to Leary’s problem?

c Use the SLACK portion of the output to determine
the allowable increase and allowable decrease for the
amount of wheat that can be sold. If only 130 bushels
of wheat could be sold, then would the answer to the
problem change?

2 Carco manufactures cars and trucks. Each car
contributes $300 to profit, and each truck contributes $400.
The resources required to manufacture a car and a truck are
shown in Table 5. Each day, Carco can rent up to 98 Type 1
machines at a cost of $50 per machine. The company has
73 Type 2 machines and 260 tons of steel available.
Marketing considerations dictate that at least 88 cars and at
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least 26 trucks be produced. Let x1 � number of cars
produced daily; x2 � number of trucks produced daily; and
m1 � Type 1 machines rented daily.

To maximize profit, Carco should solve the LP in Figure
7. Use the LINDO output to answer the following questions:

a If each car contributed $310 to profit, what would be
the new optimal solution to the problem?

TA B L E  5

Days on Type 1 Days on Type 2
Vehicle Machine Machine Tons of Steel

Car 0.8 0.6 2

Truck 1.8 0.7 3

MAX     150  A1 + 200  A2  -  10 L  
SUBJECT TO
       2)    A1 + A2 <=   45
       3)    6 A1 + 10 A2 - L <=  0
       4)    L <=   350
       5)    5 A1 <=   140
       6)    4 A2 <=   120
END

LP OPTIMUM FOUND AT STEP               4
       
                 OBJECTIVE FUNCTION VALUE

                 1)  4250.00000

VARIABLE        VALUE         REDUCED COST
      A1        25.000000          .000000
      A2        20.000000          .000000
       L       350.000000          .000000

     ROW    SLACK OR SURPLUS   DUAL PRICES
      2)          .000000        75.000000
      3)          .000000        12.500000
      4)          .000000         2.500000
      5)        15.000000          .000000
      6)        40.000000          .000000

NO. ITERATIONS=         4

RANGES IN WHICH THE BASIS IS UNCHANGED:

                OBJ COEFFICIENT RANGES
VARIABLE  CURRENT     ALLOWABLE      ALLOWABLE
           COEF       INCREASE       DECREASE
      A1  150.000000  10.000000      30.000000     
      A2  200.000000  50.000000      10.000000
       L  -10.000000   INFINITY       2.500000

                RIGHTHAND SIDE RANGES
     ROW  CURRENT     ALLOWABLE      ALLOWABLE
            RHS       INCREASE       DECREASE
       2   45.000000    1.200000      6.666667
       3     .000000   40.000000     12.000000
       4  350.000000   40.000000     12.000000
       5  140.000000    INFINITY     15.000000
       6  120.000000    INFINITY     40.000000

F I G U R E  6

LINDO Output for Wheat and Corn
MAX     300  X1 + 400  X2  -  50  M1
SUBJECT TO
       2)    0.8 X1  +  X2  -  M1  <=   0
       3)    M1  <=    98
       4)    0.6  X1 +  0.7  X2 <=   73
       5)    2 X1  + 3  X2  <=   260
       6)    X1 >=  88
       7)    X2 >=  26
END

LP OPTIMUM FOUND AT STEP               4
       
                 OBJECTIVE FUNCTION VALUE
                 
                 1)  32540.0000

VARIABLE        VALUE        REDUCED COST
      X1        88.000000         .000000
      X2        27.600000         .000000
      M1        98.000000         .000000

     ROW   SLACK OR SURPLUS   DUAL PRICES
      2)          .000000      400.000000
      3)          .000000      350.000000
      4)          .879999         .000000
      5)         1.200003         .000000
      6)          .000000      -20.000000
      7)         1.599999         .000000 

NO. ITERATIONS=         4

RANGES IN WHICH THE BASIS IS UNCHANGED:

                 OBJ COEFFICIENT RANGES
VARIABLE    CURRENT       ALLOWABLE     ALLOWABLE
             COEF         INCREASE      DECREASE
      X1   300.000000     20.000000      INFINITY   
      X2   400.000000      INFINITY     25.000000
      M1   -50.000000      INFINITY    350.000000

                 RIGHTHAND SIDE RANGES
     ROW    CURRENT        ALLOWABLE    ALLOWABLE
              RHS          INCREASE     DECREASE
       2      .000000        .400001     1.599999
       3    98.000000        .400001     1.599999
       4    73.000000       INFINITY      .879999
       5   260.000000       INFINITY     1.200003
       6    88.000000       1.999999     3.000008   
       7    26.000000       1.599999     INFINITY   

F I G U R E  7

LINDO Output for Carco



b If Carco were required to produce at least 86 cars,
what would Carco’s profit become?

3 Consider the diet problem discussed in Section 3.4. Use
the LINDO output in Figure 8 to answer the following
questions.

a If a Brownie costs 30¢, then what would be the new
optimal solution to the problem?

b If a bottle of cola cost 35¢, then what would be the
new optimal solution to the problem?

c If at least 8 oz of chocolate were required, then what
would be the cost of the optimal diet?

d If at least 600 calories were required, then what
would be the cost of the optimal diet?

e If at least 9 oz of sugar were required, then what
would be the cost of the optimal diet?
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f What would the price of pineapple cheesecake have
to be before it would be optimal to eat cheesecake?

g What would the price of a brownie have to be before
it would be optimal to eat a brownie?

h Use the SLACK or SURPLUS portion of the LINDO
output to determine the allowable increase and allow-
able decrease for the fat constraint. If 10 oz of fat were
required, then would the optimal solution to the problem
change?

4 Gepbab Corporation produces three products at two
different plants. The cost of producing a unit at each plant
is shown in Table 6. Each plant can produce a total of 10,000
units. At least 6,000 units of product 1, at least 8,000 units
of product 2, and at least 5,000 units of product 3 must be
produced. To minimize the cost of meeting these demands,
the following LP should be solved:

min z � 5x11 � 6x12 � 8x13 � 8x21 � 7x22 � 10x23

s.t. x11 � x12 � x13 � x21 � x22 � x23 � 10,000

s.t. x11 � x12 � x13 � x21 � x22 � x23 � 10,000

s.t. x11 � x12 � x13 � x21 � x22 � x23 � 6,000

s.t. x11 � x12 � x13 � x21 � x22 � x23 � 8,000

s.t. x11 � x12 � x13 � x21 � x22 � x23 � 5,000

All variables � 0

Here, xij � number of units of product j produced at plant
i. Use the LINDO output in Figure 9 to answer the follow-
ing questions:

a What would the cost of producing product 2 at plant
1 have to be for the firm to make this choice?

b What would total cost be if plant 1 had 9,000 units
of capacity?

c If it cost $9 to produce a unit of product 3 at plant
1, then what would be the new optimal solution?

5 Mondo produces motorcycles at three plants. At each
plant, the labor, raw material, and production costs
(excluding labor cost) required to build a motorcycle are as
shown in Table 7. Each plant has sufficient machine capacity
to produce up to 750 motorcycles per week. Each of Mondo’s
workers can work up to 40 hours per week and is paid
$12.50 per hour worked. Mondo has a total of 525 workers
and now owns 9,400 units of raw material. Each week, at
least 1,400 Mondos must be produced. Let x1 � motorcycles
produced at plant 1; x2 � motorcycles produced at plant 2;
and x3 � motorcycles produced at plant 3.

The LINDO output in Figure 10 enables Mondo to min-
imize the variable cost (labor � production) of meeting de-
mand. Use the output to answer the following questions:

a What would be the new optimal solution to the prob-
lem if the production cost at plant 1 were only $40?

MAX     50 BR + 20 IC + 30 COLA + 80 PC
SUBJECT TO
       2)    400 BR + 200 IC + 150 COLA 
                             + 500 PC >=  500
       3)    3  BR  + 2  IC  >=  6
       4)    2  BR  + 2  IC  +  4 COLA  
                             + 4  PC >=  10
       5)    2  BR  + 4  IC  +  COLA  
                             + 5  PC  >=  8
END

LP OPTIMUM FOUND AT STEP               2

                 OBJECTIVE FUNCTION VALUE

                 1)  90.0000000

VARIABLE       VALUE         REDUCED COST
      BR        .000000         27.500000
      IC       3.000000           .000000
    COLA       1.000000           .000000
      PC        .000000         50.000000

     ROW   SLACK OR SURPLUS   DUAL PRICES
      2)     250.000000           .000000
      3)        .000000         -2.500000
      4)        .000000         -7.500000
      5)       5.000000           .000000

NO. ITERATIONS=         2

RANGES IN WHICH THE BASIS IS UNCHANGED:

                 OBJ COEFFICIENT RANGES
VARIABLE   CURRENT     ALLOWABLE      ALLOWABLE
            COEF       INCREASE       DECREASE
      BR  50.000000     INFINITY      27.500000    
      IC  20.000000    18.333330       5.000000
    COLA  30.000000    10.000000      30.000000
      PC  80.000000     INFINITY      50.000000

                 RIGHTHAND SIDE RANGES
     ROW   CURRENT     ALLOWABLE      ALLOWABLE
             RHS       INCREASE       DECREASE
       2  500.000000  250.000000       INFINITY
       3    6.000000    4.000000       2.857143
       4   10.000000    INFINITY       4.000000
       5    8.000000    5.000000       INFINITY

F I G U R E  8

LINDO Output for Diet Problem

TA B L E  6

Product ($)

Plant 1 2 3

1 5 6 18

2 8 7 10



b How much money would Mondo save if the capac-
ity of plant 3 were increased by 100 motorcycles?

c By how much would Mondo’s cost increase if it had
to produce one more motorcycle?

6 Steelco uses coal, iron, and labor to produce three types
of steel. The inputs (and sales price) for one ton of each
type of steel are shown in Table 8. Up to 200 tons of coal
can be purchased at a price of $10 per ton. Up to 60 tons of
iron can be purchased at $8 per ton, and up to 100 labor
hours can be purchased at $5 per hour. Let x1 � tons of
steel 1 produced; x2 � tons of steel 2 produced; and x3 �

tons of steel 3 produced.
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The LINDO output that yields a maximum profit for the
company is given in Figure 11. Use the output to answer the
following questions.

a What would profit be if only 40 tons of iron could
be purchased?

MAX      5  X11 + 6 X12 + 8 X13 + 8 X21 
                                + 7 X22 + 10 X23 
SUBJECT TO
       2)     X11  +  X12  +  X13 <=   10000
       3)     X21  +  X22  +  X23 <=   10000
       4)     X11  +  X21  >=    6000
       5)     X12  +  X22  >=    8000
       6)     X13  +  X23  >=    5000
END

LP OPTIMUM FOUND AT STEP               5

                 OBJECTIVE FUNCTION VALUE

                 1)  128000.000

VARIABLE      VALUE          REDUCED COST
     X11    6000.000000           .000000
     X12        .000000          1.000000
     X13    4000.000000           .000000
     X21        .000000          1.000000
     X22    8000.000000           .000000           
     X23    1000.000000           .000000           

     ROW   SLACK OR SURPLUS   DUAL PRICES
      2)        .000000          2.000000
      3)    1000.000000           .000000
      4)        .000000         -7.000000
      5)        .000000         -7.000000
      6)        .000000        -10.000000

NO. ITERATIONS=         5

RANGES IN WHICH THE BASIS IS UNCHANGED:

                   OBJ COEFFICIENT RANGES
VARIABLE   CURRENT        ALLOWABLE       ALLOWABLE
            COEF          INCREASE        DECREASE
     X11  5.000000         1.000000        7.000000 
     X12  6.000000         INFINITY        1.000000
     X13  8.000000         1.000000        1.000000
     X21  8.000000         INFINITY        1.000000
     X22  7.000000         1.000000        7.000000 
     X23 10.000000         1.000000        1.000000 
                             
                    RIGHTHAND SIDE RANGES
     ROW   CURRENT        ALLOWABLE       ALLOWABLE
             RHS          INCREASE        DECREASE
       2  10000.000000  1000.000000     1000.000000
       3  10000.000000     INFINITY     1000.000000
       4   6000.000000  1000.000000     1000.000000
       5   8000.000000  1000.000000     8000.000000
       6   5000.000000  1000.000000     1000.000000 

F I G U R E  9

LINDO Output for Gepbab

TA B L E  7

Labor Raw Material Production
Plant Needed (Hours) Needed (Units) Cost ($)

1 20 5 050

2 16 8 080

3 10 7 100

MAX       300  X1 + 280  X2  +  225  X3
SUBJECT TO
       2)     20 X1  + 16 X2  + 10  X3 <=  21000
       3)     5  X1  + 8  X2  +  7  X3 <=  9400
       4)     X1  <=     750
       5)     X2  <=     750
       6)     X3  <=     750
       7)     X1  +  X2  +  X3  >=   1400
END

LP OPTIMUM FOUND AT STEP               3
 
                 OBJECTIVE FUNCTION VALUE

                 1)  357750.000

VARIABLE        VALUE       REDUCED COST
      X1      350.000000         .000000
      X2      300.000000         .000000
      X3      750.000000         .000000

     ROW   SLACK OR SURPLUS  DUAL PRICES
      2)     1700.000000         .000000
      3)         .000000        6.666668
      4)      400.000000         .000000
      5)      450.000000         .000000
      6)         .000000       61.666660           
      7)         .000000     -333.333300           

NO. ITERATIONS=         3

RANGES IN WHICH THE BASIS IS UNCHANGED:

                 OBJ COEFFICIENT RANGES
VARIABLE   CURRENT       ALLOWABLE       ALLOWABLE
            COEF         INCREASE        DECREASE
      X1   300.000000     INFINITY       20.000000 
      X2   280.000000    20.000010       92.499990
      X3   225.000000    61.666660        INFINITY

                   RIGHTHAND SIDE RANGES
     ROW   CURRENT       ALLOWABLE       ALLOWABLE
             RHS         INCREASE        DECREASE
       2  21000.000000    INFINITY     1700.000000
       3   9400.000000 1050.000000      900.000000
       4    750.000000    INFINITY      400.000000
       5    750.000000    INFINITY      450.000000
       6    750.000000  450.000000      231.818200 
       7   1400.000000   63.750000      131.250000 

F I G U R E  10

LINDO Output for Mondo



b What is the smallest price per ton for steel 3 that
would make it desirable to produce it?

c Find the new optimal solution if steel 1 sold for $55
per ton.

Group B

7 Shoeco must meet (on time) the following demands for
pairs of shoes: month 1—300; month 2—500; month 3—
100; and month 4—100. At the beginning of month 1, 50
pairs of shoes are on hand, and Shoeco has three workers.
A worker is paid $1,500 per month. Each worker can work
up to 160 hours per month before receiving overtime. During
any month, each worker may be forced to work up to 20
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hours of overtime; workers are paid $25 per hour for
overtime labor. It takes 4 hours of labor and $5 of raw
material to produce each pair of shoes. At the beginning of
each month, workers can be hired or fired. Each hired worker
costs $1,600, and each fired worker costs $2,000. At the end
of each month, a holding cost of $30 per pair of shoes is
assessed. Formulate an LP that can be used to minimize the
total cost of meeting the next four months’ demands. Then
use LINDO to solve the LP. Finally, use the LINDO printout
to answer the questions that follow these hints (which may
help in the formulation.) Let

xt � Pairs of shoes produced during month t with
nonovertime labor

ot � Pairs of shoes produced during month t with 
overtime labor

it � Inventory of pairs of shoes at end of month t

ht � Workers hired at beginning of month t

ft � Workers fired at beginning of month t

wt � Workers available for month t (after month t hiring
and firing)

Four types of constraints will be needed:

Type 1 Inventory equations. For example, during month 1,
i1 � 50 � x1 � o1 � 300.
Type 2 Relate available workers to hiring and firing. For
month 1, for example, the following constraint is needed:
w1 � 3 � h1 � f1.
Type 3 For each month, the amount of shoes made with
nonovertime labor is limited by the number of workers. For
example, for month 1, the following constraint is needed:
4x1 � 160w1.
Type 4 For each month, the number of overtime labor hours
used is limited by the number of workers. For example, for
month 1, the following constraint is needed: 4(o1) � 20w1.

For the objective function, the following costs must be con-
sidered:

1 Workers’ salaries

2 Hiring costs

3 Firing costs

4 Holding costs

5 Overtime costs

6 Raw-material costs

a Describe the company’s optimal production plan,
hiring policy, and firing policy. Assume that it is ac-
ceptable to have a fractional number of workers, hirings,
or firings.

b If overtime labor during month 1 costs $16 per hour,
should any overtime labor be used?

c If the cost of firing workers during month 3 were
$1,800, what would be the new optimal solution to the
problem?

d If the cost of hiring workers during month 1 were
$1,700, what would be the new optimal solution to the
problem?

e By how much would total costs be reduced if de-
mand in month 1 were 100 pairs of shoes?

f What would the total cost become if the company
had 5 workers at the beginning of month 1 (before month
1’s hiring or firing takes place)?

TA B L E  8

Coal Iron Labor Sales
Steel Required (Tons) Required (Tons) Required (Hours) Price ($)

1 3 1 1 51

2 2 0 1 30

3 1 1 1 25

MAX       8  X1 + 5  X2  + 2  X3 
SUBJECT TO
       2)     3  X1  +  2  X2  +  X3 <=  200
       3)     X1  +  X3   <=     60
       4)     X1  +  X2  +  X3 <=  100
END

LP OPTIMUM FOUND AT STEP               2

       OBJECTIVE FUNCTION VALUE

       1)  530.000000

VARIABLE        VALUE         REDUCED COST
      X1       60.000000           .000000
      X2       10.000000           .000000
      X3         .000000          1.000000

     ROW   SLACK OR SURPLUS    DUAL PRICES
      2)         .000000          2.500000
      3)         .000000           .500000
      4)       30.000000           .000000

NO. ITERATIONS=         2

RANGES IN WHICH THE BASIS IS UNCHANGED:

                  OBJ COEFFICIENT RANGES
VARIABLE   CURRENT      ALLOWABLE       ALLOWABLE
            COEF        INCREASE        DECREASE
      X1   8.000000      INFINITY         .500000 
      X2   5.000000       .333333        5.000000
      X3   2.000000      1.000000        INFINITY 

                  RIGHTHAND SIDE RANGES
     ROW   CURRENT      ALLOWABLE       ALLOWABLE
             RHS        INCREASE        DECREASE
       2  200.000000    60.000000       20.000000
       3   60.000000     6.666667       60.000000
       4  100.000000     INFINITY       30.000000

F I G U R E  11

LINDO Output for Steelco



5.3 Managerial Use of Shadow Prices

In this section, we will discuss the managerial significance of shadow prices. In particu-

lar, we will learn how shadow prices can often be used to answer the following question:

What is the maximum amount that a manager should be willing to pay for an additional

unit of a resource? To answer this question, we usually focus our attention on the shadow

price of the constraint that describes the availability of the resource. We now discuss four

examples of the interpretation of shadow prices.

In Example 1, what is the most that Winco should be willing to pay for an additional unit

of raw material? How about an extra hour of labor?

Solution Because the shadow price of the raw-material-availability constraint is 1, an extra unit

would increase total revenue by $1. Thus, Winco could pay up to $1 for an extra unit of

raw material and be as well off as it is now. This means that Winco should be willing to

pay up to $1 for an extra unit of raw material. The labor-availability constraint has a shadow

price of 0. This means that an extra hour of labor will not increase revenues, so Winco

should not be willing to pay anything for an extra hour of labor. (Note that this discussion

is valid because the AIs for the labor and raw-material constraints both exceed 1.)

Let’s reconsider Example 1 with the following changes. Suppose as many as 4,600 units

of raw material are available, but they must be purchased at a cost of $4 per unit. Also,

as many as 5,000 hours of labor are available, but they must be purchased at a cost of $6

per hour. The per-unit sales price of each product is as follows: product 1—$30; product

2—$42; product 3—$53; product 4—$72. A total of 950 units must be produced, of which

at least 400 must be product 4. Determine the maximum amount that the firm should be

willing to pay for an extra unit of raw material and an extra hour of labor.

Solution The contribution to profit from one unit of each product may be computed as follows:

Product 1: 30 � 4(2) � 6(3) � $4

Product 2: 42 � 4(3) � 6(4) � $6

Product 3: 53 � 4(4) � 6(5) � $7

Product 4: 72 � 4(7) � 6(6) � $8

Thus, Winco’s profit is 4x1 � 6x2 � 7x3 � 8x4. To maximize profit, Winco should solve

the same LP as in Example 1, and the relevant LINDO output is again Figure 3. To de-

termine the most Winco should be willing to pay for an extra unit of raw material, note

Winco Products 3E X A M P L E  6

g By how much would costs increase if demand in
month 2 were increased by 100 pairs of shoes?

8 Consider the LP:

max  9x1 � 8x2 � 5x3 � 4x4

s.t. 2x1 � 8x2 � x3 � x4 � 200

s s.t. 2x1 � 8x2 � x3 � x4 � 150

s s.t. 2x1 � 8x2 � x3 � x4 � 350

s s.t. 2x1 � 8x2 � x3 � x4 � 550

s.t. 2 � � �x1, x2, x3, x4 � 0
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a Solve this LP with LINDO and use your output to
show that the optimal solution is degenerate.

b Use your LINDO output to find an example of Odd-
ities 1–3.

Winco Products 2E X A M P L E  5



that the shadow price of the raw material constraint may be interpreted as follows: If

Winco has the right to buy one more unit of raw material (at $4 per unit), then profits in-

crease by $1. Thus, paying $4 � $1 � $5 for an extra unit of raw material will increase

profits by $1 � $1 � $0. So Winco could pay up to $5 for an extra unit of raw material

and still be better off. For the raw-material constraint, the shadow price of $1 represents

a premium above and beyond the current price Winco is willing to pay for an extra unit

of raw material.

The shadow price of the labor-availability constraint is $0, which means that the right

to buy an extra hour of labor at $4 an hour will not increase profits. Unfortunately, all this

tells us is that at the current price of $4 per hour, Winco should buy no more labor.

Consider the Farmer Leary problem (Problem 1 in Section 5.2).

a What is the most that Leary should pay for an additional hour of labor?

b What is the most that Leary should pay for an additional acre of land?

Solution a From the L � 350 constraint’s shadow price of 2.5, we see that if 351 hours of labor

are available, then (after paying $10 for another hour of labor) profits increase by $2.50.

So if Leary pays $10 � $2.50 � $12.50 for an extra hour of labor, profits would increase

by $2.50 � $2.50 � $0. This implies that Leary should be willing to pay up to $12.50

for another hour of labor.

To look at it another way, the shadow price of the 6A1 � 10A2 � L � 0 constraint is

12.5. This means that if the constraint 6A1 � 10A2 � L were replaced by the constraint

6A1 � 10A2 � L � 1, profits would increase by $12.50. So if one extra hour of labor

were “given” to Leary (at zero cost), profits would increase by $12.50. Thus, Leary should

be willing to pay up to $12.50 for an extra hour of labor.

b If 46 acres of land were available, profits would increase by $75 (the shadow price of

the A1 � A2 � 45 constraint). This includes the cost ($0) of purchasing an additional

acre of land. Thus, Leary should be willing to pay up to $75 for an extra acre of land.

We now illustrate some of the managerial insights that can be gained by analyzing the

shadow prices for a minimization problem.

The following questions refer to Example 2.

a What is the most that Tucker should pay for an extra hour of labor?

b What is the most that Tucker should pay for an extra unit of raw material?

c A new customer is willing to purchase 20 cars at a price of $25,000 per vehicle.

Should Tucker fill her order?

Solution a Because the shadow price of the labor-availability constraint (row 4) is 0, an extra hour

of labor reduces costs by $0. Thus, Tucker should not pay anything for an extra hour of

labor.

b Because the shadow price of the raw-material-availability constraint (row 5) is 5 (thou-

sand dollars), an additional unit of raw material reduces costs by $5,000. Thus, Tucker

should be willing to pay up to $5,000 for an extra unit of raw material.
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c The allowable increase for the constraint x1 � x2 � x3 � x4 � 1,000 is 66.666660.

Because the shadow price of this constraint is �30 (thousand dollars), we know that if

Tucker fills the order, its costs will increase by �20(�30,000) � $600,000. So Tucker

should not fill the order.

In Example 8, the astute reader may notice that each car costs at most $15,000 to pro-

duce. How is it then possible that a unit increase in the number of cars that must be pro-

duced increases costs by $30,000? To see why this is the case, we re-solved Tucker’s LP

after increasing the number of cars that had to be produced to 1,001. The new optimal so-

lution has z � 11,630, x1 � 404, x2 � 197, x3 � 400, x4 � 0. We now see why increas-

ing demand by one car raises costs by $30,000. To produce one more car, Tucker must

produce four more Type 1 cars and three fewer Type 2 cars. This ensures that Tucker still

uses only 4,400 units of raw material, but it increases total cost by 4(15,000) � 3(10,000)

� $30,000!

P R O B L E M S
Group A
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1 In Problem 2 of Section 5.2, what is the most that Carco
should be willing to pay for an extra ton of steel?

2 In Problem 2 of Section 5.2, what is the most that Carco
should be willing to pay to rent an additional Type 1 machine
for one day?

3 In Problem 3 of Section 5.2, what is the most that one
should be willing to pay for an additional ounce of
chocolate?

4 In Problem 4 of Section 5.2, how much should Gepbab
be willing to pay for another unit of capacity at plant 1?

5 In Problem 5 of Section 5.2, suppose that Mondo could
purchase an additional unit of raw material at a cost of $6.
Should the company do it? Explain.

6 In Problem 6 of Section 5.2, what is the most that Steelco
should be willing to pay for an extra ton of coal?

7 In Problem 6 of Section 5.2, what is the most that Steelco
should be willing to pay for an extra ton of iron?

8 In Problem 6 of Section 5.2, what is the most that Steelco
should be willing to pay for an extra hour of labor?

9 In Problem 7 of Section 5.2, suppose that a new customer
wishes to buy a pair of shoes during month 1 for $70.
Should Shoeco oblige him?

10 In Problem 7 of Section 5.2, what is the most the
company would be willing to pay for having one more
worker at the beginning of month 1?

11 In solving part (c) of Example 8, a manager reasons as
follows: The average cost of producing a car is $11,600 up
to 1,000 cars. Therefore, if a customer is willing to pay me
$25,000 for a car, I should certainly fill his order. What is
wrong with this reasoning?

5.4 What Happens to the Optimal z-Value If the Current 
Basis Is No Longer Optimal?

In Section 5.2, we used shadow prices to determine the new optimal z-value if the right-

hand side of a constraint were changed but remained in the range where the current basis

remains optimal. Suppose we change the right-hand side of a constraint to a value where

the current basis is no longer optimal. In this situation, the LINDO Parametrics feature can

be used to determine how the shadow price of a constraint and the optimal z-value change.

We illustrate the use of the Parametrics feature by varying the amount of raw material

available in Example 1. Suppose we want to determine how the optimal z-value and shadow

price change as the amount of available raw material varies between 0 and 10,000 units. We

first realize that with little raw material available, the LP will be infeasible. To begin, we



change the amount of raw material available to 0. We then obtain from the Range and Sen-

sitivity Analysis results that row 4 has an Allowable Decrease of �3,900. This indicates that

if at least 3,900 units of raw material are available, the problem will be feasible. We there-

fore change the rhs of the raw material constraint to 3,900 and solve the LP. After finding

the optimal solution, select Reports Parametrics. From the dialog box, choose row 4 and set

the value to 10,000. We will choose Text output. We obtain the output shown in Figure 12.

From Figure 12 we find that if the amount of available raw material is 3,900, then the

shadow price (or dual price) for raw material is now $2, and the optimal z-value is 5,400.

The current basis remains optimal until rm � 4,450; between rm � 3,900 and rm �

4,450, each unit increase in rm will increase the optimal z-value by the shadow price of

$2. Thus, when rm � 4,450, the optimal z-value will be

5,400 � 2(4,450 � 3,900) � $6,500

From Figure 12, we see that when rm � 4,450, x3 enters the basis and x1 exits. The

shadow price of rm is now $1, and each additional unit of rm (up to the next change of

basis) will increase the optimal z-value by $1. The next basis change occurs when rm �

4,850. At this point, the new optimal z-value may be computed as (optimal z-value for 

rm � 6,500) � (4,850 � 4,450)($1) � $6,900. When rm � 4,850, we pivot in SLACK3

(the slack variable for row 3 or constraint 2), and SLACK5 exits. The new shadow price

for rm is $0. Thus when rm � 4,850, we see that an additional unit of rm will not in-

crease the optimal z-value. This discussion is summarized in Figure 13, which shows the

optimal z-value as a function of the amount of available raw material.

For any LP, a graph of the optimal objective function value as a function of a right-

hand side will consist of several straight-line segments of possibly differing slopes. (Such

a function is called a piecewise linear function.) The slope of each straight-line segment

is just the constraint’s shadow price. At points where the optimal basis changes (points B,

C, and D in Figure 13), the slope of the graph may change. For a � constraint in a max-

imization problem, the slope of each line segment must be nonnegative—more of a re-
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source can’t hurt. In a maximization problem, the slopes of successive line segments for

a � constraint will be nonincreasing. This is simply a consequence of diminishing returns;

as we obtain more of a resource (and availability of other resources is held constant), the

value of an additional unit of the resource cannot increase.

For a � constraint in a maximization problem, the graph of the optimal z-value as a

function of the right-hand side will again be a piecewise linear function. The slope of each

line segment will be nonpositive (corresponding to the fact that a � constraint has a non-

positive shadow price). The slopes of successive line segments will be nonincreasing. For

the x4 � 400 constraint in Example 1, plotting the optimal z-value as a function of the

constraint’s right-hand side yields the graph in Figure 14.

For an equality constraint in a maximization problem, the graph of the optimal z-value

as a function of right-hand side will again be piecewise linear. The slopes of each line

segment may be positive or negative, but the slopes of successive line segments will again

be nonincreasing. For the constraint x1 � x2 � x3 � x4 � 950 in Example 1, we obtain

the graph in Figure 15.

For a minimization problem, the plot of the optimal z-value against a constraint’s right-

hand side is again a piecewise linear function. For all minimization problems, the slopes

of successive line segments will be nondecreasing. For a � constraint, the slope of each

line segment is nonpositive; for a � constraint, the slope is nonnegative; and for an 

equality constraint, the slope may be positive or negative.
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Effect of Change in Objective Function 
Coefficient on Optimal z-Value

We now discuss how to find the graph of the optimal objective function value as a func-

tion of a variable’s objective function coefficient. To see how this works, let’s reconsider

the Giapetto problem.

max z � 3x1 � 2x2

s.t. 2x1 � x2 � 100

s.t. x1 � x2 � 80

s.t. x1 � x2 � 40

s.t. 2 �x1, x2 � 0

Let c1 � objective function coefficient for x1. Currently, we have c1 � 3. We want to deter-

mine how the optimal z-value depends on c1. To determine this relationship, we must find,

for each value of c1, the optimal values of the decision variables. Recall from Figure 1 (p.

228) that point A � (0, 80) is optimal if the isoprofit line is flatter than the carpentry con-

straint. Also note that point B � (20, 60) is optimal if the slope of the isoprofit line is steeper

than the carpentry constraint and flatter than the finishing-hour constraint. Finally, point C �

(40, 20) is optimal if the slope of the isoprofit line is steeper than the slope of the finishing-

hour constraint. A typical isoprofit line is c1x1 � 2x2 � k, so we know that the slope of a

typical isoprofit line is ��
c

2
1
�. This implies that point A is optimal if ��

c

2
1
� � �1 (or c1 � 2).

We also find that point B is optimal if �2 � ��
c

2
1
� � �1 (or 2 � c1 � 4). Finally, point C is

optimal if ��
c

2
1
� � �2 (or c1 � 4). By substituting the optimal values of the decision vari-

ables into the objective function (c1x1 � 2x2), we obtain the following information:

Value of c1 Optimal z-value

0 � c1 � 2 c1(0)0 � 2(80) � $160

2 � c1 � 4 c1(20) � 2(60) � $120 � 20c1

2 � c1 � 4 c1(40) � 2(20) � $140 � 40c1

The relationship between c1 and the optimal z-value is portrayed graphically in Figure 16.

As seen in the figure, the graph of the optimal z-value as a function of c1 is a piecewise

linear function. The slope of each line segment in the graph is equal to the value of x1 in

the optimal solution. In a maximization problem, it can be shown (see Problem 5) that as

the value of an objective function coefficient increases, the value of the variable in the

LP’s optimal solution cannot decrease. Thus, the slope of the graph of the optimal z-value

as a function of an objective function coefficient will be nondecreasing.
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Similarly, in a minimizing problem, the graph of the optimal z-value as a function of

a variable xi’s objective function coefficient ci is a piecewise linear function. Again, the

slope of each line segment is equal to the optimal value of xi in the bfs corresponding to

the line segment. It can be shown (see Problem 6) that the optimal xi-value is a nonin-

creasing function of ci. Thus, in  a minimization problem, the graph of the optimal z-value

as a function of ci will be a piecewise linear function having a nonincreasing slope.

P R O B L E M S
Group A

252 C H A P T E R 5 Sensitivity Analysis: An Applied Approach

In what follows, bi represents the right-hand side of an LP’s
ith constraint.

1 Use the LINDO PARA command to graph the optimal
z-value for Example 1 as a function of b4.

2 Use the PARA command to graph the optimal z-value
for Example 2 as a function of b1. Then answer the same
questions for b2, b3, and b4, respectively.

3 For the Giapetto example of Section 3.1, graph the
optimal z-value as a function of x2’s objective function
coefficient. Also graph the optimal z-value as a function of
b1, b2, and b3.

4 For the Dorian Auto example (Example 2 in Chapter 3),
let c1 be the objective function coefficient of x1. Determine
the optimal z-value as a function of c1.

Group B

5 For Example 1, suppose that we increase the sales price
of a product. Show that in the new optimal solution, the
amount produced of that product cannot decrease.

6 For Example 2, suppose that we increase the cost of
producing a type of car. Show that in  the new optimal
solution to the LP, the number of cars produced of that type
cannot increase.

7 Consider the Sailco problem (Example 12 in Chapter 3).
Suppose we want to consider how profit will be affected if we
change the number of sailboats that can be produced each
month with regular-time labor. How can we use the PARA
command to answer this question? (Hint: Let c � change in
number of sailboats that can be produced each month with
regular-time labor. Change the right-hand side of some
constraints to 40 � c and add another constraint to the problem.)

S U M M A R Y Graphical Sensitivity Analysis

To determine whether the current basis remains optimal after changing an objective func-

tion coefficient, note that changing the objective function coefficient of a variable changes

the slope of the isoprofit line. The current basis remains optimal as long as the current

optimal solution is the last point in the feasible region to make contact with isoprofit lines

as we move in the direction of increasing z (for a max problem). If the current basis re-

mains optimal, the values of the decision variables remain unchanged, but the optimal 

z-value may change.

To determine if the current basis remains optimal after changing the right-hand side of

a constraint, begin by finding the constraints (possibly including sign restrictions) that are

binding for the current optimal solution. As we change the right-hand side of a constraint,

the current basis remains optimal as long as the point where the constraints are binding

remains feasible. Even if the current basis remains optimal, the values of the decision vari-

ables and the optimal z-value may change.

Shadow Prices

The shadow price of the ith constraint of a linear programming problem is the amount

by which the optimal z-value is improved if the right-hand side of the ith constraint is in-

creased by 1 (assuming that the current basis remains optimal). The shadow price of the

ith constraint is the dual price for row i � 1 given on the LINDO output.



If the right-hand side of the ith constraint is increased by 
bi, then (assuming the cur-

rent basis remains optimal) the new optimal z-value for a maximization problem may be

found as follows:

(New optimal z-value) � (old optimal z-value) � (Constraint i’s shadow price) 
bi (1)

For a minimization problem, the new optimal z-value may be found from

(New optimal z-value) � (old optimal z-value) � (Constraint i’s shadow price)
bi (2)

Objective Function Coefficient Range

The OBJ COEFFICIENT RANGE portion of the LINDO output gives the range of val-

ues for an objective function coefficient for which the current basis remains optimal.

Within this range, the values of the decision variables remain unchanged, but the optimal

z-value may or may not change.

Reduced Cost

For any nonbasic variable, the reduced cost for the variable is the amount by which the

nonbasic variable’s objective function coefficient must be improved before that variable

will become a basic variable in some optimal solution to the LP.

Right-Hand Side Range

If the right-hand side of a constraint remains within the RIGHTHAND SIDE RANGES value

given on the LINDO printout, then the current basis remains optimal, and the dual price may

be used to determine how a change in the right-hand side changes the optimal z-value. Even

if the right-hand side of a constraint remains within the RIGHTHAND SIDE RANGES value

on the LINDO output, then the values of the decision variables will probably change.

Signs of Shadow Prices

A � constraint will have a nonpositive shadow price; a � constraint will have a nonnegative

shadow price; and an equality constraint may have a positive, negative, or zero shadow price.

Optimal z-Value as a Function of a Constraint’s 
Right-Hand Side

In all cases, the optimal z-value will be a piecewise linear function of a constraint’s right-

hand side. The exact form of the function is as shown in Table 9.

Optimal z-Value as a Function of an 
Objective Function Coefficient

In a maximization problem, the optimal z-value will be a nondecreasing, piecewise linear

function of an objective function coefficient. The slope will be a nondecreasing function

of the objective function coefficient.
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In a minimization problem, the optimal z-value will be a nondecreasing, piecewise lin-

ear function of an objective function coefficient. The slope will be a nonincreasing func-

tion of the objective function coefficient.

R E V I E W  P R O B L E M S
Group A
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TA B L E  9

Type of Slopes of Each Piecewise
Type of LP Constraint Linear Segment Are

Maximization � Nonnegative and nonincreasing

Maximization � Nonpositive and nonincreasing

Maximization � Unrestricted in sign and nonincreasing

Minimization � Nonpositive and nondecreasing

Minimization � Nonnegative and nondecreasing

Minimization � Unrestricted in sign and nondecreasing

1 HAL produces two types of computers: PCs and VAXes.
The computers are produced in two locations: New York
and Los Angeles. New York can produce up to 800
computers and Los Angeles up to 1,000 computers. HAL
can sell up to 900 PCs and 900 VAXes. The profit associated
with each production site and computer sale is as follows:
New York—PC, $600; VAX, $800; Los Angeles—PC,
$1,000; VAX, $1,300. The skilled labor required to build
each computer at each location is as follows: New York—
PC, 2 hours; VAX, 2 hours; Los Angeles—PC, 3 hours;
VAX, 4 hours. A total of 4,000 hours of labor are available.
Labor is purchased at a cost of $20 per hour. Let

XNP � PCs produced in New York

XLP � PCs produced in Los Angeles

XNV � VAXes produced in New York

XLV � VAXes produced in Los Angeles

Use the LINDO printout in Figure 17 to answer the follow-
ing questions:

a If 3,000 hours of skilled labor were available, what
would be HAL’s profit?

b Suppose an outside contractor offers to increase the
capacity of New York to 850 computers at a cost of
$5,000. Should HAL hire the contractor?

c By how much would the profit for a VAX produced
in Los Angeles have to increase before HAL would want
to produce VAXes in Los Angeles?

d What is the most HAL should pay for an extra hour
of labor?

2 Vivian’s Gem Company produces two types of gems:
Types 1 and 2. Each Type 1 gem contains 2 rubies and 4
diamonds. A Type 1 gem sells for $10 and costs $5 to
produce. Each Type 2 gem contains 1 ruby and 1 diamond.
A Type 2 gem sells for $6 and costs $4 to produce. A total
of 30 rubies and 50 diamonds are available. All gems that
are produced can be sold, but marketing considerations

dictate that at least 11 Type 1 gems be produced. Let x1 �

number of Type 1 gems produced and x2 � number of Type
2 gems produced. Assume that Vivian wants to maximize
profit. Use the LINDO printout in Figure 18 to answer the
following questions:

a What would Vivian’s profit be if 46 diamonds were
available?

b If Type 2 gems sold for only $5.50, what would be
the new optimal solution to the problem?

c What would Vivian’s profit be if at least 12 Type 1
gems had to be produced?

3 Wivco produces product 1 and product 2 by processing
raw material. Up to 90 lb of raw material may be purchased
at a cost of $10/lb. One pound of raw material can be used
to produce either 1 lb of product 1 or 0.33 lb of product 2.
Using a pound of raw material to produce a pound of product
1 requires 2 hours of labor or 3 hours to produce 0.33 lb of
product 2. A total of 200 hours of labor are available, and
at most 40 pounds of product 2 can be sold. Product 1 sells
for $13/lb and product 2, $40/lb. Let

RM � pounds of raw material processed

P1 � pounds of raw material used to produce product 1

P2 � pounds of raw material used to produce product 2

To maximize profit, Wivco should solve the following LP:

max z � 13P1 � 40(0.33)P2 � 10RM

s.t. RM � 2P1 � 3P2

s.t. RM � 2P1 � 3P2 � 200

s.t. RM � 2P1 � 3P2 � 90

s.t. RM � 0.33P2 � 40

s.t. ��P1, P2, RM � 0

Use the LINDO output in Figure 19 to answer the follow-
ing questions:

a If only 87 lb of raw material could be purchased,
what would be Wivco’s profits?



b If product 2 sold for $39.50/lb, what would be the
new optimal solution to Wivco’s problem?

c What is the most that Wivco should pay for another
pound of raw material?

d What is the most that Wivco should pay for another
hour of labor?

4 Zales Jewelers uses rubies and sapphires to produce two
types of rings. A Type 1 ring requires 2 rubies, 3 sapphires,
and 1 hour of jeweler’s labor. A Type 2 ring requires 3
rubies, 2 sapphires, and 2 hours of jeweler’s labor. Each
Type 1 ring sells for $400; type 2 sells for $500. All rings
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MAX       600  XNP + 1000 XLP + 800 XNV 
                              + 1300 XLV - 20 L
SUBJECT TO
       2)     2 XNP + 3 XLP + 2 XNV 
                            + 4 XLV - L <=    0
       3)     XNP  +  XNV   <=   800
       4)     XLP  +  XLV   <=  1000
       5)     XNP  +  XLP   <=   900
       6)     XNV  +  XLV   <=   900
       7)     L   <=    4000
END

LP OPTIMUM FOUND AT STEP               3

                 OBJECTIVE FUNCTION VALUE

                 1)  1360000.00

VARIABLE         VALUE        REDUCED COST
     XNP        .000000         200.000000
     XLP     800.000000            .000000
     XNV     800.000000            .000000
     XLV        .000000          33.333370         
       L    4000.000000            .000000

     ROW   SLACK OR SURPLUS    DUAL PRICES
      2)        .000000         333.333300
      3)        .000000         133.333300
      4)     200.000000            .000000
      5)     100.000000            .000000         
      6)     100.000000            .000000         
      7)        .000000         313.333300         

NO. ITERATIONS=         3

RANGES IN WHICH THE BASIS IS UNCHANGED:

                   OBJ COEFFICIENT RANGES
VARIABLE     CURRENT     ALLOWABLE       ALLOWABLE
              COEF       INCREASE        DECREASE
     XNP  600.000000    200.000000        INFINITY 
     XLP 1000.000000    200.000000       25.000030
     XNV  800.000000      INFINITY      133.333300 
     XLV 1300.000000     33.333370        INFINITY 
       L  -20.000000      INFINITY      313.333300

                  RIGHTHAND SIDE RANGES
     ROW  CURRENT       ALLOWABLE      ALLOWABLE
            RHS         INCREASE       DECREASE
       2     .000000   300.000000    2400.000000
       3  800.000000   100.000000     150.000000
       4 1000.000000     INFINITY     200.000000
       5  900.000000     INFINITY     100.000000   
       6  900.000000     INFINITY     100.000000   
       7 4000.000000   300.000000    2400.000000   

produced by Zales can be sold. At present, Zales has 100
rubies, 120 sapphires, and 70 hours of jeweler’s labor. Extra
rubies can be purchased at a cost of $100 per ruby. Market
demand requires that the company produce at least 20 Type
1 rings and at least 25 Type 2. To maximize profit, Zales
should solve the following LP:

X1 � Type 1 rings produced

X2 � Type 2 rings produced

R2 � number of rubies purchased

max z � 400X1 � 500X2 � 100R

s.t. 2X1 � 3X2 � R � 100

s.t. 3X1 � 2X2 �R  � 120

s.t. 3X1 � 2X2 � R � 70

s.t. 3X1 � 2X2 � R � 20

s.t. 3X1 � 2X2 � R � 25

s.t. 3� 2X1, X2 � 0

Use the LINDO output in Figure 20 to answer the follow-
ing questions:

a Suppose that instead of $100, each ruby costs $190.
Would Zales still purchase rubies? What would be the
new optimal solution to the problem?

b Suppose that Zales were only required to produce at
least 23 Type 2 rings. What would Zales’ profit now be?

F I G U R E  17

LINDO Output for HAL
F I G U R E  18

LINDO Output for Vivian’s Gem

MAX       5  X1 + 2  X2 
SUBJECT TO
       2)     2  X1  +  X2 <=  30
       3)     4  X1  +  X2 <=  50
       4)     X1  >=     11
END

LP OPTIMUM FOUND AT STEP               2

                 OBJECTIVE FUNCTION VALUE

                 1)  67.0000000

VARIABLE         VALUE         REDUCED COST
      X1       11.000000            .000000
      X2        6.000000            .000000

     ROW     SLACK OR SURPLUS   DUAL PRICES
      2)        2.000000           0.000000
      3)         .000000           2.000000
      4)         .000000          -3.000000

NO. ITERATIONS=         2

RANGES IN WHICH THE BASIS IS UNCHANGED:

                  OBJ COEFFICIENT RANGES
VARIABLE   CURRENT      ALLOWABLE       ALLOWABLE
            COEF        INCREASE        DECREASE
      X1   5.000000      3.000000        INFINITY  
      X2   2.000000      INFINITY         .750000

                  RIGHTHAND SIDE RANGES
     ROW   CURRENT      ALLOWABLE       ALLOWABLE
             RHS        INCREASE        DECREASE
       2  30.000000      INFINITY        2.000000
       3  50.000000      2.000000        6.000000
       4  11.000000      1.500000        1.000000



c What is the most that Zales would be willing to pay
for another hour of jeweler’s labor?

d What is the most that Zales would be willing to pay
for another sapphire?

5 Beerco manufactures ale and beer from corn, hops, and
malt. Currently, 40 lb of corn, 30 lb of hops, and 40 lb of
malt are available. A barrel of ale sells for $40 and requires
1 lb of corn, 1 lb of hops, and 2 lb of malt. A barrel of beer
sells for $50 and requires 2 lb of corn, 1 lb of hops, and 
1 lb of malt. Beerco can sell all ale and beer that is produced.
Assume that Beerco’s goal is to maximize total sales revenue
and solve the following LP:

max z � 40ALE � 50BEER

s.t. 2ALE � 2BEER � 40 (Corn constraint)

s.t. 2ALE � 2BEER � 30 (Hops constraint)

s.t. 2ALE � 2BEER � 40 (Malt constraint)

s.t. 2 � ALE, BEER � 0

ALE � barrels of ale produced, and BEER � barrels of
beer produced.
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a Graphically find the range of values for the price of
ale for which the current basis remains optimal.

b Graphically find the range of values for the price of
beer for which the current basis remains optimal.

c Graphically find the range of values for the amount
of available corn for which the current basis remains op-
timal. What is the shadow price of the corn constraint?

d Graphically find the range of values for the amount
of available hops for which the current basis remains op-
timal. What is the shadow price of the hops constraint?

e Graphically find the range of values for the amount
of available malt for which the current basis remains op-
timal. What is the shadow price of the malt constraint?

f Find the shadow price of each constraint if the con-
straints were expressed in ounces instead of pounds.

g Draw a graph of the optimal z-value as a function of
the price of ale.

MAX       13 P1 + 13.2 P2 - 10 RM 
SUBJECT TO
       2) - P1 - P2 + RM >=  0
       3)   2 P1 + 3 P2  <=  200
       4)    RM   <=  90
       5)   0.33  P2  <=  40
END

         LP OPTIMUM FOUND AT STEP        3

                 OBJECTIVE FUNCTION VALUE

1)                274.000000

VARIABLE         VALUE         REDUCED COST
      P1       70.000000           0.000000
      P2       20.000000           0.000000
      RM       90.000000           0.000000

     ROW    SLACK OR SURPLUS    DUAL PRICES
      2)        0.000000         -12.600000
      3)        0.000000           0.200000
      4)        0.000000           2.600000
      5)       33.400002           0.000000        

NO. ITERATIONS=         3

RANGES IN WHICH THE BASIS IS UNCHANGED:

                  OBJ COEFFICIENT RANGES
VARIABLE   CURRENT       ALLOWABLE      ALLOWABLE
            COEF         INCREASE       DECREASE
      P1  13.000000       0.200000       0.866667  
      P2  13.200000       1.300000       0.200000
      RM -10.000000       INFINITY       2.600000 

                   RIGHTHAND SIDE RANGES
     ROW   CURRENT       ALLOWABLE      ALLOWABLE
             RHS         INCREASE       DECREASE
       2   0.000000      23.333334      10.000000
       3 200.000000      70.000000      20.000000
       4  90.000000      10.000000      23.333334 
       5  40.000000       INFINITY      33.400002

MAX      400  X1 +  500  X2  -  100  R 
SUBJECT TO
      2)    2  X1  +  3  X2  -  R <=   100
      3)    3  X1  +  2  X2 <=  120
      4)       X1  +  2  X2 <= 70
      5)       X1  >=   20
      6)       X2  >=   25
END

        LP OPTIMUM FOUND AT STEP        2
 
                OBJECTIVE FUNCTION VALUE

                 1)  19000.0000

VARIABLE        VALUE         REDUCED COST
      X1      20.000000           0.000000
      X2      25.000000           0.000000
       R      15.000000           0.000000

     ROW   SLACK OR SURPLUS    DUAL PRICES
      2)       0.000000         100.000000
      3)      10.000000           0.000000
      4)       0.000000         200.000000
      5)       0.000000           0.000000         
      6)       0.000000        -200.000000         

NO. ITERATIONS=         2

RANGES IN WHICH THE BASIS IS UNCHANGED:

                   OBJ COEFFICIENT RANGES
VARIABLE    CURRENT       ALLOWABLE      ALLOWABLE
             COEF         INCREASE       DECREASE
      X1   400.000000      INFINITY     100.000000 
      X2   500.000000    200.000000       INFINITY
       R  -100.000000    100.000000     100.000000 

                    RIGHTHAND SIDE RANGES
     ROW    CURRENT       ALLOWABLE      ALLOWABLE
              RHS         INCREASE       DECREASE
       2  100.000000      15.000000       INFINITY
       3  120.000000       INFINITY      10.000000
       4   70.000000       3.333333       0.000000
       5   20.000000       0.000000       INFINITY 
       6   25.000000       0.000000       2.500000 
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h Draw a graph of the optimal z-value as a function of
the amount of available corn.

i Draw a graph of the optimal z-value as a function of
the amount of available hops.

j Draw a graph of the optimal z-value as a function of
the amount of available malt.

6 Gepbab Production Company uses labor and raw material
to produce three products. The resource requirements and
sales price for the three products are as shown in Table 10.
Currently, 60 units of raw material are available. Up to 90
hours of labor can be purchased at $1 per hour. To maximize
Gepbab profits, solve the following LP:

max z � 6X1 � 8X2 � 13X3 � L

s.t. 3X1 � 4X2 � 6X3 � L � 0

s.t. 2X1 � 2X2 � 5X3 � L � 60

s.t. 2X1 � 2X2 � 5X3 � L � 90

X1, X2, X3, L � 0

Here, Xi � units of product i produced, and L � number of
labor hours purchased. Use the LINDO output in Figure 21
to answer the following questions:

a What is the most the company should pay for an-
other unit of raw material?

b What is the most the company should pay for an-
other hour of labor?

c What would product 1 have to sell for to make it de-
sirable for the company to produce it?

d If 100 hours of labor could be purchased, what would
the company’s profit be?

e Find the new optimal solution if product 3 sold for $15.

7 Giapetto, Inc., sells wooden soldiers and wooden trains.
The resources used to produce a soldier and train are shown
in Table 11. A total of 145,000 board feet of lumber and
90,000 hours of labor are available. As many as 50,000
soldiers and 50,000 trains can be sold, with trains selling for
$55 and soldiers for $32. In addition to producing trains and
soldiers itself, Giapetto can buy (from an outside supplier)
extra soldiers at $27 each and extra trains at $50 each. Let

SM � thousands of soldiers manufactured

SB � thousands of soldiers bought at $27

TM � thousands of trains manufactured

TB � thousands of trains bought at $50

Then Giapetto can maximize profit by solving the LP in the
LINDO printout in Figure 22. Use this printout to answer
the following questions. (Hint: Think about the units of the
constraints and objective function.)

a If Giapetto could purchase trains for $48 per train,
then what would be the new optimal solution to the LP?
Explain.
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b What is the most Giapetto would be willing to pay
for another 100 board feet of lumber? For another 100
hours of labor?

c If 60,000 labor hours are available, what would Gi-
apetto’s profit be?

d If only 40,000 trains could be sold, what would Gi-
apetto’s profit be?

8 Wivco produces two products: 1 and 2. The relevant
data are shown in Table 12. Each week, up to 400 units of
raw material can be purchased at a cost of $1.50 per unit.
The company employs four workers, who work 40 hours
per week. (Their salaries are considered a fixed cost.)
Workers are paid $6 per hour to work overtime. Each week,
320 hours of machine time are available.

TA B L E  10

Product

Resource 1 2 3

Labor (hours) 3 4 16

Raw material (units) 2 2 15

Sales price ($) 6 8 13

MAX       6 X1 + 8 X2 + 13 X3 - L
SUBJECT TO
      2)    3 X1 + 4 X2 + 6 X3 - L  <=   0
      3)    2 X1 + 2 X2 + 5 X3 <=   60
      4)    L    <=   90
END

LP OPTIMUM FOUND AT STEP               3

                 OBJECTIVE FUNCTION VALUE

                 1)  97.5000000

VARIABLE         VALUE        REDUCED COST
      X1          .000000          .250000
      X2        11.250000          .000000
      X3         7.500000          .000000
       L        90.000000          .000000

     ROW    SLACK OR SURPLUS   DUAL PRICES
      2)          .000000         1.750000
      3)          .000000          .500000
      4)          .000000          .750000

NO. ITERATIONS=         3

RANGES IN WHICH THE BASIS IS UNCHANGED:

                  OBJ COEFFICIENT RANGES
VARIABLE   CURRENT       ALLOWABLE      ALLOWABLE
            COEF         INCREASE       DECREASE
      X1  6.000000         .250000       INFINITY  
      X2  8.000000         .666667        .666667
      X3 13.000000        3.000000       1.000000 
       L -1.000000        INFINITY        .750000  

                   RIGHTHAND SIDE RANGES
     ROW   CURRENT       ALLOWABLE      ALLOWABLE
             RHS         INCREASE       DECREASE
       2    .000000      30.000000      18.000000
       3  60.000000      15.000000      15.000000
       4  90.000000      30.000000      18.000000

TA B L E  11

Soldier Train

Lumber (board (f t) 3 5

Labor (hours) 2 4

F I G U R E  21
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In the absence of advertising, 50 units of product 1 and
60 units of product 2 will be demanded each week. Adver-
tising can be used to stimulate demand for each product.
Each dollar spent on advertising product 1 increases its de-
mand by 10 units, and each dollar spent for product 2 in-
creases its demand by 15 units. At most $100 can be spent
on advertising. Define

P1 � number of units of product 1 produced each week

P2 � number of units of product 2 produced each week

OT � number of hours of overtime labor used each week
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RM � number of units of raw materials purchased each
week

A1 � dollars spent each week on advertising product 1

A2 � dollars spent each week on advertising product 2

Then Wivco should solve the following LP:

max z � 15PI � 8P2 � 6(OT) � 1.5RM � A1 � A2

s.t. 0.75P1 � 10A1 � 50 (1)

s.t. 0.75P2 � 15A2 � 60 (2)

0.75P1 � 0.5P2 � 160 � (OT) (3)

2P1 � P2 � RM (4)

RM � 400 (5)

A1 � A2 � 100 (6)

1.5P1 � 0.8P2 � 320 (7)

All variables non-negative

Use LINDO to solve this LP. Then use the computer output
to answer the following questions:

a If overtime cost only $4 per hour, would Wivco use it?

b If each unit of product 1 sold for $15.50, would the
current basis remain optimal? What would be the new
optimal solution?

c What is the most that Wivco should be willing to pay
for another unit of raw material?

d How much would Wivco be willing to pay for an-
other hour of machine time?

e If each worker were required (as part of the regular
workweek) to work 45 hours per week, what would the
company’s profits be?

f Explain why the shadow price of row (1) is 0.10.
(Hint: If the right-hand side of (1) were increased from
50 to 51, then in the absence of advertising for product
1, 51 units of product 1 could now be sold each week.)

9 In this problem, we discuss how shadow prices can be
interpreted for blending problems (see Section 3.8). To
illustrate the ideas, we discuss Problem 2 of Section 3.8. If
we define

x6J � pounds of grade 6 oranges in juice

x9J � pounds of grade 9 oranges in juice

x6B � pounds of grade 6 oranges in bags

x9B � pounds of grade 9 oranges in bags

then the appropriate formulation is

max z � 0.45(x6J � x9J) � 0.30(x6B � x9B)

s.t. x6Jx9J � x6B � x9B � 120,000

x9J � x6B � x9B � 100,000

� x9B� 800,00 0 (1)

� x9B� 700 ,000 (2)

x6J, x9J, x6B, x9B � 0

Constraints (1) and (2) are examples of blending constraints
because they specify the proportion of grade 6 and grade 9
oranges that must be blended to manufacture orange juice

(Bags
constraint)

6x6B � 9x9B
��

(Orange
juice
constraint)

6x6J � 9x9J
��

(Grade 9
constraint)

(Grade 6
constraint)

TA B L E  12

Product 1 Product 2

Selling price ($) 15 8

Labor required (hours) 10.75 0.50

Machine time required (hours) 11.5 0.80

Raw material required (units) 12 1

MAX       32 SM + 55 TM + 5 SB + 5  TB
SUBJECT TO
      2)    3 SM + 5 TM     <=    145
      3)    2 SM + 4 TM     <=    90
      4)   SM + SB   <=    50
      5)   TM + TB  <=    50
END

LP OPTIMUM FOUND AT STEP               4

                 OBJECTIVE FUNCTION VALUE

                 1)  1715.00000

VARIABLE         VALUE        REDUCED COST
      SM       45.000000           .000000
      TM         .000000          4.000000
      SB        5.000000           .000000
      TB       50.000000           .000000         

     ROW   SLACK OR SURPLUS    DUAL PRICES
      2)       10.000000           .000000
      3)         .000000         13.500000
      4)         .000000          5.000000
      5)         .000000          5.000000

NO. ITERATIONS=         4

RANGES IN WHICH THE BASIS IS UNCHANGED:

                  OBJ COEFFICIENT RANGES
VARIABLE   CURRENT       ALLOWABLE      ALLOWABLE
            COEF         INCREASE       DECREASE
      SM  32.000000       INFINITY       2.000000  
      TM  55.000000       4.000000       INFINITY
      SB   5.000000       2.000000       5.000000 
      TB   5.000000       INFINITY       4.000000  

                   RIGHTHAND SIDE RANGES
     ROW   CURRENT       ALLOWABLE      ALLOWABLE
             RHS         INCREASE       DECREASE
       2  145.000000      INFINITY      10.000000
       3   90.000000      6.666667      90.000000
       4   50.000000      INFINITY       5.000000
       5   50.000000      INFINITY      50.000000  
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and bags of oranges. It would be useful to determine how a
slight change in the standards for orange juice and bags of
oranges would affect profit. At the end of this problem, we
explain how to use the shadow prices of Constraints (1) and
(2) to answer the following questions:

a Suppose that the average grade for orange juice is
increased to 8.1. Assuming the current basis remains op-
timal, by how much would profits change?

b Suppose the average grade requirements for bags of
oranges is decreased to 6.9. Assuming the current basis
remains optimal, by how much would profits change?

The shadow price for both (1) and (2) is �0.15. The op-
timal solution to the O.J. problem is x6J � 26,666.67, x9J �

53,333.33, x6B � 93,333.33, x9B � 46,666.67. To interpret
the shadow prices of blending constraints (1) and (2), we as-
sume that a slight change in the quality standard for a prod-
uct will not significantly change the quantity of the product
that is produced.

Now note that (1) may be written as

6x6J � 9x9J � 8(x6J � x9J) or �2x6J � x9J � 0

If the quality standard for orange juice is changed to 8 � 
,
then (1) can be written as

6x6J � 9x9J � (8 � 
)(x6J � x9J)
or

�2x6J � x9J � 
(x6J � x9J)

Because we are assuming that changing orange juice qual-
ity from 8 to 8 � 
 does not change the amount of orange
juice produced, x6J � x9J will remain equal to 80,000, and
(1) will become

�2x6J � x9J � 80,000


Using the definition of shadow price, answer parts (a) and (b).

10 Use LINDO to solve the Sailco problem of Section
3.10, then use the output to answer the following questions:

a If month 1 demand decreased to 35 sailboats, what
would be the total cost of satisfying the demands during
the next four months?

b If the cost of producing a sailboat with regular-time
labor during month 1 were $420, what would be the new
optimal solution to the Sailco problem?

c Suppose a new customer is willing to pay $425 for
a sailboat. If his demand must be met during month 1,
should Sailco fill the order? How about if his demand
must be met during month 4?

11 Autoco has three assembly plants located in various
parts of the country. The first plant (built in 1937 and located
in Norwood, Ohio) requires 2 hours of labor and 1 hour of
machine time to assemble one automobile. The second plant
(built in 1958 and located in Bakersfield, California) requires
1.5 hours of labor and 1.5 hours of machine time to assemble
one automobile. The third plant (built in 1981 and located
in Kingsport, Tennessee) requires 1.1 hours of labor and 2.5
hours of machine time to assemble one automobile.

The firm pays $30 per hour of labor and $10 per hour of
machine time at each of its plants. The first plant has a ca-
pacity of 1,000 hours of machine time per day; the second,
900 hours; and the third, 2,000 hours. The manufacturer’s
production target is 1,800 automobiles per day.

The production department sets each plant’s schedule by
solving a linear programming problem designed to identify
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the cost-minimizing pattern of assembly across the three
plants.

a Use LINDO to determine the cost-minimizing
method of meeting Autoco’s daily production target.

b The UWA local in Norwood, Ohio, has proposed
wage concessions at that plant to raise employment.
What is the smallest decrease in the wage rate at that
plant that would increase employment there?

c What is the cost of assembling an extra automobile
given the current output level of 1,800 automobiles?
Would your answer be different if the production target
were only 1,000 automobiles? Why or why not?

d A team of production specialists has indicated that
the auto manufacturer can achieve efficiencies at its
Bakersfield plant by reconfiguring the assembly line.
The reconfiguration has the effect of increasing the pro-
ductivity of the labor at this plant from 1.5 hours to 
1 hour per automobile. By how much will the firm’s
costs fall as a result of this change, assuming that it con-
tinues to produce 1,800 automobiles?

e If 2,000 autos must be produced, by how much would
costs increase?

f If labor costs $32 per hour in Bakersfield, California,
what would be the new solution to the problem?

12 Machinco produces four products, requiring time on
two machines and two types (skilled and unskilled) of labor.
The amount of machine time and labor (in hours) used by
each product and the sales prices are given in Table 13.
Each month, 700 hours are available on machine 1 and 500
hours on machine 2. Each month, Machinco can purchase
up to 600 hours of skilled labor at $8 per hour and up to
650 hours of unskilled labor at $6 per hour. Formulate an
LP that will enable Machinco to maximize its monthly
profit. Solve this LP and use the output to answer the
following questions:

a By how much does the price of product 3 have to in-
crease before it becomes optimal to produce it?

b If product 1 sold for $290, then what would be the
new optimal solution to the problem?

c What is the most Machinco would be willing to pay
for an extra hour of time on each machine?

d What is the most Machinco would be willing to pay
for an extra hour of each type of labor?

e If up to 700 hours of skilled labor could be pur-
chased each month, then what would be Machinco’s
monthly profits?

13 A company produces tools at two plants and sells them
to three customers. The cost of producing 1,000 tools at a

TA B L E  13

Product Machine 1 Machine 2 Skilled Unskilled Sales ($)

1 11 4 8 7 300

2 7 6 5 8 260

3 6 5 4 7 220

4 5 4 6 4 180



plant and shipping them to a customer is given in Table 14.
Customers 1 and 3 pay $200 per thousand tools; customer
2 pays $150 per thousand tools. To produce 1,000 tools at
plant 1, 200 hours of labor are needed, while 300 hours are
needed at plant 2. A total of 5,500 hours of labor are available
for use at the two plants. Additional labor hours can be
purchased at $20 per labor hour. Plant 1 can produce up to
10,000 tools and plant 2, up to 12,000 tools. Demand by
each customer is assumed unlimited. If we let Xij � tools
(in thousands) produced at plant i and shipped to customer
j then the company should solve the LP on the LINDO
printout in Figure 23. Use this printout to answer the
following questions:

a If it costs $70 to produce 1,000 tools at plant 1 and
ship them to customer 1, what would be the new solu-
tion to the problem?

b If the price of an additional hour of labor were re-
duced to $4, would the company purchase any addi-
tional labor?

c A consultant offers to increase plant 1’s production
capacity by 5,000 tools for a cost of $400. Should the
company take her offer?

d If the company were given 5 extra hours of labor,
what would its profit become?

14 Solve Review Problem 24 of Chapter 3 on LINDO and
answer the following questions:

a For which type of DRGs should the hospital seek to
increase demand?

b What resources are in excess supply? Which re-
sources should the hospital expand?

c What is the most the hospital should be willing to
pay additional nurses?

15 Old Macdonald’s 200-acre farm sells wheat, alfalfa,
and beef. Wheat sells for $30 per bushel, alfalfa sells for
$200 per bushel, and beef sells for $300 per ton. Up to
1,000 bushels of wheat and up to 1,000 bushels of alfalfa
can be sold, but demand for beef is unlimited. If an acre of
land is devoted to raising wheat, alfalfa, or beef, the yield
and the required labor are given in Table 15. As many as
2,000 hours of labor can be purchased at $15 per hour. Each
acre devoted to beef requires 5 bushels of alfalfa. The
LINDO output in Figure 24 shows how to maximize profit,
use it to answer the following questions. The variables are
as follows:

W � acres devoted to wheat

AS � bushels of alfalfa sold

A � acres devoted to alfalfa

B � acres devoted to beef
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AB � bushels of alfalfa devoted to beef

L � hours of labor purchased

a How much must the price of a bushel of wheat in-
crease before it becomes profitable to grow wheat?

b What is the most Old Macdonald should pay for an-
other hour of labor?

MAX   140 X11 + 120 X12 + 40 X13 
              + 70 X21 + 80 X22 + 30 X23 - 20 L  
SUBJECT TO
      2) X11 + X12 + X13     <=      10
      3) X21 + X22 + X23     <=      12
      4) 200 X11 + 200 X12 + 200 X13 + 300 X21 
                 + 300 X22 + 300 X23 - L <= 5500
END

LP OPTIMUM FOUND AT STEP               2

                 OBJECTIVE FUNCTION VALUE

                 1)  2333.3330

VARIABLE         VALUE        REDUCED COST
     X11       10.000000           .000000
     X12         .000000         20.000000
     X13         .000000        100.000000
     X21         .000000         10.000000   
     X22       11.666670           .000000         
     X23         .000000         50.000000         
       L         .000000         19.733330         

     ROW    SLACK OR SURPLUS   DUAL PRICES
      2)         .000000         86.666660
      3)         .333333           .000000
      4)         .000000           .266667

NO. ITERATIONS=         2

RANGES IN WHICH THE BASIS IS UNCHANGED:

                  OBJ COEFFICIENT RANGES
VARIABLE   CURRENT       ALLOWABLE      ALLOWABLE
            COEF         INCREASE       DECREASE
     X11  140.000000      INFINITY      20.000000
     X12  120.000000     20.000000       INFINITY
     X13   40.000000    100.000000       INFINITY
     X21   70.000000     10.000000       INFINITY
     X22   80.000000    130.000000      10.000000
     X23   30.000000     50.000000       INFINITY  
       L  -20.000000     19.733330       INFINITY  

                   RIGHTHAND SIDE RANGES
     ROW   CURRENT       ALLOWABLE      ALLOWABLE
             RHS         INCREASE       DECREASE
       2   10.000000     17.500000        .500000
       3   12.000000      INFINITY        .333333
       4 5500.000000    100.000000    3500.000000

TA B L E  14

Customer ($)

Plant 1 2 3

1 160 30 160

2 130 70 170

F I G U R E  23
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TA B L E  15

Crop Yield/Acre Labor/Acre (Hours)

Wheat 50 bushels 30

Alfalfa 100 bushels 20

Beef 10 tons 50



c What is the most Old Macdonald should pay for an-
other bushel of alfalfa?

d What would be the new optimal solution if alfalfa
sold for $20 for bushel?

16 Cornco produces two products: PS and QT. The sales
price for each product and the maximum quantity of each
that can be sold during each of the next three months are
given in Table 16.
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MAX       1500 W + 200 AS + 3000 B - 15  L
SUBJECT TO
      2)   50  W    <=    1000
      3)   AS    <=    1000
      4)   AS + AB - 100  A  =    0
      5)   -  5  B +  AB =   0
      6)   W  +  B +  A <= 200
      7)   L  <=  2000
      8)   30 W + 50 B - L + 20  A  <=  0
END

LP OPTIMUM FOUND AT STEP               1

                 OBJECTIVE FUNCTION VALUE

                 1)  275882.300

VARIABLE         VALUE        REDUCED COST
       W          .000000       264.705800
      AS      1000.000000          .000000
       B        35.294120          .000000
       L      2000.000000          .000000         
      AB       176.470600          .000000   
       A        11.764710          .000000
                         

     ROW   SLACK OR SURPLUS    DUAL PRICES
      2)      1000.000000          .000000
      3)          .000000       188.235300
      4)          .000000        11.764710
      5)          .000000       -11.764710
      6)       152.941200          .000000
      7)          .000000        43.823530
      8)          .000000        58.823530

NO. ITERATIONS=         1

RANGES IN WHICH THE BASIS IS UNCHANGED:

                  OBJ COEFFICIENT RANGES
VARIABLE   CURRENT       ALLOWABLE      ALLOWABLE
            COEF         INCREASE       DECREASE
       W  1500.000000   264.705800       INFINITY  
      AS   200.000000     INFINITY     188.235300
       B  3000.000000 48000.000000     449.999800
       L   -15.000000     INFINITY      43.823530  
      AB      .000000  9599.999000      89.999980
       A      .000000     INFINITY    8999.998000  

                  RIGHTHAND SIDE RANGES
     ROW   CURRENT      ALLOWABLE      ALLOWABLE
             RHS        INCREASE       DECREASE
       2  1000.000000    INFINITY    1000.000000
       3  1000.000000 8999.999000    1000.000000
       4      .000000 1200.000000    8999.999000
       5      .000000 8999.999000     180.000000   
       6   200.000000    INFINITY     152.941200   
       7  2000.000000 7428.571000    1800.000000   
       8      .000000 7428.571000    1800.000000   

F I G U R E  24

LINDO Output for Old Macdonald

Each product must be processed through two assembly
lines: 1 and 2. The number of hours required by each prod-
uct on each assembly line are given in Table 17.

The number of hours available on each assembly line
during each month are given in Table 18.

Each unit of PS requires 4 pounds of raw material; each
unit of QT requires 3 pounds. As many as 710 units of raw
material can be purchased at $3 per pound. At the beginning
of month 1, 10 units of PS and 5 units of QT are available.
It costs $10 to hold a unit of either product in inventory for
a month. Solve this LP on LINDO and use your output to
answer the following questions:

a Find the new optimal solution if it costs $11 to hold
a unit of PS in inventory at the end of month 1.

b Find the company’s new optimal solution if 210
hours on line 1 are available during month 1.

c Find the company’s new profit level if 109 hours are
available on line 2 during month 3.

d What is the most Cornco should be willing to pay
for an extra hour of line 1 time during month 2?

e What is the most Cornco should be willing to pay
for an extra pound of raw material?

f What is the most Cornco should be willing to pay for
an extra hour of line 1 time during month 3?

g Find the new optimal solution if PS sells for $50
during month 2.

h Find the new optimal solution if QT sells for $50
during month 3.

i Suppose spending $20 on advertising would increase
demand for QT in month 2 by 5 units. Should the ad-
vertising be done?

TA B L E  16

Month 1 Month 2 Month 3

Product Price ($) Demand Price ($) Demand Price ($) Demand

PS 40 50 60 45 55 50

QT 35 43 40 50 44 40

TA B L E  17

Hours

Product Line 1 Line 2

PS 3 2

QT 2 2

TA B L E  18

Month

Line 1 2 3

1 1,200 160 190

2 2,140 150 110
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Sensitivity Analysis and Duality

Two of the most important topics in linear programming are sensitivity analysis and duality. Af-

ter studying these important topics, the reader will have an appreciation of the beauty and

logic of linear programming and be ready to study advanced linear programming topics such

as those discussed in Chapter 10.

In Section 6.1, we illustrate the concept of sensitivity analysis through a graphical example.

In Section 6.2, we use our knowledge of matrices to develop some important formulas, which

are used in Sections 6.3 and 6.4 to develop the mechanics of sensitivity analysis. The re-

mainder of the chapter presents the important concept of duality. Duality provides many in-

sights into the nature of linear programming, gives us the useful concept of shadow prices,

and helps us understand sensitivity analysis. It is a necessary basis for students planning to

take advanced topics in linear and nonlinear programming.

6.1 A Graphical Introduction to Sensitivity Analysis

Sensitivity analysis is concerned with how changes in an LP’s parameters affect the LP’s

optimal solution.

Reconsider the Giapetto problem of Section 3.1:

max z � 3x1 � 2x2

s.t. 2x1 � x2 � 100 (Finishing constraint)

s.t. 2x1 � x2 � 800 (Carpentry constraint)

s.t. x1 � x2 � 400 (Demand constraint)

s.t. 2 � x1, x2 � 0

where

x1 � number of soldiers produced per week

x2 � number of trains produced per week

The optimal solution to this problem is z � 180, x1 � 20, x2 � 60 (point B in Figure 1),

and it has x1, x2, and s3 (the slack variable for the demand constraint) as basic variables.

How would changes in the problem’s objective function coefficients or right-hand sides

change this optimal solution?

Graphical Analysis of the Effect of a Change 
in an Objective Function Coefficient

If the contribution to profit of a soldier were to increase sufficiently, then it would be op-

timal for Giapetto to produce more soldiers (s3 would become nonbasic). Similarly, if the
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contribution to profit of a soldier were to decrease sufficiently, it would be optimal for Gi-

apetto to produce only trains (x1 would now be nonbasic). We now show how to deter-

mine the values of the contribution to profit for soldiers for which the current optimal ba-

sis will remain optimal.

Let c1 be the contribution to profit by each soldier. For what values of c1 does the cur-

rent basis remain optimal?

At present, c1 � 3, and each isoprofit line has the form 3x1 � 2x2 � constant, or 

x2 � ��
3

2

x
� � �

con

2

stant
�, and each isoprofit line has a slope of ��

3

2
�. From Figure 1, we see that

if a change in c1 causes the isoprofit lines to be flatter than the carpentry constraint, then

the optimal solution will change from the current optimal solution (point B) to a new op-

timal solution (point A). If the profit for each soldier is c1, then the slope of each isoprofit

line will be ��
c

2
1
�. Because the slope of the carpentry constraint is �1, the isoprofit lines

will be flatter than the carpentry constraint if ��
c

2
1
� � �1, or c1 	 2, and the current basis

will no longer be optimal. The new optimal solution will be (0, 80), point A in Figure 1.

If the isoprofit lines are steeper than the finishing constraint, then the optimal solution

will change from point B to point C. The slope of the finishing constraint is �2. If 

��
c

2
1
� 	 �2, or c1 � 4, then the current basis is no longer optimal, and point C (40, 20)

will be optimal. In summary, we have shown that (if all other parameters remain un-

changed) the current basis remains optimal for 2 � c1 � 4, and Giapetto should still man-

ufacture 20 soldiers and 60 trains. Of course, even if 2 � c1 � 4, Giapetto’s profit will

change. For instance, if c1 � 4, Giapetto’s profit will now be 4(20) � 2(60) � $200 in-

stead of $180.

Graphical Analysis of the Effect of a Change in a Right-Hand
Side on the LP’s Optimal Solution

A graphical analysis can also be used to determine whether a change in the right-hand

side of a constraint will make the current basis no longer optimal. Let b1 be the number

of available finishing hours. Currently, b1 � 100. For what values of b1 does the current

40

60

80

D

C

A

B

Finishing constraint

Slope = –2

Demand constraint

Carpentry constraint

Slope = –1

3
2

Isoprofit line z = 120

Slope =  –

x2

x1

20

20 40 60

100

80

F I G U R E  1

Analysis of Range of
Values for Which c1

Remains Optimal in
Giapetto Problem



264 C H A P T E R 6 Sensitivity Analysis and Duality

basis remain optimal? From Figure 2, we see that a change in b1 shifts the finishing con-

straint parallel to its current position. The current optimal solution (point B in Figure 2)

is where the carpentry and finishing constraints are binding. If we change the value of b1,

then as long as the point where the finishing and carpentry constraints are binding re-

mains feasible, the optimal solution will still occur where these constraints intersect. From

Figure 2, we see that if b1 � 120, then the point where the finishing and carpentry con-

straints are both binding will lie on the portion of the carpentry constraint below point D.

Note that at point D, 2(40) � 40 � 120 finishing hours are used. In this region, x1 � 40,

and the demand constraint for soldiers is not satisfied. Thus, for b1 � 120, the current ba-

sis will no longer be optimal. Similarly, if b1 	 80, the carpentry and finishing constraints

will be binding at an infeasible point having x1 	 0, and the current basis will no longer

be optimal. Note that at point A, 0 � 80 � 80 finishing hours are used. Thus (if all other

parameters remain unchanged), the current basis remains optimal if 80 � b1 � 120.

Note that although for 80 � b1 � 120, the current basis remains optimal, the values

of the decision variables and the objective function value change. For example, if 80 �

b1 � 100, the optimal solution will change from point B to some other point on the line

segment AB. Similarly, if 100 � b1 � 120, then the optimal solution will change from

point B to some other point on the line BD.

As long as the current basis remains optimal, it is a routine matter to determine how

a change in the right-hand side of a constraint changes the values of the decision vari-

ables. To illustrate the idea, let b1 � number of available finishing hours. If we change b1

to 100 � 
, we know that the current basis remains optimal for �20 � 
 � 20. Note

that as b1 changes (as long as �20 � 
 � 20), the optimal solution to the LP is still the

point where the finishing-hour and carpentry-hour constraints are binding. Thus, if b1 �

100 � 
, we can find the new values of the decision variables by solving

2x1 � x2 � 100 � 
 and x1 � x2 � 80

40

60

80

D

C

A

B

Finishing constraint b1 = 120

Demand constraint

Isoprofit line z = 120

Carpentry constraint

x2

x1

20

20 40 60

100

80

Finishing constraint b1 = 100

Finishing constraint b1 = 80

F I G U R E  2

Range of Values of
Finishing Hours for

Which Current Basis
Remains Optimal in

Giapetto Problem
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This yields x1 � 20 � 
 and x2 � 60 � 
. Thus, an increase in the number of available

finishing hours results in an increase in the number of soldiers produced and a decrease

in the number of trains produced.

If b2 (the number of available carpentry hours) equals 80 � 
, it can be shown (see

Problem 2) that the current basis remains optimal for �20 � 
 � 20. If we change the

value of b2 (keeping �20 � 
 � 20), then the optimal solution to the LP is still the point

where the finishing and carpentry constraints are binding. Thus, if b2 � 80 � 
, the op-

timal solution to the LP is the solution to

2x1 � x2 � 100 and x1 � x2 � 80 � 


This yields x1 � 20 � 
 and x2 � 60 � 2
, which shows that an increase in the amount

of available carpentry hours decreases the number of soldiers produced and increases the

number of trains produced.

Suppose b3, the demand for soldiers, is changed to 40 � 
. Then it can be shown (see

Problem 3) that the current basis remains optimal for 
 � �20. For 
 in this range, the

optimal solution to the LP will still occur where the finishing and carpentry constraints

are binding. Thus, the optimal solution will be the solution to

2x1 � x2 � 100 and x1 � x2 � 80

Of course, this yields x1 � 20 and x2 � 60, which illustrates an important point. In a con-

straint with positive slack (or positive excess) in an LP’s optimal solution, if we change

the right-hand side of the constraint to a value in the range where the current basis re-

mains optimal, the optimal solution to the LP is unchanged.

Shadow Prices

As we will see in Section 6.8, it is often important for managers to determine how a change

in a constraint’s right-hand side changes the LP’s optimal z-value. With this in mind, we de-

fine the shadow price for the ith constraint of an LP to be the amount by which the optimal

z-value is improved (improvement means increase in a max problem and decrease in a min

problem) if the right-hand side of the ith constraint is increased by 1. This definition applies

only if the change in the right-hand side of Constraint i leaves the current basis optimal.

For any two-variable LP, it is a simple matter to determine each constraint’s shadow

price. For example, we know that if 100 � 
 finishing hours are available (assuming that

the current basis remains optimal), then the LP’s optimal solution is x1 � 20 � 
 and 

x2 � 60 � 
. Then the optimal z-value will equal 3x1 � 2x2 � 3(20 � 
) � 2(60 � 
) �

180 � 
. Thus, as long as the current basis remains optimal, a unit increase in the num-

ber of available finishing hours will increase the optimal z-value by $1. So the shadow

price of the first (finishing hour) constraint is $1.

For the second (carpentry hour) constraint, we know that if 80 � 
 carpentry hours

are available (and the current basis remains optimal), then the optimal solution to the 

LP is x1 � 20 � 
 and x2 � 60 � 2
. Then the new optimal z-value is 3x1 � 2x2 �

3(20 � 
) � 2(60 � 2
) � 180 � 
. Thus, a unit increase in the number of carpentry

hours will increase the optimal z-value by $1 (as long as the current basis remains opti-

mal). So the shadow price of the second (carpentry hour) constraint is $1.

We now find the shadow price of the third (demand) constraint. If the right-hand side

is 40 � 
, then the optimal values of the decision variables remain unchanged, as long

as the current basis remains optimal. Then the optimal z-value will also remain un-

changed, which shows that the shadow price of the third (demand) constraint is $0. It turns

out that whenever the slack variable or excess variable for a constraint is positive in an

LP’s optimal solution, the constraint will have a zero shadow price.
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Suppose we increase the right-hand side of the ith constraint of an LP by 
bi(
bi 	 0

means that we are decreasing the right-hand side) and the current basis remains optimal.

Then each unit by which Constraint i’s right-hand side is increased will increase the op-

timal z-value (for a max problem) by the shadow price. Thus, the new optimal z-value is

given by

(New optimal z-value) � (old optimal z-value) � (Constraint i’s shadow price) 
bi

For a minimization problem,

(New optimal z-value) � (old optimal z-value) � (Constraint i’s shadow price) 
bi

For example, if 95 carpentry hours are available, then 
b2 � 15, and the new z-value is

given by

New optimal z-value � 180 � 15(1) � $195

We will continue our discussion of shadow prices in Section 6.8.

Importance of Sensitivity Analysis

Sensitivity analysis is important for several reasons. In many applications, the values of

an LP’s parameters may change. For example, the prices at which soldiers and trains are

sold may change, as may the availability of carpentry and finishing hours. If a parameter

changes, sensitivity analysis often makes it unnecessary to solve the problem again. For

example, if the profit contribution of a soldier increased to $3.50, we would not have to

solve the Giapetto problem again because the current solution remains optimal. Of course,

solving the Giapetto problem again would not be much work, but solving an LP with

thousands of variables and constraints again would be a chore. A knowledge of sensitiv-

ity analysis often enables the analyst to determine from the original solution how changes

in an LP’s parameters change the optimal solution.

Recall that we may be uncertain about the values of parameters in an LP, for example,

the weekly demand for soldiers. With the graphical method, it can be shown that if the

weekly demand for soldiers is at least 20, then the optimal solution to the Giapetto prob-

lem is still (20, 60) (see Problem 3 at the end of this section). Thus, even if Giapetto is

uncertain about the demand for soldiers, the company can still be fairly confident that it

is optimal to produce 20 soldiers and 60 trains.

Of course, the graphical approach is not useful for sensitivity analysis on an LP with

more than two variables. Before learning how to perform sensitivity analysis on an arbi-

trary LP, we need to use our knowledge of matrices to express simplex tableaus in matrix

form. This is the subject of Section 6.2.

P R O B L E M S
Group A

1 Show that if the contribution to profit for trains is
between $1.50 and $3, the current basis remains optimal. If
the contribution to profit for trains is $2.50, what would be
the new optimal solution?

2 Show that if available carpentry hours remain between
60 and 100, the current basis remains optimal. If between
60 and 100 carpentry hours are available, then would
Giapetto still produce 20 soldiers and 60 trains?

3 Show that if the weekly demand for soldiers is at least
20, the current basis remains optimal, and Giapetto should
still produce 20 soldiers and 60 trains.

4 For the Dorian Auto problem (Example 2 in Chapter 3),

a Find the range of values of the cost of a comedy ad
for which the current basis remains optimal.

b Find the range of values of the cost of a football ad
for which the current basis remains optimal.
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6.2 Some Important Formulas

In this section, we use our knowledge of matrices to show how an LP’s optimal tableau

can be expressed in terms of the LP’s parameters. The formulas developed in this section

are used in our study of sensitivity analysis, duality, and advanced LP topics.

Assume that we are solving a max problem that has been prepared for solution by the Big

M method and that at this point, the LP has m constraints and n variables. Although some of

these variables may be slack, excess, or artificial, we choose to label them x1, x2, . . . , xn.

Then the LP may be written as

max z � c1x1 � c2x2 � ��� � cnxn

s.t. a11x1 � a12x2 � ��� � a1nxn � b1

s.t. a21x1 � a22x2 � ��� � a2nxn � b2

a2�x1 � a2�x2 � ��� � a2� �a2�x1 � a2�x2 � ��� � a2� �a2�x1 � a2�x2 � ��� � a2� �
(1)

s.t. am1x1 � am2x2 � ��� � amnxn� bm

xi � 0 (i � 1, 2, . . . , n)

Throughout this chapter, we use the Dakota Furniture problem of Section 4.5 (without the

x2 � 5 constraint) as an example. For the Dakota problem, the analog of LP (1) is

max z � 60x1 � 30x2 � 20x3 � 0s1 � 0s2 � 0s3

s.t. 8x1 � 1.6x2 � 1.5x3 � s1 � s2 � s3 � 48

s.t. 4x1 � 1.2x2 � 1.5x3 � s1 � s2 � s3 � 20 (1�)

s.t. 2x1 � 1.5x2 � 0.5x3 � s1 � s2 � s3 � 8

s.t. 2 �1.5 �0.5 �x1, x2, x3, s1, s2, s3 � 0

c Find the range of values of required HIW exposures
for which the current basis remains optimal. Determine
the new optimal solution if 28 � 
 million HIW expo-
sures are required.

d Find the range of values of required HIM exposures
for which the current basis remains optimal. Determine
the new optimal solution if 24 � 
 million HIM expo-
sures are required.

e Find the shadow price of each constraint.

f If 26 million HIW exposures are required, determine
the new optimal z-value.

5 Radioco manufactures two types of radios. The only
scarce resource needed to produce radios is labor. The
company now has two laborers. Laborer 1 is willing to work
as many as 40 hours per week and is paid $5 per hour.
Laborer 2 is willing to work up to 50 hours per week and is
paid $6 per hour. The price as well as the resources required
to build each type of radio are given in Table 1.

Letting xi be the number of type i radios produced each
week, show that Radioco should solve the following LP:

max z � 3x1 � 2x2

s.t. 2x1 � 2x2 � 40

s.t. 2x1 � 2x2 � 50

s.t. 2 � 2x1, x2 � 0

a For what values of the price of a Type 1 radio would
the current basis remain optimal?

b For what values of the price of a Type 2 radio would
the current basis remain optimal?

c If laborer 1 were willing to work only 30 hours per
week, would the current basis remain optimal? Find the
new optimal solution to the LP.

d If laborer 2 were willing to work up to 60 hours per
week, would the current basis remain optimal? Find the
new optimal solution to the LP.

e Find the shadow price of each constraint.

TA B L E  1

Radio 1 Radio 2

Resource Resource
Price ($) Required Price ($) Required

25 Laborer 1: 22 Laborer 1:
1 hour 2 hours

Laborer 2: Laborer 2:
2 hours 2 hours

Raw material Raw material
cost: $5 cost: $4
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Suppose we have found the optimal solution to (1). Let BVi be the basic variable for row

i of the optimal tableau. Also define BV � {BV1, BV2, . . . , BVm} to be the set of basic

variables in the optimal tableau, and define the m  1 vector

xBV � � �
We also define

NBV � the set of nonbasic variables in the optimal tableau

xNBV � (n � m)  1 vector listing the nonbasic variables (in any desired order)

To illustrate these definitions, we recall that the optimal tableau for the Dakota problem is

zx1 � 1.25x2 � x3 � s1 � .10s2 � .10s3 � 280

zx1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.8s3 � 24
(2)

zx1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.4s3 � 8

zx1 � 1.25x2 � x3 � s1 � 0.5s2 � 1.5s3 � 2

For this optimal tableau, BV1 � s1, BV2 � x3, and BV3 � x1. Then

xBV � � �
We may choose NBV � {x2, s2, s3}. Then

xNBV � � �
Using our knowledge of matrix algebra, we can express the optimal tableau in terms of

BV and the original LP (1). Recall that c1, c2, . . . , cn are the objective function coefficients

for the variables x1, x2, . . . , xn (some of these may be slack, excess, or artificial variables).

D E F I N I T I O N ■ cBV is the 1  m row vector [cBV1
cBV2

��� cBVm
]. ■

Thus, the elements of cBV are the objective function coefficients for the optimal

tableau’s basic variables. For the Dakota problem, BV � {s1, x3, x1}. Then from (1�) we

find that cBV � [0 20 60].

D E F I N I T I O N ■ cNBV is the 1  (n � m) row vector whose elements are the coefficients of the

nonbasic variables (in the order of NBV). ■

If we choose to list the nonbasic variables for the Dakota problem in the order NBV �

{x2, s2, s3}, then cNBV � [30 0 0].

D E F I N I T I O N ■ The m  m matrix B is the matrix whose jth column is the column for BVj in

(1). ■

For the Dakota problem, the first column of B is the s1 column in (1�); the second, the

x3 column; and the third, the x1 column. Thus,

x2

s2

s3

s1

x3

x1

xBV1

xBV2

���

xBVm
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B � � �
D E F I N I T I O N ■ aj is the column (in the constraints) for the variable xj in (1). ■

For example, in the Dakota problem,

a2 � � � and a (for s1) � � �
D E F I N I T I O N ■ N is the m  (n � m) matrix whose columns are the columns for the nonbasic

variables (in the NBV order) in (1). ■

If for the Dakota problem, we write NBV � {x2, s2, s3}, then

N � � �
D E F I N I T I O N ■ The m  1 column vector b is the right-hand side of the constraints in (1). ■

For the Dakota problem,

b � � �
We write bi for the right-hand side of the ith constraint in the original Dakota problem:

b2 � 20.

We can now use matrix algebra to determine how an LP’s optimal tableau (with set of

basic variables BV) is related to the original LP in the form (1).

Expressing the Constraints in Any Tableau 
in Terms of B�1 and the Original LP

We begin by observing that (1) may be written as

z � cBVxBV � cNBVxNBV

s.t. BxBV � NxNBV � b (3)

xBV, xNBV � 0

Using the format of (3), the Dakota problem can be written as

max z � [0 20 60] � � � [30 0 0] � �
s.t. � � � � � � � � � � � �

48

20

28

x2

s2

s3

6.5 0 0

2.5 1 0

1.5 0 1

s1

x3

x1

8

4

2

1.0

1.5

0.5

1

0

0

x2

s2

s3

s1

x3

x1

48

20

28

0

0

1

0

1

0

6.0

2.0

1.5

1

0

0

6.0

2.0

1.5

8

4

2

1.0

1.5

0.5

1

0

0
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Multiplying the constraints in (3) through by B�1, we obtain

B�1BxBV � B�1NxNBV � B�1b or xBV � B�1NxNBV � B�1b (4)

In (4), BVi occurs with a coefficient of 1 in the ith constraint and a zero coefficient in

each other constraint. Thus, BV is the set of the basic variables for (4), and (4) yields the

constraints for the optimal tableau.

For the Dakota problem, the Gauss–Jordan method can be used to show that

B�1
� � �

Then (4) yields

� � � � � � � � � � � � � �
or

� � � � � � � � � � (4�)

Of course, these are the constraints for the Dakota optimal tableau, (2).

From (4), we see that the column of a nonbasic variable xj in the constraints of the optimal

tableau is given by B�1 [column for xj in (1)] � B�1aj. For example, the x2 column is B�1

(first column of N) � B�1a2. From (4), we also find that the right-hand side of the constraints

is the vector B�1b. The following two equations summarize the preceding discussion:

Column for xj in optimal tableau’s constraints � B�1aj (5)

Right-hand side of optimal tableau’s constraints � B�1b (6)

To illustrate (5), we find:

� B�1a2

in Dakota optimal tableau � � � � � � � �
To illustrate (6), we compute:

� B�1b

Right-hand side of constraints � � � � � � � �
24

8

2

48

20

8

�8.0

�4.0

1.5

2.0

2.0

�0.5

1

0

0

Right-hand side of constraints

in Dakota optimal tableau

�2.00

�2.00

1.25

6.0

2.0

1.5

�8.0

�4.0

1.5

2.0

2.0

�0.5

1

0

0

Column for x2

in Dakota optimal tableau

24

8

2

x2

s2

s3

�8.0

�4.0

1.5

2.0

2.0

�0.5

�2.00

�2.50

�1.25

s1

x3

x1

48

20

8

�8.5

�4.5

1.5

2.5

2.5

�0.5

1

0

0

x2

s2

s3

0

0

1

0

1

0

6.5

2.5

1.5

�8.5

�4.5

1.5

2.5

�2.5

�0.5

1

0

0

s1

x3

x1

�8.5

�4.5

�1.5

2.5

�2.5

�0.5

1

0

0

0

0

0

x2

s2

s3

0

0

0

s1

x3

x1
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Determining the Optimal Tableau’s Row 0 
in Terms of the Initial LP

We now show how to express row 0 of the optimal tableau in terms of BV and the orig-

inal LP (1). To begin, we multiply the constraints (expressed in the form BxBV � NxNBV

� b) through by the vector cBVB�1:

cBVxBV � cBVB�1NxNBV � cBVB�1b (7)

and rewrite the original objective function, z � cBVxBV � cNBVxNBV, as

z � cBVxBV � cNBVxNBV � 0 (8)

By adding (7) to (8), we can eliminate the optimal tableau’s basic variables and obtain its

row 0:

z � (cBVB�1N � cNBV)xNBV � cBVB�1b (9)

From (9), the coefficient of xj in row 0 is

cBVB�1 (column of N for xj) � (coefficient for xj in cNBV) � cBVB�1aj � cj

and the right-hand side of row 0 is cBVB�1b.

To help summarize the preceding discussion, we let c�j be the coefficient of xj in the

optimal tableau’s row 0. Then we have shown that

c�j � cBVB�1aj � cj (10)

and

Right-hand side of optimal tableau’s row 0 � cBVB�1b (11)

To illustrate the use of (10) and (11), we determine row 0 of the Dakota problem’s optimal

tableau. Recall that

cBV � [0 20 60] and B�1
� � �

Then cBVB�1
� [0 10 10], and from (10) we find that the coefficients of the nonba-

sic variables in row 0 of the optimal tableau are

c�2 � cBVB�1a2 � c2 � [0 10 10] � � � 30 � 20 � 15 � 30 � 5

and

Coefficient of s2 in optimal row 0 � cBVB�1 � � � 0 � 10

Coefficient of s3 in optimal row 0 � cBVB�1 � � � 0 � 10

Of course, the optimal tableau’s basic variables (x1, x3, and s1) will have zero coefficients

in row 0.

0

0

1

0

1

0

6.0

2.0

1.5
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�4.0
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1

0

0

6 . 2 Some Important Formulas 271



272 C H A P T E R 6 Sensitivity Analysis and Duality

From (11), the right-hand side of row 0 is

cBVB�1b � [0 10 10] � � � 280

Putting it all together, we see that row 0 is

z � 5x2 � 10s2 � 10s3 � 280

Of course, this result agrees with (2).

Simplifying Formula (10) for Slack, Excess, 
and Artificial Variables

Formula (10) can be greatly simplified if xj is a slack, excess, or artificial variable. For ex-

ample, if xj is the slack variable si, the coefficient of si in the objective function is 0, and the

column for si in the original tableau has 1 in row i and 0 in all other rows. Then (10) yields

Coefficient of si in optimal row 0 � ith element of cBVB�1
� 0 (10�)

Coefficient of si in optimal row 0 � ith element of cBVB�1

Similarly, if xj is the excess variable ei, then the coefficient of ei in the objective func-

tion is 0 and the column for ei in the original tableau has �1 in row i and 0 in all other

rows. Then (10) reduces to

Coefficient of ei in optimal row 0 � �(ith element of cBVB�1) � 0 (10�)

Coefficient of ei in optimal row 0 � �(ith element of cBVB�1)

Finally, if xj is an artificial variable ai, then the objective function coefficient of ai (for

a max problem) is �M and the original column for ai has 1 in row i and 0 in all other

rows. Then (10) reduces to

Coefficient of ai in optimal row 0 � (ith element of cBVB�1) � (�M) (10�)

Coefficient of ai in optimal row 0 � (ith element of cBVB�1) � (M)

The derivations of this section have not been easy. Fortunately, use of (5), (6), (10), and

(11) does not require a complete understanding of the derivations. A summary of the for-

mulas derived in this section for computing an optimal tableau from the initial LP follows.

Summary of Formulas for Computing 
the Optimal Tableau from the Initial LP

xj column in optimal tableau’s constraints � B�1aj (5)

Right-hand side of optimal tableau’s constraints � B�1b (6)

cc�j � cBVB�1aj � cj (10)

Coefficient of slack variable si in optimal row 0

� ith element of cBVB�1 (10�)

Coefficient of excess variable ei in optimal row 0

� �(ith element of cBVB�1) (10�)

Coefficient of artificial variable ai in optimal row 0

� (ith element of cBVB�1) � M (max problem) (10�)

Right-hand side of optimal row 0 � cBVB�1b (11)

48

20

8



We must first find B�1 because it is necessary in order to compute all parts of the opti-

mal tableau. Similarly, we must find cBVB�1 to compute the optimal tableau’s row 0.

The following example is another illustration of the use of the preceding formulas.

For the following LP, the optimal basis is BV � {x2, s2}. Compute the optimal tableau.

max z � x1 � 4x2

s.t. x1 � 2x2 � 6

s.t. 2x1 � x2 � 8

. x1, x2 � 0

Solution After adding slack variables s1 and s2, we obtain the analog of (1):

max z � x1 � 4x2

s.t. x1 � 2x2 � s1 � s2 � 6

s.t. 2x1 � x2 � s1 � s2 � 8

First we compute B�1. Because

B � � �
we find B�1 by applying the Gauss–Jordan method to the following matrix:

B|I2 � � � �
The reader should verify that

B�1
� � �

Use (5) and (6) to determine the optimal tableau’s constraints. Because

a1 � � �
the column for x1 in the optimal tableau is

B�1a1 � � � � � � � �
The other nonbasic variable is s1. The column for s1 in the original problem is

� �
so (5) yields

Column for s1 in optimal tableau � � � � � � � �
Because

b � � �6

8
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(6) yields

Right-hand side of optimal tableau � � � � � � � �
Because BV is listed as {x2, s2}, x2 is the basic variable for row 1, and s2 is the basic vari-

able for row 2. Thus, the constraints of the optimal tableau are

�
1

2
�x1 � x2 � �

1

2
�s1 � s2 � 3

�
3

2
�x1 � x2 � �

1

2
�s1 � s2 � 5

Because cBV � [4 0],

cBVB�1
� [4 0] � � � [2 0]

Then (10) yields

Coefficient of x1 in row 0 of optimal tableau � cBVB�1a1 � c1

Coefficient of x1 in row 0 of optimal tableau � [2 0] � � � 1 � 1

From (10�)

Coefficient of s1 in optimal tableau � First element of cBVB�1
� 2

Because

b � � �
(11) shows that the right-hand side of the optimal tableau’s row 0 is

cBVB�1b � [2 0] � � � 12

Of course, the basic variables x2 and s2 will have zero coefficients in row 0. Thus, the op-

timal tableau’s row 0 is z � x1 � 2s1 � 12, and the complete optimal tableau is

z � �
1

2
�x1 � x2 � 2s1 � s2 � 12

z � �
1

2
�x1 � x2 � �

1

2
�s1 � s2 � 3

z � �
3

2
�x1 � x2 � �

1

2
�s1 � s2 � 5

We have used the formulas of this section to create an LP’s optimal tableau, but they

can also be used to create the tableau for any set of basic variables. This observation will

be important when we study the revised simplex method in Section 10.1.

P R O B L E M S
Group A
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�
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1

2
�

1 For the following LP, x1 and x2 are basic variables in the
optimal tableau. Use the formulas of this section to
determine the optimal tableau.

max z � 3x1 � x2

s.t. 2x1 � x2 � 2

s.t. �x1 � x2 � 4

x1, x2 � 0
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6.3 Sensitivity Analysis

We now explore how changes in an LP’s parameters (objective function coefficients, right-

hand sides, and technological coefficients) change the optimal solution. As described in

Section 6.1, the study of how an LP’s optimal solution depends on its parameters is called

sensitivity analysis. Our discussion focuses on maximization problems and relies heavily

on the formulas of Section 6.2. (The modifications for min problems are straightforward;

see Problem 8 at the end of this section.)

As in Section 6.2, we let BV be the set of basic variables in the optimal tableau. Given a

change (or changes) in an LP, we want to determine whether BV remains optimal. The me-

chanics of sensitivity analysis hinge on the following important observation. From Chapter 4,

we know that a simplex tableau (for a max problem) for a set of basic variables BV is opti-

mal if and only if each constraint has a nonnegative right-hand side and each variable has a

nonnegative coefficient in row 0. This follows, because if each constraint has a nonnegative

right-hand side, then BV’s basic solution is feasible, and if each variable in row 0 has a non-

negative coefficient, then there can be no basic feasible solution with a higher z-value than BV.

Our observation implies that whether a tableau is feasible and optimal depends only on the

right-hand sides of the constraints and on the coefficients of each variable in row 0. For ex-

ample, if an LP has variables x1, x2, . . . , x6, the following partial tableau would be optimal:

z � 2x2 � x4 � x6 � 6

z � 2x2 � x4 � x6 � 1

z � 2x2 � x4 � x6 � 2

z � 2x2 � x4 � x6 � 3

This tableau’s optimality is not affected by the parts of the tableau that are omitted.

Suppose we have solved an LP and have found that BV is an optimal basis. We can

use the following procedure to determine if any change in the LP will cause BV to be no

longer optimal.

Step 1 Using the formulas of Section 6.2, determine how changes in the LP’s parameters

change the right-hand side and row 0 of the optimal tableau (the tableau having BV as

the set of basic variables).

Step 2 If each variable in row 0 has a non-negative coefficient and each constraint has a

nonnegative right-hand side, then BV is still optimal. Otherwise, BV is no longer optimal.

If BV is no longer optimal, then you can find the new optimal solution by using the

Section 6.2 formulas to recreate the entire tableau for BV and then continuing the sim-

plex algorithm with the BV tableau as your starting tableau.

There can be two reasons why a change in an LP’s parameters causes BV to be no

longer optimal. First, a variable (or variables) in row 0 may have a negative coefficient.

In this case, a better (larger z-value) bfs can be obtained by pivoting in a nonbasic vari-

able with a negative coefficient in row 0. If this occurs, we say that BV is now a subop-

timal basis. Second, a constraint (or constraints) may now have a negative right-hand side.

In this case, at least one member of BV will now be negative and BV will no longer yield

a bfs. If this occurs, we say that BV is now an infeasible basis.

2 For the following LP, x2 and s1 are basic variables in the
optimal tableau. Use the formulas of this section to
determine the optimal tableau.

max z � �x1 � x2

s.t. 2x1 � x2 � 4

s.t. x1 � x2 � 2

s.t. �x1, x2 � 0
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We illustrate the mechanics of sensitivity analysis in the Dakota Furniture example.

Recall that

x1 � number of desks manufactured

x2 � number of tables manufactured

x3 � number of chairs manufactured

The objective function for the Dakota problem was

max z � 60x1 � 30x2 � 20x3

and the initial tableau was

z � 60x1 � .30x2 � .20x3 � s1 � s2 � s3 � 0

z � 8x1 � .36x2 � 1.5x3 � s1 � s2 � s3 � 48 (Lumber constraint)
(12)

z � 4x1 � 1.2x2 � 1.5x3 � s1 � s2 � s3 � 20 (Finishing constraint)

z � 2x1 � 1.5x2 � 0.5x3 � s1 � s2 � s3 � 8 (Carpentry constraint)

The optimal tableau was

zx1 � 1.25x2 � x3 � s1 � .10s2 � .10s3 � 280

zx1 � 1.22x2 � x3 � s1 � 0.2s2 � . 8s3 � 24
(13)

zx1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.4s3 � 8

zx1 � 1.25x2 � x3 � s1 � 0.5s2 � 1.5s3 � 2

Note that BV � {s1, x3, x1} and NBV � {x2, s2, s3}. The optimal bfs is z � 280, s1 �

24, x3 � 8, x1 � 2, x2 � 0, s2 � 0, s3 � 0.

We now discuss how six types of changes in an LP’s parameters change the optimal

solution:

Change 1 Changing the objective function coefficient of a nonbasic variable

Change 2 Changing the objective function coefficient of a basic variable

Change 3 Changing the right-hand side of a constraint

Change 4 Changing the column of a nonbasic variable

Change 5 Adding a new variable or activity

Change 6 Adding a new constraint (see Section 6.11)

Changing the Objective Function Coefficient 
of a Nonbasic Variable

In the Dakota problem, the only nonbasic decision variable is x2 (tables). Currently, the

objective function coefficient of x2 is c2 � 30. How would a change in c2 affect the 

optimal solution to the Dakota problem? More specifically, for what values of c2 would

BV � {s1, x3, x1} remain optimal?

Suppose we change the objective function coefficient of x2 from 30 to 30 � 
. Then 


represents the amount by which we have changed c2 from its current value. For what val-

ues of 
 will the current set of basic variables (the current basis) remain optimal? We be-

gin by determining how changing c2 from 30 to 30 � 
 will change the BV tableau. Note

that B�1 and b are unchanged, and therefore, from (6), the right-hand side of BV’s tableau

(B�1b) has not changed, so BV is still feasible. Because x2 is a nonbasic variable, cBV has

not changed. From (10), we can see that the only variable whose row 0 coefficient will be



changed by a change in c2 is x2. Thus, BV will remain optimal if cc�2 � 0, and BV will be

suboptimal if cc�2 	 0. In this case, z could be improved by entering x2 into the basis.

We have

a2 � � �
and c2 � 30 � 
. Also, from Section 6.2, we know that cBVB�1

� [0 10 10]. Now

(10) shows that

cc�2 � [0 10 10] � � � (30 � 
) � 35 � 30 � 
 � 5 � 


Thus, cc�2 � 0 holds, and BV will remain optimal, if 5 � 
 � 0, or 
 � 5. Similarly,

c�2 	 0 holds if 
 � 5, but then BV is no longer optimal. This means that if the price of

tables is decreased or increased by $5 or less, BV remains optimal. Thus, for c2 � 30 �

5 � 35, BV remains optimal.

If BV remains optimal after a change in a nonbasic variable’s objective function coef-

ficient, the values of the decision variables and the optimal z-value remain unchanged.

This is because a change in the objective function coefficient for a nonbasic variable

leaves the right-hand side of row 0 and the constraints unchanged. For example, if the

price of tables increases to $33 (c2 � 33), the optimal solution to the Dakota problem re-

mains unchanged (Dakota should still make 2 desks and 8 chairs, and z � 280). On the

other hand, if c2 � 35, BV will no longer be optimal, because cc�2 	 0. In this case, we

find the new optimal solution by recreating the BV tableau and then using the simplex al-

gorithm. For example, if c2 � 40, we know that the only part of the BV tableau that will

change is the coefficient of x2 in row 0. If c2 � 40, then

cc�2 � [0 10 10] � � � 40 � �5

Now the BV “final” tableau is as shown in Table 2. This is not an optimal tableau (it

is suboptimal), and we can increase z by making x2 a basic variable in row 3. The result-

ing tableau is given in Table 3. This is an optimal tableau. Thus, if c2 � 40, the optimal

solution to the Dakota problem changes to z � 288, s1 � 27.2, x3 � 11.2, x2 � 1.6, 

x1 � 0, s2 � 0, s3 � 0. In this case, the increase in the price of tables has made tables

sufficiently more attractive to induce Dakota to manufacture them. Note that after chang-

ing a nonbasic variable’s objective function coefficient, it may, in general, take more than

one pivot to find the new optimal solution.

There is a more insightful way to show that the current basis in the Dakota problem

remains optimal as long as the price of tables is decreased or increased by $5 or less. From

the optimal row 0 in (13), we see that if c2 � 30, then

z � 280 � 10s2 � 10s3 � 5x2

This tells us that each table that Dakota manufactures will decrease revenue by $5 (in

other words, the reduced cost for tables is 5). If we increase the price of tables by more

than $5, each table would now increase Dakota’s revenue. For example, if c2 � 36, each

table would increase revenues by 6 � 5 � $1 and Dakota should manufacture tables.

Thus, as before, we see that for 
 � 5, the current basis is no longer optimal. This analy-

sis yields another interpretation of the reduced cost of a nonbasic variable: The reduced

cost for a nonbasic variable (in a max problem) is the maximum amount by which the
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variable’s objective function coefficient can be increased before the current basis becomes

suboptimal, and it becomes optimal for the nonbasic variable to enter the basis.

In summary, if the objective function coefficient for a nonbasic variable xj is changed,

the current basis remains optimal if cc�j � 0. If cc�j 	 0, then the current basis is no longer

optimal, and xj will be a basic variable in the new optimal solution.

Changing the Objective Function 
Coefficient of a Basic Variable

In the Dakota problem, the decision variables x1 (desks) and x3 (chairs) are basic variables. We

now explain how a change in the objective function coefficient of a basic variable will affect

an LP’s optimal solution. We begin by analyzing how this change affects the BV tableau. Be-

cause we are not changing B (or therefore B�1) or b, (6) shows that the right-hand side of each

constraint will remain unchanged, and BV will remain feasible. Because we are changing cBV,

however, so cBVB�1 will change. From (10), we see that a change in cBVB�1 may change more

than one coefficient in row 0. To determine whether BV remains optimal, we must use (10)

to recompute row 0 for the BV tableau. If each variable in row 0 still has a nonnegative co-

efficient, BV remains optimal. Otherwise, BV is now suboptimal. To illustrate the preceding

ideas, we analyze how a change in the objective function coefficient for x1 (desks) from its

current value of c1 � 60 affects the optimal solution to the Dakota problem.

Suppose that c1 is changed to 60 � 
, changing cBV to cBV � [0 20 60 � 
].

To compute the new row 0, we need to know B�1. We could (as in Section 6.2) use the

Gauss–Jordan method to compute B�1. Recall that this method begins by writing down

the 3  6 matrix B|I3:

B|I3 � � � �
Then we use EROs to transform the first three columns of B|I3 to I3. At this point, the last

three columns of the resulting matrix will be B�1.

0
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TA B L E  2

“Final” (Suboptimal) Dakota Tableau ($40/Table)

Basic Variable Ratio

z x1 � 1.25x2 � x3 � s1 � .10s2 � .10s3 � 280 z1 � 280

z x1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.8s3 � 24 s1 � 24 None

z x1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.4s3 � 8 x3 � 8 None

z x1 � 1.25x2 � x3 � s1 � 0.5s2 � 1.5s3 � 2 x1 � 2 1.6*

TA B L E  3

Optimal Dakota Tableau ($40/Table)

Basic Variable

z � 1.4x1 � x2 � x3 � s1 � 1.8s2 � .16s3 � 288 z1 � 288

z � 1.6x1 � x2 � x3 � s1 � 1.2s2 � 5.6s3 � 27.2 s1 � 27.2

z � 1.6x1 � x2 � x3 � s1 � 1.2s2 � 1.6s3 � 11.2 x3 � 11.2

z � 0.8x1 � x2 � x3 � s1 � 0.4s2 � 1.2s3 � 1.6 x2 � 1.6



It turns out that when we solved the Dakota problem by the simplex algorithm, with-

out realizing it, we found B�1. To see why this is the case, note that in going from the

initial Dakota tableau (12) to the optimal Dakota tableau (13) we performed a series of

EROs on the constraints. These EROs transformed the constraint columns corresponding

to the initial basis (s1, s2, s3)

s1 s2 s3 to s1 s2 s3

from � � to � �
These same EROs have transformed the columns corresponding to BV � {s1, x3, x1}

s1 x3 x1 to s1 x3 x1

from B � � � to � �
This means that in solving the Dakota problem by the simplex algorithm, we have used

EROs to transform B to I3. These same EROs transformed I3 into

� � � B�1

We have discovered an extremely important fact: For any simplex tableau, B�1 is the

m  m matrix consisting of the columns in the current tableau that correspond to the ini-

tial tableau’s set of basic variables (taken in the same order). This means that if the start-

ing basis for an LP consists entirely of slack variables, then B�1 for the optimal tableau

is simply the columns for the slack variables in the constraints of the optimal tableau. In

general, if the starting basic variable for the ith constraint is the artificial variable ai, then

the ith column of B�1 will be the column for ai in the optimal tableau’s constraints. Thus,

we need not use the Gauss–Jordan method to find the optimal tableau’s B�1. We have al-

ready found B�1 by performing the simplex algorithm.

We can now compute what cBVB�1 will be if c1 � 60 � 
:

cBVB�1
� [0 20 60 � 
] � � (14)

cBVB�1
� [0 10 � 0.5
 10 � 1.5
]

Observe that for 
 � 0, (14) yields the original cBVB�1. We can now compute the new

row 0 corresponding to c1 � 60 � 
. After noting that

a1 � � �, a2 � � �, a3 � � �, c1 � 60 � 
, c2 � 30, c3 � 20

we can use (10) to compute the new row 0. Because s1, x3, and x1 are basic variables, their

coefficients in row 0 must still be 0. The coefficient of each nonbasic variable in the new

row 0 is as follows:

cc�2 � cBVB�1a2 � c2 � [0 10 � 0.5
 10 � 1.5
] � � � 30 � 5 � 1.25
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Coefficient of s2 in row 0 � second element of cBVB�1
� 10 � 0.5


Coefficient of s3 in row 0 � third element of cBVB�1
� 10 � 1.5


Thus, row 0 of the optimal tableau is now

z � (5 � 1.25
)x2 � (10 � 0.5
)s2 � (10 � 1.5
)s3 � ?

From the new row 0, we see that BV will remain optimal if and only if the following hold:

5 � 1.25
 � 0 (true iff †

 � �4)

10 � 0.5
 � 0 (true iff†

 � 20)

10 � 1.5
 � 0 (true iff†

 � �(20/3))

This means that the current basis remains optimal as long as 
 � �4, 
 � 20, and 
 �

��
2

3

0
�. From Figure 3, we see that the current basis will remain optimal if and only if 

�4 � 
 � 20: If c1 is decreased by $4 or less or increased by up to $20, the current ba-

sis remains optimal. Thus, as long as 56 � 60 � 4 � c1 � 60 � 20 � 80, the current

basis remains optimal. If c1 	 56 or c1 � 80, the current basis is no longer optimal.

If the current basis remains optimal, then the values of the decision variables don’t

change because B�1b remains unchanged. The optimal z-value does change, however. To

illustrate this, suppose c1 � 70. Because 56 � 70 � 80, we know that the current basis

remains optimal. Thus, Dakota should still manufacture 2 desks (x1 � 2) and 8 chairs 

(x3 � 8). However, changing c1 to 70 changes z to z � 70x1 � 30x2 � 20x3. This changes

z to 70(2) � 20(8) � $300. Another way to see that z is now $300 is to note that we have

increased the revenue from each desk by 70 � 60 � $10. Dakota is making 2 desks, so

revenue should increase by 2(10) � $20, and new revenue � 280 � 20 � $300.

When the Current Basis Is No Longer Optimal

Recall that if c1 	 56 or c1 � 80, then the current basis is no longer optimal. Intuitively,

if the price of desks is decreased sufficiently (with all other prices held constant), desks

will no longer be worth making. Our analysis shows that this occurs if the price of desks

is decreased by more than $4. The reader should verify (see Problem 2 at the end of this

section) that if c1 	 56, x1 is no longer a basic variable in the new optimal solution. On

the other hand, if c1 � 80, desks have become profitable enough to make the current ba-

sis suboptimal; desks are now so attractive that we want to make more of them. To do

this, we must force another variable out of the basis. Suppose c1 � 100. Because 100 �

80, we know that the current basis is no longer optimal. How can we determine the new

optimal solution? Simply create the optimal tableau for c1 � 100 and proceed with the

simplex. If c1 � 100, then 
 � 100 � 60 � 40, and the new row 0 will have

cc�1 � 0, cc�2 � 5 � 1.25
 � 55, cc�3 � 0,

s1 coefficient in row 0 � 0

s2 coefficient in row 0 � 10 � 0.5
 � �10

s3 coefficient in row 0 � 10 � 1.5
 � 70

Right-hand side of row 0 � cBVB�1b � [0 �10 70] � � � 360

From (6), changing c1 does not change the constraints in the BV tableau. This means that

if c1 � 100, then the BV tableau is as given in Table 4. BV � {s1, x3, x1} is now subopti-

48

20

8
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†“If and only if ”
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mal. To find the new Dakota optimal solution, we enter s2 into the basis in row 2 (Table 5).

This is an optimal tableau. If c1 � 100, then the new optimal solution to the Dakota prob-

lem is z � 400, s1 � 16, s2 � 4, x1 � 4, x2 � 0, x3 � 0. Notice that increasing the prof-

itability of desks has caused Dakota to stop making chairs. The resources that were previ-

ously used to make the chairs are now used to make 4 � 2 � 2 extra desks.

In summary, if the objective function coefficient of a basic variable xj is changed, then

the current basis remains optimal if the coefficient of every variable in row 0 of the BV

tableau remains nonnegative. If any variable in row 0 has a negative coefficient, then the

current basis is no longer optimal.

Interpretation of the Objective Coefficient Ranges 
Block of the LINDO Output

To obtain a sensitivity report in LINDO, select Yes when asked (after solving LP) whether

you want a Range analysis. To obtain a sensitivity report in LINGO, go to Options and

select Range (after solving LP). If this does not work, go to Options, choose the General

Solver tab, and then go to Dual Computations and select the Ranges and Values option.

In the OBJ COEFFICIENT RANGES block of the LINDO (or LINGO) computer out-

put, we see the amount by which each variable’s objective function coefficient may be

changed before the current basis becomes suboptimal (assuming all other LP parameters

are held constant). Look at the LINDO output for the Dakota problem (Figure 4). For each

variable, the CURRENT COEF column gives the current value of the variable’s objective

function coefficient. For example, the objective function coefficient for DESKS is 60. The

ALLOWABLE INCREASE column gives the maximum amount by which the objective

–4  ≤  ∆  ≤  20  

∆  ≥

∆  ≥

∆  ≤  2020

–4 –4
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TA B L E  4

“Final” (Suboptimal) Tableau If c1 � 100

Basic Variable Ratio

z x1 � 1.55x2 � x3 � s1 � .10s2 � .70s3 � 360 z1 � 360

z x1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.8s3 � 24 s1 � 24 12

z x1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.4s3 � 8 x3 � 8 4*

z x1 � 1.25x2 � x3 � s1 � 0.5s2 � 1.5s3 � 2 x1 � 2 None

TA B L E  5

Optimal Dakota Tableau If c1 � 100

Basic Variable

z x1 � 1.45x2 � 0.25x3 � s1 � s2 � .50s3 � 400 z1 � 400

z x1 � 1.22x2 � 0.25x3 � s1 � s2 � 1.4s3 � 16 s1 � 16

z x1 � 1.22x2 � 20.5x3 � s1 � s2 � 1.2s3 � 4 s2 � 4

z x1 � 0.75x2 � 0.25x3 � s1 � s2 � 0.5s3 � 4 x1 � 4



function coefficient of a variable can be increased with the current basis remaining opti-

mal (assuming all other LP parameters stay constant). For example, if the objective func-

tion coefficient for DESKS is increased above 60 � 20 � 80, then the current basis is no

longer optimal. Similarly, the ALLOWABLE DECREASE column gives the maximum

amount by which the objective function coefficient of a variable can be decreased with

the current basis remaining optimal (assuming all other LP parameters constant). If the

objective function coefficient for DESKS drops below 60 � 4 � 56, the current basis is

no longer optimal. In summary, we see from the LINDO output that if the objective func-

tion coefficient for DESKS is changed, the current basis remains optimal if

56 � 60 � 4 � objective coefficient for DESKS � 60 � 20 � 80

Of course, this agrees with our earlier computations.

Changing the Right-Hand Side of a Constraint

Effect on the Current Basis

In this section, we examine how the optimal solution to an LP changes if the right-hand

side of a constraint is changed. Because b does not appear in (10), changing the right-

hand side of a constraint will leave row 0 of the optimal tableau unchanged; changing a

right-hand side cannot cause the current basis to become suboptimal. From (5) and (6),

however, we see that a change in the right-hand side of a constraint will affect the right-

hand side of the constraints in the optimal tableau. As long as the right-hand side of each

282 C H A P T E R 6 Sensitivity Analysis and Duality

MAX     60 DESKS + 30 TABLES + 20 CHAIRS
SUBJECT TO 
       2)   8 DESKS + 6 TABLES + CHAIRS <=    48
       3)   4 DESKS + 2 TABLES + 1.5 CHAIRS <=   20
       4)   2 DESKS + 1.5 TABLES + 0.5 CHAIRS <=    8
END

    LP OPTIMUM FOUND  AT STEP    2

         OBJECTIVE FUNCTION VALUE

 1)         280.000000

VARIABLE         VALUE    REDUCED COST
    DESKS        2.000000     0.000000
   TABLES        0.000000     5.000000
   CHAIRS        8.000000     0.000000

   ROW     SLACK OR SURPLUS      DUAL PRICES
       2)       24.000000           0.000000
       3)        0.000000          10.000000
       4)        0.000000          10.000000

NO. ITERATIONS=     2

   RANGES IN WHICH THE BASIS IS UNCHANGED

                          OBJ COEFFICIENT RANGES
VARIABLE         CURRENT        ALLOWABLE         ALLOWABLE
                  COEF          INCREASE          DECREASE
   DESKS         60.000000        20.000000          4.000000
  TABLES         30.000000         5.000000        INFINITY
  CHAIRS         20.000000         2.500000          5.000000

                          RIGHTHAND SIDE RANGES
    ROW          CURRENT        ALLOWABLE         ALLOWABLE
                   RHS          INCREASE          DECREASE
       2         48.000000       INFINITY           24.000000
       3         20.000000         4.000000          4.000000
       4          8.000000         2.000000          1.333333

F I G U R E  4

LINDO Output for
Dakota Furniture



constraint in the optimal tableau remains nonnegative, the current basis remains feasible

and optimal. If at least one right-hand side in the optimal tableau becomes negative, then

the current basis is no longer feasible and therefore no longer optimal.

Suppose we want to determine how changing the amount of finishing hours (b2) affects

the optimal solution to the Dakota problem. Currently, b2 � 20. If we change b2 to 20 �


, then from (6), the right-hand side of the constraints in the optimal tableau will become

B�1 � � � � � � �
B�1 [48

20 � 


� � �
Of course, for 
 � 0, the right-hand side reduces to the right-hand side of the original

optimal tableau. If this does not happen, then an error has been made.

It can be shown (see Problem 9) that if the right-hand side of the ith constraint is in-

creased by 
, then the right-hand side of the optimal tableau is given by (original right-hand

side of the optimal tableau) �
(column i of B�1). Because the second column of B�1 is

� � and the original right-hand side is � �
we again find that the right-hand side of the constraints in the optimal tableau is

� �
For the current basis to remain optimal, we require that the right-hand side of each con-

straint in the optimal tableau remain nonnegative. This means that the current basis will

remain optimal if and only if the following hold:

24 � 2
.0 � 0 (true iff 
 � �12)

8 � 2
.0 � 0 (true iff 
 � �4)

2 � 0.5
 � 0 (true iff 
 � 4)

As long as 
 � �12, 
 � �4, and 
 � 4, the current basis remains feasible and therefore

optimal. From Figure 5, we see that for �4 � 
 � 4, the current basis remains feasible and

therefore optimal. This means that for 20 � 4 � b2 � 20 � 4, or 16 � b2 � 24, the cur-

rent basis remains optimal: If between 16 and 24 finishing hours are available, BV � {s1,

x3, x1} remains optimal, and Dakota should still manufacture desks and chairs. If b2 � 24

or if b2 	 16, however, the current basis becomes infeasible and is no longer optimal.
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Effect on Decision Variables and z

Even if the current basis remains optimal (16 � b2 � 24), the values of the decision vari-

ables and z change. This was illustrated in our graphical discussion of sensitivity analy-

sis in Section 6.1. To see how the values of the objective function and decision variables

change, recall that the values of the basic variables in the optimal solution are given by

B�1b and the optimal z-value is given by cBVB�1b. Changing b will change the values of

the basic variables and the optimal z-value. To illustrate this, suppose that 22 finishing

hours are available. Because 16 � 22 � 24, the current basis remains optimal and, from

(6), the new values of the basic variables are as follows (the same basis remains optimal,

so the nonbasic variables remain equal to 0):

� � � B�1b � � � � � � � �
If 22 finishing hours were available, then Dakota should manufacture 12 chairs and only

1 desk.

To determine how a change in a right-hand side affects the optimal z-value, we may

use formula (11). If 22 finishing hours are available, we find that

New z-value � cBVB�1(new b) � [0 10 10] � � � 300

In Section 6.8, we explain how the important concept of shadow price can be used to de-

termine how changes in a right-hand side change the optimal z-value.

When the Current Basis Is No Longer Optimal

If we change a right-hand side enough that the current basis is no longer optimal, how

can we determine the new optimal basis? Suppose we change b2 to 30. Because b2 � 24,

we know that the current basis is no longer optimal. If we re-create the optimal tableau,

we see from the formulas of Section 6.2 that the only part of the optimal tableau that will

change is the right-hand side of row 0 and the constraints. From (6), the right-hand side

of the constraints in the tableau for BV � {s1, x3, x1} is

B�1b � � � � � � � �
From (11), the right-hand side of row 0 is now

cBVB�1b � [0 10 10] � � � 380

The tableau for the optimal basis, BV � {s1, x3, x1}, is now as shown in Table 6. Because

x1 � �3, BV is no longer feasible or optional. Unfortunately, this tableau does not yield

a readily apparent basic feasible solution. If we use this as our initial tableau, we can’t

use the simplex algorithm to find the new optimal solution to the Dakota problem. In Sec-

tion 6.11, we discuss a different method for solving LPs, the dual simplex algorithm,

which can be used to solve LPs when the initial tableau has one or more negative right-

hand sides and each variable in row 0 has a nonnegative coefficient.

In summary, if the right-hand side of a constraint is changed, then the current basis 

remains optimal if the right-hand side of each constraint in the tableau remains non-
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negative. If the right-hand side of any constraint is negative, then the current basis is in-

feasible, and a new optimal solution must be found.

Interpretation of the Right-Hand Side 
Ranges Block of the LINDO Output

The block of the LINDO (or LINGO) output labeled RIGHTHAND SIDE RANGES (see

Figure 4) gives information concerning the amount by which a right-hand side can be

changed before the current basis becomes infeasible (all other LP parameters constant).

The CURRENT RHS column gives the current right-hand side of each constraint. Thus,

for row 3 (the second constraint), the current right-hand side is 20. The ALLOWABLE

INCREASE column is the maximum amount by which the right-hand side of the con-

straint can be increased with the current basis remaining optimal (all other LP parame-

ters constant). For example, if the amount of available finishing hours (second constraint)

is increased by up to 4 hours, then the current basis remains optimal. Similarly, the 

ALLOWABLE DECREASE column gives the maximum amount by which the right-hand

side of a constraint can be decreased with the current basis remaining optimal (all other

LP parameters constant). If the amount of available finishing hours is decreased by more

than 4 hours, then the current basis is no longer optimal. In summary, if the number of

finishing hours is changed (all other LP parameters constant), the current basis remains

optimal if

16 � 20 � 4 � available finishing hours � 20 � 4 � 24

Changing the Column of a Nonbasic Variable

Currently, 6 board feet of lumber, 2 finishing hours, and 1.5 carpentry hours are required

to make a table that can be sold for $30. Also x2 (the variable for tables) is a nonbasic vari-

able in the optimal solution. This means that Dakota should not manufacture any tables

now. Suppose, however, that the price of tables increased to $43 and, because of changes

in production technology, a table required 5 board feet of lumber, 2 finishing hours, and 

2 carpentry hours. Would this change the optimal solution to the Dakota problem? Here

we are changing elements of the column for x2 in the original problem (including the ob-

jective function). Changing the column for a nonbasic variable such as tables leaves B (and

B�1) and b unchanged. Thus, the right-hand side of the optimal tableau remains un-

changed. A glance at (10) also shows that the only part of row 0 that is changed is c�2; the

current basis will remain optimal if and only if c�2 � 0 holds. We now use (10) to compute

the new coefficient of x2 in row 0. This process is called pricing out x2. From (10),

cc�2 � cBVB�1a2 � c2

6 . 3 Sensitivity Analysis 285

TA B L E  6

Final (Infeasible) Dakota Tableau If b2 � 30

Basic Variable

z x1 � 1.25x2 � x3 � s1 � .10s2 � .10s3 � 380 z1 � 480

z x1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.8s3 � 44 s1 � 44

z x1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.4s3 � 28 x3 � 28

z x1 � 1.25x2 � x3 � s1 � 0.5s2 � 1.5s3 � �3 x1 � �3
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Note that cBVB�1 still equals [0 10 10], but a2 and c2 have changed to

c2 � 43 and a2 � � �
Now

c�2 � [0 10 10] � � � 43 � �3 	 0

Because cc�2 	 0, the current basis is no longer optimal. The fact that cc�2 � �3 means that

each table that Dakota manufactures now increases revenues by $3. It is clearly to Dakota’s

advantage to enter x2 into the basis. To find the new optimal solution to the Dakota prob-

lem, we recreate the tableau for BV � {s1, x3, x1} and then apply the simplex algorithm.

From (5), the column for x2 in the constraint portion of the BV tableau is now

B�1a2 � � � � � � � �
The tableau for BV � {s1, x3, x1} is now as shown in Table 7. To find the new optimal

solution, we enter x2 into the basis in row 3. This yields the optimal tableau in Table 8.

Thus, the new optimal solution to the Dakota problem is z � 283, s1 � 31, x3 � 12, 

x2 � 1, x1 � 0, s2 � 0, s3 � 0. After the column for the nonbasic variable x2 (tables) has

been changed, Dakota should manufacture 12 chairs and 1 table. In summary, if the col-

umn of a nonbasic variable xj is changed, then the current basis remains optimal if cc�j �

0. If cc�j 	 0, then the current basis is no longer optimal and xj will be a basic variable in

the new optimal solution.

If the column of a basic variable is changed, then it is usually difficult to determine

whether the current basis remains optimal. This is because the change may affect both B (and

hence B�1) and cBV and thus the entire row 0 and the entire right-hand side of the optimal
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TA B L E  7

“Final” (Suboptimal) Dakota Tableau for New Method of Making Tables

Basic Variable

z x1 � 3x2 � x3 � s1 � .10s2 � .10s3 � 280 z1 � 280

z x1 � 7x2 � x3 � s1 � 0.2s2 � 1.8s3 � 24 s1 � 24

z x1 � 4x2 � x3 � s1 � 0.2s2 � 1.4s3 � 8 x3 � 8

z x1 � 2x2 � x3 � s1 � 0.5s2 � 1.5s3 � 2 x1 � 2*

TA B L E  8

Optimal Dakota Tableau for New Method of Making Tables

Basic Variable

z � 1.5x1 � x3 � x3 � s1 � 9.25s2 � 12.25s3 � 283 z1 � 283

z � 3.5x1 � x3 � x3 � s1 � 0.25s2 � 12.75s3 � 31 s1 � 31

z � 0.2x1 � x3 � x3 � s1 � 0.25s2 � 12.25s3 � 12 x3 � 12

z � 0.5x1 � x2 � x3 � s1 � 0.25s2 � 10.75s3 � 1 x1 � 1
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tableau. As always, the current basis would remain optimal if and only if each variable has a

nonnegative coefficient in row 0 and each constraint has a nonnegative right-hand side.

Adding a New Activity

In many situations, opportunities arise to undertake new activities. For example, in the Dakota

problem, the company may be presented with the opportunity to manufacture additional types

of furniture, such as footstools. If a new activity is available, we can evaluate it by applying

the method utilized to determine whether the current basis remains optimal after a change in

the column of a nonbasic variable. The following example illustrates the approach.

Suppose that Dakota is considering making footstools. A stool sells for $15 and re-

quires 1 board foot of lumber, 1 finishing hour, and 1 carpentry hour. Should the com-

pany manufacture any stools?

To answer this question, define x4 to be the number of footstools manufactured by

Dakota. The initial tableau is now changed by the introduction of the x4 column. Our new

initial tableau is

z � 60x1 � .30x2 � .20x3 � 15x4 � s1 � s2 � s3 � 0

z � 8x1 � 1.6x2 � 1.5x3 � 15x4 � s1 � s2 � s3 � 48

z � 4x1 � 1.2x2 � 1.5x3 � 15x4 � s1 � s2 � s3 � 20
(15)

z � 2x1 � 1.5x2 � 0.5x3 � 15x4 � s1 � s2 � s3 � 8

We call the addition of the x4 column to the problem adding a new activity. How will

the addition of the new activity change the optimal BV � {s1, x3, x1} tableau? From (6),

we see that the right-hand sides of all constraints in the optimal tableau will remain un-

changed. From (10), we see that the coefficient of each of the old variables in row 0 will

remain unchanged. We must, of course, compute cc�4, the coefficient of the new activity in

row 0 of the optimal tableau. The right-hand side of each constraint in the optimal tableau

is unchanged and the only variable in row 0 that can have a negative coefficient is x4, so

the current basis will remain optimal if cc�4 � 0 or become nonoptimal if cc�4 	 0.

To determine whether a new activity causes the current basis to be no longer optimal,

price out the new activity. Because

c4 � 15 and a4 � � �
we may use (10) to price out x4. The result is

cc�4 � [0 10 10] � � � 15 � 5

Because cc�4 � 0, the current basis is still optimal. Equivalently, the reduced cost of foot-

stools is $5. This means that each stool manufactured will decrease revenues by $5. For

this reason, we choose not to manufacture any stools.

In summary, if a new column (corresponding to a variable xj) is added to an LP, then

the current basis remains optimal if cc�j � 0. If cc�j 	 0, then the current basis is no longer

optimal and xj will be a basic variable in the new optimal solution. Table 9 presents a sum-

mary of sensitivity analyses for a maximization problem. When applying the techniques

of this section to a minimization problem, just remember that a tableau is optimal if and

only if each variable has a nonpositive coefficient in row 0 and the right-hand side of each

constraint is nonnegative.
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P R O B L E M S
Group A

1 In the Dakota problem, show that the current basis
remains optimal if c3, the price of chairs, satisfies 15 �

c3 � 22.5. If c3 � 21, find the new optimal solution. Also,
if c3 � 25, find the new optimal solution.

2 If c1 � 55 in the Dakota problem, show that the new
optimal solution does not produce any desks.

3 In the Dakota problem, show that if the amount of lumber
(board ft) available (b1) satisfies b1 � 24, the current basis
remains optimal. If b1 � 30, find the new optimal solution.

4 Show that if tables sell for $50 and use 1 board ft of
lumber, 3 finishing hours, and 1.5 carpentry hours, the
current basis for the Dakota problem will no longer be
optimal. Find the new optimal solution.

5 Dakota Furniture is considering manufacturing home
computer tables. A home computer table sells for $36 and uses
6 board ft of lumber, 2 finishing hours, and 2 carpentry hours.
Should the company manufacture any home computer tables?

6 Sugarco can manufacture three types of candy bar. Each
candy bar consists totally of sugar and chocolate. The
compositions of each type of candy bar and the profit earned
from each candy bar are shown in Table 10. Fifty oz of
sugar and 100 oz of chocolate are available. After defining
xi to be the number of Type i candy bars manufactured,
Sugarco should solve the following LP:

max z � 3x1 � 7x2 � 5x3

s.t. x1 � x2 � x3 � 50 (Sugar constraint)

s.t. 2x1 � 3x2 � x3 � 100 (Chocolate constraint)

x1, x2, x3 � 0

After adding slack variables s1 and s2, the optimal tableau
is as shown in Table 11. Using this optimal tableau, answer
the following questions:

a For what values of Type 1 candy bar profit does the
current basis remain optimal? If the profit for a Type 1
candy bar were 7¢, what would be the new optimal so-
lution to Sugarco’s problem?

b For what values of Type 2 candy bar profit would the
current basis remain optimal? If the profit for a Type 2
candy bar were 13¢, then what would be the new opti-
mal solution to Sugarco’s problem?

c For what amount of available sugar would the cur-
rent basis remain optimal?

d If 60 oz of sugar were available, what would be Sug-
arco’s profit? How many of each candy bar should the
company make? Could these questions be answered if
only 30 oz of sugar were available?

e Suppose a Type 1 candy bar used only 0.5 oz of
sugar and 0.5 oz of chocolate. Should Sugarco now
make Type 1 candy bars?

TA B L E  10

Amount of Amount of Profit
Bar Sugar (Ounces) Chocolate (Ounces) (Cents)

1 1 2 3

2 1 3 7

3 1 1 5

TA B L E  11

Basic
z x1 x2 x3 s1 s2 rhs Variable

1 3 0 0 4 1 300 z3 � 300

0 �
1
2

� 0 1 �
3
2

� ��
1
2

� 325 x3 � 250

0 �
1
2

� 1 0 ��
1
2

� �
1
2

� 325 x2 � 250

TA B L E  9

Summary of Sensitivity Analysis (Max Problem)

Change in Effect on Current Basis Is
Initial Problem Optimal Tableau Still Optimal If:

Changing nonbasic objective Coefficient of xj in optimal Coefficient of xj in row 0 for
function coefficient cj row 0 is changed current basis is still

nonnegative

Changing basic objective Entire row 0 may change Each variable still has a
function coefficient cj nonnegative coefficient in

row 0

Changing right-hand side of Right-hand side of Right-hand side of each
a constraint constraints and row 0 are constraint is still nonnegative

changed

Changing the column of a Changes the coefficient for The coefficient of xj in row
nonbasic variable xj or xj in row 0 and xj’s 0 is still nonnegative
adding a new variable xj constraint column in

optimal tableau



f Sugarco is considering making Type 4 candy bars. A
Type 4 candy bar earns 17¢ profit and requires 3 oz of
sugar and 4 oz of chocolate. Should Sugarco manufac-
ture any Type 4 candy bars?

7 The following questions refer to the Giapetto problem
(Section 3.1). Giapetto’s LP was

max z � 3x1 � 2x2

s.t. 2x1 � x2 � 100 (Finishing constraint)

s.t. 2x1 � x2 � 80 (Carpentry constraint)

s.t. 2x1 � x2 � 40 (Limited demand for soldiers)

(x1 � soldiers and x2 � trains). After adding slack variables
s1, s2, and s3, the optimal tableau is as shown in Table 12.
Use this optimal tableau to answer the following questions:

a Show that as long as soldiers (x1) contribute between
$2 and $4 to profit, the current basis remains optimal. If
soldiers contribute $3.50 to profit, find the new optimal
solution to the Giapetto problem.

b Show that as long as trains (x2) contribute between
$1.50 and $3.00 to profit, the current basis remains optimal.

c Show that if between 80 and 120 finishing hours are
available, the current basis remains optimal. Find the
new optimal solution to the Giapetto problem if 90 fin-
ishing hours are available.

d Show that as long as the demand for soldiers is at
least 20, the current basis remains optimal.

e Giapetto is considering manufacturing toy boats. A toy
boat uses 2 carpentry hours and 1 finishing hour. Demand
for toy boats is unlimited. If a toy boat contributes $3.50
to profit, should Giapetto manufacture any toy boats?
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Group B

8 Consider the Dorian Auto problem (Example 2 of
Chapter 3):

min z � 50x1 � 100x2

s.t. 7x1 � 2x2 � 28 (HIW)

s.t. 2x1 � 12x2 � 24 (HIM)

x1, x2 � 0

(x1 � number of comedy ads, and x2 � number of football
ads). The optimal tableau is given in Table 13. Remember
that for a min problem, a tableau is optimal if and only if
each variable has a nonpositive coefficient in row 0 and the
right-hand side of each constraint is nonnegative.

a Find the range of values of the cost of a comedy ad
(currently $50,000) for which the current basis remains
optimal.

b Find the range of values of the number of required
HIW exposures (currently 28 million) for which the cur-
rent basis remains optimal. If 40 million HIW exposures
were required, what would be the new optimal solution?

c Suppose an ad on a news program costs $110,000
and reaches 12 million HIW and 7 million HIM. Should
Dorian advertise on the news program?

9 Show that if the right-hand side of the ith constraint is
increased by 
, then the right-hand side of the optimal
tableau is given by (original right-hand side of the optimal
tableau) � 
(column i of B�1).

6.4 Sensitivity Analysis When More Than One 
Parameter Is Changed: The 100% Rule†

In this section, we show how to use the LINDO output to determine whether the current

basis remains optimal when more than one objective function coefficient or right-hand

side is changed.

The 100% Rule for Changing Objective Function Coefficients

Depending on whether the objective function coefficient of any variable with a zero re-

duced cost in the optimal tableau is changed, there are two cases to consider:

TA B L E  12

Basic
z x1 x2 s1 s2 s3 rhs Variable

1 0 0 1 1 0 180 z3 � 180

0 1 0 1 �1 0 320 x1 � 200

0 0 1 �1 2 0 360 x2 � 600

0 0 0 �1 1 1 320 s3 � 200

TA B L E  13

z x1 x2 e1 e2 a1 a2 rhs

1 0 0 �5 �7.5 5 � M 7.5 � M 320

0 1 0 ��
2
3
0
� �

4
1
0
� �

2
3
0
� ��

4
1
0
� 333.6

0 0 1 �
4
1
0
� ��

8
7
0
� ��

4
1
0
� �

8
7
0
� 331.4

†This section covers topics that may be omitted with no loss of continuity.
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Case 1 All variables whose objective function coefficients are changed have nonzero re-

duced costs in the optimal row 0.

Case 2 At least one variable whose objective function coefficient is changed has a re-

duced cost of zero.

In Case 1, the current basis remains optimal if and only if the objective function co-

efficient for each variable remains within the allowable range† given on the LINDO print-

out (see Problem 10 at the end of this section). If the current basis remains optimal, then

both the values of the decision variables and objective function remain unchanged. If the

objective function coefficient for any variable is outside its allowable range, then the cur-

rent basis is no longer optimal.

The following two examples of Case 1 refer to the diet problem of Section 3.4. The

LINDO printout for this problem is given in Figure 6.

Suppose the price of a brownie increases to 60¢ and a piece of pineapple cheesecake de-

creases to 50¢. Does the current basis remain optimal? What would be the new optimal

solution?

Solution Both brownies and pineapple cheesecake have nonzero reduced costs, so we are in Case

1. From Figure 6 and the Case 1 discussion, we see that the current basis remains opti-

mal if and only if

22.5 � 50 � 27.5 � cost of a brownie � 50 � � � �

. 5.530 � 80 � 50 � cost of a piece of cheesecake � 80 � � � �

Because the new prices satisfy both of these conditions, the current basis remains opti-

mal. Also the optimal z-value and optimal value of the decision variables remain un-

changed.

If prices drop to 40¢ for a brownie and 25¢ for a piece of pineapple cheesecake, is the

current basis still optimal?

Solution From Figure 6, we see that Case 1 again applies. The cost of a brownie remains in its al-

lowable range, but the price of pineapple cheesecake does not. Thus, the current basis is

no longer optimal, and the problem must be solved again.

In Case 2, we can often show that the current basis remains optimal by using the 100%

Rule. Let

cj � original objective function coefficient for xj


cj � change in cj

Ij � maximum allowable increase in cj for which current basis remains optimal 

(from LINDO output)

Dj � maximum allowable decrease in cj for which current basis remains optimal 

(from LINDO output)

100% Rule for Objective Functional Coefficients 1E X A M P L E  2

100% Rule for Objective Functional Coefficients 2E X A M P L E  3

†The allowable range for cj is the range of values for which the current basis remains optimal (assuming that

only cj is changed).
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For each variable xj, we define the ratio rj:

If 
cj � 0, rj � �



I

c

j

j
�

If 
cj � 0, rj � �
�

D




j

cj
�

If cj is unchanged, then rj � 0. Thus, rj measures the ratio of the actual change in cj to

the maximum allowable change in cj that would keep the current basis optimal. If only

one objective function coefficient were being changed, then the current basis would re-

main optimal if rj � 1 (or equivalently, if rj, expressed as a percentage, were less than or

equal to 100%). The 100% Rule for objective function coefficients is a generalization of

this idea. It states that if �rj � 1, then we can be sure that the current basis remains op-

timal. If �rj � 1, then the current basis may or may not be optimal; we can’t be sure. If

the current basis does remain optimal, then the values of the decision variables remain

unchanged, but the optimal z-value may change. The reader is referred to Bradley, Hax,

and Magnanti (1977) for a proof of the 100% Rule. We sketch the proof in Problem 11

at the end of this section.

The following two examples of Case 2 refer to the Dakota Furniture problem and il-

lustrate the use of the 100% Rule.

F I G U R E  6

LINDO Output for 
Diet Problem

MIN     50 BR + 20 IC + 30 COLA + 80 PC
SUBJECT TO
       2)   400 BR + 200 IC + 150 COLA + 500 PC >=   500
       3)   3 BR + 2 IC >=    6
       4)   2 BR + 2 IC + 4 COLA + 4 PC >=   10
       5)   2 BR + 4 IC +  COLA + 5 PC >=    8
END
   
   LP OPTIMUM FOUND   AT STEP     5

        OBJECTIVE FUNCTION VALUE

 1)        90.000000

VARIABLE       VALUE          REDUCED COST
       BR       0.000000         27.500000
       IC       3.000000          0.000000
     COLA       1.000000          0.000000
       PC       0.000000         50.000000

  ROW     SLACK OR SURPLUS     DUAL PRICES
       2)     250.000000          0.000000
       3)       0.000000         -2.500000
       4)       0.000000         -7.500000
       5)       5.000000          0.000000

NO. ITERATIONS=     5

   RANGES IN WHICH THE BASIS IS UNCHANGED

                          OBJ COEFFICIENT RANGES
VARIABLE         CURRENT        ALLOWABLE        ALLOWABLE
                  COEF          INCREASE         DECREASE
      BR         50.000000       INFINITY          27.500000
      IC         20.000000        18.333334         5.000000
    COLA         30.000000        10.000000        30.000000
      PC         80.000000       INFINITY          50.000000

                          RIGHTHAND SIDE RANGES
    ROW          CURRENT        ALLOWABLE        ALLOWABLE
                   RHS          INCREASE         DECREASE
       2        500.000000       250.000000       INFINITY
       3          6.000000         4.000000         2.857143
       4         10.000000       INFINITY           4.000000
       5          8.000000         5.000000       INFINITY
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Suppose the desk price increases to $70 and chairs decrease to $18. Does the current ba-

sis remain optimal? What is the new optimal z-value?

Solution Because both desks and chairs have zero reduced costs (they are basic variables), we must

apply the 100% Rule to determine whether the current basis remains optimal. Returning

to the notation that x1 � desks, x2 � tables, and x3 � chairs, we may write


c1 � 70 � 60 � 10, I1 � 20, so r1 � �
1

2

0

0
� � 0.5


c3 � 18 � 20 � �2, D3 � 5, so r3 � �
2

5
� � 0.4


c2 � 0, so r2 � 0

Because r1 � r2 � r3 � 0.9 � 1, the current basis remains optimal. Another way of look-

ing at it: We changed c1 50% of the amount it was “allowed” to change and c3 40% of

the amount it was “allowed” to change. Because 50% � 40% � 90% � 100%, the cur-

rent basis remains optimal.

The current basis remains optimal, so the values of the decision variables do not

change. Note that the revenue from each desk has increased by $10 and the revenue from

each chair has decreased by $2. Dakota is still producing 2 desks and 8 chairs, so revenue

increases by 2(10) � 8(2) � $4 and is now 280 � 4 � $284.

Show that if the price of tables increases to $33 and desk prices decrease to $58, the 100%

Rule does not tell us whether the current basis is still optimal.

Solution For this situation,


c1 � 58 � 60 � �2, D1 � 4, so r1 � �
2

4
� � 0.5


c2 � 33 � 30 � 3, I2 � 5, so r2 � �
3

5
� � 0.6


c3 � 0, so r3 � 0

Because r1 � r2 � r3 � 0.5 � 0.6 � 0 � 1.1 � 1, the 100% Rule yields no information

about whether the current basis is optimal.

The 100% Rule for Changing Right-Hand Sides

Depending on whether any of the constraints whose right-hand sides are being modified

are binding constraints, there are two cases to consider:

Case 1 All constraints whose right-hand sides are being modified are nonbinding constraints.

Case 2 At least one of the constraints whose right-hand side is being modified is a bind-

ing constraint (that is, has zero slack or zero excess).

In Case 1, the current basis remains optimal if and only if each right-hand side remains

within its allowable range.† Then the values of the decision variables and optimal objective

function remain unchanged. If the right-hand side for any constraint is outside its allowable

range, then the current basis is no longer optimal (see Problem 12 at the end of this sec-

tion). The following examples for the diet problem illustrate the application of Case 1.

100% Rule and Optimal Basis 1E X A M P L E  5

†The allowable range for a right-hand side bi is the range of values for which the current basis remains opti-

mal (assuming the other LP parameters remain unchanged).

Basis No Longer OptimalE X A M P L E  4
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Suppose the calorie requirement is decreased to 400 calories and the fat requirement is in-

creased to 10 oz. Does the current basis remain optimal? What is the new optimal solution?

Solution Both the calorie and fat constraints are nonbinding, so Case 1 applies. From Figure 6, we

see that the allowable ranges for the calorie and fat constraints are

�� � 500 � � � calorie requirement � 500 � 250 � 750

�� � 8 � � � fat requirement � 8 � 5 � 13

The new calorie and fat requirements both remain within their allowable ranges, so the

current basis remains optimal. The optimal z-value and the values of the decision vari-

ables remain unchanged.

Suppose the calorie requirement is decreased to 400 calories and the fat requirement is

increased to 15 oz. Is the current basis still optimal?

Solution The fat requirement is no longer in its allowable range, so the current basis is no longer

optimal.

In Case 2, we can often show that the current basis remains optimal via another ver-

sion of the 100% Rule. Let

bj � current right-hand side of the jth constraint (from row j � 1 on LINDO output)


bj � change in bj

Ij � maximum allowable increase in bj for which the current basis remains optimal 

� (from LINDO output)

Dj � maximum allowable decrease in bj for which the current basis remains optimal 

� (from LINDO output)

For each constraint, compute the ratio rj:

If 
bj � 0, rj � �



I

b

j

j
�

If 
bj � 0, rj � �
�


Ij

bj
�

If only the jth right-hand side is changed, then the current basis remains optimal if rj � 1. Also

note that rj is the fraction of the maximum allowable change (in the sense that the current 

basis remains optimal) in bj that has occurred. The 100% Rule states that if �rj � 1, then the

current basis remains optimal. If �rj � 1, then the current basis may or may not be optimal;

we can’t be sure (see Problem 13 at the end of this section for a sketch of the proof of this 

result). The following examples illustrate the use of the 100% Rule for right-hand sides.

In the Dakota problem, suppose 22 finishing hours and 9 carpentry hours are available.

Does the current basis remain optimal?

Solution The finishing and carpentry constraints are binding, so we are in Case 2 and need to use

the 100% Rule.

New Optimal SolutionE X A M P L E  6

Basis No Longer OptimalE X A M P L E  7

Basis Remains OptimalE X A M P L E  8
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b1 � 0, so r1 � 0


b2 � 22 � 20 � 2, I2 � 4, so r2 � �
2

4
� � 0.5


b3 � 9 � 8 � 1, I3 � 2, so r3 � �
1

2
� � 0.5

Because r1 � r2 � r3 � 1, the current basis remains optimal.

In the diet problem, suppose the chocolate requirement is increased to 8 oz and the sugar

requirement is reduced to 7 oz. Does the current basis remain optimal?

Solution The chocolate and sugar constraints are binding, so we are in Case 2 and need to use the

100% Rule.


b2 � 8 � 6 � 2, I2 � 4, so r2 � �
2

4
� � 0.5


b3 � 7 � 10 � �3, D3 � 4, so r3 � �
3

4
� � 0.75


b1 � 
b4 � 0, so r1 � r4 � 0

Because r1 � r2 � r3 � r4 � 1.25 � 1, the 100% Rule yields no information about

whether the current basis remains optimal.

P R O B L E M S
Group A

The following questions refer to the diet problem:

1 If the cost of a brownie is 70¢ and a piece of cheesecake
costs 60¢, does the current basis remain optimal?

2 If the cost of a brownie is 20¢ and a piece of cheesecake
is $1, does the current basis remain optimal?

3 If the fat requirement is reduced to 3 oz and the calorie
requirement is increased to 800 calories, does the current
basis remain optimal?

4 If the fat requirement is 6 oz and the calorie requirement
is 600 calories, does the current basis remain optimal?

5 If the price of a bottle of soda is 15¢ and a piece of
cheesecake is 60¢, show that the current basis remains optimal.
What will be the new optimal solution to the diet problem?

6 If 8 oz of chocolate and 60 calories are required, show
that the current basis remains optimal.

The following questions refer to the Dakota problem.

7 Suppose that the price of a desk is $65, a table is $25,
and a chair is $18. Show that the current basis remains
optimal. What is the new optimal z-value?

8 Suppose that 60 board ft of lumber and 23 finishing hours
are available. Show that the current basis remains optimal.

9 Suppose 40 board ft of lumber, 21 finishing hours, and
8.5 carpentry hours are available. Show that the current
basis remains optimal.

Group B

10 Prove the Case 1 result for the objective function
coefficients.

11 To illustrate the validity of the 100% Rule for objective
function coefficients, consider an LP with four decision
variables (x1, x2, x3, and x4) and two constraints in which x1

and x2 are basic variables in the optimal basis. Suppose (if
only a single objective function coefficient is changed) the
current basis is known to be optimal for L1 � c1 � U1 and
L2 � c2 � U2. Suppose we change c1 to c1� � c1 � 
c1 and
c2 to c2� � c2 � 
c2, where 
c1 � 0 and 
c2 	 0. Let

�
U1




�

c1

c1

� � r1 and �
c2

�

�


c

L
2

2

� � r2

Show that if r1 � r2 � 1, the current basis remains optimal.
Hint: Any variable xj prices out to cBVB�1aj � cj. To show
that for the new values of c1 and c2, all variables still price
out nonnegative, use the fact that

[c1�, c2�] � r1[U1, c2] � r2[c1, L2] � (1 � r1 � r2)[c1, c2]

12 Prove the Case 1 result for right-hand sides. Use the
fact that if a constraint is nonbinding in the optimal solution,
then its slack or excess variable is in the optimal basis, and
the corresponding column of B�1 will have a single 1 and
all other elements equal to 0.

13 In this problem, we sketch a proof of the 100% Rule
for right-hand sides. Consider an LP with two constraints
and right-hand sides b1 and b2. Suppose that if only one
right-hand side is changed, the current basis remains optimal
for L1 � b1 � U1 and L2 � b2 � U2. Suppose we change
the right-hand sides to b1� � b1 � 
b1 and b2� � b2 � 
b2,

100% Rule and Optimal Basis 2E X A M P L E  9
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6.5 Finding the Dual of an LP

Associated with any LP is another LP, called the dual. Knowing the relation between an

LP and its dual is vital to understanding advanced topics in linear and nonlinear pro-

gramming. This relation is important because it gives us interesting economic insights.

Knowledge of duality will also provide additional insights into sensitivity analysis.

In this section, we explain how to find the dual of any LP; in Section 6.6, we discuss

the economic interpretation of the dual; and in Sections 6.7–6.10, we discuss the relation

that exists between an LP and its dual.

When taking the dual of a given LP, we refer to the given LP as the primal. If the pri-

mal is a max problem, then the dual will be a min problem, and vice versa. For convenience,

we define the variables for the max problem to be z, x1, x2, . . . , xn and the variables for the

min problem to be w, y1, y2, . . . , ym. We begin by explaining how to find the dual of a max

problem in which all variables are required to be nonnegative and all constraints are � con-

straints (called a normal max problem). A normal max problem may be written as

max z � c1x1 � c2x2 � ��� � cnxn

s.t. a11x1 � a12x2 � ��� � cna1nxn � b1

s.t. a21x1 � a22x2 � ��� � cna2nxn � b2 (16)

a2�x1 � a2�x2 � ��� � cna2�a2�x1 � a2�x2 � ��� � cna2�a2�x1 � a2�x2 � ��� � cna2�
s.t. am1x1 � am2x2 � ��� � amnxn � bm

xj � 0 ( j � 1, 2, . . . , n)

The dual of a normal max problem such as (16) is defined to be

min w � b1y1 � b2y2 � ��� � bmxm

s.t. a11y1 � a21y2 � ��� � am1ym � c1

a12y1 � a22y2 � ��� � am2ym � c2
(17)a2�x1 � a2�x2 � ��� � cna2�a2�x1 � a2�x2 � ��� � cna2�a2�x1 � a2�x2 � ��� � cna2�

a1ny1 � a2ny2 � ��� � amnym � cn

yi � 0 (i � 1, 2, . . . , m)

A min problem such as (17) that has all � constraints and all variables nonnegative is

called a normal min problem. If the primal is a normal min problem such as (17), then

we define the dual of (17) to be (16).

Finding the Dual of a Normal Max or Min Problem

A tabular approach makes it easy to find the dual of an LP. If the primal is a normal max

problem, then it can be read across (Table 14); the dual is found by reading down. Simi-

larly, if the primal is a normal min problem, we find it by reading down; the dual is found

where 
b1 � 0 and 
b2 	 0. Let

r1 � �
U1




�

b1

b1

� and r2 � �
b

�

2 �


b

L
2

2

�

Show that if r1 � r2 � 1, the current basis remains optimal.
(Hint: You must show that

B�1� � � � �
Use the fact that

[b1�, b2�] � r1[U1, b2] � r2[b1, L2] � (1 � r1 � r2)[b1, b2]

to show this.)

0

0

b1�

b2�
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by reading across in the table. We illustrate the use of the table by finding the dual of the

Dakota problem and the dual of the diet problems. The Dakota problem is

max z � 60x1 � 30x2 � 20x3

s.t. 8x1 � 1.6x2 � 1.5x3 � 48 (Lumber constraint)

s.t. 4x1 � 1.2x2 � 1.5x3 � 20 (Finishing constraint)

s.t. 2x1 � 1.5x2 � 0.5x3 � 8 (Carpentry constraint)

s.t. 2 � 2.5 � 0 .5x1, x2, x3 � 0

where

x1 � number of desks manufactured

x2 � number of tables manufactured

x3 � number of chairs manufactured

Using the format of Table 14, we read the Dakota problem across in Table 15. Then,

reading down, we find the Dakota dual to be

min w � 48y1 � 20y2 � 8y3

s.t. 8y1 � 1.4y2 � 1.2y3 � 60

s.t. 6y1 � 1.2y2 � 1.5y3 � 30

s.t. 6y1 � 1.5y2 � 0.5y3 � 20

s.t. � 1.5 � 0.5y1, y2, y3 � 0

The tabular method of finding the dual makes it clear that the ith dual constraint corre-

sponds to the ith primal variable xi. For example, the first dual constraint corresponds to

x1 (desks), because each number comes from the x1 (desk) column of the primal. Simi-

TA B L E  14

Finding the Dual of a Normal Max or Min Problem

max z

min w (x1 � 0) (x2 � 0) ��� (xn � 0)

x1 x2 xn

(y1 � 0) y1 a11 a12 ��� a1n �b1

(y2 � 0) y2 a21 a22 ��� a2n �b2

� � � � � �� � � � � �� � � � � �

(ym � 0) ym am1 am2 ��� amn �bm

�c1 �c2 �cn

TA B L E  15

Finding the Dual of the Dakota Problem

max z

min w (x1 � 0) (x2 � 0) (x3 � 0)

x1 x2 x3

(y1 � 0) y1 8 6.5 1.5 �48

(y2 � 0) y2 4 2.5 1.5 �20

(y3 � 0) y3 2 1.5 0.5 �88

�60 �30 �20



larly, the second dual constraint corresponds to x2 (tables), and the third dual constraint

corresponds to x3 (chairs). In a similar fashion, dual variable yi is associated with the ith

primal constraint. For example, y1 is associated with the first primal constraint (lumber

constraint), because each coefficient of y1 in the dual comes from the lumber constraint,

or the availability of lumber. The importance of these correspondences between the pri-

mal and the dual will become clear in Section 6.6.

We now find the dual of the diet problem. Because the diet problem is a min problem,

we follow the convention of using w to denote the objective function and y1, y2, y3, and

y4 for the variables. Then the diet problem may be written as

min w � 50y1 � 20y2 � 30y3 � 80y4

s.t. 400y1 � 200y2 � 150y3 � 500y4 � 500 (Calorie constraint)

s.t. 3y1 � 2y2 � 150y3 � 500y4 � 6 (Chocolate constraint)

s.t. 2y1 � 2y2 � 4y3 � 4y4 � 10 (Sugar constraint)

s.t. 2y1 � 4y2 � y3 � 5y4 � 8 (Fat constraint)

s.t. � � � y1, y2, y3, y4 � 0

where

y1 � number of brownies eaten daily

y2 � number of scoops of chocolate ice cream eaten daily

y3 � bottles of soda drunk daily

y4 � pieces of pineapple cheesecake eaten daily

The primal is a normal min problem, so we can read it down, and read its dual across, in

Table 16. We find that the dual of the diet problem is

max z � 500x1 � 6x2 � 10x3 � 8x4

s.t. 400x1 � 3x2 � 2x3 � 2x4 � 50

s.t. 200x1 � 2x2 � 2x3 � 4x4 � 20

s.t. 150x1 � 2x2 � 4x3 � x4 � 30

s.t. 500x1 � 2x2 � 4x3 � 5x4 � 80

s.t. 500 � 2 � 2 � 2x1, x2, x3, x4 � 0

As in the Dakota problem, we see that the ith dual constraint corresponds to the ith

primal variable. For example, the third dual constraint may be thought of as the soda con-

straint. Also, the ith dual variable corresponds to the ith primal constraint. For example,

x3 (the third dual variable) may be thought of as the dual sugar variable.
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TA B L E  16

Finding the Dual of the Diet Problem

max z

min w (x1 � 0) (x2 � 0) (x3 � 0) (x4 � 0)

x1 x2 x3 x4

( y1 � 0) y1 400 3 2 2 �50

( y2 � 0) y2 200 2 2 4 �20

( y3 � 0) y3 150 0 4 1 �30

( y4 � 0) y4 500 0 4 5 �80

�500 �6 �10 �8
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Finding the Dual of a Nonnormal LP

Unfortunately, many LPs are not normal max or min problems. For example,

max z � 2x1 � x2

s.t. x1 � x2 � 2

s.t. 2x1 � x2 � 3 (18)

s.t. x1 � x2 � 1

s.t. 2x1 � x1 � 0, x2 urs

is not a normal max problem because it has a � constraint, an equality constraint, and an

unrestricted-in-sign variable. As another example of a nonnormal LP, consider

min w � 2y1 � 4y2 � 6y3

s.t. y1 � 2y2 � y3 � 2

s.t. y1 � 2y2 � y3 � 1
(19)

s.t. 2y1 � 2y2 � y3 � 1

s.t. 2y1 � y2 � y3 � 3

s.t. y1 urs, y2, y3 � 0

This LP is not a normal min problem because it contains an equality constraint, a � con-

straint, and an unrestricted-in-sign variable.

Fortunately, an LP can be transformed into normal form (either (16) or (17)). To place

a max problem into normal form, we proceed as follows:

Step 1 Multiply each � constraint by �1, converting it into a � constraint. For 

example, in (18), 2x1 � x2 � 3 would be transformed into �2x1 � x2 � �3.

Step 2 Replace each equality constraint by two inequality constraints (a � constraint and

a � constraint). Then convert the � constraint to a � constraint. For example, in (18),

we would replace x1 � x2 � 2 by the two inequalities x1 � x2 � 2 and x1 � x2 � 2. Then

we would convert x1 � x2 � 2 to �x1 � x2 � �2. The net result is that x1 � x2 � 2 is

replaced by the two inequalities x1 � x2 � 2 and �x1 � x2 � �2.

Step 3 As in Section 4.14, replace each urs variable xi by xi � x� � xi�, where xi� � 0

and xi� � 0. In (18), we would replace x2 by x�2 � x�2.

After these transformations are complete, (18) has been transformed into the following

(equivalent) LP:

max z � 2x1 � x�2 � x�2

s.t. x1 � x�2 � x�2 � 2

s.t. �x1 � x�2 � x�2 � �2
(18�)

s.t. �2x1 � x�2 � x�2 � �3

s.t. x1 � x�2 � x�2 � 1

s.t. �2 � � x1, x�2, x�2 � 0

Because (18�) is a normal max problem, we could use (16) and (17) to find the dual of

(18�).

If the primal is not a normal min problem, then we can transform it into a normal min

problem as follows:
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Step 1 Convert each � constraint into a � constraint by multiplying through by �1. For

example, in (19), 2y1 � y2 � 3 is transformed into �2y1 � y2 � �3.

Step 2 Replace each equality constraint by a � constraint and a � constraint. Then trans-

form the � constraint into a � constraint. For example, in (19), the constraint y2 � y3 �

1 is equivalent to y2 � y3 � 1 and y2 � y3 � 1. Transforming y2 � y3 � 1 into 

�y2 � y3 � �1, we see that we can replace the constraint y2 � y3 � 1 by the two con-

straints y2 � y3 � 1 and �y2 � y3 � �1.

Step 3 Replace any urs variable yi by yi � yi� � yi�, where yi� � 0 and yi� � 0. Applying

these steps to (19) yields the following standard min problem:

min w � 2y�1 � 2y�1 � 4y2 � 6y3

s.t. y�1 � 2y�1 � 2y2 � y3 � 2

s.t. 2y�1 � 2y�1 � 2y2 � y3 � 1

s.t. 2y�1 � 2y�1 � y2 � y3 � 1 (19�)

s.t. 2y�1 � 2y�1 � y2 � 6y3 � �1

s.t. �2y�1 � 2y�1 � y2 � 6y3 � �3

s.t. �2 � 2 � 2 � 2y�1, y�1, y2, y3 � 0

Because (19�) is a normal min problem in standard form, we may use (16) and (17) to

find its dual.

We can find the dual of a nonnormal LP without going through the transformations

that we have described by using the following rules.†

Finding the Dual of a Nonnormal Max Problem

Step 1 Fill in Table 14 so that the primal can be read across.

Step 2 After making the following changes, the dual can be read down in the usual fash-

ion: (a) If the ith primal constraint is a � constraint, then the corresponding dual variable

yi must satisfy yi � 0. (b) If the ith primal constraint is an equality constraint, then the

dual variable yi is now unrestricted in sign. (c) If the ith primal variable is urs, then the

ith dual constraint will be an equality constraint.

When this method is applied to (18), the Table 14 format yields Table 17. We note with

an asterisk (*) the places where the rules must be used to determine part of the dual. For

example, x2 urs causes the second dual constraint to be an equality constraint. Also, the

first primal constraint being an equality constraint makes y1 urs, and the second primal

constraint being a � constraint makes y2 � 0. Filling in the missing information across

from the appropriate asterisk yields Table18. Reading the dual down, we obtain

min w � 2y1 � 3y2 � y3

s.t. y1 � 2y2 � y3 � 2

s.t. y1 � y2 � y3 � 1

y1 urs, y2 � 0, y3 � 0

In Section 6.8, we give an intuitive explanation of why an equality constraint yields an

unrestricted-in-sign dual variable and why a � constraint yields a negative dual variable.

We can use the following rules to take the dual of a nonnormal min problem.

†In Problems 5 and 6 at the end of this section, we show that these rules are consistent with taking the dual

of the transformed LP via (16) and (17).



Finding the Dual of a Nonnormal Min Problem

Step 1 Write out the primal so it can be read down in Table 14.

Step 2 Except for the following changes, the dual can be read across the table: (a) If the

ith primal constraint is a � constraint, then the corresponding dual variable xi must sat-

isfy xi � 0. (b) If the ith primal constraint is an equality constraint, then the correspond-

ing dual variable xi will be urs. (c) If the ith primal variable yi is urs, then the ith dual

constraint is an equality constraint.

When this method is applied to (19), we get Table 19. Asterisks (*) show where the new

rules must be used to determine parts of the dual. Because y1 is urs, the first dual con-

straint is an equality. The third primal constraint is an equality, so dual variable x3 is urs.

Finally, because the fourth primal constraint is a � constraint, the fourth dual variable x4

must satisfy x4 � 0. We can now complete the table (see Table 20). Reading the dual

across, we obtain
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TA B L E  19

Finding the Dual of LP (19)

max z

min w (x1 � 0) (x2 � 0)

x1 x2 x3 x4

(y1 urs)* y1 1 �1 0 2 �2

(y2 � 0) y2 2 �0 1 1 �4

(y3 � 0) y3 1 �1 1 0 �6

�2 �1 �1* �3*

TA B L E  17

Finding the Dual of LP (18)

max z

min w (x1 � 0) (x2 urs)*

x1 x2

y1 1 �1 �2*

y2 2 �1 �3*

(y3 � 0) y3 1 �1 �1*

�2 �1

TA B L E  18

Finding the Dual of LP (18) (Continued)

max z

min w (x1 � 0) (x2 urs)

x1 x2

(y1 urs) y1 1 �1 �2

(y2 � 0) y2 2 �1 �3

(y3 � 0) y3 1 �1 �1

�2 �1



max z � 2x1 � x2 � x3 � 3x4

s.t. x1 � x2 � x3 � 2x4 � 2

s.t. 2x1 � x2 � x3 � x4 � 4

s.t. 2x1 � x2 � x3 � 2x4 � 6

x1, x2 � 0, x3 urs, x4 � 0

The reader may verify that with these rules, the dual of the dual is always the primal.

This is easily seen from the Table 14 format, because when you take the dual of the dual

you are changing the LP back to its original position.

P R O B L E M S
Group A
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TA B L E  20

Finding the Dual of LP (19) (Continued)

max z

min w (x1 � 0) (x2 � 0) (x3 � urs) (x4 � 0)

x1 x2 x3 x4

(y1 urs) y1 1 �1 0 2 �2

(y2 � 0) y2 2 �0 1 1 �4

(y3 � 0) y3 1 �1 1 0 �6

�2 �1 �1 �3

Find the duals of the following LPs:

1 max z � 2x1 � x2

s.t. � x1 � x2 � 1

s.t. x1 � x2 � 3

s.t. x1 � 2x2 � 4

s.t. � 2x1, x2 � 0

2 min w � y1 � y2

s.t. 2y1 � y2 � 4

s.t. y1 � y2 � 1

s.t. y1 � 2y2 � 3

s.t. � 2y1, y2 � 0

3 max z � 4x1 � x2 � 2x3

s.t. x1 � x2 � x3 � 5

s.t. 2x1 � x2 � x3 � 7

s.t. 2x1 � 2x2 � x3 � 6

s.t. x1 � 2x2 � x3 � 4

x1 � 0, x2, x3 urs

4 min w � 4y1 � 2y2 � y3

s.t. y1 � 2y2 � 2y3 � 6

s.t. y1 � y2 � 2y3 � 8

y1, y2 � 0, y3 urs

Group B

5 This problem shows why the dual variable for an equality
constraint should be urs.

a Use the rules given in the text to find the dual of

max z � x1 � 2x2

s.t. 3x1 � x2 � 6

s.t. 2x1 � x2 � 5

x1, x2 � 0

b Now transform the LP in part (a) to the normal form.
Using (16) and (17), take the dual of the transformed
LP. Use y2� and y2� as the dual variables for the two pri-
mal constraints derived from 2x1 � x2 � 5.

c Make the substitution y2 � y2� � y2� in the part (b)
answer. Now show that the two duals obtained in parts
(a) and (b) are equivalent.

6 This problem shows why a dual variable yi corresponding
to a � constraint in a max problem must satisfy yi � 0.

a Using the rules given in the text, find the dual of

max z � 3x1 � x2

s.t. x1 � x2 � 1

s.t. �x1 � x2 � 2

s.t. �x1, x2 � 0

b Transform the LP of part (a) into a normal max
problem. Now use (16) and (17) to find the dual of the
transformed LP. Let y�2 be the dual variable correspond-
ing to the second primal constraint.

c Show that, defining yy�2 � �y2, the dual in part (a) is
equivalent to the dual in part (b).



302 C H A P T E R 6 Sensitivity Analysis and Duality

6.6 Economic Interpretation of the Dual Problem

Interpreting the Dual of a Max Problem

The dual of the Dakota problem is

min w � 48y1 � 20y2 � 8y3

s.t. 8y1 � 1.4y2 � 1.2y3 � 60 (Desk constraint)

s.t. 6y1 � 1.2y2 � 1.5y3 � 30 (Table constraint) (20)

s.t. y1 � 1.5y2 � 0.5y3 � 20 (Chair constraint)

s.t. 6 � 1.5 �y1, y2, y3 � 0

The first dual constraint is associated with desks, the second with tables, and the third

with chairs. Also, y1 is associated with lumber, y2 with finishing hours, and y3 with car-

pentry hours. The relevant information about the Dakota problem is shown in Table 21.

We are now ready to interpret the Dakota dual (20). Suppose an entrepreneur wants to

purchase all of Dakota’s resources. Then the entrepreneur must determine the price he or

she is willing to pay for a unit of each of Dakota’s resources. With this in mind, we define

y1 � price paid for 1 board ft of lumber

y2 � price paid for 1 finishing hour

y3 � price paid for 1 carpentry hour

The resource prices y1, y2, and y3 should be determined by solving the Dakota dual (20).

The total price that should be paid for these resources is 48y1 � 20y2 � 8y3. Because the

cost of purchasing the resources is to be minimized,

min w � 48y1 � 20 y2 � 8y3

is the objective function for the Dakota dual.

In setting resource prices, what constraints does the entrepreneur face? Resource prices

must be set high enough to induce Dakota to sell. For example, the entrepreneur must offer

Dakota at least $60 for a combination of resources that includes 8 board feet of lumber, 4

finishing hours, and 2 carpentry hours, because Dakota could, if it desires, use these resources

to produce a desk that can be sold for $60. The entrepreneur is offering 8y1 � 4y2 � 2y3 for

the resources used to produce a desk, so he or she must choose y1, y2, and y3 to satisfy

8y1 � 4y2 � 2y3 � 60

But this is just the first (or desk) constraint of the Dakota dual. Similar reasoning shows

that at least $30 must be paid for the resources used to produce a table (6 board feet of lum-

ber, 2 finishing hours, and 1.5 carpentry hours). This means that y1, y2, and y3 must satisfy

6y1 � 2y2 � 1.5y3 � 30

TA B L E  21

Relevant Information for Dakota Problem

Resource/Product Amount of
Resource

Resource Desk Table Chair Available

Lumber (board ft) 68 36.5 21.5 48

Finishing (hours) 64 32.5 21.5 20

Carpentry (hours) 62 31.5 20.5 08

Selling price ($) 60 30.5 20.5
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This is the second (or table) constraint of the Dakota dual.

Similarly, the third (or chair) dual constraint,

y1 � 1.5y2 � 0.5y3 � 20

states that at least $20 (the price of a chair) must be paid for the resources needed to pro-

duce a chair (1 board foot of lumber, 1.5 finishing hours, and 0.5 carpentry hour). The

sign restrictions y1 � 0, y2 � 0, and y3 � 0 must also hold. Putting everything together,

we see that the solution to the dual of the Dakota problem does yield prices for lumber,

finishing hours, and carpentry hours. The preceding discussion also shows that the ith dual

variable does indeed correspond in a natural way to the ith primal constraint.

In summary, when the primal is a normal max problem, the dual variables are related

to the value of the resources available to the decision maker. For this reason, the dual vari-

ables are often referred to as resource shadow prices. A more thorough discussion of

shadow prices is given in Section 6.8.

Interpreting the Dual of a Min Problem

To interpret the dual of a min problem, we consider the dual of the diet problem of Sec-

tion 3.4. In Section 6.5, we found that the diet problem dual was

max z � 500x1 � 6x2 � 10x3 � 8x4

s.t. 400x1 � 3x2 � 2x3 � 2x4 � 50 (Brownie constraint)

s.t. 200x1 � 2x2 � 2x3 � 4x4 � 20 (Ice cream constraint)

s.t. 150x1 � 2x2 � 4x3 � x4 � 30 (Soda constraint)
(21)

s.t. 500x1 � 2x1 � 4x3 � 5x4 � 80 (Cheesecake constraint)

s.t. 500 �2 �2 �4x1, x2, x3, x4 � 0

The data for the diet problem are shown in Table 22. To interpret (21), suppose Candice

is a “nutrient” salesperson who sells calories, chocolate, sugar, and fat. She wants to en-

sure that a dieter will meet all of his or her daily requirements by purchasing calories,

sugar, fat, and chocolate. Then Candice must determine

x1 � price per calorie to charge dieter

x2 � price per ounce of chocolate to charge dieter

x3 � price per ounce of sugar to charge dieter

x4 � price per ounce of fat to charge dieter

Candice wants to maximize her revenue from selling the dieter the daily ration of required

nutrients. Because she will receive 500x1 � 6x2 � 10x3 � 8x4 cents in revenue from the

dieter, her objective is to

max z � 500x1 � 6x2 � 10x3 � 8x4

TA B L E  22

Relevant Information for Diet Problem

Chocolate Sugar Fat Price
Calories (Ounces) (Ounces) (Ounces) (Cents)

Brownie 400 3 2 2 50

Ice cream 200 2 2 4 20

Soda 150 0 4 1 30

Cheesecake 500 0 4 5 80

Requirements 500 6 10 8
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This is the objective function for the dual of the diet problem. But in setting nutrient

prices, Candice must set prices low enough so that it will be in the dieter’s economic in-

terest to purchase all nutrients from her. For example, by purchasing a brownie for 50¢,

the dieter can obtain 400 calories, 3 oz of chocolate, 2 oz of sugar, and 2 oz of fat. So

Candice cannot charge more than 50¢ for this combination of nutrients. This leads to the

following (brownie) constraint:

400x1 � 3x2 � 2x3 � 2x4 � 50

the first constraint in the diet problem dual. Similar reasoning yields the second dual (ice

cream) constraint, the third (soda constraint), and the fourth (cheesecake constraint).

Again, the sign restrictions x1 � 0, x2 � 0, x3 � 0, and x4 � 0 must be satisfied.

Our discussion shows that the optimal value of xi may be interpreted as a price for 1

unit of the nutrient associated with the ith dual constraint. Thus, x1 would be the price for

1 calorie, x2 would be the price for 1 oz of chocolate, and so on. Again, we see that it is

reasonable to associate the ith dual variable (xi) and the ith primal constraint.

In summary, we have shown that when the primal is a normal max problem or a nor-

mal min problem, the dual problem has an intuitive economic interpretation. In Section

6.8, we explain more about the proper interpretation of the dual variables.

P R O B L E M
Group A

1 Find the dual of Example 3 in Chapter 3 (an auto
company) and give an economic interpretation of the dual
problem.

2 Find the dual of Example 2 in Chapter 3 (Dorian Auto)
and give an economic interpretation of the dual problem.

6.7 The Dual Theorem and Its Consequences

In this section, we discuss one of the most important results in linear programming: the

Dual Theorem. In essence, the Dual Theorem states that the primal and dual have equal

optimal objective function values (if the problems have optimal solutions). This result is

interesting in its own right, but we will see that in proving the Dual Theorem, we gain

many important insights into linear programming.

To simplify the exposition, we assume that the primal is a normal max problem with m

constraints and n variables. Then the dual problem will be a normal min problem with m

variables and n constraints. In this case, the primal and the dual may be written as follows:

max z � c1x1 � c2x2 � ��� � cnxn

s.t. a11 x1 � a12x2 � ��� � a1n xn � b1

s.t. a21 x1 � a22x2 � ��� � a2n xn � b2

Primal Problem � � � � (22)

s.t. ai1x1 � ai2x2 � ��� � ainxn � bi

�x1 � a2�x2 � ��� � a 2�xn �

am1x1 � am2x2 � ��� � amnxn � bm

xj � 0 ( j � 1, 2, . . . , n)
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min w � b1y1 � b2y2 � ��� � bmym

s.t. a11y1 � a21y2 � ��� � am1ym � c1

s.t. a12y1 � a22y2 � ��� � am2ym � c2

� � � �� � � �� � � �
Dual Problem (23)

s.t. a1jy1 � a2jy2 � ��� � amjym � cj

� � � �� � � �� � � �

s.t. a1ny1 � a2ny2 � ��� � amnym � cn

yi � 0 (i � 1, 2, . . . , m)

Weak Duality

If we choose any feasible solution to the primal and any feasible solution to the dual, the

w-value for the feasible dual solution will be at least as large as the z-value for the feasi-

ble primal solution. This result is formally stated in Lemma 1.

L E M M A  1

(Weak Duality). Let

x � � �
be any feasible solution to the primal and y � [y1 y2 ��� ym] be any feasible

solution to the dual. Then (z-value for x) � (w-value for y).

Proof Because yi � 0, multiplying the ith primal constraint in (22) by yi will yield

the following valid inequality:

yiai1x1 � yiai2x2 � ��� � yiainxn � biyi (i � 1, 2, . . . , m) (24)

Adding the m inequalities in (24), we find that

�
i�m

i�1
�
j�n

j�1

yiaijxj � �
i�m

i�1

biyi (25)

Because xj � 0, multiplying the jth dual constraint in (23) by xj yields the follow-

ing valid inequality:

xja1jy1 � xja2jy2 � ��� � xjamjym � cjxj ( j � 1, 2, . . . , n) (26)

Adding the n inequalities in (26) yields

�
i�m

i�1
�
j�n

j�1

yiaijxj � �
j�n

j�1

cjxj (27)

Combining (25) and (27), we obtain

�
j�n

j�1

cjxj � �
i�m

i�1
�
j�n

j�1

yiaijxj � �
i�m

i�1

biyi

which is the desired result.

x1

x2

���

xn
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If a feasible solution to either the primal or the dual is readily available, weak duality

can be used to obtain a bound on the optimal objective function value for the other prob-

lem. For example, in looking at the Dakota problem, it is easy to see that x1 � x2 �

x3 � 1 is primal feasible. This solution has a z-value of 60 � 30 � 20 � 110. Weak du-

ality now implies that any dual feasible solution (y1, y2, y3) must satisfy

48y1 � 20y2 � 8y3 � 110

Because the dual is a min problem, and any dual feasible solution must have w � 110,

this means that the optimal w-value for the dual � 110 (see Figure 7). This shows that

weak duality enables us to use any primal feasible solution to bound the optimal value of

the dual objective function.

Analogously, we can use any feasible solution to the dual to develop a bound on the

optimal value of the primal objective function. For example, looking at the Dakota dual,

it can readily be verified that y1 � 10, y2 � 10, y3 � 0 is dual feasible. This dual solu-

tion has a dual objective function value of 48(10) � 20(10) � 8(0) � 680. From weak

duality, we see that any primal feasible solution

� �
must satisfy

60x1 � 30x2 � 20x3 � 680

Because the primal is a max problem and every primal feasible solution has z � 680, we

may conclude that the optimal primal objective function value � 680 (see Figure 8).

If we define

b � � � and c � [c1 c2 ��� cn]

then for a point

x � � �
the primal objective function value may be written as cx, and for a point y � [ y1 y2 ���

ym] the dual objective function value may be written as yb. We now use weak duality to

prove the following important result.

x1

x2

���

xn

b1

b2

���

bm

x1

x2

x3

z

z ≤ 680 must hold for all

primal feasible points

No primal feasible point

has z > 680

w  =  680

w

No dual feasible point

has w < 110

w ≥ 110 must hold for all

dual feasible points

z  =  110
F I G U R E  7

Illustration of 
Weak Duality

F I G U R E  8

Illustration of 
Weak Duality



L E M M A  4

L E M M A  3

L E M M A  2

6 . 7 The Dual Theorem and Its Consequences 307

L E M M A  2

Let

x� � � �
be a feasible solution to the primal and y� � [ y�1 yy�2 ��� yy�m] be a feasible solution

to the dual. If cxx� � y�b, then xx� is optimal for the primal and y� is optimal for the dual.

Proof From weak duality we know that for any primal feasible point x,

cx � yy�b

Thus, any primal feasible point must yield a z-value that does not exceed y�b. Be-

cause xx� is primal feasible and has a primal objective function value of cxx� � yy�b, x�
must be primal optimal. Similarly, because xx� is primal feasible, weak duality im-

plies that for any dual feasible point y,

cx� � yb

Thus, any dual feasible point must yield an objective function value exceeding cxx�.

Because y� is dual feasible and has a dual objective function value y�b � cxx�, y� must

be an optimal solution for the dual.

We use the Dakota problem to illustrate the use of Lemma 2. The reader may verify that

x� � � �
is primal feasible and that y� � [0 10 10] is dual feasible. Because cxx� � y�b � 280,

Lemma 2 implies that xx� is optimal for the Dakota primal, and y� is optimal for the Dakota

dual. Lemma 2 plays an important role in our proof of the Dual Theorem.

The Dual Theorem

Before proceeding with our proof of the Dual Theorem, we note that weak duality can be

used to prove the following results.

L E M M A  3

If the primal is unbounded, then the dual problem is infeasible.

Proof See Problem 7 at the end of this section.

L E M M A  4

If the dual is unbounded, then the primal is infeasible.

Proof See Problem 8 at the end of this section.

2

0

8

x�1

x�2

���

x�n
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Lemmas 3 and 4 describe the relation between the primal and dual in two relatively

unimportant cases.†

These cases are of limited interest. We are primarily interested in the relation between

the primal and dual when the primal has an optimal solution. In what follows, we let z� �

optimal primal objective function value and w� � optimal dual objective function value.

If the primal has an optimal solution, then the following important result (the Dual The-

orem) describes the relation between the primal and the dual.

The Dual Theorem

Suppose BV is an optimal basis for the primal. Then cBVB�1 is an optimal solution

to the dual. Also, zz� � w�.

Proof The argument used to prove the Dual Theorem includes the following steps:

1 Use the fact that BV is an optimal basis for the primal to show that cBVB�1 is

dual feasible.

2 Show that the optimal primal objective function value � the dual objective func-

tion for cBVB�1.

3 We have found a primal feasible solution (from BV) and a dual feasible solu-

tion (cBVB�1) that have equal objective function values. From Lemma 2, we can

now conclude that cBVB�1 is optimal for the dual and zz� � w�.

We now verify step 1 for the case where the primal is a normal maximization prob-

lem with n variables and m constraints.‡ After adding slack variables s1, s2, . . . , sm

to the primal, we write the primal and dual problems as follows:

max z � c1x1 � c2x2 � ��� � cnxn

s.t. a11x1 � a12x2 � ��� � a1nxn � s1 � b1

Primal Problem
a21x1 � a22x2 � ��� � a2nxn � s2 � b2

(28)
� � � �� � � �� � � �

am1x1 � am2x2 � ��� � amnxn � sm � bm

xj � 0 ( j � 1, 2, . . . , n); si � 0 (i � 1, 2, . . . , m)

min w � b1y1 � b2y2 � ��� � bmym

s.t. a11y1 � a21y2 � ��� � am1ym � c1

a12y1 � a22y2 � ��� � am2ym � c2Dual Problem
� � � �

(29)

� � � �� � � �

a1ny1 � a2ny2 � ��� � amnym � cn

yi � 0 (i � 1, 2, . . . , m)

Let BV be an optimal basis for the primal, and define cBVB�1
� [ y1, y2, . . . , ym].

Thus, for the optimal basis BV, yi is the ith element of cBVB�1. BV is optimal for

T H E O R E M  1

†It can happen that both the primal and the dual can be infeasible, as in the following example:

Primalmax z � x2 lmin w � �y1 � y2

Primals.t. x1 � x2 � �1 Duals.t. y1 �y2 � 0

Primals.t. x1 � x2 � 1 Dual s.t. y1�y2 � 1

x1, x2 � 0 y1, y2 � 0
‡Our proof can easily be modified to handle the situation where the primal is not a normal max problem.



the primal, so the coefficient of each variable in row 0 of BV’s primal tableau must

be nonnegative. From (10), the coefficient of xj in row 0 of the BV tableau (c�j) is

given by

cc�j � cBVB�1aj � cj

� [ y1 y2 ��� ym] � � � cj

� y1a1j � y2a2j � ��� � ymamj � cj

But we know that c�j � 0, so for j � 1, 2, . . . , n,

y1a1j � y2a2j � ��� � ymamj � cj � 0

Thus, cBVB�1 satisfies each of the n dual constraints.

Because BV is an optimal basis for the primal, we also know that each slack vari-

able has a nonnegative coefficient in the BV primal tableau. From (10�), we find that

the coefficient of si in BV’s row 0 is yi, the ith element of cBVB�1. Thus, for i � 1,

2, . . . , m, yi � 0. We have shown that cBVB�1 satisfies all n constraints in (29) 

and that all the elements of cBVB�1 are nonnegative. Thus, cBVB�1 is indeed dual

feasible.

Step 2 of the Dual Theorem proof requires that we show

Dual objective function value for cBVB�1

� primal objective function value for BV (30)

From (11), we know that the primal objective function value for BV is cBVB�1b.

But the dual objective function value for the dual feasible solution cBVB�1 is

b1y1 � b2y2 � ��� � bmym � [ y1 y2 ��� ym] � � � cBVB�1b

Thus, (30) is valid.

We have shown that steps 1 and 2 of the Dual Theorem proof are valid. Step 3

now completes our proof of the Dual Theorem.

R E M A R K S 1 In step 1 of the Dual Theorem proof, we showed that a basis BV that is feasible for the primal
is optimal if and only if cBVB�1 is dual feasible. In Section 6.9, we use this result to gain useful in-
sights into sensitivity analysis.
2 When we find the optimal solution to the primal by using the simplex algorithm, we have also
found the optimal solution to the dual.

To see why Remark 2 is true, suppose that the primal is a normal max problem with m

constraints. To use the simplex to solve this problem, we must add a slack variable si to the

ith primal constraint. Suppose BV is an optimal basis for the primal. Then the Dual Theo-

rem tells us that cBVB�1
� [ y1 y2 ��� ym] is the optimal solution to the dual. Recall

from (10�), however, that yi is the coefficient of si in row 0 of the optimal (BV) primal

tableau. Thus, we have shown that if the primal is a normal max problem, then the optimal

value of the ith dual variable is the coefficient of si in row 0 of the optimal primal tableau.

b1

b2

���

bm

a1j

a2j

���

amj
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We use the Dakota problem to illustrate Remark 2. The optimal tableau for the Dakota

problem is shown in Table 23. The optimal primal solution is z � 280, s1 � 24, x3 � 8,

x1 � 2, x2 � 0, s2 � 0, s3 � 0. From the preceding discussion, the optimal dual solution

is y1 � 0, y2 � 10, y3 � 10, w � 48(0) � 20(10) � 8(10) � 280. Observe that the opti-

mal primal and dual objective function values are equal, as required by the Dual Theorem.

Of course, we may always compute the optimal dual solution directly by solving

cBVB�1
� [0 20 60] � � � [0 10 10]

Of course, the two methods of obtaining the dual solution agree.

If the primal has � or equality constraints, then we can still find the optimal dual so-

lution from the optimal primal tableau. To see how this is done, recall that the Dual The-

orem tells us that the optimal value of the ith dual variable ( yi) is the ith element of

cBVB�1. From (10�), we see that if the ith constraint of the primal is a � constraint, then

Optimal value of ith dual variable � yi � �(coefficient of ei in the optimal row 0)

The coefficient of ei in the optimal row 0 must be nonnegative, so this shows that if

the ith constraint in the primal is a � constraint, then yi � 0. This agrees with our previ-

ous convention (see Section 6.5) that a � constraint must have a nonpositive dual vari-

able. From (10�), we see that if the ith primal constraint is an equality constraint, then

yi � (coefficient of ai in optimal row 0) � M

Although the coefficient of ai in the optimal row 0 must be nonnegative, the fact that M

is a large positive number means that yi � 0 or yi � 0 is possible. This agrees with our

previous convention, which stated that the dual variable for an equality constraint is urs.

How to Read the Optimal Dual Solution from Row 0 
of the Optimal Tableau If the Primal Is a Max Problem

Optimal value of dual variable yi 

if Constraint i is a � constraint
� coefficient of si in optimal row 0 (31)

Optimal value of dual variable yi

if Constraint i is a � constraint
� �(coefficient of ei in optimal row 0) (31�)

Optimal value of dual variable yi

if Constraint i is an equality
� (coefficient of ai in optimal row 0) � M (31�)

constraint

The following example illustrates how to find the optimal dual solution to a problem with

�, �, and equality constraints.

�8.0

�4.0

1.5

2.0

2.0

�0.5

1

0

0

TA B L E  23

Optimal Solution to the Dakota Problem

Basic
Variable

z x1 � 1.25x2 � x3 � s1 � .10s2 � .10s3 � 280 z1 � 280

z x1 � 1.22x2 � x3 � s1 � 0.2s2 � .18s3 � 240 s1 � 24

z x1 � 1.22x2 � x3 � s1 � 0.2s2 � .14s3 � 8 x3 � 8

z x1 � 1.25x2 � x3 � s1 � 0.5s2 � 1.5s3 � 2 x1 � 2
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To solve the following LP,

max z � 3x1 � 2x2 � 5x3

s.t. x1 � 3x2 � 2x3 � 15

s.t. x1 � 2x2 � x3 � 5 (32)

s.t. 2x1 � x2 � 5x3 � 10

s.t. 2 � �5x1, x2, x3 � 0

we add a slack variable s1, subtract an excess variable e2, and add two artificial variables

a2 and a3. The optimal tableau for (32) is given in Table 24. From this tableau, the opti-

mal solution is z � �
5

2

6

3

5
�, x3 � �

1

2

5

3
�, x2 � �

6

2

5

3
�, x1 � �

1

2

2

3

0
�, s1 � e2 � a2 � a3 � 0. Use this in-

formation to find the optimal solution to the dual of (32).

Solution Following the steps in Section 6.5, we find the dual of (32) from the tableau in Table 25:

min w � 15y1 � 5y2 � 10y3

s.t. y1 � 2y2 � 2y3 � 3

s.t. 3y1 � 2y2 � y3 � 2 (33)

s.t. 2y1 � y2 � 5y3 � 5

s.t. y1 � 0, y2 � 0, y3 urs

From (31) and the optimal primal tableau, we can find the optimal solution to (33) as follows:

Because the first primal constraint is a � constraint, we see from (31) that y1 � coef-

ficient of s1 in optimal row 0 � �
5

2

1

3
�. The second primal constraint is a � constraint, so we

see from (31�) that y2 � �(coefficient of e2 in optimal row 0) � ��
5

2

8

3
�. Because the third

constraint is an equality constraint, we see from (31�) that y3 � (coefficient of a3 in the

optimal row 0) � M � �
2

9

3
�.

Finding the Dual Solution to a Nonnormal Max ProblemE X A M P L E  1 0

TA B L E  24

Optimal Tableau for LP (32)

Basic
z x1 x2 x3 s1 e2 a2 a3 rhs Variable

1 0 0 0 �
5
2
1
3
� �

5
2
8
3
� M � ��

5
2
8
3
� M � �

2
9
3
� �

5
2
6
3
5

� z2 � �
5
2
6
3
5

�

0 0 0 1 �
2
4
3
� �

2
5
3
� ��

2
5
3
� ��

2
2
3
� �

1
2
5
3
� x3 � �

1
2
5
3
�

0 0 1 0 �
2
2
3
� ��

2
9
3
� �

2
9
3
� ��

2
1
3
� �

6
2
5
3
� x2 � �

6
2
5
3
�

0 1 0 0 �
2
9
3
� �

1
2
7
3
� ��

1
2
7
3
� �

2
7
3
� �

1
2
2
3
0

� x1 � �
1
2
2
3
0

�

TA B L E  25

Finding the Dual of LP (32)

max z

min w (x1 � 0) (x2 � 0) (x3 � 0)

x1 x2 x3

( y1 � 0) y1 1 3 �2 �15

(y2 � 0) y2 0 2 �1 �5*

( y3 urs) y3 2 1 �5 �10*

�3 �2 �5
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By the Dual Theorem, the optimal dual objective function value w must equal �
5

2

6

3

5
�. In

summary, the optimal dual solution is

w� � �
5

2

6

3

5
�, y1 � �

5

2

1

3
�, y2 � ��

5

2

8

3
�, y3 � �

2

9

3
�

The reader should check that this solution is indeed feasible (all dual constraints are

satisfied with equality) and that

w� � 15(�
5

2

1

3
�) � 5(��

5

2

8

3
�) � 10(�

2

9

3
�) � �

5

2

6

3

5
�

Even if the primal is a min problem, we may read the optimal dual solution from the

optimal primal tableau.

How to Read the Optimal Dual Solution from Row 0 
of the Optimal Tableau If the Primal Is a Min Problem

Optimal value of dual variable xi 

if Constraint i is a � constraint
� coefficient of si in optimal row 0

Optimal value of dual variable xi

if Constraint i is a � constraint
� �(coefficient of ei in optimal row 0)

Optimal value of dual variable xi

if Constraint i is an equality � (coefficient of ai in optimal row 0) � M

constraint

To illustrate how the optimal solution to the dual of a min problem may be read from the

optimal primal tableau, consider

min w � 3y1 � 2y2 � y3

s.t. y1 � y2 � y3 � 4

s.t. y1 � y2 � y3 � 2

s .t. y1 � y2 � 2y3 � 6

s .t. � �2y1, y2, y3 � 0

The optimal tableau for this problem is given in Table 26. Thus, the optimal primal solu-

tion is w � 6, y2 � y3 � 2, y1 � 0. The dual of the preceding LP is

max z � 4x1 � 2x2 � 6x3

s.t. x1 � x2 � x3 � 3

s.t. x1 � x2 � x3 � 2

s.t. x1 � x2 � 2x3 � 1

x1 � 0, x2 � 0, x3 urs

TA B L E  26

Finding the Optimal Solution to the Dual When Primal Is a Min Problem

w y1 y2 y3 e1 s2 a1 a3 rhs

1 �1 0 0 �3 0 3 � M �1 � M 6

0 1 1 0 �2 0 �2 �1 2

0 �1 0 0 3 1 �3 2 2

0 0 0 1 1 0 �1 1 2



From the optimal primal tableau, we find that the optimal dual solution is z � 6, x1 � 3,

x2 � 0, x3 � �1.

P R O B L E M S
Group A

6 . 8 Shadow Prices 313

1 The following questions refer to the Giapetto problem
(see Problem 7 of Section 6.3).

a Find the dual of the Giapetto problem.

b Use the optimal tableau of the Giapetto problem to
determine the optimal dual solution.

c Verify that the Dual Theorem holds in this instance.

2 Consider the following LP:

max z � �2x1 � x2 � x3

s.t. x1 � x2 � x3 � 3

s.t. x1 � x2 � x3 � 2

s.t. x1 � x2 � x3 � 1

s.t. � �x1, x2, x3 � 0

a Find the dual of this LP.

b After adding a slack variable s1, subtracting an ex-
cess variable e2, and adding artificial variables a2 and
a3, row 0 of the LP’s optimal tableau is found to be

z � 4x1 � e2 � (M � 1)a2 � (M � 2)a3 � 0

Find the optimal solution to the dual of this LP.

3 For the following LP,

max z � �x1 � 5x2

s.t. 2x1 � 2x2 � 0.5

s.t. �x1 � 3x2 � 0.5

s.t. �� x1, x2 � 0

row 0 of the optimal tableau is z � 0.4s1 � 1.4s2 � ? De-
termine the optimal z-value for the given LP.

4 The following questions refer to the Bevco problem of
Section 4.10.

a Find the dual of the Bevco problem.

b Use the optimal tableau for the Bevco problem that is
given in Section 4.10 to find the optimal solution to the

dual. Verify that the Dual Theorem holds in this instance.

5 Consider the following linear programming problem:

max z � 4x1 � x2

s.t. 3x1 � 2x2 � 6

s.t. 6x1 � 3x2 � 10

s.t. 6 � 3x1, x2 � 0

Suppose that in solving this problem, row 0 of the optimal
tableau is found to be z � 2x2 � s2 � �

2

3

0
�. Use the Dual The-

orem to prove that the computations must be incorrect.

6 Show that (for a max problem) if the ith primal constraint
is a � constraint, then the optimal value of the ith dual
variable may be written as (coefficient of ai in optimal 
row 0) � M.

Group B

7 In this problem, we use weak duality to prove Lemma 3.

a Show that Lemma 3 is equivalent to the following:
If the dual is feasible, then the primal is bounded. (Hint:
Do you remember, from plane geometry, what the con-
trapositive is?)

b Use weak duality to show the validity of the form of
Lemma 3 given in part (a). (Hint: If the dual is feasible,
then there must be a dual feasible point having a 
w-value of, say, wo. Now use weak duality to show that
the primal is bounded.)

8 Following along the lines of Problem 7, use weak duality
to prove Lemma 4.

9 Use the information given in Problem 8 of Section 6.3
to determine the dual of the Dorian Auto problem and its
optimal solution.

6.8 Shadow Prices

We now return to the concept of shadow price that was discussed in Section 6.1. A more

formal definition follows.

D E F I N I T I O N ■ The shadow price of the ith constraint is the amount by which the optimal 

z-value is improved (increased in a max problem and decreased in a min problem)

if we increase bi by 1 (from bi to bi � 1).†

†This assumes that after the right-hand side of Constraint i has been changed to bi � 1, the current basis re-

mains optimal.



By using the Dual Theorem, we can easily determine the shadow price of the ith con-

straint. To illustrate, we find the shadow price of the second constraint (finishing hours)

of the Dakota problem. Let cBVB�1
� [ y1 y2 y3] � [0 10 10] be the optimal solu-

tion to the dual of the max problem. From the Dual Theorem, we know that

Optimal z-value when rhs of constraints are (b1 � 48, b2 � 20, b3 � 8)

� 48y1 � 20y2 � 8y3 (31)

What happens to the optimal z-value for the Dakota problem if b2 (currently 20 fin-

ishing hours) is increased by 1 unit (to 21 hours)? We know that changing a right-hand

side may cause the current basis to no longer be optimal (see Section 6.3). For the mo-

ment, however, we assume that the current basis remains optimal when we increase b2 by

1. Then cBV and B�1 remain unchanged, so the optimal solution to the dual of the Dakota

problem remains unchanged.

We next find

Optimal z-value when rhs of finishing constraint is 21 � 48y1 � 21y2 � 8y3 (35)

Subtracting (34) from (35) yields

Change in optimal z-value if finishing hours are increased by 1

� shadow price for finishing constraint 2 (36)

� y2 � 10

This example shows that the shadow price of the ith constraint of a max problem is the

optimal value of the ith dual variable. The shadow prices are the dual variables, so we

know that the shadow price for a � constraint will be nonnegative; for a � constraint,

nonpositive; and for an equality constraint, unrestricted in sign. The examples discussed

later in this section give intuitive justifications for these sign conventions.

Similar reasoning can be used to show that if (in a maximization problem) the right-

hand side of the ith constraint is increased by an amount 
bi, then (assuming the current

basis remains optimal) the new optimal z-value may be found from

New optimal z-value � old optimal z-value � 
bi(Constraint i shadow price) (37)

For a minimization problem, the shadow price of the ith constraint is the amount by

which a unit increase in the right-hand side improves, or decreases, the optimal z-value

(assuming that the current basis remains optimal). It can be shown that the shadow price

of the ith constraint of a min problem � �(optimal value of the ith dual variable). If the

right-hand side is increased by an amount 
bi, then (assuming the current basis remains

optimal) the new optimal z-value may be found from

New optimal z-value � old optimal z-value � 
bi(Constraint i shadow price) (37�)

The following three examples should clarify the shadow price concept.

For the Dakota problem:

1 Find and interpret the shadow prices

2 If 18 finishing hours were available, what would be Dakota’s revenue? (It can be

shown by the methods of Section 6.3 that if 16 � finishing hours � 24, the current ba-

sis remains optimal.)

3 If 9 carpentry hours were available, what would be Dakota’s revenue? (For �
2

3

0
� � car-

pentry hours � 10, the current basis remains optimal.)
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4 If 30 board feet of lumber were available, what would be Dakota’s revenue? (For 

24 � lumber � �, the current basis remains optimal.)

5 If 30 carpentry hours were available, why couldn’t the shadow price for the carpentry

constraint be used to determine the new z-value?

Solution 1 In Section 6.7, we found the optimal solution to the Dakota dual to be y1 � 0, y2 �

10, y3 � 10. Thus, the shadow price for the lumber constraint is 0; for the finishing con-

straint, 10; and for the carpentry constraint, 10. The fact that the lumber constraint has a

shadow price of 0 means that increasing the amount of available lumber by 1 board foot

(or any amount) will not increase revenue. This is reasonable because we are currently us-

ing only 24 of the available 48 board feet of lumber, so adding any more will not do

Dakota any good. Dakota’s revenue would increase by $10 if 1 more finishing hour were

available. Similarly, 1 more carpentry hour would increase Dakota’s revenue by $10. In

this problem, the shadow price of the ith constraint may be thought of as the maximum

amount that the company would pay for an extra unit of the resource associated with the

ith constraint. For example, an extra carpentry hour would raise revenue by y3 � $10 (see

Example 12 for a max problem in which this interpretation is invalid). Thus, Dakota could

pay up to $10 for an extra carpentry hour and still be better off. Similarly, the company

would be willing to pay nothing ($0) for an extra board foot of lumber and up to $10 for

an extra finishing hour. To answer questions 2–4, we apply (37), using the fact that the

old z-value � 280.

2 y2 � 10, 
b2 � 18 � 20 � �2. The current basis is still optimal because 16 � 18

� 24. Then (37) yields (new revenue) � 280 � 10(�2) � $260.

3 y3 � 10, 
b3 � 9 � 8 � 1. Because ��
2

3

0
� � 9 � 10, the current basis remains optimal.

Then (37) yields (new revenue) � 280 � 10(1) � $290.

4 y1 � 0, 
b1 � 30 � 48 � �18. Because 24 � 30 � �, the current basis is still op-

timal. Then (37) yields (new revenue) � 280 � 0(�18) � $280.

5 If b3 � 30, the current basis is no longer optimal, because 30 � 10. This means that

BV (and therefore cBVB�1) changes, and we cannot use the current set of shadow prices

to determine the new revenue level.

Intuitive Explanation of the Sign of Shadow Prices

We can now give an intuitive explanation of why (in a max problem) the shadow price of

a � constraint will always be nonnegative. Consider the following situation: We are given

two LP max problems (LP 1 and LP 2) that have the same objective functions. Suppose

that every point that is feasible for LP 1 is also feasible for LP 2. This means that LP 2’s

feasible region contains all the points in LP 1’s feasible region and possibly some other

points. Then the optimal z-value for LP 2 must be at least as large as the optimal z-value

for LP 1. To see this, suppose that point x� (with z-value z�) is optimal for LP 1. Because

x� is also feasible for LP 2 (which has the same objective function as LP 1), LP 2 can at-

tain a z-value of z� (by using the feasible point x�). It is also possible that by using one of

the points feasible for only LP 2 (and not for LP 1), LP 2 might do better than z�. In short,

adding points to the feasible region of a max problem cannot decrease the optimal z-value.

We can use this observation to show why a � constraint must have a nonnegative

shadow price. For the Dakota problem, if we increase the right-hand side of the carpen-

try constraint by 1 (from 8 to 9), we see that all points that were originally feasible re-



main feasible, and some new points (which use � 8 and � 9 carpentry hours) may be

feasible. Thus, the optimal z-value cannot decrease, and the shadow price for the carpen-

try constraint must be nonnegative.

The purpose of the following example is to show that (contrary to what many books

say) the shadow price of a � constraint is not always the maximum price you would be

willing to pay for an additional unit of a resource.

Leatherco manufactures belts and shoes. A belt requires 2 square yards of leather and 1

hour of skilled labor. A pair of shoes requires 3 sq yd of leather and 2 hours of skilled la-

bor. As many as 25 sq yd of leather and 15 hours of skilled labor can be purchased at a

price of $5/sq yd of leather and $10/hour of skilled labor. A belt sells for $23, and a pair

of shoes sells for $40. Leatherco wants to maximize profits (revenues � costs). Formu-

late an LP that can be used to maximize Leatherco’s profits. Then find and interpret the

shadow prices for this LP.

Solution Define

x1 � number of belts produced

x2 � number of pairs of shoes produced

After noting that

Cost/belt � 2(5) � 1(10) � $20

Cost/pair of shoes � 3(5) � 2(10) � $35

we find that Leatherco’s objective function is

max z � (23 � 20)x1 � (40 � 35)x2 � 3x1 � 5x2

Leatherco faces the following two constraints:

Constraint 1 Leatherco can use at most 25 sq yd of leather.

Constraint 2 Leatherco can use at most 15 hours of skilled labor.

Constraint 1 is expressed by

2x1 � 3x2 � 25 (Leather constraint)

while Constraint 2 is expressed by

x1 � 2x2 � 15 (Skilled-labor constraint)

After adding the sign restrictions x1 � 0 and x2 � 0, we obtain the following LP:

max z � 3x1 � 5x2

s.t. 2x1 � 3x2 � 25 (Leather constraint)

s.t. x1 � 2x2 � 15 (Skilled-labor constraint)

s.t. � 2x1, x2 � 0

After adding slack variables s1 and s2 to the leather and skilled-labor constraints, respec-

tively, we obtain the optimal tableau shown in Table 27. Thus, the optimal solution to

Leatherco’s problem is z � 40, x1 � 5, x2 � 5. The shadow prices are

y1 � leather shadow price � coefficient of s1 in optimal row  0 � 1

y2 � skilled-labor shadow price � coefficient of s2 in optimal row 0 � 1
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The meaning of the leather shadow price is that if one more square yard of leather were

available, then Leatherco’s objective function (profits) would increase by $1. Let’s look fur-

ther at what happens if an additional square yard of leather is available. Because s1 is non-

basic, the extra square yard of leather will be purchased. Also, because s2 is nonbasic, we

will still use all available labor. This means that the $1 increase in profits includes the cost

of purchasing an extra square yard of leather. If the availability of an extra square yard of

leather increases profits by $1, then it must be increasing revenue by 1 � 5 � $6. Thus, the

maximum amount Leatherco should pay for an extra square yard of leather is $6 (not $1).

Another way to see this is as follows: If we purchase another square yard of leather at

the current price of $5, profits increase by y1 � $1. If we purchase another square yard

of leather at a price of $6 � $5 � $1, then profits increase by $1 � $1 � $0. Thus, the

most Leatherco would be willing to pay for an extra square yard of leather is $6.

Similarly, the most Leatherco would be willing to pay for an extra hour of labor is y2 �

(cost of an extra hour of skilled labor) � 1 � 10 � $11. In this problem, we see that the

shadow price for a resource represents the premium over and above the cost of the resource

that Leatherco would be willing to pay for an extra unit of resource.

The two preceding examples show that we must be careful when interpreting the

shadow price of a � constraint. Remember that the shadow price for a constraint in a max

problem is the amount by which the objective function increases if the right-hand side is

increased by 1.

The following example illustrates the interpretation of the shadow prices of � and

equality constraints.

Steelco has received an order for 100 tons of steel. The order must contain at least 3.5

tons of nickel, at most 3 tons of carbon, and exactly 4 tons of manganese. Steelco receives

$20/ton for the order. To fill the order, Steelco can combine four alloys, whose chemical

composition is given in Table 28. Steelco wants to maximize the profit (revenues � costs)

obtained from filling the order. Formulate the appropriate LP. Also find and interpret the

shadow prices for each constraint.

Solution After we define xi � number of tons of alloy i used to fill the order, Steelco’s LP is seen

to be

max z � (20 � 12)x1 � (20 � 10)x2 � (20 � 8)x3 � (20 � 6)x4

s.t. 0.06x1 � 0.03x2 � 0.02x3 � 0.01x4 � 3.5 (Nickel constraint)

s.t. 0.03x1 � 0.02x2 � 0.05x3 � 0.06x4 � 3.5 (Carbon constraint)

s.t. 0.08x1 � 0.03x2 � 0.02x3 � 0.01x4 � 4.5 (Manganese constraint)

s.t. 0.08x1 � 0.03x2 � 0.02x3 � 0.01x4 � 100. (Order size � 100 tons)

s.t. 0.08 � 0.03 �0.02 �0.02x1, x2, x3, x4 � 0
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Shadow Prices for � and � ConstraintsE X A M P L E  1 3

TA B L E  27

Optimal Tableau for Leatherco

Basic
Variable

z x1 x2 � 2s1 � 3s2 � 40 z1 � 40

z x1 x2 � 2s1 � 3s2 � 5 x1 � 5

z x1 x2 � 2s1 � 2s2 � 5 x2 � 5



After adding a slack variable s2, subtracting an excess variable e1, and adding artificial

variables a1, a3, and a4, the following optimal solution is obtained: z � 1,000, s2 � 0.25,

x1 � 25, x2 � 62.5, x4 � 12.5, e1 � 0, x3 � 0. The optimal row 0 is

z � 400e1 � (M � 400)a1 � (M � 200)a3 � (M � 16)a4 � 1,000

Using (31), (31�), and (31�), we obtain

Shadow price of nickel constraint � �(coefficient of e1 in optimal row 0)

Shadow price of nickel constraint � �400

Shadow price of carbon constraint � coefficient of s2 in optimal row 0

Shadow price of carbon constraint � 0

Shadow price of manganese constraint � (coefficient of a3 in optimal row 0) � M

Shadow price of manganese constraint � 200

Shadow price of order size constraint � (coefficient of a4 in optimal row 0) � M

Shadow price of order size constraint � 16

By the sensitivity analysis procedures of Section 6.3, it can be shown that the current ba-

sis remains optimal if 3.46 � b1 � 3.6. As long as the nickel requirement is in this range,

increasing the nickel requirement by an amount 
b1 will increase Steelco’s profits by

�400 
b1. For example, increasing the nickel requirement to 3.55 tons (
b1 � 0.05)

would “increase” (actually decrease) profits by �400(0.05) � $20. The nickel constraint

has a negative shadow price because increasing the right-hand side of the nickel constraint

makes it harder to satisfy the nickel constraint. In fact, an increase in the nickel require-

ment forces Steelco to use more of the expensive type 1 alloy. This raises costs and low-

ers profits. As we have already seen, the shadow price of a � constraint (in a max prob-

lem) will always be nonpositive, because increasing the right-hand side of a � constraint

eliminates points from the feasible region. Thus, the optimal z-value must decrease or re-

main unchanged.

By the Section 6.3 sensitivity analysis procedures, for 2.75 � b2 � �, the current ba-

sis remains optimal. As stated before, the carbon constraint has a zero shadow price. This

means that if we increase Steelco’s carbon requirement, Steelco’s profit will not change.

Intuitively, this is because our present optimal solution contains only 2.75 	 3 tons of car-

bon. Thus, relaxing the carbon requirement won’t enable Steelco to reduce costs, so

Steelco’s profit will remain unchanged.

By the sensitivity analysis procedures, the current basis remains optimal if 3.83 �

b3 � 4.07. The shadow price of the third (manganese) constraint is 200, so we know that

as long as the manganese requirement remains in the given range, increasing it by an

amount of 
b3 will increase profit by 200
b3. For example, if the manganese requirement

were 4.05 tons (
b3 � 0.05), then profits would increase by (0.05)200 � $10.
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TA B L E  28

Relevant Information for Steelco

Alloy (%)

Cement 1 2 3 4

Nickel 6 3 2 1

Carbon 3 2 5 6

Manganese 8 3 2 1

Cost/ton ($) 12 10 8 6
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By the sensitivity analysis procedures, the current basis remains optimal if 91.67 �

b4 � 103.12. Because the shadow price of the fourth (order size) constraint is 16, in-

creasing the order size by 
b4 tons (with nickel, carbon, and manganese requirements un-

changed) would increase profits by 16
b4. For example, the profit from a 103-ton order

that required � 3.5 tons of nickel, � 3 tons of carbon, and exactly 4 tons of manganese

would be 1,000 � 3(16) � $1,048.

In this problem, both equality constraints had positive shadow prices. In general, we

know that it is possible for an equality constraint’s dual variable (and shadow price) to be

negative. If this occurs, then the equality constraint will have a negative shadow price. To

illustrate this possibility, suppose that Steelco’s customer required exactly 4.5 tons of man-

ganese in the order. Because 4.5 � 4.07, the current basis is no longer optimal. If we

solve Steelco’s LP again, it can be shown that the shadow price for the manganese con-

straint has changed to �54.55. This means that an increase in the manganese requirement

will decrease Steelco’s profits.

Interpretation of the Dual Prices Column 
of the LINDO Output

For a max problem, LINDO gives the values of the shadow prices in the DUAL PRICES

column of the output. The dual price for row i � 1 on the LINDO output is the shadow

price for the ith constraint and the optimal value for the ith dual variable. Thus, in Figure

4, we see that for the Dakota problem,

y1 � shadow price for lumber constraint � row 2 dual price � 0

y2 � shadow price for finishing constraint � row 3 dual price � 10

y3 � shadow price for carpentry constraint � row 4 dual price � 10

For a maximization problem, the vector cBVB�1 (needed for pricing out new activities)

is the same as the vector of dual prices given in the LINDO output. For the Dakota prob-

lem, we would price out new activities using cBVB�1
� [0 10 10].

For a minimization problem, the entry in the DUAL PRICE column for any constraint

is the shadow price. Thus, from the LINDO printout in Figure 6, we find that the shadow

prices for the constraints in the diet problem are as follows: calorie � 0; chocolate �

�2.5¢; sugar � �7.5¢; and fat � 0. This implies that

1 Increasing the calorie requirement by 1 will leave the cost of the optimal diet un-

changed.

2 Increasing the chocolate requirement by 1 oz will decrease the cost of the optimal diet

by �2.5¢ (that is, increase the cost of the optimal diet by 2.5¢).

3 Increasing the sugar requirement by 1 oz will decrease the cost of the optimal diet by

�7.5¢ (that is, increase the cost of the optimal diet by 7.5¢).

4 Increasing the fat requirement by 1 oz will leave the cost of the optimal diet un-

changed.

The entry in the DUAL PRICE column for any constraint is, however, the negative of

the constraint’s dual variable. Thus, for the diet problem, we see from Figure 6 that the

optimal dual solution to the diet problem is given by cBVB�1
� [0 2.5 7.5 0]. When



320 C H A P T E R 6 Sensitivity Analysis and Duality

pricing out a new activity for a minimization problem, use the negative of each dual price

as the corresponding element of cBVB�1.

Remember that for any LP, the dual prices remain valid only as long as the current ba-

sis remains optimal. As stated in Section 6.3, the range of right-hand side values for which

the current basis remains optimal may be obtained from the RIGHTHAND SIDE RANGES

block of the LINDO output.

Degeneracy and Sensitivity Analysis

When the optimal solution to an LP is degenerate, caution must be used when interpret-

ing the LINDO output. Recall from Section 4.11 that a bfs is degenerate if at least one

basic variable in the optimal solution equals 0. For an LP with m constraints, if the

LINDO output indicates that less than m variables are positive, then the optimal solution

is a degenerate bfs. To illustrate, consider the following LP:

max z � 6X1 � 4X2 � 3X3 � 2X4

s.t. 2X1 � 3X2 � X3 � .2X4 � 400

s.t. X1 � X2 � 2X3 � . X4 � 150

s.t. 2X1 � X2 � X3 � .5X4 � 200

s.t. 3X1 � X2 � 2X3 � .5X4 � 250

s.t. 3 � 3 � 2 � .5X1, X2, X3, X4 � 0

The LINDO output for this LP is in Figure 9. The LP has four constraints and only two

positive variables in the optimal solution, so the bfs is degenerate. By the way, results from

using the TABLEAU command indicate that the optimal basis is BV � {X2, X3, S3, X1}.

We now discuss three “oddities” that may occur when the optimal solution found by

LINDO is degenerate.

Oddity 1 At least one constraint’s RANGE IN WHICH THE BASIS IS UNCHANGED

will have a 0 ALLOWABLE INCREASE or ALLOWABLE DECREASE. This means that

for at least one constraint the DUAL PRICE can tell us about the new z-value for either

an increase or a decrease in the constraint’s right-hand side, but not both.

To understand Oddity 1, consider the first constraint. Its AI is 0. Thus, its DUAL

PRICE of .50 cannot be used to determine a new z-value resulting from any increase in

the first constraint’s right-hand side.

Oddity 2 For a nonbasic variable to become positive, its objective function coefficient

may have to be improved by more than its REDUCED COST.

To understand Oddity 2 consider the nonbasic variable X4; its REDUCED COST is

1.5. If we increase X4’s objective function coefficient by 2, however, we still find that the

new optimal solution has X4 � 0 because the change affects the set of basic variables, but

not the LP’s optimal solution. If we increase X4’s objective function coefficient by 4.5 or

more, then we find that X4 is positive.

Oddity 3 If you increase a variable’s objective function coefficient by more than its AI or

decrease it by more than its AD, then the optimal solution to the LP may remain the same.

Oddity 3 is similar to Oddity 2. To understand Oddity 3, consider the nonbasic vari-

able X4; its AI is 1.5. If we increase X4’s objective function coefficient by 2, however, we

still find that the new optimal solution is unchanged. This oddity occurs because the

change affects the set of basic variables but not the LP’s optimal solution.
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P R O B L E M S
Group A

MAX 6 X1 + 4 X2 + 3 X3 + 2 X4
SUBJECT TO
       2)   2 X1 + 3 X2 + X3 + 2 X4 <=   400 
       3)   X1 + X2 + 2 X3 + X4 <=   150
       4)   2 X1 + X2 + X3 + 0.5 X4 <=    200
       5)   3 X1 + X2 + X4 <=   250
END

LP OPTIMUM FOUND AT STEP 3

       OBJECTIVE FUNCTION VALUE

       1)     700.00000

 VARIABLE        VALUE           REDUCED COST
       X1        50.000000            .000000
       X2       100.000000            .000000
       X3          .000000            .000000
       X4          .000000           1.500000

      ROW   SLACK  OR SURPLUS      DUAL PRICES 
       2)          .000000             .500000 
       3)          .000000            1.250000
       4)          .000000             .000000
       5)          .000000            1.250000

NO. ITERATIONS=       3

RANGES IN WHICH THE BASIS IS UNCHANGED:

                           OBJ COEFFICIENT RANGES
VARIABLE         CURRENT        ALLOWABLE          ALLOWABLE
                  COEF          INCREASE           DECREASE
      X1        6.000000         3.000000           3.000000 
      X2        4.000000         5.000000           1.000000 
      X3        3.000000         3.000000           2.142857
      X4        2.000000         1.500000           INFINITY

                          RIGHTHAND SIDE RANGES
     ROW         CURRENT        ALLOWABLE          ALLOWABLE
                   RHS          INCREASE           DECREASE
       2      400.000000          .000000         200.000000
       3      150.000000          .000000            .000000  
       4      200.000000         INFINITY            .000000
       5      250.000000          .000000         120.000000

THE TABLEAU
     ROW  (BASIS)        X1       X2       X3       X4   SLK    2
       1 ART           .000     .000     .000    1.500       .500
       2       X2      .000    1.000     .000     .500       .500
       3       X3      .000     .000    1.000     .167      -.167 
       4 SLK    4      .000     .000     .000    -.500       .000
       5       X1     1.000     .000     .000     .167      -.167

     ROW   SLK    3  SLK    4  SLK    5
       1     1.250      .000     1.250  700.000
       2     -.250      .000     -.250  100.000 
       3      .583      .000     -.083     .000
       4     -.500     1.000     -.500     .000
       5      .083      .000      .417   50.000 F I G U R E  9

1 Use the Dual Theorem to prove (37).

2 The following questions refer to the Sugarco problem
(Problem 6 of Section 6.3):

a Find the shadow prices for the Sugarco problem.

b If 60 oz of sugar were available, what would be Sug-
arco’s profit?

c How about 40 oz of sugar?

d How about 30 oz of sugar?



3 Suppose we are working with a min problem and
increase the right-hand side of a � constraint. What can
happen to the optimal z-value?

4 Suppose we are working with a min problem and
increase the right-hand side of a � constraint. What can
happen to the optimal z-value?

5 A company manufactures two products (1 and 2). Each
unit of product 1 can be sold for $15, and each unit of
product 2 for $25. Each product requires raw material and
two types of labor (skilled and unskilled) (see Table 29).
Currently, the company has available 100 hours of skilled
labor, 70 hours of unskilled labor, and 30 units of raw
material. Because of marketing considerations, at least 3
units of product 2 must be produced.

a Explain why the company’s goal is to maximize 
revenue.

b The relevant LP is

max z � 15x1 � 25x2

s.t. 3x1 � 4x2 � 100 (Skilled labor constraint)

s.t. 2x1 � 3x2 � 70 (Unskilled labor constraint)

s.t. x1 � 2x2 � 30 (Raw material constraint)

s.t. 2x1 � 2x2 � 3 (Product 2 constraint)

x1, x2 � 0

The optimal tableau for this problem has the following row 0:

z � 15s3 � 5e4 � (M � 5)a4 � 435

The optimal solution to the LP is z � 435, x1 � 24, x2 �

3. Find and interpret the shadow price of each constraint.
How much would the company be willing to pay for an ad-
ditional unit of each type of labor? How much would it be
willing to pay for an extra unit of raw material?

c Assuming the current basis remains optimal (it does),
what would the company’s revenue be if 35 units of raw
material were available?

d With the current basis optimal, what would the com-
pany’s revenue be if 80 hours of skilled labor were avail-
able?

e With the current basis optimal, what would the com-
pany’s new revenue be if at least 5 units of product 2
were required? How about if at least 2 units of product
2 were required?

6 Suppose that the company in Problem 5 owns no labor
and raw material but can purchase them at the following
prices: as many as 100 hours of skilled labor at $3/hour, 70
hours of unskilled labor at $2/hour, and 30 units of raw
material at $1 per unit of raw material. If the company’s
goal is to maximize profit, show that the appropriate LP is
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max z � x1 � 5x2

s.t. 3x1 � 4x2 � 100

s.t. 2x1 � 3x2 � 70

s.t. x1 � 2x2 � 30

s.t. 2x21 � 2x2 � 3

s.t. 2 � 3x1, x2 � 0

The optimal row 0 for this LP is

z � 1.5x1 � 2.5s3 � Ma4 � 75

and the optimal solution is z � 75, x1 � 0, x2 � 15. In an-
swering parts (a) and (b), assume that the current basis re-
mains optimal.

a How much should the company pay for an extra unit
of raw material?

b How much should the company pay for an extra
hour of skilled labor? Unskilled labor? (Be careful here!)

7 For the Dorian problem (see Problem 8 of Section 6.3),
answer the following questions:

a What would Dorian’s cost be if 40 million HIW ex-
posures were required?

b What would Dorian’s cost be if only 20 million HIM
exposures were required?

8 If it seems difficult to believe that the shadow price of
an equality constraint should be urs, try this problem.
Consider the following two LPs:

(LP 1) max z � x2

(LP 1) s.t. x1 � x2 � 2

(LP 1) s.t. �x1, x2 � 0

(LP 1) max z � x2

(LP 2) s.t. �x1 � x2 � �2

(LP 2) s.t. � �x1, x2 � 0

In which LP will the constraint have a positive shadow
price? Which will have a negative shadow price?

Group B

9 For the Dakota problem, suppose that 22 finishing hours
and 9 carpentry hours are available. What would be the new
optimal z-value? [Hint: Use the 100% Rule to show that the
current basis remains optimal, and mimic (34)–(36).]

10 For the diet problem, suppose at least 8 oz of chocolate
and at least 9 oz of sugar are required (with other
requirements remaining the same). What is the new optimal
z-value?

11 Consider the LP:

max z � 9x1 � 8x2 � 5x3 � 4x4

s.t. x1 � x2 � x3 � x4 � 200

s.t. x 1 � x2 � x3 � x4 � 150

s.t. x1 � x2 � x3 � x4 � 350

s.t. 2x1 � x2 � x3 � x4 � 550

s.t. 2 � � �x1, x2, x3, x4 � 0

a Solve this LP with LINDO and use your output to
show that the optimal solution is degenerate.

b Use your LINDO output to find an example of Odd-
ities 1–3.

TA B L E  29

Product

Resource 1 2

Skilled labor (hours) 3 4

Unskilled labor (hours) 2 3

Raw material (units) 1 2
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6.9 Duality and Sensitivity Analysis

Our proof of the Dual Theorem demonstrated the following result: Assuming that a set of ba-

sic variables BV is feasible, then BV is optimal (that is, each variable in row 0 has a non-

negative coefficient) if and only if the associated dual solution (cBVB�1) is dual feasible.

This result can be used for an alternative way of doing the following types of sensi-

tivity analysis (see list of changes at the beginning of Section 6.3).

Change 1 Changing the objective function coefficient of a nonbasic variable

Change 4 Changing the column of a nonbasic variable

Change 5 Adding a new activity

In each case, the change leaves BV feasible. BV will remain optimal if the BV row 0 re-

mains nonnegative. Primal optimality and dual feasibility are equivalent, so we see that

the above changes will leave the current basis optimal if and only if the current dual so-

lution cBVB�1 remains dual feasible. If the current dual solution is no longer dual feasi-

ble, then BV will be suboptimal, and a new optimal solution must be found.

We illustrate the duality-based approach to sensitivity analysis by reworking some of

the Section 6.3 illustrations. Recall that these illustrations dealt with the Dakota problem:

max z � 60x1 � 30x2 � 20x3

s.t. 8x1 � 1.6x2 � 1.5x3 � 48 (Lumber constraint)

s.t. 4x1 � 1.2x2 � 1.5x3 � 20 (Finishing constraint)

s.t. 2x1 � 1.5x2 � 0.5x3 � 8 (Carpentry constraint)

s.t. 2 � 1.5 � 0.5x1, x2, x3 � 0

The optimal solution was z � 280, s1 � 24, x3 � 8, x1 � 2, x2 � 0, s2 � 0, s3 � 0. The

only nonbasic decision variable in the optimal solution is x2 (tables). The dual of the

Dakota problem is

min w � 48y1 � 20y2 � 8y3

s.t. 8y1 � 1.4y2 � 1.2y3 � 60 (Desk constraint)

s.t. 6y1 � 1.2y2 � 1.5y3 � 30 (Table constraint)

s.t. y1 � 1.5y2 � 0.5y3 � 20 (Chair constraint)

s.t. 6 � 1.5 � 0.5 y1, y2, y3 � 0

Recall that the optimal dual solution—and therefore the constraint shadow prices—are 

y1 � 0, y2 � 10, y3 � 10. We now show how knowledge of duality can be applied to sen-

sitivity analysis.

We want to change the objective function coefficient of a nonbasic variable. Let c2 be the

coefficient of x2 (tables) in the Dakota objective function. In other words, c2 is the price

at which a table is sold. For what values of c2 will the current basis remain optimal?

Solution If y1 � 0, y2 � 10, y3 � 10 remains dual feasible, then the current basis—and the values

of all the variables—are unchanged. Note that if the objective function coefficient for x2

is changed, then the first and third dual constraints remain unchanged, but the second

(table) dual constraint is changed to

6y1 � 2y2 � 1.5y3 � c2

Changing Objective Function Coefficient of Nonbasic VariableE X A M P L E  1 4
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If y1 � 0, y2 � 10, y3 � 10 satisfies this inequality, then dual feasibility (and therefore

primal optimality) is maintained. Thus, the current basis remains optimal if c2 satisfies

6(0) � 2(10) � 1.5(10) � c2, or c2 � 35. This shows that for c2 � 35, the current basis

remains optimal. Conversely, if c2 � 35, the current basis is no longer optimal. This

agrees with the result obtained in Section 6.3.

Using shadow prices, we may give an alternative interpretation of this result. We can

use shadow prices to compute the implied value of the resources needed to construct a

table (see Table 30). A table uses $35 worth of resources, so the only way producing ta-

bles can increase Dakota’s revenues is if a table sells for more than $35. Thus, the current

basis fails to be optimal if c2 � 35, and the current basis remains optimal if c2 � 35.

Changing a Nonbasic VariableE X A M P L E  1 5
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Shadow Price Interpretation of Table Production Decision ($40/Table)

Resource
in a Shadow Price Amount of Value of
Table of Resource ($) Resource Used Resource Used ($)

Lumber 10 5 board ft 10(5) � $05

Finishing 10 2 hours 10(2) � $20

Carpentry 10 2 hours 10(2) � $20

Total: � $40

We want to change the column for a nonbasic activity. Suppose a table sells for $43 and

uses 5 board feet of lumber, 2 finishing hours, and 2 carpentry hours. Does the current

basis remain optimal?

Solution Changing the column for the nonbasic variable “tables” leaves the first and third dual con-

straints unchanged but changes the second to

5y1 � 2y2 � 2y3 � 43

Because y1 � 0, y2 � 10, y3 � 10 does not satisfy the new second dual constraint, dual

feasibility is not maintained, and the current basis is no longer optimal. In terms of

shadow prices, this result is reasonable (see Table 31). Each table uses $40 worth of re-

sources and sells for $43, so Dakota can increase its revenue by 43 � 40 � $3 for each

table that is produced. Thus, the current basis is no longer optimal, and x2 (tables) will be

basic in the new optimal solution.

TA B L E  30

Why a Table Is Profitable at � $35/Table

Resource
in a Shadow Price Amount of Value of
Table of Resource ($) Resource Used Resource Used

Lumber 10 6.5 board ft 1.10(6) � $05

Finishing 10 2.5 hours 1.10(2) � $20

Carpentry 10 1.5 hours 10(1.5) � $15

Total: � $35



We want to add a new activity. Suppose Dakota is considering manufacturing footstools

(x4). A footstool sells for $15 and uses 1 board foot of lumber, 1 finishing hour, and 1

carpentry hour. Does the current basis remain optimal?

Solution Introducing the new activity (footstools) leaves the three dual constraints unchanged, but

the new variable x4 adds a new dual constraint (corresponding to footstools). The new

dual constraint will be

y1 � y2 � y3 � 15

The current basis remains optimal if y1 � 0, y2 � 10, y3 � 10 satisfies the new dual con-

straint. Because 0 � 10 � 10 � 15, the current basis remains optimal. In terms of shadow

prices, a stool utilizes 1(0) � $0 worth of lumber, 1(10) � $10 worth of finishing hours,

and 1(10) � $10 worth of carpentry time. A stool uses 0 � 10 � 10 � $20 worth of re-

sources and sells for only $15, so Dakota should not make footstools, and the current ba-

sis remains optimal.

P R O B L E M S
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Group A

1 For the Dakota problem, suppose computer tables sell
for $35 and use 6 board feet of lumber, 2 hours of finishing
time, and 1 hour of carpentry time. Is the current basis still
optimal? Interpret this result in terms of shadow prices.

2 The following questions refer to the Sugarco problem
(Problem 6 of Section 6.3):

a For what values of profit on a Type 1 candy bar does
the current basis remain optimal?

b If a Type 1 candy bar used 0.5 oz of sugar and 
0.75 oz of chocolate, would the current basis remain 
optimal?

c A Type 4 candy bar is under consideration. A Type
4 candy bar yields a 10¢ profit and uses 2 oz of sugar
and 1 oz of chocolate. Does the current basis remain 
optimal?

3 Suppose, in the Dakota problem, a desk still sells for
$60 but now uses 8 board ft of lumber, 4 finishing hours,
and 15 carpentry hours. Determine whether the current
basis remains optimal. What is wrong with the following
reasoning?

The change in the column for desks leaves the second
and third dual constraints unchanged and changes the first to

8y1 � 4y2 � 15y3 � 60

Because y1 � 0, y2 � 10, y3 � 10 satisfies the new dual
constraint, the current basis remains optimal.

6.10 Complementary Slackness

The Theorem of Complementary Slackness is an important result that relates the optimal

primal and dual solutions. To state this theorem, we assume that the primal is a normal

max problem with variables x1, x2, . . . , xn and m � constraints. Let s1, s2, . . . , sm be the

slack variables for the primal. Then the dual is a normal min problem with variables y1,

y2, . . . , ym and n � constraints. Let e1, e2, . . . , en be the excess variables for the dual.

A statement of the Theorem of Complementary Slackness follows.

Adding a New ActivityE X A M P L E  1 6
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T H E O R E M  2 Let

x � � �
be a feasible primal solution and y � [y1 y2 ��� ym] be a feasible dual solution.

Then x is primal optimal and y is dual optimal if and only if

siyi � 0 (i � 1, 2, . . . , m) (38)

ejxj � 0 ( j � 1, 2, . . . , n) (39)

In Problem 4 at the end of this section, we sketch the proof of the Theorem of Com-

plementary Slackness, but first we discuss the intuitive meaning of this theorem.

From (38), it follows that the optimal primal and dual solutions must satisfy

ith primal slack � 0 implies ith dual variable � 0 (40)

ith dual variable � 0 implies ith primal slack � 0 (41)

From (39), it follows that the optimal primal and dual solutions must satisfy

jth dual excess � 0 implies jth primal variable � 0 (42)

jth primal variable � 0 implies jth dual excess � 0 (43)

From (40) and (42), we see that if a constraint in either the primal or dual is non-

binding (has either si � 0 or ej � 0), then the corresponding variable in the other (or

complementary) problem must equal 0. Hence the name complementary slackness.

To illustrate the interpretation of the Theorem of Complementary Slackness, we return

to the Dakota problem. Recall that the primal is

max z � 60x1 � 30x2 � 20x3

s.t. 8x1 � 1.6x2 � 0.0x3 � 48 (Lumber constraint)

s.t. 4x1 � 1.2x2 � 1.5x3 � 20 (Finishing constraint)

s.t. 2x1 � 1.5x2 � 0.5x3 � 8 (Carpentry constraint)

s.t. 2 �1.5 �0.5x1, x2, x3 � 0

and the dual is

min w � 48y1 � 20y2 � 8y3

s.t. 8y1 � 1.4y2 � 1.2y3 � 60 (Desk constraint)

s.t. 6y1 � 1.2y2 � 1.5y3 � 30 (Table constraint)

s.t. 6y1 � 1.5y2 � 0.5y3 � 20 (Chair constraint)

y1, y2, y3 � 0

The optimal primal solution is

z � 280, x1 � 2, x2 � 0, x3 � 8

s1 � 48 � (8(2) � 6(0) � 1(8)) � 24

s2 � 20 � (4(2) � 2(0) � 1.5(8)) � 0

s3 � 8 � (2(2) � 1.5(0) � 0.5(8)) � 0

x1

x2

���

xn

T H E O R E M  2
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The optimal dual solution is

w � 280, y1 � 0, y2 � 10, y3 � 10

e1 � (8(0) � 4(10) � 2(10)) � 60 � 0

e2 � (6(0) � 2(10) � 1.5(10)) � 30 � 5

e3 � (1(0) � 1.5(10) � 0.5(10)) � 20 � 0

For the Dakota problem, (38) reduces to

s1y1 � s2y2 � s3y3 � 0

which is indeed satisfied by the optimal primal and dual solutions. Also, (39) reduces to

e1x1 � e2x2 � e3x3 � 0

which is also satisfied by the optimal primal and dual solutions.

We now illustrate the interpretation of (40)–(43). Note that (40) tells us that because the

optimal primal solution has s1 � 0, the optimal dual solution must have y1 � 0. In the con-

text of the Dakota problem, this means that positive slack in the lumber constraint implies

that lumber must have a zero shadow price. Slack in the lumber constraint means that ex-

tra lumber would not be used, so an extra board foot of lumber should indeed be worthless.

Equation (41) tells us that because y2 � 0 in the optimal dual solution, s2 � 0 must

hold in the optimal primal solution. This is reasonable because y2 � 0 means that an ex-

tra finishing hour has some value. This can only occur if we are at present using all avail-

able finishing hours (or equivalently, if s2 � 0).

Observe that (42) tells us that because e2 � 0 in the optimal dual solution, x2 � 0 must

hold in the optimal primal solution. This is reasonable because e2 � 6y1 � 2y2 � 1.5y3 �

30. Because y1, y2, and y3 are resource shadow prices, e2 may be written as

e2 � (value of resources used by table) � (sales price of a table)

Thus, if e2 � 0, tables are selling for a price that is less than the value of the resources

used to make 1 unit of x2 (tables). This means that no tables should be made (or equiva-

lently, that x2 � 0). This shows that e2 � 0 in the optimal dual solution implies that x2 �

0 must hold in the optimal primal solution.

Note that for the Dakota problem, (43) tells us that x1 � 0 for the optimal primal so-

lution implies that e1 � 0. This result simply reflects the following important fact. For

any variable xj in the optimal primal basis, the marginal revenue obtained from produc-

ing a unit of xj must equal the marginal cost of the resources used to produce a unit of

xj. This is a consequence of the fact that each basic variable must have a zero coefficient

in row 0 of the optimal primal tableau. In short, (43) is simply the LP version of the well-

known economic maxim that an optimal production strategy must have marginal revenue

equal marginal cost.

To be more specific, observe that x1 � 0 means that desks are in the optimal basis.

Then

Marginal revenue obtained by manufacturing desk � $60

To compute the marginal cost of manufacturing a desk (in terms of shadow prices), note that

Cost of lumber in desk � 8(0) � $0

Cost of finishing hours used to make a desk � 4(10) � $40

Cost of carpentry hours used to make a desk � 2(10) � $20

Marginal cost of producing a desk � 0 � 40 � 20 � $60

Thus, for desks, marginal revenue is equal to marginal cost.



Using Complementary Slackness to Solve LPs

If the optimal solution to the primal or dual is known, complementary slackness can

sometimes be used to determine the optimal solution to the complementary problem. For

example, suppose we were told that the optimal solution to the Dakota problem was z �

280, x1 � 2, x2 � 0, x3 � 8, s1 � 24, s2 � 0, s3 � 0. Can we use Theorem 2 to help us

find the optimal solution to the Dakota dual? Because s1 � 0, (40) tells us that the opti-

mal dual solution must have y1 � 0. Because x1 � 0 and x3 � 0, (43) implies that the

optimal dual solution must have e1 � 0, and e3 � 0. This means that for the optimal dual

solution, the first and third constraints must be binding. We know that y1 � 0, so we know

that the optimal values of y2 and y3 may be found by solving the first and third dual con-

straints as equalities (with y1 � 0). Thus, the optimal values of y2 and y3 must satisfy

4y2 � 2y3 � 60 and 1.5y2 � 0.5y3 � 20

Solving these equations simultaneously shows that the optimal dual solution must have 

y2 � 10 and y3 � 10. Thus, complementary slackness has helped us find the optimal dual

solution y1 � 0, y2 � 10, y3 � 10. (From the Dual Theorem, we know, of course, that the

optimal dual solution must have w� � 280.)

P R O B L E M S
Group A
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1 Glassco manufactures glasses: wine, beer, champagne,
and whiskey. Each type of glass requires time in the molding
shop, time in the packaging shop, and a certain amount of
glass. The resources required to make each type of glass are
given in Table 32. Currently, 600 minutes of molding time,
400 minutes of packaging time, and 500 oz of glass are
available. Assuming that Glassco wants to maximize
revenue, the following LP should be solved:

max z � 6x1 � 10x2 � 9x3 � 20x4

s.t. 4x1 � 9x2 � 7x3 � 10x4 � 600 (Molding
constraint)

s.t. x1 � x2 � 3x3 � 40x4 � 400 (Packaging
constraint)

s.t. 3x1 � 4x2 � 2x3 � x4 � 500 (Glass
constraint)

x1, x2, x3, x4 � 0

It can be shown that the optimal solution to this LP is z � �
28

3
00
�, 

x1 � �
40

3

0
�, x4 � �

2

3

0
�, x2 � 0, x3 � 0, s1 � 0, s2 � 0, s3 � ��

28

3

0
�.

a Find the dual of the Glassco problem.

b Using the given optimal primal solution and the The-
orem of Complementary Slackness, find the optimal so-
lution to the dual of the Glassco problem.

c Find an example of each of the complementary slack-
ness conditions, (40)–(43). As in the text, interpret each
example in terms of shadow prices.

2 Use the Theorem of Complementary Slackness to show
that in the LINDO output, the SLACK or SURPLUS and
DUAL PRICE entries for any row cannot both be positive.

3 Consider the following LP:

max z � 5x1 � 3x2 � x3

s.t. 2x1 � x2 � x3 � 6

s.t. x1 � 2x2 � x3 � 7

x1, x2, x3 � 0

Graphically solve the dual of this LP. Then use comple-
mentary slackness to solve the max problem.

TA B L E  32

Glass

x1 x2 x3 x4

Wine Beer Champagne Whiskey

Molding time 4 minutes 9 minutes 7 minutes 10 minutes

Packaging time 1 minute 1 minute 3 minutes 40 minutes

Glass 3 oz 4 oz 2 oz 1 oz

Selling price $6 $10 $9 $20



Group B

4 Let x � [x1 x2 x3 s1 s2 s3] be a primal feasible
point for the Dakota problem and y � [ y1 y2 y3 e1 e2

e3] be a dual feasible point.

a Multiply the ith constraint (in standard form) of the
primal by yi and sum the resulting constraints.

b Multiply the jth dual constraint (in standard form)
by xj and sum them.
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c Compute: part (a) answer minus part (b) answer.

d Use the part (c) answer and the Dual Theorem to
show that if x is primal optimal and y is dual optimal,
then (38) and (39) hold.

e Use the part (c) answer to show that if (38) and (39)
both hold, then x is primal optimal and y is dual opti-
mal. (Hint: Look at Lemma 2.)

6.11 The Dual Simplex Method

When we use the simplex method to solve a max problem (we will refer to the max prob-

lem as a primal), we begin with a primal feasible solution (because each constraint in the

initial tableau has a nonnegative right-hand side). At least one variable in row 0 of the ini-

tial tableau has a negative coefficient, so our initial primal solution is not dual feasible.

Through a sequence of simplex pivots, we maintain primal feasibility and obtain an opti-

mal solution when dual feasibility (a non-negative row 0) is attained. In many situations,

however, it is easier to solve an LP by beginning with a tableau in which each variable in

row 0 has a nonnegative coefficient (so the tableau is dual feasible) and at least one con-

straint has a negative right-hand side (so the tableau is primal infeasible). The dual sim-

plex method maintains a nonnegative row 0 (dual feasibility) and eventually obtains a

tableau in which each right-hand side is nonnegative (primal feasibility). At this point, an

optimal tableau has been obtained. Because this technique maintains dual feasibility, it is

called the dual simplex method.

Dual Simplex Method for a Max Problem

Step 1 Is the right-hand side of each constraint nonnegative? If so, an optimal solution

has been found; if not, at least one constraint has a negative right-hand side, and we go

to step 2.

Step 2 Choose the most negative basic variable as the variable to leave the basis. The

row in which the variable is basic will be the pivot row. To select the variable that enters

the basis, we compute the following ratio for each variable xj that has a negative coeffi-

cient in the pivot row:

Choose the variable with the smallest ratio (absolute value) as the entering variable. This

form of the ratio test maintains a dual feasible tableau (all variables in row 0 have non-

negative coefficients). Now use EROs to make the entering variable a basic variable in the

pivot row.

Step 3 If there is any constraint in which the right-hand side is negative and each vari-

able has a nonnegative coefficient, then the LP has no feasible solution. If no constraint

indicating infeasibility is found, return to step 1.

To illustrate the case of an infeasible LP, suppose the dual simplex method yielded a con-

straint such as x1 � 2x2 � x3 � �5. Because x1 � 0, 2x2 � 0, and x3 � 0, x1 � 2x2 �

x3 � 0, and the constraint x1 � 2x2 � x3 � �5 cannot be satisfied. In this case, the origi-

nal LP must be infeasible.

Coefficient of xj in row 0
����



Three uses of the dual simplex follow:

1 Finding the new optimal solution after a constraint is added to an LP

2 Finding the new optimal solution after changing a right-hand side of an LP

3 Solving a normal min problem

Finding the New Optimal Solution 
After a Constraint Is Added to an LP

The dual simplex method is often used to find the new optimal solution to an LP after a

constraint is added. When a constraint is added, one of the following three cases will occur:

Case 1 The current optimal solution satisfies the new constraint.

Case 2 The current optimal solution does not satisfy the new constraint, but the LP still

has a feasible solution.

Case 3 The additional constraint causes the LP to have no feasible solutions.

If Case 1 occurs, then the current optimal solution satisfies the new constraint, and the

current solution remains optimal. To illustrate why this is true, suppose we have added

the constraint x1 � x2 � x3 � 11 to the Dakota problem. The current optimal solution 

(z � 280, x1 � 2, x2 � 0, x3 � 8) satisfies this constraint. To see why this solution re-

mains optimal after the constraint x1 � x2 � x3 � 11 is added, recall that adding a con-

straint to an LP either leaves the feasible region unchanged or eliminates points from the

feasible region. In this case, the Section 6.8 discussion tells us that adding a constraint (to

a max problem) either reduces the optimal z-value or leaves it unchanged. This means that

if we add the constraint x1 � x2 � x3 � 11 to the Dakota problem, the new optimal 

z-value can be at most 280. The current solution is still feasible and has z � 280, so it

must still be optimal.

If Case 2 occurs, the current solution is no longer feasible, so it can no longer be op-

timal. The dual simplex method can be used to determine the new optimal solution. Sup-

pose that in the Dakota problem, marketing considerations dictate that at least 1 table be

manufactured. This adds the constraint x2 � 1. Because the current optimal solution has

x2 � 0, it is no longer feasible and cannot be optimal. To find the new optimal solution,

we subtract an excess variable e4 from the constraint x2 � 1. This yields the constraint 

x2 � e4 � 1. If we multiply this constraint through by �1, we obtain �x2 � e4 � �1,

and we can use e4 as a basic variable for this constraint. Appending this constraint to the

optimal Dakota tableau yields Table 33.

Because we are using the row 0 from an optimal tableau, each variable has a non-

negative coefficient in row 0, and we may proceed with the dual simplex method. The

variable e4 � �1 is the most negative basic variable, so e4 will exit from the basis, and

row 4 will be the pivot row. Because x2 is the only variable with a negative coefficient in

row 4, x2 must enter into the basis (see Table 34).

This is an optimal tableau. Thus, if the constraint x2 � 1 is added to the Dakota prob-

lem, the optimal solution becomes z � 275, s1 � 26, x3 � 10, x1 � �
3

4
�, x2 � 1, which has

reduced Dakota’s objective function (revenue) by $5 (the reduced cost for tables).

If we had wanted to, we could simply have added the constraint x2 � 1 to the original

Dakota initial tableau and used the regular simplex method to solve the problem. This

would have entailed adding an artificial variable to the x2 � 1 constraint and would prob-

ably have required many pivots. When we use the dual simplex to solve a problem again

after a constraint has been added, we are taking advantage of the fact that we have already
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obtained a nonnegative row 0 and that most of our right-hand sides have nonnegative co-

efficients. This is why the dual simplex usually requires relatively few pivots to find a new

optimal solution when a constraint is added to an LP.

If Case 3 occurs, step 3 of the dual simplex method allows us to show that the LP is

now infeasible. To illustrate the idea, suppose we add the constraint x1 � x2 � 12 to the

Dakota problem. After subtracting an excess variable e4 from this constraint, we obtain

x1 � x2 � e4 � 12 or �x1 � x2 � e4 � �12

Appending this constraint to the optimal Dakota tableau yields Table 35.

Because x1 appears in the new constraint, it seems that x1 can no longer be used as a

basic variable for row 3. To remedy this problem, we eliminate x1 (and in general all ba-

sic variables) from the new constraint by replacing row 4 by row 3 � row 4 (see Table

36). Because e4 � �10 is the most negative basic variable, e4 will leave the basis and

row 4 will be the pivot row. The variable s2 is the only one with a negative coefficient in

row 4, so s2 enters the basis and becomes a basic variable in row 4 (see Table 37). Now

x3 must leave the basis, and row 2 will be the pivot row. Because x2 is the only variable

in row 2 with a negative coefficient, x2 now enters the basis (see Table 38). Because x1 �

0, x3 � 0, 2s3 � 0, and 3e4 � 0, the left side of row 3 must be nonnegative and cannot

equal �20. Hence, the Dakota problem with the additional constraint x1 � x2 � 12 has

no feasible solution.

TA B L E  33

“Old” Optimal Dakota Tableau If x2 � 1 Is Required

Basic Variable

z x1 � 5x2 � x3 � s1 � 10s2 � 10s3 � e4 � 280 z1 � 280

z x1 � 2x2 � x3 � s1 � 02s2 � 18s3 � e4 � 24 s1 � 24

z x1 � 2x2 � x3 � s1 � 02s2 � 14s3 � e4 � 8 x3 � 8

z x1 � �
5
4

�x2 � x3 � s1 � 1�
1
2

�s2 � �
3
2

�s3 � e4 � 2 x1 � 2

z x1 � 2x2 � x3 � s1 � 05s2 � 15s3 � e4 � �1 e4 � �1

TA B L E  34

“New” Optimal Dakota Tableau If x2 � 1 Is Required

Basic Variable

z x1 x2 x3 s1 � 10s2 � 10s3 � 5e4 � 275 z1 � 275

z x1 x2 x3 s1 � 12s2 � 18s3 � 2e4 � 26 s1 � 26

z x1 x2 x3 s1 � 12s2 � 14s3 � 2e4 � 10 x3 � 10

z x1 x2 x3 s1 � �
1
2

�s2 � 1�
3
4

�s3 � �
5
4

�e4 � �
3
4

� x1 � �
3
4

�

z x1 x2 x3 s1 � 12s2 � 10s3 � 8e4 � 1 x2 � 1

TA B L E  35

“Old” Optimal Dakota Tableau If x1 � x2 � 12 Is Required

Basic Variable

z � x1 � 1.25x2 � x3 � s1 � .10s2 � .10s3 � e4 � 280 z1 � 280

z � x1 � 1.52x2 � x3 � s1 � 0.2s2 � 1.8s3 � e4 � 24 s1 � 24

z � x1 � 1.55x2 � x3 � s1 � 0.2s2 � 1.4s3 � e4 � 8 x3 � 8

z � x1 � 1.25x2 � x3 � s1 � 0.5s2 � 1.5s3 � e4 � 2 x1 � 2

z � x1 � 1.55x2 � x3 � s1 � 0.5s2 � 1.5s3 � e4 � �12 e4 � �12
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Finding the New Optimal Solution 
After Changing a Right-Hand Side

If the right-hand side of a constraint is changed and the current basis becomes infeasible,

the dual simplex can be used to find the new optimal solution. To illustrate, suppose that

30 finishing hours are now available. In Section 6.3, we showed that this changed the cur-

rent optimal tableau to that shown in Table 39.

Because each variable in row 0 has a non-negative coefficient, the dual simplex method

may be used to find the new optimal solution. The variable x1 is the most negative one,

so x1 must leave the basis, and row 3 will be the pivot row. Because s2 has the only neg-

ative coefficient in row 3, s2 will enter the basis (see Table 40).

This is an optimal tableau. If 30 finishing hours are available, the new optimal solu-

tion to the Dakota problem is to manufacture 16 chairs, 0 tables, and 0 desks. Of course,

if we change the right-hand side of a constraint, it is possible that the LP will be infeasi-

ble. Step 3 of the dual simplex algorithm will indicate whether this is the case.

TA B L E  36

e4 Is Now a Basic Variable in Row 4

Basic Variable

z x1 � 1.25x2 � x3 � s1 � .10s2 � .10s3 � e4 � 280 z1 � 280

z x1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.8s3 � e4 � 24 s1 � 24

z x1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.4s3 � e4 � 8 x3 � 8

z x1 � 1.25x2 � x3 � s1 � 0.5s2 � 1.5s3 � e4 � 2 x1 � 2

z x1 � 0.25x2 � x3 � s1 � 0.5s2 � 1.5s3 � e4 � �10 e4 � �10

TA B L E  37

s2 Enters the Basis in Row 4

Basic Variable

z x1 � .10x2 � x3 � s1 � s2 � 40s3 � 20e4 � 80 z1 � 80

z x1 � 0.5x2 � x3 � s1 � s2 � 02s3 � 24e4 � �16 s1 � �16

z x1 � 0.5x2 � x3 � s1 � s2 � 02s3 � 24e4 � �32 x3 � �32

z x1 � 0.5x2 � x3 � s1 � s2 � 05s3 � 24e4 � 12 x2 � 12

z x1 � 0.5x2 � x3 � s1 � s2 � 03s3 � 22e4 � 20 s2 � 20

TA B L E  38

Tableau Indicating Infeasibility of Dakota Example When x1 � x2 � 12 Is Required

Basic Variable

z x1 x2 � .10x3 � s1 � s2 � 60s3 � 60e4 � �240 z1 � �240

z x1 x2 � 0.5x3 � s1 � s2 � 04s3 � 24e4 � 16 s1 � 16

z x1 x2 � 0.5x3 � s1 � s2 � 02s3 � 24e4 � 32 x2 � 32

z x1 x2 � 0.5x3 � s1 � s2 � 02s3 � 23e4 � �20 x1 � �20

z x1 x2 � 0.5x3 � s1 � s2 � 04s3 � 24e4 � 36 s2 � 36



Solving a Normal Min Problem

To illustrate how the dual simplex can be used to solve a normal min problem, we solve

the following LP:

min z � x1 � 2x2

s.t. x1 � 2x2 � x3 � 4

s.t. 2x1 � x2 � x3 � 6

s.t. 2 �2 �x1, x2, x3 � 0

We begin by multiplying z by �1 to convert the LP to a max problem with objective func-

tion z� � �x1 � 2x2. After subtracting excess variables e1 and e2 from the two constraints,

we obtain the initial tableau in Table 41. Each variable has a nonnegative coefficient in 

row 0, so the dual simplex method can be applied. Before proceeding, we need to find the

basic variables for the constraints. If we multiply each constraint through by �1, we can

use e1 and e2 as basic variables. This yields the tableau in Table 42. At least one constraint

has a negative right-hand side, so this is not an optimal tableau, and we proceed to step 2.

We choose the most negative basic variable (e2) to exit from the basis. Because e2 is

basic in row 2, row 2 will be the pivot row. To determine the entering variable, we find

the following ratios:

x1 ratio � 1/�2 � ��
1

2
�

x2 ratio � 2/�1 � �2

The smaller ratio (in absolute value) is the x1 ratio, so we use EROs to enter x1 into the

basis in row 2 (see Table 43).†

There is no constraint indicating infeasibility (step 3), so we return to step 1. The first

constraint has a negative right-hand side, so the tableau is not optimal, and we go to step

2. Because e1 � �1 is the most negative basic variable, e1 will exit from the basis, and
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TA B L E  39

“Old” Optimal Dakota Tableau If 30 Finishing Hours Are Available

Basic Variable

z x1 � 1.25x2 � x3 � s1 � .10s2 � .10s3 � 380 z1 � 380

z x1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.8s3 � 44 s1 � 44

z x1 � 1.22x2 � x3 � s1 � 0.2s2 � 1.4s3 � 28 x3 � 28

z x1 � 1.25x2 � x3 � s1 � 0.5s2 � 1.5s3 � �3 x1 � �3

TA B L E  40

“New” Optimal Dakota Tableau If 30 Finishing Hours Are Available

Basic Variable

z � 20x1 � .30x2 � x3 � s1 � s2 � 40s3 � 320 z1 � 320

z � 24x1 � 3.3x2 � x3 � s1 � s2 � 42s3 � 32 s1 � 32

z � 24x1 � 3.3x2 � x3 � s1 � s2 � 42s3 � 16 x3 � 16

z � 22x1 � 2.5x2 � x3 � s1 � s2 � 43s3 � 6 x1 � 6

†The interested reader may verify that if we had made an error in performing the ratio test and had chosen x2

to enter the basis, then a negative coefficient in row 0 would have resulted, and dual feasibility would have

been destroyed.



row 1 will be the pivot row. The possible entering variables are x3 and e2. The relevant ra-

tios are

x3 ratio � ��
3

2
� � ��

1

3
�

e2 ratio � ��
1
2

� � �1

The smallest ratio (in absolute value) is ��
1

3
�, so x3 will enter the basis in row 1. After pivot-

ing in x3, the new tableau is as shown in Table 44.† Each right-hand side is non-negative, so

this is an optimal tableau. The original problem was a min problem, so the optimal solution

to the original min problem is z � �
1

3

0
�, x1 � �

1

3

0
�, x3 � �

2

3
�, and x2 � 0.

Observe that each dual simplex tableau (except the optimal dual simplex tableau) has

a z�-value exceeding the optimal z�-value. For this reason, we say that the dual simplex

tableaus are superoptimal. As the dual simplex proceeds, each pivot brings us closer to a

primal feasible solution. Each pivot (barring degeneracy) decreases z�, and we are “less

superoptimal.” Once primal feasibility is obtained, our solution is optimal.
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TA B L E  41

Initial Tableau for Solving Normal Min Problem

z� � 2x1 � 2x2 � x3 � e1 � e2 � 0

z� � 2x1 � 2x2 � x3 � e1 � e2 � 4

z� � 2x1 � 2x2 � x3 � e1 � e2 � 6

TA B L E  42

Initial Tableau in Canonical Form

Basic Variable

z� � 2x1 � 2x1 � x3 � e1 � e2 � 0 z� � 0

z� � 2x1 � 2x2 � x3 � e1 � e2 � �4 e1 � �4

z� � 2x1 � 2x2 � x3 � e1 � e2 � �6 e2 � �6

TA B L E  43

First Dual Simplex Tableau

Basic Variable

z� x1 � �
3
2

�x2 � �
1
2

�x3 � e1 � �
1
2

�e2 � �3 z� � �3

z� x1 � �
5
2

�x2 � �
3
2

�x3 � e1 � �
1
2

�e2 � �1 e1 � �1

z� x1 � �
1
2

�x2 � �
1
2

�x3 � e1 � �
1
2

�e2 � 3 x1 � 3

TA B L E  44

Optimal Tableau for Dual Simplex Example

Basic Variable

z� x1 � �
7
3

�x2 � x3 � �
1
3

�e1 � �
1
3

�e2 � ��
1
3
0
� z� � ��

1
3
0
�

z� x1 � �
5
3

�x2 � x3 � �
2
3

�e1 � �
1
3

�e2 � �
2
3

� x3 � �
2
3

�

z� x1 � �
1
3

�x2 � x3 � �
1
3

�e1 � �
1
3

�e2 � �
1
3
0
� x1 � �

1
3
0
�

†If we had chosen to enter into the basis any variable with a positive coefficient in the pivot row, then we

would have ended up with some negative entries in row 0. This is why any variable that is entered into the ba-

sis must have a negative coefficient in the pivot row.

�
1
2

�

�
1
2

�
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P R O B L E M S
Group A

1 Use the dual simplex method to solve the following LP:

max z � �2x1 � x3

s.t. x1 � x2 � x3 � 5

s.t. x1 � 2x2 � 4x3 � 8

s.t. �2 �4x1, x2, x3 � 0

2 In solving the following LP, we obtain the optimal
tableau shown in Table 45.

max z � 6x1 � x2

s.t. x1 � x2 � 5

s.t. 2x1 � x2 � 6

s.t. 2 �x1, x2 � 0

a Find the optimal solution to this LP if we add the
constraint 3x1 � x2 � 10.

b Find the optimal solution if we add the constraint 
x1 � x2 � 6.

c Find the optimal solution if we add the constraint
8x1 � x2 � 12.

3 Find the new optimal solution to the Dakota problem if
only 20 board ft of lumber are available.

4 Find the new optimal solution to the Dakota problem if
15 carpentry hours are available.

6.12 Data Envelopment Analysis†

Often we wonder if a university, hospital, restaurant, or other business is operating effi-

ciently. The Data Envelopment Analysis (DEA) method can be used to answer this ques-

tion. Our presentation is based on Callen (1991). To illustrate how DEA works, let’s con-

sider a group of three hospitals. To simplify matters, we assume that each hospital “converts”

two inputs into three different outputs. The two inputs used by each hospital are

Input 1 � capital (measured by the number of hospital beds)

Input 2 � labor (measured in thousands of labor hours used during a month)

The outputs produced by each hospital are

Output 1 � hundreds of patient-days during month for patients under age 14

Output 2 � hundreds of patient-days during month for patients between 14 and 65

Output 3 � hundreds of patient-days during month for patients over 65

Suppose that the inputs and outputs for the three hospitals are as given in Table 46.

To determine whether a hospital is efficient, let’s define tr � price or value of one unit

of output r and ws � cost of one unit of input s. The efficiency of hospital i is defined to be

For the data in Table 46, we find the efficiency of each hospital to be as follows:

Hospital 1 efficiency �

Hospital 2 efficiency �

Hospital 3 efficiency �
4t1 � 9t2 � 13t3
��

7w1 � 12w2

5t1 � 7t2 � 10t3
��

8w1 � 15w2

9t1 � 4t2 � 16t3
��

5w1 � 14w2

value of hospital i’s outputs
���

TA B L E  45

Basic Variable

z x1 � 0.2x2 � s1 � 0.3s2 � 18 z1 � 18

z x1 � 0.5x2 � s1 � 0.5s2 � 2 s1 � 2

z x1 � 0.5x2 � s1 � 0.5s2 � 3 x1 � 3

†This section may be omitted without loss of continuity.
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The DEA approach uses the following four ideas to determine if a hospital is efficient.

1 No hospital can be more than 100% efficient. Thus, the efficiency of each hospital

must be less than or equal to 1. For hospital 1, we find that (9t1 � 4t2 � 16t3)/(5w1 �

14w2) � 1. Multiplying both sides of this inequality by (5w1 � 14w2) (this is the trick

we used to simplify blending constraints in Section 3.8!) yields the LP constraint 5w1 �

14w2 � 9t1 � 4t2 � 16t3 � 0.

2 Suppose we are interested in evaluating the efficiency of hospital i. We attempt to

choose output prices (t1, t2, and t3) and input costs (w1 and w2) that maximize efficiency.

If the efficiency of hospital i equals 1, then it is efficient; if the efficiency is less than 1,

then it is inefficient.

3 To simplify computations, we may scale the output prices so that the cost of hospital

i’s inputs equals 1. Thus, for hospital 2 we add the constraint 8w1 � 15w2 � 1.

4 We must ensure that each input cost and output price is strictly positive. If, for ex-

ample, ti � 0, then DEA could not detect an inefficiency involving output i; if wj � 0,

then DEA could not detect an inefficiency involving input j.

Points (1)–(4) lead to the following LPs for testing the efficiency of each hospital.

Hospital 1 LP max z � 9t1 � 4t2 � 16t3 � 5w1 � 14w2 � 0.0001 (1)

Hospital 1 LP s.t. �9t1 � 4t2 � 16t3 � 5w1 � 14w2 � 0.0001 (2)

Hospital 1 LP s.t. �5t1 � 7t2 � 10t3 � 8w1 � 15w2 � 0.0001 (3)

Hospital 1 LP s.t. �4t1 � 9t2 � 13t3 � 7w1 � 12w2 � 0.0001 (4)

Hospital 1 LP s.t. �4t1 � 9t2 � 13t3 � 5w1 � 14w2 � 1.0001 (5)

Hospital 1 LP s.t. � t1 � 9t2 � 13t3 � 5w1 � 14w2 � .0001 (6)

Hospital 1 LP s.t. � t1 � t2 � 13t3 � 5w1 � 14w2 � .0001 (7)

Hospital 1 LP s.t. � t1 � 9t2 � 13t3 � 5w1 � 14w2 � .0001 (8)

Hospital 1 LP s.t. � t1 � 9t2 � 13t3 � 5w1 � 14w2 � .0001 (9)

Hospital 1 LP s.t. � t1 � 9t2 � 13t3 � 5w1 � 14w2 � .0001(10)

Hospital 2 LP max z � 5t1 � 7t2 � 10t3 � 5w1 � 14w2 � 0.0001 (1)

Hospital 2 LP s.t. �9t1 � 4t2 � 16t3 � 5w1 � 14w2 � 0.0001 (2)

Hospital 2 LP s.t. �5t1 � 7t2 � 10t3 � 8w1 � 15w2 � 0.0001 (3)

Hospital 2 LP s.t. �4t1 � 9t2 � 13t3 � 7w1 � 12w2 � 0.0001 (4)

Hospital 2 LP s.t. �4t1 � 9t2 � 13t3 � 8w1 � 15w2 � 1.0001 (5)

Hospital 1 LP s.t. � t1 � 9t2 � 13t3 � 5w1 � 14w2 � .0001 (6)

TA B L E  46

Inputs and Outputs for Hospitals

Inputs Outputs

Hospital 1 2 1 2 3

1 5 14 9 4 16

2 8 15 5 7 10

3 7 12 4 9 13
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Hospital 1 LP s.t. � t1 � t2 � 13t3 � 5w1 � 14w2 � .0001 (7)

Hospital 1 LP s.t. � t1 � 9t2 � 13t3 � 5w1 � 14w2 � .0001 (8)

Hospital 1 LP s.t. � t1 � 9t2 � 13t3 � 5w1 � 14w2 � .0001 (9)

Hospital 1 LP s.t. � t1 � 9t2 � 13t3 � 5w1 � 14w2 � .0001(10)

Hospital 3 LP max z � 4t1 � 9t2 � 13t3 � 5w1 � 14w2 0.0001 (1)

Hospital 3 LP s.t. �9t1 � 4t2 � 16t3 � 5w1 � 14w2 � 0.0001 (2)

Hospital 3 LP s.t. �5t1 � 7t2 � 10t3 � 8w1 � 15w2 � 0.0001 (3)

Hospital 3 LP s.t. �4t1 � 9t2 � 13t3 � 7w1 � 12w2 � 0.0001 (4)

Hospital 2 LP s.t. �4t1 � 9t2 � 13t3 � 7w1 � 12w2 � 1.0001 (5)

Hospital 1 LP s.t. � t1 � 9t2 � 13t3 � 5w1 � 14w2 � .0001 (6)

Hospital 1 LP s.t. � t1 � t2 � 13t3 � 5w1 � 14w2 � .0001 (7)

Hospital 1 LP s.t. � t1 � 9t2 � 13t3 � 5w1 � 14w2 � .0001 (8)

Hospital 1 LP s.t. � t1 � 9t2 � 13t3 � 5w1 � 14w2 � .0001 (9)

Hospital 1 LP s.t. � t1 � 9t2 � 13t3 � 5w1 � 14w2 � .0001(10)

Let’s see how the hospital 1 LP incorporates points (1)–(4). Point (1) maximizes the

efficiency of hospital 1. This is because Constraint (5) implies that the total cost of hos-

pital 1’s inputs equal 1. Constraints (2)–(4) ensure that no hospital is more than 100% ef-

ficient. Constraints (6)–(10) ensure that each input cost and output price is strictly posi-

tive (the .0001 right-hand side is arbitrary; any small positive number may be used).

The LINDO output for these LPs is given in Figures 10(a)–(c). From the optimal ob-

MAX 9 T1 + 4 T2 + 16 T3
SUBJECT TO
       2)  - 9 T1 - 4 T2 - 16 T3 + 5 W1 + 14 W2 >=   0
       3)  - 5 T1 - 7 T2 - 10 T3 + 8 W1 + 15 W2 >=   0
       4)  - 4 T1 - 9 T2 - 13 T3 + 7 W1 + 12 W2 >=   0  
       5)    W1 >=    0.0001
       6)    W2 >=    0.0001
       7)    T1 >=    0.0001 
       8)    T2 >=    0.0001
       9)    T3 >=    0.0001
      10)    5 W1 + 14 W2 =    1
END

LP OPTIMUM FOUND AT STEP       6

        OBJECTIVE FUNCTION VALUE

        1)    1.00000000

VARIABLE          VALUE           REDUCED COST
      T1            .110889            .000000 
      T2            .000100            .000000
      T3            .000100            .000000 
      W1            .000100            .000000
      W2            .071393            .000000

     ROW     SLACK OR SURPLUS      DUAL PRICES
      2)            .000000          -1.000000       
      3)            .515548            .000000  
      4)            .411659            .000000
      5)            .000000            .000000 
      6)            .071293            .000000
      7)            .110789            .000000
      8)            .000000            .000000
      9)            .000000            .000000 
     10)            .000000           1.000000

NO. ITERATIONS=         6

F I G U R E  10(a)

Hospital 1 LP



jective function value to each LP we find that

Hospital 1 efficiency � 1

Hospital 2 efficiency � .773

Hospital 3 efficiency � 1

Thus we find that hospital 2 is inefficient and hospitals 1 and 3 are efficient.

R E M A R K 1 An easy way to create the hospital 2 LP is to use LINDO to modify the objective function of
the hospital 1 LP and the constraint 5w1 � 14w2 � 1. Then it is easy to modify the hospital 2 LP
to create the hospital 3 LP.

Using LINGO to Run a DEA

The following LINGO program (see file DEA.lng) will solve our hospital DEA problem.

When faced with another DEA problem, we begin by changing the numbers of inputs,

outputs, and units. Next we change the resource usage and outputs for each unit. Finally,

by changing number to (say) 1, we can evaluate the efficiency of unit 1. If the optimal ob-

jective function value for unit 1 is less than 1, then unit 1 is inefficient. Otherwise, unit 1

is efficient.

SETS:
INPUTS/1..2/:COSTS;
OUTPUTS/1..3/:PRICES;
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MAX   5 T1 + 7 T2 + 10 T3
SUBJECT TO
       2)  - 9 T1 - 4 T2 - 16 T3 + 5 W1 + 14 W2 >=    0
       3)  - 5 T1 - 7 T2 - 10 T3 + 8 W1 + 15 W2 >=    0
       4)  - 4 T1 - 9 T2 - 13 T3 + 7 W1 + 12 W2 >=    0
       5)    8 W1 + 15 W2 =    1
       6)    W1  >=  0.0001
       7)    W2  >=  0.0001
       8)    T1  >=  0.0001
       9)    T2  >=  0.0001
      10)    T3  >=  0.0001
END

LP OPTIMUM FOUND AT STEP        0

        OBJECTIVE FUNCTION VALUE
   
        1)    .773030000

VARIABLE          VALUE           REDUCED COST
      T1            .079821            .000000   
      T2            .053275            .000000
      T3            .000100            .000000
      W1            .000100            .000000  
      W2            .066613            .000000

   
     ROW     SLACK OR SURPLUS      DUAL PRICES
      2)            .000000           -.261538
      3)            .226970            .000000
      4)            .000000           -.661538  
      5)            .000000            .773333 
      6)            .000000           -.248206  
      7)            .066513            .000000   
      8)            .079721            .000000
      9)            .053175            .000000
     10)            .000000          -2.784615

NO. ITERATIONS=        0 

F I G U R E  10(b)

Hospital 2 LP

DEA.lng



UNITS/1..3/;
UNIN(UNITS,INPUTS):USED;
UNOUT(UNITS,OUTPUTS):PRODUCED;
ENDSETS
NUMBER=2;
@FOR(UNITS(J)|j#EQ#NUMBER:MAX=@SUM(OUTPUTS(I):PRICES(I)*PRODUCED(J,I)));
@FOR(UNITS(J)|J#EQ#NUMBER:@SUM(INPUTS(I):COSTS(I)*USED(J,I))=1);
@FOR(INPUTS(I):COSTS(I)>=.0001);
@FOR(OUTPUTS(I):PRICES(I)>=.0001);
@FOR(UNITS(I):@SUM(INPUTS(J):COSTS(J)*USED(I,J))>=@SUM(OUTPUTS(J):PRICES(J)*PRODUCED(I,J)
)
);
DATA:
USED=5,14,
USED=8,15,
USED=7,12;
PRODUCED=9,4,16,
PRODUCED=5,7,10,
PRODUCED=4,9,13;
ENDDATA
END

Dual Prices and DEA

The DUAL PRICES section of the LINDO output gives us great insight into Hospital 2’s

(or any organization’s found inefficient by DEA) inefficiency. Consider all hospitals whose

efficiency constraints have nonzero dual prices in the hospital 2 LP (Figure 10b). (In our

example, hospitals 1 and 3 have nonzero dual prices.) If we average the output vectors

and input vectors for these hospitals (using the absolute value of the dual price for each

6 . 1 2 Data Envelopment Analysis 339

MAX 4 TI + 9 + T2 + 13 T3
SUBJECT TO
       2) - 9 T1 - 4 T2 - 16 T3 + 5 W1 + 14 W2 >= 0
       3) - 5 T1 - 7 T2 - 10 T3 + 8 W1 + 15 W2 >= 0
       4) - 4 T1 - 9 T2 - 13 T3 + 7 W1 + 12 W2 >= 0
       5)   W1 >=   0.0001
       6)   W2 >=   0.0001
       7)   T1 >=   0.0001
       8)   T2 >=   0.0001
       9)   T3 >=   0.0001
      10)   7 W1 + 12 W2 = 1
END

LP OPTIMUM FOUND AT STEP 7

       OBJECTIVE FUNCTION VALUE

       1)    1.00000000

 VARIABLE        VALUE          REDUCED COST
       T1          .099815           .000000 
       T2          .066605           .000000
       T3          .000100           .000000
       W1          .000100           .000000
       W2          .083275           .000000

      ROW   SLACK OR SURPLUS     DUAL PRICES
       2)          .000000           .000000
       3)          .283620           .000000
       4)          .000000         -1.000000
       5)          .000000           .000000
       6)          .083175           .000000
       7)          .099715           .000000
       8)          .066505           .000000
       9)          .000000           .000000 
      10)          .000000          1.000000

NO. ITERATIONS=       7

F I G U R E  10(c)

Hospital 3 LP



hospital as the weight) we obtain the following:

Averaged Output Vector

.261538 � � � .661538 � � � � �
Averaged Input Vector

.261538 � � � .661538 � � � � �
Suppose we create a composite hospital by combining .261538 of hospital 1 with

.661538 of hospital 3. The averaged output vector tells us that the composite hospital pro-

duces the same amount of outputs 1 and 2 as hospital 2, but the composite hospital pro-

duces 12.785 � 10 � 2.785 more of output 3 (patient days for more than 65 patients).

From the averaged input vector for the composite hospital, we find that the composite hos-

pital uses less of each input than does hospital 2. We now see exactly where hospital 2 is

inefficient!

By the way, the objective function value of .7730 for the hospital 2 LP implies that the

more efficient composite hospital produces its superior outputs by using at most 77.30%

as much of each input. Note that

Input 1 used by composite hospital 	.7730 * (Input 1 used by hospital 2) � 6.2186

and

Input 2 used by composite hospital � .7730 * (Input 2 used by hospital 2) � 11.6

An explanation of why the dual prices are needed to find a composite hospital that is su-

perior to an inefficient hospital is given in Problems 5–7.

15.938

11.600

7

12

5

14

5.785

7.785

12.785

4

9

13

9

64

16
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P R O B L E M S
Group A

1 The Salem Board of Education wants to evaluate the
efficiency of the town’s four elementary schools. The three
outputs of the schools are defined to be

Output 1 � average reading score

Output 2 � average mathematics score

Output 3 � average self-esteem score

The three inputs to the schools are defined to be

Input 1 � average educational level of mothers (defined
by highest grade completed—12 � high
school graduate; 16 � college graduate, and
so on).

Input 2 � number of parent visits to school (per child)

Input 3 � teacher to student ratio

The relevant information for the four schools is given in

Table 47. Determine which (if any) schools are inefficient. For
any inefficient school, determine the nature of the inefficiency.

2 Pine Valley Bank has three branches. You have been
assigned to evaluate the efficiency of each. The following
inputs and outputs are to be used for the study.

Input 1 � labor hours used (hundreds per month)

Input 2 � space used (in hundreds of square feet)

Input 3 � supplies used per month (in dollars)

TA B L E  47

Inputs Outputs

School 1 2 3 1 2 3

1 13 4 .05 9 7 6

2 14 5 .05 10 8 7

3 11 6 .06 11 7 8

4 15 8 .08 9 9 9



6 . 1 Summary 341

S U M M A R Y Graphical Sensitivity Analysis

To determine whether the current basis remains optimal after changing an objective func-

tion coefficient, note that the change affects the slope of the isoprofit line. The current ba-

sis remains optimal as long as the current optimal solution is the last point in the feasi-

ble region to make contact with isoprofit lines as we move in the direction of increasing

z (for a max problem). If the current basis remains optimal, then the values of the deci-

sion variables remain unchanged, but the optimal z-value may change.

To determine whether the current basis remains optimal after changing the right-hand

side of a constraint, find the constraints (possibly including sign restrictions) that are bind-

ing for the current optimal solution. As we change the right-hand side of a constraint, the

Output 1 � loan applications per month

Output 2 � deposits processed per month (in thousands)

Output 3 � checks processed per month (in thousands)

The relevant information is given in Table 48. Use this data
to determine if any bank branches are inefficient. If any
bank branches are inefficient, determine the nature of the
inefficiency.

3 You have been assigned to evaluate the efficiency of the
Port Charles Police Department. Three precincts are to be
evaluated. The inputs and outputs for each precinct are as
follows:

Input 1 � number of police officers

Input 2 � number of vehicles used

Output 1 � number of patrol units responding to service
requests (thousands per year)

Output 2 � number of convictions obtained each year
(in hundreds)

You are given the data in Table 49. Use this information to
determine which precincts, if any, are inefficient. For any in-

efficient precincts, determine the nature of the inefficiency.

4 You have been assigned by Indiana University to evaluate
the relative efficiency of four degree-granting units: Business;
Education; Arts and Sciences; and Health, Physical
Education, and Recreation (HPER). You are given the
information in Table 50. Use DEA to find all inefficient
units. Comment on the nature of the inefficiencies you found.

Group B

5 Explain why the amount of each output produced by the
composite hospital obtained by averaging hospitals 1 and 3
(with the absolute value of the dual prices as weights) is at
least as large as the amount of the corresponding output
produced by hospital 2. (Hint: Price out variables t1, t2, and
t3, and use the fact that the coefficient of these variables in
row 0 of the optimal tableau must equal 0.)

6 Explain why the dual price for the 8w1 � 15w2 � 1
constraint must equal the optimal z-value for the hospital 2 LP.

7 a Explain why the amount of each input used by the
composite hospital is at most (efficiency of hospital 2) *

TA B L E  48

Inputs Outputs

Bank 1 2 3 1 2 3

1 15 20 50 200 15 35

2 14 23 51 220 18 45

3 16 19 51 210 17 20

TA B L E  49

Inputs Outputs

Precinct 1 2 1 2

1 200 160 16 18.5

2 300 190 18 19.5

3 400 120 10 11.5

TA B L E  50

Support Supply Budget Credit Hours
Faculty Staff (in Millions) (in Thousands) Research Publications

Business 150 170 25 15.4 1225

Education 160 120 23 15.4 1170

Arts and Sciences 800 140 20 56.4 1,300

HPER 130 115 21 22.1 1140
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current basis remains optimal as long as the point where the constraints are binding re-

mains feasible. Even if the current basis remains optimal, the values of the decision vari-

ables and the optimal z-value may change.

Shadow Prices

The shadow price of the ith constraint of a linear programming problem is the amount by

which the optimal z-value is improved if the right-hand side is increased by 1. The shadow

price of the ith constraint is the DUAL PRICE for row i � 1 in the LINDO output.

Notation

BVi � basic variable for ith constraint in the optimal tableau

cBV � row vector whose ith element is the objective  function coefficient for BVi in 

the LP

aj � column for variable xj in constraints of original LP

b � right-hand side vector for original LP

c�j � coefficient of xj in row 0 of the optimal tableau

How to Compute Optimal Tableau from Initial LP

Column for xj in optimal tableau’s constraints � B�1aj (5)

Right-hand side of optimal tableau’s constraints � B�1b (6)

c�j � cBVB�1aj � cj (10)

Coefficient of slack variable si in optimal row 0 �

ith element of cBVB�1 (10�)

Coefficient of excess variable ei in optimal row 0 �

�(ith element of cBVB�1) (10�)

Coefficient of artificial variable ai in optimal row 0 �

(ith element of cBVB�1) � M (10�)

Right-hand side of optimal row 0 � cBVB�1b (11)

Sensitivity Analysis

For a max problem, a tableau is optimal if and only if each variable has a nonnegative 

coefficient in row 0 and each constraint has a nonnegative right-hand side. For a min 

problem, a tableau is optimal if and only if each variable has a nonpositive coefficient in

row 0 and each constraint has a nonnegative right-hand side.

If the current basis remains optimal after changing the objective function coefficient

of a nonbasic variable, the values of the decision variables and the optimal z-value remain

unchanged. With a basic variable, the values of the decision variables remain unchanged,

but the optimal z-value may change. Both the values of the decision variables and the op-

timal z-value may change after changing a right-hand side. The new values of the deci-

sion variables may be found by computing B�1 (new right-hand side vector). The new op-

timal z-value may be determined by using shadow prices or Equation (11).
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Objective Function Coefficient Range

The OBJ COEFFICIENT RANGES section of the LINDO output gives the range of val-

ues for an objective function coefficient for which the current basis remains optimal.

Within this range, the values of the decision variables remain unchanged, but the optimal

z-value may or may not change.

Reduced Cost

For any nonbasic variable, the reduced cost for the variable is the amount by which its

objective function coefficient must be improved before that variable will be a basic vari-

able in some optimal solution to the LP.

Right-Hand Side Range

If the right-hand side of a constraint remains within the RIGHTHAND SIDE RANGE of

the LINDO printout, the current basis remains optimal, and the LINDO listing for the

constraint’s dual price may be used to determine how the change affects the optimal 

z-value. Even if the right-hand side of a constraint remains within the range, the values

of the decision variables will probably change.

Finding the Dual of an LP

For a normal (all � constraints and all variables nonnegative) max problem or a normal

min (all � constraints and all variables nonnegative) problem, we find the dual as follows:

If we read the primal across in Table 14, we read the dual down. If we read the primal

down in Table 14, we read the dual across. We use xi’s and z as variables for a maxi-

mization problem and yj’s and w as variables for a minimization problem.

To find the dual of a nonnormal max problem:

Step 1 Fill in Table 14 so that the primal can be read across.

Step 2 After making the following changes, the dual can be read down in the usual fash-

ion: (a) If the ith primal constraint is a � constraint, the corresponding dual variable yi must

satisfy yi � 0. (b) If the ith primal constraint is an equality, then the dual variable yi is now

urs. (c) If the ith primal variable is urs, then the ith dual constraint will be an equality.

To find the dual of a nonnormal min problem:

Step 1 Write out the primal so it can be read down in Table 14.

Step 2 Except for the following changes, the dual can be read across the table: (a) If the

ith primal constraint is a � constraint, then the corresponding dual variable xi must sat-

isfy xi � 0. (b) If the ith primal constraint is an equality, then the corresponding dual vari-

able xi will be urs. (c) If the ith primal variable yi is urs, then the ith dual constraint is an

equality.

The Dual Theorem

Suppose BV is an optimal basis for the primal. Then cBVB�1 is an optimal solution to the

dual. Also, z� � w�.
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Finding the Optimal Solution to the Dual of an LP

If the primal is a max problem, then the optimal dual solution may be read from row 0

of the optimal tableau by using the following rules:

� coefficient of si in optimal row 0 (31)

� �(coefficient of ei in optimal row 0) (31�)

� (coefficient of ai in optimal row 0) � M (31�)

If the primal is a min problem, then the optimal dual solution may be read from row

0 of the optimal tableau by using the following rules:

� coefficient of si in optimal row 0

� �(coefficient of ei in optimal row 0)

� (coefficient of ai in optimal row 0) � M

Shadow Prices (Again)

For a maximization LP, the shadow price of the ith constraint is the value of the ith dual

variable in the optimal dual solution. For a minimization LP, the shadow price of the ith

constraint � �(ith dual variable in the optimal dual solution). The shadow price of the ith

constraint is found in row i � 1 of the DUAL PRICES portion of the LINDO printout.

New optimal z-value � (old optimal z-value)

� (Constraint i shadow price) 
bi (max problem) (37)

New optimal z-value � (old optimal z-value)

� (Constraint i shadow price) 
bi (min problem) (37�)

A � constraint will have a nonpositive shadow price; a � constraint will have a non-

negative shadow price; and an equality constraint may have a positive, negative, or zero

shadow price.

Duality and Sensitivity Analysis

Our proof of the Dual Theorem showed that if a set of basic variables BV is feasible, then

BV is optimal (that is, each variable in row 0 has a nonnegative coefficient) if and only

if the associated dual solution, cBVB�1, is dual feasible.

This result can be used to yield an alternative way of doing the following types of sen-

sitivity analysis:

Change 1 Changing the objective function coefficient of a nonbasic variable

Change 4 Changing the column of a nonbasic variable

Change 5 Adding a new activity

Optimal value of dual variable xi

if Constraint i is an equality

constraint

Optimal value of dual variable xi

if Constraint i is a � constraint

Optimal value of dual variable xi

if Constraint i is a � constraint

Optimal value of dual variable yi

if Constraint i is an equality

constraint

Optimal value of dual variable yi

if Constraint i is a � constraint

Optimal value of dual variable yi

if Constraint i is a � constraint



6 . 1 Summary 345

In each case, simply determine whether a change in the original LP maintains dual fea-

sibility. If dual feasibility is maintained, then the current basis remains optimal. If dual

feasibility is not maintained, then the current basis is no longer optimal.

Complementary Slackness

T H E O R E M  3

Let

x � � �
be a feasible primal solution and y � [ y1 y2 ��� ym] be a feasible dual solution.

Then x is primal optimal and y is dual optimal if and only if

siyi � 0 (i � 1, 2, . . . , m) (38)

ejxj � 0 ( j � 1, 2, . . . , n) (39)

The Dual Simplex Method

The dual simplex method can be applied (to a max problem) whenever there is a basic

solution in which each variable has a nonnegative coefficient in row 0. If we have found

such a basic solution, then the dual simplex method proceeds as follows:

Step 1 If the right-hand side of each constraint is nonnegative, then an optimal solution

has been found; if not, then at least one constraint has a negative right-hand side, and we

go to step 2.

Step 2 Choose the most negative basic variable as the variable to leave the basis. The

row in which this variable is basic will be the pivot row. To select the variable that enters

the basis, compute the following ratio for each variable xj that has a negative coefficient

in the pivot row:

Choose the variable that has the smallest ratio (absolute value) as the entering variable.

Use EROs to make the entering variable a basic variation in the pivot row.

Step 3 If there is any constraint in which the right-hand side is negative and each vari-

able has a nonnegative coefficient, then the LP has no feasible solution. Infeasibility

would be indicated by the presence (after possibly several pivots) of a constraint such as

x1 � 2x2 � x3 � �5. If no constraint indicating infeasibility is found, return to step 1.

The dual simplex method is often used in the following situations:

1 Finding the new optimal solution after a constraint is added to an LP

2 Finding the new optimal solution after changing an LP’s right-hand side

3 Solving a normal min problem

Coefficient of xj in row 0
����

x1

x2

���

xn

T H E O R E M  3
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R E V I E W  P R O B L E M S

All problems from Sections 5.2 and 5.3 are relevant, along
with Chapter 5 Review Problems 1, 2, 6, and 7.

Group A

1 Consider the following LP and its optimal tableau 
(Table 51):

max z � 4x1 � x2

s.t. x1 � 2x2 � 6

s.t. x1 � x2 � 3

s.t. 2x1 � x2 � 10

s.t. 2 �2x1, x2 � 0

a Find the dual of this LP and its optimal solution.

b Find the range of values of b3 for which the current
basis remains optimal. If b3 � 11, what would be the
new optimal solution?

2 For the LP in Problem 1, graphically determine the
range of values on c1 for which the current basis remains
optimal. (Hint: The feasible region is a line segment.)

3 Consider the following LP and its optimal tableau 
(Table 52):

max z � 5x1 � x2 � 2x3

s.t. x1 � x2 � x3 � 6

s.t. 6x1 � x2 � x3 � 8

s.t. 6x1 � x2 � x3 � 2

s.t. 6 � �x1, x2, x3 � 0

a Find the dual to this LP and its optimal solution.

b Find the range of values of c1 for which the current
basis remains optimal.

c Find the range of values of c2 for which the current
basis remains optimal.

4 Carco manufactures cars and trucks. Each car
contributes $300 to profit and each truck, $400. The

resources required to manufacture a car and a truck are
shown in Table 53. Each day, Carco can rent up to 98 Type
1 machines at a cost of $50 per machine. The company now
has 73 Type 2 machines and 260 tons of steel available.
Marketing considerations dictate that at least 88 cars and at
least 26 trucks be produced. Let

X1 � number of cars produced daily

X2 � number of trucks produced daily

M1 � type 1 machines rented daily

To maximize profit, Carco should solve the LP given in Fig-
ure 11. Use the LINDO output to answer the following
questions:

a If cars contributed $310 to profit, what would be the
new optimal solution to the problem?

b What is the most that Carco should be willing to pay
to rent an additional Type 1 machine for 1 day?

c What is the most that Carco should be willing to pay
for an extra ton of steel?

d If Carco were required to produce at least 86 cars,
what would Carco’s profit become?

e Carco is considering producing jeeps. A jeep con-
tributes $600 to profit and requires 1.2 days on machine
1, 2 days on machine 2, and 4 tons of steel. Should
Carco produce any jeeps?

5 The following LP has the optimal tableau shown in 
Table 54.

max z � 4x1 � x2

s.t. 3x1 � x2 � 6

s.t. 2x1 � x2 � 4

s.t. x1 � x2 � 3

s.t. 2 �x1, x2 � 0

a Find the dual of this LP and its optimal solution.

b Find the range of values of the objective function co-
efficient of x2 for which the current basis remains optimal.

c Find the range of values of the objective function co-
efficient of x1 for which the current basis remains optimal.

6 Consider the following LP and its optimal tableau 
(Table 55):

max z � 3x1 � x2 � x3

s.t. 2x1� x2 � x3 � 8

s.t. 4x1 � x2� x3 � 10

s.t. 4 � �x1, x2, x3 � 0

TA B L E  51

z x1 x2 e2 s3 a1 a2 rhs

1 0 0 0 �
7
3

� M � �
2
3

� M �
5
3
8
�

0 0 1 0 ��
1
3

� ��
2
3

� ��0 �
2
3

�

0 1 0 0 �
2
3

� ��
1
3

� ��0 �
1
3
4
�

0 0 0 1 1 �1 �1 1

TA B L E  52

z x1 x2 x3 s1 s2 s3 rhs

1 0 ��
1
6

� 0 0 �
5
6

� �
7
6

� 9

0 0 ��
1
6

� 0 1 ��
1
6

� ��
5
6

� 3

0 1 �
1
6

� 0 0 ��
1
6

� ��
1
6

� 1

0 0 �1 1 0 0 �1 2

TA B L E  53

Days on Days on
Type 1 Type 2 Tons of

Vehicle Machine Machine Steel

Car 0.8 0.6 2

Truck 1.8 0.7 3
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a Find the dual of this LP and its optimal solution.

b Find the range of values of b2 for which the current
basis remains optimal. If b2 � 12, what is the new op-
timal solution?

7 Consider the following LP:

max z � 3x1 � 4x2

s.t. 2x1 � x2 � 8

s.t. 4x1 � x2 � 10

s.t. 4 �x1, x2 � 0

The optimal solution to this LP is z � 32, x1 � 0, x2 � 8,
s1 � 0, s2 � 2. Graphically find the range of values of c1

for which the current basis remains optimal.

8 Wivco produces product 1 and product 2 by processing
raw material. As much as 90 lb of raw material may be
purchased at a cost of $10/lb. One pound of raw material
can be used to produce either 1 lb of product 1 or 0.33 lb

MAX     300 X1 + 400 X2 - 50 M1
SUBJECT TO
       2)   0.8 X1 + X2 - M1 <=     0
       3)    M1 <=  98
       4)   0.6 X1 + 0.7 X2 <=   73
       5)   2 X1 + 3 X2 <=   260
       6)    X1 >=   88
       7)    X2 >=   26
END

    LP OPTIMUM FOUND  AT STEP    1

         OBJECTIVE FUNCTION VALUE

   1)        32540.0000

VARIABLE          VALUE         REDUCED COST
       X1         88.000000         0.000000
       X2         27.599998         0.000000
       M1         98.000000         0.000000

   ROW       SLACK OR SURPLUS    DUAL PRICES
       2)          0.000000       400.000000
       3)          0.000000       350.000000
       4)          0.879999         0.000000
       5)          1.200003         0.000000
       6)          0.000000       -20.000000
       7)          1.599999         0.000000

NO. ITERATIONS=        1

   RANGES IN WHICH THE BASIS IS UNCHANGED

                          OBJ COEFFICIENT RANGES
VARIABLE         CURRENT        ALLOWABLE         ALLOWABLE
                  COEF          INCREASE          DECREASE
      X1        300.000000        20.000000        INFINITY
      X2        400.000000       INFINITY           25.000000
      M1        -50.000000       INFINITY          350.000000

                          RIGHTHAND SIDE RANGES
    ROW          CURRENT        ALLOWABLE         ALLOWABLE
                   RHS          INCREASE          DECREASE
       2          0.000000         0.400001          1.599999
       3         98.000000         0.400001          1.599999
       4         73.000000       INFINITY            0.879999
       5        260.000000       INFINITY            1.200003
       6         88.000000         1.999999          3.000008
       7         26.000000         1.599999        INFINITY

F I G U R E  11

LINDO Output for Carco (Problem 4)

TA B L E  54

z x1 x2 e1 e2 a1 a2 a3 rhs

1 0 3 0 0 M M M � 4 12

0 1 1 0 0 �0 �0 1 13

0 0 2 1 0 �1 �0 3 13

0 0 1 0 1 �0 �1 2 12

TA B L E  55

z x1 x2 x3 s1 s2 rhs

1 0 0 1 �
1
2

� �
1
2

� 9

0 0 1 3 2 �1 6

0 1 0 �1 ��
1
2

� �
1
2

� 1
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of product 2. Using a pound of raw material to produce a
pound of product 1 requires 2 hours of labor or 3 hours to
produce 0.33 lb of product 2. A total of 200 hours of labor
are available, and at most 40 pounds of product 2 can be
sold. Product 1 sells for $13/lb, and product 2 sells for
$40/lb. Let

RM � pounds of raw material processed

P1 � pounds of raw material used to produce product 1

P2 � pounds of raw material used to produce product 2

To maximize profit, Wivco should solve the following LP:

max z � 13P1 � 40(0.33)P2 � 10RM

s.t. RM � P1 � P2

s.t. RM � 2P1 � 3P2 � 200

s.t. RM � 2P1 � 3P2 � 90

s.t. RM P1 0.33P2 � 40

s.t. RM P1, P2, RM � 0

Use the LINDO output in Figure 12 to answer the follow-
ing questions:

a If only 87 lb of raw material could be purchased,
what would be Wivco’s profits?

MAX     13 P1 + 13.2 P2 - 10 RM
SUBJECT TO
       2) - P1 - P2 + RM >= 0
       3)  2 P1 + 3 P2 <=   200
       4)   RM <=   90
       5)  0.33 P2 <=  40
END

    LP OPTIMUM FOUND  AT STEP    3

         OBJECTIVE FUNCTION VALUE

 1)         274.000000

VARIABLE         VALUE          REDUCED COST
       P1        70.000000          0.000000
       P2        20.000000          0.000000
       RM        90.000000          0.000000

    ROW    SLACK OR SURPLUS      DUAL PRICES
       2)        0.000000         -12.600000
       3)        0.000000           0.200000
       4)        0.000000           2.600000
       5)       33.400002           0.000000

NO. ITERATIONS=     3

   RANGES IN WHICH THE BASIS IS UNCHANGED

                          OBJ COEFFICIENT RANGES
VARIABLE         CURRENT        ALLOWABLE         ALLOWABLE
                  COEF          INCREASE          DECREASE
      P1         13.000000         0.200000          0.866667
      P2         13.200000         1.300000          0.200000
      RM        -10.000000       INFINITY            2.600000

                          RIGHTHAND SIDE RANGES
    ROW          CURRENT        ALLOWABLE         ALLOWABLE
                   RHS          INCREASE          DECREASE
       2          0.000000        23.333334         10.000000
       3        200.000000        70.000000         20.000000 
       4         90.000000        10.000000         23.333334
       5         40.000000       INFINITY           33.400002

F I G U R E  12

LINDO Output for Wivco (Problem 8)

b If product 2 sold for $39.50/lb, what would be the
new optimal solution?

c What is the most that Wivco should pay for another
pound of raw material?

d What is the most that Wivco should pay for another
hour of labor?

e Suppose that 1 lb of raw material could also be used
to produce 0.8 lb of product 3, which sells for $24/lb.
Processing 1 lb of raw material into 0.8 lb of product 3
requires 7 hours of labor. Should Wivco produce any of
product 3?

9 Consider the following LP and its optimal tableau 
(Table 56):

max z � 3x1 � 4x2 � x3

s.t. x1 � x2 � x3 � 50

s.t. 2x1 � x2 � x3 � 15

s.t. 2x1 � x2 � x3 � 10

s .t. 2 � �x1, x2, x3 � 0

a Find the dual of this LP and its optimal solution.

b Find the range of values of the objective function co-
efficient of x1 for which the current basis remains optimal.

c Find the range of values of the objective function coef-
ficient for x2 for which the current basis remains optimal.



6 . 1 Review Problems 349

10 Consider the following LP and its optimal tableau
(Table 57):

max z � 3x1 � 2x2

s.t. 2x1 � 5x2 � 8

s.t. 3x1 � 7x2 � 10

s.t. 2 � 7x1, x2 � 0

a Find the dual of this LP and its optimal solution.

b Find the range of values of b2 for which the current
basis remains optimal. Also find the new optimal solu-
tion if b2 � 5.

11 Consider the following LP:

max z � 3x1 � x2

s.t. 2x1 � x2 � 8

s.t. 4x1 � x2 � 10

s.t. 4 �x1, x2 � 0

The optimal solution to this LP is z � 9, x1 � 1, x2 � 6.
Graphically find the range of values of b2 for which the cur-
rent basis remains optimal.

12 Farmer Leary grows wheat and corn on his 45-acre
farm. He can sell at most 140 bushels of wheat and 120
bushels of corn. Each planted acre yields either 5 bushels
of wheat or 4 bushels of corn. Wheat sells for $30 per
bushel, and corn sells for $50 per bushel. Six hours of labor
are needed to harvest an acre of wheat, and 10 hours are
needed to harvest an acre of corn. As many as 350 hours of
labor can be purchased at $10 per hour. Let

A1 � acres planted with wheat

A2 � acres planted with corn

L � hours of labor that are purchased

To maximize profits, farmer Leary should solve the follow-
ing LP:

max z � 150A1 � 200A2 � 10L

s.t. A1 � A2 � L � 45

s.t. 6A1 � 10A2 � L � 0

s.t. 6A1 � 10A2 � L � 350

s.t. 5A1 � 10A2 � L � 140

s.t. 5A1 � 4A2 � L � 120

s .t. 5 � 10 �A1, A2, L � 0

Use the LINDO output in Figure 13 to answer the follow-
ing questions:

a What is the most that Leary should pay for an addi-
tional hour of labor?

b What is the most that Leary should pay for an addi-
tional acre of land?

c If only 40 acres of land were available, what would
be Leary’s profit?

d If the price of wheat dropped to $26, what would be
the new optimal solution?

e Farmer Leary is considering growing barley. De-
mand for barley is unlimited. An acre yields 4 bushels
of barley and requires 3 hours of labor. If barley sells
for $30 per bushel, should Leary produce any barley?

13 Consider the following LP and its optimal tableau
(Table 58):

max z � 4x1 � x2 � 2x3

s.t. 8x1 � 3x2 � x3 � 2

s.t. 6x1 � x2 � x3 � 8

s.t. 6 � 3 �x1, x2, x3 � 0

a Find the dual to this LP and its optimal solution.

b Find the range of values of the objective function co-
efficient of x3 for which the current basis remains optimal.

c Find the range of values of the objective function co-
efficient of x1 for which the current basis remains optimal.

14 Consider the following LP and its optimal tableau
(Table 59):

max z � 3x1 � x2

s.t. 2x1 � x2 � 4

s.t. 3x1 � 2x2 � 6

s.t. 4x1 � 2x2 � 7

s.t. x1 � 0, x2 � 0

a Find the dual to this LP and its optimal solution.

b Find the range of values of the right-hand side of the
third constraint for which the current basis remains op-
timal. Also find the new optimal solution if the right-
hand side of the third constraint were �

1

2

5
�.

15 Consider the following LP:

max z � 3x1 � x2

s.t. 4x1 � x2 � 7

s.t. 5x1 � 2x2 � 10

s.t. 5 � 2x1, x2 � 0

The optimal solution to this LP is z � �
1

3

7
�, x1 � �

4

3
�, x2 � �

5

3
�.

Use the graphical approach to determine the range of values
for the right-hand side of the second constraint for which
the current basis remains optimal.

16 Zales Jewelers uses rubies and sapphires to produce
two types of rings. A Type 1 ring requires 2 rubies, 3
sapphires, and 1 hour of jeweler’s labor. A Type 2 ring
requires 3 rubies, 2 sapphires, and 2 hours of jeweler’s labor.
Each Type 1 ring sells for $400, and each Type 2 ring sells
for $500. All rings produced by Zales can be sold. Zales
now has 100 rubies, 120 sapphires, and 70 hours of jeweler’s

TA B L E  56

z x1 x2 x3 s1 e2 a2 a3 rhs

1 �1 0 0 1 0 M M � 3 80

0 �3 0 0 1 1 �1 �2 15

0 �0 0 1 1 0 �0 �2 40

0 �1 1 0 0 0 �0 �1 10

TA B L E  57

z x1 x2 s1 s2 rhs

1 0 0 0 1 10

0 0 �
1
3

� 1 ��
2
3

� �
4
3

�

0 1 �
7
3

� 0 �
1
3

� �
1
3
0
�
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labor. Extra rubies can be purchased at a cost of $100 per
ruby. Market demand requires that the company produce at
least 20 Type 1 rings and at least 25 Type 2 rings. To
maximize profit, Zales should solve the following LP:

X1 � Type 1 rings produced

X2 � Type 2 rings produced

R � number of rubies purchased

max z � 400X1 � 500X2 � 100R

s.t. 2X1 � 3X2 � R � 100

s.t. 3X1 � 2X2 � R � 120

s.t. X1 � 2X2 � R � 70

s.t. X1 � 2X2 � R � 20

s.t. 2X1 � 2X2, X2 � 25

s.t. � �X1, X2 � 0

Use the LINDO output in Figure 14 to answer the follow-
ing questions:

a Suppose that instead of $100, each ruby costs $190.
Would Zales still purchase rubies? What would be the
new optimal solution to the problem?

F I G U R E  13

LINDO Output for Wheat/Corn (Problem 12)

TA B L E  58

z x1 x2 x3 s1 s2 rhs

1 8 1 0 0 �2 16

0 2 2 0 1 �1 14

0 6 1 1 0 �1 18

TA B L E  59

z x1 x2 s1 e2 a2 a3 rhs

1 0 0 0 �1 M � 1 M � �
3
2

� �
9
2

�

0 0 0 1 �0 �0 ��
1
2

� �
1
2

�

0 0 1 0 �2 �2 ��
3
2

� �
3
2

�

0 1 0 0 �1 �1 �1 1
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b Suppose that Zales were only required to produce at
least 23 Type 2 rings. What would Zales’ profit now be?

c What is the most that Zales would be willing to pay
for another hour of jeweler’s labor?

d What is the most that Zales would be willing to pay
for another sapphire?

e Zales is considering producing Type 3 rings. Each
Type 3 ring can be sold for $550 and requires 4 rubies,
2 sapphires, and 1 hour of jeweler’s labor. Should Zales
produce any Type 3 rings?

17 Use the dual simplex method to solve the following LP:

max z � �2x1 � x2

s.t. x1 � x2 � 5

s.t. x1 � 2x2 � 8

s.t. �2x1, x2 � 0

18 Consider the following LP:

MAX     400 X1 + 500 X2 - 100 R
SUBJECT TO
       2)   2 X1 + 3 X2 - R <= 100
       3)   3 X1 + 2 X2 <=  120  
       4)    X1 + 2 X2 <=  70
       5)    X1 >=   20
       6)    X2 >=   25
END

    LP OPTIMUM FOUND   AT STEP  2

         OBJECTIVE FUNCTION VALUE

1)          19000.0000

VARIABLE         VALUE          REDUCED COST
       X1        20.000000          0.000000
       X2        25.000000          0.000000
        R        15.000000          0.000000

   ROW     SLACK OR SURPLUS      DUAL PRICES
       2)        0.000000         100.000000
       3)       10.000000           0.000000
       4)        0.000000         200.000000
       5)        0.000000           0.000000
       6)        0.000000        -200.000000 

NO. ITERATIONS=     2

  RANGES IN WHICH THE BASIS IS UNCHANGED

                         OBJ COEFFICIENT RANGES
VARIABLE        CURRENT        ALLOWABLE         ALLOWABLE
                 COEF          INCREASE          DECREASE
      X1       400.000000       INFINITY          100.000000
      X2       500.000000       200.000000        INFINITY
       R      -100.000000       100.000000        100.000000

                         RIGHTHAND SIDE RANGES
    ROW        CURRENT         ALLOWABLE         ALLOWABLE
                 RHS           INCREASE          DECREASE
       2      100.000000         15.000000        INFINITY 
       3      120.000000        INFINITY           10.000000
       4       70.000000          3.333333          0.000000
       5       20.000000          0.000000        INFINITY
       6       25.000000          0.000000          2.500000

F I G U R E  14

LINDO Output for Jewelry (Problem 16)

max z � �4x1 � x2

s.t. 4x1 � 3x2 � 6

s.t. 4x1 � 2x2 � 3

s.t. 3x1 � x2 � 3

s.t. 3 � 2x1, x2 � 0

After subtracting an excess variable e1 from the first constraint,
adding a slack variable s2 to the second constraint, and adding
artificial variables a1 and a3 to the first and third constraints,
the optimal tableau for this LP is as shown in Table 60.

a Find the dual to this LP and its optimal solution.

b If we changed this LP to

max z � �4x1 � x2 � x3

s.t. 4x1 � 3x2 � x3 � 6

s.t. x1 � 2x2 � x3 � 3

s.t. 3x1 � x2 � x3 � 3

s .t. 3 �2 �x1, x2, x3 � 0

would the current optimal solution remain optimal?
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19 Consider the following LP:

max z � �2x1 � 6x2

s.t. �x1 � x2 � 2

s.t. �x1 � x2 � 1

s.t. �x1, x2 � 0

This LP is unbounded. Use this fact to show that the fol-
lowing LP has no feasible solution:

min 2y1 � y2

s.t. 0,y1 � y2 � � 2

s.t. 0,y1 � y2 � 6

y1 � 0, y2 � 0

20 Use the Theorem of Complementary Slackness to find
the optimal solution to the following LP and its dual:

max z � 3x1 � 4x2 � x3 � 5x4

s.t. x1 � 2x2 � x3 � 2x4 � 5

s.t. 2x1 � 3x2 � x3 � 3x4 � 8

s.t. 2 � 3 � 3x1, x2, x3, x4 � 0

21 z � 8, x1 � 2, x2 � 0 is the optimal solution to the
following LP:

max z � 4x1 � x2

s.t. 3x1 � x2 � 6

s.t. 5x1 � 3x2 � 15

x1, x2 � 0

Use the graphical approach to answer the following ques-
tions:

a Determine the range of values of c1 for which the
current basis remains optimal.

b Determine the range of values of c2 for which the
current basis remains optimal.

c Determine the range of values of b1 for which the
current basis remains optimal.

d Determine the range of values of b2 for which the
current basis remains optimal.

22 Radioco manufactures two types of radios. The only
scarce resource that is needed to produce radios is labor.
The company now has two laborers. Laborer 1 is willing to
work up to 40 hours per week and is paid $5 per hour.
Laborer 2 is willing to work up to 50 hours per week and is
paid $6 per hour. The price as well as the resources required
to build each type of radio are given in Table 61.

a Letting xi be the number of type i radios produced
each week, show that Radioco should solve the follow-
ing LP (its optimal tableau is given in Table 62):

max z � 3x1 � 2x2

s.t. x1 � 2x2 � 40

s.t. 2x1 � x2 � 50

s.t. 2 � 2x1, x2 � 0

b For what values of the price of a Type 1 radio would
the current basis remain optimal?

c For what values of the price of a Type 2 radio would
the current basis remain optimal?

d If laborer 1 were willing to work only 30 hours per
week, would the current basis remain optimal?

e If laborer 2 were willing to work as many as 60 hours
per week, would the current basis remain optimal?

f If laborer 1 were willing to work an additional hour,
what is the most that Radioco should pay?

g If laborer 2 were willing to work only 48 hours,
what would Radioco’s profits be? Verify your answer by
determining the number of radios of each type that
would be produced.

h A Type 3 radio is under consideration for produc-
tion. The specifications of a Type 3 radio are as follows:
price, $30; 2 hours from laborer 1; 2 hours from laborer
2; cost of raw materials, $3. Should Radioco manufac-
ture any Type 3 radios?

23 Beerco manufactures ale and beer from corn, hops,
and malt. Currently, 40 lb of corn, 30 lb of hops, and 40 lb
of malt are available. A barrel of ale sells for $40 and
requires 1 lb of corn, 1 lb of hops, and 2 lb of malt. A barrel
of beer sells for $50 and requires 2 lb of corn, 1 lb of hops,
and 1 lb of malt. Beerco can sell all ale and beer that is
produced. To maximize total sales revenue, Beerco should
solve the following LP:

max z � 40ALE � 50BEER

s.t. ALE � 2BEER � 40 (Corn constraint)

s.t. ALE � BEER � 30 (Hops constraint)

s.t. 2ALE � BEER � 40 (Malt constraint)

TA B L E  60

z x1 x2 e1 s2 a1 a3 rhs

1 0 0 0 ��
1
5

� M M � �
7
5

� ��
1
5
8
�

0 0 1 0 ��
3
5

� �0 ��
1
5

� ��
6
5

�

0 1 0 0 ��
1
5

� �0 ��
2
5

� ��
3
5

�

0 0 0 1 �1 �1 �1 �0

TA B L E  61

Radio 1 Radio 2

Resource Resource
Price ($) Required Price ($) Required

25 Laborer 1: 22 Laborer 1:
1 hour 2 hours

Laborer 2: Laborer 2:
2 hours 2 hours

Raw material Raw material
cost: $5 cost: $4

TA B L E  62

z x1 x2 s1 s2 rhs

1 0 0 ��
1
3

� ��
4
3

� 80

0 1 0 ��
1
3

� ��
2
3

� 20

0 0 1 ��
2
3

� ��
1
3

� 10
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s.t. 2 � 2ALE, BEER � 0

ALE � barrels of ale produced, and BEER � barrels of
beer produced. An optimal tableau for this LP is shown in
Table 63.

a Write down the dual to Beerco’s LP and find its op-
timal solution.

b Find the range of values of the price of ale for which
the current basis remains optimal.

c Find the range of values of the price of beer for
which the current basis remains optimal.

d Find the range of values of the amount of available
corn for which the current basis remains optimal.

e Find the range of values of the amount of available
hops for which the current basis remains optimal.

f Find the range of values of the amount of available
malt for which the current basis remains optimal.

g Suppose Beerco is considering manufacturing malt
liquor. A barrel of malt liquor requires 0.5 lb of corn, 3
lb of hops, and 3 lb of malt and sells for $50. Should
Beerco manufacture any malt liquor?

h Suppose we express the Beerco constraints in ounces.
Write down the new LP and its dual.

i What is the optimal solution to the dual of the new
LP? (Hint: Think about what happens to cBVB�1. Use
the idea of shadow prices to explain why the dual to the
original LP (pounds) and the dual to the new LP (ounces)
should have different optimal solutions.)

Group B

24 Consider the following LP:

max z � �3x1 � x2 � 2x3

s.t. �2x1 � x2 � 2x3 � 3

s.t. �x1 � 3x2 � 3x3 � �1

s.t. �2x1 � 3x2 � 3x3 � �2

s .t. �2 �3 �x1, x2, x3 � 0

a Find the dual to this LP and show that it has the
same feasible region as the original LP.

b Use weak duality to show that the optimal objective
function value for the LP (and its dual) must be 0.

25 Consider the following LP:

max z � 2x1 � x2 � x3

s.t. x1 � x2 � x3 � 1

s.t. x1 � x2 � x3 � 2

s.t. x1 � x2 � x3 � 3

s.t. � �x1, x2, x3 � 0

It is given that

� �
�1

� � �
a Show that the basic solution with basic variables x1,
x2, and x3 is optimal. Find the optimal solution.

b Write down the dual to this LP and find its optimal
solution.

c Show that if we multiply the right-hand side of each
constraint by a non-negative constant k, then 
the new optimal solution is obtained simply by multi-
plying the value of each variable in the original optimal
solution by k.

26 Wivco produces two products: 1 and 2. The relevant data
are shown in Table 64. Each week, as many as 400 units of
raw material can be purchased at a cost of $1.50 per unit. The
company employs four workers, who work 40 hours per week
(their salaries are considered a fixed cost). Workers can be
asked to work overtime and are paid $6 per hour for overtime
work. Each week, 320 hours of machine time are available.

In the absence of advertising, 50 units of product 1 and 60
units of product 2 will be demanded each week. Advertising
can be used to stimulate demand for each product. Each dol-
lar spent on advertising product 1 increases its demand by 10
units; each dollar spent for product 2 increases its demand by
15 units. At most $100 can be spent on advertising. Define

P1 � number of units of product 1 produced each week

P2 � number of units of product 2 produced each week

OT � number of hours of overtime labor used each week

RM � number of units of raw material purchased
� each week

A1 � dollars spent each week on advertising product 1

A2 � dollars spent each week on advertising product 2

Then Wivco should solve the following LP:

max z � 15P1 � 8P2 � 6(OT) � 1.5RM

� A1 � A2

s.t. 0.75P1 � 10A1 � 50 (1)

s.t. 0.75P2 � 15A2 � 60 (2)

s.t. 0.75P1 � 0.5P2 � 160 � (OT) (3)

s.t. 0.70.52P1 � P2 � RM (4)

RM � 400 (5)

A1 � A2 � 100 (6)

1.5P1 � 0.8P2 � 320 (7)

All variables non-negative

Use LINDO to solve this LP. Then use the computer output
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TA B L E  63

z Ale Beer s1 s2 s3 rhs

1 0 0 �20 0 10 1,200

0 0 1 ��
2
3

� 0 ��
1
3

� �
4
3
0
�

0 0 0 ���
1
3

� 1 ��
1
3

� �
1
3
0
�

0 1 0 ��
1
3

� 0 ��
2
3

� �
4
3
0
�

TA B L E  64

Product 1 Product 2

Selling price $15 $8

Labor required $10.75 hour $0.50 hour

Machine time required $11.5 hours $0.80 hour

Raw material required $12 units $1 unit
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to answer the following questions:

a If overtime were only $4 per hour, would Wivco use it?

b If each unit of product 1 sold for $15.50, would the
current basis remain optimal? What would be the new
optimal solution?

c What is the most that Wivco should be willing to pay
for another unit of raw material?

d How much would Wivco be willing to pay for an-
other hour of machine time?

e If each worker were required (as part of the regular
workweek) to work 45 hours per week, what would the
company’s profits be?

f Explain why the shadow price of row (1) is 0.10.
(Hint: If the right-hand side of (1) were increased from
50 to 51, then in the absence of advertising for product
1, 51 units could now be sold each week.)

g Wivco is considering producing a new product (prod-

uct 3). Each unit sells for $17 and requires 2 hours of
labor, 1 unit of raw material, and 2 hours of machine
time. Should Wivco produce any of product 3?

h If each unit of product 2 sold for $10, would the cur-
rent basis remain optimal?

27 The following question concerns the Rylon example
discussed in Section 3.9. After defining

RB � ounces of Regular Brute produced annually

LB � ounces of Luxury Brute produced annually

RC � ounces of Regular Chanelle produced annually

LC � ounces of Luxury Chanelle produced annually

RM � pounds of raw material purchased annually

the LINDO output in Figure 15 was obtained for this prob-
lem. Use this output to answer the following questions:

a Interpret the shadow price of each constraint.

b If the price of RB were to increase by 50¢, what would

MAX     7 RB + 14 LB + 6 RC + 10 LC - 3 RM 
SUBJECT TO
       2)    RM <=   4000 
       3)   3 LB + 2 LC +  RM <=   6000
       4)    RM + LB - 3 RM =     0
       5)    RC + LC - 4 RM =     0
END

   LP OPTIMUM FOUND   AT STEP     6

        OBJECTIVE FUNCTIONS VALUE

1)         172666.672

VARIABLE        VALUE           REDUCED COST
       RB    11333.333008           0.000000
       LB      666.666687           0.000000
       RC    16000.000000           0.000000
       LC        0.000000           0.666667 
       RM     4000.000000           0.000000

    ROW   SLACK OR SURPLUS       DUAL PRICES
       2)       0.000000           39.666668
       3)       0.000000            2.333333
       4)       0.000000            7.000000
       5)       0.000000            6.000000

NO.  ITERATIONS=   6

   RANGES IN WHICH THE BASIS IS UNCHANGED

                          OBJ COEFFICIENT RANGES
VARIABLE         CURRENT        ALLOWABLE        ALLOWABLE
                  COEF          INCREASE         DECREASE
      RB          7.000000         1.000000        11.900001
      LB         14.000000       119.000000         1.000000
      RC          6.000000       INFINITY           0.666667
      LC         10.000000         0.666667       INFINITY
      RM         -3.000000       INFINITY          39.666668

                          RIGHTHAND SIDE RANGES 
   ROW           CURRENT        ALLOWABLE        ALLOWABLE
                   RHS          INCREASE         DECREASE
       2       4000.000000      2000.000000      3400.000000
       3       6000.000000     33999.996094      2000.000000
       4          0.000000       INFINITY       11333.333008
       5          0.000000       INFINITY       16000.000000

F I G U R E  15

LINDO Output for Brute/Chanelle (Problem 27)
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be the new optimal solution to the Rylon problem?

c If 8,000 laboratory hours were available each year,
but only 2,000 lb of raw material were available each
year, would Rylon’s profits increase or decrease? [Hint:
Use the 100% Rule to show that the current basis re-
mains optimal. Then use reasoning analogous to
(34)–(37) to determine the new objective function value.]

d Rylon is considering expanding its laboratory ca-
pacity. Two options are under consideration:

Option 1 For a cost of $10,000 (incurred now), annual lab-
oratory capacity can be increased by 1,000 hours.
Option 2 For a cost of $200,000 (incurred now), annual
laboratory capacity can be increased by 10,000 hours.

Suppose that all other aspects of the problem remain un-
changed and that future profits are discounted, with the in-
terest rate being 11�

1

9
�% per year. Which option, if any, should

Rylon choose?

e Rylon is considering purchasing a new type of raw
material. Unlimited quantities can be purchased at $8/lb.
It requires 3 laboratory hours to process a pound of the
new raw material. Each processed pound yields 2 oz of
RB and 1 oz of RC. Should Rylon purchase any of the
new material?

28 Consider the following two LPs:

max z � c1x1 � c2x2

s.t. a11x1 � a12x2 � b1 (LP 1)
s.t. a21x1 � a22x2 � b2

s.t. a21 �a22x1, x2 � 0

max z � 100c1x1 � 100c2x2

s.t. 100a11x1 � 100a12x2 � b1 (LP 2)
s.t. 100a21x1 � 100a22x2 � b2

s.t. 100a21 �a22x1, x2 � 0

Suppose that BV � {x1, x2} is an optimal basis for both
LPs, and the optimal solution to LP 1 is x1 � 50, x2 � 500,
z � 550. Also suppose that for LP 1, the shadow price of
both Constraint 1 and Constraint 2 � �

10

3

0
�. Find the optimal

solution to LP 2 and the optimal solution to the dual of LP
2. (Hint: If we multiply each number in a matrix by 100,
what happens to B�1?)

29 The following questions pertain to the Star Oil capital
budgeting example of Section 3.6. The LINDO output for
this problem is shown in Figure 16.

a Find and interpret the shadow price for each constraint.

b If the NPV of investment 1 were $5 million, would
the optimal solution to the problem change?

c If the NPV of investment 2 and investment 4 were
each decreased by 25%, would the optimal solution to
the problem change? (This part requires knowledge of
the 100% Rule.)

d Suppose that Star Oil’s investment budget were
changed to $50 million at time 0 and $15 million at time
1. Would Star be better off? (This part requires knowl-
edge of the 100% Rule.)

e Suppose a new investment (investment 6) is avail-
able. Investment 6 yields an NPV of $10 million and re-
quires a cash outflow of $5 million at time 0 and $10

million at time 1. Should Star Oil invest any money in
investment 6?

30 The following questions pertain to the Finco investment
example of Section 3.11. The LINDO output for this problem
is shown in Figure 17.

a If Finco has $2,000 more on hand at time 0, by how
much would their time 3 cash increase?

b Observe that if Finco were given a dollar at time 1,
the cash available for investment at time 1 would now
be 0.5A � 1.2C � 1.08S0 � 1. Use this fact and the
shadow price of Constraint 2 to determine by how much
Finco’s time 3 cash position would increase if an extra
dollar were available at time 1.

c By how much would Finco’s time 3 cash on hand
change if Finco were given an extra dollar at time 2?

d If investment D yielded $1.80 at time 3, would the
current basis remain optimal?

e Suppose that a super money market fund yielded
25% for the period between time 0 and time 1. Should
Finco invest in this fund at time 0?

f Show that if the investment limitations of $75,000 on
investments A, B, C, and D were all eliminated, the cur-
rent basis would remain optimal. (Knowledge of the
100% Rule is required for this part.) What would be the
new optimal z-value?

g A new investment (investment F) is under consider-
ation. One dollar invested in investment F generates the
following cash flows: time 0, �$1.00; time 1, � $1.10;
time 2, � $0.20; time 3, � $0.10. Should Finco invest
in investment F?

31 In this problem, we discuss how shadow prices can be
interpreted for blending problems (see Section 3.8). To
illustrate the ideas, we discuss Problem 2 of Section 3.8. If
we define

x6J � pounds of grade 6 oranges in juice

x9J � pounds of grade 9 oranges in juice

x6B � pounds of grade 6 oranges in bags

x9B � pounds of grade 9 oranges in bags

then the appropriate formulation is

max z � 0.45(x6J � x9J) � 0.30(x6B � x9B)

s.t. x6J � x6B � x9B � 120,000

x9J � x6B � x9B � 100,000

(1) � x6B � x9B � 8

(2) �7

x6J, x9J, x6B, x9B � 0

Constraints (1) and (2) are examples of blending constraints,
because they specify the proportion of grade 6 and grade 9
oranges that must be blended to manufacture orange juice
and bags of oranges. It would be useful to determine how a
slight change in the standards for orange juice and bags of
oranges would affect profit. At the end of this problem, we

(Bags
constraint)

6x6B � 9x9B
��

(Orange
Juice

constraint)

6x6J � 9x9J
��

(Grade 9
constraint)

(Grade 6
constraint)
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explain how to use the shadow prices of Constraints (1) and
(2) to answer the following questions:

a Suppose that the average grade for orange juice is
increased to 8.1. Assuming the current basis remains op-
timal, by how much would profits change?

b Suppose the average grade requirement for bags of
oranges is decreased to 6.9. Assuming the current basis
remains optimal, by how much would profits change?

The shadow price for both (1) and (2) is �0.15. The op-
timal solution is x6J � 26,666.67, x9J � 53,333.33, x6B �

93,333.33, x9B � 46,666.67. To interpret the shadow prices
of blending Constraints (1) and (2), we assume that a slight

MAX     13 X1 + 16 X2 + 16 X3 + 14 X4 + 39 X5
SUBJECT TO
       2)   11 X1 + 53 X2 + 5 X3 + 5 X4 + 29 X5 <= 40
       3)   3 X1 + 6 X2 + 5 X3 + X4 + 34 X5 <= 20
       4)    X1 <=   1
       5)    X2 <=   1
       6)    X3 <=   1
       7)    X4 <=   1
       8)    X5 <=   1
END

     LP OPTIMUM FOUND   AT STEP  5

         OBJECTIVE FUNCTION VALUE

1)          57.4490166

VARIABLE         VALUE          REDUCED COST
       X1         1.000000          0.000000
       X2         0.200860          0.000000
       X3         1.000000          0.000000
       X4         1.000000          0.000000
       X5         0.288084          0.000000

   ROW     SLACK OR SURPLUS      DUAL PRICES
       2)        0.000000           0.190418 
       3)        0.000000           0.984644
       4)        0.000000           7.951474
       5)        0.799140           0.000000 
       6)        0.000000          10.124693
       7)        0.000000          12.063268
       8)        0.711916           0.000000

NO. ITERATIONS=     5

   RANGES IN WHICH THE BASIS IS UNCHANGED

                          OBJ COEFFICIENT RANGES
VARIABLE         CURRENT        ALLOWABLE         ALLOWABLE
                  COEF          INCREASE          DECREASE
      X1         13.000000       INFINITY            7.951474
      X2         16.000000        45.104530          9.117648
      X3         16.000000       INFINITY           10.124693
      X4         14.000000       INFINITY           12.063268
      X5         39.000000        51.666668         30.245283

                          RIGHTHAND SIDE RANGES
    ROW          CURRENT        ALLOWABLE         ALLOWABLE
                   RHS          INCREASE          DECREASE
        2        40.000000        38.264709          9.617647
        3        20.000000        11.275863          8.849057
        4         1.000000         1.139373          1.000000
        5         1.000000       INFINITY            0.799140
        6         1.000000         1.995745          1.000000
        7         1.000000         2.319149          1.000000
        8         1.000000       INFINITY            0.711916 

F I G U R E  16

LINDO Output for Star Oil (Problem 29)

change in the quality standard for a product will not signif-
icantly change the quantity of the product that is produced.

Now note that (1) may be written as

6x6J � 9x9J � 8(x6J � x9J), or �2x6J � x9J � 0

If the quality standard for orange juice is changed to 8 �

, then (1) can be written as

6x6J � 9x9J � (8 � 
) (x6J � x9J)
or

�2x6J � x9J � 
(x6J � x9J)

Because we are assuming that changing orange juice qual-



ity from 8 to 8 � 
 does not change the amount produced,
x6J � x9J will remain equal to 80,000, and (1) will become

�2x6J � x9J � 80,000


Using the definition of shadow price, now answer parts (a)
and (b).
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MAX     B + 1.9 D + 1.5 E + 1.08  S2
SUBJECT TO
       2)   D + A + C  +  SO =       100000
       3) - B + 0.5 A + 1.2 C + 1.08 SO -  S1 =   0
       4)  0.5 B - E- S2 +  A + 1.08 S1 =   0
       5)   A <=  75000 
       6)   B <=  75000
       7)   C <=  75000
       8)   D <=  75000
       9)   E <=  75000
END

   LP OPTIMUM FOUND  AT STEP    8

        OBJECTIVE FUNCTION VALUE

1)         218500.000

VARIABLE        VALUE          REDUCED COST
        B    30000.000000          0.000000
        D    40000.000000          0.000000
        E    75000.000000          0.000000
       S2        0.000000          0.040000
        A    60000.000000          0.000000
        C        0.000000          0.028000
       S0        0.000000          0.215200
       S1        0.000000          0.350400

    ROW    SLACK OR SURPLUS     DUAL PRICES
        2)       0.000000          1.900000
        3)       0.000000         -1.560000
        4)       0.000000         -1.120000
        5)   15000.000000          0.000000
        6)   45000.000000          0.000000 
        7)   75000.000000          0.000000
        8)   35000.000000          0.000000
        9)       0.000000          0.380000

NO. ITERATIONS=      8
 
   RANGES IN WHICH THE BASIS IS UNCHANGED

                          OBJ COEFFICIENT RANGES
VARIABLE         CURRENT        ALLOWABLE        ALLOWABLE
                  COEF          INCREASE         DECREASE
       B          1.000000         0.029167         0.284416 
       D          1.900000         0.475000         0.050000
       E          1.500000       INFINITY           0.380000
      S2          1.080000         0.040000       INFINITY
       A          0.000000         0.050000         0.058333
       C          0.000000         0.028000       INFINITY
      S0          0.000000         0.215200       INFINITY
      S1          0.000000         0.350400       INFINITY

                          RIGHTHAND SIDE RANGES
   ROW           CURRENT        ALLOWABLE         ALLOWABLE
                   RHS          INCREASE          DECREASE
      2      100000.000000     35000.000000      40000.000000
      3           0.000000     37500.000000      56250.000000
      4           0.000000     18750.000000      43750.000000
      5       75000.000000       INFINITY        15000.000000
      6       75000.000000       INFINITY        45000.000000 
      7       75000.000000       INFINITY        75000.000000 
      8       75000.000000       INFINITY        35000.000000
      9       75000.000000     18750.000000      43750.000000

F I G U R E  17

LINDO Output for Finco (Problem 30)

32 Ballco manufactures large softballs, regular softballs,
and hardballs. Each type of ball requires time in three
departments: cutting, sewing, and packaging, as shown in
Table 65 (in minutes). Because of marketing considerations,
at least 1,000 regular softballs must be produced. Each



regular softball can be sold for $3, each large softball, for
$5; and each hardball, for $4. A total of 18,000 minutes of
cutting time, 18,000 minutes of sewing time, and 9,000
minutes of packaging time are available. Ballco wants to
maximize sales revenue. If we define

RS � number of regular softballs produced

LS � number of large softballs produced

HB � number of hardballs produced

then the appropriate LP is

max z � 3RS � 5LS � 4HB

s.t. 15RS � 10LS � 8HB � 18,000

s.t. 15RS � 15LS � 4HB � 18,000

s.t. 3RS � 4LS � 2HB � 9,000

s.t. RS � 15LS � 2HB � 1,000

RS, LS, HB � 0

The optimal tableau for this LP is shown in Table 66.

a Find the dual of the Ballco problem and its optimal
solution.

b Show that the Ballco problem has an alternative op-
timal solution. Find it. How many minutes of sewing
time are used by the alternative optimal solution?

c By how much would an increase of 1 minute in the
amount of available sewing time increase Ballco’s rev-
enue? How can this answer be reconciled with the fact
that the sewing constraint is binding? (Hint: Look at the
answer to part (b).)

d Assuming the current basis remains optimal, how
would an increase of 100 in the regular softball require-
ment affect Ballco’s revenue?

33 Consider the following LP:

max z � c1x1 � c2x2

s.t. 3x1 � 4x2 � 6

(Demand
constraint)

(Packaging
constraint)

(Sewing
constraint)

(Cutting
constraint)
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s.t. 2x1 � 3x2 � 4

s.t. 2 � 3x1, x2 � 0

The optimal tableau for this LP is

zx1x2 � s1 � 2s2 � 14

zx1x2 � 3s1 � 4s2 � 2

zx1x2 � 2s1 � 3s2 � 0

Without doing any pivots, determine c1 and c2.

34 Consider the following LP and its partial optimal
tableau (Table 67):

max z � 20x1 � 10x2

s.t. x1 � x2 � 150

s.t. x1 � x2 � 40

s.t. x1 � x2 � 20

s.t. � x1, x2 � 0

a Complete the optimal tableau.

b Find the dual to this LP and its optimal solution.

35 Consider the following LP and its optimal tableau
(Table 68):

max z � c1x1 � c2x2

s.t. a11x1 � a12x2 � b1

s.t. a21x1 � a22x2 � b2

x1, x2 � 0

Determine c1, c2, b1, b2, a11, a12, a21, and a22.

36 Consider an LP with three � constraints. The right-
hand sides are 10, 15, and 20, respectively. In the optimal
tableau, s2 is a basic variable in the second constraint, which
has a right-hand side of 12. Determine the range of values
of b2 for which the current basis remains optimal. (Hint: If
rhs of Constraint 2 is 15 � 
, this should help in finding
the rhs of the optimal tableau.)

37 Use LINDO to solve the Sailco problem of Section
3.10. Then use the output to answer the following questions:

a If month 1 demand decreased to 35 sailboats, what
would be the total cost of satisfying the demands during
the next four months?

b If the cost of producing a sailboat with regular-time
labor during month 1 were $420, what would be the new
optimal solution?

c Suppose a new customer is willing to pay $425 for
a sailboat. If his demand must be met during month 1,
should Sailco fill the order? How about if his demand
must be met during month 4?

TA B L E  65

Cutting Sewing Packaging
Balls Time Time Time

Regular softballs 15 15 3

Large softballs 10 15 4

Hardballs 18 14 2

TA B L E  66

z RS LS HB s1 s2 s3 e4 a4 rhs

1 0 0 0 �0.50 �0.125 0 �4.52 M � 4.5 4,500.5

0 0 0 1 �0.19 �0.125 0 �0.94 �0.94 4,187.5

0 0 1 0 �0.05 �0.105 0 �0.75 �0.75 4,150.5

0 0 0 0 �0.17 �0.155 1 �1.88 �1.88 5,025.5

0 1 0 0 �0.17 �0.125 0 �1.02 �1.75 1,000.5
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TA B L E  67

z x1 x2 s2 e3 a1 a3 rhs

1 0 0 �0 0 �1 1,900

0 0 0 �1 1 1 �1 90

0 1 0 �1 0 0 �0 40

0 0 1 �1 0 1 �0 110

TA B L E  68

z x1 x2 s1 s2 b

1 0 0 2 3 �
5
2

�

0 1 0 3 2 �
5
2

�

0 1 1 1 1 1
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Transportation, Assignment, and
Transshipment Problems

In this chapter, we discuss three special types of linear programming problems: transporta-

tion, assignment, and transshipment. Each of these can be solved by the simplex algorithm,

but specialized algorithms for each type of problem are much more efficient.

7.1 Formulating Transportation Problems

We begin our discussion of transportation problems by formulating a linear programming

model of the following situation.

Powerco has three electric power plants that supply the needs of four cities.† Each power

plant can supply the following numbers of kilowatt-hours (kwh) of electricity: plant 1—

35 million; plant 2—50 million; plant 3—40 million (see Table 1). The peak power de-

mands in these cities, which occur at the same time (2 P.M.), are as follows (in kwh): city

1—45 million; city 2—20 million; city 3—30 million; city 4—30 million. The costs of

sending 1 million kwh of electricity from plant to city depend on the distance the elec-

tricity must travel. Formulate an LP to minimize the cost of meeting each city’s peak

power demand.

Solution To formulate Powerco’s problem as an LP, we begin by defining a variable for each deci-

sion that Powerco must make. Because Powerco must determine how much power is sent

from each plant to each city, we define (for i � 1, 2, 3 and j � 1, 2, 3, 4)

xij � number of (million) kwh produced at plant i and sent to city j

In terms of these variables, the total cost of supplying the peak power demands to cities

1–4 may be written as

� 8x11 � 6x12 � 10x13 � 9x14 (Cost of shipping power from plant 1)

� 9x21 � 12x22 � 13x23 � 7x24 (Cost of shipping power from plant 2)

� 14x31 � 9x32 � 16x33 � 5x34 (Cost of shipping power from plant 3)

Powerco faces two types of constraints. First, the total power supplied by each plant

cannot exceed the plant’s capacity. For example, the total amount of power sent from plant

Powerco FormulationE X A M P L E  1

†This example is based on Aarvik and Randolph (1975).
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1 to the four cities cannot exceed 35 million kwh. Each variable with first subscript 1 rep-

resents a shipment of power from plant 1, so we may express this restriction by the LP

constraint

x11 � x12 � x13 � x14 � 35

In a similar fashion, we can find constraints that reflect plant 2’s and plant 3’s capacities.

Because power is supplied by the power plants, each is a supply point. Analogously, a

constraint that ensures that the total quantity shipped from a plant does not exceed plant

capacity is a supply constraint. The LP formulation of Powerco’s problem contains the

following three supply constraints:

x11 � x12 � x13 � x14 � 35 (Plant 1 supply constraint)

x21 � x22 � x23 � x24 � 50 (Plant 2 supply constraint)

x31 � x32 � x33 � x34 � 40 (Plant 3 supply constraint)

Second, we need constraints that ensure that each city will receive sufficient power to

meet its peak demand. Each city demands power, so each is a demand point. For exam-

ple, city 1 must receive at least 45 million kwh. Each variable with second subscript 1

represents a shipment of power to city 1, so we obtain the following constraint:

x11 � x21 � x31 � 45

Similarly, we obtain a constraint for each of cities 2, 3, and 4. A constraint that ensures

that a location receives its demand is a demand constraint. Powerco must satisfy the fol-

lowing four demand constraints:

x11 � x21 � x31 � 45 (City 1 demand constraint)

x12 � x22 � x32 � 20 (City 2 demand constraint)

x13 � x23 � x33 � 30 (City 3 demand constraint)

x14 � x24 � x34 � 30 (City 4 demand constraint)

Because all the xij’s must be nonnegative, we add the sign restrictions xij � 0 (i � 1, 2,

3; j � 1, 2, 3, 4).

Combining the objective function, supply constraints, demand constraints, and sign re-

strictions yields the following LP formulation of Powerco’s problem:

min z � 8x11 � 6x12 � 10x13 � 9x14 � 9x21 � 12x22 � 13x23 � 7x24

� 14x31 � 9x32 � 16x33 � 5x34

s.t. x11 � x12 � x13 � x14 � 35 (Supply constraints)

s.t. x21 � x22 � x23 � x24 � 50

s.t. x31 � x32 � x33 � x34 � 40

TA B L E  1

Shipping Costs, Supply, and Demand for Powerco

To
Supply

From City 1 City 2 City 3 City 4 (million kwh)

Plant 1 $8 $6 $10 $9 35

Plant 2 $9 $12 $13 $7 50

Plant 3 $14 $9 $16 $5 40

Demand 45 20 30 30
(million kwh)
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s.t. x11 � x21 � x31 � x34 � 45 (Demand constraints)

s.t. x12 � x22 � x32 � x34 � 20

s.t. x13 � x23 � x33 � x34 � 30

s.t. x14 � x24 � x34 � x34 �30

xij � 0 (i � 1, 2, 3; j � 1, 2, 3, 4)

In Section 7.3, we will find that the optimal solution to this LP is z � 1020, x12 � 10,

x13 � 25, x21 � 45, x23 � 5, x32 � 10, x34 � 30. Figure 1 is a graphical representation

of the Powerco problem and its optimal solution. The variable xij is represented by a line,

or arc, joining the ith supply point (plant i) and the jth demand point (city j).

General Description of a Transportation Problem

In general, a transportation problem is specified by the following information:

1 A set of m supply points from which a good is shipped. Supply point i can supply at

most si units. In the Powerco example, m � 3, s1 � 35, s2 � 50, and s3 � 40.

2 A set of n demand points to which the good is shipped. Demand point j must receive

at least dj units of the shipped good. In the Powerco example, n � 4, d1 � 45, d2 � 20,

d3 � 30, and d4 � 30.

3 Each unit produced at supply point i and shipped to demand point j incurs a variable

cost of cij. In the Powerco example, c12 � 6.

Let

xij � number of units shipped from supply point i to demand point j

then the general formulation of a transportation problem is

min �
i�m

i�1
�
j�n

j�1

cijxij

Plant 1

Supply points Demand points

s1  =  35

x11  =  0

x12  =  10

x13  =  25
x14  =  0

x21  =  45

x31  =  0
x32  =  10

x33  =  0

x34  =  30

x24  =  0

x23  =  5

x22  =  0

City 1 d1  =  45

City 2 d2  =  20

City 3 d3  =  30

City 4 d4  =  30

Plant 2s1  =  50

Plant 3s1  =  40

F I G U R E  1

Graphical
Representation of

Powerco Problem and
Its Optimal Solution
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s.t. �
j�n

j�1

xij � si (i � 1, 2, . . . , m) (Supply constraints)
(1)

s.t. �
i�m

i�1

xij � dj ( j � 1, 2, . . . , n) (Demand constraints)

xij � 0 (i � 1, 2, . . . , m; j � 1, 2, . . . , n)

If a problem has the constraints given in (1) and is a maximization problem, then it is still

a transportation problem (see Problem 7 at the end of this section). If

�
i�m

i�1

si � �
j�n

j�1

dj

then total supply equals total demand, and the problem is said to be a balanced trans-

portation problem.

For the Powerco problem, total supply and total demand both equal 125, so this is a

balanced transportation problem. In a balanced transportation problem, all the constraints

must be binding. For example, in the Powerco problem, if any supply constraint were non-

binding, then the remaining available power would not be sufficient to meet the needs of

all four cities. For a balanced transportation problem, (1) may be written as

min �
i�m

i�1
�
j�n

j�1

cijxij

s.t. �
j�n

j�1

xij � si (i � 1, 2, . . . , m) (Supply constraints)
(2)

s.t. �
i�m

i�1

xij � dj ( j � 1, 2, . . . , n) (Demand constraints)

xij � 0 (i � 1, 2, . . . , m; j � 1, 2, . . . , n)

Later in this chapter, we will see that it is relatively simple to find a basic feasible solu-

tion for a balanced transportation problem. Also, simplex pivots for these problems do not

involve multiplication and reduce to additions and subtractions. For these reasons, it is de-

sirable to formulate a transportation problem as a balanced transportation problem.

Balancing a Transportation Problem 
If Total Supply Exceeds Total Demand

If total supply exceeds total demand, we can balance a transportation problem by creat-

ing a dummy demand point that has a demand equal to the amount of excess supply.

Because shipments to the dummy demand point are not real shipments, they are assigned

a cost of zero. Shipments to the dummy demand point indicate unused supply capacity.

To understand the use of a dummy demand point, suppose that in the Powerco problem,

the demand for city 1 were reduced to 40 million kwh. To balance the Powerco problem,

we would add a dummy demand point (point 5) with a demand of 125 � 120 � 5 mil-

lion kwh. From each plant, the cost of shipping 1 million kwh to the dummy is 0. The op-

timal solution to this balanced transportation problem is z � 975, x13 � 20, x12 � 15, 

x21 � 40, x23 � 10, x32 � 5, x34 � 30, and x35 � 5. Because x35 � 5, 5 million kwh of

plant 3 capacity will be unused (see Figure 2).

A transportation problem is specified by the supply, the demand, and the shipping

costs, so the relevant data can be summarized in a transportation tableau (see Table 2).

The square, or cell, in row i and column j of a transportation tableau corresponds to the
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Plant 1

Supply points Demand points

s1  =  35

x11  =  0

x32  =  5

x12  =  15

x14  =  0

x21  =  40

x33  =  0

x23  =  10

x13  =  20

x31  =  0

x34  =  30

x15  =  0

x35  =  5

x24  =  0

x25  =  0

x22  =  0

City 1 d1  =  40

City 2 d2  =  20

City 3 d3  =  30

City 4 d4  =  30

Dummy
City 5

d5  =  5

Plant 2s2  =  50

Plant 3s3  =  40

F I G U R E  2

Graphical
Representation of

Unbalanced Powerco
Problem and Its

Optimal Solution (with
Dummy Demand Point)

c11 c12 c1n

c21 c22 c2n

cm1 cm2 cmn

s1

s2

sm

dnd2d1

TA B L E  2

A Transportation Tableau

Supply

Demand

8 6 9

9 12 7

302045 30

10

10

45 5

25

30

10

13

14 9 16 5

35

50

40

TA B L E  3

Transportation Tableau 
for Powerco

City 1 City 2 City 3 City 4 Supply

Plant 1

Plant 2

Plant 3

Demand



variable xij. If xij is a basic variable, its value is placed in the lower left-hand corner of

the ijth cell of the tableau. For example, the balanced Powerco problem and its optimal

solution could be displayed as shown in Table 3. The tableau format implicitly expresses

the supply and demand constraints through the fact that the sum of the variables in row i

must equal si and the sum of the variables in column j must equal dj.

Balancing a Transportation Problem 
If Total Supply Is Less Than Total Demand

If a transportation problem has a total supply that is strictly less than total demand, then

the problem has no feasible solution. For example, if plant 1 had only 30 million kwh of

capacity, then a total of only 120 million kwh would be available. This amount of power

would be insufficient to meet the total demand of 125 million kwh, and the Powerco prob-

lem would no longer have a feasible solution.

When total supply is less than total demand, it is sometimes desirable to allow the pos-

sibility of leaving some demand unmet. In such a situation, a penalty is often associated

with unmet demand. Example 2 illustrates how such a situation can yield a balanced trans-

portation problem.

Two reservoirs are available to supply the water needs of three cities. Each reservoir can

supply up to 50 million gallons of water per day. Each city would like to receive 40 mil-

lion gallons per day. For each million gallons per day of unmet demand, there is a penalty.

At city 1, the penalty is $20; at city 2, the penalty is $22; and at city 3, the penalty is $23.

The cost of transporting 1 million gallons of water from each reservoir to each city is

shown in Table 4. Formulate a balanced transportation problem that can be used to min-

imize the sum of shortage and transport costs.

Solution In this problem,

Daily supply � 50 � 50 � 100 million gallons per day

Daily demand � 40 � 40 � 40 � 120 million gallons per day

To balance the problem, we add a dummy (or shortage) supply point having a supply of

120 � 100 � 20 million gallons per day. The cost of shipping 1 million gallons from the

dummy supply point to a city is just the shortage cost per million gallons for that city. Table

5 shows the balanced transportation problem and its optimal solution. Reservoir 1 should

send 20 million gallons per day to city 1 and 30 million gallons per day to city 2, whereas

reservoir 2 should send 10 million gallons per day to city 2 and 40 million gallons per day

to city 3. Twenty million gallons per day of city 1’s demand will be unsatisfied.
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Handling ShortagesE X A M P L E  2

TA B L E  4

Shipping Costs for Reservoir

To

From City 1 City 2 City 3

Reservoir 1 $7 $8 $10

Reservoir 2 $9 $7 $8
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Modeling Inventory Problems as Transportation Problems

Many inventory planning problems can be modeled as balanced transportation problems.

To illustrate, we formulate a balanced transportation model of the Sailco problem of Sec-

tion 3.10.

Sailco Corporation must determine how many sailboats should be produced during each

of the next four quarters (one quarter is three months). Demand is as follows: first quarter,

40 sailboats; second quarter, 60 sailboats; third quarter, 75 sailboats; fourth quarter, 25 sail-

boats. Sailco must meet demand on time. At the beginning of the first quarter, Sailco has

an inventory of 10 sailboats. At the beginning of each quarter, Sailco must decide how

many sailboats should be produced during the current quarter. For simplicity, we assume

that sailboats manufactured during a quarter can be used to meet demand for the current

quarter. During each quarter, Sailco can produce up to 40 sailboats at a cost of $400 per

sailboat. By having employees work overtime during a quarter, Sailco can produce addi-

tional sailboats at a cost of $450 per sailboat. At the end of each quarter (after production

has occurred and the current quarter’s demand has been satisfied), a carrying or holding

cost of $20 per sailboat is incurred. Formulate a balanced transportation problem to mini-

mize the sum of production and inventory costs during the next four quarters.

Solution We define supply and demand points as follows:

Supply Points Point 1 � initial inventory (s1 � 10)

Supply Points Point 2 � quarter 1 regular-time (RT) production (s2 � 40)

Supply Points Point 3 � quarter 1 overtime (OT) production (s3 � 150)

Supply Points Point 4 � quarter 2 RT production (s4 � 40)

Supply Points Point 5 � quarter 2 OT production (s5 � 150)

Supply Points Point 6 � quarter 3 RT production (s6 � 40)

Supply Points Point 7 � quarter 3 OT production (s7 � 150)

Supply Points Point 8 � quarter 4 RT production (s8 � 40)

Supply Points Point 9 � quarter 4 OT production (s9 � 150)

There is a supply point corresponding to each source from which demand for sailboats

can be met:

Setting Up an Inventory Problem as a Transportation ProblemE X A M P L E  3

TA B L E  5

Transportation Tableau 
for Reservoir

7 8

9 7

4040 40

30

20

10 40

20

10
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50

20
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City 1 City 2 City 3 Supply

Dummy (shortage)

Reservoir 2

Demand

Reservoir 1
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Demand Points Point 1 � quarter 1 demand (d1 � 40)

Demand Points Point 2 � quarter 2 demand (d2 � 60)

Demand Points Point 3 � quarter 3 demand (d3 � 75)

Demand Points Point 4 � quarter 4 demand (d4 � 25)

Demand Points Point 5 � dummy demand point (d5 � 770 � 200 � 570)

A shipment from, say, quarter 1 RT to quarter 3 demand means producing 1 unit on regu-

lar time during quarter 1 that is used to meet 1 unit of quarter 3’s demand. To determine,

say, c13, observe that producing 1 unit during quarter 1 RT and using that unit to meet quar-

ter 3 demand incurs a cost equal to the cost of producing 1 unit on quarter 1 RT plus the

cost of holding a unit in inventory for 3 � 1 � 2 quarters. Thus, c13 � 400 � 2(20) � 440.

Because there is no limit on the overtime production during any quarter, it is not clear

what value should be chosen for the supply at each overtime production point. Total de-

mand � 200, so at most 200 � 10 � 190 (�10 is for initial inventory) units will be pro-

duced during any quarter. Because 40 units must be produced on regular time before any

units are produced on overtime, overtime production during any quarter will never exceed

190 � 40 � 150 units. Any unused overtime capacity will be “shipped” to the dummy

demand point. To ensure that no sailboats are used to meet demand during a quarter prior

to their production, a cost of M (M is a large positive number) is assigned to any cell that

corresponds to using production to meet demand for an earlier quarter.

TA B L E  6

Transportation Tableau 
for Sailco

40

M

60

M

75

M

25

450

570

0

150

M M M 400

25

0

15

M M 450

35

470 0
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M M 400
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420 0

M 450
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470 490 0
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M 400
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400
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0
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Total supply � 770 and total demand � 200, so we must add a dummy demand point

with a demand of 770 � 200 � 570 to balance the problem. The cost of shipping a unit

from any supply point to the dummy demand point is 0.

Combining these observations yields the balanced transportation problem and its opti-

mal solution shown in Table 6. Thus, Sailco should meet quarter 1 demand with 10 units

of initial inventory and 30 units of quarter 1 RT production; quarter 2 demand with 10

units of quarter 1 RT, 40 units of quarter 2 RT, and 10 units of quarter 2 OT production;

quarter 3 demand with 40 units of quarter 3 RT and 35 units of quarter 3 OT production;

and finally, quarter 4 demand with 25 units of quarter 4 RT production.

In Problem 12 at the end of this section, we show how this formulation can be modi-

fied to incorporate other aspects of inventory problems (backlogged demand, perishable

inventory, and so on).

Solving Transportation Problems on the Computer

To solve a transportation problem with LINDO, type in the objective function, supply con-

straints, and demand constraints. Other menu-driven programs are available that accept

the shipping costs, supply values, and demand values. From these values, the program can

generate the objective function and constraints.

LINGO can be used to easily solve any transportation problem. The following LINGO

model can be used to solve the Powerco example (file Trans.lng).

MODEL:
1]SETS:
2]PLANTS/P1,P2,P3/:CAP;
3]CITIES/C1,C2,C3,C4/:DEM;
4]LINKS(PLANTS,CITIES):COST,SHIP;
5]ENDSETS
6]MIN=@SUM(LINKS:COST*SHIP);
7]@FOR(CITIES(J):
8]@SUM(PLANTS(I):SHIP(I,J))>DEM(J));
9]@FOR(PLANTS(I):

10]@SUM(CITIES(J):SHIP(I,J))<CAP(I));
11]DATA:
12]CAP=35,50,40;
13]DEM=45,20,30,30;
14]COST=8,6,10,9,
15]9,12,13,7,
16]14,9,16,5;
17]ENDDATA

END

Lines 1–5 define the SETS needed to generate the objective function and constraints.

In line 2, we create the three power plants (the supply points) and specify that each has a

capacity (given in the DATA section). In line 3, we create the four cities (the demand

points) and specify that each has a demand (given in the DATA section). The LINK state-

ment in line 4 creates a LINK(I,J) as I runs over all PLANTS and J runs over all CITIES.

Thus, objects LINK(1,1), LINK (1,2), LINK(1,3), LINK(1,4), LINK(2,1), LINK (2,2),

LINK(2,3), LINK(2,4), LINK(3,1), LINK (3,2), LINK(3,3), LINK(3,4) are created and

stored in this order. Attributes with multiple subscripts are stored so that the rightmost

subscripts advance most rapidly. Each LINK has two attributes: a per-unit shipping cost

[(COST), given in the DATA section] and the amount shipped (SHIP), for which LINGO

will solve.

Line 6 creates the objective function. We sum over all links the product of the unit

shipping cost and the amount shipped. Using the @FOR and @SUM operators, lines 7–8

Trans.lng
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generate all demand constraints. They ensure that for each city, the sum of the amount

shipped into the city will be at least as large as the city’s demand. Note that the extra

parenthesis after SHIP(I,J) in line 8 is to close the @SUM operator, and the extra paren-

thesis after DEM(J) is to close the @FOR operator. Using the @FOR and @SUM op-

erators, lines 9–10 generate all supply constraints. They ensure that for each plant, the to-

tal shipped out of the plant will not exceed the plant’s capacity.

Lines 11–17 contain the data needed for the problem. Line 12 defines each plant’s ca-

pacity, and line 13 defines each city’s demand. Lines 14–16 contain the unit shipping cost

from each plant to each city. These costs correspond to the ordering of the links described

previously. ENDDATA ends the data section, and END ends the program. Typing GO will

solve the problem.

This program can be used to solve any transportation problem. If, for example, we

wanted to solve a problem with 15 supply points and 10 demand points, we would change

line 2 to create 15 supply points and line 3 to create 10 demand points. Moving to line

12, we would type in the 15 plant capacities. In line 13, we would type in the demands

for the 10 demand points. Then in line 14, we would type in the 150 shipping costs. Ob-

serve that the part of the program (lines 6–10) that generates the objective function and

constraints remains unchanged! Notice also that our LINGO formulation does not require

that the transportation problem be balanced.

Obtaining LINGO Data from an Excel Spreadsheet

Often it is easier to obtain data for a LINGO model from a spreadsheet. For example,

shipping costs for a transportation problem may be the end result of many computations.

As an example, suppose we have created the capacities, demands, and shipping costs for

the Powerco model in the file Powerco.xls (see Figure 3). We have created capacities in

the cell range F9:F11 and named the range Cap. As you probably know, you can name a

range of cells in Excel by selecting the range and clicking in the name box in the upper

left-hand corner of your spreadsheet. Then type the range name and hit the Enter key. In

a similar fashion, name the city demands (in cells B12:E12) with the name Demand and

the unit shipping costs (in cells B4:E6) with the name Costs.

Powerco.xls

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A B C D E F G H

OPTIMALSOLUTION FOR POWERCO COSTS

COSTS CITY 1020

PLANT 1 2 3 4

1 8 6 10 9

2 9 12 13 7

3 14 9 16 5

SHIPMENTS CITY SHIPPED SUPPLIES

PLANT 1 2 3 4

1 0 10 25 0 35 <= 35

2 45 0 5 0 50 <= 50

3 0 10 0 30 40 <= 40

RECEIVED 45 20 30 30

>= >= >= >=

DEMANDS 45 20 30 30

F I G U R E  3
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Using an @OLE statement, LINGO can read from a spreadsheet the values of data

that are defined in the Sets portion of a program. The LINGO program (see file Transp-

spread.lng) needed to read our input data from the Powerco.xls file is shown below.

MODEL:
SETS:
PLANTS/P1,P2,P3/:CAP;
CITIES/C1,C2,C3,C4/:DEM;
LINKS(PLANTS,CITIES):COST,SHIP;
ENDSETS
MIN=@SUM(LINKS:COST*SHIP);
@FOR(CITIES(J):
@SUM(PLANTS(I):SHIP(I,J))>DEM(J));
@FOR(PLANTS(I);
@SUM(CITIES(J):SHIP(I,J))<CAP(I));
DATA:
CAP, DEM, COST=@OLE(‘C:\MPROG\POWERCO.XLS’,‘Cap’,‘Demand’,‘Costs’);
ENDDATA
END

The key statement is

CAP, DEM, COST=@OLE(‘C:\MPROG\POWERCO.XLS’,‘Cap’,‘Demand’,‘Costs’);.

This statement reads the defined data sets CAP, DEM, and COSTS from the Powerco.xls

spreadsheet. Note that the full path location of our Excel file (enclosed in single quotes)

must be given first followed by the spreadsheet range names that contain the needed data.

The range names are paired with the data sets in the order listed. Therefore, CAP values

are found in range Cap and so on. The @OLE statement is very powerful, because a

spreadsheet will usually greatly simplify the creation of data for a LINGO program.

Spreadsheet Solution of Transportation Problems

In the file Powerco.xls, we show how easy it is to use the Excel Solver to find the opti-

mal solution to a transportation problem. After entering the plant capacities, city demands,

and unit shipping costs as shown, we enter trial values of the units shipped from each

plant to each city in the range B9:E11. Then we proceed as follows:

Step 1 Compute the total amount shipped out of each city by copying from F9 to

F10:F11 the formula

�SUM(B9:E9)

Step 2 Compute the total received by each city by copying from B12 to C12:E12 the 

formula

�SUM(B9:B11)

Step 3 Compute the total shipping cost in cell F2 with the formula

�SUMPRODUCT(B9:E11,Costs)

Note that the �SUMPRODUCT function works on rectangles as well as rows or columns

of numbers. Also, we have named the range of unit shipping costs (B4:E6) as COSTS.

Step 4 We now fill in the Solver window shown in Figure 4. We minimize total shipping

costs (F2) by changing units shipped from each plant to each city (B9:E11). We constrain

amount received by each city (B12:E12) to be at least each city’s demand (range name

Demand). We constrain the amount shipped out of each plant (F9:F11) to be at most each

plant’s capacity (range name Cap). After checking the Assume Nonnegative option and

Assume Linear Model option, we obtain the optimal solution shown in Figure 3. Note, of

course, that the objective function of the optimal solution found by Excel equals the ob-

Transpspread.lng

Powerco.xls
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jective function value found by LINGO and our hand solution. If the problem had multi-

ple optimal solutions, then it is possible that the values of the shipments found by LINGO,

Excel, and our hand solution might be different.

P R O B L E M S
Group A

F I G U R E  4

1 A company supplies goods to three customers, who each
require 30 units. The company has two warehouses.
Warehouse 1 has 40 units available, and warehouse 2 has 30
units available. The costs of shipping 1 unit from warehouse
to customer are shown in Table 7. There is a penalty for each
unmet customer unit of demand: With customer 1, a penalty
cost of $90 is incurred; with customer 2, $80; and with
customer 3, $110. Formulate a balanced transportation
problem to minimize the sum of shortage and shipping costs.

2 Referring to Problem 1, suppose that extra units could
be purchased and shipped to either warehouse for a total
cost of $100 per unit and that all customer demand must be
met. Formulate a balanced transportation problem to
minimize the sum of purchasing and shipping costs.

3 A shoe company forecasts the following demands during
the next six months: month 1—200; month 2—260; month
3—240; month 4—340; month 5—190; month 6—150. It
costs $7 to produce a pair of shoes with regular-time labor
(RT) and $11 with overtime labor (OT). During each month,
regular production is limited to 200 pairs of shoes, and

overtime production is limited to 100 pairs. It costs $1 per
month to hold a pair of shoes in inventory. Formulate a
balanced transportation problem to minimize the total cost
of meeting the next six months of demand on time.

4 Steelco manufactures three types of steel at different
plants. The time required to manufacture 1 ton of steel
(regardless of type) and the costs at each plant are shown in
Table 8. Each week, 100 tons of each type of steel (1, 2, and
3) must be produced. Each plant is open 40 hours per week.

a Formulate a balanced transportation problem to min-
imize the cost of meeting Steelco’s weekly requirements.

b Suppose the time required to produce 1 ton of steel
depends on the type of steel as well as on the plant at
which it is produced (see Table 9, page 372). Could a
transportation problem still be formulated?

5 A hospital needs to purchase 3 gallons of a perishable
medicine for use during the current month and 4 gallons for
use during the next month. Because the medicine is

TA B L E  7

To

From Customer 1 Customer 2 Customer 3

Warehouse 1 $15 $35 $25

Warehouse 2 $10 $50 $40

TA B L E  8

Cost ($)
Time

Plant Steel 1 Steel 2 Steel 3 (minutes)

1 60 40 28 20

2 50 30 30 16

3 43 20 20 15



perishable, it can only be used during the month of purchase.
Two companies (Daisy and Laroach) sell the medicine. The
medicine is in short supply. Thus, during the next two
months, the hospital is limited to buying at most 5 gallons
from each company. The companies charge the prices shown
in Table 10. Formulate a balanced transportation model to
minimize the cost of purchasing the needed medicine.

6 A bank has two sites at which checks are processed. Site
1 can process 10,000 checks per day, and site 2 can process
6,000 checks per day. The bank processes three types of
checks: vendor, salary, and personal. The processing cost
per check depends on the site (see Table 11). Each day,
5,000 checks of each type must be processed. Formulate a
balanced transportation problem to minimize the daily cost
of processing checks.

7† The U.S. government is auctioning off oil leases at two
sites: 1 and 2. At each site, 100,000 acres of land are to be
auctioned. Cliff Ewing, Blake Barnes, and Alexis Pickens are
bidding for the oil. Government rules state that no bidder can
receive more than 40% of the land being auctioned. Cliff has
bid $1,000/acre for site 1 land and $2,000/acre for site 2 land.
Blake has bid $900/acre for site 1 land and $2,200/acre for site
2 land. Alexis has bid $1,100/acre for site 1 land and
$1,900/acre for site 2 land. Formulate a balanced transportation
model to maximize the government’s revenue.
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8 The Ayatola Oil Company controls two oil fields. Field
1 can produce up to 40 million barrels of oil per day, and
field 2 can produce up to 50 million barrels of oil per day.
At field 1, it costs $3 to extract and refine a barrel of oil; at
field 2, the cost is $2. Ayatola sells oil to two countries:
England and Japan. The shipping cost per barrel is shown
in Table 12. Each day, England is willing to buy up to 40
million barrels (at $6 per barrel), and Japan is willing to
buy up to 30 million barrels (at $6.50 per barrel). Formulate
a balanced transportation problem to maximize Ayatola’s
profits.

9 For the examples and problems of this section, discuss
whether it is reasonable to assume that the proportionality
assumption holds for the objective function.

10 Touche Young has three auditors. Each can work as
many as 160 hours during the next month, during which
time three projects must be completed. Project 1 will take
130 hours; project 2, 140 hours; and project 3, 160 hours.
The amount per hour that can be billed for assigning each
auditor to each project is given in Table 13. Formulate a
balanced transportation problem to maximize total billings
during the next month.

Group B

11‡ Paperco recycles newsprint, uncoated paper, and
coated paper into recycled newsprint, recycled uncoated
paper, and recycled coated paper. Recycled newsprint can
be produced by processing newsprint or uncoated paper.
Recycled coated paper can be produced by recycling any
type of paper. Recycled uncoated paper can be produced by
processing uncoated paper or coated paper. The process
used to produce recycled newsprint removes 20% of the
input’s pulp, leaving 80% of the input’s pulp for recycled
paper. The process used to produce recycled coated paper
removes 10% of the input’s pulp. The process used to
produce recycled uncoated paper removes 15% of the input’s
pulp. The purchasing costs, processing costs, and availability
of each type of paper are shown in Table 14. To meet demand,

TA B L E  9

Time (minutes)

Plant Steel 1 Steel 2 Steel 3

1 15 12 15

2 15 15 20

3 10 10 15

TA B L E  10

Current Month’s Next Month’s
Price per Price per

Company Gallon ($) Gallon ($)

Daisy 800 720

Laroach 710 750

TA B L E  11

Site (¢)

Checks 1 2

Vendor 5 3

Salary 4 4

Personal 2 5

†This problem is based on Jackson (1980). ‡This problem is based on Glassey and Gupta (1974).

TA B L E  12

To ($)

From ($) England Japan

Field 1 1 2

Field 2 2 1

TA B L E  13

Project ($)

Auditor 1 2 3

1 120 150 190

2 140 130 120

3 160 140 150



7.2 Finding Basic Feasible Solutions for Transportation Problems

Consider a balanced transportation problem with m supply points and n demand points.

From (2), we see that such a problem contains m � n equality constraints. From our ex-

perience with the Big M method and the two-phase simplex method, we know it is diffi-

cult to find a bfs if all of an LP’s constraints are equalities. Fortunately, the special struc-

ture of a balanced transportation problem makes it easy for us to find a bfs.

Before describing three methods commonly used to find a bfs to a balanced trans-

portation problem, we need to make the following important observation. If a set of val-

ues for the xij’s satisfies all but one of the constraints of a balanced transportation prob-

lem, then the values for the xij’s will automatically satisfy the other constraint. For

example, in the Powerco problem, suppose a set of values for the xij’s is known to satisfy

all the constraints with the exception of the first supply constraint. Then this set of xij’s

must supply d1 � d2 � d3 � d4 � 125 million kwh to cities 1–4 and supply s2 � s3 �

125 � s1 � 90 million kwh from plants 2 and 3. Thus, plant 1 must supply 125 �

(125 � s1) � 35 million kwh, so the xij’s must also satisfy the first supply constraint.

The preceding discussion shows that when we solve a balanced transportation prob-

lem, we may omit from consideration any one of the problem’s constraints and solve an

LP having m � n � 1 constraints. We (arbitrarily) assume that the first supply constraint

is omitted from consideration.

In trying to find a bfs to the remaining m � n � 1 constraints, you might think that

any collection of m � n � 1 variables would yield a basic solution. Unfortunately, this is

not the case. For example, consider (3), a balanced transportation problem. (We omit the

costs because they are not needed to find a bfs.)

(3)
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Paperco must produce at least 250 tons of recycled newsprint
pulp, at least 300 tons of recycled uncoated paper pulp, and
at least 150 tons of recycled coated paper pulp. Formulate
a balanced transportation problem that can be used to
minimize the cost of meeting Paperco’s demands.

12 Explain how each of the following would modify the
formulation of the Sailco problem as a balanced trans-
portation problem:

a Suppose demand could be backlogged at a cost of
$30/sailboat/month. (Hint: Now it is permissible to ship
from, say, month 2 production to month 1 demand.)

b If demand for a sailboat is not met on time, the sale
is lost and an opportunity cost of $450 is incurred.

c Sailboats can be held in inventory for a maximum of
two months.

d At a cost of $440/sailboat, Sailco can purchase up to
10 sailboats/month from a subcontractor.

TA B L E  14

Purchase Processing
Cost per Ton Cost per Ton
of Pulp ($) of Input ($) Availability

Newsprint 10 500

Coated paper 19 300

Uncoated paper 18 200

NP used for RNP 3

NP used for RCP 4

UCP used for RNP 4

UCP used for RUP 1

UCP used for RCP 6

CP used for RUP 5

CP used for RCP 3

3

4

5

2 4



In matrix form, the constraints for this balanced transportation problem may be written as

� � � � � � � (3�)

After dropping the first supply constraint, we obtain the following linear system:

� � � � � � � (3�)

A basic solution to (3�) must have four basic variables. Suppose we try BV � {x11, x12,

x21, x22}. Then

B � � �
For {x11, x12, x21, x22} to yield a basic solution, it must be possible to use EROs to

transform B to I4. Because rank B � 3 and EROs do not change the rank of a matrix,

there is no way that EROs can be used to transform B into I4. Thus, BV � {x11, x12, x21,

x22} cannot yield a basic solution to (3�). Fortunately, the simple concept of a loop may

be used to determine whether an arbitrary set of m � n � 1 variables yields a basic so-

lution to a balanced transportation problem.

D E F I N I T I O N ■ An ordered sequence of at least four different cells is called a loop if

1 Any two consecutive cells lie in either the same row or same column

2 No three consecutive cells lie in the same row or column

3 The last cell in the sequence has a row or column in common with the first cell

in the sequence ■

In the definition of a loop, the first cell is considered to follow the last cell, so the loop

may be thought of as a closed path. Here are some examples of the preceding definition:

Figure 5 represents the loop (2, 1)–(2, 4)–(4, 4)–(4, 1). Figure 6 represents the loop 

(1, 1)–(1, 2)–(2, 2)–(2, 3)–(4, 3)–(4, 5)–(3, 5)–(3, 1). In Figure 7, the path (1, 1)–(1, 2)–

(2, 3)–(2, 1) does not represent a loop, because (1, 2) and (2, 3) do not lie in the same

row or column. In Figure 8, the path (1, 2)–(1, 3)–(1, 4)–(2, 4)–(2, 2) does not represent

a loop, because (1, 2), (1, 3), and (1, 4) all lie in the same row.

Theorem 1 (which we state without proof ) shows why the concept of a loop is important.
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In a balanced transportation problem with m supply points and n demand points, the

cells corresponding to a set of m � n � 1 variables contain no loop if and only if

the m � n � 1 variables yield a basic solution.

Theorem 1 follows from the fact that a set of m � n � 1 cells contains no loop if and

only if the m � n � 1 columns corresponding to these cells are linearly independent. Be-

cause (1, 1)–(1, 2)–(2, 2)–(2, 1) is a loop, Theorem 1 tells us that {x11, x12, x22, x21} can-

not yield a basic solution for (3�). On the other hand, no loop can be formed with the cells

(1, 1)–(1, 2)–(1, 3)–(2, 1), so {x11, x12, x13, x21} will yield a basic solution to (3�).

We are now ready to discuss three methods that can be used to find a basic feasible so-

lution for a balanced transportation problem:

1 northwest corner method

2 minimum-cost method

3 Vogel’s method



Northwest Corner Method for Finding 
a Basic Feasible Solution

To find a bfs by the northwest corner method, we begin in the upper left (or northwest)

corner of the transportation tableau and set x11 as large as possible. Clearly, x11 can be no

larger than the smaller of s1 and d1. If x11 � s1, cross out the first row of the transporta-

tion tableau; this indicates that no more basic variables will come from row 1. Also change

d1 to d1 � s1. If x11 � d1, cross out the first column of the transportation tableau; this in-

dicates that no more basic variables will come from column 1. Also change s1 to s1 � d1.

If x11 � s1 � d1, cross out either row 1 or column 1 (but not both). If you cross out row

1, change d1 to 0; if you cross out column 1, change s1 to 0.

Continue applying this procedure to the most northwest cell in the tableau that does

not lie in a crossed-out row or column. Eventually, you will come to a point where there

is only one cell that can be assigned a value. Assign this cell a value equal to its row or

column demand, and cross out both the cell’s row and column. A basic feasible solution

has now been obtained.

We illustrate the use of the northwest corner method by finding a bfs for the balanced

transportation problem in Table 15. (We do not list the costs because they are not needed

to apply the algorithm.) We indicate the crossing out of a row or column by placing an �

by the row’s supply or column’s demand.

To begin, we set x11 � min{5, 2} � 2. Then we cross out column 1 and change s1 to

5 � 2 � 3. This yields Table 16. The most northwest remaining variable is x12. We set

x12 � min{3, 4} � 3. Then we cross out row 1 and change d2 to 4 � 3 � 1. This yields

Table 17. The most northwest available variable is now x22. We set x22 � min{1, 1} � 1.

Because both the supply and demand corresponding to the cell are equal, we may cross

out either row 2 or column 2 (but not both). For no particular reason, we choose to cross

out row 2. Then d2 must be changed to 1 � 1 � 0. The resulting tableau is Table 18. At

the next step, this will lead to a degenerate bfs.
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The most northwest available cell is now x32, so we set x32 � min{3, 0} � 0. Then we

cross out column 2 and change s3 to 3 � 0 � 3. The resulting tableau is Table 19. We now

set x33 � min{3, 2} � 2. Then we cross out column 3 and reduce s3 to 3 � 2 � 1. The

resulting tableau is Table 20. The only available cell is x34. We set x34 � min{1, 1} � 1.

Then we cross out row 3 and column 4. No cells are available, so we are finished. We have

obtained the bfs x11 � 2, x12 � 3, x22 � 1, x32 � 0, x33 � 2, x34 � 1.

Why does the northwest corner method yield a bfs? The method ensures that no basic

variable will be assigned a negative value (because no right-hand side ever becomes nega-
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tive) and also that each supply and demand constraint is satisfied (because every row and col-

umn is eventually crossed out). Thus, the northwest corner method yields a feasible solution.

To complete the northwest corner method, m � n rows and columns must be crossed

out. The last variable assigned a value results in a row and column being crossed out, so

the northwest corner method will assign values to m � n � 1 variables. The variables

chosen by the northwest corner method cannot form a loop, so Theorem 1 implies that

the northwest corner method must yield a bfs.

Minimum-Cost Method for Finding a Basic Feasible Solution

The northwest corner method does not utilize shipping costs, so it can yield an initial bfs

that has a very high shipping cost. Then determining an optimal solution may require sev-

eral pivots. The minimum-cost method uses the shipping costs in an effort to produce a

bfs that has a lower total cost. Hopefully, fewer pivots will then be required to find the

problem’s optimal solution.

To begin the minimum-cost method, find the variable with the smallest shipping cost (call

it xij). Then assign xij its largest possible value, min{si, dj}. As in the northwest 

corner method, cross out row i or column j and reduce the supply or demand of the 

noncrossed-out row or column by the value of xij. Then choose from the cells that do not lie

in a crossed-out row or column the cell with the minimum shipping cost and repeat the pro-

cedure. Continue until there is only one cell that can be chosen. In this case, cross out both

the cell’s row and column. Remember that (with the exception of the last variable) if a vari-

able satisfies both a supply and demand constraint, only cross out a row or column, not both.

To illustrate the minimum cost method, we find a bfs for the balanced transportation prob-

lem in Table 21. The variable with the minimum shipping cost is x22. We set x22 � min{10,

8} � 8. Then we cross out column 2 and reduce s2 to 10 � 8 � 2 (Table 22). We could now

choose either x11 or x21 (both having shipping costs of 2). We arbitrarily choose x21 and set

x21 � min{2, 12} � 2. Then we cross out row 2 and change d1 to 12 � 2 � 10 (Table 23).

Now we set x11 � min{5, 10} � 5, cross out row 1, and change d1 to 10 � 5 � 5 (Table 24).

The minimum cost that does not lie in a crossed-out row or column is x31. We set x31 �

min{15, 5} � 5, cross out column 1, and reduce s3 to 15 � 5 � 10 (Table 25). Now we set

x33 � min{10, 4} � 4, cross out column 3, and reduce s3 to 10 � 4 � 6 (Table 26). The only

cell that we can choose is x34. We set x34 � min{6, 6} and cross out both row 3 and column

4. We have now obtained the bfs: x11 � 5, x21 � 2, x22 � 8, x31 � 5, x33 � 4, and x34 � 6.

Because the minimum-cost method chooses variables with small shipping costs to be

basic variables, you might think that this method would always yield a bfs with a rela-

tively low total shipping cost. The following problem shows how the minimum-cost

method can be fooled into choosing a relatively high-cost bfs.
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If we apply the minimum-cost method to Table 27, we set x11 � 10 and cross out row

1. This forces us to make x22 and x23 basic variables, thereby incurring their high ship-

ping costs. Thus, the minimum-cost method will yield a costly bfs. Vogel’s method for

finding a bfs usually avoids extremely high shipping costs.

Vogel’s Method for Finding a Basic Feasible Solution

Begin by computing for each row (and column) a “penalty” equal to the difference be-

tween the two smallest costs in the row (column). Next find the row or column with the

largest penalty. Choose as the first basic variable the variable in this row or column that

has the smallest shipping cost. As described in the northwest corner and minimum-cost

methods, make this variable as large as possible, cross out a row or column, and change

the supply or demand associated with the basic variable. Now recompute new penalties

(using only cells that do not lie in a crossed-out row or column), and repeat the proce-

dure until only one uncrossed cell remains. Set this variable equal to the supply or de-

mand associated with the variable, and cross out the variable’s row and column. A bfs has

now been obtained.

We illustrate Vogel’s method by finding a bfs to Table 28. Column 2 has the largest

penalty, so we set x12 � min{10, 5} � 5. Then we cross out column 2 and reduce s1 to

10 � 5 � 5. After recomputing the new penalties (observe that after a column is crossed

out, the column penalties will remain unchanged), we obtain Table 29. The largest penalty

now occurs in column 3, so we set x13 � min{5, 5}. We may cross out either row 1 or

column 3. We arbitrarily choose to cross out column 3, and we reduce s1 to 5 � 5 � 0.

Because each row has only one cell that is not crossed out, there are no row penalties.

The resulting tableau is Table 30. Column 1 has the only (and, of course, the largest)

penalty. We set x11 � min{0, 15} � 0, cross out row 1, and change d1 to 15 � 0 � 15.

The result is Table 31. No penalties can be computed, and the only cell that is not in a

crossed-out row or column is x21. Therefore, we set x21 � 15 and cross out both column

1 and row 2. Our application of Vogel’s method is complete, and we have obtained the

bfs: x11 � 0, x12 � 5, x13 � 5, and x21 � 15 (see Table 32).
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Observe that Vogel’s method avoids the costly shipments associated with x22 and x23.

This is because the high shipping costs resulted in large penalties that caused Vogel’s

method to choose other variables to satisfy the second and third demand constraints.

Of the three methods we have discussed for finding a bfs, the northwest corner method

requires the least effort, and Vogel’s method requires the most effort. Extensive research

[Glover et al. (1974)] has shown, however, that when Vogel’s method is used to find an

initial bfs, it usually takes substantially fewer pivots than if the other two methods had

been used. For this reason, the northwest corner and minimum-cost methods are rarely

used to find a basic feasible solution to a large transportation problem.

P R O B L E M S
Group A

382 C H A P T E R 7 Transportation, Assignment, and Transshipment Problems

15

15

5 5

10

8

78

7

80

6

15

5 50

15

TA B L E  32

1 Use the northwest corner method to find a bfs for
Problems 1, 2, and 3 of Section 7.1.

2 Use the minimum-cost method to find a bfs for Problems
4, 7, and 8 of Section 7.1. (Hint: For a maximization
problem, call the minimum-cost method the maximum-
profit method or the maximum-revenue method.)

3 Use Vogel’s method to find a bfs for Problems 5 and 6
of Section 7.1.

4 How should Vogel’s method be modified to solve a
maximization problem?

7.3 The Transportation Simplex Method

In this section, we show how the simplex algorithm simplifies when a transportation prob-

lem is solved. We begin by discussing the pivoting procedure for a transportation problem.

Recall that when the pivot row was used to eliminate the entering basic variable from

other constraints and row 0, many multiplications were usually required. In solving a

transportation problem, however, pivots require only additions and subtractions.

How to Pivot in a Transportation Problem

By using the following procedure, the pivots for a transportation problem may be per-

formed within the confines of the transportation tableau:

Step 1 Determine (by a criterion to be developed shortly) the variable that should enter

the basis.

Step 2 Find the loop (it can be shown that there is only one loop) involving the entering

variable and some of the basic variables.

Step 3 Counting only cells in the loop, label those found in step 2 that are an even num-



ber (0, 2, 4, and so on) of cells away from the entering variable as even cells. Also label

those that are an odd number of cells away from the entering variable as odd cells.

Step 4 Find the odd cell whose variable assumes the smallest value. Call this value 	.

The variable corresponding to this odd cell will leave the basis. To perform the pivot, de-

crease the value of each odd cell by 	 and increase the value of each even cell by 	. The

values of variables not in the loop remain unchanged. The pivot is now complete. If 	 �

0, then the entering variable will equal 0, and an odd variable that has a current value of

0 will leave the basis. In this case, a degenerate bfs existed before and will result after the

pivot. If more than one odd cell in the loop equals 	, you may arbitrarily choose one of

these odd cells to leave the basis; again, a degenerate bfs will result.

We illustrate the pivoting procedure on the Powerco example. When the northwest cor-

ner method is applied to the Powerco example, the bfs in Table 33 is found. For this bfs,

the basic variables are x11 � 35, x21 � 10, x22 � 20, x23 � 20, x33 � 10, and x34 � 30.

Suppose we want to find the bfs that would result if x14 were entered into the basis.

The loop involving x14 and some of the basic variables is

E O E O E O

(1, 4)–(3, 4)–(3, 3)–(2, 3)–(2, 1)–(1, 1)

In this loop, (1, 4), (3, 3), and (2, 1) are the even cells, and (1, 1), (3, 4), and (2, 3) are

the odd cells. The odd cell with the smallest value is x23 � 20. Thus, after the pivot, x23

will have left the basis. We now add 20 to each of the even cells and subtract 20 from

each of the odd cells. The bfs in Table 34 results. Because each row and column has as

many �20s as �20s, the new solution will satisfy each supply and demand constraint.

By choosing the smallest odd variable (x23) to leave the basis, we have ensured that all

variables will remain nonnegative. Thus, the new solution is feasible. There is no loop 

involving the cells (1, 1), (1, 4), (2, 1), (2, 2), (3, 3), and (3, 4), so the new solution is a

bfs. After the pivot, the new bfs is x11 � 15, x14 � 20, x21 � 30, x22 � 20, x33 � 30, and

x34 � 10, and all other variables equal 0.
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The preceding illustration of the pivoting procedure makes it clear that each pivot in a

transportation problem involves only additions and subtractions. Using this fact, we can

show that if all the supplies and demands for a transportation problem are integers, then

the transportation problem will have an optimal solution in which all the variables are

integers. Begin by observing that, by the northwest corner method, we can find a bfs in

which each variable is an integer. Each pivot involves only additions and subtractions, so

each bfs obtained by performing the simplex algorithm (including the optimal solution)

will assign all variables integer values. The fact that a transportation problem with inte-

ger supplies and demands has an optimal integer solution is useful, because it ensures that

we need not worry about whether the Divisibility Assumption is justified.

Pricing Out Nonbasic Variables (Based on Chapter 6)

To complete our discussion of the transportation simplex, we now show how to compute

row 0 for any bfs. From Section 6.2, we know that for a bfs in which the set of basic vari-

ables is BV, the coefficient of the variable xij (call it ccc�ij) in the tableau’s row 0 is given by

c�ij � cBVB�1aij � cij

where cij is the objective function coefficient for xij and aij is the column for xij in the

original LP (we are assuming that the first supply constraint has been dropped).

Because we are solving a minimization problem, the current bfs will be optimal if all

the cc�ij’s are nonpositive; otherwise, we enter into the basis the variable with the most pos-

itive cc�ij.

After determining cBVB�1, we can easily determine cc�ij. Because the first constraint has

been dropped, cBVB�1 will have m � n � 1 elements. We write

cBVB�1
� [u2 u3 
 
 
 um v1 v2 
 
 
 vn]

where u2, u3, . . . , um are the elements of cBVB�1 corresponding to the m � 1 supply con-

straints, and v1, v2, . . . , vn are the elements of cBVB�1 corresponding to the n demand

constraints.

To determine cBVB�1, we use the fact that in any tableau, each basic variable xij must

have cc�ij � 0. Thus, for each of the m � n � 1 variables in BV,

cBVB�1aij � cij � 0 (4)

For a transportation problem, the equations in (4) are very easy to solve. To illustrate the

solution of (4), we find cBVB�1 for (5), by applying the northwest corner method bfs to

the Powerco problem.

(5)
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For this bfs, BV � {x11, x21, x22, x23, x33, x34}. Applying (4) we obtain

cc�11 � [u2 u3 v1 v2 v3 v4] � � � 8 � v1 � 8 � 0

0

0

1

0

0

0
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cc�21 � [u2 u3 v1 v2 v3 v4] � � � 9 � u2 � v1 � 9 � 0

1

0

1

0

0

0

cc�22 � [u2 u3 v1 v2 v3 v4] � � � 12 � u2 � v2 � 12 � 0

1

0

0

1

0

0

cc�23 � [u2 u3 v1 v2 v3 v4] � � � 13 � u2 � v3 � 13 � 0

1

0

0

0

1

0

cc�33 � [u2 u3 v1 v2 v3 v4] � � � 16 � u3 � v3 � 16 � 0

0

1

0

0

1

0

c�34 � [u2 u3 v1 v2 v3 v4] � � � 5 � u3 � v4 � 5 � 0

For each basic variable xij (except those having i � 1), we see that (4) reduces to ui � vj �

cij. If we define u1 � 0, we see that (4) reduces to ui � vj � cij for all basic variables. Thus,

to solve for cBVB�1, we must solve the following system of m � n equations: u1 � 0, ui �

vj � cij for all basic variables.

For (5), we find cBVB�1 by solving

0

1

0

0

0

1



u1 � u1 � 0 (6)

u1 � v1 � 8 (7)

u2 � v1 � 9 (8)

u2 � v2 � 12 (9)

u2 � v3 � 13 (10)

u3 � v3 � 16 (11)

u3 � v4 � 5 (12)

From (7), v1 � 8. From (8), u2 � 1. Then (9) yields v2 � 11, and (10) yields v3 � 12.

From (11), u3 � 4. Finally, (12) yields v4 � 1. For each nonbasic variable, we now com-

pute cc�ij � ui � vj � cij. We obtain

cc�12 � 0 � 11 � 6 � 5� cc�13 � 0 � 12 � 10 � 2

cc�14 � 0 � 1 � 9 � �8 ccc�24 � 1 � 1 � 7 � �5

cc�31 � 4 � 8 � 14 � �2 ccc�32 � 4 � 11 � 9 � 6

Because cc�32 is the most positive cc�ij, we would next enter x32 into the basis. Each unit of

x32 that is entered into the basis will decrease Powerco’s cost by $6.

How to Determine the Entering Nonbasic Variable 
(Based on Chapter 5)

For readers who have not covered Chapter 6, we now discuss how to determine whether a

bfs is optimal, and, if it is not, how to determine which nonbasic variable should enter the

basis. Let �ui (i � 1, 2, . . . , m) be the shadow price of the ith supply constraint, and let �vj

( j � 1, 2, . . . , n) be the shadow price of the jth demand constraint. We assume that the first

supply constraint has been dropped, so we may set �u1 � 0. From the definition of shadow

price, if we were to increase the right-hand side of the ith supply and jth demand constraint

by 1, the optimal z-value would decrease by �ui � vj. Equivalently, if we were to decrease

the right-hand side of the ith supply and jth demand constraint by 1, the optimal z-value

would increase by �ui � vj. Now suppose xij is a nonbasic variable. Should we enter xij into

the basis? Observe that if we increase xij by 1, costs directly increase by cij. Also, increasing

xij by 1 means that one less unit will be shipped from supply point i and one less unit will

be shipped to demand point j. This is equivalent to reducing the right-hand sides of the ith

supply constraint and jth demand constraint by 1. This will increase z by �ui � vj. Thus, in-

creasing xij by 1 will increase z by a total of cij � ui � vj. So if cij � ui � vj � 0 (or ui �

vj � cij � 0) for all nonbasic variables, the current bfs will be optimal. If, however, a non-

basic variable xij has cij � ui � vj � 0 (or ui � vj � cij � 0), then z can be decreased by ui �

vj � cij per unit of xij by entering xij into the basis. Thus, we may conclude that if ui � vj �

cij � 0 for all nonbasic variables, then the current bfs is optimal. Otherwise, the nonbasic

variable with the most positive value of ui � vj � cij should enter the basis. How do we find

the ui’s and vj’s? The coefficient of a nonbasic variable xij in row 0 of any tableau is the

amount by which a unit increase in xij will decrease z, so we can conclude that the coefficient

of any nonbasic variable (and, it turns out, any basic variable) in row 0 is ui � vj � cij. So

we may solve for the ui’s and vj’s by solving the following system of equations: u1 � 0 and

ui � vj � cij � 0 for all basic variables.

To illustrate the previous discussion, consider the bfs for the Powerco problem shown

in (5).
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(5)

W e

find the ui’s and vj’s by solving

u1 � u1 � 0 (6)

u1 � v1 � 8 (7)

u2 � v1 � 9 (8)

u2 � v2 � 12 (9)

u2 � v3 � 13 (10)

u3 � v3 � 16 (11)

u3 � v4 � 5 (12)

From (7), v1 � 8. From (8), u2 � 1. Then (9) yields v2 � 11, and (10) yields v3 � 12.

From (11), u3 � 4. Finally, (12) yields v4 � 1. For each nonbasic variable, we now com-

pute cc�ij � ui � vj � cij. We obtain

cc�12 � 0 � 11 � 6 � 5� cc�13 � 0 � 12 � 10 � 2

cc�14 � 0 � 1 � 9 � �8 cc�24 � 1 � 1 � 7 � �5

cc�31 � 4 � 8 � 14 � �2 cc�32 � 4 � 11 � 9 � 6

Because cc�32 is the most positive cc�ij, we would next enter x32 into the basis. Each unit of

x32 that is entered into the basis will decrease Powerco’s cost by $6.

We can now summarize the procedure for using the transportation simplex to solve a

transportation (min) problem.

Summary and Illustration 
of the Transportation Simplex Method

Step 1 If the problem is unbalanced, balance it.

Step 2 Use one of the methods described in Section 7.2 to find a bfs.

Step 3 Use the fact that u1 � 0 and ui � vj � cij for all basic variables to find the 

[u1 u2 . . . um v1 v2 . . . vn] for the current bfs.

Step 4 If ui � vj � cij � 0 for all nonbasic variables, then the current bfs is optimal. If

this is not the case, then we enter the variable with the most positive ui � vj � cij into

the basis using the pivoting procedure. This yields a new bfs.

Step 5 Using the new bfs, return to steps 3 and 4.

For a maximization problem, proceed as stated, but replace step 4 by step 4.

Step 4� If ui � vj � cij � 0 for all nonbasic variables, then the current bfs is optimal.

Otherwise, enter the variable with the most negative ui � vj � cij into the basis using the

pivoting procedure described earlier.
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We illustrate the procedure for solving a transportation problem by solving the Pow-

erco problem. We begin with the bfs (5). We have already determined that x32 should en-

ter the basis. As shown in Table 35, the loop involving x32 and some of the basic variables

is (3, 2)–(3, 3)–(2, 3)–(2, 2). The odd cells in this loop are (3, 3) and (2, 2). Because 

x33 � 10 and x22 � 20, the pivot will decrease the value of x33 and x22 by 10 and increase

the value of x32 and x23 by 10. The resulting bfs is shown in Table 36. The ui’s and vj’s

for the new bfs were obtained by solving

u2 � u1 � 0 u2 � v3 � 13

u2 � v2 � 12 u2 � v1 � 9

u3 � v4 � 5 u3 � v2 � 9

u1 � v1 � 82 u2 � v1 � 9

In computing ccc�ij � ui � vj � cij for each nonbasic variable, we find that c�12 � 5, 

cc�24 � 1, and ccc�13 � 2 are the only positive cc�ij’s. Thus, we next enter x12 into the basis. The

loop involving x12 and some of the basic variables is (1, 2)–(2, 2)–(2, 1)–(1, 1). The odd

cells are (2, 2) and (1, 1). Because x22 � 10 is the smallest entry in an odd cell, we de-

crease x22 and x11 by 10 and increase x12 and x21 by 10. The resulting bfs is shown in

Table 37. For this bfs, the ui’s and vj’s were determined by solving

u1 � u1 � 0 u1 � v2 � 6

u2 � v1 � 9 u3 � v2 � 9

u1 � v1 � 8 u3 � v4 � 5

u2 � v3 � 13 u3 � v4 � 5

In computing cc�ij for each nonbasic variable, we find that the only positive cc�ij is cc�13 �

2. Thus, x13 enters the basis. The loop involving x13 and some of the basic variables is 
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(1, 3)–(2, 3)–(2, 1)–(1, 1). The odd cells are x23 and x11. Because x11 � 25 is the smallest

entry in an odd cell, we decrease x23 and x11 by 25 and increase x13 and x21 by 25. The 

resulting bfs is shown in Table 38. For this bfs, the ui’s and vj’s were obtained by solving

u2 � u1 � 0 u2 � v3 � 13

u2 � v1 � 9 u1 � v3 � 10

u3 � v4 � 5 u3 � v2 � 9

u1 � v2 � 6 u3 � v2 � 9

The reader should check that for this bfs, all c�ij � 0, so an optimal solution has been ob-

tained. Thus, the optimal solution to the Powerco problem is x12 � 10, x13 � 25, x21 �

45, x23 � 5, x32 � 10, x34 � 30, and

z � 6(10) � 10(25) � 9(45) � 13(5) � 9(10) � 5(30) � $1,020

P R O B L E M S
Group A
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Use the transportation simplex to solve Problems 1–8 in
Section 7.1. Begin with the bfs found in Section 7.2.



7.4 Sensitivity Analysis for Transportation Problems†

We have already seen that for a transportation problem, the determination of a bfs and of

row 0 for a given set of basic variables, as well as the pivoting procedure, all simplify. It

should therefore be no surprise that certain aspects of the sensitivity analysis discussed in

Section 6.3 can be simplified. In this section, we discuss the following three aspects of

sensitivity analysis for the transportation problem:

Change 1 Changing the objective function coefficient of a nonbasic variable.

Change 2 Changing the objective function coefficient of a basic variable.

Change 3 Increasing a single supply by � and a single demand by �.

We illustrate three changes using the Powerco problem. Recall from Section 7.3 that the

optimal solution for the Powerco problem was z � $1,020; the optimal tableau is Table 39.

Changing the Objective Function Coefficient 
of a Nonbasic Variable

As in Section 6.3, changing the objective function coefficient of a nonbasic variable xij

will leave the right-hand side of the optimal tableau unchanged. Thus, the current basis

will still be feasible. We are not changing cBVB�1, so the ui’s and vj’s remain unchanged.

In row 0, only the coefficient of xij will change. Thus, as long as the coefficient of xij in

the optimal row 0 is nonpositive, the current basis remains optimal.

To illustrate the method, we answer the following question: For what range of values of

the cost of shipping 1 million kwh of electricity from plant 1 to city 1 will the current basis

remain optimal? Suppose we change c11 from 8 to 8 � �. For what values of � will the cur-

rent basis remain optimal? Now c�11 � u1 � v1 � c11 � 0 � 6 � (8 � �) � �2 � �. Thus,

the current basis remains optimal for �2 � � � 0, or � � �2, and c11 � 8 � 2 � 6.

Changing the Objective Function Coefficient 
of a Basic Variable

Because we are changing cBVB�1, the coefficient of each nonbasic variable in row 0 may

change, and to determine whether the current basis remains optimal, we must find the new

ui’s and vj’s and use these values to price out all nonbasic variables. The current basis re-

mains optimal as long as all nonbasic variables price out nonpositive. To illustrate the

idea, we determine for the Powerco problem the range of values of the cost of shipping 1

million kwh from plant 1 to city 3 for which the current basis remains optimal.

Suppose we change c13 from 10 to 10 � �. Then the equation c�13 � 0 changes from

u1 � v3 � 10 to u1 � v3 � 10 � �. Thus, to find the ui’s and vj’s, we must solve the fol-

lowing equations:

u2 � u1 � 0 u3 � v2 � 90 � �

u2 � v1 � 9 u1 � v3 � 10 � �

u1 � v2 � 6 u3 � v4 � 50 � �

u2 � v3 � 13 u1 � v3 � 10 � �
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Solving these equations, we obtain u1 � 0, v2 � 6, v3 � 10 � �, v1 � 6 � �, u2 � 3 �

�, u3 � 3, and v4 � 2.

We now price out each nonbasic variable. The current basis will remain optimal as long

as each nonbasic variable has a nonpositive coefficient in row 0.

cc�11 � u1 � v1 � 8 � � � 2 � 0 for � � 2�

cc�14 � u1 � v4 � 9 � �7

cc�22 � u2 � v2 � 12 � �3 � � � 0 for � � �3

cc�24 � u2 � v4 � 7 � �2 � � � 0 for � � �2

cc�31 � u3 � v1 � 14 � �5 � � � 0 for � � 5�

cc�33 � u3 � v3 � 16 � � � 3 � 0 for � � 3�

Thus, the current basis remains optimal for �2 � � � 2, or 8 � 10 � 2 � c13 � 10 �

2 � 12.

Increasing Both Supply si and Demand dj by �

Observe that this change maintains a balanced transportation problem. Because the ui’s

and vj’s may be thought of as the negative of each constraint’s shadow prices, we know

from (37) of Chapter 6 that if the current basis remains optimal,

New z-value � old z-value � �ui � �vj

For example, if we increase plant 1’s supply and city 2’s demand by 1 unit, then (new cost)

� 1,020 � 1(0) � 1(6) � $1,026.

We may also find the new values of the decision variables as follows:

1 If xij is a basic variable in the optimal solution, then increase xij by �.

2 If xij is a nonbasic variable in the optimal solution, then find the loop involving xij and

some of the basic variables. Find an odd cell in the loop that is in row i. Increase the value

of this odd cell by � and go around the loop, alternately increasing and then decreasing

current basic variables in the loop by �.

To illustrate the first situation, suppose we increase s1 and d2 by 2. Because x12 is a ba-

sic variable in the optimal solution, the new optimal solution will be the one shown in

Table 40. The new optimal z-value is 1,020 � 2u1 � 2v2 � $1,032. To illustrate the sec-

ond situation, suppose we increase both s1 and d1 by 1. Because x11 is a nonbasic vari-

able in the current optimal solution, we must find the loop involving x`11 and some of the
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basic variables. The loop is (1, 1)–(1, 3)–(2, 3)–(2, 1). The odd cell in the loop and row

1 is x13. Thus, the new optimal solution will be obtained by increasing both x13 and x21

by 1 and decreasing x23 by 1. This yields the optimal solution shown in Table 41. The new

optimal z-value is found from (new z-value) � 1,020 � v1 � v1 � $1,026. Observe that

if both s1 and d1 were increased by 6, the current basis would be infeasible. (Why?)

P R O B L E M S
Group A
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The following problems refer to the Powerco example.

1 Determine the range of values of c14 for which the
current basis remains optimal.

2 Determine the range of values of c34 for which the
current basis remains optimal.

3 If s2 and d3 are both increased by 3, what is the new
optimal solution?

4 If s3 and d3 are both decreased by 2, what is the new
optimal solution?

5 Two plants supply three customers with medical
supplies. The unit costs of shipping from the plants to the
customers, along with the supplies and demands, are given
in Table 42.

a The company’s goal is to minimize the cost of meet-
ing customers’ demands. Find two optimal bfs for this
transportation problem.

b Suppose that customer 2’s demand increased by one
unit. By how much would costs increase?

TA B L E  42

To

From Customer 1 Customer 2 Customer 3 Supply

Plant 1 $55 $65 $80 35

Plant 2 $10 $15 $25 50

Demand 10 10 10



7.5 Assignment Problems

Although the transportation simplex appears to be very efficient, there is a certain class

of transportation problems, called assignment problems, for which the transportation sim-

plex is often very inefficient. In this section, we define assignment problems and discuss

an efficient method that can be used to solve them.

Machineco has four machines and four jobs to be completed. Each machine must be as-

signed to complete one job. The time required to set up each machine for completing each

job is shown in Table 43. Machineco wants to minimize the total setup time needed to

complete the four jobs. Use linear programming to solve this problem.

Solution Machineco must determine which machine should be assigned to each job. We define (for

i, j � 1, 2, 3, 4)

xij � 1 if machine i is assigned to meet the demands of job j

xij � 0 if machine i is not assigned to meet the demands of job j

Then Machineco’s problem may be formulated as

min z � 14x11 � 5x12 � 8x13 � 7x14 � 2x21 � 12x22 � 6x23 � 5x24

min z � � 7x31 � 8x32 � 3x33 � 9x34 � 2x41 � 4x42 � 6x43 � 10x44

s.t. x11 � x12 � x13 � x14 � 1 (Machine constraints)

s.t. x21 � x22 � x23 � x24 � 1 (Machine constraints)

s.t. x31 � x32 � x33 � x34 � 1 (Machine constraints)
(13)

s.t. x41 � x42 � x43 � x44 � 1 (Machine constraints)

s.t. x11 � x21 � x31 � x41 � 1 (Job constraints)

s.t. x12 � x22 � x32 � x42 � 1 (Machine constraints)

s.t. x13 � x23 � x33 � x43 � 1 (Machine constraints)

s.t. x14 � x24 � x34 � x44 � 1 (Machine constraints)

s.t. xij � 0 or xij � 1 (Machine constraints)

The first four constraints in (13) ensure that each machine is assigned to a job, and the

last four ensure that each job is completed. If xij � 1, then the objective function will pick

up the time required to set up machine i for job j; if xij � 0, then the objective function

will not pick up the time required.

Ignoring for the moment the xij � 0 or xij � 1 restrictions, we see that Machineco faces

a balanced transportation problem in which each supply point has a supply of 1 and each
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Time (Hours)

Machine Job 1 Job 2 Job 3 Job 4

1 14 5 8 7
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3 7 8 3 9

4 2 4 6 10



demand point has a demand of 1. In general, an assignment problem is a balanced trans-

portation problem in which all supplies and demands are equal to 1. Thus, an assignment

problem is characterized by knowledge of the cost of assigning each supply point to each

demand point. The assignment problem’s matrix of costs is its cost matrix.

All the supplies and demands for the Machineco problem (and for any assignment

problem) are integers, so our discussion in Section 7.3 implies that all variables in Ma-

chineco’s optimal solution must be integers. Because the right-hand side of each con-

straint is equal to 1, each xij must be a nonnegative integer that is no larger than 1, so 

each xij must equal 0 or 1. This means that we can ignore the restrictions that xij � 0 or

1 and solve (13) as a balanced transportation problem. By the minimum cost method, we

obtain the bfs in Table 44. The current bfs is highly degenerate. (In any bfs to an m � m

assignment problem, there will always be m basic variables that equal 1 and m � 1 basic

variables that equal 0.)

We find that cc�43 � 1 is the only positive cc�ij. We therefore enter x43 into the basis. The

loop involving x43 and some of the basic variables is (4, 3)–(1, 3)–(1, 2)–(4, 2). The odd

variables in the loop are x13 and x42. Because x13 � x42 � 0, either x13 or x42 will leave
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the basis. We arbitrarily choose x13 to leave the basis. After performing the pivot, we ob-

tain the bfs in Table 45. All c�ij’s are now nonpositive, so we have obtained an optimal as-

signment: x12 � 1, x24 � 1, x33 � 1, and x41 � 1. Thus, machine 1 is assigned to job 2,

machine 2 is assigned to job 4, machine 3 is assigned to job 3, and machine 4 is assigned

to job 1. A total setup time of 5 � 5 � 3 � 2 � 15 hours is required.

The Hungarian Method

Looking back at our initial bfs, we see that it was an optimal solution. We did not know

that it was optimal, however, until performing one iteration of the transportation simplex.

This suggests that the high degree of degeneracy in an assignment problem may cause the

transportation simplex to be an inefficient way of solving assignment problems. For this

reason (and the fact that the algorithm is even simpler than the transportation simplex),

the Hungarian method is usually used to solve assignment (min) problems:

Step 1 Find the minimum element in each row of the m � m cost matrix. Construct a

new matrix by subtracting from each cost the minimum cost in its row. For this new ma-

trix, find the minimum cost in each column. Construct a new matrix (called the reduced

cost matrix) by subtracting from each cost the minimum cost in its column.

Step 2 Draw the minimum number of lines (horizontal, vertical, or both) that are needed

to cover all the zeros in the reduced cost matrix. If m lines are required, then an optimal

solution is available among the covered zeros in the matrix. If fewer than m lines are

needed, then proceed to step 3.

Step 3 Find the smallest nonzero element (call its value k) in the reduced cost matrix

that is uncovered by the lines drawn in step 2. Now subtract k from each uncovered ele-

ment of the reduced cost matrix and add k to each element that is covered by two lines.

Return to step 2.

R E M A R K S 1 To solve an assignment problem in which the goal is to maximize the objective function, mul-
tiply the profits matrix through by �1 and solve the problem as a minimization problem.
2 If the number of rows and columns in the cost matrix are unequal, then the assignment problem
is unbalanced. The Hungarian method may yield an incorrect solution if the problem is unbalanced.
Thus, any assignment problem should be balanced (by the addition of one or more dummy points)
before it is solved by the Hungarian method.
3 In a large problem, it may not be easy to find the minimum number of lines needed to cover all
zeros in the current cost matrix. For a discussion of how to find the minimum number of lines
needed, see Gillett (1976). It can be shown that if j lines are required, then only j “jobs” can be as-
signed to zero costs in the current matrix. This explains why the algorithm terminates when m lines
are required.

Solution of Machineco Example by the Hungarian Method

We illustrate the Hungarian method by solving the Machineco problem (see Table 46).

Step 1 For each row, we subtract the row minimum from each element in the row, ob-

taining Table 47. We now subtract 2 from each cost in column 4, obtaining Table 48.

Step 2 As shown, lines through row 1, row 3, and column 1 cover all the zeros in the re-

duced cost matrix. From remark 3, it follows that only three jobs can be assigned to zero

costs in the current cost matrix. Fewer than four lines are required to cover all the zeros,

so we proceed to step 3.
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Step 3 The smallest uncovered element equals 1, so we now subtract 1 from each uncov-

ered element in the reduced cost matrix and add 1 to each twice-covered element. The 

resulting matrix is Table 49. Four lines are now required to cover all the zeros. Thus, an op-

timal solution is available. To find an optimal assignment, observe that the only covered 0 in

column 3 is x33, so we must have x33 � 1. Also, the only available covered zero in column

2 is x12, so we set x12 � 1 and observe that neither row 1 nor column 2 can be used again.

Now the only available covered zero in column 4 is x24. Thus, we choose x24 � 1 (which now

excludes both row 2 and column 4 from further use). Finally, we choose x41 � 1.
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Thus, we have found the optimal assignment x12 � 1, x24 � 1, x33 � 1, and x41 � 1.

Of course, this agrees with the result obtained by the transportation simplex.

Intuitive Justification of the Hungarian Method

To give an intuitive explanation of why the Hungarian algorithm works, we need to dis-

cuss the following result: If a constant is added to each cost in a row (or column) of a

balanced transportation problem, then the optimal solution to the problem is unchanged.

To show why the result is true, suppose we add k to each cost in the first row of the Ma-

chineco problem. Then

New objective function � old objective function � k(x11 � x12 � x13 � x14)

Because any feasible solution to the Machineco problem must have x11 � x12 � x13 �

x14 � 1,

New objective function � old objective function � k

Thus, the optimal solution to the Machineco problem remains unchanged if a constant k is

added to each cost in the first row. A similar argument applies to any other row or column.

Step 1 of the Hungarian method consists (for each row and column) of subtracting a

constant from each element in the row or column. Thus, step 1 creates a new cost matrix

having the same optimal solution as the original problem. Step 3 of the Hungarian method

is equivalent (see Problem 7 at the end of this section) to adding k to each cost that lies

in a covered row and subtracting k from each cost that lies in an uncovered column (or

vice versa). Thus, step 3 creates a new cost matrix with the same optimal solution as the

initial assignment problem. Each time step 3 is performed, at least one new zero is cre-

ated in the cost matrix.

Steps 1 and 3 also ensure that all costs remain nonnegative. Thus, the net effect of steps

1 and 3 of the Hungarian method is to create a sequence of assignment problems (with

nonnegative costs) that all have the same optimal solution as the original assignment prob-

lem. Now consider an assignment problem in which all costs are nonnegative. Any feasi-

ble assignment in which all the xij’s that equal 1 have zero costs must be optimal for such

an assignment problem. Thus, when step 2 indicates that m lines are required to cover all

the zeros in the cost matrix, an optimal solution to the original problem has been found.

Computer Solution of Assignment Problems

To solve assignment problems in LINDO, type in the objective function and constraints.

Also, many menu-driven programs require the user to input only a list of supply and de-
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Four Lines Required; Optimal
Solution Is Available

10

5

3

5 0

5

0

0 3 0

9 3 0

4

10



mand points (such as jobs and machines, respectively) and a cost matrix. LINGO can also

be used to easily solve assignment problems, including the following model to solve the

Machineco example (file Assign.lng).

MODEL:
1]SETS:
2]MACHINES/1..4/;
3]JOBS/1..4/;
4]LINKS(MACHINES,JOBS):COST,ASSIGN;
5]ENDSETS
6]MIN=@SUM(LINKS:COST*ASSIGN);
7]@FOR(MACHINES(I):
8]@SUM(JOBS(J):ASSIGN(I,J))<1);
9]@FOR(JOBS(J):

10]@SUM(MACHINES(I):ASSIGN(I,J))>1);
11]DATA:
12]COST = 14,5,8,7,
13]2,12,6,5,
14]7,8,3,9,
15]2,4,6,10;
16]ENDDATA

END

Line 2 defines the four supply points (machines), and line 3 defines the four demand

points ( jobs). In line 4, we define each possible combination of jobs and machines (16 in

all) and associate with each combination an assignment cost [for example COST(1, 2) �

5] and a variable ASSIGN(I,J). ASSIGN(I,J) equals 1 if machine i is used to perform job

j; it equals 0 otherwise. Line 5 ends the definition of sets.

Line 6 expresses the objective function by summing over all possible (I,J) combina-

tions the product of the assignment cost and ASSIGN(I,J). Lines 7–8 limit each MA-

CHINE to performing at most one job by forcing (for each machine) the sum of AS-

SIGN(I,J) over all JOBS to be at most 1. Lines 9–10 require that each JOB be completed

by forcing (for each job) the sum of ASSIGN(I,J) over all MACHINES to be at least 1.

Lines 12–16 input the cost matrix.

Observe that this LINGO program can (with simple editing) be used to solve any as-

signment problem (even if it is not balanced!). For example, if you had 10 machines avail-

able to perform 8 jobs, you would edit line 2 to indicate that there are 10 machines (re-

place 1..4 with 1..10). Then edit line 3 to indicate that there are 8 jobs. Finally, in line 12,

you would type the 80 entries of your cost matrix, following “COST�” and you would

be ready to roll!

R E M A R K 1 From our discussion of the Machineco example, it is unnecessary to force the ASSIGN(I,J) to
equal 0 or 1; this will happen automatically!

P R O B L E M S
Group A
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1 Five employees are available to perform four jobs. The
time it takes each person to perform each job is given in
Table 50. Determine the assignment of employees to jobs
that minimizes the total time required to perform the four
jobs.

2† Doc Councillman is putting together a relay team for
the 400-meter relay. Each swimmer must swim 100 meters
of breaststroke, backstroke, butterfly, or freestyle. Doc
believes that each swimmer will attain the times given in

†This problem is based on Machol (1970).

TA B L E  50

Time (hours)

Person Job 1 Job 2 Job 3 Job 4

1 22 18 30 18

2 18 — 27 22

3 26 20 28 28

4 16 22 — 14

5 21 — 25 28

Note: Dashes indicate person cannot do that particular job.

Assign.lng



Table 51. To minimize the team’s time for the race, which
swimmer should swim which stroke?

3 Tom Cruise, Freddy Prinze Jr., Harrison Ford, and Matt
LeBlanc are marooned on a desert island with Jennifer
Aniston, Courteney Cox, Gwyneth Paltrow, and Julia
Roberts. The “compatibility measures” in Table 52 indicate
how much happiness each couple would experience if they
spent all their time together. The happiness earned by a
couple is proportional to the fraction of time they spend
together. For example, if Freddie and Gwyneth spend half
their time together, they earn happiness of �

1

2
�(9) � 4.5.

a Let xij be the fraction of time that the ith man spends
with the jth woman. The goal of the eight people is to
maximize the total happiness of the people on the is-
land. Formulate an LP whose optimal solution will yield
the optimal values of the xij’s.

b Explain why the optimal solution in part (a) will
have four xij � 1 and twelve xij � 0. The optimal solu-
tion requires that each person spend all his or her time
with one person of the opposite sex, so this result is of-
ten referred to as the Marriage Theorem.

c Determine the marriage partner for each person.

d Do you think the Proportionality Assumption of lin-
ear programming is valid in this situation?

4 A company is taking bids on four construction jobs. Three
people have placed bids on the jobs. Their bids (in thousands
of dollars) are given in Table 53 (a * indicates that the person
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did not bid on the given job). Person 1 can do only one job,
but persons 2 and 3 can each do as many as two jobs.
Determine the minimum cost assignment of persons to jobs.

5 Greydog Bus Company operates buses between Boston
and Washington, D.C. A bus trip between these two cities
takes 6 hours. Federal law requires that a driver rest for four
or more hours between trips. A driver’s workday consists of
two trips: one from Boston to Washington and one from
Washington to Boston. Table 54 gives the departure times
for the buses. Greydog’s goal is to minimize the total
downtime for all drivers. How should Greydog assign crews
to trips? Note: It is permissible for a driver’s “day” to overlap
midnight. For example, a Washington-based driver can be
assigned to the Washington–Boston 3 P.M. trip and the
Boston–Washington 6 A.M. trip.

6 Five male characters (Billie, John, Fish, Glen, and Larry)
and five female characters (Ally, Georgia, Jane, Rene, and
Nell) from Ally McBeal are marooned on a desert island.
The problem is to determine what percentage of time each
woman on the island should spend with each man. For
example, Ally could spend 100% of her time with John or
she could “play the field” by spending 20% of her time with
each man. Table 55 shows a “happiness index” for each
potential pairing of a man and woman. For example, if Larry
and Rene spend all their time together, they earn 8 units of
happiness for the island.

a Play matchmaker and determine an allocation of
each man and woman’s time that earns the maximum to-
tal happiness for the island. Assume that happiness
earned by a couple is proportional to the amount of time
they spend together.

b Explain why the optimal solution to this problem
will, for any matrix of “happiness indices,” always in-
volve each woman spending all her time with one man.

TA B L E  51

Time (seconds)

Swimmer Free Breast Fly Back

Gary Hall 54 54 51 53

Mark Spitz 51 57 52 52

Jim Montgomery 50 53 54 56

Chet Jastremski 56 54 55 53

TA B L E  53

Job

Person 1 2 3 4

1 50 46 42 40

2 51 48 44 *

3 * 47 45 45

TA B L E  52

JA CC GP JR

TC 7 5 8 2

FP 7 8 9 4

HF 3 5 7 9

ML 5 5 6 7

TA B L E  54

Departure Departure
Trip Time Trip Time

Boston 1 6 A.M. Washington 1 5:30 A.M.

Boston 2 7:30 A.M. Washington 2 9 A.M.

Boston 3 11.30 A.M. Washington 3 3 P.M.

Boston 4 7 P.M. Washington 4 6:30 P.M.

Boston 5 12:30 A.M. Washington 5 12 midnight

TA B L E  55

Ally Georgia Jane Rene Nell

Billie 8 6 4 7 5

John 5 7 6 4 9

Fish 10 6 5 2 10

Glen 1 0 0 0 0

Larry 5 7 9 8 6



c What assumption made in the problem is needed for
the Marriage Theorem to hold?

Group B

7 Any transportation problem can be formulated as an
assignment problem. To illustrate the idea, determine an
assignment problem that could be used to find the optimal
solution to the transportation problem in Table 56. (Hint:
You will need five supply and five demand points).

8 The Chicago board of education is taking bids on the
city’s four school bus routes. Four companies have made the
bids in Table 57.

a Suppose each bidder can be assigned only one route.
Use the assignment method to minimize Chicago’s cost
of running the four bus routes.
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b Suppose that each company can be assigned two
routes. Use the assignment method to minimize
Chicago’s cost of running the four bus routes. (Hint:
Two supply points will be needed for each company.)

9 Show that step 3 of the Hungarian method is equivalent
to performing the following operations: (1) Add k to each
cost that lies in a covered row. (2) Subtract k from each cost
that lies in an uncovered column.

10 Suppose cij is the smallest cost in row i and column j
of an assignment problem. Must xij � 1 in any optimal
assignment?

7.6 Transshipment Problems

A transportation problem allows only shipments that go directly from a supply point to a

demand point. In many situations, shipments are allowed between supply points or be-

tween demand points. Sometimes there may also be points (called transshipment points)

through which goods can be transshipped on their journey from a supply point to a de-

mand point. Shipping problems with any or all of these characteristics are transshipment

problems. Fortunately, the optimal solution to a transshipment problem can be found by

solving a transportation problem.

In what follows, we define a supply point to be a point that can send goods to another

point but cannot receive goods from any other point. Similarly, a demand point is a point

that can receive goods from other points but cannot send goods to any other point. A

transshipment point is a point that can both receive goods from other points and send

goods to other points. The following example illustrates these definitions (“—” indicates

that a shipment is impossible).

Widgetco manufactures widgets at two factories, one in Memphis and one in Denver. The

Memphis factory can produce as many as 150 widgets per day, and the Denver factory

can produce as many as 200 widgets per day. Widgets are shipped by air to customers in

Los Angeles and Boston. The customers in each city require 130 widgets per day. Because

of the deregulation of airfares, Widgetco believes that it may be cheaper to first fly some

widgets to New York or Chicago and then fly them to their final destinations. The costs

of flying a widget are shown in Table 58. Widgetco wants to minimize the total cost of

shipping the required widgets to its customers.

TA B L E  56

2

13

3

1 4

32

TA B L E  57

Bids

Route Route Route Route
Company 1 2 3 4

1 $4,000 $5,000 — —

2 — $4,000 — $4,000

3 $3,000 — $2,000 —

4 — — $4,000 $5,000

TransshipmentE X A M P L E  5



In this problem, Memphis and Denver are supply points, with supplies of 150 and 200

widgets per day, respectively. New York and Chicago are transshipment points. Los An-

geles and Boston are demand points, each with a demand of 130 widgets per day. A graph-

ical representation of possible shipments is given in Figure 9.

We now describe how the optimal solution to a transshipment problem can be found

by solving a transportation problem. Given a transshipment problem, we create a balanced

transportation problem by the following procedure (assume that total supply exceeds to-

tal demand):

Step 1 If necessary, add a dummy demand point (with a supply of 0 and a demand equal

to the problem’s excess supply) to balance the problem. Shipments to the dummy and from

a point to itself will, of course, have a zero shipping cost. Let s � total available supply.

Step 2 Construct a transportation tableau as follows: A row in the tableau will be needed

for each supply point and transshipment point, and a column will be needed for each de-

mand point and transshipment point. Each supply point will have a supply equal to its

original supply, and each demand point will have a demand equal to its original demand.

Let s � total available supply. Then each transshipment point will have a supply equal to

(point’s original supply) � s and a demand equal to (point’s original demand) � s. This

ensures that any transshipment point that is a net supplier will have a net outflow equal

to the point’s original supply, and, similarly, a net demander will have a net inflow equal

to the point’s original demand. Although we don’t know how much will be shipped

through each transshipment point, we can be sure that the total amount will not exceed s.

This explains why we add s to the supply and demand at each transshipment point. By

adding the same amounts to the supply and demand, we ensure that the net outflow at each

transshipment point will be correct, and we also maintain a balanced transportation

tableau.
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TA B L E  58

Shipping Costs for Transshipments

To ($)

From Memphis Denver N.Y. Chicago L.A. Boston

Memphis 0 — 8 13 25 28

Denver — 0 15 12 26 25

N.Y. — — 0 6 16 17

Chicago — — 6 0 14 16

L.A. — — — — 0 —

Boston — — — — — 0

Memphis New York
Los

Angeles

Denver Chicago Boston

F I G U R E  9

A Transshipment
Problem



For the Widgetco example, this procedure yields the transportation tableau and its opti-

mal solution given in Table 59. Because s � (total supply) � 150 � 200 � 350 and (total

demand) � 130 � 130 � 260, the dummy demand point has a demand of 350 � 260 �

90. The other supplies and demands in the transportation tableau are obtained by adding

s � 350 to each transshipment point’s supply and demand.

In interpreting the solution to the transportation problem created from a transshipment

problem, we simply ignore the shipments to the dummy and from a point to itself. From

Table 59, we find that Widgetco should produce 130 widgets at Memphis, ship them to

New York, and transship them from New York to Los Angeles. The 130 widgets produced

at Denver should be shipped directly to Boston. The net outflow from each city is

Memphis: 220 � 130 � 20 � 220 � 150

Denver: 220 � 130 � 70 � 220 � 200

N.Y.: 220 � 130 � 130 � 220 � 0

Chicago: 350 � 350 � 130 � 220 � 0

L.A.: 350 � 350 �130 � 220 � 0

Boston: 350 � 350 �130 � 220 � 0

Dummy: �20 � 70 � 130 � 220 � �90

A negative net outflow represents an inflow. Observe that each transshipment point (New

York and Chicago) has a net outflow of 0; whatever flows into the transshipment point

must leave the transshipment point. A graphical representation of the optimal solution to

the Widgetco example is given in Figure 10.

Suppose that we modify the Widgetco example and allow shipments between Mem-

phis and Denver. This would make Memphis and Denver transshipment points and would

add columns for Memphis and Denver to the Table 59 tableau. The Memphis row in the

tableau would now have a supply of 150 � 350 � 500, and the Denver row would have
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Memphis New York
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Angeles

Denver Chicago
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130 130
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F I G U R E  10

Optimal Solution 
to Widgetco
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Transshipment Problem 

as Balanced 
Transportation Problem
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a supply of 200 � 350 � 550. The new Memphis column would have a demand of 0 �

350 � 350, and the new Denver column would have a demand of 0 � 350 � 350. Fi-

nally, suppose that shipments between demand points L.A. and Boston were allowed. This

would make L.A. and Boston transshipment points and add rows for L.A. and Boston.

The supply for both the L.A. and Boston rows would be 0 � 350 � 350. The demand for

both the L.A. and Boston columns would now be 130 � 350 � 480.

P R O B L E M S
Group A
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1 General Ford produces cars at L.A. and Detroit and has
a warehouse in Atlanta; the company supplies cars to
customers in Houston and Tampa. The cost of shipping a car
between points is given in Table 60 (“—” means that a
shipment is not allowed). L.A. can produce as many as
1,100 cars, and Detroit can produce as many as 2,900 cars.
Houston must receive 2,400 cars, and Tampa must receive
1,500 cars.

a Formulate a balanced transportation problem that
can be used to minimize the shipping costs incurred in
meeting demands at Houston and Tampa.

b Modify the answer to part (a) if shipments between
L.A. and Detroit are not allowed.

c Modify the answer to part (a) if shipments between
Houston and Tampa are allowed at a cost of $5.

2 Sunco Oil produces oil at two wells. Well 1 can produce
as many as 150,000 barrels per day, and well 2 can produce
as many as 200,000 barrels per day. It is possible to ship oil
directly from the wells to Sunco’s customers in Los Angeles
and New York. Alternatively, Sunco could transport oil to
the ports of Mobile and Galveston and then ship it by tanker
to New York or Los Angeles. Los Angeles requires 160,000
barrels per day, and New York requires 140,000 barrels per
day. The costs of shipping 1,000 barrels between two points
are shown in Table 61. Formulate a transshipment model
(and equivalent transportation model) that could be used to
minimize the transport costs in meeting the oil demands of
Los Angeles and New York.

3 In Problem 2, assume that before being shipped to Los
Angeles or New York, all oil produced at the wells must be
refined at either Galveston or Mobile. To refine 1,000 barrels
of oil costs $12 at Mobile and $10 at Galveston. Assuming
that both Mobile and Galveston have infinite refinery capacity,

formulate a transshipment and balanced transportation model
to minimize the daily cost of transporting and refining the oil
requirements of Los Angeles and New York.

4 Rework Problem 3 under the assumption that Galveston
has a refinery capacity of 150,000 barrels per day and Mobile
has one of 180,000 barrels per day. (Hint: Modify the method
used to determine the supply and demand at each
transshipment point to incorporate the refinery capacity
restrictions, but make sure to keep the problem balanced.)

5 General Ford has two plants, two warehouses, and three
customers. The locations of these are as follows:

Plants: Detroit and Atlanta
Warehouses: Denver and New York
Customers: Los Angeles, Chicago, and Philadelphia

Cars are produced at plants, then shipped to warehouses,
and finally shipped to customers. Detroit can produce 150
cars per week, and Atlanta can produce 100 cars per week.
Los Angeles requires 80 cars per week; Chicago, 70; and
Philadelphia, 60. It costs $10,000 to produce a car at each
plant, and the cost of shipping a car between two cities is
given in Table 62. Determine how to meet General Ford’s
weekly demands at minimum cost.

Group B

6† A company must meet the following demands for cash
at the beginning of each of the next six months: month 1,

TA B L E  60

To ($)

From L.A. Detroit Atlanta Houston Tampa

L.A. 0 140 100 90 225

Detroit 145 0 111 110 119

Atlanta 105 115 0 113 78

Houston 89 109 121 0 —

Tampa 210 117 82 — 0

TA B L E  61

To ($)

From Well 1 Well 2 Mobile Galveston N.Y. L.A.

Well 1 0 — 10 13 25 28

Well 2 — 0 15 12 26 25

Mobile — — 0 6 16 17

Galveston — — 6 0 14 16

N.Y. — — — — 0 15

L.A. — — — — 15 0

Note: Dashes indicate shipments that are not allowed.

†Based on Srinivasan (1974).



$200; month 2, $100; month 3, $50; month 4, $80; month
5, $160; month 6, $140. At the beginning of month 1, the
company has $150 in cash and $200 worth of bond 1, $100
worth of bond 2, and $400 worth of bond 3. The company
will have to sell some bonds to meet demands, but a penalty
will be charged for any bonds sold before the end of month
6. The penalties for selling $1 worth of each bond are as
shown in Table 63.

a Assuming that all bills must be paid on time, for-
mulate a balanced transportation problem that can be
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used to minimize the cost of meeting the cash demands
for the next six months.

b Assume that payment of bills can be made after they
are due, but a penalty of 5¢ per month is assessed for
each dollar of cash demands that is postponed for one
month. Assuming all bills must be paid by the end of
month 6, develop a transshipment model that can be
used to minimize the cost of paying the next six months’
bills. (Hint: Transshipment points are needed, in the
form Ct � cash available at beginning of month t after
bonds for month t have been sold, but before month t
demand is met. Shipments into Ct occur from bond sales
and Ct � 1. Shipments out of Ct occur to Ct � 1 and
demands for months 1, 2, . . . . t.)

S U M M A R Y Notation

m � number of supply points

n � number of demand points

xij � number of units shipped from supply point i to demand point j

cij � cost of shipping 1 unit from supply point i to demand point j

si � supply at supply point i

dj � demand at demand point j

cij � coefficient of xij in row 0 of a given tableau

aij � column for xij in transportation constraints

A transportation problem is balanced if total supply equals total demand. To use the

methods of this chapter to solve a transportation problem, the problem must first be bal-

anced by use of a dummy supply or a dummy demand point. A balanced transportation

problem may be written as

min �
i�m

i�1
�
j�n

j�1

cijxij

s.t. �
j�n

j�1

xij � si (i � 1, 2, . . . , m) (Supply constraints)

s.t. �
i�m

i�1

xij � dj ( j � 1, 2, . . . , n) (Demand constraints)

xij � 0 (i � 1, 2, . . . , m; j � 1, 2, . . . , n)

TA B L E  63

Month of Sale

Bond 1 2 3 4 5 6

1 $0.21 $0.19 $0.17 $0.13 $0.09 $0.05

2 $0.50 $0.50 $0.50 $0.33 $0.00 $0.00

3 $1.00 $1.00 $1.00 $1.00 $1.00 $0.00

TA B L E  62

To ($)

From Denver New York

Detroit 1,253 637

Atlanta 1,398 841

To ($)

From Los Angeles Chicago Philadelphia

Denver 1,059 996 1,691

New York 2,786 802 100



Finding Basic Feasible Solutions 
for Balanced Transportation Problems

We can find a bfs for a balanced transportation problem by the northwest corner method,

the minimum-cost method, or Vogel’s method. To find a bfs by the northwest corner

method, begin in the upper left-hand (or northwest) corner of the transportation tableau

and set x11 as large as possible. Clearly, x11 can be no larger than the smaller of s1 and

d1. If x11 � s1, then cross out the first row of the transportation tableau; this indicates that

no more basic variables will come from row 1 of the tableau. Also change d1 to d1 � s1.

If x11 � d1, then cross out the first column of the transportation tableau and change s1 to

s1 � d1. If x11 � s1 � d1, cross out either row 1 or column 1 (but not both) of the trans-

portation tableau. If you cross out row 1, change d1 to 0; if you cross out column 1, change

s1 to 0. Continue applying this procedure to the most northwest cell in the tableau that

does not lie in a crossed-out row or column. Eventually, you will come to a point where

there is only one cell that can be assigned a value. Assign this cell a value equal to its

row or column demand, and cross out both the cell’s row and its column. A basic feasi-

ble solution has now been obtained.

Finding the Optimal Solution 
for a Transportation Problem

Step 1 If the problem is unbalanced, balance it.

Step 2 Use one of the methods described in Section 7.2 to find a bfs.

Step 3 Use the fact that u1 � 0 and ui � vj � cij for all basic variables to find the 

[u1 u2 . . . um v1 v2 . . . vn] for the current bfs.

Step 4 If ui � vj � cij � 0 for all nonbasic variables, then the current bfs is optimal. If

this is not the case, then we enter the variable with the most positive ui � vj � cij into

the basis. To do this, find the loop. Then, counting only cells in the loop, label the even

cells. Also label the odd cells. Now find the odd cell whose variable assumes the small-

est value, 	. The variable corresponding to this odd cell will leave the basis. To perform

the pivot, decrease the value of each odd cell by 	 and increase the value of each even

cell by 	. The values of variables not in the loop remain unchanged. The pivot is now

complete. If 	 � 0, then the entering variable will equal 0, and an odd variable that has

a current value of 0 will leave the basis. In this case, a degenerate bfs will result. If more

than one odd cell in the loop equals 	, you may arbitrarily choose one of these odd cells

to leave the basis; again, a degenerate bfs will result. The pivoting yields a new bfs.

Step 5 Using the new bfs, return to steps 3 and 4.

For a maximization problem, proceed as stated, but replace step 4 by step 4.

Step 4 If ui � vj � cij � 0 for all nonbasic variables, the current bfs is optimal. Other-

wise, enter the variable with the most negative ui � vj � cij into the basis using the piv-

oting procedure.

Assignment Problems

An assignment problem is a balanced transportation problem in which all supplies and

demands equal 1. An m � m assignment problem may be efficiently solved by the Hun-

garian method:
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Step 1 Find the minimum element in each row of the cost matrix. Construct a new ma-

trix by subtracting from each cost the minimum cost in its row. For this new matrix, find

the minimum cost in each column. Construct a new matrix (reduced cost matrix) by sub-

tracting from each cost the minimum cost in its column.

Step 2 Cover all the zeros in the reduced cost matrix using the minimum number of lines

needed. If m lines are required, then an optimal solution is available among the covered

zeros in the matrix. If fewer than m lines are needed, then proceed to step 3.

Step 3 Find the smallest nonzero element (k) in the reduced cost matrix that is uncov-

ered by the lines drawn in step 2. Now subtract k from each uncovered element and add

k to each element that is covered by two lines. Return to step 2.

R E M A R K S 1 To solve an assignment problem in which the goal is to maximize the objective function, mul-
tiply the profits matrix through by �1 and solve it as a minimization problem.
2 If the number of rows and columns in the cost matrix are unequal, then the problem is unbal-
anced. The Hungarian method may yield an incorrect solution if the problem is unbalanced. Thus,
any assignment problem should be balanced (by the addition of one or more dummy points) before
it is solved by the Hungarian method.

Transshipment Problems

A transshipment problem allows shipment between supply points and between demand

points, and it may also contain transshipment points through which goods may be shipped

on their way from a supply point to a demand point. Using the following method, a trans-

shipment problem may be transformed into a balanced transportation problem.

Step 1 If necessary, add a dummy demand point (with a supply of 0 and a demand equal

to the problem’s excess supply) to balance the problem. Shipments to the dummy and from

a point to itself will, of course, have a zero shipping cost. Let s � total available supply.

Step 2 Construct a transportation tableau creating a row for each supply point and trans-

shipment point, and a column for each demand point and transshipment point. Each sup-

ply point will have a supply equal to its original supply, and each demand point will have

a demand equal to its original demand. Let s � total available supply. Then each trans-

shipment point will have a supply equal to (point’s original supply) � s and a demand

equal to (point’s original demand) � s.

Sensitivity Analysis for Transportation Problems

Following the discussion of sensitivity analysis in Chapter 6, we can analyze how a

change in a transportation problem affects the problem’s optimal solution.

Change 1 Changing the objective function coefficient of a nonbasic variable. As long as

the coefficient of xij in the optimal row 0 is nonpositive, the current basis remains optimal.

Change 2 Changing the objective function coefficient of a basic variable. To see whether

the current basis remains optimal, find the new ui’s and vj’s and use these values to price

out all nonbasic variables. The current basis remains optimal as long as all nonbasic vari-

ables have a nonpositive coefficient in row 0.

Change 3 Increasing both supply si and demand dj by �.

New z-value � old z-value � �ui � �vj
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We may find the new values of the decision variables as follows:

1 If xij is a basic variable in the optimal solution, then increase xij by �.

2 If xij is a nonbasic variable in the optimal solution, find the loop involving xij and some

of the basic variables. Find an odd cell in the loop that is in row i. Increase the value of

this odd cell by � and go around the loop, alternately increasing and then decreasing cur-

rent basic variables in the loop by �.

R E V I E W  P R O B L E M S
Group A
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1 Televco produces TV picture tubes at three plants. Plant
1 can produce 50 tubes per week; plant 2, 100 tubes per
week; and plant 3, 50 tubes per week. Tubes are shipped to
three customers. The profit earned per tube depends on the
site where the tube was produced and on the customer who
purchases the tube (see Table 64). Customer 1 is willing to
purchase as many as 80 tubes per week; customer 2, as
many as 90; and customer 3, as many as 100. Televco wants
to find a shipping and production plan that will maximize
profits.

a Formulate a balanced transportation problem that
can be used to maximize Televco’s profits.

b Use the northwest corner method to find a bfs to the
problem.

c Use the transportation simplex to find an optimal so-
lution to the problem.

2 Five workers are available to perform four jobs. The
time it takes each worker to perform each job is given in
Table 65. The goal is to assign workers to jobs so as to
minimize the total time required to perform the four jobs.
Use the Hungarian method to solve the problem.

3 A company must meet the following demands for 
a product: January, 30 units; February, 30 units; March, 
20 units. Demand may be backlogged at a cost of
$5/unit/month. All demand must be met by the end of March.
Thus, if 1 unit of January demand is met during March, a
backlogging cost of 5(2) � $10 is incurred. Monthly
production capacity and unit production cost during each
month are given in Table 66. A holding cost of $20/unit is
assessed on the inventory at the end of each month.

a Formulate a balanced transportation problem that
could be used to determine how to minimize the total
cost (including backlogging, holding, and production
costs) of meeting demand.

b Use Vogel’s method to find a basic feasible solution.

c Use the transportation simplex to determine how to
meet each month’s demand. Make sure to give an inter-
pretation of your optimal solution (for example, 20 units
of month 2 demand is met from month 1 production).

4 Appletree Cleaning has five maids. To complete cleaning
my house, they must vacuum, clean the kitchen, clean the
bathroom, and do general straightening up. The time it takes
each maid to do each job is shown in Table 67. Each maid

TA B L E  64

To ($)

From Customer 1 Customer 2 Customer 3

Plant 1 75 60 69

Plant 2 79 73 68

Plant 3 85 76 70

TA B L E  65

Time (Hours)

Worker Job 1 Job 2 Job 3 Job 4

1 10 15 10 15

2 12 8 20 16

3 12 9 12 18

4 6 12 15 18

5 16 12 8 12

TA B L E  66

Production Unit Production
Month Capacity Cost

January 35 $400

February 30 $420

March 35 $410

TA B L E  67

Time (Hours)

Clean Clean Straighten
Maid Vacuum Kitchen Bathroom Up

1 6 5 2 1

2 9 8 7 3

3 8 5 9 4

4 7 7 8 3

5 5 5 6 4



is assigned one job. Use the Hungarian method to determine
assignments that minimize the total number of maid-hours
needed to clean my house.

5† Currently, State University can store 200 files on hard
disk, 100 files in computer memory, and 300 files on tape.
Users want to store 300 word-processing files, 100
packaged-program files, and 100 data files. Each month a
typical word-processing file is accessed eight times; a typical
packaged-program file, four times; and a typical data file,
two times. When a file is accessed, the time it takes for the
file to be retrieved depends on the type of file and on the
storage medium (see Table 68).

a If the goal is to minimize the total time per month
that users spend accessing their files, formulate a bal-
anced transportation problem that can be used to deter-
mine where files should be stored.

b Use the minimum cost method to find a bfs.

c Use the transportation simplex to find an optimal 
solution.

6 The Gotham City police have just received three calls for
police. Five cars are available. The distance (in city blocks)
of each car from each call is given in Table 69. Gotham City
wants to minimize the total distance cars must travel to
respond to the three police calls. Use the Hungarian method
to determine which car should respond to which call.

7 There are three school districts in the town of Busville.
The number of black and white students in each district are
shown in Table 70. The Supreme Court requires the schools
in Busville to be racially balanced. Thus, each school must
have exactly 300 students, and each school must have the
same number of black students. The distances between
districts are shown in Table 70.
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Formulate a balanced transportation problem that can be
used to determine the minimum total distance that students
must be bused while still satisfying the Supreme Court’s
requirements. Assume that a student who remains in his or
her own district will not be bused.

8 Using the northwest corner method to find a bfs, find
(via the transportation simplex) an optimal solution to the
transportation (minimization) problem shown in Table 71.

9 Solve the following LP:

min z � 2x1 � 3x2 � 4x3 � 3x4

s.t. x1 � x2 � x3 � x4 � 4

s.t. x1 � x2 � x3 � x4 � 5

s.t. x1 � x2 � x3 � x4 � 3

s.t. x1 � x2 � x3 � x4 � 6

min xj � 0 ( j � 1, 2, 3, 4)

10 Find the optimal solution to the balanced transportation
problem in Table 72 (minimization).

11 In Problem 10, suppose we increase si to 16 and d3 to
11. The problem is still balanced, and because 31 units
(instead of 30 units) must be shipped, one would think that
the total shipping costs would be increased. Show that the
total shipping cost has actually decreased by $2, however.
This is called the “more for less” paradox. Explain why
increasing both the supply and the demand has decreased
cost. Using the theory of shadow prices, explain how one
could have predicted that increasing s1 and d3 by 1 would
decrease total cost by $2.

12 Use the northwest corner method, the minimum-cost
method, and Vogel’s method to find basic feasible solutions
to the transportation problem in Table 73.

13 Find the optimal solution to Problem 12.

†This problem is based on Evans (1984).

TA B L E  68

Time (Minutes)

Storage Word Packaged
Medium Processing Program Data

Hard disk 5 4 4

Memory 2 1 1

Tape 10 8 6

TA B L E  69

Distance (Blocks)

Car Call 1 Call 2 Call 3

1 10 11 18

2 6 7 7

3 7 8 5

4 5 6 4

5 9 4 7

TA B L E  71

40

60

40

70 10

50

16

19

18

14

13

15

12

14

17

TA B L E  70

No. of Students Distance to (Miles)

District Whites Blacks District 2 District 3

1 210 120 3 5

2 210 30 — 4

3 180 150 — —



14 Oilco has oil fields in San Diego and Los Angeles. The
San Diego field can produce 500,000 barrels per day, and
the Los Angeles field can produce 400,000 barrels per day.
Oil is sent from the fields to a refinery, either in Dallas or
in Houston (assume that each refinery has unlimited
capacity). It costs $700 to refine 100,000 barrels of oil at
Dallas and $900 at Houston. Refined oil is shipped to
customers in Chicago and New York. Chicago customers
require 400,000 barrels per day of refined oil; New York
customers require 300,000. The costs of shipping 100,000
barrels of oil (refined or unrefined) between cities are given
in Table 74. Formulate a balanced transportation model of
this situation.

15 For the Powerco problem, find the range of values of
c24 for which the current basis remains optimal.

16 For the Powerco problem, find the range of values of
c23 for which the current basis remains optimal.

17 A company produces cars in Atlanta, Boston, Chicago,
and Los Angeles. The cars are then shipped to warehouses
in Memphis, Milwaukee, New York City, Denver, and San
Francisco. The number of cars available at each plant is
given in Table 75.

Each warehouse needs to have available the number of
cars given in Table 76.

The distance (in miles) between the cities is given in
Table 77.

a Assuming that the cost (in dollars) of shipping a car
equals the distance between two cities, determine an op-
timal shipping schedule.

b Assuming that the cost (in dollars) of shipping a car
equals the square root of the distance between two cities,
determine an optimal shipping schedule.
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18 During the next three quarters, Airco faces the following
demands for air conditioner compressors: quarter 1—200;
quarter 2—300; quarter 3—100. As many as 240 air
compressors can be produced during each quarter. Production
costs/compressor during each quarter are given in Table 78.
The cost of holding an air compressor in inventory is
$100/quarter. Demand may be backlogged (as long as it is met
by the end of quarter 3) at a cost of $60/compressor/quarter.
Formulate the tableau for a balanced transportation problem
whose solution tells Airco how to minimize the total cost of
meeting the demands for quarters 1–3.

19 A company is considering hiring people for four types
of jobs. It would like to hire the number of people in Table
79 for each type of job.

Four types of people can be hired by the company. Each
type is qualified to perform two types of jobs according to

TA B L E  72

10

15

10 10

15

4

4

2

8

4

12

TA B L E  73

3

5

15

12 12

10

6

2

1

3

10

4

11

9

7

3

20

5

18

TA B L E  74

To ($)

From Dallas Houston N.Y. Chicago

L.A. 300 110 — —

San Diego 420 100 — —

Dallas — — 450 550

Houston — — 470 530

TA B L E  75

Plant Cars Available

Atlanta 5,000

Boston 6,000

Chicago 4,000

L.A. 3,000

TA B L E  76

Warehouse Cars Required

Memphis 6,000

Milwaukee 4,000

N.Y. 4,000

Denver 2,000

San Francisco 2,000

TA B L E  77

Memphis Milwaukee N.Y. Denver S.F.

Atlanta 371 761 841 1,398 2,496

Boston 1,296 1,050 206 1,949 3,095

Chicago 530 87 802 996 2,142

L.A. 1,817 2,012 2,786 1,059 379



Table 80. A total of 20 Type 1, 30 Type 2, 40 Type 3, and
20 Type 4 people have applied for jobs. Formulate a balanced
transportation problem whose solution will tell the company
how to maximize the number of employees assigned to
suitable jobs. (Note: Each person can be assigned to at most
one job.)

20 During each of the next two months you can produce
as many as 50 units/month of a product at a cost of $12/unit
during month 1 and $15/unit during month 2. The customer
is willing to buy as many as 60 units/month during each of
the next two months. The customer will pay $20/unit during
month 1, and $16/unit during month 2. It costs $1/unit to
hold a unit in inventory for a month. Formulate a balanced
transportation problem whose solution will tell you how to
maximize profit.

Group B

21† The Carter Caterer Company must have the following
number of clean napkins available at the beginning of each
of the next four days: day 1—15; day 2—12; day 3—18;
day 4—6. After being used, a napkin can be cleaned by one
of two methods: fast service or slow service. Fast service
costs 10¢ per napkin, and a napkin cleaned via fast service
is available for use the day after it is last used. Slow service
costs 6¢ per napkin, and these napkins can be reused two
days after they are last used. New napkins can be purchased
for a cost of 20¢ per napkin. Formulate a balanced
transportation problem to minimize the cost of meeting the
demand for napkins during the next four days.

22 Braneast Airlines must staff the daily flights between
New York and Chicago shown in Table 81. Each of Braneast’s
crews lives in either New York or Chicago. Each day a crew
must fly one New York–Chicago and one Chicago–New
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York flight with at least 1 hour of downtime between flights.
Braneast wants to schedule the crews to minimize the total
downtime. Set up an assignment problem that can be used
to accomplish this goal. (Hint: Let xij � 1 if the crew that
flies flight i also flies flight j, and xij � 0 otherwise. If xij �

1, then a cost cij is incurred, corresponding to the downtime
associated with a crew flying flight i and flight j.) Of course,
some assignments are not possible. Find the flight
assignments that minimize the total downtime. How many
crews should be based in each city? Assume that at the end
of the day, each crew must be in its home city.

23 A firm producing a single product has three plants and
four customers. The three plants will produce 3,000, 5,000,
and 5,000 units, respectively, during the next time period.
The firm has made a commitment to sell 4,000 units to
customer 1, 3,000 units to customer 2, and at least 3,000
units to customer 3. Both customers 3 and 4 also want to
buy as many of the remaining units as possible. The profit
associated with shipping a unit from plant i to customer j is
given in Table 82. Formulate a balanced transportation
problem that can be used to maximize the company’s profit.

24 A company can produce as many as 35 units/month.
The demands of its primary customers must be met on time
each month; if it wishes, the company may also sell units to
secondary customers each month. A $1/unit holding cost is
assessed against each month’s ending inventory. The relevant
data are shown in Table 83. Formulate a balanced
transportation problem that can be used to maximize profits
earned during the next three months.

25 My home has four valuable paintings that are up for
sale. Four customers are bidding for the paintings. Customer
1 is willing to buy two paintings, but each other customer
is willing to purchase at most one painting. The prices that
each customer is willing to pay are given in Table 84. Use

TA B L E  78

Quarter 1 Quarter 2 Quarter 3

$200 $180 $240

TA B L E  79

Job

1 2 3 4

Number of people 30 30 40 20

TA B L E  80

Type of Person

1 2 3 4

Jobs qualified for 1 and 3 2 and 3 3 and 4 1 and 4

†This problem is based on Jacobs (1954).

TA B L E  81

Leave Arrive Leave Arrive
Flight Chicago New York Flight New York Chicago

1 6 A.M. 10 A.M. 1 7 A.M. 9 A.M.

2 9 A.M. 1 P.M. 2 8 A.M. 10 A.M.

3 12 noon 4 P.M. 3 10 A.M. 12 noon

4 3 P.M. 7 P.M. 4 12 noon 2 P.M.

5 5 P.M. 9 P.M. 5 2 P.M. 4 P.M.

6 7 P.M. 11 P.M. 6 4 P.M. 6 P.M.

7 8 P.M. 12 midnight 7 6 P.M. 8 P.M.

TA B L E  82

To Customer ($)

From 1 2 3 4

Plant 1 65 63 62 64

Plant 2 68 67 65 62

Plant 3 63 60 59 60



the Hungarian method to determine how to maximize the
total revenue received from the sale of the paintings.

26 Powerhouse produces capacitors at three locations: Los
Angeles, Chicago, and New York. Capacitors are shipped
from these locations to public utilities in five regions of the
country: northeast (NE), northwest (NW), midwest (MW),
southeast (SE), and southwest (SW). The cost of producing
and shipping a capacitor from each plant to each region of
the country is given in Table 85. Each plant has an annual
production capacity of 100,000 capacitors. Each year, each
region of the country must receive the following number of
capacitors: NE, 55,000; NW, 50,000; MW, 60,000; SE,
60,000; SW, 45,000. Powerhouse feels shipping costs are
too high, and the company is therefore considering building
one or two more production plants. Possible sites are Atlanta
and Houston. The costs of producing a capacitor and
shipping it to each region of the country are given in Table
86. It costs $3 million (in current dollars) to build a new
plant, and operating each plant incurs a fixed cost (in
addition to variable shipping and production costs) of
$50,000 per year. A plant at Atlanta or Houston will have
the capacity to produce 100,000 capacitors per year.

Assume that future demand patterns and production costs
will remain unchanged. If costs are discounted at a rate of
11�

1

9
�% per year, how can Powerhouse minimize the present

value of all costs associated with meeting current and future
demands?
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27† During the month of July, Pittsburgh resident B. Fly
must make four round-trip flights between Pittsburgh and
Chicago. The dates of the trips are as shown in Table 87. 
B. Fly must purchase four round-trip tickets. Without a
discounted fare, a round-trip ticket between Pittsburgh and
Chicago costs $500. If Fly’s stay in a city includes a weekend,
then he gets a 20% discount on the round-trip fare. If his
stay in a city is at least 21 days, then he receives a 35%
discount; and if his stay is more than 10 days, then he
receives a 30% discount. Of course, only one discount can
be applied toward the purchase of any ticket. Formulate and
solve an assignment problem that minimizes the total cost
of purchasing the four round-trip tickets. (Hint: Let xij � 1
if a round-trip ticket is purchased for use on the ith flight
out of Pittsburgh and the jth flight out of Chicago. Also
think about where Fly should buy a ticket if, for example,
x21 � 1.)

28 Three professors must be assigned to teach six sections
of finance. Each professor must teach two sections of
finance, and each has ranked the six time periods during
which finance is taught, as shown in Table 88. A ranking of
10 means that the professor wants to teach that time, and a
ranking of 1 means that he or she does not want to teach at
that time. Determine an assignment of professors to sections
that will maximize the total satisfaction of the professors.

29‡ Three fires have just broken out in New York. Fires 1
and 2 each require two fire engines, and fire 3 requires three
fire engines. The “cost” of responding to each fire depends
on the time at which the fire engines arrive. Let tij be the
time (in minutes) when the jth engine arrives at fire i. Then
the cost of responding to each fire is as follows:

Fire 1: 6t11 � 4t12 � 5t33

Fire 2: 7t21 � 3t22 � 5t33

Fire 3: 9t31 � 8t32 � 5t33

Three fire companies can respond to the three fires.
Company 1 has three engines available, and companies 2

TA B L E  83

Available for
Production Primary Secondary Sales

Month Cost/Unit ($) Demand Demand Price/Unit ($)

1 13 20 15 15

2 12 15 20 14

3 13 25 15 16

TA B L E  84

Bid for ($)

Customer Painting 1 Painting 2 Painting 3 Painting 4

1 8 11 — —

2 9 13 12 7

3 9 — 11 —

4 — — 12 9

TA B L E  85

To ($)

From NE NW MW SE SW

L.A. 27.86 4.00 20.54 21.52 13.87

Chicago 8.02 20.54 2.00 6.74 10.67

N.Y. 2.00 27.86 8.02 8.41 15.20

TA B L E  86

To ($)

From NE NW MW SE SW

Atlanta 8.41 21.52 6.74 3.00 7.89

Houston 15.20 13.87 10.67 7.89 3.00

†Based on Hansen and Wendell (1982).
‡Based on Denardo, Rothblum, and Swersey (1988).

TA B L E  87

Leave Pittsburgh Leave Chicago

Monday, July 1 Friday, July 5

Tuesday, July 9 Thursday, July 11

Monday, July 15 Friday, July 19

Wednesday, July 24 Thursday, July 25



and 3 each have two engines available. The time (in minutes)
it takes an engine to travel from each company to each fire
is shown in Table 89.

a Formulate and solve a transportation problem that
can be used to minimize the cost associated with as-
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signing the fire engines. (Hint: Seven demand points
will be needed.)

b Would the formulation in part (a) still be valid if the
cost of fire 1 were 4t11 � 6t12?

TA B L E  88

Professor 9 A.M. 10 A.M. 11 A.M. 1 P.M. 2 P.M. 3 P.M.

1 8 7 6 5 7 6

2 9 9 8 8 4 4

3 7 6 9 6 9 9

TA B L E  89

Company Fire 1 Fire 2 Fire 3

1 6 7 9

2 5 8 11

3 6 9 10
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Network Models

Many important optimization problems can best be analyzed by means of a graphical or network

representation. In this chapter, we consider four specific network models—shortest-path prob-

lems, maximum-flow problems, CPM–PERT project-scheduling models, and minimum-spanning

tree problems—for which efficient solution procedures exist. We also discuss minimum-cost net-

work flow problems (MCNFPs), of which transportation, assignment, transshipment, shortest-

path, and maximum-flow problems and the CPM project-scheduling models are all special cases.

Finally, we discuss a generalization of the transportation simplex, the network simplex, which can

be used to solve MCNFPs. We begin the chapter with some basic terms used to describe

graphs and networks.

8.1 Basic Definitions

A graph, or network, is defined by two sets of symbols: nodes and arcs. First, we define

a set (call it V ) of points, or vertices. The vertices of a graph or network are also called

nodes.

We also define a set of arcs A.

D E F I N I T I O N ■ An arc consists of an ordered pair of vertices and represents a possible direction

of motion that may occur between vertices. ■

For our purposes, if a network contains an arc ( j, k), then motion is possible from node

j to node k. Suppose nodes 1, 2, 3, and 4 of Figure 1 represent cities, and each arc rep-

resents a (one-way) road linking two cities. For this network, V � {1, 2, 3, 4} and A �

{(1, 2), (2, 3), (3, 4), (4, 3), (4, 1)}. For the arc ( j, k), node j is the initial node, and node

k is the terminal node. The arc ( j, k) is said to go from node j to node k. Thus, the arc

(2, 3) has initial node 2 and terminal node 3, and it goes from node 2 to node 3. The arc

(2, 3) may be thought of as a (one-way) road on which we may travel from city 2 to city

3. In Figure 1, the arcs show that travel is allowed from city 3 to city 4, and from city 4

to city 3, but that travel between the other cities may be one way only.

Later, we often discuss a group or collection of arcs. The following definitions are con-

venient ways to describe certain groups or collections of arcs.

D E F I N I T I O N ■ A sequence of arcs such that every arc has exactly one vertex in common with

the previous arc is called a chain. ■



D E F I N I T I O N ■ A path is a chain in which the terminal node of each arc is identical to the initial

node of the next arc. ■

For example, in Figure 1, (1, 2)–(2, 3)–(4, 3) is a chain but not a path; (1, 2)–(2, 3)–

(3, 4) is a chain and a path. The path (1, 2)–(2, 3)–(3, 4) represents a way to travel from

node 1 to node 4.

8.2 Shortest-Path Problems

In this section, we assume that each arc in the network has a length associated with it.

Suppose we start at a particular node (say, node 1). The problem of finding the shortest

path (path of minimum length) from node 1 to any other node in the network is called a

shortest-path problem. Examples 1 and 2 are shortest-path problems.

Let us consider the Powerco example (Figure 2). Suppose that when power is sent from

plant 1 (node 1) to city 1 (node 6), it must pass through relay substations (nodes 2–5).

For any pair of nodes between which power can be transported, Figure 2 gives the dis-

tance (in miles) between the nodes. Thus, substations 2 and 4 are 3 miles apart, and power

cannot be sent between substations 4 and 5. Powerco wants the power sent from plant 1

to city 1 to travel the minimum possible distance, so it must find the shortest path in Fig-

ure 2 that joins node 1 to node 6.

If the cost of shipping power were proportional to the distance the power travels, then

knowing the shortest path between plant 1 and city 1 in Figure 2 (and the shortest path

between plant i and city j in similar diagrams) would be necessary to determine the ship-

ping costs for the transportation version of the Powerco problem discussed in Chapter 7.
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Shortest PathE X A M P L E  1

1 4

2 3
F I G U R E  1

Example of a Network

2 4

3 5

61

3

3

3

4

Plant 1 City 1

Substations

2

2

2

F I G U R E  2

Network for Powerco



I have just purchased (at time 0) a new car for $12,000. The cost of maintaining a car dur-

ing a year depends on its age at the beginning of the year, as given in Table 1. To avoid

the high maintenance costs associated with an older car, I may trade in my car and pur-

chase a new car. The price I receive on a trade-in depends on the age of the car at the

time of trade-in (see Table 2). To simplify the computations, we assume that at any time,

it costs $12,000 to purchase a new car. My goal is to minimize the net cost (purchasing

costs � maintenance costs � money received in trade-ins) incurred during the next five

years. Formulate this problem as a shortest-path problem.

Solution Our network will have six nodes (1, 2, 3, 4, 5, and 6). Node i is the beginning of year i.

For i � j, an arc (i, j) corresponds to purchasing a new car at the beginning of year i and

keeping it until the beginning of year j. The length of arc (i, j) (call it cij) is the total net

cost incurred in owning and operating a car from the beginning of year i to the beginning

of year j if a new car is purchased at the beginning of year i and this car is traded in for

a new car at the beginning of year j. Thus,

cij � maintenance cost incurred during years i, i � 1, . . . , j � 1

� cost of purchasing car at beginning of year i

� trade-in value received at beginning of year j

Applying this formula to the information in the problem yields (all costs are in thousands)

c12 � 2 � 12 � 7 � 7 c16 � 2 � 4 � 5 � 9 � 12 � 12 � 0 � 44

c13 � 2 � 4 � 12 � 6 � 12 c23 � 2 � 12 � 7 � 7

c14 � 2 � 4 � 5 � 12 � 2 �21 c24 � 2 � 4 � 12 � 6 � 12

c15 � 2 � 4 � 5 � 9 � 12 � 1 � 31 c25 � 2 � 4 � 5 � 12 � 2 � 21
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Equipment ReplacementE X A M P L E  2

TA B L E  1

Car Maintenance Costs

Annual
Age of Car Maintenance
(Years) Cost ($)

0 2,000

1 4,000

2 5,000

3 9,000

4 12,000

TA B L E  2

Car Trade-in Prices

Age of Car
(Years) Trade-in Price

1 7,000

2 6,000

3 2,000

4 1,000

5 0



c26 � 2 � 4 � 5 � 9 � 12 � 1 �31 c45 � 2 � 12 � 7 � 7

c34 � 2 � 12 � 7 � 7 c46 � 2 � 4 � 12 � 6 � 12

c35 � 2 � 4 � 12 � 6 � 12 c56 � 2 � 12 � 7 � 7

c36 � 2 � 4 � 5 � 12 � 2 � 21

We now see that the length of any path from node 1 to node 6 is the net cost incurred

during the next five years corresponding to a particular trade-in strategy. For example,

suppose I trade in the car at the beginning of year 3 and next trade in the car at the end

of year 5 (the beginning of year 6). This strategy corresponds to the path 1–3–6 in Fig-

ure 3. The length of this path (c13 � c36) is the total net cost incurred during the next five

years if I trade in the car at the beginning of year 3 and at the beginning of year 6. Thus,

the length of the shortest path from node 1 to node 6 in Figure 3 is the minimum net cost

that can be incurred in operating a car during the next five years.

Dijkstra’s Algorithm

Assuming that all arc lengths are nonnegative, the following method, known as Dijkstra’s

algorithm, can be used to find the shortest path from a node (say, node 1) to all other

nodes. To begin, we label node 1 with a permanent label of 0. Then we label each node i

that is connected to node 1 by a single arc with a “temporary” label equal to the length

of the arc joining node 1 to node i. Each other node (except, of course, for node 1) will

have a temporary label of ∞. Choose the node with the smallest temporary label and make

this label permanent.

Now suppose that node i has just become the (k � 1)th node to be given a permanent

label. Then node i is the kth closest node to node 1. At this point, the temporary label of

any node (say, node i�) is the length of the shortest path from node 1 to node i� that passes

only through nodes contained in the k � 1 closest nodes to node 1. For each node j that

now has a temporary label and is connected to node i by an arc, we replace node j’s tem-

porary label with

min �
(Here, min{a, b} is the smaller of a and b.) The new temporary label for node j is the

length of the shortest path from node 1 to node j that passes only through nodes contained

in the k closest nodes to node 1. We now make the smallest temporary label a permanent

label. The node with this new permanent label is the (k � 1)th closest node to node 1.

Continue this process until all nodes have a permanent label. To find the shortest path

from node 1 to node j, work backward from node j by finding nodes having labels dif-

node j’s current temporary label

node i’s permanent label � length of arc (i, j)
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fering by exactly the length of the connecting arc. Of course, if we want the shortest path

from node 1 to node j, we can stop the labeling process as soon as node j receives a per-

manent label.

To illustrate Dijkstra’s algorithm, we find the shortest path from node 1 to node 6 in

Figure 2. We begin with the following labels (a * represents a permanent label, and the

ith number is the label of the node i): [0* 4 3 ∞ ∞ ∞]. Node 3 now has the small-

est temporary label. We therefore make node 3’s label permanent and obtain the follow-

ing labels:

[0* 4 3* � � �]

We now know that node 3 is the closest node to node 1. We compute new temporary la-

bels for all nodes that are connected to node 3 by a single arc. In Figure 2 that is node 5.

New node 5 temporary label � min{�, 3 � 3} � 6

Node 2 now has the smallest temporary label; we now make node 2’s label permanent.

We now know that node 2 is the second closest node to node 1. Our new set of labels is

[0* 4* 3* � 6 �]

Because nodes 4 and 5 are connected to the newly permanently labeled node 2, we must

change the temporary labels of nodes 4 and 5. Node 4’s new temporary label is min {�,

4 � 3} � 7 and node 5’s new temporary label is min {6, 4 � 2} � 6. Node 5 now has

the smallest temporary label, so we make node 5’s label permanent. We now know that

node 5 is the third closest node to node 1. Our new labels are

[0* 4* 3* 7 6* �]

Only node 6 is connected to node 5, so node 6’s temporary label will change to min

{�, 6 � 2} � 8. Node 4 now has the smallest temporary label, so we make node 4’s la-

bel permanent. We now know that node 4 is the fourth closest node to node 1. Our new

labels are

[0* 4* 3* 7* 6* 8]

Because node 6 is connected to the newly permanently labeled node 4, we must change

node 6’s temporary label to min {8, 7 � 2} � 8. We can now make node 6’s label per-

manent. Our final set of labels is [0* 4* 3* 7* 6* 8*]. We can now work back-

ward and find the shortest path from node 1 to node 6. The difference between node 6’s

and node 5’s permanent labels is 2 � length of arc (5, 6), so we go back to node 5. The

difference between node 5’s and node 2’s permanent labels is 2 � length of arc (2, 5), so

we may go back to node 2. Then, of course, we must go back to node 1. Thus, 1–2–5–6

is a shortest path (of length 8) from node 1 to node 6. Observe that when we were at node

5, we could also have worked backward to node 3 and obtained the shortest path 1–3–5–6.

The Shortest-Path Problem as a Transshipment Problem

Finding the shortest path between node i and node j in a network may be viewed as a

transshipment problem. Simply try to minimize the cost of sending one unit from node i

to node j (with all other nodes in the network being transshipment points), where the cost

of sending one unit from node k to node k� is the length of arc (k, k�) if such an arc ex-

ists and is M (a large positive number) if such an arc does not exist. As in Section 7.6,

the cost of shipping one unit from a node to itself is zero. Following the method described

in Section 7.6, this transshipment problem may be transformed into a balanced trans-

portation problem.
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To illustrate the preceding ideas, we formulate the balanced transportation problem as-

sociated with finding the shortest path from node 1 to node 6 in Figure 2. We want to send

one unit from node 1 to node 6. Node 1 is a supply point, node 6 is a demand point, and

nodes 2, 3, 4, and 5 will be transshipment points. Using s � 1, we obtain the balanced trans-

portation problem shown in Table 3. This transportation problem has two optimal solutions:

1 z � 4 � 2 � 2 � 8, x12 � x25 � x56 � x33 � x44 � 1 (all other variables equal 0).

This solution corresponds to the path 1–2–5–6.

2 z � 3 � 3 � 2 � 8, x13 � x35 � x56 � x22 � x44 � 1 (all other variables equal 0).

This solution corresponds to the path 1–3–5–6.

R E M A R K After formulating a shortest-path problem as a transshipment problem, the problem may be solved
easily by using LINGO or a spreadsheet optimizer. See Section 7.1 for details.

P R O B L E M S
Group A

1Demand 1 1 1 1
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NodeTA B L E  3

Transshipment Representation
of Shortest-Path Problem and

Optimal Solution (1)

Node

Node 2 3 4 5 6 Supply

1

2

3

4

5

Demand

1 Find the shortest path from node 1 to node 6 in Figure 3.

2 Find the shortest path from node 1 to node 5 in Figure 4.

3 Formulate Problem 2 as a transshipment problem.

4 Use Dijkstra’s algorithm to find the shortest path from
node 1 to node 4 in Figure 5. Why does Dijkstra’s algorithm
fail to obtain the correct answer?

5 Suppose it costs $10,000 to purchase a new car. The
annual operating cost and resale value of a used car are
shown in Table 4. Assuming that one now has a new car,
determine a replacement policy that minimizes the net costs
of owning and operating a car for the next six years.
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6 It costs $40 to buy a telephone from the department
store. Assume that I can keep a telephone for at most five
years and that the estimated maintenance cost each year of
operation is as follows: year 1, $20; year 2, $30; year 3,
$40; year 4, $60; year 5, $70. I have just purchased a new
telephone. Assuming that a telephone has no salvage value,
determine how to minimize the total cost of purchasing and
operating a telephone for the next six years.

7 At the beginning of year 1, a new machine must be
purchased. The cost of maintaining a machine i years old is
given in Table 5.

The cost of purchasing a machine at the beginning of
each year is given in Table 6.

There is no trade-in value when a machine is replaced.
Your goal is to minimize the total cost (purchase plus
maintenance) of having a machine for five years. Determine
the years in which a new machine should be purchased.

Group B

8† A library must build shelving to shelve 200 4-inch high
books, 100 8-inch high books, and 80 12-inch high books.
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Each book is 0.5 inch thick. The library has several ways to
store the books. For example, an 8-inch high shelf may be
built to store all books of height less than or equal to 8
inches, and a 12-inch high shelf may be built for the 12-inch
books. Alternatively, a 12-inch high shelf might be built to
store all books. The library believes it costs $2,300 to build
a shelf and that a cost of $5 per square inch is incurred for
book storage. (Assume that the area required to store a book
is given by height of storage area times book’s thickness.)

Formulate and solve a shortest-path problem that could
be used to help the library determine how to shelve the
books at minimum cost. (Hint: Have nodes 0, 4, 8, and 12,
with cij being the total cost of shelving all books of height
� i and 	 j on a single shelf.)

9 A company sells seven types of boxes, ranging in volume
from 17 to 33 cubic feet. The demand and size of each box
is given in Table 7. The variable cost (in dollars) of producing
each box is equal to the box’s volume. A fixed cost of $1,000
is incurred to produce any of a particular box. If the company
desires, demand for a box may be satisfied by a box of
larger size. Formulate and solve a shortest-path problem
whose solution will minimize the cost of meeting the
demand for boxes.

10 Explain how by solving a single transshipment problem
you can find the shortest path from node 1 in a network to
each other node in the network.

8.3 Maximum-Flow Problems

Many situations can be modeled by a network in which the arcs may be thought of as hav-

ing a capacity that limits the quantity of a product that may be shipped through the arc.

In these situations, it is often desired to transport the maximum amount of flow from a

starting point (called the source) to a terminal point (called the sink). Such problems are

TA B L E  4

Age of Car Resale Operating
(Years) Value (S) Cost ($)

1 7,000 300 (year 1)

2 6,000 500 (year 2)

3 4,000 800 (year 3)

4 3,000 1,200 (year 4)

5 2,000 1,600 (year 5)

6 1,000 2,200 (year 6)

TA B L E  5

Age at Beginning Maintenance Cost
of Year for Next Year ($)

0 38,000

1 50,000

2 97,000

3 182,000

4 304,000

TA B L E  6

Year Purchase Cost ($)

1 170,000

2 190,000

3 210,000

4 250,000

5 300,000

TA B L E  7

Box

1 2 3 4 5 6 7

Size 33 30 26 24 19 18 17

Demand 400 300 500 700 200 400 200

†Based on Ravindran (1971).



called maximum-flow problems. Several specialized algorithms exist to solve maximum-

flow problems. In this section, we begin by showing how linear programming can be used

to solve a maximum-flow problem. Then we discuss the Ford–Fulkerson (1962) method

for solving maximum-flow problems.

LP Solution of Maximum-Flow Problems

Sunco Oil wants to ship the maximum possible amount of oil (per hour) via pipeline from

node so to node si in Figure 6. On its way from node so to node si, oil must pass through

some or all of stations 1, 2, and 3. The various arcs represent pipelines of different di-

ameters. The maximum number of barrels of oil (millions of barrels per hour) that can be

pumped through each arc is shown in Table 8. Each number is called an arc capacity.

Formulate an LP that can be used to determine the maximum number of barrels of oil per

hour that can be sent from so to si.

Solution Node so is called the source node because oil flows out of it but no oil flows into it. Anal-

ogously, node si is called the sink node because oil flows into it and no oil flows out of

it. For reasons that will soon become clear, we have added an artificial arc a0 from the

sink to the source. The flow through a0 is not actually oil, hence the term artificial arc.

To formulate an LP that will yield the maximum flow from node so to si, we observe

that Sunco must determine how much oil (per hour) should be sent through arc (i, j). Thus,

we define

xij � millions of barrels of oil per hour that will pass through arc (i,j) of pipeline

As an example of a possible flow (termed a feasible flow), consider the flow indentified

by the numbers in parentheses in Figure 6.

xso,1 � 2, x13 � 0, x12 � 2, x3,si � 0, x2,si � 2, xsi,so � 2, xso,2 � 0
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3

TA B L E  8

Arc Capacities for 
Sunco Oil

Arc Capacity

(so, 1) 2

(so, 2) 3

(1, 2) 3

(1, 3) 4

(3, si) 1

(2, si) 2

F I G U R E  6

Network for Sunco Oil

Maximum FlowE X A M P L E  3



For a flow to be feasible, it must have two characteristics:

0 	 flow through each arc 	 arc capacity (1)

and

Flow into node i � flow out of node i (2)

We assume that no oil gets lost while being pumped through the network, so at each

node, a feasible flow must satify (2), the conservation-of-flow constraint. The introduction

of the artificial arc a0 allows us to write the conservation-of-flow constraint for the source

and sink.

If we let x0 be the flow through the artificial arc, then conservation of flow implies that

x0 � total amount of oil entering the sink. Thus, Sunco’s goal is to maximize x0 subject

to (1) and (2):

max z � x0

s.t. xso,1 	 2 (Arc capacity constraints)

xso,2 	 3

x12 	 3

x2,si 	 2

x13 	 4

x3,si 	 1

x0 � xso,1 � xso,2 (Node so flow constraint)

xso,1 � x12 � x13 (Node 1 flow constraint)

xso,2 � x12 � x2,si (Node 2 flow constraint)

x13 � x12 � x3,si (Node 3 flow constraint)

x3,si � x2,si � x0 (Node si flow constraint)

xij 
 0

One optimal solution to this LP is z � 3, xso,1 � 2, x13 � 1, x12 � 1, xso,2 � 1, x3,si �

1, x2,si � 2, x0 � 3. Thus, the maximum possible flow of oil from node so to si is 3 mil-

lion barrels per hour, with 1 million barrels each sent via the following paths: so–1–2–si,

so–1–3–si, and so–2–si.

The linear programming formulation of maximum-flow problems is a special case of

the minimum-cost network flow problem (MCNFP) discussed in Section 8.5. A general-

ization of the transportation simplex (known as the network simplex) can be used to solve

MCNFPs.

Before discussing the Ford–Fulkerson method for solving maximum-flow problems,

we give two examples for situations in which a maximum-flow problem might arise.

Fly-by-Night Airlines must determine how many connecting flights daily can be arranged

between Juneau, Alaska, and Dallas, Texas. Connecting flights must stop in Seattle and

then stop in Los Angeles or Denver. Because of limited landing space, Fly-by-Night is

limited to making the number of daily flights between pairs of cities shown in Table 9.

Set up a maximum-flow problem whose solution will tell the airline how to maximize the

number of connecting flights daily from Juneau to Dallas.
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Solution The appropriate network is given in Figure 7. Here the capacity of arc (i, j) is the maxi-

mum number of daily flights between city i and city j. The optimal solution to this max-

imum flow problem is z � x0 � 3, xJ,S � 3, xS,L � 1, xS,De � 2, xL,D � 1, xDe,D � 2.

Thus, Fly-by-Night can send three flights daily connecting Juneau and Dallas. One flight

connects via Juneau–Seattle–L.A.–Dallas, and two flights connect via

Juneau–Seattle–Denver–Dallas.

Five male and five female entertainers are at a dance. The goal of the matchmaker is to

match each woman with a man in a way that maximizes the number of people who are

matched with compatible mates. Table 10 describes the compatibility of the entertainers.

Draw a network that makes it possible to represent the problem of maximizing the num-

ber of compatible pairings as a maximum-flow problem.

Solution Figure 8 is the appropriate network. In Figure 8, there is an arc with capacity 1 joining

the source to each man, an arc with capacity 1 joining each pair of compatible mates, and

an arc with capacity 1 joining each woman to the sink. The maximum flow in this net-

work is the number of compatible couples that can be created by the matchmaker. For ex-
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TA B L E  9

Arc Capacities for Fly-by-Night Airlines

Maximum Number
Cities of Daily Flights

Juneau–Seattle (J, S) 3

Seattle–L.A. (S, L) 2

Seattle–Denver (S, De) 3

L.A.–Dallas (L, D) 1

Denver–Dallas (De, D) 2

3 23

2

Seattle Denver

1

Los Angeles

Juneau Dallas

so si1 2

3

F I G U R E  7

Network for Fly-by-
Night Airlines

MatchmakingE X A M P L E  5

TA B L E  10

Compatibilities for Matching

Loni Meryl Katharine Linda Victoria
Anderson Streep Hepburn Evans Principal

Kevin Costner — C — — —

Burt Reynolds C — — — —

Tom Selleck C C — — —

Michael Jackson C C — — C

Tom Cruise — — C C C

Note: C indicates compatibility.



ample, if the matchmaker pairs KC and MS, BR and LA, MJ and VP, and TC and KH, a

flow of 4 from source to sink would be obtained. (This turns out to be a maximum flow

for the network.)

To see why our network representation correctly models the matchmaker’s problem,

note that because the arc joining each woman to the sink has a capacity of 1, conserva-

tion of flow ensures that each woman will be matched with at most one man. Similarly,

because each arc from the source to a man has a capacity of 1, each man can be paired

with at most one woman. Because arcs do not exist between noncompatible mates, we can

be sure that a flow of k units from source to sink represents an assignment of men to

women in which k compatible couples are created.

Solving Maximum-Flow Problems with LINGO

The maximum flow in a network can be found using LINDO, but LINGO greatly lessens

the effort needed to communicate the necessary information to the computer. The fol-

lowing LINGO program (in the file Maxflow.lng) can be used to find the maximum flow

from source to sink in Figure 6.

MODEL:
1]SETS:
2]NODES/1..5/;
3]ARCS(NODES,NODES)/1,2  1,3  2,3  2,4  3,5  4,5  5,1/
4]:CAP,FLOW;
5]ENDSETS
6]MAX=FLOW (5,1);
7]@FOR(ARCS(I,J):FLOW(I,J)<CAP(I,J));
8]@FOR(NODES(I):@SUM(ARCS(J,I):FLOW(J,I))
9]=@SUM(ARCS(I,J):FLOW(I,J)));

10]DATA:
11]CAP=2,3,3,4,2,1,1000;
12]ENDDATA

END

If some nodes are identified by numbers, then LINGO will not allow you to identify

other nodes with names involving letters. Thus, we have identified node 1 in line 2 with

node so in Figure 6 and node 5 in line 2 with node si. Also nodes 1, 2, and 3 in Figure 6

correspond to nodes 2, 3, and 4, respectively, in line 2 of our LINGO program. Thus, line

2 defines the nodes of the flow network. In line 3, we define the arcs of the network by

listing them (separated by spaces). For example, 1, 2 represents the arc from the source to

node 1 in Figure 6 and 5,1 is the artificial arc. In line 4, we indicate that an arc capacity

and a flow are associated with each arc. Line 5 ends the definition of the relevant sets.

In line 6, we indicate that our objective is to maximize the flow through the artificial

arc (this equals the flow into the sink). Line 7 specifies the arc capacity constraints; for
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each arc, the flow through the arc cannot exceed the arc’s capacity. Lines 8 and 9 create

the conservation of flow constraints. For each node I, they ensure that the flow into node

I equals the flow out of node I.

Line 10 begins the DATA section. In line 11, we input the arc capacities. Note that we

have given the artificial arc a large capacity of 1,000. Line 12 ends the DATA section and the

END statement ends the program. Typing GO yields the solution, a maximum flow of 3 pre-

viously described. The values of the variable FLOW(I,J) give the flow through each arc.

Note that this program can be used to find the maximum flow in any network. Begin

by listing the network’s nodes in line 2. Then list the network’s arcs in line 3. Finally, list

the capacity of each arc in the network in line 11, and you are ready to find the maximum

flow in the network!

The Ford–Fulkerson Method 
for Solving Maximum-Flow Problems

We assume that a feasible flow has been found (letting the flow in each arc equal zero

gives a feasible flow), and we turn our attention to the following important questions:

Question 1 Given a feasible flow, how can we tell if it is an optimal flow (that is, maxi-

mizes x0)?

Question 2 If a feasible flow is nonoptimal, how can we modify the flow to obtain a new

feasible flow that has a larger flow from the source to the sink?

First, we answer question 2. We determine which of the following properties is pos-

sessed by each arc in the network:

Property 1 The flow through arc (i, j) is below the capacity of arc (i, j). In this case, the

flow through arc (i, j) can be increased. For this reason, we let I represent the set of arcs

with this property.

Property 2 The flow in arc (i, j) is positive. In this case, the flow through arc (i, j) can be

reduced. For this reason, we let R be the set of arcs with this property.

As an illustration of the definitions of I and R, consider the network in Figure 9. The arcs

in this figure may be classified as follows: (so, 1) is in I and R; (so, 2) is in I; (1, si) is in

R; (2, si) is in I; and (2, 1) is in I.

We can now describe the Ford–Fulkerson labeling procedure used to modify a feasi-

ble flow in an effort to increase the flow from the source to the sink.

Step 1 Label the source.

Step 2 Label nodes and arcs (except for arc a0) according to the following rules: (1) If

node x is labeled, then node y is unlabeled and arc (x, y) is a member of I; then label node

y and arc (x, y). In this case, arc (x, y) is called a forward arc. (2) If node y is unlabeled,

node x is labeled and arc (y, x) is a member of R; label node y and arc (y, x). In this case,

(y, x) is called a backward arc.
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Step 3 Continue this labeling process until the sink has been labeled or until no more

vertices can be labeled.

If the labeling process results in the sink being labeled, then there will be a chain of

labeled arcs (call it C) leading from the source to the sink. By adjusting the flow of the

arcs in C, we can maintain a feasible flow and increase the total flow from source to sink.

To see this, observe that C must consist of one of the following:

Case 1 C consists entirely of forward arcs.

Case 2 C contains both forward and backward arcs.†

In each case, we can obtain a new feasible flow that has a larger flow from source to sink

than the current feasible flow. In Case 1, the chain C consists entirely of forward arcs. For

each forward arc in C, let i(x, y) be the amount by which the flow in arc (x, y) can be in-

creased without violating the capacity constraint for arc (x, y) . Let

k � min  i(x, y)
(x, y)�C

Then k � 0. To create a new flow, increase the flow through each arc in C by k units. No

capacity constraints are violated, and conservation of flow is still maintained. Thus, the

new flow is feasible, and the new feasible flow will transport k more units from source to

sink than does the current feasible flow.

We use Figure 10 to illustrate Case 1. Currently, 2 units are being transported from

source to sink. The labeling procedure results in the sink being labeled by the chain C �

(so, 1) � (1, 2) � (2, si). Each arc is in I, and i(so, 1) � 5 � 2 � 3; i(1, 2) � 3 � 2 �

1; and i(2, si) � 4 � 2 � 2. Hence, k � min(3, 1, 2) � 1. Thus, an improved feasible

flow can be obtained by increasing the flow on each arc in C by 1 unit. The resulting flow

transports 3 units from source to sink (see Figure 11).

In Case 2, the chain C leading from the source to the sink contains both backward and

forward arcs. For each backward arc in C, let r(x, y) be the amount by which the flow

through arc (x, y) can be reduced. Also define

k1 � min
x, y�C�R

r(x, y) and k2 � min
x, y�C�I

i(x, y)
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†Because we exclude arc a0 from the labeling procedure, no chain made entirely of backward arcs can lead

from source to sink.
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Of course, both k1 and k2 and min (k1,k2) are � 0. To increase the flow from source to

sink (while maintaining a feasible flow), decrease the flow in all of C’s backward arcs by

min (k1, k2) and increase the flow in all of C’s forward arcs by min(k1, k2). This will main-

tain conservation of flow and ensure that no arc capacity constraints are violated. Because

the last arc in C is a forward arc leading into the sink, we have found a new feasible flow

and have increased the total flow into the sink by min(k1, k2). We now adjust the flow in

the arc a0 to maintain conservation of flow. To illustrate Case 2, suppose we have found

the feasible flow in Figure 12. For this flow, (so, 1) � R; (so, 2) � I; (1, 3) � I; (1, 2) �

I and R; (2, si) � R; and (3, si) � I.

We begin by labeling arc (so, 2) and node 2 (thus (so, 2) is a forward arc). Then we

label arc (1, 2) and node 1. Arc (1, 2) is a backward arc, because node 1 was unlabeled

before we labeled arc (1, 2), and arc (1, 2) is in R. Nodes so, 1, and 2 are labeled, so we

can label arc (1, 3) and node 3. [Arc (1, 3) is a forward arc, because node 3 has not yet

been labeled.] Finally we label arc (3, si) and node si. Arc (3, si) is a forward arc, because

node si has not yet been labeled. We have now labeled the sink via the chain C � (so, 2) �

(1, 2) � (1, 3) � (3, si). With the exception of arc (1, 2), all arcs in the chain are forward

arcs. Because i(so, 2) � 3; i(1, 3) � 4; i(3, si) � 1; and r(1, 2) � 2, we have

min
(x, y)�C�R

r(x, y) � 2 and min
(x, y)�C�I

i(x, y) � 1

Thus, we can increase the flow on all forward arcs in C by 1 and decrease the flow in all

backward arcs by 1. The new result, pictured in Figure 13, has increased the flow from

source to sink by 1 unit (from 2 to 3). We accomplish this by diverting 1 unit that was

transported through the arc (1, 2) to the path 1–3–si. This enabled us to transport an ex-

tra unit from source to sink via the path so–2–si. Observe that the concept of a backward

arc was needed to find this improved flow.

If the sink cannot be labeled, then the current flow is optimal. The proof of this fact

relies on the concept of a cut for a network.

D E F I N I T I O N ■ Choose any set of nodes V� that contains the sink but does not contain the source.

Then the set of arcs (i, j) with i not in V� and j a member of V� is a cut for the

network. ■

(2)2 R (2)2 R(2)3

(0)4 I

(0)3 I
I, R

(0)1 I

(2)

Flow from source to sink = 2

Chain is (so, 2) – (1, 2) – (1, 3) – (3, si)

siso 1 2

3

F I G U R E  12
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(1)4

(1)3

(1)1

(3)

Flow from source to sink = 3
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3
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D E F I N I T I O N ■ The capacity of a cut is the sum of the capacities of the arcs in the cut. ■

In short, a cut is a set of arcs whose removal from the network makes it impossible to

travel from the source to the sink. A network may have many cuts. For example, in the

network in Figure 14, V� � {1, si} yields the cut containing the arcs (so, 1) and (2, si),

which has capacity 2 � 1 � 3. The set V� � {1, 2, si} yields the cut containing the arcs

(so, 1) and (so, 2), which has capacity 2 � 8 � 10.

Lemma 1 and Lemma 2 indicate the connection between cuts and maximum flows.

F L O W  I S  L E S S  T H A N  O R  E Q U A L  T O  T H E  C A PA C I T Y  O F  A N Y C U T.

The flow from source to sink for any feasible flow is less than or equal to the ca-

pacity of any cut.

Proof Consider an arbitrary cut specified by a set of nodes V� that contains the sink

but does not contain the source. Let V be all other nodes in the network. Also let xij

be the flow in arc (i, j) for any feasible flow and f be the flow from source to sink

for this feasible flow. Summing the flow balance equations (flow out of node i �

flow into node i � 0) over all nodes i in V, we find that the terms involving arcs 

(i, j) having i and j both members of V will cancel, and we obtain

�
i�V;

j�V�

xij � �
i�V�;

j�V

xij � f (3)

Now the first sum in (3) is less than or equal to the capacity of the cut. Each xij is

nonnegative, so we see that f 	 capacity of the cut, which is the desired result.

Lemma 1 is analogous to the weak duality result discussed in Chapter 6. From Lemma

1, we see that the capacity of any cut is an upper bound for the maximum flow from source

to sink. Thus, if we can find a feasible flow and a cut for which the flow from source to sink

equals the capacity of the cut, then we have found the maximum flow from source to sink.

Suppose that we find a feasible flow and cannot label the sink. Let CUT be the cut cor-

responding to the set of unlabeled nodes.

If the sink cannot be labeled, then

Capacity of CUT � current flow from source to sink

Proof Let V� be the set of unlabeled nodes and V be the set of labeled nodes. Con-

sider an arc (i, j) such that i is in V and j is in V�. Then we know that xij � capac-
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ity of arc (i, j) must hold; otherwise, we could label node j (via a forward arc) and

node j would not be in V�. Now consider an arc (i, j) such that i is in V� and j is in

V. Then xij � 0 must hold; otherwise, we could label node i (via a backward arc)

and node i would not be in V�. Now (3) shows that the current flow must satisfy

Capacity of CUT � current flow from source to sink

which is the desired result.

From the remarks following Lemma 1, when the sink cannot be labeled, the maximum

flow from source to sink has been obtained.

Summary and Illustration of the Ford–Fulkerson Method

Step 1 Find a feasible flow (setting each arc’s flow to zero will do).

Step 2 Using the labeling procedure, try to label the sink. If the sink cannot be labeled, then

the current feasible flow is a maximum flow; if the sink is labeled, then go on to step 3.

Step 3 Using the method previously described, adjust the feasible flow and increase the

flow from the source to the sink. Return to step 2.

To illustrate the Ford–Fulkerson method, we find the maximum flow from source to

sink for Sunco Oil, Example 3 (see Figure 6). We begin by letting the flow in each arc

equal zero. We then try to label the sink—label the source, and then arc (so, 1) and node

1; then label arc (1, 2) and node 2; finally, label arc (2, si) and node si. Thus, C �

(so, 1)–(1, 2)–(2, si). Each arc in C is a forward arc, so we can increase the flow through

each arc in C by min (2, 3, 2) � 2 units. The resulting flow is pictured in Figure 15.

As we saw previously (Figure 12), we can label the sink by using the chain C �

(so, 2)–(1, 2)–(1, 3)–(3, si). We can increase the flow through the forward arcs (so, 2), 

(1, 3), and (3, si) by 1 unit and decrease the flow through the backward arc (1, 2) by 1

unit. The resulting flow is pictured in Figure 16. It is now impossible to label the sink.

Any attempt to label the sink must begin by labeling arc (so, 2) and node 2; then we could

label arc (1, 2) and arc (1, 3). But there is no way to label the sink.

We can verify that the current flow is maximal by finding the capacity of the cut cor-

responding to the set of unlabeled vertices (in this case, si). The cut corresponding to si

is the set of arcs (2, si) and (3, si), with capacity 2 � 1 � 3. Thus, Lemma 1 implies that

any feasible flow can transport at most 3 units from source to sink. Our current flow trans-

ports 3 units from source to sink, so it must be an optimal flow.

Another example of the Ford–Fulkerson method is given in Figure 17. Note that with-

out the concept of a backward arc, we could not have obtained the maximum flow of 7
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(2)2 (2)2(2)3

(0)4

(0)3

(0)1

(2)

Flow from source to sink = 2

Label sink by (so, 2) – (1, 2) – (1, 3) – (3, si)

siso 1 2

3
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units from source to sink. The minimum cut (with capacity 7, of course) corresponds to

nodes 1, 3, and si and consists of arcs (so, 1), (so, 3) and (2, 3).

P R O B L E M S
Group A
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Example of
Ford–Fulkerson Method

1–3 Figures 18–20 show the networks for Problems 1–3.
Find the maximum flow from source to sink in each network.
Find a cut in the network whose capacity equals the

maximum flow in the network. Also, set up an LP that could
be used to determine the maximum flow in the network.
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used to determine whether the packages can be loaded so
that no truck carries two packages of the same type.

7 Four workers are available to perform jobs 1–4.
Unfortunately, three workers can do only certain jobs:
worker 1, only job 1; worker 2, only jobs 1 and 2; worker
3, only job 2; worker 4, any job. Draw the network for the
maximum-flow problem that can be used to determine
whether all jobs can be assigned to a suitable worker.

8 The Hatfields, Montagues, McCoys, and Capulets are
going on their annual family picnic. Four cars are available
to transport the families to the picnic. The cars can carry the
following number of people: car 1, four; car 2, three; car 3,
three; and car 4, four. There are four people in each family,
and no car can carry more than two people from any one
family. Formulate the problem of transporting the maximum
possible number of people to the picnic as a maximum-flow
problem.

9–10 For the networks in Figures 23 and 24, find the
maximum flow from source to sink. Also find a cut whose
capacity equals the maximum flow in the network.

Group B

11 Suppose a network contains a finite number of arcs and
the capacity of each arc is an integer. Explain why the
Ford–Fulkerson method will find the maximum flow in the
finite number of steps. Also show that the maximum flow
from source to sink will be an integer.

12 Consider a network flow problem with several sources
and several sinks in which the goal is to maximize the total
flow into the sinks. Show how such a problem can be
converted into a maximum-flow problem having only a
single source and a single sink.
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Network for Problem 5

4–5 For the networks in Figures 21 and 22, find the
maximum flow from source to sink. Also find a cut whose
capacity equals the maximum flow in the network.

6 Seven types of packages are to be delivered by five
trucks. There are three packages of each type, and the
capacities of the five trucks are 6, 4, 5, 4, and 3 packages,
respectively. Set up a maximum-flow problem that can be



13 Suppose the total flow into a node of a network is
restricted to 10 units or less. How can we represent this
restriction via an arc capacity constraint? (This still allows
us to use the Ford–Fulkerson method to find the maximum
flow.) 

14 Suppose as many as 300 cars per hour can travel
between any two of the cities 1, 2, 3, and 4. Set up a
maximum-flow problem that can be used to determine how
many cars can be sent in the next two hours from city 1 to
city 4. (Hint: Have portions of the network represent t � 0,
t � 1, and t � 2.)

15 Fly-by-Night Airlines is considering flying three flights.
The revenue from each flight and the airports used by each
flight are shown in Table 11. When Fly-by-Night uses an
airport, the company must pay the following landing fees
(independent of the number of flights using the airport):
airport 1, $300; airport 2, $700; airport 3, $500. Thus, if
flights 1 and 3 are flown, a profit of 900 � 800 � 300 �
700 � 500 � $200 will be earned. Show that for the network
in Figure 25 (maximum profit) � (total revenue from all
flights) � (capacity of minimal cut). Explain how this result
can be used to help Fly-by-Night maximize profit (even if it
has hundreds of possible flights). (Hint: Consider any set of
flights F (say, flights 1 and 3). Consider the cut corresponding
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Network for Problem 15

to the sink, the nodes associated with the flights not in F, and
the nodes associated with the airports not used by F. Show
that (capacity of this cut) � (revenue from flights not in F)
� (costs associated with airports used by F).)

16 During the next four months, a construction firm must
complete three projects. Project 1 must be completed within
three months and requires 8 months of labor. Project 2 must
be completed within four months and requires 10 months of
labor. Project 3 must be completed at the end of two months
and requires 12 months of labor. Each month, 8 workers are
available. During a given month, no more than 6 workers can
work on a single job. Formulate a maximum-flow problem
that could be used to determine whether all three projects can
be completed on time. (Hint: If the maximum flow in the
network is 30, then all projects can be completed on time.)

8.4 CPM and PERT

Network models can be used as an aid in scheduling large complex projects that consist

of many activities. If the duration of each activity is known with certainty, then the crit-

ical path method (CPM) can be used to determine the length of time required to com-

plete a project. CPM also can be used to determine how long each activity in the project

can be delayed without delaying the completion of the project. CPM was developed in the

late 1950s by researchers at DuPont and Sperry Rand.

If the duration of the activities is not known with certainty, the Program Evaluation

and Review Technique (PERT) can be used to estimate the probability that the project will

be completed by a given deadline. PERT was developed in the late 1950s by consultants

working on the development of the Polaris missile. CPM and PERT were given a major

share of the credit for the fact that the Polaris missile was operational two years ahead of

schedule.

CPM and PERT have been successfully used in many applications, including:

1 Scheduling construction projects such as office buildings, highways, and swimming

pools

TA B L E  11

Flight Revenue ($) Airport Used

1 900 1 and 2

2 600 2

3 800 2 and 3



2 Scheduling the movement of a 400-bed hospital from Portland, Oregon, to a suburban

location

3 Developing a countdown and “hold” procedure for the launching of space flights

4 Installing a new computer system

5 Designing and marketing a new product

6 Completing a corporate merger

7 Building a ship

To apply CPM and PERT, we need a list of the activities that make up the project. The

project is considered to be completed when all the activities have been completed. For

each activity, there is a set of activities (called the predecessors of the activity) that must

be completed before the activity begins. A project network is used to represent the prece-

dence relationships between activities. In our discussion, activities will be represented by

directed arcs, and nodes will be used to represent the completion of a set of activities.

(For this reason, we often refer to the nodes in our project network as events.) This type

of project network is called an AOA (activity on arc) network.†

To understand how an AOA network represents precedence relationships, suppose that

activity A is a predecessor of activity B. Each node in an AOA network represents the

completion of one or more activities. Thus, node 2 in Figure 26 represents the comple-

tion of activity A and the beginning of activity B. Suppose activities A and B must be

completed before activity C can begin. In Figure 27, node 3 represents the event that ac-

tivities A and B are completed. Figure 28 shows activity A as a predecessor of both ac-

tivities B and C.

Given a list of activities and predecessors, an AOA representation of a project (called

a project network or project diagram) can be constructed by using the following rules:

1 Node 1 represents the start of the project. An arc should lead from node 1 to repre-

sent each activity that has no predecessors.
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†In an AON (activity on node) project network, the nodes of the network are used to represent activities. See

Wiest and Levy (1977) for details.
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2 A node (called the finish node) representing the completion of the project should be

included in the network.

3 Number the nodes in the network so that the node representing the completion of an

activity always has a larger number than the node representing the beginning of an activ-

ity (there may be more than one numbering scheme that satisfies rule 3).

4 An activity should not be represented by more than one arc in the network.

5 Two nodes can be connected by at most one arc.

To avoid violating rules 4 and 5, it is sometimes necessary to utilize a dummy activity that

takes zero time. For example, suppose activities A and B are both predecessors of activity C

and can begin at the same time. In the absence of rule 5, we could represent this by Figure

29. However, because nodes 1 and 2 are connected by more than one arc, Figure 29 violates

rule 5. By using a dummy activity (indicated by a dotted arc), as in Figure 30, we may rep-

resent the fact that A and B are both predecessors of C. Figure 30 ensures that activity C can-

not begin until both A and B are completed, but it does not violate rule 5. Problem 10 at the

end of this section illustrates how dummy activities may be needed to avoid violating rule 4.

Example 6 illustrates a project network.

Widgetco is about to introduce a new product (product 3). One unit of product 3 is pro-

duced by assembling 1 unit of product 1 and 1 unit of product 2. Before production be-

gins on either product 1 or 2, raw materials must be purchased and workers must be

trained. Before products 1 and 2 can be assembled into product 3, the finished product 2

must be inspected. A list of activities and their predecessors and of the duration of each

activity is given in Table 12. Draw a project diagram for this project.
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Duration of Activities and Predecessor Relationships for Widgetco

Duration
Activity Predecessors (Days)

A � train workers — 6

B � purchase raw materials — 9

C � produce product 1 A, B 8

D � produce product 2 A, B 7

E � test product 2 D, B 10

F � assemble products 1 and 2 C, E 12



Solution Observe that although we list only C and E as predecessors of F, it is actually true that

activities A, B, and D must also be completed before F begins. C cannot begin until A

and B are completed, and E cannot begin until D is completed, however, so it is redun-

dant to state that A, B, and D are predecessors of F. Thus, in drawing the project network,

we need only be concerned with the immediate predecessors of each activity.

The AOA network for this project is given in Figure 31 (the number above each arc

represents activity duration in days). Node 1 is the beginning of the project, and node 6

is the finish node representing completion of the project. The dummy arc (2, 3) is needed

to ensure that rule 5 is not violated.

The two key building blocks in CPM are the concepts of early event time (ET) and late

event time (LT) for an event.

D E F I N I T I O N ■ The early event time for node i, represented by ET(i), is the earliest time at

which the event corresponding to node i can occur. ■

The late event time for node i, represented by LT(i), is the latest time at which

the event corresponding to node i can occur without delaying the completion of

the project. ■

Computation of Early Event Time

To find the early event time for each node in the project network, we begin by noting that

because node 1 represents the start of the project, ET(1) � 0. We then compute ET(2),

ET(3), and so on, stopping when ET(finish node) has been calculated. To illustrate how

ET(i) is calculated, suppose that for the segment of a project network in Figure 32, we

have already determined that ET(3) � 6, ET(4) � 8, and ET(5) � 10. To determine ET(6),

observe that the earliest time that node 6 can occur is when the activities corresponding

to arc (3, 6), (4, 6), and (5, 6) have all been completed.
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ET(6) � max �
Thus, the earliest time that node 6 can occur is 14, and ET(6) � 14.

From this example, it is clear that computation of ET(i) requires (for j � i) knowledge

of one or more of the ET( j)’s. This explains why we begin by computing the predecessor

ETs. In general, if ET(1), ET(2), . . . , ET(i � 1) have been determined, then we compute

ET(i) as follows:

Step 1 Find each prior event to node i that is connected by an arc to node i. These events

are the immediate predecessors of node i.

Step 2 To the ET for each immediate predecessor of the node i add the duration of the

activity connecting the immediate predecessor to node i.

Step 3 ET(i) equals the maximum of the sums computed in step 2.

We now compute the ET(i)’s for Example 6. We begin by observing that ET(1) � 0.

Node 1 is the only immediate predecessor of node 2, so ET(2) � ET(1) � 9 � 9. The

immediate predecessors of node 3 are nodes 1 and 2. Thus,

ET(3) � max �
Node 4’s only immediate predecessor is node 3. Thus, ET(4) � ET(3) � 7 � 16. Node

5’s immediate predecessors are nodes 3 and 4. Thus,

ET(5) � max �
Finally, node 5 is the only immediate predecessor of node 6. Thus, ET(6) � ET(5) � 12 �

38. Because node 6 represents the completion of the project, we see that the earliest time

that product 3 can be assembled is 38 days from now.

It can be shown that ET(i) is the length of the longest path in the project network from

node 1 to node i.

Computation of Late Event Time

To compute the LT(i)’s, we begin with the finish node and work backward (in descending

numerical order) until we determine LT(1). The project in Example 6 can be completed

in 38 days, so we know that LT(6) � 38. To illustrate how LT(i) is computed for nodes

other than the finish node, suppose we are working with a network (Figure 33) for which

we have already determined that LT(5) � 24, LT(6) � 26, and LT(7) � 28. In this situation,

how can we compute LT(4)? If the event corresponding to node 4 occurs after LT(5) � 3,

node 5 will occur after LT(5), and the completion of the project will be delayed. 

ET(3) � 8 � 17
� 26

ET(4) � 10 � 26

ET(1) � 6 � 6
� 9

ET(2) � 0 � 9

ET(3) � 8 � 14

ET(4) � 4 � 12

ET(5) � 3 � 13
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Similarly, if node 4 occurs after LT(6) � 4 or if node 4 occurs after LT(7) � 5, the com-

pletion of the project will be delayed. Thus,

LT(4) � min �
In general, if LT( j) is known for j � i, we can find LT(i) as follows:

Step 1 Find each node that occurs after node i and is connected to node i by an arc. These

events are the immediate successors of node i.

Step 2 From the LT for each immediate successor to node i, subtract the duration of the

activity joining the successor the node i.

Step 3 LT(i) is the smallest of the differences determined in step 2.

We now compute the LT(i)’s for Example 6. Recall that LT(6) � 38. Because node 6

is the only immediate successor of node 5, LT(5) � LT(6) � 12 � 26. Node 4’s only im-

mediate successor is node 5. Thus, LT(4) � LT(5) � 10 � 16. Nodes 4 and 5 are imme-

diate successors of node 3. Thus,

LT(3) � min �
Node 3 is the only immediate successor of node 2. Thus, LT(2) � LT(3) � 0 � 9. Fi-

nally, node 1 has nodes 2 and 3 as immediate successors. Thus,

LT(1) � min �
Table 13 summarizes our computations for Example 6. If LT(i) � ET(i), any delay in the

occurrence of node i will delay the completion of the project. For example, because LT(4)

� ET(4), any delay in the occurrence of node 4 will delay the completion of the project.

Total Float

Before the project is begun, the duration of an activity is unknown, and the duration of

each activity used to construct the project network is just an estimate of the activity’s ac-

tual completion time. The concept of total float of an activity can be used as a measure

of how important it is to keep each activity’s duration from greatly exceeding our esti-

mate of its completion time.

LT(3) � 6 � 3

LT(2) � 9 � 0

LT(4) � 7 � 9

LT(5) � 8 � 18

LT(5) � 3 � 21

LT(6) � 4 � 22 � 21

LT(7) � 5 � 23
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ET and LT for Widgetco

Node ET(i) LT(i)

1 0 0

2 9 9

3 9 9

4 16 16

5 26 26

6 38 38



D E F I N I T I O N ■ For an arbitrary arc representing activity (i, j), the total float, represented by 

TF(i, j), of the activity represented by (i, j) is the amount by which the starting

time of activity (i, j) could be delayed beyond its earliest possible starting time

without delaying the completion of the project (assuming no other activities are

delayed). ■

Equivalently, the total float of an activity is the amount by which the duration of the

activity can be increased without delaying the completion of the project.

If we define tij to be the duration of activity (i, j), then TF(i, j) can easily be ex-

pressed in terms of LT( j) and ET(i). Activity (i, j) begins at node i. If the occurrence

of node i, or the duration of activity (i, j), is delayed by k time units, then activity (i, j)

will be completed at time ET(i) � k � tij. Thus, the completion of the project will not

be delayed if

ET(i) � k � tij 	 LT( j) or k 	 LT( j) � ET(i) � tij

Therefore,

TF(i, j) � LT( j) � ET(i) � tij

For Example 6, the TF(i, j) are as follows:

Activity B: TF(1, 2) � LT(2) � ET(1) � 9 � 0

Activity A: TF(1, 3) � LT(3) � ET(1) � 6 � 3

Activity D: TF(3, 4) � LT(4) � ET(3) � 7 � 0

Activity C: TF(3, 5) � LT(5) � ET(3) � 8 � 9

Activity E: TF(4, 5) � LT(5) � ET(4) � 10 � 0

Activity F: TF(5, 6) � LT(6) � ET(5) � 12 � 0

Dummy activity: TF(2, 3) � LT(3) � ET(2) � 0 � 0

Finding a Critical Path

If an activity has a total float of zero, then any delay in the start of the activity (or the du-

ration of the activity) will delay the completion of the project. In fact, increasing the du-

ration of an activity by � days will increase the length of the project by � days. Such an

activity is critical to the completion of the project on time.

D E F I N I T I O N ■ Any activity with a total float of zero is a critical activity. ■

A path from node 1 to the finish node that consists entirely of critical activities is

called a critical path. ■

In Figure 31, activities B, D, E, F, and the dummy activity are critical activities and the

path 1–2–3–4–5–6 is the critical path (it is possible for a network to have more than one

critical path). A critical path in any project network is the longest path from the start node

to the finish node (see Problem 2 in Section 8.5).

Any delay in the duration of a critical activity will delay the completion of the project,

so it is advisable to monitor closely the completion of critical activities.
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Free Float

As we have seen, the total float of an activity can be used as a measure of the flexibility

in the duration of an activity. For example, activity A can take up to 3 days longer than

its scheduled duration of 6 days without delaying the completion of the project. Another

measure of the flexibility available in the duration of an activity is free float.

D E F I N I T I O N ■ The free float of the activity corresponding to arc (i, j), denoted by FF(i, j), is the

amount by which the starting time of the activity corresponding to arc (i, j) (or

the duration of the activity) can be delayed without delaying the start of any later

activity beyond its earliest possible starting time. ■

Suppose the occurrence of node i, or the duration of activity (i, j), is delayed by k units.

Then the earliest that node j can occur is ET(i) � tij � k. Thus, if ET(i) � tij � k 	 ET( j),

or k 	 ET( j) � ET(i) � tij, then node j will not be delayed. If node j is not delayed, then

no other activities will be delayed beyond their earliest possible starting times. Therefore,

FF(i, j) � ET( j) � ET(i) � tij

For Example 6, the FF(i, j) are as follows:

Activity B: FF(1, 2) � 9 � 0 � 9 � 0

Activity A: FF(1, 3) � 9 � 0 � 6 � 3

Activity D: FF(3, 4) � 16 � 9 � 7 � 0

Activity C: FF(3, 5) � 26 � 9 � 8 � 9

Activity E: FF(4, 5) � 26 � 16 � 10 � 0

Activity F: FF(5, 6) � 38 � 26 � 12 � 0

For example, because the free float for activity C is 9 days, a delay in the start of activ-

ity C (or in the occurrence of node 3) or a delay in the duration of activity C of more than

9 days will delay the start of some later activity (in this case, activity F).

Using Linear Programming to Find a Critical Path

Although the previously described method for finding a critical path in a project network

is easily programmed on a computer, linear programming can also be used to determine

the length of the critical path. Define

xj � the time that the event corresponding to node j occurs

For each activity (i, j), we know that before node j occurs, node i must occur and activity 

(i, j) must be completed. This implies that for each arc (i, j) in the project network, xj 


xi � tij. Let F be the node that represents completion of the project. Our goal is to minimize

the time required to complete the project, so we use an objective function of z � xF � x1.

To illustrate how linear programming can be used to find the length of the critical path,

we apply the preceding approach to Example 6. The appropriate LP is

min z � x6 � x1

s.t. x3 
 x1 � 6 (Arc (1, 3) constraint)

s.t. x2 
 x1 � 9 (Arc (1, 2) constraint)

s.t. x5 
 x3 � 8 (Arc (3, 5) constraint)

s.t. x4 
 x3 � 7 (Arc (3, 4) constraint)
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s.t. x5 
 x4 � 10 (Arc (4, 5) constraint)

s.t. x6 
 x5 � 12 (Arc (5, 6) constraint)

s.t. x3 
 x2 � 12 (Arc (2, 3) constraint)

All variables urs

An optimal solution to this LP is z � 38, x1 � 0, x2 � 9, x3 � 9, x4 � 16, x5 � 26, and

x6 � 38. This indicates that the project can be completed in 38 days.

This LP has many alternative optimal solutions. In general, the value of xi in any op-

timal solution may assume any value between ET(i) and LT(i). All optimal solutions to

this LP, however, will indicate that the length of any critical path is 38 days.

A critical path for this project network consists of a path from the start of the project

to the finish in which each arc in the path corresponds to a constraint having a dual price

of �1. From the LINDO output in Figure 34, we find, as before, that 1–2–3–4–5–6 is a

critical path. For each constraint with a dual price of �1, increasing the duration of the

activity corresponding to that constraint by � days will increase the duration of the proj-

ect by � days. For example, an increase of � days in the duration of activity B will in-

crease the duration of the project by � days. This assumes that the current basis remains

optimal.

Crashing the Project

In many situations, the project manager must complete the project in a time that is less

than the length of the critical path. For instance, suppose Widgetco believes that to have

any chance of being a success, product 3 must be available for sale before the competi-

tor’s product hits the market. Widgetco knows that the competitor’s product is scheduled

to hit the market 26 days from now, so Widgetco must introduce product 3 within 25 days.

Because the critical path in Example 6 has a length of 38 days, Widgetco will have to ex-

pend additional resources to meet the 25-day project deadline. In such a situation, linear

programming can often be used to determine the allocation of resources that minimizes

the cost of meeting the project deadline.

Suppose that by allocating additional resources to an activity, Widgetco can reduce the

duration of any activity by as many as 5 days. The cost per day of reducing the duration

of an activity is shown in Table 14. To find the minimum cost of completing the project

by the 25-day deadline, define variables A, B, C, D, E, and F as follows:

A � number of days by which duration of activity A is reduced

� �
� �
� �

F � number of days by which duration of activity F is reduced

xj � time that the event corresponding to node j occurs

Then Widgetco should solve the following LP:

min z � 10A � 20B � 3C � 30D � 40E � 50F

s.t. A 	 5

s.t. B 	 5

s.t. C 	 5

s.t. D 	 5

s.t. E 	 5

s.t. F 	 5
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TA B L E  14

A B C D E F

$10 $20 $3 $30 $40 $50

MIN      X6 - X1
 SUBJECT TO
        2) - X1 + X3 >=  6
        3) - X1 + X2 >=  9
        4) - X3 + X5 >=  8
        5) - X3 + X4 >=  7
        6)   X5 - X4 >=  10
        7)   X6 - X5 >=  12
        8)   X3 - X2 >=  0
 END
 

     LP OPTIMUM FOUND  AT STEP     7

          OBJECTIVE FUNCTION VALUE

 1)          38.0000000

 VARIABLE         VALUE          REDUCED COST
        X6        38.000000          0.000000
        X1         0.000000          0.000000
        X3         9.000000          0.000000
        X2         9.000000          0.000000
        X5        26.000000          0.000000
        X4        16.000000          0.000000

    ROW      SLACK OR SURPLUS     DUAL PRICES
        2)         3.000000          0.000000
        3)         0.000000         -1.000000
        4)         9.000000          0.000000
        5)         0.000000         -1.000000
        6)         0.000000         -1.000000
        7)         0.000000         -1.000000
        8)         0.000000         -1.000000

 NO. ITERATIONS=       7

    RANGES IN WHICH THE BASIS IS UNCHANGED
    
                           OBJ COEFFICIENT RANGES
 VARIABLE         CURRENT       ALLOWABLE         ALLOWABLE
                   COEF         INCREASE          DECREASE
        X6         1.000000      INFINITY            0.000000
        X1        -1.000000      INFINITY            0.000000
        X3         1.000000      INFINITY            0.000000
        X2         1.000000      INFINITY            0.000000
        X5         1.000000      INFINITY            0.000000
        X4         1.000000      INFINITY            0.000000
     
                           RIGHTHAND SIDE RANGES     
    ROW           CURRENT       ALLOWABLE         ALLOWABLE
                    RHS         INCREASE          DECREASE 
         2         6.000000        3.000000        INFINITY
         3         9.000000      INFINITY            3.000000
         4         8.000000        9.000000        INFINITY
         5         7.000000      INFINITY            9.000000
         6        10.000000      INFINITY            9.000000
         7        12.000000      INFINITY           38.000000
         8         0.000000      INFINITY            3.000000
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s.t. x2 
 x1 � 9 � B (Arc (1, 2) constraint)

s.t. x3 
 x1 � 6 � A (Arc (1, 3) constraint)

s.t. x5 
 x3 � 8 � C (Arc (3, 5) constraint)

s.t. x4 
 x3 � 7 � D (Arc (3, 4) constraint)

s.t. x5 
 x4 � 10 � E (Arc (4, 5) constraint)

s.t. x6 
 x5 � 12 � F (Arc (5, 6) constraint)

s.t. x3 
 x2 � 0 (Arc (2, 3) constraint)

s.t. x6 � x1 	 25

A, B, C, D, E, F 
 0, xjurs

The first six constraints stipulate that the duration of each activity can be reduced by at

most 5 days. As before, the next seven constraints ensure that event j cannot occur until

after node i occurs and activity (i, j) is completed. For example, activity B (arc (1, 2)) now

has a duration of 9 � B. Thus, we need the constraint x2 
 x1 � (9 � B). The constraint

x6 � x1 	 25 ensures that the project is completed within the 25-day deadline. The ob-

jective function is the total cost incurred in reducing the duration of the activities. An op-

timal solution to this LP is z � $390, x1 � 0, x2 � 4, x3 � 4, x4 � 6, x5 � 13, x6 � 25,

A � 2, B � 5, C � 0, D � 5, E � 3, F � 0. After reducing the durations of projects B,

A, D, and E by the given amounts, we obtain the project network pictured in Figure 35.

The reader should verify that A, B, D, E, and F are critical activities and that 1–2–3–4–5–6

and 1–3–4–5–6 are both critical paths (each having length 25). Thus, the project deadline

of 25 days can be met for a cost of $390.

Using LINGO to Determine the Critical Path

Many computer packages (such as Microsoft Project) enable the user to determine (among

other things!) the critical path(s) and critical activities in a project network. You can al-

ways find a critical path and critical activities using LINDO, but LINGO makes it very

easy to communicate the necessary information to the computer. The following LINGO

program (file Widget1.lng) generates the objective function and constraints needed to find

the critical path for the project network of Example 6 via linear programming.

MODEL:
1]SETS:
2]NODES/1..6/:TIME;
3]ARCS(NODES,NODES)/
4]1,2  1,3  2,3  3,4  3,5  4,5   5,6/:DUR;
5]ENDSETS
6]MIN=TIME(6)-TIME(1);
7]@FOR(ARCS(I,J):TIME(J)>TIME(I)+DUR(I,J));
8]DATA:
9]DUR=9,6,0,7,8,10,12;

10]ENDDATA
END

Line 1 begins the SETS portion of the program. In line 2, we define the six nodes of

the project network and associate with each node a time that the events corresponding to
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the node occurs. For example, TIME(3) represents the time when activities A and B have

just been completed. In line 3, we generate the arcs in the project network by listing them

(separated by spaces). For example, arc (3, 4) represents activity D. In line 4, we associ-

ate a duration (DUR) of each activity with each arc. Line 5 ends the SETS section of the

program.

Line 6 specifies the objective, to minimize the time it takes to complete the project.

For each arc defined in line 3, line 7 creates a constraint analagous to xj 
 xi � tij.

Line 8 begins the DATA section of the program. In line 9, we list the duration of each

activity. Line 10 concludes the data entry and the END statement concludes the program.

The output from this LINGO model is given in Figure 36, where by following the arcs

corresponding to constraints having dual prices of �1, we find the critical path to be

1–2–3–4–5–6.

To find the critical path in any network we would begin by listing the nodes, arcs, and

activity durations in our program. Then we would modify the objective function created

by line 6 to reflect the number of nodes in the network. For example, if there were 10

nodes in the project network, we would change line 6 to MIN�TIME(10)–TIME(1); and

we would be ready to go!

The following LINGO program (file Widget2.lng) enables the user to determine the

critical path and total float at each node for Example 6 without using linear programming.

MODEL:
1]MODEL:
2]SETS:
3]NODES/1..6/:ET,LT;
4]ARCS(NODES,NODES)/1,2  1,3  2,3  3,4  3,5  4,5  5,6/:DUR,TFLOAT;
5]ENDSETS
6]DATA:
7]DUR = 9,6,0,7,8,10,12;
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MIN    -ET(1 + ET(6
SUBJECT TO
2)- ET(1 + ET(2 >=  9
3)- ET(1 + ET(3 >=  6
4)- ET(2 + ET(3 >=  0
5)- ET(3 + ET(4 >=  7
6)- ET(3 + ET(5 >=  8
7)- ET(4 + ET(5 >=  10
8)- ET(5 + ET(6 >=  12
END

LP OPTIMUM FOUND AT STEP      6
OBJECTIVE VALUE =   38.0000000

                     VARIABLE          VALUE           REDUCED COST
                       ET( 1)        0.0000000E+00       0.0000000E+00
                       ET( 2)         9.000000           0.0000000E+00
                       ET( 3)         9.000000           0.0000000E+00
                       ET( 4)         16.00000           0.0000000E+00
                       ET( 5)         26.00000           0.0000000E+00
                       ET( 6)         38.00000           0.0000000E+00
                   DUR( 1, 2)         9.000000           0.0000000E+00
                   DUR( 1, 3)         6.000000           0.0000000E+00
                   DUR( 2, 3)        0.0000000E+00       0.0000000E+00
                   DUR( 3, 4)         7.000000           0.0000000E+00
                   DUR( 3, 5)         8.000000           0.0000000E+00
                   DUR( 4, 5)         10.00000           0.0000000E+00
                   DUR( 5, 6)         12.00000           0.0000000E+00

                          ROW     SLACK OR SURPLUS     DUAL PRICE
                            1         38.00000           1.000000
                            2        0.0000000E+00      -1.000000
                            3         3.000000          0.0000000E+00
                            4        0.0000000E+00      -1.000000
                            5        0.0000000E+00      -1.000000
                            6         9.000000          0.0000000E+00
                            7        0.0000000E+00      -1.000000
                            8        0.0000000E+00      -1.000000F I G U R E  36
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8]ENDDATA
9]ET(1)=0;

10]@FOR(NODES(J) | J#GT#1:
11]ET(J) = @MAX(ARCS(I,J): ET(I)+DUR(I,J)););
12]LNODE=@SIZE(NODES);
13]LT(LNODE) = ET(LNODE);
14]@FOR(NODES(I) | I#LT#LNODE:
15]LT(I) = @MIN(ARCS(I,J): LT(J) - DUR(I,J)););
16]@FOR(ARCS(I,J):TFLOAT(I,J)=LT(J)-ET(I)-DUR(I,J));

END

In line 3, we define the nodes of the project network and associate an early event time

(ET) and late event time (LT) with each node. We define the arcs of the project network

by listing them in line 4. With each arc we associate the duration of the arc’s activity and

the total float of the activity. In line 7, we input the duration of each activity.

To begin the computation of the ET(J)’s for each node, we set ET(1) � 0 in line 9. In

lines 10–11, we compute ET(J) for all other nodes. For J � 1 ET(J) is the maximum value

of ET(I) � DUR(I, J) for all (I, J) such that (I, J) is an arc in the network. By using the

@SIZE function, which returns the number of elements in a set, we identify the finish

node in the network in line 12. Thus, line 12 defines node 6 as the last node. In line 13,

we set LT(6) � ET(6). Lines 14–15 work backward from node 6 toward node 1 to com-

pute the LT(I)’s. For every node I other than the last node (6), LT(I) is the minimum of

LT(J) � DUR (I, J), where the minimum is taken over all (I, J) such that (I, J) is an arc

in the project network.

Finally, line 16 computes the total float for each activity (I, J) from total float for ac-

tivity (I, J) � LT(Node J) � ET(Node I) � Duration (I, J). All activities whose total float

equals 0 are critical activities.

After inputting a list of nodes, arcs, and activity durations we can use this program to

analyze any project network (without changing any of lines 9–16). It is also easy to write

a LINGO program that can be used to crash the network (see Problem 14).

PERT: Program Evaluation and Review Technique

CPM assumes that the duration of each activity is known with certainty. For many proj-

ects, this is clearly not applicable. PERT is an attempt to correct this shortcoming of CPM

by modeling the duration of each activity as a random variable. For each activity, PERT

requires that the project manager estimate the following three quantities:

a � estimate of the activity’s duration

a � under the most favorable conditions

b � estimate of the activity’s duration

b � under the least favorable conditions

m � most likely value for the activity’s duration

Let Tij (random variables are printed in boldface) be the duration of activity (i, j). PERT

requires the assumption that Tij follows a beta distribution. The specific definition of a

beta distribution need not concern us, but it is important to realize that it can approximate

a wide range of random variables, including many positively skewed, negatively skewed,

and symmetric random variables. If Tij follows a beta distribution, then it can be shown

that the mean and variance of Tij may be approximated by

E(Tij) � 
a � 4

6

m � b
 (4)

varTij � 
(b �

36

a)2

 (5)
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PERT requires the assumption that the durations of all activities are independent. Then

for any path in the project network, the mean and variance of the time required to com-

plete the activities on the path are given by

�
(i, j)�path

E(Tij) � expected duration of activities on any path (6)

�
(i, j)�path

varTij � variance of duration of activities on any path (7)

Let CP be the random variable denoting the total duration of the activities on a critical

path found by CPM. PERT assumes that the critical path found by CPM contains enough

activities to allow us to invoke the Central Limit Theorem and conclude that

CP�       �
(i, j)�critical path

Tij

is normally distributed. With this assumption, (4)–(7) can be used to answer questions

concerning the probability that the project will be completed by a given date. For exam-

ple, suppose that for Example 6, a, b, and m for each activity are shown in Table 15. Now

(4) and (5) yield

E(T12) � 
{5 � 13

6

� 36}
 � 9 varT12 � 

(13

3

�

6

5)2

 � 1.78

E(T13) � 
{2 � 10

6

� 24}
 � 6 varT13 � 

(10

3

�

6

2)2

 � 1.78

E(T35) � 
{3 � 13

6

� 32}
 � 8 varT35 � 

(13

3

�

6

3)2

 � 2.78

E(T34) � 
{1 � 13

6

� 28}
 � 7 varT34 � 

(13

3

�

6

1)2

 � 4

E(T45) � 
{8 � 12

6

� 40}
 � 10 varT45 � 

(12

3

�

6

8)2

 � 0.44

E(T56) � 
{9 � 15

6

� 48}
 � 12 varT56 � 

(15

3

�

6

9)2

 � 1

Of course, the fact that arc (2, 3) is a dummy arc yields

E(T23) � var T23 � 0

Recall that the critical path for Example 6 was 1–2–3–4–5–6. From Equations (6) and (7),

E(CP) � 9 � 0 � 7 � 10 � 12 � 38

varCP � 1.78 � 0 � 4 � 0.44 � 1 � 7.22

Then the standard deviation for CP is (7.22)1/2
� 2.69.
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a, b, and m for Activities in Widgeto

Activity a b m

(1, 2) 5 13 9

(1, 3) 2 10 6

(3, 5) 3 13 8

(3, 4) 1 13 7

(4, 5) 8 12 10

(5, 6) 9 15 12



Applying the assumption that CP is normally distributed, we can answer questions such

as the following: What is the probability that the project will be completed within 35 days?

To answer this question, we must also make the following assumption: No matter what the

durations of the project’s activities turn out to be, 1–2–3–4–5–6 will be a critical path. This

assumption implies that the probability that the project will be completed within 35 days

is just P(CP 	 35). Standardizing and applying the assumption that CP is normally dis-

tributed, we find that Z is a standardized normal random variable with mean 0 and vari-

ance 1. The cumulative distribution function for a normal random variable is tabulated in

Table 16. For example, P(Z 	 �1) � 0.1587 and P(Z 	 2) � 0.9772. Thus,

P(CP 	 35) � P �CP

2.

�

69

38
 	 

35

2

�

.69

38
� � P(Z 	 �1.12) � .13

where F(�1.12) � .13 may be obtained using the NORMSDIST function in Excel. En-

tering the formula �NORMSDIST(x) returns the probability that a standard normal ran-

dom variable with mean 0 and standard deviation 1 is less than or equal to x. For exam-

ple �NORMDIST(�1.12) yields .1313.

Difficulties with PERT

There are several difficulties with PERT:

1 The assumption that the activity durations are independent is difficult to justify.

2 Activity durations may not follow a beta distribution.

3 The assumption that the critical path found by CPM will always be the critical path

for the project may not be justified.

The last difficulty is the most serious. For example, in our analysis of Example 6, we as-

sumed that 1–2–3–4–5–6 would always be the critical path. If, however, activity A were

significantly delayed and activity B were completed ahead of schedule, then the critical

path might be 1–3–4–5–6.

Here is a more concrete example of the fact that (because of the uncertain duration of

activities) the critical path found by CPM may not actually be the path that determines

the completion date of the project. Consider the simple project network in Figure 37. As-
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2

3

1 4

A B

DC

F I G U R E  37

Project Network to
Illustrate Difficulties

with PERT

TA B L E  16

a, b, and m for Figure 37

Activity a b m

A 1 9 5

B 6 14 10

C 5 7 6

D 7 9 8



sume that for each activity in Table 16, a, b, and m each occur with probability 
1
3

. If CPM

were applied (using the expected duration of each activity as the duration of the activity),

then we would obtain the network in Figure 38. For this network, the critical path is

1–2–4. In actuality, however, the critical path could be 1–3–4. For example, if the opti-

mistic duration of B (6 days) occurred and all other activities had a duration m, then

1–3–4 would be the critical path in the network. If we assume that the durations of the

four activities are independent random variables, then using elementary probability (see

Problem 11 at the end of this section), it can be shown that there is a 
1
2
0
7
 probability that

1–3–4 is the critical path, a 
1
2
5
7
 chance that 1–2–4 is the critical path, and a 

2
2
7
 chance that

1–2–4 and 1–3–4 will both be critical paths. This example shows that one must be cau-

tious in designating an activity as critical. In this situation, the probability that each ac-

tivity is actually a critical activity is shown in Table 17.

When the duration of activities is uncertain, the best way to analyze a project is to use

a Monte Carlo simulation add-in for Excel. In Chapter 23, we will show how to use the

Excel add-in @Risk to perform Monte Carlo simulations. With @Risk, we can easily de-

termine the probability that a project is completed on time and determine the probability

that each activity is critical.

P R O B L E M S
Group A
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1 What problem would arise if the network in Figure 39
were a portion of a project network?

2

3

1 4

A 5 B 10

D 8C 6

F I G U R E  38

Network to Determine
Critical Path If Each

Activity’s Duration
Equals m

TA B L E  17

Probability That Each Arc
Is on a Critical Path

Activity Probability

A 
1
2

7
7


B 
1
2

7
7


C 
1
2

2
7


D 
1
2

2
7


2 A company is planning to manufacture a product that
consists of three parts (A, B, and C). The company
anticipates that it will take 5 weeks to design the three parts
and to determine the way in which these parts must be
assembled to make the final product. Then the company
estimates that it will take 4 weeks to make part A, 5 weeks
to make part B, and 3 weeks to make part C. The company
must test part A after it is completed (this takes 2 weeks).
The assembly line process will then proceed as follows:
assemble parts A and B (2 weeks) and then attach part C (1
week). Then the final product must undergo 1 week of

1 2

4

3

F I G U R E  39

Network for Problem 1



testing. Draw the project network and find the critical path,
total float, and free float for each activity. Also set up the
LP that could be used to find the critical path.

When determining the critical path in Problems 3 and 4,
assume that m � activity duration.

3 Consider the project network in Figure 40. For each
activity, you are given the estimates of a, b, and m in Table
18. Determine the critical path for this network, the total
float for each activity, the free float for each activity, and the
probability that the project is completed within 40 days.
Also set up the LP that could be used to find the critical
path.

4 The promoter of a rock concert in Indianapolis must
perform the tasks shown in Table 19 before the concert can
be held (all durations are in days).

a Draw the project network.

b Determine the critical path.

c If the advance promoter wants to have a 99% chance
of completing all preparations by June 30, when should
work begin on finding a concert site?

d Set up the LP that could be used to find the project’s
critical path.

5 Consider the (simplified) list of activities and predecessors
that are involved in building a house (Table 20).
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a Draw a project network, determine the critical path,
find the total float for each activity, and find the free
float for each activity.

b Suppose that by hiring additional workers, the dura-
tion of each activity can be reduced. The costs per day
of reducing the duration of the activities are given in
Table 21. Write down the LP to be solved to minimize
the total cost of completing the project within 20 days.

6 Horizon Cable is about to expand its cable TV offerings
in Smalltown by adding MTV and other exciting stations.
The activities in Table 22 must be completed before the
service expansion is completed.

a Draw the project network and determine the critical
path for the network, the total float for each activity, and
the free float for each activity.

b Set up the LP that can be used to find the project’s
critical path.

7 When an accounting firm audits a corporation, the first
phase of the audit involves obtaining “knowledge of the
business.” This phase of the audit requires the activities in
Table 23.

a Draw the project network and determine the critical
path for the network, the total float for each activity, and
the free float for each activity. Also set up the LP that
can be used to find the project’s critical path.

2

1

3 5

6

8

9

4 7

TA B L E  18

Activity a b m

(1, 2) 4 8 6

(1, 3) 2 8 4

(2, 4) 1 7 3

(3, 4) 6 12 9

(3, 5) 5 15 10

(3, 6) 7 18 12

(4, 7) 5 12 9

(5, 7) 1 3 2

(6, 8) 2 6 3

(7, 9) 10 20 15

(8, 9) 6 11 9

F I G U R E  40

Network for Problem 3

TA B L E  19

Immediate
Activity Description Predecessors a b m

A Find site — 2 4 3

B Find engineers A 1 3 2

C Hire opening act A 2 10 6

D Set radio and TV ads C 1 3 2

E Set up ticket agents A 1 5 3

F Prepare electronics B 2 4 3

G Print advertising C 3 7 5

H Set up transportation C 0.5 1.5 1

I Rehearsals F, H 1 2 1.5

J Last-minute details I 1 3 2

TA B L E  20

Immediate Duration
Activity Description Predecessors (Days)

A Build foundation — 5

B Build walls and ceilings A 8

C Build roof B 10

D Do electrical wiring B 5

E Put in windows B 4

F Put on siding E 6

G Paint house C, F 3



b Assume that the project must be completed in 30
days. The duration of each activity can be reduced by in-
curring the costs shown in Table 24. Formulate an LP
that can be used to minimize the cost of meeting the
project deadline.

8 The LINDO output in Figure 41 can be used to determine
the critical path for Problem 5. Use this output to do the
following:
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TA B L E  22

Immediate Duration
Activity Description Predecessors (Weeks)

A Choose stations — 2

B Get town council to A 4
approve expansion

C Order converters needed B 3
to expand service

D Install new dish to receive B 2
new stations

E Install converters C, D 10

F Change billing system B 4

TA B L E  21

Maximum Possible
Cost per Day of Reduction in

Reducing Duration Duration of
Activity of Activity ($) Activity (Days)

Foundation 30 2

Walls and ceiling 15 3

Roof 20 1

Electrical wiring 40 2

Windows 20 2

Siding 30 3

Paint 40 1

TA B L E  23

Immediate Duration
Activity Description Predecessors (Days)

A Determining terms of — 3
engagement

B Appraisal of auditability A 6
risk and materiality

C Identification of types of A 14
transactions and
possible errors

D Systems description C 8

E Verification of systems D 4
description

F Evaluation of internal B, E 8
controls

G Design of audit approach F 9

TA B L E  24

Maximum Possible
Cost per Day of Reduction in

Reducing Duration Duration of
Activity of Activity ($) Activity (Days)

A 100 3

B 80 4

C 60 5

D 70 2

E 30 4

F 20 4

G 50 4

     MIN      X6 - X1
         SUBJECT TO
                2) - X1 + X2 >=  5
                3) - X2 + X3 >=  8
                4) - X3 + X4 >=  4
                5) - X3 + X5 >=  10
                6) - X4 + X5 >=  6
                7)   X6 - X3 >=  5
                8)   X6 - X5 >=  3
         END

            LP OPTIMUM FOUND  AT STEP     6

                 OBJECTIVE FUNCTION VALUE

          1)         26.0000000

         VARIABLE         VALUE          REDUCED COST
                X6        26.000000          0.000000
                X1         0.000000          0.000000
                X2         5.000000          0.000000
                X3        13.000000          0.000000
                X4        17.000000          0.000000
                X5        23.000000          0.000000

            ROW      SLACK OR SURPLUS     DUAL PRICES
                2)         0.000000         -1.000000
                3)         0.000000         -1.000000
                4)         0.000000         -1.000000
                5)         0.000000          0.000000
                6)         0.000000         -1.000000
                7)         8.000000          0.000000
                8)         0.000000         -1.000000

         NO. ITERATIONS=       6

   RANGES IN WHICH THE BASIS IS UNCHANGED
                                           
                          OBJ COEFFICIENT RANGES
VARIABLE         CURRENT        ALLOWABLE        ALLOWABLE
                  COEF          INCREASE         DECREASE
     X6           1.000000      INFINITY          0.000000
     X1          -1.000000      INFINITY          0.000000
     X2           0.000000      INFINITY          0.000000
     X3           0.000000      INFINITY          0.000000
     X4           0.000000      INFINITY          0.000000
     X5           0.000000      INFINITY          0.000000
                          
                        RIGHTHAND SIDE RANGES     
ROW            CURRENT        ALLOWABLE        ALLOWABLE
                 RHS          INCREASE         DECREASE 
          2     5.000000       INFINITY           5.000000
          3     8.000000       INFINITY          13.000000
          4     4.000000         0.000000         8.000000
          5    10.000000       INFINITY           0.000000
          6     6.000000         0.000000         8.000000
          7     5.000000         8.000000       INFINITY
          8     3.000000       INFINITY           8.000000

F I G U R E  41

LINDO Output for Problem 8
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a Draw the project diagram.

b Determine the length of the critical path and the crit-
ical activities for this project.

9 Explain why an activity’s free float can never exceed the
activity’s total float.

10 A project is complete when activities A–E are
completed. The predecessors of each activity are shown in
Table 25. Draw the appropriate project diagram. (Hint:
Don’t violate rule 4.)

11 Determine the probabilities that 1–2–4 and 1–3–4 are
critical paths for Figure 37.

12 Given the information in Table 26, (a) draw the
appropriate project network, and (b) find the critical path.

13 The government is going to build a high-speed
computer in Austin, Texas. Once the computer is designed
(D), we can select the exact site (S), the building contractor
(C), and the operating personnel (P). Once the site is

TA B L E  25

Activity Predecessors

A —

B A

C A

D B

E B, C

TA B L E  26

Immediate Duration
Activity Predecessors (Days)

A — 3

B — 3

C — 1

D A, B 3

E A, B 3

F B, C 2

G D, E 4

H E 3

selected, we can begin erecting the building (B). We can
start manufacturing the computer (COM) and preparing the
operations manual (M) only after contractor is selected. We
can begin training the computer operators (T) when the
operating manual and personnel selection are completed.
When the computer and the building are both finished, the
computer may be installed (I). Then the computer is
considered operational. Draw a project network that could
be used to determine when the project is operational.

14 Write a LINGO program that can be used to crash the
project network of Example 6 with the crashing costs given
in Table 14.

15 Consider the project diagram in Figure 42. This project
must be completed in 90 days. The time required to complete
each activity can be reduced by up to five days at the costs
given in Table 27.

Formulate an LP whose solution will enable us to
minimize the cost of completing the project in 90 days.

16–17 Find the critical path, total float, and free float for
each activity in the project networks of Figures 43 and 44.

1 4 5

2

A20

B25 D40

C50

E30

3

F I G U R E  42

TA B L E  27

Cost of Reducing
Activities Duration

Activity by 1 Day ($)

A 300

B 200

C 350

D 260

E 320

2 51 6

3

B6

C4 E2

D4

F1

A2 G2

H14

F I G U R E  43
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1 2
A3 C4

B3 H6

G5

F4
I5

E3D3

K2

J4 L6

3

4

6

5 7 8

F I G U R E  44

8.5 Minimum-Cost Network Flow Problems

The transportation, assignment, transshipment, shortest-path, maximum flow, and CPM

problems are all special cases of the minimum-cost network flow problem (MCNFP). Any

MCNFP can be solved by a generalization of the transportation simplex called the net-

work simplex.

To define an MCNFP, let

xij � number of units of flow sent from node i to node j through arc (i, j)

bi � net supply (outflow � inflow) at node i

cij � cost of transporting 1 unit of flow from node i to node j via arc (i, j)

Lij � lower bound on flow through arc (i, j)

Lij � (if there is no lower bound, let Lij � 0)

Uij � upper bound on flow through arc (i, j)

Uij � (if there is no upper bound, let Uij � �)

Then the MCNFP may be written as

min   �
all arcs

cijxij

s.t. �
j

xij � �
k

xki � bi (for each node i in the network) (8)

Lij 	 xij 	 Uij (for each arc in the network) (9)

Constraints (8) stipulate that the net flow out of node i must equal bi. Constraints (8)

are referred to as the flow balance equations for the network. Constraints (9) ensure that

the flow through each arc satisfies the arc capacity restrictions. In all our previous exam-

ples, we have set Lij � 0.

Let us show that transportation and maximum-flow problems are special cases of the

minimum-cost network flow problem.

Formulating a Transportation Problem as an MCNFP

Consider the transportation problem in Table 28. Nodes 1 and 2 are the two supply points,

and nodes 3 and 4 are the two demand points. Then b1 � 4, b2 � 5, b3 � �6, and b4 �

�3. The network corresponding to this transportation problem contains arcs (1, 3), (1, 4),

(2, 3), and (2, 4) (see Figure 45). The LP for this transportation problem may be written

as shown in Table 29.

The first two constraints are the supply constraints, and the last two constraints are (af-

ter being multiplied by �1) the demand constraints. Because this transportation problem



has no arc capacity restrictions, the flow balance equations are the only constraints. We

note that if the problem had not been balanced, we could not have formulated the problem

as an MCNFP. This is because if total supply exceeded total demand, we would not know

with certainty the net outflow at each supply point. Thus, to formulate a transportation (or

a transshipment) problem as an MCNFP, it may be necessary to add a dummy point.

Formulating a Maximum-Flow Problem as an MCNFP

To see how a maximum-flow problem fits into the minimum-cost network flow context,

consider the problem of finding the maximum flow from source to sink in the network of

Figure 6. After creating an arc a0 joining the sink to the source, we have bso � b1� b2 �

b3 � bsi � 0. Then the LP constraints for finding the maximum flow in Figure 6 may be

written as shown in Table 30.

The first five constraints are the flow balance equations for the nodes of the network,

and the last six constraints are the arc capacity constraints. Because there is no upper limit

on the flow through the artificial arc, there is no arc capacity constraint for a0.

The flow balance equations in any MCNFP have the following important property:

Each variable xij has a coefficient of �1 in the node i flow balance equation, a coefficient

of �1 in the node j flow balance equation, and a coefficient of 0 in all other flow balance

equations. For example, in a transportation problem, the variable xij will have a coeffi-
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6 3

3 4

1 2

5

4

(Node 2)

(Node 1)

(Node 3) (Node 4)

TA B L E  28

1Supply point 1

Supply point 2

Demand point 1

Demand point 2

3

2 4

F I G U R E  45

Representation of
Transportation Problem

as an MCNFP

TA B L E  29

MCNFP Representation of Transportation Problem

min z � x13 � 2x14 � 3x23 � 4x24

x13 x14 x23 x24 rhs Constraint

1 1 0 0 � 4 Node 1

0 0 1 1 � 5 Node 2

�1 0 �1 0 � �6 Node 3

1 �1 0 �1 � �3 Node 4

All variables non-negative
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cient of �1 in the flow balance equation for supply point i, a coefficient of �1 in the flow

balance equation for demand point j, and a coefficient of 0 in all other flow balance equa-

tions. Even if the constraints of an LP do not appear to contain the flow balance equa-

tions of a network, clever transformation of an LP’s constraints can often show that an LP

is equivalent to an MCNFP (see Problem 6 at the end of this section).

An MCNFP can be solved by a generalization of the transportation simplex known as the

network simplex algorithm (see Section 8.7). As with the transportation simplex, the pivots

in the network simplex involve only additions and subtractions. This fact can be used to prove

that if all the bi’s and arc capacities are integers, then in the optimal solution to an MCNFP,

all the variables will be integers. Computer codes that use the network simplex can quickly

solve even extremely large network problems. For example, MCNFPs with 5,000 nodes and

600,000 arcs have been solved in under 10 minutes. To use a network simplex computer code,

the user need only input a list of the network’s nodes and arcs, the cij’s and arc capacity for

each arc, and the bi’s for each node. The network simplex is efficient and easy to use, so it is

extremely important to formulate an LP, if at all possible, as an MCNFP.

To close this section, we formulate a simple traffic assignment problem as an MCNFP.

Each hour, an average of 900 cars enter the network in Figure 46 at node 1 and seek to

travel to node 6. The time it takes a car to traverse each arc is shown in Table 31. In Fig-

ure 46, the number above each arc is the maximum number of cars that can pass by any

point on the arc during a one-hour period. Formulate an MCNFP that minimizes the to-

tal time required for all cars to travel from node 1 to node 6.

Solution Let

xij � number of cars per hour that traverse the arc from node i to node j

Then we want to minimize

z � 10x12 � 50x13 � 70x25 � 30x24 � 30x56 � 30x45 � 60x46 � 60x35 � 10x34

We are given that b1 � 900, b2 � b3 � b4 � b5 � 0, and b6 � �900 (we will not in-

troduce the artificial arc connecting node 6 to node 1). The constraints for this MCNFP

are shown in Table 32.

Traffic MCNFPE X A M P L E  7

TA B L E  30

MCNFP Representation of Maximum-Flow Problem

min z � x0

xso,1 xso,2 x13 x12 x3,si x2,si x0 rhs Constraint

1 1 0 0 0 0 �1 � 0 Node so

�1 0 1 1 0 0 0 � 0 Node 1

0 �1 0 �1 0 1 0 � 0 Node 2

0 0 �1 0 1 0 0 � 0 Node 3

0 0 0 0 �1 �1 1 � 0 Node si

1 0 0 0 0 0 0 	 2 Arc (so, 1)

0 1 0 0 0 0 0 	 3 Arc (so, 2)

0 0 1 0 0 0 0 	 4 Arc (1, 3)

0 0 0 1 0 0 0 	 3 Arc (1, 2)

0 0 0 0 1 0 0 	 1 Arc (3, si )

0 0 0 0 0 1 0 	 2 Arc (2, si )

All variables nonnegative



Solving an MCNFP with LINGO

The following LINGO program (file Traffic.lng) can be used to find the optimal solution

to Example 7 (or any MCNFP).
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1 6

2

3

4

5

800

600

600

100 300
400

600

600

400

F I G U R E  46

Representation of
Traffic Example as

MCNFP

TA B L E  31

Travel Times for Traffic
Example

Time
Arc (Minutes)

(1, 2) 10

(1, 3) 50

(2, 5) 70

(2, 4) 30

(5, 6) 30

(4, 5) 30

(4, 6) 60

(3, 5) 60

(3, 4) 10

x12 x13 x24 x25 x34 x35 x45 x46 x56 rhs Constraint

1 1 0 0 0 0 0 0 0 � 900 Node 1

�1 0 1 1 0 0 0 0 0 � 0 Node 2

0 �1 0 0 1 1 0 0 0 � 0 Node 3

0 0 �1 0 �1 0 1 1 0 � 0 Node 4

0 0 0 �1 0 �1 �1 0 1 � 0 Node 5

0 0 0 0 0 0 0 �1 �1 � �900 Node 6

1 0 0 0 0 0 0 0 0 	 800 Arc (1, 2)

0 1 0 0 0 0 0 0 0 	 600 Arc (1, 3)

0 0 1 0 0 0 0 0 0 	 600 Arc (2, 4)

0 0 0 1 0 0 0 0 0 	 100 Arc (2, 5)

0 0 0 0 1 0 0 0 0 	 300 Arc (3, 4)

0 0 0 0 0 1 0 0 0 	 400 Arc (3, 5)

0 0 0 0 0 0 1 0 0 	 600 Arc (4, 5)

0 0 0 0 0 0 0 1 0 	 400 Arc (4, 6)

0 0 0 0 0 0 0 0 1 	 600 Arc (5, 6)

All variables non-negative

TA B L E  32

MCNFP Representation of
Traffic Example

Traffic.lng



MODEL:

1] SETS:

2] NODES/1..6/:SUPP;

3] ARCS(NODES,NODES)/1,2  1,3  2,4  2,5  3,4  3,5  4,5  4,6  5,6/

4] :CAP,FLOW,COST;

5] ENDSETS

6] MIN=@SUM(ARCS:COST*FLOW);

7] @FOR(ARCS(I,J):FLOW(I,J)<CAP(I,J));

8] @FOR(NODES(I):-@SUM(ARCS)(J,I):FLOW(J,I))

9] +@SUM(ARCS(I,J):FLOW(I,J))=SUPP(I));

10] DATA:

11] COST=10,50,30,70,10,60,30,60,30;

12] SUPP=900,0,0,0,0,-900;

13] CAP=800,600,600,100,300,400,600,400,600;

14] ENDDATA

END

In line 2, we define the network’s nodes and associate a net supply (flow out�flow in)

with each node. The supplies data are entered in line 12. In line 3, we define, by listing, the

arcs in the network and in line 4 associate a capacity (CAP), a flow (FLOW), and a cost-per-

unit-shipped (COST) with each arc. The unit shipping costs data are entered in line 11. Line

6 generates the objective function by summing over all arcs (unit cost for arc)*(flow through

arc). Line 7 generates each arc’s capacity constraint (arc capacities data are entered in line

13). For each node, lines 8–9 generate the conservation-of-flow constraint. They imply that

for each node I, �(flow into node I) � (flow out of node I) � (supply of node I). When

solved on LINGO, we find that the solution to Example 7 is z �95,000 minutes, x12 � 700,

x13 � 200, x24 � 600, x25 � 100, x34 � 200, x45 � 400, x46 � 400, x56 � 500.

Our LINGO program can be used to solve any MCNFP. Just input the set of nodes,

supplies, arcs, and unit shipping cost; hit GO and you are done!

P R O B L E M S
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Note: To formulate a problem as an MCNFP, you should
draw the appropriate network and determine the cij’s, the
bi’s, and the arc capacities.

Group A

1 Formulate the problem of finding the shortest path from
node 1 to node 6 in Figure 2 as an MCNFP. (Hint: Think of
finding the shortest path as the problem of minimizing the
total cost of sending 1 unit of flow from node 1 to node 6.)

2 a Find the dual of the LP that was used to find the
length of the critical path for Example 6 of Section 8.4.

b Show that the answer in part (a) is an MCNFP.

c Explain why the optimal objective function value for
the LP found in part (a) is the longest path in the proj-
ect network from node 1 to node 6. Why does this jus-
tify our earlier claim that the critical path in a project
network is the longest path from the start node to the
finish node?

3 Fordco produces cars in Detroit and Dallas. The Detroit
plant can produce as many as 6,500 cars, and the Dallas
plant can produce as many as 6,000 cars. Producing a car
costs $2,000 in Detroit and $1,800 in Dallas. Cars must be
shipped to three cities. City 1 must receive 5,000 cars, city
2 must receive 4,000 cars, and city 3 must receive 3,000

cars. The cost of shipping a car from each plant to each city
is given in Table 33. At most, 2,200 cars may be sent from
a given plant to a given city. Formulate an MCNFP that can
be used to minimize the cost of meeting demand.

4 Each year, Data Corporal produces as many as 400
computers in Boston and 300 computers in Raleigh. Los
Angeles customers must receive 400 computers, and 300
computers must be supplied to Austin customers. Producing
a computer costs $800 in Boston and $900 in Raleigh.
Computers are transported by plane and may be sent through
Chicago. The costs of sending a computer between pairs of
cities are shown in Table 34.

a Formulate an MCNFP that can be used to minimize
the total (production � distribution) cost of meeting
Data Corporal’s annual demand.

TA B L E  33

To ($)

From City 1 City 2 City 3

Detroit 800 600 300

Dallas 500 200 200



b How would you modify the part (a) formulation if at
most 200 units could be shipped through Chicago? [Hint:
Add an additional node and arc to this part (a) network.]

5 Oilco has oil fields in San Diego and Los Angeles. The
San Diego field can produce 500,000 barrels per day, and
the Los Angeles field can produce 400,000 barrels per day.
Oil is sent from the fields to a refinery, in either Dallas or
Houston (assume each refinery has unlimited capacity). To
refine 100,000 barrels costs $700 at Dallas and $900 at
Houston. Refined oil is shipped to customers in Chicago
and New York. Chicago customers require 400,000 barrels
per day, and New York customers require 300,000 barrels
per day. The costs of shipping 100,000 barrels of oil (refined
or unrefined) between cities are shown in Table 35.

a Formulate an MCNFP that can be used to determine
how to minimize the total cost of meeting all demands.

b If each refinery had a capacity of 500,000 barrels
per day, how would the part (a) answer be modified?

Group B

6 Workco must have the following number of workers
available during the next three months: month 1, 20; month
2, 16; month 3, 25. At the beginning of month 1, Workco
has no workers. It costs Workco $100 to hire a worker and
$50 to fire a worker. Each worker is paid a salary of
$140/month. We will show that the problem of determining
a hiring and firing strategy that minimizes the total cost
incurred during the next three (or in general, the next n)
months can be formulated as an MCNFP.

a Let

xij � number of workers hired at beginning of month i
and fired after working till end of month j � 1

(if j � 4, the worker is never fired). Explain why the fol-
lowing LP will yield a minimum-cost hiring and firing
strategy:
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min z � 50(x12 � x13 � x23)

� 100(x12 � x13 � x14 � x23 �x24 � x34)

� 140(x12 � x23 � x34)

� 280(x13 � x24) � 420x14

s.t. (1) x12 � x13 � x14 � x24 � e1 � 20

(Month 1 constraint)

(2) x13 � x14 � x23 � x24 � e2 � 16

(Month 2 constraint)

(3) x14 � x24 � x34 � x24 � e3 � 25

(Month 3 constraint)

xij 
 0

b To obtain an MCNFP, replace the constraints in part
(a) by

i Constraint (1);

ii Constraint (2) � Constraint (1);

iii Constraint (3) � Constraint (2);

iv � (Constraint (3)).

Explain why an LP with Constraints (i)–(iv) is an 
MCNFP.

c Draw the network corresponding to the MCNFP ob-
tained in answering part (b).

7† Braneast Airlines must determine how many airplanes
should serve the Boston–New York–Washington air corridor
and which flights to fly. Braneast may fly any of the daily
flights shown in Table 36. The fixed cost of operating an
airplane is $800/day. Formulate an MCNFP that can be used
to maximize Braneast’s daily profits. (Hint: Each node in
the network represents a city and a time. In addition to arcs
representing flights, we must allow for the possibility that
an airplane will stay put for an hour or more. We must
ensure that the model includes the fixed cost of operating a
plane. To include this cost, the following three arcs might
be included in the network: from Boston 7 P.M. to Boston 
9 A.M.; from New York 7 P.M. to New York 9 A.M.; and from
Washington 7 P.M. to Washington 9 A.M.)

8 Daisymay Van Line moves people between New York,
Philadelphia, and Washington, D.C. It takes a van one day to
travel between any two of these cities. The company incurs
costs of $1,000 per day for a van that is fully loaded and
traveling, $800 per day for an empty van that travels, $700
per day for a fully loaded van that stays in a city, and $400
per day for an empty van that remains in a city. Each day of
the week, the loads described in Table 37 must be shipped.
On Monday, for example, two trucks must be sent from
Philadelphia to New York (arriving on Tuesday). Also, two
trucks must be sent from Philadelphia to Washington on
Friday (assume that Friday shipments must arrive on
Monday). Formulate an MCNFP that can be used to
minimize the cost of meeting weekly requirements. To
simplify the formulation, assume that the requirements
repeat each week. Then it seems plausible to assume that
any of the company’s trucks will begin each week in the
same city in which it began the previous week.

TA B L E  34

To ($)

From Chicago Austin Los Angeles

Boston 80 220 280

Raleigh 100 140 170

Chicago — 40 50

TA B L E  35

To ($)

From Dallas Houston New York Chicago

Los Angeles 300 110 — —

San Diego 420 100 — —

Dallas — — 450 550

Houston — — 470 530

†This problem is based on Glover et al. (1982).



8.6 Minimum Spanning Tree Problems

Suppose that each arc (i, j) in a network has a length associated with it and that arc (i, j)

represents a way of connecting node i to node j. For example, if each node in a network

represents a computer at State University, then arc (i, j) might represent an underground

cable that connects computer i with computer j. In many applications, we want to deter-

mine the set of arcs in a network that connect all nodes such that the sum of the length

of the arcs is minimized. Clearly, such a group of arcs should contain no loop. (A loop is

often called a closed path or cycle.) For example, in Figure 47, the sequence of arcs 

(1, 2)–(2, 3)–(3, 1) is a loop.

D E F I N I T I O N ■ For a network with n nodes, a spanning tree is a group of n � 1 arcs that

connects all nodes of the network and contains no loops. ■
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TA B L E  36

Leaves Arrives
Flight Variable Cost

City Time City Time Revenue of Flight (S)

N.Y. 9 A.M. Wash. 10 A.M. $900 400

N.Y. 2 P.M. Wash. 3 P.M. $600 350

N.Y. 10 A.M. Bos. 11 A.M. $800 400

N.Y. 4 P.M. Bos. 5 P.M. $1,200 450

Wash. 9 A.M. N.Y. 10 A.M. $1,100 400

Wash. 3 P.M. N.Y. 4 P.M. $900 350

Wash. 10 A.M. Bos. 12 noon $1,500 700

Wash. 5 P.M. Bos. 7 P.M. $1,800 900

Bos. 10 A.M. N.Y. 11 A.M. $900 500

Bos. 2 P.M. N.Y. 3 P.M. $800 450

Bos. 11 A.M. Wash. 1 P.M. $1,100 600

Bos. 3 P.M. Wash. 5 P.M. $1,200 650

TA B L E  37

Trip Monday Tuesday Wednesday Thursday Friday

Phil.–N.Y. 2 — — — —

Phil.–Wash. — 2 — — 2

N.Y.–Phil. 3 2 — — —

N.Y.–Wash. — — 2 2 —

N.Y.–Phil. 1 — — — —

Wash.–N.Y. — — 1 — 1

1 2
12

(1, 2)–(2, 3)–(3, 1)

is a loop

(1, 3), (2, 3) is the

minimum spanning tree

4
7

3

F I G U R E  47

Illustration of Loop and
Minimum Spanning Tree



In Figure 47, there are three spanning trees:

1 Arcs (1, 2) and (2, 3)

2 Arcs (1, 2) and (1, 3)

3 Arcs (1, 3) and (2, 3)

A spanning tree of minimum length in a network is a minimum spanning tree (MST).

In Figure 47, the spanning tree consisting of arcs (1, 3) and (2, 3) is the unique minimum

spanning tree.

The following method (MST algorithm) may be used to find a minimum spanning tree.

Step 1 Begin at any node i, and join node i to the node in the network (call it node j)

that is closest to node i. The two nodes i and j now form a connected set of nodes C �

{i, j}, and arc (i, j) will be in the minimum spanning tree. The remaining nodes in the

network (call them C�) are referred to as the unconnected set of nodes.

Step 2 Now choose a member of C� (call it n) that is closest to some node in C. Let m

represent the node in C that is closest to n. Then the arc (m, n) will be in the minimum

spanning tree. Now update C and C�. Because n is now connected to {i, j}, C now equals

{i, j, n} and we must eliminate node n from C�.

Step 3 Repeat this process until a minimum spanning tree is found. Ties for closest node

and arc to be included in the minimum spanning tree may be broken arbitrarily.

At each step the algorithm chooses the shortest arc that can be used to expand C, so the

algorithm is often referred to as a “greedy” algorithm. It is remarkable that the act of be-

ing “greedy” at each step of the algorithm can never force us later to follow a “bad arc.”

In Example 1 of Chapter 9 we will see that for some types of problems, a greedy algo-

rithm may not yield an optimal solution! A justification of the MST algorithm is given in

Problem 3 at the end of this section. Example 8 illustrates the algorithm.

The State University campus has five minicomputers. The distance between each pair of

computers (in city blocks) is given in Figure 48. The computers must be interconnected

by underground cable. What is the minimum length of cable required? Note that if no arc

is drawn connecting a pair of nodes, this means that (because of underground rock for-

mations) no cable can be laid between these two computers.

Solution We want to find the minimum spanning tree for Figure 48.

Iteration 1 Following the MST algorithm, we arbitrarily choose to begin at node 1. The

closest node to node 1 is node 2. Now C � {1, 2}, C� � {3, 4, 5}, and arc (1, 2) will be

in the minimum spanning tree (see Figure 49a).

Iteration 2 Node 5 is closest (two blocks distant) to C. Because node 5 is two blocks from

node 1 and from node 2, we may include either arc (2, 5) or arc (1, 5) in the minimum

spanning tree. We arbitrarily choose to include arc (2, 5). Then C � {1, 2, 5} and C� �

{3, 4} (see Figure 49b).

Iteration 3 Node 3 is two blocks from node 5, so we may include arc (5, 3) in the mini-

mum spanning tree. Now C � {1, 2, 3, 5} and C� � 4 (see Figure 49c).

Iteration 4 Node 5 is the closest node to node 4, so we add arc (5, 4) to the minimum

spanning tree (see Figure 49d).

We have now obtained the minimum spanning tree consisting of arcs (1, 2), (2, 5), (5, 3),

and (5, 4). The length of the minimum spanning tree is 1 � 2 � 2 � 4 � 9 blocks.
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MST AlgorithmE X A M P L E  8



458 C H A P T E R 8 Network Models

1
1

2

6

4

5

3

2

4 2

2

35

4

F I G U R E  48

Distances between
State University

Computers
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a   Iteration 1
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b   Iteration 2
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c   Iteration 3
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Arcs (1, 2), (2, 5), (5, 3), 

and (5, 4) are the MST

2
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d   Iteration 4: MST has been found

C   =  [4]
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P R O B L E M S
Group A

8 . 7 The Network Simplex Method 459

1 The distances (in miles) between the Indiana cities of
Gary, Fort Wayne, Evansville, Terre Haute, and South Bend
are shown in Table 38. It is necessary to build a state road
system that connects all these cities. Assume that for political
reasons no road can be built connecting Gary and Fort
Wayne, and no road can be built connecting South Bend and
Evansville. What is the minimum length of road required?

2 The city of Smalltown consists of five subdivisions.
Mayor John Lion wants to build telephone lines to ensure
that all the subdivisions can communicate with each other.
The distances between the subdivisions are given in Figure
50. What is the minimum length of telephone line required?
Assume that no telephone line can be built between
subdivisions 1 and 4.

Group B

3 In this problem, we explain why the MST algorithm
works. Define

S � minimum spanning tree

Ct � nodes connected after iteration t of MST
algorithm has been completed

Ct� � nodes not connected after iteration t of MST 
algorithm has been completed

At � set of arcs in minimum spanning tree after t
iterations of MST algorithm have been
completed

Suppose the MST algorithm does not yield a minimum
spanning tree. Then, for some t, it must be the case that all
arcs in At�1 are in S, but the arc chosen at iteration t (call it
at) of the MST algorithm is not in S. Then S must contain
some arc at� that leads from a node in Ct�1 to a node in C�t�1).
Show that by replacing arc at� with arc at, we can obtain a
shorter spanning tree than S. This contradiction proves that all
arcs chosen by the MST algorithm must be in S. Thus, the
MST algorithm does indeed find a minimum spanning tree.

4 a Three cities are at the vertices of an equilateral
triangle of unit length. Flying Lion Airlines needs to
supply connecting service between these three cities.
What is the minimum length of the two routes needed
to supply the connecting service?

b Now suppose Flying Lion Airlines adds a hub at the
“center” of the equilateral triangle. Show that the length
of the routes needed to connect the three cities has de-
creased by 13%. (Note: It has been shown that no mat-
ter how many “hubs” you add and no matter how many
points must be connected, you can never save more than
13% of the total distance needed to “span” all the orig-
inal points by adding hubs.)†

8.7 The Network Simplex Method‡

In this section, we describe how the simplex algorithm simplifies for MCNFPs. To simplify

our presentation, we assume that for each arc, Lij � 0. Then the information needed to de-

scribe an MCNFP of the form (8)–(9) may be summarized graphically as in Figure 51. We

will denote the cij for each arc by the symbol $, and the other number on each arc will rep-

resent the arc’s upper bound (Uij). The bi for any node with nonzero outflow will be listed in

parentheses. Thus, Figure 51 represents an MCNFP with c12 � 5, c25 � 2, c13 � 4, c35 � 8,
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Network for Problem 2

TA B L E  38

Fort Terre South
Gary Wayne Evansville Haute Bend

Gary — 132 217 164 58

Fort Wayne 132 — 290 201 79

Evansville 217 290 — 113 303

Terre Haute 164 201 113 — 196

South Bend 58 79 303 196 —

†Based on Peterson (1990).
‡This section covers topics that may be omitted with no loss of continuity.
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c14 � 7, c34 � 10, c45 � 5, b1 � 10, b2 � 4, b3 � �3, b4 � �4, b5 � �7, U12 � 4, U25 �

10, U13 � 10, U35 � 5, U14 � 4, U34 � 5, U45 � 5. For the network simplex to be used, we

must have �bi � 0; usually this can be ensured by adding a dummy node.

Recall that when we used the simplex method to solve a transportation problem, the

following aspects of the simplex algorithm simplified: finding a basic feasible solution,

computing the coefficient of a nonbasic variable in row 0, and pivoting. We now describe

how these aspects of the simplex algorithm simplify when we are solving an MCNFP.

Basic Feasible Solutions for MCNFPs

How can we determine whether a feasible solution to an MCNFP is a bfs? Begin by ob-

serving that any bfs to an MCNFP will contain three types of variables:

1 Basic variables: In the absence of degeneracy, each basic variable xij will satisfy Lij �

xij � Uij; with degeneracy, it is possible for a basic variable xij to equal arc (i, j)’s upper

or lower bound.

2 Nonbasic variables xij: These equal arc (i, j)’s upper bound Uij.

3 Nonbasic variables xij: These equal arc (i, j)’s lower bound Lij.

Suppose we are solving an MCNFP with n nodes. In solving an MCNFP, we consider

the n conservation-of-flow constraints and ignore the upper- and lower-bound constraints

(for reasons that will soon become apparent). As in the transportation problem, any solu-

tion satisfying n � 1 of the conservation-of-flow constraints will automatically satisfy the

last conservation-of-flow constraint, so we may drop one such constraint. This means that

a bfs to an n-node MCNFP will have n � 1 basic variables. Suppose we choose a set of

n � 1 variables (or arcs). How can we determine whether this set of n � 1 variables yields

a basic feasible solution? A set of n � 1 variables will yield a bfs if and only if the arcs

corresponding to the basic variables form a spanning tree for the network. For example,

consider the MCNFP in Figure 52. In Figure 53, we give a bfs for this MCNFP. The ba-

sic variables are x13, x35, x25, and x45. The variables x12 � 5 and x14 � 4 are nonbasic vari-
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ables at their upper bound. (Such variables will be indicated by dashed arcs.) Because the

arcs (1, 3), (3, 5), (2, 5), and (4, 5) form a spanning tree (they connect all nodes of the

graph and do not contain any cycles), we know that this is a bfs. As will soon become

clear, a bfs for small problems can often be obtained by trial and error.

Computing Row 0 for Any bfs

For any given bfs, how do we determine the objective function coefficient for a nonbasic

variable? Suppose we arbitrarily choose to drop the conservation-of-flow constraint for

node 1. For a given bfs, let cBVB�1
� [ y2 y3 � � � yn]. Each variable xij will have a

�1 coefficient in the node i flow constraint and a �1 coefficient in the node j constraint.

If we define y1 � 0, then the coefficient of xij in row 0 of a given tableau may be written

as c�ij � yi � yj � cij. Each basic variable must have c�ij � 0, so we can find y1, y2, . . . ,

yn by solving the following system of linear equations:

y1 � 0, yi � yj � cij for each basic variable

The y1, y2, . . . , yn corresponding to a bfs are often called the simplex multipliers for the bfs.

How can we determine whether a bfs is optimal? For a bfs to be optimal, it must be

possible to improve (decrease) the value of z by changing the value of a nonbasic vari-

able. Note that c�ij 	 0 if and only if increasing xij cannot decrease z. Also note that c�ij 


0 if and only if decreasing xij cannot decrease z. These observations can be used to show

that a bfs is optimal if and only if the following conditions are met:

1 If a variable xij � Lij, then an increase in xij cannot result in a decrease in z. Thus, if

xij � Lij and the bfs is optimal, then c�ij 	 0 must hold.

2 If a variable xij � Uij, then a decrease in xij cannot result in a decrease in z. Thus, if

xij � Uij and the bfs is optimal, then c�ij 
 0 must hold.

If conditions 1 and 2 are not met, then z can be improved (barring degeneracy) by piv-

oting into the basis any nonbasic variable violating either condition. To illustrate, let’s de-

termine the objective function coefficient for each nonbasic variable in the simplex

tableau corresponding to the bfs in Figure 53. To find y1, y2, y3, y4, and y5, we solve the

following set of equations:

y1 � 0, y1 � y3 � 12, y2 � y5 � 6, y3 � y5 � 7, y4 � y5 � 3

The solutions to these equations are y1 � 0, y2 � �13, y3 � �12, y4 � �16, and y5 �

�19. We now “price out” each nonbasic variable and obtain

c�12 � y1 � y2 � c12 � 0 � (�13) � 10 � 3 (Satisfies optimality condition for

nonbasic variable at upper bound)

c�14 � y1 � y4 � c14 � 0 � (�16) � 6 � 10 (Satisfies optimality condition for

nonbasic variable at upper bound)
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c�32 � y3 � y2 � c32 � �12 � (�13) � 2 � �1 (Satisfies optimality condition for

nonbasic variable at lower bound)

c�34 � y3 � y4 � c34 � �12 � (�16) � 3 � 1 (Violates optimality condition for

nonbasic variable at lower bound)

Because c�34 � 1 � 0, each unit by which we increase x34 (x34 is at its lower bound, so

it’s okay to increase it) will decrease z by one unit. Thus, we can improve z by entering

x34 into the basis. Note that if a nonbasic variable xij at its upper bound had c�ij � 0, then

we could decrease z by entering xij into the basis and decreasing xij. We now show that

when solving an MCNFP, the pivot step may be performed almost by inspection.

Pivoting in the Network Simplex

As we have just shown, for the bfs in Figure 53, we want to enter x34 into the basis. To

do this, note that if we add the arc (3, 4) to the set of arcs corresponding to the current

set of basic variables, a cycle (or loop) will be formed. To enter x34 into the basis, note

that x34 � 0 is at its lower bound, we want to increase x34. Suppose we try to increase x34

by �. The values of all variables after x34 is entered into the basis may be found by in-

voking the conservation-of-flow constraints. In Figure 54, we find that arc (3, 4), (4, 5),

and (3, 5) form a cycle. After the pivot, all variables corresponding to arcs not in the cy-

cle will remain unchanged, but when we set x34 � �, the values of the variables corre-

sponding to arcs in the cycle will change. Setting x34 � � increases the flow into node 4

by �, so the flow out of node 4 must increase by �. This requires x45 � 4 � �. Because

the flow into node 5 has now increased by �, conservation of flow requires that x35 �

1 � �. The pivot leaves all other variables unchanged. To find the new values of the vari-

ables, observe that we want to increase x34 by as much as possible. We can increase x34

to the point where a basic variable first attains its upper or lower bound. Thus, arc (3, 4)

implies that � 	 5; arc (3, 5) requires 1 � � 
 0 or � 	 1; arc (4, 5) requires 4 � � 	

6 or � 	 2. So the best we can do is set � �1. The basic variable that first hits its upper

or lower bound as � is increased is chosen to exit the basis (in case of a tie, we can choose

the exiting variable arbitrarily). Now x35 exits the basis, and the new bfs is shown in Fig-

ure 55. The spanning tree corresponding to the current set of basic variables is (1, 3), 

(3, 4), (4, 5), and (2, 5). We now compute the coefficient of each nonbasic variable in row

0. To begin, we solve the following set of equations:

y1 � 0, y1 � y3 � 12, y3 � y4 � 3, y2 � y5 � 6, y4 � y5 � 3

This yields y1 � 0, y2 � �12, y3 � �12, y4 � �15, and y5 � �18.

The nonbasic variables that currently equal their upper bounds will have row 0 coeffi-

cients of

c�12 � 0 � (�12) � 10 � 2 and c�14 � 0 � (�15) � 6 � 9
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The nonbasic variables that currently equal their lower bounds will have row 0 coefficients of

c�32 � �12 � (�12) � 2 � �2 and c�35 � �12 � (�18) � 7 � �1

Because each nonbasic variable at its upper bound has c�ij 
 0, and each nonbasic vari-

able at its lower bound has c�ij 	 0, the current bfs is optimal. Thus, the optimal solution

to the MCNFP in Figure 52 is

Upper bounded variables: x12 � 5, x14 � 4

Lower bounded variables: x32 � x35 � 0

Basic variables: x13 � 1, x34 � 1, x25 � 5, x45 � 5

Summary of the Network Simplex Method

Step 1 Determine a starting bfs. The n � 1 basic variables will correspond to a spanning

tree. Indicate nonbasic variables at their upper bound by dashed arcs.

Step 2 Compute y1, y2, . . . yn (often called the simplex multipliers) by solving y1 � 0,

yi � yj � cij for all basic variables xij. For all nonbasic variables, determine the row 0 co-

efficient c�ij from c�ij � yi � yj � cij. The current bfs is optimal if c�ij 	 0 for all xij � Lij

and c�ij 
 0 for all xij � Uij. If the bfs is not optimal, choose the nonbasic variable that

most violates the optimality conditions as the entering basic variable.

Step 3 Identify the cycle (there will be exactly one!) created by adding the arc corre-

sponding to the entering variable to the current spanning tree of the current bfs. Use con-

servation of flow to determine the new values of the variables in the cycle. The variable

that exits the basis will be the variable that first hits its upper or lower bound as the value

of the entering basic variable is changed.

Step 4 Find the new bfs by changing the flows of the arcs in the cycle found in step 3.

Now go to step 2.

Example 9 illustrates the network simplex.

Use the network simplex to solve the MCNFP in Figure 56.

Solution A bfs requires that we find a spanning tree (three arcs that connect nodes 1, 2, 3, and 4

and do not form a cycle). Any arcs not in the spanning tree may be set equal to their up-

per or lower bound. By trial and error, we find the bfs in Figure 57 involving the span-

ning tree (1, 2), (1, 3), and (2, 4).

To find y1, y2, y3, and y4 we solve

y1 � 0, y1 � y2 � 4, y2 � y4 � 3, y1 � y3 � 3
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This yields y1 � 0, y2 � �4, y3 � �3, and y4 � �7. The row 0 coefficients for each

nonbasic variable are

c�34 � �3 � (�7) � 6 � �2 (Violates optimality condition)

c�23 � �4 � (�3) � 1 � �2 (Satisfies optimality condition)

c�32 � �3 � (�4) � 2 � �1 (Satisfies optimality condition)

Thus, x34 enters the basis. We set x34 � 5 � � and obtain the cycle in Figure 58. From

arc (1, 2), we find 5 � � 	 7 or � 	 2. From arc (1, 3), we find 5 � � 
 0 or � 	 5.

From arc (2, 4), we find 5� � 	 8 or � 	 3. From arc (3, 4), we find 5 � � 
 0 or � 	

5. Thus, we can set � � 2. Now x12 exits the basis at its upper bound, and x34 enters, yield-

ing the bfs in Figure 59.

The new bfs is associated with the spanning tree (1, 3), (2, 4), and (3, 4). Solving for

the new values of the simplex multipliers, we obtain

y1 � 0, y1 � y3 � 3, y3 � y4 � 6, y2 � y4 � 3

This yields y1 � 0, y2 � �6, y3 � � 3, y4 � �9. The coefficient of each nonbasic vari-

able in row 0 is given by

c�12 � 0 � (�6) � 4 � 2 (Satisfies optimality condition)

cc�23 � � 6 � (�3) � 1 � �4 (Satisfies optimality condition)

c�32 � � 3 � (�6) � 2 �1 (Violates optimality condition)

Now x32 enters the basis, yielding the cycle in Figure 60. From arc (2, 4), we find 7 �

� 	 8 or � 	 1); from arc (3, 4), we find 3 � � 
 0 or � 	 3. From arc (3, 2), we find

� 	 6. So we now set � � 1 and have x24 exit from the basis at its upper bound. The new

bfs is given in Figure 61.

The current set of basic values corresponds to the spanning tree (1, 3), (3, 2), and 

(3, 4). The new values of the simplex multipliers are found by solving

y1 � 0, y1 � y3 � 3, y3 � y2 � 2, y3 � y4 � 6

which yields y1 � 0, y2 � �5, y3 � �3, y4 � �9. The coefficient of each nonbasic vari-

able in row 0 is now
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c�23 � � 5 � (�3) � 1 � �3 (Satisfies optimality condition)

cc�12 � 0 � (�5) � 4 � 1 (Satisfies optimality condition)

c�24 � � 5 � (�9) � 3 � 1 (Satisfies optimality condition)

Thus, the current bfs is optimal. The optimal solution to the MCNFP is

Basic variables: x13 � 3, x32 � 1, x34 � 2

Nonbasic variables at their upper bound: x12 � 7, x24 � 8

Nonbasic variable at lower bound: x23� 0

The optimal z-value is obtained from

z � 7(4) � 3(3) � 1(2) � 8(3) � 2(6) � $75
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P R O B L E M S
Group A
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1 Consider the problem of finding the shortest path from
node 1 to node 6 in Figure 2.

a Formulate this problem as an MCNFP.

b Find a bfs in which x12, x24, and x46 are positive.
(Hint: A degenerate bfs will be obtained.)

c Use the network simplex to find the shortest path
from node 1 to node 6.

2 For the MCNFP in Figure 62, find a bfs.

3 Find the optimal solution to the MCNFP in Figure 63
using the bfs in Figure 64 as a starting basis.

4 Find a bfs for the network in Figure 65.

5 Find the optimal solution to the MCNFP in Figure 66
using the bfs in Figure 67 as a starting basis.
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S U M M A R Y Shortest-Path Problems

Suppose we want to find the shortest path from node 1 to node j in a network in which

all arcs have nonnegative lengths.

Dijkstra’s Algorithm

1 Label node 1 with a permanent label of 0. Then label each arc connected to node 1

by a single arc with a “temporary” label equal to the length of the arc joining node 1 and

node i. Remaining nodes will have a temporary label of �. Choose the node with the

smallest temporary label and make this label permanent.

2 Suppose that node i is the (k � 1)th node to be given a permanent label. For each node

j that now has a temporary label and is connected to node i by an arc, replace node j’s

temporary label with min {node j’s current temporary label, (node i’s permanent label) �

length of arc (i, j)}. Make the smallest temporary label a permanent label. Continue this

process until all nodes have permanent labels. To find the shortest path from node 1 to

node j, work backward from node j by finding nodes having labels differing by exactly

the length of the connecting arc. If the shortest path from node 1 to node j is desired, stop

the labeling process as soon as node j receives a permanent label.

The Shortest-Path Problem as a Transshipment Problem

To find the shortest path from node 1 to node j, try to minimize the cost of sending one

unit from node 1 to node j (with all other nodes in the network being transshipment

points), where the cost of sending one unit from node k to node k� is the length of arc 

(k, k�) if such an arc exists and is M (a large positive number) if such an arc does not ex-

ist. As in Section 7.6, the cost of shipping one unit from a node to itself is zero.

Maximum-Flow Problems

We can find the maximum flow from source to sink in a network by linear programming

or by the Ford–Fulkerson method.

Finding Maximum Flow by Linear Programming

Let

x0 � flow through artificial arc going from sink to source

Then to find the maximum flow from source to sink, maximize x0 subject to the follow-

ing two sets of constraints:

1 The flow through each arc must be nonnegative and cannot exceed the arc capacity.

2 Flow into node i � flow out of node i (Conservation of flow)

Finding Maximum Flow by the Ford–Fulkerson Method

Let

I � set of arcs in which flow may be increased

R � set of arcs in which flow may be reduced
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Step 1 Find a feasible flow (setting each arc’s flow to zero will do).

Step 2 Using the following procedure, try to find a chain of labeled arcs and nodes that

can be used to label the sink. Label the source. Then label vertices and arcs (except for

arc a0) according to the following rules: (1) If vertex x is labeled, then vertex y is unla-

beled and arc (x, y) is a member of I; then label vertex y and arc (x, y). Arc (x, y) is called

a forward arc. (2) If vertex y is unlabeled, then vertex x is labeled and arc (y, x) is a

member of R; then label vertex y and arc (y, x). Arc (y, x) is called a backward arc.

If the sink cannot be labeled, the current feasible flow is a maximum flow; if the sink

is labeled, go on to step 3.

Step 3 If the chain used to label the sink consists entirely of forward arcs, the flow

through each of the forward arcs in the chain may be increased, thereby increasing the

flow from source to sink. If the chain used to label the sink consists of both forward and

backward arcs, increase the flow in each forward arc in the chain and decrease the flow

in each backward arc in the chain. Again, this will increase the flow from source to sink.

Return to step 2.

Critical Path Method

Assuming the duration of each activity is known, the critical path method (CPM) may be

used to find the duration of a project.

Rules for Constructing an AOA Project Diagram

1 Node 1 represents the start of the project. An arc should lead from node 1 to repre-

sent each activity that has no predecessors.

2 A node (called the finish node) representing the completion of the project should be

included in the network.

3 Number the nodes in the network so that the node representing the completion of an

activity always has a larger number than the node representing the beginning of an activ-

ity (there may be more than one numbering scheme that satisfies rule 3).

4 An activity should not be represented by more than one arc in the network.

5 Two nodes can be connected by at most one arc.

To avoid violating rules 4 and 5, it is sometimes necessary to utilize a dummy activity

that takes zero time.

Computation of Early Event Time

The early event time for node i, denoted ET(i), is the earliest time at which the event cor-

responding to node i can occur. We compute ET(i) as follows:

Step 1 Find each prior event to node i that is connected by an arc to node i. These events

are the immediate predecessors of node i.

Step 2 To the ET for each immediate predecessor of node i, add the duration of the ac-

tivity connecting the immediate predecessor to node i.

Step 3 ET(i) equals the maximum of the sums computed in step 2.

468 C H A P T E R 8 Network Models



Computation of Late Event Time

The late event time for node i, denoted LT(i), is the latest time at which the event corre-

sponding to node i can occur without delaying the completion of the project. We compute

LT(i) as follows:

Step 1 Find each node that occurs after node i and is connected to node i by an arc. These

events are the immediate successors of node i.

Step 2 From the LT for each immediate successor to node i, subtract the duration of the

activity joining the successor to node i.

Step 3 LT(i) is the smallest of the differences determined in step 2.

Total Float

For an arbitrary arc representing activity (i, j), the total float (denoted TF(i, j) of the ac-

tivity represented by (i, j) is the amount by which the starting time of activity (i, j) could

be delayed beyond its earliest possible starting time without delaying the completion of

the project (assuming no other activities are delayed):

TF(i, j) � LT( j) � ET(i) � tij [tij � duration of activity represented by arc (i, j)]

Any activity with a total float of zero is a critical activity. A path from node 1 to the fin-

ish node that consists entirely of critical activities is called a critical path. Any critical

path (there may be more than one in a project network) is the longest path in the network

from the start node (node 1) to the finish node. If the start of a critical activity is delayed,

or if the duration of a critical activity is longer than expected, then the completion of the

project will be delayed.

Free Float

The free float of the activity corresponding to arc (i, j), denoted by FF(i, j), is the amount

by which the starting time of the activity corresponding to arc (i, j) (or the duration of the

activity) can be delayed without delaying the start of any later activity beyond its earliest

possible starting time:

FF(i, j) � ET( j) � ET(i) � tij

Linear programming can be used to find a critical path and the duration of the project.

Let

xj � time at which node j in project network occurs

F � node representing finish or completion of the project

To find a critical path, minimize z � xF � x1 subject to

xj 
 xi � tij or xj � xi 
 tij for each arc

xj urs

The optimal objective function value is the length of any critical path (or time to project

completion). To find a critical path, simply find a path from node 1 to node F for which

each arc in the path is represented by an arc (i, j) whose constraint (xj � xi 
 tij) has a

dual price of �1.

Linear programming can also be used to determine the minimum-cost method of re-

ducing the duration of activities (crashing) to meet a project completion deadline.
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PERT

If the durations of the project’s activities are not known with certainty, then PERT may

be used to estimate the probability that the project will be completed in a specified amount

of time. PERT requires that for each activity the following three numbers be specified:

a � estimate of the activity’s duration under the most favorable conditions

b � estimate of the activity’s duration under the least favorable conditions

m � most likely value for the activity’s duration

If the estimates a, b, and m refer to the activity represented by arc (i, j), then Tij is the

random variable representing the duration of the activity represented by arc (i, j). Tij has

(approximately) the following properties:

E(Tij) � 
a � 4

6

m �b


varTij � 
(b �

36

a)2



Then

�
(i, j)�path

E(Tij) � expected duration of activities on any path

�
(i, j)�path

varTij � variance of duration of activities on any path

Assuming (sometimes incorrectly) that the critical path found by CPM is the critical path,

and assuming that the duration of the critical path is normally distributed, the preceding

equations may be used to estimate the probability that the project will be completed

within any specified length of time.

Minimum-Cost Network Flow Problems

The transportation, assignment, transshipment, shortest-path, maximum-flow, and critical

path problems are all special cases of the minimum-cost network flow problem (MCNFP).

xij � number of units of flow sent from node i to node j through arc (i, j)

bi � net supply (outflow � inflow) at node i

cij � cost of transporting one unit of flow from node i to node j via arc (i, j)

Lij � lower bound on flow through arc (i, j) (if there is no lower bound, let Lij � 0)

Uij � upper bound on flow through arc (i, j) (if there is no upper bound, let Uij � �)

Then an MCNFP may be written as

min   �
all arcs

cijxij

s.t. �
j

xij � �
k

xki � bi (for each node i in the network)

Lij 	 xij 	 Uij (for each arc in the network)

The first set of constraints are the flow balance equations, and the second set of con-

straints express limitations on arc capacities.
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Any MCNFP may be solved by a computer code using the network simplex; the user

need only input the nodes and arcs in the network, the cij’s and arc capacity for each arc,

and the bi’s for each node. Formulation of a problem as an MCNFP may require adding

a dummy point to the problem.

Minimum Spanning Tree Problems

The following method (MST algorithm) may be used to find a minimum spanning tree

for a network:

Step 1 Begin at any node i, and join node i to the node in the network (node j) that is

closest to node i. The two nodes i and j now form a connected set of nodes C � {i, j}

and arc (i, j) will be in the minimum spanning tree. The remaining nodes in the network

(C�) are the unconnected set of nodes.

Step 2 Choose a member of C�(n) that is closest to some node in C. Let m represent the

node in C that is closest to n. Then the arc (m, n) will be in the minimum spanning tree.

Update C and C�. Because n is now connected to {i, j}, C now equals {i, j, n}, and we

must eliminate node n from C�.

Step 3 Repeat this process until a minimum spanning tree is found. Ties for closest node

and arc may be broken arbitrarily.

Network Simplex Method

Step 1 Determine a starting bfs. The n � 1 basic variables will correspond to a spanning

tree. Indicate nonbasic variables at their upper bound by dashed arcs.

Step 2 Compute y1, y2, . . . yn (often called the simplex multipliers) by solving y1 � 0,

yi � yj � cij for all basic variables xij. For all nonbasic variables, determine the row 0 co-

efficient c�ij from c�ij � yi � yj � cij. The current bfs is optimal if c�ij 	 0 for all xij � Lij

and cc�ij 
 0 for all xij � Uij. If the bfs is not optimal, then choose the nonbasic variable

that most violates the optimality conditions as the entering basic variable.

Step 3 Identify the cycle (there will be exactly one!) created by adding the arc corre-

sponding to the entering variable to the current spanning tree of the current bfs. Use con-

servation of flow to determine the new values of the variables in the cycle. The variable

that first hits its upper or lower bound as the value of the entering basic variable is

changed exits the basis.

Step 4 Find the new bfs by changing the flows of the arcs in the cycle found in step 3.

Go to step 2.

R E V I E W  P R O B L E M S
Group A
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1 A truck must travel from New York to Los Angeles. As
shown in Figure 68, a variety of routes are available. The
number associated with each arc is the number of gallons
of fuel required by the truck to traverse the arc.

a Use Dijkstra’s algorithm to find the route from New
York to Los Angeles that uses the minimum amount of gas.

b Formulate a balanced transportation problem that
could be used to find the route from New York to Los
Angeles that uses the minimum amount of gas.

c Formulate as an MCNFP the problem of finding the
New York to Los Angeles route that uses the minimum
amount of gas.



2 Telephone calls from New York to Los Angeles are
transported as follows: The call is sent first to either Chicago
or Memphis, then routed through either Denver or Dallas,
and finally sent to Los Angeles. The number of phone lines
joining each pair of cities is shown in Table 39.

a Formulate an LP that can be used to determine the
maximum number of calls that can be sent from New
York to Los Angeles at any given time.

b Use the Ford–Fulkerson method to determine the
maximum number of calls that can be sent from New
York to Los Angeles at any given time.
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3 Before a new product can be introduced, the activities in
Table 40 must be completed (all times are in weeks).

a Draw the project diagram.

b Determine all critical paths and critical activities.

c Determine the total float and free float for each 
activity.

d Set up an LP that can be used to determine the crit-
ical path.

e Formulate an MCNFP that can be used to find the
critical path.

f It is now 12 weeks before Christmas. What is the
probability that the product will be in the stores before
Christmas?

g The duration of each activity can be reduced by up
to 2 weeks at the following cost per week: A, $80; B,
$60; C, $30; D, $60; E, $40; F, $30; G, $20. Assuming
that the duration of each activity is known with cer-
tainty, formulate an LP that will minimize the cost of
getting the product into the stores by Christmas.

4 During the next three months, Shoemakers, Inc. must meet
(on time) the following demands for shoes: month 1, 1,000
pairs; month 2, 1,500 pairs; month 3, 1,800 pairs. It takes 1
hour of labor to produce a pair of shoes. During each of the
next three months, the following number of regular-time labor
hours are available: month 1, 1,000 hours; month 2, 1,200
hours; month 3, 1,200 hours. Each month, the company can
require workers to put in up to 400 hours of overtime. Workers
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400

950 600
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400
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F I G U R E  68

Network for Problem 1

TA B L E  39

No. of Telephone
Cities Lines

N.Y.–Chicago 500

N.Y.–Memphis 400

Chicago–Denver 300

Chicago–Dallas 250

Memphis–Denver 200

Memphis–Dallas 150

Denver–L.A. 400

Dallas–L.A. 350

TA B L E  40

Activity Description Predecessors Duration a b m

A Design the product — 6 2 10 6

B Survey the market — 5 4 6 5

C Place orders for raw materials A 3 2 4 3

D Receive raw materials C 2 1 3 2

E Build prototype of product A, D 3 1 5 3

F Develop ad campaign B 2 3 5 4

G Set up plan for mass production E 4 2 6 4

H Deliver product to stores G, F 2 0 4 2



are paid only for the hours they work, and a worker receives
$4 per hour for regular-time work and $6 per hour for overtime
work. At the end of each month, a holding cost of $1.50 per
pair of shoes is incurred. Formulate an MCNFP that can be
used to minimize the total cost incurred in meeting the
demands of the next three months. A formulation requires
drawing the appropriate network and determining the cij’s, bi’s,
and arc capacities. How would you modify your answer if
demand could be backlogged (all demand must still be met by
the end of month 3) at a cost of $20/pair/month?

5 Find a minimum spanning tree for the network in Figure 68.

6 A company produces a product at two plants, 1 and 2.
The unit production cost and production capacity during
each period are given in Table 41. The product is
instantaneously shipped to the company’s only customer
according to the unit shipping costs given in Table 42. If a
unit is produced and shipped during period 1, it can still be
used to meet a period 2 demand, but a holding cost of $13
per unit in inventory is assessed. At the end of period 1, at
most six units may be held in inventory. Demands are as
follows: period 1, 9; period 2, 11. Formulate an MCNFP
that can be used to minimize the cost of meeting all demands
on time. Draw the network and determine the net outflow at
each node, the arc capacities, and shipping costs.

7 A project is considered completed when activities A–F have
all been completed. The duration and predecessors of each
activity are given in Table 43. The LINDO output in Figure 69
can be used to determine the critical path for this project.

a Use the LINDO output to draw the project network.
Indicate the activity represented by each arc.

b Determine a critical path in the network. What is the
earliest the project can be completed?

8† State University has three professors who each teach
four courses per year. Each year, four sections of marketing,
finance, and production must be offered. At least one section
of each class must be offered during each semester (fall and
spring). Each professor’s time preference and preference for
teaching various courses are given in Table 44.
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MIN     X6 - X1
SUBJECT TO
       2) - X1 + X3 >=   3
       3)   X4 - X2 >=   1
       4) - X3 + X4 >=   0
       5) - X4 + X5 >=   7
       6) - X3 + X5 >=   5
       7)   X6 - X5 >=   5
       8)   X3 - X2 >=   0
       9) - X1 + X2 >=   2
END

   LP OPTIMUM FOUND AT STEP   3

        OBJECTIVE FUNCTION VALUE

1)         15.0000000

VARIABLE        VALUE          REDUCED COST
       X6       15.000000          0.000000
       X1        0.000000          0.000000
       X3        3.000000          0.000000
       X4        3.000000          0.000000
       X2        2.000000          0.000000
       X5       10.000000          0.000000

ROW         SLACK OR SURPLUS     DUAL PRICES
       2)        0.000000         -1.000000
       3)        0.000000          0.000000
       4)        0.000000         -1.000000
       5)        0.000000         -1.000000
       6)        2.000000          0.000000
       7)        0.000000         -1.000000
       8)        1.000000          0.000000
       9)        0.000000          0.000000

NO. ITERATIONS=      3
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TA B L E  41

Unit Production
Cost ($) Capacity

Plant 1 (period 1) 33 7

Plant 1 (period 2) 43 4

Plant 2 (period 1) 30 9

Plant 2 (period 2) 41 9

TA B L E  42

Period 1 Period 2

Plant 1 to customer $51 $60

Plant 2 to customer $42 $71

The total satisfaction a professor earns teaching a class is
the sum of the semester satisfaction and the course satisfaction.
Thus, professor 1 derives a satisfaction of 3 � 6 � 9 from
teaching marketing during the fall semester. Formulate an
MCNFP that can be used to assign professors to courses so as
to maximize the total satisfaction of the three professors.

Group B

9† During the next two months, Machineco must meet (on
time) the demands for three types of products shown in
Table 45. Two machines are available to produce these

†Based on Mulvey (1979).

TA B L E  43

Immediate
Activity Duration Predecessors

A 2 —

B 3 —

C 1 A

D 5 A, B

E 7 B, C

F 5 D, E

†This problem is based on Brown, Geoffrion, and Bradley (1981).



products. Machine 1 can only produce products 1 and 2, and
machine 2 can only produce products 2 and 3. Each machine
can be used for up to 40 hours per month. Table 46 shows
the time required to produce one unit of each product
(independent of the type of machine); the cost of producing
one unit of each product on each type of machine; and the
cost of holding one unit of each product in inventory for one
month. Formulate an MCNFP that could be used to minimize
the total cost of meeting all demands on time.
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TA B L E  44

Professor 1 Professor 2 Professor 3

Fall Preference 3 5 4

Spring Preference 4 3 4

Marketing 6 4 5

Finance 5 6 4

Production 4 5 6

TA B L E  45

Month Product 1 Product 2 Product 3

1 50 units 70 units 80 units

2 60 units 90 units 120 units

TA B L E  46

Production
Production Cost ($)

Holding
Product Time (minutes) Machine 1 Machine 2 Cost (S)

1 30 40 — 15

2 20 45 60 10

3 15 — 55 5
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Integer Programming

Recall that we defined integer programming problems in our discussion of the Divisibility As-
sumption in Section 3.1. Simply stated, an integer programming problem (IP) is an LP in which
some or all of the variables are required to be non-negative integers.†

In this chapter (as for LPs in Chapter 3), we find that many real-life situations may be formu-
lated as IPs. Unfortunately, we will also see that IPs are usually much harder to solve than LPs.

In Section 9.1, we begin with necessary definitions and some introductory comments about
IPs. In Section 9.2, we explain how to formulate integer programming models. We also dis-
cuss how to solve IPs on the computer with LINDO, LINGO, and Excel Solver. In Sections
9.3–9.8, we discuss other methods used to solve IPs.

9.1 Introduction to Integer Programming

An IP in which all variables are required to be integers is called a pure integer pro-

gramming problem. For example,

max z � 3x1 � 2x2

s.t. x1 � x2 � 6 (1)

x1, x2 � 0, x1, x2 integer

is a pure integer programming problem.

An IP in which only some of the variables are required to be integers is called a mixed

integer programming problem. For example,

max z � 3x1 � 2x2

s.t. x1 � x2 � 6

x1, x2 � 0, x1 integer

is a mixed integer programming problem (x2 is not required to be an integer).

An integer programming problem in which all the variables must equal 0 or 1 is called

a 0–1 IP. In Section 9.2, we see that 0–1 IPs occur in surprisingly many situations.‡ The

following is an example of a 0–1 IP:

max z � x1 � x2

s.t. x1 � 2x2 � 2
(2)

2x1 � x2 � 1

x1, x2 � 0 or 1

Solution procedures especially designed for 0–1 IPs are discussed in Section 9.7.

†A nonlinear integer programming problem is an optimization problem in which either the objective function

or the left-hand side of some of the constraints are nonlinear functions and some or all of the variables must

be integers. Such problems may be solved with LINGO or Excel Solver.
‡Actually, any pure IP can be reformulated as an equivalent 0–1 IP (Section 9.7).



The concept of LP relaxation of an integer programming problem plays a key role in

the solution of IPs.

D E F I N I T I O N ■ The LP obtained by omitting all integer or 0–1 constraints on variables is called

the LP relaxation of the IP. ■

For example, the LP relaxation of (1) is

max z � 3x1 � 2x2

s.t. x1 � x2 � 6 (1�)

x1, x2 � 0

and the LP relaxation of (2) is

max z � x1 � x2

s.t. x1 � 2x2 � 2
(2�)

s.t. 2x1 � x2 � 1

x1, x2 � 0

Any IP may be viewed as the LP relaxation plus additional constraints (the constraints

that state which variables must be integers or be 0 or 1). Hence, the LP relaxation is a

less constrained, or more relaxed, version of the IP. This means that the feasible region for

any IP must be contained in the feasible region for the corresponding LP relaxation. For

any IP that is a max problem, this implies that

Optimal z-value for LP relaxation � optimal z-value for IP (3)

This result plays a key role when we discuss the solution of IPs.

To shed more light on the properties of integer programming problems, we consider

the following simple IP:

max z � 21x1 � 11x2

s.t. 7x1 � 4x2 � 13 (4)

x1, x2 � 0; x1, x2 integer

From Figure 1, we see that the feasible region for this problem consists of the following

set of points: S � {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1)}. Unlike the feasible region

for any LP, the one for (4) is not a convex set. By simply computing and comparing the

z-values for each of the six points in the feasible region, we find the optimal solution to

(4) is z � 33, x1 � 0, x2 � 3.

If the feasible region for a pure IP’s LP relaxation is bounded, as in (4), then the feasi-

ble region for the IP will consist of a finite number of points. In theory, such an IP could

be solved (as described in the previous paragraph) by enumerating the z-values for each

feasible point and determining the feasible point having the largest z-value. The problem

with this approach is that most actual IPs have feasible regions consisting of billions of

feasible points. In such cases, a complete enumeration of all feasible points would require

a large amount of computer time. As we explain in Section 9.3, IPs often are solved by

cleverly enumerating all the points in the IP’s feasible region.

Further study of (4) sheds light on other interesting properties of IPs. Suppose that a

naive analyst suggests the following approach for solving an IP: First solve the LP relax-

ation; then round off (to the nearest integer) each variable that is required to be an inte-

ger and that assumes a fractional value in the optimal solution to the LP relaxation.

Applying this approach to (4), we first find the optimal solution to the LP relaxation:

x1 � �
1
7
3
�, x2 � 0. Rounding this solution yields the solution x1 � 2, x2 � 0 as a possible
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optimal solution to (4). But x1 � 2, x2 � 0 is infeasible for (4), so it cannot possibly be

the optimal solution to (4). Even if we round x1 downward (yielding the candidate solu-

tion x1 � 1, x2 � 0), we do not obtain the optimal solution (x1 � 0, x2 � 3 is the opti-

mal solution).

For some IPs, it can even turn out that every roundoff of the optimal solution to the

LP relaxation is infeasible. To see this, consider the following IP:

max z � 4x1 � x2

s.t. 2x1 � x2 � 5

s.t. 2x1 � 3x2 � 5

x1, x2 � 0; x1, x2 integer

The optimal solution to the LP relaxation for this IP is z � 10, x1 � �
5
2

�, x2 � 0. Round-

ing off this solution, we obtain either the candidate x1 � 2, x2 � 0 or the candidate x1 �

3, x2 � 0. Neither candidate is a feasible solution to the IP.

Recall from Chapter 4 that the simplex algorithm allowed us to solve LPs by going

from one basic feasible solution to a better one. Also recall that in most cases, the sim-

plex algorithm examines only a small fraction of all basic feasible solutions before the

optimal solution is obtained. This property of the simplex algorithm enables us to solve

relatively large LPs by expending a surprisingly small amount of computational effort.

Analogously, one would hope that an IP could be solved via an algorithm that proceeded

from one feasible integer solution to a better feasible integer solution. Unfortunately, no

such algorithm is known.

In summary, even though the feasible region for an IP is a subset of the feasible region

for the IP’s LP relaxation, the IP is usually much more difficult to solve than the IP’s LP

relaxation.

9.2 Formulating Integer Programming Problems

In this section, we show how practical solutions can be formulated as IPs. After com-

pleting this section, the reader should have a good grasp of the art of developing integer

programming formulations. We begin with some simple problems and gradually build to

more complicated formulations. Our first example is a capital budgeting problem remi-

niscent of the Star Oil problem of Section 3.6.
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Stockco is considering four investments. Investment 1 will yield a net present value (NPV)

of $16,000; investment 2, an NPV of $22,000; investment 3, an NPV of $12,000; and in-

vestment 4, an NPV of $8,000. Each investment requires a certain cash outflow at the pres-

ent time: investment 1, $5,000; investment 2, $7,000; investment 3, $4,000; and investment

4, $3,000. Currently, $14,000 is available for investment. Formulate an IP whose solution

will tell Stockco how to maximize the NPV obtained from investments 1–4.

Solution As in LP formulations, we begin by defining a variable for each decision that Stockco

must make. This leads us to define a 0–1 variable:

xj( j �1, 2, 3, 4) � �
For example, x2 � 1 if investment 2 is made, and x2 � 0 if investment 2 is not made.

The NPV obtained by Stockco (in thousands of dollars) is

Total NPV obtained by Stockco � 16x1 � 22x2 � 12x3 � 8x4 (5)

To see this, note that if xj � 1, then (5) includes the NPV of investment j, and if xj � 0,

(5) does not include the NPV of investment j. This means that whatever combination of

investments is undertaken, (5) gives the NPV of that combination of projects. For exam-

ple, if Stockco invests in investments 1 and 4, then an NPV of 16,000 � 8,000 � $24,000

is obtained. This combination of investments corresponds to x1 � x4 � 1, x2 � x3 � 0,

so (5) indicates that the NPV for this investment combination is 16(1) � 22(0) �

12(0) � 8(1) � $24 (thousand). This reasoning implies that Stockco’s objective function is

max z � 16x1 � 22x2 � 12x3 � 8x4 (6)

Stockco faces the constraint that at most $14,000 can be invested. By the same reasoning

used to develop (5), we can show that

Total amount invested (in thousands of dollars) � 5x1 � 7x2 � 4x3 � 3x4 (7)

For example, if x1 � 0, x2 � x3 � x4 � 1, then Stockco makes investments 2, 3, and 4.

In this case, Stockco must invest 7 � 4 � 3 � $14 (thousand). Equation (7) yields a to-

tal amount invested of 5(0) � 7(1) � 4(1) � 3(1) � $14 (thousand). Because at most

$14,000 can be invested, x1, x2, x3, and x4 must satisfy

5x1 � 7x2 � 4x3 � 3x4 � 14 (8)

Combining (6) and (8) with the constraints xj � 0 or 1 ( j � 1, 2, 3, 4) yields the fol-

lowing 0–1 IP:

max z � 16x1 � 22x2 � 12x3 � 8x4

s.t. 5x1 � 7x2 � 4x3 � 3x4 � 14 (9)

xj � 0 or 1 ( j � 1, 2, 3, 4)

R E M A R K S 1 In Section 9.5, we show that the optimal solution to (9) is x1 � 0, x2 � x3 � x4 � 1, z �

$42,000. Hence, Stockco should make investments 2, 3, and 4, but not 1. Investment 1 yields a
higher NPV per dollar invested than any of the others (investment 1 yields $3.20 per dollar invested,
investment 2, $3.14; investment 3, $3; and investment 4, $2.67), so it may seem surprising that in-
vestment 1 is not undertaken. To see why the optimal solution to (9) does not involve making the
“best” investment, note that any investment combination that includes investment 1 cannot use more
than $12,000. This means that using investment 1 forces Stockco to forgo investing $2,000. On the
other hand, the optimal investment combination uses all $14,000 of the investment budget. This en-

if investment j is made

otherwise

1

0

478 C H A P T E R 9 Integer Programming

Capital Budgeting IPE X A M P L E  1



ables the optimal combination to obtain a higher NPV than any combination that includes invest-
ment 1. If, as in Chapter 3, fractional investments were allowed, the optimal solution to (9) would
be x1 � x2 � 1, x3 � 0.50, x4 � 0, z � $44,000, and investment 1 would be used. This simple ex-
ample shows that the choice of modeling a capital budgeting problem as a linear programming or
as an integer programming problem can significantly affect the optimal solution to the problem.
2 Any IP, such as (9), that has only one constraint is referred to as a knapsack problem. Suppose
that Josie Camper is going on an overnight hike. There are four items Josie is considering taking
along on the trip. The weight of each item and the benefit Josie feels she would obtain from each
item are listed in Table 1.

Suppose Josie’s knapsack can hold up to 14 lb of items. For j � 1, 2, 3, 4, define

xj � �
Then Josie can maximize the total benefit by solving (9).

In the following example, we show how the Stockco formulation can be modified to

handle additional constraints.

Modify the Stockco formulation to account for each of the following requirements:

1 Stockco can invest in at most two investments.

2 If Stockco invests in investment 2, they must also invest in investment 1.

3 If Stockco invests in investment 2, they cannot invest in investment 4.

Solution 1 Simply add the constraint

x1 � x2 � x3 � x4 � 2 (10)

to (9). Because any choice of three or four investments will have x1 � x2 � x3 � x4 �

3, (10) excludes from consideration all investment combinations involving three or more

investments. Thus, (10) eliminates from consideration exactly those combinations of in-

vestments that do not satisfy the first requirement.

2 In terms of x1 and x2, this requirement states that if x2 � 1, then x1 must also equal

1. If we add the constraint

x2 � x1 or x2 � x1 � 0 (11)

to (9), then we will have taken care of the second requirement. To show that (11) is equiv-

alent to requirement 2, we consider two possibilities: either x2 � 1 or x2 � 0.

Case 1 x2 � 1. If x2 � 1, then the (11) implies that x1 � 1. Because x1 must equal 0 or

1, this implies that x1 � 1, as required by 2.

1 if Josie takes item j on the hike
0 otherwise
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TA B L E  1

Weights and Benefits for
Items in Josie’s Knapsack

Weight
Item (Pounds) Benefit

1 5 16

2 7 22

3 4 12

4 3 18

Capital Budgeting (Continued)E X A M P L E  2



Case 2 x2 � 0. In this case, (11) reduces to x1 � 0, which allows x1 � 0 or x1 � 1. In

short, if x2 � 0, (11) does not restrict the value of x1. This is also consistent with re-

quirement 2.

In summary, for any value of x2, (11) is equivalent to requirement 2.

3 Simply add the constraint

x2 � x4 � 1 (12)

to (9). We now show that for the two cases x2 � 1 and x2 � 0, (12) is equivalent to the

third requirement.

Case 1 x2 � 1. In this case, we are investing in investment 2, and requirement 3 implies

that Stockco cannot invest in investment 4 (that is, x4 must equal 0). Note that if x2 � 1,

then (12) does imply 1 � x4 � 1, or x4 � 0. Thus, if x2 � 1, then (12) is consistent with

requirement 3.

Case 2 x2 � 0. In this case, requirement 3 does not restrict the value of x4. Note that if

x2 � 0, then (12) reduces to x4 � 1, which also leaves x4 free to equal 0 or 1.

Fixed-Charge Problems

Example 3 illustrates an important trick that can be used to formulate many location and

production problems as IPs.

Gandhi Cloth Company is capable of manufacturing three types of clothing: shirts, shorts,

and pants. The manufacture of each type of clothing requires that Gandhi have the ap-

propriate type of machinery available. The machinery needed to manufacture each type

of clothing must be rented at the following rates: shirt machinery, $200 per week; shorts

machinery, $150 per week; pants machinery, $100 per week. The manufacture of each

type of clothing also requires the amounts of cloth and labor shown in Table 2. Each week,

150 hours of labor and 160 sq yd of cloth are available. The variable unit cost and sell-

ing price for each type of clothing are shown in Table 3. Formulate an IP whose solution

will maximize Gandhi’s weekly profits.

Solution As in LP formulations, we define a decision variable for each decision that Gandhi must

make. Clearly, Gandhi must decide how many of each type of clothing should be manu-

factured each week, so we define

x1 � number of shirts produced each week

x2 � number of shorts produced each week

x3 � number of pants produced each week
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TA B L E  2

Resource Requirements for Gandhi

Clothing Labor Cloth
Type (Hours) (Square Yards)

Shirt 3 4

Shorts 2 3

Pants 6 4



Note that the cost of renting machinery depends only on the types of clothing produced,

not on the amount of each type of clothing. This enables us to express the cost of renting

machinery by using the following variables:

y1 � �
y2 � �
y3 � �

In short, if xj 	 0, then yj � 1, and if xj � 0, then yj � 0. Thus, Gandhi’s weekly profits �

(weekly sales revenue) � (weekly variable costs) � (weekly costs of renting machinery).

Also,

Weekly cost of renting machinery � 200y1 � 150y2 � 100y3 (13)

To justify (13), note that it picks up the rental costs only for the machines needed to man-

ufacture those products that Gandhi is actually manufacturing. For example, suppose that

shirts and pants are manufactured. Then y1 � y3 � 1 and y2 � 0, and the total weekly

rental cost will be 200 � 100 � $300.

Because the cost of renting, say, shirt machinery does not depend on the number of

shirts produced, the cost of renting each type of machinery is called a fixed charge. A

fixed charge for an activity is a cost that is assessed whenever the activity is undertaken

at a nonzero level. The presence of fixed charges will make the formulation of the Gandhi

problem much more difficult.

We can now express Gandhi’s weekly profits as

Weekly profit � (12x1 � 8x2 � 15x3) � (6x1 � 4x2 � 8x3)

� (200y1 � 150y2 � 100y3)

� 6x1 � 4x2 � 7x3 � 200y1 � 150y2 � 100y3

Thus, Gandhi wants to maximize

z � 6x1 � 4x2 � 7x3 � 200y1 � 150y2 � 100y3

Because its supply of labor and cloth is limited, Gandhi faces the following two constraints:

Constraint 1 At most, 150 hours of labor can be used each week.

Constraint 2 At most, 160 sq yd of cloth can be used each week.

Constraint 1 is expressed by

3x1 � 2x2 � 6x3 � 150 (Labor constraint) (14)

1 if any pants are manufactured

0 otherwise

1 if any shorts are manufactured

0 otherwise

1 if any shirts are manufactured

0 otherwise
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TA B L E  3

Revenue and Cost Information for Gandhi

Clothing Sales Variable
Type Price ($) Cost ($)

Shirt 12 6

Shorts 18 4

Pants 15 8



Constraint 2 is expressed by

4x1 � 3x2 � 4x3 � 160 (Cloth constraint) (15)

Observe that xj 	 0 and xj integer ( j � 1, 2, 3) must hold along with yj � 0 or 1 ( j �

1, 2, 3). Combining (14) and (15) with these restrictions and the objective function yields

the following IP:

max z � 6x1 � 4x2 � 7x3 � 200y1 � 150y2 � 100y3

s.t. 3x1 � 2x2 � 6x3 � 150

s.t. 4x1 � 3x2 � 4x3 � 160 (IP 1)

s.t. 3x1 � x1, x2, x3 � 0; x1, x2, x3 integer

s.t. 3x1 � y1, y2, y3 � 0 or 1

The optimal solution to this problem is found to be x1 � 30, x3 � 10, x2 � y1 � y2 �

y3 � 0. This cannot be the optimal solution to Gandhi’s problem because it indicates that

Gandhi can manufacture shirts and pants without incurring the cost of renting the needed

machinery. The current formulation is incorrect because the variables y1, y2, and y3 are

not present in the constraints. This means that there is nothing to stop us from setting 

y1 � y2 � y3 � 0. Setting yi � 0 is certainly less costly than setting yi � 1, so a minimum-

cost solution to (IP 1) will always set yi � 0. Somehow we must modify (IP 1) so that

whenever xi 	 0, yi � 1 must hold. The following trick will accomplish this goal. Let M1,

M2, and M3 be three large positive numbers, and add the following constraints to (IP 1):

x1 � M1y1 (16)

x2 � M2y2 (17)

x3 � M3y3 (18)

Adding (16)–(18) to IP 1 will ensure that if xi 	 0, then yi � 1. To illustrate, let us show

that (16) ensures that if x1 	 0, then y1 � 1. If x1 	 0, then y1 cannot be 0. For if y1 �

0, then (16) would imply x1 � 0 or x1 � 0. Thus, if x1 	 0, y1 � 1 must hold. If any

shirts are produced (x1 	 0), (16) ensures that y1 � 1, and the objective function will in-

clude the cost of the machinery needed to manufacture shirts. Note that if y1 � 1, then

(16) becomes x1 � M1, which does not unnecessarily restrict the value of x1. If M1 were

not chosen large, however (say, M1 � 10), then (16) would unnecessarily restrict the value

of x1. In general, Mi should be set equal to the maximum value that xi can attain. In the

current problem, at most 40 shirts can be produced (if Gandhi produced more than 40

shirts, the company would run out of cloth), so we can safely choose M1 � 40. The reader

should verify that we can choose M2 � 53 and M3 � 25.

If x1 � 0, (16) becomes 0 � M1y1. This allows either y1 � 0 or y1 � 1. Because y1 �

0 is less costly than y1 � 1, the optimal solution will choose y1 � 0 if x1 � 0. In sum-

mary, we have shown that if (16)–(18) are added to (IP 1), then xi 	 0 will imply yi � 1,

and xi � 0 will imply yi � 0.

The optimal solution to the Gandhi problem is z � $75, x3 � 25, y3 � 1. Thus, Gandhi

should produce 25 pants each week.

The Gandhi problem is an example of a fixed-charge problem. In a fixed-charge prob-

lem, there is a cost associated with performing an activity at a nonzero level that does not

depend on the level of the activity. Thus, in the Gandhi problem, if we make any shirts at

all (no matter how many we make), we must pay the fixed charge of $200 to rent a shirt

machine. Problems in which a decision maker must choose where to locate facilities are

often fixed-charge problems. The decision maker must choose where to locate various fa-
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cilities (such as plants, warehouses, or business offices), and a fixed charge is often asso-

ciated with building or operating a facility. Example 4 is a typical location problem in-

volving the idea of a fixed charge.

J. C. Nickles receives credit card payments from four regions of the country (West, Mid-

west, East, and South). The average daily value of payments mailed by customers from

each region is as follows: the West, $70,000; the Midwest, $50,000; the East, $60,000;

the South, $40,000. Nickles must decide where customers should mail their payments. Be-

cause Nickles can earn 20% annual interest by investing these revenues, it would like to

receive payments as quickly as possible. Nickles is considering setting up operations to

process payments (often referred to as lockboxes) in four different cities: Los Angeles,

Chicago, New York, and Atlanta. The average number of days (from time payment is sent)

until a check clears and Nickles can deposit the money depends on the city to which the

payment is mailed, as shown in Table 4. For example, if a check is mailed from the West

to Atlanta, it would take an average of 8 days before Nickles could earn interest on the

check. The annual cost of running a lockbox in any city is $50,000. Formulate an IP that

Nickles can use to minimize the sum of costs due to lost interest and lockbox operations.

Assume that each region must send all its money to a single city and that there is no limit

on the amount of money that each lockbox can handle.

Solution Nickles must make two types of decisions. First, Nickles must decide where to operate

lockboxes. We define, for j � 1, 2, 3, 4,

yj � �
Thus, y2 � 1 if a lockbox is operated in Chicago, and y3 � 0 if no lockbox is operated

in New York. Second, Nickles must determine where each region of the country should

send payments. We define (for i, j � 1, 2, 3, 4)

xij � �
For example, x12 � 1 if the West sends payments to Chicago, and x23 � 0 if the Midwest

does not send payments to New York.

Nickles wants to minimize (total annual cost) � (annual cost of operating lockboxes) �

(annual lost interest cost). To determine how much interest Nickles loses annually, we

must determine how much revenue would be lost if payments from region i were sent 

to region j. For example, how much in annual interest would Nickles lose if customers

from the West region sent payments to New York? On any given day, 8 days’ worth, or

8(70,000) � $560,000 of West payments will be in the mail and will not be earning in-

1 if region i sends payments to city j

0 otherwise

1 if a lockbox is operated in city j

0 otherwise
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The Lockbox ProblemE X A M P L E  4

TA B L E  4

Average Number of Days from Mailing of Payment Until Payment Clears

To

City 1 City 2 City 3 City 4
From (Los Angeles) (Chicago) (New York) (Atlanta)

Region 1 West 2 6 8 8
Region 2 Midwest 6 2 5 5
Region 3 East 8 5 2 5
Region 4 South 8 5 5 2



terest. Because Nickles can earn 20% annually, each year West funds will result in

0.20(560,000) � $112,000 in lost interest. Similar calculations for the annual cost of lost

interest for each possible assignment of a region to a city yield the results shown in Table

5. The lost interest cost from sending region i’s payments to city j is only incurred if 

xij � 1, so Nickles’s annual lost interest costs (in thousands) are

Annual lost interest costs � 28x11 � 84x12 � 112x13 � 112x14

Annual lost interest costs � � 60x21 � 20x22 � 50x23 � 50x24

Annual lost interest costs � � 96x31 � 60x32 � 24x33 � 60x34

Annual lost interest costs � � 64x41 � 40x42 � 40x43 � 16x44

The cost of operating a lockbox in city i is incurred if and only if yi � 1, so the an-

nual lockbox operating costs (in thousands) are given by

Total annual lockbox operating cost � 50y1 � 50y2 � 50y3 � 50y4

Thus, Nickles’s objective function may be written as

min z � 28x11 � 84x12 � 112x13 � 112x14

min z � � 60x21 � 20x22 � 50x23 � 50x24

min z � � 96x31 � 60x32 � 24x33 � 60x34 (19)

min z � � 64x41 � 40x42 � 40x43 � 16x44

� 50y1 � 50y2 � 50y3 � 50y4

Nickles faces two types of constraints.

Type 1 Constraint Each region must send its payments to a single city.

Type 2 Constraint If a region is assigned to send its payments to a city, that city must have

a lockbox.
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TA B L E  5

Calculation of Annual Lost Interest

Annual Lost
Assignment Interest Cost ($)

West to L.A. 0.20(70,000)2 � 28,000

West to Chicago 0.20(70,000)6 � 84,000

West to N.Y. 0.20(70,000)8 � 112,000

West to Atlanta 0.20(70,000)8 � 112,000

Midwest to L.A. 0.20(50,000)6 � 60,000

Midwest to Chicago 0.20(50,000)2 � 20,000

Midwest to N.Y. 0.20(50,000)5 � 50,000

Midwest to Atlanta 0.20(50,000)5 � 50,000

East to L.A. 0.20(60,000)8 � 96,000

East to Chicago 0.20(60,000)5 � 60,000

East to N.Y. 0.20(60,000)2 � 24,000

East to Atlanta 0.20(60,000)5 � 60,000

South to L.A. 0.20(40,000)8 � 64,000

South to Chicago 0.20(40,000)5 � 40,000

South to N.Y 0.20(40,000)5 � 40,000

South to Atlanta 0.20(40,000)2 � 16,000



The type 1 constraints state that for region i (i � 1, 2, 3, 4) exactly one of xi1, xi2, xi3,

and xi4 must equal 1 and the others must equal 0. This can be accomplished by including

the following four constraints:

x11 � x12 � x13 � x14 � 1 (West region constraint) (20)

x21 � x22 � x23 � x24 � 1 (Midwest region constraint) (21)

x31 � x32 � x33 � x34 � 1 (East region constraint) (22)

x41 � x42 � x43 � x44 � 1 (South region constraint) (23)

The type 2 constraints state that if

xij � 1 (that is, customers in region i send payments to city j) (24)

then yj must equal 1. For example, suppose x12 � 1. Then there must be a lockbox at city

2, so y2 � 1 must hold. This can be ensured by adding 16 constraints of the form

xij � yj (i � 1, 2, 3, 4; j � 1, 2, 3, 4) (25)

If xij � 1, then (25) ensures that yj � 1, as desired. Also, if x1j � x2j � x3j � x4j � 0,

then (25) allows yj � 0 or yj � 1. As in the fixed-charge example, the act of minimizing

costs will result in yj � 0. In summary, the constraints in (25) ensure that Nickles pays

for a lockbox at city i if it uses a lockbox at city i.

Combining (19)–(23) with the 4(4) � 16 constraints in (25) and the 0–1 restrictions

on the variables yields the following formulation:

min z � 28x11 � 84x12 � 112x13 � 112x14 � 60x21 � 20x22 � 50x23 � 50x24

min z �� 96x31 � 60x32 � 24x33 � 60x34 � 64x41 � 40x42 � 40x43 � 16x44

min z �� 50y1 � 50y2 � 50y3 � 50y4

s.t. x11 � x12 � x13 � x14 � 1 (West region constraint)

s.t. x21 � x22 � x23 � x24 � 1 (Midwest region constraint)

s.t. x31 � x32 � x33 � x34 � 1 (East region constraint)

s.t. x41 � x42 � x43 � x44 � 1 (South region constraint)

s.t. x11 � y1, x21 � y1, x31 � y1, x41 � y1, x12 � y2, x22 � y2, x32 � y2, x42 � y2,

s.t. x13 � y3, x23 � y3, x33 � y3, x43 � y3, x14 � y4, x24 � y4, x34 � y4, x44 � y4

All xij and yj � 0 or 1

The optimal solution is z � 242, y1 � 1, y3 � 1, x11 � 1, x23 � 1, x33 � 1, x43 � 1.

Thus, Nickles should have a lockbox operation in Los Angeles and New York. West cus-

tomers should send payments to Los Angeles, and all other customers should send pay-

ments to New York.

There is an alternative way of modeling the Type 2 constraints. Instead of the 16 con-

straints of the form xij � yj, we may include the following four constraints:

x11 � x21 � x31 � x41 � 4y1 (Los Angeles constraint)

x12 � x22 � x32 � x42 � 4y2 (Chicago constraint)

x13 � x23 � x33 � x43 � 4y3 (New York constraint)

x14 � x24 � x34 � x44 � 4y4 (Atlanta constraint)

For the given city, each constraint ensures that if the lockbox is used, then Nickles must

pay for it. For example, consider x14 � x24 � x34 � x44 � 4y4. The lockbox in Atlanta is

used if x14 � 1, x24 � 1, x34 � 1, or x44 � 1. If any of these variables equals 1, then the

Atlanta constraint ensures that y4 � 1, and Nickles must pay for the lockbox. If all these

variables are 0, then the act of minimizing costs will cause y4 � 0, and the cost of the At-
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lanta lockbox will not be incurred. Why does the right-hand side of each constraint equal

4? This ensures that for each city, it is possible to send money from all four regions to

the city. In Section 9.3, we discuss which of the two alternative formulations of the lock-

box problem is easier for a computer to solve. The answer may surprise you!

Set-Covering Problems

The following example is typical of an important class of IPs known as set-covering problems.

There are six cities (cities 1–6) in Kilroy County. The county must determine where to

build fire stations. The county wants to build the minimum number of fire stations needed

to ensure that at least one fire station is within 15 minutes (driving time) of each city. The

times (in minutes) required to drive between the cities in Kilroy County are shown in

Table 6. Formulate an IP that will tell Kilroy how many fire stations should be built and

where they should be located.

Solution For each city, Kilroy must determine whether to build a fire station there. We define the

0–1 variables x1, x2, x3, x4, x5, and x6 by

xi � �
Then the total number of fire stations that are built is given by x1 � x2 � x3 � x4 �

x5 � x6, and Kilroy’s objective function is to minimize

z � x1 � x2 � x3 � x4 � x5 � x6

What are Kilroy’s constraints? Kilroy must ensure that there is a fire station within 15

minutes of each city. Table 7 indicates which locations can reach the city in 15 minutes

or less. To ensure that at least one fire station is within 15 minutes of city 1, we add the

constraint

x1 � x2 � 1 (City 1 constraint)

This constraint ensures that x1 � x2 � 0 is impossible, so at least one fire station will be

built within 15 minutes of city 1. Similarly the constraint

x1 � x2 � x6 � 1 (City 2 constraint)

ensures that at least one fire station will be located within 15 minutes of city 2. In a sim-

ilar fashion, we obtain constraints for cities 3–6. Combining these six constraints with the

1 if a fire station is built in city i

0 otherwise
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Facility-Location Set-Covering ProblemE X A M P L E  5

TA B L E  6

Time Required to Travel between Cities in Kilroy County

To

From City 1 City 2 City 3 City 4 City 5 City 6

City 1 0 10 20 30 30 20

City 2 10 0 25 35 20 10

City 3 20 25 0 15 30 20

City 4 30 35 15 0 15 25

City 5 30 20 30 15 0 14

City 6 20 10 20 25 14 0



objective function (and with the fact that each variable must equal 0 or 1), we obtain the

following 0–1 IP:

min z � x1 � x2 � x3 � x4 � x5 � x6

s.t. x1 � x2 � x3 � x4 � x5 � x5 � 1 (City 1 constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � 1 (City 2 constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � 1 (City 3 constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � 1 (City 4 constraint)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � 1 (City 5 constraint)

s.t. x1 � x2 x2 � x3 � � x5 � x6 � 1 (City 6 constraint)

xi � 0 or 1 (i � 1, 2, 3, 4, 5, 6)

One optimal solution to this IP is z � 2, x2 � x4 � 1, x1 � x3 � x5 � x6 � 0. Thus, Kil-

roy County can build two fire stations: one in city 2 and one in city 4.

As noted, Example 5 represents a class of IPs known as set-covering problems. In a

set-covering problem, each member of a given set (call it set 1) must be “covered” by an

acceptable member of some set (call it set 2). The objective in a set-covering problem is

to minimize the number of elements in set 2 that are required to cover all the elements in

set 1. In Example 5, set 1 is the cities in Kilroy County, and set 2 is the set of fire sta-

tions. The station in city 2 covers cities 1, 2, and 6, and the station in city 4 covers cities

3, 4, and 5. Set-covering problems have many applications in areas such as airline crew

scheduling, political districting, airline scheduling, and truck routing.

Either–Or Constraints

The following situation commonly occurs in mathematical programming problems. We

are given two constraints of the form

f (x1, x2, . . . , xn) � 0 (26)

g(x1, x2, . . . , xn) � 0 (27)

We want to ensure that at least one of (26) and (27) is satisfied, often called either–or

constraints. Adding the two constraints (26�) and (27�) to the formulation will ensure that

at least one of (26) and (27) is satisfied:

f (x1, x2, . . . , xn) � My (26�)

g(x1, x2, . . . , xn) � M(1 � y) (27�)
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TA B L E  7

Cities within 15 Minutes of
Given City

City Within 15 Minutes

1 1, 2

2 1, 2, 6

3 3, 4

4 3, 4, 5

5 4, 5, 6

6 2, 5, 6



In (26�) and (27�), y is a 0–1 variable, and M is a number chosen large enough to en-

sure that f (x1, x2, . . . , xn) � M and g(x1, x2, . . . , xn) � M are satisfied for all values of

x1, x2, . . . , xn that satisfy the other constraints in the problem.

Let us show that the inclusion of constraints (26�) and (27�) is equivalent to at least

one of (26) and (27) being satisfied. Either y � 0 or y � 1. If y � 0, then (26�) and (27�)

become f � 0 and g � M. Thus, if y � 0, then (26) (and possibly (27)) must be satisfied.

Similarly, if y � 1, then (26�) and (27�) become f � M and g � 0. Thus, if y � 1, then

(27) (and possibly (26)) must be satisfied. Therefore, whether y � 0 or y � 1, (26�) and

(27�) ensure that at least one of (26) and (27) is satisfied.

The following example illustrates the use of either–or constraints.

Dorian Auto is considering manufacturing three types of autos: compact, midsize, and

large. The resources required for, and the profits yielded by, each type of car are shown

in Table 8. Currently, 6,000 tons of steel and 60,000 hours of labor are available. For pro-

duction of a type of car to be economically feasible, at least 1,000 cars of that type must

be produced. Formulate an IP to maximize Dorian’s profit.

Solution Because Dorian must determine how many cars of each type should be built, we define

x1 � number of compact cars produced

x2 � number of midsize cars produced

x3 � number of large cars produced

Then contribution to profit (in thousands of dollars) is 2x1 � 3x2 � 4x3, and Dorian’s ob-

jective function is

max z � 2x1 � 3x2 � 4x3

We know that if any cars of a given type are produced, then at least 1,000 cars of that

type must be produced. Thus, for i � 1, 2, 3, we must have xi � 0 or xi � 1,000. Steel

and labor are limited, so Dorian must satisfy the following five constraints:

Constraint 1 x1 � 0 or x1 � 1,000.

Constraint 2 x2 � 0 or x2 � 1,000.

Constraint 3 x3 � 0 or x3 � 1,000.

Constraint 4 The cars produced can use at most 6,000 tons of steel.

Constraint 5 The cars produced can use at most 60,000 hours of labor.
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Either–Or ConstraintE X A M P L E  6

TA B L E  8

Resources and Profits for Three Types of Cars

Car Type

Resource Compact Midsize Large

Steel required 1.5 tons 3 tons 5 tons

Labor required 30 hours 25 hours 40 hours

Profit yielded ($) 2,000 3,000 4,000



From our previous discussion, we see that if we define f (x1, x2, x3) � x1 and g(x1, x2,

x3) � 1,000 � x1, we can replace Constraint 1 by the following pair of constraints:

x1 � M1y1

1,000 � x1 � M1(1 � y1)

y1 � 0 or 1

To ensure that both x1 and 1,000 � x1 will never exceed M1, it suffices to choose M1 large

enough so that M1 exceeds 1,000 and x1 is always less than M1. Building �60
3
,0
0
00

� � 2,000

compacts would use all available labor (and still leave some steel), so at most 2,000 com-

pacts can be built. Thus, we may choose M1 � 2,000. Similarly, Constraint 2 may be re-

placed by the following pair of constraints:

x2 � M2 y2

1,000 � x2 � M2(1 � y2)

y2 � 0 or 1

You should verify that M2 � 2,000 is satisfactory. Similarly, Constraint 3 may be replaced by

x3 � M3y3

1,000 � x3 � M3(1 � y3)

y3 � 0 or 1

Again, you should verify that M3 � 1,200 is satisfactory. Constraint 4 is a straightforward

resource constraint that reduces to

1.5x1 � 3x2 � 5x3 � 6,000 (Steel constraint)

Constraint 5 is a straightforward resource usage constraint that reduces to

30x1 � 25x2 � 40x3 � 60,000 (Labor constraint)

After noting that xi � 0 and that xi must be an integer, we obtain the following IP:

max z � 2x1 � 3x2 � 4x3

s.t. 1,000 � x1 � 2,000y1

s.t. 1,000 � x1 � 2,000(1 � y1)

s.t. 1,000 � x2 � 2,000y2

s.t. 1,000 � x2 � 2,000(1 � y2)

s.t. 1,000 � x3 � 1,200y3

s.t. 1,000 � x3 � 1,200(1 � y3)

1.5x1 � 3x2 � 5x3 � 6,000 (Steel constraint)

30x1 � 25x2 � 40x3 � 60,000 (Labor constraint)

x1, x2, x3 � 0; x1, x2, x3 integer

y1, y2, y3 � 0 or 1

The optimal solution to the IP is z � 6,000, x2 � 2,000, y2 � 1, y1 � y3 � x1 � x3 � 0.

Thus, Dorian should produce 2,000 midsize cars. If Dorian had not been required to man-

ufacture at least 1,000 cars of each type, then the optimal solution would have been to

produce 570 compacts and 1,715 midsize cars.
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If–Then Constraints

In many applications, the following situation occurs: We want to ensure that if a constraint

f (x1, x2, . . . , xn) 	 0 is satisfied, then the constraint g(x1, x2, . . . , xn) � 0 must be satis-

fied, while if f (x1, x2, . . . , xn) 	 0 is not satisfied, then g(x1, x2, . . . , xn) � 0 may or may

not be satisfied. In short, we want to ensure that f (x1, x2, . . . , xn) 	 0 implies g(x1, x2,

. . . , xn) � 0.

To ensure this, we include the following constraints in the formulation:

�g(x1, x2, . . . , xn) � My (28)

f (x1, x2, . . . , xn) � M(1 � y) (29)

y � 0 or 1

As usual, M is a large positive number. (M must be chosen large enough so that f � M

and �g � M hold for all values of x1, x2, . . . , xn that satisfy the other constraints in the

problem.) Observe that if f 	 0, then (29) can be satisfied only if y � 0. Then (28) im-

plies �g � 0, or g � 0, which is the desired result. Thus, if f 	 0, then (28) and (29) en-

sure that g � 0. Also, if f 	 0 is not satisfied, then (29) allows y � 0 or y � 1. By choos-

ing y � 1, (28) is automatically satisfied. Thus, if f 	 0 is not satisfied, then the values

of x1, x2, . . . , xn are unrestricted and g 
 0 or g � 0 are both possible.

To illustrate the use of this idea, suppose we add the following constraint to the Nickles lock-

box problem: If customers in region 1 send their payments to city 1, then no other customers

may send their payments to city 1. Mathematically, this restriction may be expressed by

If x11 � 1, then x21 � x31 � x41 � 0 (30)

Because all xij must equal 0 or 1, (30) may be written as

If x11 	 0, then x21 � x31 � x41 � 0, or �x21 � x31 � x41 � 0 (30�)

If we define f � x11 and g � �x21 � x31 � x41, we can use (28) and (29) to express (30�)

[and therefore (30)] by the following two constraints:

x21 � x31 � x41 � My

x11 � M(1 � y)

y � 0 or 1

Because �g and f can never exceed 3, we can choose M � 3 and add the following con-

straints to the original lockbox formulation:

x21 � x31 � x41 � 3y

x11 � 3(1 � y)

y � 0 or 1

Integer Programming and Piecewise Linear Functions†

The next example shows how 0–1 variables can be used to model optimization problems

involving piecewise linear functions. A piecewise linear function consists of several

straight-line segments. The piecewise linear function in Figure 2 is made of four straight-

line segments. The points where the slope of the piecewise linear function changes (or the

range of definition of the function ends) are called the break points of the function. Thus,

0, 10, 30, 40, and 50 are the break points of the function pictured in Figure 2.
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To illustrate why piecewise linear functions can occur in applications, suppose we

manufacture gasoline from oil. In purchasing oil from our supplier, we receive a quantity

discount. The first 500 gallons of oil purchased cost 25¢ per gallon; the next 500 gallons

cost 20¢ per gallon; and the next 500 gallons cost 15¢ per gallon. At most, 1,500 gallons

of oil can be purchased. Let x be the number of gallons of oil purchased and c(x) be the

cost (in cents) of purchasing x gallons of oil. For x � 0, c(x) � 0. Then for 0 � x � 500,

c(x) � 25x. For 500 � x � 1,000, c(x) � (cost of purchasing first 500 gallons at 25¢ per

gallon) � (cost of purchasing next x � 500 gallons at 20¢ per gallon) � 25(500) �

20(x � 500) � 20x � 2,500. For 1,000 � x � 1,500, c(x) � (cost of purchasing first

1,000 gallons) � (cost of purchasing next x � 1,000 gallons at 15¢ per gallon) �

c(1,000) � 15(x � 1,000) � 7,500 � 15x. Thus, c(x) has break points 0, 500, 1,000, and

1,500 and is graphed in Figure 3.

A piecewise linear function is not a linear function, so one might think that linear pro-

gramming could not be used to solve optimization problems involving these functions. By

using 0–1 variables, however, piecewise linear functions can be represented in linear form.

Suppose that a piecewise linear function f (x) has break points b1, b2, . . . , bn. For some k

(k � 1, 2, . . . , n � 1), bk � x � bk�1. Then, for some number zk (0 � zk � 1), x may

be written as

x � zkbk � (1 � zk)bk�1

Because f (x) is linear for bk � x � bk�1, we may write

f (x) � zk f (bk) � (1 � zk) f (bk�1)
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Cost of Purchasing Oil



To illustrate the idea, take x � 800 in our oil example. Then we have b2 � 500 � 800 �

1,000 � b3, and we may write

x � �
2
5

�(500) � �
3
5

�(1,000)

f (x) � f (800) � �
2
5

� f (500) � �
3
5

� f (1,000)

� �
2
5

�(12,500) � �
3
5

�(22,500) � 18,500

We are now ready to describe the method used to express a piecewise linear function

via linear constraints and 0–1 variables:

Step 1 Wherever f(x) occurs in the optimization problem, replace f (x) by z1 f (b1) �

z2 f (b2) � ��� � zn f (bn).

Step 2 Add the following constraints to the problem:

z1 � y1, z2 � y1 � y2, z3 � y2 � y3, . . . , zn�1 � yn�2 � yn�1, zn � yn�1

y1 � y2 � ��� � yn�1 � 1

z1 � z2 � ��� � zn � 1

x � z1b1 � z2b2 � ��� � znbn

yi � 0 or 1 (i � 1, 2, . . . , n � 1); zi � 0 (i � 1, 2, . . . , n)

Euing Gas produces two types of gasoline (gas 1 and gas 2) from two types of oil (oil 1

and oil 2). Each gallon of gas 1 must contain at least 50 percent oil 1, and each gallon of

gas 2 must contain at least 60 percent oil 1. Each gallon of gas 1 can be sold for 12¢, and

each gallon of gas 2 can be sold for 14¢. Currently, 500 gallons of oil 1 and 1,000 gal-

lons of oil 2 are available. As many as 1,500 more gallons of oil 1 can be purchased at

the following prices: first 500 gallons, 25¢ per gallon; next 500 gallons, 20¢ per gallon;

next 500 gallons, 15¢ per gallon. Formulate an IP that will maximize Euing’s profits (rev-

enues � purchasing costs).

Solution Except for the fact that the cost of purchasing additional oil 1 is a piecewise linear func-

tion, this is a straightforward blending problem. With this in mind, we define

x � amount of oil 1 purchased

xij � amount of oil i used to produce gas j (i, j � 1, 2)

Then (in cents)

Total revenue � cost of purchasing oil 1 � 12(x11 � x21) � 14(x12 � x22) � c(x)

As we have seen previously,

c(x) � �
Thus, Euing’s objective function is to maximize

z � 12x11 � 12x21 � 14x12 � 14x22 � c(x)

Euing faces the following constraints:

Constraint 1 Euing can use at most x � 500 gallons of oil 1.

Constraint 2 Euing can use at most 1,000 gallons of oil 2.

Constraint 3 The oil mixed to make gas 1 must be at least 50% oil 1.

(0 � x � 500)

(500 � x � 1,000)

(1,000 � x � 1,500)

25x

20x � 2,500

15x � 7,500
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Constraint 4 The oil mixed to make gas 2 must be at least 60% oil 1.

Constraint 1 yields

x11 � x12 � x � 500

Constraint 2 yields

x21 � x22 � 1,000

Constraint 3 yields

�
x11

x

�
11

x21

� � 0.5 or 0.5x11 � 0.5x21 � 0

Constraint 4 yields

�
x12

x

�
12

x22

� � 0.6 or 0.4x12 � 0.6x22 � 0

Also all variables must be nonnegative. Thus, Euing Gas must solve the following opti-

mization problem:

max z � 12x11 � 12x21 � 14x12 � 14x22 � c(x)

s.t. 0.5x11 � 0.5x11 � 0.4x12 � 0.6x12 � x � 500

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x22 � 1,000

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x12 � 0

s.t. 0.5x11 � 0.5x11 � 0.4x12 � 0.6x22 � 0

max z � 12xij � 0, 0 � x � 1,500

Because c(x) is a piecewise linear function, the objective function is not a linear func-

tion of x, and this optimization is not an LP. By using the method described earlier, how-

ever, we can transform this problem into an IP. After recalling that the break points for

c(x) are 0, 500, 1,000, and 1,500, we proceed as follows:

Step 1 Replace c(x) by c(x) � z1c(0) � z2c(500) � z3c(1,000) � z4c(1,500).

Step 2 Add the following constraints:

x � 0z1 � 500z2 � 1,000z3 � 1,500z4

z1 � y1, z2 � y1 � y2, z3 � y2 � y3, z4 � y3

z1 � z2 � z3 � z4 � 1, y1 � y2 � y3 � 1

yi � 0 or 1 (i � 1, 2, 3); zi � 0 (i � 1, 2, 3, 4)

Our new formulation is the following IP:

max z � 12x11 � 12x21 � 14x12 � 14x22 � z1c(0) � z2c(500)

max z � � z3c(1,000) � z4c(1,500)

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x22 � x � 500

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x22 � 1,000

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x22 � 0

s.t. 0.5x11 � 0.5x21 � 0.4x12 � 0.6x22 � 0

x � 0z1 � 500z2 � 1,000z3 � 1,500z4 (31)

z1 � y1 (32)

z2 � y1 � y2 (33)

z3 � y2 � y3 (34)
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z4 � y3 (35)

y1 � y2 � y3 � 1 (36)

z1 � z2 � z3 � z4 � 1 (37)

yi � 0 or 1 (i � 1, 2, 3); zi � 0 (i � 1, 2, 3, 4)

xij � 0

To see why this formulation works, observe that because y1 � y2 � y3 � 1 and yi � 0 or

1, exactly one of the yi’s will equal 1, and the others will equal 0. Now, (32)–(37) imply

that if yi � 1, then zi and zi�1 may be positive, but all the other zi’s must equal 0. For in-

stance, if y2 � 1, then y1� y3 � 0. Then (32)–(35) become z1 � 0, z2 � 1, z3 � 1, and

z4 � 0. These constraints force z1 � z4 � 0 and allow z2 and z3 to be any nonnegative

number less than or equal to 1. We can now show that (31)–(37) correctly represent the

piecewise linear function c(x). Choose any value of x, say x � 800. Note that b2 � 500 �

800 � 1,000 � b3. For x � 800, what values do our constraints assign to y1, y2, and y3?

The value y1 � 1 is impossible, because if y1 � 1, then y2 � y3 � 0. Then (34)–(35) force

z3 � z4 � 0. Then (31) reduces to 800 � x � 500z2, which cannot be satisfied by z2 � 1.

Similarly, y3 � 1 is impossible. If we try y2 � 1 (32) and (35) force z1 � z4 � 0. Then

(33) and (34) imply z2 � 1 and z3 � 1. Now (31) becomes 800 � x � 500z2 � 1,000z3.

Because z2 � z3 � 1, we obtain z2 � �
2
5

� and z3 � �
3
5

�. Now the objective function reduces to

12x11 � 12x21 � 14x21 � 14x22 � �
2c(5

5

00)
� � �

3c(1

5

,000)
�

Because

c(800) � �
2c(5

5

00)
� � �

3c(1

5

,000)
�

our objective function yields the correct value of Euing’s profits!

The optimal solution to Euing’s problem is z � 12,500, x � 1,000, x12 � 1,500, 

x22 � 1,000, y3 � z3 � 1. Thus, Euing should purchase 1,000 gallons of oil 1 and pro-

duce 2,500 gallons of gas 2.

In general, constraints of the form (31)–(37) ensure that if bi � x � bi�1, then yi � 1

and only zi and zi�1 can be positive. Because c(x) is linear for bi � x � bi�1, the objec-

tive function will assign the correct value to c(x).

If a piecewise linear function f (x) involved in a formulation has the property that the

slope of f (x) becomes less favorable to the decision maker as x increases, then the tedious

IP formulation we have just described is unnecessary.

Dorian Auto has a $20,000 advertising budget. Dorian can purchase full-page ads in two

magazines: Inside Jocks (IJ) and Family Square (FS). An exposure occurs when a person

reads a Dorian Auto ad for the first time. The number of exposures generated by each 

ad in IJ is as follows: ads 1–6, 10,000 exposures; ads 7–10, 3,000 exposures; ads 

11–15, 2,500 exposures; ads 16�, 0 exposures. For example, 8 ads in IJ would generate

6(10,000) � 2(3,000) � 66,000 exposures. The number of exposures generated by each

ad in FS is as follows: ads 1–4, 8,000 exposures; ads 5–12, 6,000 exposures; ads 13–15,

2,000 exposures; ads 16�, 0 exposures. Thus, 13 ads in FS would generate 4(8,000) �
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8(6,000) � 1(2,000) � 82,000 exposures. Each full-page ad in either magazine costs

$1,000. Assume there is no overlap in the readership of the two magazines. Formulate an

IP to maximize the number of exposures that Dorian can obtain with limited advertising

funds.

Solution If we define

x1 � number of IJ ads yielding 10,000 exposures

x2 � number of IJ ads yielding 3,000 exposures

x3 � number of IJ ads yielding 2,500 exposures

y1 � number of FS ads yielding 8,000 exposures

y2 � number of FS ads yielding 6,000 exposures

y3 � number of FS ads yielding 2,000 exposures

then the total number of exposures (in thousands) is given by

10x1 � 3x2 � 2.5x3 � 8y1 � 6y2 � 2y3

Thus, Dorian wants to maximize

z � 10x1 � 3x2 � 2.5x3 � 8y1 � 6y2 � 2y3

Because the total amount spent (in thousands) is just the toal number of ads placed in

both magazines, Dorian’s budget constraint may be written as

x1 � x2 � x3 � y1 � y2 � y3 � 20

The statement of the problem implies that x1 � 6, x2 � 4, x3 � 5, y1 � 4, y2 � 8, and

y3 � 3 all must hold. Adding the sign restrictions on each variable and noting that each

variable must be an integer, we obtain the following IP:

max z � 10x1 � 3x2 � 2.5x3 � 8y1 � 6y2 � 2y3

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 20

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 6

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 4

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 5

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 4

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 8

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 3

s.t. xi, yi integer (i � 1, 2, 3)

s.t. xi, yi � 0 (i � 1, 2, 3)

Observe that the statement of the problem implies that x2 cannot be positive unless x1 as-

sumes its maximum value of 6. Similarly, x3 cannot be positive unless x2 assumes its max-

imum value of 4. Because x1 ads generate more exposures than x2 ads, however, the act

of maximizing ensures that x2 will be positive only if x1 has been made as large as pos-

sible. Similarly, because x3 ads generate fewer exposures than x2 ads, x3 will be positive

only if x2 assumes its maximum value. (Also, y2 will be positive only if y1 � 4, and y3

will be positive only if y2 � 8.)

The optimal solution to Dorian’s IP is z � 146,000, x1 � 6, x2 � 2, y1 � 4, y2 � 8, 

x3 � 0, y3 � 0. Thus, Dorian will place x1 � x2 � 8 ads in IJ and y1 � y2 � 12 ads in FS.

9 . 2 Formulating Integer Programming Problems 495



In Example 8, additional advertising in a magazine yielded diminishing returns. This

ensured that xi ( yi) would be positive only if xi�1 (yi�1) assumed its maximum value. If

additional advertising generated increasing returns, then this formulation would not yield

the correct solution. For example, suppose that the number of exposures generated by

each IJ ad was as follows: ads 1–6, 2,500 exposures; ads 7–10, 3,000 exposures; ads

11–15, 10,000 exposures. Suppose also that the number of exposures generated by each

FS is as follows: ads 1–4, 2,000 exposures; ads 5–12, 6,000 exposures; ads 13–15, 8,000

exposures.

If we define

x1 � number of IJ ads generating 2,500 exposures

x2 � number of IJ ads generating 3,000 exposures

x3 � number of IJ ads generating 10,000 exposures

y1 � number of FS ads generating 2,000 exposures

y2 � number of FS ads generating 6,000 exposures

y3 � number of FS ads generating 8,000 exposures

the reasoning used in the previous example would lead to the following formulation:

max z � 2.5x1 � 3x2 � 10x3 � 2y1 � 6y2 � 8y3

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 20

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 6

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 4

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 5

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 4

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 8

s.t. x1 � x2 � x3 � y1 � y2 � y3 � 3

s.t. xi, yi integer (i � 1, 2, 3)

s.t. xi, yi � 0 (i � 1, 2, 3)

The optimal solution to this IP is x3 � 5, y3 � 3, y2 � 8, x2 � 4, x1 � 0, y1 � 0,

which cannot be correct. According to this solution, x1 � x2 � x3 � 9 ads should be

placed in IJ. If 9 ads were placed in IJ, however, then it must be that x1 � 6 and x2 � 3.

Therefore, we see that the type of formulation used in the Dorian Auto example is cor-

rect only if the piecewise linear objective function has a less favorable slope for larger

values of x. In our second example, the effectiveness of an ad increased as the number of

ads in a magazine increased, and the act of maximizing will not ensure that xi can be pos-

itive only if xi�1 assumes its maximum value. In this case, the approach used in the Eu-

ing Gas example would yield a correct formulation (see Problem 8).

Solving IPs with LINDO

LINDO can be used to solve pure or mixed IPs. In addition to the optimal solution, the

LINDO output for an IP gives shadow prices and reduced costs. Unfortunately, the

shadow prices and reduced costs refer to subproblems generated during the branch-and-

bound solution—not to the IP. Unlike linear programming, there is no well-developed the-

ory of sensitivity analysis for integer programming. The reader interested in a discussion

of sensitivity analysis for IPs should consult Williams (1985).
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To use LINDO to solve an IP, begin by entering the problem as if it were an LP. After

typing in the END statement (to designate the end of the LP constraints), type for each

0–1 variable x the following statement:

INTE x

Thus, for an IP in which x and y are 0–1 variables, the following statements would be

typed after the END statement:

INTE x

INTE y

A variable (say, w) that can assume any non-negative integer value is indicated by the GIN

statement. Thus, if w may assume the values 0, 1, 2, . . . , we would type the following

statement after the END statement:

GIN w

To tell LINDO that the first n variables appearing in the formulation must be 0–1 vari-

ables, use the command INT n.

To tell LINDO that the first n variables appearing in the formulation may assume any

non-negative integer value, use the command GIN n.

To illustrate how to use LINDO to solve IPs, we show how to solve Example 3 with

LINDO. We typed the following input (file Gandhi):

MAX      6 X1 + 4 X2 + 7 X3 - 200 Y1 - 150 Y2 - 100 Y3
SUBJECT TO

2)   3 X1 + 2 X2 + 6 X3 <= 150
3)   4 X1 + 3 X2 + 4 X3 <= 160
4)   X1 - 40 Y1 <= 0
5)   X2 - 53 Y2 <= 0
6)   X3 - 25 Y3 <= 0

END
GIN       X1
GIN       X2
GIN       X3
INTE    Y1
INTE    Y2
INTE    Y3

Thus we see that X1, X2, and X3 can be any nonnegative integer, while Y1, Y2, and Y3

must equal 0 or 1. By the way, we could have typed GIN 3 to ensure that X1, X2, and X3

must be nonnegative integers. The optimal solution found by LINDO is given in Figure 4.

Solving IPs with LINGO

LINGO can also be used to solve IPs. To indicate that a variable must equal 0 or 1 use

the @BIN operator (see the following example). To indicate that a variable must equal a

non-negative integer, use the @GIN operator. We illustrate how LINGO is used to solve

IPs with Example 4 (the Lockbox Problem). The following LINGO program (file Lock.lng)

can be used to solve Example 4 (or any reasonably sized lockbox program).

MODEL:
1]SETS:
2]REGIONS/W,MW,E,S/:DEMAND;
3]CITIES/LA,CHIC,NY,ATL/:Y;
4]LINKS(REGIONS,CITIES):DAYS,COST,ASSIGN;
5]ENDSETS
6]MIN=@SUM(CITIES:50000*Y)+@SUM(LINKS:COST*ASSIGN);
7]@FOR(LINKS(I,J):ASSIGN(I,J) < Y(J));
8]@FOR(REGIONS(I):
9]@SUM(CITIES(J):ASSIGN(I,J))=1);

10]@FOR(CITIES(I):@BIN(Y(I)););
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11]@FOR(LINKS(I,J):@BIN(ASSIGN(I,J)););
12]@FOR(LINKS(I,J):COST(I,J)=.20*DEMAND(I)*DAYS(I,J));
13]DATA:
14]DAYS=2,6,8,8,
15]6,2,5,5,
16]8,5,2,5,
17]8,5,5,2;
18]DEMAND=70000,50000,60000,40000;
19]ENDDATA

END

In line 2, we define the four regions of the country and associate a daily demand for

cash payments from each region. Line 3 specifies the four cities where a lockbox may be

built. With each city I, we associate a 0–1 variable (Y(I)) that equals 1 if a lockbox is

built in the city or 0 otherwise. In line 4, we create a “link” (LINK(I,J)) between each re-

gion of the country and each potential lockbox site. Associated with each link are the fol-

lowing quantities:

1 The average number of days (DAYS) it takes a check to clear when mailed from re-

gion I to city J. This information is given in the DATA section.

2 The annual lost interest cost for funds sent from region i (COST) incurred if region I

sends its money to city J.

3 A 0–1 variable ASSIGN(I,J) which equals 1 if region I sends its money to city J and

0 otherwise.

In line 6, we compute the total cost by summing 50000*Y(I) over all cities. This com-

putes the total annual cost of running lockboxes. Then we sum COST*ASSIGN over all

links. This picks up the total annual lost interest cost. The line 7 constraints ensure that
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  MAX     6 X1 + 4 X2 + 7 X3 - 200 Y1 - 150 Y2 - 100 Y3
  SUBJECT TO
         2)   3 X1 + 2 X2 + 6 X3 <=   150
         3)   4 X1 + 3 X2 + 4 X3 <=   160
         4)   X1 - 40 Y1 <=   0
         5)   X2 - 53 Y2 <=   0
         6)   X3 - 25 Y3 <=   0
  END
  GIN        X1
  GIN        X2
  GIN        X3
  INTE       Y1
  INTE       Y2
  INTE       Y3

        OBJECTIVE FUNCTION VALUE

        1)     75.000000

  VARIABLE        VALUE          REDUCED COST
        X1          .000000         -6.000000
        X2          .000000         -4.000000
        X3        25.000000         -7.000000
        Y1          .000000        200.000000
        Y2          .000000        150.000000
        Y3         1.000000        100.000000

       ROW   SLACK OR SURPLUS     DUAL PRICES
        2)          .000000           .000000
        3)        60.000000           .000000
        4)          .000000           .000000
        5)          .000000           .000000
        6)          .000000           .000000

NO. ITERATIONS=      11
BRANCHES=     1 DETERM.=  1.000E    0F I G U R E  4



(for all combinations of I and J) if region I sends its money to city J, then Y(J) � 1. This

forces us to pay for lockboxes we use. Lines 8–9 ensure that each region of the country

sends its money to some city. Line 10 ensures that each Y(I) equals 0 or 1. Line 11 en-

sures that each ASSIGN(I,J) equals 0 or 1 (actually we do not need this statement; see

Problem 44). We compute the lost annual interest cost if region I sends its money to city

J in line 12. This duplicates the calculations in Table 5. Note that an * is needed to en-

sure that multiplications are performed.

In lines 14–17, we input the average number of days required for a check to clear when

it is sent from region I to city J. In line 18, we input the daily demand for each region.

Note that to obtain the objective function and constraints we selected the Model win-

dow and then chose LINDO, Generate, Display Model. See Figure 8.

Using the Excel Solver to Solve IP Problems

It is easy to use the Excel Solver to solve integer programming problems. The file

Gandhi.xls contains a spreadsheet solution to Example 3. See Figure 7 for the optimal so-

lution. In our spreadsheet, the changing cells J4:J6 (the number of each product produced)

must be integers. To tell the Solver that these changing cells must be integers, just select

Add Constraint and point to the cells J4:J6. Then select int from the drop-down arrow in

the middle.

The changing cells K4:K6 are the binary fixed charge variables. To tell the Solver that

these changing cells must be binary, select Add Constraint and point to cells K4:K6. Then

select bin from the drop-down arrow. See Figure 6.

From Figure 7, we find that the optimal solution (as found with LINDO) is to make

25 pairs of pants.
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MIN     50000 Y(ATL + 50000 Y(NY + 50000 Y(CHIC + 50000 Y(LA + 16000 ASSIGNSA
     + 40000 ASSIGNSN + 40000 ASSIGNSC + 64000 ASSIGNSL + 60000 ASSIGNEA
     + 24000 ASSIGNEN + 60000 ASSIGNEC + 96000 ASSIGNEL + 50000 ASSIGNMW
     + 50000 ASSIGNMW + 20000 ASSIGNMW + 60000 ASSIGNMW + 112000 ASSIGNWA
     + 112000 ASSIGNWN + 84000 ASSIGNWC + 28000 ASSIGNWL
SUBJECT TO
2)- Y(LA + ASSIGNWL <=   0
3)- Y(CHIC + ASSIGNWC <=   0
4)- Y(NY + ASSIGNWN <=   0
5)- Y(ATL + ASSIGNWA <=   0
6)- Y(LA + ASSIGNMW <=   0
7)- Y(CHIC + ASSIGNMW <=   0
8)- Y(NY + ASSIGNMW <=   0
9)- Y(ATL + ASSIGNMW <=   0
10)- Y(LA + ASSIGNEL <=   0
11)- Y(CHIC + ASSIGNEC <=   0
12)- Y(NY + ASSIGNEN <=   0
13)- Y(ATL + ASSIGNEA <=   0
14)- Y(LA + ASSIGNSL <=   0
15)- Y(CHIC + ASSIGNSC <=   0
16)- Y(NY + ASSIGNSN <=   0
17)- Y(ATL + ASSIGNSA <=   0
18)  ASSIGNWA + ASSIGNWN + ASSIGNWC + ASSIGNWL =    1
19)  ASSIGNMW + ASSIGNMW + ASSIGNMW + ASSIGNMW =    1
20)  ASSIGNEA + ASSIGNEN + ASSIGNEC + ASSIGNEL =    1
21)  ASSIGNSA + ASSIGNSN + ASSIGNSC + ASSIGNSL =    1
END
INTE    20

[ERROR CODE: 96]
WARNING: SEVERAL LINGO NAMES MAY HAVE BEEN TRANSFORMED INTO A
SINGLE LINDO NAME.

LP OPTIMUM FOUND AT STEP     14
OBJECTIVE VALUE =   242000.000
ENUMERATION COMPLETE. BRANCHES=     0 PIVOTS=    14F I G U R E  8

1
2

3

4
5
6

7

8

9
10
11

12
13
14
15

A B C D E F G H I J K
Gandhi

Labor
hours
used

Cloth
yards
used Unit price Unit cost Unit profit

Fixed
Cost

Number
Made

Binary
variable

Shirt 3 4 $ 12.00 $ 6.00 $ 6.00 $ 200.00 0 0
Shorts 2 3 $ 8.00 $ 4.00 $ 4.00 $ 150.00 0 0
Pants 6 4 15.00$ $ 8.00 $ 7.00 $ 100.00 25 1

Resource

Constraints

Used Available
Fixed
charge $ 100.00

Labor 150 <= 150
Variable
cost $ 200.00

Cloth 100 <= 160 Revenue $ 375.00
Profit $ 75.00

Fixed

Charge

Constraints
Number
Made

Logical
Upper
Bound

Max
possible to
make

Shirts 0 <= 0 40
Shorts 0 <= 0 53.33333
Pants 25 <= 25 25

F I G U R E  7
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LAST INTEGER SOLUTION IS THE BEST FOUND
RE-INSTALLING BEST SOLUTION...

                     VARIABLE         VALUE          REDUCED COST
                   DEMAND( W)        70000.00           0.0000000E+00
                  DEMAND( MW)        50000.00           0.0000000E+00
                   DEMAND( E)        60000.00           0.0000000E+00
                   DEMAND( S)        40000.00           0.0000000E+00
                       Y( LA)        1.000000            50000.00
                     Y( CHIC)        0.0000000E+00       50000.00
                       Y( NY)        1.000000            50000.00
                      Y( ATL)        0.0000000E+00       50000.00
                 DAYS( W, LA)        2.000000           0.0000000E+00
               DAYS( W, CHIC)        6.000000           0.0000000E+00
                 DAYS( W, NY)        8.000000           0.0000000E+00
                DAYS( W, ATL)        8.000000           0.0000000E+00
                DAYS( MW, LA)        6.000000           0.0000000E+00
              DAYS( MW, CHIC)        2.000000           0.0000000E+00
                DAYS( MW, NY)        5.000000           0.0000000E+00
               DAYS( MW, ATL)        5.000000           0.0000000E+00
                 DAYS( E, LA)        8.000000           0.0000000E+00
               DAYS( E, CHIC)        5.000000           0.0000000E+00
                 DAYS( E, NY)        2.000000           0.0000000E+00
                DAYS( E, ATL)        5.000000           0.0000000E+00
                 DAYS( S, LA)        8.000000           0.0000000E+00
               DAYS( S, CHIC)        5.000000           0.0000000E+00
                 DAYS( S, NY)        5.000000           0.0000000E+00
                DAYS( S, ATL)        2.000000           0.0000000E+00
                 COST( W, LA)        28000.00           0.0000000E+00
               COST( W, CHIC)        84000.00           0.0000000E+00
                 COST( W, NY)        112000.0           0.0000000E+00
                COST( W, ATL)        112000.0           0.0000000E+00
                COST( MW, LA)        60000.00           0.0000000E+00
              COST( MW, CHIC)        20000.00           0.0000000E+00
                COST( MW, NY)        50000.00           0.0000000E+00
               COST( MW, ATL)        50000.00           0.0000000E+00
                 COST( E, LA)        96000.00           0.0000000E+00
               COST( E, CHIC)        60000.00           0.0000000E+00
                 COST( E, NY)        24000.00           0.0000000E+00
                COST( E, ATL)        60000.00           0.0000000E+00
                 COST( S, LA)        64000.00           0.0000000E+00
               COST( S, CHIC)        40000.00           0.0000000E+00
                 COST( S, NY)        40000.00           0.0000000E+00
                COST( S, ATL)        16000.00           0.0000000E+00
               ASSIGN( W, LA)        1.000000            28000.00
             ASSIGN( W, CHIC)       0.0000000E+00        84000.00
               ASSIGN( W, NY)       0.0000000E+00        112000.0
              ASSIGN( W, ATL)       0.0000000E+00        112000.0
              ASSIGN( MW, LA)       0.0000000E+00        60000.00
            ASSIGN( MW, CHIC)       0.0000000E+00        20000.00
              ASSIGN( MW, NY)        1.000000            50000.00
             ASSIGN( MW, ATL)       0.0000000E+00        50000.00
               ASSIGN( E, LA)       0.0000000E+00        96000.00
             ASSIGN( E, CHIC)       0.0000000E+00        60000.00
               ASSIGN( E, NY)        1.000000            24000.00
              ASSIGN( E, ATL)       0.0000000E+00        60000.00
               ASSIGN( S, LA)       0.0000000E+00        64000.00
             ASSIGN( S, CHIC)       0.0000000E+00        40000.00
               ASSIGN( S, NY)        1.000000            40000.00
              ASSIGN( S, ATL)       0.0000000E+00        16000.00

F I G U R E  8

(Continued)



1 Coach Night is trying to choose the starting lineup for
the basketball team. The team consists of seven players who
have been rated (on a scale of 1 � poor to 3 � excellent)
according to their ball-handling, shooting, rebounding, and
defensive abilities. The positions that each player is allowed
to play and the player’s abilities are listed in Table 9.

The five-player starting lineup must satisfy the following
restrictions:

1 At least 4 members must be able to play guard, at
least 2 members must be able to play forward, and at
least 1 member must be able to play center.

2 The average ball-handling, shooting, and rebound-
ing level of the starting lineup must be at least 2.

3 If player 3 starts, then player 6 cannot start.

4 If player 1 starts, then players 4 and 5 must both
start.

5 Either player 2 or player 3 must start.

Given these constraints, Coach Night wants to maximize
the total defensive ability of the starting team. Formulate an
IP that will help him choose his starting team.

2 Because of excessive pollution on the Momiss River, the
state of Momiss is going to build pollution control stations.
Three sites (1, 2, and 3) are under consideration. Momiss is
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ROW    SLACK OR SURPLUS      DUAL PRICE
   1        242000.0           -1.000000
   2       0.0000000E+00       0.0000000E+00
   3       0.0000000E+00       0.0000000E+00
   4        1.000000           0.0000000E+00
   5       0.0000000E+00       0.0000000E+00
   6        1.000000           0.0000000E+00
   7       0.0000000E+00       0.0000000E+00
   8       0.0000000E+00       0.0000000E+00
   9       0.0000000E+00       0.0000000E+00
  10        1.000000           0.0000000E+00
  11       0.0000000E+00       0.0000000E+00
  12       0.0000000E+00       0.0000000E+00
  13       0.0000000E+00       0.0000000E+00
  14        1.000000           0.0000000E+00
  15       0.0000000E+00       0.0000000E+00
  16       0.0000000E+00       0.0000000E+00
  17       0.0000000E+00       0.0000000E+00
  18       0.0000000E+00       0.0000000E+00
  19       0.0000000E+00       0.0000000E+00
  20       0.0000000E+00       0.0000000E+00
  21       0.0000000E+00       0.0000000E+00
  22       0.0000000E+00       -1.000000
  23       0.0000000E+00       0.0000000E+00
  24       0.0000000E+00       0.0000000E+00
  25       0.0000000E+00       0.0000000E+00
  26       0.0000000E+00       0.0000000E+00
  27       0.0000000E+00       0.0000000E+00
  28       0.0000000E+00       -1.000000
  29       0.0000000E+00       0.0000000E+00
  30       0.0000000E+00       0.0000000E+00
  31       0.0000000E+00       0.0000000E+00
  32       0.0000000E+00       -1.000000
  33       0.0000000E+00       0.0000000E+00
  34       0.0000000E+00       0.0000000E+00
  35       0.0000000E+00       0.0000000E+00
  36       0.0000000E+00       -1.000000
  37       0.0000000E+00       0.0000000E+00

F I G U R E  8

(Continued)

P R O B L E M S
Group A

interested in controlling the pollution levels of two pollutants
(1 and 2). The state legislature requires that at least 80,000
tons of pollutant 1 and at least 50,000 tons of pollutant 2 be
removed from the river. The relevant data for this problem
are shown in Table 10. Formulate an IP to minimize the cost
of meeting the state legislature’s goals.

3 A manufacturer can sell product 1 at a profit of $2/unit
and product 2 at a profit of $5/unit. Three units of raw
material are needed to manufacture 1 unit of product 1, and

TA B L E  9

Ball-
Player Position Handling Shooting Rebounding Defense

1 G 3 3 1 3

2 C 2 1 3 2

3 G-F 2 3 2 2

4 F-C 1 3 3 1

5 G-F 3 3 3 3

6 F-C 3 1 2 3

7 G-F 3 2 2 1



6 units of raw material are needed to manufacture 1 unit of
product 2. A total of 120 units of raw material are available.
If any of product 1 is produced, a setup cost of $10 is
incurred, and if any of product 2 is produced, a setup cost
of $20 is incurred. Formulate an IP to maximize profits.

4 Suppose we add the following restriction to Example 1
(Stockco): If investments 2 and 3 are chosen, then investment
4 must be chosen. What constraints would be added to the
formulation given in the text?

5 How would the following restrictions modify the
formulation of Example 6 (Dorian car sizes)? (Do each part
separately.)

a If midsize cars are produced, then compacts must
also be produced.

b Either compacts or large cars must be manufactured.

6 To graduate from Basketweavers University with a major
in operations research, a student must complete at least two
math courses, at least two OR courses, and at least two
computer courses. Some courses can be used to fulfill more
than one requirement: Calculus can fulfill the math
requirement; operations research, math and OR requirements;
data structures, computer and math requirements; business
statistics, math and OR requirements; computer simulation,
OR and computer requirements; introduction to computer
programming, computer requirement; and forecasting, OR
and math requirements.

Some courses are prerequisites for others: Calculus is a
prerequisite for business statistics; introduction to computer
programming is a prerequisite for computer simulation and
for data structures; and business statistics is a prerequisite
for forecasting. Formulate an IP that minimizes the number
of courses needed to satisfy the major requirements.

7 In Example 7 (Euing Gas), suppose that x � 300. What
would be the values of y1, y2, y3, z1, z2, z3, and z4? How
about if x � 1,200?

8 Formulate an IP to solve the Dorian Auto problem for
the advertising data that exhibit increasing returns as more
ads are placed in a magazine (pages 495–496).

9 How can integer programming be used to ensure that the
variable x can assume only the values 1, 2, 3, and 4?

10 If x and y are integers, how could you ensure that x �

y � 3, 2x � 5y � 12, or both are satisfied by x and y?

11 If x and y are both integers, how would you ensure that
whenever x � 2, then y � 3?

12 A company is considering opening warehouses in four
cities: New York, Los Angeles, Chicago, and Atlanta. Each
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warehouse can ship 100 units per week. The weekly fixed cost
of keeping each warehouse open is $400 for New York, $500
for Los Angeles, $300 for Chicago, and $150 for Atlanta.
Region 1 of the country requires 80 units per week, region 2
requires 70 units per week, and region 3 requires 40 units per
week. The costs (including production and shipping costs) of
sending one unit from a plant to a region are shown in Table
11. We want to meet weekly demands at minimum cost, subject
to the preceding information and the following restrictions:

1 If the New York warehouse is opened, then the Los
Angeles warehouse must be opened.

2 At most two warehouses can be opened.

3 Either the Atlanta or the Los Angeles warehouse
must be opened.

Formulate an IP that can be used to minimize the weekly
costs of meeting demand.

13 Glueco produces three types of glue on two different
production lines. Each line can be utilized by up to seven
workers at a time. Workers are paid $500 per week on
production line 1, and $900 per week on production line 2.
A week of production costs $1,000 to set up production line
1 and $2,000 to set up production line 2. During a week on
a production line, each worker produces the number of units
of glue shown in Table 12. Each week, at least 120 units of
glue 1, at least 150 units of glue 2, and at least 200 units of
glue 3 must be produced. Formulate an IP to minimize the
total cost of meeting weekly demands.

14† The manager of State University’s DED computer
wants to be able to access five different files. These files are
scattered on 10 disks as shown in Table 13. The amount of
storage required by each disk is as follows: disk 1, 3K; disk
2, 5K; disk 3, 1K; disk 4, 2K; disk 5, 1K; disk 6, 4K; disk
7, 3K; disk 8, 1K; disk 9, 2K; disk 10, 2K.

a Formulate an IP that determines a set of disks re-
quiring the minimum amount of storage such that each

TA B L E  11

To ($)

From Region 1 Region 2 Region 3

New York 20 40 50

Los Angeles 48 15 26

Chicago 26 35 18

Atlanta 24 50 35

TA B L E  12

Glue

Production Line 1 2 3

1 20 30 40

2 50 35 45

†Based on Day (1965).

TA B L E  10

Cost of Cost of
Amount Removed per

Building Treating
Ton of Water

Site Station ($) 1 Ton Water ($) Pollutant 1 Pollutant 2

1 100,000 20 0.40 0.30

2 60,000 30 0.25 0.20

3 40,000 40 0.20 0.25



file is on at least one of the disks. For a given disk, we
must either store the entire disk or store none of the
disk; we cannot store part of a disk.

b Modify your formulation so that if disk 3 or disk 5
is used, then disk 2 must also be used.

15 Fruit Computer produces two types of computers: Pear
computers and Apricot computers. Relevant data are given
in Table 14. A total of 3,000 chips and 1,200 hours of labor
are available. Formulate an IP to help Fruit maximize profits.

16 The Lotus Point Condo Project will contain both homes
and apartments. The site can accommodate up to 10,000
dwelling units. The project must contain a recreation project:
either a swimming–tennis complex or a sailboat marina, but
not both. If a marina is built, then the number of homes in
the project must be at least triple the number of apartments
in the project. A marina will cost $1.2 million, and a
swimming–tennis complex will cost $2.8 million. The
developers believe that each apartment will yield revenues
with an NPV of $48,000, and each home will yield revenues
with an NPV of $46,000. Each home (or apartment) costs
$40,000 to build. Formulate an IP to help Lotus Point
maximize profits.

17 A product can be produced on four different machines.
Each machine has a fixed setup cost, variable production
costs per-unit-processed, and a production capacity given in
Table 15. A total of 2,000 units of the product must be
produced. Formulate an IP whose solution will tell us how
to minimize total costs.
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18 Use LINDO, LINGO, or Excel Solver to find the
optimal solution to the following IP:

Bookco Publishers is considering publishing five
textbooks. The maximum number of copies of each textbook
that can be sold, the variable cost of producing each
textbook, the sales price of each textbook, and the fixed cost
of a production run for each book are given in Table 16.
Thus, for example, producing 2,000 copies of book 1 brings
in a revenue of 2,000(50) � $100,000 but costs 80,000 �
25(2,000) � $130,000. Bookco can produce at most 10,000
books if it wants to maximize profit.

19 Comquat owns four production plants at which personal
computers are produced. Comquat can sell up to 20,000
computers per year at a price of $3,500 per computer. For
each plant the production capacity, the production cost per
computer, and the fixed cost of operating a plant for a year
are given in Table 17. Determine how Comquat can
maximize its yearly profit from computer production.

20 WSP Publishing sells textbooks to college students.
WSP has two sales reps available to assign to the A–G state
area. The number of college students (in thousands) in each
state is given in Figure 9. Each sales rep must be assigned
to two adjacent states. For example, a sales rep could be
assigned to A and B, but not A and D. WSP’s goal is to

TA B L E  14

Equipment Selling
Computer Labor Chips Costs ($) Price ($)

Pear 1 hour 2 5,000 400

Apricot 2 hours 5 7,000 900

TA B L E  15

Variable Cost
Machine Fixed Cost ($) per Unit (S) Capacity

1 1,000 20 900

2 920 24 1,000

3 800 16 1,200

4 700 28 1,600

TA B L E  16

Book

1 2 3 4 5

Maximum Demand 5,000 4,000 3,000 4,000 3,000

Variable Cost ($) 25 20 15 18 22

Sales Price ($) 50 40 38 32 40

Fixed Cost ($ Thousands) 80 50 60 30 40

TA B L E  17

Production Plant Fixed Cost Cost per
Plant Capacity ($ Million) Computer ($)

1 10,000 9 1,000

2 8,000 5 1,700

3 9,000 3 2,300

4 6,000 1 2,900

B 29

A 43

C 42

D 21 G 71

F 18

E 56

F I G U R E  9

TA B L E  13

Disk

File 1 2 3 4 5 6 7 8 9 10

1 x x x x x x

2 x x

3 x x x x

4 x x x

5 x x x x x x x



maximize the number of total students in the states assigned
to the sales reps. Formulate an IP whose solution will tell
you where to assign the sales reps. Then use LINDO to
solve your IP.

21 Eastinghouse sells air conditioners. The annual demand
for air conditioners in each region of the country is as
follows: East, 100,000; South, 150,000; Midwest, 110,000;
West, 90,000. Eastinghouse is considering building the air
conditioners in four different cities: New York, Atlanta,
Chicago, and Los Angeles. The cost of producing an air
conditioner in a city and shipping it to a region of the
country is given in Table 18. Any factory can produce as
many as 150,000 air conditioners per year. The annual fixed
cost of operating a factory in each city is given in Table 19.
At least 50,000 units of the Midwest demand for air
conditioners must come from New York, or at least 50,000
units of the Midwest demand must come from Atlanta.
Formulate an IP whose solution will tell Eastinghouse how
to minimize the annual cost of meeting demand for air
conditioners.

22 Consider the following puzzle. You are to pick out 4
three-letter “words” from the following list:

DBA DEG ADI FFD GHI BCD FDF BAI

For each word, you earn a score equal to the position that
the word’s third letter appears in the alphabet. For example,
DBA earns a score of 1, DEG earns a score of 7, and so on.
Your goal is to choose the four words that maximize your
total score, subject to the following constraint: The sum of
the positions in the alphabet for the first letter of each word
chosen must be at least as large as the sum of the positions
in the alphabet for the second letter of each word chosen.
Formulate an IP to solve this problem.

23 At a machine tool plant, five jobs must be completed
each day. The time it takes to do each job depends on the
machine used to do the job. If a machine is used at all, there
is a setup time required. The relevant times are given in
Table 20. The company’s goal is to minimize the sum of the
setup and machine operation times needed to complete all
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jobs. Formulate and solve (with LINDO, LINGO, or Excel
Solver) an IP whose solution will do this.

Group B

24† Breadco Bakeries is a new bakery chain that sells
bread to customers throughout the state of Indiana. Breadco
is considering building bakeries in three locations:
Evansville, Indianapolis, and South Bend. Each bakery can
bake as many as 900,000 loaves of bread each year. The cost
of building a bakery at each site is $5 million in Evansville,
$4 million in Indianapolis, and $4.5 million in South Bend.
To simplify the problem, we assume that Breadco has only
three customers, whose demands each year are 700,000
loaves (customer 1); 400,000 loaves (customer 2); and
300,000 loaves (customer 3). The total cost of baking and
shipping a loaf of bread to a customer is given in Table 21.

Assume that future shipping and production costs 
are discounted at a rate of 11�

1

9
�% per year. Assume that 

once built, a bakery lasts forever. Formulate an IP to
minimize Breadco’s total cost of meeting demand (present
and future). (Hint: You will need the fact that for x 
 1, 
a � ax � ax2 � ax3 � ��� � a/(1 � x).) How would you
modify the formulation if either Evansville or South Bend
must produce at least 800,000 loaves per year?

25‡ Speaker’s Clearinghouse must disburse sweepstakes
checks to winners in four different regions of the country:
Southeast (SE), Northeast (NE), Far West (FW), and
Midwest (MW). The average daily amount of the checks
written to winners in each region of the country is as follows:
SE, $40,000; NE, $60,000; FW, $30,000; MW, $50,000.
Speaker’s must issue the checks the day they find out a
customer has won. They can delay winners from quickly
cashing their checks by giving a winner a check drawn on
an out-of-the-way bank (this will cause the check to clear

TA B L E  19

City Annual Fixed Cost ($ Million)

New York 6.0

Atlanta 5.5

Chicago 5.8

Los Angeles 6.2

TA B L E  20

Job
Machine Setup

Machine 1 2 3 4 5 Time (Minutes)

1 42 70 93 X X 30

2 X 85 45 X X 40

3 58 X X 37 X 50

4 58 X 55 X 38 60

5 X 60 X 54 X 20

TA B L E  18

Price by Region ($)

City East South Midwest West

New York 206 225 230 290

Atlanta 225 206 221 270

Chicago 230 221 208 262

Los Angeles 290 270 262 215

†Based on Efroymson and Ray (1966).
‡Based on Shanker and Zoltners (1972).

TA B L E  21

To

From Customer 1 Customer 2 Customer 3

Evansville 16¢ 34¢ 26¢

Indianapolis 40¢ 30¢ 35¢

South Bend 45¢ 45¢ 23¢



slowly). Four bank sites are under consideration: Frosbite
Falls, Montana (FF), Redville, South Carolina (R), Painted
Forest, Arizona (PF), and Beanville, Maine (B). The annual
cost of maintaining an account at each bank is as follows:
FF, $50,000; R, $40,000; PF, $30,000; B, $20,000. Each
bank has a requirement that the average daily amount of
checks written cannot exceed $90,000. The average number
of days it takes a check to clear is given in Table 22. Assuming
that money invested by Speaker’s earns 15% per year, where
should the company have bank accounts, and from which
bank should a given customer’s check be written?

26† Governor Blue of the state of Berry is attempting to
get the state legislature to gerrymander Berry’s
congressional districts. The state consists of 10 cities, and
the numbers of registered Republicans and Democrats (in
thousands) in each city are shown in Table 23. Berry has
five congressional representatives. To form congressional
districts, cities must be grouped according to the following
restrictions:

1 All voters in a city must be in the same district.

2 Each district must contain between 150,000 and
250,000 voters (there are no independent voters).

Governor Blue is a Democrat. Assume that each voter always
votes a straight party ticket. Formulate an IP to help
Governor Blue maximize the number of Democrats who
will win congressional seats.

27‡ The Father Domino Company sells copying machines.
A major factor in making a sale is Domino’s quick service.
Domino sells copiers in six cities: Boston, New York,
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Philadelphia, Washington, Providence, and Atlantic City.
The annual sales of copiers projected depend on whether a
service representative is within 150 miles of a city (see
Table 24).

Each copier costs $500 to produce and sells for $1,000.
The annual cost per service representative is $80,000.
Domino must determine in which of its markets to base a
service representative. Only Boston, New York,
Philadelphia, and Washington are under consideration as
bases for service representative. The distance (in miles)
between the cities is shown in Table 25. Formulate an IP
that will help Domino maximize annual profits.

28§ Thailand inducts naval draftees at three drafting
centers. Then the draftees must each be sent to one of three
naval bases for training. The cost of transporting a draftee
from a drafting center to a base is given in Table 26. Each
year, 1,000 men are inducted at center 1; 600 at center 2;
and 700 at center 3. Base 1 can train 1,000 men a year, base
2, 800 men; and base 3, 700 men. After the inductees are
trained, they are sent to Thailand’s main naval base (B).
They may be transported on either a small ship or a large
ship. It costs $5,000 plus $2 per mile to use a small ship. A
small ship can transport up to 200 men to the main base and
may visit up to two bases on its way to the main base. Seven
small and five large ships are available. It costs $10,000 plus
$3 per mile to use a large ship. A large ship may visit up to

TA B L E  22

Region FF R PF B

SE 7 2 6 5

NE 8 4 5 3

FW 4 8 2 11

MW 5 4 7 5

TA B L E  23

City Republicans Democrats

1 80 34

2 60 44

3 40 44

4 20 24

5 40 114

6 40 64

7 70 14

8 50 44

9 70 54

10 70 64

†Based on Garfinkel and Nemhauser (1970).
‡Based on Gelb and Khumawala (1984).

TA B L E  24

Representative Sales
Within 150
Miles? Boston N.Y. Phila. Wash. Prov. Atl. City

Yes 700 1,000 900 800 400 450

No 500 1,750 700 450 200 300

TA B L E  25

Boston N.Y. Phila. Wash.

Boston 0 222 310 441

New York 222 0 89 241

Philadelphia 310 89 0 146

Washington 441 241 146 0

Providence 47 186 255 376

Atlantic City 350 123 82 178

TA B L E  26

To ($)

From Base 1 Base 2 Base 3

Center 1 200 200 300

Center 2 300 400 220

Center 3 300 400 250

§Based on Choypeng, Puakpong, and Rosenthal (1986).



three bases on its way to the main base and may transport
up to 500 men. The possible “tours” for each type of ship
are given in Table 27.

Assume that the assignment of draftees to training bases
is done using the transportation method. Then formulate an
IP that will minimize the total cost incurred in sending the
men from the training bases to the main base. (Hint: Let 
yij � number of men sent by tour i from base j to main base
(B) on a small ship, xij � number of men sent by tour i from
base j to B on a large ship, Si � number of times tour i is
used by a small ship, and Li � number of times tour i is
used by a large ship.)

29 You have been assigned to arrange the songs on the
cassette version of Madonna’s latest album. A cassette tape
has two sides (1 and 2). The songs on each side of the cassette
must total between 14 and 16 minutes in length. The length
and type of each song are given in Table 28. The assignment
of songs to the tape must satisfy the following conditions:

1 Each side must have exactly two ballads.

2 Side 1 must have at least three hit songs.

3 Either song 5 or song 6 must be on side 1.

4 If songs 2 and 4 are on side 1, then song 5 must be
on side 2.

Explain how you could use an integer programming
formulation to determine whether there is an arrangement
of songs satisfying these restrictions.

30 Cousin Bruzie of radio station WABC schedules radio
commercials in 60-second blocks. This hour, the station has
sold commercial time for commercials of 15, 16, 20, 25, 30,
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35, 40, and 50 seconds. Formulate an integer programming
model that can be used to determine the minimum number
of 60-second blocks of commercials that must be scheduled
to fit in all the current hour’s commercials. (Hint: Certainly
no more than eight blocks of time are needed. Let yi � 1 if
block i is used and yi � 0 otherwise).

31† A Sunco oil delivery truck contains five compartments,
holding up to 2,700, 2,800, 1,100, 1,800, and 3,400 gallons
of fuel, respectively. The company must deliver three types
of fuel (super, regular, and unleaded) to a customer. The
demands, penalty per gallon short, and the maximum allowed
shortage are given in Table 29. Each compartment of the
truck can carry only one type of gasoline. Formulate an IP
whose solution will tell Sunco how to load the truck in a way
that minimizes shortage costs.

32‡ Simon’s Mall has 10,000 sq ft of space to rent and
wants to determine the types of stores that should occupy the
mall. The minimum number and maximum number of each
type of store (along with the square footage of each type) is
given in Table 30. The annual profit made by each type of
store will, of course, depend on how many stores of that type
are in the mall. This dependence is given in Table 31 (all
profits are in units of $10,000). Thus, if there are two
department stores in the mall, each department store earns
$210,000 profit per year. Each store pays 5% of its annual
profit as rent to Simon’s. Formulate an IP whose solution will
tell Simon’s how to maximize rental income from the mall.

33§ Boris Milkem’s financial firm owns six assets. The
expected sales price (in millions of dollars) for each asset is
given in Table 32. If asset 1 is sold in year 2, the firm
receives $20 million. To maintain a regular cash flow,
Milkem must sell at least $20 million of assets during year
1, at least $30 million worth during year 2, and at least $35
million worth during year 3. Set up an IP that Milkem can

TA B L E  27

Tour Locations Miles
Number Visited Traveled

1 B–1–B 370

2 B–1–2–B 515

3 B–2–3–B 665

4 B–2–B 460

5 B–3–B 600

6 B–1–3–B 640

7 B–1–2–3–B 720

TA B L E  28

Length
Song Type (in minutes)

1 Ballad 4

2 Hit 5

3 Ballad 3

4 Hit 2

5 Ballad 4

6 Hit 3

7 5

8 Ballad and hit 4

TA B L E  29

Cost per Maximum Allowed
Type of Gasoline Demand Gallon Short ($) Shortage

Super 2,900 10 500

Regular 4,000 18 500

Unleaded 4,900 16 500

TA B L E  30

Store Type Square Footage Minimum Maximum

Jewelry 500 1 3

Shoe 600 1 3

Department 1,500 1 3

Book 700 0 3

Clothing 900 1 3

†Based on Brown (1987).
‡Based on Bean et al. (1988).
§Based on Bean, Noon, and Salton (1987).



use to determine how to maximize total revenue from assets
sold during the next three years. In implementing this model,
how could the idea of a rolling planning horizon be used?

34† The Smalltown Fire Department currently has seven
conventional ladder companies and seven alarm boxes. The
two closest ladder companies to each alarm box are given
in Table 33. The city fathers want to maximize the number
of conventional ladder companies that can be replaced with
tower ladder companies. Unfortunately, political consid-
erations dictate that a conventional company can be replaced
only if, after replacement, at least one of the two closest
companies to each alarm box is still a conventional company.

a Formulate an IP that can be used to maximize the
number of conventional companies that can be replaced
by tower companies.

b Suppose yk � 1 if conventional company k is re-
placed. Show that if we let zk � 1 � yk, the answer in
part (a) is equivalent to a set-covering problem.

35‡ A power plant has three boilers. If a given boiler is
operated, it can be used to produce a quantity of steam (in
tons) between the minimum and maximum given in Table
34. The cost of producing a ton of steam on each boiler is
also given. Steam from the boilers is used to produce power
on three turbines. If operated, each turbine can process an
amount of steam (in tons) between the minimum and
maximum given in Table 35. The cost of processing a ton
of steam and the power produced by each turbine is also
given. Formulate an IP that can be used to minimize the cost
of producing 8,000 kwh of power.

508 C H A P T E R 9 Integer Programming

36§ An Ohio company, Clevcinn, consists of three
subsidiaries. Each has the respective average payroll,
unemployment reserve fund, and estimated payroll given in
Table 36. (All figures are in millions of dollars.) Any
employer in the state of Ohio whose reserve/average payroll
ratio is less than 1 must pay 20% of its estimated payroll in
unemployment insurance premiums or 10% if the ratio is at
least 1. Clevcinn can aggregate its subsidiaries and label
them as separate employers. For instance, if subsidiaries 2
and 3 are aggregated, they must pay 20% of their combined
payroll in unemployment insurance premiums. Formulate
an IP that can be used to determine which subsidiaries
should be aggregated.

37 The Indiana University Business School has two rooms
that each seat 50 students, one room that seats 100 students,
and one room that seats 150 students. Classes are held five
hours a day. The four types of requests for rooms are listed
in Table 37. The business school must decide how many
requests of each type should be assigned to each type of
room. Penalties for each type of assignment are given in
Table 38. An X means that a request must be satisfied by a
room of adequate size. Formulate an IP whose solution will
tell the business school how to assign classes to rooms in a
way that minimizes total penalties.

TA B L E  31

Number of Stores

Type of Store 1 2 3

Jewelry 9 8 7

Shoe 10 9 5

Department 27 21 20

Book 16 9 7

Clothing 17 13 10

TA B L E  32

Sold In

Asset Year 1 Year 2 Year 3

1 15 20 24

2 16 18 21

3 22 30 36

4 10 20 30

5 17 19 22

6 19 25 29

†Based on Walker (1974).
‡Based on Cavalieri, Roversi, and Ruggeri (1971).

TA B L E  33

Two Closest
Alarm Box Ladder Companies

1 2, 3

2 3, 4

3 1, 5

4 2, 6

5 3, 6

6 4, 7

7 5, 7

TA B L E  34

Boiler Number Minimum Steam Maximum Steam Cost/Ton ($)

1 500 1,000 10

2 300 1,900 18

3 400 1,800 16

TA B L E  35

Turbine Kwh per Ton Processing Cost
Number Minimum Maximum of Steam per Ton ($)

1 300 600 4 2

2 500 800 5 3

3 600 900 6 4

§Based on Salkin (1979).



38 A company sells seven types of boxes, ranging in
volume from 17 to 33 cubic feet. The demand and size of
each box are given in Table 39. The variable cost (in dollars)
of producing each box is equal to the box’s volume. A fixed
cost of $1,000 is incurred to produce any of a particular
box. If the company desires, demand for a box may be
satisfied by a box of larger size. Formulate and solve (with
LINDO, LINGO, or Excel Solver) an IP whose solution will
minimize the cost of meeting the demand for boxes.

39 Huntco produces tomato sauce at five different plants.
The capacity (in tons) of each plant is given in Table 40. The
tomato sauce is stored at one of three warehouses. The per-
ton cost (in hundreds of dollars) of producing tomato sauce
at each plant and shipping it to each warehouse is given in
Table 41. Huntco has four customers. The cost of shipping
a ton of sauce from each warehouse to each customer is as
given in Table 42. Each customer must be delivered the
amount (in tons) of sauce given in Table 43.
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a Formulate a balanced transportation problem whose
solution will tell us how to minimize the cost of meet-
ing the customer demands.

b Modify this problem if these are annual demands
and there is a fixed annual cost of operating each plant
and warehouse. These costs (in thousands) are given in
Table 44.

40 To satisfy telecommunication needs for the next 20
years, Telstar Corporation estimates that the number of
circuits required between the United States and Germany,
France, Switzerland, and the United Kingdom will be as
given in Table 45.

Two types of circuits may be created: cable and satellite.
Two types of cable circuits (TA7 and TA8) are available.
The fixed cost of building each type of cable and the circuit
capacity of each type are as given in Table 46.

TA7 and TA8 cable go underseas from the United States
to the English Channel. Thus, it costs an additional amount
to extend these circuits to other European countries. The
annual variable cost per circuit is given in Table 47.

TA B L E  36

Subsidiary Average Payroll Reserve Estimated Payroll

1 300 400 350

2 600 510 400

3 800 600 500

TA B L E  37

Size Room Hours Number of
Type Requested (Seats) Requested Requests

1 150 2, 3, 4 3

2 150 1, 2, 3 1

3 100 5 1

4 150 1, 2 2

TA B L E  38

Sizes Used to

Size
Satisfy Request

Requested 50 100 150 Penalty

50 0 2 4 100* (Hours requested)

100 X 0 1 100* (Hours requested)

150 X X 0 100* (Hours requested)

TA B L E  39

Box

1 2 3 4 5 6 7

Size 433 330 326 324 319 318 317

Demand 400 300 500 700 200 400 200

TA B L E  40

Plant

1 2 3 4 5

Tons 300 200 300 200 400

TA B L E  41

To

From Warehouse 1 Warehouse 2 Warehouse 3

Plant 1 8 10 12

Plant 2 7 5 7

Plant 3 8 6 5

Plant 4 5 6 7

Plant 5 7 6 5

TA B L E  42

To

From Customer 1 Customer 2 Customer 3 Customer 4

Warehouse 1 40 80 90 50

Warehouse 2 70 70 60 80

Warehouse 3 80 30 50 60

TA B L E  43

Customer

1 2 3 4

Demand 200 300 150 250



To create and use a satellite circuit, Telstar must launch
a satellite, and each country using the satellite must have an
earth station(s) to receive the signal. It costs $3 billion to
launch a satellite. Each launched satellite can handle up to
140,000 circuits. All earth stations have a maximum capacity
of 190 circuits and cost $6,000 per year to operate. Formulate
an integer programming model to help determine how to
supply the needed circuits and minimize total cost incurred
during the next 20 years.

Then use LINDO (or LINGO) to find a near optimal
solution. LINDO after 300 pivots did not think it had an
optimal solution! By the way, do not require that the number
of cable or satellite circuits in a country be integers, or your
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TA B L E  44†

Fixed Annual Cost
Facility (in Thousands) $

Plant 1 35

Plant 2 45

Plant 3 40

Plant 4 42

Plant 5 40

Warehouse 1 30

Warehouse 2 40

Warehouse 3 30

†Based on Geoffrion and Graves (1974).

model will never get solved! For some variables, however,
the integer requirement is vital!†

41 A large drug company must determine how many sales
representatives to assign to each of four sales districts. The
cost of having n representatives in a district is ($88,000 �
$80,000n) per year. If a rep is based in a given district, the
time it takes to complete a call on a doctor is given in Table
48 (times are in hours).

Each sales rep can work up to 160 hours per month.
Each month the number of calls given in Table 49 must be
made in each district. A fractional number of representatives
in a district is not permissible. Determine how many
representatives should be assigned to each district.

42‡ In this assignment, we will use integer programming
and the concept of bond duration to show how Wall Street
firms can select an optimal bond portfolio. The duration of
a bond (or any stream of payments) is defined as follows: Let
C(t) be the payment of the bond at time t (t � 1, 2, . . . , n).
Let r � market interest rate. If the time-weighted average of
the bond’s payments is given by:

�
t�n

t�1

tC(t)/(1 � r)t

and the market price P of the bond is given by:

�
t�n

t�1

C(t)/(1 � r)t

then the duration of the bond D is given by:

D � (1/P) �
n

t�1

Thus, the duration of a bond measures the “average” time
(in years) at which a randomly chosen $1 of NPV is received.
Suppose an insurance company needs to make payments of
$20,000 every six months for the next 10 years. If the market

tC(t)
�

TA B L E  45

Country Required Circuits

France 20,000

Germany 60,000

Switzerland 16,000

United Kingdom 60,000

TA B L E  46

Fixed Operating Cost
Cable Type ($ Billion) Capacity

TA7 1.6 38,500

TA8 2.3 37,800

TA B L E  47

Country Variable Cost per Circuit ($)

France 0

Germany 310

Switzerland 290

United Kingdom 0

†Based on Calloway, Cummins, and Freeland (1990).
‡Based on Strong (1989).

TA B L E  48

Actual Sales Call District

Rep’s Base District 1 2 3 4

1 1 4 5 7

2 4 1 3 5

3 5 3 1 2

4 7 5 2 1

TA B L E  49

District Number of Calls

1 50

2 80

3 100

4 60



rate of interest is 10% per year, then this stream of payments
has an NPV of $251,780 and a duration of 4.47 years. If we
want to minimize the sensitivity of our bond portfolio to
interest risk and still meet our payment obligations, then it
has been shown that we should invest $251,780 at the
beginning of year 1 in a bond portfolio having a duration
equal to the duration of the payment stream.

Suppose the only cost of owning a bond portfolio is the
transaction cost associated with the cost of purchasing the
bonds. Let’s suppose six bonds are available. The payment
streams for these six bonds are given in Table 50. The
transaction cost of purchasing any units of bond i equals
$500 � $5 per bond purchased. Thus, purchasing one unit
of bond 1 costs $505 and purchasing 10 units of bond 1
costs $550. Assume that a fractional number of bond i unit
purchases is permissible, but in the interests of diver-
sification at most 100 units of any bond can be purchased.
Treasury bonds may also be purchased (with no transaction
cost). A treasury bond costs $980 and has a duration of .25
year (90 days).

After computing the price and duration for each bond,
use integer programming to determine the immunized bond
portfolio that incurs the smallest transaction costs. You may
assume the duration of your portfolio is a weighted average
of the durations of the bonds included in the portfolio,
where the weight associated with each bond is equal to the
money invested in that bond.

43 Ford has four automobile plants. Each is capable of
producing the Taurus, Lincoln, or Escort, but it can only
produce one of these cars. The fixed cost of operating each
plant for a year and the variable cost of producing a car of
each type at each plant are given in Table 51.

Ford faces the following restrictions:

a Each plant can produce only one type of car.

b The total production of each type of car must be at
a single plant; that is, for example, if any Tauruses are
made at plant 1, then all Tauruses must be made there.

c If plants 3 and 4 are used, then plant 1 must also be
used.
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Each year, Ford must produce 500,000 of each type of
car. Formulate an IP whose solution will tell Ford how to
minimize the annual cost of producing cars.

44 Venture capital firm JD is trying to determine in which
of 10 projects it should invest. It knows how much money
is available for investment each of the next N years, the
NPV of each project, and the cash required by each project
during each of the next N years (see Table 52).

a Write a LINGO program to determine the projects
in which JD should invest.

b Use your LINGO program to determine which of the
10 projects should be selected. Each project requires
cash investment during the next three years. During year
1, $80 million is available for investment. During year 2,
$60 million is available for investment. During year 3,
$70 million is available for investment. (All figures are
in millions of dollars.)

45 Write a LINGO program that can solve a fixed-charge
problem of the type described in Example 3. Assume there
is a limited demand for each product. Then use your program
to solve a four-product, three-resource fixed-charge problem
with the parameters shown in Tables 53, 54, and 55.

TA B L E  50

Available Bonds

Year Bond 1 Bond 2 Bond 3 Bond 4 Bond 5 Bond 6

1 50 100 130 20 100 120

2 60 90 130 20 100 100

3 70 80 130 20 100 80

4 80 70 130 20 100 140

5 90 60 130 20 100 100

6 100 50 130 80 100 90

7 110 40 130 40 100 110

8 120 30 130 150 100 130

9 130 20 130 200 100 180

10 1,010 1,040 1,130 1,200 1,100 950

TA B L E  51

Variable Cost ($)

Plant Fixed Cost ($) Taurus Lincoln Escort

1 7 billion 12,000 16,000 19,000

2 6 billion 15,000 18,000 11,000

3 4 billion 17,000 19,000 12,000

4 2 billion 19,000 22,000 14,000

TA B L E  52

Investment
Project

($ Million) 1 2 3 4 5 6 7 8 9 10

Year 1 6 9 12 15 18 21 24 27 30 35

Year 2 3 5 7 9 11 13 15 17 19 21

Year 3 5 7 9 12 12 14 16 11 20 24

NPV 20 30 40 50 60 70 80 90 100 130

TA B L E  53

Resource Resource Availability

1 40

2 60

3 80
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9.3 The Branch-and-Bound Method for Solving 
Pure Integer Programming Problems

In practice, most IPs are solved by using the technique of branch-and-bound. Branch-and-

bound methods find the optimal solution to an IP by efficiently enumerating the points in

a subproblem’s feasible region. Before explaining how branch-and-bound works, we need

to make the following elementary but important observation: If you solve the LP relax-

ation of a pure IP and obtain a solution in which all variables are integers, then the op-

timal solution to the LP relaxation is also the optimal solution to the IP.

To see why this observation is true, consider the following IP:

max z � 3x1 � 2x2

s.t. 2x1 � x2 � 6

x1, x2 � 0; x1, x2 integer

The optimal solution to the LP relaxation of this pure IP is x1 � 0, x2 � 6, z � 12. Be-

cause this solution gives integer values to all variables, the preceding observation implies

that x1 � 0, x2 � 6, z � 12 is also the optimal solution to the IP. Observe that the feasi-

ble region for the IP is a subset of the points in the LP relaxation’s feasible region (see

Figure 10). Thus, the optimal z-value for the IP cannot be larger than the optimal z-value

for the LP relaxation. This means that the optimal z-value for the IP must be � 12. But

the point x1 � 0, x2 � 6, z � 12 is feasible for the IP and has z � 12. Thus, x1 � 0, 

x2 � 6, z � 12 must be optimal for the IP.

TA B L E  54

Unit Profit
Product Demand Contribution ($) Fixed Charge ($)

1 40 2 30

2 60 5 40

3 65 6 50

4 70 7 60

TA B L E  55

Product

Resource Usage 1 2 3 4

1 1 2 3.5 4

2 5 6 7.5 9

3 3 4 5.5 6

x2

x1

1

1

= IP feasible point

= IP relaxation
,
s feasible region

2 3

2

3

4

5

6

F I G U R E  10

Feasible Region for 
an IP and Its 
LP Relaxation



The Telfa Corporation manufactures tables and chairs. A table requires 1 hour of labor

and 9 square board feet of wood, and a chair requires 1 hour of labor and 5 square board

feet of wood. Currently, 6 hours of labor and 45 square board feet of wood are available.

Each table contributes $8 to profit, and each chair contributes $5 to profit. Formulate and

solve an IP to maximize Telfa’s profit.

Solution Let

x1 � number of tables manufactured

x2 � number of chairs manufactured

Because x1 and x2 must be integers, Telfa wants to solve the following IP:

max z � 8x1 � 5x2

s.t. x1 � x2 � 6 (Labor constraint)

s.t. 9x1 � 5x2 � 45 (Wood constraint)

x1, x2 � 0; x1, x2 integer

The branch-and-bound method begins by solving the LP relaxation of the IP. If all the de-

cision variables assume integer values in the optimal solution to the LP relaxation, then

the optimal solution to the LP relaxation will be the optimal solution to the IP. We call

the LP relaxation subproblem 1. Unfortunately, the optimal solution to the LP relaxation

is z � �
16
4
5

�, x1 � �
1
4
5
�, x2 � �

9
4

� (see Figure 11). From Section 9.1, we know that (optimal 

z-value for IP) � (optimal z-value for LP relaxation). This implies that the optimal z-value

for the IP cannot exceed �
16
4
5

�. Thus, the optimal z-value for the LP relaxation is an upper

bound for Telfa’s profit.

Our next step is to partition the feasible region for the LP relaxation in an attempt to

find out more about the location of the IP’s optimal solution. We arbitrarily choose a vari-

able that is fractional in the optimal solution to the LP relaxation—say, x1. Now observe

that every point in the feasible region for the IP must have either x1 � 3 or x1 � 4. (Why

can’t a feasible solution to the IP have 3 
 x1 
 4?) With this in mind, we “branch” on

the variable x1 and create the following two additional subproblems:
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Branch-and-Bound MethodE X A M P L E  9

x2

x1

1

1

2

3

4

5

6

7

8

9
= IP feasible point

= IP relaxation
,
s feasible region

Optimal LP solution to subproblem 1

9x1 + 5x2 = 45

x1 + x2 = 6

x1 = 3.75

x2 = 2.25

2 3 4 5 6

F I G U R E  11

Feasible Region for
Telfa Problem



Subproblem 2 Subproblem 1 � Constraint x1 � 4.

Subproblem 3 Subproblem 1 � Constraint x1 � 3.

Observe that neither subproblem 2 nor subproblem 3 includes any points with x1 � �
1
4
5
�.

This means that the optimal solution to the LP relaxation cannot recur when we solve sub-

problem 2 or subproblem 3.

From Figure 12, we see that every point in the feasible region for the Telfa IP is in-

cluded in the feasible region for subproblem 2 or subproblem 3. Also, the feasible regions

for subproblems 2 and 3 have no points in common. Because subproblems 2 and 3 were

created by adding constraints involving x1, we say that subproblems 2 and 3 were created

by branching on x1.

We now choose any subproblem that has not yet been solved as an LP. We arbitrarily

choose to solve subproblem 2. From Figure 12, we see that the optimal solution to sub-

problem 2 is z � 41, x1 � 4, x2 � �
9
5

� (point C). Our accomplishments to date are sum-

marized in Figure 13.

A display of all subproblems that have been created is called a tree. Each subproblem

is referred to as a node of the tree, and each line connecting two nodes of the tree is called

an arc. The constraints associated with any node of the tree are the constraints for the LP

relaxation plus the constraints associated with the arcs leading from subproblem 1 to the

node. The label t indicates the chronological order in which the subproblems are solved.
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x2

x1

1

1

2

3

4

5

6

7

8

9

x1 = 4
x1 = 3

z  = 20

C = optimal solution for subproblem 2

Subproblem
3

Subproblem
2

G

D E

F

B

C

A

= feasible point for original IP

2 3 4 5 6

DEFG = feasible region for subproblem 3

ABC = feasible region for subproblem 2

F I G U R E  12

Feasible Region for
Subproblems 2 and 3 

of Telfa Problem

F I G U R E  13

Telfa Subproblems 
1 and 2 Solved

Subproblem 1

Subproblem 2

Subproblem 3

z  =

z  =  41

x1  =  4

x1  =
t  = 1

t  = 2

x2  =

x1  ≥  4 x1  ≤  3

165
4

15
4

9
4

x2  = 9
5



The optimal solution to subproblem 2 did not yield an all-integer solution, so we

choose to use subproblem 2 to create two new subproblems. We choose a fractional-

valued variable in the optimal solution to subproblem 2 and then branch on that variable.

Because x2 is the only fractional variable in the optimal solution to subproblem 2, we

branch on x2. We partition the feasible region for subproblem 2 into those points having

x2 � 2 and x2 � 1. This creates the following two subproblems:

Subproblem 4 Subproblem 1 � Constraints x1 � 4 and x2 � 2 � subproblem 2 � Con-

straint x2 � 2.

Subproblem 5 Subproblem 1 � Constraints x1 � 4 and x2 � 1 � subproblem 2 � Con-

straint x2 � 1.

The feasible regions for subproblems 4 and 5 are displayed in Figure 14. The set of un-

solved subproblems consists of subproblems 3, 4, and 5. We now choose a subproblem to

solve. For reasons that are discussed later, we choose to solve the most recently created

subproblem. (This is called the LIFO, or last-in-first-out, rule.) The LIFO rule implies that

we should next solve subproblem 4 or subproblem 5. We arbitrarily choose to solve sub-

problem 4. From Figure 14 we see that subproblem 4 is infeasible. Thus, subproblem 4

cannot yield the optimal solution to the IP. To indicate this fact, we place an � by sub-

problem 4 (see Figure 15). Because any branches emanating from subproblem 4 will yield

no useful information, it is fruitless to create them. When further branching on a sub-

problem cannot yield any useful information, we say that the subproblem (or node) is

fathomed. Our results to date are displayed in Figure 15.

Now the only unsolved subproblems are subproblems 3 and 5. The LIFO rule implies

that subproblem 5 should be solved next. From Figure 14, we see that the optimal solu-

tion to subproblem 5 is point I in Figure 14: z � �
36
9
5

�, x1 � �
4
9
0
�, x2 � 1. This solution does

not yield any immediately useful information, so we choose to partition subproblem 5’s

feasible region by branching on the fractional-valued variable x1. This yields two new sub-

problems (see Figure 16).

Subproblem 6 Subproblem 5 � Constraint x1 � 5.

Subproblem 7 Subproblem 5 � Constraint x1 � 4.
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x2

x1

1

2

3

4

5

6
ABHI = feasible region for subproblem 5

No feasible region for subproblem 4 (x2 ≥ 2 does not intersect ABC)

C = (4, 1.8)

B = (4, 0)

A = (5, 0)

H = (4, 1)

I  = (     ) 

z = 20

x2 = 2

x2 = 1

40
9

1,

7

1 2 3 4

C

H I

B A

5

Subproblem
5

6

F I G U R E  14

Feasible Regions for
Subproblems 4 and 5 

of Telfa Problem



Together, subproblems 6 and 7 include all integer points that were included in the feasi-

ble region for subproblem 5. Also, no point having x1 � �
4
9
0
� can be in the feasible region

for subproblem 6 or subproblem 7. Thus, the optimal solution to subproblem 5 will not

recur when we solve subproblems 6 and 7. Our tree now looks as shown in Figure 17.

Subproblems 3, 6, and 7 are now unsolved. The LIFO rule implies that we next solve

subproblem 6 or subproblem 7. We arbitrarily choose to solve subproblem 7. From Figure

16, we see that the optimal solution to subproblem 7 is point H: z � 37, x1 � 4, 

x2 � 1. Both x1 and x2 assume integer values, so this solution is feasible for the original

IP. We now know that subproblem 7 yields a feasible integer solution with z � 37. We also

know that subproblem 7 cannot yield a feasible integer solution having z 	 37. Thus, fur-

ther branching on subproblem 7 will yield no new information about the optimal solution

to the IP, and subproblem has been fathomed. The tree to date is pictured in Figure 18.
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Subproblem 1

Subproblem 2

Subproblem 3

Subproblem 5
Subproblem 4

Infeasible

z  =

z  =  41
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t  = 3

x2  =

x1  ≥  4

x2  ≥  2 x2  ≤  1

x1  ≤  3
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4

9
4

x2  = 9
5
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BH  =  feasible region for subproblem 7

Subproblem 7 Subproblem 6
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H
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I

x1  =  4 x1  =  5
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F I G U R E  16
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Subproblems 6 and 7 
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Subproblem 1

Subproblem 2

Subproblem 3

z  =

z  =  41

x1  =  4

x1  =
t  = 1

t  = 2

t  = 3 t  = 4

x2  =

x1  ≥  4

x2  ≥  2 x2  ≤  1
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x1  ≤  3
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4

15
4

9
4

Subproblem 5
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9
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Infeasible

Subproblem 6 Subproblem 7
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9
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Subproblem 1

Subproblem 2

Subproblem 3
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t  = 1
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4
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4

9
4

Subproblem 5

z  =

x1  =

x2  =  1

365
9

40
9

Subproblem 4

Infeasible

Subproblem 6

x2  = 9
5

Subproblem 7

Candidate solution

z  =  37

x1  =  4

x2  =  1

F I G U R E  17

Telfa Subproblems 
1, 2, 4, and 5 Solved

F I G U R E  18

Branch-and-Bound Tree
After Five Subproblems

Have Been Solved
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Subproblem 1

Subproblem 2

Subproblem 3

z  =

z  =  41
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x1  =
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9
4
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5
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t  = 6

Subproblem 6

Candidate solution

z  =  40

x1  =  5

x2  =  0

LB  =  37

F I G U R E  19

Branch-and-Bound Tree
After Six Subproblems

Have Been Solved

Subproblem 1

Subproblem 2

z  =

z  =  41

x1  =  4

x1  =
t  = 1

t  = 2 t  = 7

t  = 3 t  = 4

t  = 5

x2  =

x1  ≥  4

x2  ≥  2 x2  ≤  1

x1  ≤  4x1  ≥  5

x1  ≤  3

165
4

15
4

9
4

Subproblem 5

z  =

x1  =

x2  =  1

365
9

40
9

Subproblem 4

Infeasible

x2  = 9
5

Subproblem 7

Candidate solution

z  =  37

x1  =  4

x2  =  1

Subproblem 6

Candidate solution

z  =  40

x1  =  5

x2  =  0

t  = 6

Subproblem 3

z  =  39

x1  =  3

x2  =  3

LB  =  40

F I G U R E  20

Final Branch-and-Bound
Tree for Telfa Problem



A solution obtained by solving a subproblem in which all variables have integer val-

ues is a candidate solution. Because the candidate solution may be optimal, we must

keep a candidate solution until a better feasible solution to the IP (if any exists) is found.

We have a feasible solution to the original IP with z � 37, so we may conclude that the

optimal z-value for the IP � 37. Thus, the z-value for the candidate solution is a lower

bound on the optimal z-value for the original IP. We note this by placing the notation 

LB � 37 in the box corresponding to the next solved subproblem (see Figure 19).

The only remaining unsolved subproblems are 6 and 3. Following the LIFO rule, we

next solve subproblem 6. From Figure 16, we find that the optimal solution to subprob-

lem 6 is point A: z � 40, x1 � 5, x2 � 0. All decision variables have integer values, so

this is a candidate solution. Its z-value of 40 is larger than the z-value of the best previ-

ous candidate (candidate 7 with z � 37). Thus, subproblem 7 cannot yield the optimal so-

lution of the IP (we denote this fact by placing an � by subproblem 7). We also update

our LB to 40. Our progress to date is summarized in Figure 20.

Subproblem 3 is the only remaining unsolved problem. From Figure 12, we find that

the optimal solution to subproblem 3 is point F: z � 39, x1 � x2 � 3. Subproblem 3 can-

not yield a z-value exceeding the current lower bound of 40, so it cannot yield the opti-

mal solution to the original IP. Therefore, we place an � by it in Figure 20. From Figure

20, we see that there are no remaining unsolved subproblems, and that only subproblem

6 can yield the optimal solution to the IP. Thus, the optimal solution to the IP is for Telfa

to manufacture 5 tables and 0 chairs. This solution will contribute $40 to profits.

In using the branch-and-bound method to solve the Telfa problem, we have implicitly

enumerated all points in the IP’s feasible region. Eventually, all such points (except for

the optimal solution) are eliminated from consideration, and the branch-and-bound pro-

cedure is complete. To show that the branch-and-bound procedure actually does consider

all points in the IP’s feasible region, we examine several possible solutions to the Telfa

problem and show how the procedure found these points to be nonoptimal. For example,

how do we know that x1 � 2, x2 � 3 is not optimal? This point is in the feasible region

for subproblem 3, and we know that all points in the feasible region for subproblem 3

have z � 39. Thus, our analysis of subproblem 3 shows that x1 � 2, x2 � 3 cannot beat

z � 40 and cannot be optimal. As another example, why isn’t x1 � 4, x2 � 2 optimal?

Following the branches of the tree, we find that x1 � 4, x2 � 2 is associated with sub-

problem 4. Because no point associated with subproblem 4 is feasible, x1 � 4, x2 � 2

must fail to satisfy the constraints for the original IP and thus cannot be optimal for the

Telfa problem. In a similar fashion, the branch-and-bound analysis has eliminated all

points x1, x2 (except for the optimal solution) from consideration.

For the simple Telfa problem, the use of the branch-and-bound method may seem like

using a cannon to kill a fly, but for an IP in which the feasible region contains a large

number of integer points, the procedure can be very efficient for eliminating nonoptimal

points from consideration. For example, suppose we are applying the branch-and-bound

method and our current LB � 42. Suppose we solve a subproblem that contains 1 mil-

lion feasible points for the IP. If the optimal solution to this subproblem has z 
 42, then

we have eliminated 1 million nonoptimal points by solving a single LP!

The key aspects of the branch-and-bound method for solving pure IPs (mixed IPs are

considered in the next section) may be summarized as follows:

Step 1 If it is unnecessary to branch on a subproblem, then it is fathomed. The following

three situations result in a subproblem being fathomed: (1) The subproblem is infeasible; (2)

the subproblem yields an optimal solution in which all variables have integer values; and (3)

the optimal z-value for the subproblem does not exceed (in a max problem) the current LB.
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Step 2 A subproblem may be eliminated from consideration in the following situations:

(1) The subproblem is infeasible (in the Telfa problem, subproblem 4 was eliminated for

this reason); (2) the LB (representing the z-value of the best candidate to date) is at least

as large as the z-value for the subproblem (in the Telfa problem, subproblems 3 and 7 were

eliminated for this reason).

Recall that in solving the Telfa problem by the branch-and-bound procedure, many seem-

ingly arbitrary choices were made. For example, when x1 and x2 were both fractional in the

optimal solution to subproblem 1, how did we determine the branching variable? Or how

did we determine which subproblem should next be solved? The manner in which these

questions are answered can result in trees that differ greatly in size and in the computer time

required to find an optimal solution. Through experience and ingenuity, practitioners of the

procedure have developed guidelines on how to make the necessary decisions.

Two general approaches are commonly used to determine which subproblems should

be solved next. The most widely used is the LIFO rule, which chooses to solve the most

recently created subproblem.† LIFO leads us down one side of the branch-and-bound tree

(as in the Telfa problem) and quickly finds a candidate solution. Then we backtrack our

way up to the top of the other side of the tree. For this reason, the LIFO approach is of-

ten called backtracking.

The second commonly used method is jumptracking. When branching on a node, the

jumptracking approach solves all the problems created by the branching. Then it branches

again on the node with the best z-value. Jumptracking often jumps from one side of the

tree to the other. It usually creates more subproblems and requires more computer stor-

age than backtracking. The idea behind jumptracking is that moving toward the subprob-

lems with good z-values should lead us more quickly to the best z-value.

If two or more variables are fractional in a subproblem’s optimal solution, then on

which variable should we branch? Branching on the fractional-valued variable that has the

greatest economic importance is often the best strategy. In the Nickles example, suppose

the optimal solution to a subproblem had y1 and x12 fractional. Our rule would say to

branch on y1 because y1 represents the decision to operate (or not operate) a lockbox in

city 1, and this is presumably a more important decision than whether region 1 payments

should be sent to city 2. When more than one variable is fractional in a subproblem so-

lution, many computer codes will branch on the lowest-numbered fractional variable.

Thus, if an integer programming computer code requires that variables be numbered, they

should be numbered in order of their economic importance (1 � most important).

R E M A R K S 1 For some IP’s, the optimal solution to the LP relaxation will also be the optimal solution to the
IP. Suppose the constraints of the IP are written as Ax � b. If the determinant‡ of every square sub-
matrix of A is �1, �1, or 0, we say that the matrix A is unimodular. If A is unimodular and each
element of b is an integer, then the optimal solution to the LP relaxation will assign all variables
integer values [see Shapiro (1979) for a proof] and will therefore be the optimal solution to the IP.
It can be shown that the constraint matrix of any MCNFP is unimodular. Thus, as was discussed in
Chapter 8, any MCNFP in which each node’s net outflow and each arc’s capacity are integers will
have an integer-valued solution.
2 As a general rule, the more an IP looks like an MCNFP, the easier the problem is to solve by
branch-and-bound methods. Thus, in formulating an IP, it is good to choose a formulation in which
as many variables as possible have coefficients of �1, �1, and 0. To illustrate this idea, recall that
the formulation of the Nickles (lockbox) problem given in Section 9.2 contained 16 constraints of
the following form:

Formulation 1 xij � yj (i � 1, 2, 3, 4; j � 1, 2, 3, 4) (25)
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†For two subproblems created at the same time, many sophisticated methods have been developed to deter-

mine which one should be solved first. See Taha (1975) for details.
‡The determinant of a matrix is defined in Section 2.6.



As we have already seen in Section 9.2, if the 16 constraints in (25) are replaced by the following
4 constraints, then an equivalent formulation results:

Formulation 2 x11 � x21 � x31 � x41 � 4y1

x12 � x22 � x32 � x42 � 4y2

x13 � x23 � x33 � x43 � 4y3

x14 � x24 � x34 � x44 � 4y4

Because formulation 2 has 16 � 4� 12 fewer constraints than formulation 1, one might think that
formulation 2 would require less computer time to find the optimal solution. This turns out to be
untrue. To see why, recall that the branch-and-bound method begins by solving the LP relaxation
of the IP. The feasible region of the LP relaxation of formulation 2 contains many more noninteger
points than the feasible region of formulation 1. For example, the point y1 � y2 � y3 � y4

� �
1
4

�, x11 � x22 � x33 � x44 � 1 (all other xij’s equal 0) is in the feasible region for the LP relax-
ation of formulation 2, but not for formulation 1. The branch-and-bound method must eliminate all
noninteger points before obtaining the optimal solution to the IP, so it seems reasonable that formu-
lation 2 will require more computer time than formulation 1. Indeed, when the LINDO package was
used to find the optimal solution to formulation 1, the LP relaxation yielded the optimal solution.
But 17 subproblems were solved before the optimal solution was found for formulation 2. Note that
formulation 2 contains the terms 4y1, 4y2, 4y3, and 4y4. These terms “disturb” the network-like struc-
ture of the lockbox problem and cause the branch-and-bound method to be less efficient.
3 When solving an IP in the real world, we are usually happy with a near-optimal solution. For ex-
ample, suppose that we are solving a lockbox problem and the LP relaxation yields a cost of
$200,000. This means that the optimal solution to the lockbox IP will certainly have a cost of at least
$200,000. If we find a candidate solution during the course of the branch-and-bound procedure that
has a cost of, say, $205,000, why bother to continue with the branch-and-bound procedure? Even if
we found the optimal solution to the IP, it could not save more than $5,000 in costs over the candi-
date solution with z � 205,000. It might even cost more than $5,000 in computer time to find the
optimal lockbox solution. For this reason, the branch-and-bound procedure is often terminated when
a candidate solution is found with a z-value close to the z-value of the LP relaxation.
4 Subproblems for branch-and-bound problems are often solved using some variant of the dual
simplex algorithm. To illustrate this, we return to the Telfa example. The optimal tableau for the LP
relaxation of the Telfa problem is

zx1x2 � 1.25s1 � 0.75s2 � 41.25

zx1x2 � 2.25s1 � 0.25s2 � 2.25

zx1x2 � 1.25s1 � 0.25s2 � 3.75

After solving the LP relaxation, we solved subproblem 2, which is just subproblem 1 plus the con-
straint x1 � 4. Recall that the dual simplex is an efficient method for finding the new optimal so-
lution to an LP when we know the optimal tableau and a new constraint is added to the LP. We have
added the constraint x1 � 4 (which may be written as x1 � e3 � 4). To utilize the dual simplex, 
we must eliminate the basic variable x1 from this constraint and use e3 as a basic variable for x1 �
e3 � 4. Adding �(second row of optimal tableau) to the constraint x1 � e3 � 4, we obtain the 
constraint 1.25s1 � 0.25s2 � e3 � 0.25. Multiplying this constraint through by �1, we obtain
�1.25s1 � 0.25s2 � e3 � �0.25. After adding this constraint to subproblem 1’s optimal tableau,
we obtain the tableau in Table 56. The dual simplex method states that we should enter a variable
from row 3 into the basis. Because s1 is the only variable with a negative coefficient in row 3, s1

will enter the basis in row 3. After the pivot, we obtain the (optimal) tableau in Table 57. Thus, the
optimal solution to subproblem 2 is z � 41, x2 � 1.8, x1 � 4, s1 � 0.20.
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TA B L E  56

Initial Tableau for Solving Subproblem 2 by Dual Simplex

Basic Variable

z x1 x2 � 1.25s1 � 0.75s2 � e3 � 41.25 z1 � 41.25

z x1 x2 � 2.25s1 � 0.25s2 � e3 � 2.25 x2 � 2.25

z x1 x2 � 1.25s1 � 0.25s2 � e3 � 3.75 x1 � 3.75

z x1 x2 � 1.25s1 � 0.25s2 � e3 � �0.25 e3 � �0.25



5 In Problem 8, we show that if we create two subproblems by adding the constraints xk � i and
xk � i � 1, then the optimal solution to the first subproblem will have xk � i and the optimal 
solution to the second subproblem will have xk � i � 1. This observation is very helpful when we
graphically solve subproblems. For example, we know the optimal solution to subproblem 5 of 
Example 9 will have x2 � 1. Then we can find the value of x1 that solves subproblem 5 by choos-
ing x1 to be the largest integer satisfying all constraints when x2 � 1.

Solver Tolerance Option for Solving IPs

When solving integer programming problems with the Excel Solver, you may go to Options

and set a tolerance. A tolerance value of, say, .20, causes the Excel Solver to stop when a fea-

sible solution is found that has an objective function value within 20% of the optimal z-value

for the problem’s LP relaxation. For instance, in Example 9, the optimal z-value for the LP

relaxation was 41.25. With a tolerance of .20, the Solver would stop whenever a feasible in-

teger solution is found with a z-value exceeding (1 � .2)(41.25) � 33. Thus, if we solved

Example 9 with the Excel Solver and found a feasible integer solution having z � 35, then

the Solver would stop because this solution would be within 20% of the LP relaxation bound.

Why set a nonzero tolerance? For many large IP problems, it might take a long time (weeks

or months!) to find an optimal solution. It might take much less time to find a near-optimal

solution (say, within 5% of the optimal LP relaxation). In this case, we would be much better

off with a near-optimal solution, and use of the tolerance option might be appropriate.

P R O B L E M S
Group A
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TA B L E  57

Optimal Tableau for Solving Subproblem 2 by Dual Simplex

Basic Variable

z x1 x2 s1 � 0.20s2 � 0.80e3 � 41 z1 � 41

z x1 x2 s1 � 0.20s2 � 01.8e3 � 1.8 x2 � 1.8

z x1 x2 s1 � 0.20s2 � 0.80e3 � 4 x1 � 4

z x1 x2 s1 � 0.20s2 � 0.80e3 � 0.20 s1 � 0.20

Use branch-and-bound to solve the following IPs:

1 max z � 5x1 � 2x2

s.t. 3x1 � x2 � 12

s.t. x1 � x2 � 5

s.t. 3x1x1, x2 � 0; x1, x2 integer

2 The Dorian Auto example of Section 3.2.

3 max z � 2x1 � 3x2

s.t. x1 � 2x2 � 10

s.t. 3x1 � 4x2 � 25

s.t. 3x1 x1, x2 � 0; x1, x2 integer

4 max z � 4x1 � 3x2

s.t. 4x1 � 9x2 � 26

s.t. 8x1 � 5x2 � 17

s.t. 3x1 x1, x2 � 0; x1, x2 integer

5 max z � 4x1 � 5x2

s.t. x1 � 4x2 � 5

s.t. 3x1 � 2x2 � 7

s.t. 3x1 x1, x2 � 0; x1, x2 integer

6 max z � 4x1 � 5x2

s.t. 3x1 � 2x2 � 10

s.t. x1 � 4x2 � 11

s.t. 3x1 � 3x2 � 13

s.t. 3x1 x1, x2 � 0; x1, x2 integer

7 Use the branch-and-bound method to find the optimal
solution to the following IP:

max z � 7x1 � 3x2

s.t. 2x1 � x2 � 9

s.t. 3x1 � 2x2 � 13

s.t. 3x1 x1, x2 � 0; x1, x2 integer



Group B

8 Suppose we have branched on a subproblem (call it
subproblem 0, having optimal solution SOL0) and have
obtained the following two subproblems:

Subproblem 1 Subproblem 0 � Constraint x1 � i.
Subproblem 2 Subproblem 0 � Constraint x1 � i � 1 (i is
some integer).

Prove that there will exist at least one optimal solution to
subproblem 1 having x1 � i and at least one optimal solution
to subproblem 2 having x1 � i � 1. [Hint: Suppose an
optimal solution to subproblem 1 (call it SOL1) has x1 �

x�1, where x�1 
 i. For some number c ( 0 
 c 
 1), c(SOL0)
� (1 � c)SOL1 will have the following three properties:

a The value of x1 in c(SOL0) � (1 � c)SOL1 will
equal i.

b c(SOL0) � (1 � c)SOL1 will be feasible in sub-
problem 1.

c The z-value for c(SOL0) � (1 � c)SOL1 will be at
least as good as the z-value for SOL1.

Explain how this result can help when we graphically solve
branch-and-bound problems.]

9 During the next five periods, the demands in Table 58
must be met on time. At the beginning of period 1, the
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inventory level is 0. Each period that production occurs a
setup cost of $250 and a per-unit production cost of $2 are
incurred. At the end of each period a per-unit holding cost
of $1 is incurred.

a Solve for the cost-minimizing production schedule
using the following decision variables: xt � units pro-
duced during month t and yt � 1 if any units are pro-
duced during period t, yt � 0 otherwise.

b Solve for the cost-minimizing production schedule
using the following variables: yt’s defined in part (a) and
xit � number of units produced during period i to sat-
isfy period t demand.

c Which formulation took LINDO or LINGO less time
to solve?

d Give an intuitive explanation of why the part (b) for-
mulation is solved faster than the part (a) formulation.

9.4 The Branch-and-Bound Method for Solving 
Mixed Integer Programming Problems

Recall that, in a mixed IP, some variables are required to be integers and others are al-

lowed to be either integers or nonintegers. To solve a mixed IP by the branch-and-bound

method, modify the method described in Section 9.3 by branching only on variables that

are required to be integers. Also, for a solution to a subproblem to be a candidate solu-

tion, it need only assign integer values to those variables that are required to be integers.

To illustrate, let us solve the following mixed IP:

max z � 2x1 � x2

s.t. 5x1 � 2x2 � 8

s.t. x1 � x2 � 3

x1, x2 � 0; x1 integer

As before, we begin by solving the LP relaxation of the IP. The optimal solution of the

LP relaxation is z � �
1
3
1
�, x1 � �

2
3

�, x2 � �
7
3

�. Because x2 is allowed to be fractional, we do not

branch on x2; if we did so, we would be excluding points having x2 values between 2 and

3, and we don’t want to do that. Thus, we must branch on x1. This yields subproblems 2

and 3 in Figure 21.

We next choose to solve subproblem 2. The optimal solution to subproblem 2 is the

candidate solution z � 3, x1 � 0, x2 � 3. We now solve subproblem 3 and obtain the can-

didate solution z � �
7
2

�, x1 � 1, x2 � �
3
2

�. The z-value from the subproblem 3 candidate ex-

ceeds the z-value for the subproblem 2 candidate, so subproblem 2 can be eliminated from

consideration, and the subproblem 3 candidate (z � �
7
2

�, x1 � 1, x2 � �
3
2

�) is the optimal so-

lution to the mixed IP.

TA B L E  58

Period

1 2 3 4 5

Demand 220 280 360 140 270
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Candidate solution

Subproblem 1

Subproblem 2

z  =

z  =  3

x1  =  0

x1  =
t  = 1

t  = 2 t  = 3

x2  =

x1  ≤  0 x1  ≥  1

11
3

7
3

2
3

x2  =  3

Subproblem 3

z  =

x1  =  1

x2  =

LB  =  3

7
2

3
2

Candidate solution

F I G U R E  21

Branch-and-Bound 
Tree for Mixed IP

Use the branch-and-bound method to solve the follow-
ing IPs:

1 max z � 3x1 � x2

s.t. 5x1 � 2x2 � 10

s.t. 4x1 � x2 � 7

s.t. 5x1x1, x2 � 0; x2 integer

2 min z � 3x1 � x2

s.t. x1 � 5x2 � 8

s.t. x1 � 2x2 � 4

s.t. 5x1x1, x2 � 0; x1 integer

3 max z � 4x1 � 3x2 � x3

s.t. 3x1 � 2x2 � x3 � 7

s.t. 2x1 � x2 � 2x3 � 11

s.t. 5x1x2, x3 integer, x1, x2, x3 � 0

9.5 Solving Knapsack Problems by the Branch-and-Bound Method

In Section 9.2, we learned that a knapsack problem is an IP with a single constraint. In

this section, we discuss knapsack problems in which each variable must equal 0 or 1 (see

Problem 1 at the end of this section for an explanation of how any knapsack problem can

be reformulated so that each variable must equal 0 or 1). A knapsack problem in which

each variable must equal 0 or 1 may be written as

max z � c1x1 � c2x2 � ��� � cnxn

s.t. a1x1 � a2x2 � ��� � anxn � b (38)

xi � 0 or 1 (i � 1, 2, . . . , n)

Recall that ci is the benefit obtained if item i is chosen, b is the amount of an available

resource, and ai is the amount of the available resource used by item i.

When knapsack problems are solved by the branch-and-bound method, two aspects of

the method greatly simplify. Because each variable must equal 0 or 1, branching on xi

will yield an xi � 0 and an xi � 1 branch. Also, the LP relaxation (and other subprob-

lems) may be solved by inspection. To see this, observe that �
a

ci

i

� may be interpreted as the

benefit item i earns for each unit of the resource used by item i. Thus, the best items have 

the largest values of �
a

ci

i

�, and the worst items have the smallest values of ��
a

ci

i

�. To solve any



subproblem resulting from a knapsack problem, compute all the ratios ��
a

ci

i

�. Then put 

the best item in the knapsack. Then put the second-best item in the knapsack. Continue

in this fashion until the best remaining item will overfill the knapsack. Then fill the knap-

sack with as much of this item as possible.

To illustrate, we solve the LP relaxation of

max z � 40x1 � 80x2 � 10x3 � 10x4 � 4x5 � 20x6 � 60x7

s.t. 40x1 � 50x2 � 30x3 � 10x4 � 10x5 � 40x6 � 30x7 � 100 (39)

xi � 0 or 1 (i � 1, 2, . . . , 7)

We begin by computing the �
a

ci

i

� ratios and ordering the variables from best to worst (see

Table 59). To solve the LP relaxation of (39), we first choose item 7 (x7 � 1). Then 

100 � 30 � 70 units of the resource remain. Now we include the second-best item (item

2) in the knapsack by setting x2 � 1. Now 70 � 50 � 20 units of the resource remain.

Item 4 and item 1 have the same �
a

ci

i

� ratio, so we can next choose either of these items. We

arbitrarily choose to set x4 � 1. Then 20 � 10 � 10 units of the resource remain. The

best remaining item is item 1. We now fill the knapsack with as much of item 1 as we

can. Because only 10 units of the resource remain, we set x1 � �
1
4
0
0
� � �

1
4

�. Thus an optimal

solution to the LP relaxation of (39) is z � 80 � 60 � 10 � (�
1
4

�)(40) � 160, x2 � x7 �

x4 � 1, x1 � �
1
4

�, x3 � x5 � x6 � 0.

To show how the branch-and-bound method can be used to solve a knapsack problem,

let us find the optimal solution to the Stockco capital budgeting problem (Example 1).

Recall that this problem was

max z � 16x1 � 22x2 � 12x3 � 8x4

s.t. 5x1 � 7x2 � 4x3 � 3x4 � 14

xj � 0 or 1

The branch-and-bound tree for this problem is shown in Figure 22. From the tree, we find

that the optimal solution to Example 1 is z � 42, x1 � 0, x2 � x3 � x4 � 1. Thus, we

should invest in investments 2, 3, and 4 and earn an NPV of $42,000. As discussed in

Section 9.2, the “best” investment is not used.

R E M A R K S The method we used in traversing the tree of Figure 22 is as follows:

1 We used the LIFO approach to determine which subproblem should be solved.
2 We arbitrarily chose to solve subproblem 3 before subproblem 2. To solve subproblem 3, we first
set x3 � 1 and then solved the resulting knapsack problem. After setting x3 � 1, 14 � 4 � $10
million was still available for investment. Applying the technique used to solve the LP relaxation
of a knapsack problem yielded the following optimal solution to subproblem 3: x3 � 1, x1 � 1, 
x2 � �

5
7

�, x4 � 0, z � 16 � (�
5
7

�)(22) � 12 � �
30
7
6

�. Other subproblems were solved similarly; of course,
if a subproblem specified xi � 0, the optimal solution to that subproblem could not use investment i.
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TA B L E  59

Ordering Items from Best to Worst in a Knapsack Problem

ci Ranking
Item ai (1 � best, 7 � worst)

1 1 3.5 (tie for third or fourth)

2 �
8
5

� 2

3 �
1
3

� 7

4 1 3.5

5 �
1
4
0
� 6

6 �
1
2

� 5

7 2 1
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3 Subproblem 4 yielded the candidate solution x1 � x3 � x4 � 1, z � 36. We then set LB � 36.
4 Subproblem 6 yielded a candidate solution with z � 42. Thus, subproblem 4 was eliminated
from consideration, and the LB was updated to 42.
5 Subproblem 7 was infeasible because it required x1 � x2 � x3 � 1, and such a solution requires
at least $16 million.
6 Subproblem 8 was eliminated because its z-value (z � 38) did not exceed the current LB of 42.
7 Subproblem 9 had a z-value of 42�

6

7
�. Because the z-value for any all-integer solution must also

be an integer, this meant that branching on subproblem 9 could never yield a z-value larger than 42.
Thus, further branching on subproblem 9 could not beat the current LB of 42, and subproblem 9
was eliminated from consideration.

In Chapter 13, we show how dynamic programming can be used to solve knapsack

problems.

P R O B L E M S
Group A

Subproblem 1

Subproblem 2

z  =  44

z  =  43

x1  =  x2   =  1 

x1  =  x2   =   1
t  = 1

t  = 7

x3  =

x3  =  0 x3  =  1

x4  =  0 x4  =  1 x2  =  0

1
2

1
3

2
3

x3  =  0

x4  =

LB  =  42

Subproblem 3

x1  =  x3   =  1 
t  = 2

z  =  43
5
7

5
7

x2  =

x4  =  0

Subproblem 8

x1  =  x2   =  1 

x3  =  x4   =  0 

t  = 8

z  =  38

LB  =  42

Subproblem 4

x1  =  x3   =  1 

x2  =   0 

x4  =   1 

t  = 3

z  =  36

Candidate solution

Subproblem 9

x1  =  x4   =  1 

t  = 9

z  =  42
6
7

6
7

x2  =

x3  =  0

LB  =  42

x2  =  1

x1  =  0 x1  =  1

Subproblem 5

x1  =

t  = 4

t  = 5

t  = 6

z  =  43
3
5

3
5

x2  =  x3  =  1

x4  =  0

LB  =  36

Subproblem 6

x1  =  0

x2  =  1

x3  =  1

x4  =  1

LB  =  36

Candidate solution

z  =  42

Subproblem 7

Infeasible

LB  =  42

F I G U R E  22

Branch-and-Bound 
Tree for Stockco

Knapsack Problem

1 Show how the following problem can be expressed as a
knapsack problem in which all variables must equal 0 or 1.
NASA is determining how many of three types of objects
should be brought on board the space shuttle. The weight

and benefit of each of the items are given in Table 60. If the
space shuttle can carry a maximum of 26 lb of items 1–3,
which items should be taken on the space shuttle?



9.6 Solving Combinatorial Optimization Problems 
by the Branch-and-Bound Method

Loosely speaking, a combinatorial optimization problem is any optimization problem

that has a finite number of feasible solutions. A branch-and-bound approach is often the

most efficient way to solve them. Three examples of combinatorial optimization problems

follow:

1 Ten jobs must be processed on a single machine. You know the time it takes to com-

plete each job and the time at which each job must be completed (the job’s due date).

What ordering of the jobs minimizes the total delay of the 10 jobs?

2 A salesperson must visit each of 10 cities once before returning to his home. What or-

dering of the cities minimizes the total distance the salesperson must travel before re-

turning home? Not surprisingly, this problem is called the traveling salesperson problem

(TSP).

3 Determine how to place eight queens on a chessboard so that no queen can capture

any other queen (see Problem 7 at the end of this section).

In each of these problems, many possible solutions must be considered. For instance,

in Problem 1, the first job to be processed can be one of 10 jobs, the next job can be 

one of 9 jobs, and so on. Thus, even for this relatively small problem there are 10(9)(8) ���

(1) � 10! � 3,628,000 possible ways to schedule the jobs. A combinatorial optimization

problem may have many feasible solutions, so it can require a great deal of computer time

to enumerate all possible solutions explicitly. For this reason, branch-and-bound methods

are often used for implicit enumeration of all possible solutions to a combinatorial opti-

mization problem. As we will see, the branch-and-bound method should take advantage

of the structure of the particular problem that is being solved.

To illustrate how branch-and-bound methods are used to solve combinatorial opti-

mization problems, we show how the approach can be used to solve Problems 1 and 2 of

the preceding list.
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2 I am moving from New Jersey to Indiana and have rented
a truck that can haul up to 1,100 cu ft of furniture. The
volume and value of each item I am considering moving on
the truck are given in Table 61. Which items should I bring
to Indiana? To solve this problem as a knapsack problem,
what unrealistic assumptions must we make?

3 Four projects are available for investment. The projects
require the cash flows and yield the net present values (NPV)
(in millions) shown in Table 62. If $6 million is available
for investment at time 0, find the investment plan that
maximizes NPV.

TA B L E  60

Weight
Item Benefit (Pounds)

1 10 3

2 15 4

3 17 5

TA B L E  61

Volume
Item Value ($) (Cubic Feet)

Bedroom set 60 800

Dining room set 48 600

Stereo 14 300

Sofa 31 400

TV set 10 200

TA B L E  62

Cash Outflow
Project at Time 0 ($) NPV ($)

1 3 5

2 5 8

3 2 3

4 4 7



Branch-and-Bound Approach 
for Machine-Scheduling Problem

Example 10 illustrates how a branch-and-bound approach may be used to schedule jobs

on a single machine. See Baker (1974) and Hax and Candea (1984) for a discussion of

other branch-and-bound approaches to machine-scheduling problems.

Four jobs must be processed on a single machine. The time required to process each job

and the date the job is due are shown in Table 63. The delay of a job is the number of

days after the due date that a job is completed (if a job is completed on time or early, the

job’s delay is zero). In what order should the jobs be processed to minimize the total de-

lay of the four jobs?

Solution Suppose the jobs are processed in the following order: job 1, job 2, job 3, and job 4. Then

the delays shown in Table 64 would occur. For this sequence, total delay � 0 � 6 � 3 �

7 � 16 days. We now describe a branch-and-bound approach for solving this type of 

machine-scheduling problem.

Because a possible solution to the problem must specify the order in which the jobs

are processed, we define

xij � �
The branch-and-bound approach begins by partitioning all solutions according to the job

that is last processed. Any sequence of jobs must process some job last, so each sequence

of jobs must have x14 � 1, x24 � 1, x34 � 1, or x44 � 1. This yields four branches with

nodes 1–4 in Figure 23. After we create a node by branching, we obtain a lower bound

on the total delay (D) associated with the node. For example, if x44 � 1, we know that

job 4 is the last job to be processed. In this case, job 4 will be completed at the end of

day 6 � 4 � 5 � 8 � 23 and will be 23 � 16 � 7 days late. Thus, any schedule having

if job i is the jth job to be processed

otherwise

1

0
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Branch-and-Bound Machine SchedulingE X A M P L E  1 0

TA B L E  63

Durations and Due Date of Jobs

Days Required to
Job Complete Job Due Date

1 6 End of day 8

2 4 End of day 4

3 5 End of day 12

4 8 End of day 16

TA B L E  64

Delays Incurred If Jobs Are Processed in the Order 1–2–3–4

Completion Delay
Job Time of Job of Job

1 6 � 4 � 5 � 8 � 26 10 � 14 � 0

2 6 � 4 � 6 � 4 � 10 10 � 14 � 6

3 6 � 6 � 4 � 5 � 15 15 � 12 � 3

4 6 � 4 � 5 � 8 � 23 23 � 16 � 7



x44 � 1 must have D � 7. Thus, we write D � 7 inside node 4 of Figure 23. Similar rea-

soning shows that any sequence of jobs having x34 � 1 will have D � 11, x24 � 1 will

have D � 19, and x14 � 1 will have D � 15. We have no reason to exclude any of nodes

1–4 from consideration as part of the optimal job sequence, so we choose to branch on a

node. We use the jumptracking approach and branch on the node that has the smallest

bound on D: node 4. Any job sequence associated with node 4 must have x13 � 1, x23 �

1, or x33 � 1. Branching on node 4 yields nodes 5–7 in Figure 23. For each new node,

we need a lower bound for the total delay. For example, at node 7, we know from our

analysis of node 1 that job 4 will be processed last and will be delayed by 7 days. For

node 7, we know that job 3 will be the third job processed. Thus, job 3 will be completed

after 6 � 4 � 5 � 15 days and will be 15 � 12 � 3 days late. Any sequence associated

with node 7 must have D � 7 � 3 � 10 days. Similar reasoning shows that node 5 must

have D � 14, and node 6 must have D � 18. We still do not have any reason to elimi-

nate any of nodes 1–7 from consideration, so we again branch on a node. The jumptrack-

ing approach directs us to branch on node 7. Any job sequence associated with node 7

must have either job 1 or job 2 as the second job processed. Thus, any job sequence as-

sociated with node 7 must have x12 � 1 or x22 � 1. Branching on node 7 yields nodes 8

and 9 in Figure 23.

Node 9 corresponds to processing the jobs in the order 1–2–3–4. This sequence yields

a total delay of 7 (for job 4) � 3 (for job 3) � (6 � 4 � 4) (for job 2) � 0 (for job 1) �

16 days. Node 9 is a feasible sequence and may be considered a candidate solution having

D � 16. We now know that any node that cannot have a total delay of less than 16 days

can be eliminated.

Node 8 corresponds to the sequence 2–1–3–4. This sequence has a total delay of 7 (for

job 4) � 3 (for job 3) � (4 � 6 � 8) (for job 1) � 0 (for job 2) � 12 days. Node 8 is a

feasible sequence and may be viewed as a candidate solution with D � 12. Because node

8 is better than node 9, node 9 may be eliminated from consideration.

Similarly, node 5 (having D � 14), node 6 (having D � 18), node 1 (having D � 15),

and node 2 (having D � 19) can be eliminated. Node 3 cannot yet be eliminated, because

it is still possible for node 3 to yield a sequence having D � 11. Thus, we now branch on

node 3. Any job sequence associated with node 3 must have x13 � 1, x23 � 1, or x43 �

1, so we obtain nodes 10–12.

For node 10, D � (delay from processing job 3 last) � (delay from processing job 1

third) � 11 � (6 � 4 � 8 � 8) � 21. Because any sequence associated with node 10
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Node  1

D  ≥  15

Node  2

D  ≥  19

Node  3

D  ≥  11

Node  4

D  ≥  7

x14  =  1

x13  =  1
x23  =  1 x23  =  1

x13  =  1 x33  =  1

x12  =  1
x22  =  1

x43  =  1

x24  =  1 x34  =  1 x44  =  1

Node  10

D  ≥  21

Node  11

D  ≥  25

Node  12

D  ≥  13

Node  5

D  ≥  14

Node  6

D  ≥  18

Node  8

D  =  12

Node  9

D  =  16

Node  7

D  ≥  10

F I G U R E  23

Branch-and-Bound Tree
for Machine-Scheduling

Problem



must have D � 21 and we have a candidate with D � 12, node 10 may be eliminated.

For node 11, D � (delay from processing job 3 last) � (delay from processing job 2

third) � 11 � (6 � 4 � 8 � 4) � 25. Any sequence associated with node 11 must have

D � 25, and node 11 may be eliminated.

Finally, for node 12, D � (delay from processing job 3 last) � (delay from processing

job 4 third) � 11 � (6 � 4 � 8 � 16) � 13. Any sequence associated with node 12 must

have D � 13, and node 12 may be eliminated.

With the exception of node 8, every node in Figure 23 has been eliminated from con-

sideration. Node 8 yields the delay-minimizing sequence x44 � x33 � x12 � x21 � 1. Thus,

the jobs should be processed in the order 2–1–3–4, with a total delay of 12 days resulting.

Branch-and-Bound Approach 
for Traveling Salesperson Problem

Joe State lives in Gary, Indiana. He owns insurance agencies in Gary, Fort Wayne, Evans-

ville, Terre Haute, and South Bend. Each December, he visits each of his insurance agen-

cies. The distance between each agency (in miles) is shown in Table 65. What order of

visiting his agencies will minimize the total distance traveled?

Solution Joe must determine the order of visiting the five cities that minimizes the total distance

traveled. For example, Joe could choose to visit the cities in the order 1–3–4–5–2–1. Then

he would travel a total of 217 � 113 � 196 � 79 � 132 � 737 miles.

To tackle the traveling salesperson problem, define

xij � �
Also, for i  j,

cij � distance between cities i and j

cii � M, where M is a large positive number

It seems reasonable that we might be able to find the answer to Joe’s problem by solving an

assignment problem having a cost matrix whose ijth element is cij. For instance, suppose we

solved this assignment problem and obtained the solution x12 � x24 � x45 � x53 � x31 � 1.

Then Joe should go from Gary to Fort Wayne, from Fort Wayne to Terre Haute, from Terre

Haute to South Bend, from South Bend to Evansville, and from Evansville to Gary. This so-

lution can be written as 1–2–4–5–3–1. An itinerary that begins and ends at the same city and

visits each city once is called a tour.

if Joe leaves city i and travels next to city j

otherwise

1

0
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Traveling Salesperson ProblemE X A M P L E  1 1

TA B L E  65

Distance between Cities in Traveling Salesperson Problem

Fort Terre South
Day Gary Wayne Evansville Haute Bend

City 1 Gary 0 132 217 164 58

City 2 Fort Wayne 132 0 290 201 79

City 3 Evansville 217 290 290 113 303

City 4 Terre Haute 164 201 113 0 196

City 5 South Bend 58 79 303 196 0



If the solution to the preceding assignment problem yields a tour, then it is the optimal

solution to the traveling salesperson problem. (Why?) Unfortunately, the optimal solution to

the assignment problem need not be a tour. For example, the optimal solution to the assign-

ment problem might be x15 � x21 � x34 � x43 � x52 � 1. This solution suggests going from

Gary to South Bend, then to Fort Wayne, and then back to Gary. This solution also suggests

that if Joe is in Evansville he should go to Terre Haute and then to Evansville (see Figure

24). Of course, if Joe begins in Gary, this solution will never get him to Evansville or Terre

Haute. This is because the optimal solution to the assignment problem contains two subtours.

A subtour is a round trip that does not pass through all cities. The current assignment con-

tains the two subtours 1–5–2–1 and 3–4–3. If we could exclude all feasible solutions that con-

tain subtours and then solve the assignment problem, we would obtain the optimal solution

to the traveling salesperson problem. This is not easy to do, however. In most cases, a branch-

and-bound approach is the most efficient approach for solving a TSP.

Several branch-and-bound approaches have been developed for solving TSPs [see

Wagner (1975)]. We describe an approach here in which the subproblems reduce to as-

signment problems. To begin, we solve the preceding assignment problem, in which, for

i  j, the cost cij is the distance between cities i and j and cii � M (this prevents a per-

son in a city from being assigned to visit that city itself). Because this assignment prob-

lem contains no provisions to prevent subtours, it is a relaxation (or less constrained prob-

lem) of the original traveling salesperson problem. Thus, if the optimal solution to the

assignment problem is feasible for the traveling salesperson problem (that is, if the as-

signment solution contains no subtours), then it is also optimal for the traveling salesper-

son problem. The results of the branch-and-bound procedure are given in Figure 25.

We first solve the assignment problem in Table 66 (referred to as subproblem 1). The

optimal solution is x15 � x21 � x34 � x43 � x52 � 1, z � 495. This solution contains two

subtours (1–5–2–1 and 3–4–3) and cannot be the optimal solution to Joe’s problem.

We now branch on subproblem 1 in a way that will prevent one of subproblem 1’s sub-

tours from recurring in solutions to subsequent subproblems. We choose to exclude the

subtour 3–4–3. Observe that the optimal solution to Joe’s problem must have either x34 �

0 or x43 � 0 (if x34 � x43 � 1, the optimal solution would have the subtour 3–4–3). Thus,

we can branch on subproblem 1 by adding the following two subproblems:

Subproblem 2 Subproblem 1 � (x34 � 0, or c34 � M).

Subproblem 3 Subproblem 1 � (x43 � 0, or c43 � M).

We now arbitrarily choose subproblem 2 to solve, applying the Hungarian method to the

cost matrix as shown in Table 67. The optimal solution to subproblem 2 is z � 652, 

x14 � x25 � x31 � x43 � x52 � 1. This solution includes the subtours 1–4–3–1 and 2–5–2,

so this cannot be the optimal solution to Joe’s problem.

We now branch on subproblem 2 in an effort to exclude the subtour 2–5–2. We must

ensure that either x25 or x52 equals zero. Thus, we add the following two subproblems:

Subproblem 4 Subproblem 2 � (x25 � 0, or c25 � M).

Subproblem 5 Subproblem 2 � (x52 � 0, or c52 � M).
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Gary

South Bend Evansville Terre Haute

Fort Wayne

F I G U R E  24

Example of Subtours 
in Traveling 

Salesperson Problem
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Subproblem 1

z  =  495

x15  =  x21   =   x34

=  x43   =   x52  =  1

t  = 1

Subproblem 2

z  =  652

x14  =  x25   =   x31

=  x43   =   x52  =  1

t  = 2

Subproblem 3

z  =  652

UB  =  668

x13  =  x25   =   x34

=  x41   =   x52  =  1

t  = 5

x34  =  0 x43  =  0

x25  =  0

x25  =  0 x52  =  0

x52  =  0

Subproblem 4

z  =  668

Candidate solution

x15  =  x24   =   x31

=  x43   =   x52  =  1

t  = 3

Subproblem 5

z  =  704

UB  =  668

x14  =  x43   =   x32

=  x25   =   x51  =  1

t  = 4

Subproblem 6

z  =  704

UB  =  668

x15  =  x34

=  x23   =   x41

=  x52    =  1

t  = 6

Subproblem 6

z  =  910

UB  =  668

x13  =  x25

=  x31   =   x42

=  x54

t  = 7
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Branch-and-Bound Tree
for Traveling

Salesperson Problem

TA B L E  66

Cost Matrix for Subproblem 1

City 1 City 2 City 3 City 4 City 5

City 1 M 132 217 164 58

City 2 132 M 290 201 79

City 3 217 290 M 113 303

City 4 164 201 113 M 196

City 5 58 79 303 196 M

TA B L E  67

Cost Matrix for Subproblem 2

City 1 City 2 City 3 City 4 City 5

City 1 M 132 217 164 58

City 2 132 M 290 201 79

City 3 217 290 M M 303

City 4 164 201 113 M 196

City 5 58 79 303 196 M



Following the LIFO approach, we should next solve subproblem 4 or subproblem 5. We

arbitrarily choose to solve subproblem 4. Applying the Hungarian method to the cost ma-

trix shown in Table 68, we obtain the optimal solution z � 668, x15 � x24 � x31 � x43 �

x52 � 1. This solution contains no subtours and yields the tour 1–5–2–4–3–1. Thus, sub-

problem 4 yields a candidate solution with z � 668. Any node that cannot yield a z-value


 668 may be eliminated from consideration.

Following the LIFO rule, we next solve subproblem 5, applying the Hungarian method

to the matrix in Table 69. The optimal solution to subproblem 5 is z � 704, x14 � x43 �

x32 � x25 � x51 � 1. This solution is a tour, but z � 704 is not as good as the subprob-

lem 4 candidate’s z � 668. Thus, subproblem 5 may be eliminated from consideration.

Only subproblem 3 remains. We find the optimal solution to the assignment problem

in Table 70, x13 � x25 � x34 � x41 � x52 � 1, z � 652. This solution contains the sub-

tours 1–3–4–1 and 2–5–2. Because 652 
 668, however, it is still possible for subprob-

lem 3 to yield a solution with no subtours that beats z � 668. Thus, we now branch on

subproblem 3 in an effort to exclude the subtours. Any feasible solution to the traveling

salesperson problem that emanates from subproblem 3 must have either x25 � 0 or x52 �

0 (why?), so we create subproblems 6 and 7.

Subproblem 6 Subproblem 3 � (x25 � 0, or c25 � M).

Subproblem 7 Subproblem 3 � (x52 � 0, or c52 � M).
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TA B L E  68

Cost Matrix for Subproblem 4

City 1 City 2 City 3 City 4 City 5

City 1 M 132 217 164 58

City 2 132 M 290 201 M

City 3 217 290 M M 303

City 4 164 201 113 M 196

City 5 58 79 303 196 M

TA B L E  69

Cost Matrix for Subproblem 5

City 1 City 2 City 3 City 4 City 5

City 1 M 132 217 164 58

City 2 132 M 290 201 79

City 3 217 290 M M 303

City 4 164 201 113 M 196

City 5 58 M 303 196 M

TA B L E  70

Cost Matrix for Subproblem 3

City 1 City 2 City 3 City 4 City 5

City 1 M 132 217 164 58

City 2 132 M 290 201 79

City 3 217 290 M 113 303

City 4 164 201 M M 196

City 5 58 79 303 196 M



We next choose to solve subproblem 6. The optimal solution to subproblem 6 is x15 �

x34 � x23 � x41 � x52 � 1, z � 704. This solution contains no subtours, but its z-value

of 704 is inferior to the candidate solution from subproblem 4, so subproblem 6 cannot

yield the optimal solution to the problem.

The only remaining subproblem is subproblem 7. The optimal solution to subproblem

7 is x13 � x25 � x31 � x42 � x54 � 1, z � 910. Again, z � 910 is inferior to z � 668,

so subproblem 7 cannot yield the optimal solution.

Subproblem 4 thus yields the optimal solution: Joe should travel from Gary to South

Bend, from South Bend to Fort Wayne, from Fort Wayne to Terre Haute, from Terre Haute

to Evansville, and from Evansville to Gary. Joe will travel a total distance of 668 miles.

Heuristics for TSPs

When using branch-and-bound methods to solve TSPs with many cities, large amounts of

computer time may be required. For this reason, heuristic methods, or heuristics, which

quickly lead to a good (but not necessarily optimal) solution to a TSP, are often used. A

heuristic is a method used to solve a problem by trial and error when an algorithmic ap-

proach is impractical. Heuristics often have an intuitive justification. We now discuss two

heuristics for the TSP: the nearest-neighbor and the cheapest-insertion heuristics.

To apply the nearest-neighbor heuristic (NNH), we begin at any city and then “visit”

the nearest city. Then we go to the unvisited city closest to the city we have most recently

visited. Continue in this fashion until a tour is obtained. We now apply the NNH to Ex-

ample 11. We arbitrarily choose to begin at city 1. City 5 is the closest city to city 1, so

we have now generated the arc 1–5. Of cities 2, 3, and 4, city 2 is closest to city 5, so we

have now generated the arcs 1–5–2. Of cities 3 and 4, city 4 is closest to city 2. We now

have generated the arcs 1–5–2–4. Of course, we must next visit city 3 and then return to

city 1; this yields the tour 1–5–2–4–3–1. In this case, the NNH yields an optimal tour. If

we had begun at city 3, however, the reader should verify that the tour 3–4–1–5–2–3

would be obtained. This tour has length 113 � 164 � 58 � 79 � 290 � 704 miles and

is not optimal. Thus, the NNH need not yield an optimal tour. A popular heuristic is to

apply the NNH beginning at each city and then take the best tour obtained.

In the cheapest-insertion heuristic (CIH), we begin at any city and find its closest

neighbor. Then we create a subtour joining those two cities. Next, we replace an arc in

the subtour [say, arc (i, j)] by the combination of two arcs—(i, k) and (k, j), where k is

not in the current subtour—that will increase the length of the subtour by the smallest (or

cheapest) amount. Let cij be the length of arc (i, j). Note that if arc (i, j) is replaced by

arcs (i, k) and (k, j), then a length cik � ckj � cij is added to the subtour. Then we con-

tinue with this procedure until a tour is obtained. Suppose we begin the CIH at city 1.

City 5 is closest to city 1, so we begin with the subtour (1, 5)–(5, 1). Then we could 

replace (1, 5) by (1, 2)–(2, 5), (1, 3)–(3, 5), or (1, 4)–(4, 5). We could also replace arc 

(5, 1) by (5, 2)–(2, 1), (5, 3)–(3, 1), or (5, 4)–(4, 1). The calculations used to determine

which arc of (1,5)–(5,1) should be replaced are given in Table 71 (* indicates the correct

replacement). As seen in the table, we may replace either (1, 5) or (5, 1). We arbitrarily

choose to replace arc (1, 5) by arcs (1, 2) and (2, 5). We currently have the subtour (1,

2)–(2, 5)–(5, 1). We must now replace an arc (i, j) of this subtour by the arcs (i, k) and

(k, j), where k � 3 or 4. The relevant computations are shown in Table 72.

We now replace (1, 2) by arcs (1, 4) and (4, 2). This yields the subtour (1, 4)–(4, 2)–(2,

5)–(5, 1). An arc (i, j) in this subtour must now be replaced by arcs (i, 3) and (3, j). The

relevant computations are shown in Table 73. We now replace arc (1, 4) by arcs (1, 3) and

(3, 4). This yields the tour (1, 3)–(3, 4)–(4, 2)–(2, 5)–(5, 1). In this example, the CIH

yields an optimal tour—but, in general, the CIH does not necessarily do so.
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Evaluation of Heuristics

The following three methods have been suggested for evaluating heuristics:

1 Performance guarantees

2 Probabilistic analysis

3 Empirical analysis

A performance guarantee for a heuristic gives a worst-case bound on how far away from

optimality a tour constructed by the heuristic can be. For the NNH, it can be shown that

for any number r, a TSP can be constructed such that the NNH yields a tour that is r times

as long as the optimal tour. Thus, in a worst-case scenario, the NNH fares poorly. For 

a symmetric TSP satisfying the triangle inequality (that is, for which cij � cji and cik �

cij � cjk for all i, j, and k), it has been shown that the length of the tour obtained by the

CIH cannot exceed twice the length of the optimal tour.

In probabilistic analysis, a heuristic is evaluated by assuming that the location of cities

follows some known probability distribution. For example, we might assume that the cities
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TA B L E  71

Determining Which Arc of (1, 5)–(5, 1) Is Replaced

Arc Replaced Arcs Added to Subtour Added Length

(1, 5)* (1, 2)–(2, 5) c12 � c25 � c15 � 153

(1, 5) (1, 3)–(3, 5) c13 � c35 � c15 � 462

(1, 5) (1, 4)–(4, 5) c14 � c45 � c15 � 302

(5, 1)* (5, 2)–(2, 1) c52 � c21 � c51 � 153

(5, 1) (5, 3)–(3, 1) c53 � c31 � c51 � 462

(5, 1) (5, 4)–(4, 1) c54 � c41 � c51 � 302

TA B L E  72

Determining Which Arc of (1, 2)–(2, 5)–(5, 1) Is Replaced

Arc Replaced Arcs Added Added Length

(1, 2) (1, 3)–(3, 2) c13 � c32 � c12 � 375

(1, 2)* (1, 4)–(4, 2) c14 � c42 � c12 � 233

(2, 5) (2, 3)–(3, 5) c23 � c35 � c25 � 514

(2, 5) (2, 4)–(4, 5) c24 � c45 � c25 � 318

(5, 1) (5, 3)–(3, 1) c53 � c31 � c51 � 462

(5, 1) (5, 4)–(4, 1) c54 � c41 � c51 � 302

TA B L E  73

Determining Which Arc of (1, 4)–(4, 2)–(2, 5)–(5, 1) Is Replaced

Arc Replaced Arcs Added Added Length

(1, 4)* (1, 3)–(3, 4) c13 � c34 � c14 � 166

(4, 2) (4, 3)–(3, 2) c43 � c32 � c42 � 202

(2, 5) (2, 3)–(3, 5) c23 � c35 � c25 � 514

(5, 1) (5, 3)–(3, 1) c53 � c31 � c51 � 462



are independent random variables that are uniformly distributed on a cube of unit length,

width, and height. Then, for each heuristic, we would compute the following ratio:

The closer the ratio is to 1, the better the heuristic.

For empirical analysis, heuristics are compared to the optimal solution for a number of

problems for which the optimal tour is known. As an illustration, for five 100-city TSPs,

Golden, Bodin, Doyle, and Stewart (1980) found that the NNH—taking the best of all so-

lutions found when the NNH was applied beginning at each city—produced tours that av-

eraged 15% longer than the optimal tour. For the same set of problems, it was found that

the CIH (again applying the best solution obtained by applying CIH to all cities) produced

tours that also averaged 15% longer than the optimal tour.

R E M A R K S 1 Golden, Bodin, Doyle, and Stewart (1980) describe a heuristic that regularly comes within 2–3%
of the optimal tour.
2 It is also important to compare heuristics with regard to computer running time and ease of 
implementation.
3 For an excellent discussion of heuristics, see Chapters 5–7 of Lawler (1985).

An Integer Programming Formulation of the TSP

We now discuss how to formulate an IP whose solution will solve a TSP. We note, how-

ever, that the formulation of this section becomes unwieldy and inefficient for large TSPs.

Suppose the TSP consists of cities 1, 2, 3, . . . , N. For i  j let cij � distance from city i

to city j and let cii � M, where M is a very large number (relative to the actual distances

in the problem). Setting cii � M ensures that we will not go to city i immediately after

leaving city i. Also define

xij � �
Then the solution to a TSP can be found by solving

min z � �
i

�
j

cijxij (40)

s.t. �
i�N

i�1

xij � 1 (for j � 1, 2, . . . , N) (41)

s.t. �
j�N

j�1

xij � 1 (for i � 1, 2, . . . , N) (42)

ui � uj � Nxij � N � 1 (for i  j; i � 2, 3, . . . , N; j � 2, 3, . . . , N) (43)

All xij � 0 or 1, All uj � 0

The objective function (40) gives the total length of the arcs included in a tour. The con-

straints in (41) ensure that we arrive once at each city. The constraints in (42) ensure that

we leave each city once. The constraints in (43) are the key to the formulation. They en-

sure the following:

1 Any set of xij’s containing a subtour will be infeasible [that is, they violate (43)].

2 Any set of xij’s that forms a tour will be feasible [there will exist a set of uj’s that sat-

isfy (43)].

To illustrate that any set of xij’s containing a subtour will violate (43), consider the sub-

tour illustration given in Figure 24. Here x15 � x21 � x43 � x43 � x52 � 1. This assign-

if the solution to TSP goes from city i to city j

otherwise

1

0

Expected length of the path found by the heuristic
������
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ment contains the two subtours 1–5–2–1 and 3–4–3. Choose the subtour that does not con-

tain city 1 (3–4–3) and write down the constraints in (43) corresponding to the arcs in

this subtour. We obtain u3 � u4 � 5x34 � 4 and u4 � u3 � 5x43 � 4. Adding these con-

straints yields 5(x34 � x43) � 8. Clearly, this rules out the possibility that x43 � x34 � 1,

so the subtour 3–4–3 (and any other subtour!) is ruled out by the constraints in (43).

We now show that for any set of xij’s that does not contain a subtour, there exist values

of the uj’s that will satisfy all constraints in (43). Assume that city 1 is the first city vis-

ited (we visit all cities eventually, so this is okay). Let ti � the position in the tour where

city i is visited. Then setting ui � ti will satisfy all constraints in (43). To illustrate, con-

sider the tour 1–3–4–5–2–1. Then we choose u1 � 1, u2 � 5, u3 � 2, u4 � 3, u5 � 4.

We now show that with this choice of the ui’s all constraints in (43) are satisfied. First,

consider any constraint corresponding to an arc having xij � 1. For example, the constraint

corresponding to x52 is u5 � u2 � 5x52 � 4. Because city 2 immediately follows city 5,

u5 � u2 � �1. Then the constraint for x52 in (43) reduces to �1 � 5 � 4, which is true.

Now consider a constraint corresponding to an xij (say, x32) satisfying xij � 0. For x32, we

obtain the constraint u3 � u2 � 5x32 � 4. This reduces to u3 � u2 � 4. Because u3 � 5

and u2 	 1, u3 � u2 cannot exceed 5 � 2.

This shows that the formulation defined by (40)–(43) eliminates from consideration all

sequences of N cities that begin in city 1 and include a subtour. We have also shown that

this formulation does not eliminate from consideration any sequence of N cities begin-

ning in city 1 that does not include a subtour. Thus, (40)–(43) will (if solved) yield the

optimal solution to the TSP.

Using LINGO to Solve TSPs

The IP described in (40)–(43) can easily be implemented with the following LINGO pro-

gram (file TSP.lng).

MODEL:
1]SETS:
2]CITY/1..5/:U;
3]LINK(CITY,CITY):DIST,X;
4]ENDSETS
5]DATA:
6]DIST= 50000 132 217 164 58
7]132 50000 290 201 79
8]217 290 50000 113 303
9]164 201 113 50000 196

10]58 79 303 196 5000;
11]ENDDATA
12]N=@SIZE(CITY);
13]MIN=@SUM(LINK:DIST*X);
14]@FOR(CITY(K):@SUM(CITY(I):X(I,K))=1;);
15]@FOR(CITY(K):@SUM(CITY(J):X(K,J))=1;);
16]@FOR(CITY(K):@FOR(CITY(J)|J#GT#1#AND#K#GT#1:
17]U(J)-U(K)+N*X(J,K)<N-1;));
18]@FOR(LINK:@BIN(X););

END

In line 2, we define our five cities and associate a U(J) with city J. In line 3, we cre-

ate the arcs joining each combination of cities. With the arc from city I to city J, we as-

sociate the distance between city I and J and a 0–1 variable X(I,J), which equals 1 if city

J immediately follows city I in a tour.

In lines 6–10, we input the distance between the cities given in Example 11. Note that

the distance between city I and itself is assigned a large number, to ensure that city I does

not follow itself.

In line 12, we use @SIZE to compute the number of cities (we use this in line 17). In

line 13, we create the objective function by summing over each link (I,J) the product of

the distance between cities I and J and X(I,J). Line 14 ensures that for each city we en-
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ter the city exactly once. Line 15 ensures that for each city we leave the city exactly once.

Lines 16–17 create the constraints in (43). Note that we only create these constraints for

combinations J,K where J 	 1 and K 	 1. This agrees with (43). Note that when J � K

line 17 generates constraints of the form N*X(J,J) � N � 1, which imply that all 

X(J,J) � 0. In line 18, we ensure that each X(I,J) � 0 or 1. We need not constrain the

U(J)’s, because LINGO assumes they are nonnegative. Note: Even for small TSPs, this

formulation will exceed the capacity of student LINGO.

P R O B L E M S
Group A
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1 Four jobs must be processed on a single machine. The
time required to perform each job and the due date for each
job are shown in Table 74. Use the branch-and-bound
method to determine the order of performing the jobs that
minimizes the total time the jobs are delayed.

2 Each day, Sunco manufactures four types of gasoline:
lead-free premium (LFP), lead-free regular (LFR), leaded
premium (LP), and leaded regular (LR). Because of cleaning
and resetting of machinery, the time required to produce a
batch of gasoline depends on the type of gasoline last
produced. For example, it takes longer to switch between a
lead-free gasoline and a leaded gasoline than it does to
switch between two lead-free gasolines. The time (in
minutes) required to manufacture each day’s gasoline
requirements are shown in Table 75. Use a branch-and-
bound approach to determine the order in which the
gasolines should be produced each day.

3 A Hamiltonian path in a network is a closed path that
passes exactly once through each node in the network before

returning to its starting point. Taking a four-city TSP as an
example, explain why solving a TSP is equivalent to finding
the shortest Hamiltonian path in a network.

4 There are four pins on a printed circuit. The distance
between each pair of pins (in inches) is given in Table 76.

a Suppose we want to place three wires between the
pins in a way that connects all the wires and uses the
minimum amount of wire. Solve this problem by using
one of the techniques discussed in Chapter 8.

b Now suppose that we again want to place three wires
between the pins in a way that connects all the wires and
uses the minimum amount of wire. Also suppose that if
more than two wires touch a pin, a short circuit will oc-
cur. Now set up a traveling salesperson problem that can
be used to solve this problem. (Hint: Add a pin 0 such
that the distance between pin 0 and any other pin is 0.)

5 a Use the NNH to find a solution to the TSP in Problem
2. Begin with LFR.

b Use the CIH to find a solution to the TSP in Prob-
lem 2. Begin with the subtour LFR–LFP–LFR.

6 LL Pea stores clothes at five different locations. Several
times a day it sends an “order picker” out to each location
to pick up orders. Then the order picker must return to the
packaging area. Describe a TSP that could be used to
minimize the time needed to pick up orders and return to
the packaging area.

Group B

7 Use branch-and-bound to determine a way (if any exists
to place four queens on a 4 � 4 chessboard so that no queen
can capture another queen. (Hint: Let xij � 1 if a queen is
placed in row i and column j of the chessboard and xij � 0
otherwise. Then branch as in the machine-delay problem.

TA B L E  74

Time to
Perform Job Due Date

Job (Minutes) of Job

1 7 End of minute 14

2 5 End of minute 13

3 9 End of minute 18

4 11 End of minute 15

TA B L E  75

Last-Produced
Gas to Be Next Produced

Gasoline LFR LFP LR LP

LFR — 150 120 140

LFP 160 — 140 110

LR 190 130 — 160

LP 130 120 180 —

Note: Assume that the last gas produced yesterday precedes the

first gas produced today.

TA B L E  76

1 2 3 4

1 0 1 2 2

2 1 0 3 2.9

3 2 3 0 3

4 2 2.9 3 0



Many nodes may be eliminated from consideration because
they are infeasible. For example, the node associated with
the arcs x11 � x22 � 1 is infeasible, because the two queens
can capture each other.)

8 Although the Hungarian method is an efficient method
for solving an assignment problem, the branch-and-bound
method can also be used to solve an assignment problem.
Suppose a company has five factories and five warehouses.
Each factory’s requirements must be met by a single
warehouse, and each warehouse can be assigned to only one
factory. The costs of assigning a warehouse to meet a
factory’s demand (in thousands) are shown in Table 77.

Let xij � 1 if warehouse i is assigned to factory j and 0
otherwise. Begin by branching on the warehouse assigned to
factory 1. This creates the following five branches: x11 � 1,
x21 � 1, x31 � 1, x41 � 1, and x51 � 1. How can we obtain
a lower bound on the total cost associated with a branch?
Examine the branch x21 � 1. If x21 � 1, no further
assignments can come from row 2 or column 1 of the cost
matrix. In determining the factory to which each of the
unassigned warehouses (1, 3, 4, and 5) is assigned, we cannot
do better than assign each to the smallest cost in the
warehouse’s row (excluding the factory 1 column). Thus, the
minimum-cost assignment having x21 � 1 must have a total
cost of at least 10 � 10 � 9 � 5 � 5 � 39.

Similarly, in determining the warehouse to which each
of the unassigned factories (2, 3, 4, and 5) is assigned, we
cannot do better than to assign each to the smallest cost in
the factory’s column (excluding the warehouse 2 row). Thus,
the minimum-cost assignment having x21 � 1 must have a
total cost of at least 10 � 9 � 5 � 5 � 7 � 36. Thus, the
total cost of any assignment having x21 � 1 must be at least
max(36, 39) � 39. So, if branching ever leads to a candidate
solution having a total cost of 39 or less, the x21 � 1 branch
may be eliminated from consideration. Use this idea to solve
the problem by branch-and-bound.

9† Consider a long roll of wallpaper that repeats its pattern
every yard. Four sheets of wallpaper must be cut from the
roll. With reference to the beginning (point 0) of the
wallpaper, the beginning and end of each sheet are located
as shown in Table 78. Thus, sheet 1 begins 0.3 yd from the
beginning of the roll (and 1.3 yd from the beginning of the
roll) and sheet 1 ends 0.7 yd from the beginning of the roll
(and 1.7 yd from the beginning of the roll). Assume we are
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at the beginning of the roll. In what order should the sheets
be cut to minimize the total amount of wasted paper?
Assume that a final cut is made to bring the roll back to the
beginning of the pattern.

10‡ A manufacturer of printed circuit boards uses
programmable drill machines to drill six holes in each board.
The x and y coordinates of each hole are given in Table 79.
The time (in seconds) it takes the drill machine to move
from one hole to the next is equal to the distance between
the points. What drilling order minimizes the total time that
the drill machine spends moving between holes?

11 Four jobs must be processed on a single machine. The
time required to perform each job, the due date, and the penalty
(in dollars) per day the job is late are given in Table 80.

Use branch-and-bound to determine the order of
performing the jobs that will minimize the total penalty
costs due to delayed jobs.

TA B L E  77

Factory ($)

Warehouse 1 2 3 4 5

1 15 15 20 25 10

2 10 12 15 15 19

3 15 17 18 19 11

4 18 19 10 15 12

5 19 10 15 11 17

†Based on Garfinkle (1977). ‡Based on Magirou (1986).

TA B L E  78

Beginning End
Sheet (Yards) (Yards)

1 0.3 0.7

2 0.4 0.8

3 0.2 0.5

4 0.7 0.9

TA B L E  79

x y Hole

1 2 1

3 1 2

5 3 3

7 2 4

8 3 5

TA B L E  80

Job Time (Days) Due Date Penalty

1 4 Day 4 4

2 5 Day 2 5

3 2 Day 13 7

4 3 Day 8 2



9.7 Implicit Enumeration

The method of implicit enumeration is often used to solve 0–1 IPs. Implicit enumeration

uses the fact that each variable must equal 0 or 1 to simplify both the branching and

bounding components of the branch-and-bound process and to determine efficiently when

a node is infeasible.

Before discussing implicit enumeration, we show how any pure IP may be expressed

as a 0–1 IP: Simply express each variable in the original IP as the sum of powers of 2.

For example, suppose the variable xi is required to be an integer. Let n be the smallest in-

teger such that we can be sure that xi 
 2n�1. Then xi may be (uniquely) expressed as the

sum of 20, 21, . . . , 2n�1, 2n, and

xi � un2n � un�12n�1 � ��� � u222 � 2u1 � u0 (44)

where ui � 0 or 1 (i � 0, 1, . . . , n).

To convert the original IP to a 0–1 IP, replace each occurrence of xi by the right side

of (44). For example, suppose we know that xi � 100. Then xi 
 26�1 � 128. Then (44)

yields

xi � 64u6 � 32u5 � 16u4 � 8u3 � 4u2 � 2u1 � u0 (45)

where ui � 0 or 1 (i � 0, 1, . . . , 6). Then replace each occurrence of xi by the right side of

(45). How can we find the values of the u’s corresponding to a given value of xi? Suppose

xi � 93. Then u6 will be the largest multiple of 26 � 64 that is contained in 93. This yields

u6 � 1; then the rest of the right side of (45) must equal 93 � 64 � 29. Then u5 will be

the largest multiple of 25 � 32 contained in 29. This yields u5 � 0. Then u4 will be the

largest multiple of 24 � 16 contained in 29. This yields u4 � 1. Continuing in this fashion,

we obtain u3 � 1, u2 � 1, u1 � 0, and u0 � 1. Thus 93 � 26 � 24 � 23 � 22 � 20.

We will soon discover that 0–1 IP’s are generally easier to solve than other pure IP’s.

Why, then, don’t we transform every pure IP into a 0–1 IP? Simply because transforming

a pure IP into a 0–1 IP greatly increases the number of variables. However, many situa-

tions (such as lockbox and knapsack problems) naturally yield 0–1 problems. Thus, it is

certainly worthwhile to learn how to solve 0–1 IPs.

The tree used in the implicit enumeration method is similar to those used to solve 0–1

knapsack problems in Section 9.5. Each branch of the tree will specify, for some variable

xi, that xi � 0 or xi � 1. At each node, the values of some of the variables are specified.

For instance, suppose a 0–1 problem has variables x1, x2, x3, x4, x5, x6, and part of the tree

looks like Figure 26. At node 4, the values of x3, x4, and x2 are specified. These variables

are referred to as fixed variables. All variables whose values are unspecified at a node are

called free variables. Thus, at node 4, x1, x5, and x6 are free variables. For any node, a
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x3  =  1

x4  =  1

x2  =  1

2

3

4

F I G U R E  26

Illustration of Free and
Fixed Variables



specification of the values of all the free variables is called a completion of the node.

Thus x1 � 1, x5 � 1, x6 � 0 is a completion of node 4.

We are now ready to outline the three main ideas used in implicit enumeration.

1 Suppose we are at any node. Given the values of the fixed variables at that node, is

there an easy way to find a good completion of that node that is feasible in the original

0–1 IP? To answer this question, we complete the node by setting each free variable equal

to the value (0 or 1) that makes the objective function largest (in a max problem) or small-

est (in a min problem). If this completion of the node is feasible, then it is certainly the

best feasible completion of the node, and further branching of the node is unnecessary.

Suppose we are solving

max z � 4x1 � 2x2 � x3 � 2x4

s.t. x1 � 3x2 � x3 � 2x4 � 1

xi � 0 or 1 (i � 1, 2, 3, 4)

If we are at a node (call it node 4) where x1 � 0 and x2 � 1 are fixed, then the best we

can do is set x3 � 0 and x4 � 1. Because x1 � 0, x2 � 1, x3 � 0, and x4 � 1 is feasible

in the original problem, we have found the best feasible completion of node 4. Thus, node

4 is fathomed and x1 � 0, x2 � 1, x3 � 0, x4 � 1 (along with its z-value of 4) may be

used as a candidate solution.

2 Even if the best completion of a node is not feasible, the best completion gives us a

bound on the best objective function value that can be obtained via a feasible completion

of the node. This bound can often be used to eliminate a node from consideration. For ex-

ample, suppose we have previously found a candidate solution with z � 6, and our ob-

jective is to maximize

z � 4x1 � 2x2 � x3 � x4 � 2x5

Also suppose that we are at a node where the fixed variables are x1 � 0, x2 � 1, and 

x3 � 1. Then the best completion of this node is x4 � 0 and x5 � 1. This yields a z-value

of 2 � 1 � 2 � 5. Because z � 5 cannot beat the candidate with z � 6, we can imme-

diately eliminate this node from consideration (whether or not the completion is feasible

is irrelevant).

3 At any node, is there an easy way to determine if all completions of the node are in-

feasible? Suppose we are at node 4 of Figure 26 and one of the constraints is

�2x1 � 3x2 � 2x3 � 3x4 � x5 � 2x6 � �5 (46)

Is there any completion of node 4 that can satisfy this constraint? We assign values to the

free variables that make the left side of (46) as small as possible. If this completion of

node 4 won’t satisfy (46), then certainly no completion of node 4 can. Thus, we set x1 �

1, x5 � 1, and x6 � 0. Substituting these values and the values of the fixed variables, we

obtain �2 � 3 � 2 � 3 � 1 � �5. This inequality does not hold, so no completion of

node 4 can satisfy (46). No completion of node 4 can be feasible for the original prob-

lem, and node 4 may be eliminated from consideration.

In general, we check whether a node has a feasible completion by looking at each con-

straint and assigning each free variable the best value (as described in Table 81) for sat-

isfying the constraint.† If even one constraint is not satisfied by its most feasible comple-

tion, then we know that the node has no feasible completion. In this case, the node cannot

yield the optimal solution to the original IP.
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We note, however, that even if a node has no feasible completion, our crude infeasi-

bility check may not reveal that the node has no feasible completion until we have moved

further down the tree to a node where there are more fixed variables. If we have failed to

obtain any information about a node, we now branch on a free variable xi and add two

new nodes: one with xi � 1 and another with xi � 0.

Use implicit enumeration to solve the following 0–1 IP:

max z � �7x1 � 3x2 � 2x3 � x4 � 2x5

s.t. �4x1 � 2x2 � 4x3 � 2x4 � x5 � �3 (47)

s.t. �4x1 � 2x2 � 4x3 � x4 � 2x5 � �7 (48)

xi � 0 or 1 (i � 1, 2, 3, 4, 5)

Solution At the beginning (node 1), all variables are free. We first check whether the best comple-

tion of node 1 is feasible. The best completion of node 1 is x1 � 0, x2 � 0, x3 � 0, x4 �

0, x5 � 0, which is not feasible (it violates both constraints). We now check to see whether

node 1 has no feasible completion. Checking (47) for feasibility, we set x1 � 1, x2 � 1,

x3 � 0, x4 � 1, x5 � 1. This satisfies (47) (it yields �9 � �3). We now check (48) for

feasibility by setting x1 � 1, x2 � 1, x3 � 1, x4 � 0, x5 � 0. This completion of node 1

satisfies (48) (it yields �10 � �7). Thus, node 1 has a feasible completion satisfying

(48). Therefore, our infeasibility check does not allow us to classify node 1 as having no

feasible completion. We now choose to branch on a free variable: arbitrarily, x1. This

yields two new nodes: node 2 with the constraint x1 � 1 and node 3 with the constraint

x1 � 0 (see Figure 27).

We now choose to analyze node 2. The best completion of node 2 is x1 � 1, x2 � 0,

x3 � 0, x4 � 0, and x5 � 0. Unfortunately, this completion is not feasible. We now try to

determine whether node 2 has a feasible completion. We check whether x1 � 1, x2 � 1,

x3 � 0, x4 � 1, x5 � 1 satisfies (47) (this yields �9 � �3). Then we check whether 

x1 � 1, x2 � 1, x3 � 1, x4 � 0, x5 � 0 satisfies (48) (this yields �10 � �7). Thus, our in-

feasibility check has yielded no information about whether node 2 has a feasible completion.

We now choose to branch on node 2, arbitrarily, on the free variable x2. This yields

nodes 4 and 5 in Figure 28. Using the LIFO rule, we choose to next analyze node 5. The

best completion of node 5 is x1 � 1, x2 � 0, x3 � 0, x4 � 0, x5 � 0. Again, this com-

pletion is infeasible. We now perform a feasibility check on node 5. We determine whether

x1 � 1, x2 � 0, x3 � 0, x4 � 1, x5 � 1 satisfies (47) (this yields �7 � �3). Then we

check whether x1 � 1, x2 � 0, x3 � 1, x4 � 0, x5 � 0 satisfies (48) (this yields �8 �

�7). Again our feasibility check has yielded no information. Thus, we branch on node 5,

arbitrarily choosing the free variable x3. This adds nodes 6 and 7 in Figure 29.
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How to Determine Whether a Node Has a Completion
Satisfying a Given Constraint

Sign of Free Value Assigned to
Type of Variable’s Coefficient Free Variable in
Constraint in Constraint Feasibility Check

� � 0

� � 1

� � 1

� � 0



Applying the LIFO rule, we next choose to analyze node 6. The best completion of

node 6 is x1 � 1, x2 � 0, x3 � 1, x4 � 0, x5 � 0, z � �9. This point is feasible, so we

have found a candidate solution with z � �9. Using the LIFO rule, we next analyze node

7. The best completion of node 7 is x1 � 1, x2 � 0, x3 � 0, x4 � 0, x5 � 0, z � �7. Be-

cause z � �7 is better than z � �9, it is possible for node 7 to beat the current candi-

date. Thus, we must check node 7 to see whether it has any feasible completion. We see

whether x1 � 1, x2 � 0, x3 � 0, x4 � 1, x5 � 1 satisfies (47) (this yields �7 � �3).

Then we see whether x1 � 1, x2 � 0, x3 � 0, x4 � 0, x5 � 0 satisfies (48) (this yields

�4 � �7). This means that no completion of node 7 can satisfy (48). Thus, node 7 has

no feasible completion, and it may be eliminated from consideration (indicated by an �

in Figure 30).

The LIFO rule now indicates that we should analyze node 4. The best completion of

node 4 is x1 � 1, x2 � 1, x3 � 0, x4 � 0, x5 � 0. This solution has z � �10. Thus, node

4 cannot beat the previous candidate solution from node 6 (having z � �9), and node 4

may be eliminated from consideration.

We are now facing the tree in Figure 31, where only node 3 remains to be analyzed.

The best completion of node 3 is x1 � 0, x2 � 0, x3 � 0, x4 � 0, x5 � 0. This point is

infeasible. This point has z � 0, however, so it is possible that node 3 can yield a feasi-

ble solution that is better than our current candidate (with z � �9). We now check

whether node 3 has any feasible completion: Does x1 � 0, x2 � 1, x3 � 1, x4 � 1, x5 �

1 satisfy (47)? This yields �5 � �3, so node 3 does have a completion satisfying (47).

Then we see whether node 3 has any completion satisfying (48): Does x1 � 0, x2 � 1, 

x3 � 1, x4 � 0, x5 � 0 satisfy (48)? This yields �6 � �7, which is untrue. Thus, node

3 has no completion satisfying (48), and node 3 may be eliminated from consideration.

We now have the tree in Figure 32.

Because there are no nodes left to analyze, the node 6 candidate with z � �9 must be

optimal. Thus, x1 � 1, x2 � 0, x3 � 1, x4 � 0, x5 � 0, z � �9 is the optimal solution to
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the 0–1 IP. Note that every possible point (x1, x2, x3, x4, x5) where xi � 0 or 1 has been

implicitly considered, and all but the optimal solution have been eliminated. For example,

for the point x1 � 1, x2 � 1, x3 � 1, x4 � 1, x5 � 0, the analysis of node 4 shows that

this point cannot be optimal because it cannot have a z-value of better than �9. As an-

other example, the point x1 � 0, x2 � 1, x3 � 1, x4 � 1, x5 � 1 cannot be optimal, be-

cause our analysis of node 3 shows that no completion can be feasible.

The use of subtler infeasibility tests (called surrogate constraints) can often reduce

the number of nodes that must be examined before an optimal solution is found. For ex-

ample, consider a 0–1 IP with the following constraints:

x1 � x2 � x3 � x4 � x5 � 2 (49)

x1 � x2 � x3 � x4 � x5 � 1 (50)
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Suppose we are at a node where x1 � x2 � 1. To check whether this node has a feasible

completion, we would first see whether x1 � 1, x2 � 1, x3 � 0, x4 � 0, x5 � 0 satisfies

(49) (it does). Then we would see whether x1 � 1, x2 � 1, x3 � 1, x4 � 0, x5 � 0 (50)

(it does). In this situation, our crude infeasibility tests do not yet indicate that this node

is infeasible. Observe, however, that because x1 � x2 � 1, the only way to satisfy (49) is

by choosing x3 � x4 � x5 � 0, but this completion of the x1 � x2 � 1 node fails to sat-

isfy (50). Thus, the node with x1 � x2 � 1 will have no feasible completion. Eventually,

our crude infeasibility test would have indicated this fact, but we might have been forced

to examine several more nodes before we found that the node with x1 � x2 � 1 had no

feasible completion. In a more complex problem, a subtler infeasibility test that combined

information from both constraints might have enabled us to examine fewer nodes. Of

course, a subtler infeasibility test would require more computation, so it might not be

worth the effort. For a discussion of surrogate constraints, see Salkin (1975), Taha (1975),

and Nemhauser and Wolsey (1988).

As with any branch-and-bound algorithm, many arbitrary choices determine the effi-

ciency of the implicit enumeration algorithm. See Salkin, Taha, and Nemhauser and

Wolsey for further discussion of implicit enumeration techniques.
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Use implicit enumeration to solve the following 0–1 IPs:

1 max z � 3x1 � x2 � 2x3 � x4 � x5

s.t. 2x1 � x2 � 3x3 � 3x4 � 2x5 � 1

s.t. 2x1 � 2x2 � 3x3 � x4 � 2x5 � 2

xi � 0 or 1

2 max z � 2x1 � x2 � x3

s.t. x1 � 2x2 � x3 � 1

s.t. x1 � x2 � x3 � 2

xi � 0 or 1

3 Finco is considering investing in five projects. Each
requires a cash outflow at time 0 and yields an NPV as
described in Table 82 (all dollars in millions). At time 0, $10
million is available for investment. Projects 1 and 2 are
mutually exclusive (that is, Finco cannot undertake both).
Similarly, projects 3 and 4 are mutually exclusive. Also,
project 2 cannot be undertaken unless project 5 is
undertaken. Use implicit enumeration to determine which
projects should be undertaken to maximize NPV.

4 Use implicit enumeration to find the optimal solution to
Example 5 (the set-covering problem).

5 Use implicit enumeration to solve Problem 1 of Sec-
tion 9.2.

Group B

6 Why are the values of u0, u1, . . . , un in (44) unique?

9.8 The Cutting Plane Algorithm†

In previous portions of this chapter, we have described in some detail how branch-and-

bound methods can be used to solve IPs. In this section, we discuss an alternative method,

the cutting plane algorithm. We illustrate the cutting plane algorithm by solving the

Telfa Corporation problem (Example 9). Recall from Section 9.3 that this problem was

TA B L E  82

Time 0
Project Cash Outflow ($) NPV ($)

1 4 5

2 6 9

3 5 6

4 4 3

5 3 2

†This section covers topics that may be omitted with no loss of continuity.



max z � 8x1 � 5x2

s.t. x1 � x2 � 6
(51)

s.t. 9x1 � 5x2 � 45

x1, x2 � 0; x1, x2 integer

After adding slack variables s1 and s2, we found the optimal tableau for the LP relax-

ation of the Telfa example to be as shown in Table 83.

To apply the cutting plane method, we begin by choosing any constraint in the LP re-

laxation’s optimal tableau in which a basic variable is fractional. We arbitrarily choose the

second constraint, which is

x1 � 1.25s1 � 0.25s2 � 3.75 (52)

We now define [x] to be the largest integer less than or equal to x. For example, [3.75] �

3 and [�1.25] � �2. Any number x can be written in the form [x] � f, where 0 � f 
 1.

We call f the fractional part of x. For example, 3.75 � 3 � 0.75, and �1.25 � �2 � 0.75.

In (51)’s optimal tableau, we now write each variable’s coefficient and the constraint’s right-

hand side in the form [x] � f, where 0 � f 
 1. Now (52) may be written as

x1 � 2s1 � 0.75s1 � 0s2 � 0.25s2 � 3 � 0.75 (53)

Putting all terms with integer coefficients on the left side and all terms with fractional co-

efficients on the right side yields

x1 � 2s1 � 0s2 � 3 � 0.75 � 0.75s1 � 0.25s2 (54)

The cutting plane algorithm now suggests adding the following constraint to the LP re-

laxation’s optimal tableau:

Right-hand side of (54) � 0

or

0.75 � 0.75s1 � 0.25s2 � 0 (55)

This constraint is called (for reasons that will soon become apparent) a cut. We now show

that a cut generated by this method has two properties:

1 Any feasible point for the IP will satisfy the cut.

2 The current optimal solution to the LP relaxation will not satisfy the cut.

Thus, a cut “cuts off ” the current optimal solution to the LP relaxation, but not any fea-

sible solutions to the IP. When the cut to the LP relaxation is added, we hope we will ob-

tain a solution where all variables are integer-valued. If so, we have found the optimal so-

lution to the original IP. If our new optimal solution (to the LP relaxation plus the cut)

has some fractional-valued variables, then we generate another cut and continue the

process. Gomory (1958) showed that this process will yield an optimal solution to the IP

after a finite number of cuts. Before finding the optimal solution to the IP (51), we show

why the cut (55) satisfies properties 1 and 2.
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Optimal Tableau for LP Relaxation of Telfa

z x1 x2 s1 s2 rhs

1 0 0 �1.25 �0.75 41.25

0 0 1 �2.25 �0.25 42.25

0 1 0 �1.25 �0.25 43.75



We now show that any feasible solution to the IP (51) will satisfy the cut (55). Con-

sider any point that is feasible for the IP. For such a point, x1 and x2 take on integer val-

ues, and the point must be feasible in the LP relaxation of (51). Because (54) is just a 

rearrangement of the optimal tableau’s second constraint, any feasible point for the IP

must satisfy (54). Any feasible solution to the IP must have s1 � 0 and s2 � 0. Because

0.75 
 1, any feasible solution to the IP will make the right-hand side of (54) less than

1. Also note that for any point that is feasible for the IP, the left-hand side of (54) will be

an integer. Thus, for any feasible point to the IP, the right-hand side must be an integer

that is less than 1. This implies that any point that is feasible for the IP satisfies (55), so

our cut does not eliminate any feasible integer points from consideration!

We now show that the current optimal solution to the LP relaxation cannot satisfy the

cut (55). The current optimal solution to the LP relaxation has s1 � s2 � 0. Thus, it cannot

satisfy (55). This argument works because 0.75 (the fractional part of the right-hand side of

the second constraint) is greater than 0. Thus, if we choose any constraint whose right-hand

side in the optimal tableau is fractional, we can cut off the LP relaxation’s optimal solution.

The effect of the cut (55) can be seen in Figure 33; all points feasible for the IP (51)

satisfy the cut (55), but the current optimal solution to the LP relaxation (x1 � 3.75 and

x2 � 2.25) does not. To obtain the graph of the cut, we replaced s1 by 6 � x1 � x2 and

s2 by 45 � 9x1 � 5x2. This enabled us to rewrite the cut as 3x1 � 2x2 � 15.

We now add (55) to the LP relaxation’s optimal tableau and use the dual simplex to

solve the resulting LP. Cut (55) may be written as �0.75s1 � 0.25s2 � �0.75. After

adding a slack variable s3 to this constraint, we obtain the tableau shown in Table 84.
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Cutting Plane Tableau After Adding Cut (55)

z x1 x2 s1 s2 s3 rhs

1 0 0 �1.25 �0.75 0 .41.25

0 0 1 �2.25 �0.25 0 �2.25

0 1 0 �1.25 �0.25 0 �3.75

0 0 0 �0.75 �0.25 1 �0.75

x2

x1

1

1

2

3

4

5

6

7

8

9
= IP feasible point

3x1 + 2x2 = 15 is cutting plane

= LP relaxation
,
s feasible region

Optimal solution to LP relaxationz  =  20

9x1 + 5x2 = 45

3x1 + 2x2 = 15

x1 + x2 = 6

x1 = 3.75

x2 = 2.25

2 3 4 5 6

F I G U R E  33

Example of Cutting
Plane



The dual simplex ratio test indicates that s1 should enter the basis in the third con-

straint. The resulting tableau is given in Table 85, which yields the optimal solution z �

40, x1 � 5, x2 � 0.

Recall that a cut does not eliminate any points that are feasible for the IP. This means

that whenever we solve the LP relaxation to an IP with several cuts as additional con-

straints and find an optimal solution in which all variables are integers, we have solved

our original IP. Because x1 and x2 are integers in our current optimal solution, this point

must be optimal for (51). Of course, if the first cut had not yielded the optimal solution

to the IP, we would have kept adding cuts until we obtained an optimal tableau in which

all variables were integers.

R E M A R K S 1 The algorithm requires that all coefficients of variables in the constraints and all right-hand sides
of constraints be integers. This is to ensure that if the original decision variables are integers, then
the slack and excess variables will also be integers. Thus, a constraint such as x1 � 0.5x2 � 3.6
must be replaced by 10x1 � 5x2 � 36.
2 If at any stage of the algorithm, two or more constraints have fractional right-hand sides, then
best results are often obtained if the next cut is generated by using the constraint whose right-hand
side has the fractional part closest to �

1
2

�.

Summary of the Cutting Plane Algorithm

Step 1 Find the optimal tableau for the IP’s linear programming relaxation. If all vari-

ables in the optimal solution assume integer values, then we have found an optimal solu-

tion to the IP; otherwise, proceed to step 2.

Step 2 Pick a constraint in the LP relaxation optimal tableau whose right-hand side has

the fractional part closest to �
1
2

�. This constraint will be used to generate a cut.

Step 2a For the constraint identified in step 2, write its right-hand side and each vari-

ables’s coefficient in the form [x] � f, where 0 � f 
 1.

Step 2b Rewrite the constraint used to generate the cut as

All terms with integer coefficients � all terms with fractional coefficients

Then the cut is

All terms with fractional coefficients � 0

Step 3 Use the dual simplex to find the optimal solution to the LP relaxation, with the

cut as an additional constraint. If all variables assume integer values in the optimal solu-

tion, we have found an optimal solution to the IP. Otherwise, pick the constraint with the

most fractional right-hand side and use it to generate another cut, which is added to the

tableau. We continue this process until we obtain a solution in which all variables are in-

tegers. This will be an optimal solution to the IP.
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Optimal Tableau for Cutting Plane

z x1 x2 s1 s2 s3 rhs

1 0 0 0 �0.33 �1.67 40

0 0 1 0 �1.25 �3.67 40

0 1 0 0 �0.67 �1.67 45

0 0 0 1 �0.33 �1.33 41
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1 Consider the following IP:

max z � 14x1 � 18x2

s.t. �x1 � 3x2 � 6

s.t. 7x1 � x2 � 35

x1, x2 � 0; x1, x2 integer

The optimal tableau for this IP’s linear programming
relaxation is given in Table 86. Use the cutting plane
algorithm to solve this IP.

2 Consider the following IP:
min z � 6x1 � 8x2

s.t. 3x1 � x2 � 4

s.t. x1 � 2x2 � 4

x1, x2 � 0; x1, x2 integer

The optimal tableau for this IP’s linear programming
relaxation is given in Table 87. Use the cutting plane
algorithm to find the optimal solution.

3 Consider the following IP:

max z � 2x1 � 4x2

s.t. �2x1 � x2 � 5

s.t. �4x1 � 4x2 � 5

x1, x2 � 0; x1, x2 integer

The optimal tableau for this IP’s linear programming
relaxation is given in Table 88. Use the cutting plane
algorithm to find the optimal solution.

S U M M A R Y

Integer programming problems (IP’s) are usually much harder to solve than linear pro-

gramming problems.

Integer Programming Formulations

Most integer programming formulations involve 0–1 variables.

Fixed-Charge Problems

Suppose activity i incurs a fixed charge if undertaken at any positive level. Let

xi � level of activity i

yi � �
Then a constraint of the form xi � Miyi must be added to the formulation. Here, Mi must

be large enough to ensure that xi will be less than or equal to Mi.

if activity i is undertaken at positive level (xi 	 0)

if xi � 0

1

0

TA B L E  86

z x1 x2 s1 s2 rhs

1 0 0 �
5
1

6
1
� �

3
1

0
1
� 126

0 0 1 �
1
2

7
2
� �

2
1
2
� �

7
2

�

0 1 0 ��
2
1
2
� �

2
3
2
� �

9
2

�
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z x1 x2 e1 e2 rhs

1 0 0 ��
4
5

� ��
1
5
8
� �

8
5
8
�

0 1 0 ��
2
5

� ��
1
5

� �
4
5

�

0 0 1 ��
1
5

� ��
3
5

� �
8
5

�
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z x1 x2 s1 s2 rhs

1 0 0 ��
2
3

� ��
5
6

� ��
1
2
5
�

0 1 0 ��
1
3

� ��
1
1
2
� ��

5
4

�

0 0 1 ��
1
3

� ��
1
6

� ��
5
2

�



Either–Or Constraints

Suppose we want to ensure that at least one of the following two constraints (and possi-

bly both) are satisfied:

f (x1, x2, . . . , xn) � 0 (26)

g(x1, x2, . . . , xn) � 0 (27)

Adding the following two constraints to the formulation will ensure that at least one of

(26) and (27) is satisfied:

f (x1, x2, . . . , xn) � My (26�)

g(x1, x2, . . . , xn) � M(1 � y) (27�)

In (26�) and (27�), y is a 0–1 variable, and M is a number chosen large enough to ensure

that f (x1, x2, . . . , xn) � M and g(x1, x2, . . . , xn) � M are satisfied for all values of x1, x2,

. . . , xn that satisfy the other constraints in the problem.

If–Then Constraints

Suppose we want to ensure that f (x1, x2, . . . , xn) 	 0 implies g(x1, x2, . . . , xn) � 0. Then

we include the following constraints in the formulation:

�g(x1, x2, . . . , xn) � My (28�)

f (x1, x2, . . . , xn) � M(1 � y) (29)

y � 0 or 1

Here, M is a large positive number, chosen large enough so that f � M and �g � M hold

for all values of x1, x2, . . . , xn that satisfy the other constraints in the problem.

How to Model a Piecewise Linear 
Function f(x) with 0–1 Variables

Suppose the piecewise linear function f (x) has break points b1, b2, . . . , bn.

Step 1 Wherever f (x) occurs in the optimization problem, replace f (x) by z1 f (b1) �

z2 f (b2) � ��� � zn f (bn).

Step 2 Add the following constraints to the problem:

z1 � y1, z2 � y1 � y2, z3 � y2 � y3, . . . , zn�1 � yn�2 � yn�1, zn � yn�1

y1 � y2 � ��� � yn�1 � 1

z1 � z2 � ��� � zn � 1

x � z1b1 � z2b2 � ��� � znbn

yi � 0 or 1 (i � 1, 2, . . . , n � 1); zi � 0 (i � 1, 2, . . . , n)

Branch-and-Bound Method

Usually, IPs are solved by some version of the branch-and-bound procedure. Branch-

and-bound methods implicitly enumerate all possible solutions to an IP. By solving a sin-

gle subproblem, many possible solutions may be eliminated from consideration.
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Branch-and-Bound for Pure IP’s

Subproblems are generated by branching on an appropriately chosen fractional-valued vari-

able xi. Suppose that in a given subproblem (call it old subproblem), xi assumes a fractional

value between the integers i and i � 1. Then the two newly generated subproblems are

New Subproblem 1 Old subproblem � Constraint xi � i.

New Subproblem 2 Old subproblem � Constraint xi � i � 1.

If it is unnecessary to branch on a subproblem, then we say it is fathomed. The follow-

ing three situations (for a max problem) result in a subproblem being fathomed: (1) The

subproblem is infeasible, thus it cannot yield the optimal solution to the IP. (2) The sub-

problem yields an optimal solution in which all variables have integer values. If this op-

timal solution has a better z-value than any previously obtained solution that is feasible

in the IP, then it becomes a candidate solution, and its z-value becomes the current lower

bound (LB) on the optimal z-value for the IP. In this case, the current subproblem may

yield the optimal solution to the IP. (3) The optimal z-value for the subproblem does not

exceed (in a max problem) the current LB, so it may be eliminated from consideration.

Branch-and-Bound for Mixed IPs

When branching on a fractional variable, only branch on those required to be integers.

Branch-and-Bound for Knapsack Problems

Subproblems may easily be solved by first putting the best (in terms of benefit per-unit

weight) item in the knapsack, then the next best, and so on, until a fraction of an item is

used to completely fill the knapsack.

Branch-and-Bound to Minimize Delay on a Single Machine

Begin the branching by determining which job should be processed last. Suppose there are

n jobs. At a node where the jth job to be processed, ( j � 1)th job to be processed, . . . , nth

job to be processed are fixed, a lower bound on the total delay is given by (delay of jth job

to be processed) � (delay of ( j � 1)th job to be processed) � ��� � (delay of nth job to

be processed).

Branch-and-Bound for Traveling Salesperson Problem

Subproblems are assignment problems. If the optimal solution to a subproblem contains

no subtours, then it is a feasible solution to the traveling salesperson problem. Create new

subproblems by branching to exclude a subtour. Eliminate a subproblem if its optimal 

z-value is inferior to the best previously found feasible solution.

Heuristics for the TSP

To apply the nearest-neighbor heuristic (NNH), we begin at any city and then “visit” the

nearest city. Then we go to the unvisited city closest to the city we have most recently vis-

ited. We continue in this fashion until a tour is obtained. After applying this procedure be-

ginning at each city, we take the best tour found.
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In the cheapest-insertion heuristic (CIH), we begin at any city and find its closest

neighbor. Then we create a subtour joining those two cities. Next, we replace an arc in

the subtour [say, arc (i, j)] by the combination of two arcs—(i, k) and (k, j), where k is

not in the current subtour—that will increase the length of the subtour by the smallest (or

cheapest) amount. We continue with this procedure until a tour is obtained. After apply-

ing this procedure beginning with each city, we take the best tour found.

Implicit Enumeration

In a 0–1 IP, implicit enumeration may be used to find an optimal solution. When branch-

ing at a node, create two new subproblems by (for some free variable xi) adding con-

straints xi � 0 and xi � 1. If the best completion of a node is feasible, then we need not

branch on the node. If the best completion is feasible and better than the current candi-

date solution, then the current node yields a new LB (in a max problem) and may be op-

timal. If the best completion is feasible and is not better than the current candidate solu-

tion, then the current node may be eliminated from consideration. If at a given node, there

is at least one constraint that is not satisfied by any completion of the node, then the node

cannot yield a feasible solution nor an optimal solution to the IP.

Cutting Plane Algorithm

Step 1 Find the optimal tableau for the IP’s linear programming relaxation. If all vari-

ables in the optimal solution assume integer values, we have found an optimal solution to

the IP; otherwise, proceed to step 2.

Step 2 Pick a constraint in the LP relaxation optimal tableau whose right-hand side has

the fractional part closest to �
1
2

�. This constraint will be used to generate a cut.

Step 2a For the constraint identified in step 2, write its right-hand side and each vari-

able’s coefficient in the form [x] � f, where 0 � f 
 1.

Step 2b Rewrite the constraint used to generate the cut as

All terms with integer coefficients � all terms with fractional coefficients

Then the cut is

All terms with fractional coefficients � 0

Step 3 Use the dual simplex to find the optimal solution to the LP relaxation, with the

cut as an additional constraint. If all variables assume integer values in the optimal solu-

tion, then we have found an optimal solution to the IP. Otherwise, pick the constraint with

the most fractional right-hand side and use it to generate another cut, which is added to

the tableau. We continue this process until we obtain a solution in which all variables are

integers. This will be an optimal solution to the IP.

R E V I E W  P R O B L E M S
Group A
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1 In the Sailco problem of Section 3.10, suppose that a
fixed cost of $200 is incurred during each quarter that
production takes place. Formulate an IP to minimize Sailco’s
total cost of meeting the demands for the four quarters.

2 Explain how you would use integer programming and
piecewise linear functions to solve the following
optimization problem. (Hint: Approximate x2 and y2 by
piecewise linear functions.)



max z � 3x2
� y2

s.t. x � y � 1

x, y � 0

3† The Transylvania Olympic Gymnastics Team consists
of six people. Transylvania must choose three people to
enter both the balance beam and floor exercises. They must
also enter a total of four people in each event. The score that
each individual gymnast can attain in each event is shown
in Table 89. Formulate an IP to maximize the total score
attained by the Transylvania gymnasts.

4‡ A court decision has stated that the enrollment of each
high school in Metropolis must be at least 20 percent black.
The numbers of black and white high school students in
each of the city’s five school districts are shown in Table 90.
The distance (in miles) that a student in each district must
travel to each high school is shown in Table 91. School
board policy requires that all the students in a given district
attend the same school. Assuming that each school must
have an enrollment of at least 150 students, formulate an IP
that will minimize the total distance that Metropolis students
must travel to high school.

5 The Cubs are trying to determine which of the following
free agent pitchers should be signed: Rick Sutcliffe (RS),
Bruce Sutter (BS), Dennis Eckersley (DE), Steve Trout
(ST), Tim Stoddard (TS). The cost of signing each pitcher
and the number of victories each pitcher will add to the
Cubs are shown in Table 92. Subject to the following
restrictions, the Cubs want to sign the pitchers who will add
the most victories to the team.
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a At most, $12 million can be spent.

b If DE and ST are signed, then BS cannot be signed.

c At most two right-handed pitchers can be signed.

d The Cubs cannot sign both BS and RS.

Formulate an IP to help the Cubs determine who they should
sign.

6 State University must purchase 1,100 computers from
three vendors. Vendor 1 charges $500 per computer plus a
delivery charge of $5,000. Vendor 2 charges $350 per
computer plus a delivery charge of $4,000. Vendor 3 charges
$250 per computer plus a delivery charge of $6,000. Vendor
1 will sell the university at most 500 computers; vendor 2,
at most 900; and vendor 3, at most 400. Formulate an IP to
minimize the cost of purchasing the needed computers.

7 Use the branch-and-bound method to solve the follow-
ing IP:

max z � 3x1 � x2

s.t. 5x1 � x2 � 12

s.t. 2x1 � x2 � 8

x1, x2 � 0; x1, x2 integer

8 Use the branch-and-bound method to solve the follow-
ing IP:

min z � 3x1 � x2

s.t. 2x1 � x2 � 6

s.t. 2x1 � x2 � 4

x1, x2 � 0; x1 integer

9 Use the branch-and-bound method to solve the follow-
ing IP:

max z � x1 � 2x2

s.t. x1 � x2 � 10

s.t. 2x1 � 5x2 � 30

x1, x2 � 0; x1, x2 integer

†Based on Ellis and Corn (1984).
‡Based on Liggett (1973).

TA B L E  89

Balance Floor
Gymnast Beam Exercise

1 8.8 7.9

2 9.4 8.3

3 9.2 8.5

4 7.5 8.7

5 8.7 8.1

6 9.1 8.6

TA B L E  90

District Whites Blacks

1 80 30

2 70 15

3 90 10

4 50 40

5 60 30

TA B L E  91

High High
District School 1 School 2

1 1.5 2.7

2 0.5 1.7

3 0.8 0.8

4 1.3 0.4

5 1.5 0.6

TA B L E  92

Cost of Signing Victories Added
Pitcher Pitcher ($) Millions to Cubs

RS 6 6 (righty)

BS 4 5 (righty)

DE 3 3 (righty)

ST 2 3 (lefty)

TS 2 2 (righty)



10 Consider a country where there are 1¢, 5¢, 10¢, 20¢,
25¢, and 50¢ pieces. You work at the Two-Twelve Con-
venience Store and must give a customer 91¢ in change.
Formulate an IP that can be used to minimize the number
of coins needed to give the correct change. Use what you
know about knapsack problems to solve the IP by the branch-
and-bound method. (Hint: We need only solve a 90¢
problem.)

11 Use the branch-and-bound approach to find the optimal
solution to the traveling salesperson problem shown in 
Table 93.

12 Use the implicit enumeration method to find the optimal
solution to Problem 5.

13 Use the implicit enumeration method to find the optimal
solution to the following 0–1 IP:

max z � 5x1 � 7x2 � 10x3 � 3x4 � x5

s.t. �x1 � 3x2 � 3x3 � x4 � 2x5 � 0

s.t. 2x1 � 5x2 � 3x3 � 2x4 � 2x5 � 3

s.t. �x1 � x2 � x3 � x4 � x5 � 2

All variables 0 or 1

14 A soda delivery truck starts at location 1 and must
deliver soda to locations 2, 3, 4, and 5 before returning to
location 1. The distance between these locations is given in
Table 94. The soda truck wants to minimize the total distance
traveled. In what order should the delivery truck make its
deliveries?

15 At Blair General Hospital, six types of surgical
operations are performed. The types of operations each
surgeon is qualified to perform (indicated by an X) are given
in Table 95. Suppose that surgeon 1 and surgeon 2 dislike
each other and cannot be on duty at the same time. Formulate
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an IP whose solution will determine the minimum number
of surgeons required so that the hospital can perform all
types of surgery.

16 Eastinghouse ships 12,000 capacitors per month to
their customers. The capacitors may be produced at three
different plants. The production capacity, fixed monthly cost
of operation, and variable cost of producing a capacitor at
each plant are given in Table 96. The fixed cost for a plant
is incurred only if the plant is used to make any capacitors.
Formulate an integer programming model whose solution
will tell Eastinghouse how to minimize their monthly costs
of meeting their customers’ demands.

17† Newcor’s steel mill has received an order for 25 tons
of steel. The steel must be 5% carbon and 5% molybdenum
by weight. The steel is manufactured by combining three
types of metal: steel ingots, scrap steel, and alloys. Four
steel ingots are available for purchase. The weight (in tons),
cost per ton, carbon and molybdenum content of each ingot
are given in Table 97.

Three types of alloys can be purchased. The cost per ton
and chemical makeup of each alloy are given in Table 98.

TA B L E  93

City

City 1 2 3 4 5

1 — 3 1 7 2

2 3 — 4 4 2

3 1 4 — 4 2

4 7 4 4 — 7

5 2 2 2 7 —

TA B L E  94

Location

Location 1 2 3 4 5

1 0 20 4 10 25

2 20 0 5 30 10

3 4 5 0 6 6

4 10 25 6 0 20

5 35 10 6 20 0

TA B L E  95

Operation

Surgeon 1 2 3 4 5 6

1 x x x

2 x x x

3 x x

4 x x

5 x

6 x x

†Based on Westerberg, Bjorklund, and Hultman (1977).

TA B L E  96

Fixed Cost Variable Production
Plant (in $ Thousands) Cost ($) Capacity

1 80 20 6,000

2 40 25 7,000

3 30 30 6,000

TA B L E  97

Ingot Weight Cost per Ton ($) Carbon % Molybdenum %

1 5 350 5 3

2 3 330 4 3

3 4 310 5 4

4 6 280 3 4



Steel scrap may be purchased at a cost of $100 per ton.
Steel scrap contains 3% carbon and 9% molybdenum.
Formulate a mixed integer programming problem whose
solution will tell Newcor how to minimize the cost of filling
their order.

18† Monsanto annually produces 359 million lb of the
chemical maleic anhydride. A total of four reactors are
available to produce maleic anhydride. Each reactor can be
run on one of three settings. The cost (in thousands of
dollars) and pounds produced (in millions) annually for
each reactor and each setting are given in Table 99. A reactor
can only be run on one setting for the entire year. Set up an
IP whose solution will tell Monsanto the minimum-cost
method to meet its annual demand for maleic anhydride.

19‡ Hallco runs a day shift and a night shift. No matter
how many units are produced, the only production cost
during a shift is a setup cost. It costs $8,000 to run the day
shift and $4,500 to run the night shift. Demand for the next
two days is as follows: day 1, 2,000; night 1, 3,000; day 2,
2,000; night 2, 3,000. It costs $1 per unit to hold a unit in
inventory for a shift. Determine a production schedule that
minimizes the sum of setup and inventory costs. All demand
must be met on time.

20‡ After listening to a seminar on the virtues of the
Japanese theory of production, Hallco has cut its day shift
setup cost to $1,000 per shift and its night shift setup cost
to $3,500 per shift. Determine a production schedule that
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minimizes the sum of setup and inventory costs. All demand
must be met on time. Show that the decrease in setup costs
has actually raised the average inventory level!

Group B

21§ Gotham City has been divided into eight districts. The
time (in minutes) it takes an ambulance to travel from one
district to another is shown in Table 100. The population of
each district (in thousands) is as follows: district 1, 40;
district 2, 30; district 3, 35; district 4, 20; district 5, 15;
district 6, 50; district 7, 45; district 8, 60. The city has only
two ambulances and wants to locate them to maximize the
number of people who live within 2 minutes of an
ambulance. Formulate an IP to accomplish this goal.

22 A company must complete three jobs. The amounts of
processing time (in minutes) required are shown in Table
101. A job cannot be processed on machine j unless for all
i 
 j the job has completed its processing on machine i.
Once a job begins its processing on machine j, the job
cannot be preempted on machine j. The flow time for a job
is the difference between its completion time and the time
at which the job begins its first stage of processing.
Formulate an IP whose solution can be used to minimize the
average flow time of the three jobs. (Hint: Two types of
constraints will be needed: Constraint type 1 ensures that a
job cannot begin to be processed on a machine until all
earlier portions of the job are completed. You will need five
constraints of this type. Constraint type 2 ensures that only
one job will occupy a machine at any given time. For
example, on machine 1, either job 1 is completed before job
2 begins, or job 2 is completed before job 1 begins.)

TA B L E  98

Alloy Cost per Ton ($) Carbon % Molybdenum %

1 500 8 6

2 450 7 7

3 400 6

†Based on Boykin (1985).
‡Based on Zangwill (1992). §Based on Eaton et al. (1985).

TA B L E  99

Reactor Setting Cost ($ Thousands) Pounds

1 1 50 80

1 2 80 140

1 3 100 170

2 1 65 100

2 2 90 140

2 3 120 215

3 1 70 112

3 2 90 153

3 3 110 195

4 1 40 65

4 2 60 105

4 3 70 130

TA B L E  100

District

District 1 2 3 4 5 6 7 8

1 10 3 4 6 8 9 8 10

2 3 0 5 4 8 6 12 9

3 4 5 0 2 2 3 5 7

4 6 4 2 0 3 2 5 4

5 8 8 2 3 0 2 2 4

6 9 6 3 2 2 0 3 2

7 8 12 5 5 2 3 0 2

8 10 9 7 4 4 2 2 0

TA B L E  101

Machine

Job 1 2 3 4

1 20 — 25 30

2 15 20 — 18

3 — 35 28 —



23 Arthur Ross, Inc., must complete many corporate tax
returns during the period February 15–April 15. This year
the company must begin and complete the five jobs shown
in Table 102 during this eight-week period. Arthur Ross
employs four full-time accountants who normally work 40
hours per week. If necessary, however, they will work up to
20 hours of overtime per week for which they are paid $100
per hour. Use integer programming to determine how Arthur
Ross can minimize the overtime cost incurred in completing
all jobs by April 15.

24† PSI believes it will need the amounts of generating
capacity shown in Table 103 during the next five years. The
company has a choice of building (and then operating)
power plants with the specifications shown in Table 104.
Formulate an IP to minimize the total costs of meeting the
generating capacity requirements of the next five years.

25† Reconsider Problem 24. Suppose that at the beginning
of year 1, power plants 1–4 have been constructed and are
in operation. At the beginning of each year, PSI may shut
down a plant that is operating or reopen a shut-down plant.
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The costs associated with reopening or shutting down a
plant are shown in Table 105. Formulate an IP to minimize
the total cost of meeting the demands of the next five years.
(Hint: Let

Xit � 1 if plant i is operated during year t

Yit � 1 if plant i is shut down at end of year t

Zit � 1 if plant i is reopened at beginning of year t

You must ensure that if Xit � 1 and Xi,t�1 � 0, then Yit � 1.
You must also ensure that if Xi,t�1 � 0 and Xit � 1, then 
Zit � 1.)

26‡ Houseco Developers is considering erecting three
office buildings. The time required to complete each and the
number of workers required to be on the job at all times are
shown in Table 106. Once a building is completed, it brings
in the following amount of rent per year: building 1, $50,000;
building 2, $30,000; building 3, $40,000. Houseco faces the
following constraints:

a During each year, 60 workers are available.

b At most, one building can be started during any year.

c Building 2 must be completed by the end of year 4.

Formulate an IP that will maximize the total rent earned by
Houseco through the end of year 4.

27 Four trucks are available to deliver milk to five
groceries. The capacity and daily operating cost of each
truck are shown in Table 107. The demand of each grocery
store can be supplied by only one truck, but a truck may
deliver to more than one grocery. The daily demands of
each grocery are as follows: grocery 1, 100 gallons; grocery
2, 200 gallons; grocery 3, 300 gallons; grocery 4, 500
gallons; grocery 5, 800 gallons. Formulate an IP that can be
used to minimize the daily cost of meeting the demands of
the four groceries.

†Based on Muckstadt and Wilson (1968). ‡Based on Peiser and Andrus (1983).

TA B L E  102

Accountant
Duration Hours Needed

Job (Weeks) per Week

1 3 120

2 4 160

3 3 180

4 2 180

5 4 100

TA B L E  103

Generating Capacity
Year (Million kwh)

1 180

2 100

3 120

4 140

5 160

TA B L E  104

Generating Construction Annual
Capacity Cost Operating Cost

Plant (Million kwh) ($ Millions) ($ Millions)

1 70 20 1.5

2 50 16 0.8

3 60 18 1.3

4 40 14 0.6

TA B L E  105

Reopening Shutdown
Cost Cost

Plant ($ Million) ($ Millions)

1 1.9 1.7

2 1.5 1.2

3 1.6 1.3

4 1.1 0.8

TA B L E  106

Duration of Number of
Project Workers

Building (Years) Required

1 2 30

2 2 20

3 3 20



28† The State of Texas frequently does tax audits of
companies doing business in Texas. These companies often
have headquarters located outside the state, so auditors must
be sent to out-of-state locations. Each year, auditors must
make 500 trips to cities in the Northeast, 400 trips to cities
in the Midwest, 300 trips to cities in the West, and 400 trips
to cities in the South. Texas is considering basing auditors
in Chicago, New York, Atlanta, and Los Angeles. The annual
cost of basing auditors in any city is $100,000. The cost of
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sending an auditor from any of these cities to a given region
of the country is given in Table 108. Formulate an IP whose
solution will minimize the annual cost of conducting out-
of-state audits.

29 A consulting company has 10 employees, each of whom
can work on at most two team projects. Six projects are
under consideration. Each project requires 4 of our 10
workers. The required workers and the revenue earned from
each project are shown in Table 109.

Each worker who is used on any project must be paid
the retainer shown in Table 110.

Finally, each worker on a project is paid the project fee
shown in Table 111.

How can we maximize our profit?

30 New York City has 10 trash districts and is trying to
determine which of the districts should be a site for dumping
trash. It costs $1,000 to haul one ton of trash one mile. The
location of each district, the number of tons of trash
produced per year by the district, the annual fixed cost (in
millions of dollars) of running a dumping site, and the
variable cost (per ton) of processing a ton of trash at a site
are shown in Table 112.

†Based on Fitzsimmons and Allen (1983).

TA B L E  107

Daily
Capacity Operating

Truck (Gallons) Cost ($)

1 1 400 45

2 1 500 50

3 1 600 55

4 1,100 60

TA B L E  108

Auditor Cost ($)

Northeast Midwest West South

New York 1,100 1,400 1,900 1,400

Chicago 1,200 1,000 1,500 1,200

Los Angeles 1,900 1,700 1,100 1,400

Atlanta 1,300 1,400 1,500 1,050

TA B L E  109

Project Required Workers Revenue ($)

1 1,4,5,8 10,000

2 2,3,7,10 15,000

3 1,6,8,9 6,000

4 2,3,5,10 8,000

5 1,6,7,9 12,000

6 2,4,8,10 9,000

TA B L E  110

Worker

1 2 3 4 5 6 7 8 9 10

Retainer ($) 800 500 600 700 800 600 400 500 400 500

TA B L E  111

Project

1 2 3 4 5 6

Fee ($) 250 300 250 300 175 180

TA B L E  112

Coordinates Cost ($ Millions)

District x y Tons Fixed Variable

1 4 3 49 2 310

2 2 5 874 1 40

3 10 8 555 1 51

4 2 8 352 1 341

5 5 3 381 3 131

6 4 5 428 2 182

7 10 5 985 1 20

8 5 1 105 2 40

9 5 8 258 4 177

10 1 7 210 2 75



For example, district 3 is located at coordinates (10,8).
District 3 produces 555 tons of trash a year, and it costs $1
million per year in fixed costs to operate a dump site in
district 3. Each ton of trash processed at site 3 incurs $51
in variable costs. Each dump site can handle at most 1,500
tons of trash. Each district must send all its trash to a single
site. Determine how to locate the dump sites in order to
minimize total cost per year.

31 You are the sales manager for Eli Lilly. You want to
have sales headquarters located in four of the cities in Table
113. The number of sales calls (in thousands) that must be
made in each city are given in Table 113. For example, San
Antonio requires 2,000 calls and is 602 miles from Phoenix.
The distance between each pair of cities is given in Table
114 and in file Test1.xls. Where should the headquarters be
located to minimize the total distance that must be traveled
to make the needed calls?

32 Alcoa produces 100-, 200-, and 300-foot-long
aluminum ingots for customers. This week’s demand for
ingots is shown in Table 115.

Alcoa has 4 furnaces in which ingots can be produced.
During a week, each furnace can be operated for 50 hours.
Because ingots are produced by cutting long strips of
aluminum, longer ingots take less time to produce than
shorter ingots. If a furnace is devoted completely to
producing one type of ingot; the number it can produce in
a week is shown in Table 116.

For example, furnace 1 could produce 350 300-foot
ingots per week. The material in an ingot costs $10 per foot.
If a customer wants a 100- or 200-foot ingot, then she will
accept an ingot of that length or longer. How can Alcoa
minimize the material costs incurred in meeting required
weekly demands?

33‡ In treating a brain tumor with radiation, physicians
want the maximum amount of radiation possible to bombard
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the tissue containing the tumors. The constraint is, however,
that there is a maximum amount of radiation that normal
tissue can handle without suffering tissue damage. Phy-
sicians must therefore decide how to aim the radiation so as
to maximize the radiation that hits the tumor tissue subject
to the constraint of not damaging the normal tissue. As a
simple example of this situation, suppose six types of
radiation beams (beams differ in where they are aimed and
their intensity) can be aimed at a tumor. The region
containing the tumor has been divided into six regions:
three regions contain tumors and three contain normal
tissue. The amount of radiation delivered to each region by
each type of beam is shown in Table 117.

If each region of normal tissue can handle at most 40 units
of radiation, then which beams should be used to maximize
the total amount of radiation received by the tumors?

34 It is currently the beginning of 2003. Gotham City is
trying to sell municipal bonds to support improvements in
recreational facilities and highways. The face value and 
due date at which principal comes due of the bonds are in
Table 118.

Gold and Silver (GS) wants to underwrite Gotham City’s
bonds. A proposal to Gotham for underwriting this issue
consists of the following:

■ An interest rate (3%, 4%, 5%, 6%, or 7%) for each
bond. Coupons are paid annually

■ An up-front premium paid by GS to Gotham City

GS has determined the fair prices (in thousands) for possible
bonds as shown in Table 119.

For example, if GS underwrites the bond maturing in
2006 at 5%, then it would charge Gotham City $444,000
for that bond. GS is constrained to use at most three different
interest rates. GS wants to make a profit of at least $46,000.
GS profit is given by

(Sales price of bonds) � (Face value of bonds)
� (Premium)

To maximize the chances that GS will get Gotham City’s
business, GS wants to minimize the total cost of the bond
issue to Gotham City. The total cost of the bond issue to
Gotham City is given by

(Total interests on bonds) � (Premium)

For example, if the year 2005 bond is issued at a 4% rate,
then Gotham City must pay 2 years of coupon interest or
2*(.04)*($700,000) � $56,000 of interest.

What assignment of interest rates to each bond and up-
front premium ensures that GS makes the desired profit (if
it gets the contract) and maximizes the chances of GS
getting Gotham City’s business?

35 When you lease 800-phone numbers from AT&T for
telemarketing, AT&T uses a Solver model to tell you where
you should locate calling centers to minimize your operating
costs over a 10-year horizon. To illustrate the model, suppose
you are considering 7 calling center locations: Boston, New
York, Charlotte, Dallas, Chicago, L.A., and Omaha. We
know the average cost (in dollars) incurred if a telemarketing
call is made from any of these cities to any region of the
country. We also know the hourly wage that we must pay
workers in each city (see Table 120).

We assume that an average call requires 4 minutes. We
make calls 250 days per year, and the average number of

TA B L E  113

City Calls Required

San Antonio 2

Phoenix 3

Los Angeles 6

Seattle 3

Detroit 4

Minneapolis 2

Chicago 7

Atlanta 5

New York 9

Boston 5

Philadelphia 4

‡Based on “Radiotherapy Design Using Mathematical Program-

ming Models,” by D. Sonderman and P. Abrahamson, Operations

Research, Vol. 33, No. 4 (1985):705–725.
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calls made per day to each region of the country is shown
in Table 121.

The cost of building a calling center in each possible
location is in Table 122.

Each calling center can make as many as 5,000 calls per
day. Given this information, how can we minimize the
discounted cost (at 10% per year) of running the tele-
marketing operation for 10 years? Assume all wage and
calling costs are paid at the end of each year.

36 Cook County needs to build two hospitals. There are
nine cities where the hospitals can be built. The number of
hospital visits made annually by the inhabitants of each city
and the x and y coordinates of each city are as shown in
Table 123.

To minimize the total distance patients must travel to
hospitals, where should the hospitals be located? (Hint: Use
Lookup functions to generate the distances between each
pair of cities.)

TA B L E  114

San Antonio Phoenix Los Angeles Seattle Detroit Minneapolis Chicago Atlanta New York Boston Philadelphia

San Antonio — 1,602 1,376 1,780 1,262 1,140 1,060 1,935 1,848 2,000 1,668

Phoenix 1,602 — 1,851 1,193 1,321 1,026 1,127 1,290 2,065 2,201 1,891

Los Angeles 1,376 1,851 — 1,971 2,088 1,727 1,914 2,140 2,870 2,995 2,702

Seattle 1,780 1,193 1,971 — 1,834 1,432 1,734 2,178 2,620 2,707 2,486

Detroit 1,262 1,321 2,088 1,834 — 1,403 1,205 1,655 1,801 1,912 1,654

Minneapolis 1,140 1,026 1,727 1,432 1,403 — 1,328 1,876 1,200 1,304 1,057

Chicago 1,060 1,127 1,914 1,734 1,205 1,328 — 1,564 1,957 1,082 1,794

Atlanta 1,935 1,290 2,140 2,178 1,655 1,876 1,564 — 1,940 1,096 1,765

New York 1,848 2,065 2,870 2,620 1,801 1,200 1,957 1,940 — 1,156 1,180

Boston 2,000 2,201 2,995 2,707 1,912 1,304 1,082 1,096 1,156 — 1,333

Philadelphia 1,668 1,891 2,702 2,486 1,654 1,057 1,794 1,765 1,180 1,333 —

TA B L E  115

Ingot (ft) Demand

100 700

200 300

300 150

TA B L E  116

Ingot Length

Furnace 100� 200� 300�

1 230 340 350

2 230 260 280

3 240 300 310

4 200 280 300

TA B L E  117

Normal Tumor

1 2 3 1 2 3 Beam

16 12 8 20 12 6 1

12 10 6 18 15 8 2

9 8 13 13 10 17 3

4 12 12 6 18 16 4

9 4 11 13 5 14 5

8 7 7 10 10 10 6

TA B L E  118

Due Date Principal ($ Thousands)

2005 700

2006 450

2007 250

2008 600

2009 300

TA B L E  119

Amount at Maturity ($ Thousands)

Interest Rate (%) 2005 2006 2007 2008 2009

3 695 427 233 504 248

4 701 433 235 522 256

5 715 444 247 548 268

6 731 460 255 575 288

7 750 478 269 605 307
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R E F E R E N C E S

TA B L E  120

New Middle Rocky Hourly
Cost Call England Atlantic Southeast Southwest Great Lakes Plains Mountains Pacific Wage ($)

Boston 1.2 1.4 1.1 2.6 1.2 2.2 2.8 2.2 14

New York 1.3 1.1 1.3 2.2 1.8 1.9 2.5 2.8 16

Charlotte 1.5 1.4 0.9 1.9 2.1 2.3 2.6 3.3 11

Dallas 1.2 1.8 1.2 1.1 1.7 2.2 1.8 2.7 12

Chicago 2.1 1.9 2.3 1.5 0.9 1.3 1.2 2.2 13

LA 2.5 2.1 1.9 1.2 1.7 1.5 1.4 2.1 18

Omaha 2.2 2.1 1.2 1.3 1.4 0.6 0.9 1.5 10

TA B L E  121

Region Daily Calls

New England 1,000

Middle Atlantic 2,000

Southeast 2,000

Southwest 2,000

Great Lakes 3,000

Plains 1,000

Rocky Mountain 2,000

Pacific 4,000

TA B L E  122†

City Building Cost ($ Millions)

Boston 2.7

New York 3.7

Charlotte 2.1

Dallas 2.1

Chicago 2.4

LA 3.6

Omaha 2.1

†Based on Spencer, T., Brigandi, A., Dargon D.,

and Sheehan, M., “AT&T’s Telemarketing

Site Selection System Offers Customer

Support,” Interfaces, Vol. 20, no. 1, 1990.

TA B L E  123

City x y Visits

1 0 0 3,000

2 10 3 4,000

3 12 15 5,000

4 14 13 6,000

5 16 9 4,000

6 18 6 3,000

7 8 12 2,000

8 6 10 4,000

9 4 8 1,200
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Advanced Topics 
in Linear Programming†

In this chapter, we discuss six advanced linear programming topics: the revised simplex

method, the product form of the inverse, column generation, the Dantzig–Wolfe decomposi-

tion algorithm, the simplex method for upper-bounded variables, and Karmarkar’s method for

solving LPs. The techniques discussed are often utilized to solve large linear programming

problems. The results of Section 6.2 play a key role throughout this chapter.

10.1 The Revised Simplex Algorithm

In Section 6.2, we demonstrated how to create an optimal tableau from an initial tableau,

given an optimal set of basic variables. Actually, the results of Section 6.2 can be used to

create a tableau corresponding to any set of basic variables. To show how to create a

tableau for any set of basic variables BV, we first describe the following notation (assume

the LP has m constraints):

BV � any set of basic variables (the first element of BV is the basic variable in

the first constraint, the second variable in BV is the basic variable in the

second constraint, and so on; thus, BVj is the basic variable for constraint

j in the desired tableau)

b � right-hand-side vector of the original tableau’s constraints

aj � column for xj in the constraints of the original problem

B � m � m matrix whose jth column is the column for BVj in the original

constraints

cj � coefficients of xj in the objective function

cBV � 1 � m row vector whose jth element is the objective function coefficient

for BVj

ui � m � 1 column vector with ith element 1 and all other elements equal to

zero

Summarizing the formulas of Section 6.2, we write:

B�1aj � column for xj in BV tableau (1)

cBVB�1aj � cj � coefficient of xj in row 0 (2)

B�1b � right-hand side of constraints in BV tableau (3)

cBVB�1ui � coefficient of slack variable si in BV in row 0 (4)

†This chapter covers topics that may be omitted with no loss of continuity.



cBVB�1(�ui) � coefficient of excess variable ei in BV row 0 (5)

M � cBVB�1ui � coefficient of artificial variable ai in BV row 0 (6)

(in a max problem)

cBVB�1b � right-hand side of BV row 0 (7)

If we know BV, B�1, and the original tableau, formulas (1)–(7) enable us to compute any

part of the simplex tableau for any set of basic variables BV. This means that if a com-

puter is programmed to perform the simplex algorithm, then all the computer needs to

store on any pivot is the current set of basic variables, B�1, and the initial tableau. Then

(1)–(7) can be used to generate any portion of the simplex tableau. This idea is the basis

of the revised simplex algorithm.

We illustrate the revised simplex algorithm by using it to solve the Dakota problem of

Chapter 6. Recall that after adding slack variables s1, s2, and s3, the initial tableau (tableau

0) for the Dakota problem is

max z � 60x1 � 30x2 � 20x3

s.t. 8x1 � 1.6x2 � x3 � s1 � s2 � s2 � 48

s.t. 4x1 � 1.2x2 � 1.5x3 � s2 � s2 � s2 � 20

s.t. 2x1 � 1.5x2 � 0.5x3 � s2 � s2 � s3 � 8

No matter how many pivots have been completed, B�1 for the current tableau will sim-

ply be the 3 � 3 matrix whose jth column is the column for sj in the current tableau. Thus,

for the original tableau BV(0), the set of basic variables is given by

NBV(0) � {s1, s2, s3}

NBV(0) � {x1, x2, x3}

We let Bi be the columns in the original LP that correspond to the basic variables for

tableau i. Then

B0
�1 � B0 � � �

We can now determine which nonbasic variable should enter the basis by computing the

coefficient of each nonbasic variable in the current row 0. This procedure is often re-

ferred to as pricing out the nonbasic variable. From (2)–(5), we see that we can’t price

out the nonbasic variables until we have determined cBVB0
�1. Because cBV � [0 0 0],

we have

cBVB0
�1 � [0 0 0] � � � [0 0 0]

We now use (2) to price out each nonbasic variable:

c�1 � [0 0 0] � � � 60 � �60

8

4

2

0

0

1

0

1

0

1

0

0

0

0

1

0

1

0

1

0

0
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c�2 � [0 0 0] � � � 30 � �30

c�3 � [0 0� � � 20 � �20

Because x1 has the most negative coefficient in the current row 0, x1 should enter the ba-

sis. To continue the simplex, all we need to know about the new tableau is the new set of

basic variables, BV(1), and the corresponding B1
�1. To determine BV(1), we find the row

in which x1 enters the basis. We compute the column for x1 in the current tableau and the

right-hand side of the current tableau.

From(1),

Column for x1 in current tableau � � � � � � � �
From (3),

Right-hand side of current tableau � � � � � � � �
We now use the ratio test to determine the row in which x1 should enter the basis. The

appropriate ratios are row 1, �
4
8
8
� � 6; row 2, �

2
4
0
� � 5; and row 3, �

8
2

� � 4. Thus, x1 should

enter the basis in row 3. This means that our new tableau (tableau 1) will have BV(1) �

{s1, s2, x1} and NBV(1) � {s3, x2, x3}.

The new B�1 will be the columns of s1, s2, and s3 in the new tableau. To determine the

new B�1, look at the column in tableau 0 for the entering variable x1. From this column,

we see that in going from tableau 0 to tableau 1, we must perform the following EROs:

1 Multiply row 3 of tableau 0 by �
1
2

�.

2 Replace row 1 of tableau 0 by �4(row 3 of tableau 0) � row 1 of tableau 0.

3 Replace row 2 of tableau 0 by �2(row 3 of tableau 0) � row 2 of tableau 0.

Applying these EROs to B0
�1 yields

B1
�1 � � �

We can now price out all the nonbasic variables for the new tableau. First we compute

cBVB1
�1 � [0 0 60] � � � [0 0 30]

Then use (2) and (4) to price out tableau 1’s nonbasic variables:

c�2 � [0 0 30] � � � 30 � 15
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�
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1

0
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c�3 � [0 0 30] � � � 20 � �5

Coefficient of s3 in row 0 � [0 0 30] � � � 0 � 30

Because x3 is the only variable with a negative coefficient in row 0 of tableau 1, we en-

ter x3 into the basis. To determine the new set of basic variables, BV(2), and the corre-

sponding B2
�1, we find the row in which x3 enters the basis and compute

x3 column in tableau 1 � B1
�1a3 � � � � � � � �

Right-hand side of tableau 1 � B1
�1b � � � � � � � �

The appropriate ratios for determining where x3 should enter the basis are row 1, none;

row 2, �
0
4
.5
� � 8; and row 3, �

0.
4
25
� � 16. Hence, x3 should enter the basis in row 2. Then

tableau 2 will have BV(2) � {s1, x3, x1} and NBV(2) � {s2, s3, x2}.

To compute B2
�1, note that to make x3 a basic variable in row 2, we must perform the

following EROs on tableau 1:

1 Replace row 2 of tableau 1 by 2(row 2 of tableau 1).

2 Replace row 1 of tableau 1 by 2(row 2 of tableau 1) � row 1 of tableau 1.

3 Replace row 3 of tableau 1 by ��
1
2

�(row 2 of tableau 1) � row 3 of tableau 1.

Applying these EROs to B1
�1, we obtain

B2
�1 � � �

We now price out the nonbasic variables in tableau 2. First we compute

cBVB2
�1 � [0 20 60] � � � [0 10 10]

Then we price out the nonbasic variables x2, s2, and s3:

c�2 � [0 10 10] � � � 30 � 5

Coefficient of s2 in row 0 � [0 10 10] � � � 0 � 10
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Coefficient of s3 in row 0 � [0 10 10] � � � 0 � 10

Each nonbasic variable has a nonnegative coefficient in row 0, so tableau 2 is an optimal

tableau. To find the optimal solution, we find the right-hand side of tableau 2. From (3),

we obtain

Right-hand side of tableau 2 � � � � � � � �
Because BV(2) � {s1, x3, x1}, the optimal solution to the Dakota problem is

� � � � �
or s1 � 24, x3 � 8, x1 � 2, x2 � s2 � s3 � 0. The optimal z-value may be found from (7):

cBVB2
�1b � [0 10 10] � � � 280

A summary of the revised simplex method (for a max problem) follows:

Step 0 Note the columns from which the current B�1 will be read. Initially, B�1
� I.

Step 1 For the current tableau, compute cBVB�1.

Step 2 Price out all nonbasic variables in the current tableau. If each nonbasic variable

prices out to be nonnegative, then the current basis is optimal. If the current basis is not

optimal, then enter into the basis the nonbasic variable with the most negative coefficient

in row 0. Call this variable xk.

Step 3 To determine the row in which xk enters the basis, compute xk’s column in the

current tableau (B�1ak) and compute the right-hand side of the current tableau (B�1b).

Then use the ratio test to determine the row in which xk should enter the basis. We now

know the set of basic variables (BV) for the new tableau.

Step 4 Use the column for xk in the current tableau to determine the EROs needed to en-

ter xk into the basis. Perform these EROs on the current B�1. This will yield the new B�1.

Return to step 1.

Most linear programming computer codes use some version of the revised simplex to solve

LPs. Knowing the current tableau’s B�1 and the initial tableau is all that is needed to obtain

the next tableau, so the computational effort required to solve an LP by the revised simplex

depends primarily on the size of B�1. Suppose the LP being solved has m constraints and n

variables. Then each B�1 will be an m � m matrix, and the effort required to solve an LP will

depend primarily on the number of constraints (not the number of variables). This fact has im-

portant computational implications. For example, if we are solving an LP that has 500 con-

straints and 10 variables, the LP’s dual will have 10 constraints and 500 variables. Then all the

B�1’s for the dual will be 10 � 10 matrices, and all the B�1’s for the primal will be 500 �

500. Thus, it will be much easier to solve the dual than to solve the primal. In this situation,

computation can be greatly reduced by solving the dual and reading the optimal primal solu-

tion from the SHADOW PRICE or DUAL VARIABLE section of a computer printout.
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Use the revised simplex method to solve the following LPs:

1 max z � 3x1 � x2 � x3

s.t. x1 � x2 � x3 � 6

s.t. 2x1 � x2 � x3 � 4

s.t. x1 � x2 � x3 � 2

s.t. x1 x1, x2, x3 � 0

2 max z � 4x1 � x2

s.t. x1 � x2 � 4

s.t. 2x1 � x2 � 6

s.t. x1 �3x2 � 6

s.t. x1, x2, x3 � 0

10.2 The Product Form of the Inverse

Much of the computation in the revised simplex algorithm is concerned with updating

B�1 from one tableau to the next. In this section, we develop an efficient method to up-

date B�1.

Suppose we are solving an LP with m constraints. Assume that we have found that xk

should enter the basis, in row r. Let the column for xk in the current tableau be

� �
Define the m � m matrix E:

(column r)

1 0 			 ��
a

a
�
�
1

rk

k� 			 0 0

0 1 			 ��
a

a
�
�
2

rk

k� 			 0 0

	 	 	 	 		 	 	 	 		 	 	 	 	

E � 0 0 			 �
a�

1

rk

� 			 0 0    (row r)

	 	 	 	 		 	 	 	 		 	 	 	 	

0 0 			 ��
a�m

a�

�

rk

1,k
� 			 1 0

0 0 			 ��
a�
a�
m

rk

k� 			 0 1

a�1k

a�2k

			

a�mk

Remember that B�1 is always found under the columns
corresponding to the starting basis.)

3 min z � 3x1 � x2 � 3x3

s.t. x1 � x2 � x3 � 4

s.t. x1 � x2 � x3 � 6

s.t. x1 �2x2 � x3 � 5

s.t. x1 x1, x2, x3 � 0

P R O B L E M S
Group A



In short, E is simply Im with column r replaced by the column vector

��
a

a
�
�
1

rk

k�

��
a

a
�
�
2

rk
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�
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1
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�
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a�m
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1,k
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��
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k�

D E F I N I T I O N ■ A matrix (such as E) that differs from the identity matrix in only one column is

called an elementary matrix. ■

We now show that

B�1 for new tableau � E(B�1 for current tableau) (8)

To see why this is true, note that the EROs used to go from the current tableau to the new

tableau boil down to

Row r of new B�1 � ��
a�

1

rk

�� (row r of current B�1) (9)

and for i 
 r,

Row i of new B�1

� (row i of current B�1) � ��
a

a

�
�
r

ik

k

�� (row r of current B�1) (10)

Recall from Section 2.1 that

Row i of E(current B�1) � (row i of E)(current B�1) (11)

Combining (11) with the definition of E, we find that

Row r of E(current B�1) � ��
a�

1

rk

�� (row r of current B�1)

and for i 
 r,

Row i of E(current B�1)

� (row i of current B�1) � ��
a

a

�
�

r

ik

k

�� (row r of current B�1)

Hence, (8) does agree with (9) and (10). Thus, we can use (8) to find the new B�1 from

the current B�1.

Define the initial tableau to be tableau 0, and let Ei be the elementary matrix E asso-

ciated with the ith simplex tableau. Recall that B0
�1 � Im. We now write

B1
�1 � E0B0

�1 � E0
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Then

B2
�1

� E1B1
�1

� E1E0

and, in general,

Bk
�1

� Ek�1Ek�2 			 E1E0 (12)

Equation (12) is called the product form of the inverse. Most linear programming com-

puter codes utilize the revised simplex method and compute successive B�1’s by using the

product form of the inverse.

Use the product form of the inverse to compute B1
�1 and B2

�1 for the Dakota problem that

was solved by the revised simplex in Section 10.1.

Solution Recall that in tableau 0, x1 entered the basis in row 3. Hence, for tableau 0, r � 3 and 

k � 1. For tableau 0,

� � � � �
Then

E0 � � � � � �
B1

�1
� � � � � � � �

As we proceeded from tableau 1 to tableau 2, x3 entered the basis in row 2. Hence, in

computing E1, we set r � 2 and k � 3. To compute E1, we need to find the column for

the entering variable (x3) in tableau 1:

� � � B1
�1a3 � � � � � � � �

As before, x3 enters the basis in row 2. Then

E1 � � � � � �
and (as before)
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�8

�4

�1.5

�2

�2

�0.5

1

0

0

�4

�2

�0.5

0

1

0

1

0

0

0

0

1

�2

�2

�0.5

1

0

0

0

0

1

�2

�2

�0.5

1

0

0

0

0

1

�(��
0
1
.5
�)

�
0
1
.5
�

��
0
0
.
.
2
5
5
0

�

1

0

0

�1

�0.5

�0.25

1

1.5

0.5

�4

�2

�0.5

0

1

0

1

0

0

a�13

a�23

a�33

�4

�2

��
1
2

�

0

1

0

1

0

0

0

0

1

0

1

0

1

0

0

�4

�2

��
1
2

�

0

1

0

1

0

0

�4

�2

��
1
2

�

0

1

0

1

0

0

��
8
2

�

��
4
2

�

��
1
2

�

0

1

0

1

0

0

8

4

2

a�11

a�21

a�31

Product Form of the InverseE X A M P L E  1



570 C H A P T E R 1 0 Advanced Topics in Linear Programming

In the next two sections, we use the product form of the inverse in our study of col-

umn generation and of the Dantzig–Wolfe decomposition algorithm.

P R O B L E M
Group A

For the problems of Section 10.1, use the product form of
the inverse to perform the revised simplex method.

10.3 Using Column Generation to Solve Large-Scale LPs

We have already seen that the revised simplex algorithm requires less computation than

the simplex algorithm of Chapter 4. In this section, we discuss the method of column gen-

eration, devised by Gilmore and Gomory (1961). For LPs that have many variables, col-

umn generation can be used to increase the efficiency of the revised simplex algorithm.

Column generation is also a very important component of the Dantzig–Wolfe decompo-

sition algorithm, which is discussed in Section 10.4. To explain the idea of column gen-

eration, we solve a simple version of the classic cutting stock problem.

Woodco sells 3-ft, 5-ft, and 9-ft pieces of lumber. Woodco’s customers demand 25 3-ft

boards, 20 5-ft boards, and 15 9-ft boards. Woodco, who must meet its demands by cut-

ting up 17-ft boards, wants to minimize the waste incurred. Formulate an LP to help

Woodco accomplish its goal, and solve the LP by column generation.

Solution Woodco must decide how each 17-ft board should be cut. Hence, each decision corre-

sponds to a way in which a 17-ft board can be cut. For example, one decision variable

would correspond to a board being cut into three 5-ft boards, which would incur waste of

17 � 15 � 2 ft. Many possible ways of cutting a board need not be considered. For ex-

ample, it would be foolish to cut a board into one 9-ft and one 5-ft piece; we could just

as easily cut the board into a 9-ft piece, a 5-ft piece, and a 3-ft piece. In general, any cut-

ting pattern that leaves 3 ft or more of waste need not be considered because we could

use the waste to obtain one or more 3-ft boards. Table 1 lists the sensible ways to cut a

17-ft board.

Odds and EvensE X A M P L E  2

TA B L E  1

Ways to Cut a Board in the Cutting Stock Problem

Number of
Waste

Combination 3-ft Boards 5-ft Boards 9-ft Boards (Feet)

1 5 0 0 2

2 4 1 0 0

3 2 2 0 1

4 2 0 1 2

5 1 1 1 0

6 0 3 0 2



We now define

xi � number of 17-ft boards cut according to combination i

and formulate Woodco’s LP:

Woodco’s waste � total customer demand � total length of board cut

Because

Total customer demand � 25(3) � 20(5) � 15(9) � 310 ft

Total length of boards cut � 17(x1 � x2 � x3 � x4 � x5 � x6)

we write

Woodco’s waste (in feet) � 17x1 � 17x2 � 17x3 � 17x4 � 17x5 � 17x6 � 310

Then Woodco’s objective function is to minimize

min z � 17x1 � 17x2 � 17x3 � 17x4 � 17x5 � 17x6 � 310

This is equivalent to minimizing

17(x1 � x2 � x3 � x4 � x5 � x6)

which is equivalent to minimizing

x1 � x2 � x3 � x4 � x5 � x6

Hence, Woodco’s objective function is

min z � x1 � x2 � x3 � x4 � x5 � x6 (13)

This means that Woodco can minimize its total waste by minimizing the number of 17-ft

boards that are cut.

Woodco faces the following three constraints:

Constraint 1 At least 25 3-ft boards must be cut.

Constraint 2 A t least 20 5-ft boards must be cut.

Constraint 3 At least 15 9-ft boards must be cut.

Because the total number of 3-ft boards that are cut is given by 5x1 � 4x2 � 2x3 � 2x4 �

x5, Constraint 1 becomes

5x1 � 4x2 � 2x3 � 2x4 � x5 � 25 (14)

Similarly, Constraint 2 becomes

x2 � 2x3 � x5 � 3x6 � 20 (15)

and Constraint 3 becomes

x4 � x5 � 15 (16)

Note that the coefficient of xi in the constraint for k-ft boards is just the number of k-ft

boards yielded if a board is cut according to combination i.

It is clear that the xi should be required to assume integer values. Despite this fact, in

problems with large demands, a near-optimal solution can be obtained by solving the cut-

ting stock problem as an LP and then rounding all fractional variables upward. This pro-

cedure may not yield the best possible integer solution, but it usually yields a near-

optimal integer solution. For this reason, we concentrate on the LP version of the 
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cutting stock problem. Combining the sign restrictions with (13)–(16), we obtain the 

following LP:

min z � x1 � x2 � x3 � x4 � x5 � x6 � 25 (3-ft constraint)

s.t. 5x1 � 4x2 � 2x3 � 2x4 � x5 � 3x6 � 25 (3-ft constraint)

s.t. 5x1 � 4x2 � 2x3 � 2x4 � x5 � 3x6 � 20 (5-ft constraint) (17)

s.t. 5x1 � 4x2 � 2x3 � 2x4 � x5 � 3x6 � 15 (9-ft constraint)

s.t. 5x1 � 4x2 � 2xx1, x2, x3, x4, x5, x6 � 0 (5-ft constraint)

Note that x1 only occurs in the 3-ft constraint (because combination 1 yields only 3-ft

boards), and x6 occurs in the 5-ft constraint (because combination 6 yields only 5-ft

boards). This means that x1 and x6 can be used as starting basic variables for the 3-ft and

5-ft constraints. Unfortunately, none of combinations 1–6 yields only 9-ft boards, so the

9-ft constraint has no obvious basic variable. To avoid having to add an artificial variable

to the 9-ft constraint, we define combination 7 to be the cutting combination that yields

only one 9-ft board. Also, define x7 to be the number of boards cut according to combi-

nation 7. Clearly, x7 will be equal to zero in the optimal solution, but inserting x7 in the

starting basis allows us to avoid using the Big M or the two-phase simplex method. Note

that the column for x7 in the LP constraints will be

� �
and a term x7 will be added to the objective function. We can now use BV � {x1, x6, x7}

as a starting basis for LP (17). If we let the tableau for this basis be tableau 0, then we

have

B0 � � �

B0
�1 � � �

Then

cBVB0
�1 � [1 1 1] � � � [�

1
5

� �
1
3

� 1]

If we now priced out each nonbasic variable it would tell us which variable should en-

ter the basis. However, in a large-scale cutting stock problem, there may be thousands of

variables, so pricing out each nonbasic variable would be an extremely tedious chore. This

is the type of situation in which column generation comes into play. Because we are solv-

ing a minimization problem, we want to find a column that will price out positive (have

a positive coefficient in row 0). In the cutting stock problem, each column, or variable,

represents a combination for cutting up a board: A variable is specified by three numbers:

a3, a5, and a9, where ai is the number of i-ft boards yielded by cutting one 17-ft board

according to the given combination. For example, the variable x2 is specified by a3 � 4,

a5 � 1, and a9 � 0. The idea of column generation is to search efficiently for a column
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that will price out favorably (positive in a min problem and negative in a max problem).

For our current basis, a combination specified by a3, a5, and a9 will price out as

cBVB0
�1 � � � 1 � �

1

5
� a3 � �

1

3
� a5 � a9 � 1

Note that a3, a5, and a9 must be chosen so they don’t use more than 17 ft of wood. We

also know that a3, a5, and a9 must be nonnegative integers. In short, for any combination,

a3, a5, and a9 must satisfy

3a3 � 5a5 � 9a9 � 17 (a3 � 0, a5 � 0, a9 � 0; a3, a5, a9 integer) (18)

We can now find the combination that prices out most favorably by solving the following

knapsack problem:

max z � �
1
5

�a3 � �
1
3

�a5 � a9 � 1

s.t. 3a3 � 5a5 � 9a9 � 17 (19)

a3, a5, a9 � 0; a3, a5, a9 integer

Because (19) is a knapsack problem (without 0–1 restrictions on the variables), it can eas-

ily be solved by using the branch-and-bound procedure outlined in Section 9.5.

The resulting branch-and-bound tree is given in Figure 1. For example, to solve Prob-

lem 6 in Figure 1, we first set a5 � 1 (because a5 � 1 is necessary). Then we have 12 ft

left in the knapsack, and we choose to make a9 (the best item) as large as possible. Be-

cause a9 � 1, we set a9 � 1. This leaves 3 ft, so we set a3 � 1 to fill the knapsack. From

Figure 1, we find that the optimal solution to LP (19) is z � �
1
8
5
�, a3 � a5 � a9 � 1. This

corresponds to combination 5 and variable x5. Hence, x5 prices out �
1
8
5
�, and entering x5
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a3  ≥  3a3  ≤  2

a5  ≥  1 a5  ≤  0
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F I G U R E  1
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into the basis will decrease Woodco’s waste. To enter x5 into the basis, we create the right-

hand side of the current tableau and the x5 column of the current tableau.

x5 column in current tableau � B0
�1 � � � � � � � � � �

Right-hand side of current tableau � B0
�1b � � � � � � � �

The ratio test indicates that x5 should enter the basis in row 3. This yields BV(1) �

{x1, x6, x5}. Using the product form of the inverse, we obtain

B1
�1

� E0B0
�1

� � � � �
� � �

Now

cBVB1
�1

� [1 1 1] � � � [�
1
5

� �
1
3

� �
1
7
5
�]

With our new set of shadow prices (cBVB1
�1), we can again use column generation to

determine whether there is any combination that should be entered into the basis. For the

current set of shadow prices, a combination specified by a3, a5, and a9 prices out to

��
1

5
� �

1

3
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1

7

5
�� � � � 1 � �

1

5
�a3 � �

1

3
�a5 � �

1

7

5
�a9 � 1

For the current tableau, the column generation procedure yields the following problem:

max z � �
1
5

�a3 � �
1
3

�a5 � �
1
7
5
�a9 � 1

s.t. 3a3 � 5a5 � 9a9 � 17 (20)

a3, a5, a9 � 0; a3, a5, a9 integer

The branch-and-bound tree for (20) is given in Figure 2. We see that the combination

with a3 � 4, a5 � 1, and a9 � 0 (combination 2) will price out better than any other (it

will have a row 0 coefficient of �
1
2
5
�). Combination 2 prices out most favorably, so we now

enter x2 into the basis. The column for x2 in the current tableau is

B1
�1 � � � � � � � � � �

The right-hand side of the current tableau is
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B1
�1b � � � � � � � �

The ratio test indicates the x2 should enter the basis in row 1. Hence, BV(2) � {x2, x6,

x5}. Using the product form of the inverse, we find that

E1 � � �
Then

B2
�1

� E1B1
�1

� � � � � � � �
The new set of shadow prices is given by

cBVB2
�1

� [1 1 1] � � � [�
1
6

� �
1
3

� �
1
2

�]

For this set of shadow prices, a combination specified by a3, a5, and a9 will price out to
�
1
6

�a3 � �
1
3

�a5 � �
1
2

�a9 � 1. Thus, the column-generation procedure requires us to solve the

following problem:

max z � �
1
6

�a3 � �
1
3

�a5 � �
1
2

�a9 � 1

s.t. 3a3 � 5a5 � 9a9 � 17 (21)

a3, a5, a9 � 0; a3, a5, a9 integer

The branch-and-bound tree for IP (21) is left as an exercise (see Problem 1 at the end

of this section). The optimal z-value for (21) is found to be z � 0. This means that no

combination can price out favorably. Hence, our current basic solution must be an opti-

mal solution. To find the values of the basic variables in the optimal solution, we find the

right-hand side of the current tableau:
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B2
�1b � � � � � � � �

Therefore, the optimal solution to Woodco’s cutting stock problem is given by x2 � �
5
2

�, 

x6 � �
5
6

�, x5 � 15. If desired, we could obtain a “reasonable” integer solution by rounding

x2 and x6 upward. This yields the integer solution x2 � 3, x6 � 1, x5 � 15.

If we have a starting bfs for a cutting stock problem, we need not list all possible ways

in which a board may be cut. At each iteration, a good combination (one that will improve

the z-value when entered into the basis) is generated by solving a branch-and-bound prob-

lem. The fact that we don’t have to list all the ways a board can be cut is very helpful; a

cutting stock problem that was solved in Gilmore and Gomory (1961) for which cus-

tomers demanded boards of 40 different lengths involved more than 100 million possible
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ways a board could be cut. At

the last stage of the column-

generation procedure for this

problem, solving a single

10.4 The Dantzig–Wolfe Decomposition Algorithm

In many LPs, the constraints and variables may be decomposed in the following manner:

Constraints in set 1 only involve variables in Variable set 1.

Constraints in set 2 only involve variables in Variable set 2.

�

Constraints in set k only involve variables in Variable set k.

Constraints in set k � 1 may involve any variable. The constraints in set k � 1 are re-

ferred to as the central constraints. LPs that can be decomposed in this fashion can of-

ten be solved efficiently by the Dantzig–Wolfe decomposition algorithm.

Steelco manufactures two types of steel (steel 1 and steel 2) at two locations (plants 1 and

2). Three resources are needed to manufacture a ton of steel: iron, coal, and blast furnace

time. The two plants have different types of furnaces, so the resources needed to manu-

facture a ton of steel depend on the location (see Table 2). Each plant has its own coal

mine. Each day, 12 tons of coal are available at plant 1 and 15 tons at plant 2. Coal can-

not be shipped between plants. Each day, plant 1 has 10 hours of blast furnace time avail-

able, and plant 2 has 4 hours available. Iron ore is mined in a mine located midway be-

tween the two plants; 80 tons of iron are available each day. Each ton of steel 1 can be

sold for $170/ton, and each ton of steel 2 can be sold for $160/ton. All steel that is sold

is shipped to a single customer. It costs $80 to ship a ton of steel from plant 1, and $100

branch-and-bound problem

indicated that none of the 100

million (nonbasic) ways

DecompositionE X A M P L E  3
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ferred to as the central constraints. LPs that can be decomposed in this fashion can of-

ten be solved efficiently by the Dantzig–Wolfe decomposition algorithm.

Steelco manufactures two types of steel (steel 1 and steel 2) at two locations (plants 1 and

2). Three resources are needed to manufacture a ton of steel: iron, coal, and blast furnace

time. The two plants have different types of furnaces, so the resources needed to manu-

facture a ton of steel depend on the location (see Table 2). Each plant has its own coal

mine. Each day, 12 tons of coal are available at plant 1 and 15 tons at plant 2. Coal can-

not be shipped between plants. Each day, plant 1 has 10 hours of blast furnace time avail-

able, and plant 2 has 4 hours available. Iron ore is mined in a mine located midway be-

tween the two plants; 80 tons of iron are available each day. Each ton of steel 1 can be

sold for $170/ton, and each ton of steel 2 can be sold for $160/ton. All steel that is sold

is shipped to a single customer. It costs $80 to ship a ton of steel from plant 1, and $100

a ton from plant 2. Assuming that the only variable cost is the shipping cost, formulate

and solve an LP to maximize Steelco’s revenues less shipping costs.

Solution Define

x1 � tons of steel 1 produced daily at plant 1

x2 � tons of steel 2 produced daily at plant 1

x3 � tons of steel 1 produced daily at plant 2

x4 � tons of steel 2 produced daily at plant 2

Steelco’s revenue is given by 170(x1 � x3) � 160(x2 � x4), and Steelco’s shipping cost

is 80(x1 � x2) � 100(x3 � x4). Therefore, Steelco wants to maximize

z � (170 � 80)x1 � (160 � 80)x2 � (170 � 100)x3 � (160 � 100)x4

� 90x1 � 80x2 � 70x3 � 60x4

Steelco faces the following five constraints:

Constraint 1 At plant 1, no more than 12 tons of coal can be used daily.

Constraint 2 At plant 1, no more than 10 hours of blast furnace time can be used daily.

Constraint 3 At plant 2, no more than 15 tons of coal can be used daily.

Constraint 4 At plant 2, no more than 4 hours of blast furnace time can be used daily.

Constraint 5 At most, 80 tons of iron ore can be used daily.

Constraints 1–5 lead to the following five LP constraints:

3x1 � x2 � 123 � 5x4 � 80 (Plant 1 coal constraint) (23)

TA B L E  2

Resource Requirements for Steelco

Iron Coal Blast Furnace
Product Required Required Time Requested
(1 Ton) (Tons) (Tons) (Hours)

Steel 1 at plant 1 8 3 2

Steel 2 at plant 1 6 1 1

Steel 1 at plant 2 7 3 1

Steel 2 at plant 2 5 2 1



2x1 � x2 � 103 � 5x4 � 80 (Plant 1 furnace constraint) (24)

3x3 � 2x4 � 153 � 5x4 � 80 (Plant 2 coal constraint) (25)

x3 � x4 � 4 3 � 5x4 � 80 (Plant 2 furnace constraint) (26)

8x1 � 6x2 � 7x3 � 5x4 � 80 (Iron ore constraint) (27)

We also need the sign restrictions xi � 0. Putting it all together, we write Steelco’s LP as

max z � 90x1 � 80x2 � 70x3 � 60x4

s.t. 3x1 � x2 � 7x3 � 5x4 � 12 (Plant 1 coal constraint) (22)

s.t. 2x1 � x2 � 3x3 � 2x4 � 10 (Plant 1 furnace constraint) (23)

s.t. 3x1 � 6 x2� 3x3 � 2x4 � 15 (Plant 2 coal constraint) (24)

s.t. 3x1 � x2 �7 x3 � x4 � 4 (Plant 2 furnace constraint) (25)

s.t. 8x1 � 6x2 � 7x3 � 5x4 � 80 (Iron ore constraint) (26)

s.t. 8x1 � 6x2x1, x2, x3, x4 � 0

Using our definition of decomposition, we may decompose the Steelco LP in the fol-

lowing manner:

Variable set 1 x1 and x2 (plant 1 variables).

Variable set 2 x3 and x4 (plant 2 variables).

Constraint 1 (22) and (23) (plant 1 constraints).

Constraint 2 (24) and (25) (plant 2 constraints).

Constraint 3 (26).

Constraint set 1 and Variable set 1 involve activities at plant 1 and do not involve x3 and x4

(which represent plant 2 activities). Constraint set 2 and Variable set 2 involve activities at plant

2 and do not involve x1 and x2 (plant 1 activities). Constraint set 3 may be thought of as a cen-

tralized constraint that interrelates the two sets of variables. (Solution to be continued.)

Problems in which several plants manufacture several products can easily be decom-

posed along the lines of Example 3.

To efficiently solve LPs that decompose along the lines of Example 3, Dantzig and Wolfe

developed the Dantzig–Wolfe decomposition algorithm. To simplify our discussion of this

algorithm, we assume we are solving an LP in which each subproblem has a bounded fea-

sible region.† The decomposition algorithm depends on the results in Theorem 1.

Suppose the feasible region for an LP is bounded and the extreme points (or basic

feasible solutions) of the LP’s feasible region are P1, P2, . . . , Pk. Then any point x

in the LP’s feasible region may be written as a linear combination of P1, P2, . . . ,

Pk. In other words, there exist weights �1, �2, . . . , �k satisfying

x � �1P1 � �2P2 � 			 � �kPk (27)
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†See Bradley, Hax, and Magnanti (1977) for a discussion of decomposition that includes the case where at

least one subproblem has an unbounded feasible region.



Moreover, the weights �1, �2, . . . , �k in (27) may be chosen such that

�1 � �2 � 			 � �k � 1 and �i � 0 for i � 1, 2, . . . , k (28)

Any linear combination of vectors for which the weights satisfy (28) is called a con-

vex combination. Thus, Theorem 1 states that if an LP’s feasible region is bounded, then

any point within may be written as a convex combination of the extreme points of the

LP’s feasible region.

We illustrate Theorem 1 by showing how it applies to the LPs defined by Constraint

set 1 and Constraint set 2 of Example 3. To begin, we look at the feasible region defined

by the sign restrictions x1 � 0 and x2 � 0 and Constraint set 1 (consisting of (22) and

(23)). This feasible region is the interior and the boundary of the shaded quadrilateral

P1P2P3P4 in Figure 3. The extreme points are P1 � [0 0], P2 � [4 0], P3 � [2 6],

and P4 � [0 10]. For this feasible region, Theorem 1 states that any point

� �
in the feasible region for Constraint set 1 may be written as

� � � �1 � � � �2 � � � �3 � � � �4 � � � � �
where �i � 0(i � 1, 2, 3,4) and �1 � �2 � �3 � �4 � 1. For example, the point

� �
is in the feasible region P1P2P3P4. A glance at Figure 3 shows that

� �
may be written as a linear combination of P1,P2, and P3. A little algebra shows that

2
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� � � �
1

3
� � � � �

1

3
� � � � �

1

3
� � �

As another illustration of Theorem 1, consider the feasible region defined by the sign

restrictions x3 � 0 and x4 � 0 and Constraint set 2 [(24) and (25)]. The feasible region

for this LP is the shaded area Q1Q2Q3 in Figure 4. The extreme points are Q1 � (0, 0),

Q2 � (4, 0), and Q3 � (0, 4). Theorem 1 tells us that any point

� �
that is in the feasible region for Constraint set 2 may be written as

� � � �1 � � � �2 � � � �3 � �
where �i � 0 and �1 � �2 � �3 � 1. For example, the feasible point

� �
may be written as

� � � �
1

4
� � � � �

1

2
� � � � �

1

4
� � �

For our purposes, it is not important to know how to determine the set of weights corre-

sponding to a particular feasible point. The decomposition algorithm does not require us

to be able to find the weights for an arbitrary point.

To explain the basic ideas of the decomposition algorithm, we assume that the set of

variables has been decomposed into set 1 and set 2. The reader should have no trouble

generalizing to a situation where the set of variables is decomposed into more than two

sets of variables.

The Dantzig–Wolfe decomposition algorithm proceeds as follows:

Step 1 Let the variables in Variable set 1 be x1, x2, . . . , xn1
. Express the variables as a

convex combination (see Theorem 1) of the extreme points of the feasible region for Con-
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straint set 1 (the constraints that only involve the variables in Variable set 1). If we let 

P1, P2, . . . , Pk be the extreme points of this feasible region, then any point

� �
in the feasible region for Constraint set 1 may be written in the form

� � � �1P1 � �2P2 � 			 � �kPk (29)

where �1 � �2 � 			 � �k � 1 and �i � 0 (i � 1, 2, . . . , k).

Step 2 Express the variables in Variable set 2, xn
1
�1, xn

1
�2, . . . , xn, as a convex combi-

nation of the extreme points of Constraint set 2’s feasible region. If we let the extreme

points of the feasible region be Q1, Q2, . . . , Qm, then any point in Constraint set 2’s fea-

sible region may be written as

� � � �1Q1 � �2Q2 � 			 � �mQm (30)

where �i � 0 (i � 1, 2, . . . , m) and �1 � �2 � 			 � �m � 1.

Step 3 Using (29) and (30), express the LP’s objective function and centralized con-

straints in terms of the �i’s and the �i’s. After adding the constraints (called convexity con-

straints) �1 � �2 � 			 � �k � 1 and �1 � �2 � 			 � �m � 1 and the sign restrictions

�i � 0 (i � 1, 2, . . . , k) and �i � 0 (i � 1, 2, . . . , m), we obtain the following LP, which

is referred to as the restricted master:

max (or min) [objective function in terms of �i’s and �i’s]

s.t. [central constraints in terms of �i’s and �i’s]

s.t. �1 � �2 � 			 � �k � 1 (Convexity constraints)

s.t. �1 � �2 � 			 � �m � 1

s.t. �i � 0 (i � 1, 2, . . . , k) (Sign restrictions)

s.t. �i � 0 (i � 1, 2, . . . , m)

In many large-scale LPs, the restricted master may have millions of variables (corre-

sponding to the many basic feasible solutions of extreme points for each constraint set).

Fortunately, however, we rarely have to write down the entire restricted master; all we need

is to generate the column in the restricted master that corresponds to a specific �i or �i.

Step 4 Assume that a basic feasible solution for the restricted master is readily available.†

xn
1
�1

xn
1
�2

			

xn

x1

x2

			

xn
1

x1

x2

			

xn
1
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†If this is not the case, then the two-phase simplex method must be used. See Bradley, Hax, and Magnanti

(1977) for details.



Then use the column generation method of Section 10.3 to solve the restricted master.

Step 5 Substitute the optimal values of the �i’s and �i’s found in step 4 into (29) and

(30). This will yield the optimal values of x1, x2, . . . , xn.

Solution Example 3 (Continued) For Example 3, we have already seen that

Variable set 1 � {x1, x2} (22)

Constraint set 1 � � (23)

We have also seen that the feasible region for Constraint set 1 has four extreme points,

and any feasible point

� �
for Constraint set 1 may be written as

� � � �1 � � � �2 � � � �3 � � � �4 � � � � � (29)

where �1 � �2 � �3 � �4 �1 and �i � 0.

Variable set 2 � x3 and x4 (24)

Constraint set 2 � � (25)

Any point

� �
in the feasible region for Constraint set 2 may be written as

� � � �1 � � � �2 � � � �3 � � � � � (30)

where �1 � �2 � �3 � 1 and �i � 0 (i � 1, 2, 3).

We now obtain the restricted master by substituting (29) and (30) into the objective

function and the centralized constraint. The objective function for (21) becomes

90x1 � 80x2 � 70x3 � 60x4 � 90(4�2 � 2�3) � 80(6�3 � 10�4) � 70(4�2) � 60(4�3)

� 360�2 � 660�3 � 800�4 � 280�2 � 240�3

The centralized constraint becomes

8(4�2 � 2�3) � 6(6�3 � 10�4) � 7(4�2) � 5(4�3) � 80

or

32�2 � 52�3 � 60�4 � 28�2 � 20�3 � 80

After adding a slack variable s1 to this constraint and writing down the convexity con-

straints and the sign restrictions, we obtain the following restricted master program:

max z � 360�2 � 660�3 � 800�4 � 280�2 � 240�3

s.t. �1 � 32�2 � 52�3 � 60�4 � 28�2 � 20�3 � s1 � 80
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s.t. �1 � �2 � �3 � �4 � 28�2 � 20�3 � s1 � 1

s.t. �1 � 32�2 � 52�3 � 60�1 � �2 � �3 � s1 � 1

�i, �i � 0

There is a more insightful way to obtain the column for a variable in the restricted mas-

ter. Recall that each variable in the restricted master corresponds to an extreme point for

the feasible region of Constraint set 1 or Constraint set 2. As an example, let’s focus on

how to find the column in the restricted master for a variable �i, which corresponds to an

extreme point

� �
for Constraint set 1. Because x1 and x2 correspond to activity at plant 1, we may consider

any specification of x1 and x2 as a “proposal” from plant 1. For example, the point

� �
corresponds to plant 1 proposing to produce 2 tons of type 1 steel and 6 tons of type 2

steel. Then the weight �i may be thought of as a fraction of the proposal corresponding to

extreme point Pi that is included in the actual production schedule. For example, because

� � � �
1

3
�P1 � �

1

3
�P2 � �

1

3
�P3

we may think of

� �
as consisting of one-third of plant 1 proposal P1, one-third of plant 1 proposal P2, and

one-third of plant 1 proposal P3.

We can now describe an easy method to determine the column for any variable in the

restricted master. Suppose we want to determine the column for the extreme point

� �
corresponding to the weight �i. If we include a fraction �i of the extreme point

� �
what will this contribute to the objective function? If �i � 1, then

�i � �
will contribute 90x1 � 80x2 to the objective function. By the Proportionality Assumption,

if we use a fraction �i of the extreme point

� �
then it will contribute �i(90x1 � 80x2) to the objective function. Similarly, if �i � 1, then

�i � �x1

x2
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will contribute 8x1 � 6x2 of iron usage. Thus, for an arbitrary value of �i,

�i � �
will contribute an amount �i(8x1�6x2) to the left-hand side of the iron ore usage constraint.

To be more specific, let’s use the reasoning we have just described to determine the

column in the restricted master for the weight �3 corresponding to the extreme point

� �
Our logic shows that the left-hand side of the objective function involving �3 is �3

[90(2) � 80(6)] � 660�3. Similarly, the term involving �3 on the left-hand side of the

iron ore constraint will be �3[8(2) � 6(6)] � 52�3. Also, �3 will have a coefficient of 

1 in the first convexity constraint and a zero coefficient in the other convexity constraint.

(If the reader understood how we obtained the �3 column, there should be little trouble

with what follows; readers who are confused should reread the last two pages before 

continuing.)

We now solve the restricted master by using the revised simplex method and column

generation. We refer to our initial tableau as tableau 0. Then BV(0) � {s1, �1, �1}. Also,

B0 � � � , so B0
�1 � � �

Because s1, �1, and �1 don’t appear in the objective function of the restricted master, we

have cBV � [0 0 0], and the tableau 0 shadow prices are given by

cBVB0
�1 � [0 0 0] � � � [0 0 0]

We now apply the idea of column generation in two stages. First, we determine whether

there is any weight �i associated with Constraint set 1 that prices out favorably (because

we are solving a max problem, a negative coefficient in row 0 is favorable). A weight �i

associated with an extreme point

� �
of Constraint set 1 will have the following column in the restricted master:

Objective function coefficient for �i � 90x1 � 80x2

Column in constraints for �i � � �
From this information, we see that in tableau 0, the column for the weight �i corre-

sponding to

� �
will price out to
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cBVB0
�1 � � � (90x1 � 80x2) � �90x1 � 80x2

Since

� �
must satisfy Constraint set 1 (or the plant 1 constraints), the weight �i that prices out most

negatively will be the weight associated with the extreme point that is the optimal solu-

tion to the following LP:

Tableau 0 min z � �90x1 � 80x2

Plant 1 Subproblem s.t. 3x1 � x2 � 12

s.t. 2x1 � x2 � 10

s.t. 2xx1, x2 � 0

Solving the plant 1 subproblem graphically, we obtain the solution z � �800, x1 � 0, 

x2 � 10. This means that the weight �i associated with the extreme point

� �
will price out most negatively. Recall that

P4 � � �
This means that �4 will price out with a coefficient of �800 in the restricted master.

We now look at the weights associated with Constraint set 2 and try to determine the

weight �i that will price out most negatively. The �i corresponding to an extreme point

� �
of Constraint set 2 will have the following column in the restricted master:

Objective function coefficient for �i � 70x3 � 60x4

Column in constraints for �i � � �
This means that the �i corresponding to the extreme point

� �
will price out to

cBVB0
�1 � � � (70x3 � 60x4) � �70x3 � 60x4

Note that
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� �
must satisfy Constraint set 2. Thus, the extreme point whose weight �i prices out most fa-

vorably will be the solution to the following LP:

Tableau 0 min z � �70x3 � 60x4

Plant 2 Subproblem s.t. 3x3 � 2x4 � 15

s.t. x3 � x4 � 4

s.t. x3, x4 � 0

The optimal solution to this LP is z � �280, x3 � 4, x4 � 0. Because

� � � Q2

�2 prices out the most negatively of all the �i’s. But �4 prices out more negatively than

�2, so we enter �4 into the basis (by using the revised simplex procedure). To do this, we

need to find the column for �4 in tableau 0 and also find the right-hand side of tableau 0.

The column for �4 in tableau 0 is

B0
�1 � � � � �

and the right-hand side of tableau 0 is

B0
�1b � � � � � � � �

The ratio test now indicates that �4 should enter the basis in the second constraint. Then

BV(1) � {s1, �4, �1}. Because

E0 � � �
B1

�1 � E0B0
�1 � � �

The objective function coefficient for �4 is 90(0) � 80(10) � 800, so the new set of

shadow prices may be found from

cBVB1
�1 � [0 800 0] � � � [0 800 0]

We now try to find the weight that prices out most negatively in the current tableau. As

before, we solve the current tableau’s plant 1 and plant 2 subproblems. Also, as before, a

weight �i that corresponds to a Constraint 1 extreme point
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will price out to

cBVB1
�1 � � � (90x1 � 80x2)

� [0 800 0] � � � (90x1 � 80x2) � 800 � 90x1 � 80x2

Because

� �
must satisfy Constraint set 1, the �i that prices out most favorably will correspond to the point

� �
that solves the following LP:

Tableau 1 min z � 800 � 90x1 � 80x2

Plant 1 Subproblem s.t. 3x1 � x2 � 12

s.t. 2x1 � x2 � 10

s.t. 3x1x1, x2 � 0

The optimal solution to this LP is z � 0, x1 � 0, x2 � 10. This means that no �i can price

out favorably. We now solve the plant 2 subproblem in an effort to find a �i that prices

out favorably. A �i corresponding to an extreme point

� �
of Constraint set 2 will price out to

cBVB1
�1 � � � (70x3 � 60x4) � �70x3 � 60x4

Because

� �
must satisfy the plant 2 constraints, the �i that will price out most negatively will corre-

spond to the extreme point

� �
that solves the plant 2 subproblem for tableau 1:

Tableau 1 min z � �70x3 � 60x4

Plant 2 Subproblem s.t. 3x3 � 2x4 � 15
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s.t. 3x3 � x4 � 4

s.t. 3x3 x3, x4 � 0

The optimal solution to this LP is x3 � 4, x4 � 0, z � �280. This means that the �i cor-

responding to

cBVB2
�1 � [280 800 0] � � � [10 200 0]

By solving the plant 1 subproblem for tableau 2, we can determine whether any �i prices

out favorably. The �i corresponding to

� �
prices out to

cBVB2
�1 � � � (90x1 � 80x2)

� [10 200 0] � � � (90x1 � 80x2) � 200 � 10x1 � 20x2

Thus, we have

Tableau 2 min z � 200 � 10x1 � 20x2

Plant 1 Subproblem s.t. 3x1 � x2 � 12

s.t. 2x1 � x2 � 10

s.t. 3x1x1, x2 � 0

The optimal solution to this LP is z � 0, x1� 0, x2 � 10. As before, this means that no

�i can price out favorably.

To determine whether the �i corresponding to the extreme point

� �
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� �
prices out to �280. Because

� � � Q2

�2 prices out to �280. No �i has priced out negatively, so the best we can do is to enter

�2 into the basis. To enter �2 into the basis, we need the column for �2 in tableau 1 and

the right-hand side for tableau 1. The column for �2 in tableau 1 is given by

4

0

4

0
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out favorably. The �i corresponding to

� �
prices out to

cBVB2
�1 � � � (90x1 � 80x2)

� [10 200 0] � � � (90x1 � 80x2) � 200 � 10x1 � 20x2

Thus, we have

Tableau 2 min z � 200 � 10x1 � 20x2

Plant 1 Subproblem s.t. 3x1 � x2 � 12

s.t. 2x1 � x2 � 10

s.t. 3x1x1, x2 � 0

The optimal solution to this LP is z � 0, x1� 0, x2 � 10. As before, this means that no

�i can price out favorably.

To determine whether the �i corresponding to the extreme point

� �
should be entered into the basis, observe that it prices out to

[10 200 0] � � � (70x3 � 60x4) � �10x4

Because

� �
must satisfy Constraint set 2, the �i that prices out most favorably will be the �i associ-

ated with the point

� �
that solves the following LP:

Tableau 2 min z � �10x4

Plant 2 Subproblem s.t. 3x3 � 2x4 � 15

s.t. 3x3 � x4 � 4

s.t. 3x3 � x3, x4 � 0

This LP has the solution z � �40, x3 � 0, x4 � 4. Thus, the �i corresponding to

� � � Q3

0

4

x3

x4

x3

x4

7x3 � 5x4

0

1

x3

x4

8x1 � 6x2

1

0

8x1 � 6x2

1

0

x1

x2
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should enter the basis, and �3 should be entered into the basis. The �3 column in tableau

2 is

B2
�1 � � � � � � � � � �

Tableau 2’s right-hand side is

B2
�1b � � � � � � � �

The ratio test indicates that �3 should enter the basis in Constraint 1 or Constraint 3; we

arbitrarily choose Constraint 1. Thus, BV(3) � {�3, �4, �1}. Because

E2 � � �

B3
�1 � E2B2

�1 � � � � � � � �
�3 corresponds to

� �
so the coefficient of �3 in the objective function of the restricted master is 70x3 � 60x4 �

70(0) � 60(4) � 240. The �4 and �1 coefficients in the objective function have already

been found to be 800 and 0, respectively, so we have cBV � [240 800 0], and the new

set of shadow prices is given by

cBVB3
�1 � [240 800 0] � � � [12 80 0]

With these shadow prices, the �i corresponding to the extreme point

� �
will price out to

[12 80 0] � � � (90x1 � 80x2) � 80 � 6x1 � 8x2

Then we have

Tableau 3 min z � 80 � 6x1 � 8x2

Plant 1 Subproblem s.t. 3x1 � x2 � 12

8x1 � 6x2
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s.t. 2x1 � x2 � 10

s.t. 3x1x1, x2 � 0

The optimal solution to this LP is z � 0, x1� 0, x2 � 10. Again, this means that no �i

prices out favorably.

Using the new shadow prices, we now determine whether any �i will price out favor-

ably. If no �i prices out favorably, then we will have found an optimal tableau. The �i cor-

responding to

� �
will price out to

[12 80 0] � � � (70x3 � 60x4) � 14x3

Then we have

Tableau 3 min z � 14x34 � 15

Plant 2 Subproblem s.t. 3x3 � 2x4 � 15

s.t. 3x3 � x4 � 4

s.t. 3x3x3, x4 � 0

The optimal solution to this LP is z � 0, x3 � x4 � 0. This means that no �i can price

out favorably. Because no �i or �i prices out favorably for tableau 3, tableau 3 must be

an optimal tableau for the restricted master. Recall that BV(3) � {�3, �4, �1}. Thus,

� � � B3
�1 � � � � � � � �

Thus the optimal solution to the restricted master is �3 � 1, �4 � 1, �1 � 0, and all other

weights equal 0.

We can now use the representation of the Constraint set 1 feasible region as a convex

combination of its extreme points to determine that the optimal value of

� �
is given by

� � � 0P1 � 0P2 � 0P3 � P4 � � �
Similarly, we can use the representation of the Constraint set 2 feasible region as a con-

vex combination of its extreme points to determine that the optimal value of

� �
is given by

x3

x4

0
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x1

x2

1
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0
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�
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7x3 � 5x4
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1
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� � � 0Q1 � 0Q2 � Q3 � � �
Then the optimal solution to Steelco’s problem is x2 � 10, x4 � 4, x1 � x3 � 0, z � 1040.

Thus, Steelco can maximize its net profit by manufacturing 10 tons of steel 2 at plant 1

and 4 tons of steel 2 at plant 2.

R E M A R K S 1 If there are k sets of variables, then the restricted master will contain the central constraints and
k convexity constraints (one convexity constraint for each set of variables). For each tableau, there
will also be k subproblems that must be solved (one for the weights associated with the extreme
points of the constraint set corresponding to each set of variables). After solving these subproblems,
use the revised simplex algorithm to enter into the basis the weight that prices out most favorably.
2 A major virtue of decomposition is that solving several relatively small LPs is often much eas-
ier than solving one large LP. For example, consider an analog of Example 3 in which there are five
plants and each plant has 50 constraints. Also suppose that there are 40 central constraints. Then
the master problem will involve a 45 � 45 B�1, and each subproblem will involve a 50 � 50 B�1.
Solving the original LP would involve a 290 � 290 B�1. Clearly, storing a 290 � 290 matrix re-
quires more computer memory than storing five 50 � 50 matrices and a 45 � 45 matrix. This il-
lustrates how decomposition greatly reduces storage requirements.
3 Decomposition has an interesting economic interpretation. What is the meaning of the shadow
prices for the restricted master of Example 3? For each tableau, the shadow price for the central
constraint (reflecting the limited amount of iron ore) is the amount by which an extra unit of iron
would increase profits. It can be shown that for any tableau, the shadow price for the plant i (i �
1, 2) convexity constraint is the profit obtained from the current mix of extreme points being used
at plant i less the value of the centralized resource (calculated via the centralized shadow price) re-
quired by the current mix of extreme points that is being used at plant i. For example, in tableau 3,
the shadow price for the plant 1 convexity constraint is 80. Currently, plant 1 is utilizing the mix 
x1 � 0 and x2 � 10. This mix yields a profit of 80(10) � $800, and it uses 6(10) � 60 tons of iron
worth 60(12) � $720. Thus, the plant 1 convexity constraint has a shadow price of 800 � 720 �
$80. This means that if � of the plant 1 weight were taken away, profits would be reduced by 80�.

We can now give an economic interpretation of the pricing-out procedure that we use

to generate our subproblems. If we are at tableau 3, what are the benefits and costs if we

try to introduce the �i associated with the extreme point

� �
into the basis? Recall that for tableau 3, the iron shadow price is 12 and the plant 1 con-

vexity constraint has a shadow price of 80. In determining whether �i should enter the

x1

x2

0

4

x3

x4
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basis, we must balance

Increased profits for �i �

profits earned by �i � �

� 90(�ix1) � 80(�ix2)

against the costs incurred if

�i is entered into the basis.

If we enter �i into the ba-

sis, we incur two costs: first,

$12 for each ton of iron used.

x1

x2

This amounts to a cost of

12[8(�ix1) � 6(�ix2)]. By en-

tering �i into the basis, we are

also diverting a fraction �i of

the available plant 1 weights

away from the current mix.

This incurs an opportunity

cost of 80�i. Hence,

Increase in cost from

entering �i into basis �

96�ix1 � 72�ix2 � 80�i
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This means that entering �i into the basis can increase profits if and only if

90�ix1 � 80�ix2 � 96�ix1 � 72�ix2 � 80�i

Canceling the �i’s from both sides, we see that �i will price out favorably if

90x1 � 80x2 � 96x1 � 72x2 � 80 or 0 � 80 � 6x1 � 8x2

Thus, the best �i will be the �i associated with the extreme point

� �
that minimizes 80 � 6x1 � 8x2. This is indeed the objective function for the plant 1

tableau 3 subproblem.

This discussion shows that the Dantzig–Wolfe decomposition algorithm combines cen-

tralized information (from the shadow prices of the centralized constraints) with local in-

formation (the shadow price of each plant’s convexity constraint) in an effort to determine

which weights should be entered into the basis (or equivalently, which extreme points

from each plant should be used).

P R O B L E M S
Group A

Use the Dantzig–Wolfe decomposition algorithm to solve the following problems:

1 max z � 7x1 � 5x2 � 3x3

s.t. x1 � 2x2 � x3 � 10

s.t. x1 � 2x2 � x3 � 5

s.t. x1 � 2x2 � x3 � 3

s.t. x1 � 2x2 � x3 � 8

s.t. x1 �x1, x2, x3 � 0

2 max z � 4x1 � 2x2 � 3x3 � 4x4 � 2x5

s.t. x1 � 2x2 � x3 � 3x3 � 4� 8

s.t. x1 � 2x2 � 2x3 � 3x3 � 4� 8

x4 � x5 � 3

max z � 4x1x1, x2, x3, x4, x5 � 0

3 max z � 3x1 � 6x2 � 5x3

s.t. x1 � 2x2 � x3 � 4

s.t. 2x1 � 3x2 � 2x3 � 6

s.t. x1 � x2 � 2x3 � 2

s.t. 2x1 � x2 � 2x3 � 3

s.t. x1 � 2x1, x2, x3 � 0

(Hint: There is no law against having only one set of variables and one subproblem.)

4 Give an economic interpretation to explain why �3 priced out favorably in the plant 2 tableau 2 subproblem.

5 Give an example to show why Theorem 1 does not hold for an LP with an unbounded feasible region.

10.5 The Simplex Method for Upper-Bounded Variables

Often, LPs contain many constraints of the form xi � ui (where ui is a constant). For ex-

ample, in a production-scheduling problem, there may be many constraints of the type 

x1

x2



xi � ui, where

xi � period i production

ui � period i production capacity

Because a constraint of the form xi � ui provides an upper bound on xi, it is called an 

upper-bound constraint. Because xi � ui is a legal LP constraint, we can clearly use the

ordinary simplex method to solve an LP that has upper-bound constraints. However, if an

LP contains several upper-bound constraints, then the procedure described in this section

(called the simplex method for upper-bounded variables) is much more efficient than the

ordinary simplex algorithm.

To efficiently solve an LP with upper-bound constraints, we allow the variable xi to be

nonbasic if xi � 0 (the usual criterion for a nonbasic variable) or if xi � ui. To accom-

plish this, we use the following gimmick: For each variable xi that has an upper-bound

constraint xi � ui, we define a new variable xi by the relationship xi � xi � ui, or xi �

ui � xi. Note that if xi � 0, then xi � ui, whereas if xi � ui, then xi � 0. Whenever we

want xi to equal its upper bound of ui, we simply replace xi by ui � xi. This is called an

upper-bound substitution.

We are now ready to describe the simplex method for upper-bounded variables. We as-

sume that a basic solution is available and that we are solving a max problem. As usual,

at each iteration, we choose to increase the variable xi that has the most negative coeffi-

cient in row 0. Three possible occurrences, or bottlenecks, can restrict the amount by

which we increase xi:

Bottleneck 1 xi cannot exceed its upper bound of ui.

Bottleneck 2 xi increases to a point where it causes one of the current basic variables to

become negative. The smallest value of xi that will cause one of the current basic vari-

ables to become negative may be found by expressing each basic variable in terms of xi

(recall that we used this idea in Chapter 4, in discussing the simplex algorithm).

Bottleneck 3 xi increases to a point where it causes one of the current basic variables to

exceed its upper bound. As in bottleneck 2, the smallest value of xi for which this bottle-

neck occurs can be found by expressing each basic variable in terms of xi.

Let BNk (k � 1, 2, 3) be the value of xi where bottleneck k occurs. Then xi can be in-

creased only to a value of min{BN1, BN2, BN3}. The smallest of BN1, BN2, and BN3 is

called the winning bottleneck. If the winning bottleneck is BN1, then we make an upper-

bound substitution on xi by replacing xi by ui � xi. If the winning bottleneck is BN2, then

we enter xi into the basis in the row corresponding to the basic variable that caused BN2
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Simplex with Upper Bounds 1E X A M P L E  4

TA B L E  3

Initial Tableau for Example 5

Basic
Variable

z � 4x1 � 2x2 � 3x3 � s1 � s2 � s3 � 0 z1 � 0

z � 2x1 � 2x2 � 3x3 � s1 � s2 � s3 � 10 s1 � 10

z � 2x1 � �
1
2

�x2 � �
1
2

�x3 � s1 � s2 � s3 � 6 s2 � 6

z � 2x1 � 2x2 � 4x3 � s1 � s2 � s3 � 20 s3 � 20



to occur. If the winning bottleneck is BN3, then we make an upper-bound substitution of

the variable xj (by replacing xj by uj � xj) that reaches its upper bound when xi � BN3.

Then we enter xi into the basis in the row for which xj was a basic variable.

After following this procedure, we examine the new row 0. If each variable has a non-

negative coefficient in row 0, then we have obtained an optimal tableau. Otherwise, we

try to increase the variable with the most negative coefficient in row 0. Our procedure en-

sures (through BN1 and BN3) that no upper-bound constraint is ever violated and (through

BN2) that all of the nonnegativity constraints are satisfied.

Solve the following LP:

max z � 4x1 � 2x2 � 3x3

s.t. 2x1 � x2 � x3 � 10

s.t. 2x1 � �
1
2

�x2 � �
1
2

�x3 � 6

s.t. 2x1 � 2x2 � 4x3 � 20

s.t 2x1 � 2x2 � 4x3 � 4

s.t. 2x1 � x2 � 4x3 � 3

s.. 2x1 � x2 � x3 � 1
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Simplex with Upper Bounds 2E X A M P L E  5

TA B L E  4

Replacing x1 by 4 � x1

Basic
Variable

z � 4x1 � 2x2 � 3x3 � s1 � s2 � s3 � 16 z1 � 16

z � 2x1 � 2x2 � 3x3 � s1 � s2 � s3 � 2 s1 � 2

z � 2x1 � �
1
2

�x2 � �
1
2

�x3 � s1 � s2 � s3 � 2 s2 � 2

z � 2x1 � 2x2 � 4x3 � s1 � s2 � s3 � 12 s3 � 12

TA B L E  5

Replacing x3 by 1 � x3

Basic
Variable

z � 4x1 � 2x2 � 3x3 � s1 � s2 � s3 � 19 z1 � 19

z � 2x1 � 2x2 � 3x3 � s1 � s2 � s3 � 1 s1 � 1

z � 2x1 � �
1
2

�x2 � �
1
2

�x3 � s1 � s2 � s3 � �
3
2

� s2 � �
3
2

�

z � 2x1 � 2x2 � 4x3 � s1 � s2 � s3 � 8 s3 � 8

TA B L E  6

Optimal Tableau for Example 4

Basic
Variable

z � 2x1 � x2 � 3x3 � 2s1 � s2 � s3 � 21 z1 � 21

z � 2x1 � x2 � 3x3 � 2s1 � s2 � s3 � 1 x2 � 1

z � 2x1 � x2 � 4x3 � �
1
2

�s1 � s2 � s3 � 1 s2 � 1

z � 2x1 � x2 � 2x3 � 2s1 � s2 � s3 � 6 s3 � 6
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s.t. 2x1 � x1, x2, x3 � 0

Solution The initial tableau for this problem is given in Table 3. Because x1 has the most negative

coefficient in row 0, we try to increase x1 as much as we can. The three bottlenecks for

x1 are computed as follows: x1 cannot exceed its upper bound of 4, so BN1 � 4. To com-

pute BN2, we solve for the current set of basic variables in terms of x1:

s1 � 10 � 2x1 (s1 � 0 iff x1 � 5)

s2 � 6 � x1 (s2 � 0 iff x1 � 6)

s3 � 20 � 2x1 (s3 � 0 iff x1 � 10)

Hence, BN2 � min{5, 6, 10} � 5. The current basic variables ({s1, s2, s3}) have no upper

bounds, so there is no value of BN3. Then the winning bottleneck is min{4, 5} � 4 � BN1.

Thus, we must make an upper-bound substitution on x1 by replacing x1 by 4 � x1. The 

resulting tableau is Table 4.

Because x3 has the most negative coefficient in row 0, we try to increase x3 as much

as possible. The x3 bottlenecks are computed as follows: x3 cannot exceed its upper bound

of 1, so BN1 � 1. For BN2, we solve for the current set of basic variables in terms of x3:

s1 � 2 � x3 (s1 � 0 iff x3 � 2)

s2 � 2 � �
1
2

�x3 (s2 � 0 iff x3 � 4)

s3 � 12 � 4x3 (s3 � 0 iff x3 � 3)

Thus, BN2 � min{2, 4, 3} � 2. Because s1, s2, and s3 do not have an upper bound, there

is no BN3. The winning bottleneck is min{1, 2} � BN1 � 1, so we make an upper-bound

substitution on x3 by replacing x3 by 1 � x3. The resulting tableau is Table 5.

Because x2 now has the most negative coefficient in row 0, we try to increase x2. The

computation of the bottlenecks follows: For BN1, x2 cannot exceed its upper bound of 3,

so BN1 � 3. For BN2,

s1 � 1 � x2 (s1 � 0 iff x2 � 1)

s2 � �
3
2

� � �
1
2

�x2 (s2 � 0 iff x2 � 3)

s3 � 8 � 2x2 (s3 � 0 iff x2 � 4)

TA B L E  7

Initial Tableau for Example 6

Basic
Variable

z x1 x2 � 6x3 � 0 z1 � 0

z x1 x2 � 3x3 � 6 x1 � 6

z x1 x2 � 2x3 � 8 x2 � 8

TA B L E  8

Replacing x1 by 8 � x1

Basic
Variable

z x1 x2 � 6x3 � 0 z1 � 0

z x1 x2 � 3x3 � 2 x1 � 6

z x1 x2 � 2x3 � 8 x2 � 8

TA B L E  9

Optimal Tableau for Example 5

Basic
Variable

z � 6x1 � x2 � x3 � 12 z1 � 12

z � 3x1 � x2 � x3 � 2 x3 � 2

z � 2x1 � x2 � x3 � 4 x2 � 4
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Thus, BN2 � min{1, 3, 4} � 1. Note that BN2 occurs because s1 is forced to zero. None

of the basic variables in the current set has an upper-bound constraint, so there is no BN3.

The winning bottleneck is min{3, 1} � 1 � BN2, so x2 will enter the basis in the row in

which s1 was a basic variable (row 1). After the pivot is performed, the new tableau is

Table 6. Because each variable has a nonnegative coefficient in row 0, this is an optimal

tableau. Thus, the optimal solution to the LP is z � 21, s2 � 1, x2 � 1, s3 � 6, x1 � 0,

s1 � 0, x3 � 0. Because x1 � 4 � x1 and x3 � 1 � x3, we also have x1 � 4 and x3 � 1. 

Solve the following LP:

max z � 6x35; x1,x2,x3 � 0

s.t. x1x2 � x3 � 62,x3

� 0

x2 � 2x3 � 82,x3 � 0

x1 � 8, x2 � 10, x3 � 5; x1,

x2, x3 � 0

Solution After putting the objective

function in our standard row

0 format, we obtain the

tableau in Table 7. Fortunately,

the basic feasible solution z �

0, x1 � 6, x2 � 8, x3 � 0 is

readily apparent. We can now

proceed with the simplex

method for upper-bounded

variables. Because x3 has the

most negative coefficient in

row 0, we try to increase x3.

Because x3 cannot exceed its

upper bound of 5, BN1 � 5.

To compute BN2,

x1 �

6 � x3 (x1 � 0 iff x3 �

�6)

x2 �

8 � 2x3 (x2 � 0 iff x3 � 4)

Thus, all the current basic variables will remain nonnegative as long as x3 � 4. Hence,

BN2 � 4. For BN3, note that x1 � 8 will hold iff 6 � x3 � 8, or x3 � 2. Also, x2 � 10

will hold iff 8 � 2x3 � 10, or x3 � �1. Thus, for x3 � 2, each basic variable remains

less than or equal to its upper bound, so BN3 � 2. Note that BN3 occurs when the basic

variable x1 attains its upper bound. The winning bottleneck is min{5, 4, 2} � 2 � BN3,

so the largest that we can make x3 is 2, and the bottleneck occurs because x1 attains its

upper bound of 8. Thus, we make an upper-bound substitution on x1 by replacing x1 by 

8 � x1. The resulting tableau is

z � x1 � x3 � 6x3 � 0

z � x1 � x3 � x3 � �2

z � x\1 � x2 � 2x3 � 8

After rewriting �x1 � x3 � �2 as x1 � x3 � 2, we obtain the tableau in Table 8.

Because x1, the variable that caused BN3, was basic in row 1, we now make x3 a basic

variable in row 1. After the pivot, we obtain the tableau in Table 9, which is optima. 

Thus, the optimal solution to the LP is z � 12, x3 � 2, x2 � 4, x1 � 0. Because x1 � 0,

x1 � 8 � x1 � 8.



To illustrate the efficiencies obtained by using the simplex algorithm with upper

bounds, suppose we are solving an LP (call it LP 1) with 100 variables, each having an

upper-bound constraint, with five other constraints. If we were to solve LP 1 by the re-

vised simplex method, the B�1 for each tableau would be a 105 � 105 matrix. If we were

to use the simplex method for upper-bounded variables, however, the B�1 for each tableau

would be only a 5 � 5 matrix. Although the computation of the winning bottleneck in

each iteration is more complicated than the ordinary ratio test, solving LP 1 by the sim-

plex method for upper-bounded variables would still be much more efficient than by the

ordinary revised simplex.

P R O B L E M S
Use the upper-bounded simplex algorithm to solve the following LPs:

Group A

1 max z � 4x1 � 3x2 � 5x3� x5 � 6

s.t. 2x1 � 2x2 � x3 � x4 � x5 � 9

s.t. 4x1 � x2 � x3 � x4 � x5 � 6

s.t. 2x1 � 2x2 � x3 � x5 � x5 � 5

s.t. 2x1 � 2x2 � x3 � x4 � x5 � 2

s.t. 2x1 � 2x2 � x3 � x3 � x3 � 3

s.t. 2 x1 �2x2 � x3 � x3 � x3 � 4

s.t. 2x1 � 2x2 � x3 � x4 � x3 � 5

s.t. 2x1 � 2x2 � x3 � x4 � x5 � 7

s.t. 2x1 � 2x2x1, x2, x3, x4, x5 � 0

2 min z � �4x1 � 9x2

s.t. 3x1 � 5x2 � 6

s.t. 5x1 � 6x2 � 10

s.t. 2x1 � 3x2 � 4

s.t. 2x1 � 3x2 � 2

s.t. 3x1 � 5x2 � 1

s.t. 3x1 x1, x2 � 0

3 max z � 4x1 � 3x2

s.t. 2x1 � x2 � 1

s.t. 2x1 � 6x2 � 6

s.t. 2x1 � x2 � 5

s.t. 2x1 x1, x2 � 0 

4 Suppose an LP contained lower-bound constraints of the following form: xj � Lj. Suggest an algorithm that could be used
to solve such a problem efficiently.

10.6 Karmarkar’s Method for Solving LPs

As discussed in Section 4.13, Karmarkar’s method for solving LPs is a polynomial time

algorithm. This is in contrast to the simplex algorithm, an exponential time algorithm. Un-

like the ellipsoid method (another polynomial time algorithm), Karmarkar’s method ap-

pears to solve many LPs faster than does the simplex algorithm. In this section, we give

a description of the basic concepts underlying Karmarkar’s method. Note that several ver-

sions of Karmarkar’s method are computationally more efficient than the version we de-
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scribe; our goal is simply to introduce the reader to the exciting ideas used in Karmarkar’s

method. For a more detailed description of Karmarkar’s method, see Hooker (1986),

Parker and Rardin (1988), and Murty (1989).

Karmarkar’s method is applied to an LP in the following form:

min z � cx

s.t. Ax � 0
(31)

x1 � x2 � 			 � xn � 1

x � 0

In (31), x � [x1 x2 			 xn]T, A is an m � n matrix, c � [c1 c2 			 cn] and 0 is an

n-dimensional column vector of zeros. The LP must also satisfy

[�
1
n

� �
1
n

� 			 �
1
n

�]T is feasible (32)

Optimal z-value � 0 (33)

Although it may seem unlikely that an LP would have the form (31) and satisfy (32)–(33),

it is easy to show that any LP may be put in a form such that (31)–(33) are satisfied. We

will demonstrate this at the end of this section.

The following three concepts play a key role in Karmarkar’s method:

1 Projection of a vector onto the set of x satisfying Ax � 0

2 Karmarkar’s centering transformation

3 Karmarkar’s potential function

We now discuss the first two concepts, leaving a discussion of Karmarkar’s potential func-

tion to the end of the section. Before discussing the ideas just listed, we need a definition.

D E F I N I T I O N ■ The n-dimensional unit simplex S is the set of points [x1 x2 			 xn]T

satisfying x1 � x2 � 			 � xn � 1 and xj � 0, j � 1, 2, . . . , n. ■

Projection
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L E M M A  1

x3

x1

x2

w

v

p

w = [0 0 7]

v  = [–2 –1 7]

p  = [–2 –1 0]

F I G U R E  5

Projection of 
[�2 �1 7] 

onto x3 � 0
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Suppose we are given a point x0 that is feasible for (31), and we want to move from x0

to another feasible point (call it x1) that, for some fixed vector v, will have a larger value

of vx. Suppose that we find x1 by moving away from x0 in a direction d � [d1 d2 			

dn]. For x1 to be feasible, d must satisfy Ad � 0 and d1 � d2 � 			 � dn � 0. If we choose

the direction d that solves the optimization problem

max vd

s.t. Ad � 0

d1 � d2 � 			 � dn � 0

�d� � 1

then we will be moving in the “feasible” direction that maximizes the increase in vx per

unit of length moved. The direction d that solves this optimization problem is given by

the projection of v onto the set of x � [x1 x2 			 xn]T satisfying Ax � 0 and x1 �

x2 � 			 � xn � 0. The projection of v onto the set of x satisfying Ax � 0 and x1 �

x2 � 			 � xn � 0 is given by [I � BT(BBT)�1B]v, where B is the (m � 1) � n matrix

whose first m rows are A and whose last row is a vector of 1’s.

Geometrically, what does it mean to project a vector v onto the set of x satisfying 

Ax � 0? It can be shown that any vector v may be written (uniquely) in the form v � p �

w, where p satisfies Ap � 0 and w is perpendicular to all vectors x satisfying Ax � 0.

Then p is the projection of v onto the set of x satisfying Ax � 0. An example of this 

idea is given in Figure 5, where v � [�2 �1 7] is projected onto the set of three-

dimensional vectors satisfying x3 � 0 (the x1–x2-plane). In this case, we decompose v as

v � [�2 �1 0] � [0 0 7]. Thus, p � [�2 �1 0]. It is easy to show that p is

the vector in the set of x satisfying Ax � 0 that is “closest” to v. This is apparent from

Figure 5.

Karmarkar’s Centering Transformation

Given a feasible point (in (31)) xk � [xk
1 xk

2 			 xk
n] in S having xj

k � 0, j � 1, 2, . . . , n,

we write the centering transformation associated with the point xk as f ([x1 x2 			 xn]	
xk). If xk is a point in S, then f ([x1 x2 			 xn]	 xk) transforms a point [x1 x2 			 xn]T

in S into a point [y1 y2 			 yn]T in S, where

yj � (34)

Let Diag(xk) be the n � n matrix with all off-diagonal entries equal to 0 and Diag(xk)ii � xi
k.

The centering transformation specified by (34) can be shown to have the properties listed in

Lemma 1.

Karmarkar’s centering transformation has the following properties:

f (xk 	 xk) � [�
1
n

� �
1
n

� 			 �
1
n

�]T (35)

For x 
 x, f (x 	 xk) 
 f (x 	 xk) (36)

f (x 	 xk) � S (37)

For any point [ y1 y2 			 yn]T in S, there is a unique point (38)

�
x

x

j
k

j
�

�



r�n

r�1

�
x

x

r
k
r�
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[x1 x2 			 xn]T in S satisfying

f ([x1 x2 			 xn]T 	 xk) � [ y1 y2 			 yn]T (38)

The point [x1 x2 			 xn]T is given by

xj �

If [x1 x2 			 xn]T and [ y1 y2 			 yn]T satisfy (38), we write f �1([ y1 y2

			 yn]T 	 xk) � [x1 x2 			 xn]T.

A point x in S will satisfy Ax � 0 if A[Diag(xk)] f (x 	 xk) � 0 (39)

(See Problem 5 for a proof of Lemma 1.)

To illustrate the centering transformation, consider the following LP:

min z � x1 � 3x2 � 3x3

s.t. x1 � x2 � x3 � 0
(40)

s.t. x1 � x2 � x3 � 1

s.t. x1 � x2 � xi � 0

This LP is of the form (31); the point [�
1
3

� �
1
3

� �
1
3

�]T is feasible, and the LP’s optimal z-value

is 0. The feasible point [�
1
4

� �
3
8

� �
3
8

�] yields the following transformation:

f ([x1 x2 x3] 	 [�
1
4

� �
3
8

� �
3
8

�])

� �
For example,

f ([�
1
3

� �
1
3

� �
1
3

�] 	 [�
1
4

� �
3
8

� �
3
8

�]) � [�
1
2
2
8
� �

2
8
8
� �

2
8
8
�]

We now refer to the variables x1, x2, . . . , xn as being the original space and the vari-

ables y1, y2, . . . , yn as being the transformed space. The unit simplex involving variables

y1, y2, . . . , yn will be called the transformed unit simplex. We now discuss the intuitive

meaning of (35)–(39). Equation (35) implies that f (	 	 xk) maps xk into the “center” of the

transformed unit simplex. Equations (36)–(37) imply that any point in S is transformed

into a point in the transformed unit simplex, and no two points in S can yield the same

point in the transformed unit simplex (that is, f is a one-to-one mapping). Equation (38)

implies that for any point y in the transformed unit simplex, there is a point x in S that is

transformed into y. The formula for the x that is transformed into y is also given. Thus,

(36)–(38) imply that f is a one-to-one and an onto mapping from S to S. Finally, (39) states

that feasible points in the original problem correspond to points y in the transformed unit

simplex that satisfy A[Diag(xk)]y � 0.

Description and Example of Karmarkar’s Method

We assume that we will be satisfied with a feasible point having an optimal z-value � �

(for some small �). Karmarkar’s method proceeds as follows:

�
8

3

x3�

��

4x1 � �
8

3

x2� � �
8

3

x3�]

�
8

3

x2�

��

4x1 � �
8

3

x2� � �
8

3

x3�

4x1
��

xj
kyj

�



r�n

r�1

xr
kyr
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Step 1 Begin at the feasible point x0
� [�

1
n

� �
1
n

� 			 �
1
n

�]T and set k � 0.

Step 2 Stop if cxk � �. If not, go to step 3.

Step 3 Find the new point yk�1 � [ y1
k�1 y2

k�1 			 yn
k�1]T in the transformed unit sim-

plex given by

yk�1 � [�
1
n

� �
1
n

� 			 �
1
n

�]T �

Here, �cp� � the length of (I � PT(PPT)�1P)[Diag(xk)]cT, P is the (m � 1) � n matrix

whose first m rows are A[Diag(xk)] and whose last row is a vector of 1’s, and 0 � � � 1

is chosen to ensure convergence of the algorithm. � � �
1
4

� is known to ensure convergence.

Now obtain a new point xk�1 in the original space by using the centering transforma-

tion to determine the point corresponding to yk�1. That is, xk�1 � f �1(yk�1 	 xk). Increase

k by 1 and return to step 2.

R E M A R K S 1 In step 3, we move from the “center” of the transformed unit simplex in a direction opposite to
the projection of Diag(xk)cT onto the transformation of the feasible region (the set of y satisfying
A[Diag(xk)]y � 0). From our discussion of the projection, this ensures that we maintain feasibility
(in the transformed space) and move in a direction that maximizes the rate of decrease of [Diag(xk)]cT.
2 By moving a distance

from the center of the transformed unit simplex, we ensure that yk�1 will remain in the interior of
the transformed unit simplex. 
3 When we use the inverse of Karmarkar’s centering transformation to transform yk�1 back into xk�1,
the definition of projection and (39) imply that xk�1 will be feasible for the original LP (see Problem 6).
4 Why do we project [Diag(xk)]cT rather than cT onto the transformed feasible region? The answer
to this question must await our discussion of Karmarkar’s potential function. Problem 7 provides
another explanation of why we project [Diag(xk)]cT rather than cT.

We now work out the first iteration of Karmarkar’s method when applied to (40),

choosing � � 0.10.

First Iteration of Karmarkar’s Method

Step 1 x0 � [�
1
3

� �
1
3

� �
1
3

�]T and k � 0.

Step 2 x0 yields z � �
1
3

� � 0.10, so we must proceed to step 3. 

Step 3

A � [0 1 �1], Diag(xk) � � �
A[Diag(xk)] � [0 �

1
3

� ��
1
3

�], P � � �
PPT � � � , (PPT)�1 � � �0

�
1
3

�

�
9
2

�

0

0

3

�
2
9

�

0

��
1
3

�

�1

�
1
3

�

1

0

1

0

0

�
1
3

�

0

�
1
3

�

0

�
1
3

�

0

0

�
��

�(I � PT(PPT)�1P)[Diag(xk)]cT

����
�cp��n(n ��1)�



(I � PT(PPT)�1P) � � � , c � [1 3 �3]

[Diag xk]cT
� � �

(I � PT(PPT)�1P)[Diag xk]cT
� [�

2
9

� ��
1
9

� ��
1
9

�]

Now, (using � � 0.25), we obtain

y1 � [�
1
3

� �
1
3

� �
1
3

�]T �

Because

�[�
2
9

� ��
1
9

� ��
1
9

�]�T � �(�
2
9

�)2 � (��
1
9

�)2 � (��
1
9

�)2
�

we obtain

y1 � [�
1
3

� �
1
3

� �
1
3

�]T � [�
7
6
2
� ��

7
3
2
� ��

7
3
2
�]T � [�

1
4

� �
3
8

� �
3
8

�]T

Using (38), we now obtain x1 � [x1
1 x1

2 x1
3]T from

x1
1 � � �

1
4

�

x1
2 � � �

3
8

�

x1
3 � � �

3
8

�

Thus, x1 � [�
1
4

� �
3
8

� �
3
8

�]T. It will always be the case (see Problem 3) that x1 � y1, but for

k � 1, xk need not equal yk. Note that for x1, we have z � �
1
4

� � 3(�
3
8

�) � 3(�
3
8

�) � �
1
4

� � �
1
3

� (the

z-value for x0).

Potential Function

Because we are projecting [Diag(xk)]cT rather than cT, we cannot be sure that each itera-

tion of Karmarkar’s method will decrease z. In fact, it is possible for cxk�1 � cxk to oc-

cur. To explain why Karmarkar projects [Diag(xk)]cT, we need to discuss Karmarkar’s po-

tential function. For x � [x1 x2 			 xn]T, we define the potential function f (x) by

f (x) � 

j�n

j�1

ln ��
c

x

x

j

T

��
Karmarkar showed that if we project [Diag(xk)]cT (not cT) onto the feasible region in the

transformed space, then for some � � 0, it will be true that for k � 0, 1, 2, . . . ,

�
1
3

�(�
3
8

�)
���

�
1
3

�(�
3
8

�)
��

�
1
3

�(�
1
4

�)
���

�6�
�

9

0.25[�
2
9

� ��
1
9

� ��
1
9

�]T

���
�3(2)��[�

2
9

� ��
1
9

� ��
1
9

�]�

��
1
3

�

�1

�1

��
1
3

�

��
1
6

�

��
1
6

�

��
1
3

�

��
1
6

�

��
1
6

�

��
2
3

�

��
1
3

�

��
1
3

�

1 0 . 6 Karmarkar's Method for Solving LPs 603



604 C H A P T E R 1 0 Advanced Topics in Linear Programming

f (xk) � f (xk�1) � � (41)

Inequality (41) states that each iteration of Karmarkar’s method decreases the poten-

tial function by an amount bounded away from 0. Karmarkar shows that if the potential

function evaluated at xk is small enough, then z � cxk will be near 0. Because f (xk) is de-

creased by at least � per iteration, it follows that by choosing k sufficiently large, we can

ensure that the z-value for xk is less than �.

Putting an LP in Standard Form for Karmarkar’s Method

We now show how to convert any LP to the form defined by (31)–(33). To illustrate, we

show how to transform the following LP

max z � 3x1 � x2

s.t. 2x1 � x2 � 2
(42)

s.t. 2x1 � 2x2 � 5

s.t. 2x1 x1, x2 � 0

into the form defined by (31)–(33).

We begin by finding the dual of (42).

min w � 2y1 � 5y2

s.t. 2y1 � y2 � 3
(42)

s.t. �y1 � 2y2 � 1

s.t. 2y1y1, y2 � 0

From the Dual Theorem (Theorem 1 of Chapter 6), we know that if (x1, x2) is feasible in

(42), (y1, y2) is feasible in (42), and the z-value for (x1, x2) in (42) equals the w-value for

(y1, y2) in (42), then (x1, x2) is optimal for (42). This means that any feasible solution to

the following set of constraints will yield the optimal solution to (42):

3x1 � x2 � 2y1 � 5y2 � 0

2x1 � x2 � 2y1 � 5y2 � 2

x1 � 2x2 � 2y1 � 5y2 � 5
(43)

3x1 � x2 � 2y1 � y2 � 3

3x1 � x2 � �y1 � 2y2 � 1

3x1 � x2 All variables � 0

Inserting slack and excess variables into (43) yields

3x1 � x2 � 2y1 � 5y2 � s1 � 0

2x1 � x2 � 2y1 � 5y2 � s1 � 2

x1 � 2x2 � 2y1 � 5y2 � s2 � 5
(44)

3x1 � x2 � 2y1 � y2 � e1 � 3

3x1 � x2 � �y1 � 2y2 � e2 � 1

3x1 � x2 � � All variables � 0

We now find a number M such that any feasible solution to (44) will satisfy

sum of all variables in (44) � M (45)

and add constraint (45) to (44). Being conservative, we can see that any values of the vari-
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ables that yield an optimal primal solution to (42) and an optimal dual solution to (42)

will have no variable exceeding 10. This would yield M � 10(8) � 80. We then add a

slack variable (dummy variable d1) to (45). Our new goal is then to find a feasible solu-

tion to

3x1 � x2 � 2y1 � 5y2 � s1 � 0

2x1 � x2 � 2y1 � 5y2 � s1 � 2

x1 � 2x2 � 2y1 � 5y2 � s2 � 5

3x1 � x2 � 2y1 � y2 � e1 � 3 (46)

S U M M A R Y The Revised Simplex Method and the Product Form 
of the Inverse

Step 0 Note the columns from which the current B�1 will be read. Initially B�1 � I.

Step 1 For the current tableau, compute cBVB�1.

Step 2 Price out all nonbasic variables in the current tableau. If (for a max problem) each

nonbasic variable prices out nonnegative, the current basis is optimal. If the current basis

is not optimal, enter into the basis the nonbasic variable with the most negative coeffi-

cient in row 0. Call this variable xk.

Step 3 To determine the row in which xk enters the basis, compute xk’s column in the

current tableau (B�1ak) and compute the right-hand side of the current tableau (B�1b).

Then use the ratio test to determine the row in which xk should enter the basis. We now

know the set of basic variables (BV) for the new tableau.

Step 4 Use the column for xk in the current tableau to determine the EROs needed to enter xk

into the basis. Perform these EROs on the current B�1 to yield the new B�1. Return to step 1.

Alternatively, we may use the product form of the inverse to update B�1. Suppose we have

found that xk should enter the basis in row r. Let the column for xk in the current tableau be

� �
a�1k

a�2k

			

a�mk

3x1 � x2 � �y1 � 2y2 �

e2 � 1

x1 � x2 � y1 � y2 � s1 �

s2 � e1 � e2 � d1 � 80

All variables � 0

We now define a new

dummy variable d2; d2 � 1.

We can use this new variable

to “homogenize” the con-

straints in (46), which have

nonzero right-hand sides. To

do this, we add the appropri-

ate multiple of the constraint

d2 � 1 to each constraint in

(46) (except the last con-

straint) having a nonzero

right-hand side. For example

we add � 2(d2 � 1) to the

constraint 2x1 � x2 � s1 � 2.

We also replace the last con-

straint in (46) by the follow-

ing two constraints:

(a) Add d2 � 1 to the last

constraint
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Define the m � m matrix E by

(column r)

1 0 			 ��
a

a
�
�
1

rk

k� 			 0 0

0 1 			 ��
a

a
�
�
2

rk

k� 			 0 0

	 	 	 	 		 	 	 	 		 	 	 	 	

E � 0 0 			 �
a�

1

rk

� 			 0 0 (row r)

	 	 	 	 		 	 	 	 		 	 	 	 	

0 0 			 ��
a�m

a�

�

rk

1,k
� 			 1 0

0 0 			 ��
a�
a�
m

rk

k� 			 0 1

Then

B�1 for new tableau � E(B�1 for current tableau)

Return to step 1.

Column Generation

When an LP has many variables, it is very time-consuming to price out each nonbasic

variable individually. The column generation approach lets us determine the nonbasic

variable that prices out most favorably by solving a subproblem (such as the branch-and-

bound problems in the cutting stock problem).

Dantzig–Wolfe Decomposition Method

In many LPs, the constraints and variables may be decomposed in the following manner:

Constraints in set 1 only involve variables in Variable set 1.

Constraints in set 2 only involve variables in Variable set 2.

			

Constraints in set k only involve variables in Variable set k.

Constraints in set k � 1 may involve any variable. The constraints in set k � 1 are re-

ferred to as the central constraints.

LPs that can be decomposed in this fashion can often be efficiently solved by the

Dantzig–Wolfe decomposition algorithm. The following explanation assumes that k � 2.

Step 1 Let the variables in Variable set 1 be x1, x2, . . . , xn
1
. Express the variables in Vari-

able set 1 as a convex combination of the extreme points of the feasible region for Con-

straint set 1 (the constraints that involve only the variables in Variable set 1). If we let P1,

P2, . . . , Pk be the extreme points of this feasible region, then any point
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Group B

5 Prove Lemma 1.

6 Show that the point xk in Karmarkar’s method is feasible for the original LP.

7 Given a point yk in Karmarkar’s method, express the LP’s original objective function as a function of yk. Use the answer
to this question to give a reason why [Diag(xk)]cT is projected, rather than cT.

S U M M A R Y The Revised Simplex Method and the Product Form 
of the Inverse

Step 0 Note the columns from which the current B�1 will be read. Initially B�1
� I.

Step 1 For the current tableau, compute cBVB�1.

Step 2 Price out all nonbasic variables in the current tableau. If (for a max problem) each

nonbasic variable prices out nonnegative, the current basis is optimal. If the current basis

is not optimal, enter into the basis the nonbasic variable with the most negative coeffi-

cient in row 0. Call this variable xk.

Step 3 To determine the row in which xk enters the basis, compute xk’s column in the

current tableau (B�1ak) and compute the right-hand side of the current tableau (B�1b).

Then use the ratio test to determine the row in which xk should enter the basis. We now

know the set of basic variables (BV) for the new tableau.

Step 4 Use the column for xk in the current tableau to determine the EROs needed to enter xk

into the basis. Perform these EROs on the current B�1 to yield the new B�1. Return to step 1.

Alternatively, we may use the product form of the inverse to update B�1. Suppose we have

found that xk should enter the basis in row r. Let the column for xk in the current tableau be

� �
Define the m � m matrix E by

(column r)

1 0 			 ��
a

a
�
�
1

rk

k� 			 0 0

0 1 			 ��
a

a
�
�
2

rk

k� 			 0 0

	 	 	 	 		 	 	 	 		 	 	 	 	

E � 0 0 			 �
a�

1

rk

� 			 0 0 (row r)

	 	 	 	 		 	 	 	 		 	 	 	 	

0 0 			 ��
a�m

a�

�

rk

1,k
� 			 1 0

0 0 			 ��
a�
a�
m

rk

k� 			 0 1

Then

a�1k

a�2k

			

a�mk



B�1 for new tableau � E(B�1 for current tableau)

Return to step 1.

Column Generation

When an LP has many variables, it is very time-consuming to price out each nonbasic

variable individually. The column generation approach lets us determine the nonbasic

variable that prices out most favorably by solving a subproblem (such as the branch-and-

bound problems in the cutting stock problem).

Dantzig–Wolfe Decomposition Method

In many LPs, the constraints and variables may be decomposed in the following manner:

Constraints in set 1 only involve variables in Variable set 1.

Constraints in set 2 only involve variables in Variable set 2.

			

Constraints in set k only involve variables in Variable set k.

Constraints in set k � 1 may involve any variable. The constraints in set k � 1 are re-

ferred to as the central constraints.

LPs that can be decomposed in this fashion can often be efficiently solved by the

Dantzig–Wolfe decomposition algorithm. The following explanation assumes that k � 2.

Step 1 Let the variables in Variable set 1 be x1, x2, . . . , xn
1
. Express the variables in Vari-

able set 1 as a convex combination of the extreme points of the feasible region for Con-

straint set 1 (the constraints that involve only the variables in Variable set 1). If we let P1,

P2, . . . , Pk be the extreme points of this feasible region, then any point

� �
in the feasible region for Constraint set 1 may be written in the form

� � � �1P1 � �2P2 � 			 � �kPk (29)

where �1 � �2 � 			 � �k � 1 and �i � 0 (i � 1, 2, . . . , k).

x1

x2

			

xn
1

x1

x2

			

xn
1
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Step 2 Express the variables

in Variable set 2, xn
1�1

, xn
1�2

,

. . . , xn, as a convex combina-

tion of the extreme points of

Constraint set 2’s feasible re-

gion. If we let the extreme

points of the feasible region

be Q1, Q2, . . . , Qm, then any

point in Constraint set 2’s fea-

sible region may be written as
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� � � �1Q1 � �2Q2 �

			 � �mQm

(30)

where �i � 0 (i � 1, 2, . . . ,

m) and �1 � �2 � 			 � �m �

1.

Step 3 Using (29) and (30),

express the LP’s objective

function and centralized con-

straints in terms of the �i’s

and the �i’s. After adding the

constraints (called convexity

constraints), �1 � �2 � 			 �

�k � 1 and �1 � �2 � 			 �

xn
1
�1

xn
1
�2

			

xn

�m � 1 and the sign restric-

tions �i � 0 (i � 1, 2, . . . , k)

and �i � 0 (i � 1, 2, . . . , m),

TA B L E  10

Hours

Plant Product 1 Product 2

1 2 3

2 3 4

TA B L E  11

Profit per Product ($)

Plant Product 1 Product 2

1 18 6

2 10 8

we obtain the following LP, which is referred to as the restricted master:

max (or min) [objective function in terms of �i’s and �i’s]

s.t. [central

constraints in terms of �i’s

and �i’s]

s.t. �1 �

�2 � 			 � �k � 1

(Convexity constraints)

s.t. �1 � �2

� 			 � �m � 1

s.t. �i � 0

(i � 1, 2, . . . , k) (Sign

restrictions)

s.t. �i � 0

(i � 1, 2, . . . , m)

Step 4 Assume that a basic

feasible solution for the re-

stricted master is readily avail-

able. Then use the column

generation method of Section

10.3 to determine whether

there is any �i or �i that can

improve the z-value for the re-

stricted master. If so, use the

revised simplex method to en-

ter that variable into the basis.

Otherwise, the current tableau

is optimal for the restricted

master. If the current tableau

is not optimal, continue with

column generation until an

optimal solution is found.

Step 5 Substitute the optimal

values of the �i’s and �i’s
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Nonlinear Programming

In previous chapters, we have studied linear programming problems. For an LP, our goal was

to maximize or minimize a linear function subject to linear constraints. But in many interesting

maximization and minimization problems, the objective function may not be a linear function, or

some of the constraints may not be linear constraints. Such an optimization problem is called

a nonlinear programming problem (NLP). In this chapter, we discuss techniques used to solve

NLPs.

We begin with a review of material from differential calculus, which will be needed for our

study of nonlinear programming.

11.1 Review of Differential Calculus

Limits

The idea of a limit is one of the most basic ideas in calculus.

D E F I N I T I O N ■ The equation

lim
x→a

f (x) � c

means that as x gets closer to a (but not equal to a), the value of f (x) gets arbitrarily

close to c. ■

It is also possible that limx→a f (x) may not exist.

1 Show that lim
x→2

x2 � 2x � 22 � 2(2) � 0.

2 Show that lim
x→0

�
1

x
� does not exist.

Solution 1 To verify this result, evaluate x2 � 2x for values of x close to, but not equal to, 2.

2 To verify this result, observe that as x gets near 0, �
1

x
� becomes either a very large pos-

itive number or a very large negative number. Thus, as x approaches 0, �
1

x
� will not approach

any single number.

LimitsE X A M P L E  1
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Continuity

D E F I N I T I O N ■ A function f (x) is continuous at a point a if

lim
x→a

f (x) � f (a)

If f (x) is not continuous at x � a, we say that f (x) is discontinuous (or has a 

discontinuity) at a. ■

Bakeco orders sugar from Sugarco. The per-pound purchase price of the sugar depends

on the size of the order (see Table 1). Let

x � number of pounds of sugar purchased by Bakeco

f (x) � cost of ordering x pounds of sugar

Then

f (x) � 25x for 0 � x � 100

f (x) � 20x for 100 � x � 200

f (x) � 15x for x � 200

For all values of x, determine if x is continuous or discontinuous.

Solution From Figure 1, it is clear that

lim
x→100

f (x) and lim
x→200

f (x)

do not exist. Thus, f (x) is discontinuous at x � 100 and x � 200 and is continuous for

all other values of x satisfying x � 0.

Continuous FunctionsE X A M P L E  2

TA B L E  1

Price of Sugar Paid by Bakeco

Size of Order Price per Pound (¢)

100 � x � 100 25

100 � x � 200 20

100 � x � 200 15

f(x)

x

100 200 300

$10

$20

$25

$30

$40

F I G U R E  1

Cost of Purchasing
Sugar for Bakeco
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Differentiation

D E F I N I T I O N ■ The derivative of a function f (x) at x � a [written f 	(a)] is defined to be

lim

x→0

�
f (a � 





x

x

) � f (a)
� ■

If this limit does not exist, then f (x) has no derivative at x � a.

We may think of f 	(a) as the slope of f (x) at x � a. Thus, if we begin at x � a and

increase x by a small amount 
 (
 may be positive or negative), then f (x) will increase

by an amount approximately equal to 
f 	(a). If f 	(a) � 0, then f (x) is increasing at x �

a, whereas if f 	(a) � 0, then f (x) is decreasing at x � a. The derivatives of many func-

tions can be found via application of the rules in Table 2 (a represents an arbitrary con-

stant). Example 3 illustrates the use and interpretation of the derivative.

If a company charges a price p for a product, then it can sell 3e�p thousand units of the

product. Then, f (p) � 3,000pe�p is the company’s revenue if it charges a price p.

1 For what values of p is f (p) decreasing? For what values of p is f (p) increasing?

2 Suppose the current price is $4 and the company increases the price by 5¢. By ap-

proximately how much would the company’s revenue change?

Solution We have

f 	(p) � �3,000pe�p � 3,000e�p � 3,000e�p(1 � p)

1 For p � 1, f 	(p) � 0 and f (p) is increasing, whereas for p � 1, f 	(p) � 0 and f (p) is

decreasing.

Product ProfitabilityE X A M P L E  3

TA B L E  2

Rules for Finding the Derivative of a Function

Function Derivative of Function

a 0

x 1

af (x) af 	(x)

f (x) � g (x) f 	(x) � g 	(x)

xn nxn�1

ex ex

ax ax lna

lnx �
1
x

�

[ f (x)]n n [ f (x)]n�1f 	(x)

e f (x) e f (x) f 	(x)

a f (x) a f (x) f 	(x) lna

ln f (x)
f 	(x)

f x

f (x)g (x) f (x)g	(x) � f 	(x)g (x)

f (x) g (x) f 	(x) � f (x)g 	(x)

g (x) g (x)2
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2 Using the interpretation of f 	(4) as the slope of f (p) at p � 4 (with 
p � 0.05), we

see that the company’s revenue would increase by approximately

0.05(3,000e�4)(1 � 4) � �8.24

In actuality, of course, the company’s revenue would increase by

f (4.05) � f (4) � 3,000(4.05)e�4.05 � 3,000(4)e�4

� 211.68 � 219.79 � �8.11

Higher Derivatives

We define f (2)(a) � f �(a) to be the derivative of the function f 	(x) at x � a. Similarly,

we can define (if it exists) f (n)(a) to be the derivative of f (n�1)(x) at x � a. Thus, for 

Example 3,

f �( p) � 3,000e�p(�1) � 3,000e�p(1 � p)

Taylor Series Expansion

In the Taylor series expansion of a function f (x), given that f (n�1)(x) exists for every point

on the interval [a, b], we can write for any h satisfying 0 � h � b � a,

f (a � h) � f (a) � �
i�n

i�1

�
f (i

i

)

!

(a)
� hi � �

f

(n

(n�

�

1)

1

(p

)!

)
� hn�1 (1)

where (1) will hold for some number p between a and a � h. Equation (1) is the nth-

order Taylor series expansion of f (x) about a.

Find the first-order Taylor series expansion of e�x about x � 0.

Solution Because f 	(x) � �e�x and f �(x) � e�x, we know that (1) will hold on any interval [0, b].

Also, f (0) � 1, f 	(0) � �1, and f �(x) � e�x. Then (1) yields the following first-order Tay-

lor series expansion for e�x about x � 0:

e�h � f (h) � 1 � h �

This equation holds for some p between 0 and h.

Partial Derivatives

We now consider a function f of n � 1 variables (x1, x2, . . . , xn), using the notation f (x1,

x2, . . . , xn) to denote such a function.

h2e�p

�
2

Taylor Series ExpansionE X A M P L E  4
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D E F I N I T I O N ■ The partial derivative of f (x1, x2, . . . , xn) with respect to the variable xi is 

written �
∂

∂

x

f

i

�, where

�
∂

∂

x

f

i

� � lim

xi→0

■

Intuitively, if xi is increased by 
 (and all other variables are held constant), then for

small values of 
, the value of f (x1, x2, . . . , xn) will increase by approximately 
 �
∂

∂

x

f

i

�. We 

find �
∂

∂

x

f

i

� by treating all variables other than xi as constants and finding the derivatives of

f (x1, x2, . . . , xn). More generally, suppose that for each i, we increase xi by a small amount


xi. Then the value of f will increase by approximately

�
i�n

i�1

�
∂

∂

x

f

i

� 
xi

The demand f (p, a) � 30,000p�2a1/6 for a product depends on p � product price (in dol-

lars) and a � dollars spent advertising the product. Is demand an increasing or decreas-

ing function of price? Is demand an increasing or decreasing function of advertising ex-

penditure? If p � 10 and a � 1,000,000, then by how much (approximately) will a $1 cut

in price increase demand?

Solution �
∂

∂

p

f
� � 30,000(�2p�3)a1/6 � �60,000p�3a1/6 � 0

�
∂

∂

a

f
� � 30,000p�2 ��a

�

6

5/6

�� � 5,000p�2a�5/6 � 0

Thus, an increase in price (with advertising held constant) will decrease demand, while

an increase in advertising (with price held constant) will increase demand. Because

�
∂

∂

p

f
� (10, 1,000,000) � �60,000 ��

1,0

1

00
�� (1,000,000)1/6 � �600

a $1 price cut will increase demand by approximately (�1)(�600), or 600 units.

We will also use second-order partial derivatives extensively. We use the notation

�
∂x

∂

i

2

∂xj

� to denote a second-order partial derivative. To find �
∂x

∂

i∂

2

xj

�, we first find �
∂

∂

x

f

i

� and 

then take its partial derivative with respect to xj. If the second-order partials exist and are

everywhere continuous, then

�
∂x

∂

i

2

∂

f

xj

� � �
∂x

∂

j

2

∂

f

xi

�

For f ( p, a) � 30,000p�2a1/6, find all second-order partial derivatives.

f (x1, . . . , xi � 
xi, . . . , xn) � f (x1, . . . , xi, . . . , xn)
������


xi

When Is a Function Increasing?E X A M P L E  5

Second-Order Partial DerivativesE X A M P L E  6
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Solution �
∂

∂

p

2f
2

� � �60,000(�3p�4)a1/6 � �
180,0

p

0
4

0a1/6

�

�
∂

∂

a

2f
2

� � 5,000p�2 ���5a

6

�11/6

�� � ��
25,000p

6

�2a�11/6

�

�
∂

∂

a

2

∂

f

p
� � 5,000(�2p�3)a�5/6 � �10,000p�3a�5/6

�
∂

∂

p

2

∂

f

a
� � �60,000p�3 ��a

�

6

5/6

�� � �10,000p�3a�5/6

Observe that for p  0 and a  0,

�
∂

∂

a

2

∂

f

p
� � �

∂

∂

p

2

∂

f

a
�

P R O B L E M S
Group A

1 Find limh→0 �
3h �

h

h2

�.

2 It costs Sugarco 25¢/lb to purchase the first 100 lb of
sugar, 20¢/lb to purchase the next 100 lb, and 15¢ to buy
each additional pound. Let f (x) be the cost of purchasing x
pounds of sugar. Is f (x) continuous at all points? Are there
any points where f (x) has no derivative?

3 Find f 	(x) for each of the following functions:

a xe�x

b �
x2

x

�

2

1
�

c e3x

d (3x � 2)�2

e ln x3

4 Find all first- and second-order partial derivatives for
f (x1, x2) � x2

1ex2.

5 Find the second-order Taylor series expansion of ln x
about x � 1.

Group B

6 Let q � f ( p) be the demand for a product when the
price is p. For a given price p, the price elasticity E of the
product is defined by

E �

If the change in price (
p) is small, this formula reduces to

E � � ��
p

q
�� ��

d

d

q

p
��

a Would you expect f( p) to be positive or negative?

�



q

q
�

�

�



p

p
�

percentage change in demand
����

percentage change in price

b Show that if E � �1, a small decrease in price will
increase the firm’s total revenue (in this case, we say that
demand is elastic).

c Show that if �1 � E � 0, a small price decrease
will decrease total revenue (in this case, we say demand
is inelastic). 

7 Suppose that if x dollars are spent on advertising during
a given year, k(1 � e�cx) customers will purchase a product
(c � 0).

a As x grows large, the number of customers purchas-
ing the product approaches a limit. Find this limit.

b Can you give an interpretation for k?

c Show that the sales response from a dollar of adver-
tising is proportional to the number of potential cus-
tomers who are not purchasing the product at present.

8 Let the total cost of producing x units, c(x), be given by
c(x) � kx1�b (0 � b � 1). This cost curve is called the
learning or experience cost curve.

a Show that the cost of producing a unit is a decreasing
function of the number of units that have been produced.

b Suppose that each time the number of units pro-
duced is doubled, the per-unit product cost drops to r%
of its previous value (because workers learn how to per-
form their jobs better). Show that r � 100(2�b).

9 If a company has m hours of machine time and w hours
of labor, it can produce 3m1/3w2/3 units of a product.
Currently, the company has 216 hours of machine time and
1,000 hours of labor. An extra hour of machine time costs
$100, and an extra hour of labor costs $50. If the company
has $100 to invest in purchasing additional labor and
machine time, would it be better off buying 1 hour of
machine time or 2 hours of labor?
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11.2 Introductory Concepts

D E F I N I T I O N ■ A general nonlinear programming problem (NLP) can be expressed as follows:

Find the values of decision variables x1, x2, . . . , xn that

max (or min) z � f (x1, x2, . . . , xn)

s.t. g1(x1, x2, . . . , xn) (�, �, or �) b1

s.t. g2(x1, x2, . . . , xn) (�, �, or �) b2 (2)

���

gm(x1, x2, . . . , xn) (�, �, or �) bm ■

As in linear programming, f (x1, x2, . . . , xn) is the NLP’s objective function, and 

g1(x1, x2, . . . , xn) (�, �, or �) b1, . . . , gm(x1, x2, . . . , xn) (�, �, or �) bm are the NLP’s

constraints. An NLP with no constraints is an unconstrained NLP.

The set of all points (x1, x2, . . . , xn) such that xi is a real number is Rn. Thus, R1 is the set

of all real numbers. The following subsets of R1 (called intervals) will be of particular interest:

[a, b] � all x satisfying a � x � b

[a, b) � all x satisfying a � x � b

(a, b] � all x satisfying a � x � b

(a, b) � all x satisfying a � x � b

[a, ∞) � all x satisfying x � a � b

(�∞, b] � all x satisfying  x � b � b

The following definitions are analogous to the corresponding definitions for LPs given in

Section 3.1.

D E F I N I T I O N ■ The feasible region for NLP (2) is the set of points (x1, x2, . . . , xn) that satisfy

the m constraints in (2). A point in the feasible region is a feasible point, and a

point that is not in the feasible region is an infeasible point. ■

Suppose (2) is a maximization problem.

D E F I N I T I O N ■ Any point x� in the feasible region for which f (x�) � f(x) holds for all points x in

the feasible region is an optimal solution to the NLP. [For a minimization

problem, x� is the optimal solution if f(x�) � f (x) for all feasible x.] ■

Of course, if f, g1, g2, . . . , gm are all linear functions, then (2) is a linear programming

problem and may be solved by the simplex algorithm.

Examples of NLPs

It costs a company c dollars per unit to manufacture a product. If the company charges p

dollars per unit for the product, customers demand D( p) units. To maximize profits, what

price should the firm charge?

Profit MaximizationE X A M P L E  7
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Solution The firm’s decision variable is p. Since the firm’s profit is (p � c)D(p), the firm wants to

solve the following unconstrained maximization problem: max(p � c)D(p).

If K units of capital and L units of labor are used, a company can produce KL units of a

manufactured good. Capital can be purchased at $4/unit and labor can be purchased at

$1/unit. A total of $8 is available to purchase capital and labor. How can the firm maxi-

mize the quantity of the good that can be manufactured?

Solution Let K � units of capital purchased and L � units of labor purchased. Then K and L must

satisfy 4K � L � 8, K � 0, and L � 0. Thus, the firm wants to solve the following con-

strained maximization problem:

max z � KL

s.t. 4K � L � 8

s.t. 4KK, L � 0

Solving NLPs with LINGO

LINGO may be used to solve NLPs on a PC. Figure 2 (file Cap.lng) contains the LINGO

formulation and output for Example 8. From the Value column, we see that LINGO has

found the solution K � 1 and L � 4, which has an objective function value of 4. As we

shall soon see, this is indeed the optimal solution to Example 8. However, in general, there

is no guarantee that the solution found by LINGO is an optimal solution. Throughout this

chapter, we will detail the circumstances in which you can be sure that LINGO will find

the optimal solution to an NLP.

Note that the ^ symbol is used to indicate raising to a power and * indicates multipli-

cation. LINGO has several built-in functions including

■ ABS(X) � absolute value of X

■ EXP(X) � ex

■ LOG(X) � natural logarithm of X

In Sections 11.9 and 11.10, we will discuss the Price column of the LINGO output. We

will not discuss the Reduced Cost column.

Differences Between NLPs and LPs

Recall from Chapter 3 that the feasible region for any LP is a convex set (that is, if A and

B are feasible for an LP, then the entire line segment joining A and B is also feasible).

Also recall that if an LP has an optimal solution, then there is an extreme point of the fea-

sible region that is optimal. We will soon see, however, that even if the feasible region for

an NLP is a convex set, the optimal solution (unlike the optimal solution for an LP) need

not be an extreme point of the NLP’s feasible region. The previous example illustrates this

idea. Figure 3 shows graphically the feasible region (bounded by triangle ABC) for the

example and the isoprofit curves KL � 1, KL � 2, and KL � 4. We see that the optimal

solution to the example occurs where an isoprofit curve is tangent to the boundary of the

feasible region. Thus, the optimal solution to the example is z � 4, K � 1, L � 4 (point

D). Of course, point D is not an extreme point of the NLP’s feasible region. For this ex-

Production MaximizationE X A M P L E  8

Cap.lng
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F I G U R E  2

L

K
1 2

1

0
B

A

KL = 4

KL = 2
KL = 1

D

C

2

3

4

max z = KL

s.t.   4K + L ≤ 8
          K, L ≥ 0
D is optimal solution

5

6

7

8

F I G U R E  3

An NLP Whose Optimal
Solution Is Not an

Extreme Point
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ample (and many other NLPs with linear constraints), the optimal solution fails to be an

extreme point of the feasible region because the isoprofit curves are not straight lines. In

fact, the optimal solution for an NLP may not be on the boundary of the feasible region.

For example, consider the following NLP:

max z � f (x)

s.t. 0 � x � 1

where f (x) is pictured in Figure 4. The optimal solution for this NLP is z �1, x � �
1

2
�. Of

course, x � �
1

2
� is not on the boundary of the feasible region.

Local Extremum

D E F I N I T I O N ■ For any NLP (maximization), a feasible point x � (x1, x2, . . . , xn) is a local

maximum if for sufficiently small �, any feasible point x	 � (x	1, x	2, . . . , x	n)

having �xi � x	i � � � (i � 1, 2, . . . , n) satisfies f (x) � f (x	). ■

In short, a point x is a local maximum if f (x) � f (x	) for all feasible x	 that are close

to x. Analogously, for a minimization problem, a point x is a local minimum if f (x) � f (x	)

holds for all feasible x	 that are close to x. A point that is a local maximum or a local

minimum is called a local, or relative, extremum.

For an LP (max problem), any local maximum is an optimal solution to the LP. (Why?)

For a general NLP, however, this may not be true. For example, consider the following

NLP:

max z � f (x) 

s.t. 0 � x � 10

where f (x) is given in Figure 5. Points A, B, and C are all local maxima, but point C is

the unique optimal solution to the NLP.

Unlike an LP, an NLP may not satisfy the Proportionality and Additivity assumptions.

For instance, in Example 8, increasing L by 1 will increase z by K. Thus, the effect on z

of increasing L by 1 depends on K. This means that the example does not satisfy the Ad-

ditivity Assumption.

z

x0

1

10 1

z = f(x)

max f(x)
s.t.  0 ≤ x ≤ 1

1
2

F I G U R E  4

An NLP Whose Optimal
Solution Is Not on

Boundary of Feasible
Region
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The NLP

max z � x1/3 � y1/3

s.t. x � y � 1

s.t. x, y � 0

does not satisfy the Proportionality Assumption, because doubling the value of x does not

double the contribution of x to the objective function.

More Examples of NLP Formulations

We now give three more examples of nonlinear programming formulations.

Oilco produces three types of gasoline: regular, unleaded, and premium. All three are pro-

duced by combining lead and crude oil brought in from Alaska and Texas. The required

sulphur content, octane levels, minimum daily demand (in gallons), and sales price per

gallon of each type of gasoline are given in Table 3. The crude brought in from Alaska is

made by blending two types of crude: Alaska1 and Alaska2. The Alaska crude is blended

in Alaska and shipped via pipeline to Oilco’s Texas refinery. At most, 10,000 gallons of

crude per day can be shipped from Alaska. The sulphur content, octane level, daily max-

imum amount available (in gallons) and purchase cost (per gallon) for each type of Alaska

crude, Texas crude, and lead are given in Table 4. Of course, unleaded gasoline can con-

tain no lead. Formulate an NLP to help Oilco maximize the daily profit obtained from

selling gasoline.†

Solution After defining the following decision variables:

R � gallons of regular gasoline produced daily

U � gallons of unleaded gasoline produced daily

P � gallons of premium gasoline produced daily

A1 � gallons of Alaska1 crude purchased daily

A2 � gallons of Alaska2 crude purchased daily

T � gallons of Texas crude purchased daily

L � gallons of lead purchased daily

z

x

A

B

C

0

z = f(x)

10

F I G U R E  5

A Local Maximum May
Not Be the Optimal
Solution to an NLP

Oilco NLPE X A M P L E  9

†Based on Haverly (1978).
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SA � sulphur content of crude purchased from Alaska

OA � octane level of crude purchased from Alaska

A � total gallons of crude purchased from Alaska

LP � gallons of lead used daily to make premium gasoline

TP � gallons of Texas crude used daily to make premium gasoline

AP � gallons of Alaska crude used daily to make premium gasoline

TU � Texas crude used daily to make unleaded gasoline

AU � Alaska crude used daily to make unleaded gasoline

AR � Alaska crude used daily to make regular gasoline

TR � Texas crude used daily to make regular gasoline

LR � gallons of lead used daily to make regular gasoline

we find the appropriate formulation in the LINGO printout given in Figure 6 (file Alas.lng).

The objective function maximizes daily revenues (86 * R � 93 * U � 106 * P) less

the daily costs of purchasing crude (78 * A1 � 88 * A2 � 75 * T � 130 * L). Rows 2–4

specify that the amount of each input cannot exceed its daily availability. Rows 5–7 en-

sure that the minimum demand requirements for each gasoline are met.

The percentage sulphur content (as a decimal) of Alaska crude in terms of the amount

of each type of Alaska crude purchased is defined in row 8. Similarly, the octane level of

Alaska crude in terms of the amount of each type of Alaska crude purchased is defined

in row 9. Row 10 defines the total amount of Alaska crude purchased as the sum of the

amount of Alaska1 and Alaska2 purchased. Similarly, row 11 expresses the amount of pre-

mium produced as the sum of its lead, Texas crude, and Alaska crude inputs, and row 12

expresses the amount of unleaded gasoline produced as the sum of its inputs. Rows 13–15

tell us that inputs are fully consumed in production—all lead is used to produce premium

or regular gasoline; all Alaskan crude is used to make premium, unleaded, or regular gaso-

line; and all Texas crude is used to make premium, unleaded, or regular gasoline.

Row 16 requires that the average octane level of the inputs used to produce regular

gasoline is at least 90. Notice that this is not a linear constraint because of the presence

of the term AR * OA. Similarly, row 17 (again, not a linear constraint) ensures that the

TA B L E  4

Sulphur Octane Maximum Cost
Type of Input Content (%) Level Availability (Gallons) (per Gallon) ($)

Alaska 1 4 891 11,000 1.78

Alaska 2 1 897 11,000 1.88

Texas 2 883 11,000 1.75

Lead 0 800 16,000 1.30

TA B L E  3

Sulphur Octane Minimum Sales
Type of Gasoline Content (%) Level Daily Demand (Gallons) Price ($)

Regular � 3.8 � 90 5,000 1.86

Unleaded � 3.8 � 88 5,000 1.93

Premium � 2.8 � 94 5,000 1.06

Alas.lng
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MODEL:

   1) MAX= 86 * R + 93 * U + 106 * P - 78 * A1 - 88 * A2 - 75 * T - 130 *

      L ; 

   2) A < 10000 ;

   3) T < 11000 ;

   4) L < 6000 ;

   5) R > 5000 ;

   6) U > 5000 ;

   7) P > 5000 ;

   8) SA = ( .04 * A1 + .01 * A2 ) / A ;

   9) OA = ( 91 * A1 + 97 * A2 ) / A ;

  10) A = A1 + A2 ;

  11) P = LP + TP + AP ;

  12) U = TU + AU ;

  13) L = LP + LR ;

  14) A = AP + AU + AR ;

  15) T = TP + TU + TR ;

  16) ( AR * OA + 83 * TR + 800 * LR ) / R > 90 ;

  17) ( AP * OA + 83 * TP + 800 * LP ) / P > 94 ;

  18) ( AU * OA + TU * 83 ) / U > 88 ;

  19) ( SA * AR + .02 * TR ) / R < .03 ;

  20) ( SA * AP + .02 * TP ) / P < .028 ;

  21) ( SA * AU + .02 * TU ) / U < .03 ;

  22) LP > 0 ;

  23) TP > 0 ;

  24) AP > 0 ;

  25) TU > 0 ;

  26) AU > 0 ;

  27) LR > 0 ;

  28) TR > 0 ;

  29) AR > 0 ;

  30) R = TR + AR + LR ;

END

SOLUTION STATUS:  OPTIMAL TO TOLERANCES.  DUAL CONDITIONS:  SATISFIED.

            OBJECTIVE FUNCTION VALUE

         1)    443237.052541

   VARIABLE        VALUE         REDUCED COST

          R      5000.000000          .000000

          U      5000.000000          .000000

          P     11134.965633          .000000

         A1      9047.622772          .000000

         A2       952.377228          .000000

          T     11000.000000          .000000

          L       134.965633          .000000

          A     10000.000000          .000000

         SA          .037143          .000000

         OA        91.571426          .000000

         LP       121.210474          .000000

         TP      6863.136139          .000000

         AP      4150.619020          .000000

         TU      2083.333333          .000000

         AU      2916.666667          .000000

         LR        13.755159          .000000

         AR      2932.714313          .000000

         TR      2053.530528          .000000

F I G U R E  6

Oilco Problem and
Solution

 ROW   SLACK OR SURPLUS          PRICE

  2)          .000000        26.965066

  3)          .000000        30.626062

  4)      5865.034367          .000000

  5)          .000000       -19.864023

  6)          .000000       -12.796034

  7)      6134.965633          .000000

  8)          .000000  -2332388.904850

  9)          .000000      5004.725331

 10)          .000000        41.786554

 11)          .000000       102.804532

 12)          .000000       -13.948311

 13)          .000000      -130.000000

(continued)
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average octane level of the inputs used to produce premium gasoline is at least 94, and

row 18 (again, not a linear constraint) that the octane level of the unleaded gasoline in-

puts is at least 88.

Row 19 (again a nonlinear constraint due to the presence of the term SA * AR) en-

sures that regular gasoline contains at most 3% sulphur; row 20, that premium gasoline

contains at most 2.8% sulphur; and row 21, that unleaded gasoline contains at most 3%

sulphur.

The amount of each input used to produce each output must be non-negative, required

by rows 22–29. Row 30 specifies that the amount of regular gasoline sold must equal the

sum of the inputs used to produce regular gasoline.

When solved on LINGO, we obtain a solution with a profit of $4,432.37 (remember the

objective function is in cents) earned by producing 5,000 gallons of regular gasoline (with

13.76 gallons of lead, 2,932.71 gallons of Alaska crude, and 2,053.53 gallons of Texas

crude); 5,000 gallons of unleaded gasoline (with 2,916.67 gallons of Alaska crude and

2,083.33 gallons of Texas crude); and 11,134.97 gallons of premium gasoline (using 121.21

gallons of lead, 6,863.14 gallons of Texas crude, and 4,150.62 gallons of Alaska crude). The

mix of 10,000 gallons of Alaska crude was 90.48% Alaska1 and 9.52% Alaska2.

In Section 11.10, we will discuss how we can be sure that the solution found by

LINGO is optimal.

R E M A R K By using a nonlinear blending model to optimize production of its gasoline products Texaco saves
at least $30 million per year. See Dewitt et al. (1989) for details.

Truckco is trying to determine where it should locate a single warehouse. The positions in

the x–y plane (in miles) of four customers and the number of shipments made annually to

each customer are given in Table 5. Truckco wants to locate the warehouse to minimize

the total distance trucks must travel annually from the warehouse to the four customers.

Solution Define

X � x-coordinate of warehouse

Y � y-coordinate of warehouse

Di � Distance from customer i to warehouse

The appropriate NLP is given in the LINGO printout in Figure 7 (file Ware.lng). The 

objective function minimizes the total distance trucks travel each year from the warehouse to

the four customers. Rows 2–5 define the distance from each customer to the warehouse in

Warehouse LocationE X A M P L E  1 0

14)          .000000      -105.917442

15)          .000000      -105.626062

16)         -.000001      -169.971719

17)          .000001      -378.525763

18)         -.000001     -8166.740734

19)          .000000          .000000

20)          .001828          .000000

21)          .000000   3998380.979742   

22)       121.210474          .000000

23)      6863.136139          .000000

24)      4150.619020          .000000

25)      2083.333333          .000000

26)      2916.666667          .000000

27)        13.755159          .000000

28)      2053.530528          .000000

29)      2932.714313          .000000

30)          .000000       102.804532

F I G U R E  6

(Continued)

Ware.lng
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terms of the warehouse location. LINGO located the warehouse at X � 9.31 and Y � 5.03.

Each year the truck will travel a total of 5,456.54 miles from the warehouse to the customers.

Firerock produces rubber used for tires by combining three ingredients: rubber, oil, and

carbon black. The cost in cents per pound of each ingredient is given in Table 6.

The rubber used in automobile tires must have a hardness of between 25 and 35, an

elasticity of at least 16, and a tensile strength of at least 12. To manufacture a set of four

automobile tires, 100 pounds of product is needed. The rubber used to make a set of four

tires must contain between 25 and 60 pounds of rubber and at least 50 pounds of carbon

black. If we define

R � pounds of rubber in mixture used to produce four tires

O � pounds of oil in mixture used to produce four tires

C � pounds of carbon black used to produce four tires 

then statistical analysis has shown that the hardness, elasticity, and tensile strength of a

100-pound mixture of rubber, oil, and carbon black is as follows:

Tensile strength � 12.5 � .10(O) � .001 (O)2

Elasticity � 17 � .35R � .04(O) � .002(R)2

Hardness � 34 � .10R � .06(O) � .3(C) � .001(R)(O) � .005(O)2 � .001C2

Tire ProductionE X A M P L E  1 1

TA B L E  5

Coordinate

Customer x y Number of Shipments

1 5 10 200

2 10 5 150

3 0 12 200

4 12 0 300

MODEL:

   1) MIN= 200 * D1 + 150 * D2 + 200 * D3 + 300 * D4 ;

   2) D1 = ( ( X - 5 ) ^ 2 + ( Y - 10 ) ^ 2 ) ^ .5 ;

   3) D2 = ( ( X - 10 ) ^ 2 + ( Y - 5 ) ^ 2 ) ^ .5 ;

   4) D3 = ( X ^ 2 + ( Y - 12 ) ^ 2 ) ^ .5 ;

   5) D4 = ( ( X - 12 ) ^ 2 + Y ^ 2 ) ^ .5 ;

END

SOLUTION STATUS:  OPTIMAL TO TOLERANCES.  DUAL CONDITIONS:  UNSATISFIED.

            OBJECTIVE FUNCTION VALUE

         1)      5456.539688

   VARIABLE        VALUE         REDUCED COST

         D1         6.582238          .000000

         D2          .686433          .000000

         D3        11.634119          .000000

         D4         5.701011          .000000

          X         9.314167          .000176

          Y         5.028701          .000167

        ROW   SLACK OR SURPLUS          PRICE

         2)          .000000      -200.000000

         3)          .000000      -150.000000

         4)          .000000      -200.000000

         5)          .000000      -300.000000

F I G U R E  7

Truckco Problem and
Solution
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Formulate an NLP whose solution will tell Firerock how to minimize the cost of produc-

ing the rubber product needed to manufacture a set of automobile tires.†

Solution After defining

TS � Tensile strength of mixture

E � Elasticity of mixture

H � Hardness of mixture

the LINGO program in Figure 8 (file Rubber.lng) gives the correct formulation. Row 1

minimizes the cost of producing the needed rubber product. Rows 2–4 express the tensile

strength, elasticity, and hardness, respectively, of the mixture in terms of its component

ingredients. Observe that tensile strength, elasticity, and hardness are each nonlinear func-

tions of R, O, and C. Row 5 requires that we combine 100 pounds of inputs to produce

TA B L E  6

Cost
Product (Cents/Pound)

Rubber 4

Oil 1

Carbon black 7

†Based on Nicholson (1971).

F I G U R E  8

Rubber.lng
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our final rubber product. The solution found by LINGO (Figure 9) is 45.23 pounds of 

rubber, 4.77 pounds of oil, and 50 pounds of carbon black. The total cost of the 100-pound

mixture is $5.36.

In Section 11.9, we will discuss whether or not this solution is optimal. 

Solving NLPs with Excel

It is easy to use the Excel Solver to solve NLPs. You proceed as you would with a linear

model but do not select the Linear Model option. To illustrate, we solve Example 8 in the

file Caplabor.xls (see Figure 10).

Our changing cells are the capital and labor purchased (cells C5 and D5, respectively).

Our target cell is the total number of units produced (computed in cell C8). Our constraint

is that the total spent (in cell B11) is less than or equal to $8. Of course, the quantity of

capital and labor purchased must be nonnegative. Our Solver window is shown in Figure

11. We find that the optimal solution is K � 1, L � 4, and z � 8.

For NLPs having multiple local optimal solutions, the Excel Solver may fail to find the

optimal solution, because it may pick a local extremum that is not a global extremum. To

illustrate, consider the following NLP:

F I G U R E  9

Caplabor.xls
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max z � (x � 1)(x � 2)(x � 3)(x � 4)(x � 5)

s.t. x � 1

s.t. x � 5

The graph of this function is shown in Figure 12. Note there are two local maxima for

this problem. In file Multiple.xls, we solve this problem twice. The first time, we 

begin with x � 2 and we find the optimal solution, which is x � 1.36 and z � 3.63 (see

Figure 13).

The second time, we begin with x � 3.5 and we find the other local maximum, x �

3.54 and z � 1.42 (see Figure 14). The reason for this is that when we start with x � 3.5,

the Solver soon hits x � 3.54 and finds that the objective function cannot be improved by

small moves in either direction. Both LINGO and Solver use calculus-based methods (to

be described later in this chapter) to solve NLPs. Any calculus-based approach to solving

NLPs runs the risk of finding a local extremum that is not a global extremum. Evolu-

tionary algorithms do not have this drawback; see Chapters 14 and 15 of Mathematical

Programming: Applications and Algorithms for a discussion of evolutionary algorithms.

3

4
5

6
7

8

9
10

11

A B C D

Capital Labor
Purchased 1 4

Cost  $      4.00  $      1.00 

Units 
produced 4

Total spent Available

 $          8.00 <=  $      8.00 
F I G U R E  10

F I G U R E  11

Multiple.xls
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P R O B L E M S
Group A

F I G U R E  12
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Series 1

1
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7
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C D

Start with 

x =2 right answer!

x f(x)

1.355567 3.631432208
F I G U R E  13

1 Q & H Company advertises on soap operas and football
games. Each soap opera ad costs $50,000, and each football
game ad costs $100,000. Giving all figures in millions of
viewers, if S soap opera ads are bought, they will be seen
by 5�S� men and 20�S� women. If F football ads are bought,
they will be seen by 17�F� men and 7�F� women. Q & H
wants at least 40 million men and at least 60 million women
to see its ads.

a Formulate an NLP that will minimize Q & H’s cost
of reaching sufficient viewers.

b Does the NLP violate the Proportionality and Addi-
tivity Assumptions?

c Suppose that the number of women reached by F
football ads and S soap opera ads is 7�F� � 20�S� �
0.2�FS�. Why might this be a more realistic representa-
tion of the number of women viewers seeing Q & H’s
ads? 

2 The area of a triangle with sides of length a, b, and c is
�s(s ��a)(s �� b)(s �� c)�, where s is half the perimeter of
the triangle. We have 60 ft of fence and want to fence a
triangular-shaped area. Formulate an NLP that will enable
us to maximize the fenced area.

3 The energy used in compressing a gas (in three stages)
from an initial pressure I to a final pressure F is given by

4

5

6

7

8

C D

Start with 

x =3.5

Wrong 

answer!

x f(x)

3.543912 1.418696626
F I G U R E  14



1 1 . 2 Introductory Concepts 629

K �	�
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�
 � 3 �
Formulate an NLP whose solution describes how to
minimize the energy used in compressing the gas.

4 Use LINGO to solve Problem 1.

5 Use LINGO to solve Problem 2.

6 Use LINGO to solve Problem 3. Use I � 64 and 
F � 1,000.

7 For Example 6 of Chapter 8, let A � number of days
duration of A is reduced, B � number of days duration of
B is reduced, and so on. Suppose that the cost of crashing
each activity is as follows:

A, 5A2; B, 20B2; C, 2C2; D, 20D2; E, 10E2; F, 15F2 

and that each activity may be “crashed” to a duration of 0
days, if desired. Formulate an NLP that will minimize the
cost of finishing the project in 25 days or less.

8 Beerco has $100,000 to spend on advertising in four
markets. The sales revenue (in thousands of dollars) that can
be created in each market by spending xi thousand dollars
in market i is given in Table 7. To maximize sales revenue,
how much money should be spent in each market?

9 Widgetco produces widgets at plant 1 and plant 2. It
costs 20x1/2 to produce x units at plant 1 and 40x1/3 to
produce x units at plant 2. Each plant can produce as many
as 70 units. Each unit produced can be sold for $10. At
most, 120 widgets can be sold. Formulate an NLP whose
solution will tell Widgetco how to maximize profit.

10 Three cities are located at the vertices of an equilateral
triangle. An airport is to be built at a location that minimizes
the total distance from the airport to the three cities.
Formulate an NLP whose solution will tell us where to build
the airport. Then solve your NLP on LINGO.

11 The yield of a chemical process depends on the length of
time T (in minutes) that the process is run and the temperature
TEMP (in degrees centigrade) at which the process is operated.
This dependence is described by the equation

YIELD � 87 � 1.4T 	 � .4TEMP	 � 2.2T 	2 �

3.2TEMP	2 � 4.9(T	)(TEMP	)

where T 	 � (T � 90)/10 and TEMP	 � (TEMP �150)/5.
T must be between 60 and 120 minutes, while TEMP must
be between 100 and 200 degrees. Set up an NLP that could
be used to maximize the yield of the process. Use LINGO
to solve your NLP.

Group B

12 Consider Problem 5 of Section 3.8 with the following
modification: Suppose that we can add a chemical called
Superquality (SQ) to improve the quality level of gasoline
and heating oil. If we add an amount x of SQ to each barrel
of gasoline we improve its quality level by x.5 over what it
would have been. If we add an amount x of SQ to each
barrel of heating oil we improve its quality level by .6x.6

over what it would have been. The amount of SQ added to
heating oil cannot exceed (by weight) 5% of the oils used
to make heating oil. Similarly, the amount of SQ added to
gasoline cannot exceed (by weight) 5% of the oils used to
make gasoline. SQ may be purchased at a cost of $20 per
pound. Formulate (and solve with LINGO) an NLP that will
help CEO Adam Chandler maximize his profits.

13 A salesperson for Fuller Brush has three options: quit,
put forth a low-effort level, or put forth a high-effort level.
Suppose for simplicity that each salesperson will either sell
$0, $5,000, or $50,000 worth of brushes. The probability of
each sales amount depends on the effort level in the manner
described in Table 8.

If the salesperson is paid $w, then he or she earns a
benefit w1/2. Low effort costs the salesperson 0 benefit units,
while high effort costs 50 benefit units. If the salesperson
were to quit Fuller and work elsewhere, then he or she could
earn a benefit of 20. Fuller wants all salespeople to put forth
a high-effort level. The question is how to minimize the cost
of doing it. The company cannot observe the level of effort
put forth by a salesperson, but they can observe the size of
his or her sale. Thus, the wage is completely determined by
the size of the sale. Fuller must then determine w0 � wage
paid for $0 in sale, w5000 � wage paid for $5,000 in sales,
and w50,000 � wage paid for $50,000 in sales. These wages
must be set so that the salespeople value the expected benefit
from high effort more than quitting and more than low
effort. Formulate (and solve on LINGO) an NLP that can be
used to ensure that all salespeople put forth high effort. This
problem is an example of agency theory.†

TA B L E  7

Market Sales Revenue

1 10x.4
1

2 8x.5
2

3 12x.3
3

4 16x.6
4

TA B L E  8

Effort Level

Size of Sale ($) Low High

50,000 .6 .3

05,000 .3 .2

50,000 .1 .5

†Based on Grossman and Hart (1983).
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11.3 Convex and Concave Functions

Convex and concave functions play an extremely important role in the study of nonlinear

programming problems.

Let f (x1, x2, . . . , xn) be a function that is defined for all points (x1, x2, . . . , xn) in a

convex set S.†

D E F I N I T I O N ■ A function f (x1, x2, . . . , xn) is a convex function on a convex set S if for any 

x	 � S and x� � S

f [cx	 � (1 � c)x�] � cf (x	) � (1 � c)f (x�) (3)

holds for 0 � c � 1. ■

D E F I N I T I O N ■ A function f (x1, x2, . . . , xn) is a concave function on a convex set S if for any 

x	 � S and x� � S

f [cx	 � (1 � c)x�] � cf (x	) � (1 � c)f (x�) (4)

holds for 0 � c � 1. ■

From (3) and (4), we see that f (x1, x2, . . . , xn) is a convex function if and only if �f (x1,

x2, . . . , xn) is a concave function, and conversely.

To gain some insights into these definitions, let f (x) be a function of a single variable.

From Figure 15 and inequality (3), we find that f (x) is convex if and only if the line 

segment joining any two points on the curve y � f (x) is never below the curve y � f (x).

Similarly, Figure 16 and inequality (4) show that f (x) is a concave function if and only if

the straight line joining any two points on the curve y � f (x) is never above the curve 

y � f (x).

†Recall from Chapter 3 that a set S is convex if x	 � S and x� � S imply that all points on the line segment

joining x	 and x� are members of S. This ensures that cx	 � (1 � c)x� will be a member of S.

y

x

y = f(x)

A

C

x cx  + (1 – c)x 

D

B

Point A = (x , f(x ))

Point D = (x  , f(x  ))

Point C = (cx  + (1 – c)x  , cf(x ) + (1 – c)f(x  ))

Point B = (cx  + (1 – c)x  , f(cx  + (1 – c)x  ))

From figure: f(cx  + (1 – c)x  ) ≤ cf(x ) + (1 – c)f(x  )

x

y

x

y = f(x)

A

B

C

D

x cx  + (1 – c)x 

Point A = (x , f(x ))

Point D = (x  , f(x  ))

Point C = (cx  + (1 – c)x  , f(cx  + (1 – c)x  ))

Point B = (cx  + (1 – c)x  , cf(x ) + (1 – c)f(x  ))

From figure: f(cx  + (1 – c)x  ) ≥ cf(x ) + (1 – c)f(x  )

x

F I G U R E  15

A Convex Function

F I G U R E  16

A Concave Function
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It can be shown (see Problem 12 at the end of this section) that the sum of two convex

functions is convex and the sum of two concave functions is concave. Thus, f (x) � x2 �

ex is a convex function.

Because the line segment AB lies below y � f (x) and the line segment BC lies above y �

f (x), f (x) as pictured in Figure 18 is not a convex or a concave function. 

For x � 0, f (x) � x2 and f (x) � ex are convex functions and f (x) � x1/2 is a concave func-

tion. These facts are evident from Figure 17. 

Convex and Concave FunctionsE X A M P L E  1 2

Sum of Convex FunctionsE X A M P L E  1 3

Neither Convex nor Concave FunctionE X A M P L E  1 4

Both Convex and Concave Linear FunctionE X A M P L E  1 5

f(x)

f(x) = x2

a  Convex

x

f(x)

f(x) = x1/2

c  Concave

x

f(x)

f(x) = ex

b  Convex

x

F I G U R E  17

Examples of Convex
and Concave Functions

y

x

y = f(x)

B
A

C

F I G U R E  18

A Function That 
Is Neither Convex 

Nor Concave

A linear function of the form f (x) � ax � b is both a convex and a concave function.

This follows from

f [cx	 � (1 � c)x�] � a[cx	 � (1 � c)x�] � b

� c(ax	 � b) � (1 � c)(ax� � b) 

� cf (x	) � (1 � c)f (x�)
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Both (3) and (4) hold with equality, so f (x) � ax � b is both a convex and a concave

function.

Before discussing how to determine whether a given function is convex or concave, we

prove a result that illustrates the importance of convex and concave functions.

Consider NLP (2) and assume it is a maximization problem. Suppose the feasible

region S for NLP (2) is a convex set. If f (x) is concave on S, then any local maxi-

mum for NLP (2) is an optimal solution to this NLP.

Proof If Theorem 1 is false, then there must be a local maximum x� that is not an

optimal solution to NLP (2). Let S be the feasible region for NLP (2) (we have as-

sumed that S is a convex set). Then, for some x � S, f (x) � f (x�). The inequality (4)

implies that for any c satisfying 0 � c � 1,

f [cx� � (1 � c)x] � cf (x�) � (1 � c) f (x)

� cf (x�) � (1 � c) f (x�) [from f (x) � f (x�)]

� f (x�) 

Now observe that for c arbitrarily near 1, cx� � (1 � c)x is feasible (because S is

convex) and is near x�. Thus, x� cannot be a local maximum. This contradiction proves

Theorem 1.

Similar reasoning can be used to prove Theorem 1	 (see Problem 11 at the end of this

section).

Consider NLP (2) and assume it is a minimization problem. Suppose the feasible

region S for NLP (2) is a convex set. If f (x) is convex on S, then any local mini-

mum for NLP (2) is an optimal solution to this NLP.

Theorems 1 and 1	 demonstrate that if we are maximizing a concave function (or min-

imizing a convex function) over a convex feasible region S, then any local maximum (or

local minimum) will solve NLP (2). As we solve NLPs, we will repeatedly apply Theo-

rems 1 and 1	.

We now explain how to determine if a function f (x) of a single variable is convex or

concave. Recall that if f (x) is a convex function of a single variable, the line joining any

two points on y � f (x) is never below the curve y � f (x). From Figures 9 and 10, we see

that f (x) convex implies that the slope of f (x) must be nondecreasing for all values of x.

Suppose f �(x) exists for all x in a convex set S. Then f (x) is a convex function on

S if and only if f �(x) � 0 for all x in S.

T H E O R E M  1

T H E O R E M  1�

T H E O R E M  2
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Because f (x) is convex if and only if �f (x) is concave, Theorem 2	 must also be true.

Suppose f �(x) exists for all x in a convex set S. Then f (x) is a concave function on

S if and only if f �(x) � 0 for all x in S.

1 Show that f (x) � x2 is a convex function on S � R1.

2 Show that f (x) � ex is a convex function on S � R1.

3 Show that f (x) � x1/2 is a concave function on S � (0, ∞).

4 Show that f (x) � ax � b is both a convex and a concave function on S � R1. 

Solution 1 f �(x) � 2 � 0, so f (x) is convex on S � R1.

2 f �(x) � ex � 0, so f (x) is convex on S � R1.

3 f �(x) � �x�3/2/4 � 0, so f (x) is a concave function on S(0, ∞).

4 f �(x) � 0, so f (x) is both convex and concave on S � R1. 

How can we determine whether a function f (x1, x2, . . . , xn) of n variables is convex or

concave on a set S � Rn? We assume that f (x1, x2, . . . , xn) has continous second-order

partial derivatives. Before stating the criterion used to determine whether f (x1, x2, . . . , xn)

is convex or concave, we require three definitions.

D E F I N I T I O N ■ The Hessian of f (x1, x2, . . . , xn) is the n � n matrix whose ijth entry is

�
∂

∂

xi

2

∂

f

xj

� ■

We let H(x1, x2, . . . , xn) denote the value of the Hessian at (x1, x2, . . . , xn). For ex-

ample, if f (x1, x2) � x3
1 � 2x1x2 � x2

2, then

H(x1, x2) � � 

D E F I N I T I O N ■ An ith principal minor of an n � n matrix is the determinant of any i � i

matrix obtained by deleting n � i rows and the corresponding n � i columns of

the matrix. ■

Thus, for the matrix

� 
the first principal minors are �2 and �4, and the second principal minor is �2(�4) �

(�1)(�1) � 7. For any matrix, the first principal minors are just the diagonal entries of

the matrix.

�2 �1

�1 �4

6x1 2

2x1 2

Determining If a Function Is Convex or ConcaveE X A M P L E  1 6

T H E O R E M  2�
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D E F I N I T I O N ■ The kth leading principal minor of an n � n matrix is the determinant of the 

k � k matrix obtained by deleting the last n � k rows and columns of the 

matrix. ■

We let Hk(x1, x2, . . . , xn) be the kth leading principal minor of the Hessian matrix 

evaluated at the point (x1, x2, . . . , xn). Thus, if f (x1, x2) � x 3
1 � 2x1x2 � x 2

2, then 

H1(x1, x2) � 6x1, and H2(x1, x2) � 6x1(2) � 2(2) � 12x1 � 4.

By applying Theorems 3 and 3	 (stated below, without proof ), the Hessian matrix can

be used to determine whether f (x1, x2, . . . , xn) is a convex or a concave (or neither) func-

tion on a convex set S � Rn. [See Bazaraa and Shetty pages 91–93 (1993) for proof of

Theorems 3 and 3	.]

Suppose f (x1, x2, . . . , xn) has continuous second-order partial derivatives for each

point x � (x1, x2, . . . , xn) � S. Then f (x1, x2, . . . , xn) is a convex function on S if

and only if for each x � S, all principal minors of H are nonnegative.

Show that f (x1, x2) � x2
1 � 2x1x2 � x2

2 is a convex function on S � R2.

Solution We find that

H(x1, x2) � � 
The first principal minors of the Hessian are the diagonal entries (both equal 2 � 0). The

second principal minor is 2(2) � 2(2) � 0 � 0. For any point, all principal minors of H

are nonnegative, so Theorem 3 shows that f (x1, x2) is a convex function on R2.

Suppose f (x1, x2, . . . , xn) has continuous second-order partial derivatives for each

point x � (x1, x2, . . . , xn) � S. Then f (x1, x2, . . . , xn) is a concave function on S if

and only if for each x � S and k � 1, 2, . . . , n, all nonzero principal minors have

the same sign as (�1)k.

Show that f (x1, x2) � �x2
1 � x1x2 � 2x2

2 is a concave function on R2.

Solution We find that

H(x1, x2) � � 
The first principal minors are the diagonal entries of the Hessian (�2 and �4). These are

both nonpositive. The second principal minor is the determinant of H(x1, x2) and equals

�2(�4) � (�1)(�1) � 7 � 0. Thus, f (x1, x2) is a concave function on R2. 

�2 �1

�1 �4

2 2

2 2

Using the Hessian to Ascertain Convexity or Concavity 1E X A M P L E  17

T H E O R E M  3

T H E O R E M  3�

Using the Hessian to Ascertain Convexity or Concavity 2E X A M P L E  1 8
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Show that for S � R2, f (x1, x2) � x2
1 � 3x1x2 � 2x2

2 is not a convex or a concave function.

Solution We have

H(x1, x2) � � 
The first principal minors of the Hessian are 2 and 4. Because both the first principal mi-

nors are positive, f (x1, x2) cannot be concave. The second principal minor is 2(4) �

(�3)(�3) � �1 � 0. Thus, f (x1, x2) cannot be convex. Together, these facts show that

f (x1, x2) cannot be a convex or a concave function. 

Show that for S � R3, f (x1, x2, x3) � x2
1 � x2

2 � 2x2
3 � x1x2 � x2x3 � x1x3 is a convex

function.

Solution The Hessian is given by

H(x1, x2, x3) � � 
By deleting rows (and columns) 1 and 2 of Hessian, we obtain the first-order princi-

pal minor 4 � 0. By deleting rows (and columns) 1 and 3 of Hessian, we obtain the first-

order principal minor 2 � 0. By deleting rows (and columns) 2 and 3 of Hessian, we ob-

tain the first-order principal minor 2 � 0.

By deleting row 1 and column 1 of Hessian, we find the second-order principal minor

det �  � 7 � 0.

By deleting row 2 and column 2 of Hessian, we find the second-order principal minor

det �  � 7 � 0

By deleting row 3 and column 3 of Hessian, we find the second-order principal minor

det �  � 3 � 0.

The third-order principal minor is simply the determinant of the Hessian itself. Ex-

panding by row 1 cofactors we find the third-order principal minor

2[(2)(4) � (�1)(�1)] � (�1)[(�1)(4) � (�1)(�1)]

�(�1)[(�1)(�1) � (�1)(2)] � 14 � 5 � 3 � 6 � 0.

Because for all (x1, x2, x3) all principal minors of the Hessian are nonnegative, we have

shown that f (x1, x2, x3) is a convex function on R3. 

�2 �1

�1 �2

�2 �1

�1 �4

�2 �1

�1 �4

�2 �1 �1

�1 �2 �1

�1 �1 �4

�2 �3

�3 �4

Using the Hessian to Ascertain Convexity or Concavity 3E X A M P L E  1 9

Using the Hessian to Ascertain Convexity or Concavity 4E X A M P L E  2 0
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P R O B L E M S
Group A

On the given set S, determine whether each function is
convex, concave, or neither.

1 f(x) � x3; S � [0, ∞)

2 f(x) � x3; S � R1

3 f(x) � �
1

x
�; S � (0, ∞)

4 f(x) � xa (0 � a � 1); S � (0, ∞)

5 f(x) � ln x; S � (0, ∞)

6 f(x1, x2) � x3
1 � 3x1x2 � x2

2; S � R2

7 f(x1, x2) � x2
1 � x2

2; S � R2

8 f(x1, x2) � �x2
1 � x1x2 � 2x2

2; S � R2

9 f(x1, x2, x3) � �x2
1 � x2

2 � 2x2
3 � .5x1x2; S � R3

10 For what values of a, b, and c will ax2
1 � bx1x2 � cx2

2

be a convex function on R2? A concave function on R2? 

Group B

11 Prove Theorem 1	.

12 Show that if f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) are
convex functions on a convex set S, then h(x1, x2, . . . , xn) �
f (x1, x2, . . . , xn) � g(x1, x2, . . . , xn) is a convex function 
on S.

13 If f(x1, x2, . . . , xn) is a convex function on a convex set
S, show that for c � 0, g(x, x2, . . . , xn) � cf(x1, x2, . . . , xn)
is a convex function on S, and for c � 0, g(x1, x2, . . . , xn) �
cf(x1, x2, . . . , xn) is a concave function on S. 

14 Show that if y � f(x) is a concave function on R1, then
z � �

f (

1

x)
� is a convex function [assume that f(x) � 0].

15 A function f (x1, x2, . . . , xn) is quasi-concave on a
convex set S � Rn if x	 � S, x� � S, and 0 � c � 1 implies

f [cx	 � (1 � c)x�] � min[ f (x	), f (x�)]

Show that if f is concave on R1, then f is quasi-concave.
Which of the functions in Figure 19 is quasi-concave? Is a
quasi-concave function necessarily a concave function?

16 From Problem 12, it follows that the sum of concave

functions is concave. Is the sum of quasi-concave functions
necessarily quasi-concave?

17 Suppose a function’s Hessian has both positive and
negative entries on its diagonal. Show that the function is
neither concave nor convex.

18 Show that if f(x) is a non-negative, increasing concave
function, then ln [ f(x)] is also a concave function.

19 Show that if a function f (x1, x2, . . . , xn) is quasi-
concave on a convex set S, then for any number a the set 
Sa � all points satisfying f(x1, x2, . . . , xn) � a is a convex set.

20 Show that Theorem 1 is untrue if f is a quasi-concave
function.

21 Suppose the constraints of an NLP are of the form
gi(x1, x2, . . . , xn) � bi(i � 1, 2, . . . m). Show that if each of
the gi is a convex function, then the NLP’s feasible region
is convex.

Group C

22 If f(x1, x2) is a concave function on R2, show that for
any number a, the set of (x1, x2) satisfying f(x1, x2) � a is
a convex set.

23 Let Z be a N(0, 1) random variable, and let F(x) be the
cumulative distribution function for Z. Show that on S �
(�∞, 0], F(x) is an increasing convex function, and on S �
[0, ∞), F(x) is an increasing concave function.

24 Recall the Dakota LP discussed in Chapter 6. Let v(L,
FH, CH) be the maximum revenue that can be earned when
L sq board ft of lumber, FH finishing hours, and CH
carpentry hours are available.

a Show that v(L, FH, CH) is a concave function.

b Explain why this result shows that the value of each
additional available unit of a resource must be a nonin-
creasing function of the amount of the resource that is
available.

a b c

F I G U R E  19
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11.4 Solving NLPs with One Variable

In this section, we explain how to solve the NLP

max (or min) f (x)

s.t. x � [a, b] (5)

[If b � ∞, then the feasible region for NLP (5) is x � a, and if a � �∞, then the feasi-

ble region for (5) is x � b.]

To find the optimal solution to (5), we find all local maxima (or minima). A point that is

a local maximum or a local minimum for (5) is called a local extremum. Then the optimal

solution to (5) is the local maximum (or minimum) having the largest (or smallest) value of

f (x). Of course, if a � �∞ or b � ∞, then (5) may have no optimal solution (see Figure 20). 

There are three types of points for which (5) can have a local maximum or minimum

(these points are often called extremum candidates):

Case 1 Points where a � x � b, and f 	(x) � 0 [called a stationary point of f (x)].

Case 2 Points where f 	(x) does not exist.

Case 3 Endpoints a and b of the interval [a, b].

Case 1. Points Where a � x � b and f 	(x) � 0

Suppose a � x � b, and f 	(x0) exists. If x0 is a local maximum or a local minimum, then

f 	(x0) � 0. To see this, look at Figures 21a and 21b. From Figure 21a, we see that if f 	(x0)

� 0, then there are points x1 and x2 near x0 where f (x1) � f (x0) and f (x2) � f (x0). Thus,

if f 	(x0) � 0, x0 cannot be a local maximum or a local minimum. Similarly, Figure 21b

shows that if f 	(x0) � 0, then x0 cannot be a local maximum or a local minimum. From

Figures 21c and 21d, however, we see f 	(x0) � 0, then x0 may be a local maximum or a

local minimum. Unfortunately, Figure 21e shows that f 	(x0) can equal zero without x0 be-

ing a local maximum or a local minimum. From Figure 21c, we see that if f 	(x) changes

from positive to negative as we pass through x0, then x0 is a local maximum. Thus, if

f �(x0) � 0, x0 is a local maximum. Similarly, from Figure 21d, we see that if f 	(x) changes

from negative to positive as we pass through x0, x0 is a local minimum. Thus, if f �(x0) �

0, x0 is a local minimum.

y

y = f(x)

a  max f(x)
    s.t.  x    (–�, b] 

x
b

y

y = f(x)

b  max f(x)
    s.t.  x    [a, �)  

x
a

F I G U R E  20

NLPs with No Solution
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If f 	(x0) � 0 and f �(x0) � 0, then x0 is a local maximum. If f 	(x0) � 0 and f �(x0)

� 0, then x0 is a local minimum.

What happens if f 	(x0) � 0 and f �(x0) � 0 (this is the case in Figure 21e)? In this case,

we determine whether x0 is a local maximum or a local minimum by applying Theorem 5.

T H E O R E M  4

y

y = f(x)

x
ba x1 x0 x2

y

y = f(x)

c   f (x0) = 0
     For x < x0, f (x) > 0
     For x > x0, f (x) < 0
    x0 is a local maximum

x

ba x0

y

y = f(x)

b   f (x0) < 0
     f (x1) > f(x0)
    f (x2) < f(x0)
    x0 not a local extremum

x
ba x1 x0 x2

y

y = f(x)

e   x0 = 0 not a local maximum
          or a local minimum
          but f (x0) = 0

x
bx0 = 0a

y

y = f(x)

x
ba

x0

a   f (x0) > 0
     f (x1) < f(x0)
    f (x2) > f(x0)
    x0 not a local extremum

d   f (x0) = 0
     For x < x0, f (x) < 0
     For x > x0, f (x) > 0
    x0 is a local maximum

F I G U R E  21

How to Determine
Whether x0 Is a 

Local Maximum or a
Local Minimum When

f �(x0) Exists
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If f 	(x0) � 0, and

1 If the first nonvanishing (nonzero) derivative at x0 is an odd-order derivative

[ f (3) (x0), f (5) (x0), and so on], then x0 is not a local maximum or a local minimum.

2 If the first nonvanishing derivative at x0 is positive and an even-order derivative,

then x0 is a local minimum.

3 If the first nonvanishing derivative at x0 is negative and an even-order derivative,

then x0 is a local maximum.

We omit the proofs of Theorems 4 and 5. [They follow in a straightforward fashion by

applying the definition of a local maximum and a local minimum to the Taylor series ex-

pansion of f (x) about x0.] Theorem 4 is a special case of Theorem 5. We ask you to prove

Theorems 4 and 5 in Problems 16 and 17.

Case 2. Points Where f�(x) Does Not Exist

If f (x) does not have a derivative at x0, x0 may be a local maximum, a local minimum, or

neither (see Figure 22). In this case, we determine whether x0 is a local maximum or a

local minimum by checking values of f (x) at points x1 � x0 and x2 � x0 near x0. The four

possible cases that can occur are summarized in Table 9.

y

y = f(x)

a  x0 not a local extremum

x
x1 x0 x2

y

y = f(x)

b  x0 not a local extremum

x
x1 x0 x2

y

y = f(x)

c  x0 is a local maximum

x
x1 x0 x2

y

y = f(x)

d  x0 is a local minimum

x
x1 x0 x2

F I G U R E  22

How to Determine
Whether x0 Is a Local
Maximum or a Local

Minimum When f �(x0)
Does Not Exist

T H E O R E M  5
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Case 3. Endpoints a and b of [a, b]

From Figure 23, we see that

If f 	(a) � 0, then a is a local minimum.

If f 	(a) � 0, then a is a local maximum.

If f 	(b) � 0, then b is a local maximum.

If f 	(b) � 0, then b is a local minimum.

If f 	(a) � 0 or f 	(b) � 0, draw a sketch like Figure 22 to determine whether a or b is a

local extremum.

The following examples illustrate how these ideas can be applied to solve NLPs of the

form (5).

TA B L E  9

How to Determine Whether a Point Where f 	(x) Does Not Exist Is a Local Maximum
or a Local Minimum

Relationship Between
f (x0), f (x1), and f (x2) x0 Figure

f (x0) � f (x1); f (x0) � f (x2) Not local extremum 16a

f (x0) � f (x1); f (x0) � f (x2) Not local extremum 16b

f (x0) � f (x1); f (x0) � f (x2) Local maximum 16c

f (x0) � f (x1); f (x0) � f (x2) Local minimum 16d

F I G U R E  23

How to Determine
Whether x0 Is a 

Local Maximum or a
Local Minimum If x0

Is an Endpoint

y

y = f(x)

a  f (a) > 0
   a is a local minimum

b  f (a) < 0
   a is a local maximum

x
a b a b

y

y = f(x)

x

y

y = f(x)

c  f (b) > 0
   b is a local maximum

x
a b a b

y

y = f(x)

d  f (b) < 0
   b is a local minimum

x
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It costs a monopolist $5/unit to produce a product. If he produces x units of the product,

then each can be sold for 10 � x dollars (0 � x � 10). To maximize profit, how much

should the monopolist produce?

Solution Let P(x) be the monopolist’s profit if he produces x units. Then

P(x) � x(10 � x) � 5x � 5x � x2 (0 � x � 10)

Thus, the monopolist wants to solve the following NLP:

max P(x)x � 10

s.t. 0 � x � 10

We now classify all extremum candidates:

Case 1 P	(x) � 5 � 2x, so P	(2.5) � 0. Because P �(x) � �2, x � 2.5 is a local maxi-

mum yielding a profit of P(2.5) � 6.25.

Case 2 P	(x) exists for all points in [0, 10], so there are no Case 2 candidates.

Case 3 a � 0 has P	(0) � 5 � 0, so a � 0 is a local minimum; b � 10 has P	(10) �

�15 � 0, so b � 10 is a local minimum.

Thus, x � 2.5 is the only local maximum. This means that the monopolist’s profits are

maximized by choosing x � 2.5.

Observe that P�(x) � �2 for all values of x. This shows that P(x) is a concave func-

tion. Any local maximum for P(x) must be the optimal solution to the NLP. Thus, Theo-

rem 1 implies that once we have determined that x � 2.5 is a local maximum, we know

that it is the optimal solution to the NLP.

Let

f (x) � 2 � (x � 1)2)2 for 0 � x � 3

f (x) � �3 � (x � 4)2 for 3 � x � 6

Find

max f (x)x � 6

s.t. 0 � x � 6

Solution Case 1 For 0 � x � 3, f 	(x) � �2(x � 1) and f �(x) � �2. For 3 � x � 6, f 	(x) �

2(x � 4) and f �(x) � 2. Thus, f 	(1) � f 	(4) � 0. Because f �(1) � 0, x � 1 is a local

maximum. Because f �(4) � 0, x � 4 is a local minimum.

Case 2 From Figure 24, we see that f (x) has no derivative at x � 3 (for x slightly less than

3, f 	(x) is near �4, and for x slightly bigger than 3, f 	(x) is near �2). Because f (2.9) �

�1.61, f (3) � �2, and f (3.1) � �2.19, x � 3 is not a local extremum.

Case 3 Because f 	(0) � 2 � 0, x � 0 is a local minimum. Because f 	(6) � 4 � 0, x �

6 is a local maximum.

Thus, on [0, 6], f (x) has a local maximum for x � 1 and x � 6. Because f (1) � 2 and

f (6) � 1, we find that the optimal solution to the NLP occurs for x � 1.

Profit Maximization by MonopolistE X A M P L E  2 1

Finding Global Maximum When Endpoint Is a MaximumE X A M P L E  2 2
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y

y = f(x)

f(x) = 2 – (x – 1)2

0 ≤ x < 3

f(x) = –3 + (x – 4)2

3 ≤ x ≤ 6

x

–3

–2

–1

1 2 3 4 5 6
0

1

2

3

4

5

6

Pricing and Nonlinear Optimization

An important business decision is the determination of the profit-maximizing price that

should be charged for a product. Demand for a product is often modeled as a linear function

of price

Demand � a � b(price)

where a and b are constants. If the linear demand function is relevant, then profit from a

product with a unit cost of c is given by

(Price � c)*[a � b(price)].

This implies that profit is a concave function of price, and Solver should find the profit-

maximizing price. In this section, we give two Solver models (based on Dolan and Si-

mon, 1997) that can be used to determine optimal prices.

Our first model tackles the following problem: As exchange rates fluctuate, how should

a U.S. company change the overseas price of its product? To be more specific, suppose

Eli Daisy is selling a drug in Germany. Its goal is to maximize its profit in dollars, but

when the drug is sold in Germany, it receives marks. To maximize Daisy’s dollar profit,

how should the price in marks vary with the exchange rate? To illustrate the ideas involved,

consider the following example.

The drug taxoprol costs $60 to produce. Currently, the exchange rate is .667 $/mark, and

we are charging 150 marks for taxoprol. Current demand for taxoprol is 100 units, and it

is estimated that the elasticity for taxoprol is 2.5. Assuming a linear demand curve, de-

termine how the price (in marks) for taxoprol should vary with the exchange rate.

Solution We begin by determining the linear demand curve that relates demand to the price in

marks. Currently, demand is 100, and the price is 150 marks. Recall from economics that

the price elasticity of a product is the percentage decrease in sales that will result from a

F I G U R E  24

Graph for Example 22

Pricing When Exchange Rates ChangeE X A M P L E  2 3
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1% increase in price. Price elasticity is 2.5, so a 1% increase in price (to 151.5) will re-

sult in a 2.5% decrease in demand (to 100 � 2.5 � 97.5). In the file Intprice.xls (sheet

Linear Demand), we entered these two points in B12:C13. We now find the slope and in-

tercept of the demand curve.

Slope � �
1

9

5

7

1

.5

.5

�

�

1

1

0

5

0

0
� � �1.6667

(because demand is larger than 1 in absolute value, demand is elastic).

The slope is computed in D13 with the formula

�(B13 � B12)/(A13 � A12)

Intercept � 100 � (�150)(�1.6667) � 350

The intercept is computed in D14 with the formula

�B12 � (�A12)*(D13)

Thus, demand � 350 � 1.6667(price in marks). (See Figure 25.)

We can now compute (for a trial set of prices) our profit for exchange rates ranging

from .4 $/mark to 1 $/mark. Then we use Solver to find the set of prices maximizing the

sum of these profits. This will ensure that we will have found a profit-maximizing price

for a variety of exchange rates.

Step 1 Enter trial values for the exchange rate ($/mark) in the cell range B4:J4.

Step 2 In B5:J5, enter the unit cost in dollars ($60).

Step 3 In B6:J6, enter trial prices (in marks) for taxoprol.

Step 4 Observe that demand for each exchange rate is given by 350 � 1.66667*(price

in marks)

In cells B7:J7, we determine the demand for each exchange rate. In B7, we find the de-

mand for the exchange rate of .6667 $/mark with the formula

�$D$14 � $D$13*B6

Copying this formula to the range C7:J7 computes the demand for all other exchange rates.

Step 5 Observe that profit in dollars is given by

[($/mark)*price in marks � cost in dollars]*(demand)

Intprice.xls

1
2
3

4
5
6
7

8
9

10
11

12
13
14

A B C D E F G H I J K
Price dependence
on exchange rate

Current $/DM 0.666667 0.4 0.5 0.6 0.666667 0.7 0.8 0.9 1
Unit Cost US $ 60 60 60 60 60 60 60 60 60
Current price DM 149.9999 179.9999 164.9999 154.9999 149.9999 147.8571 142.4999 138.3333 134.9999
Current demand 100.0002 50.00015 75.00014 91.6668 100.0002 103.5716 112.5001 119.4446 125.0001

Current profit US$ 4000.005 600 1687.5 3025 4000.005 4505.357 6075 7704.167 9375 Total Profit
Elasticity 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 36972.03

Price DM demand

150 100
151.5 97.5 slope -1.666667

Demand = 350-(5/3)*price intercept 350

F I G U R E  25
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In cells B8:J8, we compute the dollar profit (for the trial prices) for each exchange rate.

In B8, we find the profit for our current exchange rate (.66667 $/mark) and current price

(150 marks) with the formula

�(B4*B6 � B5)*B7

Copying this formula to the cell range C8:J8 computes profits for all other exchange rates.

Step 6 In cell K8, we add the profit for all exchange rates with the formula

� SUM(C8:J8)

Step 7 We now use the Solver to determine the profit-maximizing price for each ex-

change rate. By changing the nonnegative prices for each exchange rate (C6:J6), we can

maximize the sum of the profits (K8). Because each price only affects the profit for the

exchange rate in its own column, this ensures that we find the profit-maximizing price for

each exchange rate. For example, for .66667 $/mark, the optimal price is 150 marks. Note

that if the mark drops in value by 25% to .5 $/mark, we only raise the cost in marks by

10% (�
165

1

�

50

150
� � .10). Because of the elastic demand, profit maximization does not

call for making the German customers absorb all of the loss in dollars due to deprecia-

tion of the mark. Our Solver window is as shown in Figure 26.

How can we use Solver to determine a profit-maximizing price? One way is to 

derive a demand curve by breaking the market into segments and identifying a low

price, a medium price, and a high price. For each of these prices and market segments,

ask company experts to estimate product demand. Then we can use Excel’s trend-

curve-fitting capabilities to fit a quadratic function that can be used to estimate each

segment’s demand for different prices. Finally, we can add the segment demand curves

to derive an aggregate demand curve and use the Solver to determine the profit-

maximizing price. The procedure is illustrated in Example 24 (based on Dolan and 

Simon (1996)).

F I G U R E  26
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A candy bar costs 55 cents to produce. We are considering charging a price of between

$1.10 and $1.50 for this candy bar. For a price of $1.10, $1.30, and $1.50, the marketing

department estimates the demand for the candy bar in the three regions where the candy

bar will be sold (see Table 10). What price will maximize profit?

Solution Step 1 We begin by fitting a quadratic curve to the three demands specified in Table 10

for each region. See file Expdemand.xls. For example, for region 1 we use the X-Y Chart

Wizard option to plot D4:E6. Click the points on the graph until they turn yellow and

choose Insert Trendline Polynomial (2) and check the equation option to make sure the

quadratic equation that exactly fits the three points is listed.

Thus we estimate region 1 demand (see Figure 27):

� �87.5*(price)2 � 195*(price) � 73.625

Similarly, in regions 2 and 3 we find the following demand equations (see Figures 28 and 29):

Region 2 demand � �75*(price)2 � 155*(price) � 47.75

Region 3 demand � �12.5*(price)2 � 5*(price) � 44.625

Step 2 We now enter a trial price in cell H4 and determine in cells I4:K4 the demand

(in thousands of units) for that price in each region:

Region 1 demand (cell I4) � �87.5*H4^2 � 195*H4 � 73.625

Region 2 demand (cell J4) � �75*(H4)^2 � 155*H4 � 47.75

Region 3 demand (cell K4) � �12.5*(H4)^2 � 5*H4 � 44.625

Step 3 In cell L4, compute the total demand (in thousands of units) with the formula

� SUM(I4:K4)

Step 4 In cell I6, compute our profit (in thousands of dollars):

� (H4 � I2)*L4

Step 5 We are now ready to invoke the Solver to find the profit-maximizing price.

We simply maximize profit (cell I6), with price (H4) being a changing cell. Because

Pricing a Candy BarE X A M P L E  2 4

TA B L E  10

Price ($)
Demand (in Thousands)

(Unit cost: 0.55) Region 1 Region 2 Region 3

Low (1.10) 35 32 24

Medium (1.30) 32 27 17

High (1.50) 22 16 19

40

Region 1

y = –87.5x2 + 195x – 73.625

30

20

10

0

$- $1.00 $2.00

Series 1

Poly.
(series 1)

F I G U R E  27

Expdemand.xls
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our demand curves are, in theory, only valid for prices between $1.10 and $1.50, 

we add the constraints H4�1.10 and H4�1.50 (see Figure 30 for the Solver 

window).

Why is the model nonlinear? As Figure 31 shows, we find the profit-maximizing price

to be $1.29.

Region 2

y = –75x2 + 155x – 47.75
R2 = 1

Price

D
em

a
n

d

0

10

20

30

40

$- $0.50 $1.00 $1.50

Series 1

Poly.
(series 1)

Region 3

y = –12.5x2 – 5x + 44.625
R2 = 1

0

10

20

30

$- $0.50 $1.00 $1.50

Series 1

Poly.
(series 1)

Price

D
em

a
n

d

F I G U R E  29

F I G U R E  28

F I G U R E  30

2

3
4

5
6

7

H I J K L
Variable cost 0.55

Price

Region 1 

demand

Region 2 

demand

Region 3 

demand

Total 

demand

1.286325018 32.42807 27.53297 17.51047 77.47152

Profit 57.04422

(000’s)
F I G U R E  31
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If we are trying to maximize a function f (x) that is a product of several functions, it is

often easier to maximize ln [ f (x)]. Because ln is an increasing function, we know that any

x solving max z	 � ln [ f (x)] subject to x � S will also solve max z � f (x) over x � S.

See Problem 4 for application of this idea.

Solving One-Variable NLPs with LINGO

If you are maximizing a concave objective function f (x) (or even if the logarithm of the

objective function in a maximization problem is a concave function), you can be certain

that LINGO will find the optimal solution to the NLP

max z � f (x)

s.t. a � x � b

Thus, if we solved Example 21 on LINGO, we would be confident that it had found

the correct answer. In Example 22, however, we could not be sure that LINGO would find

the maximum value of f (x) on the interval [0, 6].

Similarly, if you are minimizing a convex objective function, then you know that

LINGO will find the optimal solution to the NLP

min z � f (x)

s.t. a � x � b

If you are trying to minimize a nonconvex function or maximize a nonconcave func-

tion of a one-variable NLP subject to the constraint a � x � b, then LINGO may find a

local extremum that does not solve the NLP. In such situations, the user can influence the

solution found by LINGO by inputting a starting value for x with the INIT command. For

example, if we direct LINGO to solve

min z � x sin(p x)

s.t. 0 � x � 6

LINGO may find the local minimum x � 1.564. This is because as a default, LINGO first

guesses that x � 0, and at x � 1.564 the conditions for a local minimum [ f 	(x) � 0 and

f �(x) � 0] are satisfied. A sketch of the function x sin (p x) reveals that another local

minimum occurs for x between 5 and 6. By using the INIT command, we may direct

LINGO to start near x � 5. Then LINGO does indeed find the optimal solution (x � 5.52)

to the NLP. For instance, to have LINGO start with x1=2 and x2=3, we would add the fol-

lowing section to our LINGO program:

INIT:

x1=2;

x2=3;

ENDINIT

P R O B L E M S
Group A

1 It costs a company $100 in variable costs to produce an
air conditioner, plus a fixed cost of $5,000 if any air
conditioners are produced. If the company spends x dollars
on advertising, then it can sell x1/2 air conditioners at $300

each. How can the company maximize its profit? If the fixed
cost of producing any air conditioners were $20,000, what
should the company do?
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2 If a monopolist produces q units, she can charge 100 �
4q dollars/unit. The fixed cost of production is $50, and the
variable per-unit cost is $2. How can the monopolist
maximize profits? If a sales tax of $2/unit must be paid by
the monopolist, then would she increase or decrease
production?

3 Show that for all x, ex � x � 1. [Hint: Let f(x) � ex �
x �1. Show that

min f (x)

s.t. x � R

occurs for x � 0.]

4 Suppose that in n “at bats,” a baseball player gets x hits.
Suppose we want to estimate the player’s probability (p) of
getting a hit on each “at bat.” The method of maximum
likelihood estimates p by p̂, where p̂ maximizes the
probability of observing x hits in n “at bats.” Show that the
method of maximum likelihood would choose p̂ � �

n

x
�.

5 Find the optimal solution to

max x3 1 � x � 1

s.t. �1 � x � 1

6 Find the optimal solution to

min x3 � 3x2 � 2x � 1

s.t. �2 � x � 4

7 During the Reagan administration, economist Arthur
Laffer became famous for his Laffer curve, which implied
that an increase in the tax rate might decrease tax revenues,
while a decrease in the tax rate might increase tax revenues.
This problem illustrates the idea behind the Laffer curve.
Suppose that if an individual puts in a degree of effort e, he
or she earns a revenue of 10e1/2. Also suppose that an
individual associates a cost of e with an effort level of e.
Suppose further that the tax rate is T. This means that each
individual gets to keep a fraction 1 � T of before-tax revenue.
Show that T � .5 maximizes the government’s tax revenues.
Thus, if the tax rate were 60%, then a cut in the tax rate
would increase revenues.

8 The cost per day of running a hospital is 200,000 �
.002x2 dollars, where x � patients served per day. What size
hospital minimizes the per-patient cost of running the
hospital?

9 Each morning during rush hour, 10,000 people want to
travel from New Jersey to New York City. If a person takes
the subway, the trip lasts 40 minutes. If x thousand people
per morning drive to New York, it takes 20 � 5x minutes to
make the trip. This problem illustrates a basic fact of life: If
people are left to their own devices, they will cause more
congestion than need actually occur!

a Show that if people are left to their own devices, an
average of 4,000 people will travel by road from New
Jersey to New York. Here you should assume that peo-
ple will divide up between the subways and roads in a
way that makes the average travel time by road � aver-
age travel time by subway. When this “equilibrium” oc-
curs, nobody has an incentive to switch from road to
subway or subway to road.

b Show that the average travel time per person is min-
imized if 2,000 people travel by road.

10 Currently, the exchange rate is 100 yen per dollar. In
Japan, we sell a product that costs $5 to produce for 700
yen. The product has an elasticity of 3. For exchange rates
varying from 70 to 130 yen per dollar, determine the optimal
product price in Japan and the profit in dollars. Assume a
linear demand curve. Current demand is assumed to equal
100.

11 It costs $250 to produce an X-Box. We are trying to
determine the selling price for the X-Box. Prices between
$200 and $400 are under consideration, with demand for
prices of $200, $250, $350, and $400 given below. Suppose
MSFT earns $10 in profit for each game that an X-Box
owner purchases. Determine the optimal price and
associated profit for the case in which an average X-Box
owner buys 10 games.

Console Price ($) Demand

200 2.00E�06

250 1.20E�06

350 6.00E�05

400 2.00E�05

Unit cost $250

Price Demand (Millions)

0.5 2.00

0.8 1.20

1.3 0.30

12 You are the publisher of a new magazine. The variable
cost of printing and distributing each weekly copy of the
magazine is $0.25. You are thinking of charging between
$0.50 and $1.30 per week for the magazine. The estimated
numbers of subscribers (in millions) for weekly prices of
$0.50, $0.80, and $1.30 are as follows:

What price will maximize weekly profit from the magazine?

Group B

13 It costs a company c(x) dollars to produce x units. The
curve y � c	(x) is called the firm’s marginal cost curve.
(Why?) The firm’s average cost curve is given by z � �

c(

x

x)
�.

Let x* be the production level that minimizes the company’s
average cost. Give conditions under which the marginal cost
curve intersects the average cost curve at x*.

14 When a machine is t years old, it earns revenue at a rate
of e�t dollars per year. After t years of use, the machine can
be sold for �

t�

1

1
� dollars.

a When should the machine be sold to maximize total
revenue?
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11.5 Golden Section Search

Consider a function f (x). [For some x, f 	(x) may not exist.] Suppose we want to solve the

following NLP:

max f (x)x � b

s.t. a � x � b (6)

It may be that f 	(x) does not exist, or it may be difficult to solve the equation f 	(x) � 0.

In either case, it may be difficult to use the methods of the previous section to solve this

NLP. In this section, we discuss how (6) can be solved if f (x) is a special type of func-

tion (a unimodal function).

D E F I N I T I O N ■ A function f (x) is unimodal on [a, b] if for some point x� on [a, b], f (x) is strictly

increasing on [a, x�] and strictly decreasing on [x�, b]. ■

If f (x) is unimodal on [a, b], then f (x) will have only one local maximum (x�) on [a, b]

and that local maximum will solve (6). (See Figure 32.) Let x� denote the optimal solution

to (6).

Without any further information, all we can say is that the optimal solution to (6) is

some point on the interval [a, b]. By evaluating f (x) at two points x1 and x2 (assume 

x1 � x2) on [a, b], we may reduce the size of the interval in which the solution to (6) must

b If revenue is discounted continuously (so that $1 of
revenue received t years from now is equivalent to e�rt

dollars of revenue received now, how would the answer
in part (a) change?

15† Suppose a company must service customers lying in
an area of A sq mi with n warehouses. Kolesar and Blum
have shown that the average distance between a warehouse
and a customer is

	�
A

n
�


Assume that it costs the company $60,000 per year to
maintain a warehouse and $400,000 to build a warehouse.
(Assume that a $400,000 cost is equivalent to forever
incurring a cost of $40,000 per year.) The company fills
160,000 orders per year, and the shipping cost per order is
$1 per mile. If the company serves an area of 100 sq mi,
then how many warehouses should it have?

16 Prove Theorem 4.

17 Prove Theorem 5.

†Based on Kolesar and Blum (1973).

a  A unimodal function on [a, b]
       = local maximum and solution to
    max f (x)
    s.t.  a ≤ x ≤ b

f(x)

x
a b

x

x

b  A function that is not unimodal on [a, b]

f(x)

x
a b

F I G U R E  32

Definition of a 
Unimodal Function
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lie. After evaluating f (x1) and f (x2), one of three cases must occur. In each case, we can

show that the optimal solution to (6) will lie in a subset of [a, b].

Case 1 f (x1) � f (x2). Because f (x) is increasing for at least part of the interval [x1, x2],

the fact that f (x) is unimodal shows that the optimal solution to (6) cannot occur on [a,

x1]. Thus, in Case 1, x� � (x1, b]. (See Figure 33.)

Case 2 f (x1) � f (x2). For some part of the interval [x1, x2], f (x) must be decreasing, and

the optimal solution to (6) must occur for some x� � x2. Thus, in Case 2, x� � [a, x2]. (See

Figure 34.)

Case 3 f (x1) � f (x2). In this case, f (x) begins decreasing beforex reaches x2. Thus, x� �

[a, x2). (See Figure 35.)

The interval in which x� must lie—either [a, x2) or (x1, b]—is called the interval of 

uncertainty.

Many search algorithms use these ideas to reduce the interval of uncertainty [see

Bazaraa and Shetty (1993, Section 8.1)]. Most of these algorithms proceed as follows:

Step 1 Begin with the region of uncertainty for x being [a, b]. Evaluate f (x) at two ju-

diciously chosen points x1 and x2.

Step 2 Determine which of Cases 1–3 holds, and find a reduced interval of uncertainty.

Step 3 Evaluate f (x) at two new points (the algorithm specifies how the two new points are

chosen). Return to step 2 unless the length of the interval of uncertainty is sufficiently small.

f(x)

x
a bx1 x2x

f(x)

x
a bx1 x2 x

f(x)

x
a bx1 x2x

f(x)

x
a bx1 x2x

f(x)

x
a bx1 x2x
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If f (x1) � f (x2), 
x� � [a, x2)

F I G U R E  34

If f (x1) � f (x2), 
x� � [a, x2)

F I G U R E  33

If f (x1) � f (x2), 
x� � (x1, b]
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We discuss in detail one such search algorithm: Golden Section Search. In using this

algorithm to solve (6) for a unimodal function f (x), we will see that when we choose two

new points at step 3, one will always coincide with a point at which we have previously

evaluated f (x).

Let r be the unique positive root of the quadratic equation r2 � r � 1. Then the qua-

dratic formula yields that

r � �
51/2

2

� 1
� � 0.618

(See Problem 3 at the end of this section for an explanation of why r is referred to as the

Golden Section.) Golden Section Search begins by evaluating f (x) at points x1 and x2,

where x1 � b � r(b � a), and x2 � a � r(b � a) (see Figure 36). From this figure, we

see that to find x1, we move a fraction r of the interval from the right endpoint of the in-

terval; to find x2, we move a fraction r of the interval from the left endpoint. Then Golden

Section Search generates two new points, at which f (x) should again be evaluated with

the following moves:

New Left-Hand Point Move a distance equal to a fraction r of the current interval of un-

certainty from the right endpoint of the interval of uncertainty.

New Right-Hand Point Move a distance equal to a fraction r of the current interval of un-

certainty from the left endpoint of the interval.

From our discussion of Cases 1–3, we know that if f (x1) � f (x2), then x� � (x1, b],

whereas if f (x1) � f (x2), then x� � [a, x2). If f (x1) � f (x2), then the reduced interval of

uncertainty has length b � x1 � r(b � a), and if f (x1) � f (x2), then the reduced interval

of uncertainty has a length x2 � a � r(b � a). Thus, after evaluating f (x1) and f (x2), we

have reduced the interval of uncertainty to a length r(b � a).

Each time f (x) is evaluated at two points and the interval of uncertainty is reduced, we

say that an iteration of Golden Section Search has been completed. Define

Lk � length of the interval of uncertainty

Lk � after k iterations of the algorithm have been completed

Ik � interval of uncertainty

after k iterations have been completed

Then we see that L1 � r(b � a), and I1 � [a, x2) or I1 � (x1, b].

Following this procedure, we generate two new points, x3 and x4, at which f (x) must

be evaluated.

Case 1 f (x1) � f (x2). The new interval of uncertainty, (x1, b], has length b � x1 �

r(b � a). Then (see Figure 37a)

x3 � new left-hand point � b � r(b � x1) � b � r2(b � a)

x4 � new right-hand point � x1 � r(b � x1))

The new left-hand point, x3, will equal the old right-hand point, x2. To see this, use the

fact that r2 � 1 � r to conclude that x3 � b � r2(b � a) � b � (1 � r)(b � a) � a �

r(b � a) � x2.

a b

r(b – a)

r(b – a)

x2x1

F I G U R E  36

Location of x1

and x2 for Golden
Section Search
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Case 2 f (x1) � f (x2). The new interval of uncertainty, [a, x2), has length x2 � a �

r(b � a). Then (see Figure 37b)

x3 � new left-hand point � x2 � r(x2 � a))

x4 � new right-hand point � a � r(x2 � a) � a � r2(b � a)

The new right-hand point, x4, will equal the old left-hand point, x1. To see this, use the

fact that r2 � 1 � r to conclude that x4 � a � r2(b � a) � a � (1 � r)(b � a) � b �

r(b � a) � x1.

Now the values of f (x3) and f (x4) can be used to further reduce the length of the interval

of uncertainty. At this point, two iterations of Golden Section Search have been completed.

We have shown that at each iteration of Golden Section Search, f (x) must be evaluated

at only one of the new points. It is easy to see that L2 � rL1 � r2(b � a) and, in general,

Lk � rLk�1 yields that Lk � rk(b � a). Thus, if we want our final interval of uncertainty

to have a length � e, we must perform k iterations of Golden Section Search, where 

rk(b � a) � e.

Use Golden Section Search to find

max �x2 � 1x � 0.75

s.t. �1 � x � 0.75

with the final interval of uncertainty having a length less than �
1

4
�.

Solution Here a � �1, b � 0.75, and b � a � 1.75. To determine the number k of iterations of

Golden Section Search that must be performed, we solve for k using 1.75(0.618k) � 0.25,

or 0.618k � �
1

7
�. Taking logarithms to base e of both sides, we obtain

k ln 0.618 � ln �
1

7
�

k(�0.48) � �1.95

k � �
1

0

.

.

9

4

5

8
� � 4.06

Thus, five iterations of Golden Section Search must be performed. We first determine x1

and x2:

x1 � 0.75 � (0.618)(1.75) � �0.3315

x2 � �1 � (0.618)(1.75) � 0.0815

Golden Section SearchE X A M P L E  2 5

b

r(b – x1)

New left point

a  If f(x1) < f(x2), new interval of uncertainty is (x1, b]

New right point

r(b – x1)

x4x3x1

r(x2 – a)

New left point

b  If f(x1) ≥ f(x2), new interval of uncertainty is [a, x2)

New right point

r(x2 – a)

x4 x2x3x1
F I G U R E  37

How to Generate New
Points in Golden
Section Search
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Then f (x1) � �1.1099 and f (x2) � �1.0066. Because f (x1) � f (x2), the new interval of

uncertainty is I1 � (x1, b] � (�0.3315, 0.75], and we have that x3 � x2. Of course, L1 �

0.75 � 0.3315 � 1.0815. We now determine the two new points x3 and x4:

x3 � x2 � 0.0815.618(1.0815) � 0.3369

x4 � �0.3315 � 0.618(1.0815) � 0.3369

Now f (x3) � f (x2) � �1.0066 and f (x4) � �1.1135. Because f (x3) � f (x4), the new in-

terval of uncertainty is I2 � [�0.3315, x4) � [�0.3315, 0.3369), and x6 will equal x3.

Also, L2 � 0.3369 � 0.3315 � 0.6684. Then

x5 � 0.3369 � 0.618(0.6684) � �0.0762

x6 � x3 � 0.0815 18(0.6684) � �0.0762

Note that f (x5) � �1.0058 and f (x6) � f (x3) � �1.0066. Because f (x5) � f (x6), the new

interval of uncertainty is I3 � [�0.3315, x6) � [�0.3315, 0.0815) and L3 � 0.0815 �

0.3315 � 0.4130. Because f (x6) � f (x5), we have that x5 � x8 and f (x8) � �1.0058. Now

x7 � 0.0815 � 0.618(0.413) � �0.1737

x8 � x5 � �0.07627

and f (x7) � �1.0302. Because f (x8) � f (x7), the new interval of uncertainty is I4 � (x7,

0.0815] � (�0.1737, 0.0815], and L4 � 0.0815 � 0.1737 � 0.2552. Also, x9 � x8 will

hold. Finally,

x9 � x8 � �0.0762 18(0.2552) � �0.016

x10 � �0.1737 � 0.618(0.2552) � �0.016

Now f (x9) � f (x8) � �1.0058 and f (x10) � �1.0003. Because f (x10) � f (x9), the new

interval of uncertainty is I5 � (x9, 0.0815] � (�0.0762, 0.0815] and L5 � 0.0815 �

0.0762 � 0.1577 � 0.25 (as desired).

Thus, we have determined that

max � x2 � 1x � 0.75

s.t. �1 � x � 0.75

must lie within the interval (�0.0762, 0.0815]. (Of course, the actual maximum occurs

for x� � 0.)

Golden Section Search can be applied to a minimization problem by multiplying the

objective function by �1. This assumes that the modified objective function is unimodal.

Using Spreadsheets to Conduct Golden Section Search

Figure 38 (file Golden.xls) displays an implementation of Golden Section Search on Lo-

tus 1-2-3. We begin by entering the left-hand and right-hand endpoints (a � �1, b � .75)

of the interval of uncertainty for Example 25 in cells A2 and B2. We compute r by en-

tering the formula (5^.5–1)/2 into G2. Then, we name the cell G2 as the range R (with

the INSERT NAME CREATE sequence of commands). In all subsequent formulas, R

refers to the range R and assumes the value of r computed in G2. We compute the initial

left-hand point x1 by entering the formula �B2–R*(B2–A2) in C2 and the initial right-

hand point x2 by entering the formula �A2�R*(B2–A2) in D2. In effect, the formulas

in C2 and D2 implement Figure 36. We evaluate f (x1) by entering �(C2^.2–1) in E2 and

f (x2) by entering �(D2)^2–1 in F2.

Golden.xls
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In A3, we determine the new left point of the interval of uncertainty by entering the

formula �IF(E2�F2, C2, A2). This ensures that if f (x1) � f (x2), then the new left point

of the interval of uncertainty equals the last left-hand point where the function is evalu-

ated (x1); while if f (x1) � f (x2), then the new left-hand point of uncertainty equals the old

left-hand endpoint (a). Similarly, in B3 we determine the new right-hand endpoint of the

interval of uncertainty. In C3, we compute the new left-hand point (x3) where the func-

tion is evaluated by entering the formula �IF(E2�F2,D2,D2–R*(D2–A2)). If f (x1) �

f (x2), then this formula ensures that the new left-hand point (x3) will equal the old right-

hand point (x2); if f (x1) � f (x2), then the new left-hand point (x3) will equal x2 � r(x2 �

a) [this equals D2–R*(D2–A2)]. In D3, we compute the new right-hand point (x4) by en-

tering the formula �IF(E2�F2,C2�R*(B2–C2), C2). If f (x1) � f (x2), then the new

right-hand point (x4) will equal x1 � r(b � x1) [this equals C2�R*(B2–C2)]; if f (x1) �

f (x2), then the new right-hand point will equal the old left-hand point (x1) (which equals

C2). In E3, we evaluate the function at the new left-hand point by entering �(C4)^2–1,

and in F3 we evaluate the function at the new right-hand endpoint by entering �(D4)^2–1.

Now copying the formulas from the range A3�F3 to the range A3�F7 will generate

four more iterations of Golden Section Search.

P R O B L E M S
Group A

A A B D F G

1 LEF PT NC RIG T R ) F( )

2 .1 - 56 559 9 95 0.61803

3 0 59 881 5 83

FI

5 48 - 76 624 6 22 2

6 48 - 24 596 2 87 GO

7 . . - . . . 7 .

8 SE

5
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Golden Section Search
for Example 25

1 Use Golden Section Search to determine (within an
interval of 0.8) the optimal solution to

max x2 � 2xx � 5

s.t. �3 � x � 5

2 Use Golden Section Search to determine (within an
interval of 0.6) the optimal solution to

max x � ex�x � 3

s.t. �1 � x � 3

3 Consider a line segment [0, 1] that is divided into two
parts (Figure 39). The line segment is said to be divided into
the Golden Section if

�
Show that for the line segment to be divided into the Golden
Section,

r � �
51/2

2

� 1
�

4 Hughesco is interested in determining how cutting fluid
jet pressure (p) affects the useful life of a machine tool (t),

length of larger part of line
���
length of smaller part of line

Length of whole line
���
Length of larger part of line

using the data in Table 11. Pressure p is constrained to be
between 0 and 600 pounds per square inch (psi). Use Golden
Section Search to estimate (within 50 units) the value of p
that maximizes useful tool life. Assume that t is a unimodal
function of p.

r0 1

F I G U R E  39

TA B L E  11

p (Pounds per
Square Inch) t (Minutes)

229 39

371 81

458 82

513 79

425 84

404 85

392 84



11.6 Unconstrained Maximization and Minimization with Several Variables

We now discuss how to find an optimal solution (if it exists) or a local extremum for the

following unconstrained NLP:

max (or min) f (x1, x2, . . . , xn)

s.t. (x1, x2, . . . , xn) � Rn (7)

We assume that the first and second partial derivatives of f (x1, x2, . . . , xn) exist and are

continuous at all points. Let

�
∂

∂

f (

x

x�
i

)
�

be the partial derivative of f (x1, x2, . . . , xn) with respect to xi, evaluated at x�. A necessary

condition for x� � (x�1, x�2, . . . , x�n) to be a local extremum for NLP (7) is given in Theorem 6.

If x� is a local extremum for (6), then �
∂

∂

f (

x

x�
i

)
� � 0.

To see why Theorem 6 holds, suppose x� is a local extremum for (7)—say, a local

maximum. If �
∂

∂

f(

x

x�
i

)
� � 0 holds for any i, then by slightly increasing xi (and holding all

other variables constant), we can find a point x	 near x� with f (x	) � f (x�). This would 

contradict the fact that x� is a local maximum. Similarly, if x� is a local maximum for 

(7) and �
∂

∂

f (

x

x�
i

)
� � 0, then by slightly decreasing xi (and holding all other variables 

constant), we can find a point x� near x� with f (x�) � f(x�). Thus, if x� is a local maximum

for (7), then �
∂

∂

f (

x

x�
i

)
� � 0 must hold for i � 1, 2, . . . , n. A similar argument shows that if

x� is a local minimum, then �
∂

∂

f(

x

x�
i

)
� � 0 must hold for i � 1, 2, . . . , n.

D E F I N I T I O N ■ A point x� having �
∂

∂

f(

x

x�
i

)
� � 0 for i � 1, 2, . . . , n is called a stationary point of f. ■

The following three theorems give conditions (involving the Hessian of f ) under which

a stationary point is a local minimum, a local maximum, or not a local extremum.

If Hk(x�) � 0, k � 1, 2, . . . , n, then a stationary point x� is a local minimum for 

NLP (7).

If, for k � 1, 2, . . . , n, Hk(x�) is nonzero and has the same sign as (�1)k, then a sta-

tionary point x� is a local maximum for NLP (7).

1 1 . 6 Unconstrained Maximization and Minimization with Serveral Variables 655
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If Hn(x�) ≠ 0 and the conditions of Theorems 7 and 7	 do not hold, then a stationary

point x� is not a local extremum.

If a stationary point x� is not a local extremum, then it is called a saddle point. If 

Hn(x�) � 0 for a stationary point x�, then x� may be a local minimum, a local maximum, or

a saddle point, and the preceding tests are inconclusive.

From Theorems 1 and 7	, we know that if f (x1, x2, . . . , xn) is a concave function (and

NLP (7) is a max problem), then any stationary point for (7) is an optimal solution to (7).

From Theorems 1	 and 7, we know that if f(x1, x2, . . . , xn) is a convex function [and NLP

(7) is a min problem], then any stationary point for (7) is an optimal solution to (7).

A monopolist producing a single product has two types of customers. If q1 units are pro-

duced for customer 1, then customer 1 is willing to pay a price of 70 � 4q1 dollars. If q2

units are produced for customer 2, then customer 2 is willing to pay a price of 150 �

15q2 dollars. For q � 0, the cost of manufacturing q units is 100 � 15q dollars. To max-

imize profit, how much should the monopolist sell to each customer?

Solution Let f (q1, q2) be the monopolist’s profit if she produces qi units for customer i. Then (as-

suming some production takes place)

f (q1, q2) � q1(70 � 4q1) � q2(150 � 15q2) � 100 � 15q1 � 15q2

To find the stationary point(s) for f (q1, q2), we set 

�
∂

∂

q

f

1

� � 70 � 8q1 � 15 � 0 (for q1 � �
5

8

5
�)

�
0

∂

q

f

2

� � 150 � 30q2 � 15 � 0 (for q2 � �
9

2
�)

Thus, the only stationary point of f (q1, q2) is (�
5

8

5
�, �

9

2
�). Next we find the Hessian for 

f (q1, q2).

H(q1, q2) � � 
Since the first leading principal minor of H is �8 � 0, and the second leading princi-

pal minor of H is (�8)(�30) � 240 � 0, Theorem 7	 shows that (�
5

8

5
�, �

9

2
�) is a local max-

imum. Also, Theorem 3	 implies that f (q1, q2) is a concave function [on the set of points

S of (q1, q2) satisfying q1 � 0, q2 � 0, and q1 � q2 � 0]. Thus, Theorem 1 implies that

(�
5

8

5
�, �

9

2
�) maximizes profit among all production possibilities (with the possible exception

of no production). Then (�
5

8

5
�, �

9

2
�) yields a profit of

f (q1, q2) � �
5

8

5
� (70 � �

22

8

0
�) � �

9

2
�[150 � 15(�

9

2
�)] � 100 � 15(�

5

8

5
� � �

9

2
�) � $392.81

The profit from producing (�
5

8

5
�, �

9

2
�) exceeds the profit of $0 that is obtained by producing

nothing, so (�
5

8

5
�, �

9

2
�) solves the NLP; the monopolist should sell �

5

8

5
� units to customer 1 and

�
9

2
� units to customer 2.

0

�30

�8

�0

T H E O R E M  7�
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Suppose the grade-point average (GPA) for a student can be accurately predicted from the

student’s score on the GMAT (Graduate Management Admissions Test). More specifically,

suppose that the ith student observed has a GPA of yi and a GMAT score of xi. How can

we use the least squares method to estimate a hypothesized relation of the form yi �

a � bxi?

Solution Let â be our estimate of a and b̂ our estimate of b. Given that for students i � 1, 2, . . . ,

n we have observed (x1, y1), (x2, y2), . . . , (xn, yn), êi � yi � (â � b̂xi) is our error in es-

timating the GPA of student i. The least squares method chooses â and b̂ to minimize

f (a, b) � �
i�n

i�1

ê2
i � �

i�n

i�1

( yi � a � bxi)
2

Since

�
∂

∂

a

f
� � �2 �

i�n

i�1

( yi � a � bxi) and �
∂

∂

b

f
� � �2 �

i�n

i�1

( yi � a � bxi)xi

�
∂

∂

a

f
� � �

∂

∂

b

f
� � 0 will hold for the point (â, b̂) satisfying

�
i�n

i�1

( yi � a � bxi) � 0 or �
i�n

i�1

yi � na � b �
i�n

i�1

xi

and

�
i�n

i�1

xi( yi � a � bxi) � 0 or �
i�n

i�1

xiyi � a �
i�n

i�1

xi � b �
i�n

i�1

x 2
i

These are the well-known normal equations. Does the solution (â, b̂) to the normal equa-

tions minimize f (a, b)? To answer this question, we must compute the Hessian for f (a, b):

�
∂

∂

a

2f
2

� � 2n, �
∂

∂

b

2f
2

� � 2 �
i�n

i�1

x2
i, �

∂

∂

a

2

∂

f

b
� � �

∂

∂

b

2

∂

f

a
� �2 �

i�n

i�1

xi

Thus,

H � � 
Since H1(â, b̂) � 2n � 0, (â, b̂) will be a local minimum if

H2(â, b̂) � 4n �
i�n

i�1

x 2
i � 4��

i�n

i�1

xi�
2

� 0

In Example 31 of Section 11.8, we show that

n �
i�n

i�1

x2
i � ��

i�n

i�1

xi�
2

with equality holding if and only if x1 � x2 � ��� � xn. Thus, if at least two of the xi’s

are different, Theorem 7	 implies that (â, b̂) will be a local minimum. H(a, b) does not

2 �
i�n

i�1

xi

2 �
i�n

i�1

x2
i

2n

2 �
i�n

i�1

xi

Least Squares EstimationE X A M P L E  2 7



658 C H A P T E R 1 1 Nonlinear Programming

depend on the values of a and b, so this reasoning (and Theorem 3) shows that if at least

two of the xi’s are different, then f (a, b) is a convex function. If at least two of the xi’s are

different, then Theorem 1	 shows that (â, b̂) minimizes f(a, b).

Find all local maxima, local minima, and saddle points for f (x1, x2) � x2
1x2 � x3

2x1 � x1x2.

Solution We have

�
∂

∂

x

f

1

� � 2x1x2 � x3
2 � x2, �

∂

∂

x

f

2

� � x2
1 � 3x2

2x1 � x1

Thus, �
∂

∂

x

f

1

� � �
∂

∂

x

f

2

� � 0 requires

2x1x2 � x3
2 � x2 � 0 or x2(2x1 � x2

2 � 1) � 0 (8)

x2
1 � 3x2

2x1 � x1 � 0 or x1(x1 � 3x2
2 � 1) � 0 (9)

For (8) to hold, either (i) x2 � 0 or (ii) 2x1 � x2
2 � 1 � 0 must hold. For (9) to hold, ei-

ther (iii) x1 � 0 or (iv) x1 � 3x2
2 � 1 � 0 must hold.

Thus, for (x1, x2) to be a stationary point, we must have: 

(i) and (iii) hold. This is only true at (0, 0).

(i) and (iv) hold. This is only true at (1, 0).

(ii) and (iii) hold. This is only true at (0, 1) and (0, �1).

(ii) and (iv) hold. This requires that x2
2 � 1 � 2x1 and x1 � 3(1 � 2x1) � 1 � 0 hold.

Then

x1 � �
2

5
� and x2 � �

5

5

1/2

� or � �
5

5

1/2

�

Thus, f (x1, x2) has the following stationary points:

(0, 0), (1, 0), (0, 1), (0, �1), ��
2

5
�, �

5

5

1/2

�� and ��
2

5
�, � �

5

5

1/2

��
Also,

H(x1, x2) � � 
H(0, 0) � � 

Because H1(0, 0) � 0, the conditions of Theorems 7 and 7	 cannot be satisfied. Be-

cause H2(0, 0) � �1 ≠ 0, Theorem 7� now implies that (0, 0) is a saddle point.

H(1, 0) � � 
Then H1(1, 0) � 0 and H2(1, 0) � �1, so by Theorem 7� (1, 0) is also a saddle point.

Since

H(0, 1) � � 2

0

2

2

1

0

0

1

�1

�0

�0

�1

2x1 � 3(x2)2 � 1

6x1x2

2x2

2x1 � 3(x2)2 � 1

Finding Maxima, Minima, and Saddle PointsE X A M P L E  2 8
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we have H1(0, 1) � 2 � 0 (so the hypotheses of Theorem 7	 cannot be satisfied) and H2(0,

1) � �4 (so the hypothesis of Theorem 7 cannot be satisfied). Because H2(0, 1) ≠ 0, (0,

1) is a saddle point.

For ��
2

5
�, ��

5

5

1/2

��, we have

H ��
2

5
�, ��

5

5

1/2

�� � � 
Thus,

H1 ��
2

5
�, ��

5

5

1/2

�� � ��
5

2
1/2� � 0 and H2 ��

2

5
�, ��

5

5

1/2

�� � �
2

2

0

5
� � 0

Thus, Theorem 7	 shows that ��
2

5
�, ��

5

5

1/2

�� is a local maximum. Finally,

H ��
2

5
�, �

5

5

1/2

�� � � 
Since H1 ��

2

5
�, �

5

5

1/2

�� � �
5

2
1/2� � 0 and H2 ��

2

5
�, �

5

5

1/2

�� � �
2

2

0

5
� � 0, Theorem 7 shows that

��
2

5
�, �

5

5

1/2

�� is a local minimum.

When Does LINGO Find the Optimal Solution 
to an Unconstrained NLP?

If you are maximizing a concave function (with no constraints) or minimizing a convex

function (with no constraints), you can be sure that any solution found by LINGO is the

optimal solution to your problem. In Example 27, for instance, our work shows that f (a,

b) is a convex function, so we know that LINGO would correctly find the least squares

line fitting a set of points.

P R O B L E M S
Group A

�
2

5
�

�
5(

1

5

2

)1/2
�

�
5

2
1/2
�

�
2

5
�

�
2

5
�

��
5(

1

5

2

)1/2
�

��
5

2
1/2
�

�
2

5
�

1 A company has n factories. Factory i is located at point
(xi, yi), in the x–y plane. The company wants to locate a
warehouse at a point (x, y) that minimizes

�
i�n

i�1

(distance from factory i to warehouse)2

Where should the warehouse be located?

2 A company can sell all it produces of a given output for
$2/unit. The output is produced by combining two inputs. If
q1 units of input 1 and q2 units of input 2 are used, then the

company can produce q1/3
1 � q2/3

2 units of the output. If it costs
$1 to purchase a unit of input 1 and $1.50 to purchase a unit
of input 2, then how can the company maximize its profit?

3 (Collusive Duopoly Model) There are two firms
producing widgets. It costs the first firm q1 dollars to produce
q1 widgets and the second firm 0.5q2

2 dollars to produce q2

widgets. If a total of q widgets are produced, consumers
will pay $200 � q for each widget. If the two manufacturers
want to collude in an attempt to maximize the sum of their
profits, how many widgets should each company produce?
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11.7 The Method of Steepest Ascent

Suppose we want to solve the following unconstrained NLP:

max z � f (x1, x2, . . . , xn)

s.t. (x1, x2, . . . , xn) � Rn (10)

Our discussion in Section 11.6 shows that if f (x1, x2, . . . , xn) is a concave function, then

the optimal solution to (10) (if there is one) will occur at a stationary point x� having

�
∂

∂

f

x

(x

1

�)
� � �

∂

∂

f

x

(x

2

�)
� � � � � � �

∂

∂

f

x

(x

n

�)
� � 0

In Examples 26 and 28, it was easy to find a stationary point, but in many problems, it

may be difficult. In this section, we discuss the method of steepest ascent, which can be

used to approximate a function’s stationary point.

D E F I N I T I O N ■ Given a vector x � (x1, x2, . . . , xn) � Rn, the length of x (written � x �) is

� x � � (x2
1 � x2

2 � ��� � x 2
n)1/2

■

Recall from Section 2.1 that any n-dimensional vector represents a direction in Rn. Un-

fortunately, for any direction, there are an infinite number of vectors representing that di-

rection. For example, the vectors (1, 1), (2, 2), and (3, 3) all represent the same direction

(moving at a positive 45° angle) in R2. For any vector x, the vector x/ � x � will have a

length of 1 and will define the same direction as x (see Problem 1 at the end of this sec-

tion). Thus, with any direction in Rn, we may associate a vector of length 1 (called a unit

vector). For example, because x � (1, 1) has � x � � 21/2, the direction defined by x �

(1, 1) is associated with the unit vector (1/21/2, 1/21/2). For any vector x, the unit vector

4 It costs a company $6/unit to produce a product. If it
charges a price p and spends a dollars on advertising, it can
sell 10,000p�2a1/6 units of the product. Find the price and
advertising level that will maximize the company’s profits.

5 A company manufactures two products. If it charges a
price pi for product i, it can sell qi units of product i, where
q1 � 60 � 3p1 � p2 and q2 � 80 � 2p2 � p1. It costs $25
to produce a unit of product 1 and $72 to produce a unit of
product 2. How many units of each product should be
produced to maximize profits?

6 Find all local maxima, local minima, and saddle points
for f (x1, x2) � x3

1 � 3x1x2
2 � x4

2.

7 Find all local maxima, local minima, and saddle points
for f (x1, x2) � x1x2 � x2x3 � x1x3.

Group B

8† (Cournot Duopoly Model) Let’s reconsider Problem 3.
The Cournot solution to this situation is obtained as follows:
Firm i will produce q�i, where if firm 1 changes its production

level from q�1 (and firm 2 still produces q�2), then firm 1’s
profit will decrease. Also, if firm 2 changes its production
level from q�2 (and firm 1 still produces q�1), then firm 2’s
profit will decrease. If firm i produces q�i, this solution is
stable, because if either firm changes its production level, it
will do worse. Find q�1 and q�2.

9 In the Bloomington Girls Club basketball league, the
following games have been played: team A beat team B by
7 points, team C beat team A by 8 points, team B beat team
C by 6 points, and team B beat team C by 9 points. Let A,
B, and C represent “ratings” for each team in the sense that
if, say, team A plays team B, then we predict that team A
will defeat team B by A � B points. Determine values of A,
B, and C that best fit (in the least squares sense) these
results. To obtain a unique set of ratings, it may be helpful
to add the constraint A � B � C � 0. This ensures that an
“average” team will have a rating of 0.

†Based on Cournot (1897).
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f(x1, x2) = x1 + x2
2 2

x1 + x2  = 25
(3, 4)

f(3, 4)

∆

2 2

F I G U R E  40

�f (3, 4) Is
Perpendicular to 

f (x1, x2) at (3, 4)

x/ � x � is called the normalized version of x. Henceforth, any direction in Rn will be de-

scribed by the normalized vector defining that direction. Thus, the direction in R2 defined

by (1, 1), (2, 2), (3, 3), . . . will be described by the normalized vector

��
2

1
1/2�, �

2

1
1/2��

Consider a function f (x1, x2, . . . , xn), all of whose partial derivatives exist at every

point.

D E F I N I T I O N ■ The gradient vector for f (x1, x2, . . . , xn), written �f (x), is given by

�f (x) � ��∂
∂

f

x

(x

1

)
�, �

∂

∂

f

x

(x

2

)
� , . . . , �

∂

∂

f

x

(x

n

)
� ■

�f (x) defines the direction

�
�

�

�

f

f

(

(

x

x

)

) �
�

For example, if f (x1, x2) � x 2
1 � x2

2, then �f (x1, x2) � (2x1, 2x2). Thus, �f (3, 4) � (6,

8). Because � �f (3, 4) � � 10, �f (3, 4) defines the direction (�
1

6

0
�, �

1

8

0
�) � (0.6, 0.8).

At any point x� that lies on the curve f (x1, x2, . . . , xn) � f (x�), the vector

�
�

�

�

f

f

(

(

x

x

�
�

)

) �
�

will be perpendicular to the curve f (x1, x2, . . . , xn) � f (x�) (see Problem 5 at the end of

this section). For example, let f (x1, x2) � x2
1 � x2

2. Then at (3, 4),

�
�

�

�

f

f

(

(

3

3

,

,

4

4

)

) �
� � (0.6, 0.8)

is perpendicular to x2
1 � x2

2 � 25 (see Figure 40).

From the definition of �
∂

∂

f (

x

x

i

)
� , it follows that if the value of xi is increased by a small

amount �, the value of f (x) will increase by approximately � �
∂

∂

f (

x

x

i

)
�. Suppose we move 

from a point x a small length � in a direction defined by a normalized column vector d.

By how much does f(x) increase? The answer is that f (x) increases by � times the scalar

product of �
�

�

�

f

f

(

(

x

x

)

) �
� and d �written �

�

�
�

�

f

f

(

(

x

x

)

)

�d

�
� �. Thus, if �

�

�
f

�

(x

f

)

(x

�

)

d

�
� � 0, moving 
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in a direction d away from x will increase the value of f (x), and if �
�

�
f

�

(x

f

)

(x

�

)

d

�
� � 0, 

moving in a direction d away from x will decrease f (x). For example, suppose f (x1, x2) �

x2
1 � x2

2 and we move a length � in a 45° direction away from the point (3, 4). By how

much will the value of f (x1, x2) change? A 45° direction is represented by the vector 

��
2

1
1/2�, �

2

1
1/2�� and �

�
�

�

f

f

(

(

3

3

,

,

4

4

)

) �
� � (0.6, 0.8), so the value of f (x1, x2) will increase by 

approximately

�[0.6 0.8] �  � 0.99�

Recall from Section 11.6 that the optimal solution v� to (10) must satisfy �f (v�) � 0.

Now suppose that we are at a point v0 and want to find a point v� that solves (10). In an

attempt to find v�, it seems reasonable to move away from v0 in a direction that maximizes

the rate (at least locally) at which f (x1, x2, . . . , xn) increases. Lemma 1 proves useful here

(see Review Problem 22).

Suppose we are at a point v and we move from v a small distance � in a direction

d. Then for a given �, the maximal increase in the value of f (x1, x2, . . . , xn) will

occur if we choose

d � �
�

�

�

f

f

(

(

x

x

)

) �
�

In short, if we move a small distance away from v and we want f(x1, x2, . . . , xn) to in-

crease as quickly as possible, then we should move in the direction of �f (v).

We are now ready to describe the method of steepest ascent. Begin at any point v0.

Moving in the direction of �f(v0) will result in a maximum rate of increase for f, so we

begin by moving away from v0 in the direction of �f (v0). For some nonnegative value of

t, we move to a point v1 � v0 � t�f (v0). The maximum possible improvement in the value

of f (for a max problem) that can be attained by moving away from v0 in the direction of

�f(v0) results from moving to v1 � v0 � t0�f (v0), where t0 solves the following one-

dimensional optimization problem:

max f (v0 � t0�f (v0))

s.t. t0 � 0t0� f(v0))
(11)

NLP (11) may be solved by the methods of Section 11.4 or, if necessary, by a search pro-

cedure such as the Golden Section Search.

If � �f (v1) � is small (say, less than 0.01), we may terminate the algorithm with the

knowledge that v1 is near a stationary point v� having �f (v�) � 0. If � �f (v1) � is not suf-

ficiently small, then we move away from v1 a distance t1 in the direction of � �f (v1) �. As

before, we choose t1 by solving

max f (v1 � t1�f (v1))

s.t. t1 � 0t1� f(v1))

�
2

1
1/2�

�
2

1
1/2�

L E M M A  1
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We are now at the point v2 � v1 � t1�f (v1). If � �f (v2) � is sufficiently small, then we

terminate the algorithm and choose v2 as our approximation to a stationary point of f (x1,

x2, . . . , xn). Otherwise, we continue in this fashion until we reach a point vn having 

� �f (vn) � sufficiently small. Then we choose vn as our approximation to a stationary point

of f (x1, x2, . . . , xn).

This algorithm is called the method of steepest ascent because to generate points, we

always move in the direction that maximizes the rate at which f increases (at least locally).

Use the method of steepest ascent to approximate the solution to

max z � �(x1 � 3)2 � (x2 � 2)2 � f (x1, x2)

s.t. (x1, x2) � R22 � (x2 � 2)2 � f(x1, x2)

Solution We arbitrarily choose to begin at the point v0 � (1, 1). Because �f (x1, x2) � (�2(x1 �

3), �2(x2 � 2)), we have �f (1, 1) � (4, 2). Thus, we must choose t0 to maximize

f (t0) � f [(1, 1) � t0(4, 2)] � f (1 � 4t0, 1 � 2t0) � �(�2 � 4t0)2 � (�1 � 2t0)2

Setting f 	(t0) � 0, we obtain

�8(�2 � 4t0) � 4(�1 � 2t0) � 0

�8(�2 � 4t0) �4(20 � 40t0 � 0

�8(�2 � 4t0) �4(�1 � 2t0 � 0.5

Our new point is v1 � (1, 1) � 0.5(4, 2) � (3, 2). Now �f (3, 2) � (0, 0), and we ter-

minate the algorithm. Because f (x1, x2) is a concave function, we have found the optimal

solution to the NLP.

P R O B L E M S
Group A

Steepest Ascent ExampleE X A M P L E  2 9

1 For any vector x, show that the vector x/ � x � has unit
length.

2 Use the method of steepest ascent to approximate 
the optimal solution to the following problem: max z �
� (x1 � 2)2 � x1 � x2

2. Begin at the point (2.5, 1.5).

3 Use steepest ascent to approximate the optimal solution
to the following problem: max z � 2x1x2 � 2x2 � x2

1 � 2x2
2.

Begin at the point (0.5, 0.5). Note that at later iterations,
successive points are very close together. Variations of
steepest ascent have been developed to deal with this
problem [see Bazaraa and Shetty (1993, Section 8.6)].

Group B

4 How would you modify the method of steepest ascent if
each variable x1 were constrained to lie in an interval [ai, bi]?

Group C

5 Show that at any point x� � (x�1, x�2), �f (x�) is perpen-
dicular to the curve f (x1, x2) � f(x�1, x�2). (Hint: Two vectors
are perpendicular if their scalar product equals zero.)

11.8 Lagrange Multipliers

Lagrange multipliers can be used to solve NLPs in which all the constraints are equality

constraints. We consider NLPs of the following type:
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max (or min) z � f (x1, x2, . . . , xn)

s.t. g1(x1, x2, . . . , xn) � b1

s.t. g2(x1, x2, . . . , xn) � b2 (12)

�
�
�

s.t. gm(x1, x2, . . . , xn) � bm

To solve (12), we associate a multiplier �i with the ith constraint in (12) and form the

Lagrangian

L(x1, x2, . . . , xn, �1, �2, . . . , �m) � f (x1, x2, . . . , xn)

� �
i�m

i�1

�i[bi � gi(x1, x2, . . . , xn)] (13)

Then we attempt to find a point (x�1, x�2, . . . , x�n, ��1, ��2, . . . , ��m) that maximizes (or min-

imizes) L(x1, x2, . . . , xn, �1, �2, . . . , �m). In many situations, (x�1, x�2, . . . , x�n) will solve

(12). Suppose that (12) is a maximization problem. If (x�1, x�2, . . . , x�n, ��1, ��2, . . . , ��m)

maximizes L, then at (x�1, x�2, . . . , x�n, ��1, ��2, . . . , ��n)

�
∂

∂

�

L

i

� � bi � gi(x1, x2, . . . , xn) � 0

Here �
∂

∂

�

L

i

� is the partial derivative of L with respect to �i. This shows that (x�1, x�2, . . . , x�n)

will satisfy the constraints in (12). To show that (x�1, x�2, . . . , x�n) solves (12), let (x	1, 

x	2, . . . , x 	n) be any point that is in (12)’s feasible region. Since (x�1, x�2, . . . , x�n, ��1, 

��2, . . . , ��m) maximizes L, for any numbers �	1, �	2, . . . , �	m we have

L(x�1, x�2, . . . , x�n, ��1, ��2, . . . , ��m) � L(x	1, x	2, . . . , x	n, �	1, �	2, . . . �	m) (14)

Since (x�1, x�2, . . . , x�n) and (x	1, x	2, . . . , x	n) are both feasible in (12), the terms in (13)

involving the �’s are all zero, and (14) becomes f (x�1, x�2, . . . , x�n) � f (x	1, x	2, . . . , x	n).

Thus, (x�1, x�2, . . . , x�n) does solve (12). In short, if (x�1, x�2 . . . , x�n, ��1, ��2, . . . , ��m) solves

the unconstrained maximization problem

max L(x1, x2, . . . , xn, �1, �2, . . . , �m) (15)

then (x�1, x�2, . . . , x�n) solves (12).

From Section 11.6, we know that for (x�1, x�2, . . . , x�n, ��1, ��2, . . . , ��m) to solve (15), it

is necessary that at (x�1, x�2, . . . , x�n, ��1, ��2, . . . , ��m),

�
∂

∂

x

L

1

� � �
∂

∂

x

L

2

� � ��� � �
∂

∂

x

L

n

� � �
∂

∂

�

L

1

� � �
∂

∂

�

L

2

� � ��� � �
∂

∂

�

L

m

� � 0 (16)

Theorem 8 gives conditions implying that any point (x�1, x�2, . . . , x�n, ��1, ��2, . . . , ��m) that

satisfies (16) will yield an optimal solution (x�1, x�2, . . . , x�n) to (12).

Suppose (12) is a maximization problem. If f (x1, x2, . . . , xn) is a concave function

and each gi(x1, x2, . . . , xn) is a linear function, then any point (x�1, x�2, . . . , x�n, ��1,

��2, . . . , ��m) satisfying (16) will yield an optimal solution (x�1, x�2, . . . , x�n) 

to (12).

T H E O R E M  8
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Suppose (12) is a minimization problem. If f(x1, x2, . . . , xn) is a convex function

and each gi(x1, x2, . . . , xn) is a linear function, then any point (x�1, x�2, . . . , x�n, ��1,

��2, . . . , ��m) satisfying (16) will yield an optimal solution (x�1, x�2, . . . , x�n) 

to (12).

Even if the hypotheses of these theorems fail to hold, it is possible that any point 

satisfying (16) will solve (12). See the appendix of Henderson and Quandt (1980) for 

details.

Geometrical Interpretation of Lagrange Multipliers

From (16) we know that for the point x� � (x�1, x�2, . . . , x�n) to solve (12) it is necessary

that at x�

�
∂

∂

x

L

j

� � 0 for j � 1, 2, . . . , n

This is equivalent to saying that there exist numbers �1, �2, . . . �m such that at the point x�

�f � �
i�m

i�1

�i �gi (17)

To see why this is so, note that the jth component of the left-hand side of (17) is

�
∂

∂

x

f

j

�

and the j th component of the right-hand side is

�
i�m

i�1

�i �
∂

∂

g

xj

i�

Thus, (17) implies that for j � 1, 2, . . . , n

�
∂

∂

x

f

j

� � �
i�m

i�1

�i �
∂

∂

g

xj

i� � 0 or �
∂

∂

x

L

j

� � 0

Another way to look at (17) is as follows: For x� to solve (12), it is necessary that at x�,

�f is a linear combination of the constraint gradients.

For an optimization problem with one constraint it is easy to see why (17) must hold

at a solution to (12). If (12) has one constraint, then (17) is equivalent to the statement

that the gradient of the objective function and the constraint are parallel. The necessity of

this condition is illustrated in Figure 41. Here z � 3 is the optimal z-value when we try

to maximize f(x1, x2), subject to g(x1, x2) � 0. At the optimal point in Figure 41, �f �

��g, where � � 0.

To see why (17) must hold for an optimal solution to (12), let’s consider the following

NLP:

max z � f (x1, x2, x3)

s.t. g1(x1, x2, x3) � 0 (18)

s.t. g2(x1, x2, x3) � 0

T H E O R E M  8�



666 C H A P T E R 1 1 Nonlinear Programming

Suppose x� � (x�1, x�2, x�3) is an optimal solution to (18). We claim that for any c ≠ 0,

the following system of equations can have no solution (all gradients are evaluated at x�).

�  �  � �  (19)

To see why (19) can have no solution, suppose that it has a solution for some c � 0.

[If (19) has a solution with c � 0, then a similar argument holds.] This solution defines

a direction d in three dimensions. If we move in the direction d a small distance � away

from x� we can find a feasible point x� � �d for (18) that has a larger z-value than x�. This

would contradict the optimality of x�. To see that x� � �d is feasible in (18), note that for

i � 1, 2 (19) implies that gi (x� � �d) is approximately equal to

gi(x�) � �
j�3

j�1

�
∂g

∂

i

x

(

j

x�)
� ���

�

d

dj

�
�� � gi(x�) � 0

Also f(x� � �d) is approximately equal to

f (x�) � �
j�3

j�1

�
∂

∂

x

f

j

� ���
�

d

dj

�
�� � f (x�) � c� / � d � � f (x�)

This means that if x� solves (18), then (19) can have no solution for c ≠ 0. From Sec-

tion 2.4, we know that (19) can have no solution if and only if the rank of the matrix on

the left side of (19) is less than or equal to 2. This means that �f, �g1, �g2 at x� are lin-

early dependent vectors. Thus, a nontrivial linear combination of �f, �g1, and �g2 must

add up to the zero vector. If we assume that �g1 and �g2 are linearly independent (the

usual case), then (17) must hold.

Lagrange Multipliers and Sensitivity Analysis

The Lagrange multipliers �i can be used in sensitivity analysis. If the right-hand side of

the ith constraint is increased by a small amount 
bi (in either a maximization or mini-

mization problem), then the optimal z-value for (12) will increase by approximately 

Σi�m
i�1 (
bi)�i. This result is proven in Problem 9 of this section. In particular, if we in-

crease the right-hand side of only constraint i by 
bi, then the optimal z-value of (12) will

increase by (
bi)�i.

The two examples that follow illustrate the use of Lagrange multipliers. In most cases,

the easiest way to find a point (x�1, x�2, . . . , x�n, ��1, ��2, . . . , ��m) satisfying (16) is to first

0

0

c

d1

d2

d3

�g1

�g2

�f

g = 1 g = 0

f = 5

f = 4

f = 3

f = 2

f = 1

f

x2

x1

∆

g

∆

F I G U R E  41

One-Constraint 
Example of (17)
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solve for x�1, x�2, . . . , x�n in terms of ��1, ��2, . . . , ��m. Then determine the values of the ��i’s

by substituting these relations into the constraints of (12). Finally, use the values of the

��i’s to determine x�1, x�2, . . . , x�n.

A company is planning to spend $10,000 on advertising. It costs $3,000 per minute to ad-

vertise on television and $1,000 per minute to advertise on radio. If the firm buys x min-

utes of television advertising and y minutes of radio advertising, then its revenue in thou-

sands of dollars is given by f (x, y) � �2x2 � y2 � xy � 8x � 3y. How can the firm

maximize its revenue?

Solution We want to solve the following NLP:

max z � �2x2 � y2 � xy � 8x � 3y

s.t. 3x � y � 10 2 � xy � 8x � 3y

Then L(x, y, �) � �2x2 � y2 � xy � 8x � 3y � �(10 � 3x � y). We set

�
∂

∂

L

x
� � �

∂

∂

L

y
� � �

∂

∂

L

�
� � 0

This yields

�
∂

∂

L

x
� � �4x � y � 8 � 3� � 0 (20)

�
∂

∂

L

y
� � �2y � x � 3 � � � 0 (21)

�
∂

∂

L

�
� � 10 � 3x � y � 0 � 0 (22)

Observe that 10 � 3x � y � 0 reduces to the constraint 3x � y � 10. Equation (20)

yields y � 3� � 8 � 4x, and (21) yields x � � � 3 � 2y. Thus, y � 3� � 8 � 4(� �

3 � 2y) � 7� � 20 � 8y, or

y � �
2

7

0
� � � (23)

x � � � 3 � 2(�
2

7

0
� � �) � �

1

7

9
� � � (24)

Substituting (23) and (24) into (22) yields 10 � 3(�
1

7

9
� � �) � (�

2

7

0
� � �) � 0, or 4� � 1 �

0, or � � �
1

4
�. Then (23) and (24) yield

y� � �
2

7

0
� � �

1

4
� � �

7

2

3

8
�

x� � �
1

7

9
� � �

1

4
� � �

6

2

9

8
�

The Hessian for f (x, y) is

H(x, y) � � 
Since each first-order principal minor is negative, and H2(x, y) � 7 � 0, f (x, y) is con-

cave. The constraint is linear, so Theorem 8 shows that the Lagrange multiplier method

does yield the optimal solution to the NLP.

Thus, the firm should purchase �
6

2

9

8
� minutes of television time and �

7

2

3

8
� minutes of radio

time. Since � � �
1

4
�, spending an extra 
 (thousands) (for small 
) would increase the firm’s

revenues by approximately $0.25
 (thousands).

In general, if the firm had a dollars to spend on advertising, then it could be shown that

� � �
11

4

�a
� (see Problem 1 at the end of this section). We see that as more money is spent on

advertising, the increase to revenue for each additional advertising dollar becomes smaller.

1

�2

�4

�1

Lagrange Multiplier in AdvertisingE X A M P L E  3 0
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Given numbers x1, x2, . . . , xn, show that

n �
i�n

i�1

x2
i � ��

i�n

i�1

xi�
2

with equality holding only if x1 � x2 � ��� � xn.

Solution Suppose that x1 � x2 � ��� � xn � c. Consider the NLP

min z � �
i�n

i�1

x2
i

s.t. �
i�n

i�1

xi � c (25)

To solve (25), we form

L(x1, x2, . . . , xn, �) � x2
1 � x2

2 � ��� � x2
n � �(c � x1 � x2 � ��� � xn)

Then to solve (25) we need to find (x1, x2, . . . , xn, �) that satisfy

�
∂

∂

x

L

i

� � 2xi � � � 0 (i � 1, 2, . . . , n) and

�
∂

∂

L

�
� � c � x1 � x2 � ��� � xn � 0

From �
∂

∂

x

L

i

� � 0, we obtain 2x�1 � 2x�2 � � � � � 2x�n � ��, or xi � �
�

2

�
�. From �

∂

∂

L

�
� � 0, we

obtain c � �
n

2

��
� � 0, or ��� � �

2

n

c
�. The objective function is convex (it is the sum of n convex

functions), and the constraint is linear. Thus, Theorem 8	 shows that the Lagrange multiplier

method does yield an optimal solution to (25); it has

x�i � � �
n

c
� and z � n ��

n

c2

2�� � �
c

n

2

�

Thus, if

�
i�n

i�1

xi � c

then

n �
i�n

i�1

x2
i � n ��

c

n

2

�� � ��
i�n

i�1

xi�
2

with equality holding if and only if x1 � x2 � ��� � xn.

If we are trying to maximize a function f (x1, x2, . . . , xn) that is a product of several

functions, then it is often easier to maximize ln [ f (x1, x2, . . . , xn)]. Since ln is an 

increasing function, we know that any x* maximizing ln [ f (x1, x2, . . . , xn)] over any set

of possible values for (x1, x2, . . . , xn) will also maximize f (x1, x2, . . . , xn) over the same

set of possible values for (x1, x2, . . . , xn). See Problem 2 for an application of this idea.

��
2

n

c
��

�
2

Lagrange Multiplier and Optimal SolutionE X A M P L E  3 1
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Solving NLP with Equality Constraints on LINGO

If the hypotheses of Theorem 8 or Theorem 8	 hold for a problem, LINGO will find the

optimal solution to the NLP. You will receive the messages OPTIMAL TO TOLER-

ANCES and DUAL CONDITIONS: SATISFIED. “Optimal to Tolerances” means that

LINGO is sure that it has found a local extremum. “Dual Conditions: Satisfied” means

that LINGO is sure that the point it has found satisfies (16). Figure 42 (file Adv.lng) con-

tains the LINGO printout for Example 28.

Interpretation of the LINGO Price Column

For a maximization problem, the LINGO PRICE column yields the Lagrange multiplier

for each constraint. Thus, if the right-hand side of Constraint i in a maximization prob-

lem is increased by a small amount 
, then the optimal z-value is increased by approxi-

mately 
 (PRICE for Constraint i). The PRICE column in Figure 42 implies that in Ex-

ample 30 spending an extra 
 thousand dollars on advertising will increase revenues by

approximately $0.25
 (thousands).

For a minimization problem, the LINGO PRICE column yields the negative of the La-

grange multiplier for each constraint. Thus, if the right-hand side of Constraint i in a min-

imization problem is increased by a small amount 
, then the optimal z-value will in-

crease by approximately 
(�PRICE for Constraint i).

MODEL:

   1) MAX= - 2 * X ^ 2 - Y ^ 2 + X * Y + 8 * X + 3 * Y ;

   2) 3 * X + Y = 10 ;

   3) X > 0 ;

   4) Y > 0 ;

END

SOLUTION STATUS:  OPTIMAL TO TOLERANCES.  DUAL CONDITIONS:  SATISFIED.

            OBJECTIVE FUNCTION VALUE

         1)        15.017855

   VARIABLE        VALUE         REDUCED COST

          X         2.464283          .000000

          Y         2.607140          .000003

        ROW   SLACK OR SURPLUS          PRICE

         2)         -.000010          .249996

         3)         2.464283          .000000

         4)         2.607140          .000000

F I G U R E  42

Optimal Solution 
for Example 28

P R O B L E M S
Group A

1 For Example 30, show that if a dollars are available for
advertising, then an extra dollar spent on advertising will
increase revenues by approximately �

11

4

�a
�.

2 It costs me $2 to purchase an hour of labor and $1 to
purchase a unit of capital. If L hours of labor and K units of
capital are available, then L2/3K1/3 machines can be
produced. If I have $10 to purchase labor and capital, what
is the maximum number of machines that can be produced?

3 In Problem 2, what is the minimum cost method of
producing 6 machines?

4 A beer company has divided Bloomington into two
territories. If x1 dollars are spent on promotion in territory
1, then 6x1/2

1 cases of beer can be sold there; and if x2 dollars
are spent on promotion in territory 2, then 4x1/2

2 cases of
beer can be sold there. Each case of beer sold in territory 1
sells for $10 and incurs $5 in shipping and production costs.

Adv.lng
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Each case of beer sold in territory 2 sells for $9 and incurs
$4 in shipping and production costs. A total of $100 is
available for promotion. How can the beer company
maximize profits? If an extra dollar could be spent on
promotion, by approximately how much would profits
increase? By how much would revenues increase?

Group B

5 We must invest all our money in two stocks: x and y.
The variance of the annual return on one share of stock x is
var x, and the variance of the annual return on one share of
stock y is var y. Assume that the covariance between the
annual return for one share of x and one share of y is cov(x,
y). If we invest a% of our money in stock x and b% in stock
y, then the variance of our return is given by a2var x � b2var
y � 2ab cov(x, y). We want to minimize the variance of the
return on our invested money. What percentage of the money
should be invested in each stock?

6 As in Problem 5, assume that we must determine the
percentage of our money that is invested in stocks x and y. A
choice of a and b is called a portfolio. A portfolio is efficient
if there exists no other portfolio whose return has a higher
mean return and lower variance, or a higher mean return and
the same variance, or a lower variance with the same mean
return. Let x� be the mean return on stock x and y� be the mean
return on stock y. Consider the following NLP:

max z � c[ax� � by�]

� (1 � c)[a2var x � b2var y

� 2abcov(x, y)]

s.t. a � b � 1

a, b � 0

Suppose that 1 � c � 0. Show that any solution to this NLP
is an efficient portfolio.

7 Suppose product i (i � 1, 2) costs $ci per unit. If xi(i �
1, 2) units of products 1 and 2 are purchased, then a utility
xa

1x1�a
2 (0 � a � 1) is received.

a If $d are available to purchase products 1 and 2, how
many of each type should be purchased?

b Show that an increase in the cost of product i de-
creases the number of units of product i that should be
purchased.

c Show that an increase in the cost of product i does
not change the number of units of the other product that
should be purchased.

8 Suppose that a cylindrical soda can must have a volume
of 26 cu in. If the soda company wants to minimize the
surface area of the soda can, what should be the ratio of the
height of the can to the radius of the can? (Hint: The volume
of a right circular cylinder is p r2h, and the surface area of
a right circular cylinder is 2p r2 � 2p rh, where r � the
radius of the cylinder and h � the height of the cylinder.)

9 Show that if the right-hand side of the ith constraint is
increased by a small amount 
bi (in either a maximization
or minimization problem), then the optimal z-value for (11)
will increase by approximately Σ i�m

i�1 (
bi)�i.

11.9 The Kuhn–Tucker Conditions

In this section, we discuss necessary and sufficient conditions for x� � (x�1, x�2, . . . , x�n) to

be an optimal solution for the following NLP:

max (or min) f (x1, x2, . . . , xn)

s.t. g1(x1, x2, . . . , xn) � b1

s.t. g2(x1, x2, . . . , xn) � b2 (26)

���

s.t. gm(x1, x2, . . . , xn) � bm

To apply the results of this section, all the NLP’s constraints must be � constraints. A

constraint of the form h(x1, x2, . . . , xn) � b must be rewritten as �h(x1, x2, . . . , xn) �

�b. For example, the constraint 2x1 � x2 � 2 should be rewritten as �2x1 � x2 � �2.

A constraint of the form h(x1, x2, . . . , xn) � b must be replaced by h(x1, x2, . . . , xn) � b

and �h(x1, x2, . . . , xn) � �b. For example, 2x1 � x2 � 2 would be replaced by 2x1 �

x2 � 2 and �2x1 � x2 � �2.

Theorems 9 and 9	 give conditions (the Kuhn–Tucker, or KT, conditions) that are

necessary for a point x� � (x�1, x�2, . . . , x�n) to solve (26). The partial derivative of a func-

tion f with respect to a variable xj evaluated at x� is written
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�
∂

∂

f (

x

x�
j

)
�

For the theorems of this section to hold, the functions g1, g2, . . . , gm must satisfy cer-

tain regularity conditions (usually called constraint qualifications). We will briefly dis-

cuss one constraint qualification at the end of the section. [For a detailed discussion of

constraint qualifications we refer the reader to Chapter 5 of Bazaraa and Shetty (1993).]

When the constraints are linear, these regularity assumptions are always satisfied. In

other situations (particularly when some of the constraints are equality constraints), the

regularity conditions may not be satisfied. We assume that all problems we consider sat-

isfy these regularity conditions.

Suppose (26) is a maximization problem. If x� � (x�1, x�2, . . . , x�n) is an optimal so-

lution to (26), then x� � (x�1, x�2, . . . , x�n) must satisfy the m constraints in (26), and

there must exist multipliers ��1, ��2, . . . , ��m satisfying

�
∂

∂

f (

x

x�
j

)
� � �

i�m

i�1

��i �
∂g

∂

i

x

(

j

x�)
� � 0 ( j � 1, 2, . . . , n) (27)

��i[bi � gi(x�)] � 0 (i � 1, 2, . . . , m) (28)

��i � 0 (i � 1, 2, . . . , m) (29)

Suppose (26) is a minimization problem. If x� � (x�1, x�2, . . . , x�n) is an optimal solu-

tion to (26), then x� � (x�1, x�2, . . . , x�n) must satisfy the m constraints in (26), and

there must exist multipliers ��1, ��2, . . . , �� m satisfying

�
∂

∂

f (

x

x�
j

)
� � �

i�m

i�1

��i �
∂g

∂

i

x

(

j

x�)
� � 0 ( j � 1, 2, . . . , n)

��i[bi � gi(x�)] � 0 (i � 1, 2, . . . , m)

��i � 0 (i � 1, 2, . . . , m)

Like the Lagrange multipliers of the preceding section, the multiplier ��i associated with

the K–T conditions may be thought of as the shadow price for the ith constraint in (26).

Suppose (26) is a maximization problem. If the right-hand side of the ith constraint is in-

creased from bi to bi � 
 (for 
 small), the optimal objective function value will increase

by approximately 
��i. Suppose (26) is a minimization problem. If the right-hand side of

the ith constraint is increased from bi to bi � 
 (for 
 small), then the optimal objective

function value is decreased by 
��i.

Bearing in mind this interpretation of the multipliers as shadow prices, we may inter-

pret (27)–(29) for a max problem. Suppose we consider each constraint in (26) to be a 

resource-usage constraint. That is, at x� � (x�1, x�2, . . . , x�n) we use gi(x�1, x�2, . . . , x�n) units

of resource i, and bi units of resource i are available. If we increase the value of xj by a

small amount 
, then the value of the objective function increases by

�
∂

∂

f (

x

x�
j

)
� 
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Changing the value of xj to x�j � 
 also changes the ith constraint to

gi(x�) � �
∂g

∂

i

x

(

j

x�)
� 
 � bi or gi(x�) � bi � �

∂g

∂

i

x

(

j

x�)
� 


Thus, increasing xj by 
 has the effect of increasing the right-hand side of the ith con-

straint by

��
∂g

∂

i

x

(

j

x�)
� 


These changes in the right-hand sides of the constraints will increase the value of z by

approximately

�
 �
i�m

i�1

��i �
∂g

∂

i

x

(

j

x�)
�

In total, the approximate change in z due to increasing xj by 
 is


 ��∂
∂

f (

x

x�
j

)
� � �

i�m

i�1

��i �
∂g

∂

i

x

(

j

x�)
�

If the term in brackets is larger than zero, we can increase f by choosing 
 � 0. On the

other hand, if this term is smaller than zero, we can increase f by choosing 
 � 0. Thus,

for x� to be optimal, (27) must hold.

Condition (28) is a generalization of the complementary slackness conditions for LPs

discussed in Section 6.10. Condition (28) implies that

If gIf ��i � 0, then gi(x�) � bi (ith constraint binding) (28�)

If gi(x�) � bi, then ��i � 0� bi (ith constraint binding) (28�)

Suppose the constraint gi(x1, x2, . . . , xn) � bi is a resource-usage constraint representing

the fact that at most bi units of the ith resource can be used. Then (28	) states that if an

additional unit of the resource associated with the ith constraint is to have any value, then

the current optimal solution must use all bi units of the ith resource currently available.

On the other hand, (28�) states that if some of the ith resource currently available is un-

used, then additional amounts of the ith resource have no value.

If for 
 � 0, we increase the right-hand side of the ith constraint from bi to bi � 
,

then the optimal objective function value must increase or stay the same, because the in-

crease adds points to the problem’s feasible region. Increasing the right-hand side of the

ith constraint by 
 increases the optimal objective function value by 
��i, so it must be

that ��i � 0. This is why (29) is included in the K–T conditions.

In many situations, the K–T conditions are applied to NLPs in which the variables must

be non-negative. For example, we may want to use the K–T conditions to find the optimal

solution to

max (or min) z � f (x1, x2, . . . , xn)

s.t. g1(x1, x2, . . . , xn) � b1

s.t. g2(x1, x2, . . . , xn) � b2

���

s.t. gm(x1, x2, . . . , xn) � bm (30)

max (or min) z � �x1 � 0

max (or min) z � �x2 � 0

���

max (or min) z � �xn � 0
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If we associate multipliers �1, �2, . . . , �n with the non-negativity constraints in (30),

Theorems 9 and 9	 reduce to Theorems 10 and 10	.

Suppose (30) is a maximization problem. If x� � (x�1, x�2, . . . , x�n) is an optimal so-

lution to (30), then x� � (x�1, x�2, . . . , x�n) must satisfy the constraints in (30) and there

must exist multipliers ��1, ��2, . . . , ��m, ��1, ��2, . . . , ��n satisfying

�
∂

∂

f (

x

x�
j

)
� � �

i�m

i�1

��i �
∂g

∂

i

x

(

j

x�)
� � �j � 0 ( j � 1, 2, . . . , n) (31)

��i[bi � gi(x�)] � 0 (i � 1, 2, . . . , m) (32)

��∂
∂

f (

x

x�
j

)
� � �

i�m

i�1

��i �
∂g

∂

i

x

(

j

x�)
� x�j � 0 ( j � 1, 2, . . . , n) (33)

��i � 0 (i � 1, 2, . . . , m) (34)

�� j � 0 ( j � 1, 2, . . . , n) (35)

Because �� j � 0, (31) is equivalent to

�
∂

∂

f (

x

x�
j

)
� � �

i�m

i�1

��i �
∂g

∂

i

x

(

j

x�)
� � 0 ( j � 1, 2, . . . , n) (31�)

Then (31)–(34), the K–T conditions for a maximization problem with nonnegativity con-

straints, may be rewritten as

�
∂

∂

f (

x

x�
j

)
� � �

i�m

i�1

��i �
∂g

∂

i

x

(

j

x�)
� � 0 ( j � 1, 2, . . . , n) (31�)

��i[bi � gi(x�)] � 0 (i � 1, 2, . . . , m) (32�)

��∂
∂

f (

x

x�
j

)
� � �

i�m

i�1

��i �
∂g

∂

i

x

(

j

x�)
� x�j � 0 ( j � 1, 2, . . . , n) (33�)

��i � 0 (i � 1, 2, . . . , m) (34�)

Suppose (30) is a minimization problem. If x� � (x�1, x�2, . . . , x�n) is an optimal 

solution to (30), then x� � (x�1, x�2, . . . , x�n) must satisfy the constraints in (30), and

there must exist multipliers ��1, ��2, . . . , ��m, ��1, ��2, . . . , ��n satisfying

�
∂

∂

f

x

(x�
j

)
� � �

i�m

i�1

��i �
∂g

∂

i

x

(

j

x�)
� � �j � 0 ( j � 1, 2, . . . , n) (36)

��i[bi � gi(x�)] � 0 (i � 1, 2, . . . , m) (37)

��∂
∂

f (

x

x�
j

)
� � �

i�m

i�1

��i �
∂g

∂

i

x

(

j

x�)
� x�j � 0 ( j � 1, 2, . . . , n) (38)

��i � 0 (i � 1, 2, . . . , m) (39)

�� j � 0 ( j � 1, 2, . . . , n) (40)

T H E O R E M  10
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Because �� j � 0, (36) may be written as

�
∂

∂

f(

x

x�
j

)
� � �

i�m

i�1

��i �
∂g

∂

i

x

(

j

x�)
� � 0 (36�)

Then (36)–(39), the K–T conditions for a minimization problem with nonnegativity con-

straints, may be rewritten as

�
∂

∂

f (

x

x�
j

)
� � �

i�m

i�1

��i �
∂g

∂

i

x

(

j

x�)
� � 0 ( j � 1, 2, . . . , n) (36�)

��i[bi � gi(x�)] � 0 (i � 1, 2, . . . , m) (37�)

��∂
∂

f (

x

x�
j

)
� � �

i�m

i�1

��i �
∂g

∂

i

x

(

j

x�)
� x�j � 0 ( j � 1, 2, . . . , n) (38�)

��i � 0 (i � 1, 2, . . . , m) (39�)

Theorems 9, 9	, 10, and 10	 give conditions that are necessary for a point x� � (x�1, 

x�2, . . . , x�n) to be an optimal solution to (26) or (30). The following two theorems give

conditions that are sufficient for x� � (x�1, x�2, . . . , x�n) to be an optimal solution to (26) or

(30) (see Bazaraa and Shetty (1993)).

Suppose (26) is a maximization problem. If f(x1, x2, . . . , xn) is a concave function

and g1(x1, x2, . . . , xn), . . . , gm(x1, x2, . . . , xn) are convex functions, then any point

x� � (x�1, x�2, . . . , x�n) satisfying the hypotheses of Theorem 9 is an optimal solution

to (26). Also, if (30) is a maximization problem, f (x1, x2, . . . , xn) is a concave func-

tion, and g1(x1, x2, . . . , xn), . . . , gm(x1, x2, . . . , xn) are convex functions, then any

point x� � (x�1, x�2, . . . , x�n) satisfying the hypotheses of Theorem 10 is an optimal so-

lution to (30).

Suppose (26) is a minimization problem. If f(x1, x2, . . . , xn) is a convex function

and g1(x1, x2, . . . , xn), . . . , gm(x1, x2, . . . , xn) are convex functions, then any point

x� � (x�1, x�2, . . . , x�n) satisfying the hypotheses of Theorem 9	 is an optimal solution

to (26). Also, if (30) is a minimization problem, f(x1, x2, . . . , xn) is a convex func-

tion, and g1(x1, x2, . . . , xn), . . . , gm(x1, x2, . . . , xn) are convex functions, then any

point x� � (x�1, x�2, . . . , x�n) satisfying the hypotheses of Theorem 10	 is an optimal

solution to (30).

R E M A R K The reason that the hypotheses of Theorems 11 and 11	 require that each gi(x1, x2, . . . , xn) be 
convex is that this ensures the feasible region for (26) or (30) is a convex set (see Problem 21 of
Section 11.3).

Geometrical Interpretation of Kuhn–Tucker Conditions

It is easy to show that conditions (27)–(29) of Theorem 9 will hold at a point x� if and only

if �f is a non-negative linear combination of �g1, �g2, . . . , �gm, and the weight multi-

plying �gi in this linear combination equals 0 if the ith constraint in (26) is nonbinding.

T H E O R E M  11

T H E O R E M  11�
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In short, (27)–(29) are equivalent to the existence of �i � 0 such that

�f (x�) � �
i�m

i�1

�i�gi(x�) (41)

and each constraint that is nonbinding at x� has �i � 0.

Figures 43 and 44 illustrate (41). In Figure 43, we are trying to solve (the feasible re-

gion is shaded)

min z � f (x1, x2)

s.t. g1(x1, x2) � 0

s.t. g2(x1, x2) � 0

At x�, (41) holds with both constraints binding and we have �1 � 0 and �2 � 0. In Figure

44, we are again trying to solve (feasible region is again shaded)

min z � f (x1, x2)

s.t. g1(x1, x2) � 0

s.t. g2(x1, x2) � 0

Here, the second constraint is nonbinding so (41) must hold with �2 � 0.

The following two examples illustrate the use of the K–T conditions.

f = 5

g1 = 0 g2 = 0

f

x2

x1

∆

g2

∆

g1

∆

x

f = 3

g1 = 0 g2 = 0

x2

x1

g1

x

f

∆ ∆

g2

∆

F I G U R E  43

Example of
Kuhn–Tucker

Conditions: Both
Constraints Binding

F I G U R E  44

Example of
Kuhn–Tucker

Conditions: One
Constraint Binding and

One Constraint
Nonbinding
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Describe the optimal solution to

max f (x)x � b

s.t. a � x � b (42)

Solution From Section 11.4, we know {assuming that f 	(x) exists for all x on the interval [a, b]}

that the optimal solution to this problem must occur at a [with f 	(a) � 0], at b [with 

f 	(b) � 0], or at a point having f 	(x) � 0. How do the K–T conditions yield these three cases?

We write (42) as

max f (x)

s.t. �x � �a

s.t. x � b�a

Then (27)–(29) yield

f 	(x) � �1 � �2 � 0 (43)

f	(x�1(�a � x) � 0 (44)

f	(x) �2(b � x) � 0 (45)

f	(x) � �1 � �1 � 0 (46)

f	(x) � �1 � �2 � 0 (47)

In using the K–T conditions to solve NLPs, it is useful to note that each multiplier �i must

satisfy �i � 0 or �i � 0. Thus, in attempting to find values of x, �1, and �2 that satisfy

(43)–(47), we must consider the following four cases:

Case 1 �1 � �2 � 0. From (43), we obtain the case f 	(x�) � 0.

Case 2 �1 � 0, �2 � 0. Because �2 � 0, (45) yields x� � b. Then (43) yields f 	(b) � �2,

and because �2 � 0, we obtain the case where f 	(b) � 0.

Case 3 �1 � 0, �2 � 0. Because �1 � 0, (44) yields x� � a. Then (43) yields the case

where f 	(a) � ��1 � 0.

Case 4 � 1 � 0, �2 � 0. From (44) and (45), we obtain x� � a and x� � b. This contra-

diction indicates that Case 4 cannot occur.

The constraints are linear, so Theorem 11 shows that if f (x) is concave, then (43)–(47)

yield the optimal solution to (42).

A monopolist can purchase up to 17.25 oz of a chemical for $10/oz. At a cost of $3/oz,

the chemical can be processed into an ounce of product 1; or, at a cost of $5/oz, the chem-

ical can be processed into an ounce of product 2. If x1 oz of product 1 are produced, it

sells for a price of $30 � x1 per ounce. If x2 oz of product 2 are produced, it sells for a

price of $50 � 2x2 per ounce. Determine how the monopolist can maximize profits.

Solution Let

x1 � ounces of product 1 produced

x2 � ounces of product 2 produced

x3 � ounces of chemical processed

Interpretation of Kuhn–Tucker ConditionsE X A M P L E  3 2

Production ProcessE X A M P L E  3 3



1 1 . 9 The Kuhn–Tucker Conditions 677

Then we want to solve the following NLP:

max z � x1(30 � x1) � x2(50 � 2x2) � 3x1 � 5x2 � 10x3

s.t. x1 � x2 � x3 or x1 � x2 � x3 � 03 (48)

x3 � 17.25

Of course, we should add the constraints x1, x2, x3 � 0. However, because the optimal so-

lution to (48) satisfies the nonnegativity constraints, it also will be optimal for an NLP

consisting of (48) with the nonnegativity constraints.

Observe that the objective function in (48) is the sum of concave functions (and is

therefore concave), and the constraints are convex (because they are linear). Thus, Theo-

rem 11 shows that the K–T conditions are necessary and sufficient for (x1, x2, x3) to be

an optimal solution to (48). From Theorem 9, the K–T conditions become

30 � 2x1 � 3 � �1 � 0 (49)

50 � 4x2 � 5 � �1 � 0 (50)

�10 � �1 � �2 � 0 (51)

�1(�x1 � x2 � x3) � 0 (52)

�2(17.25 � x3) � 0 (53)

30 � 2x1 � 3 � �1 � 0 (54)

30 � 2x1 � 3 � �2 � 0 (55)

As in the previous example, there are four cases to consider:

Case 1 �1 � �2 � 0. This case cannot occur, because (51) would be violated.

Case 2 �1 � 0, �2 � 0. If �1 � 0, then (51) implies �2 � �10. This would violate (55).

Case 3 �1 � 0, �2 � 0. From (51), we obtain �1 � 10. Now (49) yields x1 � 8.5, and

(50) yields x2 � 8.75. From (52), we obtain x1 � x2 � x3, so x3 � 17.25. Thus, x�1 � 8.5,

x�2 � 8.75, x�3 � 17.25, ��1 � 10, ��2 � 0 satisfies the K–T conditions.

Case 4 �1 � 0, �2 � 0. Case 3 yields an optimal solution, so we need not consider Case 4.

Thus, the optimal solution to (48) is to buy 17.25 oz of the chemical and produce 8.5

oz of product 1 and 8.75 oz of product 2. For 
 small, ��1 � 10 indicates that if an extra


 oz of the chemical were obtained at no cost, then profits would increase by 10
. (Can

you see why?) From (51), we find that ��2 � 0. This implies that the right to purchase an

extra 
 oz of the chemical would not increase profits. (Can you see why?)

Constraint Qualifications

Unless a constraint qualification or regularity condition is satisfied at an optimal point x�, the

Kuhn–Tucker conditions may fail to hold at x�. There are many constraint qualifications, but

we choose to discuss the Linear Independence Constraint Qualification: Let x� be an optimal

solution to NLP (26) or (30). If all gi are continuous, and the gradients of all binding con-

straints (including any binding nonnegativity constraints on x1, x2, . . . , xn) at x� form a set

of linearly independent vectors, then the Kuhn–Tucker conditions must hold at x�.

The following example shows that if the Linear Independence Constraint Qualification

fails to hold, then the Kuhn–Tucker conditions may fail to hold at the optimal solution to

an NLP.
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Show that the Kuhn–Tucker conditions fail to hold at the optimal solution to the follow-

ing NLP:

max z � x1(1 � x1)3 � 0

s.t. x2 � (1 � x1)3 � 0 (56)

s.t. x1 � 0, x2 � 0 � 0

Solution If x1 � 1, then the first constraint in (56) implies that x2 � 0. Thus, the optimal z-value

for (56) cannot exceed 1. Because x1 � 1 and x2 � 0 is feasible and yields z � 1, (1, 0)

must be the optimal solution to NLP (56).

From Theorem 10, the following are two of the Kuhn–Tucker conditions for (56).

1 � 3�1(1 � x1)2 � ��1 (57)

�1 � 0 (58)

At the optimal solution (1, 0), (57) implies �1 � �1, which contradicts (58). Thus, the

Kuhn–Tucker conditions are not satisfied at (1, 0). We now show that at the point (1, 0)

the Linear Independence Constraint Qualification is violated. At (1, 0) the constraints 

x2 � (1 � x1)3 � 0 and x2 � 0 are binding. Then

�(x2 � (1 � x1)3) � [0, 1]

�(�x2) � [0, �1]

Because [0, 1] � [0, �1] � [0, 0], these gradients are linearly dependent. Thus, at (1,0)

the gradients of the binding constraints are linearly dependent, and the constraint qualifi-

cation is not satisfied.

Solving NLPs with Inequality (and Possibly Equality)
Constraints on LINGO

LINGO does not require that all constraints be put in the form (26) or (30). Constraints

may be input as less than or equal, equal, or greater than or equal to constraints. If your

problem satisfies the hypotheses of Theorem 11 or Theorem 11	, then you can know that

LINGO will find the optimal solution to your problem. You will know that LINGO has

found a point satisfying the Kuhn–Tucker conditions if you see the message DUAL CON-

DITIONS: SATISFIED. For instance, we can be sure that LINGO would find the optimal

solution to Example 33.

For the LINGO printouts given in Section 11.2 for Examples 9–11, we cannot be sure

that LINGO has found the optimal solution to any of these problems. Example 9 (Figure

6) fails to satisfy the hypotheses of Theorem 11 because the left-hand side of rows 16–18

are not concave functions and the left-hand side of rows 19–21 are not convex functions.

To see if LINGO has actually found the optimal solution to the NLP, we used the INIT

command to input a wide variety of starting solutions (focusing on values of R, U, and

P). We could not find any solution that was better than the solution in Figure 6, so we are

fairly confident that LINGO has found the optimal solution to Example 9. Similarly, Ex-

amples 10 and 11 do not satisfy the hypotheses of Theorem 11	, so we cannot be sure that

LINGO has found an optimal solution to these problems (even though LINGO has found

a point satisfying Kuhn–Tucker conditions!). Again, however, extensive use of the INIT

command failed to turn up any better solutions, so we are fairly confident that LINGO

has found the optimal solution to Examples 10 and 11.

Necessity of Constraint QualificationE X A M P L E  3 4
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Interpretation of Price Column on LINGO Output

If the right-hand side of Constraint i (the type of constraint does not matter) in an NLP

is increased by a small amount 
, then the optimal z-value is improved by approximately


(PRICE for Constraint i). Thus, in a maximization problem increasing the right-hand

side of the ith constraint by a small amount 
bi will result in the optimal z-value in-

creasing by approximately 
bi(price of Constraint i); in a minimization problem increas-

ing the right-hand side of the ith constraint by a small amount 
bi will result in the opti-

mal z-value decreasing by approximately 
bi(Price of Constraint i).

P R O B L E M S
Group A

1† A power company faces demands during both peak and
off-peak times. If a price of p1 dollars per kilowatt-hour is
charged during the peak time, customers will demand 60 �
0.5 p1 kwh of power. If a price of p2 dollars is charged
during the off-peak time, then customers will demand 40 �
p2 kwh. The power company must have sufficient capacity
to meet demand during both the peak and off-peak times. It
costs $10 per day to maintain each kilowatt-hour of capacity.
Determine how the power company can maximize daily
revenues less operating costs.

2 Use the K–T conditions to find the optimal solution to
the following NLP:

max z � x1 � x2

s.t. x2
1 � x2

2 � 1

3 Consider the Giapetto problem of Section 3.1:

max z � 3x1 � 2x2

s.t. 2x1 � x2 � 100

s.t. x1 � x2 � 80

s.t. x1 � x2 � 40

s.t. x1 � x2 � 0

s.t. 2x1 � x2 � 0

Find the K–T conditions for this problem and discuss their
relation to the dual of the Giapetto LP and the
complementary slackness conditions for the LP.

4 If the feasible region for (26) is bounded and contains
its boundary points, then it can be shown that (26) has an
optimal solution. Suppose that the regularity conditions are
valid but that the hypotheses of Theorems 11 and 11	 are
not valid. If we can prove that only one point satisfies the
K–T conditions, then why must that point be the optimal
solution to the NLP?

5 A total of 160 hours of labor are available each week at
$15/hour. Additional labor can be purchased at $25/hour.
Capital can be purchased in unlimited quantities at a cost of
$5/unit of capital. If K units of capital and L units of labor
are available during a week, then L1/2K1/3 machines can be
produced. Each machine sells for $270. How can the firm
maximize its weekly profits?

6 Use the K–T conditions to find the optimal solution to
the following NLP:

min z � (x1 � 1)2 � (x2 � 2)2

s.t. � x1 � x2 � 1

s.t. � x1 � x2 � 2

s.t. �x1 x1, x2 � 0

7 For Example 31, explain why ��1 � 10 and ��2 � 0.
(Hint: Think about the economic principle that for each
product produced, marginal revenue must equal marginal
cost.)

8 Use the K–T conditions to find the optimal solution to
the following NLP:

max z � � x2
1 � x2

2 � 4x1 � 6x2

s.t. x1 � x2 � 6

s.t. x1 � x2 � 3

s.t. x1 � x2 � 4

s.t. x1 x1, x2 � 0

9 Use the K–T conditions to find the optimal solution to
the following NLP:

min z � e�x1 � e�2x2

s.t. x1 � x2 � 1

s.t. x1, x2 � 0

10 Use the K–T conditions to find the optimal solution to
the following NLP:

min z � (x1 � 3)2 � (x2 � 5)2

s.t. x1 � x2 � 7

s.t. x1 x1, x2 � 0

For Problems 11–15, use LINGO to solve the problem. Then
explain whether you are sure the program has found the
optimal solution.

11 Solve Problem 7 of Section 11.2.

12 Solve Problem 8 of Section 11.2.

13 Solve Problem 11 of Section 11.2.

14 Solve Problem 15 of Section 11.2.

15 Solve Problem 16 of Section 11.2.

†Based on Littlechild, “Peak Loads” (1970).
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Group B

16 We must determine the percentage of our money to be
invested in stocks x and y. Let a � percentage of money
invested in x and b � 1 � a � percentage of money invested
in y. A choice of a and b is called a portfolio. A portfolio is
efficient if there exists no other portfolio whose return has
a higher mean return and lower variance, or a higher mean
return and the same variance, or a lower variance with the
same mean return. Let x� be the mean return on stock x and
y� be the mean return on stock y. The variance of the annual
return on one share of stock x is var x, and the variance of
the annual return on one share of stock y is var y. Assume
that the covariance between the annual return for one share
of x and one share of y is cov(x, y). If we invest a% of our

money in stock x and b% in stock y, the variance of the
return is given by

a2 var x � b2 var y � 2ab cov(x, y)

Consider the following NLP:

max z � ax� � by�
s.t. a2var x � b2var y � 2ab cov(x, y) � v*,

a � b � 1

where v* is a given non-negative number.

a Show that any solution to this NLP is an efficient
portfolio.

b Show that as v* ranges over all non-negative num-
bers, all efficient portfolios are obtained.

11.10 Quadratic Programming

Consider an NLP whose objective function is the sum of terms of the form x
k1

1 x
k2

2 . . . x
kn

n.

The degree of the term x
k1

1 x
k1

2 . . . x
kn

n is k1 � k2 � ��� kn. Thus, the degree of the term x2
1x2

is 3, and the degree of the term x1x2 is 2. An NLP whose constraints are linear and whose

objective is the sum of terms of the form x
k1

1 x
k2

2 . . . x
kn

n (with each term having a degree of

2, 1, or 0) is a quadratic programming problem (QPP).

Several algorithms can be used to solve QPPs [see Bazaraa and Shetty (1993, Chapter 11)].

We discuss here the application of quadratic programming to portfolio selection and show how

LINGO can be used to solve QPPs. We also describe Wolfe’s method for solving QPPs.

Quadratic Programming and Portfolio Selection

Consider an investor who has a fixed amount of money that can be invested in several in-

vestments. It is often assumed that an investor wants to maximize the expected return

from his investments (portfolio) while simultaneously ensuring that the risk of his port-

folio is small (as measured by the variance of the return earned by the portfolio). Unfor-

tunately, the return on stocks that yield a large expected return is usually highly variable.

Thus, one often approaches the problem of selecting a portfolio by choosing an accept-

able minimum expected return and finding the portfolio with the minimum variance that

attains an acceptable expected return. For example, an investor may seek the minimum

variance portfolio that yields a 12% expected return. By varying the minimum acceptable

expected return, the investor may obtain and compare several desirable portfolios.

These ideas reduce the portfolio selection problem to a quadratic programming prob-

lem. To see this, we need to observe that given random variables X1, X2, ���, Xn and con-

stants a, b, and k,

E(X1 � X2 � ��� � Xn) � E(X1) � E(X2) � ��� � E(Xn) (59)

var (X1 � X2 � ��� � Xn) � var X1 � var X2 � ��� � var Xn � �
i≠j

cov(Xi, Xj) (60)

E(kXi) � kE(Xi) (61)

var (kXi) � k2var Xi (62)

cov(aXi, bXj) � ab cov (Xi, Xj) (63)

Here, cov(X,Y) is the covariance between random variables X and Y. In the following ex-

ample, we show how the portfolio selection problem reduces to a quadratic programming

problem.



1 1 . 1 0 Quadratic Programming 681

I have $1,000 to invest in three stocks. Let Si be the random variable representing the an-

nual return on $1 invested in stock i. Thus, if Si � 0.12, $1 invested in stock i at the be-

ginning of a year was worth $1.12 at the end of the year. We are given the following in-

formation: E(S1) � 0.14, E(S2) � 0.11, E(S3) � 0.10, var S1 � 0.20, var S2 � 0.08, var

S3 � 0.18, cov (S1, S2) � 0.05, cov (S1, S3) � 0.02, cov (S2, S3) � 0.03. Formulate a

QPP that can be used to find the portfolio that attains an expected annual return of at least

12% and minimizes the variance of the annual dollar return on the portfolio.

Solution Let xj � number of dollars invested in stock j( j � 1, 2, 3). Then the annual return on the

portfolio is (x1S1 � x2S2 � x3S3)/1,000 and the expected annual return on the portfolio

is [by (59) and (61)]:

To ensure that the portfolio has an expected return of at least 12%, we must include the

following constraint in the formulation:

� 0.12 � 0.14x1 � 0.11x2 � 0.10x3 � 0.12 (1,000) � 120

Of course, we must also include the constraint x1 � x2 � x3 � 1,000. We assume that the

amount invested in a stock must be nonnegative (that is, no short sales of stock are allowed)

and add the constraints x1, x2, x3 � 0. Our objective is simply to minimize the variance of

the portfolio’s final value. From (60), the variance of the final value is given by

var (x1S1 � x2S2 � x3S3) � var (x1S1) � var (x2S2) � var (x3S3)

� 2 cov(x1S1, x2S2) � 2 cov(x1S1, x3S3)

� 2 cov(x2S2, x3S3)

� x2
1 var S1 � x2

2 var S2 � x2
3 var S3 � 2x1x2cov(S1, S2)

� 2x1x3cov(S1, S3) � 2x2x3 cov(S2, S3)

[from Equations (62) and (63)]

� 0.20x2
1 � 0.08x2

2 � 0.18x2
3 � 0.10x1x2

� 0.04x1x3 � 0.06x2x3

Observe that each term in the last expression for the portfolio’s variance is of degree 2.

Thus, we have an NLP with linear constraints and an objective function consisting of

terms of degree 2. To obtain the minimum variance portfolio yielding an expected return

of at least 12%, we must solve the following QPP:

min z � 0.20x2
1 � 0.08x2

2 � 0.18x2
3 � 0.10x1x2 � 0.04x1x3 � 0.06x2x3

s.t. 0.14x1 � 0.11x2 � 0.10x3 � 120 .10x1x2 � 0.04x1x3 � 0.06x2x3
(64)

s.t. 0.14x1 � 0.11x2 � 0.10x3 � 1,00010x1x2 � 0.04x1x3 � 0.06x2x3

s.t. 0.14x1 � 0.11x2 x1, x2, x3 � 0� 0.10x1x2 � 0.04x1x3 � 0.06x2x3

R E M A R K S 1 The idea of using quadratic programming to determine optimal portfolios comes from Markowitz
(1959) and is part of the work that won him the Nobel Prize in economics.
2 In Problem 9, we will discuss how to use actual data to estimate the mean and variance of the
return on an investment, as well as the covariance of the returns on pairs of investments.
3 In Problem 10, we explore Sharpe’s (1963) single-factor model, which greatly simplifies port-
folio optimization.

0.14x1 � 0.11x2 � 0.10x3���
1,000

x1E(S1) � x2E(S2) � x3E(S3)
����

1,000

Portfolio OptimizationE X A M P L E  3 5
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4 In reality, transaction costs are incurred when investments are bought and sold. In Problem 11,
we explore how transaction costs change portfolio optimization models.

Solving NLPs with LINGO

When LINGO solves nonlinear programming problems, it assumes all variables are non-

negative. The following LINGO model (file Port.lng) can be used to solve the portfolio

selection problem, Example 33.

MODEL:

1]SETS:

2]STOCKS/1..3/:MEAN,AMT;

3]PAIRS(STOCKS,STOCKS):COV;

4]ENDSETS

5]MIN=@SUM(PAIRS(I,J):AMT(I)*AMT(J)*COV(I,J));

6]@SUM(STOCKS:AMT)=1000;

7]@SUM(STOCKS:AMT*MEAN)>RQRT;

8]DATA:

9]MEAN= .14,.11,.10;

10]RQRT=120;

11]COV= .2,.05,.02,

12].05,.08,.03,

13].02,.03,.18;

14]ENDDATA

END

Line 2 defines the set of available investments, and associates with each the mean re-

turn per dollar invested (MEAN) and the amount placed in each investment (AMT). Line

3 associates with stocks I and J the quantity COV(I, J ) � COV(Xi, Xj). Note that COV(I,

I) � VAR Xi. Line 5 minimizes the variance of the portfolio. We compute the variance

of the portfolio (in dollars2) by summing over all pairs (I, J ) of investments AMT(I ) *

AMT(J ) * COV(I, J ). Lines 6 and 7 ensure that the total amount invested will equal

$1,000 and that the expected return on the portfolio will exceed our required rate of re-

turn (RQRT), respectively. (Note that RQRT is input in line 10 of the DATA section.)

The expected annual return on $1 placed in each investment is defined in line 9. Lines

11–13 construct the covariance matrix to complete the model. After selecting the solu-

tion, we obtain the optimal solution: z-value � 75,238 dollars2, AMT(1) � $380.95,

AMT(2) � $476.19, and AMT(3) � $142.86. See Figure 45.

Port.lng

MODEL:

   1)  MIN= .20 * X1 ^ 2 + .08 * X2 ^ 2 + .18 * X3 ^ 2 + .10 * X1 * X2 +

       .04 * X1 * X3 + .06 * X2 * X3 ;

   2)  .14 * X1 + .11 * X2 + .10 * X3 > 120 ;

   3)  X1 + X2 + X3 = 1000 ;

   4)  X1 > 0 ;

   5)  X2 > 0 ;

   6)  X3 > 0 ;

END

SOLUTION STATUS:  OPTIMAL TO TOLERANCES.  DUAL CONDITIONS:  SATISFIED.

    

            OBJECTIVE FUNCTION VALUE

         1)     75238.095110

   VARIABLE        VALUE         REDUCED COST

         X1       380.952379          .000000

         X2       476.190470         -.000001

         X3       142.857151          .000000

        ROW   SLACK OR SURPLUS          PRICE

         2)          .000000     -2761.906304

         3)          .000000       180.952513

         4)       380.952379          .000000

         5)       476.190470          .000000

         6)       142.857151          .000000F I G U R E  45
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By modifying the data of our LINGO model, we could easily solve for a variance-

minimizing portfolio that attains a desired expected return when many stocks are available.

Spreadsheet Solution of NLP

We now illustrate how to use the Excel Solver to solve Example 35. Figure 46 (file

Port.xls) shows the solution to Example 35 obtained with Solver, using the following 

procedure.

Solving Portfolio Optimization Problems with Excel Solver

We now show how to use the Excel Solver to solve a portfolio optimization problem. The

key is to note that formulas (60) and (62) imply that for random variables X1, X2, . . . , Xn:

var(c1X1 � c2X2� � � � � � cnXn) � [c1, c2, . . . , cn](covariance matrix)[c1, c2, . . . , cn]T

Here is how we proceed.

Step 1 In A3:C3, enter trial values for the amount invested in each stock.

Step 2 In cell D3, compute the total invested with the formula

�SUM(A3:C3)

Step 3 In cell D5, compute the expected dollar return on the portfolio with the formula

�SUMPRODUCT(A5:C5,A3:C3)

Step 4 In cell D8, compute the variance of the portfolio with the following array formula

�MMULT(A3:C3,MMULT(A8:C10,TRANSPOSE(A3:C3)))

This formula multiplies the vector of amounts invested in each stock times the covariance

matrix times the transpose of the vector of amounts invested in each stock. (Note: You

must hit Control Shift Enter for this formula to work.)

Step 5 Now complete the Solver dialog box as shown in Figure 46. We minimize vari-

ance of dollar profit (cell D8). We invest exactly $1,000 (D3 � F3) and ensure that we

Port.xls

F I G U R E  46
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earn an expected return of at least $120 (D5��F5). Constraining the amount placed in

each investment to be nonnegative rules out short sales. From Figure 47, we find the same

optimal solution as we found with LINGO.

Wolfe’s Method for Solving Quadratic Programming Problems

Wolfe’s method may be used to solve QPPs in which all variables must be nonnegative.

We illustrate the method by solving the following QPP:

min z � �x1 � x2 � (�
1

2
�)x2

1 � x2
2 � x1x2

s.t. �2x1 � x2 � 3

s.t. �2x1 � 3x2 � �6

x1, x2 � 0

The objective function may be shown to be convex, so any point satisfying the

Kuhn–Tucker conditions (36	)–(39	) will solve this QPP. After employing excess variables

e1 for the x1 constraint and e2 for the x2 constraint in (36	), e	2 for the constraint 

�2x1 � 3x2 � �6, and a slack variable s	1 for the constraint x1 � x2 � 3, the K–T con-

ditions may be written as

x1 � 1 � x2 � �1 � 2�2 � e1 � 0 [x1 constraint in (36	)]

2x2 � 1 � x1 � �1 � 3�2 � e2 � 0 [x2 constraint in (36	)]

x1 � x2 � s	1 � 3

2x1 � 3x2 � e	2 � 6

All variables nonnegative

�2e	2 � 0, �1s	1 � 0, e1x1 � 0, e2x2 � 0

Observe that with the exception of the last four equations, the K–T conditions are all lin-

ear or nonnegativity constraints. The last four equations are the complementary slackness

conditions for this QPP. For a general QPP, the complementary slackness conditions may

be verbally expressed by

ei from xi constraint in (36	) and xi cannot both be positive
(65)

Slack or excess variable for the ith constraint and �i cannot both be positive

To find a point satisfying the K–T conditions (except for the complementary slackness

conditions), Wolfe’s method simply applies a modified version of Phase I of the two-phase

 

1

2

3

4

5

6

7

8

9

10

A B C D E F

PORTFOLIO EXAMPLE

X1 X2 X3 TOTALI NV

380.9523849 476.190461 142.8571541 1000 = 1000

E(X1) E(X2) E(X3) MEANRET

0.14 0.11 0.1 120 >= 120

COVARIANCE

MATRIX PORTVAR

0.2 0 .05 0.02 75238.09525

0.05 0.08 0.03

0.02 0.03 0.18  
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simplex method. We first add an artificial variable to each constraint in the K–T condi-

tions that does not have an obvious basic variable, and then we attempt to minimize the

sum of the artificial variables. To ensure that the final solution (with all artificial variables

equal to zero) satisfies the complementary slackness conditions (65), Wolfe’s method

modifies the simplex’s choice of the entering variable as follows:

1 Never perform a pivot that would make the ei from the ith constraint in (36	) and xi

both basic variables.

2 Never perform a pivot that would make the slack (or excess) variable for the ith con-

straint and �i both basic variables.

To apply Wolfe’s method to our example, we must solve the following LP:

min w � a1 � a2 � a	2

s.t. �x1 � 2x2 � �1 � 2�2 � e1 � a1 � 1

s.t. �x1 � 2x2 � �1 � 3�2 � e2 � a2 � 1

s.t. �x1 � 2x2 � s	1 � 32 � e2 � a2 � 1

s.t. 2x1 � 3x2 � e	2 � a	2 � 6

All variables nonnegative

After eliminating the artificial variables from row 0, we obtain the tableau in Table 12.

The current basic feasible solution is w � 8, a1 � 1, a2 � 1, s	1 � 3, a 	2 � 6. Since x2

has the most positive coefficient in row 0, we choose to enter x2 into the basis. The re-

sulting tableau is Table 13. The current basic feasible solution is w � 6, a1 � �
3

2
�, x2 � �

1

2
�,

s	1 � �
5

2
�, a	2 � �

9

2
�. Since x1 has the most positive coefficient in row 0, we now enter x1 into

the basis. The resulting tableau is Table 14.

The current basic feasible solution is w � �
6

7
�, a1 � �

6

7
�, x2 � �

8

7
�, s	1 � �

4

7
�, x1 � �

9

7
�. The sim-

plex method recommends that �1 should enter the basis. However, Wolfe’s modification

of the simplex method for selecting the entering variable does not allow �1 and s	1 to both

TA B L E  12

Initial Tableau for Wolfe’s Method

w x1 x2 �1 �2 e1 e2 s �1 e�2 a1 a2 a �2 rhs

1 �2 4 2 �5 �1 �1 0 �1 0 0 0 8

0 1 �1 1 �2 �1 0 0 0 1 0 0 1

0 �1 2 1 �3 0 �1 0 0 0 1 0 1

0 1 1 0 0 0 0 1 0 0 0 0 3

0 2 3 0 0 0 0 0 �1 0 0 1 6

TA B L E  13

First Tableau for Wolfe’s Method

w x1 x2 �1 �2 e1 e2 s �1 e�2 a1 a2 a �2 rhs

1 �4 0 0 1 �1 1 0 �1 0 �2 0 6

0 �
1
2

� 0 �
3
2

� ��
7
2

� �1 ��
1
2

� 0 0 1 �
1
2

� 0 �
3
2

�

0 ��
1
2

� 1 �
1
2

� ��
3
2

� 0 ��
1
2

� 0 0 0 �
1
2

� 0 �
1
2

�

0 �
3
2

� 0 ��
1
2

� �
3
2

� 0 �
1
2

� 1 0 0 ��
1
2

� 0 �
5
2

�

0 �
7
2

� 0 ��
3
2

� �
9
2

� 0 �
3
2

� 0 �1 0 ��
3
2

� 1 �
9
2

�
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be basic variables. Thus, �1 cannot enter the basis. Because e	2 is the only other variable

with a positive coefficient in row 0, we now enter e	2 into the basis. The resulting tableau

is Table 15. The current basic feasible solution is w � �
2

3
�, a1 � �

2

3
�, x2 � �

4

3
�, e	2 � �

4

3
�, and 

x1 � �
5

3
�. Because s	1 is now a nonbasic variable, we can enter �1 into the basis. The re-

sulting tableau is Table 16. This is (finally!) an optimal tableau. Because w � 0, we have

found a solution that satisfies the Kuhn–Tucker conditions and is optimal for the QPP.

Thus, the optimal solution to the QPP is x1 � �
9

5
�, x2 � �

6

5
�. From the optimal tableau, we

also find that �1 � �
2

5
� and �2 � 0 (because e	2 � �

6

5
� � 0, we know that �2 � 0 must hold).

Wolfe’s method is guaranteed to obtain the optimal solution to a QPP if all leading

principal minors of the objective function’s Hessian are positive. Otherwise, Wolfe’s

method may not converge in a finite number of pivots. In practice, the method of com-

plementary pivoting is most often used to solve QPPs. Unfortunately, space limitations

preclude a discussion of complementary pivoting. The interested reader is referred to

Shapiro (1979).

TA B L E  14

Second Tableau for Wolfe’s Method

w x1 x2 �1 �2 e1 e2 s �1 e�2 a1 a2 a �2 rhs

1 0 0 �
1
7
2
� ��

2
7
9
� �1 ��

5
7

� 0 �
1
7

� 0 ��
2
7

� ��
8
7

� �
6
7

�

0 0 0 �
1
7
2
� ��

2
7
9
� �1 ��

5
7

� 0 �
1
7

� 1 �
5
7

� ��
1
7

� �
6
7

�

0 0 1 �
2
7

� ��
6
7

� 0 ��
2
7

� 0 ��
1
7

� 0 �
2
7

� �
1
7

� �
8
7

�

0 0 0 �
1
7

� ��
3
7

� 0 ��
1
7

� 1 �
3
7

� 0 �
1
7

� ��
3
7

� �
4
7

�

0 1 0 ���
3
7

� �
9
7

� 0 �
3
7

� 0 ��
2
7

� 0 �
3
7

� �
2
7

� �
9
7

�
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Third Tableau for Wolfe’s Method

w x1 x2 �1 �2 e1 e2 s �1 e�2 a1 a2 a �2 rhs

1 0 0 �
5
3

� �4 �1 ��
2
3

� ��
1
3

� 0 0 ��
1
3

� �1 �
2
3

�

0 0 0 �
5
3

� �4 �1 ��
2
3

� ��
1
3

� 0 1 �
2
3

� 0 �
2
3

�

0 0 1 �
1
3

� �1 0 ��
1
3

� �
1
3

� 0 0 �
1
3

� 0 �
4
3

�

0 0 0 �
1
3

� �1 0 ��
1
3

� �
7
3

� 1 0 �
1
3

� �1 �
4
3

�

0 1 0 ��
1
3

� �1 0 �
1
3

� �
2
3

� 0 0 ��
1
3

� 0 �
5
3

�
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Optimal Tableau for Wolfe’s Method

w x1 x2 �1 �2 e1 e2 s �1 e�2 a1 a2 a �2 rhs

1 0 0 0 0 0 0 0 0 �1 �1 �1 0

0 0 0 1 ��
1
5
2
� ��

3
5

� ��
2
5

� ��
1
5

� 0 �
3
5

� �
2
5

� 0 �
2
5

�

0 0 1 0 ��
1
5

� �
1
5

� ��
1
5

� �
2
5

� 0 ��
1
5

� �
1
5

� 0 �
6
5

�

0 0 0 0 ��
1
5

� �
1
5

� ��
1
5

� �
1
5
2
� 1 ��

1
5

� �
1
5

� �1 �
6
5

�

0 1 0 0 �
1
5

� ��
1
5

� �
1
5

� �
3
5

� 0 �
1
5

� ��
1
5

� 0 �
9
5

�
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P R O B L E M S
Group A

1 We are considering investing in three stocks. The random
variable Si represents the value one year from now of $1
invested in stock i. We are given that E(S1) � 1.15, E(S2) �
1.21, E(S3) � 1.09; var S1 � 0.09, var S2 � 0.04, var S3 �
0.01; cov(S1, S2) � 0.006, cov(S1, S3) � �0.004, and cov(S2,
S3) � 0.005. We have $100 to invest and want to have an
expected return of at least 15% during the next year.
Formulate a QPP to find the portfolio of minimum variance
that attains an expected return of at least 15%.

2 Show that the objective function for Example 35 is
convex [it can be shown that the variance of any portfolio
is a convex function of (x1, x2, . . . , xn)].

3 In Figure 45, interpret the entries in the PRICE column
for rows 2 and 3.

4 Fruit Computer Company produces Pear and Apricot
computers. If the company charges a price p1 for Pear
computers and p2 for Apricot computers, it can sell q1 Pear
and q2 Apricot computers, where q1 � 4,000 � 10p1 � p2,
and q2 � 2,000 � 9p2 � 0.8p1. Manufacturing a Pear
computer requires 2 hours of labor and 3 computer chips.
An Apricot computer uses 3 hours of labor and 1 computer
chip. Currently, 5,000 hours of labor and 4,500 chips are
available. Formulate a QPP to maximize Fruit’s revenue.
Use the K–T conditions (or LINGO) to find Fruit’s optimal
pricing policy. What is the most that Fruit should pay for
another hour of labor? What is the most that Fruit should
pay for another computer chip?

5 Use Wolfe’s method to solve the following QPP:

min z � 2x2
1 � x2

s.t. 2x1 � x2 � 1

s.t. 2x1 � x2 � 1

x1, x2 � 0

6 Use Wolfe’s method to solve the following QPP:

min x1 � 2x2
2 � 2

s.t. x1 � x2 � 2

2x1 � x2 � 3

x1, x2 � 0

7 In an electrical network, the power loss incurred when a
current of I amperes flows through a resistance of R ohms
is I2R watts. In Figure 48, 710 amperes of current must be
sent from node 1 to node 4. The current flowing through
each node must satisfy conservation of flow. For example,
for node 1, 710 � flow through 1-ohm resistor � flow
through 4-ohm resistor. Remarkably, nature determines the
current flow through each resistor by minimizing the total
power loss in the network.

a Formulate a QPP whose solution will yield the cur-
rent flowing through each resistor.

b Use LINGO to determine the current flowing through
each resistor.

8 Use Wolfe’s method to find the optimal solution to the
following QPP:

min z � x2
1 � x2

2 � 2x1 � 3x2 � x1x2

s.t. x1 � 2x2 � 2

s.t. x1, x2 � 0

Group B

9 (This problem requires some knowledge of regression.)
In Table 17, you are given the annual returns on three
different types of assets (T-bills, stocks, and gold) (file
Invest68.xls) during the years 1968–1988. For example, $1
invested in T-bills at the beginning of 1978 grew to $1.07
by the end of 1978. You have $1,000 to invest in these three
investments. Your goal is to minimize the variance of the
annual dollar return of your portfolio subject to the
constraint that the expected return on the portfolio for a
one-year period be at least 10%. Determine how much
money should be invested in each investment. Use a
spreadsheet to compute the mean, standard deviation, and
variance of the return on each asset. To compute the
covariance between each pair of assets, remember that an
estimate of the covariance of T-bills and gold is given by 
cov(T, G) � sTsGrTG (where sT � standard deviation of
return on T-bills; sG � standard deviation of return on gold).
Note that rTG � �(R2)1/2, where the sign of r is the same
as the slope of the least squares line.

In addition to determining the amount to be invested in
each asset, answer the following two questions.

a I am 95% sure that the increase in the value of my
assets during the next year will be between ______ and
______ .

b I am 95% sure that the percentage annual return 
on my portfolio will be between ______ and ______ .

10 (Refer to Problem 9 data.) Suppose that the return on
the ith asset may be estimated as mi � biM � ei, where M
is the return on the market. Assume that the ei are
independent and that the standard deviation of ei may be
estimated by the standard error of the estimate from the

2

3

1
710 710

4

1

3

6

12

4
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11.11 Separable Programming†

Many NLPs are of the following form:

max (or min) z � �
j�n

j�1

fj (xj)

s.t. �
j�n

j�1

gij(xj) � bi (i � 1, 2, . . . , m)

Because the decision variables appear in separate terms of the objective function and the

constraints, NLPs of this form are called separable programming problems. Separable

programming problems are often solved by approximating each fj(xj) and gij(xj) by a

piecewise linear function (see Section 9.2). Before describing the separable programming

technique, we give an example of a separable programming problem.

Oilco must determine how many barrels of oil to extract during each of the next two years.

If Oilco extracts x1 million barrels during year 1, each barrel can be sold for $30 � x1.

If Oilco extracts x2 million barrels during year 2, each barrel can be sold for $35 � x2.

The cost of extracting x1 million barrels during year 1 is x2
1 million dollars, and the cost

of extracting x2 million barrels during year 2 is 2x2
2 million dollars. A total of 20 million

Separable ProgrammingE X A M P L E  3 6

TA B L E  17

Annual Returns on Assets

Year Stocks Gold T-Bills

1968 11 11 5

1969 �9 8 7

1970 4 �14 7

1971 14 14 4

1972 19 44 4

1973 �15 66 7

1974 �27 64 8

1975 37 0 6

1976 24 �22 5

1977 �7 18 5

1978 7 31 7

1979 19 59 10

1980 33 99 11

1981 �5 �25 15

1982 22 4 11

1983 23 �11 9

1984 6 �15 10

1985 32 �12 8

1986 19 16 6

1987 5 22 5

1988 17 �2 6

regression, with the return on the market as independent
variable and the return on the ith asset as the dependent
variable. Now you can express the variance of the portfolio
without calculating the covariance between each pair of
investments. (Hint: The variance of the market will enter
into your equation). Use the estimated regression equation
to estimate the mean return on the ith asset as a function of
the return on the market.

For the data in Problem 9, formulate an NLP that can be
used to find the minimum variance portfolio yielding an
expected return of at least 10%. Why is this method useful
when many potential investments are available?

11 (Refer to Problem 9 data.) Suppose that you now hold
30% of your investment in stocks, 50% in T-bills, and 20%
in gold. Assume that transactions incur costs. Every $100 
of stocks traded costs you $1, every $100 of your 
gold portfolio traded costs you $2, and every $1 of your 
T-bill portfolio traded costs you 5¢. Find the minimum
variance portfolio that yields, after transaction costs, an
expected return of at least 10%. (Hint: Define variables for
the dollars bought or sold in each investment.)

†This section covers topics that may be omitted with no loss of continuity.
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barrels of oil are available, and at most $250 million can be spent on extraction. Formu-

late an NLP to help Oilco maximize profits (revenues less costs) for the next two years.

Solution Define

x1 � millions of barrels of oil extracted during year 1

x2 � millions of barrels of oil extracted during year 2

Then the appropriate NLP is

max z � x1(30 � x1) � x2(35 � x2) � x2
1 � 2x2

2

� 30x1 � 35x2 � 2x2
1 � 3x2

2

s.t. x2
1 � 2x2

2 � 250 (66)

x1 � 2x2 � 20

x1, x2 � 0

This is a separable programming problem with f1(x1) � 30x1 � 2x2
1, f2(x2) � 35x2 � 3x2

2,

g11(x1) � x2
1, g12(x2) � 2x2

2, g21(x1) � x1, and g22(x2) � x2.

Before approximating the functions fj and gij by piecewise linear functions, we must

determine (for j � 1, 2, . . . , n) numbers aj and bj such that we are sure that the value of

xj in the optimal solution will satisfy aj � xj � bj. For the previous example, a1 � a2 �

0 and b1 � b2 � 20 will suffice. Next, for each variable xj we choose grid points pj1, pj2,

. . . , pjk with aj � pj1 � pj2 � ��� � pjk � bj (to simplify notation, we assume that each

variable has the same number of grid points). For the previous example, we use five grid

points for each variable: p11� p21 � 0, p12 � p22 � 5, p13 � p23 � 10, p14 � p24 � 15,

p15 � p25 � 20. The essence of the separable programming method is to approximate

each function fj and gij as if it were a linear function on each interval [ pj,r�1, pj,r].

More formally, suppose pj,r � xj � pj,r�1. Then for some � (0 � � � 1), xj � �pj,r �

(1 � �)pj,r�1. We approximate fj(xj) and gij(xj) (see Figure 49) by

f̂j(xj) � �fj ( pj,r) � (1 � �)fj( pj,r�1)

ĝij (xj) � �gij( pj,r) � (1 � �)gij ( pj,r�1)

For example, how would we approximate f1(12)? Because f1(10) � 30(10) � 2(10)2 �

100, f1(15) � 30(15) � 2(15)2 � 0, and 12 � 0.6(10) � 0.4(15), we approximate f1(12)

by f̂1(12) � 0.6(100) � 0.4(0) � 60 (see Figure 50).

More formally, to approximate a separable programming problem, we add constraints

of the form

�j1 � �j2 � ��� � �j,k � 1 ( j � 1, 2, . . . , n) (67)

xj � �j1pj1 � �j2pj2 � ��� � �j,kpj,k ( j � 1, 2, . . . , n) (68)

�j,r � 0 ( j � 1, 2, . . . , n; r � 1, 2, . . . , k) (69)

fj(xj)

Pj ,r xj Pj , r + 1

fj(xj)

F I G U R E  49

The Separable
Programming

Approximation of fj (xj)
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Then we replace fj(xj) by

f̂j(xj) � �j1 fj( pj1) � �j2 fj( pj2) � ��� � �j,k fj( pj,k) (70)

and replace gij(xj) by

ĝij(xj) � �j1gij( pj1) � �j2gij( pj2) � ��� � �j,kgij( pj,k) (71)

To ensure accuracy of the approximations in (70) and (71), we must be sure that for each

j( j � 1, 2, . . . , n) at most two of the �j,k’s are positive. Also, for a given j, suppose that

two �j,k’s are positive. If �j,k	 is positive, then the other positive �j,k must be either �j,k	�1

or �j,k	�1 (we say that �j,k	 is adjacent to �j,k	�1 and �j,k	�1). To see the reason for these

restrictions, suppose we want x1 � 12. Then our approximations will be most accurate if

�13 � 0.6 and �14 � 0.4. In this case, we approximate f1(12) by 0.6f1(10) � 0.4f1(15). We

certainly don’t want to have �11 � 0.4 and �15 � 0.6. This would yield x1 � 0.4(0) �

0.6(20) � 12, but it would approximate f1(12) by f1(12) � 0.4f1(0) � 0.6f1(20), and in

most cases this would be a poor approximation of f1(12) (see Figure 51). For the approx-

imating problem to yield a good approximation to the functions fi and gj,k, we must add

the following adjacency assumption: For j � 1, 2, . . . , n, at most two �j,k’s can be pos-

itive. If for a given j, two �j,k’s are positive, then they must be adjacent.

Thus, the approximating problem consists of an objective function obtained from (70)

and constraints obtained from (67), (68), (69), and (71) and the adjacency assumption.

f1(x1)

f1(12) = 72

f1(12) = 60

x1

5 10 15

20

40

60

80

100

120

140

F I G U R E  50

Approximation of f1(12)

f1(x1)

f1(12)

f1(20)

0.4 f1(0) + 0.6f1(20)

0 x1

10 15 20
F I G U R E  51

Violating the Adjacency
Assumption Results in 
a Poor Approximation 

of f1(12)
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Actually, the constraints (68) are only used to transform the values of the �j,k’s into val-

ues for the original decision variables (the xj’s) and are not needed to determine the opti-

mal values of the �j,k’s. The constraints (68) need not be part of the approximating prob-

lem, and the approximating problem for a separable programming problem may be

written as follows:

max (or min) ẑ � �
j�n

j�1

[�j1 fj( pj1) � �j 2 fj( pj2) � ��� � �j,k fj( pj,k)]

s.t. �
j�n

j�1

[�j1gij( pj1) � �j2gij( pj2) � ��� � �j,kgij( pjk)] � bi (i � 1, 2, . . . , m)

�j1 � �j2 � ��� � �j,k � 1 ( j � 1, 2, . . . , n)

�j,r � 0 ( j � 1, 2, . . . , n; r � 1, 2, . . . , k)

Adjacency assumption

For the previous example, we have

f1(0) � 0, f1(5) � 100, f1(10) � 100, f1(15) � 0, f1(20) � �200

f2(0) � 0, f2(5) � 100, f2(10) � 50, f2(15) � �150, f2(20) � �500

g11(0) � 0, g11(5) � 25, g11(10) � 100, g11(15) � 225, g11(20) � 400

g12(0) � 0, g12(5) � 50, g12(10) � 200, g12(15) � 450, g12(20) � 800

g21(0) � 0, g21(5) � 5,0 g21(10) � 10,0 g21(15) � 15,0 g21(20) � 20

g22(0) � 0, g22(5) � 5,0 g22(10) � 10,0 g22(15) � 15,0 g22(20) � 20

Applying (70) to the objective function of (66) yields an approximating objective func-

tion of

max ẑ � 100�12 � 100�13 � 200�15 � 100�22 � 50�23 � 150�24 � 500�25

Constraint (67) yields the following two constraints:

�11 � �12 � �13 � �14 � �15 � 1

�21 � �22 � �23 � �24 � �25 � 1

Constraint (68) yields the following two constraints:

x1 � 5�12 � 10�13 � 15�14 � 20�15

x2 � 5�22 � 10�23 � 15�24 � 20�25

Applying (71) transforms the two constraints in (66) to

25�12 � 100�13 � 225�14 � 400�15 � 50�22 � 200�23 � 450�24 � 800�25 � 250

5�12 � 10�13 � 15�14 � 20�15 � 5�22 � 10�23 � 15�24 � 20�25 � 20

After adding the sign restrictions, (68), and the adjacency assumption, we obtain

max ẑ � 100�12 � 100�13 � 200�15 � 100�22 � 50�23 � 150�24 � 500�25

s.t. 25�11 � �12 � �13 � �14 � �15 � 100�22 � 50�23 � 150�24 � 500�25

s.t. 25�21 � �22 � �23 � �24 � �25 �100�22 � 50�23 � 150�24 � 500�25

s.t. 25�12 � 100�13 � 225�14 � 400�15 � 50�22 � 200�23 � 450�24 � 800�25 � 250

s.t. 25�12 � 10�130 � 15�14 5� 20�15 0� 5�22 0� 10�23 0� 15�24 0� 20�25 0� 20

�j,k � 0( j � 1, 2; k � 1, 2, 3, 4, 5)

Adjacency assumption
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At first glance, the approximating problem may appear to be a linear programming prob-

lem. If we attempt to solve the approximating problem by the simplex, however, we may

violate the adjacency assumption. To avoid this difficulty, we solve approximating prob-

lems via the simplex algorithm with the following restricted entry rule: If, for a given j

all �j,k � 0, then any �j,k may enter the basis. If, for a given j, a single �j,k (say, �j,k	) is

positive, then �j,k	�1 or �j,k	�1 may enter the basis, but no other �j,k may enter the basis.

If, for a given j, two �j,k’s are positive, then no other �j,k can enter the basis.

There are two situations in which solving the approximating problem via the ordinary

simplex will yield a solution that automatically satisfies the adjacency assumption. If the

separable programming problem is a maximization problem, then each fj(xj) is concave,

and each gij(xj) is convex, then any solution to the approximating problem obtained via

the ordinary simplex will automatically satisfy the adjacency assumption. Also, if the sep-

arable programming problem is a minimization problem, each fj(xj) is convex, and each

gij (xj) is convex, then any solution to the approximating problem obtained via the ordi-

nary simplex will automatically satisfy the adjacency assumption. Problem 3 at the end

of this section indicates why this is the case.

In these two special cases, it can also be shown that as the maximum value of the dis-

tance between two adjacent grid points approaches zero, the optimal solution to the ap-

proximating problem approaches the optimal solution to the separable programming prob-

lem [see Bazaraa and Shetty (1993, p. 450)].

For the previous example, each fj(xj) is concave and each gij(xj) is convex, so to find

the optimal solution to the approximating problem, we may use the simplex and ignore

the restricted entry rule. The optimal solution to the approximating problem for the pre-

vious example is �12 � �22 � 1. This yields x1 � 1(5) � 5, x2 � 1(5) � 5, ẑ � 200.

Compare this with the actual optimal solution to the previous example, which is x1 � 7.5,

x2 � 5.83, z � 214.58.

P R O B L E M S
Group A

Set up an approximating problem for the following separable
programming problems:

1 min z � x2
1 � x2

2

s.t. x2
1 � 2x2

2 � 4

x2
1 � x2

2 � 6

x1, x2 � 0

2 max z � x2
1 � 5x1 � x2

2 � 5x2 � x3

s.t. x1 � x2 � x3 � 4

x2
1 � x2 � x3 � 3

x1, x2, x3 � 0

Group B

3 This problem will give you an idea why the restricted
entry rule is unnecessary when (for a maximization problem)
each fj(xj) is concave and each gij(xj) is convex. Consider
the Oilco example. When we solve the approximating
problem by the simplex, show that a solution that violates
the adjacency assumption cannot be obtained. For example,
why can the simplex not yield a solution (x*) of �11 � 0.4
and �15 � 0.6? To show that this cannot occur, find a feasible
solution to the approximating problem that has a larger 

ẑ-value than x*. [Hint: Show that the solution that is identical
to x* with the exception that �11 � 0, �15 � 0, �13 � 0.6,
and �14 � 0.4 is feasible for the approximating problem
[use the convexity of gij(xj) for this part] and has a larger 
ẑ-value than x* [use concavity of fj(xj) for this part].]

4 Suppose an NLP appears to be separable except for the
fact that a term of the form xixj appears in the objective
function or constraints. Show that an NLP of this type can
be made into a separable programming problem by defining
two new variables yi and yj by xi � �

1

2
�(yi � yj) and xj �

�
1

2
�(yi � yj). Use this technique to transform the following

NLP into a separable programming problem:

max z � x2
1 � 3x1x2 � x2

2

s.t. x1x2 � 4

s.t. x2
1 � x2 � 6

x1, x2 � 0
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11.12 The Method of Feasible Directions†

In Section 11.7, we used the method of steepest ascent to solve an unconstrained NLP.

We now describe a modification of that method—the feasible directions method, which

can be used to solve NLPs with linear constraints. Suppose we want to solve

max z � f (x)

s.t. Ax � b (72)

s.t. Ax � 0

where x � [x1, x2, . . . , xn]T, A is an m � n matrix, 0 is an n-dimensional column vector

consisting entirely of zeros, b is an m � 1 vector, and f (x) is a concave function.

To begin, we must find (perhaps by using the Big M method or the two-phase simplex

algorithm) a feasible solution x0 satisfying the constraints Ax � b. We now try to find a

direction in which we can move away from x0. This direction should have two properties:

1 When we move away from x0, we remain feasible.

2 When we move away from x0, we increase the value of z.

From Section 11.7, we know that if �f (x0) � d � 0 and we move a small distance away

from x0 in a direction d, then f (x) will increase. We choose to move away from x0 in a

direction d0 � x0, where d0 is an optimal solution to the following LP:

max z � �f (x0) � d

s.t. Ad � b(x0)�d (73)

s.t. Ad � 0(x0)�d

Here d � [d1 d2 . . . dn]T. Observe that if d0 solves (73) (and x0 does not), then �f (x0) �

d0 � �f (x0) � x0, or �f (x0) � (d0 � x0) � 0. This means that moving a small distance from

x0 in a direction d0 � x0 will increase z.

We now choose our new point x1 to be x1 � x0 � t0(d0 � x0), where t0 solves

max f [x0 � t0(d0 � x0)]

0 � t0 � 1� t0(d0 � x0)]

It can be shown that f (x1) � f (x0) will hold, and that if f (x1) � f (x0), then x0 is the op-

timal solution to (72). Thus, unless x0 is optimal, x1 will have a z-value larger than x0. It

is easy to show that x1 is a feasible point. Observe that

Ax1 � A[x0 � t0(d0 � x0)] � (1 � t0)Ax0 � t0Ad0 � (1 � t0)b � t0b � b

where the last inequality follows from the fact that both x0 and d0 satisfy the NLP’s con-

straints and 0 � t0 � 1. x1 � 0 follows easily from x0 � 0, d0 � 0, and 0 � t0 � 1.

We now choose to move away from x1 in any direction d1 � x1, where d1 is an opti-

mal solution to the following LP:

max z � �f (x1) � d

s.t. Ad � b(x1)�d

s.t. Ad � 0(x1)�d

Then we choose a new point x2 to be given by x2 � x1 � t1(d1 � x1), where t1 solves

max f [x1 � t1(d1 � x1)]

0 � t1 � 1� t1(d1 � x1)]

†This section covers topics that may be omitted with no loss of continuity.
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Again, x2 will be feasible, and f (x2) � f (x1) will hold. Also, if f (x2) � f (x1), then x1 is

the optimal solution to NLP (72).

We continue in this fashion and generate directions of movement d2, d3, . . . , dn�1 and

new points x3, x4, . . . , xn. We terminate the algorithm if xk � xk�1. This means that xk�1

is an optimal solution to NLP (72). If the values of f are strictly increasing at each itera-

tion of the method, then (as with the method of steepest ascent) we terminate the method

whenever two successive points are very close together.

After the point xk has been determined, an upper bound on the optimal z-value for (72)

is available. It can be shown that if f (x1, xx, . . . , xn) is concave, then

[Optimal z-value for (71)] � f (xk) � �(xk) � [dk � xk]T (74)

Thus, if f (xk) is near the upper bound on the optimal z-value obtained from (74), then we

may terminate the algorithm.

The version of the feasible directions method we have discussed was developed by

Frank and Wolfe. For a discussion of other feasible direction methods, we refer the reader

to Chapter 11 of Bazaraa and Shetty (1993).

The following example illustrates the method of feasible directions.

Perform two iterations of the feasible directions method on the following NLP:

max z � f (x, y) � 2xy � 4x � 6y � 2x2 � 2y2

s.t. x � y � 2) � 2xy � 4x � 6y � 2x2 � 2y2

x, y � 0

Begin at the point (0,0).

Solution �f (x, y) � [2y � 4x � 4 6 � 2x � 4y], so �f (0, 0) � [4 6]. We find a direction to

move away from [0 0] by solving the following LP: 

max z � 4d1 � 6d2

s.t. d1 � d2 � 2

s.t. d1, d2 � 0

The optimal solution to this LP is d1 � 0 and d2 � 2. Thus, d0 � [0 2]T. Since d0 �

x0 � [0 2]T, we now choose x1 � [0 0]T � t0[0 2]T � [0 2t0]T, where t0 solves

max f (0, 2t) � 12t � 8t 2

0 � t � 1

Letting g(t) � 12t � 8t 2, we find g	(t) � 12 � 16t � 0 for t � 0.75. Since g �(t) � 0,

we know that t0 � 0.75. Thus x1 � [0, 1.5]T. At this point, z � f (0, 1.5) � 4.5. We now

have [via (74) with k � 0] the following upper bound on the NLP’s optimal z-value:

(Optimal z-value) � f (0, 0) � [4 6]�[0 2]T � 12

Now �(x1) � f (0, 1.5) � [7 0]. We now find the direction d2 to move away from x1 by

solving

max z � 7d1 � 2

s.t. d1 � d2 � 2

s.t. dd1, d2 � 0

Method of Feasible DirectionsE X A M P L E  3 7
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The optimal solution to this LP is d1 � [2 0]T. Now we find x2 � [0 1.5]T �

t1{[2 0]T � [0 1.5]T} � [2t1 1.5 � 1.5t1]T, where t1 is the optimal solution to

max f (2t, 1.5 � 1.5t)

0 � t � 1

Now f (2t, 1.5 � 1.5t) � 4.5 � 18.5t 2 � 14t. Letting g(t) � 4.5 � 18.5t 2 � 14t, we find

g	(t) � 14 � 37t � 0 for t � �
1

3

4

7
�. Since g�(t) � �37 � 0, we find that t1 � �

1

3

4

7
�. Thus, 

x2 � [�
2

3

8

7
� �

6

7

9

4
�]T � [0.76 0.93]T. Now we have z � f (0.76, 0.93) � 7.15. From (74) (with

k � 1), we find

(Optimal z-value) � 4.5 � [7 0]�{[2 0]T � [0 1.5]T} � 18.5

Since our first upper bound on the optimal z-value (12) is a better bound than 18.5, we

ignore this bound.

Actually, the NLP’s optimal solution is z � 8.17, x � .83, and y � 1.17.

P R O B L E M S
Group A

Perform two iterations of the method of feasible directions
for each of the following NLPs.

1 max z � 4x � 6y � 2x2 � 2xy � 2y2

s.t. x � 2y � 2

s.t. x x, y � 0

Begin at the point (�
1

2
�, �

1

2
�).

2 max z � 3xy � x2 � y2

s.t. 3x � y � 4

s.t. 3x x, y � 0

Begin at the point (1, 0).

11.13 Pareto Optimality and Trade-Off Curves†

In a multiattribute decision-making situation in the absence of uncertainty, we often

search for Pareto optimal solutions. We will assume that our decision maker has two ob-

jectives, and that the set of feasible points under consideration must satisfy a given set of

constraints.

D E F I N I T I O N ■ A solution (call it A) to a multiple-objective problem is Pareto optimal if no

other feasible solution is at least as good as A with respect to every objective and

strictly better than A with respect to at least one objective. ■

If we define the concept of dominated solution as follows, we can rephrase our defini-

tion of Pareto optimality.

D E F I N I T I O N ■ A feasible solution B dominates a feasible solution A to a multiple-objective

problem if B is at least as good as A with repect to every objective and is strictly

better than A with respect to at least one objective. ■

†This section covers topics that may be omitted with no loss of continuity.
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Thus, the Pareto optimal solutions are the set of all undominated feasible solutions.

If we graph the “score” of all Pareto optimal solutions in the x–y plane with the x-axis

score being the score on objective 1 and the y-axis score being the score on objective 2,

the graph is often called an efficient frontier or a trade-off curve.

To illustrate, suppose that the set of feasible solutions to a multiple-objective problem

is the shaded region bounded by the curve AB and the first quadrant in Figure 52a. If we

desire to maximize both objectives 1 and 2, then the curve AB is the set of Pareto opti-

mal points.

For another illustration, suppose the set of feasible solutions to a multiple-objective

problem is all shaded points in the first quadrant bounded from below by the curve AB in

Figure 52b. If our goal is to maximize objective 1 and minimize objective 2, then the

curve AB is the set of Pareto optimal points.

We will illustrate the concept of Pareto optimality (and how to determine Pareto opti-

mal solutions) with the following example.

Chemco is considering producing three products. The per-unit contribution to profit, la-

bor requirements, raw material used per unit produced, and pollution produced per unit

of product are given in Table 18. Currently, 1,300 labor hours and 1,000 units of raw ma-

terial are available. Chemco’s two objectives are to maximize profit and minimize pollu-

tion produced. Graph the trade-off curve for this problem.

Solution If we define xi � number of units of product i produced, then Chemco’s two objectives

may be written as follows:

Objective 1 Profit � 10x1 � 9x2 � 8x3

Objective 2 Pollution � 10x1 � 6x2 � 3x3

Profit Pollution Trade-Off CurveE X A M P L E  3 8
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We will graph pollution on the x-axis and profit on the y-axis. The values of the decision

variables must satisfy the following constraints:

4x1 � 3x2 � 2x3 � 1,300 (Labor constraint) (75)

3x1 � 2x2 � 2x3 � 1,000 (Raw material constraint) (76)

xi � 0 (i � 1, 2, 3) (77)

We can find a Pareto optimal solution by choosing to optimize either of our objectives,

subject to the constraints (75)–(77). We begin by maximizing profit. To do this we must

solve the following LP:

max z � 10x1 � 9x2 � 8x3

s.t. 4x1 � 3x2 � 2x3 � 1,300 (Labor constraint)
(78)

3x1 � 2x2 � 2x3 � 1,000 (Raw material constraint)

xi � 0 (i � 1, 2, 3)

When this LP is solved on LINDO, we find its unique optimal solution to be (call it

A) z � 4,300, x1 � 0, x2 � 300, and x3 � 200. This solution yields a pollution level of

6(300) � 3(200) � 2,400 units. We claim this solution is Pareto optimal. To see this, note

that for this solution not to be Pareto optimal, there would have to be a solution satisfy-

ing (75)–(77) that yielded z � 4,300 and pollution � 2,400, with at least one of these in-

equalities holding strictly. Since x1 � 0, x2 � 300, x3 � 200 is the unique solution to (78),

there is no feasible solution besides A satisfying (75)–(77) that can have z � 4,300. Thus,

A cannot be dominated.

To find other Pareto optimal solutions, we choose any level of pollution (call it POLL)

and solve the following LP:

max z � 10x1 � 9x2 � 8x3

s.t. 4x1 � 3x2 � 2x3 � 1,300 (Labor constraint)

s.t. 3x1 � 2x2 � 2x3 � 1,000 (Raw material constraint) (79)

10x1 � 6x2 � 3x3 � POLL

xi � 0 (i � 1, 2, 3)

Let PROF be the (unique) optimal z-value when this LP is solved. For each value of

POLL, the point (POLL, PROF) will be on the trade-off curve. To see this, note that any

point (POLL	, PROF	) dominating (POLL, PROF) must have PROF	 � PROF. The fact

that (POLL, PROF) is the unique solution to (79) implies that all feasible points (with the

exception of [POLL, PROF]) having PROF	 � PROF must have POLL	 � POLL.

This means that (POLL, PROF) cannot be dominated, so it is on the trade-off curve.

Choosing any value of POLL � 2,400 yields no new points on the trade-off curve. (Why?)

Thus, as our next step we choose POLL � 2,300. Then LINDO yields an optimal z-value

of 4,266.67 and 10x1 � 6x2 � 3x3 � 2,300. Thus, the point (2,300, 4,266.67) is on the

TA B L E  18

Data for Chemco

Product

1 2 3

Profit ($) 10 9 8

Labor (hours) 14 3 2

Raw material (units) 13 2 2

Pollution (units) 10 6 3
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trade-off curve. Next, we change POLL to 2,200 and obtain the point (2,200, 4,233.33) on

the trade-off curve. Continuing in this fashion, setting POLL � 2,100, 2,000, 1,900, . . . 0

we obtain the trade-off curve between profit and pollution given in Figure 53.

In a multiple-objective problem in which both the constraints and objectives are linear

functions, the trade-off curve will be a piecewise linear curve (that is, the graph will con-

sist of a number of line segments of different slopes). We now give an example of a trade-

off curve for a problem in which the objectives are nonlinear functions.

Proctor and Ramble places ads on football games and soap operas. If F one-minute ads

are placed on football games and S one-minute ads are placed on soap operas, then the

number of men and women reached (in millions) and the cost (in thousands) of the ads

are given in Table 19. P & R has a $1 million advertising budget and its two objectives

are to maximize the number of men and the number of women who see its ads. Construct

a trade-off curve for this situation.

Solution To find a first point on the trade-off curve, let us ignore the goal of maximizing the num-

ber of women who see our ads and just maximize the number of men who see our ads.

This requires that we solve the following NLP:

max z � 20�F� � 4�S�
s.t. 100F � 60S � 1,000 (80)

F � 0, S � 0

Nonlinear Trade-Off CurveE X A M P L E  3 9
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TA B L E  19

Data for Advertising

Type of Ad Men Reached Women Reached Cost per Ad ($ Thousands)

Football 20�F 24�F 100

Soap opera 24�S 15�S 160
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LINGO yields the optimal solution z � 65.32, F � 9.38, S � 1.04. This solution reaches

4�9.38� � 15�1.04� � 27.55 million women. If we choose to place the women objective

on the x-axis and the men objective on the y-axis, this yields the point (27.55, 65.32) on

the trade-off curve. To obtain other points on the trade-off curve, choose any value W �

0 and add the constraint 4�F� � 15�S� � W to (80).

This yields NLP (81):

max z � 20�F� � 4�S�
s.t. 100F � 60S � 1,000

(81)
s.t. 4�F� � 15�S� � W

F � 0, S � 0

Suppose the optimal solution to (81) is unique and yields a z-value of M. Then the

point of (W, M) is on the trade-off curve. To see this, note that any point (W	, M	) dom-

inating (W, M) must have W	 � W. The fact that (W, M) is the unique solution to (81)

implies that all such feasible points [with the exception of (W, M)] will have M	 � M.

This means that (W, M) cannot be dominated, so it is on the trade-off curve. Using LINGO

to solve (81) with W � 30, 35, 40, 45, 50, 55, 60, and 62.5 yields the trade-off curve

drawn in Figure 54. By the way, we cut the curve off at W � 62.5, because the budget

constraint limits the maximum number of women watching ads to 62.5.

Summary of Trade-Off Curve Procedure

The procedure we have used to construct trade-off curves between two objectives may be

summarized as follows:

Step 1 Choose an objective (say, objective 1) and determine the best value of this ob-

jective that can be attained (call it v1). For the solution attaining v1, find the value of ob-

jective 2 (call it v2). Then (v1, v2) is a point on the trade-off curve.

Step 2 For values v of objective 2 that are better than v2, solve the optimization problem

in step 1 with the additional constraint: The value of objective 2 is at least as good as v.

Varying v (over values of v preferred to v2) will give you other points on the trade-off curve.
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Step 3 In step 1, we obtained one endpoint of the trade-off curve. If we determine the best

value of objective 2 that can be attained, we obtain the other endpoint of the trade-off curve.

R E M A R K In situations when there are more than two objectives, it is often helpful to examine trade-off curves
between different pairs of objectives.

P R O B L E M S
Group A

1 Widgetco produces two types of widgets. Each widget
is made of steel and aluminum and is assembled with skilled
labor. The resources used and the per-unit profit contribution
(ignoring cost of overtime labor purchased) for each type of
widget are given in Table 20. Currently, 200 units of steel
and 300 units of aluminum and 300 hours of labor are
available. Extra overtime labor can be purchased for $10 per
hour. Construct an exchange curve between the objectives
of maximizing profit and minimizing overtime labor.

2 Plantco produces three products. Three workers work
for Plantco, and the company must determine which
product(s) each worker should produce. The number of units
each worker would produce if he or she spent the whole day
producing each type of product are given in Table 21.

The company is also interested in maximizing the
happiness of its workers. The amount of happiness “earned”
by a worker who spends the entire day producing a given
product is given in Table 22.

Construct a trade-off curve between the objectives of
maximizing total units produced daily and total worker
happiness.

3 If a company spends $a on advertising and charges a
price of $p per unit, then it sells 1,000 � 100p � 20a1/2

units of the product. The per-unit cost of producing the
product is $6. Construct a trade-off curve between the
objectives of profit and units sold.

4 GMCO produces three types of cars: compacts, mid-size,
and large. The variable cost per car (in thousands of dollars) and
production capacity for each type of car are given in Table 23.

The annual demand for each type of car depends on the
prices of the three types of cars, given in Table 24. Here 
PC � price charged for compact car (in thousands of
dollars), and so on.

Suppose that each compact gets 30 mpg, each medium
car gets 25 mpg, and each large car gets 18 mpg. GMCO
wants to keep the planet pollution-free, so in addition to
maximizing profit, it wants to maximize the average miles
per gallon attained by the cars it sells. Use LINGO to
construct a trade-off curve between these objectives.

5 Consider the discussion of crashing the length of the
Widgetco project given in Section 8.4. For this example,
construct a trade-off curve between cost of crashing the
project and duration of the project.

6 For Example 35 of Section 11.10, construct a trade-off
curve between the chosen portfolio’s expected return and
variance. This is often called the efficient frontier.

TA B L E  20

Type of Widget

Resource 1 2

Steel (lbs) 6 12

Aluminum (lbs) 8 20

Skilled labor (hours) 11 24

Profit contribution ($) 500 1,100

TA B L E  21

Product

Worker 1 2 3

1 20 12 10

2 12 15 19

3 16 15 10

TA B L E  22

Product

Worker 1 2 3

1 6 18 10

2 6 15 19

3 9 10 18

TA B L E  23

Variable Production Capacity
Type of Car Cost ($ Thousands) (per Year)

Compact 10 2,000

Medium 14 1,500

Large 18 1,000

TA B L E  24

Type of Car Demand for Car

Compact 2,500 � 100(PC) � 3(PM)

Medium 1,800 � 30 (PM) � 2(PC) � PL

Large 1,300 � 20 (PL) � PM



S U M M A R Y Convex and Concave Functions

A function f (x1, x2, . . . , xn) is a convex function on a convex set S if for any x	 � S and

x� � S

f [cx	 � (1 � c)x �] � cf (x	) � (1 � c) f (x �) (3)

holds for 0 � c � 1.

A function f (x1, x2, . . . , xn) is a concave function on a convex set S if for any x	 � S

and x� � S

f [cx	 � (1 � c)x �] � cf (x	) � (1 � c) f (x �) (4)

holds for 0 � c � 1.

Consider a general NLP. Suppose the feasible region S for an NLP is a convex set. If

f (x) is a concave (convex) function of S, then any local maximum (minimum) for the NLP

is an optimal solution to the NLP.

Suppose f �(x) exists for all x in a convex set S. Then f (x) is a convex (concave) func-

tion of S if and only if f �(x) � 0[ f �(x) � 0] for all x in S.

Suppose f (x1, x2, . . . , xn) has continuous second-order partial derivatives for each

point x � (x1, x2, . . . , xn) � S. Then f (x1, x2, . . . , xn) is a convex function on S if and

only if for each x � S, all principal minors of H are nonnegative.

Suppose f (x1, x2, . . . , xn) has continuous second-order partial derivatives for each

point x � (x1, x2, . . . , xn) � S. Then f (x1, x2, . . . , xn) is a concave function on S if and

only if for each x � S and k � 1, 2, . . . , n, all nonzero principal minors have the same

sign as (�1)k.

Solving NLPs with One Variable

To find an optimal solution to

max (or min) f (x)

s.t. x � [a, b]

we must consider the following three types of points:

Case 1 Points where f 	(x) � 0 [a stationary point of f (x)].

Case 3 Points where f 	(x) does not exist.

Case 3 Endpoints a and b of the interval [a, b].

If f 	(x0) � 0, f �(x0) � 0, and a � x0 � b, then x0 is a local maximum. If f 	(x0) � 0,

f �(x0) > 0, and a � x0 � b, then x0 is a local minimum.

Golden Section Search

To determine (within �) the optimal solution to

max f (x)

s.t. a � x � b

we can perform k iterations [where rk(b � a) � �] of Golden Section Search. New points

are generated as follows:

Summary 701
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New Left-Hand Point Move a distance equal to a fraction r of the current interval of un-

certainty from the right endpoint of the interval of uncertainty.

New Right-Hand Point Move a distance equal to a fraction r of the current interval of un-

certainty from the left endpoint of the interval.

At each iteration, one of the new points will equal an old point.

Unconstrained Maximization and Minimization Problems 
with Several Variables

A local extremum x� for

max (or min) f (x1, x2, . . . , xn)
(7)

s.t. (x1, x2, . . . , xn) � Rn

must satisfy �
∂

∂

f (

x

x�
i

)
� � 0 for i � 1, 2, . . . , n.

If Hk(x�) � 0 (k � 1, 2, . . . , n), then a stationary point x� is a local minimum for (7).

If, for 0 k � 1, 2, . . . , n, Hk(x�) has the same sign as (�1)k, then a stationary point x�
is a local maximum for (7).

If Hn(x�)  0 and the conditions of Theorems 7 and 7	 do not hold, then a stationary

point x� is not a local extremum.

The Method of Steepest Ascent

The method of steepest ascent can be used to solve problems of the following type:

max z � f (x1, x2, . . . , xn)

s.t. (x1, x2, . . . , xn) � Rn

To find a new point with a larger z-value, we move away from the current point (v) in the

direction of �f (v). The distance we move away from v is chosen to maximize the value

of the function at the new point. We stop when ��f (v)� is sufficiently close to zero.

Lagrange Multipliers

Lagrange multipliers are used to solve NLPs of the following type:

max (or min) z � f (x1, x2, . . . , xn)

s.t. g1(x1, x2, . . . , xn) � b1

s.t. g2(x1, x2, . . . , xn) � b2 (12)

���

s.t. gm(x1, x2, . . . , xn) � bm

To solve (12), form the Lagrangian

L(x1, x2, . . . , xn, �1, �2, . . . , �m) � f (x1, x2, . . . , xn) � �
i�m

i�1

�i[bi � gi(x1, x2, . . . , xn)]

and look for points (x�1, x�2, . . . , x�n, ��1, ��2, . . . , ��m) for which

�
∂

∂

x

L

1

� � �
∂

∂

x

L

2

� � � � � � �
∂

∂

x

L

n

� � �
∂

∂

�

L

1

� � �
∂

∂

�

L

2

� � � � � � �
∂

∂

�

L

m

� � 0 
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The Kuhn–Tucker Conditions

The Kuhn–Tucker conditions are used to solve NLPs of the following type:

max (or min) f (x1, x2, . . . , xn)

s.t. g1(x1, x2, . . . , xn) � b1

s.t. g2(x1, x2, . . . , xn) � b2 (26)

���

s.t. gm(x1, x2, . . . , xn) � bm

Suppose (26) is a maximization problem. If x� � (x�1, x�2, . . . , x�n) is an optimal solution to

(26), then x� � (x�1, x�2, . . . , x�n) must satisfy the m constraints in (26), and there must ex-

ist multipliers ��1, ��2, . . . , ��m satisfying

�
∂

∂

f (

x

x�
j

)
� � �

i�m

i�1

��i �
∂g

∂

i
x

(

j

x�)
� � 0 ( j � 1, 2, . . . , n)

{PD}f(OB{x})\{PD}xj ���i[bi � gi(x�)] � 0 (i � 1, 2, . . . , m)

{PD}f(OB{x}��i � 0 (i � 1, 2, . . . , m)

Suppose (26) is a minimization problem. If x� � (x�1, x�2, . . . , x�n) is an optimal solution

to (26), then x� � (x�1, x�2, . . . , x�n) must satisfy the m constraints in (26), and there must

exist multipliers ��1, ��2, . . . , ��m satisfying

�
∂

∂

f(

x

x�
j

)
� � �

i�m

i�1

��i �
∂g

∂

i

x

(

j

x�)
� � 0 ( j � 1, 2, . . . , n)

��i[bi � gi(xx�)] � 0 (i � 1, 2, . . . , m)

{PD��i � 0 (i � 1, 2, . . . , m)

The Kuhn–Tucker conditions are necessary conditions for a point to solve (26). If the

gi(x1, x2, . . . , xn) are convex functions and the objective function f (x1, x2, . . . , xn) is con-

cave (convex), then for a maximization (minimization) problem, any point satisfying the

Kuhn–Tucker conditions will yield an optimal solution to (26).

Quadratic Programming

A quadratic programming problem (QPP) is an NLP in which each term in the objective

function is of degree 2, 1, or 0 and all constraints are linear. Wolfe’s method (a modified

version of the two-phase simplex) may also be used to solve QPPs.

Separable Programming

If an NLP can be written in the following form:

max (or min) z � �
j�n

j�1

fj (xj))

s.t. �
j�n

j�1

gij(xj) � bi (i � 1, 2, . . . , m)

it is a separable programming problem. To approximate the optimal solution to a sep-

arable programming problem, we solve the following approximating problem:



max (or min) ẑ � �
j�n

j�1

[�j1 fj( pj1) � �j2 fj( pj2) � � � � � �j,k fj( pj,k)]

s.t. �
j�n

j�1

[�j1gij( pj1) � �j2gij(pj2) � � � � � �j,kgij( pj,k)] � bi (i � 1, 2, . . . , m)

�j1 � �j2 � � � � � �j,k � 1 ( j � 1, 2, . . . , n)

�j,r � 0 ( j � 1, 2, . . . , n; r � 1, 2, . . . , k)

(For j � 1, 2, . . . , n, at most two �j,k’s can be positive. If for a given j, two �j,k’s are pos-

itive, they must be adjacent.)

The Method of Feasible Directions

To solve

max z � f (x)

s.t. Ax � b

s.t. Ax � 0

we begin with a feasible solution x0. Let d0 be a solution to

max z � �f(x0) � d

s.t. Ad � b(x0)�d

s.t. Ad � 0(x0)�d

Choose our new point x1 to be x1 � x0 � t0(d0 � x0), where t0 solves

max f [x0 � t0(d0 � x0)]

0 � t0 � 1� t0(d0 � x0)]

Let d1 be a solution to

max z � �f (x1) � d

s.t. Ad � bx1)�d

s.t. Ad � 0x1)�d

Choose our new point x2 to be x2 � x1 � t1(d1 � x1), where t1 solves

max f [x1 � t1(d1 � x1)]

0 � t1 � 1� t1(d1 � x1)]

Continue generating points x3, . . . , xk in this fashion until xk � xk�1 or successive points

are sufficiently close together.

Summary of Trade-Off Curve Procedure

The procedure we have used to construct trade-off curves between two objectives may be

summarized as follows:

Step 1 Choose an objective—say, objective 1—and determine its best attainable value v1.

For the solution attaining v1, find the value of objective 2, v2. Then (v1, v2) is a point on

the trade-off curve.

Step 2 For values v of objective 2 that are better than v2, solve the optimization problem
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in step 1 with the additional constraint that the value of objective 2 is at least as good as

v. Varying v (over values of v preferred to v2) will give you other points on the trade-off

curve.

Step 3 In step 1 we obtained one endpoint of the trade-off curve. If we determine the

best value of objective 2 that can be attained, we obtain the other endpoint of the trade-

off curve.

R E V I E W  P R O B L E M S
Group A

1 Show that f(x) � e�x is a convex function on R1.

2 Five of a store’s major customers are located as in Figure
55. Determine where the store should be located to minimize
the sum of the squares of the distances that each customer
would have to travel to the store. Can you generalize this result
to the case of n customers located at points x1, x2, . . . , xn?

3 A company uses a raw material to produce two types of
products. When processed, each unit of raw material yields
2 units of product 1 and 1 unit of product 2. If x1 units of
product 1 are produced, then each unit can be sold for 
$49 � x1, if x2 units of product 2 are produced, then each
unit can be sold for $30 � 2x2. It costs $5 to purchase and
process each unit of raw material.

a Use the Kuhn–Tucker conditions to determine how
the company can maximize profits.

b Use LINGO or Wolfe’s method to determine how
the company can maximize profits.

c What is the most that the company would be will-
ing to pay for an extra unit of raw material?

4 Show that f (x) � �x� is a convex function on R1.

5 Use Golden Section Search to locate, within 0.5, the
optimal solution to

max 3x � x2

s.t. 0 � x � 5

6 Perform two iterations of the method of steepest ascent
in an attempt to maximize

f(x1, x2) � (x1 � x2)e�(x1�x2) � x1

Begin at the point (0,1).

7 The cost of producing x units of a product during a
month is x2 dollars. Find the minimum cost method of
producing 60 units during the next three months. Can you
generalize this result to the case where the cost of producing
x units during a month is an increasing convex function?

8 Solve the following NLP:

max z � xyw

s.t. 2x � 3y � 4w � 36

9 Solve the following NLP:

min z � �
5

x

0
� � �

2

y

0
� � xy

s.t. x � 1, y � 1

10 If a company charges a price p for a product and spends
$a on advertising, it can sell 10,000 � 5�a� � 100p units
of the product. If the product costs $10 per unit to produce,
then how can the company maximize profits?

11 With L labor hours and M machine hours, a company
can produce L1/3M2/3 computer disk drives. Each disk drive
sells for $150. If labor can be purchased at $50 per hour and
machine hours can be purchased at $100 per hour, determine
how the company can maximize profits.

Group B

12 In time t, a tree can grow to a size F(t), where F	(t) �
0 and F �(t) � 0. Assume that for large t, F	(t) is near 0. If
the tree is cut at time t, then a revenue F(t) is received.
Assume that revenues are discounted continuously at a rate
r, so $1 received at time t is equivalent to $e�rt received at
time 0. The goal is to cut the tree at the time t* that
maximizes discounted revenue. Show that the tree should be
cut at the time t* satisfying the equation

r � �
F

F

	

(

(

t

t

*

*

)

)
�

In the answer, explain why (if �
F

F

	

(

(

0

0

)

)
� � r) this equation has a

unique solution. Also show that the answer is a maximum,
not a minimum. [Hint: Why is it sufficient to choose t* to
maximize ln(e�rtF(t)?]

13 Suppose we are hiring a weather forecaster to predict
the probability that next summer will be rainy or sunny. The
following suggests a method that can be used to ensure that
the forecaster is accurate. Suppose that the actual probability
of rain next summer is q. For simplicity, we assume that the
summer can only be rainy or sunny. If the forecaster
announces a probability p that the summer will be rainy,
then she receives a payment of 1 � (1 � p)2 if the summer
is rainy and a payment of 1 � p2 if the summer is sunny.
Show that the forecaster will maximize expected profits by
announcing that the probability of a rainy summer is q.

14 Show that if b � a � e, then ab � ba. Use this result
to show that e� � �e. [Hint: Show that max(�

ln

x

x
�) over x �

a occurs for x � a.]
3 4 5 6 17

F I G U R E  55
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15 Consider the points (0, 0), (1, 1), and (2, 3). Formulate
an NLP whose solution will yield the circle of smallest
radius enclosing these three points. Use LINGO to solve 
the NLP.

16 The cost of producing x units of a product during a
month is x1/2 dollars. Show that the minimum cost method
of producing 40 units during the next two months is to
produce all 40 units during a single month. Is it possible to
generalize this result to the case where the cost of producing
x units during a month is an increasing concave function?

17 Consider the problem

max z � f(x)

s.t. a � x � b

a Suppose f (x) is a convex function that has deriva-
tives for all values of x. Show that x � a or x � b must
be optimal for the NLP. (Draw a picture.)

b Suppose f(x) is a convex function for which f 	(x) may
not exist. Show that x � a or x � b must be optimal for
the NLP. (Use the definition of a convex function.)

18 Reconsider Problem 2. Suppose that the store should
now be located to minimize the total distance that customers
must walk to the store. Where should the store be located?
(Hint: Use Problem 4 and the fact that for any convex
function a local minimum will solve the NLP; then show
that locating the store where one of the customers lives
yields a local minimum.) Can the result be generalized?

19† A company uses raw material to produce two products.
For c dollars, a unit of raw material can be purchased and
processed into k1 units of product 1 and k2 units of product
2. If x1 units of product 1 are produced, they can be sold at
p1(x1) dollars per unit. If x2 units of product 2 are produced,
they can be sold at p2(x2) dollars per unit. Let z be the

number of units of raw material that are purchased and
processed. To maximize profits (ignoring non-negativity
constraints), the following NLP should be solved:

max w �x1p1(x1) � x2p2(x2) � cz

s.t. x1 � k1z

s.t. x2 � k2z

a Write down the Kuhn–Tucker conditions for this
problem. Let x�1, x�2, ��1, ��2 represent the optimal solution
to this problem.

b Consider a modified version of the problem. The
company can now purchase each unit of product 1 for
��1 dollars and each unit of product 2 for ��2 dollars.
Show that if the company tries to maximize profits in
this situation, it will, as in part (a), produce x�1 units of
product 1 and x�2 units of product 2. Also, show that
profit and production costs will remain unchanged.

c Give an interpretation of ��1 and ��2 that might be
useful to the company’s accountant.

20 The area of a triangle with sides of length a, b, and c
is �s(s ��a)(s �� b)(s �� c)�, where s is half the perimeter
of the triangle. We have 60 ft of fence and want to fence a
triangular-shaped area. Determine how to maximize the
fenced area.

21 The energy used in compressing a gas (in three stages)
from an initial pressure I to a final pressure F is given by

K �	�
p

I
1�
 � 	�

p

p
2

1

�
 � 	�
p

F

2

�
 � 3�
Determine how to minimize the energy used in compressing
the gas.

22 Prove Lemma 1 (use Lagrange multipliers).

R E F E R E N C E S

†Based on Littlechild, “Marginal Pricing” (1970).
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Review of Calculus and Probability

We review in this chapter some basic topics in calculus and probability, which will be useful

in later chapters.

12.1 Review of Integral Calculus

In our study of random variables, we often require a knowledge of the basics of integral

calculus, which will be briefly reviewed in this section.

Consider two functions: f(x) and F(x). If F�(x) � f(x), we say that F(x) is the indefi-

nite integral of f(x). The fact that F(x) is the indefinite integral of f(x) is written

F(x) � � f (x) dx

The following rules may be used to find the indefinite integrals of many functions (C is

an arbitrary constant):

� (1) dx � x � C

� af(x) dx � a � f(x) dx (a is any constant)

� [ f(x) � g(x)] dx � � f (x) dx � � g(x) dx

� xn dx � �
n

xn

�

�1

1
� � C (n � �1)

� x�1 dx � ln x � C

� ex dx � ex � C

� ax dx � �
ln

ax

a
� � C (a � 0, a � 1)

� [ f (x)]nf �(x) dx � �
[ f

n

(x

�

)]n

1

�1

� � C (n � �1)

� f (x)�1f �(x) dx � ln f (x) � C



For two functions u(x) and v(x),

� u(x)v�(x) dx � u(x)v(x) � � v(x)u�(x) dx (Integration by parts)

� e f (x)f �(x) dx � e f (x) � C

� a f (x)f �(x) dx � �
a

ln

f (

a

x)

� � C (a � 0, a � 1)

The concept of an integral is important for the following reasons. Consider a function f(x)

that is continuous for all points satisfying a 	 x 	 b. Let x0 � a, x1 � x0 � 
, x2 �

x1 � 
, . . . , xi � xi�1 � 
, xn � xn�1 � 
 � b, where 
 � �
b�

n
a

�. From Figure 1, we see

that as 
 approaches zero (or equivalently, as n grows large),

�
i�n

i�1

f (xi) 


will closely approximate the area under the curve y � f (x) between x � a and x � b. If

f (x) is continuous for all x satisfying a 	 x 	 b, it can be shown that the area under the

curve y � f (x) between x � a and x � b is given by

lim

→0

�
i�n

i�1

f (xi)


which is written as

�b

a

f (x) dx

or the definite integral of f (x) from x � a to x � b. The Fundamental Theorem of Cal-

culus states that if f (x) is continuous for all x satisfying a 	 x 	 b, then

�b

a

f (x) dx � F(b) � F(a)

where F(x) is any indefinite integral of f (x). F(b) � F(a) is often written as [F(x)]b
a. Ex-

ample 1 illustrates the use of the definite integral.

E X A M P L E  1

Suppose that at time t (measured in hours, and the present t � 0), the rate a(t) at which

customers enter a bank is a(t) � 100t. During the next 2 hours, how many customers will

enter the bank?

Customer Arrivals at a Bank
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y

x

y = f(x)

x1
x0 = a b  = xnxn –1

x2 x3

F I G U R E  1

Relation of Area and
Definite Integral
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Solution Let t0 � 0, t1 � t0 � 
, t2 � t1 � 
, . . . , tn � tn�1 � 
 � 2 (of course, 
 � �
2
n

�). Be-

tween time ti�1 and time ti, approximately 100ti
 customers will arrive. Therefore, the to-

tal number of customers to arrive during the next 2 hours will equal

lim

→0

�
i�n

i�1

100ti


(see Figure 2). From the Fundamental Theorem of Calculus,

lim

→0

�
i�n

i�1

100ti
 � �2

0
(100t) dt � [50t2]2

0 � 200 � 0 � 200

Thus, 200 customers will arrive during the next 2 hours.

P R O B L E M S
Group A

a(t)

a(t) = 100t

∆ = 0.1

∆
t

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t190 = t0 t20  = 2

200

150

100

50

F I G U R E  2

Relation of Total
Arrivals in Next 2 Hours

to Area under a (t )
Curve

1 The present is t � 0. At a time t years from now, I earn
income at a rate e2t. How much money do I earn during the
next 5 years?

2 If money is continuously discounted at a rate of r% per
year, then $1 earned t years in the future is equivalent to e�rt

dollars earned at the present time. Use this fact to determine
the present value of the income earned in Problem 1.

3 At time 0, a company has I units of inventory in stock.
Customers demand the product at a constant rate of d units
per year (assume that I � d). The cost of holding 1 unit of
stock in inventory for a time 
 is $h
. Determine the total
holding cost incurred during the next year.
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12.2 Differentiation of Integrals

In our study of inventory theory in Chapter 16, we will have to differentiate a function

whose value depends on an integral. Let f (x, y) be a function of variables x and y, and let

g(y) and h(y) be functions of y. Then

F( y) � �h( y)

g( y)
f (x, y) dx

is a function only of y. Leibniz’s rule for differentiating an integral states that

If F( y) � �h( y)

g( y)
f (x, y) dx, then

F�( y) � h�( y) f (h( y), y) � g�( y) f (g( y), y) � �h( y)

g( y)
�
∂f (

∂

x

y

, y)
� dx

Example 2 illustrates Leibniz’s rule.

E X A M P L E  2

For

F( y) � �y 2

1
�
y

x

dx
�

find F�( y).

Solution We have that f (x, y) � �
y

x
�, h( y) � y2, h�( y) � 2y, �

∂

∂

y

f
� � �

1

x
�, g( y) � 1, g�( y) � 0. Then

F�( y) � 2y ��
y

y
2�� � 0 ��

1

y
�� � �y 2

1
�
d

x

x
�

� 2 � [ln x]1
y2

� 2 � ln y2 � 0 � 2 � 2 ln y

P R O B L E M S
Group A

Leibniz’s Rule

For each of the following functions, use Leibniz’s rule to
find F�( y):

1 F( y) � �y
y2

(2y � x) dx

2 F( y) � �y
0 yx2 dx

3 F( y) � �y
0 6(5 � x) f (x) dx � �y

∞ 4(x � 5) f (x) dx

12.3 Basic Rules of Probability

In this section, we review some basic rules and definitions that you may have encountered

during your previous study of probability.

D E F I N I T I O N ■ Any situation where the outcome is uncertain is called an experiment. ■



For example, drawing a card from a deck of cards would be an experiment.

D E F I N I T I O N ■

For example, if we toss a die and are interested in the number of dots showing, then

S � {1, 2, 3, 4, 5, 6}.

D E F I N I T I O N ■

With each event E, we associate an event E�. E� consists of the points in the sample space

that are not in E. With each event E, we also associate a number P(E), which is the prob-

ability that event E will occur when we perform the experiment. The probabilities of

events must satisfy the following rules of probability:

Rule 1 For any event E, P(E) � 0.

Rule 2 If E � S (that is, if E contains all points in the sample space), then P(E) � 1.

Rule 3 If E1, E2, . . . , En is a mutually exclusive collection of events, then

P(E1 � E2 � � � � � En) � �
k�n

k�1

P(Ek)

Rule 4 P(E�) � 1 � P(E).

D E F I N I T I O N ■

Thus, events E1 and E2 are independent if and only if knowledge that E1 has occurred

does not change the probability that E2 has occurred, and vice versa. From (1), E1 and E2

are independent if and only if

�
P(E

P
1

(E

�

1)

E2)
� � P(E2) or P(E1 � E2) � P(E1) P(E2) (2)

E X A M P L E  3

Suppose we draw a single card from a deck of 52 cards.

1 What is the probability that a heart or spade is drawn?

Drawing a Card

For two events E1 and E2, P(E2|E1) (the conditional probability of E2 given E1)

is the probability that the event E2 will occur given that event E1 has occurred.

Then

P(E2|E1) � �
P(E

P
1

(E

�

1)

E2)
� ■ (1)

Suppose events E1 and E2 both occur with positive probability. Events E1 and E2

are independent if and only if P(E2|E1) � P(E2) (or equivalently, P(E1|E2) �

P(E1)). ■

An event E consists of any collection of points (set of outcomes) in the sample

space. ■

A collection of events E1, E2, . . . , En is said to be a mutually exclusive

collection of events if for i � j (i � 1, 2, . . . , n and j � 1, 2, . . . , n), Ei and Ej

have no points in common. ■

For any experiment, the sample space S of the experiment consists of all possible

outcomes for the experiment. ■

1 2 . 3 Basic Rules of Probability 711



2 What is the probability that the drawn card is not a 2?

3 Given that a red card has been drawn, what is the probability that it is a diamond? Are

the events

E1 � red card is drawn

E2 � diamond is drawn

independent events?

4 Show that the events

E1 � spade is drawn

E2 � 2 is drawn

are independent events.

Solution 1 Define the events

E1 � heart is drawn

E2 � spade is drawn

E1 and E2 are mutually exclusive events with P(E1) � P(E2) � �
1
4

�. We seek P(E1 � E2).

From probability rule 3,

P(E1 � E2) � P(E1) � P(E2) � (�
1
4

�) � (�
1
4

�) � �
1
2

�

2 Define event E � a 2 is drawn. Then P(E) � �
5
4
2
� � �

1
1
3
�. We seek P(E�). From probabil-

ity rule 4, P(E�) � 1 � �
1
1
3
� � �

1
1
2
3
�.

3 From (1),

P(E2|E1) � �
P(E

P
1

(E

�

1)

E2)
�

P(E1 � E2) � P(E2) � �
1

5

3

2
� � �

1

4
�

P(E1) � �
2

5

6

2
� � �

1

2
�

Thus,

P(E2|E1) � � �
1

2
�

Since P(E2) � �
1
4

�, we see that P(E2|E1) � P(E2). Thus, E1 and E2 are not independent

events. (This is because knowing that a red card was drawn increases the probability that

a diamond was drawn.)

4 P(E1) � �
1
5

3
2
� � �

1
4

�, P(E2) � �
5
4
2
� � �

1
1
3
�, and P(E1 � E2) � �

5
1
2
�. Since P(E1) P(E2) �

P(E1 � E2), E1 and E2 are independent events. Intuitively, since �
1
4

� of all cards in the 

deck are spades and �
1
4

� of all 2’s in the deck are spades, knowing that a 2 has been drawn

does not change the probability that the card drawn was a spade.

P R O B L E M S
Group A

�
1
4

�

�

�
1
2

�
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1 Suppose two dice are tossed (for each die, it is equally
likely that 1, 2, 3, 4, 5, or 6 dots will show).

a What is the probability that the total of the two dice
will add up to 7 or 11?



b What is the probability that the total of the two dice
will add up to a number other than 2 or 12?

c Are the events

E1 � first die shows a 3

E2 � total of the two dice is 6

independent events?
d Are the events

1 2 . 4 Bayes’ Rule 713

E1 � first die shows a 3

E2 � total of the two dice is 7

independent events?
e Given that the total of the two dice is 5, what is the
probability that the first die showed 2 dots?

f Given that the first die shows 5, what is the proba-
bility that the total of the two dice is even?

12.4 Bayes’ Rule

An important decision often depends on the “state of the world.” For example, we may

want to know whether a person has tuberculosis. Then we would be concerned with the

probability of the following states of the world:

S1 � person has tuberculosis

S2 � person does not have tuberculosis

More generally, n mutually exclusive states of the world (S1, S2, . . . , Sn) may occur. The

states of the world are collectively exhaustive: S1, S2, . . . , Sn include all possibilities. Sup-

pose a decision maker assigns a probability P(Si) to Si. P(Si) is the prior probability of Si.

To obtain more information about the state of the world, the decision maker may observe

the outcome of an experiment. Suppose that for each possible outcome Oj and each possi-

ble state of the world Si, the decision maker knows P(Oj|Si), the likelihood of the outcome

Oj given state of the world Si. Bayes’ rule combines prior probabilities and likelihoods with

the experimental outcomes to determine a post-experimental probability, or posterior prob-

ability, for each state of the world. To derive Bayes’ rule, observe that (1) implies that

P(Si|Oj) � �
P(S

P

i

(

�

Oj)

Oj)
� (3)

From (1), it also follows that

P(Si � Oj) � P(Oj|Si)P(Si) (4)

The states of the world S1, S2, . . . , Sn are collectively exhaustive, so the experimental out-

come Oj (if it occurs) must occur with one of the Si (see Figure 3). Since S1 � Oj, S2 �

Oj, . . . , Sn � Oj are mutually exclusive events, probability rule 3 implies that

P(Oj) � P(S1 � Oj) � P(S2 � Oj) � � � � � P(Sn � Oj) (5)

The probabilities of the form P(Si � Oj) are often referred to as joint probabilities,

and the probabilities P(Oj) are called marginal probabilities. Substituting (4) into (5),

we obtain

P(Oj) � �
k�n

k�1

P(Oj|Sk)P(Sk) (6)

Oj ∩ S1 Oj ∩ S2 Oj ∩ S3 Oj ∩ S4

S1 S2 S3 S4
P(Oj) = P(Oj ∩ S1) + P(Oj ∩ S2) 

+ P(Oj ∩ S3) + P(Oj ∩ S4)

Shaded area = outcome Oj

F I G U R E  3

Illustration of 
Equation (5)



Substituting (4) and (6) into (3) yields Bayes’ rule:

P(Si|Oj) �
(7)

The following example illustrates the use of Bayes’ rule.

E X A M P L E  4

Suppose that 1% of all children have tuberculosis (TB). When a child who has TB is given

the Mantoux test, a positive test result occurs 95% of the time. When a child who does

not have TB is given the Mantoux test, a positive test result occurs 1% of the time. Given

that a child is tested and a positive test result occurs, what is the probability that the child

has TB?

Solution The states of the world are

S1 � child has TB

S2 � child does not have TB

The possible experimental outcomes are

O1 � positive test result

O2 � nonpositive test result

We are given the prior probabilities P(S1) � .01 and P(S2) � .99 and the likelihoods

P(O1|S1) � .95, P(O1|S2) � .01, P(O2|S1) � .05, and P(O2|S2) � .99. We seek P(S1|O1).

From (7),

P(S1|O1) �

� � � .49

The reason a positive test result implies only a 49% chance that the child has TB is

that many of the 99% of all children who do not have TB will test positive. For example,

in a typical group of 10,000 children, 9,900 will not have TB and .01(9,900) � 99 chil-

dren will yield a positive test result. In the same group of 10,000 children, .01(10,000) �

100 children will have TB and .95(100) � 95 children will yield a positive test result.

Thus, the probability that a positive test result indicates TB is �
95

9
�
5
99

� � �
1
9
9
5
4

�.

P R O B L E M S
Group A

95
�
194

.95(.01)
���
.95(.01) � .01(.99)

P(O1|S1)P(S1)
����
P(O1|S1)P(S1) � P(O1|S2)P(S2)

Bayes’ Rule

P(Oj|Si)P(Si)
��

�
k�n

k�1

P(Oj|Sk)P(Sk)
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1 A desk contains three drawers. Drawer 1 contains two
gold coins. Drawer 2 contains one gold coin and one silver
coin. Drawer 3 contains two silver coins. I randomly choose
a drawer and then randomly choose a coin. If a silver coin
is chosen, what is the probability that I chose drawer 3?

2 Cliff Colby wants to determine whether his South Japan
oil field will yield oil. He has hired geologist Digger Barnes
to run tests on the field. If there is oil in the field, there is a
95% chance that Digger’s tests will indicate oil. If the field
contains no oil, there is a 5% chance that Digger’s tests will
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indicate oil. If Digger’s tests indicate that there is no oil in
the field, what is the probability that the field contains oil?
Before Digger conducts the test, Cliff believes that there is
a 10% chance that the field will yield oil.

3 A customer has approached a bank for a loan. Without
further information, the bank believes there is a 4% chance
that the customer will default on the loan. The bank can run
a credit check on the customer. The check will yield either
a favorable or an unfavorable report. From past experience,
the bank believes that P(favorable report being received)|
customer will default) � �

4
1
0
�, and P(favorable report|

customer will not default) � �
1
9
0
9
0

�. If a favorable report is
received, what is the probability that the customer will
default on the loan?

4 Of all 40-year-old women, 1% have breast cancer. If a
woman has breast cancer, a mammogram will give a positive
indication for cancer 90% of the time. If a woman does not
have breast cancer, a mammogram will give a positive
indication for cancer 9% of the time. If a 40-year-old
woman’s mammogram gives a positive indication for cancer,
what is the probability that she has cancer?

5 Three out of every 1,000 low-risk 50-year-old males
have colon cancer. If a man has colon cancer, a test for

hidden blood in the stool will indicate hidden blood half the
time. If he does not have colon cancer, a test for hidden
blood in the stool will indicate hidden blood 3% of the time.
If the hidden-blood test turns out positive for a low-risk 50-
year-old male, what is the chance that he has colon cancer?

Group B

6 You have made it to the final round of “Let’s Make a
Deal.” You know there is $1 million behind either door 1,
door 2, or door 3. It is equally likely that the prize is behind
any of the three. The two doors without a prize have nothing
behind them. You randomly choose door 2, but before door
2 is opened Monte reveals that there is no prize behind 
door 3. You now have the opportunity to switch and choose
door 1. Should you switch? Assume that Monte plays as
follows: Monte knows where the prize is and will open an
empty door, but he cannot open door 2. If the prize is really
behind door 2, Monte is equally likely to open door 1 or
door 3. If the prize is really behind door 1, Monte must
open door 3. If the prize is really behind door 3, Monte
must open door 1. What is your decision?

12.5 Random Variables, Mean, Variance, and Covariance

The concepts of random variables, mean, variance, and covariance are employed in sev-

eral later chapters.

D E F I N I T I O N ■

Discrete Random Variables

D E F I N I T I O N ■

P(X � xi) is the probability mass function (pmf) for the random variable X.

D E F I N I T I O N ■

An example of a discrete random variable follows.

The cumulative distribution function F(x) for any random variable X is defined

by F(x) � P(X 	 x). For a discrete random variable X,

F(x) � �
all x

having xk	x

P(X � xk) ■

A random variable is discrete if it can assume only discrete values x1, x2, . . . . A

discrete random variable X is characterized by the fact that we know the

probability that X � xi (written P(X � x1)). ■

A random variable is a function that associates a number with each point in an

experiment’s sample space. We denote random variables by boldface capital letters

(usually X, Y, or Z). ■
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Let X be the number of dots that show when a die is tossed. Then for i � 1, 2, 3, 4, 5, 6,

P(X � i) � �
1
6

�. The cumulative distribution function (cdf) for X is shown in Figure 4.

Tossing a Die
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F(x)

x
1 2 3 4 5 6

1

5
6

2
3

1
2

1
3

1
6
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Cumulative Distribution
Function for Example 5

Continuous Random Variables

If, for some interval, the random variable X can assume all values on the interval, then X

is a continuous random variable. Probability statements about a continuous random vari-

able X require knowing X’s probability density function (pdf). The probability density

function f (x) for a random variable X may be interpreted as follows: For 
 small,

P(x 	 X 	 x � 
) � 
 f (x)

From Figure 5, we see that for a random variable X having density function f (x),

Area 1 � P(a 	 X 	 a � 
) � 
 f (a)

and

Area 2 � P(b 	 X 	 b � 
) � 
 f (b)

Thus, for a random variable X with density function f (x) as given in Figure 5, values of

X near a are much more likely to occur than values of X near b.

From our previous discussion of the Fundamental Theorem of Calculus, it follows that

P(a 	 X 	 b) � �b

a

f (x) dx

Thus, for a continuous random variable, any area under the random variable’s pdf corre-

sponds to a probability. Using the concept of area as probability, we see that the cdf for

a continuous random variable X with density f (x) is given by

F(a) � P(X 	 a) � �a

�∞
f (x) dx
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E X A M P L E  6

Consider a continuous random variable X having a density function f (x) given by

f (x) � 	
Find the cdf for X. Also find P(�

1
4

� 	 X 	 �
3
4

�).

Solution For a 	 0, F(a) � 0. For 0 	 a 	 1,

F(a) � �a

0
2x dx � a2

For a � 1, F(a) � 1. F(a) is graphed in Figure 6.

P(�
1
4

� 	 X 	 �
3
4

�) � �3/4

1/4
2x dx � [x2]3/4

1/4 � (�
1
9
6
�) � (�

1
1
6
�) � �

1
2

�

if 0 	 x 	 1

otherwise

2x

0

Cumulative Distribution Function

f(x)

x
a

1

b

Area 1 = ∆ f(a)

Area 2 = ∆ f(b)

∆

2

∆

F I G U R E  5

Illustration of
Probability Density

Function

F(x)

x
a 10

1

a2

F I G U R E  6

Cumulative Distribution
Function for Example 6

Mean and Variance of a Random Variable

The mean (or expected value) and variance are two important measures that are often

used to summarize information contained in a random variable’s probability distribution.

The mean of a random variable X (written E(X)) is a measure of central location for the

random variable.
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Mean of a Discrete Random Variable

For a discrete random variable X,

E(X) � �
all k

xkP(X � xk) (8)

Mean of a Continuous Random Variable

For a continuous random variable,

E(X) � �∞

�∞
xf (x) dx (9)

Observe that in computing E(X), each possible value of a random variable is weighted

by its probability of occurring. Thus, the mean of a random variable is essentially the ran-

dom variable’s center of mass.

For a function h(X) of a random variable X (such as X2 and eX), E[h(X)] may be com-

puted as follows. If X is a discrete random variable,

E[h(X)] � �
all k

h(xk) P(X � xk) (8�)

If X is a continuous random variable,

E[h(X)] � �∞

�∞
h(x) f (x) dx (9�)

The variance of a random variable X (written as var X) measures the dispersion or spread

of X about E(X). Then var X is defined to be E[X � E(X)]2.

Variance of a Discrete Random Variable

For a discrete random variable X, (8�) yields

var X � �
all k

[xk � E(X)]2 P(X � xk) (10)

Variance of a Continuous Random Variable

For a continuous random variable X, (9�) yields

var X � �∞

�∞
[x � E(X)]2 f (x) dx (11)

Also, var X may be found from the relation

var X � E(X2) � E(X)2 (12)

For any random variable X, (var X)1/2 is the standard deviation of X (written sx).

Examples 7 and 8 illustrate the computation of mean and variance for a discrete and

a continuous random variable.

E X A M P L E  7

Consider the discrete random variable X having P(X � i) � �
1
6

� for i � 1, 2, 3, 4, 5, 6.

Find E(X) and var X.

Discrete Random Variable



Solution E(X) � (�
1
6

�)(1 � 2 � 3 � 4 � 5 �6) � �
2
6
1
� � �

7
2

�

var X � (�
1
6

�)[(1 � 3.5)2 � (2 � 3.5)2 � (3 � 3.5)2

�(4 � 3.5)2 � (5 � 3.5)2 � (6 � 3.5)2] � �
3
1
5
2
�

E X A M P L E  8

Find the mean and variance for the continuous random variable X having the following

density function:

f (x) � 	
Solution E(X) � �1

0
x(2x) dx � 
�

2

3

x3

��
1

0

� �
2

3
�

var X � �1

0
�x � �

2

3
��

2

2x dx � �1

0
�x2 � �

4

3

x
� � �

4

9
�� 2x dx

� 
�
2

4

x4

� � �
8

9

x3

� � �
8

1

x

8

2

��
1

0

� �
1

1

8
�

Independent Random Variables

D E F I N I T I O N ■

From this definition, it can be shown that X and Y are independent random variables

if and only if knowledge about the value of Y does not change the probability of any event

involving X. For example, suppose X and Y are independent random variables. This im-

plies that where Y � 8, Y � 10, Y � 0, or Y � anything else, P(X � 10) will be the

same. If X and Y are independent, then E(XY) � E(X)E(Y). (The random variable XY

has an expected value equal to the product of the expected value of X and the expected

value of Y.)

The definition of independence generalizes to situations where more than two random

variables are of interest. Loosely speaking, a group of n random variables is independent

if knowledge of the values of any subset of the random variables does not change our

view of the distribution of any of the other random variables. (See Problem 5 at the end

of this section.)

Covariance of Two Random Variables

An important concept in the study of financial models is covariance. For two random vari-

ables X and Y, the covariance of X and Y (written cov(X, Y)) is defined by

cov(X, Y) � E{[X � E(X)][Y � E(Y)]} (13)

If X � E(X) tends to occur when Y � E(Y), and X  E(X) tends to occur when Y 

E(Y), then cov(X, Y) will be positive. On the other hand, if X � E(X) tends to occur when

Y  E(Y), and X  E(X) tends to occur when Y � E(Y), then cov(X, Y) will be nega-

Two random variables X and Y are independent if and only if for any two sets A

and B,

P(X � A and Y � B) � P(X � A)P(Y � B) ■

if 0 	 x 	 1

otherwise

2x

0

Continuous Random Variable
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tive. The value of cov(X, Y) measures the association (actually, linear association) be-

tween random variables X and Y. It can be shown that if X and Y are independent ran-

dom variables, then cov(X, Y) � 0. (However, cov(X, Y) � 0 can hold even if X and Y

are not independent random variables. See Problem 6 at the end of this section for an 

example.)

E X A M P L E  9

Each summer in Gotham City is classified as being either a rainy summer or a sunny sum-

mer. The profits earned by Gotham City’s two leading industries (the Gotham City Hotel

and the Gotham City Umbrella Store) depend on the summer’s weather, as shown in Table

1. Of all summers, 20% are rainy, and 80% are sunny. Let H and U be the following ran-

dom variables:

H � profit earned by Gotham City Hotel during a summer

U � profit earned by Gotham City Umbrella Store during a summer

Find cov(H,U).

Solution We find that

E(H) � .2(�1,000) � .8(2,000) � $1,400

E(U) � .2(4,500) � .8(�500) � $500

With probability .20, Gotham City has a rainy summer. Then

[H � E(H)][U � E(U)] � (�1,000 � 1,400)(4,500 � 500) � �9,600,000(dollars)2

With probability .80, Gotham City has a sunny summer. Then

[H � E(H)][U � E(U)] � (2,000 � 1,400)(�500 � 500) � �600,000(dollars)2

Thus,

cov(H,U) � E{[H � E(H)][U � E(U)]} � .20(�9,600,000) � .80(�600,000)

� �2,400,000(dollars)2

The fact that cov(H,U) is negative indicates that when one industry does well, the other

industry tends to do poorly.

Gotham City Summers
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Mean, Variance, and Covariance 
for Sums of Random Variables

From given random variables X1 and X2, we often create new random variables (c is a

constant): cX1, X1 � c, X1 � X2. The following rules can be used to express the mean,

variance, and covariance of these random variables in terms of E(X1), E(X2), var X1, 

var X2, and cov(X1, X2). Examples 10 and 11 illustrate the use of these rules.

TA B L E  1

Profits for Gotham City Covariance

Type of Summer Hotel Profit Umbrella Profit

Rainy �$1,000 $4,500

Sunny $2,000 �$500
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E(cX1) � cE(X1) (14)

E(X1 � c) � E(X1) � c (15)

E(X1 � X2) � E(X1) � E(X2) (16)

var cX1 � c2var X1 (17)

var(X1 � c) � var X1 (18)

If X1 and X2 are independent random variables,

var(X1 � X2) � var X1 � var X2 (19)

In general,

var(X1 � X2) � var X1 � var X2 � 2cov(X1, X2) (20)

For random variables X1, X2, . . . , Xn,

var(X1 � X2 � � � � � Xn) � var X1 � var X2 � � � � � var Xn � �
i�j

cov(Xi, Xj) (21)

Finally, for constants a and b,

cov(aX1, bX2) � ab cov(X1, X2) (22)

E X A M P L E  1 0

I pay $1 to play the following game: I toss a die and receive $3 for each dot that shows.

Determine the mean and variance of my profit.

Solution Let X be the random variable representing the number of dots that show when the die is

tossed. Then my profit is given by the value of the random variable 3X � 1. From Ex-

ample 7, we know that E(X) � �
7
2

� and var X � �
3
1
5
2
�. In turn, Equations (15) and (14) yield

E(3X � 1) � E(3X) � 1 � 3E(X) � 1 � 3(�
7
2

�) � 1 � �
1
2
9
�

From Equations (18) and (17), respectively,

var(3X � 1) � var(3X) � 9(var X) � 9(�
3
1
5
2
�) � �

3
1
1
2
5

�

E X A M P L E  1 1

In Example 9, suppose I owned both the hotel and the umbrella store. Find the mean and

the variance of the total profit I would earn during a summer.

Solution My total profits are given by the random variable H � U. From Equation (16) and Ex-

ample 9,

E(H � U) � E(H) � E(U) � 1,400 � 500 � $1,900

Now

var H � .2(�1,000 � 1,400)2 � .8(2,000 � 1,400)2 � 1,440,000(dollars)2

var U � .2(4,500 � 500)2 � .8(�500 � 500)2 � 4,000,000(dollars)2

From Example 9, cov(H, U) � �2,400,000 (dollars)2. Then Equation (20) yields

var(H � U) � var H � var U � 2cov(H, U)

� 1,440,000(dollars)2 � 4,000,000(dollars)2 � 2(2,400,000)(dollars)2

� 640,000(dollars)2

Gotham City Profit: Mean and Variance

Tossing a Die: Mean and Variance



Thus, H � U has a smaller variance than either H or U. This is because by owning both

the hotel and umbrella store, we will always have, regardless of the weather, one industry that

does well and one that does poorly. This reduces the spread, or variability, of our profits.

P R O B L E M S
Group A
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1 I have 100 items of a product in stock. The probability
mass function for the product’s demand D is P(D � 90) �
P(D � 100) � P(D � 110) � �

1
3

�.

a Find the mass function, mean, and variance of the
number of items sold.

b Find the mass function, mean, and variance of the
amount of demand that will be unfilled because of lack
of stock.

2 I draw 5 cards from a deck (replacing each card
immediately after it is drawn). I receive $4 for each heart
that is drawn. Find the mean and variance of my total payoff.

3 Consider a continuous random variable X with the
density function (called the exponential density)

f (x)� 	
a Find and sketch the cdf for X.

b Find the mean and variance of X. (Hint: Use inte-
gration by parts.)

c Find P(1 	 X 	 2).

4 I have 100 units of a product in stock. The demand D
for the item is a continuous random variable with the
following density function:

if x � 0

otherwise

e�x

0

f (d) � 	
a Find the probability that supply is insufficient to
meet demand.

b What is the expected number of items sold? What is
the variance of the number of items sold?

5 An urn contains 10 red balls and 30 blue balls.

a Suppose you draw 4 balls from the urn. Let Xi be
the number of red balls drawn on the ith ball (Xi � 0 or
1). After each ball is drawn, it is put back into the urn.
Are the random variables X1, X2, X3, and X4 indepen-
dent random variables?

b Repeat part (a) for the case in which the balls are not
put back in the urn after being drawn.

Group B

6 Let X be the following discrete random variable: P(X �
�1) � P(X � 0) � P(X � 1) � �

1
3

�. Let Y � X2. Show that
cov(X, Y) � 0, but X and Y are not independent random
variables.

if 80 	 d 	 120

otherwise

�
4
1
0
�

0

12.6 The Normal Distribution

The most commonly used probability distribution in this book is the normal distribution.

In this section, we discuss some useful properties of the normal distribution.

D E F I N I T I O N ■

If a random variable X is normally distributed with a mean m and variance s2, we write

that X is N(m, s2). It can be shown that for a normal random variable, E(X) � m and 

var X � s
2 (the standard deviation of X is s). The normal density functions for several

values of s and a single value of m are shown in Figure 7.

For any normal distribution, the normal density is symmetric about m (that is, f(m �

a) � f (m � a)). Also, as s increases, the probability that the random variable assumes a

value within c of m (for any c � 0) decreases. Thus, as s increases, the normal distribu-

tion becomes more spread out. The properties are illustrated in Figure 7.

A continuous random variable X has a normal distribution if for some � and � �

0, the random variable has the following density function:

f(x) � �
s(2p

1

)1/2� exp 
��
(x

2

�

s
2

m)2

�� ■



Useful Properties of Normal Distributions

Property 1 If X is N(m, s2), then cX is N(cm, c2
s

2).

Property 2 If X is N(m, s2), then X � c (for any constant c) is N(m � c, s2).

Property 3 If X1 is N(m1, s2
1), X2 is N(m2, s2

2), and X1 and X2 are independent, then X1

� X2 is N(m1 � m2, s2
1 � s

2
2).

Finding Normal Probabilities via Standardization

If Z is a random variable that is N(0, 1), then Z is said to be a standardized normal ran-

dom variable. In Table 2, F(z) � P(Z 	 z) is tabulated. For example,

P(Z 	 �1) � F(�1) � .1587

and

P(Z � 2) � 1 � P(Z 	 2) � 1 � F(2) � 1 � .9772 � .0228.

If X is N(m, s2), then (X � m)/s is N(0, 1). This follows, because by property 2 of 

the normal distribution, X � m is N(m � m, s2) � N(0, s2). Then by property 1, �
x�

s

m
� is

N(�
s

0
�, �

s

s

2

2�) � N(0, 1). The last equality enables us to use Table 2 to find probabilities for

any normal random variable, not just an N(0, 1) random variable. Suppose X is N(m, s2)

and we want to find P(a 	 X 	 b). To find this probability from Table 2, we use the fol-

lowing relations (this procedure is called standardization):

P(a 	 X 	 b) � P ��a �

s

m
� 	 �

X �

s

m
� 	 �

b �

s

m
��

� P ��a �

s

m
� 	 Z 	 �

b �

s

m
��

� F ��b �

s

m
�� � F ��a �

s

m
��

The Central Limit Theorem

If X1, X2, . . . , Xn are independent random variables, then for n sufficiently large (usually

n � 30 will do, but the actual size of n depends on the distributions of X1, X2, . . . , Xn),
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f(x)

x
µ

0.798

0.399

0.266

= 1.5

= 0.5

= 1.0

F I G U R E  7

Some Examples of
Normal Distributions
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TA B L E  2

Standard Normal Cumulative Probabilities†

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

�3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

�3.7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

�3.6 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

�3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

�3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002

�3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003

�3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005

�3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007

�3.0 0.0014 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

�2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

�2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019

�2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

�2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

�2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

�2.4 0.0082 0.0080 0.0078 0.0076 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

�2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084

�2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110

�2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

�2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

�1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

�1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294

�1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367

�1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

�1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

�1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

�1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

�1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1057 0.1038 0.1020 0.1003 0.0985

�1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

�1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

�0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

�0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

�0.7 0.2420 0.2389 0.2358 0.2327 0.2297 0.2266 0.2236 0.2206 0.2177 0.2148

�0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

�0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

�0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

�0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

�0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

�0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

�0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

Source: Reprinted by permission from David E. Kleinbaum, Lawrence L. Kupper, and Keith E. Muller, Applied Regression Analysis and Other Multivariable

Methods, 2nd edition. Copyright © 1988 PWS-KENT Publishing Company.
†Note: Table entry is the area under the standard normal curve to the left of the indicated z-value, thus giving P(Z 	 z).
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TA B L E  2

Standard Normal Cumulative Probabilities (Continued)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

�0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

�0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

�0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

�0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

�0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

�0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

�0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

�0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852

�0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

�0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

�1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

�1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

�1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8943 0.8962 0.8980 0.8997 0.9015

�1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

�1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

�1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

�1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

�1.7 0.9554 0.9564 0.9673 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

�1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9683 0.9699 0.9706

�1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9762 0.9767

�2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

�2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

�2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

�2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

�2.4 0.9918 0.9920 0.9922 0.9924 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

�2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

�2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

�2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

�2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

�2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

�3.0 0.9986 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

�3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

�3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

�3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

�3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

�3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

�3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

�3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

�3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

�3.9 1.0000



the random variable X � X1 � X2 � � � � � Xn may be closely approximated by a nor-

mal random variable X� that has E(X�) � E(X1) � E(X2) � � � � � E(Xn) and var X� �

var X1 � var X2 � � � � � var Xn. This result is known as the Central Limit Theorem. 

When we say that X� closely approximates X, we mean that P(a 	 X 	 b) is close to 

P(a 	 X� 	 b).

Finding Normal Probabilities with Excel

Probabilities involving a standard normal variable can be determined with Excel, using

the �NORMSDIST function. The S in NORMSDIST stands for standardized normal. For

example, P(Z 	 �1) can be found by entering the formula

�NORMSDIST(�1)

Excel returns the value .1587. See Figure 8 and file Normal.xls.

The �NORMDIST function can be used to determine a normal probability for any

normal (not just a standard normal) random variable. If X is N(m, s2), then entering the

formula

�NORMSDIST(a,m,s,1)

will return P(X 	 a). The “1” ensures that Excel returns the cumulative normal proba-

bility. Changing the last argument to “0” causes Excel to return the height of the normal

density function for X � a. As an example, we know that IQs follow N(100, 225). The

fraction of people with IQs of 90 or less is computed with the formula

�NORMDIST(90,100,15,1)

Excel yields .2525. See Figure 8 and file Normal.xls.

The height of the density for N(100, 225) for X � 100 is computed with the formula

�NORMDIST(100,100,15,0)

Excel yields .026596.

By varying the first argument in the �NORMDIST function, we may graph a normal

density. See Figure 9 and sheet density of file Normal.xls.

Consider a given normal random variable X, with mean m and standard deviation s.

In many situations, we want to answer questions such as the following. (1) Eli Lilly be-

lieves that the year’s demand for Prozac will be normally distributed, with m � 60 mil-

lion d.o.t. (days of therapy) and s � 5 million d.o.t. How many units should be produced

this year if Lilly wants to have only a 1% chance of running out of Prozac? (2) Family

income in Bloomington is normally distributed, with m � $30,000 and s � $8,000. The

poorest 10% of all families in Bloomington are eligible for federal aid. What should the

aid cutoff be?

In the first example, we want the 99th percentile of Prozac demand. That is, we seek the

number X such that there is only a 1% chance that demand will exceed X and a 99% chance
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7

8

9

10

11

E F G H

P(Z<=-1) 0.158655 normsdist(-1)

P(IQ<90) 0.252492 normdist(90,100,15,1)

density for IQ=100 0.026596 normdist(100,100,15,0)
F I G U R E  8

Normal.xls



that it will be less than X. In the second example, we want the 10th percentile of family in-

come in Bloomington. That is, we seek the number X such that there is only a 10% chance

that family income will be less than X and a 90% chance that it will exceed X.

Suppose we want to find the pth percentile (expressed as a decimal) of a normal ran-

dom variable X with mean m and standard deviation s. Simply enter the following for-

mula into Excel:

�NORMINV(p,m,s)

This will return the number x having the property that P(X 	 x) � p, as desired. We now

can solve the two examples described above.

E X A M P L E  1 2

Eli Lilly believes that the year’s demand for Prozac will be normally distributed, with 

m � 60 million d.o.t. (days of therapy) and s � 5 million d.o.t. How many units should

be produced this year if Lilly wants to have only a 1% chance of running out of Prozac?

Prozac Demand
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130 0.0035994
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155 3.2018E-05

Normal Density for IQ’s

0

0.005

0.01

0.015

0.02

0.025

0.03

0 50 100 150 200

IQ value

V
a

lu
e 

o
f 

D
en

si
ty

Density

F I G U R E  9

20 40 60 80

71.63

Shaded area = .01

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

Prozac demand

D
en

si
ty

F I G U R E  10

99th Percentile of
Prozac Demand



E X A M P L E  1 4

Daily demand for chocolate bars at the Gillis Grocery has a mean of 100 and a variance

of 3,000 (chocolate bars)2. At present, the store has 3,500 chocolate bars in stock. What

is the probability that the store will run out of chocolate bars during the next 30 days?

Also, how many should Gillis have on hand at the beginning of a 30-day period if the

store wants to have only a 1% chance of running out during the 30-day period? Assume

that the demands on different days are independent random variables.

Solution Let

Xi � demand for chocolate bars on day i (i � 1, 2, . . . , 30)

X � number of chocolate bars demanded in next 30 days

Gillis will run out of stock during the next 30 days if X � 3,500. The Central Limit The-

orem implies that X � X1 � X2 � � � � � X30 can be closely approximated by a normal

distribution X� with E(X�) � 30(100) � 3,000 and var X� � 30(3,000) � 90,000 and 

Stocking Chocolate Bars

Solution Letting X � annual demand for Prozac, we seek a value x such that P(X � x) � .01 or

P(X 	 x) � .99. Thus, we seek the 99th percentile of Prozac demand, which we find (in

millions) with the formula

�NORMINV(.99,60,5)

Excel returns 71.63, so Lilly must produce 71,630,000 d.o.t. This assumes, of course, that

Lilly begins the year with no Prozac on hand. If the company had a beginning inventory

of 10 million d.o.t., it would need to produce 61,630,000 d.o.t. during the current year.

Figure 10 displays the 99th percentile of Prozac demand.

E X A M P L E  1 3

Family income in Bloomington is normally distributed, with m � $30,000 and s �

$8,000. The poorest 10% of all families in Bloomington are eligible for federal aid. What

should the aid cutoff be?

Solution If X � income of a Bloomington family, we seek an x such that P(X 	 x) � .10. Thus,

we seek the 10th percentile of Bloomington family income, which we find with the 

statement

�NORMINV(.10,30000,8000)

Excel returns $19,747.59. Thus, aid should be given to all families with incomes smaller

than $19,749.59. Figure 11 displays the 10th percentile of family income.

Family Income
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sx� � (90,000)1/2 � 300. Then we approximate the probability that Gillis will run out of

stock during the next 30 days by

P(X� � 3,500) � P��X� �

300

3000
� � �

3,500

3

�

00

3,000
��

� P(Z � 1.67) � 1 � P(Z 	 1.67)

� 1 � F(1.67) � 1 � .9525 � .0475

Let c � number of chocolate bars that should be stocked to have only a 1% chance of run-

ning out of chocolate bars within the next 30 days. We seek c satisfying P(X� � c) � .01, or

P��X� �

30

3

0

,000
� � �

c �

30

3

0

,000
�� � .01

This is equivalent to

P�Z � �
c �

30

3

0

,000
�� � .01

Since F(2.33) � P(Z 	 2.33) � .99,

�
c �

30

3

0

,000
� � 2.33 or c � 3,699

Thus, if Gillis has 3,699 chocolate bars in stock, there is a 1% probability that the store

will run out during the next 30 days. (We have defined running out of chocolate bars as

having no chocolate bars left at the end of 30 days.)

Alternatively, we could find the probability that the demand is at least 3,500 with the

Excel formula

�1 � NORMDIST(3500,3000,300,1)

This formula returns .0475.

We could also have used Excel to determine the level that must be stocked to have a

1% chance of running out as the 99th percentile of the demand distribution. Simply use

the formula

�NORMINV(.99,3000,300)

This formula returns the value 3,699.

P R O B L E M S
Group A
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1 The daily demand for milk (in gallons) at Gillis Grocery
is N (1,000, 100). How many gallons must be in stock at the
beginning of the day if Gillis is to have only a 5% chance
of running out of milk by the end of the day?

2 Before burning out, a light bulb gives X hours of light,
where X is N (500, 400). If we have 3 bulbs, what is the
probability that they will give a total of at least 1,460 hours
of light?

Group B

3 The number of traffic accidents occurring in Bloom-
ington in a single day has a mean and a variance of 3. What
is the probability that during a given year (365-day period),
there will be at least 1,000 traffic accidents in Bloomington?

4 Suppose that the number of ounces of soda put into a
Pepsi can is normally distributed, with m � 12.05 oz and 
s � .03 oz.

a Legally, a can must contain at least 12 oz of soda.
What fraction of cans will contain at least 12 oz of soda?



b What fraction of cans will contain under 11.9 oz of
soda?

c What fraction of cans will contain between 12 and
12.08 oz of soda?

d 1% of all cans will contain more than           oz.

e 10% of all cans will contain less than           oz.

f Pepsi controls the mean content in a can by setting a
timer. For what mean should the timer be set so that only
1 in 1,000 cans will be underfilled?

g Every day, Pepsi produces 10,000 cans. The govern-
ment inspects 10 randomly chosen cans per day. If at
least two are underfilled, Pepsi is fined $10,000. Given
that m � 12.05 oz and s � .03 oz, what is the chance
that Pepsi will be fined on a given day?

5 Suppose the annual return on Disney stock follows a
normal distribution, with mean .12 and standard deviation .30.

a What is the probability that Disney’s value will de-
crease during a year?

b What is the probability that the return on Disney
during a year will be at least 20%?

c What is the probability that the return on Disney
during a year will be between �6% and 9%?

d There is a 5% chance that the return on Disney dur-
ing a year will be greater than or equal to          .

e There is a 1% chance that the return on Disney dur-
ing a year will be less than          .

f There is a 95% chance that the return on Disney dur-
ing a year will be between           and          .

6 The daily demand for six-packs of Coke at Mr. D’s
follows a normal distribution, with a mean of 120 and a
standard deviation of 30. Every Monday, the delivery driver
delivers Coke to Mr. D’s. If the store wants to have only a
1% chance of running out of Coke by the end of the week,
how many six-packs should be ordered for the week?
(Assume that orders can be placed Sunday at midnight.)
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7 The Coke factory fills bottles of soda by setting a timer
on a filling machine. It has been observed that the number
of ounces the machine puts in a bottle has a standard
deviation of .05 oz. If 99.9% of all bottles are to have at
least 16 oz of soda, to what amount should the average
amount be set? (Hint: Use the Excel Goal Seek feature.)

8 We assemble a large part by joining two smaller parts
together. In the past, the smaller parts we have produced
have had a mean length of 1� and a standard deviation of
.01�. Assume that the lengths of the smaller parts are
normally distributed and are independent.

a What fraction of the larger parts are more than 2.05�
in diameter?

b What fraction of the larger parts are between 1.96�
and 2.02� in diameter?

9 Weekly Ford sales follow a normal distribution, with a
mean of 50,000 cars and a standard deviation of 14,000
cars.

a There is a 1% chance that Ford will sell more than  
cars during the next year.

b The chance that Ford will sell between 2.4 and 2.7
million cars during the next year is          .

10 Warren Dinner has invested in nine different
investments. The profits earned on the different investments
are independent. The return on each investment follows a
normal distribution, with a mean of $500 and a standard
deviation of $100.

a There is a 1% chance that the total return on the nine
investment is less than          .

b The probability that Warren’s total return is between
$4,000 and $5,200 is          .

12.7 z-Transforms

Consider a discrete random variable X whose only possible values are nonnegative inte-

gers. For n � 0, 1, 2, . . . , let P(X � n) � an. We define (for |z| 	 1) the z-transform of

X (call it pT
X(z)) to be

E(zX) � �
n�∞

n�0

anzn

To see why z-transforms are useful, note that


�dp

d

T
X

z

(z)
��

z�1

� 
 �
n�∞

n�1

nzn�1an�
z�1

� E(X)

Also note that


�d
2

d

p

z

T
X
2

(z)
��

z�1

� 
 �
n�∞

n�1

n(n � 1)zn�2an�
z�1

� E(X2) � E(X)



This implies that we can find the mean, the second moment (E(X2)), and variance of X

from the following relationships:

E(X) � 
�dp

d

T
X

z

(z)
��

z�1

(23)

E(X2) � 
�d
2

d

p

z

T
X
2

(z)
��

z�1

� 
�dp

d

T
X

z

(z)
��

z�1

(24)

var X � 
�d
2

d

p

z

T
X
2

(z)
��

z�1

� 
�dp

d

T
X

z

(z)
��

z�1

� �
�dp

d

T
X

z

(z)
��

z�1
�

2

(25)

The following examples illustrate the power of z-transforms.

E X A M P L E  1 5

Suppose we toss a coin n times, and the probability of obtaining heads each time is p. Let

q � 1 � p. If successive coin tosses are independent events, then the mass function de-

scribing the random variable X � number of heads is the well-known binomial random

variable defined by

P(X � j) = �
j!(n

n

�

!

j)!
� p j(q)n�j, j � 0, 1, 2, . . . , n

The z-transform for the random variable X is given by

pT
X(z) � �

j�n

j�0

�
j!(n

n

�

!

j)!
� p j(q)n�jz j � �

j�n

j�0

�
j!(n

n

�

!

j)!
� (pz) j(q)n�j � (pz � q)n

We can now use the z-transform to determine the mean and variance of the binomial ran-

dom variable. Note that

�
dp

d

T
X

z

(z)
� � np(pz � q)n�1 and �

d2

d

p

z

T
X
2

(z)
� � n(n � 1)p2(pz � q)n�2

For z � 1, we find

�
dp

d

T
X

z

(z)
� � np and �

d2

d

p

z

T
X
2

(z)
� � n(n � 1)p2

Then from (23), we find E(X) � np, and from (25), we find that var X � n(n � 1)p2 �

np � (np)2 � npq.

E X A M P L E  1 6

Let the random variable X be defined as the number of coin tosses needed to obtain the

first heads, given that successive tosses are independent, the probability that each toss is

heads is given by p, and the probability that each coin is tails is given by q � 1 � p. Then

X follows a geometric random variable, where P(X � j) � pq j�1 ( j � 1, 2, . . . , n).

Then pT
X(z) � �

j�∞

j�1

pq j�1z j. For x  1, we know that a � ax � ax2 � � � � � �
1 �

a

x
�. There-

fore, pT
X(z) � �

1 �

pz

qz
�. We find that

�
dp

d

T
X

z

(z)
� � �

(1 �

p

qz)2� and �
d2

d

p

z

T
X
2

(z)
� � �

(1

2

�

p

q

q

z)3�

z-Transform for a Geometric Random Variable

z -Transform for the Binomial Random Variable
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Letting z � 1 (Equation (23)) tells us that

E(X) � �
p

p
2� � �

1

p
� and var X � �

2

p

p
3

q
� � �

1

p
� � �

p

1
2� � �

p

q
2�

Suppose X1, X2, . . . , Xn are independent random variables. Let S � X1 � X2 � � � �

� Xn. Then it is easy to prove (see Problem 2) that

pT
S(z) � pT

X1
(z) � � � pT

Xn
(z) (26)

To see the usefulness of this result, reconsider Example 15. Let Xi � number of heads

on the ith toss of a coin. Then number of heads on n tosses of a coin is given by 

X1 � X2 � � � � � Xn. For each Xi, we have that pT
Xi

(z) � pz � q. Then from (26), we

find that pT
X(z) � (pz � q)n. Of course, this agrees with the z-transform we obtained in

Example 15.

P R O B L E M S
Group A
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1 For a given m, the Poisson random variable has the

mass function P(X � k) � e�m �
m

n!

n

� (k � 0, 1, 2, . . .). Find

the mean and variance of a Poisson random variable.

Group B

2 Prove Equation (26).

3 Suppose we toss a coin. Successive coin tosses are
independent and yield heads with probability p. The negative

binomial random variable with parameter k assumes a value
n if it takes n failures until the kth success occurs. Use 
z-transforms to determine the probability mass function for
the negative binomial random variable.

Hint: The number of ways of making k choices from 
the numbers 0, 1, . . . , n add up to n is given by 

�
(n

n!

�

(k

k

�

�

1)

1

!

)!
�.

S U M M A R Y Formulas for Determining Indefinite Integrals

� (1) dx � x � C

� af (x) dx � a � f (x) dx (a is any constant)

� [ f (x) � g(x)] dx � � f (x) dx � � g(x) dx

� xn dx � �
n

xn

�

�1

1
� � C (n � �1)

� x�1 dx � ln x � C

� ex dx � ex � C

� ax dx � �
ln

ax

a
� � C (a � 0, a � 1)



� [ f (x)]nf �(x) dx � �
[ f

n

(x

�

)]n

1

�1

� � C (n � �1)

� f (x)�1f �(x) dx � ln f (x) � C

For two functions u(x) and v(x),

� u(x)v�(x) dx � u(x)v(x) � � v(x)u�(x) dx (Integration by parts)

� e f (x)f �(x) dx � e f (x) � C

� a f (x)f �(x) dx � �
a

ln

f (

a

x)

� � C (a � 0, a � 1)

Leibniz’s Rule for Differentiating an Integral

If F( y) � �h( y)

g( y)
f (x, y) dx, then

F�( y) � h�( y) f (h( y), y) � g�( y) f (g( y), y) � �h( y)

g( y)
�
∂f (

∂

x

y

, y)
� dx

Probability

Basic Rules

Rule 1 For any event E, P(E) � 0.

Rule 2 If E � S (that is, if E contains all points in the sample space), then P(E) � 1.

Rule 3 If E1, E2, . . . , En is a mutually exclusive collection of events, then

P(E1 � E2 � � � � � En) � �
k�n

k�1

P(Ek)

Rule 4 P(E�) � 1 � P(E).

Formula for Conditional Probability

P(E2|E1) � �
P(E

P
1

(E

�

1)

E2)
� (1)

Bayes’ Rule

P(Si|Oj) � (7)

P(Oj|Si)P(Si)
��

�
k�n

k�1

P(Oj|Sk)P(Sk)
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Random Variables, Mean, Variance, and Covariance

Mean of a Discrete Random Variable

E(X) � �
all k

xkP(X � xk) (8)

Mean of a Continuous Random Variable

E(X) � �∞

�∞
xf (x) dx (9)

Variance of a Discrete Random Variable

var X � �
all k

[xk � E(X)]2 P(X � xk) (10)

Variance of a Continuous Random Variable

var X � �∞

�∞
[x � E(X)]2f (x) dx (11)

Covariance of Two Random Variables

cov(X, Y) � E{[X � E(X)][Y � E(Y)]} (13)

Mean, Variance, and Covariance for Sums of Random Variables

E(cX1) � cE(X1) (14)

E(X1 � c) � E(X1) � c (15)

E(X1 � X2) � E(X1) � E(X2) (16)

var cX1 � c2var X1 (17)

var(X1 � c) � var X1 (18)

If X1 and X2 are independent random variables,

var(X1 � X2) � var X1 � var X2 (19)

In general,

var(X1 �X2) � var X1 � var X2 � 2cov(X1, X2) (20)

For random variables X1, X2, . . . , Xn,

var(X1 � X2 � � � � � Xn) � var X1 � var X2 � � � �

� var Xn � �
i�j

cov(Xi, Xj) (21)

cov(aX1, bX2) � ab cov(X1, X2) (22)

Useful Properties of the Normal Distribution

Property 1 If X is N(m, s2), then cX is N(cm, c2
s

2).

Property 2 If X is N(m, s2), then X � c (for any constant c) is N(m � c, s2).
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Property 3 If X1 is N(m1, s2
1), X2 is N(m2, s2

2), and X1 and X2 are independent, then X1

� X2 is N(m1 � m2, s2
1 � s

2
2).

If X is N(m, s2), then

P(a 	 X 	 b) � F ��b �

s

m
�� � F ��a �

s

m
��

where F(x) � P(Z 	 x) and Z is N(0, 1).

z-Transforms

We define (for |z| 	 1) the z-transform of X (call it pT
X(z)) to be

E(zX) � �
n�∞

n�0

anzn

We can find the mean, the second moment (E(X2)), and variance of X from the follow-

ing relationships:

E(X) � 
�dp

d

T
X

z

(z)
��

z�1

(23)

E(X2) � 
�d
2

d

p

z

T
X
2

(z)
��

z�1

� 
�dp

d

T
X

z

(z)
��

z�1

(24)

var X � 
�d
2

d

p

z

T
X
2

(z)
��

z�1

� 
�dp

d

T
X

z

(z)
��

z�1

� �
�dp

d

T
X

z

(z)
��

z�1
�

2

(25)

R E V I E W  P R O B L E M S
Group A
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1 Let f (x) � xe�x.

a Find f �(x) and f �(x).

b For what values of x is f (x) increasing? Decreasing?

c Find the first-order Taylor series expansion for f (x)
about x � 1.

2 Let f (x1, x2) � x1 ln(x2 � x1). Determine all first-order
and second-order partial derivatives.

3 Some t years from now, air conditioners are sold at a
rate of t per year. How many air conditioners will be sold
during the next five years?

4 Let X be a continuous random variable with density
function

f (x) � 	
a What is k?

b Find the cdf for X.

c Find E(X) and var X.

d Find P(2 	 X 	 5).

if 0 	 x 	 4

otherwise

�
4�

k
x

�

0

5 Let Xi be the price (in dollars) of stock i one year from
now. X1 is N (15, 100) and X2 is N (20, 2025). Today I buy
three shares of stock 1 for $12/share and two shares of stock
2 for $17/share. Assume that X1 and X2 are independent
random variables.

a Find the mean and variance of the value of my stocks
one year from now.

b What is the probability that one year from now I will
have earned at least a 30% return on my investment?

c If X1 and X2 were not independent, why would it be
difficult to answer parts (a) and (b)?

Group B

6 An airplane has four engines. On a flight from New
York to Paris, each engine has a 0.001 chance of failing. The
plane will crash if at any time two or fewer engines are
working properly. Assume that the failures of different
engines are independent.

a What is the probability that the plane will crash?

b Given that engine 1 will not fail during the flight,
what is the probability that the plane will crash?
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c Given that engine 1 will fail during the flight, what
is the probability that the plane will not crash?

7 Suppose that each engine can be inspected before the
flight. After inspection, each engine is labeled as being in
either good or bad condition. You are given that

P(inspection says engine is in good condition | engine will
fail) � .001
P(inspection says engine is in bad condition | engine will
fail) � .999
P(inspection says engine is in good condition | engine will
not fail) � .995

P(inspection says engine is in bad condition | engine will
not fail) � .005

a If the inspection indicates the engine is in bad con-
dition, what is the probability that the engine will fail on
the flight?

b If an inspector randomly inspects an engine (that is,
with probability .001 she chooses an engine that is about
to fail, and with probability .999 she chooses an engine
that is not about to fail), what is the probability that she
will make an error in her evaluation of the engine?
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� � � � � � � � � � �13

Decision Making under Uncertainty

We have all had to make important decisions where we were uncertain about factors that were

relevant to the decisions. In this chapter, we study situations in which decisions are made in

an uncertain environment.

The following model encompasses several aspects of making a decision in the absence of

certainty. The decision maker first chooses an action ai from a set A � {a1, a2, . . . , ak} of avail-

able actions. Then the state of the world is observed; with probability pj, the state of the world

is observed to be sj � S � {s1, s2, . . . , sn}. If action ai is chosen and the state of the world is

sj, the decision maker receives a reward rij. We refer to this model as the state-of-the-world

decision-making model.

This chapter presents the basic theory of decision making under uncertainty: the widely used

Von Neumann–Morgenstern utility model, and the use of decision trees for making decisions at

different points in time. We close by looking at decision making with multiple objectives.

13.1 Decision Criteria

In this section, we consider four decision criteria that can be used to make decisions un-

der uncertainty.

E X A M P L E  1

News vendor Phyllis Pauley sells newspapers at the corner of Kirkwood Avenue and In-

diana Street, and each day she must determine how many newspapers to order. Phyllis

pays the company 20¢ for each paper and sells the papers for 25¢ each. Newspapers that

are unsold at the end of the day are worthless. Phyllis knows that each day she can sell

between 6 and 10 papers, with each possibility being equally likely. Show how this prob-

lem fits into the state-of-the-world model.

Solution In this example, the members of S � {6, 7, 8, 9, 10} are the possible values of the daily

demand for newspapers. We are given that p6 � p7 � p8 � p9 � p10 � �
1
5

�. Phyllis must

choose an action (the number of papers to order each day) from A � {6, 7, 8, 9, 10}.

If Phyllis purchases i papers and j papers are demanded, then i papers are purchased

at a cost of 20i¢, and min(i, j) papers are sold for 25¢ each.† Thus, if Phyllis purchases i

papers and j papers are demanded, she earns a net profit of rij, where

rij � 25i � 20i � 5i (i � j)

rij � 25j � 20i (i � j)

The values of rij are tabulated in Table 1.

Newspaper Vendor

†min(i, j) is the smaller of i and j.



Dominated Actions

Why did we not consider the possibility that Phyllis would order 1, 2, 3, 4, 5, or more than

10 papers? Answering this question involves the idea of a dominated action.

D E F I N I T I O N ■

If action ai is dominated, then in no state of the world is ai better than ai�, and in at least

one state of the world ai is inferior to ai�. Thus, if action ai is dominated, there is no rea-

son to choose ai (ai� would be a better choice).

If Phyllis orders i papers (i � 1, 2, 3, 4, 5), she will earn (for all states of the world) a

profit of 5i¢. From the table of rewards, we see that, for i � 1, 2, 3, 4, 5, ordering 6 pa-

pers dominates ordering i papers ( j� � 6, 7, 8, 9, or 10 will do). Similarly, the reader

should check that ordering i papers (i � 11) is dominated by ordering 10 papers (see Prob-

lem 3 at the end of this section). A quick check shows that none of the actions in A �

{6, 7, 8, 9, 10} are dominated. Thus, Phyllis should indeed choose her action from A �

{6, 7, 8, 9, 10}.

We now discuss four criteria that can be used to choose an action.

The Maximin Criterion

For each action, determine the worst outcome (smallest reward). The maximin criterion

chooses the action with the “best” worst outcome.

D E F I N I T I O N ■

For Example 1, we obtain the results in Table 2. Thus, the maximin criterion recom-

mends ordering 6 papers. This ensures that Phyllis will, no matter what the state of the

world, earn a profit of at least 30¢. The maximin criterion is concerned with making the

worst possible outcome as pleasant as possible. Unfortunately, choosing a decision to mit-

igate the worst case may prevent the decision maker from taking advantage of good for-

tune. For example, if Phyllis follows the maximin criterion, she will never make less than

30¢, but she will never make more than 30¢.

The maximin criterion chooses the action ai with the largest value of 

minj�S rij. ■

An action ai is dominated by an action ai� if for all sj � S, rij � ri�j, and for

some state sj�, rij� 	 ri�j�. ■
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TA B L E  1

Rewards for News Vendor

Papers Demanded

Papers 
Ordered 6 7 8 9 10

6 30¢ 30¢ 30¢ 30¢ 30¢

7 10¢ 35¢ 35¢ 35¢ 35¢

8 �10¢ 15¢ 40¢ 40¢ 40¢

9 �30¢ �5¢ 20¢ 45¢ 45¢

10 �50¢ �25¢ 0¢ 25¢ 50¢



The Maximax Criterion

For each action, determine the best outcome (largest reward). The maximax criterion

chooses the action with the “best” best outcome.

D E F I N I T I O N ■

For Example 1, we obtain the results in Table 3. Thus, the maximax criterion would rec-

ommend ordering 10 papers. In the best state (when 10 papers are demanded), this yields

a profit of 50¢. Of course, making a decision according to the maximax criterion leaves

Phyllis open to the disastrous possibility that only 6 papers will be demanded, in which

case she loses 50¢.

Minimax Regret

The minimax regret criterion (developed by L. J. Savage) uses the concept of opportunity

cost to arrive at a decision. For each possible state of the world sj, find an action i*( j) that

maximizes rij. That is, i*( j) is the best possible action to choose if the state of the world

is actually sj. Then for any action ai and state sj, the opportunity loss or regret for ai in sj

is ri*( j), j � rij. For example, if j � 7 papers are demanded, the best decision is to order

i*(7) � 7 papers, yielding a profit of r77 � 7(25) � 7(20) � 35¢. Suppose we chose to

order i � 6 papers. Since r67 � 6(25) � 6(20) � 30¢, the opportunity loss or regret for

i � 6 and j � 7 is 35 � 30 � 5¢. Thus, if we order 6 papers and 7 papers are demanded,

in hindsight we realize that by making the optimal choice (ordering 7 papers) for the ac-

tual state of the world (7 papers demanded), we would have done 5¢ better than we did

by ordering 6 papers. Table 4 shows the opportunity cost or regret matrix for Example 1.

The maximax criterion chooses the action ai with the largest value of 

maxj�S rij. ■
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TA B L E  2

Computation of Maximin Decision for News Vendor

Papers Worst State Reward in Worst State
Ordered of the World of the World

6 6, 7, 8, 9, 10 30¢

7 6 10¢

8 6 �10¢

9 6 �30¢

10 6 �50¢

TA B L E  3

Computation of Maximax Decision for News Vendor

Papers State Yielding
Ordered Best Outcome Best Outcome

6 6, 7, 8, 9, 10 30¢

7 7, 8, 9, 10 35¢

8 8, 9, 10 40¢

9 9, 10 45¢

10 10 50¢



The minimax regret criterion chooses an action by applying the minimax criterion to the

regret matrix. In other words, the minimax regret criterion attempts to avoid disappoint-

ment over what might have been. From the regret matrix in Table 4, we obtain the mini-

max regret decision in Table 5. Thus, the minimax regret criterion recommends ordering

6 or 7 papers.

The Expected Value Criterion

The expected value criterion chooses the action that yields the largest expected reward.

For Example 1, the expected value criterion would recommend ordering 6 or 7 papers (see

Table 6).

The decision-making criteria discussed in this section may seem reasonable, but many

people make decisions without using any of them. A more comprehensive model of indi-

vidual decision making, the Von Neumann–Morgenstern utility model, is discussed in

Section 13.2.
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TA B L E  4

Regret Matrix for News Vendor

Papers Demanded

Papers 
Ordered 6 7 8 9 10

6 30 � 30 � 0¢ 35 � 30 � 5¢ 40 � 30 � 10¢ 45 � 30 � 15¢ 50 � 30 � 20¢

7 30 � 10 � 20¢ 35 � 35 � 0¢ 40 � 35 � 5¢ 45 � 35 � 10¢ 50 � 35 � 15¢

8 30 
 10 � 40¢ 35 � 15 � 20¢ 40 � 40 � 0¢ 45 � 40 � 5¢ 50 � 40 � 10¢

9 30 
 30 � 60¢ 35 
 5 � 40¢ 40 � 20 � 20¢ 45 � 45 � 0¢ 50 � 45 � 5¢

10 30 
 50 � 80¢ 35 
 25 � 60¢ 40 � 0 � 40¢ 45 � 25 � 20¢ 50 � 50 � 0¢

TA B L E  5

Computation of Minimax Regret Decision
for News Vendor

Papers Ordered Maximum Regret

6 20¢

7 20¢

8 40¢

9 60¢

10 80¢

TA B L E  6

Computation of Expected Value Decision for News Vendor

Papers Ordered Expected Reward

6 �
1
5

� (30 
 30 
 30 
 30 
 30) � 30¢

7 �
1
5

� (10 
 35 
 35 
 35 
 35) � 30¢

8 �
1
5

� (�10 
 15 
 40 
 40 
 40) � 25¢

9 �
1
5

� (�30 � 5 
 20 
 45 
 45) � 15¢

10 �
1
5

� (�50 � 25 
 0 
 25 
 50) � 0¢



1 Pizza King and Noble Greek are two competing
restaurants. Each must determine simultaneously whether to
undertake small, medium, or large advertising campaigns.
Pizza King believes that it is equally likely that Noble Greek
will undertake a small, a medium, or a large advertising
campaign. Given the actions chosen by each restaurant,
Pizza King’s profits are as shown in Table 7. For the
maximin, maximax, and minimax regret criteria, determine
Pizza King’s choice of advertising campaign.
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P R O B L E M S
Group A

the present time. Considering the reward for each action and
state of the world to be in terms of net present value, use
each decision criterion of this section to determine whether
Sodaco should build the plant.

3 For Example 1, show that ordering 11 or more papers is
dominated by ordering 10 papers.

Group B

4 Suppose that Pizza King and Noble Greek stop
advertising but must determine the price they will charge
for each pizza sold. Pizza King believes that Noble Greek’s
price is a random variable D having the following mass
function: P (D � $6) � .25, P (D � $8) � .50, P (D �
$10) � .25. If Pizza King charges a price p1 and Noble
Greek charges a price p2, Pizza King will sell 100 


25( p2 � p1) pizzas. It costs Pizza King $4 to make a pizza.
Pizza King is considering charging $5, $6, $7, $8, or $9 for
a pizza. Use each decision criterion of this section to
determine the price that Pizza King should charge.

5 Alden Construction is bidding against Forbes Construction
for a project. Alden believes that Forbes’s bid is a random
variable B with the following mass function: P (B �

$6,000) � .40, P(B � $8,000) � .30, P(B � $11,000) � .30.
It will cost Alden $6,000 to complete the project. Use each of
the decision criteria of this section to determine Alden’s bid.
Assume that in case of a tie, Alden wins the bidding. 
(Hint: Let p � Alden’s bid. For p � 6,000, 6,000 	

p � 8,000, 8,000 	 p � 11,000, and p � 11,000, determine
Alden’s profit in terms of Alden’s bid and Forbes’s bid.)

2 Sodaco is considering producing a new product:
Chocovan soda. Sodaco estimates that the annual demand
for Chocovan, D (in thousands of cases), has the following
mass function: P (D � 30) � .30, P (D � 50) � .40, 
P(D � 80) � .30. Each case of Chocovan sells for $5 and
incurs a variable cost of $3. It costs $800,000 to build a
plant to produce Chocovan. Assume that if $1 is received
every year (forever), this is equivalent to receiving $10 at

13.2 Utility Theory

We now show how the Von Neumann–Morgenstern concept of a utility function can be

used as an aid to decision making under uncertainty.

Consider a situation in which a person will receive, for i � 1, 2, . . . , n, a reward ri

with probability pi. This is denoted as the lottery ( p1, r1; p2, r2; . . . ; pn, rn). A lottery is

often represented by a tree in which each branch stands for a possible outcome of the lot-

tery, and the number on each branch represents the probability that the outcome will oc-

cur. Thus, the lottery (�
1
4

�, $500; �
3
4

�, $0) could be denoted by

TA B L E  7

Noble Greek Chooses

Pizza King
Chooses Small Medium Large

Small $6,000 $5,000 $2,000

Medium $5,000 $6,000 $1,000

Large $9,000 $6,000 $0

�
1
4

�

$500

�
3
4

�

$0

Suppose we are asked to choose between two lotteries (L1 and L2). With certainty, lot-

tery L1 yields $10,000:

L1 �
1
� $10,000



Lottery L2 consists of tossing a coin. If heads comes up, we receive $30,000, and if tails

comes up, we receive $0:
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L1 yields an expected reward of $10,000, and L2 yields an expected reward of (�
1
2

�)(30,000) 


(�
1
2

�)(0) � $15,000. Although L2 has a larger expected value than L1, most people prefer L1 to

L2 because L1 offers the certainty of a relatively large payoff, whereas L2 yields a substantial

(�
1
2

�) chance of earning a reward of $0. In short, most people prefer L1 to L2 because L1 in-

volves less risk (or uncertainty) than L2.

Our goal is to determine a method that a person can use to choose between lotteries.

Suppose he or she must choose to play L1 or L2 but not both. We write L1pL2 if the per-

son prefers L1. We write L1iL2 if he or she is indifferent between choosing L1 and L2. If

L1iL2, we say that L1 and L2 are equivalent lotteries. Finally, we write L2pL1 if the de-

cision maker prefers L2.

Suppose we ask a decision maker to rank the following lotteries:

�
1
2

�

$30,000

L2
�
1
2

�

$0

The Von Neumann–Morgenstern approach to ranking these lotteries is as follows. Begin

by identifying the most favorable ($30,000) and the least favorable (�$10,000) outcomes

that can occur. For all other possible outcomes (r1 � $10,000, r2 � $500, and r3 � $0),

the decision maker is asked to determine a probability pi such that he or she is indiffer-

ent between two lotteries:

.50
$30,000

L1 �
1
� $10,000 L2

.50
$0

.02
�$10,000

L3 �
1
� $0 L4

.98
$500

pi $30,000

�
1
� ri and

1 � pi
�$10,000

.90
$30,000

�
1
� $10,000 and (1)

.10
�$10,000

.62
$30,000

�
1
� $500 and (2)

.38
�$10,000

Suppose that for r1 � $10,000, the decision maker is indifferent between

and for r2 � $500, indifferent between



and for r3 � $0, indifferent between
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Using (1)–(3), the decision maker can construct lotteries L�1, L�2, L�3, and L�4 such that Li�iLi

and each Li� involves only the best ($30,000) and the worst (�$10,000) possible out-

comes. Thus, from (1), we find that L1iL�1, where

From (3), we find that L2iL�2, where

.60
$30,000

�
1
� $0 and (3)

.40
�$10,000

L�2 is a compound lottery in which with probability .50 we receive $30,000 and with

probability .50 we play a lottery yielding a .60 chance at $30,000 and a .40 chance at

�$10,000. More formally, a lottery L is a compound lottery if for some i, there is a prob-

ability pi that the decision maker’s reward is to play another lottery L�. The following is

an example of a compound lottery:

.90
$30,000

L�1
.10

�$10,000

Thus, with probability .50, L yields a reward of �$4, and with probability .50, L causes

us to play L�. If a lottery is not a compound lottery, it is a simple lottery.

Returning to our discussion of L�2, we observe that L�2 is a lottery that yields a .50 


.50(.60) � .80 chance at $30,000 and a .40(.50) � .20 chance at �$10,000. Thus,

L2iL�2iL�2, where

.50
$30,000

L�2 .60
$30,000

.50

.40
�$10,000

Similarly, using (3), we find that L3iL�3, where

.60
$6

.50
(L�)

.40
�$4

L

.50
�$4

.80
$30,000

L�2
.20

�$10,000

.60
$30,000

L�3
.40

�$10,000



Using (2), we find that the decision maker is indifferent between L4 and L�4, where
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In actuality, however, L4� yields a .98(.62) � .6076 chance at $30,000 and a .02 
 .38(.98) �

.3924 chance at �$10,000. Thus, L4iL�4 iL�4, where

Since LiiLi�, we may rank L1, L2, L3, and L4 by ranking L�1, L�2, L�3, and L�4. Consider two

lotteries whose only possible outcomes are $30,000 (the most favorable outcome) and

�$10,000 (the least favorable outcome). If he or she is given a choice between two lot-

teries of this type, the decision maker simply chooses the lottery with the larger chance

of receiving the most favorable outcome. Applying this idea to L1� through L4� yields

L�1pL�2pL�4pL�3. Since LiiLi�, we may conclude that L1pL2pL4pL3.

We now give a more formal description of the process that we have used to rank L1,

L2, L3, and L4. The utility of the reward ri, written u(ri), is the number qi such that the

decision maker is indifferent between the following two lotteries:

.02
�$10,000

L�4 .62
$30,000

.98

.38
�$10,000

.6076
$30,000

L�4
.3924

�$10,000

This definition forces u(least favorable outcome) � 0 and u(most favorable outcome) �

1. For our possible payoffs of $30,000, �$10,000, $0, $500, and $10,000, we first 

find that u($30,000) � 1 and u(�$10,000) � 0. Then (1)–(3) yield u($10,000) � .90,

u($500) � .62, and u($0) � .60. The specification of u(ri) for all rewards ri is called the

decision maker’s utility function.

For a given lottery L � ( p1, r1; p2, r2; . . . ; pn, rn), define the expected utility of the

lottery L, written E(U for L), by

E(U for L) � �
i�n

i�1

piu(ri)

Thus, in our example

E(U for L1) � 1(.90) � .90

E(U for L2) � .50(1) 
 .50(.60) � .80

E(U for L3) � 1(.60) � .60

E(U for L4) � .02(0) 
 .98(.62) � .6076

Recall that we found that LiiLi�, where Li� yielded an E(U for Li) chance at $30,000 and

a 1 � E(U for Li) chance at �$10,000. Thus, in choosing between lotteries L�1, L�2, L�3,

and L�4 (or equivalently, L1, L2, L3, and L4), we simply chose the lottery with the largest

qi Most favorable outcome

�
1
� ri and

1 � qi Least favorable outcome



expected utility. Given two lotteries L1 and L2, we may choose between them via the ex-

pected utility criteria:

L1pL2 if and only if E(U for L1) � E(U for L2)

L2pL1 if and only if E(U for L2) � E(U for L1)

L1iL2 if and only if E(U for L2) � E(U for L1)

Von Neumann–Morgenstern Axioms

Von Neumann and Morgenstern proved that if a person’s preferences satisfy the follow-

ing axioms, then he or she should choose between lotteries by using the expected utility

criterion.

Axiom 1: Complete Ordering Axiom

For any two rewards r1 and r2, one of the following must be true: The decision maker (1)

prefers r1 to r2, (2) prefers r2 to r1, or (3) is indifferent between r1 and r2. Also, if the 

person prefers r1 to r2 and r2 to r3, then he or she must prefer r1 to r3 (transitivity of 

preferences).

In our discussion, we used the Complete Ordering Axiom to determine the most and

least favorable outcomes.

Axiom 2: Continuity Axiom

If the decision maker prefers r1 to r2 and r2 to r3, then for some c(0 	 c 	 1), L1iL2,

where
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In our informal discussion, we used the Continuity Axiom when we found, for exam-

ple, that L3iL�3, where

c
r1

L1 �
1
� r2 L2

1 � c
r3

.60
$30,000

L3 �
1
� $0 L�3

.40
�$10,000

Axiom 3: Independence Axiom

Suppose the decision maker is indifferent between rewards r1 and r2. Let r3 be any other

reward. Then for any c (0 	 c 	 1), L1iL2, where

c c
r1 r2

L1 L2

1 � c 1 � c
r3 r3



L1 and L2 differ only in that L1 has a probability c of yielding a reward r1, whereas L2 has

a probability c of yielding a reward r2. Thus, the Independence Axiom implies that the

decision maker views a chance c at r1 and a chance c at r2 to be of identical value, and

this view holds for all values of c and r3. We applied the Independence Axiom when we

used (3) to claim that L2iL�2, where
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Axiom 4: Unequal Probability Axiom

Suppose the decision maker prefers reward r1 to reward r2. If two lotteries have only r1

and r2 as their possible outcomes, he or she will prefer the lottery with the higher prob-

ability of obtaining r1.

We used the Unequal Probability Axiom when we concluded, for example, that L�1 was pre-

ferred to L�2 (because L�1 had a .90 chance at $30,000 and L�2 had only a .80 chance at $30,000).

Axiom 5: Compound Lottery Axiom

Suppose that when all possible outcomes are considered, a compound lottery L yields (for

i � 1, 2, . . . , n) a probability pi of receiving a reward ri. Then LiL�, where L� is the sim-

ple lottery (p1, r1; p2, r2; . . . ; pn, rn).

For example, consider the following compound lottery:

.50
$30,000

L�2 .60
$30,000

.50

.40
�$10,000

.50
$30,000

L2
.50

$0

L yields a .50 
 .50(.40) � .70 chance at �$4 and a .50(.60) � .30 chance at $6. Thus,

Li L�, where

.60
$6

.50
(L�)

.40
�$4

L

.50
�$4

.70
�$4

L�
.30

$6

.50
$30,000

L�2 .60
$30,000

.50

.40
�$10,000

In our informal discussion, we used the Compound Lottery Axiom when, for example, we

stated that the compound equivalent of L2 (L�2)



was equivalent to the following simple lottery:
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Why We May Assume u(Worst Outcome) � 0 
and u(Best Outcome) � 1

Up to now, we have assumed that u(least favorable outcome) � 0 and u(most favorable

outcome) � 1. Even if a decision maker’s utility function does not have these values, we

can transform his or her utility function (without changing the preferences among lotter-

ies) into a utility function having u(least favorable outcome) � 0 and u(most favorable

outcome) � 1.

L E M M A  1

Given a utility function u(x), define for any a � 0 and any b the function v(x) �

au(x) 
 b. Given any two lotteries L1 and L2, it will be the case that

1 A decision maker using u(x) as his or her utility function will have L1pL2 if and

only if a decision maker using v(x) as his or her utility function will have L1pL2.

2 A decision maker using u(x) as his or her utility function will have L1iL2 if and

only if a decision maker using v(x) as his or her utility function will have L1iL2.

Proof Let

L1 � ( p1, r1; p2, r2; . . . ; pn, rn)

L2 � (p�
1, r�1; p�

2, r�2; . . . ; p�
m, r�m)

Suppose the decision maker using u(x) prefers L1 to L2. Then by the expected util-

ity criterion, we know that

�
i�n

i�1

piu(ri) � �
i�m

i�1

pi�u(ri�) (4)

Now the v(x) decision maker will have L1pL2 if

�
i�n

i�1

pi[au(ri) 
 b] � �
i�m

i�1

pi�[au(ri�) 
 b] (5)

Since

�
i�n

i�1

pi � �
i�m

i�1

pi� � 1

(5) simplifies to

a �
i�n

i�1

piu(ri) 
 b � a �
i�m

i�1

pi�u(ri�) 
 b (6)

Since a � 0, (6) follows from (4). Thus, if the u(x) decision maker has L1pL2, the

v(x) decision maker has L1pL2. Similarly, if (6) holds, then (4) will hold. Thus, if

the v(x) decision maker has L1pL2, the u(x) decision maker will also have L1pL2. A

similar argument can be used to prove part (2) of Lemma 1.

.50 
 .50(.60) � .80
$30,000

.50(.40) � .20
�$10,000



Using Lemma 1, we can show that without changing how an individual ranks lotter-

ies, we can transform the decision maker’s utility function into one having u(least favor-

able outcome) � 0 and u(most favorable outcome) � 1. To illustrate, let’s reconsider rank-

ing lotteries L1–L4. Suppose our decision maker’s utility function had u(�$10,000) � �5

and u($30,000) � 10. Define v(x) � au(x) 
 b. Choose a and b so that v($30,000) �

10a 
 b � 1 and v(�$10,000) � �5a 
 b � 0. Then a � �
1
1
5
� and b � �

1
3

�. Then by Lemma

1, the utility function v(x) � �
u
1
(
5
x)
� 
 �

1
3

� will yield the same ranking of lotteries as does u(x),

and we will have constructed v(x) so that v($30,000) � 1 and v(�$10,000) � 0. Thus,

we see that without loss of generality, we may assume that u(least favorable outcome) �

0 and u(most favorable outcome) � 1.

Estimating an Individual’s Utility Function

How might we estimate an individual’s (call her Jill) utility function? We begin by as-

suming that the least favorable outcome (say, �$10,000) has a utility of 0 and that the

most favorable outcome (say, $30,000) has a utility of 1. Next we define a number x1/2

having u(x1/2) � �
1
2

�. To determine x1/2, ask Jill for the number (call it x1/2) that makes her

indifferent between
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�
1
2

�

$30,000 (Most favorable outcome)

�
1
� x1/2 and

�
1
2

�

�$10,000 (Least favorable outcome)

�
1
2

�

x1/2 � �$3,400

�
1
� x1/4 and

�
1
2

�

�$10,000 (Least favorable outcome)

Since Jill is indifferent between the two lotteries, they must have the same expected util-

ity. Thus, u(x1/2) � (�
1
2

�)(1) 
 (�
1
2

�)(0) � �
1
2

�.

This procedure yields a point x1/2 having u(x1/2) � �
1
2

�. Suppose Jill states that x1/2 �

�$3,400. Using x1/2 and the least favorable outcome (�$10,000) as possible outcomes,

we can construct a lottery that can be used to determine the point x1/4 having a utility of
�
1
4

� (that is, u(x1/4) � �
1
4

�). Point x1/4 must be such that Jill is indifferent between

Then u(x1/4) � (�
1
2

�)(�
1
2

�) 
 (�
1
2

�)(0) � �
1
4

�. Thus, x1/4 will satisfy u(x1/4) � �
1
4

�. Suppose Jill states

that x1/4 � �$8,000. This gives us another point on Jill’s utility function.

Jill can now use the x1/2 and $30,000 outcomes to construct a lottery that will yield a

value x3/4 satisfying u(x3/4) � �
3
4

�. (How?) Suppose that x3/4 � $8,000. Similarly, outcomes

of x1/4 and �$10,000 can be used to construct a lottery that will yield a value x1/8 satis-

fying u(x1/8) � �
1
8

�. Now Jill’s utility function can be approximated by drawing a curve

(smooth, we hope) joining the points

(�$10,000, 0), (x1/8, 1/8), (x1/4, 1/4), . . . , ($30,000, 1)

The result is shown in Figure 1. Unfortunately, if a decision maker’s preferences violate

any of the preceding axioms (such as transitivity), this procedure may not yield a smooth

curve. If it does not yield a relatively smooth curve, more sophisticated procedures for as-

sessing utility functions must be used (see Keeney and Raiffa (1976)).



Relation between an Individual’s Utility Function 
and His or Her Attitude toward Risk

A decision maker’s utility function contains information about his or her attitude toward

risk. To discuss this information, we need to define the concepts of a lottery’s certainty

equivalent and risk premium.

D E F I N I T I O N ■

For example, we saw earlier that Jill was indifferent between

The certainty equivalent of a lottery L, written CE(L), is the number CE(L) such

that the decision maker is indifferent between the lottery L and receiving a certain

payoff of CE(L). ■
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u(x)

x

0–10,000 10,000 20,000 30,000

1.00

.90

.80

.75

.70

.60

.50

.40

.30

.25

.20

.10

F I G U R E  1

Jill’s Utility Function

�
1
2

�

$30,000

�
1
� �$3,400 and L

�
1
2

�

�$10,000

�
1
2

�

$30,000

L
�
1
2

�

�$10,000

Thus, CE(L) � �$3,400.

D E F I N I T I O N ■

For example, if

The risk premium of a lottery L, written RP(L), is given by RP(L) � EV(L) �

CE(L), where EV(L) is the expected value of the lottery’s outcomes. ■



then EV(L) � (�
1
2

�)($30,000) 
 (�
1
2

�)(�$10,000) � $10,000. We have already seen that CE(L) �

�$3,400. Thus, RP(L) � 10,000 � (�3,400) � $13,400; Jill values L at $13,400 less

than its expected value, because she does not like the large degree of uncertainty that is

associated with the reward yielded by L.

Let a nondegenerate lottery be any lottery in which more than one outcome can oc-

cur. With respect to attitude toward risk, a decision maker is

1 Risk-averse if and only if for any nondegenerate lottery L, RP(L) � 0

2 Risk-neutral if and only if for any nondegenerate lottery L, RP(L) � 0

3 Risk-seeking if and only if for any nondegenerate lottery L, RP(L) 	 0

An individual’s attitude toward risk depends on the concavity (or convexity) of his or her

utility function.

D E F I N I T I O N ■

If u(x) is differentiable, then u(x) will be strictly concave if and only if u�(x) 	 0 for

all x and u(x) will be strictly convex if and only if u�(x) � 0 for all x. It can easily be

shown that a decision maker with a utility function u(x) is

1 Risk-averse if and only if u(x) is strictly concave

2 Risk-neutral if and only if u(x) is a linear function (if u(x) is both convex and concave)

3 Risk-seeking if and only if u(x) is strictly convex

To illustrate these definitions, we show that a decision maker with a concave utility

function u(x) exhibits risk-averse behavior (has RP(L) � 0). Consider a binary lottery L

(a lottery with only two possible outcomes):

A function u(x) is said to be strictly concave (or strictly convex) if for any 

two points on the curve y � u(x), the line segment joining those two points 

lies entirely (with the exception of its endpoints) below (or above) the curve 

y � u(x). ■
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Suppose u(x) is strictly concave. Then, from Figure 2, we see that

E(U for L) � p u(x1) 
 (1 � p)u(x2) � y-coordinate of point 1

Since CE(L) is the value x* having u(x*) � E(U for L), Figure 2 shows that CE(L) 	

EV(L), so RP(L) � 0. This follows because the strict concavity of u(x) implies that the

line segment joining the points (x1, u(x1)) and (x2, u(x2)) lies below the curve u(x).

We can also give an algebraic proof that u(x) strictly concave implies that RP(L) �

EV(L) � CE(L) � 0. Recall that for

p
x1

L (Assume x1 	 x2)
1 � p

x2

p
x1

L
1 � p

x2

EV(L) � px1 
 (1 � p)x2. Now the strict concavity of u(x) implies that u[px1 
 (1 �

p)x2] � pu(x1) 
 (1 � p)u(x2) � E(U for L). Thus, the decision maker prefers px1 


(1 � p)x2 � EV(L) with certainty to the prospect of playing L. The certainty equivalent



1 3 . 2 Utility Theory 751

of L must be less than px1 
 (1 � p)x2 � EV(L). This implies that RP(L) � EV(L) �

CE(L) � 0, and the decision maker exhibits risk-averse behavior. In Problem 4 at the end

of this section, the reader will be asked to show that if u(x) is strictly convex, the deci-

sion maker exhibits risk-seeking behavior.

If the decision maker is risk-neutral (that is, u(x) � ax 
 b), he or she chooses among

lotteries via the expected reward criterion of Section 13.1 (see Problem 5 at the end of this

section). Thus, when ranking lotteries, a risk-neutral decision maker considers only the

expected value (and not the risk) of the lotteries.

Example 2 illustrates the concepts of risk premium, certainty equivalent, and risk 

aversion.

E X A M P L E  2

Joan’s utility function for her asset position x is given by u(x) � x1/2. Currently, Joan’s as-

sets consist of $10,000 in cash and a $90,000 home. During a given year, there is a .001

chance that Joan’s home will be destroyed by fire or other causes. How much would Joan

be willing to pay for an insurance policy that would replace her home if it were destroyed?

Solution Let x � annual insurance premium. Then Joan must choose between the following 

lotteries:

Joan’s Assets

x
x1

px1 + (1 – p)x2

CE(L)

RP(L)

= EV(L)

1

x2

E(U for L)

F I G U R E  2

Why a Concave Utility
Function Implies 

Risk-Averse Behavior

Asset Position

L1: Buy insurance �
1
� ($100,000 � x)

.001
$100,000 � $90,000 � $10,000

L2: Don’t buy insurance
.999

$100,000

Joan will prefer L1 to L2 if L1’s expected utility exceeds L2’s expected utility. Thus,

L1pL2 if and only if

(100,000 � x)1/2
� .001(10,000)1/2


 .999(100,000)1/2

� .10 
 315.91154

� 316.01154



Squaring both sides of the last inequality we find that L1pL2 if and only if

100,000 � x � (316.01154)2

x 	 $136.71

Thus, Joan would pay up to $136.71 for insurance. Of course, if p � $136.71, L1iL2.

Let’s compute the risk premium for L2:

EV(L2) � .001(10,000) 
 .999(100,000) � $99,910

(an expected loss of 100,000 � 99,910 � $90). Since E(U for L2) � 316.01154, we can

find CE(L2) from the relation u(CE(L2)) � 316.01154, or [CE(L2)]1/2
� 316.01154. Thus,

CE(L2) � (316.01154)2
� $99,863.29, and

RP(L2) � EV(L2) � CE(L2) � 99,910 � 99,863.29 � $46.71

Therefore, Joan is willing to pay for annual home insurance $46.71 more than the ex-

pected loss of $90. (Recall that Joan was willing to pay up to 90 
 46.71 � $136.71 to

avoid the risk involved in her home being destroyed.) Joan exhibits risk-averse behavior

(RP(L2) � 0). Since

u�(x) � �
�x

4

�3/2

� 	 0

u(x) is strictly concave, and RP(L) � 0 would hold for any nondegenerate lottery.

In reality, many people exhibit both risk-seeking behavior (they purchase lottery tick-

ets, go to Las Vegas) and risk-averse behavior (they buy home insurance). A person whose

utility function contains both convex and concave segments may exhibit both risk-averse

and risk-seeking behavior. Consider a decision maker whose utility function u(x) for

change in current asset position is given in Figure 3. If forced to choose between
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what would this person do?

From Figure 3, we find that u(0) � .20, u(2,500) � .50, and u(�300) � .18. Thus, E(U

for L1) � .20 and E(U for L2) � .10(.50) 
 .90(.18) � .212. Thus, L2pL1. This means that

L2 has a certainty equivalent of at least $0. Since EV(L2) � �$20, this implies that RP(L2) �

EV(L2) � CE(L2) 	 0. The decision maker exhibits risk-seeking behavior in this situation,

because for changes in asset position between $0 and $2,500, u(x) is a convex function.

Now suppose the decision maker can, for $200, insure himself against a loss of $2,000,

which occurs with probability .08. Then he must choose between

.10
$2,500

L1 �
1
� 0 and L2

.90
�$300

.08
�$2,000

L3 �
1
� �$200 and L4

.92
$0

From Figure 3, u(�200) � .19, u(0) � .20, and u(�2,000) � 0. Thus, E(U for L3) � .19

and E(U for L4) � .80(0) 
 .92(.20) � .184, and L3pL4. This shows that CE(L4) 	

�$200. Since EV(L4) � .08(�2,000) 
 .92(0) � �$160, RP(L4) � EV(L4) � CE(L4) �

0, and the decision maker is exhibiting risk-averse behavior, because u(x) is concave for

�2,000 	 x 	 0. Thus, if his utility function has both convex and concave segments, a

person can exhibit both risk-seeking and risk-averse behavior.



Exponential Utility

Classes of “ready-made” utility functions have been developed. One important class is

called exponential utility and has been used in many financial investment analyses. An ex-

ponential utility function has only one adjustable numerical parameter, and there are straight-

forward ways to discover the most appropriate value of this parameter for a particular indi-

vidual or company. So the advantage of using an exponential utility function is that it is

relatively easy to assess. The drawback is that exponential utility functions do not capture

all types of attitudes toward risk. Nevertheless, their ease of use has made them popular.

An exponential utility function has the following form:

U(x) � 1 � e�x/R

Here, x is a monetary value (a payoff if positive, a cost if negative), U(x) is the utility of

this value, and R � 0 is an adjustable parameter called the risk tolerance. Basically, the

risk tolerance measures how much risk the decision maker will tolerate. The larger the

value of R, the less risk averse the decision maker is. That is, a person with a large value

of R is more willing to take risks than a person with a small value of R.

To assess a person’s (or company’s) exponential utility function, we need only assess

the value of R. There are a couple of tips for doing this. First, it has been shown that the

risk tolerance is approximately equal to that dollar amount R such that the decision maker

is indifferent between the following two options:

■ Option 1: Obtain no payoff at all

■ Option 2: Obtain a payoff of R dollars or a loss of R/2 dollars, depending on the

flip of a fair coin

For example, if I am indifferent between a bet where I win $1,000 or lose $500, with

probability 0.5 each, and not betting at all, then my R is approximately $1,000. From this

criterion it certainly makes intuitive sense that a wealthier person (or company) ought to

have a larger value of R. This has been found in practice.

A second tip for finding R is based on empirical evidence found by Ronald Howard, a

prominent decision analyst. Through his consulting experience with several large compa-

nies, he discovered tentative relationships between risk tolerance and several financial
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u(x)

x
–2,000 2,000 4,000 6,0000

1.0

u(–300) = .18

u(–200) = .19
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variables—net sales, net income, and equity. (See Howard (1992).) Specifically, he found

that R was approximately 6.4% of net sales, 124% of net income, and 15.7% of equity

for the companies he studied. For example, according to this prescription, a company with

net sales of $30 million should have a risk tolerance of approximately $1.92 million.

Howard admits that these percentages are only guidelines. However, they do indicate that

larger and more profitable companies tend to have larger values of R, which means that

they are more willing to take risks involving given dollar amounts.

P R O B L E M S
Group A
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.25
A

L1 �
1
� C and L2

.75
D

.70
A

L3 �
1
� B and L4

.30
D

1 Suppose my utility function for asset position x is given
by u(x) � ln x.

a Am I risk-averse, risk-neutral, or risk-seeking?

b I now have $20,000 and am considering the follow-
ing two lotteries:

L1: With probability 1, I lose $1,000.

L2: With probability .9, I gain $0.

L2: With probability .1, I lose $10,000.

Determine which lottery I prefer and the risk premium of L2.

2 Answer Problem 1 for a utility function u(x) � x2.

3 Answer Problem 1 for a utility function u(x) � 2x 
 1.

4 Show that a decision maker who has a strictly convex
utility function will exhibit risk-seeking behavior.

5 Show that a decision maker who has a linear utility
function will rank two lotteries according to their expected
value.

6 A decision maker has a utility function for monetary
gains x given by u(x) � (x 
 10,000)1/2.

a Show that the person is indifferent between the sta-
tus quo and

L: With probability �
1
3

�, he or she gains $80,000

L: With probability �
2
3

�, he or she loses $10,000

b If there is a 10% chance that a painting valued at
$10,000 will be stolen during the next year, what is the
most (per year) that the decision maker would be willing
to pay for insurance covering the loss of the painting?

7 Patty is trying to determine which of two courses to
take. If she takes the operations research course, she believes
that she has a 10% chance of receiving an A, a 40% chance
for a B, and a 50% chance for a C. If Patty takes a statistics
course, she has a 70% chance for a B, a 25% chance for a
C, and a 5% chance for a D. Patty is indifferent between

She is also indifferent between

If Patty wants to take the course that maximizes the expected
utility of her final grade, which course should she take?

8 We are going to invest $1,000 for a period of 6 months.
Two potential investments are available: T-bills and gold. If
the $1,000 is invested in T-bills, we are certain to end the 
6-month period with $1,296. If we invest in gold, there is a
�
3
4

� chance that we will end the 6-month period with $400 and
a �

1
4

� chance that we will end the 6-month period with $10,000.
If we end up with x dollars, our utility function is given by
u(x) � x1/2. Should we invest in gold or T-bills?

9 We now have $5,000 in assets and are given a choice
between investment 1 and investment 2. With investment 1,
80% of the time we increase our asset position by $295,000,
and 20% of the time we increase our asset position by
$95,000. With investment 2, 50% of the time we increase
our asset position by $595,000, and 50% of the time we
increase our asset position by $5,000. Our utility function
for final asset position x is u(x). We are given the following
values for u(x): u(0) � 0, u(640,000) � .80, u(810,000) �
.90, u(0) � 0, u(90,000) � .30, u(1,000,000) � 1,
u(490,000) � .7.

a Are we risk-averse, risk-seeking, or risk-neutral?
Explain.

b Will we prefer investment 1 or investment 2?

10 My current income is $40,000. I believe that I owe
$8,000 in taxes. For $500, I can hire a CPA to review my
tax return; there is a 20% chance that she will save 
me $4,000 in taxes. My utility function for (disposable
income) � (current income) � (taxes) � (payment to
accountant) is given by �x� where x is disposable income.
Should I hire the CPA?

Group B

11† (The Allais Paradox) Suppose we are offered a
choice between the following two lotteries:

L1: With probability 1, we receive $1 million.

L2: With probability .10, we receive $5 million.

L2: With probability .89, we receive $1 million.

L2: With probability .01, we receive $0.

Which lottery do we prefer? Now consider the following
two lotteries:

†Based on Allais (1953).



L3: With probability .11, we receive $1 million.

L2: With probability .89, we receive $0.

L4: With probability .10, we receive $5 million.

L2: With probability .90, we receive $0.

Which lottery do we prefer? Suppose (like most people), we
prefer L1 to L2. Show that L3 must have a larger expected
utility than L4.

12 (The St. Petersburg Paradox) Let L represent the
following lottery. I toss a coin until it comes up heads. If
the first heads is obtained on the nth toss of the coin, I
receive a payoff of $2n.

a If I were a risk-neutral decision maker, what would
be the certainty equivalent of L? Is this reasonable?

b If a decision maker’s utility function for increasing
wealth by x dollars is given by u(x) � log2(x), what
would be the certainty equivalent of L?

13 Joe is a risk-averse decision maker. Which of the
following lotteries will he prefer?

L1: With probability .10, Joe loses $100.

L2: With probability .90, Joe receives $0.

L2: With probability .10, Joe loses $190.

L2: With probability .90, Joe receives $10.

14† (The Ellsberg Paradox) An urn contains 90 balls. It
is known that 30 are red and that each of the other 60 is
either yellow or black. One ball will be drawn at random
from the urn. Consider the following four options:

Option 1 We receive $1,000 if a red ball is drawn.
Option 2 We receive $1,000 if a yellow ball is drawn.
Option 3 We receive $1,000 if a yellow or black ball is drawn.
Option 4 We receive $1,000 if a red or black ball is drawn.

a Explain why most people prefer option 1 over option
2 and also prefer option 3 over option 4.

b If we prefer option 1 to option 2, explain why we
should also prefer option 4 over option 3.

15 Although the Von Neumann–Morgenstern axioms seem
plausible, there are many reasonable situations in which
people appear to violate these axioms. For example, suppose
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a recent college graduate must choose between three job
offers on the basis of starting salary, location of job, and
opportunity for advancement. Given two job offers that are
satisfactory with regard to all three attributes, the graduate
will decide between two job offers by choosing the one that
is superior on at least two of the three attributes. Suppose
he or she has three job offers and has rated each one as
shown in Table 8 (E � excellent, G � good, and S �
satisfactory). Show that the graduate’s preferences among
these jobs violate the Complete Ordering Axiom.

Group C

16 Suppose my utility function for my asset position is
u(x) � x1/2. I have $10,000 at present. Consider the following
lottery:

L: With probability �
1
2

�, L yields a payoff of $1,025.

L: With probability �
1
2

�, L yields a payoff of �$199.

a If I don’t have the right to play L, find an equation
that when solved would yield the amount I would be
willing to pay for the right to play L. This is called the
buying price of lottery L.

b If I have the right to play L, what is the least I would
accept from somebody who wanted to buy the right to
play L? (After someone else buys L, I can’t play L.) This
is called the selling price of lottery L.

c Answer part (b) for the case that I have $1,000.

d Suppose that my utility function for my asset posi-
tion is u(x) � 1 � e�x. Show that for all possible asset
positions, the buying price of L and the selling price of
L will remain the same. Show that for all asset positions,
the buying price of L will equal the selling price of L.†Based on Ellsberg (1961).

13.3 Flaws in Expected Maximization of Utility: 
Prospect Theory and Framing Effects

The axioms underlying expected maximization of utility (EMU) seem reasonable, but in

practice people’s decisions often deviate from the predictions of EMU. Psychologists

Tversky and Kahneman‡ (1981) developed prospect theory and framing effects for val-

ues to try and explain why people deviate from the predictions of EMU.

TA B L E  8

Starting Opportunity for
Salary Location Advancement

Job 1 E S G

Job 2 G E S

Job 3 S G E

‡In 2002, Kahneman received the Nobel Prize for Economics, in large part honoring his work with Tversky.

Tversky was not awarded the prize because he died in 1996 (Nobel Prizes are not given posthumously).



Prospect Theory

Here is one example of a decision that cannot be explained by EMU. Ask a person to

choose between lottery 1 and lottery 2:

Lottery 1: $30 for certain

Lottery 2: 80% chance at $45 and 20% chance at $0

Most people prefer lottery 1 to lottery 2. Next ask the same person to choose between 

lottery 3 and lottery 4:

Lottery 3: 20% chance at $45 and 80% chance at $0

Lottery 4: 25% at $30 and 75% chance at $0

Most people choose lottery 3 over lottery 4. Now let u(0) � 0 and u(45) � 1. A decision

maker following EMU will choose lottery 1 over lottery 2 if and only if u(30) � .8. A

decision maker following EMU will choose lottery 3 over lottery 4 if and only if .2 �

.25u(30) or u(30) 	 .8. This implies that a believer in EMU cannot choose lottery 1 over

lottery 2 and lottery 3 over lottery 4. Thus, for this situation, the choices of most people

contradict EMU. Tversky and Kahneman developed prospect theory to explain the 

decision-making paradox we have just described. Prospect theory assumes that we do not

treat probabilities as they are given in a decision-making problem. Instead, the decision

maker treats a probability p for an event as a “distorted” probability �( p). A �( p) func-

tion that seems to explain many paradoxes is shown in Figure 4.

The shape of the �( p) function in the figure implies that individuals are more sensitive

to changes in probability when the probability of an event is small (near 0) or large (near 1).

The equation we used to construct our �( p) curve is �( p) � 1.89799p �3.55995p2



2.662549p3. How does prospect theory explain our paradox? From the values of �( p) given

in Figure 5, we can compare the expected “prospects” of lottery 1 versus lottery 2 and lot-

tery 3 versus lottery 4.

Prospect for lottery 1: u(30)

Prospect for lottery 2: .602

Prospect for lottery 3: .258

Prospect for lottery 4: .293u(30).

Thus, lottery 1 is preferred to lottery 2 if u(30) � .602, while lottery 3 is preferred to lot-

tery 4 if .258 � .293u(30) or u(30) 	 .258/.293 � .88. Our paradox evaporates, because

for many people, u(30) will be between .602 and .88!
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Framing

The idea of framing is based on the fact that people often set their utility function from

the standpoint of a frame or status quo from which they view the current situation. Most

people’s utility functions treat a loss of a given value as being more serious than a gain

of an identical value. This is reflected in the utility function shown in Figure 6, which is

convex for losses and concave for gains.

To see how framing can explain the failure of EMU, consider the following problem

that Tversky and Kahneman gave to a group of students. The US is preparing for the out-

break of a disease that is expected to kill 600 people. Two alternative programs have been

proposed:

Program I: I200 people are saved.

Program II: With probability �
1
3

�, 600 people are saved.

Most students preferred program I, probably because with program II there is a large risk

of saving nobody. Since the programs are phrased in terms of lives saved, most people

take the frame or reference point for this problem to be no lives saved or 600 people dead.

Since the effect of each program is expressed in gains, and the utility function is concave

for gains, we find that u(200) � u((�
2
3

�) 0 
 (�
1
3

�)600)) � (�
1
3

�)u(600) 
 (�
2
3

�)u(0) � (�
1
3

�)u(600).

This implies, of course, that the person chooses program I over program II.
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13.4 Decision Trees

Often, people must make a series of decisions at different points in time. Then decision

trees can be used to determine optimal decisions. A decision tree enables a decision maker

to decompose a large complex decision problem into several smaller problems.

E X A M P L E  3

Colaco currently has assets of $150,000 and wants to decide whether to market a new

chocolate-flavored soda, Chocola. Colaco has three alternatives:

Colaco Marketing

Next, Tversky and Kahneman rephrased the problem as follows:

Program I: I400 people die.

Program II: With probability �
2
3

�, 600 people die.

Now most people choose program II. Note that both program I’s are identical, as are both

program II’s. Why do most people choose program II for the second phrasing of the al-

ternatives? The second phrasing shifts most people’s reference points from “No lives

saved” (in first phrasing) to “Nobody dies.” The outcomes are expressed as losses (deaths),

so the convexity of the utility curve for losses implies that

(�
2
3

�)u(�600) � (�
2
3

�)u(�600) 
 (�
1
3

�)u(0) � u((�
2
3

�)(�600) 
 �
1
3

�(0)) � u(�400)

This implies, of course, that the person chooses program II over program I.

P R O B L E M S
Group A
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1 Explain how prospect theory and/or framing explains
the Allais Paradox. (See Problem 11 of Section 13.2.)

2 Suppose a decision maker has a utility function u(x) � x1/3.
We flip a fair coin and receive $10 for heads and $0 for tails.

a Using expected utility theory, determine the cer-
tainty equivalent of this lottery.

b Using �( p) � 1.89799p � 3.55995p2



2.662549p3, use prospect theory to determine the cer-
tainty equivalent of the lottery.

c Intuively explain why your answer in part (b) is
smaller than your answer in part (a).

d What implications does this problem have for the
method used in Section 13.2 to estimate a person’s util-
ity function?

3 You are given a choice between lottery 1 and lottery 2.
You are also given a choice between lottery 3 and lottery 4.

Lottery 1: A sure gain of $240

Lottery 2: 25% chance to gain $1,000 and 75%
chance to gain nothing

Lottery 3: A sure loss of $750

Lottery 4: A 75% chance to lose $1,000 and a
25% chance of losing nothing

84% of all people prefer lottery 1 over lottery 2, and 87%
choose lottery 4 over lottery 3.

a Explain why the choice of lottery 1 over lottery 2 and
lottery 4 over lottery 3 contradicts expected utility max-
imization. (Hint: Compare lottery 1 
 lottery 4 to lottery
2 
 lottery 3.)

b Can you explain this anomalous behavior?

4 Tversky and Kahneman asked 72 respondents to choose
between lottery 1 and lottery 2 and lottery 3 and lottery 4.

Lottery 1: A .001 chance at winning $5,000 and a
.999 chance of winning $0

Lottery 2: A sure gain of $5

Lottery 3: A .001 chance of losing $5,000 and a 
.999 chance of losing $0

Lottery 4: A sure loss of $5

More than 75% of all participants preferred lottery 1 to
lottery 2 and lottery 4 to lottery 3.

a Which choices would be made by a risk-averse deci-
sion maker?

b Which choices would be made by a risk-seeking de-
cision maker?

c How does the observed behavior of the participants
contradict expected utility maximization?

d How does prospect theory resolve the contradiction?
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Alternative 1 Test market Chocola locally, then utilize the results of the market study to

determine whether or not to market Chocola nationally.

Alternative 2 Immediately (without test marketing) market Chocola nationally.

Alternative 3 Immediately (without test marketing) decide not to market Chocola nation-

ally.

In the absence of a market study, Colaco believes that Chocola has a 55% chance of be-

ing a national success and a 45% chance of being a national failure. If Chocola is a na-

tional success, Colaco’s asset position will increase by $300,000, and if Chocola is a na-

tional failure, Colaco’s asset position will decrease by $100,000.

If Colaco performs a market study (at a cost of $30,000), there is a 60% chance that

the study will yield favorable results (referred to as a local success) and a 40% chance

that the study will yield unfavorable results (referred to as a local failure). If a local suc-

cess is observed, there is an 85% chance that Chocola will be a national success. If a lo-

cal failure is observed, there is only a 10% chance that Chocola will be a national suc-

cess. If Colaco is risk-neutral (wants to maximize its expected final asset position), what

strategy should the company follow?

Solution To draw a decision tree that represents Colaco’s problem, we begin at the present and pro-

ceed toward future events and decisions. The decision tree in Figure 7 is constructed with

two kinds of forks: decision forks (denoted by �) and event forks (denoted by �).

A decision fork represents a point in time when Colaco has to make a decision. Each

branch emanating from a decision fork represents a possible decision. An example of a

decision fork occurs when Colaco must determine whether or not to test market Chocola.

Test market Chocola

�
Don’t test market Chocola

.60

Local success

�
.40

Local failure

An event fork is drawn when outside forces determine which of several random events

will occur. Each branch of an event fork represents a possible outcome, and the number

on each branch represents the probability that the event will occur. For example, if Co-

laco decides to test market Chocola, the company faces the following event fork when

observing the results of the test market study:

A branch of a decision tree is a terminal branch if no forks emanate from the branch. Thus,

the branches indicating National success and National failure are terminal branches of Co-

laco’s decision tree. Since we are maximizing expected final asset position at each terminal

branch, we must enter the final asset position that will result if the path leading to the given

terminal branch occurs. For example, the terminal branch National failure that follows 

Local failure leads to a final asset position of 150,000 � 30,000 � 100,000 � $20,000. If

we were maximizing expected revenues, we would enter revenues on each terminal branch.

To determine the decisions that will maximize Colaco’s expected final asset position,

we work backward (sometimes called “folding back the tree”) from right to left.† At each

†See Chapters 17 and 18 for an explanation of working backward (often called dynamic programming).



event fork, we calculate the expected final asset position and enter it in �. At each deci-

sion fork, we denote by � the decision that maximizes the expected final asset position and

enter the expected final asset position associated with that decision in �. We continue

working backward in this fashion until we reach the beginning of the tree. Then the opti-

mal sequence of decisions can be obtained by following the �.
We begin by determining the expected final asset positions for the following three

event forks:

1 Market nationally after Local success. Here we have an expected final asset position

of .85(420,000) 
 .15(20,000) � $360,000.

2 Market nationally after Local failure. Here we have an expected final asset position of

.10(420,000) 
 .90(20,000) � $60,000.

3 Market nationally after Don’t test market. Here we have an expected final asset posi-

tion of .55(450,000) 
 .45(50,000) � $270,000.

We may now evaluate three decision forks:

1 Decision after Local success. Market nationally yields a larger expected final asset po-

sition than Don’t market nationally, so we � Market nationally and enter an expected final

asset position of $360,000.

2 Decision after Local failure. Don’t market nationally yields a larger expected final as-

set position than Market nationally, so we � Don’t market nationally and enter an expected

final asset position of $120,000.

3 Decision for Don’t test market. Market nationally yields a larger expected final asset

position than Don’t market nationally, so we � Market nationally and enter an expected fi-

nal asset position of $270,000.
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Don't market nationally

Market nationally

Market nationally

.55

National success

.10

National success

.15

National failure

.90

National failure

.45

National failure

.85

National success

Market nationally

Don't market
nationally

Don't market
nationally

$360,000

$360,000

$120,000

$60,000

$270,000

$150,000

$264,000

$270,000

$270,000

Test market

Don't test market

.60
Local success

.40
Local failure

$150,000 – $30,000 = $120,000

$150,000 – $30,000 = $120,000

$150,000 + $300,000 = $450,000

$150,000 – $100,000 = $50,000

$150,000 – $30,000 + $300,000 = $420,000

$150,000 – $30,000 – $100,000 = $20,000

$150,000 – $30,000 + $300,000 = $420,000

$150,000 – $30,000 – $100,000 = $20,000

F I G U R E  7

Colaco’s Decision Tree (Risk-Neutral)



We now must evaluate the event fork emanating from the Test market decision. This

event fork yields an expected final asset position of .60(360,000) 
 .40(120,000) �

$264,000, which is entered in �.

All that remains is to determine the correct decision at the decision fork Test market

versus Don’t test market. We have found that Test market yields an expected final asset

position of $264,000, and Don’t test market yields an expected final asset position of

$270,000. Thus, we � Don’t test market and enter $270,000 in �.

We have now reached the beginning of the tree and have found that Colaco’s optimal

decision is Don’t test market and then Market nationally. This strategy will yield an ex-

pected final asset position of $270,000. Observe that the decision tree also tells us that if

we had test marketed and then acted optimally (Market nationally after Local success and

Don’t market nationally after Local failure), we would have obtained an expected final as-

set position of $264,000.

Incorporating Risk Aversion into Decision Tree Analysis

Note that Colaco’s optimal strategy yields a .45 chance that the company will end up with

a relatively small final asset position of $50,000. On the other hand, the strategy of test

marketing and acting optimally on the results of the test market study yields only a

(.60)(.15) � .09 chance that Colaco’s asset position will be below $100,000. (Why?) Thus,

if Colaco is a risk-averse decision maker, the strategy of immediately marketing nation-

ally may not reflect the company’s preference.

To illustrate how risk aversion may be incorporated into decision tree analysis, sup-

pose that Colaco has the risk-averse utility function u(x) in Figure 8 (x � final asset po-

sition). (How do we know that this utility function exhibits risk aversion?) To determine

Colaco’s optimal decisions (that is, the decisions that maximize expected utility), simply

replace each final asset position x0 with its utility u(x0). Then at each event fork, compute

the expected utility of Colaco’s final asset position, and at each decision fork, choose the

branch having the largest expected utility.
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u(x)

x (thousands of $)
100 200 300 400

(226, .665)
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.1

0
F I G U R E  8

Colaco’s Utility Function



We find from Figure 8 that u($450,000) � 1, u($420,000) � .99, u($150,000) � .48,

u($120,000) � .40, u($50,000) � .19, and u($20,000) � 0. Substituting these values into

the decision tree of Figure 7 yields the decision tree in Figure 9. We compute the expected

utility at the following three event forks:

1 Market nationally after Local success. Here we have an expected utility of .85(.99) 


.15(0) � .8415.

2 Market nationally after Local failure. Here we have an expected utility of .10(.99) 


.90(0) � .099.

3 Market nationally after Don’t test market. Here we have an expected utility of .55(1) 


.45(.19) � .6355.

We may now evaluate three decision forks:

1 Decision after Local success. Market nationally yields a larger expected utility than

Don’t market nationally, so for this fork we � Market nationally and enter an expected util-

ity of .8415.

2 Decision after Local failure. Don’t market nationally yields a larger expected utility

than Market nationally, so for this fork we � Don’t market nationally and enter an expected

utility of .40.

3 Decision for Don’t test market. Market nationally yields a larger expected utility than

Don’t market nationally, so for this fork we � Market nationally and enter an expected util-

ity of .6355.

We now must evaluate the event fork emanating from the Test market decision. This

event fork yields an expected utility of .60(.8415) 
 .40(.40) � .6649, which is entered

in �. All that remains is to determine the correct decision at the decision fork Test mar-

ket versus Don’t test market. We know that Test market yields an expected utility of .6649,
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Market nationally

Market nationally

.55
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National success
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Market nationally

Don't market
nationally

Don't market nationally

.8415

.8415

.40

.099

.6355

.6649

.6649

.6355

Test market

Don't test market

.60
Local success

.40
Local failure

u($120,000)  = .40

u($420,000)  = .99

u($20,000)  =  0

u($420,000)  = .99

u($20,000)  =  0

u($50,000)  =  .19

u($450,000)  =  1

u($120,000)  = .40

u($150,000)  =  .48

u($226,000)  =  .6649, so this situation is

equivalent to a certain asset position of $226,000.

F I G U R E  9

Colaco’s Decision Tree
(Risk-Averse)



and Don’t test market yields an expected utility of .6355, so we � Test market and enter

an expected utility of .6649 in �.

We have now reached the beginning of the tree and have found that Colaco’s optimal

decision is to begin by test marketing. If a local success is observed, then Colaco should

market Chocola nationally; if a local failure is observed, then Colaco should not market

Chocola nationally. This optimal strategy yields only a .60(.15) � .09 chance that Colaco

will have a final asset position of less than $100,000. This reflects the risk-averse nature

of the utility function in Figure 8. Also, we see from Figure 8 that u($226,000) � .665.

Since Colaco views the current situation as having an expected utility of .6649, this means

that the company considers the current situation equivalent to a certain asset position of

$226,000. Thus, if somebody offered to pay more than 226,000 � 150,000 � $76,000 to

buy the rights to Chocola, Colaco should take the offer. This is because receiving more

than $76,000 for the rights to Chocola would bring Colaco’s asset position to more than

150,000 
 76,000 � $226,000, and this situation has a higher expected utility than .665.

Expected Value of Sample Information

Decision trees can be used to measure the value of sample or test market information. To

illustrate how this is done, we again assume that Colaco is risk-neutral. What is the value

of the information that would be obtained by test marketing Chocola?

We begin by determining Colaco’s expected final asset position if the company acts op-

timally and the test market study is costless. We call this expected final asset position Co-

laco’s expected value with sample information (EVWSI). From Figure 7, we see that if

we Test market and then act optimally, we will now have an expected final asset position

of 264,000 
 30,000 � $294,000. Since $294,000 is larger than the expected asset posi-

tion of the Don’t test market branch ($270,000), we find that EVWSI � $294,000.

We next determine the largest expected final asset position that Colaco would obtain

if the test market study were not available. We call this the expected value with original

information (EVWOI). From the Don’t test market branch of Figure 7, we find EVWOI �

$270,000. Now the expected value of the test market information, referred to as expected

value of sample information (EVSI), is defined to be EVSI � EVWSI � EVWOI.

In the Colaco example, EVSI is the most that Colaco can pay for the test market in-

formation and still be at least as well off as without the test market information. Thus, for

the Colaco example, EVSI � 294,000 � 270,000 � $24,000. Since the cost of the test

market study ($30,000) exceeds EVSI, Colaco should not (as we already know) conduct

the test market study.

Expected Value of Perfect Information

We can modify the analysis used to determine EVSI to find the value of perfect infor-

mation. By perfect information we mean that all uncertain events that can affect Colaco’s

final asset position still occur with the given probabilities (so there is still a .55 chance of

Chocola being a national success and a .45 chance that Chocola will be a national fail-

ure), but Colaco finds out whether Chocola is a national success or a national failure be-

fore making the decision to market Chocola nationally or not. This information can then

be used to determine Colaco’s optimal marketing strategy. Thus, expected value with

perfect information (EVWPI) is found by drawing a decision tree in which the decision

maker has perfect information about which state has occurred before making a decision.

Then the expected value of perfect information (EVPI) is given by EVPI � EVWPI �

EVWOI.
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P R O B L E M S
Group A

For the Colaco example, we find from Figure 10 that EVWPI � $315,000. Then EVPI �

315,000 � 270,000 � $45,000. Thus, a perfect (one that was always correct) test marketing

study would be worth $45,000. EVPI is a useful upper bound on the value of sample or test

market information; that is, no sample or test market information (no matter how good) can

be worth more than $45,000.

E X A M P L E  4

An art dealer’s client is willing to buy the painting Sunplant at $50,000. The dealer can

buy the painting today for $40,000 or can wait a day and buy the painting tomorrow (if

it has not been sold) for $30,000. The dealer may also wait another day and buy the paint-

ing (if it is still available) for $26,000. At the end of the third day, the painting will no

longer be available for sale. Each day, there is a .60 probability that the painting will be

sold. What strategy maximizes the dealer’s expected profit?

Solution The decision tree for this example is given in Figure 11. The key to drawing this decision

tree is that each day, the dealer must choose between buying the painting and waiting an-

other day. Of course, waiting might mean that the dealer may never be able to buy the paint-

ing. As we see from the decision tree, the dealer should buy the painting on the first day.

Art Dealer
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Don't
market nationally

Don't
market nationally

Market nationally

Market nationally

.55
National success

.45
National failure

$450,000

$150,000 + $300,000 = $450,000

$150,000

$150,000

EVWPI = $315,000
$150,000 – $100,000 = $50,000

$150,000

F I G U R E  10

Expected Value with
Perfect Information
(EVWPI) for Colaco

$10,000

$0 $0

$0
$10,000

$8,000

$20,000 $24,000

$9,600

Buy Buy

.40 Available

.40 Available
Buy

Don't buy

.60 Sold
.60 Sold

Don't buy
Don't buy

$20,000 $24,000

F I G U R E  11

Decision Tree for
Example 4

1 Oilco must determine whether or not to drill for oil in
the South China Sea. It costs $100,000, and if oil is found,
the value is estimated to be $600,000. At present, Oilco
believes there is a 45% chance that the field contains oil.
Before drilling, Oilco can hire (for $10,000) a geologist to
obtain more information about the likelihood that the field
will contain oil. There is a 50% chance that the geologist
will issue a favorable report and a 50% chance of an
unfavorable report. Given a favorable report, there is an

80% chance that the field contains oil. Given an unfavorable
report, there is a 10% chance that the field contains oil.
Determine Oilco’s optimal course of action. Also determine
EVSI and EVPI.

2 The decision sciences department is trying to determine
which of two copying machines to purchase. Both machines
will satisfy the department’s needs for the next ten years.
Machine 1 costs $2,000 and has a maintenance agreement,
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which, for an annual fee of $150, covers all repairs. Machine
2 costs $3,000, and its annual maintenance cost is a random
variable. At present, the decision sciences department
believes there is a 40% chance that the annual maintenance
cost for machine 2 will be $0, a 40% chance it will be $100,
and a 20% chance it will be $200.

Before the purchase decision is made, the department
can have a trained repairer evaluate the quality of machine
2. If the repairer believes that machine 2 is satisfactory,
there is a 60% chance that its annual maintenance cost will
be $0 and a 40% chance it will be $100. If the repairer
believes that machine 2 is unsatisfactory, there is a 20%
chance that the annual maintenance cost will be $0, a 40%
chance it will be $100, and a 40% chance it will be $200.
If there is a 50% chance that the repairer will give a
satisfactory report, what is EVSI? If the repairer charges
$40, what should the decision sciences department do? What
is EVPI?

3 I am managing the Chicago Cubs. Suppose there is a
runner on first base with nobody out and we want to
determine whether we should bunt. Assume that a bunt will
yield one of two results: (1) With probability .80, the bunt
will be successful, in which case the batter is out and the
runner on first base advances to second base. (2) With
probability .20 the bunt is unsuccessful and the runner on
first base is out trying to advance to second base and the
batter is safe at first base.

The expected number of runs that the Cubs will score in
an inning in various situations is given in Table 9.

a If our goal is to maximize the expected number of
runs scored in an inning, should we bunt? Despite this
answer, why do you think teams bunt?

b If we are considering stealing second base with no-
body out, what chance of success is needed for stealing
second to be an optimal decision?

4 The Nitro Fertilizer Company is developing a new
fertilizer. If Nitro markets the product and it is successful,
the company will earn a $50,000 profit; if it is unsuccessful,
the company will lose $35,000. In the past, similar products
have been successful 60% of the time. At a cost of $5,000,
the effectiveness of the new fertilizer can be tested. If the
test result is favorable, there is an 80% chance that the
fertilizer will be successful. If the test result is unfavorable,
there is only a 30% chance that the fertilizer will be
successful. There is a 60% chance of a favorable test result
and a 40% chance of an unfavorable test result. Determine
Nitro’s optimal strategy. Also find EVSI and EVPI.

5 During the summer, Olympic swimmer Adam Johnson
swims every day. On sunny summer days, he goes to an
outdoor pool, where he may swim for no charge. On rainy
days, he must go to a domed pool. At the beginning of the
summer, he has the option of purchasing a $15 season pass
to the domed pool, which allows him use for the entire
summer. If he doesn’t buy the season pass, he must pay $1
each time he goes there. Past meteorological records indicate
that there is a 60% chance that the summer will be sunny
(in which case there is an average of 6 rainy days during the
summer) and a 40% chance the summer will be rainy (an
average of 30 rainy days during the summer).

Before the summer begins, Adam has the option of
purchasing a long-range weather forecast for $1. The
forecast predicts a sunny summer 80% of the time and a
rainy summer 20% of the time. If the forecast predicts a
sunny summer, there is a 70% chance that the summer will
actually be sunny. If the forecast predicts a rainy summer,
there is an 80% chance that the summer will actually be
rainy. Assuming that Adam’s goal is to minimize his total
expected cost for the summer, what should he do? Also find
EVSI and EVPI.

6 Pete is considering placing a bet on the NCAA playoff
game between Indiana and Purdue. Without any further
information, he believes that each team has an equal chance
to win. If he wins the bet, he will win $10,000; if he loses,
he will lose $11,000. Before betting, he may pay Bobby
$1,000 for his inside prediction on the game; 60% of the
time, Bobby will predict that Indiana will win and 40% of
the time, Bobby will predict that Purdue will win. When
Bobby says that IU will win, IU has a 70% chance of
winning, and when Bobby says that Purdue will win, IU has
only a 20% chance of winning. Determine how Pete can
maximize his total expected profit. What is EVSI? What is
EVPI?

7 Erica is going to fly to London on August 5 and return
home on August 20. It is now July 1. On July 1, she may
buy a one-way ticket (for $350) or a round-trip ticket (for
$660). She may also wait until August 1 to buy a ticket. On
August 1, a one-way ticket will cost $370, and a round-trip
ticket will cost $730. It is possible that between July 1 and
August 1, her sister (who works for the airline) will be able
to obtain a free one-way ticket for Erica. The probability
that her sister will obtain the free ticket is .30. If Erica has
bought a round-trip ticket on July 1 and her sister has
obtained a free ticket, she may return “half ” of her round-
trip to the airline. In this case, her total cost will be $330
plus a $50 penalty. Use a decision tree approach to determine
how to minimize Erica’s expected cost of obtaining round-
trip transportation to London.

8 I am a contestant on the TV show Remote Jeopardy,
which works as follows. I am first asked a question about
Stupid Videos. If I answer correctly, I earn $100. I believe
that I have an 80% chance of answering such a question
correctly. If I answer incorrectly, the game is over, and I win
nothing. If I answer correctly, I may leave with $100 or go
on and answer a question about Stupid TV Shows. If I
answer this question correctly, I earn another $300, but if I
answer incorrectly, I lose all previous earnings and am sent
home. My chance of answering this question correctly is
.60. If I answer the Stupid TV Shows question correctly, I

TA B L E  9

Expected
On-Base Number Number
Situation of Outs of Runs

Runner on first 0 0.813

Runner on first 1 0.498

Runner on second 1 0.671

Runner on second 0 1.194

No base runners 1 0.243



may leave with my “earnings” or go on and answer a
question about Statistics. If I answer this question correctly,
I earn another $500, but if I answer it incorrectly, I lose all
previous earnings and am sent home. My chance of
answering this question correctly is .40. Draw a decision
tree that can be used to maximize my expected earnings.
What are my expected earnings?

Group B

In many decision tree problems, the decision maker’s goal
is to maximize the probability of a favorable event occurring.
To incorporate this goal into a decision tree, simply give a
reward of 1 to any terminal branch that results in the
favorable event occurring and a reward of 0 to any terminal
branch that results in the favorable event not occurring.
Then maximizing expected reward is the same as
maximizing the probability that the favorable event will
occur. Use this idea to solve the next two problems.

9 The American chess master Jonathan Meller is playing
the Soviet expert Yuri Gasparov in a two-game exhibition
match. Each win earns a player one point, and each draw
earns a half point. The player who has the most points after
two games wins the match. If the players are tied after two
games, they play until one wins a game; then the first player
to win a game wins the match. During each game, Meller
has two possible approaches: to play a daring strategy or to
play a conservative strategy. His probabilities of winning,
losing, and drawing when he follows each strategy are shown
in Table 10. To maximize his probability of winning the
match, what should the American do?

10 Yvonne Delaney is playing Chris Becker a single point
for the women’s world tennis championship. She has won the
coin toss and elected to serve. If she tries a hard serve, her
probability of getting the serve into play is .60. Given that the
hard serve is in play, she has a .60 chance of winning the point.
If she tries a soft serve, her probability of getting the serve in
play is .90, but if the soft serve is in play, her probability of
winning the point is only .50. To maximize her probability 
of winning the point, what should Yvonne do?

11† The Indiana Hoosiers trail the Purdue Boilermakers
by a 14–0 score late in the fourth quarter of a football game.
Indiana’s guardian angel has informed Indiana that before
the game ends they will have the ball two more times, and
they will score a touchdown each time. The Indiana coach
is indifferent between a tie and the following lottery: a 40%
chance at beating Purdue and a 60% chance at losing to
Purdue. Indiana’s kicker has never missed an extra point,
and Indiana has been successful on 35% of all two-point
conversion attempts. After each touchdown (worth six
points), Indiana must decide whether or not to attempt a
one-point or a two-point conversion. Help the Indiana coach
maximize his expected utility.

12 Edwina, a commodities broker, has acquired an option to
buy 1,000 oz of gold at $50/oz. If she takes the option and if
Congress relaxes import quotas, she can sell the gold for
$80/oz. If she takes the option and Congress does not relax
the import quotas, however, the company will lose $10/oz.
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Edwina believes that there is a 50% chance that the government
will relax the quota. She also has the option of waiting until
Congress decides whether to relax the import quota. If she
adopts this strategy, however, there is a 70% chance that some
other broker will have already taken the option.

a If Edwina is risk-neutral, what should she do?

b If Edwina’s utility function for a change x in her as-
set position is given by u(x) � (10,000 
 x)1/2, what
should she do?

13 We are going to see the movie Fatal Repulsion. There
are three parking lots we may park in. One is one block east
of the theater (call this lot �1); one lot is directly behind
the theater (lot 0); and one lot is one block west of the
theater (lot 1). We are approaching the theater from the east.
There is an 80% chance that lot �1 will have a vacant
space, a 60% chance that lot 0 will, and an 80% chance that
lot 1 will. Once we pass a lot, we can’t go back to it. Assume
that when we are at a given parking lot, we can determine
whether it has any vacant spaces, but we can’t see any of
the other lots. Our dates for the evening will assess us a
penalty equal to the distance (in blocks) that we park from
the theater. If we find no space, they will assess a penalty
of 10 (and never go out with us again). What strategy
minimizes our expected penalty? Answer the same question
if there is a 70% chance that lot 0 has a vacant space.

14‡ A patient enters the hospital with severe abdominal
pains. Based on past experience, Doctor Craig believes there
is a 28% chance that the patient has appendicitis and a 72%
chance that the patient has nonspecific abdominal pains. Dr.
Craig may operate on the patient now or wait 12 hours to
gain a more accurate diagnosis. In 12 hours, Dr. Craig will
surely know whether the patient has appendicitis. The
problem is that in the meantime, the patient’s appendix may
perforate (if he has appendicitis), thereby making the
operation much more dangerous. Again based on past
experience, Dr. Craig believes that if he waits 12 hours, there
is a 6% chance that the patient will end up with a perforated
appendix, a 22% chance the patient will end up with
“normal” appendicitis, and a 72% chance that the patient
will end up with nonspecific abdominal pain. From past
experience, Dr. Craig assesses the probabilities shown in
Table 11 of the patient dying. Assume that Dr. Craig’s goal
is to maximize the probability that the patient will survive.
Use a decision tree to help Dr. Craig make the right decision.

15 a Suppose you are given a choice between the 
following options:

A1: Win $30 for sure

A2: 80% chance of winning $45 and 20% chance of
A2: winning nothing

TA B L E  10

Strategy Win Loss Draw

Daring .45 .55 0

Conservative 0 .10 .90

†Based on Porter (1967). ‡Based on Clarke (1981).



B1: 25% chance of winning $30

B2: 20% chance of winning $45

Most people prefer A1 to A2 and B2 to B1. Explain
why this behavior violates the assumption that decision
makers maximize expected utility.

b Now suppose you play the following game: You have
a 75% chance of winning nothing and a 25% chance of
playing the second stage of the game. If you reach the
second stage, you have a choice of two options (C1 and
C2), but your choice must be made now, before you
reach the second stage.

C1: Win $30 for sure

C2: 80% chance of winning $45
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Most people choose C1 over C2 and B2 to B1 (from part
(a)). Explain why this again violates the assumption of
expected utility maximization. Tversky and Kahneman
(1981) speculate that most people are attracted to the
sure $30 in the second stage, even though the second
stage may never be reached! Note that B1 and C1 both
give $30 with the same probability, and B2 and C2 both
yield $45 with the same probability. It appears that
people do not act very rationally!†

16 You have just been chosen to appear on Hoosier
Millionaire! The rules are as follows: There are four hidden
cards. One says “STOP” and the other three have dollar
amounts of $150,000, $200,000, and $1,000,000. You get to
choose a card. If the card says “STOP,” you win no money.
At any time you may quit and keep the largest amount of
money that has appeared on any card you have chosen, or
continue. If you continue and choose the stop card, however,
you win no money. As an example, you may first choose the
$150,000 card, then the $200,000 card, and then you may
choose to quit and receive $200,000!

a If you goal is to maximize your expected payoff,
what strategy should you follow?

b My utility function for an increase in cash satisfies
u(0) � 0, u($40,000) � .25, u($120,000) � .50,
u($400,000) � .75, and u($1,000,000) � 1. After draw-
ing a curve through these points, determine a strategy
that maximizes my expected utility. You might want to
use your own utility function.

13.5 Bayes’ Rule and Decision Trees

The Colaco example and many other decision tree problems share several common 

features.

There are several states of the world. Different states of the world result in different

payoffs to the decision maker. In the Colaco example, the two states of the world were

that Chocola is a national success (NS) or a national failure (NF ). We are also given (be-

fore the test marketing, if any, is done) estimates of the probabilities of each state of the

world. These are called prior probabilities. In the Colaco example, the prior probabili-

ties are p(NS) � .55 and p(NF ) � .45.

In different states of the world, different decisions may be optimal. In the Colaco ex-

ample, the company should market nationally if the state of the world is NS and not mar-

ket nationally if the state of the world is NF.

It may be desirable to purchase information that gives the decision maker more fore-

knowledge about the state of the world. This may enable the decision maker to make better

decisions. For instance, in the Colaco example, the information obtained from test market-

ing might help Colaco decide whether or not Chocola should be marketed nationally.

The decision maker receives information by observing the outcomes of an experiment.

Let s1, s2, . . . , sn denote the possible states of the world, and let o1, o2, . . . , om be the

possible outcomes of the experiment. Often, the decision maker is given the conditional

probabilities p(si|oj)(i � 1, 2, . . . , n; j � 1, 2, . . . , m). Given knowledge of the outcome

of the experiment, these probabilities give new values for the probability of each state of

TA B L E  11

Probability That
Situation Patient Will Die

Operation on patient .0009
with appendicitis

Operation on patient .0004
with nonspecific
abdominal pain

Operation on perforated .0064
appendix

No operation on patient 0
with nonspecific
abdominal pain

†Based on Tversky and Kahneman (1981).



the world. The probabilities p(si|oj) are called posterior probabilities.

In the Colaco example, the experiment was the test-marketing procedure, and the two

possible outcomes were LF � local failure and LS � local success. The posterior proba-

bilities were given to be

p(NS|LS) � .85, p(NS|LF) � .10,

p(NF |LS) � .15, p(NF |LF) � .90

Thus, the knowledge of a local test market success would greatly increase Colaco’s es-

timate of the probability of national success, and the knowledge of a local test market fail-

ure would greatly decrease Colaco’s estimate of the probability of a national success. The

posterior probabilities just listed were used to define the event forks in the decision tree

that followed the action Test market.

In many situations, however, we may be given the prior probabilities p(si) for each state

of the world, and instead of being given the posterior probabilities p(si|oj), we might be

given the likelihoods p(oj|si). For each state of the world, the likelihoods give the proba-

bility of observing each experimental outcome. Thus, in the Colaco example, we might

be given the prior probabilities p(NS) � .55 and p(NF ) � .45 and the likelihoods 

p(LS|NS) � �
5
5
1
5
�, p(LF |NS) � �

5
4
5
�, p(LS|NF ) � �

4
9
5
�, and p(LF |NF ) � �

3
4
6
5
�.

To clarify the meaning of likelihoods, suppose that 55 products that have been national

successes had previously been test marketed; of these 55 products, 51 were local suc-

cesses and 4 were local failures. This would have led us to estimate p(LS|NS) as �
5
5
1
5
� and

p(LF|NS) as �
5
4
5
�.

To complete the decision tree in Figure 7, we still need to know the posterior proba-

bilities p(NS|LS), p(NF |LS), p(NS|LF ), and p(NF |LF ). With the help of Bayes’ rule (see

Section 12.4), we can use the prior probabilities and likelihoods to determine the needed

posterior probabilities. To begin the computation of the posterior probabilities, we need

to determine the joint probabilities of each state of the world and experimental outcome

(that is, we must determine p(NS � LS), p(NS � LF ), p(NF � LS), and p(NF � LF )).

We obtain these joint probabilities by using the definition of conditional probability:

p(NS � LS) � p(NS)p(LS|NS) � .55(�
5
5
1
5
�) � .51

p(NS � LF ) � p(NS)p(LF |NS) � .55(�
5
4
5
�) � .04

p(NF � LS) � p(NF )p(LS|NF ) � .45(�
4
9
5
�) � .09

p(NF � LF ) � p(NF )p(LF |NF ) � .45(�
3
4
6
5
�) � .36

Next we compute the probability of each possible experimental outcome (often called a

marginal probability) p(LS) and p(LF ):

p(LS) � p(NS � LS) 
 p(NF � LS) � .51 
 .09 � .60

p(LF ) � p(NS � LF ) 
 p(NF � LF ) � .04 
 .36 � .40

Now Bayes’ rule can be applied to obtain the desired posterior probabilities:

p(NS|LS) � �
p(N

p

S

(L

�

S)

LS)
� � �

.

.

5

6

1

0
� � .85

p(NF |LS) � �
p(N

p

F

(L

�

S)

LS)
� � �

.

.

0

6

9

0
� � .15

p(NS|LF ) � �
p(N

p

S

(L

�

F

L

)

F )
� � �

.

.

0

4

4

0
� � .10

p(NF |LF ) � �
p(N

p

F

(L

�

F )

LF )
� � �

.

.

3

4

6

0
� � .90

These posterior probabilities can be used to complete the decision tree in Figure 7.
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In summary, to find posterior probabilities, we go through the following three-step

process:

Step 1 Determine the joint probabilities of the form p(si � oj) by multiplying the prior

probability ( p(si)) times the likelihood ( p(oj|si)).

Step 2 Determine the probabilities of each experimental outcome p(oj) by summing up

all joint probabilities of the form p(sk � oj).

Step 3 Determine each posterior probability ( p(si|oj)) by dividing the joint probability

( p(si � oj)) by the probability of the experimental outcome oj ( p(oj)).

We now give a complete example of a decision tree analysis that requires use of Bayes’

rule.

E X A M P L E  5

Fruit Computer Company manufactures memory chips in lots of ten chips. From past ex-

perience, Fruit knows that 80% of all lots contain 10% (1 out of 10) defective chips, and 20%

of all lots contain 50% (5 out of 10) defective chips. If a good (that is, 10% defective) batch

of chips is sent on to the next stage of production, processing costs of $1,000 are incurred, and

if a bad batch (50% defective) is sent on to the next stage of production, processing costs of

$4,000 are incurred. Fruit also has the alternative of reworking a batch at a cost of $1,000. A

reworked batch is sure to be a good batch. Alternatively, for a cost of $100, Fruit can test one

chip from each batch in an attempt to determine whether the batch is defective. Determine

how Fruit can minimize the expected total cost per batch. Also compute EVSI and EVPI.

Solution We will multiply costs by �1 and work with maximizing �(total cost). This enables us

to use the EVSI and EVPI formulas of Section 13.4. There are two states of the world:

G � batch is good

B � batch is bad

We are given the following prior probabilities:

p(G) � .80 and p(B) � .20

Fruit has the option of performing an experiment: inspecting one chip per batch. The pos-

sible outcomes of the experiment are

D � defective chip is observed

ND � nondefective chip is observed

We are given the following likelihoods:

p(D|G) � .10, p(ND|G) � .90, p(D|B) � .50, P(ND|B) � .50

To complete the decision tree in Figure 12, we need to determine the posterior proba-

bilities p(B|D), p(G|D), p(B|ND), and p(G|ND). We begin by computing joint probabilities:

p(D � G) � p(G)p(D|G) � .80(.10) � .08

p(D � B) � p(B)p(D|B) � .20(.50) � .10

p(ND � G) � p(G)p(ND|G) � .80(.90) � .72

p(ND � B) � p(B)p(ND|B) � .20(.50) � .10

We then compute the probability of each experimental outcome:

p(D) � p(D � G) 
 p(D � B) � .08 
 .10 � .18

p(ND) � p(ND � G) 
 p(ND � B) � .72 
 .10 � .82

Fruit Computer Company
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Then we use Bayes’ rule to determine the required posterior probabilities:

p(B|D) � �
p(D
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These posterior probabilities are used to complete the tree in Figure 12. Straightforward

computations show that the optimal strategy is to test a chip. If the chip is defective, re-

work the batch. If the chip is not defective, send the batch on. An expected cost of $1,580

is incurred.
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Send batch on

Rework batch

.20
Batch is bad

Send batch on

Send batch on

Rework batch

Rework batch

.80
Batch is good

Test a chip

–$1,580

–$1,600

–$1,580

–$1,466

–$1,466

–$2,000 –$1,000

–$1,000 – $100 = –$1,100

–$4,000 – $100 = –$4,100

–$1,000 – $100 = –$1,100

–$2,000 – $100 = –$2,100

–$2,000 – $100 = –$2,100

–$4,000 – $100 = –$4,100

–$4,000

–$2,767

–$2,100

8/18
Good batch

72/82
Good batch

10/82
Bad batch

10/18
Bad batch

.18
Chip is defective

.82
Chip is not defective

F I G U R E  12

Illustration of Use of
Bayes’ Rule in Decision

Tree for Fruit 
Computer Co.

Send on

Send on

Rework

Rework

.80
Good batch

.20
Bad batch

–$1,000

–$1,000

–$2,000

–$4,000

–$2,000

–$2,000

EVWPI  =  –$1,200
F I G U R E  13

Expected Value with
Perfect Information

(EVWPI) for Fruit
Computer



To find EVSI, suppose that testing one chip in a batch were costless. Then the Test chip

branch of the tree would have its expected value increased by $100 (to �$1,480). Then

we would have EVWSI � �$1,480 and EVWOI � �$1,600. Then EVSI � EVWSI �

EVWOI � �$1,480 � (�$1,600) � $120.

To find EVPI, we use the tree in Figure 13. We find EVWPI � �$1,200. Then EVPI �

EVWPI � EVWOI � �$1,200 � (�$1,600) � $400.

Using LINGO to Compute Posterior Probabilities

The following LINGO program can be used to compute the posterior probabilities for Ex-

ample 5 (or any other situation).

MODEL:
1]SETS:
2]ST/G,B/:PR;
3]OUT/D,ND/:MARG;
4]SXO(ST,OUT):POST,JOINT,LIKE;
5]ENDSETS
6]DATA:
7]PR=.8,.2;
8]LIKE=.1,.9,.5,.5;
9]ENDDATA

10]@FOR(SXO(I,J):JOINT(I,J)=PR(I)*LIKE(I,J););
11]@FOR(OUT(J):MARG(J)=@SUM(ST(I):JOINT(I,J)););
12]@FOR(SXO(I,J):POST(I,J)=JOINT(I,J)/MARG(J););
13]END

Line 2 defines the states (G and B) and associates a prior probability with each state. The

prior probabilities are input by the user in the DATA section of the program. Line 3 de-

fines the set of possible experimental outcomes and associates a marginal probability

(MARG) with each outcome. The values of MARG are computed in line 11. In line 4, we

create the set SXO, consisting of (G, D), (G, ND), (B, D), and (B, ND), and associate with

each member of this set the following:

1 A posterior probability (POST); for example, POST(G, D) � p(G|D). The values of

POST are computed in line 12.

2 A joint probability (JOINT); for example, JOINT(G, ND) � p(G � ND). The values

of JOINT are computed in line 10.

3 A likelihood (LIKE); for example, LIKE(B, D) � p(D|B). The likelihoods are input

in the DATA section.

Lines 6–9 input the relevant data. Recall that attributes with multiple subscripts (such

as SXO) are stored so that the rightmost subscripts advance most rapidly. This helps us

determine the order in which to input the values of LIKE.

In line 10, we compute all joint probabilities JOINT(I, J) by multiplying the prior prob-

ability PR(I) by the likelihood LIKE(I, J). In line 11 we compute each marginal proba-

bility MARG(J) by summing over I all joint probabilities involving J. In line 12, we com-

pute each posterior probability POST(I, J) (really this is p(I|J)) by dividing p(I � J ) by

the marginal probability of outcome J( p(J)).
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P R O B L E M S
Group A
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1 A customer has approached a bank for a $50,000 one-
year loan at 12% interest. If the bank does not approve the
loan, the $50,000 will be invested in bonds that earn a 6%
annual return. Without further information, the bank feels
that there is a 4% chance that the customer will totally
default on the loan. If the customer totally defaults, the
bank loses $50,000. At a cost of $500, the bank can
thoroughly investigate the customer’s credit record and
supply a favorable or unfavorable recommendation. Past
experience indicates that

p(favorable recommendation|

customer does not default) � �
7
9
7
6
�

p(favorable recommendation|

customer defaults) � �
1
4

�

How can the bank maximize its expected profits? Also find
EVSI and EVPI.

2 A nuclear power company is deciding whether or not to
build a nuclear power plant at Diablo Canyon or at Roy
Rogers City. The cost of building the power plant is $10
million at Diablo and $20 million at Roy Rogers City. If the
company builds at Diablo, however, and an earthquake
occurs at Diablo during the next five years, construction
will be terminated and the company will lose $10 million
(and will still have to build a power plant at Roy Rogers
City). A priori, the company believes there is a 20% chance
that an earthquake will occur at Diablo during the next five
years. For $1 million, a geologist can be hired to analyze the
fault structure at Diablo Canyon. He will either predict that
an earthquake will occur or that an earthquake will not
occur. The geologist’s past record indicates that he will
predict an earthquake on 95% of the occasions for which an
earthquake will occur and no earthquake on 90% of the
occasions for which an earthquake will not occur. Should
the power company hire the geologist? Also find EVSI and
EVPI.

3 Farmer Jones must determine whether to plant corn or
wheat. If he plants corn and the weather is warm, he earns
$8,000; if he plants corn and the weather is cold, he earns
$5,000. If he plants wheat and the weather is warm, he
earns $7,000; if he plants wheat and the weather is cold, he
earns $6,500. In the past, 40% of all years have been cold
and 60% have been warm. Before planting, Jones can pay
$600 for an expert weather forecast. If the year is actually
cold, there is a 90% chance that the forecaster will predict
a cold year. If the year is actually warm, there is an 80%
chance that the forecaster will predict a warm year. How
can Jones maximize his expected profits? Also find EVSI
and EVPI.

4 The NBS television network earns an average of
$400,000 from a hit show and loses an average of $100,000
on a flop. Of all shows reviewed by the network, 25% turn
out to be hits and 75% turn out to be flops. For $40,000, a
market research firm will have an audience view a pilot of
a prospective show and give its view about whether the
show will be a hit or a flop. If a show is actually going to

be a hit, there is a 90% chance that the market research firm
will predict the show to be a hit. If the show is actually
going to be a flop, there is an 80% chance that the market
research firm will predict the show to be a flop. Determine
how the network can maximize its expected profits. Also
find EVSI and EVPI.

5 We are thinking of filming the Don Harnett story. We
know that if the film is a flop, we will lose $4 million, and
if the film is a success, we will earn $15 million. Beforehand,
we believe that there is a 10% chance that the Don Harnett
story will be a hit. Before filming, we have the option of
paying the noted movie critic Roger Alert $1 million for his
view of the film. In the past, Alert has predicted 60% of all
actual hits to be hits and 90% of all actual flops to be flops.
We want to maximize our expected profits. Use a decision
tree to determine our best strategy. What is EVSI? What is
EVPI?

Group B

6 Abdul has one die in his left hand and one in his right
hand. One die has six dots painted on each face, and the
other has one dot painted on two of the faces and six dots
painted on each of the other four faces. Greta is to pick one
die (either “left” or “right”) and will receive $10 for each
dot painted on the die that is picked. Before choosing, Greta
may pay Abdul $15, and he will toss the die in his left hand
and tell her how many dots are painted on the face that
comes up. Use a decision tree to determine how to maximize
Greta’s profit. Also determine EVSI and EVPI.

7 Pat Sajork has two drawers. One drawer contains three
gold coins, and the other contains one gold coin and two
silver coins. We are allowed to choose one drawer, and we
will be paid $500 for each gold coin and $100 for each
silver coin in that drawer. Before choosing, we may pay Pat
$200, and he will draw a randomly selected coin (each of
the six coins has an equal chance of being chosen) and tell
us whether it is gold or silver. For instance, Pat may say that
he drew a gold coin from drawer 1. Should we pay Pat
$200? What is EVSI? What is EVPI?

8 Joe owns a coin that is either a fair coin or a two-headed
coin. Imelda believes that there is a �

1
2

� chance that the coin
is two-headed. She must guess what kind of coin Joe has. If
she guesses correctly, she pays Joe nothing, but if she
guesses incorrectly, she must pay Joe $2. Before guessing,
she may pay 30¢ to see the result of a single coin toss (heads
or tails). Determine how Imelda should minimize her
expected loss. Also determine EVSI and EVPI.

9 The government is attempting to determine whether
immigrants should be tested for a contagious disease. Let’s
assume that the decision will be made on a financial basis.
Assume that each immigrant who is allowed into the country
and has the disease costs the United States $100,000, and
each immigrant who enters and does not have the disease
will contribute $10,000 to the national economy. Assume
that 10% of all potential immigrants have the disease. The



government may admit all immigrants, admit no immigrants,
or test immigrants for the disease before determining
whether they should be admitted. It costs $100 to test a
person for the disease; the test result is either positive or
negative. If the test result is positive, the person definitely
has the disease. However, 20% of all people who do have
the disease test negative. A person who does not have the
disease always tests negative. The government’s goal is to
maximize (per potential immigrant) expected benefits minus
expected costs. Use a decision tree to aid in this undertaking.
Also determine EVSI and EVPI.

10† Many colleges face the problem of whether athletes
should be tested for drug use. Define
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c1 � Cost if athlete is falsely accused of drug use

c2 � Cost if a drug user is not identified

c3 � Cost due to invasion of privacy if a nonuser is tested

Suppose that 5% of all athletes are drug users, and that the
test used is 90% reliable. This means that if an athlete uses
drugs, there is a 90% chance that the test will detect it, and
if the athlete does not use drugs, there is a 90% chance that
the test will show no drug use.

a If c1 � 10, c2 � 5, and c3 � 1, should the college
test athletes for drugs?

b Prove that if c1 � c2 � c3, then the college should
not test for drugs.

13.6 Decision Making with Multiple Objectives

In previously considered decision problems, the decision maker made a choice based on

how each possible action affected a single variable (or attribute). For example, in the news

vendor problem, the number of papers ordered was determined by how this affected Phyl-

lis’s profits. Similarly, in the Colaco example, Colaco’s decision depended on how each

of its strategies affected its final asset position.

In many situations, however, the action chosen depends on how each possible action

affects more than one attribute or variable. Four examples follow. (1) Suppose that Joe

Bunker wants to buy a new car. In choosing which car to buy, Joe may consider the fol-

lowing attributes of each car:

Attribute 1 Size of car

Attribute 2 Fuel economy of car (miles per gallon)

Attribute 3 Style of car

Attribute 4 Price of car

(2) Suppose Joe Bunker has just graduated from the nation’s top business school, Busi-

ness School (B.S.) University, and has received five job offers. In choosing which to ac-

cept, Joe will consider the following attributes of each job:

Attribute 1 Starting salary of job

Attribute 2 Location of job

Attribute 3 Degree of interest Joe has in doing the work involved in the particular job

Attribute 4 Long-term opportunities associated with job

(3) Gotham City must determine where to locate a new jetport. In determining the site

three factors (or attributes) must be considered:

Attribute 1 Accessibility of jetport for residents of Gotham City

Attribute 2 Degree of noise pollution caused by the jetport (if the jetport is placed in a

densely populated area, noise pollution will be more serious than if the jetport is placed

in a sparsely populated area)

Attribute 3 Size of the jetport (determined in part by the amount of land available at the

jetport site)

†Based on Feinstein (1990).



(4) Wivco Toy Corporation is introducing a new product (a globot). Wivco must deter-

mine the price to charge for each globot. Two factors (market share and profits) will af-

fect the pricing decision.

In these four examples, the decision maker chooses an action by determining how each

possible action affects the relevant attributes. Such problems are called multiattribute de-

cision problems.

Multiattribute Decision Making in the Absence 
of Uncertainty: Goal Programming

Suppose a woman believes that there are n attributes that will determine her decision. Let

xi(a) be the value of the ith attribute associated with an alternative a. She associates a

value v(x1(a), x2(a), . . . , xn(a)) with the alternative a. The function v(x1, x2, . . . , xn) is the

decision maker’s value function. If A represents the decision maker’s set of possible de-

cisions, then she should choose the alternative a* (with level xi* of attribute i) satisfying

max
a�A

v(x1(a), x2(a), . . . , xn(a)) � v(x1*, x2*, . . . , xn*)

Alternatively, the decision maker can associate a cost c(x1(a), x2(a), . . . , xn(a)) with the

alternative a. The function c(x1, x2, . . . , xn) is her cost function. If A represents the de-

cision maker’s set of possible decisions, then she should choose the alternative a* (with

level xi* of attribute i) satisfying

min
a�A

c(x1(a), x2(a), . . . , xn(a)) � c(x1*, x2*, . . . , xn*)

A particular form of the value or cost function is of special interest.

D E F I N I T I O N ■

Under what conditions will a decision maker have an additive value (or cost) function?

Before answering this question, we need some more definitions.

D E F I N I T I O N ■

To illustrate the concept of preferential independence, we consider Joe’s search for a

job following graduation. In this situation, attribute 1 would be preferentially independent

of attribute 2 if, for any possible job location, a higher starting salary is preferred to a

lower salary.

As another illustration of preferential independence, suppose that the Griswold family

is trying to determine how to spend Sunday afternoon. Let the two relevant attributes be

An attribute (call it attribute 1) is preferentially independent (pi) of another

attribute (attribute 2) if preferences for values of attribute 1 do not depend on the

value of attribute 2. ■

A value function v(x1, x2, . . . , xn) is an additive value function if there exist n

functions v1(x1), v2(x2), . . . , vn(xn) satisfying

v(x1, x2, . . . , xn) � �
i�n

i�1

vi(xi) ■ (7)

A cost function c(x1, x2, . . . , xn) is an additive cost function if there exist n

functions c1(x1), c2(x2), . . . , cn(xn) satisfying

c(x1, x2, . . . , xn) � �
i�n

i�1

ci(xi) ■ (8)
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Attribute 1 Choice of activity (either picnic or go to see movie Antarctic Vacation)

Attribute 2 Sunday afternoon’s weather (either sunny or rainy)

Suppose that on a sunny day, the picnic is preferred to the movie, but on a rainy day,

the movie is preferred to the picnic. Then attribute 1 is not preferentially independent of

attribute 2.

D E F I N I T I O N ■

Again refer to Joe’s search for a job. Suppose Joe’s five job offers are located in Los

Angeles, Chicago, Dallas, New York, and Indianapolis. If, for any given salary level, Joe

prefers to work in Los Angeles, then attribute 2 is pi of attribute 1. If attribute 1 were also

pi of attribute 2, then attributes 1 and 2 would be mpi.

The concept of mutual preferential independence can be generalized to sets of attributes.

D E F I N I T I O N ■

In the example of Joe’s purchase of a new car, let S � attributes 1 and 2, and S� � at-

tributes 3 and 4. Then for S to be mpi of S�, it must be the case that (1) Joe’s preferences

for size and fuel economy are unaffected by a car’s style and price, and (2) Joe’s prefer-

ences for car style and price are unaffected by the car’s size and fuel economy. Thus, if S

and S� were mpi, we could conclude that if for a given style and price level, Joe preferred

A1 (a large car getting 15 mpg) to A2 (a small car getting 25 mpg), then for any style and

price level, Joe would prefer A1 to A2.

D E F I N I T I O N ■

It is easy to see that if there are only two attributes (1 and 2), the attributes are mpi if

and only if attribute 1 is mpi of attribute 2.

The following result gives a condition ensuring that the decision maker will have an

additive value (or cost) function.

T H E O R E M  1

If the set of attributes 1, 2, . . . , n is mpi, the decision maker’s preferences can be

represented by an additive value (or cost) function.

This is not an obvious result. (For a proof, see Keeney and Raiffa (1976, Chapter 3).)

To illustrate the result, suppose that the decision maker’s value function for two attributes

is given by

v(x1, x2) � x1 
 x1x2 
 x2 (9)

A decision maker with value function (2) would, for example, prefer (6, 6) to (4, 8) (be-

cause v(6, 6) � 48 and v(4, 8) � 44). The reader should verify that for (2), attribute 1 is

pi of attribute 2, and attribute 2 is pi of attribute 1 (see Problem 3 at the end of this 

A set of attributes 1, 2, . . . , n is mutually preferentially independent (mpi) if

for all subsets S of {1, 2, . . . , n}, S is mpi of S�. (S� is all members of {1, 2, . . . ,

n} that are not included in S.) ■

A set of attributes S is mutually preferentially independent (mpi) of a set of

attributes S� if (1) the values of the attributes in S� do not affect preferences for

the values of attributes in S, and (2) the values of attributes in S do not affect

preferences for the values of attributes in S�. ■

If attribute 1 is pi of attribute 2, and attribute 2 is pi of attribute 1, then attribute

1 is mutually preferentially independent (mpi) of attribute 2. ■



section). Thus, attributes 1 and 2 are mpi, and Theorem 1 implies that the decision maker’s

preferences can be represented by an additive function. To demonstrate this, define new

attributes 1� and 2� as

Value of attribute 1� � x�1 � x1 
 x2

Value of attribute 2� � x�2 � x1 � x2

Consider the additive value function

v�(x�1, x�2) � x�1 
 �

It is easy to show that v�(x�1, x�2) � v(x1, x2). Thus, v�(x�1, x2�) represents the decision

maker’s preferences. For example, of the following two alternatives

Alternative 1: x1 � 6, x2 � 6

Alternative 2: x1 � 4, x2 � 8

we already know that the decision maker prefers alternative 1. In terms of the new at-

tributes 1� and 2�, we have

Alternative 1: x�1 � 12, x�2 � 0�

Alternative 2: x�1 � 12, x�2 � �4

Then

v�(12, 0) � value of alternative 1 � 12 
 �
1

4

22

� � 48

v�(12, �4) � value of alternative 2 � 12 
 �
1

4

22

� � �
(�

4

4)2

� � 44

Therefore, in this example, the additive value function v�(x�1, x�2) replicates the decision

maker’s preferences.

Multiattribute Utility Functions

In Section 13.2, we described how the Von Neumann–Morgenstern utility theory could be

used to make decisions under uncertainty when only one attribute affected the decision

maker’s preference and attitude toward risk. In this section, we discuss the extension of

utility theory to situations in which more than one attribute affects the decision maker’s

preferences and attitude toward risk. Even in this case, a decision maker who subscribes

to the Von Neumann–Morgenstern axioms will still choose the lottery or the alternative

that maximizes his or her expected utility. When more than one attribute affects a deci-

sion maker’s preferences, the person’s utility function is called a multiattribute utility

function. We restrict ourselves here to explaining how to assess and use multiattribute

utility functions when only two attributes are operative. The reader seeking a more de-

tailed discussion of multiattribute utility functions is referred to Bunn (1984) and (at a

more advanced level) the classic work by Keeney and Raiffa (1976).

Suppose a decision maker’s preferences and attitude toward risk depend on two attrib-

utes. Let

xi � level of attribute i

u(x1, x2) � utility associated with level x1 of attribute 1 and level x2 of attribute 2

How can we find a utility function u(x1, x2) such that choosing a lottery or alternative that

maximizes the expected value of u(x1, x2) will yield a decision consistent with the deci-

sion maker’s preferences and attitude toward risk?

(x�
2)2

�
4

(x�1)2

�
4
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In general, determination of u(x1, x2) (or, in the case of n attributes, determination of

u(x1, x2, . . . , xn)) is a difficult matter. Under certain conditions, however, the assessment

of a utility function u(x1, x2) is greatly simplified.

Properties of Multiattribute Utility Functions

D E F I N I T I O N ■

Let’s reconsider the problem of Wivco Toy Corporation. Wivco is introducing a new

product (a globot) and must determine what price to charge for each globot. Two factors

(market share and profits) will affect Wivco’s pricing decision. Let

x1 � Wivco’s market share

x2 � Wivco’s profits (millions of dollars)

Suppose that Wivco is indifferent between

Attribute 1 is utility independent (ui) of attribute 2 if preferences for lotteries

involving different levels of attribute 1 do not depend on the level of attribute 2. ■
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�
1
2

�

10%, $5

L1 and L�1 �
1
� 16%, $5

�
1
2

�

30%, $5

If attribute 1 (market share) is ui of attribute 2 (profit), Wivco would also be indifferent

between

�
1
2

�

10%, $20

L2 and L�2 �
1
� 16%, $20

�
1
2

�

30%, $20

In short, if market share is ui of profit, then for any level of profits, a �
1
2

� chance at a 10%

market share and a �
1
2

� chance at a 30% market share has a certainty equivalent of a 16%

market share.

D E F I N I T I O N ■

If attributes 1 and 2 are mui, it can be shown that the decision maker’s utility function

u(x1, x2) must be of the following form:

u(x1, x2) � k1u1(x1) 
 k2u2(x2) 
 k3u1(x1)u2(x2) (10)

In (10), k1, k2, and k3 are constants, and u1(x1) and u2(x2) are functions of x1 and x2, re-

spectively. Equation (10) is often called a multilinear utility function.

To show that a multilinear utility function exhibits mui, we assume that Wivco’s util-

ity function is of the form (10) and that Wivco is indifferent between L1 and L�1. If Wivco

exhibits mui, then Wivco should also be indifferent between L2 and L�2. Using (10), we

can now show that L1iL�1 implies L2iL�2. First, (10) and L1iL�1 imply

�
1
2

�[k1u1(10) 
 k2u2(5) 
 k3u1(10)u2(5)]

�
1
2

�[k1u1(10) 
 �
1
2

�[ k1u1(30) 
 k2u2(5) 
 k3u1(30)u2(5)]

� k1u1(16) 
 k2u2(5) 
 k3u1(16)u2(5)

If attribute 1 is ui of attribute 2, and attribute 2 is ui of attribute 1, then attributes

1 and 2 are mutually utility independent (mui). ■



Simplifying this equation yields (if k1  0)

�
1
2

�[u1(10) 
 u1(30)] � u1(16) (11)

Using (11), we find

E(U for L2) � �
1
2

�[k1u1(10) 
 k2u2(20) 
 k3u1(10)u2(20)]

� 
 �
1
2

�[k1u1(30) 
 k2u2(20) 
 k3u1(30)u2(20)]

� k1u1(16) 
 k2u2(20) 
 k3u1(16)u2(20)

� E(U for L�2)

Thus, we see that a multilinear utility function of the form (10) implies that attribute 1 is

ui of attribute 2. Similarly, it can be shown that (10) implies that attribute 2 is ui of at-

tribute 1. Thus, (10) implies that attributes 1 and 2 are mui. It can also be shown that if

x1 and x2 are mui, then u(x1, x2) must be of the form (10) (see Keeney and Raiffa (1976)).

T H E O R E M  2

Attributes 1 and 2 are mui if and only if the decision maker’s utility function 

u(x1, x2) is a multilinear function of the form

u(x1, x2) � k1u1(x1) 
 k2u2(x2) 
 k3u1(x1)u2(x2) (10)

The determination of a decision maker’s utility function u(x1, x2) can be further sim-

plified if it exhibits additive independence. Before defining additive independence, we

must define x1 (best) or x2 (best) to be the most favorable level of attribute 1 or 2 that can

occur; also, x1 (worst) or x2 (worst) is the least favorable level of attribute 1 or 2 that can

occur.

D E F I N I T I O N ■

Essentially, additive independence of attributes 1 and 2 implies that preferences over

lotteries involving only attribute 1 (or only attribute 2) depend only on the marginal dis-

tribution for possible values of attribute 1 (or of attribute 2) and do not depend on the

joint distribution of the possible values of attributes 1 and 2.

If attributes 1 and 2 are mui and the decision maker’s utility function exhibits additive

independence, it is easy to show that in (10), k3 � 0 must hold. As in Section 2.2, sim-

ply scale u1(x1) and u2(x2) such that

u1(x1(best)) � 1 u1(x1(worst)) � 0

u2(x2(best)) � 1 u2(x2(worst)) � 0

Now (10) implies

u(x1(best), x2(best)) � k1 
 k2 
 k3 u(x1(worst), x2(worst)) � 0

u(x1(best), x2(worst)) � k1 u(x1(worst), x2(best)) � k2

A decision maker’s utility function exhibits additive independence if the decision

maker is indifferent between

�
1
2

� �
1
2

�

x1(best), x2(best) x1(best), x2(worst)

and
�
1
2

� �
1
2

�

x1(worst), x2(worst) x1(worst), x2(best)

(11) ■
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Then additive independence implies that

�
1
2

�(k1 
 k2 
 k3) 
 �
1
2

�(0) � �
1
2

�(k1) 
 �
1
2

�(k2)

k3 � 0

Thus, if attributes 1 and 2 are mui and the decision maker’s utility function exhibits ad-

ditive independence, his or her utility function is of the following additive form:

u(x1, x2) � k1u1(x1) 
 k2u2(x2) (12)

Assessment of Multiattribute Utility Functions

If attributes 1 and 2 are mui, how can we determine u1(x1), u2(x2), k1, k2, and k3? To 

determine u1(x1) and u2(x2), we apply the technique that was used to assess utility func-

tions in Section 13.2. We illustrate by determining u1(x1). Let u1(x1(best)) � 1 and

u1(x1(worst)) � 0. Next determine a value of attribute 1 (call it x1(�
1
2

�)) having u1(x1(�
1
2

�)) �
�
1
2

�. By the definition of u1(x1(�
1
2

�)) and mui, the decision maker is (for any value of x2) 

indifferent between
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�
1
2

�

x1(best), x2

L and L� �
1
� x1 ��

1

2
��, x2

�
1
2

�

x1(worst), x2

Thus, x1(�
1
2

�) may be determined from the fact that the certainty equivalent of L is (x1(�
1
2

�),

x2). In a similar fashion, we can determine values x1(�
1
4

�) and x1(�
3
4

�) of the first attribute sat-

isfying u1(x1(�
1
4

�)) � �
1
4

� and u1(x1(�
3
4

�)) � �
3
4

�. Continuing in this fashion, we may approximate

u1(x1) and u2(x2).

To find k1, k2, and k3, we begin by rescaling u1(x1), u2(x2), and u(x1, x2) such that

u(x1(best), x2(best)) � 1, u(x1(worst), x2(worst)) � 0,

u1(x1(best)) � 1, u1(x1(worst)) � 0, u2(x2(best)) � 1, u2(x2(worst)) � 0

Now (10) yields

u(x1(best), x2(worst)) � k1(1) 
 k2(0) 
 k3(0) � k1

Thus, k1 can be determined from the fact that the decision maker is indifferent between

k1
u(x1(best), x2(best))

�
1
� u(x1(best), x2(worst)) and

1 � k1
u(x1(worst), x2(worst))

k2
u(x1(best), x2(best))

�
1
� u(x1(worst), x2(best)) and

1 � k2
u(x1(worst), x2(worst))

Similarly (see Problem 3 at the end of this section), u(x1(worst), x2(best)) � k2 and k2

can be determined from the fact that the decision maker is indifferent between

To determine k3, observe that from (10) and

u(x1(best), x2(best)) � u1(x1(best)) � u2(x2(best)) � 1

we find that

1 � u(x1(best), x2(best)) � k1(1) 
 k2(1) 
 k3(1) � k1 
 k2 
 k3



Thus, k1 
 k2 
 k3 � 1, or k3 � 1 � k1 � k2. Of course, if the decision maker’s utility

function exhibits additive independence, then k3 � 0.

The procedure to be used in assessing a multiattribute utility function (when there are

two attributes) may be summarized as follows:

Step 1 Check whether attributes 1 and 2 are mui. If they are, go on to step 2. If the at-

tributes are not mui, the assessment of the multiattribute utility function is beyond the

scope of our discussion. (See Keeney and Raiffa (1976, Section 5.7).)

Step 2 Check for additive independence.

Step 3 Assess u1(x1) and u2(x2).

Step 4 Determine k1, k2, and (if there is no additive independence) k3.

Step 5 Check to see whether the assessed utility function is really consistent with the de-

cision maker’s preferences. To do this, set up several lotteries and use the expected utility

of each to rank the lotteries from most to least favorable. Then ask the decision maker to

rank the lotteries from most to least favorable. If the assessed utility function is consistent

with the decision maker’s preferences, the ranking of the lotteries obtained from the assessed

utility function should closely resemble the decision maker’s ranking of the lotteries. 

Example 6 illustrates the assessment and use of a multiattribute utility function.

E X A M P L E  6

Fruit Computer Company is certain that its market share during 2005 will be between

10% and 50% of the microcomputer market. Fruit is also sure that its profits during 2005

will be between $5 million and $30 million. Assess Fruit’s multiattribute utility function

where u(x1, x2), where

x1 � Fruit’s market share during 2005

x2 � Fruit’s profit during 2005 (in millions of dollars)

Solution We begin by checking for mui. It is helpful to draw a diagram (see Figure 14) that dis-

plays various levels of each attribute. First, we check whether attribute 1 (market share)

is ui of attribute 2 (profit). We ask Fruit for the certainty equivalent of a �
1
2

� chance at the

Fruit Computer Co.
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Profit

(millions of $)

Market share (%)
10 20 30 40 50

30

25

20

15

10

5

0

F I G U R E  14

Possible Levels of Each
Attribute for Fruit

Computer Company



If attribute 1 is ui of attribute 2, the certainty equivalent of this lottery should be close to

(30%, $20). For other values of x2 (say, x2 � $5, $10, $25, and $30), we check if the cer-

tainty equivalent of the lottery
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�
1
2

�

10%, $15

�
1
2

�

50%, $15

is (30%, $15). To determine whether attribute 1 is ui of attribute 2, we fix attribute 2 at

some other level (say, x2 � $20 million) and find Fruit’s certainty equivalent for the fol-

lowing lottery:

�
1
2

�

10%, $20

�
1
2

�

50%, $20

worst market share (10%) and a �
1
2

� chance at the best market share (50%), with x2 fixed at

some level (say x2 � $15 million). Suppose the certainty equivalent of

�
1
2

�

10%, x2

�
1
2

�

50%, x2

�
1
2

� �
1
2

�

50%, $30 50%, $5

and
�
1
2

� �
1
2

�

10%, $5 10%, $30

is close to (30%, x2). Suppose this is the case. Then we repeat this procedure with other

values of market share replacing 10% and 50%. If similar results ensue, then attribute 1

is ui of attribute 2. In analogous fashion, we can determine whether attribute 2 is ui of at-

tribute 1. If attribute 1 is ui of attribute 2, and attribute 2 is ui of attribute 1, the two at-

tributes are mui. Let’s assume that attributes 1 and 2 are (at least approximately) mui and

proceed to step 2 (checking for additive independence).

To check for additive independence, we must determine whether Fruit is indifferent 

between

Suppose that Fruit is not indifferent between these lotteries. Then Fruit’s utility function

will not exhibit additive independence. We now know that u(x1, x2) may be written as

u(x1, x2) � k1u1(x1) 
 k2u2(x2) 
 k3u1(x1)u2(x2)

We now proceed to step 3 (assessing u1(x1) and u2(x2)). Suppose we obtain the results

shown in Figure 15. To complete the assessment of Fruit’s multiattribute utility function,

we must determine k1, k2, and k3 (step 4). To find k1, we ask Fruit to determine the num-

ber k1 that makes Fruit indifferent between

k1
50%, $30

�
1
� 50%, $5 and

1 � k1
10%, $5
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Suppose that for k1 � 0.6, Fruit is indifferent between these two lotteries. Similarly, k2 is

the number that makes Fruit indifferent between

u1(x1)

x1(%)
2010 30 40

(a) Market share

50

1.00

.75

.50

.25

0

u2(x2)

x2(millions of $)
5 10 15

(b) Profit

20 25 30

1.00

.75

.50

.25

0
F I G U R E  15

u1(x1) and u2(x2) for
Fruit Computer

k2
50%, $30

�
1
� 10%, $30 and

1 � k2
10%, $5

Suppose that for k2 � 0.5, Fruit is indifferent between these two lotteries. Now k3 � 1 �

k1 � k2 � �0.1, and Fruit’s multiattribute utility function is

u(x1, x2) � 0.6u1(x1) 
 0.5u2(x2) � 0.1u1(x1)u2(x2) (13)

where u1(x1) and u2(x2) are sketched in Figure 15. Note that

�
∂u(

∂

x

x
1,

1

x2)
� � 0.6u�1(x1) � 0.1u�1(x1)u2(x2)

Thus, as Fruit’s profit increases, we see that the utility gained from an additional point of

market share decreases. Similarly, if k3 � 0, then as profit increases, the benefit gained

from an additional point of market share would increase. As outlined in step 5, we should

now check whether this multiattribute utility function is consistent with Fruit’s preferences.



Use of Multiattribute Utility Functions

To illustrate how a multiattribute utility function might be used, suppose that Fruit must

determine whether to mount a small or a large advertising campaign during the coming

year. Fruit believes there is a �
1
2

� probability that its main rival, CSL Computers, will mount

a small TV ad campaign and a �
1
2

� probability that CSL will mount a large TV ad campaign.

At the end of the current year, Fruit’s market share and profits (in millions of dollars) will

be as shown in Table 12. Fruit must determine which of the following lotteries has a larger

expected utility: From Figure 15, we find that u1(15) � 0.125, u1(25) � 0.375, u1(35) �

0.625, u2(8) � 0.45, u2(10) � 0.53, u2(12) � 0.58, and u2(16) � 0.70. Then

u(25%, $16) � 0.6(.375) 
 0.5(.7) � 0.1(.375)(.7) � .549

u(15%, $12) � 0.6(.125) 
 0.5(.58) � 0.1(.125)(.58) � .358

u(35%, $8) � 0.6(.625) 
 0.5(.45) � 0.1(.625)(.45) � .572

u(25%, $10) � 0.6(.375) 
 0.5(.53) � 0.1(.375)(.53) � .470

Then

E(U for small ad campaign) � (�
1
2

�)(.549) 
 (�
1
2

�)(.358) � .454

E(U for large ad campaign) � (�
1
2

�)(.572) 
 (�
1
2

�)(.470) � .521

Thus, during the current year, Fruit should mount a large ad campaign.
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TA B L E  12

Effect of Advertising on Market Share and Profit

CSL Chooses

Fruit Chooses Small Ad Campaign Large Ad Campaign

Small ad campaign 25%, $16 15%, $12

Large ad campaign 35%, $8 25%, $10

P R O B L E M S
Group A

1 National Express Carriers is interested in two attributes:

Attribute 1 The average cost of delivering a letter (known
to be between $1 and $5)
Attribute 2 Percentage of all letters reaching their destina-
tion on time (known to be between 70% and 100%)

a Would National’s multiattribute utility function ex-
hibit mui?

b Would National’s utility function be additive?

c Assume that attributes 1 and 2 exhibit mui. Suppose
National is indifferent between ($1, 70%) for certain
and the following lottery:

Find National’s multiattribute utility function. Express
National’s multiattribute utility function in terms of
u1(x1) and u2(x2).

2 Keeney and Raiffa (1976) discuss the assessment of a
blood bank’s multiattribute utility function. For simplicity,
we assume that the blood bank must determine at the
beginning of each week how many pints of blood should be
ordered. Any blood left over at the end of the week spoils
(it is outdated). For the blood bank, two attributes of interest
are as follows:

Attribute 1 Number of pints of blood by which ordered
blood falls short of the week’s demand (the weekly short-
age). The weekly shortage is known to be always between 0
and 10 pints.

.30
$1, 100%

.70
$5, 70%

Also assume that National is indifferent between ($5,
100%) for certain and

.50
$1, 100%

.50
$5, 70%



Attribute 2 Number of pints of blood that are outdated
(known to be always between 0 and 10 pints)

Assume that attributes 1 and 2 exhibit mui.

a Suppose the blood bank is indifferent between
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The city authorities are also indifferent between

�
1
� (0, 0%) and

and between

.40
0, 0

�
1
� 0, 10 and

.60

.50
0, 0

�
1
� 10, 0 and

.50

Let x1 � value of attribute 1, and x2 � value of at-
tribute 2. Also suppose that

u1(x1) � .58 exp�1 � �
1

x

0
1
�� � .58

and

u2(x2) � 1 �

Determine the blood bank’s multiattribute utility
function.

b Suppose that each week there is a �
1
2

� chance that the
demand for blood will be 25 pints and a �

1
2

� chance it will
be 35 pints. Would the blood bank be better off order-
ing 28 pints, 30 pints, or 32 pints?

3 Show that the method for determining k2 described in
the text is valid.

4 Gotham City is trying to determine how many
ambulances it should have and how to staff them. Each
ambulance may be staffed with paramedics or emergency
medical technicians. Paramedics are considered to provide
better service and are paid higher salaries. Budgetary
limitations have forced the city to choose between the
following two alternatives:

Alternative 1 Four ambulances, two staffed with emer-
gency medical technicians and two staffed with paramedics
Alternative 2 Three ambulances, all staffed with para-
medics

The city authorities believe that the following two attributes
determine the city’s satisfaction with ambulance service:

Attribute 1 Time until an ambulance reaches a patient
Attribute 2 Percentage of ambulance calls handled by para-
medics. Assume that Gotham City’s multiattribute utility
function u(x1, x2) exhibits mui and that

u1(x1) � 1 � and u2(x2) �

The time for an ambulance to reach a patient is always
between 0 and 30 minutes. The city authorities are indifferent
between

�
1
� (30, 100%) and

x2
2

�
10,000

x2
1

�
900

x2
2

�
100

.40
(0, 100%)

.60
(30, 0%)

Assume that if an ambulance is available when a call
comes in, then the ambulance will arrive in 5 minutes; if an
ambulance is not available when a call comes in, it will ar-
rive in 20 minutes. With three ambulances, one will be im-
mediately available 60% of the time, and with four ambu-
lances, one will be immediately available 80% of the time.

a Determine the city authorities’ multiattribute utility
function.

b Which alternative should they choose?

5 Public service Indiana (PSI) is considering two sites for
a nuclear power plant. The following two attributes will
influence its determination about where to build the plant:

Attribute 1 Cost of the plant (in millions of dollars)
Attribute 2 Acres of land damaged by building the plant

Assume that PSI’s multiattribute utility function is given by
u1(x1, x2) � .70u1(x1) 
 .20u2(x2) 
 .10u1(x1)u2(x2), where
u1(x1) � .1 
 exp(�.1x1) and u2(x2) � 2.5 � 2.5
exp(.0006x2 � .48).

Two locations for the power plant are under considera-
tion. Location 1 is equivalent to the following lottery:

.80
(0, 100%)

.20
(30, 0%)

.50
(50, 300)

.50
(30, 400)

.50
(60, 200)

.50
(15, 600)

�
1
2

� �
1
2

�

A B

L1 and L2

�
1
2

� �
1
2

�

C D

and location 2 is equivalent to the following lottery:

Which location should be chosen?

Group B

6 Consider the four points A, B, C, and D in Figure 16.
Assume that more of each attribute is desirable and that a
decision maker’s utility function exhibits mui. Consider the
following two lotteries:

a Show that if k3 � 0, then L1pL2.

b Show that if k3 	 0, then L2pL1.

c Show that if the decision maker exhibits additive in-
dependence (k3 � 0), then L1iL2.

d Let attribute 1 � performance of Germany on the
eastern front near the end of World War II, and attribute
2 � performance of Germany on the western front. A
high level of an attribute means that Germany did well,
and a low level of an attribute means that Germany did
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Value of

attribute 2

A

Value of

attribute 1x1 x1

x2'

'

x2

B

D

C

F I G U R E  16 poorly. Suppose that Germany will suffer defeat if it
performs poorly on either front. If these attributes ex-
hibit mui, what would be the sign of k3?

e General Motors has domestic and international divi-
sions. Let attribute 1 � profits in the domestic division
and attribute 2 � profits in the international division.
Suppose General Motors is reasonably happy if at least
one division has a good year but is very unhappy if both
divisions have a bad year. If these attributes exhibit mui,
what would be the sign of k3?

13.7 The Analytic Hierarchy Process

In Section 13.6, we discussed situations in which a decision maker chooses between alter-

natives on the basis of how well the alternatives meet various objectives. For example, in

determining which job offer to accept, a job seeker (call her Jane) might choose between

the offers by determining how well each one meets the following four objectives:

Objective 1 High starting salary (SAL)

Objective 2 Quality of life in city where job is located (QL)

Objective 3 Interest in work (IW)

Objective 4 Job location near family and relatives (NF)

When multiple objectives are important to a decision maker, it may be difficult to choose

between alternatives. For example, one job offer may offer the highest starting salary, but

it may score poorly on the other three objectives. Another job offer may meet objectives

2–4 but have a low starting salary. In such a case, it may be difficult for Jane to choose

between job offers. Thomas Saaty’s analytic hierarchy process (AHP) provides a pow-

erful tool that can be used to make decisions in situations involving multiple objectives.

To illustrate how the AHP works, let’s suppose that Jane has three job offers and must

determine which offer to accept. For the ith objective (in this example, i � 1, 2, 3, 4), the

AHP generates (by a method to be described shortly) a weight wi (i � 1, 2, 3, 4) for the

ith objective. For convenience, the chosen weights always sum to 1. Suppose that for this

example, we have found Jane’s weights to be

w1 � .5115, w2 � .0986, w3 � .2433, w4 � .1466

(These weights fail to add up to 1 due to rounding.) The weights indicate that a high start-

ing salary is the most important objective, followed by interest in work, nearness to fam-

ily, and quality of life in the city where the job is located.

Next suppose (again by a method that is soon to be described) that Jane can determine

how well each job “scores” on each objective. For example, suppose Jane determines that

each job scores on each objective as shown in Table 13. For example, job 1 best meets

the objective of a high starting salary but “scores” worst on all other objectives.

Given Jane’s weights and the score of each job on each objective, how can she deter-

mine which job offer to accept? For the jth job offer ( j � 1, 2, 3), compute job offer j’s

overall score as follows:

�
i�4

i�1

wi ( job offer j’s score on objective i)



Now choose the job offer with the highest overall score. Note that the overall score gives

more weight to a job offer’s score on the more important objectives. Computing each job’s

overall score, we obtain

Job 1 overall score � .5115(.571) 
 .0986(.159) 
 .2433(.088)


 .1466(.069) � .339

Job 2 overall score � .5115(.286) 
 .0986(.252) 
 .2433(.669)


 .1466(.426) � .396

Job 3 overall score � .5115(.143) 
 .0986(.589) 
 .2433(.243)


 .1466(.506) � .265

Thus, the AHP would indicate that Jane should accept job 2.

Obtaining Weights for Each Objective

Suppose there are n objectives. We begin by writing down an n � n matrix (known as the

pairwise comparison matrix) A. The entry in row i and column j of A (call it aij) indi-

cates how much more important objective i is than objective j. “Importance” is to be mea-

sured on an integer-valued 1–9 scale, with each number having the interpretation shown

in Table 14. For all i, it is necessary that aii � 1. If, for example, a13 � 3, objective 1 is

weakly more important than objective 3. If aij � k, then for consistency, it is necessary

that aji � �
1
k

�. Thus, if a13 � 3, then a31 � �
1
3

� must hold.

Suppose that Jane has identified the following pairwise comparison matrix for her four

objectives (SAL � high salary; QL � high quality of life; IW � interest in work; NF �

nearness to family):

SAL QL IW NF

� 	
Unfortunately, some of Jane’s pairwise comparisons are inconsistent. To illustrate the

meaning of consistency, note that since a13 � 2, she feels SAL is twice as important as

IW. Since a32 � 2, she also believes that IW is twice as important as QL. Consistency of

preferences would imply that Jane should feel that SAL is 2(2) � 4 times as important

as QL. Since a12 � 5, however, Jane believes that SAL is 5 times as important as QL.

This shows that Jane’s pairwise comparisons exhibit a slight inconsistency. Slight incon-

sistencies are common and do not cause serious difficulties. An index that can be used to

measure the consistency of Jane’s preferences will be discussed later in this section.

4

�
1
2

�

2

1

2

�
1
2

�

1

�
1
2

�

5

1

2

2

1

�
1
5

�

�
1
2

�

�
1
4

�

SAL

QL

IW

NF
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TA B L E  13

Jane’s “Score” for Each Job and Objective

Objective Job 1 Job 2 Job 3

Salary .571 .286 .143

Quality of life .159 .252 .589

Interest in work .088 .669 .243

Proximity to family .069 .426 .506



Suppose there are n objectives. Let wi � the weight given to objective i. To describe

how the AHP determines the wi’s, let’s suppose the decision maker is perfectly consistent.

Then her pairwise comparison matrix should be of the following form:

A �

�
�
w

w
1

1

� �
w

w
1

2

� ��� �
w

w
1

n

�

	
(13)

A �
�
w

w
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� �
w

w
2
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� ��� �
w
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n

�
(13)
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�
w

w
n

1

� �
w

w
n

2

� ��� �
w

w
n

n

�

For example, suppose that w1 � �
1
2

� and w2 � �
1
6

�. Then objective 1 is three times as impor-

tant as objective 2, so

a12 � �
w

w
1

2

� � 3

Now suppose that a consistent decision maker has a pairwise comparison matrix A of the

form (13). How can we recover the vector w � [w1 w2 ��� wn] from A? Consider the

system of n equations

AwT
� �wT (14)

where � is an unknown number and wT is an unknown n-dimensional column vector. For

any number �, (14) always has the trivial solution w � [0 0 ��� 0]. It can be shown

that if A is the pairwise comparison matrix of a perfectly consistent decision maker (that is,

if A is of the form (13)) and we do not allow � � 0, then the only nontrivial solution to

(14) is � � n and w � [w1 w2 ��� wn]. This shows that for a consistent decision maker,

the weights wi can be obtained from the only nontrivial solution to (14). Now suppose that

the decision maker is not perfectly consistent. Let �max be the largest number for which (14)

has a nontrivial solution (call this solution wmax). If the decision maker’s comparisons do

not deviate very much from perfect consistency, we would expect �max to be close to n and

wmax to be close to w. Saaty verified that this intuition is indeed correct and suggested ap-

proximating w by wmax. Saaty also proposed measuring the decision maker’s consistency by

looking how close �max is to n. The software package Expert Choice gives (among other

outputs) exact values of �max and wmax and a measure of the decision maker’s consistency.
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TA B L E  14

Interpretation of Entries in a Pairwise Comparison Matrix

Value of aij Interpretation

1 Objective i and j are of equal importance.

3 Objective i is weakly more important than objective j.

5 Experience and judgment indicate that objective i is strongly
more important than objective j.

7 Objective i is very strongly or demonstrably more important
than objective j.

9 Objective i is absolutely more important than objective j.

2, 4, 6, 8 Intermediate values—for example, a value of 8 means that
objective i is midway between strongly and absolutely more
important than objective j.



In what follows, we outline a simple method (easily implemented on any spreadsheet) that

can be used to approximate �max and wmax and an index of consistency.

To approximate wmax, we use the following two-step procedure:

Step 1 For each of A’s columns, do the following. Divide each entry in column i of A by the

sum of the entries in column i. This yields a new matrix (call it Anorm, for normalized) in which

the sum of the entries in each column is 1. For Jane’s pairwise comparison matrix, step 1 yields

Anorm � � 	
Step 2 To find an approximation to wmax (to be used as our estimate of w), proceed as

follows. Estimate wi as the average of the entries in row i of Anorm. This yields (as previ-

ously stated)

w1 � � .5115

w2 � � .0986

w3 � � .2433

w4 � � .1466

Intuitively, why does w1 approximate the weight that objective 1 (salary) should be given?

The percentage of the weight that SAL is given in pairwise comparisons of each objec-

tive to SAL is .5128. Similarly, .50 represents the percentage of total weight that SAL is

given in pairwise comparisons of each objective to QL. Thus, we see that the four num-

bers averaged to obtain w1 each represents in some way a measure of the total weight at-

tached to SAL. Thus, averaging these numbers should give a good estimate of the per-

centage of the total weight that should be given to SAL.

Checking for Consistency

We can now use the following four-step procedure to check for the consistency of the decision

maker’s comparisons. (From now on, w denotes our estimate of the decision maker’s weights.)

Step 1 Compute AwT. For our example, we obtain

AwT � � 	 � 	 � � 	
Step 2 Compute
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.1282 
 .2000 
 .1250 
 .1333
����

4

.2564 
 .2000 
 .2500 
 .2667
����

4

.1026 
 .1000 
 .1250 
 .0667
����

4

.5128 
 .5000 
 .5000 
 .5333
����

4

.5333

.0667

.2667

.1333

.5000

.1250

.2500

.1250

.5000

.1000

.2000

.2000

.5128

.1026

.2564

.1282
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Step 3 Compute the consistency index (CI) as follows:

CI ��
(Step 2

n

r

�

esu

1

lt) � n
�� �

4.05

3

� 4
� � .017

Step 4 Compare CI to the random index (RI) for the appropriate value of n, shown in

Table 15.

For a perfectly consistent decision maker (see Problem 5), the ith entry in AwT
� n

(ith entry of wT). This implies that a perfectly consistent decision maker has CI � 0. The

values of RI in Table 15 give the average value of CI if the entries in A were chosen at

random, subject to the constraint that all diagonal entries must equal 1 and

aij � �
a

1

ji

�

If CI is sufficiently small, the decision maker’s comparisons are probably consistent enough

to give useful estimates of the weights for his or her objective function. If �
C
R

I
I

� 	 .10, the

degree of consistency is satisfactory, but if �
C
R

I
I

� � .10, serious inconsistencies may exist, and

the AHP may not yield meaningful results. In our example, �
C
R

I
I

� � �
.
.
0
9
1
0
7

� � .019 	 .10; thus,

Jane’s pairwise comparison matrix does not exhibit any serious inconsistencies.

Finding the Score of an Alternative for an Objective

We have now described how to determine the objective function weights that we earlier

used to help Jane determine which job offer to accept. We now determine how well each

job “satisfies” or “scores” on each objective. To determine these scores, we construct for

each objective a pairwise comparison matrix in which the rows and columns are Jane’s

possible decisions (in this case, job offers). For SAL, suppose we obtain the following

pairwise comparison matrix:

Job 3 Job 1 Job 2 Job 3

� 	
4

2

1

2

1

�
1
2

�

1

�
1
2

�

�
1
4

�

Job 1

Job 2

Job 3
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TA B L E  15

Values of the
Random Index (RI)

n RI

2 0

3 .58

4 .90

5 1.12

6 1.24

7 1.32

8 1.41

9 1.45

10 1.51



Thus, for example, with respect to salary, job 1 is better (between weakly and strongly)

than job 3. We can now apply our procedure for generating weights to the SAL pairwise

comparison matrix. We obtain

Anorm � � 	
This yields w � [.571 .286 .143]. These weights indicate how well each job “scores” with

respect to the SAL objective. As previously stated in Table 13, we obtain

Job 1 salary score � .571

Job 2 salary score � .286

Job 3 salary score � .143

Since all three columns of the pairwise comparison matrix for salary are identical, Jane’s

pairwise comparisons for salary exhibit perfect consistency.

Suppose Jane’s pairwise comparison matrix for quality of life (QL) is as follows:

Job 3 Job 1 Job 2 Job 3

� 	
Then

Anorm � � 	
and we obtain

Job 1 quality of life score � � .159

Job 2 quality of life score � � .252

Job 3 quality of life score � � .589

For interest in work, suppose the pairwise comparison matrix is as follows:

Job 3 Job 1 Job 2 Job 3

� 	
It can easily be shown that

Job 1 interest in work score � .088

Job 2 interest in work score � .669

Job 3 interest in work score � .243
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Finally, for nearness to family, suppose the pairwise comparison matrix is as follows:

Job 3 Job 1 Job 2 Job 3

� 	
Routine calculations yield

Job 1 score for nearness to family � .069

Job 2 score for nearness to family � .426

Job 3 score for nearness to family � .506

As described earlier, we can now “synthesize” the objective weights with the scores of

each job on each objective to obtain an overall score for each alternative (in this case,

each job offer). As before, we find that job offer 2 is most preferred, followed by job of-

fer 1, with job offer 3 the least preferred.

We close by noting that AHP has been applied by decision makers in countless areas,

including accounting, finance, marketing, energy resource planning, microcomputer se-

lection, sociology, architecture, and political science. See Zahedi (1986) and Saaty (1988)

for a discussion of applications of AHP.

Implementing AHP on a Spreadsheet

Figure 17 illustrates how easy it is to implement AHP on a spreadsheet (file AHP.xls). En-

ter in the pairwise comparison matrix for objectives in B7:E10. In B12 enter the formula

�B7/SUM(B$7:B$10) and copy this to the range B12:E15, yielding Anorm for objectives.

Compute the weight for salary in F12 with the command AVERAGE(B12:E12). Copy

this to F12:F15 to compute the weights of the remaining objectives. In a similar fashion,

the normalized matrices and weights for each objective are obtained.

To determine the score for job 1, enter into F17 the formula

�F$12 * F21 
 F$13 * F29 
 F$14 * F37 
 F$15 * F45

Copying this formula to F17:F19 computes the score for jobs 2 and 3. Again, we see that

job 2 receives the highest score (indicated by ****).

To compute the consistency index for the pairwise comparison matrix for objectives,

the Excel matrix multiplication function MMULT is used, computing AwT in the range

C2:C5. In the range D2:D5 compute (ith entry in AwT)/(ith entry in wT). Finally, in E2

compute the CI, using the formula (AVERAGE(D2:D5) � 4)/3.

Using the Excel MMULT function, it is easy to multiply matrices. To illustrate, we will

use Excel to find the matrix product AB (see Figure 18 and file Mmult.xls). We proceed

as follows:

Step 1 Enter A and B in D2:F3 and D5:E7, respectively.

Step 2 Select the range (D9:E10) in which the product AB will be computed.

Step 3 In the upper left-hand corner (D9) of the selected range, type the formula

� MMULT(D2:F3,D5:E7)

Then hit CONTROL SHIFT ENTER (not just ENTER), and the desired matrix product

will be computed. Note that MMULT is an array function, not an ordinary spreadsheet

function. This explains why we must preselect the range for AB and use CONTROL

SHIFT ENTER.
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1

�
1
4

�
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F I G U R E  17

AHP Spreadsheet

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

A B C D E F G
CONSISTENCY INDEX AwT/wT CI

IMPLEMENTING 2.0774038 4.0610902 0.0158569
AHP AwT= 0.3958173 4.0160976
ON 0.9894231 4.0671937
A SPREADSHEET 0.5932692 4.0459016
OBJECTIVES MATRIX SAL QL IW NF
SAL 1 5 2 4
QL 0.2 1 0.5 0.5
IW 0.5 2 1 2
NF 0.25 2 0.5 1
ANORM(OBJECTIVES) SAL QL NF IW WEIGHTS
SAL 0.512820513 0.5 0.5 0.5333333 0.5115385 SAL
QL 0.102564103 0.1 0.125 0.0666667 0.0985577 QL
NF 0.256410256 0.2 0.25 0.2666667 0.2432692 IW
IW 0.128205128 0.2 0.125 0.1333333 0.1466346 NF
SALARY MATRIX JOB1 JOB2 JOB3
JOB1 1 2 4 JOB1SC= 0.3395156
JOB2 0.5 1 2 JOB2SC= 0.3960857 ****
JOB3 0.25 0.5 1 JOB3SC= 0.2643988
ANORM(SALARY) JOB1 JOB2 JOB3 WEIGHTS
JOB1 0.571428571 0.5714286 0.5714286 0.5714286 JOB1
JOB2 0.285714286 0.2857143 0.2857143 0.2857143 JOB2
JOB3 0.142857143 0.1428571 0.1428571 0.1428571 JOB3
QL MATRIX JOB1 JOB2 JOB3
JOB1 1 0.5 0.3333333
JOB2 2 1 0.3333333
JOB3 3 3 1
ANORM(QL) JOB1 JOB2 JOB3 WEIGHTS
JOB1 0.166666667 0.1111111 0.2 0.1592593 JOB1
JOB2 0.333333333 0.2222222 0.2 0.2518519 JOB2
JOB3 0.5 0.6666667 0.6 0.5888889 JOB3
IW MATRIX JOB1 JOB2 JOB3
JOB1 1 0.1428571 0.3333333
JOB2 7 1 3
JOB3 3 0.3333333 1
ANORM(IW) JOB1 JOB2 JOB3 WEIGHTS
JOB1 0.090909091 0.0967742 0.0769231 0.0882021 JOB1
JOB2 0.636363636 0.6774194 0.6923077 0.6686969 JOB2
JOB3 0.272727273 0.2258065 0.2307692 0.243101 JOB3
NF MATRIX JOB1 JOB2 JOB3
JOB1 1 0.25 0.1428571
JOB2 4 1 2
JOB3 7 2 1
ANORM(NF) JOB1 JOB2 JOB3 WEIGHTS
JOB1 0.083333333 0.0769231 0.0454545 0.0685703 JOB1
JOB2 0.333333333 0.3076923 0.6363636 0.4257964 JOB2
JOB3 0.583333333 0.6153846 0.3181818 0.5056333 JOB3



P R O B L E M S
Group A
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1 Each professor’s annual salary increase is determined by
performance in three areas: teaching, research, and service
to the university. The administration has come up with the
following pairwise comparison matrix for these objectives:

Teaching Research Service

� 	
The administration has compared two professors with regard
to their teaching, research, and service over the past year.
The pairwise comparison matrices are as follows. For
teaching:

Professor 1 Professor 2

� 	
For research:

Professor 1 Professor 2

� 	
For service:

Professor 1 Professor 2

� 	
a Which professor should receive a bigger raise?

b Does the AHP indicate how large a raise each pro-
fessor should be given?

c Check the pairwise comparison matrix for consis-
tency.

2 A business is about to purchase a new personal computer.
Three objectives are important in determining which
computer should be purchased: cost, user-friendliness, and
software availability. The pairwise comparison matrix for
these objectives is as follows:

6

1

1

�
1
6

�

Professor 1

Professor 2

�
1
3

�

1

1

3

Professor 1

Professor 2

4

1

1
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�
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Professor 2

5

7

1

�
1
3

�

1

�
1
7

�

1

3

�
1
5

�

Teaching

Research

Service

User- Software
Cost friendliness availability

� 	
Three computers are being considered for purchase. The
performance of each computer with regard to each objective
is indicated by the following pairwise comparison matrices.
For cost (low cost is good, high cost is bad!):

Computer 1 Computer 2 Computer 3

� 	
For user-friendliness:

Computer 1 Computer 2 Computer 3

� 	
For software availability:

Computer 1 Computer 2 Computer 3

� 	
a Which computer should be purchased?

b Check the pairwise comparison matrices for consis-
tency.

3 Woody is ready to select his mate for life and has
determined that beauty, intelligence, and personality are the
key factors in selecting a satisfactory mate. His pairwise
comparison matrix for these objectives is as follows:

Beauty Intelligence Personality

� 	
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User-friendliness

Software availability



Three women (Jennifer Lopez, Britney Spears, and Mandy
Moore) are begging to be Woody’s mate. His views of these
women’s beauty, intelligence and personality are given in
the following pairwise comparison matrices.

Beauty:

Jennifer Britney Mandy

� 	
Intelligence:

Jennifer Britney Mandy

� 	
Personality:

Jennifer Britney Mandy

� 	
a Whom should Woody choose as his lifetime mate?

b Evaluate all pairwise comparison matrices for con-
sistency.

4 In determining where to invest my money, two
objectives—expected rate of return and degree of risk—are
considered equally important. Two investments (1 and 2)
have the following pairwise comparison matrices: Expected
return:

Investment 1 Investment 2

� 	
Degree of risk:

Investment 1 Investment 2

� 	
a How should I rank these investments?

b Now suppose another investment (investment 3) is
available. Suppose the pairwise comparison matrices for
these investments are as follows. Expected return:

Invest- Invest- Invest-
ment 1 ment 2 ment 3

� 	
Degree of risk:

Invest- Invest- Invest-
ment 1 ment 2 ment 3

� 	
c Observe that the entries in the comparison matrices
for investments 1 and 2 have not changed. How should
I now rank the investments? Contrast my ranking of in-
vestments 1 and 2 with the answer from part (a).
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5 Show that for a perfectly consistent decision maker, the
ith entry in AwT

� n (ith entry of wT).

6 A consumer is trying to determine which type of frozen
dinner to eat. He considers three attributes to be important:
taste, nutritional value, and price. Nutritional value is
considered to be determined by cholesterol and sodium
levels. Three types of dinners are under consideration. The
pairwise comparison matrix for the three attributes is as
follows:

Taste Nutrition Price

� 	
Between the three frozen dinners the pairwise comparison
matrix for each attribute is as follows. For taste:

Dinner 1 Dinner 2 Dinner 3

� 	
For sodium:

Dinner 1 Dinner 2 Dinner 3

� 	
For cholesterol:

Dinner 1 Dinner 2 Dinner 3

� 	
For price:

Dinner 1 Dinner 2 Dinner 3

� 	
To determine how each dinner rates on nutrition you will

need the following pairwise comparison matrix for choles-
terol and sodium:

Cholesterol Sodium

� 	
Which frozen dinner would he prefer? (Hint: Nutrition score
for a dinner � (score of dinner on sodium) * (weight for
sodium) 
 (score for dinner on cholesterol) * (weight for
cholesterol).)

7 You are trying to determine which MBA program to
attend. You have been accepted at two programs: Indiana
and Northwestern. You have chosen three attributes to use
in helping you make your decision:

Attribute 1 Cost
Attribute 1 Starting salary
Attribute 1 Ambience of school (can we party there?!!)

Your pairwise comparison matrix for these attributes is as
follows:
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Cost Starting salary Ambience

� 	
For each attribute the pairwise comparison matrix for
Indiana and Northwestern is as follows. For cost:

Indiana Northwestern

� 	
For starting salary:

Indiana Northwestern

� 	
For ambience:

Indiana Northwestern

� 	
Which MBA program should you attend?

8 You have been hired by Arthur Ross to determine which
of the following accounts receivable procedures should be
used in an audit of the Keating Five and Dime Store:

a Analytic review

b Confirmations

c Test of subsequent collections (receipts)

The three criteria used to distinguish between the
procedures are as follows:

a Reliability

b Cost

c Validity

The pairwise comparison matrix for the three criteria is as
follows:

� 	
For the reliability criterion the pairwise comparison ma-

trix of the three procedures is as follows:
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� 	
For the cost criterion the pairwise comparison matrix of

the three procedures is as follows:

� 	
For the validity criterion the pairwise comparison matrix

of the three procedures is as follows:

� 	
Use the AHP to determine which auditing procedure

should be used. Also check the first pairwise comparison
matrix for consistency.†

9 You are trying to determine which of two secretarial
candidates (Jack and Jill) to hire. The three objectives that
are important to your decision are personality, typing ability,
and intelligence. You have assessed the following pairwise
comparison matrix:

Typing
Personality ability Intelligence

� 	
The “score” of each employee on each objective is as

follows:

Personality Typing ability Intelligence

� 	
If you follow the AHP method which employee should be
hired?
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S U M M A R Y Decision Criteria

In the state-of-the-world model, the decision maker first chooses an action ai from a set

A � {a1, a2, . . . , ak} of available actions. With probability pj the state of the world is ob-

served to be sj � S � {s1, s2, . . . , sn}. If action ai is chosen and the state of the world is

sj, the decision maker receives a reward rij.

The maximin criterion chooses the action ai with the largest value of minj�Srij. The

maximax criterion chooses the action ai with the largest value of maxj�Srij. In each state,

the minimax regret criterion chooses an action by applying the minimax criterion to the

regret matrix. The expected value criterion chooses the decision that yields the largest

expected reward.

†Based on Lin, Mock, and Wright (1984).



Utility Theory

A decision maker who subscribes to the Von Neumann–Morgenstern axioms, when facing a

choice between several lotteries, should choose the lottery with the largest expected utility.

The certainty equivalent of a lottery L, written CE(L), is the number CE(L) such that

the decision maker is indifferent between the lottery L and receiving a certain payoff of

CE(L). For a given lottery L, the risk premium, written RP(L), is given by RP(L) �

EV(L) � CE(L).

A decision maker is risk-averse if and only if for any nondegenerate lottery L, RP(L) �

0. A risk-averse decision maker has a strictly concave utility function. A decision maker

is risk-neutral if and only if for any nondegenerate lottery L, RP(L) � 0. A risk-neutral

decision maker has a linear utility function. A decision maker is risk-seeking if and only

if for any nondegenerate lottery L, RP(L) 	 0. A risk-seeking decision maker has a strictly

convex utility function.

Prospect Theory and Framing

Tversky and Kahneman resolved several flaws in EMU by developing prospect theory and

framing. Prospect theory assumes that we do not treat probabilities as they are given in a

decision-making problem. Instead, the decision maker treats a probability p for an event

as a “distorted” probability �( p). The idea of framing is based on the fact that people of-

ten set their utility function from the standpoint of a frame or status quo from which they

view the current situation.

Decision Trees

To determine the optimal decisions in a decision tree, we work backward (folding back the

tree) from right to left. First assume that the decision maker is risk-neutral and wants to max-

imize final asset position. At each event fork, we calculate the expected final asset position

and enter it in �. At each decision fork, we denote by � the decision that maximizes the ex-

pected final asset position and enter the expected final asset position associated with that de-

cision in �. We continue working backward in this fashion until we reach the beginning of

the tree. Then the optimal sequence of decisions can be obtained by following the �.
To incorporate a decision maker’s utility function into a decision tree analysis, simply re-

place each final asset position x0 by its utility u(x0). Then at each event fork, compute expected

utility, and at each decision fork, choose the branch having the largest expected utility.

The expected value of sample information (EVSI) measures the value associated

with test or sample information: EVSI � EVWSI � EVWOI. Expected value with per-

fect information (EVWPI) is found by drawing a decision tree in which the decision

maker has perfect information about which state has occurred before the decision must

be made. Then the expected value of perfect information (EVPI) is given by EVPI �

EVWPI � EVWOI.

Bayes’ Rule and Decision Trees

We use Bayes’ rule in decision tree analysis when we are given prior probabilities and (for

each state of the world) the likelihood that an experimental outcome will occur. Bayes’

rule is then used to compute the probability that each experimental outcome will occur

and (for each experimental outcome) the posterior probability of each state of the world.

Then the decision tree analysis proceeds as already described.
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�
1
2

� �
1
2

�

x1(best), x2(best) x1(best), x2(worst)

and
�
1
2

� �
1
2

�

x1(worst), x2(worst) x1(worst), x2(best)
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Summary 797

If attributes 1 and 2 are mpi and the decision maker’s utility function exhibits additive

independence, the decision maker’s utility function is of the following additive form:

u(x1, x2) � k1u1(x1) 
 k2u2(x2)

The following procedure is used to assess multiattribute utility functions:

Step 1 Check whether attributes 1 and 2 are mui. If they are, go on to step 2. If the at-

tributes are not mui, the assessment of the multiattribute utility function is beyond the

scope of our discussion.

Step 2 Check for additive independence.

Step 3 Assess u1(x1) and u2(x2).

Step 4 Determine k1, k2, and (if there is no additive independence) k3.

Decision Making with Multiple Objectives

Attribute 1 is preferentially independent (pi) of attribute 2 if preferences for values of

attribute 1 do not depend on the value of attribute 2.

A set of attributes S is mutually preferentially independent (mpi) of a set of attrib-

utes S� if (1) the values of the attributes in S� do not affect preferences for the values of

attributes in S; (2) the values of attributes in S do not affect preferences for the values of

attributes in S�.

A set of attributes 1, 2, . . . , n is mutually preferentially independent (mpi) if for all

subsets S of {1, 2, . . . , n}, S is mpi of S�. (S� is all members of {1, 2, . . . , n} that are not

included in S.)

T H E O R E M  1

If the set of attributes 1, 2, . . . , n is mpi, the decision maker’s preferences can be

represented by an additive value (or cost) function.

Multiattribute Utility Functions

Attribute 1 is utility independent (ui) of attribute 2 if preferences for lotteries involving

different levels of attribute 1 do not depend on the level of attribute 2.

If attribute 1 is ui of attribute 2, and attribute 2 is ui of attribute 1, then attributes 1

and 2 are mutually utility independent (mui).

Attributes 1 and 2 are mui if and only if the decision maker’s utility function u(x1,

x2) is a multilinear function of the form

u(x1, x2) � k1u1(x1) 
 k2u2(x2) 
 k3u1(x1)u2(x2) (10)

A decision maker’s utility function exhibits additive independence if the decision

maker is indifferent between



Step 5 Check to see whether the assessed utility function is really consistent with the de-

cision maker’s preferences. To do this, set up several lotteries and use the expected util-

ity of each lottery to rank the lotteries from most to least favorable. Then ask the deci-

sion maker to rank the lotteries from most to least favorable. If the assessed utility

function is consistent with the decision maker’s preferences, the ranking of lotteries ob-

tained from the assessed utility function should closely resemble the decision maker’s

ranking of the lotteries.

Analytic Hierarchy Process (AHP)

The AHP is often used to make decisions in situations when there are multiple objectives.

Given a pairwise comparison matrix A, we can approximate the weights for each attribute

as follows:

Step 1 For each of A’s columns, do the following. Divide each entry in column i of A by

the sum of the entries in column i. This yields a new matrix(Anorm), in which the sum of

the entries in each column is 1.

Step 2 To find an approximation to wmax, which will be used as our estimate of w, pro-

ceed as follows. Estimate wi as the average of the entries in row i of Anorm. To find the

best decision, determine an overall score for a decision as follows:

Decision score � �
i

wi(decision score on objective i)

Now choose the decision with the largest score.

To check for consistency in pairwise comparision matrices, we use the following four-

step process. (w denotes our estimate of the decision maker’s weights.)

Step 1 Compute AwT.

Step 2 Compute
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Step 3 Compute the consistency index (CI) as follows:

CI � �
(Step 2

n

r

�

esu

1

lt) � n
�

Step 4 Compare CI to the random index (RI) for the appropriate value of n. If �
C
R

I
I

� 	 .10,

the degree of consistency is satisfactory, but if �
C
R

I
I

� � .10, serious inconsistencies may ex-

ist, and the AHP may not yield meaningful results.

R E V I E W  P R O B L E M S
Group A
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1 We have $1,000 to invest. All the money must be placed
in one of three investments: gold, stock, or money market
certificates. If $1,000 is placed in an investment, the value
of the investment one year from now depends on the state
of the economy (see Table 16). Assume that each state of

the economy is equally likely. For each of the following
decision criteria, determine the optimal decision:

a maximin

b maximax



c minimax regret

d expected value

2 In Problem 1, suppose that the utility function for the
value of the investment (x) one year from now is given by
u(x) � ln x. Determine which investment we should choose.
Could we have predicted this answer without a table of
logarithms?

3 Consider the following four lotteries:

Review Problems 799

a If Rollo is risk-neutral, how should he invest his
money?

b For $10,000, Rollo can hire a consulting firm to
forecast the state of the economy. The consulting firm’s
forecasts have the following properties:

P(good forecast|economy good) � .80

P(good forecast|economy bad) � .20

Should Rollo hire the consulting firm? What are EVSI
and EVPI?

6 Willy Mutton has three potential bank robberies lined
up. His chance of success and the size of the take are given
in Table 18: These robberies must be attempted in order; if
you “pass” on a robbery you may not go on to the next
robbery. If Willie is caught, he loses all his money. What
strategy maximizes his expected “take”?

7 Let

x1 � undergraduate grade point average (GPA) of a
student applying to State U’s MBA program

x2 � GMAT score of the same student

Suppose that preference between applicants is based on
the following value function:

v(x1, x2) � 200x1 
 x2 � 0.1x2(x1)2

a Would the MBA program prefer a student with a 3.8
GPA and a 500 GMAT score to a student with a 3.0 GPA
and a 710 GMAT score?

b Does this value function exhibit mutual preferential
independence?

8 The Pine Valley Board of Education is trying to
determine its multiattribute utility function with respect to
the following attributes:

Attribute 1 Average score of students on an English
achievement test
Attribute 2 Average score of students on a mathematics
achievement test

TA B L E  16

Value of $1,000 State 1 State 2 State 3

Money market
certificate $1,100 $1,100 $1,100

Stock $1,000 $1,100 $1,200

Gold $1,600 $300 $1,400

L1 �
1
� $1,000,000

.50
$3,000,000

L2

.50
$0

.10
$1,000,000

L3

.90
$0

.05
$3,000,000

L4

.95
$0

a Most people prefer L1 to L2 and L4 to L3. Explain
why.

b Suppose a decision maker subscribes to the Von
Neumann–Morgenstern axioms and prefers L1 to L2.
Show that he or she must also prefer L3 to L4.

4 Jay Boyville Corporation is being sued by Lark Dent.
Lark can settle out of court and win $40,000, or go to court.
If Lark goes to court, there is a 30% chance that she will
win the case. If she wins, a small and a large settlement are
equally likely (a small settlement nets $50,000, and a large
settlement nets $300,000).

a If Lark is risk-neutral, what should she do? What
should Lark do if her utility function for an increase x
in her cash position is given by u(x) � x1/2?

b For $10,000, Lark can hire a consultant who will
predict who will win the trial. The consultant is correct
90% of the time. Should she hire the consultant? (As-
sume Lark is risk-neutral.) What is EVSI?

c If Lark is risk-neutral, what is EVPI?

5 Rollo Megabux has $1 million to invest in stocks or
bonds. The percentage yield on each investment during the
coming year depends on whether the economy has a good
or a bad year (see Table 17). It is equally likely that the
economy will have a good or a bad year.

TA B L E  17

Economy Economy
Has Good Has Bad

Year Year

Yield on stocks 22% 10%

Yield on bonds 16% 14%

TA B L E  18

Size of Take
Robbery Chance of Success (in millions of dollars)

1 .60 7

2 .80 6

3 .70 5



The board believes that both attributes range between 70%
and 90% correct answers. The board is indifferent between
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9 BeatTrop Foods is trying to choose one of three
companies to merge with. In making this decision seven
factors are important:

Factor 1 Contribution to profitability
Factor 2 Growth potential
Factor 3 Labor environment
Factor 4 R&D ability of company
Factor 5 Organizational fit
Factor 6 Relative size
Factor 7 Industry commonality

The pairwise comparison for these factors is as follows:

1 2 3 4 5 6 7

� 	
The three contenders for merger have the following pair-

wise comparison matrices for each factor:

Factor 1 Factor 2
1 2 3 1 2 3

� 	 � 	
Factor 3 Factor 4
1 2 3 1 2 3

� 	 � 	
Factor 5 Factor 6
1 2 3 1 2 3

� 	 � 	
Factor 7
1 2 3

� 	
Use the AHP to determine the company with which
BeatTrop should prefer to merge.

10 You are trying to determine which city to live in. New
York and Chicago are under consideration. Four objectives
will determine your decision: affordability of housing,
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For any level x2 of attribute 2, the board is also indifferent
between

�
1
2

�

90%, 90%

and
�
1
2

�

70%, 0%

�
1
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90%, 70%

�
1
2

�

70%, 90%

�
1
� 78%, x2

For any level x1 of attribute 1, the board is indifferent
between

�
1
2

�

90%, x2

and
�
1
2

�

70%, x2

.65
x1, 90%

and

.35
x1, 70%

.40
90%, 90%

.60
70%, 70%

.60
90%, 90%

.40
70%, 70%

�
1
� x1, 76%

The board is also indifferent between

�
1
� 90%, 70% and

Finally, the board is indifferent between

�
1
� 70%, 90% and

The board must decide which of two instructional techniques
should be utilized in the Pine Valley schools. Technique 1 is
equivalent to the following lottery:

�
1
2

�

78%, 76%

�
1
2

�

70%, 90%

.60
90%, 90%

.40
70%, 70%

Technique 2 is equivalent to the following lottery:

Would the board prefer technique 1 or technique 2?

TA B L E  19

Affordability of housing .50

Cultural opportunities .10

Quality of schools and universities .20

Crime level .20



cultural opportunities, quality of schools and universities,
and crime level. The weight for each objective is in Table
19. For each objective (except for quality of schools and
universities) New York and Chicago scores are as given in
Table 20. Suppose that the score for each city on the quality
of schools and universities depends on two things: a score
on public school quality and a score on university quality.
The pairwise comparison matrix for public school and
university quality is as follows:

Public school quality Public school University
quality quality

� 	
To see how each city scores on public school quality and
university quality use the following pairwise comparison
matrices. For public school quality:

New York New York Chicago

� 	
For university quality:

New York New York Chicago

� 	
You should now be able to come up with a score for each
city on the quality of schools and universities objective.
Now determine where you should live.

Group B

11 In Problem 5, suppose Rollo cannot hire the consulting
firm, and his utility function for ending cash position is 
u(x) � ln x. How much money should he invest in stocks
and bonds?

12 At present, littering is punished by a $50 fine, and
there is a 10% chance that a litterer will be brought to
justice. To cut down on littering, Gotham City is considering
two alternatives:

Alternative 1 Raise the littering fine by 20% (to $60).
Alternative 2 Hire more police and increase by 20% the
probability that a litterer will be brought to justice (to a 12%
probability that a litterer will be caught).
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Assuming that all Gotham City residents are risk-averse,
which alternative will lead to a larger reduction in littering?

Group C

13† In Section 13.2, we discussed the concept of the risk
premium of a lottery and a risk-averse decision maker. In
many situations, we would like to measure the degree of
risk aversion associated with a utility function, and how a
decision maker’s risk aversion depends on his or her wealth.
In this problem, we develop Pratt’s measure of absolute
risk aversion. Consider Ivana, who has initial wealth W and
utility function u(w) for final wealth position w. She has
placed money in a small investment. The investment will
increase her wealth by a random amount X, with E(X) � 0.
We want to investigate how the risk premium of X depends
on W. Let RP(W, X) be the risk premium associated with
investment X if the decision maker’s wealth is W.

a Explain why RP(W, X) satisfies the following 
equation:

E(Utility for wealth level of W 
 X)
� utility of wealth level [W � RP(W, X)]

b Perform a second-order Taylor series expansion on
E(utility for wealth level of W 
 X) about W.

c Perform a first-order Taylor series expansion on util-
ity of wealth level [W � RP(W, X)] about W.

d Equating the answers in (b) and (c) (disregard the re-
mainder terms), show that

RP(W, X) � �
�va

2

r

u

(X

�(

)

W

u�

)

(W )
�

e Pratt’s measure of absolute risk aversion at wealth
level W, called ARA(W ), is defined to be twice the amount
of risk premium per unit of variance when a decision
maker is faced with a small lottery that has a zero ex-
pected value. Use your answer in part (d) to explain why

ARA(W) � �
�

u

u

�(

�

W

(W

)

)
�

f If ARA(W) is an increasing function of W, then u(w)
is said to exhibit increasing risk aversion, and if ARA(W)
is a decreasing function of W, then u(w) exhibits de-
creasing risk aversion. Is increasing or decreasing risk
aversion more consistent with most people’s behavior?

Determine whether the following utility functions
exhibit increasing or decreasing risk aversion:

g u(w) � ln w

h u(w) � w1/2

i u(w) � aw � bw2, where w 	 �
2
a
b
�. Explain how the

answer indicates that a quadratic utility function proba-
bly is not an accurate representation of most people’s
preferences.

TA B L E  20

New York Chicago

Affordability of housing .30 .70

Cultural opportunities .70 .30

Crime level .40 .60

†Based on Pratt (1964).
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Game Theory

In previous chapters, we have encountered many situations in which a single decision maker

chooses an optimal decision without reference to the effect that the decision has on other deci-

sion makers (and without reference to the effect that the decisions of others have on him or her).

In many business situations, however, two or more decision makers simultaneously choose an ac-

tion, and the action chosen by each player affects the rewards earned by the other players. For ex-

ample, each fast-food company must determine an advertising and pricing policy for its product,

and each company’s decision will affect the revenues and profits of other fast-food companies.

Game theory is useful for making decisions in cases where two or more decision makers

have conflicting interests. Most of our study of game theory deals with situations where there

are only two decision makers (or players), but we briefly study n-person (where n � 2) game

theory also. We begin our study of game theory with a discussion of two-player games in which

the players have no common interest.

14.1 Two-Person Zero-Sum and Constant-Sum Games: Saddle Points

Characteristics of Two-Person Zero-Sum Games

1 There are two players (called the row player and the column player).

2 The row player must choose 1 of m strategies. Simultaneously, the column player must

choose 1 of n strategies.

3 If the row player chooses his ith strategy and the column player chooses his jth strat-

egy, then the row player receives a reward of aij and the column player loses an amount

aij. Thus, we may think of the row player’s reward of aij as coming from the column player.

Such a game is called a two-person zero-sum game, which is represented by the ma-

trix in Table 1 (the game’s reward matrix). As previously stated, aij is the row player’s

TA B L E  1

Example of Two-Person Zero-Sum Game

Row Player’s
Column Player’s Strategy

Strategy Column 1 Column 2 ��� Column n

Row 1 a11 a12 ��� a1n

Row 2 a21 a22 ��� a2n

� � � �

Row m am1 am2 ��� amn
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reward (and the column player’s loss) if the row player chooses his ith strategy and the

column player chooses his jth column strategy.

For example, in the two-person zero-sum game in Table 2, the row player would re-

ceive two units (and the column player would lose two units) if the row player chose his

second strategy and the column player chose his first strategy.

A two-person zero-sum game has the property that for any choice of strategies, the sum

of the rewards to the players is zero. In a zero-sum game, every dollar that one player

wins comes out of the other player’s pocket, so the two players have totally conflicting in-

terests. Thus, cooperation between the two players would not occur.

John von Neumann and Oskar Morgenstern developed a theory of how two-person

zero-sum games should be played, based on the following assumption.

Basic Assumption of Two-Person Zero-Sum Game Theory

Each player chooses a strategy that enables him to do the best he can, given that his op-

ponent knows the strategy he is following. Let’s use this assumption to determine how the

row and column players should play the two-person zero-sum game in Table 3.

How should the row player play this game? If he chooses row 1, then the assumption im-

plies that the column player will choose column 1 or column 2 and hold the row player to

a reward of four units (the smallest number in row 1 of the game matrix). Similarly, if the

row player chooses row 2, then the assumption implies that the column player will choose

column 3 and hold the row player’s reward to one unit (the smallest or minimum number in

the second row of the game matrix). If the row player chooses row 3, then he will be held

to the smallest number in the third row (5). Thus, the assumption implies that the row player

should choose the row having the largest minimum. Because max (4, 1, 5) � 5, the row

player should choose row 3. By choosing row 3, the row player can ensure that he will win

at least max (row minimum) � five units.

From the column player’s viewpoint, if he chooses column 1, then the row player will

choose the strategy that makes the column player’s losses as large as possible (and the row

player’s winnings as large as possible). Thus, if the column player chooses column 1, then

the row player will choose row 3 (because the largest number in the first column is the 6

in the third row). Similarly, if the column player chooses column 2, then the row player

will again choose row 3, because 5 � max (4, 3, 5). Finally, if the column player chooses

column 3, the row player will choose row 1, causing the column player to lose 10 � max

TA B L E  3

A Game with a Saddle Point

Row Player’s
Column Player’s Strategy

Row
Strategy Column 1 Column 2 Column 3 Minimum

Row 1 4 4 10 4

Row 2 2 3 1 1

Row 3 6 5 7 5

Column 6 5 10
Maximum

TA B L E  2
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(10, 1, 7) units. Thus, the column player can hold his losses to min (column maximum) �

min (6, 5, 10) � 5 by choosing column 2.

We have shown that the row player can ensure that he will win at least five units and

the column player can hold the row player’s winnings to at most five units. Thus, the only

rational outcome of this game is for the row player to win exactly five units; the row player

cannot expect to win more than five units, because the column player (by choosing col-

umn 2) can hold the row player’s winnings to five units.

The game matrix we have just analyzed has the property of satisfying the saddle point

condition:

max (row minimum) � min (column maximum) (1)
all all

rows columns

Any two-person zero-sum game satisfying (1) is said to have a saddle point. If a two-

person zero-sum game has a saddle point, then the row player should choose any strategy

(row) attaining the maximum on the left side of (1). The column player should choose any

strategy (column) attaining the minimum on the right side of (1). Thus, for the game we

have just analyzed, a saddle point occurred where the row player chose row 3 and the col-

umn player chose column 2. The row player could make sure of receiving a reward of at

least five units (by choosing the optimal strategy of row 3), and the column player could

ensure that the row player would receive a reward of at most five units (by choosing the

optimal strategy of column 2). If a game has a saddle point, then we call the common

value of both sides of (1) the value (v) of the game to the row player. Thus, this game has

a value of 5.

An easy way to spot a saddle point is to observe that the reward for a saddle point must

be the smallest number in its row and the largest number in its column (see Problem 4 at

the end of this section). Thus, like the center point of a horse’s saddle, a saddle point for

a two-person zero-sum game is a local minimum in one direction (looking across the row)

and a local maximum in another direction (looking up and down the column).

A saddle point can also be thought of as an equilibrium point in that neither player

can benefit from a unilateral change in strategy. For example, if the row player were to

change from the optimal strategy of row 3 (to either row 1 or row 2), his reward would

decrease, while if the column player changed from his optimal strategy of column 2 (to

either column 1 or column 3), the row player’s reward (and the column player’s losses)

would increase. Thus, a saddle point is stable in that neither player has an incentive to

move away from it.

Many two-person zero-sum games do not have saddle points. For example, the game

in Table 4 does not have a saddle point, because

max (row minimum) � �1 � min (column maximum) � �1

In Sections 14.2 and 14.3, we explain how to find the value and the optimal strategies

for two-person zero-sum games that do not have saddle points.

TA B L E  4

A Game with No Saddle Point

Row Player’s
Column Player’s Strategy

Strategy Column 1 Column 2 Row Minimum

Row 1 �1 �1 �1

Row 2 �1 �1 �1

Column �1 �1
Maximum
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Two-Person Constant-Sum Games

Even if a two-person game is not zero-sum, two players can still be in total conflict.

To illustrate this, we now consider two-person constant-sum games.

D E F I N I T I O N ■ A two-person constant-sum game is a two-player game in which, for any choice

of both player’s strategies, the row player’s reward and the column player’s reward

add up to a constant value c. ■

Of course, a two-person zero-sum game is just a two-person constant-sum game with

c � 0. A two-person constant-sum game maintains the feature that the row and column

players are in total conflict, because a unit increase in the row player’s reward will always

result in a unit decrease in the column player’s reward. In general, the optimal strategies

and value for a two-person constant-sum game may be found by the same methods used

to find the optimal strategies and value for a two-person zero-sum game.

During the 8 to 9 P.M. time slot, two networks are vying for an audience of 100 million

viewers. The networks must simultaneously announce the type of show they will air in

that time slot. The possible choices for each network and the number of network 1 view-

ers (in millions) for each choice are shown in Table 5. For example, if both networks

choose a western, the matrix indicates that 35 million people will watch network 1 and

100 � 35 � 65 million people will watch network 2. Thus, we have a two-person 

constant-sum game with c � 100 (million). Does this game have a saddle point? What is

the value of the game to network 1?

Solution Looking at the row minima, we find that by choosing a soap opera, network 1 can be sure

of at least max (15, 45, 14) � 45 million viewers. Looking at the column maxima, we

find that by choosing a western, network 2 can hold network 1 to at most min (45, 58,

70) � 45 million viewers. Because

max (row minimum) � min (column maximum) � 45

we find that Equation (1) is satisfied. Thus, network 1’s choosing a soap opera and net-

work 2’s choosing a western yield a saddle point; neither side will do better if it unilat-

erally changes strategy (check this). Thus, the value of the game to network 1 is 45 mil-

lion viewers, and the value of the game to network 2 is 100 � 45 � 55 million viewers.

The optimal strategy for network 1 is to choose a soap opera, and the optimal strategy for

network 2 is to choose a western.

Constant Sum TV GameE X A M P L E  1

TA B L E  5

A Constant-Sum Game

Network 2
Row

Network 1 Western Soap Opera Comedy Minimum

Western 35 15 60 15

Soap Opera 45 58 50 45

Comedy 38 14 70 14

Column 45 58 70
Maximum
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P R O B L E M S
Group A

1 Find the value and optimal strategy for the game in
Table 6.

2 Find the value and the optimal strategies for the two-
person zero-sum game in Table 7.

Group B

3 Mad Max wants to travel from New York to Dallas by
the shortest possible route. He may travel over the routes
shown in Table 8. Unfortunately, the Wicked Witch can
block one road leading out of Atlanta and one road leading
out of Nashville. Mad Max will not know which roads have
been blocked until he arrives at Atlanta or Nashville. Should
Mad Max start toward Atlanta or Nashville? Which routes
should the Wicked Witch block?

Group C

4 Explain why the reward for a saddle point must be the
smallest number in its row and the largest number in its
column. Suppose a reward is the smallest in its row and the
largest in its column. Must that reward yield a saddle point?
(Hint: Think about the idea of weak duality discussed in
Chapter 6.)

14.2 Two-Person Zero-Sum Games: Randomized Strategies, 
Domination, and Graphical Solution

In the previous section, we found that not all two-person zero-sum games have saddle

points. We now discuss how to find the value and optimal strategies for a two-person zero-

sum game that does not have a saddle point. We begin with the simple game of Odds and

Evens.

Two players (called Odd and Even) simultaneously choose the number of fingers (1 or 2)

to put out. If the sum of the fingers put out by both players is odd, then Odd wins $1 from

Even. If the sum of the fingers is even, then Even wins $1 from Odd. We consider the

row player to be Odd and the column player to be Even. Determine whether this game

has a saddle point.

Solution This is a zero-sum game, with the reward matrix shown in Table 9. Because max (row

minimum) � �1 and min (column maximum) � �1, Equation (1) is not satisfied, and

this game has no saddle point. All we know is that Odd can be sure of a reward of at least

TA B L E  6

TA B L E  7

TA B L E  8

Length of Route
Route (Miles)

New York–Atlanta 800

New York–Nashville 900

Nashville–St. Louis 400

Nashville–New Orleans 200

Atlanta–St. Louis 300

Atlanta–New Orleans 600

St. Louis–Dallas 500

New Orleans–Dallas 300

Odds and EvensE X A M P L E  2
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�1, and Even can hold Odd to a reward of at most �1. Thus, it is unclear how to deter-

mine the value of the game and the optimal strategies. Observe that for any choice of strate-

gies by both players, there is a player who can benefit by unilaterally changing her 

strategy. For example, if both players put out one finger, then Odd could have increased

her reward from �1 to �1 by putting out two fingers. Thus, no choice of strategies by the

player is stable. We now determine optimal strategies and the value for this game.

Randomized or Mixed Strategies

To progress further with the analysis of Example 2 (and other games without saddle

points), we must expand the set of allowable strategies for each player to include ran-

domized strategies. Until now, we have assumed that each time a player plays a game,

the player will choose the same strategy. Why not allow each player to select a probabil-

ity of playing each strategy? For Example 2, we might define

x1 � probability that Odd puts out one finger

x2 � probability that Odd puts out two fingers

y1 � probability that Even puts out one finger

y2 � probability that Even puts out two fingers

If x1 � 0, x2 � 0, and x1 � x2 � 1, then (x1, x2) is a randomized, or mixed, strategy for

Odd. For example, the mixed strategy (	
1
2

	, 	
1
2

	) could be realized by Odd if she tossed a coin

before each play of the game and put out one finger for heads and two fingers for tails.

Similarly, if y1 � 0, y2 � 0, and y1 � y2 � 1, then ( y1, y2) is a mixed strategy for Even.

Any mixed strategy (x1, x2, . . . , xm) for the row player is a pure strategy if any of the

xi equals 1. Similarly, any mixed strategy ( y1, y2, . . . , yn) for the column player is a pure

strategy if any of the yi equals 1. A pure strategy is a special case of a mixed strategy in

which a player always chooses the same action. Recall from Section 14.1 that the game

in Table 10 had a value of 5 (corresponding to a saddle point), so the row player’s opti-

mal strategy could be represented as the pure strategy (0, 0, 1), and the column player’s

optimal strategy could be represented as the pure strategy (0, 1, 0).

We continue to assume that both players will play two-person zero-sum games in ac-

cordance with the basic assumption of Section 14.1. In the context of randomized strate-

TA B L E  9

Reward Matrix for Odds and Evens

Row Player
Column Player (Even)

(Odd) 1 Finger 2 Fingers Row Minimum

1 Finger �1 �1 �1

2 Fingers �1 �1 �1

Column �1 �1
Maximum

TA B L E  10
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gies, the assumption (from the standpoint of Odd) may be stated as follows: Odd should

choose x1 and x2 to maximize her expected reward under the assumption that Even knows

the value of x1 and x2.

It is important to realize that even though we assume that Even knows the values of x1

and x2, on a particular play of the game, she is not assumed to know Odd’s actual strategy

choice until the instant the game is played.

Graphical Solution of Odds and Evens

Finding Odd’s Optimal Strategy

With this version of the basic assumption, we can determine the optimal strategy for Odd.

Because x1 � x2 � 1, we know that x2 � 1 � x1. Thus, any mixed strategy may be writ-

ten as (x1, 1 � x1), and it suffices to determine the value of x1. Suppose Odd chooses a

particular mixed strategy (x1, 1 � x1). What is Odd’s expected reward against each of

Even’s strategies? If Even puts out one finger, then Odd will receive a reward of �1 with

probability x1 and a reward of �1 with probability x2 � 1 � x1. Thus, if Even puts out one

finger and Odd chooses the mixed strategy (x1, 1 � x1), then Odd’s expected reward is

(�1)x1 � (�1)(1 � x1) � 1 � 2x1

As a function of x1, this expected reward is drawn as line segment AC in Figure 1. Simi-

larly, if Even puts out two fingers and Odd chooses the mixed strategy (x1, 1 � x1), Odd’s

expected reward is

(�1)(x1) � (�1)(1 � x1) � 2x1 � 1

which is line segment DE in Figure 1.

Suppose Odd chooses the mixed strategy (x1, 1 � x1). Because Even is assumed to

know the value of x1, for any value of x1 Even will choose the strategy (putting out one

or two fingers) that yields a smaller expected reward for Odd. From Figure 1, we see that,

as a function of x1, Odd’s expected reward will be given by the y-coordinate in DBC. Odd

wants to maximize her expected reward, so she should choose the value of x1 corre-

sponding to point B. Point B occurs where the line segments AC and DE intersect, or

1

Expected reward
to Odd

Even picks 1

Even picks 2

(0, 1) A

(0, –1) D

E (1, 1)

AC = Odd
,
s reward with x1

         if Even picks 1

DE = Odd
,
s reward with x1

         if Even picks 2

C (1, –1)

B

x1

F I G U R E  1

Choosing Odd’s
Strategy
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where 1 � 2x1 � 2x1 � 1. Solving this equation, we obtain x1 � 	
1
2

	. Thus, Odd should

choose the mixed strategy (	
1
2

	, 	
1
2

	). The reader should verify that against each of Even’s

strategies, (	
1
2

	, 	
1
2

	) yields an expected reward of zero. Thus, zero is a floor on Odd’s ex-

pected reward, because by choosing the mixed strategy (	
1
2

	, 	
1
2

	), Odd can be sure that (for

any choice of Even’s strategy) her expected reward will always be at least zero.

Finding Even’s Optimal Strategy

We now consider how Even should choose a mixed strategy ( y1, y2). Again, because 

y2 � 1 � y1, we may ask how Even should choose a mixed strategy ( y1, 1 � y1). The ba-

sic assumption implies that Even should choose y1 to minimize her expected losses (or,

equivalently, minimize Odd’s expected reward) under the assumption that Odd knows the

value of y1. Suppose Even chooses the mixed strategy ( y1, 1 � y1). What will Odd do?

If Odd puts out one finger, then her expected reward is

(�1)y1 � (�1)(1 � y1) � 1 � 2y1

which is line segment AC in Figure 2. If Odd puts out two fingers, then her expected re-

ward is

(�1)( y1) � (�1)(1 � y1) � 2y1 � 1

which is line segment DE in Figure 2. Because Odd is assumed to know the value of y1,

she will put out the number of fingers corresponding to max (1 � 2y1, 2y1 � 1). Thus,

for a given value of y1, Odd’s expected reward (and Even’s expected loss) will be given

by the y-coordinate on the piecewise linear curve ABE.

Now Even chooses the mixed strategy ( y1, 1 � y1) that will make Odd’s expected re-

ward as small as possible. Thus, Even should choose the value of y1 corresponding to the

lowest point on ABE (point B). Point B is where the line segments AC and DE intersect,

or where 1 � 2y1 � 2y1 � 1, or y1 � 	
1
2

	. The basic assumption implies that Even should

choose the mixed strategy (	
1
2

	, 	
1
2

	). For this mixed strategy, Even’s expected loss (and 

Odd’s expected reward) is zero. We say that zero is a ceiling on Even’s expected loss 

Expected reward
to Odd

Odd picks 1

Odd picks 2

AC = Odd
,
s reward against y1

         if Odd picks 1

DE = Odd
,
s reward against y1

         if Odd picks 2

y1

.75

.50

.25

0

–.25

–.50

–.75

–.1.0 D C

A E

B

1.0

F I G U R E  2

Choosing Even’s
Strategy
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(or Odd’s expected reward), because by choosing the mixed strategy (	
1
2

	, 	
1
2

	), Even can 

ensure that her expected loss (for any choice of strategies by Odd) will not exceed zero.

More on the Idea of Value and Optimal Strategies

For the game of Odds and Evens, the row player’s floor and the column player’s ceiling

are equal. This is not a coincidence. When each player is allowed to choose mixed strate-

gies, the row player’s floor will always equal the column player’s ceiling. In Section 14.3,

we use the Dual Theorem of Chapter 6 to prove this interesting result. We call the com-

mon value of the floor and ceiling the value of the game to the row player. Any mixed

strategy for the row player that guarantees that the row player gets an expected reward at

least equal to the value of the game is an optimal strategy for the row player. Similarly,

any mixed strategy for the column player that guarantees that the column player’s expected

loss is no more than the value of the game is an optimal strategy for the column player.

Thus, for Example 2, we have shown that the value of the game is zero, the row player’s

optimal strategy is (	
1
2

	, 	
1
2

	), and the column player’s optimal strategy is (	
1
2

	, 	
1
2

	).

Example 2 illustrates that by allowing mixed strategies, we have enabled each player

to find an optimal strategy in that if the row player departs from her optimal strategy, the

column player may have a strategy that reduces the row player’s expected reward below

the value of the game, and if the column player departs from her optimal strategy, the row

player may have a strategy that increases her expected reward above the value of the

game. Table 11 illustrates this idea for the game of Odds and Evens.

For example, suppose that Odd chooses a nonoptimal mixed strategy with x1 � 	
1
2

	.

Then, by choosing two fingers, Even ensures that Odd’s expected reward can be read from

BD in Figure 1. This means that if Odd chooses a mixed strategy having x1 � 	
1
2

	, then her

expected reward can be negative (less than the value of the game).

To close this section, we find the value and optimal strategies for a more complicated

game.

A fair coin is tossed, and the result is shown to player 1. Player 1 must then decide whether

to pass or bet. If player 1 passes, then he must pay player 2 $1. If player 1 bets, then player

2 (who does not know the result of the coin toss) may either fold or call the bet. If player

2 folds, then she pays player 1 $1. If player 2 calls and the coin comes up heads, then she

pays player 1 $2; if player 2 calls and the coin comes up tails, then player 1 must pay her

Coin Toss Game with BluffingE X A M P L E  3

TA B L E  11

How to Make a Nonoptimal Strategy Pay the Price

Odd’s Mixed Even Can Odd’s Expected Reward
Strategy Choose (Even’s expected losses)

x1 � 	
1
2

	 2 fingers � 0 (on BD in Figure 1)

x1 � 	
1
2

	 1 finger � 0 (on BC in Figure 1)

Even’s Mixed Odd Can Odd’s Expected Reward
Strategy Choose (Even’s expected losses)

y1 � 	
1
2

	 1 finger � 0 (on AB in Figure 2)

y1 � 	
1
2

	 2 fingers � 0 (on BE in Figure 2)
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$2. Formulate this as a two-person zero-sum game. Then graphically determine the value

of the game and each player’s optimal strategy.

Solution Player 1’s strategies may be represented as follows: PP, pass on heads and pass on tails;

PB, pass on heads and bet on tails; BP, bet on heads and pass on tails; and BB, bet on

heads and bet on tails. Player 2 simply has the two strategies call and fold. For each choice

of strategies, player 1’s expected reward is as shown in Table 12.

To illustrate these computations, suppose player 1 chooses BP and player 2 calls. Then

with probability 	
1
2

	, heads is tossed. Then player 1 bets, is called, and wins $2 from player 2.

With probability 	
1
2

	, tails is tossed. In this case, player 1 passes and pays player 2 $1. Thus,

if player 1 chooses BP and player 2 calls, then player 1’s expected reward is (	
1
2

	)(2) �

(	
1
2

	)(�1) � $0.50. For each line in Table 12, the first term in the expectation corresponds to

heads being tossed, and the second term corresponds to tails being tossed.

Example 3 may be described as the two-person zero-sum game represented by the re-

ward matrix in Table 13. Because max (row minimum) � 0 � min (column maximum) �
	
1
2

	, this game does not have a saddle point. Observe that player 1 would be unwise ever to

choose the strategy PP, because (for each of player 2’s strategies) player 1 could do better

than PP by choosing either BP or BB. In general, a strategy i for a given player is domi-

nated by a strategy i
 if, for each of the other player’s possible strategies, the given player

does at least as well with strategy i
 as he or she does with strategy i, and if for at least

one of the other player’s strategies, strategy i
 is superior to strategy i. A player may elim-

inate all dominated strategies from consideration. We have just shown that for player 1, BP

TA B L E  12

Computation of Reward Matrix for Example 3

Player 1’s Expected Reward

PP vs. call (	
1
2

	)(�1) � (	
1
2

	)(�1) � �$1

PP vs. fold (	
1
2

	)(�1) � (	
1
2

	)(�1) � �$1

PB vs. call (	
1
2

	)(�1) � (	
1
2

	)(�2) � �$1.50

PB vs. fold (	
1
2

	)(�1) � (	
1
2

	)(1) �� �$0

BP vs. call (	
1
2

	)(2)� � (	
1
2

	)(�1) � �$0.50

BP vs. fold (	
1
2

	)(1)� � (	
1
2

	)(�1) � �$0

BB vs. call (	
1
2

	)(2)� � (	
1
2

	)(�2) � �$0

BB vs. fold (	
1
2

	)(1)� � (	
1
2

	)(1) �� �$1

TA B L E  13

Reward Matrix for Example 3

Player 2

Player 1 Call Fold Row Minimum

PP �1 �1 �1

PB �	
3
2

	 0 �	
3
2

	

BP 	
1
2

	 0 0

BB 0 1 0

Column 	
1
2

	 1
Maximum
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or BB dominates PP. Similarly, the reader should be able to show that player 1’s PB strat-

egy is dominated by BP or BB. After eliminating the dominated strategies PP and PB, we

are left with the game matrix shown in Table 14.

As with Odds and Evens, this game has no saddle point, and we proceed with a graph-

ical solution. Let

x1 � probability that player 1 chooses BP

x2 � 1 � x1 � probability that player 1 chooses BB

y1 � probability that player 2 chooses call

y2 � 1 � y1 � probability that player 2 chooses fold

To determine the optimal strategy for player 1, observe that for any value of x1, her

expected reward against calling is

(	
1
2

	)(x1) � 0(1 � x1) � 	
x

2
1
	

which is line segment AB in Figure 3. Against folding, player 1’s expected reward is

0(x1) � 1(1 � x1) � 1 � x1

which is line segment CD in Figure 3. Player 2 is assumed to know the value of x1, so

player 1’s expected reward (as a function of x1) is given by the piecewise linear curve AED

TA B L E  14

Reward Matrix for Example 3 After Dominated
Strategies Have Been Eliminated

Player 2

Player 1 Call Fold Row Minimum

BP 	
1
2

	 0 0

BB 0 1 0

Column 	
1
2

	 1
Maximum

Expected reward
to player 1

Player 2 picks fold

C (0, 1)

B (1, .5)

D (1, 0)

A (0, 0)

A

EPlayer 2 picks call

2
3 ,.2

.4

.6

.8

1.0

0
.2 .4

( (

.6 .8
x1

1.0

1
3

F I G U R E  3

How Player 1 Chooses
Optimal Strategy in

Example 3
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in Figure 3. Thus, to maximize her expected reward, player 1 should choose the value of

x1 corresponding to point E, which solves x1/2 � 1 � x1, or x1 � 	
2
3

	. Then x2 � 1 � 	
2
3

	 �

	
1
3

	, and player 1’s expected reward against either of player 2’s strategies is 	
x

2
1
	 (or 1 �

x1) � 	
1
3

	.

How should player 2 choose y1? (Remember, y2 � 1 � y1.) For a given value of y1,

suppose player 1 chooses BP. Then her expected reward is

(	
1
2

	)(y1) � 0(1 � y1) � 	
y

2
1
	

which is line segment AB in Figure 4. For a given value of y1, suppose player 1 chooses

BB. Then her expected reward is

0( y1) � 1(1 � y1) � 1 � y1

which is line segment CD in Figure 4. Thus, for a given value of y1, player 1 will choose

a strategy that causes his expected reward to be given by the piecewise linear curve CEB

in Figure 4. Knowing this, player 2 should choose the value of y1 corresponding to point

E in Figure 4. The value of y1 at point E is the solution to 	
y

2
1
	 � 1 � y1, or y1 � 	

2
3

	 (and

y2 � 	
1
3

	). You should check that no matter what player 1 does, player 2’s mixed strategy

(	
2
3

	, 	
1
3

	) ensures that player 1 earns an expected reward of 	
1
3

	.

In summary, the value of the game is 	
1
3

	 to player 1; the optimal mixed strategy for

player 1 is (	
2
3

	, 	
1
3

	); and the optimal strategy for player 2 is also (	
2
3

	, 	
1
3

	).

R E M A R K S 1 Observe that player 1 should bet 	
1
3

	 of the time that she has a losing coin. Thus, our simple model
indicates that player 1’s optimal strategy includes bluffing.
2 In Problem 4 at the end of this section, it will be shown that if player 1 deviates from her opti-
mal strategy, player 2 can hold her to an expected reward that is less than the value (	

1
3

	) of the game.
Similarly, Problem 5 will show that if player 2 deviates from her optimal strategy, player 1 can earn
an expected reward in excess of the value (	

1
3

	) of the game.
3 Although we have only applied the graphical method to games in which each player (after dom-
inated strategies have been eliminated) has only two strategies, the graphical approach can be used
to solve two-person zero-sum games in which only one player has two strategies (games in which
the reward matrix is 2 � n or m � 2). We choose, however, to solve all non-2 � 2 two-person games
by the linear programming method outlined in the next section.

Expected reward
to player 1

Player 1 picks BB

C (0, 1)

B (1, .5)

D (1, 0)

A (0, 0)

A

EPlayer 1 picks BP
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P R O B L E M S
Group A

1 Find the value and the optimal strategies for the two-
person zero-sum game in Table 15.

2 Player 1 writes an integer between 1 and 20 on a slip of
paper. Without showing this slip of paper to player 2, player
1 tells player 2 what he has written. Player 1 may lie or tell
the truth. Player 2 must then guess whether or not player 1
has told the truth. If caught in a lie, player 1 must pay player
2 $10; if falsely accused of lying, player 1 collects $5 from
player 2. If player 1 tells the truth and player 2 guesses that
player 1 has told the truth, then player 1 must pay $1 to
player 2. If player 1 lies and player 2 does not guess that
player 1 has lied, player 1 wins $5 from player 2. Determine
the value of this game and each player’s optimal strategy.

3 Find the value and optimal strategies for the two-person
zero-sum game in Table 16.

4 For Example 3, show that if player 1 deviates from her
optimal strategy, then player 2 can ensure that player 1 earns
an expected reward that is less than the value (	

1
3

	) of the game.

5 For Example 3, show that if player 2 deviates from her
optimal strategy, then player 1 can ensure that she earns an
expected reward that is more than the value (	

1
3

	) of the game.

6 Two competing firms must simultaneously determine how
much of a product to produce. The total profit earned by the
two firms is always $1,000. If firm 1’s production level is low
and firm 2’s is also low, then firm 1 earns a profit of $500; if
firm 1’s level is low and 2’s is high, then firm 1’s profit is
$400. If firm 1’s production level is high and so is firm 2’s,
then firm 1’s profit is $600; but if firm 1’s level is high while
firm 2’s level is low, then firm 1’s profit is only $300. Find the
value and optimal strategies for this constant-sum game.

7 Mo and Bo each have a quarter and a penny.
Simultaneously, they each display a coin. If the coins match,
then Mo wins both coins; if they don’t match, then Bo wins
both coins. Determine optimal strategies for this game.

Group B

8 State University is about to play Ivy College for the state
tennis championship. The State team has two players (A and
B), and the Ivy team has three players (X, Y, and Z). The
following facts are known about the players’ relative abilities:

X will always beat B; Y will always beat A; A will always
beat Z. In any other match, each player has a 	

1
2

	 chance of
winning. Before State plays Ivy, the State coach must
determine who will play first singles and who will play second
singles. The Ivy coach (after choosing which two players will
play singles) must also determine who will play first singles
and second singles. Assume that each coach wants to
maximize the expected number of singles matches won by
the team. Use game theory to determine optimal strategies for
each coach and the value of the game to each team.

9 Consider a two-person zero-sum game with the reward
matrix in Table 17. Suppose this game does not have a
saddle point. Show that the optimal strategy for the row
player is to play the first row a fraction (d � c)/(a � d �

b � c) of the time and the optimal strategy for the column
player is to play the first column a fraction (d � b)/(a �

d � b � c) of the time.

10 Consider the following simplified version of football.
On each play the offense chooses to run or pass. At the
same time, the defense chooses to play a run defense or pass
defense. The number of yards gained on each play is
determined by the reward matrix in Table 18. The offense’s
goal is to maximize the average yards gained per play.

a Use Problem 9 to show that the offense should run
10/17 of the time.

b Suppose that the effectiveness of a pass against the
run defense improves. Use the results of Problem 9 to
show that the offense should pass less! Can you give an
explanation for this strange phenomenon?

11 Use the idea of dominated strategies to determine
optimal strategies for the reward matrix in Table 19.

TA B L E  15

TA B L E  16

TA B L E  17

TA B L E  18

Offense

Defense

Run Pass

Run

Pass

TA B L E  19
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14.3 Linear Programming and Zero-Sum Games

Linear programming can be used to find the value and optimal strategies (for the row and

column players) for any two-person zero-sum game. To illustrate the main ideas, we consider

the well-known game Stone, Paper, Scissors.

Two players simultaneously utter one of the three words stone, paper, or scissors and show

corresponding hand signs. If both players utter the same word, then the game is a draw.

Otherwise, one player wins $1 from the other player according to the following: Scissors

defeats (cuts) paper, paper defeats (covers) stone, and stone defeats (breaks) scissors. Find

the value and optimal strategies for this two-person zero-sum game. The solution is given

later in this section.

The reward matrix is shown in Table 20. Observe that no strategies are dominated and

that the game does not have a saddle point. To determine optimal mixed strategies for the

row and the column player, define

x1 � probability that row player chooses stone

x2 � probability that row player chooses paper

x3 � probability that row player chooses scissors

y1 � probability that column player chooses stone

y2 � probability that column player chooses paper

y3 � probability that column player chooses scissors

The Row Player’s LP

If the row player chooses the mixed strategy (x1, x2, x3), then her expected reward against

each of the column player’s strategies is as shown in Table 21. Suppose the row player

chooses the mixed strategy (x1, x2, x3). By the basic assumption, the column player will

choose a strategy that makes the row player’s expected reward equal to min (x2 � x3, �x1 �

x3, x1 � x2). Then the row player should choose (x1, x2, x3) to make min (x2 � x3, �x1 �

x3, x1 � x2) as large as possible. To obtain an LP formulation (called the row player’s LP)

that will yield the row player’s optimal strategy, observe that for any values of x1, x2, and

x3, min (x2 � x3, �x1 � x3, x1 � x2) is just the largest number (call it v) that is simulta-

Stone, Paper, ScissorsE X A M P L E  4

TA B L E  20

Reward Matrix for Stone, Paper, Scissors

Column Player

Row Player Stone Paper Scissors Row Minimum

Stone 0 �1 �1 �1

Paper �1 0 �1 �1

Scissors �1 �1 0 �1

Column �1 �1 �1
Maximum
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neously less than or equal to x2 � x3, �x1 � x3, and x1 � x2. After noting that x1, x2, and

x3 must satisfy x1 � 0, x2 � 0, x3 � 0, and x1 � x2 � x3 � 1, we see that the row player’s

optimal strategy can be found by solving the following LP:

max z � v

s.t. v � x2 � x3 0; v urs (Stone constraint)

s.t. v � �x1 � x3v urs (Paper constraint)
(2)

s.t. v � x1 � x2 0; v urs (Scissors constraint)

s.t. x1 � x2 � x3 � 1x2 (Scissors constraint)

s.t. x1, x2, x3 � 0; v urs (Scissors constraint)

Note that there is a constraint in (2) for each of the column player’s strategies. The value

of v in the optimal solution to (2) is the row player’s floor, because no matter what strat-

egy (pure or mixed) is chosen by the column player, the row player is sure to receive an

expected reward of at least v.

The Column Player’s LP

How should the column player choose an optimal mixed strategy ( y1, y2, y3)? Suppose

the column player has chosen the mixed strategy ( y1, y2, y3). For each of the row player’s

strategies, we may compute the row player’s expected reward if the column player chooses

( y1, y2, y3) (see Table 22). The row player is assumed to know ( y1, y2, y3), the row player

will choose a strategy to ensure that she obtains an expected reward of max (�y2 � y3,

y1 � y3, �y1 � y2). Thus, the column player should choose ( y1, y2, y3) to make max (�y2 �

y3, y1 � y3, �y1 � y2) as small as possible. To obtain an LP formulation that will yield

the column player’s optimal strategies, observe that for any choice of ( y1, y2, y3), max

(�y2 � y3, y1 � y3, �y1 � y2) will equal the smallest number that is simultaneously

greater than or equal to �y2 � y3, y1 � y3, and �y1 � y2 (call this number w). Also note

that for ( y1, y2, y3) to be a mixed strategy, ( y1, y2, y3) must satisfy y1 � y2 � y3 � 1, 

y1 � 0, y2 � 0, and y3 � 0. Thus, the column player may find his optimal strategy by

solving the following LP:

min z � w

s.t. w � �y2 � y3w urs (Stone constraint)

s.t. w � y1 � y30; w urs (Paper constraint)
(3)

s.t. w � �y1 � y2w urs (Scissors constraint)

s.t. y1 � y2 � y3 � 1 urs (Scissors constraint)

y1, y2, y3 � 0; w urs (Scissors constraint)

Observe that (3) contains a constraint corresponding to each of the row player’s strategies.

Also, the optimal objective function w for (3) is a ceiling on the column player’s expected

TA B L E  21

Expected Reward to Row Player in Stone, Paper, Scissors

Column Player Row Player’s Expected Reward If
Chooses Row Player Chooses (x1, x2, x3 )

Stone �x2 � x3

Paper �x1 � x3

Scissors �x1 � x2
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Expected Reward to Row Player in
Stone, Paper, Scissors

Row Player Row Player’s Expected Reward If
Chooses Column Player Chooses (y1, y2, y3 )

Stone �y2 � y3

Paper �y1 � y3

Scissors �y1 � y2

losses (or the row player’s expected reward), because by choosing a mixed strategy (y1,

y2, y3) that solves (3), the column player can ensure that his expected losses will be

(against any of the row player’s strategies) at most w.

Relation Between the Row and the Column Player’s LPs

It is easy to show that the column player’s LP is the dual of the row player’s LP. Begin by

rewriting the row player’s LP (2) as

max z � v1� x2 � x3 � v � 0

s.t. � x3� x2 � x3 � v � 0

s.t. �x1 � x3 � x3 � v � 0
(4)

s.t. �x1 � x2 � x3 � v � 0

s.t. x1 � x2 � x3 � v � 1

x1, x2, x3 � 0; v urs

Let the dual variables for the constraints in (4) be y1, y2, y3, and w, respectively. We can

now show that the dual of the row player’s LP is the column player’s LP. As in Section 6.5,

we read the row player’s LP across in Table 23 and find the dual of the row player’s LP by

reading down. Recall that the dual constraint corresponding to the variable v will be an

equality constraint (because v is urs), and the dual variable w corresponding to the primal

constraint x1 � x2 � x3 � 1 will be urs (because x1 � x2 � x3 � 1 is an equality con-

straint). Reading down in Table 23, we find the dual of the row player’s LP (4) to be

min z � w1 � y2 � y3 � w � 0

s.t. �y1 � y2 � y3 � w � 0

s.t. �y1 � y2 � y3 � w � 0

s.t. �y1 � y2 � y2 � w � 0

s.t. �y1 � y2 � y3 � w � 1

y1, y2, y3 � 0; w urs

After transposing all terms involving y1, y2, and y3 in the first three constraints to the right-

hand side, we see that the last LP is the same as the column player’s LP (3). Thus, the

dual of the row player’s LP is the column player’s LP. (Of course, the dual of the column

player’s LP would be the row player’s LP.)

It is easy to show that both the row player’s LP (2) and the column player’s LP (3) have

an optimal solution (that is, neither LP can be infeasible or unbounded). Then the Dual

Theorem of Section 6.7 implies that v, the optimal objective function value for the row

player’s LP, and w, the optimal objective function value for the column player’s LP, are

equal. Thus, the row player’s floor equals the column player’s ceiling. This result is often
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known as the Minimax Theorem. We call the common value of v and w the value of the

game to the row player. As in Sections 14.1 and 14.2, the row player can (by playing an

optimal strategy) guarantee that her expected reward will at least equal the value of the

game. Similarly, the column player can (by playing an optimal strategy) guarantee that his

expected losses will not exceed the value of the game. It can also be shown (see Problem

6 at the end of this section) that the optimal strategies obtained via linear programming

represent a stable equilibrium, because neither player can improve his or her situation by

a unilateral change in strategy.

For the Stone, Paper, Scissors game, the optimal solution to the row player’s LP (2) is

w � 0, x1 � 	
1
3

	, x2 � 	
1
3

	, x3 � 	
1
3

	, and the optimal solution to the column player’s LP 

(3) is v � 0, y1 � 	
1
3

	, y2 � 	
1
3

	, y3 � 	
1
3

	. Note that the first solution is feasible in (2), and the

second solution is feasible in (3). Each solution yields an objective function value of zero,

so Lemma 2 in Chapter 6 shows that x1 � 	
1
3

	, x2 � 	
1
3

	, x3 � 	
1
3

	 is optimal for the row player’s

LP, and y1 � 	
1
3

	, y2 � 	
1
3

	, y3 � 	
1
3

	 is optimal for the column player’s LP.

The complementary slackness theory of linear programming (discussed in Section

6.10) could have been used to find the optimal strategies and value for Stone, Paper, Scis-

sors (as well as other games). Before showing how, we state the row and the column

player’s LPs for a general two-person zero-sum game.

Consider a two-person zero-sum game with the reward matrix shown in Table 24. The

reasoning used to derive (2) and (3) yields the following LPs:

max z � v

s.t. v � a11x1 � a21x2 � ��� � am1xm (Column 1 constraint)

s.t. v � a12x1 � a22x2 � ��� � am2xm (Column 2 constraint)

� (5)��

s.t. v � a1nx1 � a2nx2 � ��� � amnxm (Column n constraint)

x1 � x2 � ��� � xm � 1

s.t. xi � 0 (i � 1, 2, . . . , m); v urs

min z � w

s.t. w � a11y1 � a12y2 � ��� � a1nyn (Row 1 constraint)
s.t. w � a21y1 � a22y2 � ��� � a2nyn (Row 2 constraint)

� (6)��

s.t. w � am1y1 � am2y2 � ��� � amnyn (Row m constraint)

s.t. y1 � y2 � ��� � yn � 1

s.t. yj � 0 ( j� 1, 2, . . . , n); w urs

TA B L E  23

Dual or Row Player’s LP

Min Max

y2 ( y2 � 0) x1 x2 x3 � v

y1 ( y1 � 0) 0 �1 1 1 � 0

y2 ( y2 � 0) 1 0 �1 1 � 0

y3 ( y3 � 0) �1 1 0 1 � 0

w ( urs) 1 1 1 0 � 1

� 0 � 0 � 0 � 1

Row
Player’s
LP

Column
Player’s
LP
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In (5), xi � probability that the row player chooses row i, and in (6), yj � probability that

the column player chooses column j. The jth constraint ( j � 1, 2, . . . , n) in the row

player’s LP implies that her expected reward against column j must at least equal v; oth-

erwise, the column player could hold the row player’s expected reward below v by choos-

ing column j. Similarly, the ith (i � 1, 2, . . . , m) constraint in the column player’s LP im-

plies that if the row player chooses row i, then the column player’s expected losses cannot

exceed w; if this were not the case, the row player could obtain an expected reward that

exceeded w by choosing row i.

How to Solve the Row and the Column Players’ LPs

It is easy to show (see Problem 9 at the end of this section) that if we add a constant c to each

entry in a game’s reward matrix, the optimal strategies for each player remain unchanged, but

the optimal values of w and v (and thus the value of the game) are both increased by c. Let A

be the original reward matrix. Suppose we add c � �most negative entry in reward matrix� to

each element of A. Call the new reward matrix A
. A
 is a two-person constant-sum game.

(Why?) Let v� and w� be the optimal objective function values for the row and the column play-

ers’ LP’s for A, and let v�
 and w�
 denote the same quantities for the game A
. Because A
 will

have no negative rewards, v�
 � 0 and w�
 � 0 must hold. Thus, when solving the row and the

column players’ LP’s for A
, we may assume that v
 � 0 and w
 � 0 and ignore v urs and w

urs. Then the optimal strategies for A
 will be identical to the optimal strategies for A, and the

value of A
 � (value of A) � c, or value of A � (value of A
) � c.

In solving small games by hand, it is often helpful to use the constraint x1 � x2 � ��� �

xm � 1 to eliminate one of the xi’s from the row player’s LP and to use the constraint y1 �

y2 � ��� � yn � 1 to eliminate one of the yi’s from the column player’s LP. Then (as illus-

trated by Examples 5 and 6, which follow), the complementary slackness results of Section

6.10 can often be used to solve the row and the column player’s LP’s simultaneously.

Solution The most negative element in the Stone, Paper, Scissors reward matrix is �1. Therefore,

we add ��1� � 1 to each element of the reward matrix. This yields the constant-sum game

shown in Table 25. The row player’s LP is as follows:

max v
 x1 � x2 � x3 � 1

s.t. v
 � x1 � 2x2

s.t. v
 � x2 � 2x3

s.t. v
 � 2x1 � x3

s.t. x1 � x2 � x3 � 1

s.t. x1, x2, x3, v
 � 0

TA B L E  24

A General Two-Person Zero-Sum Game

Column Player

Row Player Strategy 1 Strategy 2 ��� Strategy n

Strategy 1 a11 a12 ��� a1n

Strategy 2 a21 a22 ��� a2n

� � � �

Strategy m am1 am2 ��� amn

Stone, Paper, Scissors (Continued)E X A M P L E  4
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Substituting x3 � 1 � x1 � x2 transforms the row player’s LP into the following LP:

max v
 (a) v
 � x1 � 2x2 � 0 (y1, or column 1, constraint)

s.t. (a) v
 � x1 � 2x2 � 0 (y1, or column 1, constraint)

s.t. (b) v
 � 2x1 � x2 � 2 (y2, or column 2, constraint)
(7)

s.t. (c) v
 � x1 � x2 � 1 (y3, or column 3, constraint)

x1, x2, v
 � 0

The column player’s LP is as follows:

min w
 w
 � y1 � 2y3 (x1, or row 1, constraint)

s.t. w
 � y1 � 2y3 (x1, or row 1, constraint)

s.t. w
 � 2y1 � y2 (x2, or row 2, constraint)

s.t. w
 � 2y2 � y3 (x3, or row 3, constraint)

s.t. y1 � y2 � y3 � 1 (x3, or row 3, constraint)

y1, y2, y3, w
 � 0

Substituting y3 � 1 � y1 � y2 transforms the column player’s LP into the following LP:

min w
 (a) w
 � y1 � 2y2 � 2 (x1, or row 1, constraint)

s.t. (a) w
 � y1 � 2y2 � 2 (x1, or row 1, constraint)

s.t. (b) w
 � 2y1 � y2 � 0 (x2, or row 2, constraint) (8)

s.t. (c) w
 � y1 � y2 � 1 (x3, or row 3, constraint)

y1, y2, w
 � 0

Stone, Paper, Scissors appears to be a fair game, so we might conjecture that v � w �

0. This would make v
 � w
 � 0 � 1 � 1. Let’s try this and conjecture that constraints

(7a) and (7b) are binding in the optimal solution to (7). If this is the case, then solving (7a)

and (7b) simultaneously (with v
 � 1) yields x1 � x2 � 	
1
3

	. Because x1 � 	
1
3

	, x2 � 	
1
3

	, w
 �

1 satisfies (7c) with equality, we have obtained a feasible solution to the row player’s LP.

Suppose this solution is optimal for the row player’s LP. Then by complementary slackness

(see Section 6.10), x1 � 0 and x2 � 0 would imply that the first two dual constraints in 

(8) must be binding in the optimal solution to (8). Solving (8a) and (8b) simultaneously

(using w
 � 1) yields y1 � y2 � 	
1
3

	, w
 � 1. This solution is dual feasible. Thus, we have

found a primal feasible and a dual feasible solution, both of which have the same objec-

tive function value and are optimal. Thus:

1 The value of Stone, Paper, Scissors is v
 � 1 � 0.

2 The optimal strategy for the row player is (	
1
3

	, 	
1
3

	, 	
1
3

	).

3 The optimal strategy for the column player is (	
1
3

	, 	
1
3

	, 	
1
3

	).

TA B L E  25

Modified Reward Matrix for Stone, Paper, Scissors

Column Player

Row Player Stone Paper Scissors

Stone 1 0 2

Paper 2 1 0

Scissors 0 2 1
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R E M A R K S Suppose we had not been able to conjecture that v
 � w
 � 1. Then the row player’s LP (7) would have
had three unknowns (x1, x2, and v
), and we might have hoped that the optimal solution to (7) occurred
where all three constraints (7a)–(7c) were binding. Solving (7a)–(7c) simultaneously yields v
 � 1, 
x1 � x2 � 	

1
3

	, x3 � 1 � 	
2
3

	 � 	
1
3

	. If this is the optimal solution to the row player’s LP, then complemen-
tary slackness implies that constraints (8a)–(8c) must all be binding. Simultaneously solving (8a)–(8c)
yields w
 � 1, y1 � y2 � 	

1
3

	, y3 � 1 � 	
2
3

	 � 	
1
3

	. Again we have obtained a primal feasible point and a
dual feasible point having the same objective function value, and both solutions must be optimal.

Find the value and optimal strategies for the two-person zero-sum game in Table 26.

Solution The game has no saddle point and no dominated strategies, so we set up the row and the

column players’ LP’s. All entries in the reward matrix are nonnegative, so we are sure that

the value of the game is nonnegative. The row and the column players’ LP’s for this game

are as follows:

max v v � 30x1 � 60x2

s.t. v � 30x1 � 60x2

s.t. v � 40x1 � 10x2
(9)

s.t. v � 36x1 � 36x2

s.t. x1 � x2 � 1 36x2

s.t. x1, x2, v � 0 36x2

Substituting x2 � 1 � x1 into the row player’s LP yields

max v(a) v � 30x1 � 60 (y1, or column 1, constraint)

s.t. (a) v � 30x1 � 60 ( y1, or column 1, constraint)

s.t. (b) v � 30x1 � 10 ( y2, or column 2, constraint) (9
)

s.t. (c) v � 30x1 � 36 ( y3, or column 3, constraint)

x1, v � 0

Similarly, we find

min w (a) w � 30y1 � 40y2 � 36y3

s.t. (a) w � 30y1 � 40y2 � 36y3

s.t. (b) w � 60y1 � 10y2 � 36y3 (10)

s.t. (b) y1 � y2 � y3 � 1� 36 y3

s.t. (a) y1, y2, y3, w � 0� 36 y3

and substituting y3 � 1 � y1 � y2 into the column player’s LP yields

min w (a) w � 6y1 � 4y2 � 36 (x1, or row 1, constraint)

s.t. (a) w � 6y1 � 4y2 � 36 (x1, or row 1, constraint)
(10
)

s.t. (b) w � 24y1 � 26y2 � 36 (x2, or row 2, constraint)

s.t. (b) y1, y2, w � 0

Using Complementary Slackness to Solve a Two-Person Zero-Sum GameE X A M P L E  5

TA B L E  26

Reward Matrix for Example 5

Column Player Row Minimum

Row Player 30 40 36 30

60 10 36 10

Column Maximum 60 40 36
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When using complementary slackness to solve an LP and its dual, it is usually easier to

first examine the LP with the smaller number of variables. Thus, we first examine (9
).

We assume that (9
a) and (9
b) are both binding in the optimal solution to the row player’s

LP. Then v � 35, x1 � 	
5
6

	, x2 � 	
1
6

	 would be the optimal solution to the row player’s LP.

This solution is feasible in the row player’s LP and makes constraint (9
c) nonbinding. If

this solution is optimal for the row player’s LP, then complementary slackness implies that

(10
a) and (10
b) must both be binding and y3 � 0 must hold. This implies that y1 �

y2 � 1, or y2 � 1 � y1. Trying w � 35 and substituting y2 � 1 � y1 in (10
a) and (10
b)

yields y1 � y2 � 	
1
2

	. Thus, we have found a feasible solution (v � 35, x1 � 	
5
6

	, x2 � 	
1
6

	) to

the row player’s LP and a feasible solution (w � 35, y1 � 	
1
2

	, y2 � 	
1
2

	, y3 � 0) to the col-

umn player’s LP, both of which have the same objective function value. We have therefore

found the value of the game and the optimal strategy for each player.

In closing, we note that while the column player’s third strategy is not dominated by

column 1 or column 2, he should still never choose column 3. Why?

In the following two-person zero-sum game, the complementary slackness method

does not yield optimal strategies.

Two players in the game of Two-Finger Morra simultaneously put out either one or two

fingers. Each player must also announce the number of fingers that he believes his oppo-

nent has put out. If neither or both players correctly guess the number of fingers put out

by the opponent, the game is a draw. Otherwise, the player who guesses correctly wins

(from the other player) the sum (in dollars) of the fingers put out by the two players. If

we let (i, j) represent the strategy of putting out i fingers and guessing the opponent has

put out j fingers, the appropriate reward matrix is as shown in Table 27.

Solution Again, this game has no saddle point and no dominated strategies. To ensure that the value

of the game is nonnegative, we add 4 to each entry in the reward matrix. This yields the

reward matrix in Table 28. For this game, the row player’s and the column player’s LP’s

are as follows (recall that the value for the original Two-Finger Morra game � v
 � 4):

max v
 (a) v
 � 4x1 � 2x2 � 7x3 � 4(1 � x1 � x2 � x3) (y1 constraint)

s.t. (a) v
 � 4x1 � 2x2 � 7x3 � 4(1 � x1 � x2 � x3) ( y1 constraint)

s.t. (b) v
 � 6x1 � 4x2 � 4x3 � (1 � x1 � x2 � x3) ( y2 constraint)

(c) v
 � x1 � 4x2 � 4x3 � 8(1 � x1 � x2 � x3) ( y3 constraint)

s.t. (d) v
 � 4x1 � 7x2 � 4x3 � 4(1 � x1 � x2 � x3) ( y4 constraint)

x1, x2, x3, v
 � 0

max w
 (a) w
 � 4y1 � 6y2 � y3 � 4(1 � y1 � y2 � y3) (x1 constraint)

s.t. (a) w
 � 4y1 � 6y2 � y3 � 4(1 � y1 � y2 � y3) (x1 constraint)

(b) w
 � 2y1 � 4y2 � 4y3 � 7(1 � y1 � y2 � y3) (x2 constraint)

(c) w
 � 7y1 � 4y2 � 4y3 � 7(1 � y1 � y2 � y3) (x3 constraint)

s.t. (d) w
 � 4y1 � y2 � 8y3 � 4(1 � y1 � y2 � y3) (x4 constraint)

y1, y2, y3, w
 � 0

An attempt to use complementary slackness to solve the row and the column players’ LP’s

fails, because the optimal strategies for both players are degenerate. (Try complementary

Two-Finger MorraE X A M P L E  6

Column
Player’s
LP

Row
Player’s
LP
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slackness and see what happens.) Using LINDO (or the simplex) to solve the LP’s yields

the following solutions: For the row player’s problem, v
 � 4, x1 � 0, x2 � 	
3
5

	, x3 � 	
2
5

	, 

x4 � 0 or v
 � 4, x1 � 0, x2 � 	
4
7

	, x3 � 	
3
7

	, x4 � 0; for the column player’s problem, w
 � 4,

y1 � 0, y2 � 	
3
5

	, y3 � 	
2
5

	, y4 � 0 or w
 � 4, y1 � 0, y2 � 	
4
7

	, y3 � 	
3
7

	, y4 � 0. Each player’s

LP has alternative optimal solutions, so each player actually has an infinite number of op-

timal strategies. For example, for any c satisfying 0 � c � 1, x1 � 0, x2 � 	
3
5
c
	 � 	

4(1
7
�c)
	,

x3 � 	
2
5
c
	 � 	

3(1
7
�c)
	, x4 � 0 would be an optimal strategy for the row player. Of course, the

value (to the row player) of the original Two-Finger Morra game is v
 � 4 � 0.

R E M A R K S 1 Observe that both players have the same optimal strategies. (This is no accident; see Problem 5
at the end of this section.)
2 Also note that if each player utilizes his optimal strategy, then neither player will ever lose or
win any money. This illustrates the fact that if both players follow the basic assumption of two-per-
son zero-sum game theory, then conservative play will generally result.
3 Finally, we see that if each player uses his optimal strategy, then a player never guesses the same
number of fingers that he has actually put out. This fact is explained in Table 29.

Now suppose the row player chooses the optimal strategy (0, 	
3
5

	, 	
2
5

	, 0). Then the column player
only breaks even by playing (1, 1) and loses an average of 	

1
5

	 per play when he plays (2, 2). Similarly,
if the row player chooses the optimal strategy (0, 	

4
7

	, 	
3
7

	, 0), the column player breaks even with (2, 2)

TA B L E  27

Reward Matrix for Two-Finger Morra

Row Player Column Player Row Minimum

(1, 1) (1, 2) (2, 1) (2, 2)

(1, 1) 0 2 �3 0 �3

(1, 2) �2 0 0 3 �2

(2, 1) 3 0 0 �4 �4

(2, 2) 0 �3 4 0 �3

Column Maximum 3 2 4 3

TA B L E  28

Transformed Reward Matrix for Two-Finger Morra

Row Player Column Player

(1, 1) (1, 2) (2, 1) (2, 2)

(1, 1) 4 6 1 4

(1, 2) 2 4 4 7

(2, 1) 7 4 4 0

(2, 2) 4 1 8 4

TA B L E  29

Expected Reward to Row Player

Row Plays
Expected Reward to Row

Optimal Strategy Column Plays Column Plays

(1, 1) (2, 2)

(0, 	
3
5

	, 	
2
5

	, 0) �2(	
3
5

	) � 3(	
2
5

	) � 0 3(	
3
5

	) � 4(	
2
5

	) � 	
5
1

	

(0, 	
4
7

	, 	
3
7

	, 0) �2(		
4
7

	) � 3(	
3
7

	) � 	
1
7

	 3(	
4
7

	) � 4(	
3
7

	) � 0
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and loses an average of 	
1
7

	 per play when he plays (1, 1). Thus, putting out the same number of fin-
gers as you guess cannot have a positive expected reward against the other player’s optimal strategy.

The preceding discussion explains why the seemingly reasonable strategy (	
1
4

	, 	
1
4

	, 	
1
4

	, 	
1
4

	) is not op-
timal for either player. For instance, if the column player chooses the strategy (	

1
4

	, 	
1
4

	, 	
1
4

	, 	
1
4

	) and the
row player plays the optimal strategy (0, 	

3
5

	, 	
2
5

	, 0), the row player’s expected reward may be com-
puted as in Table 30. In this situation, the expected reward received by the row player is �2(	

2
3
0
	) �

0(	
2
3
0
	) � 0(	

2
3
0
	) � 3(	

2
3
0
	) � 3(	

2
2
0
	) � 0(	

2
2
0
	) � 0(	

2
2
0
	) � 4(	

2
2
0
	) � 	

2
1
0
	. Another way to see this: Each time

the column player chooses (1, 1), (1, 2), or (2, 1), the players break even, but on the plays for which
the column player chooses (2, 2), the row player wins an average of 	

1
5

	 unit. Thus, the row player’s
expected reward is (	

1
4

	)(	
1
5

	) � 	
2
1
0
	 unit.

4 In Odds and Evens and in Stone, Paper, Scissors, the optimal strategies may have been intu-
itively obvious, but the game of Two-Finger Morra shows that game theory can often yield subtle
insights into how a two-person zero-sum game should be played.

Using LINDO or LINGO 
to Solve Two-Person Zero-Sum Games

To use LINDO to solve for the value and optimal strategies in a two-person zero-sum

game, simply type in either the row or column player’s problem. If, for example, you type

in the row player’s problem, your optimal z-value is the value of the game; your optimal

values of the decision variables are the row player’s optimal strategies; and the absolute

value of the dual prices are the column player’s optimal strategies. By the way, because v

is unrestricted in sign, you should use the command FREE v after the END statement.

The following LINGO model (file Game.lng) can be used to solve for the value and

optimal strategies for Two-Finger Morra (or any two-person zero-sum game).

MODEL:
1]SETS:
2]ROWS/1..4/:X;
3]COLS/1..4/;
4]MATRIX(ROWS,COLS):REW;
5]ENDSETS
6]@FOR(COLS(J):@SUM(ROWS(I):REW(I,J)*X(I))>V;);
7]@SUM(ROWS(I):X(I))=1;
8]MAX=V;
9]@FREE(V);

10]DATA:
11]REW=0,2,-3,0,
12]-2,0,0,3,
13]3,0,0,-4,
14]0,-3,4,0;
15]ENDDATA
16]END

In line 2, we define the rows of our reward matrix, associating row i with X(I) � prob-

ability that the row player plays row i. In line 3, we define the columns of the reward ma-

TA B L E  30

Expected Reward to Row Player If Column Player Plays (	
1
4

	, 	
1
4

	, 	
1
4

	, 	
1
4

	)

Row Column Reward to Probability
Chooses Chooses Row of Occurrence

(1, 2) (1, 1) �2 (	
3
5

	)(	
1
4

	) � 	
2
3
0
	

(1, 2) (1, 2) �0 (	
3
5

	)(	
1
4

	) � 	
2
3
0
	

(1, 2) (2, 1) �0 (	
3
5

	)(	
1
4

	) � 	
2
3
0
	

(1, 2) (2, 2) �3 (	
3
5

	)(	
1
4

	) � 	
2
3
0
	

(2, 1) (1, 1) �3 (	
2
5

	)(	
1
4

	) � 	
2
2
0
	

(2, 1) (1, 2) �0 (	
2
5

	)(	
1
4

	) � 	
2
2
0
	

(2, 1) (2, 1) �0 (	
2
5

	)(	
1
4

	) � 	
2
2
0
	

(2, 1) (2, 2) �4 (	
2
5

	)(	
1
4

	) � 	
2
2
0
	

Game.lng
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trix. In line 4, we create the reward matrix itself and define the reward REW(I,J) to the

row player when row i and column j are played. For each column j, line 6 creates the con-

straint that 
I

REW (I,J)*X(I) � V. In line 7, we ensure that the row player’s probabilities

sum to 1. Row 8 creates the objective function of max z � v. Row 9 uses the @FREE

statement to allow v to be negative. In rows 11 through 14, we input the reward matrix.

To use this model to solve for optimal strategies in any two-person zero-sum game,

change the number of rows and columns and change the entries in the reward matrix. Re-

member that the dual prices yield the column player’s optimal strategies.

Summary of How to Solve a Two-Person Zero-Sum Game

To close our discussion of two-person zero-sum games, we summarize a procedure that

can be used to find the value and optimal strategies for any two-person zero-sum (or 

constant-sum) game.

Step 1 Check for a saddle point. If the game has no saddle point, then go on to step 2.

Step 2 Eliminate any of the row player’s dominated strategies. Looking at the reduced

matrix (dominated rows crossed out), eliminate any of the column player’s dominated

strategies. Now eliminate any of the row player’s dominated strategies. Continue in this

fashion until no more dominated strategies can be found. Now proceed to step 3.

Step 3 If the game matrix is now 2 � 2, solve the game graphically. Otherwise, solve

the game by using the linear programming methods of this section.

P R O B L E M S
Group A

1 A soldier can hide in one of five foxholes (1, 2, 3, 4, or
5) (see Figure 5). A gunner has a single shot and may fire
at any of the four spots A, B, C, or D. A shot will kill a
soldier if the soldier is in a foxhole adjacent to the spot
where the shot was fired. For example, a shot fired at spot
B will kill the soldier if he is in foxhole 2 or 3, while a shot
fired at spot D will kill the soldier if he is in foxhole 4 or
5. Suppose the gunner receives a reward of 1 if the soldier
is killed and a reward of 0 if the soldier survives the shot.

a Assuming this to be a zero-sum game, construct the
reward matrix.

b Find and eliminate all dominated strategies.

c We are given that an optimal strategy for the soldier
is to hide 	

1
3

	 of the time in foxholes 1, 3, and 5. We are
also told that for the gunner, an optimal strategy is to
shoot 	

1
3

	 of the time at A, 	
1
3

	 of the time at D, and 	
1
3

	 of the
time at B or C. Determine the value of the game to the
gunner.

d Suppose the soldier chooses the following nonopti-
mal strategy: 	

1
2

	 of the time, hide in foxhole 1; 	
1
4

	 of the
time, hide in foxhole 3; and 	

1
4

	 of the time, hide in fox-

hole 5. Find a strategy for the gunner that ensures that
his expected reward will exceed the value of the game.

e Write down each player’s LP and verify that the
strategies given in part (c) are optimal strategies.

2 Find each player’s optimal strategy and the value of the
two-person zero-sum game in Table 31.

3 Find each player’s optimal strategy and the value of the
two-person zero-sum game in Table 32.

4 Two armies are advancing on two cities. The first army
is commanded by General Custard and has four regiments;

1 A B C D2 3 4 5

F I G U R E  5

TA B L E  31

TA B L E  32
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14.4 Two-Person Nonconstant-Sum Games

Most game-theoretic models of business situations are not constant-sum games, because

it is unusual for business competitors to be in total conflict.

In this section, we briefly discuss the analysis of two-person nonconstant-sum games

in which cooperation between the players is not allowed. We begin with a discussion of

the famous Prisoner’s Dilemma.

Two prisoners who escaped and participated in a robbery have been recaptured and are

awaiting trial for their new crime. Although they are both guilty, the Gotham City 

the second army is commanded by General Peabody and
has three regiments. At each city, the army that sends more
regiments to the city captures both the city and the opposing
army’s regiments. If both armies send the same number of
regiments to a city, then the battle at the city is a draw. Each
army scores 1 point per city captured and 1 point per
captured regiment. Assume that each army wants to
maximize the difference between its reward and its
opponent’s reward. Formulate this situation as a two-person
zero-sum game and solve for the value of the game and
each player’s optimal strategies.

Group B

5 A two-person zero-sum game with an n � n reward
matrix A is a symmetric game if A � �AT.

a Explain why a game having A � �AT is called a
symmetric game.

b Show that a symmetric game must have a value of
zero.

c Show that if (x�1, x�2, . . . , x�n) is an optimal strategy
for the row player, then (x�1, x�2, . . . , x�n) is also an opti-
mal strategy for the column player.

d What examples discussed in this chapter are sym-
metric games? How could the results of this problem
make it easier to solve for the value and optimal strate-
gies of a symmetric game?

6 For a two-person zero-sum game with an m � n reward
matrix, let x� � (x�1, x�2, . . . , x�m) be a solution to the row
player’s LP and y� � ( y�1, y�2, . . . , y�n) be a solution to the
column player’s LP. Show that if the row player departs
from his optimal strategy, he cannot increase his expected
reward against y�.

7 Interpret the complementary slackness conditions for
the row and the column players’ LP’s.

8 Wivco has observed the daily production and the daily
variable production costs of widgets at the New York City

Prisoner’s DilemmaE X A M P L E  7

plant. The data in Table 33 have been collected. Wivco
believes that daily production and daily variable production
costs are related as follows: For some numbers a and b,

Daily production cost � a � b(daily production)

Wivco wants to find estimates of a and b (â and b̂) that
minimize the maximum error (in absolute value) incurred in
estimating daily production costs. For example, if Wivco
chooses â � 3 and b̂ � 2, then the predicted daily costs are
shown in Table 34. In this case, the maximum error would
be $3,000. Formulate an LP that can be used to find the
optimal estimates â and b̂.

9 Suppose we add a constant c to every element in a
reward matrix A. Call the new game matrix A
. Show that A
and A
 have the same optimal strategies and that value of 
A
 � (value of A) � c.

TA B L E  33

Variable
Production

Day Production Cost ($)

1 4,000 9,000

2 6,000 12,000

3 7,000 14,000

4 1,000 5,000

5 3,000 8,000

TA B L E  34

Predicted Absolute
Day Cost ($) Error ($)

1 11,000 2,000

2 15,000 3,000

3 17,000 3,000

4 5,000 3,000

5 9,000 1,000
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district attorney is not sure he has enough evidence to convict them. To entice them to

testify against each other, the district attorney tells each prisoner the following: “If

only one of you confesses and testifies against your partner, the person who confesses

will go free while the person who does not confess will surely be convicted and given

a 20-year jail sentence. If both of you confess, then you will both be convicted 

and sent to prison for 5 years. Finally, if neither of you confesses, I can convict 

you both of a misdemeanor and you will each get 1 year in prison.” What should each

prisoner do?

Solution If we assume that the prisoners cannot communicate with each other, the strategies and

rewards for each are as shown in Table 35. The first number in each cell of this matrix is

the reward (negative, because years in prison is undesirable) to prisoner 1, and the sec-

ond matrix in each cell is the reward to prisoner 2. Note that the sum of the rewards in

each cell varies from a high of �2 (�1 � 1) to a low of �20 (�20 � 0). Thus, this is

not a constant-sum two-player game.

Suppose each prisoner seeks to eliminate any dominated strategies from consideration.

For each prisoner, the “confess” strategy dominates the “don’t confess” strategy. If each

prisoner follows his undominated (“confess”) strategy, however, each prisoner will spend

5 years in jail. On the other hand, if each prisoner chooses the dominated “don’t confess”

strategy, then each prisoner will spend only 1 year in prison. Thus, if each prisoner

chooses his dominated strategy, both are better off than if each prisoner chooses his un-

dominated strategy.

D E F I N I T I O N ■ As in a two-person zero-sum game, a choice of strategy by each player (prisoner)

is an equilibrium point if neither player can benefit from a unilateral change in

strategy. ■

Thus, (�5, �5) is an equilibrium point, because if either prisoner changes his strat-

egy, then his reward decreases (from �5 to �20). Clearly, however, each prisoner is bet-

ter off at the point (�1, �1). To see that the outcome (�1, �1) may not occur, observe

that (�1, �1) is not an equilibrium point, because if we are currently at the outcome (�1,

�1), either prisoner can increase his reward (from �1 to 0) by changing his strategy from

“don’t confess” to “confess” (that is, each prisoner can benefit from double-crossing his

opponent). This illustrates an important aspect of the Prisoner’s Dilemma type of game:

If the players are cooperating (if each prisoner chooses “don’t confess”), then each player

can gain by double-crossing his opponent (assuming his opponent’s strategy remains un-

changed). If both players double-cross each other, however, then both will be worse off

than if they had both chosen their cooperative strategy. This anomaly cannot occur in a

two-person constant-sum game. (Why not?)

TA B L E  35

Reward Matrix for Prisoner’s Dilemma

Prisoner 2

Prisoner 1 Confess Don’t Confess

Confess (�5, �5) (0, �20)

Don’t confess (�20, 0) (�1, �1)
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More formally, a Prisoner’s Dilemma game may be described as in Table 36, where

NC � noncooperative action

C � cooperative action

P � punishment for not cooperating

S � payoff to person who is double-crossed

R � reward for cooperating if both players cooperate

T � temptation for double-crossing opponent

In a Prisoner’s Dilemma game, (P, P) is an equilibrium point. This requires P � S. For

(R, R) not to be an equilibrium point requires T � R. (This gives each player a tempta-

tion to double-cross his opponent.) The game is reasonable only if R � P. Thus, for Table

36 to represent a Prisoner’s Dilemma game, we require that T � R � P � S. The Pris-

oner’s Dilemma game is of interest because it explains why two adversaries often fail to

cooperate with each other. This is illustrated by Examples 8 and 9.

Competing restaurants Hot Dog King and Hot Dog Chef are attempting to determine their

advertising budgets for next year. The two restaurants will have combined sales of $240

million and can spend either $6 million or $10 million on advertising. If one restaurant

spends more money than the other, then the restaurant that spends more money will have

sales of $190 million. If both companies spend the same amount on advertising, then they

will have equal sales. Each dollar of sales yields 10¢ of profit. Suppose each restaurant

is interested in maximizing (contribution of sales to profit) � (advertising costs). Find an

equilibrium point for this game.

Solution The appropriate reward matrix is shown in Table 37. If we identify spending $10 million

on advertising as the noncooperative action and spending $6 million as the cooperative

action, then (2, 2) (corresponding to heavy advertising by both restaurants) is an equilib-

rium point. Although both restaurants are better off at (6, 6) than at (2, 2), (6, 6) is un-

stable because either restaurant may gain by changing its strategy. Thus, to protect its mar-

ket share, each restaurant must spend heavily on advertising.

TA B L E  36

A General Prisoner’s Dilemma
Reward Matrix

Player 1 Player 2

NC C

NC (P, P) (T, S)

C (S, T) (R, R)

Advertising Prisoner’s Dilemma GameE X A M P L E  8

TA B L E  37

Reward Matrix for Advertising Game

Hot Dog Chef

Hot Dog King Spend $10 Million Spend $6 Million

Spend $10 million (2, 2) (9, �1)

Spend $6 million (�1, 9) (6, 6)
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The Vulcans and the Klingons are engaged in an arms race in which each nation is as-

sumed to have two possible strategies: develop a new missile or maintain the status quo.

The reward matrix is assumed to be as shown in Table 38. This reward matrix is based on

the assumption that if only one nation develops a new missile, the nation with the new

missile will conquer the other nation. In this case, the conquering nation earns a reward

of 20 units and the conquered nation loses 100 units. It is also assumed that the cost of

developing a new missile is 10 units. Identify an equilibrium point for this game.

Solution Identifying “develop” as the noncooperative action and “maintain” as the cooperative ac-

tion, we see that (�10, �10) (both nations choosing their noncooperative action) is an

equilibrium point. Although (0, 0) leaves both nations better off than (�10, �10), we see

that in this situation, each nation can gain from a double-cross. Thus, (0, 0) is not stable.

This example shows how maintaining the balance of power may lead to an arms race.

Arms Race Prisoner’s DilemmaE X A M P L E  9

TA B L E  38

Reward Matrix for Arms Race Game

Klingons

Vulcans Develop New Missile Maintain Status Quo

Develop new missile (�10, �10) (10, �100)

Maintain status quo (�100, 10) (0, 0)

The following two-person nonconstant-sum game is not a Prisoner’s Dilemma game.

Angry Max drives toward James Bound on a deserted road. Each person has two strate-

gies: swerve or don’t swerve. The reward matrix in Table 39 needs no explanation! Find

the equilibrium point(s) for this game.

Solution For both (5, �5) and (�5, 5), neither player can gain by a unilateral change in strategy.

Thus, (5, �5) and (�5, 5) are both equilibrium points.

“Chicken” GameE X A M P L E  1 0

TA B L E  39

Reward Matrix for Swerve Game

James Bound

Angry Max Swerve Don’t Swerve

Swerve (0, 0) (�5, 5)

Don’t swerve (5, �5) (�100, �100)

Like constant-sum games, a nonconstant-sum game may fail to have an equilibrium

point in pure strategies. It can be shown that if mixed strategies are allowed, then in any

two-person nonconstant-sum game, each player has an equilibrium strategy (in that if one

player plays her equilibrium strategy, the other player cannot benefit by deviating from

her equilibrium strategy) [see Owen (1982, p. 127)]. For example, consider the two-
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person nonconstant-sum game in Table 40. For this game, the reader should verify that

there is no equilibrium in pure strategies and also that each player’s choice of the mixed

strategy (	
1
2

	, 	
1
2

	) is an equilibrium because neither player can benefit from a unilateral

change in strategy (see Problem 4 at the end of this section). Owen (1982, Chapter 7) dis-

cusses two-person nonconstant-sum games in which the players are allowed to cooperate.

P R O B L E M S
Group A

TA B L E  40

A Game with No Equilibrium in Pure Strategies

Player 2

Player 1 Strategy 1 Strategy 2

Strategy 1 (2, �1) (�2, 1)

Strategy 2 (�2, 1) (2, �1)

1 Find an equilibrium point (if one exists in pure strategies)
for the two-person nonconstant-sum game in Table 41.

2 Find an equilibrium point in pure strategies (if any exists)
for the two-person nonconstant-sum game in Table 42.

3 The New York City Council is ready to vote on two bills
that authorize the construction of new roads in Manhattan
and Brooklyn. If the two boroughs join forces, they can pass
both bills, but neither borough by itself has enough power
to pass a bill. If a bill is passed, then it will cost the taxpayers
of each borough $1 million, but if roads are built in a
borough, the benefits to the borough are estimated to be $10
million. The council votes on both bills simultaneously, and
each councilperson must vote on the bills without knowing
how anybody else will vote. Assuming that each borough
supports its own bill, determine whether this game has any
equilibrium points. Is this game analogous to the Prisoner’s
Dilemma? Explain why or why not.

Group B

4 Given that each player’s goal is to maximize her expected
reward, show that for the game in Table 43 each player’s
choice of the mixed strategy (	

1
2

	, 	
1
2

	) is an equilibrium point.

5† A Japanese electronics company and an American
electronics company are both considering working on
developing a superconductor. If both companies work on
the superconductor, they will have to share the market, and
each company will lose $10 billion. If only one company
works on the superconductor, that company will earn $100
billion in profits. Of course, if neither company works on
the superconductor, then each company earns profits of $0.

a Formulate this situation as a two-person nonconstant-
sum game. Does the game have any equilibrium points?

b Now suppose the Japanese government offers the
Japanese electronics company a $15 billion subsidy to
work on the superconductor. Formulate the reward ma-
trix for this game. Does this game have any equilibrium
points?

c Businesspeople have often said that a protectionist
attitude toward trade can increase exports, but econo-
mists have usually argued that it will reduce exports.
Whose viewpoint does this problem support?

TA B L E  41

TA B L E  42

TA B L E  43

Player 2

Player 1 Strategy 1 Strategy 2

Strategy 1 (2, �1) (�2, 1)

Strategy 2 (�2, 1) (2, �1)

†Based on “Protectionism Gets Clever” (1988).
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14.5 Introduction to n-Person Game Theory

In many competitive situations, there are more than two competitors. With this in mind,

we now turn our attention to games with three or more players. Let N � {1, 2, . . . , n} be

the set of players. Any game with n players is an n-person game. For our purposes, an

n-person game is specified by the game’s characteristic function.

D E F I N I T I O N ■ For each subset S of N, the characteristic function v of a game gives the amount

v(S) that the members of S can be sure of receiving if they act together and form

a coalition. ■

Thus, v(S) can be determined by calculating the amount that members of S can get

without any help from players who are not in S.

Joe Willie has invented a new drug. Joe cannot manufacture the drug himself, but he can

sell the drug’s formula to company 2 or company 3. The lucky company will split a $1

million profit with Joe Willie. Find the characteristic function for this game.

Solution Letting Joe Willie be player 1, company 2 be player 2, and company 3 be player 3, we

find the characteristic function for this game to be:

v(v({ }) � v({1}) � v({2}) � v({3}) � v({2, 3}) � 0

v({1, 2}) � v({1, 3}) � v({1, 2, 3}) � $1,000,000� 0
E X A M P L E  1 2

Each of four property owners has one bag of garbage and must dump it on somebody’s

property. If b bags of garbage are dumped on the coalition of property owners, then the

coalition receives a reward of �b. Find the characteristic function for this game.

Solution The best that the members of any coalition can do is to dump all of their garbage on the

property of owners who are not in S. Thus, the characteristic function for the garbage

game (�S� is the number of players in S) is given by

v({1, 2,v({S}) � �(4 � �S�) (if �S� � 4) (11)

v({1, 2, 3, 4}) � �44 � �S�) (if �S� � 4) (11.1)

Equation (11.1) follows because if players are in S, they must dump their garbage on

members of S.

Player 1 owns a piece of land and values the land at $10,000. Player 2 is a subdivider who

can develop the land and increase its worth to $20,000. Player 3 is a subdivider who can

develop the land and increase its worth to $30,000. There are no other prospective buy-

ers. Find the characteristic function for this game.

Solution Note that any coalition that does not contain player 1 has a worth or value of $0. 

Any other coalition has a value equal to the maximum value that a member of the

The Land Development GameE X A M P L E  1 3

The Drug GameE X A M P L E  1 1

The Garbage GameE X A M P L E  1 2
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coalition places on the piece of land. Thus, we obtain the following characteristic

function:

v({1}) � $10,000, v({ }) � v({2}) � v({3}) � $0, v({1, 2}) � $20,000,

v({1, 3}) � $30,000, v({2, 3}) � $0, v({1, 2, 3}) � $30,000}) � $20,000,

Consider any two subsets of sets A and B such that A and B have no players in com-

mon (A � B � Ø). Then for each of our examples (and any n-person game), the charac-

teristic function must satisfy the following inequality:

v(A � B) � v(A) � v(B) (12)

This property of the characteristic function is called superadditivity. Equation (12) is rea-

sonable, because if the players in A � B band together, one of their options (but not their

only option) is to let the players in A fend for themselves and let the players in B fend 

for themselves. This would result in the coalition receiving an amount v(A) � v(B). Thus,

v(A � B) must be at least as large as v(A) � v(B).

There are many solution concepts for n-person games. A solution concept should in-

dicate the reward that each player will receive. More formally, let x � {x1, x2, . . . , xn}

be a vector such that player i receives a reward xi. We call such a vector a reward vec-

tor. A reward vector x � (x1, x2, . . . , xn) is not a reasonable candidate for a solution un-

less x satisfies

v(N) � �
i�n

i�1

xi (for each i {EO} N) (Group rationality) (13)

xi � v({i}) (for each i � N) (Individual rationality) (14)

If x satisfies both (13) and (14), we say that x is an imputation. Equation (13) states

that any reasonable reward vector must give all the players an amount that equals the

amount that can be attained by the supercoalition consisting of all players. Equation

(14) implies that player i must receive a reward at least as large as what he can get for

himself (v{i}).

To illustrate the idea of an imputation, consider the payoff vectors for Example 13,

shown in Table 44. Any solution concept for n-person games chooses some subset of the

set of imputations (possibly empty) as the solution to the n-person game. In Sections 14.6

and 14.7, we discuss two solution concepts, the core and the Shapley value. See Owen

(1999) for a discussion of other solution concepts for n-person games. The problems in-

volving n-person game theory are at the end of Section 14.7.

TA B L E  44

Examples of Imputation

x Is x an Imputation?

($10,000, $10,000, $10,000) Yes

($5,000, $2,000, $5,000) No, x1 � v({1}), so (14) is violated

($12,000, $19,000, �$1000) No, (14) is violated

($11,000, $11,000, $11,000) No, (13) is violated
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14.6 The Core of an n-Person Game

An important solution concept for an n-person game is the core. Before defining this, we

must define the concept of domination. Given an imputation x � (x1, x2, . . . , xn), we say

that the imputation y � (y1, y2, . . . , yn) dominates x through a coalition S (written y �
sx) if

�
i�S

yi � v(S) and for all i � S, yi � xi (15)

If y �
sx, then both the following must be true:

1 Each member of S prefers y to x.

2 Because i�S yi � v(S), the members of S can attain the rewards given by y.

Thus, if y �
sx, then x should not be considered a possible solution to the game, because

the players in S can object to the rewards given by x and enforce their objection by band-

ing together and thereby receiving the rewards given by y [because members of S can

surely receive an amount equal to v(S)].

The founders of game theory, John von Neumann and Oskar Morgenstern, argued that

a reasonable solution concept for an n-person game was the set of all undominated 

imputations.

D E F I N I T I O N ■ The core of an n-person game is the set of all undominated imputations. ■

Examples 14 and 15 illustrate the concept of domination.

Consider a three-person game with the following characteristic function:

v({v({ }) � v({1}) � v({2}) � v({3}) � 0, 3}) � 0.2, v({1, 2, 3}) � 1

v({1, 2}) � 0.1, v({1, 3}) � 0.2, v({2, 3}) � 0.2, v({1, 2, 3}) � 1

Let x � (0.05, 0.90, 0.05) and y � (0.10, 0.80, 0.10). Show that y �
{1,3}x.

Solution First, note that both x and y are imputations. Next, observe that with the imputation y,

players 1 and 3 both receive more than they receive with x. Also, y gives the players in

{1, 3} a total of 0.10 � 0.10 � 0.20. Because 0.20 does not exceed v({1, 3}) � 0.20, it

is reasonable to assume that players 1 and 3 can band together and receive a total reward

of 0.20. Thus, players 1 and 3 will never allow the rewards given by x to occur.

For the land development game (Example 13), let x � ($19,000, $1,000, $10,000) and 

y � ($19,800, $100, $10,100). Show that y �
{1,3}x.

Solution We need only observe that players 1 and 3 both receive more from y than they receive from

x, and the total received by players 1 and 3 from y ($29,900) does not exceed v({1, 3}). If

x were proposed as a solution to the land development game, player 1 would sell the land

to player 3 and y (or some other imputation that dominates x) would result. The important

point is that x cannot occur, because players 1 and 3 will never allow x to occur.

DominanceE X A M P L E  1 4

Dominance in Land Development GameE X A M P L E  1 5
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We are now ready to show how to determine the core of an n-person game, for which

Theorem 1 is often useful.

An imputation x � {x1, x2, . . . , xn} is in the core of an n-person game if and only

if for each subset S of N,

�
i�S

xi � v(S)

Theorem 1 states that an imputation x is in the core (that x is undominated) if and only

if for every coalition S, the total of the rewards received by the players in S (according to

x) is at least as large as v(S).

To illustrate the use of Theorem 1, we find the core of the three games discussed in

Section 14.5.

Find the core of the drug game.

Solution For this game, x � (x1, x2, x3) will be an imputation if and only if

x1 � 0 (16)

x2 � 0 (17)

x3 � 0 (18)

x1 � x2 � x3 � $1,000,000 (19)

Theorem 1 shows that x � (x1, x2, x3) will be in the core if and only if x1, x2, and x3 sat-

isfy (16)–(19) and the following inequalities:

x1 � x1 � x2 � $1,000,000 (20)

x1 � x1 � x3 � $1,000,000 (21)

x1 � x2 � x3 � $0,000,000 (22)

x1 � x2 � x3 � $1,000,000 (23)

To determine the core, note that if x � (x1, x2, x3) is in the core, then x1, x2, and x3

must satisfy the inequality generated by adding together inequalities (20)–(22). Adding

(20)–(22) yields 2(x1 � x2 � x3) � $2,000,000, or

x1 � x2 � x3 � $1,000,000 (24)

By (19), x1 � x2 � x3 � $1,000,000. Thus, (20)–(22) must all be binding.† Simultaneously

solving (20)–(22) as equalities yields x1 � $1,000,000, x2 � $0, x3 � $0. A quick check

shows that ($1,000,000, $0, $0) does satisfy (16)–(23). In summary, the core of this game is

the imputation ($1,000,000, $0, $0). Thus, the core emphasizes the importance of player 1.

R E M A R K S 1 In Section 14.7, we show that for this game, an alternative solution concept, the Shapley value,
gives player 1 less than $1,000,000 and gives both player 2 and player 3 some money.

T H E O R E M  1

The Drug Game (Continued)E X A M P L E  1 1

†If (20), (21), or (22) were nonbinding, then for any point in the core, the sum of (20)–(22) would also be

nonbinding. Because we know that (24) must be binding, this implies that for any point in the core, (20),

(21), and (22) must all be binding.
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2 For the drug game, if we choose an imputation that is not in the core, then we can show how it
is dominated. Consider the imputation x � ($900,000, $50,000, $50,000). If we let y � ($925,000,
$75,000, $0), then y �

{1,2}x.

Determine the core of the garbage game.

Solution Note that x � (x1, x2, x3, x4) will be an imputation if and only if x1, x2, x3, and x4 satisfy

the following inequalities:

x1 � x2 � x3 � x1 � �3 (25)

x1 � x2 � x3 � x2 � �3 (26)

x1 � x2 � x3 � x3 � �3 (27)

x1 � x2 � x3 � x4 � �3 (28)

x1 � x2 � x3 � x4 � �4 (29)

Applying Theorem 1 to all three-player coalitions, we find that for x � {x1, x2, x3, x4}

to be in the core, it is necessary that x1, x2, x3, and x4 satisfy the following inequalities:

x1 � x2 �x3 � �1 (30)

x1 � x2 � x4 � �1 (31)

x1 � x3 � x4 � �1 (32)

x2 � x3 � x4 � �1 (33)

We now show that no imputation x � (x1, x2, x3, x4) can satisfy (30)–(33) and that the

garbage game has an empty core. Consider an imputation x � (x1, x2, x3, x4). If x is to

be in the core of the garbage game, x must satisfy the inequality generated by adding to-

gether (30)–(33):

3(x1 � x2 � x3 � x4) � �4 (34)

Equation (29) implies that any imputation x � (x1, x2, x3, x4) must satisfy x1 � x2 � x3 �

x4 � �4. Thus, (34) cannot hold. This means that no imputation x � (x1, x2, x3, x4) can

satisfy (30)–(33) and the core of the garbage game is empty.

To understand why the garbage game has an empty core, consider the imputation x �

(�2, �1, �1, 0), which treats players 1 and 2 unfairly. By joining, players 1 and 2 could

ensure that the imputation y � (�1.5, �0.5, �1, �1) occurred. Thus, y �
{1,2}x. In a

similar fashion, any imputation can be dominated by another imputation. We note that for

a two-player version of the garbage game, the core consists of the imputation (�1, �1),

and for n � 2, the n-player garbage game has an empty core (see Problems 4 and 5 at the

end of Section 14.7).

Find the core of the land development game.

Solution For the land development game, any imputation x � (x1, x2, x3) must satisfy

x1 � x2 � x1 � $10,000 (35)

x1 � x2 � x2 � $00,000 (36)

x1 � x2 � x3 � $00,000 (37)

x1 � x2 � x3 � $30,000 (38)

The Garbage Game (Continued)E X A M P L E  1 2

The Land Development Game (Continued)E X A M P L E  1 3
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An imputation x � (x1, x2, x3) is in the core if and only if it satisfies the following 

inequalities:

x1 � x1 � x2 � $20,000 (39)

x1 � x1 � x3 � $30,000 (40)

x1 � x2 � x3 � $00,000 (41)

x1 � x2 � x3 � $30,000 (42)

Adding (36) and (40), we find that if x � (x1, x2, x3) is in the core, then x1, x2, and x3

must satisfy x1 � x2 � x3 � $30,000. From (38), x1 � x2 � x3 � $30,000. Thus, (36)

and (40) must be binding. This argument shows that for x � (x1, x2, x3) to be in the core,

x1, x2, and x3 must satisfy

x2 � $0 and x1 � x3 � $30,000 (43)

Now (39) implies that

x1 � $20,000 (44)

Thus, for x � (x1, x2, x3) to be in the core, (43) and (44) must both be satisfied. Any vec-

tor in the core must also satisfy x3 � 0 and x1 � $30,000, and any vector x � (x1, x2, x3)

satisfying (43), (44), x3 � $0, and x1 � $30,000 will be in the core of the land development

game. Thus, if $20,000 � x1 � $30,000, then any vector of the form (x1, $0, $30,000 � x1)

will be in the core of the land development game. The interpretation of the core is as follows:

Player 3 outbids player 2 and purchases the land from player 1 for a price x1 ($20,000 �

x1 � $30,000). Then player 1 receives a reward of x1 dollars, and player 3 receives a 

reward of $30,000 � x1. Player 2 is shut out and receives nothing. In this example, the core

contains an infinite number of points.

The problems involving n-person game theory are at the end of Section 14.7.

14.7 The Shapley Value†

In Section 14.6, we found that the core of the drug game gave all benefits or rewards to

the game’s most important player (the inventor of the drug). Now we discuss an alterna-

tive solution concept for n-person games, the Shapley value, which in general gives more

equitable solutions than the core does.‡

For any characteristic function, Lloyd Shapley showed there is a unique reward vector

x � (x1, x2, . . . , xn) satisfying the following axioms:

Axiom 1 Relabeling of players interchanges the players’ rewards. Suppose the Shapley value

for a three-person game is x � (10, 15, 20). If we interchange the roles of player 1 and player

3 [for example, if originally v({1}) � 10 and v({3}) � 15, we would make v({1}) � 15 and

v({3}) � 10], then the Shapley value for the new game would be x � (20, 15, 10).

Axiom 2 
i�n
i�1 xi � v(N). This is simply group rationality.

Axiom 3 If v(S � {i}) � v(S) holds for all coalitions S, then the Shapley value has xi �

0. If player i adds no value to any coalition, then player i receives a reward of zero from

the Shapley value.

Before stating Axiom 4, we define the sum of two n-person games. Let v and v� be two

characteristic functions for games with identical players. Define the game (v � v�) to be

†This section covers topics that can be omitted with no loss of continuity.
‡See Owen (1982) for an excellent discussion of the Shapley value. See also Shapley (1953).
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the game with the characteristic function (v � v�) given by (v � v�)(S) � v(S) � v�(S). For

example, if v({1, 2}) � 10 and v�({1, 2}) � �3, then in the game (v � v�) the coalition

{1, 2} would have (v � v�)({1, 2}) � 10 � 3 � 7.

Axiom 4 Let x be the Shapley value vector for game v, and let y be the Shapley value vec-

tor for game v�. Then the Shapley value vector for the game (v � v�) is the vector x � y.

The validity of this axiom has often been questioned, because adding rewards from two

different games may be like adding apples and oranges. If Axioms 1–4 are assumed to be

valid, however, Shapley proved the remarkable result in Theorem 2.

Given any n-person game with the characteristic function v, there is a unique re-

ward vector x � (x1, x2, . . . , xn) satisfying Axioms 1–4. The reward of the ith player

(xi) is given by

xi �      �
all S for which

pn(S)[v(S � {i}) � v(S)] (45)

i is not in S

In (45),

pn(S) � (46)

where �S� is the number of players in S, and for n � 1, n! � n(n �1) ��� 2(1) (0! � 1).

Although (45) seems complex, the equation has a simple interpretation. Suppose that

players 1, 2, . . . , n arrive in a random order. That is, any of the n! permutations of 1, 2,

. . . , n has a 	
n

1
!
	 chance of being the order in which the players arrive. For example, if n �

3, then there is a 	
1
3

	! � 	
1
6

	 probability that the players arrive in any one of the following 

sequences:

1, 2, 3 2, 3, 1

1, 3, 2 3, 1, 2

2, 1, 3 3, 2, 1

Suppose that when player i arrives, he finds that the players in the set S have already ar-

rived. If player i forms a coalition with the players who are present when he arrives, then

player i adds v(S � {i}) � v(S) to the coalition S. The probability that when player i ar-

rives the players in the coalition S are present is pn(S). Then (45) implies that player i’s

reward should be the expected amount that player i adds to the coalition made up of the

players who are present when he or she arrives.

We now show that pn(S) [as given by (46)] is the probability that when player i arrives,

the players in the subset S will be present. Observe that the number of permutations of 1,

2, . . . , n that result in player i’s arriving when the players in the coalition S are present is

given by

�S�(�S� � 1)(�S� � 2) ��� � (2)(1) (1) (n � �S� � 1)(n � �S� � 2) ��� (2)(1)

S arrives i arrives Players not in S � {i} arrive

� �S�!(n � �S� � 1)!

�S�!(n � �S� � 1)!
		

n!

T H E O R E M  2
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Because there are a total of n! permutations of 1, 2, . . . , n, the probability that player i

will arrive and see the players in S is

� pn(S)

We now compute the Shapley value for the drug game.

Find the Shapley value for the drug game.

Solution To compute x1, the reward that player 1 should receive, we list all coalitions S for which

player 1 is not a member. For each of these coalitions, we compute v(S � {i}) � v(S) and

p3(S) (see Table 45). Because player 1 adds (on the average)

(	
2
6

	)(0) � (	
1
6

	)(1,000,000) � (	
2
6

	)(1,000,000) � (	
1
6

	)(1,000,000) � 	
$4,00

6
0,000
	

the Shapley value concept recommends that player 1 receive a reward of 	$4,00
6
0,000
	.

To compute the Shapley value for player 2, we require the information in Table 46.

Thus, the Shapley value recommends a reward of

(	
1
6

	)(1,000,000) � 	
$1,00

6
0,000
	

for player 2. The Shapley value must allocate a total of v({1, 2, 3}) � $1,000,000 to the

players, so the Shapley value will recommend that player 3 receive $1,000,000 � x1 �

x2 � 	
$1,00

6
0,000
	.

�S�!(n � �S� � 1)!
		

n!

The Drug Game (Continued)E X A M P L E  1 1

TA B L E  45

Computation of Shapley Value for Player 1 
(Joe Willie)

S p3(S) v (S � {1}) � v (S)

{ } 	
2
6

	 1,000,00$0

{2} 	
1
6

	 $1,000,000

{2, 3} 	
2
6

	 $1,000,000

{3} 	
1
6

	 $1,000,000

TA B L E  46

Computation of Shapley Value for Player 2

S p3(S) v (S � {2}) � v (S)

{ } 	
2
6

	 $0

{1} 	
1
6

	 $1,000,000

{3} 	
1
6

	 $0

{1, 3} 	
2
6

	 $0

R E M A R K S 1 Recall that the core of this game assigned $1,000,000 to player 1 and no money to players 2 and
3. Thus, the Shapley value treats players 2 and 3 more fairly than the core. In general, the Shapley
value provides more equitable solutions than the core.
2 For a game with few players, it may be easier to compute each player’s Shapley value by using
the fact that player i should receive the expected amount that she adds to the coalition present when
she arrives. For Example 11, this method yields the computations in Table 47. Each of the six or-
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derings of the arrivals of the players is equally likely, so we find that the Shapley value to each
player is as follows:

x1 � , x2 � , x3 �

3 The Shapley value can be used as a measure of the power of individual members of a political or
business organization. For example, the UN Security Council consists of five permanent members
(who have veto power over any resolution) and ten nonpermanent members. For a resolution to pass
the Security Council, it must receive at least nine votes, including the votes of all permanent mem-
bers. Assigning a value of 1 to all coalitions that can pass a resolution and a value of 0 to all coali-
tions that cannot pass a resolution defines a characteristic function. For this characteristic function, it
can be shown that the Shapley value of each permanent member is 0.1963 and of each nonpermanent
member is 0.001865, giving 5(0.1963) � 10(0.001865) � 1. Thus, the Shapley value indicates that
5(0.1963) � 98.15% of the power in the Security Council resides with the permanent members.

As a final application of the Shapley value, we discuss how it can be used to deter-

mine a pricing schedule for landing fees at an airport.

Suppose three types of planes (Piper Cubs, DC-10s, and 707s) use an airport. A Piper Cub

requires a 100-yd runway, a DC-10 requires a 150-yd runway, and a 707 requires a 400-

yd runway. Suppose the cost (in dollars) of maintaining a runway for one year is equal to

the length of the runway. Because 707s land at the airport, the airport will have a 400-yd

runway. For simplicity, suppose that each year only one plane of each type lands at the air-

port. How much of the $400 annual maintenance cost should be charged to each plane?

Solution Let player 1 � Piper Cub, player 2 � DC-10, and player 3 � 707. We can now define a

three-player game in which the value to a coalition is the cost associated with the runway

length needed to service the largest plane in the coalition. Thus, the characteristic func-

tion for this game (we list a cost as a negative revenue) would be

v({ }) � $0, v({1}) � �$100, v({1, 2}) � v({2}) � �$150,

v({3}) � v({2, 3}) � v({1, 3}) � v({1, 2, 3}) � �$400� �$150,

To find the Shapley value (cost) to each player, we assume that the three planes land in a

random order, and we determine how much cost (on the average) each plane adds to the

cost incurred by the planes that are already present (see Table 48). The Shapley cost for

each player is as follows:

Player 1 cost � (	
1
6

	)(100 � 100) � 	
$2

6
00
	

Player 2 cost � (	
1
6

	)(50 � 150 � 150) � 	
$3

6
50
	

Player 3 cost � (	
1
6

	)(250 � 300 � 250 � 250 � 400 � 400) � 	
$1,

6

850
	

$1,000,000
		

6

$1,000,000
		

6

$4,000,000
		

6

Airport PricingE X A M P L E  1 6

TA B L E  47

Alternative Method for Determining Shapley Value

Order of
Amount Added by Player’s Arrival ($)

Arrival Player 1 Player 2 Player 3

1, 2, 3 0 1,000,000 0

1, 3, 2 0 0 1,000,000

2, 1, 3 1,000,000 0 0

2, 3, 1 1,000,000 0 0

3, 1, 2 1,000,000 0 0

3, 2, 1 1,000,000 0 0



1 4 . 7 The Shapley Value 841

Thus, the Shapley value concept suggests that the Piper Cub pay $33.33, the DC-10 pay

$58.33, and the 707 pay $308.33.

In general, even if more than one plane of each type lands, it has been shown that the

Shapley value for the airport problem allocates runway operating cost as follows: All planes

that use a portion of the runway should divide equally the cost of that portion of the run-

way (see Littlechild and Owen (1973)). Thus, all planes should cover the cost of the first

100 yd of runway, the DC-10s and 707s should pay for the next 150 � 100 �

50 yd of runway, and the 707s should pay for the last 400 � 150 � 250 yd of runway. If

there were ten Piper Cub landings, five DC-10 landings, and two 707 landings, the Shapley

value concept would recommend that each Piper Cub pay 	
10�

10
5
0
�2

	 � $5.88 in landing fees,

each DC-10 pay $5.88 � 	
150

5
�

�

1
2
00

	 � $13.03, and each 707 pay $13.03 � 	
400�

2
150
	 � $138.03.

P R O B L E M S
Group A

1 Consider the four-player game with the following
characteristic function:

v({1, 2, 3}) � v({1, 2, 4}) � v({1, 3, 4})

� v({2, 3, 4}) � 75

v({1, 2, 3, 4}) � 100

1, 2, v({3, 4}) � 60

v(v(S) � 0 for all other coalitions

Show that this game has an empty core.

2 Show that if v({3, 4}) in Problem 1 were changed to 50,
then the game’s core would consist of a single point.

3 The game of Odd Man Out is a three-player coin toss
game in which each player must choose heads or tails. If all
the players make the same choice, the house pays each
player $1; otherwise, the odd man out pays each of the other
players $1.

a Find the characteristic function for this game.

b Find the core of this game.

c Find the Shapley value for this game.

4 Show that for n � 2, the core of the garbage game is the
imputation (�1, �1).

5 Show that for n � 2, the n-player garbage game has an
empty core.

6 For the four-player garbage game, find an imputation
that dominates (�1, �1, �1, �1).

7 The Gotham City airport runway is 5,000 ft long and
costs $100,000 per year to maintain. Last year there were
2,000 landings at the airport. Four types of planes landed.
The length of runway required by each type of plane and
the number of landings of each type are shown in Table 49.
Assuming that the cost of operating a length of runway is
proportional to the length of the runway, how much per
landing should be paid by each type of plane?

TA B L E  49

Type of Number of Length of
Plane Landings Runway (ft)

1 600 2,000

2 700 3,000

3 500 4,000

4 200 5,000

TA B L E  48

Computation of Shapley Value for Airport Game

Order of Probability
Cost Added by Player’s Arrival ($)

Arrival of Order Player 1 Player 2 Player 3

1, 2, 3 	
1
6

	 100 50 250

1, 3, 2 	
1
6

	 100 0 300

2, 1, 3 	
1
6

	 0 150 250

2, 3, 1 	
1
6

	 0 150 250

3, 1, 2 	
1
6

	 0 0 400

3, 2, 1 	
1
6

	 0 0 400
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8 Consider the following three-person game:

v({ }) � 0, v({1}) � 0.2,

v({2}) � v({3}) � 0, v({1, 2}) � 1.5,

v({1, 3}) � 1.6, v({2, 3}) � 1.8,

v({1, 2, 3}) � 2

a Find the core of this game.

b Find the Shapley value for this game.

c Find an imputation dominating the imputation 
(1, 	

1
2

	, 	
1
2

	).

9 Howard Whose has left an estate of $200,000 to support
his three ex-wives. Unfortunately, Howard’s attorney has
determined that each ex-wife needs the following amount of
money to take care of Howard’s children: wife 1—$100,000;
wife 2—$200,000; wife 3—$300,000. Howard’s attorney
must determine how to divide the money among the three
wives. He defines the value of a coalition S of ex-wives to
be the maximum amount of money left for the ex-wives in
S after all ex-wives not in S receive what they need. Using
this definition, construct a characteristic function for this
problem. Then determine the core and Shapley value for
this game.

10 Indiana University leases WATS lines and is charged
according to the following rules: $400 per month for each
of the first five lines; $300 per month for each of the next
five lines; $100 per month for each additional line. The
College of Arts and Sciences makes 150 calls per hour, the
School of Business makes 120 calls per hour, and the rest

of the university makes 30 calls per hour. Assume that each
line can handle 30 calls per hour. Thus, the university will
rent 10 WATS lines. The university wants to determine how
much each part of the university should pay for long-distance
phone service.

a Set up a characteristic function representation of the
problem.

b Use the Shapley value to allocate the university’s
long-distance phone costs.

11 Three doctors have banded together to form a joint
practice: the Port Charles Trio. The overhead for the practice
is $40,000 per year. Each doctor brings in annual revenues
and incurs annual variable costs as follows: doctor 1—
$155,000 in revenue, $40,000 in variable cost; doctor 2—
$160,000 in revenue, $35,000 in variable cost; and doctor
3—$140,000 in revenue, $38,000 in variable cost.

The Port Charles Trio wants to use game theory to
determine how much each doctor should be paid. Determine
the relevant characteristic function and show that the core
of the game consists of an infinite number of points. Also
determine the Shapley value of the game. Does the Shapley
value give a reasonable division of the practice’s profits?

Group B

12 Consider an n-person game in which the only winning
coalitions are those containing player 1 and at least one
other player. If a winning coalition receives a reward of $1,
find the Shapley value to each player.

S U M M A R Y Two-Person Zero-Sum and Constant-Sum Games

John von Neumann and Oskar Morgenstern suggested that two-person zero-sum and 

constant-sum games be played according to the following basic assumption of two-

person zero-sum game theory: Each player chooses a strategy that enables him to do the

best he can, given that his opponent knows the strategy he is following.

A two-person zero-sum game has a saddle point if and only if

max (row minimum) � min (column maximum) (1)
all all

rows columns

If a two-person zero-sum or constant-sum game has a saddle point, then the row player

should choose any strategy (row) attaining the maximum on the left side of (1). The col-

umn player should choose any strategy (column) attaining the minimum on the right side

of (1).

In general, we may use the following method to find the optimal strategies and the

value of a two-person zero-sum or constant-sum game:

Step 1 Check for a saddle point. If the game has none, go on to step 2.

Step 2 Eliminate any of the row player’s dominated strategies. Looking at the reduced

matrix (dominated rows crossed out), eliminate any of the column player’s dominated

strategies and then those of the row player. Continue until no more dominated strategies

can be found. Then proceed to step 3.

Step 3 If the game matrix is now 2 � 2, solve the game graphically. Otherwise, solve

by using the linear programming method in Table 24.
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The value of the game and the optimal strategies for the row and column players in the

Table 24 reward matrix may be found by solving the row player’s LP and the column

player’s LP, respectively.

The dual of the row (column) player’s LP is the column (row) player’s LP. The optimal

objective function value for either the row or the column player’s LP is the value of the

game to the row player. If the row player departs from her optimal strategy, then she may

receive an expected reward that is less than the value of the game. If the column player

departs from his optimal strategy, then he may incur an expected loss that exceeds the

value of the game. Complementary slackness may be used to simultaneously solve the

row and the column players’ LPs.

Two-Person Nonconstant-Sum Games

As in a two-person zero-sum game, a choice of strategy by each player is an equilibrium

point if neither player can benefit from a unilateral change in strategy.

A two-person nonconstant-sum game of particular interest is Prisoner’s Dilemma. If 

T � R � P � S, a reward matrix like the one in Table 36 will be a Prisoner’s Dilemma

game. For such a game, (NC, NC) (both players choosing a noncooperative action) is an

equilibrium point.

n-Person Games

When more than two players are involved, the structure of a competitive situation may be

summarized by the characteristic function. For each set of players S, the characteristic

function v of a game gives the amount v(S) that the members of S can be sure of receiv-

ing if they act together and form a coalition.

Let x � (x1, x2, . . . , xn) be a vector such that player i receives a reward xi. We call

such a vector a reward vector. A reward vector x � (x1, x2, . . . , xn) is an imputation if

and only if

v(N) � �
i�n

i�1

xi (for each i {EO} N) (Group rationality) (13)

xi � v({i}) (for each i � N) (Individual rationality) (14)

The imputation y � ( y1, y2, . . . , yn) dominates x through a coalition S (written y �
sx) if

�
i�S

yi � v(S) and for all i � S, yi � xi (15)

The core and the Shapley value are two alternative solution concepts for n-person

games. The core of an n-person game is the set of all undominated imputations. An im-

putation x � (x1, x2, . . . , xn) is in the core of an n-person game if and only if for each

subset S of N � {1, 2, . . . , n}

�
i�S

xi � v(S)

The Shapley value gives a reward xi to the ith player, where xi is given by

xi �      �
all S for which

pn(S)[v(S � {i}) � v(S)] (45)

i is not in S

In (45),

pn(S) � (46)
�S�!(n � �S� � 1)!
		

n!
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Equation (45) implies that player i’s reward should be the expected amount that player i

adds to the coalition made up of the players who are present when player i arrives.

R E V I E W  P R O B L E M S
Group A

1 Two competing firms are deciding whether to locate a
new store at point A, B, or C. There are 52 prospective
customers for the two stores. Twenty customers live in village
A, 20 customers live in village B, and 12 customers live in
village C (see Figure 6). Each customer will shop 
at the nearer store. If a customer is equidistant from both
stores, then assume there is a 	

1
2

	 chance that he or she will 
shop at either store. Each firm wants to maximize the expected
number of customers that will shop at its store. Where should
each firm locate its store? (AB � BC � 10 miles.)

2 A total of 90,000 customers frequent the Ruby and the
Swamp supermarkets. To induce customers to enter, each
store gives away a free item. Each week, the giveaway item
is announced in the Monday newspaper. Of course, neither
store knows which item the other store will choose to give
away this week. Ruby’s is considering giving away a carton
of soda or a half gallon of milk. Swamp’s is considering
giving away a pound of butter or a half gallon of orange
juice. For each possible choice of items, the number of
customers who will stop at Ruby’s during the current week
is shown in Table 50. Each store wants to maximize its
expected number of customers during the current week. Use
game theory to determine an optimal strategy for each store
and the value of the game. Interpret the value of the game.

3 Consider the two-person zero-sum game in Table 51.

a Write down each player’s LP.

b We are told that player 1’s optimal strategy has 
x1 > 0, x2 � 0, and x3 > 0. Find the value of the game
and each player’s optimal strategies.

c Suppose the column player plays the nonoptimal
strategy (	

1
2

	, 	
1
2

	, 0). Show how the row player can earn an
expected reward that exceeds the value of the game.

4 Find optimal strategies for each player and the value of
the two-person zero-sum game in Table 52.

5 Airway (a Midwestern department store chain) and
Corvett (an Eastern department store chain) are determining
whether to expand their geographical bases. The only viable
manner by which expansion might be carried out is for a
chain to open stores in the other’s area. If neither chain
expands, then Airway’s profits will be $3 million and
Corvett’s will be $2 million. If Airway expands and Corvett
does not, then Airway’s profits will be $5 million, and
Corvett will lose $2 million. If Airway does not expand and
Corvett does, Airway will lose $1 million, and Corvett will
earn $4 million. Finally, if both chains expand, Airway will
earn $1 million and Corvett will earn $500,000 in profits.
Determine the equilibrium points, if any, for this game.

6 The stock in Alden Corporation is held by three people.
Person 1 owns 1%, person 2 owns 49%, and person 3 owns
50%. To pass a resolution at the annual stockholders’
meeting, 51% of the stock is needed. A coalition receives a
reward of 1 if it can pass a resolution and a reward of 0 if
it cannot pass a resolution.

a Find the characteristic function for this game.

b Find the core of this game.

c Find the Shapley value for this game.

d Because (	
1
3

	, 	
1
3

	, 	
1
3

	) is not in the core, there must

be an imputation dominating (	
1
3

	, 	
1
3

	, 	
1
3

	). Find one.

Group B

7 In addition to the core and the Shapley value, the stable
set is an alternative solution concept for n-person games. A
set I of imputations is called a stable set if each imputation
in I is undominated and every imputation that is not in I is
dominated by some member of I. Consider the three-person
game in which all zero- and one-member coalitions have a
characteristic function value of 0, and each two- and three-
player coalition has a value of 1. Show that for this game 
I � {(	

1
2
, 	

1
2

	, 0), (0, 	
1
2

	, 	
1
2

	), (	
1
2

	, 0, 	
1
2

	)} is a stable set.

20 customers

A B C

20 customers 12 customers

F I G U R E  6

TA B L E  50

Ruby
Swamp Chooses

Chooses Butter Orange Juice

Soda 40,000 50,000

Milk 60,000 30,000

TA B L E  51

TA B L E  52
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Deterministic EOQ Inventory Models

In this chapter, we begin our formal study of inventory modeling. In earlier chapters, we de-

scribed how linear programming can be used to solve certain inventory problems. Our study

of inventory will continue in Chapters 16, 18, and 19.

We begin by discussing some important concepts of inventory models. Then we develop

versions of the famous economic order quantity (EOQ) model that can be used to make op-

timal inventory decisions when demand is deterministic (known in advance). In Chapters 16

and 19, we discuss models in which demand is allowed to be random.

15.1 Introduction to Basic Inventory Models

To meet demand on time, companies often keep on hand stock that is awaiting sale. The

purpose of inventory theory is to determine rules that management can use to minimize

the costs associated with maintaining inventory and meeting customer demand. Inventory

models answer the following questions. (1) When should an order be placed for a prod-

uct? (2) How large should each order be?

Costs Involved in Inventory Models

The inventory models considered in this book involve some or all of the following costs.

Ordering and Setup Cost

Many costs associated with placing an order or producing a good internally do not de-

pend on the size of the order or on the production run. Costs of this type are referred to

as the ordering and setup cost. For example, ordering cost would include the cost of pa-

perwork and billing associated with an order. If the product is made internally rather than

ordered from an external source, the cost of labor (and idle time) for setting up and shut-

ting down a machine for a production run would be included in the ordering and setup

cost.

Unit Purchasing Cost

This is simply the variable cost associated with purchasing a single unit. Typically, the

unit purchasing cost includes the variable labor cost, variable overhead cost, and raw ma-

terial cost associated with purchasing or producing a single unit. If goods are ordered

from an external source, the unit purchase cost must include shipping cost.
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Holding or Carrying Cost

This is the cost of carrying one unit of inventory for one time period. If the time period

is a year, the carrying cost will be expressed in dollars per unit per year. The holding cost

usually includes storage cost, insurance cost, taxes on inventory, and a cost due to the pos-

sibility of spoilage, theft, or obsolescence. Usually, however, the most significant compo-

nent of holding cost is the opportunity cost incurred by tying up capital in inventory. For

example, suppose that one unit of a product costs $100 and the company can earn 15%

annually on its investments. Then holding one unit in inventory for one year is costing the

company 0.15(100) � $15. When interest rates are high, most firms assume that their an-

nual holding cost is 20%–40% of the unit purchase cost.

Stockout or Shortage Cost

When a customer demands a product and the demand is not met on time, a stockout, or short-

age, is said to occur. If customers will accept delivery at a later date (no matter how late that

date may be), we say that demands may be back-ordered. The case in which back-ordering

is allowed is often referred to as the backlogged demand case. If no customer will accept

late delivery, we are in the lost sales case. Of course, reality lies between these two extremes,

but by determining optimal inventory policies for both the backlogged demand and the lost

sales cases, we can get a ballpark estimate of what the optimal inventory policy should be.

Many costs are associated with stockouts. If back-ordering is allowed, placement of

back orders usually results in an extra cost. Stockouts often cause customers to go else-

where to meet current and future demands, resulting in lost sales and lost goodwill. Stock-

outs may also cause a company to fall behind in other aspects of its business and may

force a plant to incur the higher cost of overtime production. Usually, the cost of a stock-

out is harder to measure than ordering, purchasing, or holding costs.

In this chapter, we study several versions of the classic economic order quantity (EOQ)

model that was first developed in 1915 by F. W. Harris of Westinghouse Corporation. For

the models in this chapter to be valid, certain assumptions must be satisfied.

Assumptions of EOQ Models

Repetitive Ordering

The ordering decision is repetitive, in the sense that it is repeated in a regular fashion. For

example, a company that is ordering bearing assemblies will place an order, then see its

inventory depleted, then place another order, and so on. This contrasts with one-time or-

ders. For example, when a news vendor decides how many Sunday newspapers to order,

only one order (per Sunday) will be placed. Problems where an order is placed just once

are referred to as single-period inventory problems; these are discussed in Chapter 16.

Constant Demand

Demand is assumed to occur at a known, constant rate. This implies, for example, that if

demand occurs at a rate of 1,000 units per year, the demand during any t-month period

will be �1,0
1
0
2
0t

�.

Constant Lead Time

The lead time for each order is a known constant, L. By the lead time we mean the length

of time between the instant when an order is placed and the instant at which the order ar-
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rives. For example, if L � 3 months, then each order will arrive exactly 3 months after

the order is placed.

Continuous Ordering

An order may be placed at any time. Inventory models that allow this are called contin-

uous review models. If the amount of on-hand inventory is reviewed periodically and or-

ders may be placed only periodically, we are dealing with a periodic review model. For

example, if a firm reviews its on-hand inventory only at the end of each month and de-

cides at this time whether an order should be placed, we are dealing with a periodic re-

view model. Periodic review models are discussed in Chapters 16, 17, and 18.

Although the Constant Demand and Constant Lead Time assumptions may seem overly

restrictive and unrealistic, there are many situations in which the models of this chapter

provide good approximations to reality. Models in which demand is not deterministic are

discussed in Chapters 16 and 19. Models in which demand is deterministic but occurs at

a nonconstant rate have already been reviewed in our discussion of LP inventory models

in Chapter 3 and are examined further in Chapter 18.

15.2 The Basic Economic Order Quantity Model

Assumptions of the Basic EOQ Model

For the basic EOQ model to hold, certain assumptions are required (for the sake of defi-

niteness, we assume that the unit of time is one year):

1 Demand is deterministic and occurs at a constant rate.

2 If an order of any size (say, q units) is placed, an ordering and setup cost K is incurred.

3 The lead time for each order is zero.

4 No shortages are allowed.

5 The cost per unit-year of holding inventory is h.

We define D to be the number of units demanded per year. Then assumption 1 implies

that during any time interval of length t years, an amount Dt is demanded.

The setup cost K of assumption 2 is in addition to a cost pq of purchasing or produc-

ing the q units ordered. Note that we are assuming that the unit purchasing cost p does

not depend on the size of the order. This excludes many interesting situations, such as

quantity discounts for larger orders. In Section 15.3, we discuss a model that allows quan-

tity discounts.

Assumption 3 implies that each order arrives as soon as it is placed. We relax this as-

sumption later in this section.

Assumption 4 implies that all demands must be met on time; a negative inventory po-

sition is not allowed. We relax this assumption in Section 15.5.

Assumption 5 implies that a carrying cost of h dollars will be incurred if 1 unit is held

for one year, if 2 units are held for half a year, or if �
1
4

� unit is held for four years. In short,

if I units are held for T years, a holding cost of ITh is incurred.

Given these five assumptions, the EOQ model determines an ordering policy that min-

imizes the yearly sum of ordering cost, purchasing cost, and holding cost.
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Derivation of Basic EOQ Model

We begin our derivation of the optimal ordering policy by making some simple observa-

tions. Since orders arrive instantaneously, we should never place an order when I, the in-

ventory level, is greater than zero; if we place an order when I � 0, we are incurring an

unnecessary holding cost. On the other hand, if I � 0, we must place an order to prevent

a shortage from occurring. Together, these observations show that the policy that mini-

mizes yearly costs must place an order whenever I � 0. At all instants when an order is

placed, we are facing the same situation (I � 0). This means that each time we place an

order, we should order the same quantity. We let q be the quantity that is ordered each

time that I � 0.

We now determine the value of q that minimizes annual cost (call it q*). Let TC(q) be

the total annual cost incurred if q units are ordered each time that I � 0. Note that

TC(q) � annual cost of placing orders � annual purchasing cost

� annual holding cost

Since each order is for q units, �
D
q

� orders per year will have to be placed so that the annual

demand of D units is met. Hence

�
Orde

Y

ri

e

n

a

g

r

cost
� � ��orde

o

r

r

in

d

g

er

cost
�� ��oy

rd

ea

e

r

rs
�� � �

K

q

D
�

For all values of q, the per-unit purchasing cost is p. Since we always purchase D units

per year,

� ��purcha

u

s

n

in

it

g cost
�� ��units p

y

u

ea

rc

r

hased
�� � pD

To compute the annual holding cost, note that if we hold I units for a period of one year,

we incur a holding cost of (I units)(1 year)(h dollars/unit/year) � hI dollars.

Suppose the inventory level is not constant and varies over time. If the average inven-

tory level during a length of time T is I�, the holding cost for the time period will be hTI�.
This idea is illustrated in Figure 1. If we define I(t) to be the inventory level at time t,

then during the interval [0, T ] the total inventory cost is given by

h(area from 0 to T under the I(t) curve) � hTI�

The reader may verify that this result holds for the two cases graphed in Figure 1. More

formally, I�(T ), the average inventory level from time 0 to time T, is given by

I�(t) �

and the total holding cost incurred between time 0 and time T is

�T

0
hI(t)dt � hTI�(T )

To determine the annual holding cost, we need to examine the behavior of I over time.

Assume that an order of size q has just arrived at time 0. Since demand occurs at a rate

of D per year, it will take �
D

q
� years for inventory to reach zero again. Since demand dur-

ing any period of length t is Dt, the inventory level over any time interval will decline

along a straight line of slope �D. When inventory reaches zero, an order of size q is

placed and arrives instantaneously, raising the inventory level back to q. Given these ob-

servations, Figure 2 describes the behavior of I over time.

�0
T I(t)dt
�

T

Purchasing cost
��
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A key concept in the study of EOQ models is the idea of a cycle.

D E F I N I T I O N ■

Observe that Figure 2 simply consists of repeated cycles of length �
D

q
�. Hence, each year

will contain

� �
D

q
�

cycles. The average inventory during any cycle is simply half of the maximum inventory

level attained during the cycle. This result will hold in any model for which demand oc-

curs at a constant rate and no shortages are allowed. Thus, for our model, the average in-

ventory level during a cycle will be �
q

2
� units.

We are now ready to determine the annual holding cost. We write

� ��hold

c

i

y

n

c

g

le

cost
�� ��cy

y

e

c

a

le

r

s
��Holding cost

��

1
�

Any interval of time that begins with the arrival of an order and ends the instant

before the next order is received is called a cycle. ■

I(t)

t
0.5 1

2

1

I(t)

t
1

1.5

Holding cost for year 1 = Ih = 1.5h.

Area under I(t) from 0 to 1 = 2(0.5) + 1(0.5) = 1.5,

so holding cost for year 1 = 1.5h.

Holding cost for year 1 = Ih = 1.5h.

Area under I(t) from 0 to 1 = 1.5(1) = 1.5,

so holding cost for year 1 = 1.5h.

F I G U R E  1

Holding Cost and
Average Inventory Level

I(t)

t
q / D 2q / D 3q / D

q

F I G U R E  2

Behavior of I (t ) in
Basic EOQ Model
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Since the average inventory level during each cycle is �
q

2
� and each cycle is of length �

D

q
�,

�
Hol

C

di

y

n

c

g

le

cost
� � �

q

2
� ��

D

q
�� h � �

q

2

2

D

h
�

Then

� �
q

2

2

D

h
� ��

D

q
�� � �

h

2

q
�

Combining ordering cost, purchasing cost, and holding cost, we obtain

TC(q) � �
K

q

D
� � pD � �

h

2

q
�

To find the value of q that minimizes TC(q), we set TC�(q) equal to zero. This yields

TC�(q) � ��
K

q

D
2� � �

h

2
� � 0 (1)

Equation (1) is satisfied for q � �(2 KD/h)1/2. Since q � �(2 KD/h)1/2 makes no sense,

let’s hope that the economic order quantity, or EOQ,

q* � ��2K

h

D
��

1/2

(2)

minimizes TC(q). Since TC 	(q) � 2KD/q3
� 0 for all q � 0, we know that TC(q) is a 

convex function. Then Theorem 1� of Chapter 11 implies that any point where TC�(q) � 0

will minimize TC(q). Thus, q* does indeed minimize total annual cost.

R E M A R K S 1 The EOQ does not depend on the unit purchasing price p, because the size of each order does
not change the unit purchasing cost. Thus, the total annual purchasing cost is independent of q. In
Section 15.3, we discuss models in which the size of the order changes the unit purchasing cost.
2 Since each order is for q* units, a total of �

q
D
*
� orders must be placed during each year.

3 To see whether the EOQ formula is reasonable, let’s see how changes in certain parameters
change q*. For example, as K increases, we would expect the number of orders placed each year, �

q
D
*
�,

to decrease. Equivalently, we would expect an increase in K to increase q*. A glance at (2) shows
that this is indeed the case. Analogously, an increase in h makes it more costly to hold inventory, so
we would expect an increase in h to reduce the average inventory level, �

q

2

*
�. Equation (2) shows that

an increase in h does reduce q*; it also shows that the ratio of the ordering cost to the holding cost
is the critical factor in determining q*. For example, if both K and h are doubled, q* remains un-
changed. Also note that q* is proportional to D1/2. Thus, quadrupling demand will only double q*.
4 It is not difficult to show that if the EOQ is ordered, then

� (3)

To prove this, note that

� �
hq

2

*
� � �

h

2
� ��2K

h

D
��

1/2

� ��KD

2

h
��

1/2

� �
K

q

D

*
� � � ��KD

2

h
��

1/2

Figure 3 illustrates the trade-off between holding cost and ordering cost. The figure confirms the
fact that at q*, the annual holding and ordering costs are the same.

KD
��

Ordering cost
��

Holding cost
��

ordering cost
��

Holding cost
��

Holding cost
��
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We illustrate the use of the EOQ formula with the following example.

E X A M P L E  1

Braneast Airlines uses 500 taillights per year. Each time an order for taillights is placed,

an ordering cost of $5 is incurred. Each light costs 40¢, and the holding cost is 8¢/light/year.

Assume that demand occurs at a constant rate and shortages are not allowed. What is the

EOQ? How many orders will be placed each year? How much time will elapse between

the placement of orders?

Solution We are given that K � $5, h � $0.08/light/year, and D � 500 lights/year. The EOQ is

q* � ��2(5

0

)

.

(

0

5

8

00)
��

1/2

� 250

Hence, the airline should place an order for 250 taillights each time that inventory reaches

zero.

� �
q

D

*
� � �

5

2

0

5

0

0
� �

The time between placement (or arrival) of orders is simply the length of a cycle. Since

the length of each cycle is �
q

D

*
�, the time between orders will be

�
q

D

*
� � �

2

5

5

0

0

0
� � �

1

2
� year

Sensitivity of Total Cost to Small Variations 
in the Order Quantity

In most situations, a slight deviation from the EOQ will result in only a slight increase in

costs. For Example 1, let’s see how deviations from the EOQ change the total annual cost.

Since annual purchasing cost is unaffected by the order quantity, we focus our attention

on how the annual holding and ordering costs are affected by changes in the order quan-

tity. Let

HC(q) � annual holding cost if the order quantity is q

OC(q) � annual ordering cost if the order quantity is q

2 orders
�

Orders
�

Braneast Airlines

q
q*0

Annual
cost

Annual
total cost TC(q)

Minimum

Annual
holding cost h( (q

2

Annual
ordering cost

KD
q

F I G U R E  3

Trade-Off between
Holding Cost and

Ordering Cost
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We find that

HC(q) � �
1
2

�(0.08q) � 0.04q OC(q) � 5 ��
50

q

0
�� � �

2,5

q

00
�

Using the information in Table 1, we obtain the sketch of HC(q) � OC(q) given in Fig-

ure 4. The figure shows that HC(q) � OC(q) is very flat near q*. For example, ordering

20% more than the EOQ (q � 300) raises HC(q) � OC(q) from 20 to 20.33 (an increase

of under 2%).

The flatness of the HC(q) � OC(q) curve is important, because it is often difficult to es-

timate h and K. Inaccurate estimation of h and K may result in a value of q that differs slightly

from the actual EOQ. The flatness of the HC(q) � OC(q) curve indicates that even a mod-

erate error in the determination of the EOQ will only increase costs by a slight amount.

TA B L E  1

Cost Calculations for Figure 4

q HC (q) OC (q) HC (q) � OC (q)

50 2.0 50.00 52.00

100 4.0 25.00 29.00

150 6.0 16.67 22.67

200 8.0 12.50 20.50

220 8.8 11.36 20.16

240 9.6 10.42 20.02

250 10.0 10.00 20.00

260 10.4 9.62 20.02

280 11.2 8.93 20.13

300 12.0 8.33 20.33

350 14.0 7.14 21.14

400 16.0 6.25 22.25

OC(q) + HC(q)

q*

q

50 100 150 200 250 300 350

54

48

42

36

30

24

18

12

6

F I G U R E  4

OC (q) � HC (q) for
Braneast Example
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Determination of EOQ When Holding Cost Is 
Expressed in Terms of Dollar Value of Inventory

Often, the annual holding cost is expressed in terms of the cost of holding one dollar’s

worth of inventory for one year. Suppose that hd � cost of holding one dollar in inven-

tory for one year. Then the cost of holding one unit of inventory for one year will be phd,

and (2) may be written as

q* � ��2p
K

h

D

d

��
1/2

(4)

E X A M P L E  2

A department store sells 10,000 cameras per year. The store orders cameras from a 

regional warehouse. Each time an order is placed, an ordering cost of $5 is incurred. The

store pays $100 for each camera, and the cost of holding $1 worth of inventory for a year

is estimated to be the annual capital opportunity cost of 20¢. Determine the EOQ.

Solution We are given that K � $5, D � 10,000 cameras per year, hd � 20¢/dollar/year, and p �

$100 per camera. Then

q* � ��2(
(

1

5

0

)

0

(1

)(

0

0

,0

.2

0

0

0

)

)
��

1/2

� (5,000)1/2
� 70.71 cameras

Hence, the EOQ recommends that the store order 70.71 cameras each time the inventory

level reaches zero. Of course, the number of cameras ordered must be an integer. Since

TC(q) is a convex function of q, either q � 70 or q � 71 must minimize TC(q). (If this

seems difficult to believe, look at Figure 4.) Because of the flatness of the HC(q) � OC(q)

curve, it doesn’t really matter whether the store chooses to order 70 or 71 cameras.

The Effect of a Nonzero Lead Time

We now allow the lead time L to be greater than zero. The introduction of a nonzero lead

time leaves the annual holding and ordering costs unchanged. Hence, the EOQ still min-

imizes total costs. To prevent shortages from occurring and to minimize holding cost, each

order must be placed at an inventory level that ensures that when each order arrives, the

inventory level will equal zero.

D E F I N I T I O N ■

To determine the reorder point for the basic EOQ model, two cases must be consid-

ered.

Case 1

Demand during the lead time does not exceed the EOQ. (This means that LD 
 EOQ.)

In this case, the reorder point occurs when the inventory level equals LD. Then the order

will arrive L time units later, and upon arrival of the order, the inventory level will equal

LD � LD � 0. In Example 1, suppose that it takes one month for a shipment of taillights

to arrive. Then L � �
1
1
2
� year, and Braneast’s reorder point will be (�

1
1
2
�)(500) � 41.67 tail-

lights. Thus, whenever Braneast has 41.67 taillights on hand, an order should be placed

for more taillights.

The inventory level at which an order should be placed is the reorder point. ■

Ordering Cameras
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Case 2

Demand during the lead time exceeds the EOQ. (This means that LD � EOQ.) In this

case, the reorder point does not equal LD. Suppose that in Example 1, L � 15 months.

Then LD � (15/12)500 � 625 taillights. Why can’t we place an order each time the in-

ventory level reaches 625 taillights? Since the EOQ � 250, our inventory level will never

reach 625. To determine the correct reorder point, observe that orders are placed every

six months. Suppose that an order has just arrived at time 0. Then an order must have

been placed L � 15 months ago (at T � �15 months). Since orders arrive every six

months, orders must be placed at T � �9 months, T � �3 months, T � 3 months, and

so on. Since at T � 0 an order has just arrived, our inventory level at T � 0 is 250. Then

at T � 3 (or any other point when an order is placed), the inventory level will equal 250 �

(3/12)(500) � 125. Thus, the reorder point is 125 taillights.

In general (see Problem 15), it can be shown that the reorder point equals the remain-

der when LD is divided by the EOQ. Thus, in our example, the reorder point is the re-

mainder when 625 is divided by 250. This again yields a reorder point of 125 taillights.

The determination of the reorder point becomes extremely important when demand is

random and stockouts can occur. In Sections 16.6 and 16.7, we discuss the problem of

determining the reorder point when demand is random.

We close this section by giving an example of a noninventory problem that can be

solved with the reasoning that we used to develop the EOQ.

E X A M P L E  3

Each hour, D students want to ride a bus from the student union to Fraternity Row. The

administration places a value of h dollars on each hour that a student is forced to wait for

a bus. It costs the university K dollars to send a bus from the student union to Fraternity

Row. Assuming that demand occurs at a constant rate, how many buses should be sent

each hour from the student union to Fraternity Row?

Solution Note that

�
To

H

ta

o

l

u

c

r

ost
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Since demand occurs at a constant rate, buses should leave at regular intervals. This means

that each bus that arrives at the student union will find the same number of students waiting.

Let q � number of students present when each bus arrives. Assuming that a bus has just ar-

rived at time 0, “number of students waiting” displays the behavior shown in Figure 5. Then

� ��K d

b

o

u

l

s

lars
�� � � �

From Figure 5, the average number of students waiting is �
q

2
�. Then

� ��
q

2
� students� ��h dolla
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s
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r
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These computations show that

�
To
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l
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r

ost
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h

2

q
� � �

K

q

D
�

This is identical to HC(q) � OC(q) for the basic EOQ model. Hence, the optimal value

of q for our busing problem is simply the EOQ. This means that the optimal value of q is

�
h

2

q
� dollars

��
Student waiting cost
���

�
K
q
D
� dollars

��

�
D
q

� buses
�

Cost of sending buses
���

student waiting cost
���

cost of sending buses
���

Bus Service
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q* � (�
2K

h
D
�)1/2. Since each bus picks up q* students, �

q
D
*
� buses should be sent each hour. 

From Figure 5, we see that the time between buses will be �
q

D

*
� hours. For example, if h �

$5/student/hour, D � 100 students/hour, and K � $10/bus, we find that

q* � ��2(10)

5

(100)
��

1/2

� 20

Then �
1
2
0
0
0

� � 5 buses/hour will leave the student union, and a bus will leave the student

union every �
1
5

� hour � 12 minutes.

Spreadsheet Template for the Basic EOQ Model

Figure 6 (file EOQ.xls) illustrates an Excel template for the basic EOQ model. The user

inputs the values of K, h (say, per year), lead time (L), and D (again, per year). Cell A5

has been given the range name K; cell B5, H; cell C5, D; and cell A11, L. In A8, the EOQ

is determined by the formula (2*K*D/H)^.5. In B8, we compute annual holding costs with

the formula .5*A8*H. In D5, we compute orders per year for the EOQ with the formula

�D/A8. In C8, we compute annual ordering costs for the EOQ with the formula �K*D5.

In D8, we compute total annual cost for the EOQ with the formula �B8�C8. In B11, we

compute the reorder point with the formula �MOD(L*D,A8). This yields the remainder

obtained when L*D is divided by the EOQ. In Figure 6, we have input the data values for

Example 1.

Students waiting

Time
q / D 2q / D 3q / D

q

F I G U R E  5

Evolution over Time of
Students Waiting

(Example 3)

A A B C D

1

2

3

4

5

6

7

8

9

1 0

1 1

SIMPLE

E O Q

MODEL

K h D ORDERS/YR

5   0.08 500 2 

E O Q HOLDING COSTS ORDERING COSTS TOTAL COST 

250 10 10 20 

LEADTIME REORDER POINT

1.25 125 
F I G U R E  6

Simple EOQ Model

EOQ.xls
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Power-of-Two Ordering Policies

Suppose a company orders three products, and the EOQs for each product yield times be-

tween orders of 3.5 days, 5.6 days, and 9.2 days. It would rarely be the case that orders for

different products would arrive on the same day. If we could somehow synchronize our re-

order intervals so that orders for different products often arrived on the same day, we could

greatly reduce our coordination costs. For example, we would need far fewer trucks to de-

liver our orders if we could synchronize their arrival. Roundy (1985) devised an elegant

and simple method called power-of-two ordering policies to ensure that orders for multi-

ple products are well synchronized. Let q* � EOQ. Then the optimal reorder interval for

a product is t* � q*/D. We assume t* is at least 1 day. Then for some m � 0, it must be

true that 2m

 t* 
 2m�1. If t* 
 �2� * 2m, we choose a reorder quantity corresponding

to a reorder interval of 2m. If t* � �2� * 2m, we choose a reorder quantity corresponding

to a reorder interval of 2m�1. Roundy proved that using this method (called a power-of-two

policy) to round the reorder interval to a neighboring power of 2 will increase the sum of

fixed and holding costs at most 6%. The virtue of a power-of-two policy is that different

products will frequently arrive at the same time. In many circumstances, this will greatly

reduce coordination costs. For example, consider our three products with reorder intervals

of 3.5 days, 5.6 days, and 9.2 days. Roundy’s power-of-two policy would choose order

quantities corresponding to reorder periods of 4, 4, and 8 days, respectively. Thus, prod-

ucts 1 and 2 always arrive together; half the time, product 3 arrives with product 2. In most

circumstances, this policy will reduce coordination costs by more than the maximum pos-

sible 6% increase in total cost. We now give a proof of Roundy’s result.

To begin, pick an arbitrary order quantity q� and define the total cost for this order

quantity by

TC(q�) � �
h

2

q�
� � �

K

q

D

�
�
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Since t* � �
q

D

*
� and t� � �

q

D

�
�, we find that

�
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C

C

(
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We can now prove Roundy’s result. We assume that t* is at least 1 day. Then for some

nonnegative integer m, 2m

 t* 
 2m�1.

T H E O R E M  1

If t* 
 2m(�2�), then the minimum-cost power-of-two ordering policy is to set t �

2m. If t* � 2m(�2�), then the minimum-cost power-of-two ordering policy is 2m�1.

�
h

2

q�
� � �

K

q

D

�
�

��
�2KhD�
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In either case, the total cost of the optimal power-of-two ordering policy will never

be more than 6% higher than the total cost of the EOQ.

Proof Since TC 	(q) � 0, we know that TC(q) is a convex function of q. The con-

vexity of TC(q) implies that the optimal power-of-two reorder time interval is either

2m or 2m�1. From (5), 2m will be the optimal power-of-two reorder time interval if

and only if

�
1

2
� ��

2

t*

m

� � �
2

t*
m�� 
 �

1

2
� ��2

m

t*

�1

� � �
2m

t*
�1�� (6)

Inequality (6) will hold if and only if

�
2m

t*
�1� 
 �

2

t*

m

�

or t* 
 �2�(2m). We have now shown that if t* 
 2m(�2�), then the minimum-cost

power-of-two ordering policy is to set t � 2m. If t* � 2m (�2�), then the minimum-

cost power-of-two ordering policy is 2m�1. This result shows that the optimal power-

of-two ordering policy must choose a reorder time in the interval 
�
�
t*

2�
�, �2�t*�.

From (5), we now find that the maximum discrepancy between the total cost for the

power-of-two ordering policy and the total cost for t* will occur if the power-of-two

reorder interval equals either �2�t* or �
�
t*

2�
�. In either case,

� �
1

2
� ��

�
1

2�
� � �2�� � 1.06

Thus, a power-of-two policy cannot cause an increase in total cost of more than 6%.

P R O B L E M S
Group A

TC��2�t* or �
�
t*

2�
��

��
TC(t*)

1 Each month, a gas station sells 4,000 gallons of gasoline.
Each time the parent company refills the station’s tanks, it
charges the station $50 plus 70¢, per gallon. The annual cost
of holding a gallon of gasoline is 30¢.

a How large should the station’s orders be?

b How many orders per year will be placed?

c How long will it be between orders?

d Would the EOQ assumptions be satisfied in this sit-
uation? Why or why not?

e If the lead time is two weeks, what is the reorder
point? If the lead time is ten weeks, what is the reorder
point? Assume 1 week � �

5
1
2
� year.

2† Money in my savings account earns interest at 10%
annual rate. Each time I go to the bank, I waste 15 minutes
in line. My time is worth $10 per hour. During each year, I
need to withdraw $10,000 to pay my bills.

a How often should I go to the bank?

b Each time I go to the bank, how much money should
I withdraw?

c If my need for cash increases, will I go to the bank
more often or less often?

d If interest rates rise, will I go to the bank more of-
ten or less often?

e If the bank adds more tellers, will I go to the bank
more often or less often?

3‡ Father Dominic’s Pizza Parlor receives 30 calls per
hour for delivery of pizza. It costs Father Dominic’s $10 to
send out a truck to deliver pizzas. It is estimated that each
minute a customer spends waiting for a pizza costs the pizza
parlor 20¢ in lost future business.

a How often should Father Dominic’s send out a truck?

b What would be the answer if a truck could only
carry five pizzas?

†Based on Baumol (1952).
‡Based on Ignall and Kolesar (1972).
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4 The efficiency of an inventory system is often measured
by the turnover ratio. The turnover ratio (TR) is defined by

TR �

a Does a high turnover ratio indicate an efficient in-
ventory system?

b If the EOQ model is being used, determine TR in
terms of K, D, h, and q.

c Suppose D is increased. Show that TR will also be
increased.

5 Suppose we order three types of appliances for the
appliance store Ohm City. The optimal reorder intervals are
9.2 days, 21.2 days, and 38.1 days. What would be the
optimal power-of-two ordering policy?

6 Suppose we order three types of clothing for Ceiling
Mart. The optimal reorder intervals are 92 days, 21 days,
and 60 days. What would be the optimal power-of-two
ordering policy?

Group B

7 Suppose we are ordering computer chips. Suppose that
in each order, exactly 10% of all chips are defective. As
soon as the order arrives, we find out which chips are
defective and return them for a complete refund. What
would be the optimal ordering policy in this situation?

8 Show that for q 
 q*, an order size of q � q* will have
a lower cost than an order size of q � q*. What is the
managerial significance of this result?

9 Suppose that instead of ordering the EOQ q*, we use
the order quantity 0.8q*. Use Equation (3) to show that
HC(q) � OC(q) will have increased by 2.50%.

10 In terms of K, D, and h, what is the average length of
time that an item spends in inventory before being used to
meet demand? Explain how this result can be used to
characterize a fast- or slow-moving item.

11 A drug store sells 30 bottles of antibiotics per week.
Each time it orders antibiotics, there is a fixed ordering cost
of $10 and a cost of $10/bottle. Assume that the annual
holding cost is 20% of the cost of a bottle of antibiotics, and
suppose antibiotics spoil and cannot be sold if they spend
more than one week in inventory. When the drug store places
an order, how many bottles of antibiotics should be ordered?

12 During each year, CSL Computer Company needs to
train 27 service representatives. No matter how many
students are trained, it costs $12,000 to run a training
program. Since service reps earn a monthly salary of $1,500,

cost of goods sold during a year
����

CSL does not want to train them before they are needed.
Each training session takes one month.

a State the assumptions needed for the EOQ model to
be applicable.

b How many service representatives should be in each
training group?

c How many training programs should CSL undertake
each year?

d How many trained service reps will be available
when each training program begins?

13 A newspaper has 500,000 subscribers who pay $4 per
month for the paper. It costs the company $200,000 to bill
all its customers. Assume that the company can earn interest
at a rate of 20% per year on all revenues. Determine how
often the newspaper should bill its customers. (Hint: Look
at unpaid subscriptions as the inventoried good.)

14 Consider a firm that knows that the price of the product
it is ordering is going to increase permanently by $X. How
much of the product should be ordered before the price
increase goes into effect?

Here is one approach to this question: Suppose the firm
orders Q units before the price increase goes into effect.

a What extra holding cost is incurred by ordering Q
units now?

b How much in purchasing costs is saved by ordering
Q units now?

c What value of Q maximizes purchasing cost savings
less extra holding costs?

d Suppose that annual demand is 1,000 units, holding
cost per unit-year is $7.50, and the price of the item is
going to increase by $10. How large an order should be
placed before the price increase goes into effect?

15 Show that the reorder point in the EOQ model equals
the remainder when LD is divided by the EOQ.

16 The borough of Staten Island has two “sanitation
districts.” In district 1, street litter piles up at an average rate
of 2,000 tons per week, and in district 2 at an average rate
of 1,000 tons per week. Each district has 500 miles of
streets. Staten Island has 10 sanitation crews and each crew
can clean 50 miles per week of streets. To minimize the
average level of the total amount of street litter in the two
districts, how often should each district be cleaned? Assume
that litter in a district grows at a constant rate until it is
picked up (assume pickup is instantaneous). (Hint: Let pi

equal the average number of times that each district is
cleaned per week. Then p1 � p2 � 1.)†

15.3 Computing the Optimal Order Quantity 
When Quantity Discounts Are Allowed

Up to now, we have assumed that the annual purchasing cost does not depend on the order

size. In Section 15.2, this assumption allowed us to ignore the annual purchasing cost

when we computed the order quantity that minimizes total annual cost. In real life, how-

†Based on Riccio, Miller, and Little (1986).
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ever, suppliers often reduce the unit purchasing price for large orders. Such price reduc-

tions are referred to as quantity discounts. If a supplier gives quantity discounts, the an-

nual purchasing cost will depend on the order size. If holding cost is expressed as a per-

centage of an item’s purchasing cost, the annual holding cost will also depend on the order

size. Since the annual purchasing cost now depends on the order size, we can no longer

ignore purchasing cost while trading off holding cost against setup cost. Thus, the ap-

proach used in Section 15.2 to find the optimal quantity is no longer valid, and a new ap-

proach is needed.

If we let q be the quantity ordered each time an order is placed, the general quantity

discount model analyzed in this section may be described as follows:

If q � b1, each item costs p1 dollars.

If b1 
 q � b2, each item costs p2 dollars.

If bk�2 
 q � bk�1, each item costs pk�1 dollars.

If bk�1 
 q � bk � ∞, each item costs pk dollars.

Since b1, b2, . . . , bk�1 are points where a price change (or break) occurs, we refer to b1,

b2, . . . , bk�1 as price break points. Since larger order quantities should be associated

with lower prices, we have pk � pk�1 �    � p2 � p1. The following example illustrates

the quantity discount model.

E X A M P L E  4

A local accounting firm in Smalltown orders boxes of floppy disks (10 disks to a box)

from a store in Megalopolis. The per-box price charged by the store depends on the num-

ber of boxes purchased (see Table 2). The accounting firm uses 10,000 disks per year. The

cost of placing an order is assumed to be $100. The only holding cost is the opportunity

cost of capital, which is assumed to be 20% per year. For this example, b1 � 100, b2 �

300, p1 � $50.00, p2 � $49.00, and p3 � $48.50.

The example is continued later in this section.

Buying Disks

TA B L E  2

Purchase Costs for Disks

No. of Boxes Price per
Ordered (q) Box

0 
 q � 100 $50.00

100 
 q � 300 $49.00

100 
 q � 300 $48.50

Before explaining how to find the order quantity minimizing total annual costs, we

need the following definitions.

1 TCi(q) � total annual cost (including holding, purchasing, and ordering costs) if each

order is for q units at a price pi.

2 EOQi � quantity that minimizes total annual cost if, for any order quantity, the pur-

chasing cost of the item is pi.

3 EOQi is admissible if bi�1 
 EOQi � bi.
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4 TC(q) � actual annual cost if q items are ordered each time an order is placed. (We

determine TC(q) by using price pi if bi�1 
 q � bi.)

Our goal is to find the value of q minimizing TC(q). Figures 7a and 7b illustrate these de-

finitions. Observe that in Figure 7a, EOQ2 is admissible because b1 � EOQ2 � b2, but

EOQ1 and EOQ3 are not admissible. In each figure, TC(q) is the solid portion of the curve.

The dashed portion of each curve represents unattainable costs. For instance, in Figure

7b, TC2(q) is dotted for q � b1, because the price is not p2 for q � b1. For q � b1, total

annual cost is given by the solid portion of TC1(q), because for q � b1, the price is p1,

and for q � b1, total annual cost is given by the solid portion of TC2(q).

In general, the value of q minimizing TC(q) can be either a break point (see Figure 7b)

or some EOQi (see Figure 7a).

The following observations are helpful in determining the point (break point or EOQi)

that minimizes TC(q).

TC

q
b1 b2EOQ2

EOQ1 EOQ3

TC1(q)

TC2(q)

TC3(q)

(a) EOQ2 minimizes TC

TC

q
b1EOQ2EOQ1

TC1(q)

TC2(q)

(b) b1 minimizes TC

F I G U R E  7

Illustrations of
Definitions of TCi (q)

and EOQi
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1 For any value of q,

TCk(q) � TCk�1(q) �    � TC2(q) � TC1(q)

This observation is valid because for any order quantity q, TCk(q) will have the lowest

holding and purchasing costs, since pk is the lowest available price; TC1(q) will have the

highest holding and purchasing costs, because p1 is the highest available price. Thus, in

Figure 7a, we find that TC3(q) � TC2(q) � TC1(q).

2 If EOQi is admissible, then minimum cost for bi�1 
 q � bi occurs for q � EOQi

(see Figure 8a). If EOQi � bi�1, the minimum cost for bi�1 
 q � bi occurs for q � bi�1

(see Figure 8b). This observation follows from the fact that TCi(q) decreases for q �

EOQi and increases for q � EOQi.

3 If EOQi is admissible, then TC(q) cannot be minimized at an order quantity for which

the purchasing price per item exceeds pi. Thus, if EOQi is admissible, the optimal order

quantity must occur for either price pi, pi�1, . . . , or pk.

To see why observation 3 holds, suppose EOQi is admissible. Why can’t an order quantity

associated with a price pj � pi have a lower cost than EOQi? Note that EOQi minimizes to-

tal annual cost if price is pi and EOQj does not minimize total annual cost if price is pi. Thus,

TCi(EOQi) � TCi(EOQj)

Since pj � pi,

TCi(EOQj) � TCj(EOQj)

The last two inequalities show that

TCi(EOQi) � TCj(EOQj)

By the definition of EOQj, we know that for all q,

TCj(EOQj) 
 TCj(q)

Thus,

TCi(EOQi) � TCj(EOQj) 
 TCj (q)

and ordering EOQi at price pi is superior to ordering any quantity at a higher price pj.

These observations allow us to use the following method to determine the optimal or-

der quantity when quantity discounts are allowed. Beginning with the lowest price, deter-

mine for each price the order quantity that minimizes total annual costs for bi�1 
 q � bi

TCi (q)

q
bi – 1 biEOQi

(a) EOQi minimizes TCi(q)

TCi (q)

q
bi – 1 biEOQi

(b)  bi – 1 minimizes TCi(q)

F I G U R E  8

For bi�1 
 q � bi ,
What Value of q

Minimizes TCi (q)?
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(call this order quantity qi*). Continue determining qk*, q*k�1, . . . until one of the qi*’s (call

it qi*) is admissible; from observation 2, this will mean that qi* � EOQi. The optimal or-

der quantity will be the member of {qk*, q*k�1, . . . , qi*} with the smallest value of TC(q).

E X A M P L E  4

Each time an order is placed for disks, how many boxes of disks should be ordered? How

many orders will be placed annually? What is the total annual cost of meeting the ac-

counting firm’s disk needs?

Solution Note that K � $100 and D � 1,000 boxes per year. We first determine the best order quan-

tity for p3 � $48.50 and 300 
 q. Then

EOQ3 � ��2(

0

1

.

0

2

0

(4

)(

8

1

.

,

5

0

0

0

)

0)
��

1/2

� 143.59

Since EOQ3 � 300, EOQ3 is not admissible. Therefore, Figure 8b is relevant, and for 

q � 300, TC3(q) is minimized by q3* � 300.

We next consider p2 � $49.00 and 100 
 q � 300. Then

EOQ2 � ��2(100

9

)(

.8

1,000)
��

1/2

� 142.86

Since 100 
 EOQ2 � 300, EOQ2 is admissible, and for a price p2 � $49.00, the best we

can do is to choose q2* � 142.86; Figure 8a is relevant. Since q2* is admissible, p1 � $50.00

and 0 
 q � 100 cannot yield the order quantity minimizing TC(q) (see observation 3).

Thus, either q2* � 142.86 or q3* � 300 will minimize TC(q). To determine which of these

order quantities minimizes TC(q), we must find the smaller of TC3(300) and TC2(142.86).

For q3* � 300, the annual holding cost/item/year is 0.20(48.50) � $9.70. Thus, for q3*,

Annual ordering cost � 100(�
1
3
,0
0
0
0
0

�) � $333.33

Annual purchasing cost � 1,000(48.50) � $48,500

Annual holding cost � (�
1
2

�)(300)(9.7) � $1,455

TC3(300) � $50,288.33

For q2* � 142.86, the annual holding cost/item/year is 0.20(49) � $9.80. Thus, for q2*,

Annual ordering cost � 100(�
1
1
4
,0
2
0
.8
0
6

�) � $699.99

Annual purchasing cost � 1,000(49) � $49,000

Annual holding cost � (�
1
2

�)(142.86)(9.8) � $700.01

TC2(142.86) � $50,400

Thus, q3* � 300 will minimize TC(q).

Our analysis shows that each time an order is placed, 300 boxes of disks should be or-

dered. Then �1
3
,0
0
0
0
0

� � 3.33 orders are placed each year. As we have already seen, the min-

imum total annual cost is $50,288.33.

A Spreadsheet Template for Quantity Discounts

Figure 9 (file Qd.xls) illustrates how inventory problems with a quantity discount can be

solved on a spreadsheet. In cell B2 (given the range name K), we enter K, the cost per

order. In cell C2 (range name D) we enter D, the annual demand. In cell D2 (HD), we en-

ter the annual cost of holding $1 of goods in inventory for one year.

Buying Disks (Continued)

Qd.xls
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In the cell range A6:C8, we enter (using the data from Example 4) the left-hand end-

point, right-hand endpoint, and price for each interval. Thus, for an order quantity � 0

and � 100 the per-unit price is $50. Now observe that Figure 8 implies that for each in-

terval the minimum cost in that interval is obtained as follows.

1 If the EOQ for the ith interval’s price lies in the interval, then the EOQ for that inter-

val obtains the minimum cost in the ith interval.

2 If the EOQ for the ith interval’s price is smaller than the left-hand endpoint of the ith

interval (bi�1), then the minimum cost for that interval is attained by an order quantity of

bi�1. Here we set b0 � 0.

3 If the EOQ for the ith interval’s price is larger than the right-hand endpoint for the ith

interval (bi), then the minimum cost for that interval is attained by an order quantity of 

bi � 1.

Our spreadsheet incorporates this logic as follows: In D6, we compute the EOQ for

the interval b0 � 0 
 order quantity � 100 � b1 by entering the formula

(2*K*D/(HD*C6))^.5. In E6, we enter the formula

�IF(AND(D6��A6,D6�B6),D6,IF(D6�A6,A6,B6-1))

This statement computes the order quantity in the first interval that minimizes annual

costs by implementing the logic described in (1)–(3) here. In F6, we compute the annual

cost corresponding to the order quantity in E6. This is given by (K*D/E6)�

D*C6�.5*HD*C6*E6.

In this formula, the first term is the annual cost of placing orders; the second term is

the cost of purchasing one year’s demand at the price for the first interval; and the third

term is the annual holding cost (whose per-unit cost equals the price of item times the an-

nual holding cost per dollar of inventory). Copying from the range D6:F6 to D6:F8 gen-

erates the minimum annual cost for the other two intervals. We see that the minimum an-

nual cost is $50,288.33, and it is attained by an order quantity of 300.

P R O B L E M S
Group A

A A B C D E F

1

2

3

4

5

6

7

8

QUANTITY K D hperdollar

DISCOUNT 100 1000 0.2 

CALCULATIONS

LEFTENDPOINT RIGHT ENDPOINT PRICE E O Q MINCOSTOQ MINIMUM COST

0 100 $50.00 141.42135624 99.0000 $51,505.10 

100 300 $49.00 142.85714286 142.8571 $50,400.00 

300 10000 $48.50 143.59163172 300.0000 $50,288.33 

F I G U R E  9

Quantity Discount Calculations

1 A consulting firm is trying to determine how to minimize
the annual costs associated with purchasing computer paper.
Each time an order is placed an ordering cost of $20 is
incurred. The price per box of computer paper depends on
q, the number of boxes ordered (see Table 3). The annual
holding cost is 20% of the dollar value of inventory. During

each month, the consulting firm uses 80 boxes of computer
paper. Determine the optimal order quantity and the number
of orders placed each year.

2 Each year, Shopalot Stores sells 10,000 cases of soda.
The company is trying to determine how many cases should
be ordered each time. It costs $5 to process each order, and
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the cost of carrying a case of soda in inventory for one year
is 20% of the purchase price. The soda supplier offers
Shopalot the schedule of quantity discounts shown in Table
4 (q � number of cases ordered per order). Each time an
order is placed, how many cases of soda should the company
order?

3 A firm buys a product using the price schedule given in
Table 5. The company estimates holding costs at 10% of
purchase price per year and ordering costs at $40 per order.
The firm’s annual demand is 460 units.

a Determine how often the firm should order.

b Determine the size of each order.

c At what price should the firm order?

Group B

4 A hospital orders its thermometers from a hospital
supply firm. The cost per thermometer depends on the order
size q, as shown in Table 6. The annual holding cost is 25%
of the purchasing cost. Let EOQ80 be the EOQ if the cost
per thermometer is 80¢, and let EOQ79 be the EOQ if the
cost per thermometer is 79¢.

a Explain why EOQ79 will be larger than EOQ80.

b Explain why the optimal order quantity must be ei-
ther EOQ79, EOQ80, or 100.

c If EOQ80 � 100, show that the optimal order quan-
tity must be EOQ79.

d If EOQ80 � 100 and EOQ79 � 100, show that the
optimal order quantity must be either EOQ80 or 100.

e If EOQ80 � 100 and EOQ79 � 100, show that the
optimal order quantity must be EOQ79.

5 In Problem 4, suppose the cost per order is $1 and the
monthly demand is 50 thermometers. What is the optimal
order quantity? How small a discount could the supplier
offer and still have the hospital accept the discount?

15.4 The Continuous Rate EOQ Model

Many goods are produced internally rather than purchased from an outside supplier. In

this situation, the EOQ assumption that each order arrives at the same instant seems un-

realistic; it isn’t possible to produce, say, 10,000 cars at the drop of a hard hat. If a com-

pany meets demand by making its own products, the continuous rate EOQ model will be

more realistic than the traditional EOQ model. Again, we assume that demand is deter-

ministic and occurs at a constant rate; we also assume that shortages are not allowed.

The continuous rate EOQ model assumes that a firm can produce a good at a rate of

r units per time period (we again use one year as the time unit). This means that during

any time period of length t, the firm can produce rt units. We define

TA B L E  3

No. of Boxes Price per
Ordered Box


 q � 300 $10.00

300 
 q � 500 $9.80

100 
 q � 500 $9.70

TA B L E  4

No. of Cases Price per
Ordered Case


 q � 200 $4.40

200 
 q � 400 $4.20

100 
 q � 400 $4.00

TA B L E  5

Order Size Price per Unit

0–99 units $20.00

100–199 $19.50

200–499 $19.00

500 or more $18.75

TA B L E  6

Price per
Order Size Thermometer

q � 100 80¢

q � 100 79¢
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q � number of units produced during each production run

K � cost of setting up a production run

(often due to idle time that occurs at the beginning or end of a production run)

h � cost of holding one unit in inventory for one year

D � annual demand for the product

Assuming that a production run begins at time 0, the variation of inventory over time is

described by Figure 10. At the beginning of a production run, we are producing at a rate

of r units per year, and demand is occurring at a rate of D units per year. Thus, until q

units are produced, inventory increases at a rate of r � D units per year. (Of course, r �

D must hold, or else demand could not be met.) At time �
q

r
�, q units will have been pro-

duced. At this time, the production run is complete, and inventory decreases at a rate of

D units per year until a zero inventory position is reached. A zero inventory level will oc-

cur at time �
D

q
�. Then another production run begins.

Assuming that per-unit production costs are independent of run size, we must deter-

mine the value of q that minimizes

�

Since demand occurs at a constant rate, we know that (average inventory level) �

(�
1
2

�)(maximum inventory level). From Figure 10, we see that the maximum inventory level

occurs at time �
q

r
�. Since between zero and �

q

r
�, the inventory level is increasing at a rate of

r � D units per year, the inventory level at time �
q

r
� will be (�

q

r
�)(r � D). Then (average in-

ventory level) � (�
1
2

�)(�
q

r
�)(r � D), and

� h(average inventory)(1 year) � �
h(r �

2r

D)q
�

Observe that the annual holding cost for the continuous rate EOQ model is the same as

that for a conventional EOQ model in which the unit holding cost is �h(r �

r
D)

�. As usual,

� � � � � � �
K

q

D
�

The discussion shows that

� � �
hq(r

2

�

r

D)
� � �

K

q

D
�

The last equation shows that the problem of minimizing the sum of annual holding and

ordering costs for the continuous rate model is equivalent to solving an EOQ model with

holding cost �h(r �

r
D)

�, ordering cost K, and annual demand D. Using this observation and

ordering cost
��

Holding cost
��

cycles
�

ordering cost
��

Ordering cost
��

Holding cost
��

setup cost
��

Holding cost
��

I

t
q / r

Slope r  –  D Slope r  –  D

Slope  –  D

Slope  –  D

q / D

q
(r  –  D)

r

F I G U R E  10

Variation of Inventory
for Continuous Rate

EOQ Model
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the economic order quantity (or lot size) formula (2), we may immediately deduce that

for the continuous rate EOQ model,

Optimal run size � � �
1/2

� ��h(

2

r

K

�

Dr

D)
��

1/2

(7)

As usual, �
D
q

� production runs must be made each year to meet the annual demand of D

units. Using the fact that

EOQ � ��2K

h

D
��

1/2

we may rewrite (7) as

Optimal run size � EOQ ��r �

r

D
��

1/2

(8)

As r increases, production occurs at a more rapid rate. Hence, for large r, the rate model

should approach the instantaneous delivery situation of the EOQ model. To see that this

is the case, note that for r large, �
(r �

r
D)

� approaches 1. Then (8) shows that as r increases

toward infinity, the optimal run size for the continuous rate model approaches the EOQ.

E X A M P L E  5

Macho Auto Company needs to produce 10,000 car chassis per year. Each is valued at

$2,000. The plant has the capacity to produce 25,000 chassis per year. It costs $200 to set

up a production run, and the annual holding cost is 25¢, per dollar of inventory. Deter-

mine the optimal production run size. How many production runs should be made each

year?

Solution We are given that

r � 25,000 chassis per year

D � 10,000 chassis per year

h � 0.25($2,000)/chassis/year � $500/chassis/year

K � $200 per production run

From (7),

Optimal run size � � �1/2

� 115.47

Also, �1
1
0
1
,
5
0
.
0
4
0
7

� � 86.60 production runs will be made each year.

Spreadsheet Template for the Continuous Rate EOQ Model

Figure 11 (file ConEOQ.xls) illustrates a template for the continuous rate EOQ model. In

cell A6, the user inputs K; in B6, h; in C6, D; and in D6, the production rate r. In Figure

11 we have used the parameter values given in Example 5. In A8 (assigned the range name

Q), the formula (2*K*D/H)^.5*(R/(R�D))^.5 (again we are using range names) com-

putes the optimal run size. In B8, the formula D/Q computes the number of runs per year.

In C8, we compute the annual cost (exclusive of purchasing costs) with the formula

(H*Q*(R�D)/(2*R))�K*D/Q. The first term in this formula equals the annual cost of

2(200)(10,000)(25,000)
���

Macho Auto Company

2KD
��

ConEOQ.xls
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holding inventory. This follows because, from Figure 10, the maximum level of inventory

during a cycle is q(r � D)/r. The second term is the annual cost of placing orders.

P R O B L E M S
Group A

A A B C D

1

2

3

4

5

6

7

8

CONTINUOUS

RATE

E O Q

MODEL

K h D r

200 500 10000 25000 

RUN SIZE RUNS/YR COST/YR

115.47005383793 86.60254 34641.016 

F I G U R E  11

Continuous Rate 
EOQ Model

1 Show that the optimal run size always exceeds the EOQ.
Give an intuitive explanation for this result.

2 A company can produce 100 home computers per day.
The setup cost for a production run is $1,000. The cost of
holding a computer in inventory for one year is $300.
Customers demand 2,000 home computers per month
(assume that 1 month � 30 days and 360 days � 1 year).
What is the optimal production run size? How many
production runs must be made each year?

3 The production process at Father Dominic’s Pizza can
produce 400 pizza pies per day; the firm operates 250 days per
year. Father Dominic’s has a cost of $180 per production run
and a holding cost of $5 per pizza-year. The pies are frozen
immediately after they are produced and stored in a refrigerated
warehouse with a current maximum capacity of 2,000 pies.

a Annual demand is 37,500 pies per year. What pro-
duction run size should be used?

b What is the total annual cost incurred in meeting 
demand?

c How many days per year will the company be pro-
ducing pizza pies?

Group B

4 A company has the option of purchasing a good or
manufacturing the item. If the item is purchased, the
company will be charged $25 per unit plus a cost of $4 per
order. If the company manufactures the item, it has a
production capacity of 8,000 units per year. It costs $50 to
set up a production run, and annual demand is 3,000 units
per year. If the annual holding cost is 10% and the cost of
manufacturing one unit is $23, determine whether the
company should purchase or manufacture the item.

15.5 The EOQ Model with Back Orders Allowed

In many real-life situations, demand is not met on time, and shortages occur. When a

shortage occurs, costs are incurred (because of lost business, the cost of placing special

orders, loss of future goodwill, and so on). In this section, we modify the EOQ model of

Section 15.2 to allow for the possibility of shortages. Let s be the cost of being short one

unit for one year. The variables K, D, and h have their usual meanings. In most situations,

s is very difficult to measure. We assume that all demand is backlogged and no sales are

lost. To determine the order policy that minimizes annual costs, we define

q � order quantity

q � M � maximum shortage that occurs under an ordering policy

Equivalently (assuming a zero lead time), the firm will be q � M units short each time

an order is placed.
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We assume that the lead time for each order is zero. Since an order is placed each time

the firm is q � M units short (or when the firm’s inventory position is M � q), the firm’s

maximum inventory level will be M � q � q � M. For example, if q � 500 and q � M �

100, we know that an order for 500 units will be used to satisfy the backlogged demand for

100 units and will result in an inventory level of 500 � 100 � 400 units.

Assuming that an order is placed at time 0, the evolution of the inventory level over

time is described by Figure 12. Since purchasing costs do not depend on q and M, we can

minimize annual costs by determining the values of q and M that minimize

� � �
ord

y

e

e

r

a

c

r

ost
� (9)

Notice that what happens between time 0 and time B is identical to what happens be-

tween time B and time D. For this reason, we call the time periods 0B and BD cycles. A

cycle may also be thought of as the time interval between placement of orders. To deter-

mine holding cost per year and shortage cost per year, we begin by finding holding cost

per cycle and shortage cost per cycle. This requires that we find the length of line seg-

ments 0A and AB in Figure 12. Since a zero inventory level occurs after M units have been

demanded, we conclude that 0A � �
M
D

�. Since a cycle ends when q units have been de-

manded, we conclude that 0B � �
D

q
�. Then

Length of AB � (length of 0B) � (length of 0A) � �
q �

D

M
�

Also note that since q units are ordered during each cycle, �
D

q
� cycles (and orders) must be

placed during each year. We can now express the costs in (9). Recall that

� ��hold

c

i

y

n

c

g

le

cost
�� ��cy

y

e

c

a

le

r

s
��

and

�
Hol

C

di

y

n

c

g

le

cost
� � holding cost from time 0 to time A

From Figure 12, the average inventory level between time 0 and time A is simply �
M
2
�. Since

0A is of length �
M
D

�,

�
Hol

C

di

y

n

c

g

le

cost
� � ��

M

2
�� ��

M

D
��h � �

M

2D

2h
�

Holding cost
��

shortage cost
��

Holding cost
��

I(t)

t
A0

M

B

C

D

q  –  M q  –  M

F I G U R E  12

Evolution of Inventory
over Time for 

EOQ Model with Back
Orders Allowed
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Since there are �
D
q

� cycles per year,

� ��M2D

2h
�� ��

D

q
�� � �

M

2q

2h
�

Similarly,

� ��shor

c

ta

y

g

c

e

le

cost
�� ��cy

y

e

c

a

le

r

s
��

Also observe that shortage cost per cycle � shortage cost incurred during time AB. Since

demand occurs at a constant rate, the average shortage level during time AB is simply half

of the maximum shortage. Thus, the average shortage level on the time interval AB is
�
q �

2

M
�. Since AB is a time interval of length �

q �

D

M
�,

�
Shor

C

ta

y

g

c

e

le

cost
� � �

1

2
� �q � M� ��q �

D

M
�� s � �

(q �

2D

M)2s
�

Since there are �
D
q

� cycles per year,

� �
(q �

2D

M)2s
� ��

D

q
�� � �

(q �

2q

M)2s
�

As usual, ordering cost per year � �
K
q
D
�. Let TC(q, M) be the total annual cost (excluding

purchasing cost) if our order policy uses parameters q and M. From our discussion, we

must choose q and M to minimize

TC(q, M) � �
M

2q

2h
� � �

(q �

2q

M)2s
� � �

K

q

D
�

By using Theorem 3 of Chapter 11, we can show that TC(q, M) is a convex function 

of q and M. From Theorem 1� and Theorem 7 of Chapter 11, the minimum value of 

TC(q, M) will occur at the point where

�
∂

∂

T

q

C
� � �

∂

∂

T

M

C
� � 0

Some tedious algebra shows that TC(q, M) is minimized for q* and M*:

q* � 
�2KD(

h

h

s

� s)
��

1/2

� EOQ ��h �

s

s
��

1/2

M* � 
�h(

2

h

K

�

Ds

s)
��

1/2

� EOQ ��h �

s

s
��

1/2

Maximum shortage � q* � M*

As s approaches infinity, q* and M* both approach the EOQ, and the maximum short-

age approaches zero. This is reasonable, because if s is large, the cost of a shortage is pro-

hibitive, and we would expect the optimal ordering policy to incur very few, if any, short-

ages. In other words, if s is very large, we are facing (to all intents and purposes) the

no-shortages-allowed situation of Section 15.2.

E X A M P L E  6

Each year, the Smalltown Optometry Clinic sells 10,000 frames for eyeglasses. The clinic

orders frames from a regional supplier, which charges $15 per frame. Each order incurs

an ordering cost of $50. Smalltown Optometry believes that the demand for frames can

be backlogged and that the cost of being short one frame for one year is $15 (because of

loss of future business). The annual holding cost for inventory is 30¢ per dollar value of

Smalltown Optometry Clinic

Shortage cost
��

Shortage cost
��

Holding cost
��
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inventory. What is the optimal order quantity? What is the maximum shortage that will

occur? What is the maximum inventory level that will occur?

Solution We are given that

K � $50

D � 10,000 frames per year

h � 0.3(15) � $4.50/frame/year

s � $15/frame/year

Our formula for q* and M* now yield

q* � � �
1/2

� 537.48

M* � � �
1/2

� 413.45

Then the maximum shortage occurring will be q* � M* � 124.03 frames, and each or-

der should be for 537 or 538 frames. A maximum inventory level of M* � 413.45 frames

will occur.

As in Section 15.4, suppose that production is not instantaneous and we can produce

at a rate of r units per year. If shortages are allowed, it can be shown that

q* � ��2K

h(

D

r

r

�

(h

D

�

)s

s)
��

1/2

M* � �
q*(r

r

� D)
� � ��2K

s

D

r(

(

h

r

�

�

s

D

)

)h
��

1/2

The maximum shortage occurring in this case (call it S*) is given by

S* � ��2K

s

D

r(

(

h

r

�

�

s

D

)

)h
��

1/2

Spreadsheet Template for the EOQ Model with Back Orders

Figure 13 (file BackEOQ.xls) illustrates a spreadsheet template for the EOQ model with

back orders. In cells A6, B6, C6, and D6, we enter the values of K, D, h, and s, respec-

tively, for Example 6. In A8 (given the range name Q), we compute the optimal order

quantity with the formula (2*K*D*(H�S)/(H*S))^.5. In B8 (range name M), we com-

2(50)(10,000)(15)
��

2(50)(10,000)(19.50)
���

A A B C D

1

2

3

4

5

6

7

8

E O Q

MODEL

WITH

BACKORDERS

K D h s

50 10000 4.5 15 

q* M* MAX SHORT ANNUAL COST

537.48384989 413.44912 124.03473459 1860.52101884 

F I G U R E  13

EOQ Model with 
Back Orders

BackEOQ.xls
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pute the optimal value of M with the formula (2*K*D*S/(H*(H�S)))^.5. In C8, we com-

pute the maximum shortage with the formula Q�M. In D8, we compute the annual total

cost TC(q, M) (exclusive of purchasing costs) with the formula (M^2*H)/

(2*Q))�((Q�M)^2*S/2*Q))�(K*D/Q).

P R O B L E M S
Group A

1 Show that the optimal order quantity for the backlogged
demand model is always at least as large as the EOQ but
that the maximum inventory level for the backlogged
demand model cannot exceed the EOQ.

2 A Mercedes dealer must pay $20,000 for each car
purchased. The annual holding cost is estimated to be 25%
of the dollar value of inventory. The dealer sells an average
of 500 cars per year. He believes that demand is backlogged
but estimates that if he is short one car for one year he will
lose $20,000 worth of future profits. Each time the dealer
places an order for cars, ordering cost amounts to $10,000.
Determine the Mercedes dealer’s optimal ordering policy.
What is the maximum shortage that will occur?

Group B

3 Suppose that instead of measuring shortage in terms of
cost per shortage year, a cost of S dollars is incurred for
each unit the firm is short. This cost does not depend on the
length of time before the backlogged demand is satisfied.
Determine a new expression for TC(q, M), and explain how
to determine optimal values q* and M*.

4 For the model developed in this section, determine

a the average length of time it takes to meet demand
for a unit.

b the fraction of all demanded units that are back-
ordered.

15.6 When to Use EOQ Models

Demand is often irregular, or “lumpy.” This may be caused by seasonality or other fac-

tors. If demand is irregular, the Constant Demand Assumption that was required for all

the EOQ models will not be satisfied.

To determine whether the assumption of constant demand is reasonable, suppose that

during n periods of time, demands d1, d2, . . . , dn have been observed. Also, enough is

known about future demands to make the assumption of deterministic demand a realistic

one. To decide whether demand is sufficiently regular to justify use of EOQ models, Pe-

terson and Silver (1998) recommend that the following computations be done:

1 Determine the estimate d� of the average demand per period given by

d� � �
1

n
� �

i�n

i�1

di

2 Determine an estimate of the variance of the per-period demand D from

Est. var D � �
1

n
� �

i�n

i�1

di
2

� d�2

3 Determine an estimate of the relative variability of demand (called the variability co-

efficient). This quantity is labeled VC, where

VC � �
est.

d�
v
2

ar D
�

Note that if all the di are equal, the estimate of the variance of D will equal zero. This

will also make VC � 0. Hence, if VC is small, this indicates that the Constant Demand

Assumption is reasonable. Research indicates that the EOQ should be used if VC � 0.20;
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otherwise, demand is too irregular to justify the use of an EOQ model. (See Peterson and

Silver (1998).)

If VC � 0.20, dynamic programming methods and the Silver–Meal heuristic, which

are discussed in Chapter 18, may be used to determine optimal ordering policies.

As an example of the use of the VC formula, suppose that demands during the four

quarters of the past year have been as follows: 80 units, 100 units, 130 units, and 90 units.

Assuming that future demand is known to follow a similar pattern, should an EOQ model

be used in this situation?

Since d� � �
40
4
0

� � 100 and est. var D � (�
1
4

�) (802
� 1002

� 1302
� 902) � 1002

� 350,

we have VC � �
(1

3
0
5
0
0
)2� � 0.035. Since VC is smaller than 0.20, an EOQ model can be used

in this situation.

In closing, we note that the EOQ models of this chapter require the implicit assump-

tion that demands during different periods of time are independent. In other words, the

EOQ models require that any knowledge about demand during one period of time gives

no information about demand at any other point in time. If a firm’s inventory needs are

met through internal production, this is often an unrealistic assumption. For example, sup-

pose a company needs to produce 5 units of product A by December 11 and that each unit

of product A requires 2 units of product B and 3 units of product C. Once product B and

product C are available, it takes ten days to assemble a unit of product A. Then the fact

that there is a demand for 5 units of product A on December 11 creates a December 1 de-

mand for 10 units of product B and 15 units of product C. Hence, the December 1 de-

mand for products B and C depends on the December 11 product A demand. Our EOQ

models do not take into account the dependence of demand that is present in many man-

ufacturing situations. These can best be exploited by using material resource planning

(MRP) systems.

R E M A R K Use the Excel commands �AVERAGE, to estimate the average demand for a given period, and
�VARP, to estimate the variance in the demand for a given period.

P R O B L E M
Group A

1 Observed demand for air conditioners during the last
four quarters was as follows: fall, 100; winter, 50; spring,
150; summer, 300. Is it reasonable to use an EOQ model in
this situation?

15.7 Multiple-Product EOQ Models

Suppose a company orders several products. Each time an order is received, shipments 

of some (but perhaps not all) of the products arrive. Each time an order arrives, there is

a fixed cost associated with the order (for example, the cost of driving a truck to deliver

the order), and there is another fixed cost associated with each product included in the or-

der. How can we minimize the sum of annual holding and fixed costs? An example of this

situation would be an appliance store that orders three different types of appliances from

a supplier. For a low-demand product, it would be unreasonable to order the product each

time a truck arrives. Chopra and Meindl (2001) devised a method to find a nearly opti-

mal solution to this type of problem. To begin, we find the product that is most frequently

ordered. Suppose that is product 1; we assume this product will be included in each or-

der. We then set up a Solver model that determines the following changing cells:
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■ Number of orders received per year. Note that each order is assumed to contain a

shipment of product 1.

■ For all products other than product 1, the number of orders that need to be re-

ceived before an order of the product is received. If, for example, product 2 should

be contained in every third order, then the changing cell for product 2 will equal 3.

Given trial values of these quantities, we can easily determine the total fixed cost (sum of

fixed cost for each product plus fixed cost for each order) and total holding cost for each

product. The sum of these costs will be our target cell for Solver. Our model is highly

nonlinear. It is necessary to use the Evolutionary Solver to find the optimal solution. Here

is an example of the method.

E X A M P L E  7

Ohm City Appliances has three types of TVs delivered from Springfield TV. Figure 14

gives the annual demand, unit purchasing cost, annual holding cost (as a percentage of

purchase cost), the fixed cost of ordering a product, and the fixed cost of placing an or-

der. Determine an ordering policy that minimizes the sum of fixed and holding costs.

Ohm City Appliances

4

5
6

7

8
9

10

11
12

13

14
15

16

17
18

19

20
21

22

23
24

25

26
27

28

29
30

31

32
33

A B C D E F

Product 1 Product 2 Product 3

annual demand 12000 1200 120

unit cost 500.00$         500.00$        500.00$     
holding cost 0.2 0.2 0.2

product order cost 1,000.00$      1,000.00$     1,000.00$  

eoq 489.8979486 154.9193338 48.989795
orders per year 24.49489743 7.745966692 2.4494897

overall order cost 4,000.00$      

Orders per year P1 10.46135741

Orders of P1 per P2 1

Orders of P1 per P3 4
Orders per Year P2 10.46135741

Orders Per Year P3 2.615339354

Main annual order cost 41,845.43$    

Prod 1 Prod 2 Prod 3

Order quantity 1147.078675 114.7078675 45.883147
Avg. Inventory 573.5393374 57.35393374 22.941573

Annual Holding cost 57,353.93$    5,735.39$     2,294.16$  

Annual product ordering cost 10,461.36$    10,461.36$   2,615.34$  

Total Annual cost 130,766.97$  

F I G U R E  14
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Solution Our work is in file MultipleEOQ.xls. Also see Figure 14.

Step 1 In C11:E11, we compute the EOQ for each product by copying from C11 to

D11:E11 the formula

�SQRT(2*C10*C7/(C9*C8))

Then, in C12:E12, we compute the number of times each product is ordered during a year

by copying from C12 to D12:E12 the formula

�C7/C11

We find that product 1 is the most frequently ordered.

Step 2 In cell C15, we enter a trial value (not necessarily an integer) for the number of

orders placed each year. In C16, we enter a trial value (which must be an integer) for the

number of orders with product 1 that must be received before an order of product 2 is re-

ceived. In C17, we enter a trial value (which must be an integer) for the number of orders

with product 1 that must be received before an order of product 3 is obtained.

Step 3 In cell C23, we compute the total fixed cost associated with the orders as (num-

ber of orders per year)*(cost per order) with the formula

�C15*C13

Step 4 In cells C18 and C19, we compute the number of times product I (I � 2 or 3) are

ordered each year by computing (orders per year)*(fraction of orders containing product I).

�$C$15/C16 (cell C18: orders of product 2 per year)

�$C$15/C17 (cell C19: orders of product 3 per year)

Step 5 In cell C26, we compute the size of each product 1 order as (annual product 1

demand)/(orders of product 1 received each year).

�C7/C15

In a similar fashion, we compute size of product 2 and product 3 orders in cells D26 and

E26.

�D7/C18 (cell D26: product 2 order size)

�E7/C19 (cell E26: product 3 order size)

Step 6 In C27:E27, we compute the average inventory level for each product as half the

order size. To do this, copy from C27 to D27:E27 the formula

�0.5*C26

Step 7 In C28:E28, we compute the annual holding cost for each product as (average in-

ventory level for product)*(annual cost of holding one unit of product in inventory). To

do this, copy from C28 to D28:E28 the formula

�C9*C8*C27

Step 8 In C29:E29, we compute the annual ordering cost for each product as (cost per

order for product)*(times product is ordered per year). For example, in cell C29, we com-

pute annual ordering cost for product 1 with the formula

�C10*C15.

Step 9 In cell C32, we compute total annual cost (exclusive of purchasing costs, which

do not depend on ordering policy) with the formula

�SUM(C28:E29)�C23

MultipleEOQ.xls
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Step 10 We now use Solver to find the cost-minimizing ordering policy. Figure 15 shows

our Solver window.

We minimize total cost (C32) by changing the number of orders per year (C15) and

the number of orders that must be placed before orders are placed for less frequently 

ordered products (C16 and C17). We require an integer for the number of orders before

each less frequently ordered product is placed. Included are the lower and upper bounds

that Evolutionary Solver requires for each changing cell.

We find that 10.46 truckloads of TVs should be received each year. Each truckload will

contain 1,147 type 1 TVs and 114 type 2 TVs. 25% of all orders will include an order of

46 type 3 TVs. Note that the low-demand type 3 TVs are infrequently ordered.

P R O B L E M S
Group A

F I G U R E  15

Solver Window for Ohm
City Appliances

1 Square City Appliance orders four types of washing
machines. Table 7 gives the annual demand, purchasing
cost, and annual holding cost (as a percentage of purchase
cost), and the fixed cost of ordering a product. Determine
an ordering policy that minimizes the sum of fixed and
holding costs. Each time an order is delivered, a $10,000
cost is incurred. Determine an ordering policy to minimize
annual cost of meeting demand.

2 In Problem 1, suppose that Square City manufactures
the washing machines. The company can manufacture
washing machines at a rate of 30,000 per year. What
manufacturing policy will minimize the annual cost of
meeting demand?

TA B L E  7

Product 1 Product 2 Product 3 Product 4

Annual demand 10,000 3,000 4,000 500

Unit purchasing $400 $300 $200 $900
cost

Holding cost .2 .2 .2 .2
percentage

Product order $1,000 $1,000 $1,000 $1,000
cost
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S U M M A R Y Notation

K � setup or ordering cost

h � cost of holding one unit in inventory for one unit of time

D � demand rate per unit time

r � rate at which firm can make product per unit time (r � D)

s � cost of being one unit short for one unit of time

Basic EOQ Model

Order quantity � q* � ��2K

h

D
��

1/2

�
q
D
*
� orders are placed each unit of time.

Quantity Discount Model

If q � b1, each item costs p1 dollars.

If b1 
 q � b2, each item costs p2 dollars.

If bk�2 
 q � bk�1, each item costs pk�1 dollars.

If bk�1 
 q � bk � ∞, each item costs pk dollars.

Beginning with the lowest price, determine for each price the order quantity (qi*) that min-

imizes total annual costs for bi�1 
 q � bi. Continue determining qk*, q*k�1, . . . until one

of the qi*’s (call it q*i�) is admissible; from observation 2, this will mean that q*i� � EOQi�.

The optimal order quantity will be the member of {qk*, q*k�1, . . . , q*i�} with the smallest

value of TC(q).

If EOQi is admissible, then qi* � EOQi. If EOQi � bi�1, then qi* � bi�1.

Continuous Rate Model

Optimal run size � 
�h(

2

r

K

�

Dr

D)
��

1/2

EOQ with Back Orders Allowed

q* � optimal order quantity

M* � maximum inventory level under optimal ordering policy

q* � M* � maximum shortage occurring under optimal ordering policy

q* � 
�2KD(

h

h

s

� s)
��

1/2

� EOQ ��h �

s

s
��

1/2

M* � 
�h(

2

h

K

�

Ds

s)
��

1/2

� EOQ ��h �

s

s
��

1/2
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R E V I E W  P R O B L E M S
Group A

1 Customers at Joe’s Office Supply Store demand an
average of 6,000 desks per year. Each time an order is
placed, an ordering cost of $300 is incurred. The annual
holding cost for a single desk is 25% of the $200 cost of a
desk. One week elapses between the placement of an order
and the arrival of the order. In parts (a)–(d), assume that no
shortages are allowed.

a Each time an order is placed, how many desks should
be ordered?

b How many orders should be placed each year?

c Determine the total annual costs (excluding purchas-
ing costs) of meeting the customers’ demands for desks.

d Determine the reorder point. If the lead time were
five weeks, what would be the reorder point? (52 weeks
� one year.)

e How would the answers to parts (a) and (b) change
if shortages were allowed and a cost of $80 is incurred
if Joe’s is short one desk for one year?

2 Suppose Joe’s is considering manufacturing desks. It
costs $250 to set up a production run, and Joe’s has the
capacity to manufacture up to 10,000 desks per year. What
is the optimal production run size? How many production
runs will be made each year?

3 A camera store sells an average of 100 cameras per month.
The cost of holding a camera in inventory for a year is 30%
of the price the camera shop pays for the camera. It costs
$120 each time the camera store places an order with its
supplier. The price charged per camera depends on the number
of cameras ordered (see Table 8). Each time the camera store
places an order, how many cameras should be ordered?

Group B

4 A company inventories two items. The relevant data for
each item are shown in Table 9. Determine the optimal

inventory policy if no shortages are allowed and if the
average investment in inventory is not allowed to exceed
$700. If this constraint could be relaxed by $1, by how
much would the company’s annual costs decrease? (This
problem requires knowledge of Section 11.8.)

5 A company produces three types of items. A single
machine is used to produce the three items on a cyclical
basis. The company has the policy that every item is
produced once during each cycle, and it wants to determine
the number of production cycles per year that will minimize
the sum of holding and setup costs (no shortages are
allowed). The following data are given:

Pi � number of units of product i that could be produced
per year if the machine were entirely devoted to
producing product i

Di � annual demand for product i

Ki � cost of setting up production for product i

hi � cost of holding one unit of product i in inventory
for one year

a Suppose there are N cycles per year. Assuming that
during each cycle, a fraction �

N
1

� of all demand for each
product is met, determine the annual holding cost and
the annual setup cost.

b Let qi* be the number of units of product i produced
during each cycle. Determine the optimal value of N
(call it N*) and qi*.

c Let EROQi be the optimal production run size for
product i if the cyclical nature of the problem is ignored.
Suppose qi* is much smaller than EROQi. What conclu-
sion could be drawn?

d Under certain circumstances, it might not be desir-
able to produce every item during each cycle. Which of
the following factors would tend to make it undesirable
to produce product i during each cycle: (1) Demand 
is relatively low. (2) The setup cost is relatively high. 
(3) The holding cost is relatively high.

TA B L E  8

No. of Cameras Price per
Ordered Camera

1–10 $10.00

11–40 $9.00

41–100 $7.00

More than 100 $5.50

TA B L E  9

Item 1 Item 2

Annual demand 6,000 4,000

Per-unit cost $4.00 $3.50

Annual holding cost 30% per year 25% per year

Price per order $35 $20
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Probabilistic Inventory Models

All the inventory models discussed in Chapter 15 require that demand during any period of

time be known with certainty. In this chapter, we consider inventory models in which demand

over a given time period is uncertain, or random; single-period inventory models, where a prob-

lem is ended once a single ordering decision has been made; single-period bidding models;

versions of the EOQ model for uncertain demand that incorporate the important concepts of

safety stock and service level; the periodic review (R, S) model; the ABC inventory classifica-

tion system; and exchange curves.

16.1 Single-Period Decision Models

In many situations, a decision maker is faced with the problem of determining the value

q for a variable (q may be the quantity ordered of an inventoried good, for example, or

the bid on a contract). After q has been determined, the value d assumed by a random

variable D is observed. Depending on the values of d and q, the decision maker incurs a

cost c(d, q). We assume that the person is risk-neutral and wants to choose q to minimize

his or her expected cost. Since the decision is made only once, we call a model of this

type a single-period decision model.

16.2 The Concept of Marginal Analysis

For the single-period model described in Section 16.1, we now assume that D is an 

integer-valued discrete random variable with P(D � d) � p(d). Let E(q) be the decision

maker’s expected cost if q is chosen. Then

E(q) � �
d

p(d)c(d, q)

In most practical applications, E(q) is a convex function of q. Let q* be the value of q

that minimizes E(q). If E(q) is a convex function, the graph of E(q) must look something

like Figure 1. From the figure, we see that q* is the smallest value of q for which

E(q* � 1) � E(q*) � 0 (1)

Thus, if E(q) is a convex function of q, we can find the value of q minimizing expected

cost by finding the smallest value of q that satisfies Inequality (1). Note that E(q � 1) �

E(q) is the change in expected cost that occurs if we increase the decision variable q to 

q � 1.
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To determine q*, we begin with q � 0. If E(1) � E(0) � 0, we can benefit by in-

creasing q from 0 to 1. Now we check to see whether E(2) � E(1) � 0. If this is true,

then increasing q from 1 to 2 will reduce expected cost. Continuing in this fashion, we

see that increasing q by 1 will reduce expected costs up to the point where we try to in-

crease q from q* to q* � 1. In this case, increasing q by 1 will increase expected cost.

From Figure 1 (which is the appropriate picture if E(q) is a convex function), we see that

if E(q* � 1) � E(q*) � 0, then for q � q*, E(q � 1) � E(q) � 0. Thus, q* must be the

value of q that minimizes E(q). If E(q) is not convex, this argument may not work. (See

Problem 1 at the end of this section.)

Our approach determines q* by repeatedly computing the effect of adding a marginal

unit to the value of q. For this reason, it is often called marginal analysis. Marginal analy-

sis is very useful if it is easy to determine a simple expression for E(q � 1) � E(q). In

the next section, we use marginal analysis to solve the classical news vendor problem.

P R O B L E M
Group A

E(q)

q

10 q*  –  1 q*  +  1q*

F I G U R E  1

Determination of q* by
Marginal Analysis

1 Suppose E(q) is E(0) � 8, E(1) � 6, E(2) � 5, 
E(3) � 7, E(4) � 6, E(5) � 5.5, E(6) � 4.5, and 
E(7) � 5.

a What value of q minimizes E(q)?

b If marginal analysis is used to determine the value
of q that minimizes E(q), what is the answer?

c Explain why marginal analysis fails to find the value
of q that minimizes E(q).

16.3 The News Vendor Problem: Discrete Demand

Organizations often face inventory problems where the following sequence of events occurs:

1 The organization decides how many units to order. We let q be the number of units

ordered.

2 With probability p(d), a demand of d units occurs. In this section, we assume that d

must be a nonnegative integer. We let D be the random variable representing demand.
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3 Depending on d and q, a cost c(d, q) is incurred.

Problems that follow this sequence are often called news vendor problems. To see why,

consider a vendor who must decide how many newspapers should be ordered each day from

the newspaper plant. If the vendor orders too many papers, he or she will be left with many

worthless newspapers at the end of the day. On the other hand, a vendor who orders too few

newspapers will lose profit that could have been earned if enough newspapers to meet cus-

tomer demand had been ordered, and customers will be disappointed. The news vendor must

order the number of papers that properly balances these two costs. We have already en-

countered a news vendor problem in the discussion of decision theory in Section 13.1.

In this section, we show how marginal analysis can be used to solve news vendor prob-

lems when demand is a discrete random variable and c(d, q) has the following form:

c(d, q) � coq � (terms not involving q) (d � q) (2)

c(d, q) � �cuq � (terms not involving q) (d � q � 1) (2.1)

In (2), co is the per-unit cost of being overstocked. If d � q, we have ordered more than

was demanded—that is, overstocked. If the size of the order is increased from q to q �

1, then (2) shows that the cost increases by co. Hence, co is the cost due to being over-

stocked by one extra unit. We refer to co as the overstocking cost. Similarly, if d � q �

1, we have understocked (ordered an amount less than demand). If d � q � 1 and we in-

crease the size of the order by one unit, we are understocked by one less unit. Then (2.1)

implies that the cost is reduced by cu, so cu is the per-unit cost of being understocked. We

call cu the understocking cost.

To derive the optimal order quantity via marginal analysis, let E(q) be the expected

cost if an order is placed for q units. We assume that the decision maker’s goal is to find

the value q* that minimizes E(q). If c(d, q) can be described by (2) and (2.1), and E(q) is

a convex function of q, then marginal analysis can be used to determine q*.

Following (1), we must determine the smallest value of q for which E(q � 1) �

E(q) � 0. To calculate E(q � 1) � E(q), we must consider two possibilities:

Case 1 d � q. In this case, ordering q � 1 units instead of q units causes us to be over-

stocked by one more unit. This increases cost by co. The probability that Case 1 will oc-

cur is simply P(D � q), where D is the random variable representing demand.

Case 2 d � q � 1. In this case, ordering q � 1 units instead of q units enables us to be

short one less unit. This will decrease cost by cu. The probability that Case 2 will occur

is P(D � q � 1) � 1 � P(D � q).

In summary, a fraction P(D � q) of the time, ordering q � 1 units will cost co more

than ordering q units; and a fraction 1 � P(D � q) of the time, ordering q � 1 units will

cost cu less than ordering q units. Thus, on the average, ordering q � 1 units will cost

co P(D � q) � cu[1 � P(D � q)]

more than ordering q units.

More formally, we have shown that

E(q � 1) � E(q) � co P(D � q) � cu[1 � P(D � q)]

� (co � cu) P(D � q) � cu
†

Then E(q � 1) � E(q) � 0 will hold if

(co � cu) P(D � q) � cu � 0 or P(D � q) � �
co �

cu

cu

�

†Since P(D � q) increases as q increases, E(q � 1) � E(q) will increase as q increases. Hence, if co � cu �

0, E(q) is a convex function of q, and our use of marginal analysis is justified.
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Let F(q) � P(D � q) be the demand distribution function. Since marginal analysis is

applicable, we have just shown that E(q) will be minimized by the smallest value of q

(call it q*) satisfying

F(q*) � �
co �

cu

cu

� (3)

The following example illustrates the use of (3).

E X A M P L E  1

In August, Walton Bookstore must decide how many of next year’s nature calendars

should be ordered. Each calendar costs the bookstore $2 and is sold for $4.50. After Jan-

uary 1, any unsold calendars are returned to the publisher for a refund of 75¢ per calen-

dar. Walton believes that the number of calendars sold by January 1 follows the proba-

bility distribution shown in Table 1. Walton wants to maximize the expected net profit

from calendar sales. How many calendars should the bookstore order in August?†

Solution Let

q � number of calendars ordered in August

d � number of calendars demanded by January 1

If d � q, the costs shown in Table 2 are incurred (revenue is negative cost). From (2), 

co � 1.25.

If d � q � 1, the costs shown in Table 3 are incurred. From (2), �cu � �2.5, or 

cu � 2.50. Then

�
co �

cu

cu

� � �
2

3

.

.

5

7

0

5
� � �

2

3
�

Walton Bookstore Calendar Sales

TA B L E  1

Probability Mass Function for
Calendar Sales

No. of Calendars
Sold Probability

100 .30

150 .20

200 .30

250 .15

300 .05

TA B L E  2

Computation of Total Cost If d � q

Cost

Buy q calendars at $2/calendar 2q

Sell d calendars at $4.50/calendar �4.50d

Return q � d calendars at 75¢/calendar �0.75(q � d)

Total cost 1.25q � 3.75d

†Based on Barron (1985).
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From (3), Walton should order q* calendars, where q* is the smallest number for which

P(D � q*) � �
2
3

�. As a function of q, P(D � q) increases only when q � 100, 150, 200,

250, or 300. Also note that P(D � 100) � .30, P(D � 150) � .50, and P(D � 200) �

.80. Since P(D � 200) is greater than or equal to �
2
3

�, q* � 200 calendars should be ordered.

R E M A R K S 1 In terms of marginal analysis, the probability of selling the 200th calendar that is ordered is 
P(D � 200) � .50. This implies that the 200th calendar has a 1 � .50 � .50 chance of being un-
sold. Thus, the 200th calendar will increase Walton’s expected costs by .50(�2.50) � .50(1.25) �
�$0.625. Hence, the 200th calendar should be ordered. On the other hand, the probability that the
201st calendar will be sold is P(D � 201) � .20, and the probability that the 201st calendar will
not be sold is 1 � .20 � .80. Therefore, the 201st calendar will increase expected costs by
.20(�2.50) � .80(1.25) � $0.50. Thus, the 201st calendar will increase expected costs and should
not be ordered.
2 In Example 1, co and cu could easily have been determined without recourse to (2) and (2.1).
For example, being one more unit over actual demand increases Walton’s costs by 2 � 0.75 � $1.25.
Thus, co � $1.25. Similarly, being one more unit under actual demand will cost Walton 4.50 � 2.00 �
$2.50 in profit. Hence, cu � $2.50. If we are able to determine co and cu without using Equations
(2) and (2.1), we should do so. In more difficult problems, however, they can be very useful (see
Examples 2 and 3).

P R O B L E M S
Group A

TA B L E  3

Computation of Total Cost If d � q � 1

Cost

Buy q calendars at $2/calendar 2q

Sell d calendars at $4.50/calendar �4.50q

Total cost �2.50q

1 In August 2003, a car dealer is trying to determine how
many 2004 models should be ordered. Each car costs the
dealer $10,000. The demand for the dealer’s 2004 models
has the probability distribution shown in Table 4. Each car
is sold for $15,000. If the demand for 2004 cars exceeds the
number of cars ordered in August, the dealer must reorder
at a cost of $12,000 per car. If the demand for 2004 cars
falls short, the dealer may dispose of excess cars in an end-
of-model-year sale for $9,000 per car. How many 2004
models should be ordered in August?

2 Each day, a news vendor must determine how many
New York Herald Wonderfuls to order. She pays 15¢ for each
paper and sells each for 30¢. Any leftover papers are a total
loss. From past experience, she believes that the number of
papers she can sell each day is governed by the probability
distribution shown in Table 5. How many papers should she
order each day?

3 If cu is fixed, will an increase in co increase or decrease
the optimal order quantity?

TA B L E  4

No. of Cars
Demanded Probability

20 .30

25 .15

30 .15

35 .20

40 .20

TA B L E  5

No. of Papers
Demanded Probability

50 .30

70 .15

90 .25

110 .10

130 .20
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4 If co is fixed, will an increase in cu increase or decrease
the optimal order quantity?

5 The power at Ice Station Lion is supplied via solar cells.
Once a year, a plane flies in and sells solar cells to the ice
station at a price of $20 per cell. Because of uncertainty
about future power needs, the ice station can only guess the
number of cells that will be required during the coming year
(see probability distribution in Table 6). If the ice station
runs out of solar cells, a special order must be placed at a
cost of $30 per cell.

a Assuming that the news vendor problem is relevant,
how many cells should be ordered from the plane?

b In part (a), what type of cost is being ignored?

6 The daily demand for substitute teachers in the Los
Angeles teaching system follows the distribution given in
Table 7. Los Angeles wants to know how many teachers to
keep in the substitute teacher pool. Whether or not the
substitute teacher is needed, it costs $30 per day to keep a
substitute teacher in the pool. If not enough substitute teachers
are available on a given day, regular teachers are used to cover
classes at a cost of $54 per regular teacher. How many teachers
should Los Angeles have in the substitute teacher pool?†

Group B

7 Every four years, Blockbuster Publishers revises its
textbooks. It has been three years since the best-selling
book, The Joy of OR, has been revised. At present, 2,000

copies of the book are in stock, and Blockbuster must
determine how many copies of the book should be printed
for the next year. The sales department believes that sales
during the next year are governed by the distribution in
Table 8. Each copy of Joy sold during the next year brings
the publisher $35 in revenues. Any copies left at the end of
the next year cannot be sold at full price but can be sold for
$5 to Bonds Ennoble and Gitano’s bookstores. The cost of
a printing of the book is $50,000 plus $15 per book printed.
How many copies of Joy should be printed? Would the
answer change if 4,000 copies were currently in stock?

8 Vivian and Wayne are planning on going to Lamaze
natural childbirth classes. Lamaze classes meet once a week
for five weeks. Each class gives 20% of the knowledge needed
for “natural” childbirth. If Vivian and Wayne finish their
classes before the birth of their child, they will forget during
each week 5% of what they have learned in class. To maximize
their expected knowledge at the time of childbirth, during
which week of pregnancy should they begin classes? Assume
that the number of weeks from conception to childbirth
follows the probability distribution given in Table 9.

9‡ Some universities allow an employee to put an amount
q into an account at the beginning of each year, to be used
for child-care expenses. The amount q is not subject to
federal income tax. Assume that all other income is taxed
by the federal government at a 40% rate. If child-care
expenses for the year (call them d ) are less than q, the
employee in effect loses q � d dollars in before-tax income.
If child-care expenses exceed q, the employee must pay the
excess out of his or her own pocket but may credit 25% of
that as a savings on his or her state income tax.

Suppose Professor Muffy Rabbit believes that there is an
equal chance that her child-care expenses for the coming
year will be $3,000, $4,000, $5,000, $6,000, or $7,000. At
the beginning of the year, how much money should she
place in the child-care account?

TA B L E  6

No. of Cells Probability

50 .20

60 .15

70 .30

80 .10

90 .15

100 .10

TA B L E  7

Number Needed Probability

200 .03

275 .03

350 .03

400 .05

450 .40

500 .30

550 .06

600 .07

650 .03

†Based on Bruno (1970).

TA B L E  8

Copies Demanded Probability

5,000 .30

6,000 .20

7,000 .40

8,000 .10

TA B L E  9

Week of Birth Probability

36 .05

37 .15

39 .20

40 .30

41 .15

42 .10

43 .05

‡Based on Rosenfeld (1986).
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16.4 The News Vendor Problem: Continuous Demand

We now consider the news vendor scenario of Section 16.3 when demand D is a contin-

uous random variable having density function f(d ). By modifying our marginal analysis

argument of Section 16.3 (or by using Leibniz’s rule for differentiating an integral—see

Problem 7 at the end of this section), it can be shown that the decision maker’s expected

cost is minimized by ordering q* units, where q* is the smallest number satisfying

P(D � q*) � �
co �

cu

cu

� (4)

Since demand is a continuous random variable, we can find a number q* for which (4)

holds with equality. Hence, in this case, the optimal order quantity can be determined by

finding the value of q* satisfying

P(D � q*) � �
co �

cu

cu

� or P(D � q*) � �
co �

co

cu

� (5)

From (5), we see that it is optimal to order units up to the point where the last unit or-

dered has a chance

�
co �

co

cu

�

of being sold. Examples 2 and 3 illustrate the use of (5).

E X A M P L E  2

The American Bar Association (ABA) is holding its annual convention in Las Vegas. Six

months before the convention begins, the ABA must decide how many rooms should be

reserved in the convention hotel. At this time, the ABA can reserve rooms at a cost of $50

per room, but six months before the convention, the ABA does not know with certainty

how many people will attend the convention. The ABA believes, however, that the num-

ber of rooms required is normally distributed, with a mean of 5,000 rooms and a standard

deviation of 2,000 rooms. If the number of rooms required exceeds the number of rooms

reserved at the convention hotel, extra rooms will have to be found at neighboring hotels

at a cost of $80 per room. It is inconvenient for convention participants to stay at neigh-

boring hotels. We measure this inconvenience by assessing an additional cost of $10 for

each room obtained at a neighboring hotel. If the goal is to minimize the expected cost

to the ABA and its members, how many rooms should the ABA reserve at the convention

hotel?

Solution Define

q � number of rooms reserved

d � number of rooms actually required

If d � q, then the only cost incurred is the cost of the rooms reserved in advance, so if d �

q, the total cost is 50q. Thus, co � 50. If d � q � 1, the following costs are incurred:

Cost of reserving q rooms � 50q

Cost of renting d � q rooms in neighboring hotels � 80(d � q)

Inconvenience cost to overflow participants � 10(d � q)

Total cost � 90d � 40q and cu � 40

ABA Room Reservations
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Since �
cu �

cu

co

� � �
4
9
0
0
� � �

4
9

�, we see from (5) that the optimal number of rooms to reserve is

the number q* satisfying

P(D � q*) � �
4
9

� (6)

The Excel function NORMINV can be used to calculate q*. Since

�NORMINV(4/9,5000,2000)

yields 4,720.58, the ABA should reserve 4,720 or 4,721 rooms.

E X A M P L E  3

The ticket price for a New York–Indianapolis flight is $200. Each plane can hold up to

100 passengers. Usually, some of the passengers who have purchased tickets for a flight

fail to show up (no-shows). To protect against no-shows, the airline will try to sell more

than 100 tickets for each flight. Federal law states that any ticketed customer who is un-

able to board the plane is entitled to compensation (say, $100). Past data indicate that the

number of no-shows for each New York–Indianapolis flight is normally distributed, with

a mean of 20 and a standard deviation of 5. To maximize expected revenues less com-

pensation costs, how many tickets should the airline sell for each flight? Assume that any-

body who doesn’t use a ticket receives a $200 refund.

Solution Let

q � number of tickets sold by airline

d � number of no-shows

Observe that q � d will be the number of customers actually showing up for the flight.

If q � d � 100, then all customers who show up will board the flight, and the cost to the

airline is �200(q � d) � 200d � 200q. If q � d � 100, then 100 passengers will board

the plane (paying the airline 200(100) � $20,000), and q � d � 100 customers will be

turned away. These q � d � 100 customers will receive compensation of 100(q � d � 100).

Hence, if q � d � 100, the total cost to the airline is given by 100(q � d � 100) �

200(100) � 100(q � 100) � 100d � 20,000. In summary, the net cost to the airline may

be expressed as shown in Table 10.

If q � 100 is considered as a decision variable, we have a news vendor problem with

�cu � �200 (or cu � 200) and co � 100. From (5), we should choose q � 100 to satisfy

P(D � q � 100) � �
co �

cu

cu

� � �
2

3
� (7)

The problem can be solved with the help of Excel. Since

�NORMINV(2/3,120,5)

Airline Overbooking

TA B L E  10

Computation of Total Cost

Total Cost

q � d � 100 (or d � q � 100) 100 (q � 100) � 100d � 20,000

q � d � 100 (or d � q � 100) 200d � 200 (q � 100) � 200 (100)
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yields 122.15, we may conclude that the airline should attempt to sell 122 or 123 tickets.

This means that once ticket sales have reached 122 (or 123), no more tickets should be

sold for the flight. Of course, if fewer than 122 people want to purchase tickets for the

flight, the airline should not refuse to sell anybody a ticket for the flight.

P R O B L E M S
Group A

1 a In Example 3, why is it unrealistic to assume that the
distribution of the number of no-shows is independent of q?

b If the number of no-shows were normally distributed
with a mean of .05q and a standard deviation of .05q,
would we still have a news vendor problem?

2 Condo Construction Company is going to First National
Bank for a loan. At the present time, the bank is willing to lend
Condo up to $1 million, with interest costs of 10%. Condo
believes that the amount of borrowed funds needed during the
current year is normally distributed, with a mean of $700,000
and a standard deviation of $300,000. If Condo needs to borrow
more money during the year, the company will have to go to
Louie the Loan Shark. The cost per dollar borrowed from
Louie is 25¢. To minimize expected interest costs for the year,
how much money should Condo borrow from the bank?

3 Joe is selling Christmas trees to pay his college tuition.
He purchases trees for $10 each and sells them for $25
each. The number of trees he can sell is normally distributed
with a mean of 100 and standard deviation of 30. How many
trees should Joe purchase?

4 A hot dog vendor at Wrigley Field sells hot dogs for
$1.50 each. He buys them for $1.20 each. All the hot dogs
he fails to sell at Wrigley Field during the afternoon can be
sold that evening at Comiskey Park for $1 each. The daily
demand for hot dogs at Wrigley Field is normally distributed
with a mean of 40 and a standard deviation of 10.

a If the vendor buys hot dogs once a day, how many
should he buy?

b If he buys 52 hot dogs, what is the probability that he
will meet all of the day’s demand for hot dogs at Wrigley?

Group B

5† Motorama TV estimates the annual demand for its TVs
is (and will be in the future) normally distributed, with a
mean of 6,000 and standard deviation of 2,000. Motorama

must determine how much production capacity it should
have. The cost of building enough production capacity to
make 1,000 sets per year is $1,000,000 (equivalent in present
value terms to a cost of $100,000 per year forever). Exclusive
of the cost of building capacity, each set sold contributes
$250 to profits. How much production capacity should
Motorama have?

6 I. L. Pea is a well-known mail-order company. During
the Christmas rush (from November 1 to December 15), the
number of orders that I. L. Pea must fill each day (five days
per week) is normally distributed, with a mean of 2,000 and
a standard deviation of 500. I. L. Pea must determine how
many employees should be working during the Christmas
rush. Each employee works five days a week, eight hours a
day, can process 50 orders per day, and is paid $10 per hour.
If the full-time work force cannot handle the day’s orders
during regular hours, some employees will have to work
overtime. Each employee is paid $15 per hour for overtime
work. For example, if 300 orders are received in a day and
there are four employees, then 300 � 4(50) � 100 orders
must be processed by employees who are working overtime.
Since each employee can fill �

5
8
0
� � 6.25 orders per hour, 

I. L. Pea would need to pay workers �
6
1
.
0
2
0
5

� � 16 hours of
overtime for that day. To minimize its expected labor costs,
how many full-time employees should I. L. Pea employ
during the Christmas rush?

7 Suppose demand is a continuous random variable having
a probability density function f(d), and c(d, q) is given by
Equation (2). Show that if q units are ordered, the expected
cost E(q) may be written as

E(q) � �q

0
coqf(t)dt � �∞

q

(�cu)qf(t)dt

E(q) � � (terms not involving q in integrand)

Now use Leibniz’s rule to derive Equation (5).

16.5 Other One-Period Models

Many interesting single-period models in operations research cannot be easily handled by

marginal analysis. In such situations, we express the decision maker’s objective function

(usually expected profit or expected cost) as a function f(q) of the decision variable q.

†Based on Virts and Garrett (1970).



1 6 . 5 Other One-Period Models 889

Then we find a maximum or minimum of f(q) by setting f�(q) � 0. In this section, we il-

lustrate this idea by a brief discussion of a bidding model.

E X A M P L E  4

Condo Construction Company is bidding on an important construction job. The job will

cost $2 million to complete. One other company is bidding for the job. Condo believes

that the opponent’s bid is equally likely to be any amount between $2 million and $4 mil-

lion. If Condo wants to maximize expected profit, what should its bid be?

Solution Let

B � random variable representing bid of Condo’s opponent

b � actual bid of Condo’s opponent

Then f(b), the density function for B, is given by

f (b) � ��2,00

1

0,000
� (2,000,000 � b � 4,000,000)

0 otherwise

Let q � Condo’s bid. If b 	 q, Condo outbids the opponent and earns a profit of q �

2,000,000. On the other hand, if b 
 q, Condo is outbid by the opponent and earns noth-

ing. The event b � q has a zero probability of occurring and may be ignored. Let E(q) be

Condo’s expected profit if it bids q. Then

E(q) � �q

2,000,000
(0) f(b)db � �4,000,000

q
(q � 2,000,000) f(b)db

Since f (b) � �
2,00

1
0,000
� for 2,000,000 � b � 4,000,000, we obtain

E(q) �

To find the value of q maximizing E(q), we find

E�(q) � �

Hence, E�(q) � 0 for q � 3,000,000. Since E�(q) � �
2,00

�

0
2
,000
� 
 0, we know that E(q) is a

concave function of q, and q � 3,000,000 does indeed maximize E(q). Hence, Condo

should bid $3 million. Condo’s expected profit will be E(3,000,000) � $500,000.

P R O B L E M S
Group A

6,000,000 � 2q
��

2,000,000

�(q � 2,000,000) � (4,000,000 � q)
����

2,000,000

(q � 2,000,000)(4,000,000 � q)
����

2,000,000

Condo Construction Company

1 The City of Rulertown consists of the unit interval [0,
1] (see Figure 2). Rulertown needs to determine where to
build the city’s only fire station. It knows that for small �x,
the probability that a given fire occurs at a location between
x and x � �x is 2x(�x). Rulertown wants to minimize the
average distance between the fire station and a fire. Where
should the fire station be located?

Group B

2 Assume that the Federal Reserve Board can control the
growth rate of the U.S. money supply. Also assume that

1x � �xx0

F I G U R E  2
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during a year in which the money supply grows by x%, the
Gross Domestic Product (GDP) grows by Zx%, where Z is
a known random variable. The government has decided it
wants the GDP to grow by k% each year. (Too high a growth
rate causes excessive inflation, and too low a growth rate
causes high unemployment.) To model the government’s
view, the government assesses a cost of (d � k)2 during a
year in which the GDP grows by d%.

a Determine the growth rate of the money supply that
should be set by the Federal Reserve Board if the goal
is to minimize the expected cost to the government.

b Show that for a given value of E(Z), an increase in
var Z will decrease the optimal growth rate of the money
supply found in part (a). (Hint: Use the fact that var Z �

E(Z2) � E(Z)2.)

16.6 The EOQ with Uncertain Demand: The (r, q) and (s, S ) Models

In this section, we discuss a modification of the EOQ that is used when lead time is

nonzero and the demand during each lead time is random. We begin by assuming that all

demand can be backlogged. As in Chapter 15, we assume a continuous review model, so

that orders may be placed at any time, and we define

K � ordering cost

h � holding cost/unit/year

L � lead time for each order (assumed to be known with certainty)

q � quantity ordered each time an order takes place

We also require the following definitions:

D � random variable (assumed continuous) representing annual demand, with

mean E(D), variance var D, and standard deviation sD

cB � cost incurred for each unit short, which does not depend on how long it

takes to make up stockout

OHI(t) � on-hand inventory (amount of stock on hand) at time t

From Figure 3, we can see that OHI(1) � 100, OHI(0) � 200, and OHI(6) � OHI(7) � 0.

B(t) � number of outstanding back orders at time t

I(t) � net inventory level at time t � OHI(t) � B(t)

r � inventory level at which order is placed (reorder point)

I(t)

t  (months)

(O2  +  L)(O1  +  L) (O2)(O1)

1 2 3 4 5 6

300

200

Cycle 1 Cycle 2

100

q  =  240

L  =  2

r   =  100

q  =  240

0

–100

7

F I G U R E  3

Evolution of Inventory
over Time in Reorder

Point Model
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In Figure 3, B(t) � 0 for 0 � t � 6 and B(7) � 100. I(t) agrees with the inventory con-

cept used in Chapter 15; I(0) � 200 � 0 � 200, I(3) � 260 � 0 � 260, and I(7) �

0 � 100 � �100. The reorder point r � 100; whenever the inventory level drops to r,

an order is placed for q units.

X � random variable representing demand during lead time

We assume that X is a continuous random variable having density function f(x) and mean,

variance, and standard deviation of E(X), var X, and sX, respectively. If we assume that

the demands at different points in time are independent, then it can be shown that the ran-

dom lead time demand X satisfies

E(X) � LE(D), var X � L(var D), sX � sD�L� (8)

We assume that if D is normally distributed, then X will also be normally distributed.

Suppose we allow the lead time L to be a random variable (denoted by L), with mean

E(L), variance var L, and standard deviation sL. If the length of the lead time is inde-

pendent of the demand per unit time during the lead time, then

E(X) � E(L)E(D) and var X � E(L)(var D) � E(D)2(var L) (8�)

We want to choose q and r to minimize the annual expected total cost (exclusive of pur-

chasing cost). Before showing how optimal values of r and q can be found, we look at an

illustration of how inventory evolves over time. Assume that an order of q � 240 units has

just arrived at time 0. We also assume that L � 2. In Figure 3, orders of size q are placed

at times O1 � 1 and O2 � 5. These orders are received at times O1 � L � 3 and O2 �

L � 7, respectively. A cycle is defined to be the time interval between any two instants at

which an order is received. Figure 3 contains two complete cycles: cycle 1, from arrival of

order at time 0 to the instant before order arrives at time O1 � L � 3; and cycle 2, from

arrival of order at time O1 � L � 3 to the instant before order arrives at time O2 � L � 7.

During cycle 1, demand during lead time is less than r, so no shortage occurs. During

cycle 2, however, demand during lead time exceeds r, so stockouts do occur between time

6 and time O2 � L � 7. It should be clear that by increasing r, we can reduce the num-

ber of stockouts. Unfortunately, increasing r will force us to carry more inventory, thereby

resulting in higher holding costs. Thus, an optimal value of r must represent some sort of

trade-off between holding and stockout costs.

We now show how the optimal values of q and r may be determined.

Determination of Reorder Point: The Back-Ordered Case

The situation in which all demand must eventually be met and no sales are lost is called

the back-ordered case, for which we show how to determine the reorder point and order

quantity that minimize annual expected cost.

We assume each unit is purchased for the same price, so purchasing costs are fixed.

Define TC(q, r) � expected annual cost (excluding purchasing cost) incurred if each or-

der is for q units and is placed when the reorder point is r. Then TC(q, r) � (expected

annual holding cost) � (expected annual ordering cost) � (expected annual cost due to

shortages). To determine the optimal reorder point and order quantity, we assume that the

average number of back orders is small relative to the average on-hand inventory level.

In most cases, this assumption is reasonable, because shortages (if they occur at all) usu-

ally occur during only a small portion of a cycle. (See Problem 5 at the end of this sec-

tion.) Then I(t) � OHI(t) � B(t) yields

Expected value of I(t) � expected value of OHI(t) (9)
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We can now approximate the expected annual holding cost. We know that expected an-

nual holding cost � h(expected value of on-hand inventory level). Then from (9), we can

approximate expected annual holding cost by h(expected value of I(t)). As in Chapter 3,

the expected value of I(t) will equal the expected value of I(t) during a cycle. Since the

mean rate at which demand occurs is constant, we may write

Expected value of I(t) during a cycle

� �
1
2

�[(expected value of I(t) at beginning of cycle) (10)

� (expected value of I(t) at end of a cycle)]

At the end of a cycle (the instant before an order arrives), the inventory level will equal

the inventory level at the reorder point (r) less the demand X during lead time. Thus, ex-

pected value of I(t) at end of cycle � r � E(X).

At the beginning of a cycle, the inventory level at the end of the cycle is augmented

by the arrival of an order of size q. Thus, expected value of I(t) at beginning of cycle �

r � E(X) � q. Now (10) yields

Expected value of I(t) during cycle � �
1
2

�(r � E(X) � r � E(X) � q)

� �
q

2
� � r � E(X)

Thus, expected annual holding cost � h(�
q

2
� � r � E(X)).

To determine the expected annual cost due to stockouts or back orders, we must define

Br � random variable representing the number of stockouts

or back orders during a cycle if the reorder point is r

Now

Expected annual shortage cost � � 	 � 	
By the definition of Br,

� cBE(Br)

Since all demand will eventually be met, an average of �
E(

q

D)
� orders will be placed each

year. Then

� �
cBE(B

q

r)E(D)
�

Finally,

Expected annual order cost � K ��expect

y

e

e

d

ar

orders
�	 � �

KE

q

(D)
�

Putting together the expected annual holding, shortage, and ordering costs, we obtain

TC(q, r) � h ��
q

2
� � r � E(X)	 � �

cBE(B

q

r)E(D)
� � �

KE

q

(D)
� (11)

Using the method described in Section 11.5, we could find the values of q and r that min-

imize (11) by determining values q* and r* of q and r satisfying

�
∂TC(

∂

q

q

*, r*)
� � �

∂TC(

∂

q

r

*, r*)
� � 0 (12)

In Review Problem 7 we show how LINGO can be used to determine values of q and r

that exactly satisfy (12). In most cases, however, the value of q* satisfying (12) is very close

Expected shortage cost
���

Expected shortage cost
���

expected cycles
��

expected shortage cost
���
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to the EOQ† of (�2KE
h
(D)
�)1/2. For this reason, we assume that the optimal order quantity q* may

be adequately approximated by the EOQ. Given a value q for the order quantity, we now show

how marginal analysis can be used to determine a reorder point r* that minimizes TC(q, r).

If we assume a given value of q, the expected annual ordering cost is independent of r.

Thus, in determining a value of r that minimizes TC(q, r), we may concentrate on mini-

mizing the sum of the expected annual holding and shortage costs. Following the marginal

analysis approach of Sections 16.2–16.3, suppose we increase the reorder point (for �

small) from r to r � � (with q fixed). Will this result in an increase or a decrease in 

TC(q, r)?

If we increase r to r � �, the expected annual holding cost will increase by

h��
q

2
� � r � � � E(X)	 � h ��

q

2
� � r � E(X)	 � h�

If we increase the reorder point from r to r � �, expected annual stockout costs will be

reduced, because of the fact that during any cycle in which lead time demand is at least

r, the number of stockouts during the cycle will be reduced by � units. In other words,

increasing the reorder point from r to r � � will reduce stockout costs by cB� during a

fraction P(X � r) of all cycles. Since there are an average of �
E(

q
D)
� cycles per year, in-

creasing the reorder point from r to r � � will reduce expected annual stockout cost by

�
�E(D)cB

q

P(X � r)
�

Observe that as r increases, P(X � r) decreases, so as r increases, the expected reduction

in expected annual shortage cost resulting from increasing the reorder point by � will de-

crease. This observation allows us to draw Figure 4.

Let r* be the value of r for which marginal benefit equals marginal cost, or

� h�

P(X � r*) � �
cBE

hq

(D)
�

Suppose that r 
 r*. Then Figure 4 shows that if we increase the reorder point from r to

r*, we can save more in shortage cost than we lose in holding cost. Now suppose that 

r 	 r*. Figure 4 shows that by reducing the reorder point from r to r*, we can save more

in holding cost than we lose in increased shortage cost. Thus, r* does attain the optimal

trade-off between shortage and holding costs. In summary, if we assume that the order

quantity can be approximated by

EOQ � ��2KE

h

(D)
�	

1/2

then we have the reorder point r* and the order quantity q* for the back-ordered case:

q* � ��2KE

h

(D)
�	

1/2

(13)

P(X � r*) � �
cB

h

E

q

(

*

D)
�

If

�
cB

h

E

q

(

*

D)
� 	 1

�E(D)cBP(X � r*)
���

q

†Brown (1967) has shown that for approximating the optimal value of q, the EOQ is usually acceptable unless

EOQ � sX.
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then (13) will have no solution, and holding cost is prohibitively high relative to the stock-

out cost. Management should set the reorder point at the smallest acceptable level. If (13)

yields a negative value of r*, management should also set the reorder point at the small-

est acceptable level.

R E M A R K S 1 P(X � r) is just the probability that a stockout will occur during a lead time. Also note that for
h near zero, (13) yields a stockout probability near zero. For large cB also, (13) yields a stockout
probability near zero. Both of these results should be consistent with intuition.
2 After substituting the EOQ for q in (13), we may easily determine an approximately optimal
value of r, the reorder point. Note that r � E(X) is the amount in excess of expected lead time de-
mand that is ordered to protect against the occurrence of stockouts during the lead time. For this
reason, r � E(X) is often referred to as safety stock.
3 From (11), we find that the expected annual cost of holding safety stock is h(r � E(X)) �

h(safety stock level).

The following example illustrates the determination of the reorder point and safety

stock level in the back-ordered demand case.

E X A M P L E  5

Each year, a computer store sells an average of 1,000 boxes of disks. Annual demand for

boxes of disks is normally distributed with a standard deviation of 40.8 boxes. The store

orders disks from a regional distributor. Each order is filled in two weeks. The cost of

placing each order is $50, and the annual cost of holding one box of disks in inventory is

$10. The per-unit stockout cost (because of loss of goodwill and the cost of placing a spe-

cial order) is assumed to be $20. The store is willing to assume that all demand is back-

logged. Determine the proper order quantity, reorder point, and safety stock level for the

computer store. Assume that annual demand is normally distributed. What is the proba-

bility that a stockout occurs during the lead time?

Solution We begin by determining the EOQ. Since h � $10/box/year, K � $50, and E(D) � 1,000,

we find that

EOQ � ��2(50)

1

(1

0

,000)
�	

1/2

� 100

Disk Stock

Cost

Decrease in expected annual shortage

cost if r is increased to r  +  �

Increase in expected annual

holding cost if r is increased to r  +  �

h�

r

r*

F I G U R E  4

Trade-off between
Holding Cost and

Shortage Cost
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We now substitute q* � 100 in (13) and use (13) to determine the reorder point. To do

this, we need to determine the probability distribution of X, the lead time demand. Since

L � 2 weeks, X will be normally distributed with

E(X) � �
E

2

(D

6

)
� � �

1,

2

0

6

00
� � 38.46 and sX � �

�
s

2

D

6�
� � �

�
40

2

.8

6�
� � 8

Since cB � $20, (13) now yields

P(X � r) � �
2

1

0

0

(1

(1

,0

0

0

0

0

)

)
� � .05 (14)

We use the Excel function NORMINV. Since

�NORMINV(0.95,38.46,8)

yields 51.62, we find that the safety stock level is r � E(X) � 51.62 � 38.46 � 13.16.

To see how the reorder point and safety stock level would be affected by a variable

lead time, suppose that the lead time has a mean of two weeks but also has a standard de-

viation of one week (�
5
1
2
� year). Then (8�) yields

s
2
X � (�

2
1
6
�)(40.8)2

� (1,000)2 (�
5
1
2
�)2

� 64.02 � 369.82 � 433.84

sX � �433.84� � 20.83

Assuming that the lead time demand is normally distributed, we would find that r � 38.46 �

1.65(20.83) � 72.83, and the safety stock held is 1.65(20.83) � 34.37. Thus, the variability

of the lead time has more than doubled the required safety stock level!

Determination of Reorder Point: The Lost Sales Case

We now assume that all stockouts result in lost sales and that a cost of cLS dollars is in-

curred for each lost sale. (In addition to penalties for loss of future goodwill, cLS should

include profit lost because of a lost sale.)

As in the back-ordered case, we assume that the optimal order quantity can be ade-

quately approximated by the EOQ and attempt to use marginal analysis to determine the

optimal reorder point r* (see Problem 6 at the end of this section). The optimal order

quantity q* and the reorder point r* for the lost sales case are

q* � ��2KE

h

(D)
�	

1/2

(15)

P(X � r*) � �
hq* �

hq

c

*

LSE(D)
�

The key to the derivation of (15) is to realize that expected inventory in lost sales case �

(expected inventory in back-ordered case) � (expected number of shortages per cycle).

This equation follows because in the lost sales case, we find that during each cycle, an

average of (expected shortages per cycle) fewer orders will be filled from inventory,

thereby raising the average inventory level by an amount equal to expected shortages per

cycle. Observe that the right-hand side of (15) is smaller than the right-hand side of (13).

Thus, the lost sales assumption will yield a lower stockout probability (and a larger re-

order point and safety stock level) than the back-ordered assumption.

To illustrate the use of (15), we continue our discussion of Example 5. Suppose that

each box of disks sells for $50 and costs the store $30. Assuming that the stockout cost
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of $20 given in Example 5 represents lost goodwill, we obtain cLS by adding the lost profit

($50 � $30) to the lost goodwill of $20. Thus, cLS � 20 � 20 � 40. Recall from Ex-

ample 5 that E(D) � 1,000 boxes per year, h � $10/box/year, EOQ � 100 boxes, and 

K � $50. Now (15) yields

P(X � r*) � � .024

Excel is used to compute r. Since

�NORMINV(.976,38.46,8)

yields 54.28, we find that r � 54.28. Thus, in the lost sales case, the safety stock level is

54.28 � 38.46 � 15.82. 

Continuous Review (r, q) Policies

A continuous review inventory policy, in which we order a quantity q whenever our in-

ventory level reaches a reorder level r, is often called an (r, q) policy. An (r, q) policy is

also called a two-bin policy, because it can easily be implemented by using two bins to

store an item. For example, to implement a (30, 500) policy, we fill orders from bin 1 as

long as bin 1 contains any items. As soon as bin 1 becomes empty, we know that the re-

order point r � 30 has been reached, and we place an order for q � 500 units. When the

order arrives, we bring the number of units in bin 2 up to 30, and place the remainder of

the 500 units ordered in bin 1. Thus, whenever bin 1 has been emptied, we know that the

reorder point has been reached.

Continuous Review (s, S) Policies

In our derivation of the best (r, q) policy, we assumed that an order could be placed ex-

actly at the point when the inventory level reached the reorder point r. We used this as-

sumption to compute the expected inventory level at the beginning and end of a cycle.

Suppose that a demand for more than one unit can arrive at a particular time. Then an or-

der may be triggered when the inventory level is less than r, and our computation of ex-

pected inventory level at the end and beginning of a cycle is then incorrect. For example,

suppose r � 30 and our current inventory level is 35. If an order for 10 units arrives, an

order will be placed when the inventory level is 25 (not r � 30), and this invalidates the

computations that led to (11). From this discussion, we see that it is possible for the in-

ventory level to “undershoot” the reorder point.

Note that this problem could not occur if all demands were for one unit, for then the

inventory level would drop from (say) 32 to 31 and then to 30, and each order would be

placed when the inventory level equaled the reorder point r. From this example, we see

that if demands of size greater than one unit can occur at a point in time, then the (r, q)

model may not yield a policy that minimizes expected annual cost.

In such situations, it has been shown that an (s, S) policy is optimal. To implement an

(s, S) policy, we place an order whenever the inventory level is less than or equal to s. The

size of the order is sufficient to raise the inventory level to S (assuming zero lead time).

For example, if we were implementing a (5, 40) policy and the inventory level suddenly

dropped from 7 to 3, we would immediately place an order for 40 � 3 � 37 units. Exact

computation of the optimal (s, S) policy is difficult. If we neglect the problem of the “un-

dershoots,” however, we may approximate the optimal (s, S) policy as follows. Set S � s

equal to the economic order quantity q. Then set s equal to the reorder point r obtained

10(100)
���
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from (13) or (15). Finally, we obtain S � r � q. Thus, for Example 5 (with back orders

allowed), we would set s � 51.66 and S � 51.66 � 100 � 151.66 and use (assuming that

fractional demand is possible) a (51.66, 151.66) policy.

P R O B L E M S
Group A

1 A hospital orders its blood from a regional blood bank.
Each year, the hospital uses an average of 1,040 pints of
Type O blood. Each order placed with the regional blood
bank incurs a cost of $20. The lead time for each order is
one week. It costs the hospital $20 to hold 1 pint of blood
in inventory for a year. The per-pint stockout cost is
estimated to be $50. Annual demand for Type O blood is
normally distributed, with standard deviation of 43.26 pints.
Determine the optimal order quantity, reorder point, and
safety stock level. Assume that 52 weeks � 1 year and that
all demand is backlogged. To use the techniques of this
section, what unrealistic assumptions must be made? What
(s, S) policy would be used in this situation?

2 Furnco sells secretarial chairs. Annual demand is
normally distributed, with mean of 1,040 chairs and standard
deviation of 50.99 chairs. Furnco orders its chairs from its
flagship store. It costs $100 to place an order, and the lead
time is two weeks. Furnco estimates that each stockout
causes a loss of $50 in future goodwill. Furnco pays $60 for
each chair and sells it for $100. The annual cost of holding
a chair in inventory is 30% of its purchase cost.

a Assuming that all demand is backlogged, what are
the reorder point and the safety stock level?

b Assuming that all stockouts result in lost sales, de-
termine the optimal reorder point and the safety stock
level.

3 We are given the following information for a product:

Order cost � $50

Annual demand � N(960, 3,072.49)

Annual holding cost � $6/item/year

Shortage cost � $80 per unit

Lead time � one month

Sales price � $40 per unit

Product cost � $30 per unit

a Determine the order quantity and the reorder point
under the assumption that all demands are backordered.

b Determine the order quantity and reorder point un-
der the lost sales assumption.

4 The lead time demand for bathing suits is governed by
the discrete random variable shown in Table 11. The
company sells an average of 10,400 suits per year. The cost
of placing an order for bathing suits is $30, and the cost of
holding one bathing suit in inventory for a year is $3. The
stockout cost is $3 per bathing suit. Use marginal analysis
to determine the optimal order quantity and the reorder
point.

5 In Figure 3, assume that demand occurs at a constant
rate during each cycle. Approximate the average level of on-
hand inventory between t � 0 and t � 7. Also approximate
the average number of shortages. Does the assumption that
the average shortage level is small relative to the average
level of on-hand inventory seem valid here?

Group B

6 In this problem, use marginal analysis to determine the
optimal reorder point for the lost sales case.

a Show that the average inventory level for the lost
sales case may be written as

�
1
2

�[(r � E(X) � E(Br)) � (r � E(X) � E(Br) � q)]
� r � E(X) � E(Br) � �

q

2
�

b Although expected orders per year will no longer
equal �

E(

q

D)
� (why?), we assume that the expected number

of lost sales per year is relatively small. Thus, we may
still assume that expected orders per year � �

E(

q

D)
�. Now

use marginal analysis to derive (15).

7 Suppose that a cost of S dollars (independent of the size
of the stockout) is incurred whenever a stockout occurs
during a cycle. Under the assumption of backlogged demand,
use marginal analysis to determine the reorder point.

8 Explain the following statement: Faster-moving items
require larger safety stocks than slower-moving items. (Hint:
Does �

E(

q

D)
� large imply that an item is fast-moving or slow-

moving?)

9 Suppose annual demand for a product is normally
distributed, with a mean of 600 and a variance of 300.
Suppose that the lead time for an order is always one month.
Show (without using Equation (8)) that the lead time demand
has mean 50, variance 25, and standard deviation 5. Assume
that the demands during different one-month periods are
independent, identically distributed random variables.

TA B L E  11

Lead Time
Demand Probability

180 .30

190 .30

200 .15

210 .10

220 .15
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16.7 The EOQ with Uncertain Demand: The Service Level 
Approach to Determining Safety Stock Level

As we have previously stated, it is usually very difficult to determine accurately the cost

of being one unit short. For this reason, managers often decide to control shortages by

meeting a specified service level. In this section, we discuss two measures of service level:

Service Level Measure 1 SLM1, the expected fraction (usually expressed as a percentage)

of all demand that is met on time.

Service Level Measure 2 SLM2, the expected number of cycles per year during which a

shortage occurs.

Throughout this section, we assume that all shortages are backlogged. The following

example illustrates the meaning of the two service level measures.

E X A M P L E  6

Suppose that for a given inventory situation, average annual demand is 1,000 and the EOQ

is 100. Demand during a lead time is random and is described by the probability distrib-

ution in Table 12. For a reorder point of 30 units, determine SLM1 and SLM2.

Solution The expected demand during a lead time is �
1
5

�(20) � �
1
5

�(30) � �
1
5

�(40) � �
1
5

�(50) � �
1
5

�(60) �

40 units. With a reorder point of 30 units, we will reorder during each cycle at the instant

when the inventory level hits 30 units. If the lead time demand during a cycle is 20 or 30

units, we will experience no shortage. During a cycle in which lead time demand is 40,

a shortage of 10 units will occur; if lead time demand is 50, a shortage of 20 units will

occur; if lead time demand is 60, a shortage of 30 units will occur. Hence, the expected

number of units short per cycle is given by �
1
5

�(0) � �
1
5

�(0) � �
1
5

�(10) � �
1
5

�(20) � �
1
5

�(30) � 12.

Since the EOQ � 100 and all demand must eventually be met, the average number of

orders placed each year will be �
E(

q

D)
� � �

1

1

,0

0

0

0

0
� � 10. Then the average number of shortages

that occur during a year will equal 10(12) � 120 units. Thus, each year, on the average,

the demand for 1,000 � 120 � 880 units is met on time. In this case, the SLM1 � �
1
8
,0
8
0
0
0

� �

0.88 or 88%. This shows that even if the reorder point is less than the mean lead time de-

mand, a relatively high SLM1 may result, because stockouts can only occur during the lead

time, which is often a small portion of each cycle.

We now determine SLM2 for a reorder point of 30. With a reorder point of 30, a stock-

out will occur during any cycle in which lead time demand exceeds 30 units. Thus, the

probability of a stockout during a cycle � P(X � 40) � P(X � 50) � P(X � 60) � �
3
5

�.

SLM1 and SLM2

TA B L E  12

Mass Function for Lead Time
Demand

Lead Time
Demand Probability

20 �
1
5

�

30 �
1
5

�

40 �
1
5

�

50 �
1
5

�

60 �
1
5

�
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Since there are an average of 10 cycles per year, the expected number of cycles per year

that will result in shortages is 10 (�
3
5

�) � 6. Thus, a reorder point of 30 yields SLM2 � 6

stockouts per year.

Determination of Reorder Point and 
Safety Stock Level for SLM1

Given a desired value of SLM1, how do we determine a reorder point that provides the desired

service level? Suppose we order the EOQ (q) and use a reorder point r. From Section 16.6,

� E(Br)

� �
E(Br

q

)E(D)
�

Here, E(D) is the average annual demand. Let SLM1 be the percentage of all demand that

is met on time. Then for given values of q (for the order quantity) and r (for the reorder

point), we have

1 � SLM1 � � �
E(B

E
r)

(

E

D

(

)

D)/q
� � �

E(

q

Br)
� (16)

Equation (16) can be used to determine the reorder point that yields a desired service

level. We now assume that the lead time demand is normally distributed, with mean E(X)

and standard deviation sX. To use (16), we need to determine E(Br). If X is normally dis-

tributed, the determination of E(Br) requires a knowledge of the normal loss function.

D E F I N I T I O N ■

In short, if we hold y standard deviations (in terms of lead time demand) of safety

stock, then NL( y)sX is the expected number of shortages occurring during a lead time.

Since a larger reorder point leads to fewer shortages, we would expect NL( y) to be a

nonincreasing function of y. This is indeed the case. The function NL( y) is tabulated in

Table 13. For example, NL(0) � 0.3989 means that if the reorder point equals the expected

lead time demand, and the standard deviation of lead time demand is sX, then an average

of 0.3989sX shortages will occur during a lead time. Similarly, NL(2) � 0.0085 means that

if the reorder point exceeds the mean lead time demand by 2sX, then an average of 0.0085sX

shortages will occur during a given lead time. NL( y) is not tabulated for negative values of

y. This is because it can be shown that for y � 0, NL( y) � NL(�y) � y. For example,

NL(�2) � NL(2) � 2 � 2.0085. This means that if the reorder point is 2sX less than the

mean lead time demand, an average of 2.0085sX shortages will occur during each cycle.

LINGO with the @PSL function may be used to compute values of the normal loss

function. In LINGO, the program

MODEL:
x = @PSL(2);

END

will yield x � .0085.

The normal loss function, NL( y), is defined by the fact that sXNL( y) is the

expected number of shortages that will occur during a lead time if (1) lead time

demand is normally distributed with mean E(X) and standard deviation sX and

(2) the reorder point is E(X) � ysX. ■

expected shortages per year
���

Expected shortages
���

Expected shortages
���
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TA B L E  13

The Normal Loss Function

x NL (x) x NL (x) x NL (x)

0.00 0.3989 0.40 0.2304 0.80 0.1202

0.01 0.3940 0.41 0.2270 0.81 0.1181

0.02 0.3890 0.42 0.2236 0.82 0.1160

0.03 0.3841 0.43 0.2203 0.83 0.1140

0.04 0.3793 0.44 0.2169 0.84 0.1120

0.05 0.3744 0.45 0.2137 0.85 0.1100

0.06 0.3697 0.46 0.2104 0.86 0.1080

0.07 0.3649 0.47 0.2072 0.87 0.1061

0.08 0.3602 0.48 0.2040 0.88 0.1042

0.09 0.3556 0.49 0.2009 0.89 0.1023

0.10 0.3509 0.50 0.1978 0.90 0.1004

0.11 0.3464 0.51 0.1947 0.91 0.09860

0.12 0.3418 0.52 0.1917 0.92 0.09680

0.13 0.3373 0.53 0.1887 0.93 0.09503

0.14 0.3328 0.54 0.1857 0.94 0.09328

0.15 0.3284 0.55 0.1828 0.95 0.09156

0.16 0.3240 0.56 0.1799 0.96 0.08986

0.17 0.3197 0.57 0.1771 0.97 0.08819

0.18 0.3154 0.58 0.1742 0.98 0.08654

0.19 0.3111 0.59 0.1714 0.99 0.08491

0.20 0.3069 0.60 0.1687 1.00 0.08332

0.21 0.3027 0.61 0.1659 1.01 0.08174

0.22 0.2986 0.62 0.1633 1.02 0.08019

0.23 0.2944 0.63 0.1606 1.03 0.07866

0.24 0.2904 0.64 0.1580 1.04 0.07716

0.25 0.2863 0.65 0.1554 1.05 0.07568

0.26 0.2824 0.66 0.1528 1.06 0.07422

0.27 0.2784 0.67 0.1503 1.07 0.07279

0.28 0.2745 0.68 0.1478 1.08 0.07138

0.29 0.2706 0.69 0.1453 1.09 0.06999

0.30 0.2668 0.70 0.1429 1.10 0.06862

0.31 0.2630 0.71 0.1405 1.11 0.06727

0.32 0.2592 0.72 0.1381 1.12 0.06595

0.33 0.2555 0.73 0.1358 1.13 0.06465

0.34 0.2518 0.74 0.1334 1.14 0.02034

0.35 0.2481 0.75 0.1312 1.15 0.06210

0.36 0.2445 0.76 0.1289 1.16 0.06086

0.37 0.2409 0.77 0.1267 1.17 0.05964

0.38 0.2374 0.78 0.1245 1.18 0.05844

0.39 0.2339 0.79 0.1223 1.19 0.05726

(Continued)
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TA B L E  13

(Continued)

x NL (x) x NL (x) x NL (x)

1.20 0.05610 1.60 0.02324 2.00 0.008491

1.21 0.05496 1.61 0.02270 2.01 0.008266

1.22 0.05384 1.62 0.02217 2.02 0.008046

1.23 0.05274 1.63 0.02165 2.03 0.007832

1.24 0.05165 1.64 0.02114 2.04 0.007623

1.25 0.05059 1.65 0.02064 2.05 0.007418

1.26 0.04954 1.66 0.02015 2.06 0.007219

1.27 0.04851 1.67 0.01967 2.07 0.007024

1.28 0.04750 1.68 0.01920 2.08 0.006835

1.29 0.04650 1.69 0.01874 2.09 0.006649

1.30 0.04553 1.70 0.01829 2.10 0.006468

1.31 0.04457 1.71 0.01785 2.11 0.006292

1.32 0.04363 1.72 0.01742 2.12 0.006120

1.33 0.04270 1.73 0.01699 2.13 0.005952

1.34 0.04179 1.74 0.01658 2.14 0.005788

1.35 0.04090 1.75 0.01617 2.15 0.005628

1.36 0.04002 1.76 0.01578 2.16 0.005472

1.37 0.03916 1.77 0.01539 2.17 0.005320

1.38 0.03831 1.78 0.01501 2.18 0.005172

1.39 0.03748 1.79 0.01464 2.19 0.005028

1.40 0.03667 1.80 0.01428 2.20 0.004887

1.41 0.03587 1.81 0.01392 2.21 0.004750

1.42 0.03508 1.82 0.01357 2.22 0.004616

1.43 0.03431 1.83 0.01323 2.23 0.004486

1.44 0.03356 1.84 0.01290 2.24 0.004358

1.45 0.03281 1.85 0.01257 2.25 0.004235

1.46 0.03208 1.86 0.01226 2.26 0.004114

1.47 0.03137 1.87 0.01195 2.27 0.003996

1.48 0.03067 1.88 0.01164 2.28 0.003882

1.49 0.02998 1.89 0.01134 2.29 0.003770

1.50 0.02931 1.90 0.01105 2.30 0.003662

1.51 0.02865 1.91 0.01077 2.31 0.003556

1.52 0.02800 1.92 0.01049 2.32 0.003453

1.53 0.02736 1.93 0.01022 2.33 0.003352

1.54 0.02674 1.94 0.009957 2.34 0.003255

1.55 0.02612 1.95 0.009698 2.35 0.003159

1.56 0.02552 1.96 0.009445 2.36 0.003067

1.57 0.02494 1.97 0.009198 2.37 0.002977

1.58 0.02436 1.98 0.008957 2.38 0.002889

1.59 0.02380 1.99 0.008721 2.39 0.002804

(Continued)
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TA B L E  13

(Continued)

x NL (x) x NL (x) x NL (x)

2.40 0.002720 2.80 0.0007611 3.20 0.0001852

2.41 0.002640 2.81 0.0007359 3.21 0.0001785

2.42 0.002561 2.82 0.0007115 3.22 0.0001720

2.43 0.002484 2.83 0.0006879 3.23 0.0001657

2.44 0.002410 2.84 0.0006650 3.24 0.0001596

2.45 0.002337 2.85 0.0006428 3.25 0.0001537

2.46 0.002267 2.86 0.0006213 3.26 0.0001480

2.47 0.002199 2.87 0.0006004 3.27 0.0001426

2.48 0.002132 2.88 0.0005802 3.28 0.0001373

2.49 0.002067 2.89 0.0005606 3.29 0.0001322

2.50 0.002004 2.90 0.0005417 3.30 0.0001273

2.51 0.001943 2.91 0.0005233 3.31 0.0001225

2.52 0.001883 2.92 0.0005055 3.32 0.0001179

2.53 0.001826 2.93 0.0004883 3.33 0.0001135

2.54 0.001769 2.94 0.0004716 3.34 0.0001093

2.55 0.001715 2.95 0.0004555 3.35 0.0001051

2.56 0.001662 2.96 0.0004398 3.36 0.0001012

2.57 0.001610 2.97 0.0004247 3.37 0.00009734

2.58 0.001560 2.98 0.0004101 3.38 0.00009365

2.59 0.001511 2.99 0.0003959 3.39 0.00009009

2.60 0.001464 3.00 0.0003822 3.40 0.00008666

2.61 0.001418 3.01 0.0003689 3.41 0.00008335

2.62 0.001373 3.02 0.0003560 3.42 0.00008016

2.63 0.001330 3.03 0.0003436 3.43 0.00007709

2.64 0.001288 3.04 0.0003316 3.44 0.00007413

2.65 0.001247 3.05 0.0003199 3.45 0.00007127

2.66 0.001207 3.06 0.0003087 3.46 0.00006852

2.67 0.001169 3.07 0.0002978 3.47 0.00006587

2.68 0.001132 3.08 0.0002873 3.48 0.00006331

2.69 0.001095 3.09 0.0002771 3.49 0.00006085

2.70 0.001060 3.10 0.0002672 3.50 0.00005848

2.71 0.001026 3.11 0.0002577 3.51 0.00005620

2.72 0.0009928 3.12 0.0002485 3.52 0.00005400

2.73 0.0009607 3.13 0.0002396 3.53 0.00005188

2.74 0.0009295 3.14 0.0002311 3.54 0.00004984

2.75 0.0008992 3.15 0.0002227 3.55 0.00004788

2.76 0.0008699 3.16 0.0002147 3.56 0.00004599

2.77 0.0008414 3.17 0.0002070 3.57 0.00004417

2.78 0.0008138 3.18 0.0001995 3.58 0.00004242

2.79 0.0007870 3.19 0.0001922 3.59 0.00004073

(Continued)
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Assuming normal lead time demand, we now determine the reorder point r that will yield

a desired level of SLM1 (expressed as a fraction). A reorder point of r corresponds to holding

y � �
r �

s

E

X

(X)
�

standard deviations of safety stock. Now the definition of the normal loss function im-

plies that during a lead time, a reorder point of r will yield an expected number of short-

ages E(Br) given by

E(Br) � sXNL ��r �

s

E

X

(X)
�	 (17)

Substituting (17) into (16), we obtain the reorder point for SLM1 with normal lead time

demand:

1 � SLM1 �

(18)

NL ��r �

s

E

X

(X)
�	 � �

q(1 �

sX

SLM1)
�

With the exception of r, all quantities in (18) are known. Thus, (18) and Table 13 can be

used to determine the reorder point corresponding to a given level of SLM1.

E X A M P L E  7

Bads, Inc., sells an average of 1,000 food processors each year. Each order for food

processors placed by Bads costs $50. The lead time is one month. It costs $10 to hold a

food processor in inventory for one year. Annual demand for food processors is normally

Bads, Inc.

sXNL ��r �

s

E

X

(X)
�	

��
q

TA B L E  13

(Continued)

x NL (x) x NL (x) x NL (x)

3.60 0.00003911 3.75 0.00002103 3.90 0.00001108

3.61 0.00003755 3.76 0.00002016 3.91 0.00001061

3.62 0.00003605 3.77 0.00001933 3.92 0.00001016

3.63 0.00003460 3.78 0.00001853 3.93 0.00000972

3.64 0.00003321 3.79 0.00001776 3.94 0.000009307

3.65 0.00003188 3.80 0.00001702 3.95 0.000008908

3.66 0.00003059 3.81 0.00001632 3.96 0.000008525

3.67 0.00002935 3.82 0.00001563 3.97 0.000008158

3.68 0.00002816 3.83 0.00001498 3.98 0.000007806

3.69 0.00002702 3.84 0.00001435 3.99 0.000007469

3.70 0.00002592 3.85 0.00001375 4.00 0.000007145

3.71 0.00002486 3.86 0.00001317

3.72 0.00002385 3.87 0.00001262

3.73 0.00002287 3.88 0.00001208

3.74 0.00002193 3.89 0.00001157

Source: From R. Peterson and E. Silver, Decision Systems for Inventory and Production Planning,

© 1998 John Wiley & Sons, New York. Reprinted with permission.
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distributed, with a standard deviation of 69.28. For each of the following values of SLM1,

determine the reorder point: 80%, 90%, 95%, 99%, 99.9%.

Solution Note that E(D) � 1,000, K � $50, and h � $10, so

q � 
�2(50)

1

(1

0

,000)
��

1/2

� 100

Also,

E(X) � (�
1
1
2
�)(1,000) � 83.33 and sX � �

6

�
9.

1

2

2�
8

� � 20

From (18), the reorder point for an 80% value of SLM1 must satisfy

NL ��r �

2

8

0

3.33
�	 � �

100(1

2

�

0

0.80)
� � 1

From Table 13, we find that 1 exceeds any of the tabulated values of the normal loss

function. Thus, the value of r must make �r�8
2
3
0
.33

� a negative number. A little trial and er-

ror reveals that NL(�0.9) � NL(0.9) � 0.9 � 1.004. Hence,

�
r �

2

8

0

3.33
� � �0.9

r � 83.33 � 20(0.9) � 65.33

For SLM1 � 0.90, Equation (18) shows that the reorder point must satisfy

NL ��r �

2

8

0

3.33
�	 � �

(1 � 0

2

.

0

90)100
� � 0.5

Again, 0.5 exceeds all tabulated values of the normal loss function. Hence, �
r�8

2

3

0

.33
� must

be a negative number. A little trial and error reveals that N(�0.19) � N(0.19) � 0.19 �

0.5011. Thus, the reorder point for a 90% service level must satisfy

�
r �

2

8

0

3.33
� � �0.19

r � 83.33 � 20(0.19) � 79.53

A 90% service level can be attained by a reorder point that is less than the expected lead

time demand.

To attain a 95% service level, r must satisfy

NL ��r �

2

8

0

3.33
�	 � �

(1 � 0

2

.

0

95)100
� � 0.25

Since NL(0.34) � 0.2518,

�
r �

2

8

0

3.33
� � 0.34

r � 83.33 � 20(0.34) � 90.13

For a 99% service level,

NL ��r �

2

8

0

3.33
�	 � �

(1 � 0

2

.

0

99)100
� � 0.05

Since NL(1.25) � 0.0506, we see that

�
r �

2

8

0

3.33
� � 1.25

r � 83.33 � 20(1.25) � 108.33
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Finally, for a 99.9% service level, r must satisfy

�
r �

2

8

0

3.33
� � �

(1 � 0

2

.9

0

99)100
� � 0.005

Since NL(2.19) � 0.005,

�
r �

2

8

0

3.33
� � 2.19

r � 83.33 � 20(2.19) � 127.13

In summary, the reorder points corresponding to the various values of SLM1 are given in

Table 14. Notice that to go from an 80% to a 90% service level, we must increase the re-

order point by 14.20, but to go from a 90% to a 99.9% service level, the reorder point

must be increased by 47.60. For higher service levels, a much greater increase in the re-

order point is required to cause a commensurate increase in the service level.

Using LINGO to Compute the Reorder Point Level for SLM1

Using the @PSL function in LINGO, it is a simple matter to compute the reorder point

level for SLM1. For example, to compute the reorder point for Example 7 corresponding

to SLM1 � .90 in LINGO, we would use the program

MODEL:
1) @PSL((R - 83.33)/20) = 100*(1 - SLM1)/20;
2) SLM1 = .9;

This program yields r � 79.57. Note that by altering the right-hand side of line 2 we

can quickly compute the reorder points for various values of SLM1.

Using Excel to Compute the Normal Loss Function

It can be shown that

NL( y) � (height of normal density at y) � y*(probability standard normal

is greater than or equal to y)

In the file Normalloss.xls, we therefore compute NL( y) with the Excel formula

�NORMDIST(D3,0,1,0)-D3*(1-NORMSDIST(D3))

TA B L E  14

Reorder Points for Various
Service Levels

Reorder
SLM1 Point

80% 65.33

90% 79.53

95% 90.13

99% 108.33

99.9% 127.13

Normalloss.xls
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Recall that NORMDIST with last argument 0 computes the density function for a normal

random variable, and NORMSDIST( ) computes the standardized normal cumulative

probability. For example, we see from Figure 5 that (consistent with Table 14) NL(2) �

.008491.

To illustrate the use of this spreadsheet, recall that in Example 7 we needed to find a

value of y such that NL( y) � .25. To do this, we use Excel Goal Seek and fill in the Goal

Seek dialog box as shown in Figure 6. This tells Excel to change cell D3 until cell D4

(the normal loss value) reaches .25. The result in Figure 7 shows us that NL(.345) � .25.

Before doing Goal Seek, you should go to Tools Options Calculation Iteration and change

the Maximum Change box to a very small number, such as .0000001. This makes Excel

force the Set cell within .000001 of its desired value.

Determination of Reorder Point and 
Safety Stock Level for SLM2

Suppose that a manager wants to hold sufficient safety stock to ensure that an average of

s0 cycles per year will result in a stockout. Given a reorder point of r, a fraction P(X 	

r) of all cycles will lead to a stockout. Since an average of �
E(

q

D)
� cycles per year will oc-

cur (remember we are assuming backlogging), an average of �
P(X	

q

r)E(D)
� cycles per year

will result in a stockout. Thus, given s0, the reorder point is the smallest value of r

satisfying

�
P(X 	

q

r) E(D)
� � s0 or P(X 	 r) � �

E

s

(
0

D

q

)
�

 

1

2

3

4

5

6

B C D E

Computing
Normal Loss Function

y 2

NL(y) 0.008491

 

1

2

3

4

5

6

B C D E

Computing
Normal Loss Function

y 0.344868

NL(y) 0.25

 F I G U R E  7

F I G U R E  6

F I G U R E  5
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If X is a continuous random variable, then P(X 	 r) � P(X � r). Thus, we obtain the re-

order point r for SLM2 for continuous lead time demand,

P(X � r) � �
E

s

(

0

D

q

)
� (19)

and the reorder point for SLM2 for discrete lead time demand, by choosing the smallest

value of r satisfying

P(X 	 r) � �
E

s

(
0

D

q

)
� (19�)

To illustrate the determination of the reorder point for SLM2, we suppose that Bads, Inc.,

wants to ensure that stockouts occur during an average of two lead times per year. Recall

from Example 7 that EOQ � 100, E(D) � 1,000 units per year, and X is N(83.33, 400).

Now (19) yields P(X � r) � �
2
1
(
,
1
0
0
0
0
0
)

� � .2. The reorder point r is calculated using Excel.

Since

�NORMINV(.8,83.33,20)

yields 100.16, we find that r � 100.16. The safety stock level yielding an average of two

stockouts per year would be 100.16 � E(X) � 16.83.

P R O B L E M S
Group A

1 For Problem 1 of Section 16.6, determine the reorder
point that yields 80%, 90%, 95%, and 99% values of SLM1.
What reorder point would yield an average of 0.5 stockout
per year?

2 For Problem 2 of Section 16.6, determine the reorder
point that yields 80%, 90%, 95%, and 99% values of SLM1.
What reorder point would yield an average of two stockouts
per year?

3 Suppose that the EOQ is 100, average annual demand is
1,000 units, and the lead time demand is a random variable
having the distribution shown in Table 15.

a What value of SLM1 corresponds to a reorder point
of 25?

b If we wanted to attain a 95% value of SLM1, what
reorder point should we choose?

c If we wanted an average of at most two stockouts per
year, what reorder point should we choose?

4 A firm experiences demand with a mean of 100 units per
day. Lead time demand is normally distributed, with a mean
of 1,000 units and a standard deviation of 200 units. It costs
$6 to hold one unit for one year. If the firm wants to meet
90% of all demand on time, what will be the annual cost of
holding safety stock? (Assume that each order costs $50.)

TA B L E  15

Lead Time
Demand Probability

10 �
1
6

�

15 �
1
4

�

20 �
1
4

�

25 �
1
1
2
�

30 �
1
4

�

16.8 (R, S ) Periodic Review Policy†

In this section, we describe a widely used periodic review policy: the (R, S) policy. Be-

fore describing the operation of this policy, we need to define the concept of on-order in-

ventory level. The on-order inventory level is simply the sum of on-hand inventory and

inventory on order. Thus, if 30 units of a product are on hand, and we order 70 units (with

a lead time of, say, one month), our on-order inventory level is 100.

†This section covers topics that may be omitted with no loss of continuity.
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We can now describe the operation of the (R, S) inventory policy. Every R units of time

(say, years), we review the on-hand inventory level and place an order to bring the on-

order inventory level up to S. For example, if we were using a (.25, 100) policy, we would

review the inventory level at the end of each quarter. If i 
 100 units were on hand, an

order for 100 � i units would be placed. In general, an (R, S) policy will incur higher

holding costs than a cost-minimizing (r, q) policy, but an (R, S) policy is usually easier

to administer than a continuous review policy. With an (R, S) policy (unlike a continuous

review policy), we can predict with certainty the times when an order will be placed. An

(R, S) policy also allows a company to coordinate replenishments. For example, a com-

pany could use R � 1 month for all products ordered from the same supplier and then or-

der all products from that supplier on the first day of each month.

We now assume that the review interval R has been determined and focus on the deter-

mination of a value for S that will minimize expected annual costs. Later in this section, we

will discuss how to determine an appropriate value for R. We now assume that all shortages

are backlogged and demand is a continuous random variable whose distribution remains un-

changed over time. Finally, we assume that the per-unit purchase price is constant. This im-

plies that annual purchasing costs do not depend on our choice of R and S. We define

R � time (in years) between reviews

D � demand (random) during a one-year period

E(D) � mean demand during a one-year period

K � cost of placing an order

J � cost of reviewing inventory level

h � cost of holding one item in inventory for one year

cB � cost per-unit short in the backlogged case (assumed to be

independent of the length of time until the order is filled)

L � lead time for each order (assumed constant)

DL�R � demand (random) during a time interval of length L � R

E(DL�R) � mean of DL�R

sDL�R
� standard deviation of DL�R

Given a value of R, we can now determine a value of S that minimizes expected an-

nual costs. Our derivation mimics the derivation of (13). For a given choice of R and S,

our expected costs are given by

(Annual expected purchase costs) � (annual review costs)

� (annual ordering costs) � (annual expected holding costs)

� (annual expected shortage costs)

Since �
R
1

� reviews per year are placed, annual review costs are given by �
R
J

�. Also note that when-

ever an order is placed, the on-order inventory level will equal S. The only way that an or-

der will not be placed at the next review point is if DL�R � 0. Since DL�R is a continuous

random variable, DL�R � 0 will occur with zero probability. Thus, an order is sure to be

placed at the next review point (or any review point). This implies that annual ordering cost

is given by K(�
R
1

�) � �
K
R

�. Observe that both the annual ordering cost and the review cost are

independent of S. Thus, the value of S that minimizes annual expected costs will be the value

of S that minimizes (annual expected holding costs) � (annual expected shortage costs).

To determine the annual expected holding cost for a given (R, S) policy, we first de-

fine a cycle to be the time interval between the arrival of orders. If we can determine the

expected value of the average inventory level over a cycle, then expected annual hold-

ing cost is just h(expected value of on-hand inventory level over a cycle). As in our 
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derivation of (11), we now assume that the average number of back orders is small rela-

tive to the average on-hand inventory level. Then, as in Section 16.6,

Expected value of I(t) � expected value of OHI(t)

Then expected value of I(t) over a cycle may be approximated by 0.5(expected value of

I(t) right before an order arrives) � 0.5(expected value of I(t) right after an order arrives).

Right before an order arrives, our maximum on-order inventory level (S) has been re-

duced by an average of E(DL�R). Thus, expected value of I(t) right before an order ar-

rives � S � E(DL�R).

Since �
R
1

� orders are placed each year and an average of E(D) units must be ordered each

year, the average size of an order is E(D)R. Thus,

Expected value of I(t) right after an order arrives � S � E( DL�R) � E(D)R

Then

Expected value of I(t) during a cycle � S � E(DL�R) � �
E(D

2

)R
�

Thus,

Expected annual holding cost � h 
S � E(DL�R) � �
E(D

2

)R
��

From this expression, it follows that increasing S to S � � will increase expected annual

holding costs by h�.

We now focus on how an increase in S to S � � affects expected annual shortage costs.

Then we can use marginal analysis to find the value of S that minimizes the sum of an-

nual expected holding and shortage costs. Let’s define the shortages “associated” with

each order to be the shortages occurring in the time interval between the arrival of the or-

der and the arrival of the next order. For example, an order placed at time 0 arrives at time

L, and the next order will not arrive until time R � L. Thus, all shortages occurring be-

tween L and R � L are associated with the time 0 order. Clearly, the sum of all shortages

will equal the sum of the shortages associated with all orders. Let’s again focus on the

shortages associated with the time 0 order. Since the next order arrives at time R � L,

and our time 0 order brought the on-order inventory level up to S, a shortage will be as-

sociated with the time 0 order if and only if the demand between time 0 and R � L ex-

ceeds S. If a shortage occurs, the magnitude of the shortage will equal DL�R � S.

We can now use marginal analysis to determine (for a given R) the value of S that min-

imizes the sum of annual expected holding and shortage costs. If we increase S to S � �,

annual expected holding costs increase by h�. Increasing S to S � � will decrease short-

ages associated with an order if DL�R � S. Thus, for a fraction P(DL�R � S) of all or-

ders, increasing S to S � � will save cB� in shortage costs. Since �
R
1

� orders are placed

each year, increasing S to S � � will reduce expected annual shortage costs by

(�
R
1

�)cB�P(DL�R � S). Marginal analysis then implies that the value of S minimizing the

sum of annual expected holding and shortage costs will occur for the value of S satisfying

h � � (�
R
1

�)cB�P(DL�R � S)

or

P(DL�R � S) � �
R

cB

h
� (20)

Suppose that all shortages result in lost sales, and a cost of cLS (including shortage cost

plus lost profit) is incurred for each lost sale. Then the value of S minimizing the sum of

annual expected holding and shortage costs is given by
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P(DL�R � S) � �
Rh

R

�

h

cLS

� (21)

The following example illustrates the use of (20).

E X A M P L E  8

Lowland Appliance replenishes its stock of color TVs three times a year. Each order takes
�
1
9

� year to arrive. Annual demand for color TVs is N(990, 1,600). The cost of holding one

color TV in inventory for one year is $100. Assume that all shortages are backlogged, with

a shortage cost of $150 per TV. When Lowland places an order, what should the on-

order inventory be?

Solution We are given that R � �
1
3

� year, L � �
1
9

� year, R � L � �
4
9

� year, and cB � $150. DL�R is nor-

mally distributed, with E(DL�R) � �
4
9

�(990) � 440 and sDL�R
� ��

4
9

� �1,600� � 26.67.

From (20), S should be chosen to satisfy

P(DL�R � S) � � .22

We use the Excel function NORMINV to compute s. Since

�NORMINV(0.78,440,26.67)

yields 460.59, when Lowland places an order for TVs, it should order enough to bring the

on-order inventory level up to 460.59 (or 461) TVs. For example, if 160 TVs are in stock

when a review takes place, 461 � 160 � 301 TVs should be ordered.

Determination of R

Often, the review interval R is set equal to �E
E

O
(D

Q
)

�. This makes the number of orders placed

per year equal the number recommended if a simple EOQ model were used to determine

the size of orders. Since each order is accompanied by a review, however, we must set the

cost per order to K � J. This yields

EOQ � ��2(K �h

J)E(D)
�

To illustrate the idea, suppose that it costs $500 to review the inventory level and $5,000

to place an order for TVs. Then

EOQ � ��2(5,5

1

00

0

0

)(990)
� � 330

This implies a review interval R � �
3
9
3
9
0
0

� � �
1
3

� year.

Implementation of an (R, S) System

Retail stores (such as J. C. Penney’s) often find an (R, S) policy easy to implement, be-

cause the quantity ordered equals the number of sales occurring during the period between

reviews. For example, suppose a (1 month, 1,000) policy is being used, and orders are

placed on the first day of each month. If 800 items were sold during January, then an or-

der of 800 items must be placed at the beginning of February to bring the on-order in-

ventory level back up to 1,000. By programming a computer to set monthly orders equal

to monthly sales, such a policy can easily be implemented.

(�
1
3

�) 100
�

Lowland Appliance
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P R O B L E M S
Group A

1 A hospital must order the drug Porapill from Daisy
Drug Company. It costs $500 to place an order and $30 to
review the hospital’s inventory of the drug. Annual demand
for the drug is N(10,000, 640,000), and it costs $5 to hold
one unit in inventory for one year. Orders arrive one month
after being placed. Assume that all shortages are backlogged.

a Estimate R and the number of orders per year that
should be placed.

b Using the answer in part (a), determine the optimal
(R, S) inventory policy. Assume that the shortage cost
per unit of the drug is $100.

2 Chicago’s Treadway Tires Dealer must order tires from
its national warehouse. It costs $10,000 to place an order
and $400 to review the inventory level. Annual tire sales are

N(20,000, 4,000,000). It costs $10 per year to hold a tire in
inventory, and each order arrives two weeks after being
placed (52 weeks � 1 year). Assume that all shortages are
backlogged.

a Estimate R and the number of orders per year that
should be placed.

b Using the answer in part (a), determine the optimal
(R, S) inventory policy. Assume that the shortage cost is
$100 per tire.

3 Suppose we have found the optimal (R, S) policy for the
back-ordered case and that S � 50. Is the following true or
false?

The optimal S for the lost sales case has S 	 50.

16.9 The ABC Inventory Classification System

Many companies must develop inventory policies for thousands of items. In such a situ-

ation, a company cannot devote a great deal of attention to determining an “optimal” in-

ventory policy for each item. The ABC classification, devised at General Electric during

the 1950s, helps a company identify a small percentage of its items that account for a

large percentage of the dollar value of annual sales. These items are called Type A items.

Since most of the firm’s inventory investment is in Type A items, concentrating effort on

developing effective inventory control policies for these items should produce substantial

savings.

Repeated studies have shown that in most companies, 5%–20% of all items stocked

account for 55%–65% of sales; these are the Type A items. It has also been found that

20%–30% of all items account for 20%–40% of sales; these are called Type B items. Fi-

nally, it is often found that 50%–75% of all items account for only 5%–25% of sales; these

are called Type C items. To illustrate how we determine which items are Type A, Type B,

and Type C, consider a firm that stocks 100 items. We reorder the items as item 1, item

2, . . . , item 100, where item 1 generates the largest annual sales volume, item 2 gener-

ates the second largest annual sales volume, and so on. Then we plot the points (k, per-

centage of annual sales due to top k% of all items). For example, the point (20, 60) indi-

cates that the top 20 items (from the standpoint of dollar sales) generate 60% of all sales.

We then obtain a graph like Figure 8, where items 1–20 are Type A items, items 21–40

are Type B items, and items 41–100 are Type C items.

Since most of our inventory investment is in Type A items, high service levels will re-

sult in huge investments in safety stocks. Therefore, Hax and Candea (1984) recommend

that SLM1 be set at only 80%–85% for Type A items. Tight management control of or-

dering procedures is essential for Type A items; individual demand forecasts should be

made for each Type A item. Also, every effort should be made to lower the lead time

needed to receive orders or produce the item. If an (R, S) policy is used, R should be

small—perhaps one week. This enables us to keep a close watch on inventory levels. Pa-

rameters such as estimates of annual mean demand, length of lead time, standard devia-

tion of annual demand, and shortage costs should be reviewed fairly often.

For Type B items, Hax and Candea (1984) recommend that SLM1 be set at 95%. In-

ventory policies for Type B items can generally be controlled by computer. Parameters for
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Type B items should be reviewed less often than for Type A items.

For Type C items, a simple two-bin system is usually adequate. Parameters may be re-

viewed once or twice a year. Demand for Type C items may be forecast by simple ex-

trapolation methods. A high value of SLM1 (usually 98%–99%) is recommended. Little

extra investment in safety stock will be required to maintain these high service levels.

DEVRO Incorporated, a producer of edible sausage casings, implemented an ABC

analysis of its spare parts inventory and found that 2.5% of all items (the Type A items)

accounted for 49% of all dollar usage, and 24.7% of all items (the Type B items) ac-

counted for 38% of all dollar usage. By preparing requisition forms in advance for Type

A and Type B items, DEVRO was able to substantially reduce the lead time needed to ob-

tain those items. This helped DEVRO effect substantial savings in annual inventory costs.

See Flowers and O’Neill (1978) for details.
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F I G U R E  8

Example of ABC
Classification of

Inventory

1 Develop an ABC graph for the data in Table 16. Which
items should be classified A, B, and C?

TA B L E  16

Unit Cost
Item Annual Usage (in dollars)

1 20,000 20

2 23,000 10

3 20,000 3

4 30,000 2

5 5,000 10

6 10,000 7

7 1,000 30

8 2,000 15

9 3,000 10

10 5,000 6
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16.10 Exchange Curves

In many situations, it is difficult to estimate holding and shortage costs accurately. Ex-

change curves can be used in such situations to identify “reasonable” inventory policies.

Consider a company that stocks two items (1 and 2). Many different ordering policies are

possible. For example, the company may order item 1 five times a year and item 2 ten

times a year (policy 1), or it may order each item once per year (policy 2). Clearly, pol-

icy 1 will result in higher ordering costs than policy 2, but policy 2 will result in higher

holding costs and a higher average inventory level than policy 1. An exchange curve en-

ables us to display graphically the trade-off between annual ordering costs and average

inventory investment.

To illustrate the construction of an exchange curve, suppose a company stocks two

items (item 1 and 2), and suppose that

ci � cost of purchasing each unit of product i

h � cost of holding $1 worth of either product in inventory for one year

Ki � order cost for product i

qi � EOQ for product i

Di � annual demand for product i

Then

qi � ��
2K

hc
iD

i

i
�

Suppose the company wants to minimize the sum of annual ordering and holding costs.

Then it should follow an EOQ policy for each product and order qi of product i �
D

qi

i
� times

per year. Two measures of effectiveness for this (or any other) ordering policy are

AII � average dollar value of inventory cost

AOC � annual ordering cost

If we follow the EOQ policy for each product, then

AII � ��
q

2

1
�	c1 � ��

q

2

2
�	c2

� ��
1

2
�	 �c1��

2K

c1

1

h

D1
� � c2��

2K

c2

2

h

D2
��

� ��2
�
�

2�
h�

�	 {�K1D1c�1� ��K2D2c�2�}

AOC � K1 ��
D

q1

1
�	 � K2��

D

q2

2
�	

� K1D1��
2K

c1

1

h

D1

� � K2D2��
2K

c2

2

h

D2

�
� ���2

2h�
�	 {�K1D1c�1� � �K2D2c�2�}

The expression for AII follows from the fact that the average inventory level of an item

equals half the order quantity. The expression for AOC follows from the fact that �
D

qi

i
� or-

ders per year are placed for item i.
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Since h is often hard to estimate, let’s suppose h is unknown and look at how a change

in h affects AII and AOC. A plot of the points (AOC, AII) associated with each value of

h is known as an exchange curve. For any point on the exchange curve, we see that

AII(AOC) � (�
1
2

�){�K1D1c�1� � �K2D2c�2�}2 (21)

This shows that the exchange curve is a hyperbola. Also, any point on the exchange curve

satisfies �
A
A
O
II
C

� � �
1
h

� or �A
A
O
II
C

� � h. Thus, for any point on the exchange curve, the annual hold-

ing cost per dollar of inventory is the ratio of the x-coordinate to the y-coordinate. This

shows how each point on the exchange curve can be identified with a value of h.

We now illustrate the computation of an exchange curve and show how the exchange

curve can be used as an aid in decision making.

E X A M P L E  9

A company stocks two products. Relevant information is given in Table 17.

1 Draw an exchange curve.

2 Currently, the company is ordering each product ten times per year. Use the exchange

curve to demonstrate to management that this is an unsatisfactory ordering policy.

3 Suppose that management limits the company’s average inventory investment to

$10,000. Use the exchange curve to determine an appropriate ordering policy.

Solution 1 From (21), we find the equation of the exchange curve to be

(AII)(AOC) � (�
1
2

�){�50(10,�000)(2�00)� � �80(20,�000)(2�.5)�}2

� 72,000,000

Some representative points on the exchange curve, along with the associated value of h,

are given in Table 18. The exchange curve is graphed in Figure 9.

2 If the company orders each product ten times per year,

AOC � 10($50) � 10($80) � $1,300

AII � �
1
2

�(1,000)($200) � �
1
2

�(2,000)($2.50) � $102,500

Exchange Curve

TA B L E  17

Relevant Information for Example 9

Ki Di ci

Product 1 $50 10,000 $200

Product 2 $80 20,000 $2.50

TA B L E  18

Points on Exchange Curve

AOC All h

$2,000 $36,000 .06

$3,000 $24,000 .13

$4,000 $18,000 .22

$5,000 $14,400 .35

$6,000 $12,000 .50

$8,000 $9,000 .89
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This is point A in Figure 9. Observe that point B � (1,300, 55,385), corresponding to h

� .02, yields the same AOC as the current policy, but a much lower AII. Also, point C �

(702.44, 102,500), corresponding to h � .01, yields the same AII as the current policy,

but a much lower AOC. Thus, we can use the exchange curve to show the manager how

to improve on the current ordering policy.

3 From the exchange curve, we find that D � (7,200, 10,000) is on the exchange curve.

Thus, for a $10,000 AII, the best we can do is to hold ordering costs to $7,200. Of course, the

manager could opt for AII � $9,000 and AOC � $8,000 or one of many other possibilities.

The point is that the exchange curve clarifies many of the options available to management.

Exchange Curves for Stockouts

Exchange curves can also be used to assess the trade-offs between average inventory in-

vestment (AII) and the expected number of lead times per year resulting in stockouts. To

illustrate, consider a company stocking a single item for which

c � purchase cost per unit

K � setup cost

h � annual cost of holding one unit in inventory

cB � cost of a stockout (we assume all items are back-ordered)

E(D) � mean annual demand

q � economic order quantity

X � lead time demand

E(X) � mean lead time demand

sX � standard deviation of lead time demand

r � reorder point (determined from Equation (13))

From (13), a fraction

�
cBE

qh

(D)
�

1,300 2,000 3,000 4,000
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A
ll

 (
th

o
u
sa

n
d
s)

5,000 6,000 8,000702.44
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40
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0
F I G U R E  9

Example of an
Exchange Curve
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of all lead times will have a stockout. Since there are an average of �E(
q
D)
� orders placed per

year, an average of

��E(

q

D)
�	 ��cBE

qh

(D)
�	 � �

c

h

B

�

lead times per year will result in stockouts. We let SY � expected number of lead times

per year resulting in stockouts. From (11), we know that the average inventory level is (�
q
2

�

� r � E(X)). Thus, we have AII � c(�
q

2
� � r � E(X)).

An exchange curve for this situation is a graph of the points (AII, SY) corresponding

to different values of cB. To illustrate the construction of an exchange curve, let E(X) �

200, sX � 50, E(D) � 100,000, K � $12.50, h � $10, and c � $100. We will find four

points on the exchange curve by setting cB � $1, $5, $10, and $20. First we find that

q � ��2(12.5)(

1

1

0

00,000)
� � 500

The stockout probabilities and SY are given in Table 19.

Using Table 2 in Chapter 12 or the Excel NORMSDIST( ) function, we can calculate

the reorder point r for each value of cB. Then we determine the average inventory level

and AII � average inventory investment. These calculations are given in Table 20.

The exchange curve (based on the four points we have computed) is graphed in Fig-

ure 10. For example, the exchange curve shows us that if current AII is $33,250, then for

a $3,400 increase in AII, we can reduce SY from 10 to 2, but an additional increase in AII

of $3,400 would decrease SY by less than 2.

Exchange Surfaces

Using more sophisticated techniques (see Gardner and Dannenbring (1979)), an exchange

surface involving three or more quantities can be derived. The exchange surface in Fig-

ure 11 was derived from a sample of 500 items in a military distribution system. The 

TA B L E  19

Computation of SY

cB Stockout Probability � �
cB

q

E

h

(D)
� SY � �

c

h

B
�

$1 �
1(

5
1
0
0
0
0
(
,
1
0
0
0
)
0)

� � .05 �
1
1
0
� � 10

$5 �
5(

5
1
0
0
0
0
(
,
1
0
0
0
)
0)

� � .01 �
1
5
0
� � 2

$10 �
10

5
(1
0
0
0
0
(1
,0
0
0
)
0)

� � .005 �
1
1
0
0
� � 1

$20 �
20

5
(1
0
0
0
0
(1
,0
0
0
)
0)

� � .0025 �
1
2
0
0
� � 0.50

TA B L E  20

Calculation of AII

cB Reorder Point Average Inventory Level AII

$1 200 � 50(1.65) � 282.5 250 � 282.5 � 200 � 332.5 $33,250

$5 200 � 50(2.33) � 316.5 250 � 316.5 � 200 � 366.5 $36,650

$10 200 � 50(2.58) � 329.5 250 � 329.5 � 200 � 379.5 $37,900

$20 200 � 50(2.81) � 340.5 250 � 340.5 � 200 � 390.5 $39,050
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x-coordinate is the annual number of orders placed, the y-coordinate is the average in-

ventory investment (in thousands of dollars), and the z-coordinate is the percentage of re-

quests that yield shortages. For example, suppose the military has fixed a $900,000 aver-

age inventory investment. By varying the number of orders per year between 1,500 and

9,042, the military can vary the percentage of requests that yield shortages between 6.31%

and 3.42%. Also, if annual orders are fixed at 3,000, then the percentage of requests yield-

ing shortages can vary between 0.75% and 3.71%. An exchange surface makes it easy to

identify the trade-offs involved between improving service, increased inventory invest-

ment, and increased work load (orders per year).
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F I G U R E  10

Exchange Curve for AII
and SY

F I G U R E  11

Example of an
Exchange Surface†

†Reprinted by permission of E. Gardner and D. Dannenbring, “Using Optimal Policy Surfaces to Analyze Ag-

gregate Inventory Tradeoffs,” Management Science, Vol. 25, No. 8, August 1979. Copyright 1979, the Institute

of Management Sciences.
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P R O B L E M S
Group A

1 Consider a two-item inventory system with the attributes
in Table 21.

a Draw an exchange curve for these products (use
AOC and AII as the x- and y-coordinates).

b Currently, management is ordering each product
twice a year. How can it improve on this strategy?

c The order costs correspond to machine setup times.
Machine time is valued at $50 per hour. If management

wants to limit machine setup time to 500 hours per year,
what strategies are available?

2 Explain how to draw an exchange curve where the x-
coordinate is AII and the y-coordinate is percentage of all
requests for stock that result in shortages.

3 Consider the exchange surface in Figure 11. The current
inventory policy has yielded 3,586 orders per year, an AII
of $1,367,000, and 0.89% shortages.

a Without changing orders per year and AII, by how
much can shortages be improved?

b If AII and shortages are maintained at current lev-
els, by how much can orders per year be reduced?

c If shortages and orders per year are maintained at
current levels, by how much can AII be reduced?

S U M M A R Y Single-Period Decision Models

A decision maker begins by choosing a value q of a decision variable. Then a random

variable D assumes a value d. Finally, a cost c(d, q) is incurred. The decision maker’s goal

is to choose q to minimize expected cost.

News Vendor Problem

If c(d, q) has the structure

c(d, q) � coq � (terms not involving q) (d � q) (2)

c(d, q) � �cuq � (terms not involving q) (d � q � 1) (2.1)

the single-period decision model is a news vendor problem. Here

co � per-unit overstocking cost

cu � per-unit understocking cost

If D is a discrete random variable, the optimal decision is given by the smallest value

of q (q*) satisfying

F(q*) � �
co �

cu

cu

� (3)

If D is a continuous random variable, the optimal decision is the value of q (q*) satisfy-

ing

P(D � q*) � �
co �

cu

cu

� (5)

TA B L E  21

Ki Di ci

Product 1 $500 10,000 $2,000

Product 2 $800 20,000 $250
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Determination of Reorder Point and Order Quantity 
with Uncertain Demand: Minimizing Annual Expected Cost

Let

K � ordering cost

h � holding cost/unit/year

L � lead time for each order (assumed to be known with certainty)

q � order quantity

D � random variable representing annual demand,

with mean E(D), variance var D, and standard deviation sD

cB � cost incurred for each unit short if shortages are backlogged

cLS � cost (including lost profits, lost goodwill) incurred

for each lost sale if each shortage results in a lost sale

X � random variable representing lead time demand

Then

E(X) � LE(D), var X � L (var D), sX � �L�sD

and r is the reorder point, or inventory level at which an order should be placed. Safety

stock, r � E(X), is the amount of inventory held in excess of lead time demand to meet

shortages that may occur before an order arrives.

Assume that the optimal order quantity can be reasonably approximated by the EOQ,

D is a continuous random variable, and all shortages are backlogged. Then annual ex-

pected cost is minimized by q* and r* given by

q* � ��2KE

h

(D)
�	

1/2

(13)

P(X � r*) � �
cB

h

E

q

(

*

D)
�

Assume that the optimal order quantity can be reasonably approximated by the EOQ,

D is a continuous random variable, and all shortages result in lost sales. Then annual ex-

pected cost is minimized by q* and r* satisfying

q* � ��2KE

h

(D)
�	

1/2

(15)

P(X � r*) � �
hq* �

hq

c

*

LSE(D)
�

Determination of Reorder Point: The Service Level Approach

Since it may be difficult to determine the exact cost of a shortage or lost sale, it is often

desirable to choose a reorder point that meets a desired service level. Two common mea-

sures of service level are

Service Level Measure 1 SLM1, the expected fraction (usually expressed as a percentage)

of all demand that is met on time.

Service Level Measure 2 SLM2, the expected number of cycles per year during which a

shortage occurs.
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If lead time is normally distributed, then for a desired value SLM1, the reorder point r

is found from

NL ��r �

s

E

X

(X)
�	 � �

q(1 �

sX

SLM1)
� (18)

where NL( y) is the normal loss function, tabulated in Table 13, and q is the EOQ.

If lead time demand is a continuous random variable, and we desire SLM2 � s0 short-

ages per year, the reorder point r is given by

P(X � r) � �
E

s

(

0

D

q

)
� (19)

Again, q is the EOQ.

If lead time demand is a discrete random variable, and we desire SLM2 � s0 shortages

per year, the reorder point is the smallest value of r satisfying

P(X 	 r) � �
E

s

(

0

D

q

)
� (19�)

Again, q is the EOQ.

(R, S) Periodic Review Policy

Every R units of time, we review the inventory level and place an order to bring our on-

hand inventory level up to S. Given a value of R, we determine the value of S from

P(DL�R � S) � �
R

cB

h
�

ABC Classification

The 5%–20% of all items accounting for 55%–65% of sales are Type A items; the

20%–30% of all items accounting for 20%–40% of sales are Type B items; and the

50%–75% of all items that account for 5%–25% of all sales are Type C items. By con-

centrating effort on Type A (and possibly Type B) items, we can achieve substantial cost

reductions.

Exchange Curves

Exchange curves (and exchange surfaces) are used to display trade-offs between various

objectives. For example, an exchange curve may display the trade-off between annual or-

dering costs and average dollar level of inventory. An exchange curve can be used to com-

pare how various ordering policies compare with respect to several objectives.

R E V I E W  P R O B L E M S
Group A

1 The Chocochip Cookie Store bakes its cookies every
morning before opening. It costs the store 15¢ to bake each
cookie, and each cookie is sold for 35¢. At the end of the

day, leftover cookies may be sold to a thrift bakery for 5¢
per cookie. The number of cookies sold each day is described
by the discrete random variable in Table 22.
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a How many dozen cookies should be baked before
the store opens?

b If the daily demand (in dozens) for cookies is N(50,
400), how many dozen cookies should be baked? A de-
scription of the N(m, s 2) notation can be found in Sec-
tion 1.7.

c If the daily demand (in dozens) for cookies has a
density function

f(d) � �
e�

5

d

0

/50

� (d � 0)

how many dozen cookies should be baked?

2 An optometrist orders eyeglass frames at a cost of $40
per frame and sells each frame for $70. Annual holding cost
is 20% of the optometrist’s cost of purchasing a frame. Each
time frames are ordered, a cost of $200 is incurred. Because
of lost goodwill, a cost of $50 is incurred each time a
customer wants a frame that is not in stock. Frames are
delivered one week after an order is placed. Annual demand
for frames is N(1,040, 15.73).

a Assuming all shortages are backlogged, determine
the order quantity and reorder point.

b Assuming all shortages result in lost sales, deter-
mine the order quantity and reorder point.

c To meet 95% of all orders from stock, what should
be the reorder point?

d To have shortages occur during an average of two
lead times per year, what should be the reorder point?

3 We are given the following information about a product:

Cost of placing an order � $100

Cost per item � $5

Sale price per item � $8

Annual holding cost � 40% of cost of item

Annual demand � 5,000 units

Lead time demand � N(20, 900)

a If the reorder point that minimizes expected cost is
80, what is the shortage cost? (Assume backlogging.)

b If the reorder point that minimizes expected cost is
80, what is the shortage cost? (Assume lost sales.)

c What reorder point would meet 90% of all demand
on time?

d What reorder point would result in a stockout oc-
curring during an average of 0.5 lead time per year?

Group B

4 A business believes that its needs for cash during the
next month are described by the random variable shown in
Table 23. At the beginning of the month, the business has
$10,000 available, and the business manager must determine
how much of the money should be placed in an account
bearing 24% annual interest. If any money must be
withdrawn before the end of the month, all interest on the
withdrawn money is forfeited, and a penalty equal to 2% of
the withdrawn money must be paid. How much money
should be placed in the 24% annual interest account?

5 A fur dealer buys fur coats for $100 each and sells them
for $200 each. He believes that the demand for coats is
N(100, 100). Any coat not sold can be sold to a discount
house for $100, but the fur dealer believes he must charge
himself a cost of 10¢ per dollar invested in a fur coat that
is sold at discount. How many coats should the dealer order?
If the price at which the dealer sold his coats increased
(assuming demand is unchanged), would he buy more or
fewer coats?

6 A company currently has two warehouses. Each
warehouse services half the company’s demand, and the
annual demand serviced by each warehouse is N(10,000,
1,000,000). The lead time for meeting demand is �

1
1
0
� year.

The company wants to meet 95% of all demand on time.
Assume that the EOQ at each warehouse is 2,000.

a How much safety stock must be held?

b Show that, if the company had only one warehouse,
it would hold less safety stock than it does when it has
two warehouses.

c A young MBA argues, “By having one central ware-
house, I can reduce the total amount of safety stock
needed to meet 95% of all customer demands on time.
Therefore, we can save money by having only one cen-
tral warehouse instead of several branch warehouses.”
How might this argument be rebutted?

7 Use LINGO to determine the values of q and r that
minimize expected annual cost for Example 5. How close
are your answers to those given in the text?

TA B L E  22

Demand
(dozens) Probability

20 .30

30 .20

40 .20

50 .15

60 .15

TA B L E  23

Cash Needs Probability

$4,000 .30

$5,000 .20

$6,000 .10

$7,000 .30

$8,000 .10
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Markov Chains

Sometimes we are interested in how a random variable changes over time. For example, we

may want to know how the price of a share of stock or a firm’s market share evolves. The study

of how a random variable changes over time includes stochastic processes, which are ex-

plained in this chapter. In particular, we focus on a type of stochastic process known as a

Markov chain. Markov chains have been applied in areas such as education, marketing, health

services, finance, accounting, and production. We begin by defining the concept of a sto-

chastic process. In the rest of the chapter, we will discuss the basic ideas needed for an un-

derstanding of Markov chains.

17.1 What Is a Stochastic Process?

Suppose we observe some characteristic of a system at discrete points in time (labeled 0,

1, 2, . . .). Let Xt be the value of the system characteristic at time t. In most situations, Xt

is not known with certainty before time t and may be viewed as a random variable. A 

discrete-time stochastic process is simply a description of the relation between the random

variables X0, X1, X2, . . . . Some examples of discrete-time stochastic processes follow.

E X A M P L E  1

At time 0, I have $2. At times 1, 2, . . . , I play a game in which I bet $1. With probabil-

ity p, I win the game, and with probability 1 � p, I lose the game. My goal is to increase

my capital to $4, and as soon as I do, the game is over. The game is also over if my cap-

ital is reduced to $0. If we define Xt to be my capital position after the time t game (if

any) is played, then X0, X1, . . . , Xt may be viewed as a discrete-time stochastic process.

Note that X0 � 2 is a known constant, but X1 and later Xt’s are random. For example,

with probability p, X1 � 3, and with probability 1 � p, X1 � 1. Note that if Xt � 4, then

Xt�1 and all later Xt’s will also equal 4. Similarly, if Xt � 0, then Xt�1 and all later Xt’s

will also equal 0. For obvious reasons, this type of situation is called a gambler’s ruin

problem.

E X A M P L E  2

An urn contains two unpainted balls at present. We choose a ball at random and flip a

coin. If the chosen ball is unpainted and the coin comes up heads, we paint the chosen

unpainted ball red; if the chosen ball is unpainted and the coin comes up tails, we paint

the chosen unpainted ball black. If the ball has already been painted, then (whether heads

or tails has been tossed) we change the color of the ball (from red to black or from black

to red). To model this situation as a stochastic process, we define time t to be the time af-

Choosing Balls from an Urn

The Gambler’s Ruin
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ter the coin has been flipped for the tth time and the chosen ball has been painted. The

state at any time may be described by the vector [u r b], where u is the number of un-

painted balls in the urn, r is the number of red balls in the urn, and b is the number of

black balls in the urn. We are given that X0 � [2 0 0]. After the first coin toss, one

ball will have been painted either red or black, and the state will be either [1 1 0] or

[1 0 1]. Hence, we can be sure that X1 � [1 1 0] or X1 � [1 0 1]. Clearly, there

must be some sort of relation between the Xt’s. For example, if Xt � [0 2 0], we can

be sure that Xt�1 will be [0 1 1].

E X A M P L E  3

Let X0 be the price of a share of CSL Computer stock at the beginning of the current trad-

ing day. Also, let Xt be the price of a share of CSL stock at the beginning of the tth trad-

ing day in the future. Clearly, knowing the values of X0, X1, . . . , Xt tells us something

about the probability distribution of Xt�1; the question is, what does the past (stock prices

up to time t) tell us about Xt�1? The answer to this question is of critical importance in

finance. (See Section 17.2 for more details.)

We close this section with a brief discussion of continuous-time stochastic processes.

A continuous-time stochastic process is simply a stochastic process in which the state

of the system can be viewed at any time, not just at discrete instants in time. For example,

the number of people in a supermarket t minutes after the store opens for business may be

viewed as a continuous-time stochastic process. (Models involving continuous-time 

stochastic processes are studied in Chapter 20.) Since the price of a share of stock can be 

observed at any time (not just the beginning of each trading day), it may be viewed as a

continuous-time stochastic process. Viewing the price of a share of stock as a continuous-

time stochastic process has led to many important results in the theory of finance, in-

cluding the famous Black–Scholes option pricing formula.

17.2 What Is a Markov Chain?

One special type of discrete-time stochastic process is called a Markov chain. To simplify

our exposition, we assume that at any time, the discrete-time stochastic process can be in

one of a finite number of states labeled 1, 2, . . . , s.

D E F I N I T I O N ■

Essentially, (1) says that the probability distribution of the state at time t � 1 depends on

the state at time t (it) and does not depend on the states the chain passed through on the

way to it at time t.

In our study of Markov chains, we make the further assumption that for all states i and

j and all t, P(Xt�1 � j |Xt � i) is independent of t. This assumption allows us to write

P(Xt�1 � j |Xt � i) � pij (2)

A discrete-time stochastic process is a Markov chain if, for t � 0, 1, 2, . . . and

all states,

P(Xt�1 � it�1|Xt � it , Xt�1 � it�1, . . . , X1 � i1, X0 � i0)

� P(Xt�1 � it�1|Xt � it) ■ (1)

CSL Computer Stock
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where pij is the probability that given the system is in state i at time t, it will be in a state

j at time t � 1. If the system moves from state i during one period to state j during the

next period, we say that a transition from i to j has occurred. The pij’s are often referred

to as the transition probabilities for the Markov chain.

Equation (2) implies that the probability law relating the next period’s state to the cur-

rent state does not change (or remains stationary) over time. For this reason, (2) is often

called the Stationarity Assumption. Any Markov chain that satisfies (2) is called a sta-

tionary Markov chain.

Our study of Markov chains also requires us to define qi to be the probability that the

chain is in state i at time 0; in other words, P(X0 � i) � qi. We call the vector q � [q1

q2 ��� qs] the initial probability distribution for the Markov chain. In most applica-

tions, the transition probabilities are displayed as an s � s transition probability matrix

P. The transition probability matrix P may be written as

P � � �
Given that the state at time t is i, the process must be somewhere at time t � 1. This means

that for each i,

�
j�s

j�1

P(Xt�1 � j |P(Xt � i)) � 1

�
j�s

j�1

pij � 1

We also know that each entry in the P matrix must be nonnegative. Hence, all entries in the

transition probability matrix are nonnegative, and the entries in each row must sum to 1.

E X A M P L E  1

Find the transition matrix for Example 1.

Solution Since the amount of money I have after t � 1 plays of the game depends on the past his-

tory of the game only through the amount of money I have after t plays, we definitely

have a Markov chain. Since the rules of the game don’t change over time, we also have

a stationary Markov chain. The transition matrix is as follows (state i means that we have

i dollars):

State

$0 $1 $2 $3 $4

P � � �
If the state is $0 or $4, I don’t play the game anymore, so the state cannot change; hence,

p00 � p44 � 1. For all other states, we know that with probability p, the next period’s state

will exceed the current state by 1, and with probability 1 � p, the next period’s state will

be 1 less than the current state.

0

0

0

p

1

0

0

p

0

0

0

p

0

1 � p

0

0

0

1 � p

0

0

1

1 � p

0

0

0

0

1

2

3

4

The Gambler’s Ruin (Continued)

p1s

p2s

�
�
�

pss

� � �

� � �

� � �

p12

p22

�
�
�

ps2

p11

p21

�
�
�

ps1
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A transition matrix may be represented by a graph in which each node represents a

state and arc (i, j) represents the transition probability pij. Figure 1 gives a graphical rep-

resentation of Example 1’s transition probability matrix.

E X A M P L E  2

Find the transition matrix for Example 2.

Solution Since the state of the urn after the next coin toss only depends on the past history of the

process through the state of the urn after the current coin toss, we have a Markov chain.

Since the rules don’t change over time, we have a stationary Markov chain. The transition

matrix for Example 2 is as follows:

State

[0 1 1] [0 2 0] [0 0 2] [2 0 0] [1 1 0] [1 0 1]

P � � �
To illustrate the determination of the transition matrix, we determine the [1 1 0] row

of this transition matrix. If the current state is [1 1 0], then one of the events shown

in Table 1 must occur. Thus, the next state will be [1 0 1] with probability �
1
2

�, [0 2

0] with probability �
1
4

�, and [0 1 1] with probability �
1
4

�. Figure 2 gives a graphical rep-

resentation of this transition matrix.

0

0

0

�
1
2

�

�
1
2

�

0

0

0

0

�
1
2

�

0

�
1
2

�

0

0

0

0

0

0

�
1
2

�

0

0

0

0

�
1
4

�

�
1
2

�

0

0

0

�
1
4

�

0

0

1

1

0

�
1
4

�

�
1
4

�

[0 1 1]

[0 2 0]

[0 0 2]

[2 0 0]

[1 1 0]

[1 0 1]

Choosing Balls (Continued)

0 1

1 1

2 3 4

1  –  p p

p

p1  –  p

1  –  p

F I G U R E  1

Graphical Representation
of Transition Matrix for

Gambler’s Ruin

TA B L E  1

Computations of Transition Probabilities If Current State Is [1 1 0]

Event Probability New State

Flip heads and choose unpainted ball �
1
4

� [0 2 0]

Choose red ball �
1
2

� [1 0 1]

Flip tails and choose unpainted ball �
1
4

� [0 1 1]

1

1

0, 1, 1 2, 0, 0

0, 2, 0 1, 1, 0

0, 0, 2 1, 0, 1
1
4

1
4

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
4

F I G U R E  2

Graphical
Representation of
Transition Matrix 

for Urn
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E X A M P L E  3

In recent years, students of finance have devoted much effort to answering the question

of whether the daily price of a stock share can be described by a Markov chain. Suppose

the daily price of a stock share (such as CSL Computer stock) can be described by a

Markov chain. What does that tell us? Simply that the probability distribution of tomor-

row’s price for one share of CSL stock depends only on today’s price of CSL stock, not

on the past prices of CSL stock. If the price of a stock share can be described by a Markov

chain, the “chartists” who attempt to predict future stock prices on the basis of the pat-

terns followed by past stock prices are barking up the wrong tree. For example, suppose

the daily price of a share of CSL stock follows a Markov chain, and today’s price for a

share of CSL stock is $50. Then to predict tomorrow’s price of a share of CSL stock, it

does not matter whether the price has increased or decreased during each of the last 30

days. In either situation (or any other situation that might have led to today’s $50 price),

a prediction of tomorrow’s stock price should be based only on the fact that today’s price

of CSL stock is $50. At this time, the consensus is that for most stocks the daily price of

the stock can be described as a Markov chain. This idea is often referred to as the effi-

cient market hypothesis.

P R O B L E M S
Group A

CSL Computer Stock (Continued)

1 In Smalltown, 90% of all sunny days are followed by
sunny days, and 80% of all cloudy days are followed by
cloudy days. Use this information to model Smalltown’s
weather as a Markov chain.

2 Consider an inventory system in which the sequence of
events during each period is as follows. (1) We observe the
inventory level (call it i) at the beginning of the period. 
(2) If i � 1, 4 � i units are ordered. If i 	 2, 0 units are
ordered. Delivery of all ordered units is immediate. (3) With
probability �

1
3

�, 0 units are demanded during the period; with
probability �

1
3

�, 1 unit is demanded during the period; and
with probability �

1
3

�, 2 units are demanded during the period.
(4) We observe the inventory level at the beginning of the
next period.

Define a period’s state to be the period’s beginning
inventory level. Determine the transition matrix that could
be used to model this inventory system as a Markov chain.

3 A company has two machines. During any day, each
machine that is working at the beginning of the day has a �

1
3

�

chance of breaking down. If a machine breaks down during
the day, it is sent to a repair facility and will be working two
days after it breaks down. (Thus, if a machine breaks down
during day 3, it will be working at the beginning of day 5.)
Letting the state of the system be the number of machines
working at the beginning of the day, formulate a transition
probability matrix for this situation.

Group B

4 Referring to Problem 1, suppose that tomorrow’s
Smalltown weather depends on the last two days of

Smalltown weather, as follows: (1) If the last two days have
been sunny, then 95% of the time, tomorrow will be sunny.
(2) If yesterday was cloudy and today is sunny, then 70% of
the time, tomorrow will be sunny. (3) If yesterday was sunny
and today is cloudy, then 60% of the time, tomorrow will
be cloudy. (4) If the last two days have been cloudy, then
80% of the time, tomorrow will be cloudy.

Using this information, model Smalltown’s weather as a
Markov chain. If tomorrow’s weather depended on the last
three days of Smalltown weather, how many states will be
needed to model Smalltown’s weather as a Markov chain?
(Note: The approach used in this problem can be used to
model a discrete-time stochastic process as a Markov chain
even if Xt�1 depends on states prior to Xt, such as Xt�1 in
the current example.)

5 Let Xt be the location of your token on the Monopoly
board after t dice rolls. Can Xt be modeled as a Markov
chain? If not, how can we modify the definition of the state
at time t so that X0, X1, . . . , Xt, . . . would be a Markov
chain? (Hint: How does a player go to Jail? In this problem,
assume that players who are sent to Jail stay there until they
roll doubles or until they have spent three turns there,
whichever comes first.)

6 In Problem 3, suppose a machine that breaks down
returns to service three days later (for instance, a machine
that breaks down during day 3 would be back in working
order at the beginning of day 6). Determine a transition
probability matrix for this situation.
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17.3 n-Step Transition Probabilities

Suppose we are studying a Markov chain with a known transition probability matrix P.

(Since all chains that we will deal with are stationary, we will not bother to label our

Markov chains as stationary.) A question of interest is: If a Markov chain is in state i at

time m, what is the probability that n periods later the Markov chain will be in state j?

Since we are dealing with a stationary Markov chain, this probability will be independent

of m, so we may write

P(Xm�n � j |Xm � i) � P(Xn � j |X0 � i) � Pij (n)

where Pij (n) is called the n-step probability of a transition from state i to state j.

Clearly, Pij(1) � pij. To determine Pij(2), note that if the system is now in state i, then

for the system to end up in state j two periods from now, we must go from state i to some

state k and then go from state k to state j (see Figure 3). This reasoning allows us to write

Pij (2) � �
k�s

k�1

(probability of transition from i to k)

� (probability of transition from k to j)

Using the definition of P, the transition probability matrix, we rewrite the last equation as

Pij (2) � �
k�s

k�1

pikpkj (3)

The right-hand side of (3) is just the scalar product of row i of the P matrix with column

j of the P matrix. Hence, Pij(2) is the ij th element of the matrix P2. By extending this

reasoning, it can be shown that for n 
 1,

Pij(n) � ij th element of Pn (4)

Of course, for n � 0, Pij (0) � P(X0 � j |X0 � i), so we must write

Pij (0) � �
We illustrate the use of Equation (4) in Example 4.

if j � i

if j � i

1

0

i j

1

2

k

s

State

Time 0 Time 1 Time 2

pi1

pi2

pik

pis psj

pk j

p1j

p2j

F I G U R E  3

Pij (2) � pi 1p1j �

pi 2p2j � � � � � pi spsj
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E X A M P L E  4

Suppose the entire cola industry produces only two colas. Given that a person last pur-

chased cola 1, there is a 90% chance that her next purchase will be cola 1. Given that a 

person last purchased cola 2, there is an 80% chance that her next purchase will be cola 2.

1 If a person is currently a cola 2 purchaser, what is the probability that she will pur-

chase cola 1 two purchases from now?

2 If a person is currently a cola 1 purchaser, what is the probability that she will pur-

chase cola 1 three purchases from now?

Solution We view each person’s purchases as a Markov chain with the state at any given time be-

ing the type of cola the person last purchased. Hence, each person’s cola purchases may

be represented by a two-state Markov chain, where

State 1 � person has last purchased cola 1

State 2 � person has last purchased cola 2

If we define Xn to be the type of cola purchased by a person on her nth future cola pur-

chase (present cola purchase � X0), then X0, X1, . . . may be described as the Markov

chain with the following transition matrix:

Cola 1 Cola 2

P � � �
We can now answer questions 1 and 2.

1 We seek P(X2 � 1|X0 � 2) � P21(2) � element 21 of P2:

P2 � � � � � � � �
Hence, P21(2) � .34. This means that the probability is .34 that two purchases in the fu-

ture a cola 2 drinker will purchase cola 1. By using basic probability theory, we may ob-

tain this answer in a different way (see Figure 4). Note that P21(2) � (probability that next

purchase is cola 1 and second purchase is cola 1) � (probability that next purchase is cola

2 and second purchase is cola 1) � p21p11 � p22p21 � (.20)(.90) � (.80)(.20) � .34.

2 We seek P11(3) � element 11 of P3:

P3 � P(P2) � � � � � � � �
Therefore, P11(3) � .781.

.219

.562

.781

.438

.17

.66

.83

.34

.10

.80

.90

.20

.17

.66

.83

.34

.10

.80

.90

.20

.10

.80

.90

.20

.10

.80

.90

.20

Cola 1

Cola 2

The Cola Example

Time 0 Time 1 Time 2

p22  =  .80 p21  =  .20

p21  =  .20 p11  =  .90

Cola 2

Cola 2

Cola 1

Cola 1

F I G U R E  4

Probability That Two
Periods from Now, a

Cola 2 Purchaser Will
Purchase Cola 1 

Is .20(.90) �
.80(.20) � .34
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In many situations, we do not know the state of the Markov chain at time 0. As de-

fined in Section 17.2, let qi be the probability that the chain is in state i at time 0. Then

we can determine the probability that the system is in state i at time n by using the fol-

lowing reasoning (see Figure 5).

Probability of being in state j at time n

� �
i�s

i�1

(probability that state is originally i)

� � (probability of going from i to j in n transitions)

(5)

� �
i�s

i�1

qiPij(n)

� q(column j of Pn)

where q � [q1 q2 � � � qs].

To illustrate the use of (5), we answer the following question: Suppose 60% of all peo-

ple now drink cola 1, and 40% now drink cola 2. Three purchases from now, what fraction

of all purchasers will be drinking cola 1? Since q � [.60 .40] and q(column 1 of P3) �

probability that three purchases from now a person drinks cola 1, the desired probability is

[.60 .40] � � � .6438

Hence, three purchases from now, 64% of all purchasers will be purchasing cola 1.

To illustrate the behavior of the n-step transition probabilities for large values of n, we

have computed several of the n-step transition probabilities for the Cola example in Table 2.

.781

.438

s

i

j

2

1

Time 0 Time n

q1 P1j(n)

P2j(n)

Pij(n)

Ps j(n)

q2

qi

qs

F I G U R E  5

Determination of
Probability of Being in

State j at Time n When
Initial State Is Unknown

TA B L E  2

n-Step Transition Probabilities for Cola Drinkers

n P11(n) P12(n) P21(n) P22(n)

1 .90 .10 .20 .80

2 .83 .17 .34 .66

3 .78 .22 .44 .56

4 .75 .25 .51 .49

5 .72 .28 .56 .44

10 .68 .32 .65 .35

20 .67 .33 .67 .33

30 .67 .33 .67 .33

40 .67 .33 .67 .33
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For large n, both P11(n) and P21(n) are nearly constant and approach .67. This means

that for large n, no matter what the initial state, there is a .67 chance that a person will

be a cola 1 purchaser. Similarly, we see that for large n, both P12(n) and P22(n) are nearly

constant and approach .33. This means that for large n, no matter what the initial state,

there is a .33 chance that a person will be a cola 2 purchaser. In Section 5.5, we make a

thorough study of this settling down of the n-step transition probabilities.

R E M A R K We can easily multiply matrices on a spreadsheet using the MMULT command, as discussed in Sec-
tion 13.7.

P R O B L E M S
Group A

1 Each American family is classified as living in an urban,
rural, or suburban location. During a given year, 15% of all
urban families move to a suburban location, and 5% move
to a rural location; also, 6% of all suburban families move
to an urban location, and 4% move to a rural location;
finally, 4% of all rural families move to an urban location,
and 6% move to a suburban location.

a If a family now lives in an urban location, what is
the probability that it will live in an urban area two years
from now? A suburban area? A rural area?

b Suppose that at present, 40% of all families live in
an urban area, 35% live in a suburban area, and 25%
live in a rural area. Two years from now, what percent-
age of American families will live in an urban area?

c What problems might occur if this model were used
to predict the future population distribution of the United
States?

17.4 Classification of States in a Markov Chain

In Section 17.3, we mentioned the fact that after many transitions, the n-step transition

probabilities tend to settle down. Before we can discuss this in more detail, we need to

study how mathematicians classify the states of a Markov chain. We use the following

transition matrix to illustrate most of the following definitions (see Figure 6).

P � � �
0

0

0

.1

.2

0

0

.7

.4

.8

0

0

.3

.5

0

.6

.5

0

0

0

.4

.5

0

0

0

2 The following questions refer to Example 1.

a After playing the game twice, what is the probabil-
ity that I will have $3? How about $2?

b After playing the game three times, what is the prob-
ability that I will have $2?

3 In Example 2, determine the following n-step transition
probabilities:

a After two balls are painted, what is the probability
that the state is [0 2 0]?

b After three balls are painted, what is the probability that
the state is [0 1 1]? (Draw a diagram like Figure 4.)

D E F I N I T I O N ■ Given two states i and j, a path from i to j is a sequence of transitions that begins

in i and ends in j, such that each transition in the sequence has a positive

probability of occurring. ■

A state j is reachable from state i if there is a path leading from i to j. ■
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D E F I N I T I O N ■

For the transition probability matrix P represented in Figure 6, state 5 is reachable from

state 3 (via the path 3–4–5), but state 5 is not reachable from state 1 (there is no path

from 1 to 5 in Figure 6). Also, states 1 and 2 communicate (we can go from 1 to 2 and

from 2 to 1).

D E F I N I T I O N ■

From the Markov chain with transition matrix P in Figure 6, S1 � {1, 2} and S2 � {3,

4, 5} are both closed sets. Observe that once we enter a closed set, we can never leave

the closed set (in Figure 6, no arc begins in S1 and ends in S2 or begins in S2 and ends 

in S1).

D E F I N I T I O N ■

Whenever we enter an absorbing state, we never leave the state. In Example 1, the gam-

bler’s ruin, states 0 and 4 are absorbing states. Of course, an absorbing state is a closed

set containing only one state.

D E F I N I T I O N ■

In other words, a state i is transient if there is a way to leave state i that never returns

to state i. In the gambler’s ruin example, states 1, 2, and 3 are transient states. For exam-

ple (see Figure 1), from state 2, it is possible to go along the path 2–3–4, but there is no

way to return to state 2 from state 4. Similarly, in Example 2, [2 0 0], [1 1 0], and

[1 0 1] are all transient states (in Figure 2, there is a path from [1 0 1] to [0 0

2], but once both balls are painted, there is no way to return to [1 0 1]).

After a large number of periods, the probability of being in any transient state i is zero.

Each time we enter a transient state i, there is a positive probability that we will leave i

forever and end up in the state j described in the definition of a transient state. Thus, even-

tually we are sure to enter state j (and then we will never return to state i). To illustrate,

in Example 2, suppose we are in the transient state [1 0 1]. With probability 1, the un-

painted ball will eventually be painted, and we will never reenter state [1 0 1] (see Fig-

ure 2).

A state i is a transient state if there exists a state j that is reachable from i, but

the state i is not reachable from state j. ■

A state i is an absorbing state if pii � 1. ■

A set of states S in a Markov chain is a closed set if no state outside of S is

reachable from any state in S. ■

Two states i and j are said to communicate if j is reachable from i, and i is

reachable from j. ■

1 2 3 4

5

.4

.4

.1.8.5

S1

S2

.2

.5
.5

.6 .7
.3

F I G U R E  6

Graphical
Representation of
Transition Matrix
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D E F I N I T I O N ■

In Example 1, states 0 and 4 are recurrent states (and also absorbing states), and in Ex-

ample 2, [0 2 0], [0 0 2], and [0 1 1] are recurrent states. For the transition ma-

trix P in Figure 6, all states are recurrent.

D E F I N I T I O N ■

For the Markov chain with transition matrix

Q � � �
each state has period 3. For example, if we begin in state 1, the only way to return to state

1 is to follow the path 1–2–3–1 for some number of times (say, m). (See Figure 7.) Hence,

any return to state 1 will take 3m transitions, so state 1 has period 3. Wherever we are,

we are sure to return three periods later.

D E F I N I T I O N ■

The gambler’s ruin example is not an ergodic chain, because (for example) states 3 and

4 do not communicate. Example 2 is also not an ergodic chain, because (for example) [2

0 0] and [0 1 1] do not communicate. Example 4, the cola example, is an ergodic

Markov chain. Of the following three Markov chains, P1 and P3 are ergodic, and P2 is not

ergodic.

P1 � � � Ergodic

P2 � � �Nonergodic

0

0

�
1
3

�

�
3
4

�

0

0

�
2
3

�

�
1
4

�

�
1
2

�

�
1
2

�

0

0

�
1
2

�

�
1
2

�

0

0

0

�
1
2

�

�
3
4

�

�
2
3

�

0

�
1
4

�

�
1
3

�

�
1
2

�

0

If all states in a chain are recurrent, aperiodic, and communicate with each other,

the chain is said to be ergodic. ■

0

1

0

1

0

0

0

0

1

A state i is periodic with period k 
 1 if k is the smallest number such that all

paths leading from state i back to state i have a length that is a multiple of k. If a

recurrent state is not periodic, it is referred to as aperiodic. ■

If a state is not transient, it is called a recurrent state. ■

1

1 1

1

2 3F I G U R E  7

A Periodic Markov
Chain k � 3
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P3 � � � Ergodic

P2 is not ergodic because there are two closed classes of states (class 1 � {1, 2} and class

2 � {3, 4}), and the states in different classes do not communicate with each other.

After the next two sections, the importance of the concepts introduced in this section

will become clear.

�
1
4

�

0

�
1
3

�

�
1
2

�

�
1
3

�

�
2
3

�

�
1
4

�

�
2
3

�

0

P R O B L E M S
Group A

1 In Example 1, what is the period of states 1 and 3?

2 Is the Markov chain of Section 17.3, Problem 1, an
ergodic Markov chain?

3 Consider the following transition matrix:

P � � �
a Which states are transient?

b Which states are recurrent?

0

1

0

0

0

�
2
3

�

0

0

1

0

0

0

0

0

0

�
1
2

�

0

0

1

0

0

0

0

0

0

0

0

�
1
4

�

0

�
1
3

�

0

0

0

�
1
4

�

1

0

c Identify all closed sets of states.

d Is this chain ergodic?

4 For each of the following chains, determine whether the
Markov chain is ergodic. Also, for each chain, determine
the recurrent, transient, and absorbing states.

P1 � � � P2 � � �
5 Fifty-four players (including Gabe Kaplan and James
Garner) participated in the 1980 World Series of Poker.
Each player began with $10,000. Play continued until one
player had won everybody else’s money. If the World Series
of Poker were to be modeled as a Markov chain, how many
absorbing states would the chain have?

6 Which of the following chains is ergodic?

0

.1

0

1

0

.9

.1

0

.8

0

.5

0

.2

0

.4

0

.2

0

.1

.8

.7

.5

0

.3

.4

P1 � � � P2 � � �
17.5 Steady-State Probabilities and Mean First Passage Times

In our discussion of the cola example (Example 4), we found that after a long time, the prob-

ability that a person’s next cola purchase would be cola 1 approached .67 and .33 that it would

be cola 2 (see Table 2). These probabilities did not depend on whether the person was ini-

tially a cola 1 or a cola 2 drinker. In this section, we discuss the important concept of steady-

state probabilities, which can be used to describe the long-run behavior of a Markov chain.

The following result is vital to an understanding of steady-state probabilities and the

long-run behavior of Markov chains.

T H E O R E M  1

Let P be the transition matrix for an s-state ergodic chain.† Then there exists a vec-

tor p � [p 1 p 2 � � � p s] such that

.3

.2

.2

.8

0

.4

.1

0

0

.2

.1

0

.7

.2

.6

.2

.6

.4

.5

0

.3

.5

.4

.3

0

†To see why Theorem 1 fails to hold for a nonergodic chain, see Problems 11 and 12 at the end of this sec-

tion. For a proof of this theorem, see Isaacson and Madsen (1976, Chapter 3).
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lim
n→∞

Pn � � �
Recall that the ij th element of Pn is Pij(n). Theorem 1 tells us that for any initial state i,

lim
n→∞

Pij(n) � pj

Observe that for large n, Pn approaches a matrix with identical rows. This means that af-

ter a long time, the Markov chain settles down, and (independent of the initial state i)

there is a probability pj that we are in state j.

The vector p � [p1 p2 ��� ps] is often called the steady-state distribution, or

equilibrium distribution, for the Markov chain. For a given chain with transition matrix

P, how can we find the steady-state probability distribution? From Theorem 1, observe

that for large n and all i,

Pij (n � 1) � Pij (n) � pj (6)

Since Pij(n � 1) � (row i of Pn) (column j of P), we may write

Pij (n � 1) � �
k�s

k�1

Pik(n)pkj (7)

If n is large, substituting (6) into (7) yields

pj � �
k�s

k�1

pkpkj (8)

In matrix form, (8) may be written as

p � pP (8�)

Unfortunately, the system of equations specified in (8) has an infinite number of solutions,

because the rank of the P matrix always turns out to be � s � 1 (see Chapter 2, Review

Problem 21). To obtain unique values of the steady-state probabilities, note that for any n

and any i,

Pi1(n) � Pi2(n) � � � � � Pis(n) � 1 (9)

Letting n approach infinity in (9), we obtain

p1 � p2 � � � � � ps � 1 (10)

Thus, after replacing any of the equations in (8) with (10), we may use (8) to solve for

the steady-state probabilities.

To illustrate how to find the steady-state probabilities, we find the steady-state proba-

bilities for Example 4, the cola example. Recall that the transition matrix for Example 4

was

P � � �
Then (8) or (8�) yields

.10

.80

.90

.20
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[p1 p2] � [p1 p2] � �
p1 � .90p1 � .20p2

p2 � .10p1 � .80p2

Replacing the second equation with the condition p1 � p2 � 1, we obtain the system

p1 � .90p1 � .20p2

1 � p1 � p2

Solving for p1 and p2 we obtain p1 � �
2
3

� and p2 � �
1
3

�. Hence, after a long time, there is

a �
2
3

� probability that a given person will purchase cola 1 and a �
1
3

� probability that a given

person will purchase cola 2.

Transient Analysis

A glance at Table 2 shows that for Example 4, the steady state is reached (to two decimal

places) after only ten transitions. No general rule can be given about how quickly a

Markov chain reaches the steady state, but if P contains very few entries that are near 0

or near 1, the steady state is usually reached very quickly. The behavior of a Markov chain

before the steady state is reached is often called transient (or short-run) behavior. To

study the transient behavior of a Markov chain, one simply uses the formulas for Pij (n)

given in (4) and (5). It’s nice to know, however, that for large n, the steady-state proba-

bilities accurately describe the probability of being in any state.

Intuitive Interpretation of Steady-State Probabilities

An intuitive interpretation can be given to the steady-state probability equations (8). By

subtracting pjpjj from both sides of (8), we obtain

pj(1 � pjj) � �
k�j

pkpkj (11)

Equation (11) states that in the steady state,

Probability that a particular transition leaves state j
(12)

� probability that a particular transition enters state j

Recall that in the steady state, the probability that the system is in state j is pj. From this

observation, it follows that

Probability that a particular transition leaves state j

� (probability that the current period begins in j)

� � (probability that the current transition leaves j)

� pj(1 � pjj)

and

Probability that a particular transition enters state j

� �
k

(probability that the current period begins in k � j)

� � (probability that the current transition enters j)

.10

.80

.90

.20
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� �
k�j

pkpkj

Equation (11) is reasonable; if (11) were violated for any state, then for some state j, the

right-hand side of (11) would exceed the left-hand side of (11). This would result in prob-

ability “piling up” at state j, and a steady-state distribution would not exist. Equation (11)

may be viewed as saying that in the steady state, the “flow” of probability into each state

must equal the flow of probability out of each state. This explains why steady-state prob-

abilities are often called equilibrium probabilities.

Use of Steady-State Probabilities in Decision Making

E X A M P L E  5

In Example 4, suppose that each customer makes one purchase of cola during any week

(52 weeks � 1 year). Suppose there are 100 million cola customers. One selling unit of

cola costs the company $1 to produce and is sold for $2. For $500 million per year, an

advertising firm guarantees to decrease from 10% to 5% the fraction of cola 1 customers

who switch to cola 2 after a purchase. Should the company that makes cola 1 hire the ad-

vertising firm?

Solution At present, a fraction p1 � �
2
3

� of all purchases are cola 1 purchases. Each purchase of cola

1 earns the company a $1 profit. Since there are a total of 52(100,000,000), or 5.2 billion,

cola purchases each year, the cola 1 company’s current annual profit is

�
2
3

�(5,200,000,000) � $3,466,666,667

The advertising firm is offering to change the P matrix to

P1 � � �
For P1, the steady-state equations become

p1 � .95p1 � .20p2

p2 � .05p1 � .80p2

Replacing the second equation by p1 � p2 � 1 and solving, we obtain p1 � .8 and 

2 � .2. Now the cola 1 company’s annual profit will be

(.80)(5,200,000,000) � 500,000,000 � $3,660,000,000

Hence, the cola 1 company should hire the ad agency.

E X A M P L E  6

With the assumption that each Monopoly player who goes to Jail stays until he or she rolls

doubles or has spent three turns in Jail, the steady-state probability of a player landing on

any Monopoly square has been determined by Ash and Bishop (1972) (see Table 3).†

These steady-state probabilities can be used to measure the cost-effectiveness of various

monopolies. For example, it costs $1,500 to build hotels on the Orange monopoly. Each

time a player lands on a Tennessee Ave. or a St. James Place hotel, the owner of the mo-

nopoly receives $950, and each time a player lands on a New York Ave. hotel, the owner

Playing Monopoly

.05

.80

.95

.20

The Cola Example (Continued)

†This example is based on Ash and Bishop (1972).
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receives $1,000. From Table 3, we can compute the expected rent per dice roll earned by

the Orange monopoly:

950(.0335) � 950(.0318) � 1,000(.0334) � $95.44

TA B L E  3

Steady-State Probabilities for Monopoly

Steady-State
n Position Probability

0 Go .0346

1 Mediterranean Ave. .0237

2 Community Chest 1 .0218

3 Baltic Ave. .0241

4 Income tax .0261

5 Reading RR .0332

6 Oriental Ave. .0253

7 Chance 1 .0096

8 Vermont Ave. .0258

9 Connecticut Ave. .0237

10 Visiting jail .0254

11 St. Charles Place .0304

12 Electric Co. .0311

13 State Ave. .0258

14 Virginia Ave. .0288

15 Pennsylvania RR .0313

16 St. James Place .0318

17 Community Chest 2 .0272

18 Tennessee Ave. .0335

19 New York Ave. .0334

20 Free parking .0336

21 Kentucky Ave. .0310

22 Chance 2 .0125

23 Indiana Ave. .0305

24 Illinois Ave. .0355

25 B and O RR .0344

26 Atlantic Ave. .0301

27 Ventnor Ave. .0299

28 Water works .0315

29 Marvin Gardens .0289

30 Jail .1123

31 Pacific Ave. .0300

32 North Carolina Ave. .0294

33 Community Chest 3 .0263

34 Pennsylvania Ave. .0279

35 Short Line RR .0272

36 Chance 3 .0096

37 Park Place .0245

38 Luxury tax .0295

39 Boardwalk .0295

Source: Reprinted by permission from R. Ash and 

R. Bishop, “Monopoly as a Markov Process,” Mathematics

Magazine 45(1972):26–29. Copryright © 1972

Mathematical Association of America.
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Thus, per dollar invested, the Orange monopoly yields �
9

1

5

,5

.4

0

4

0
� � $0.064 per dice roll.

Now let’s consider the Green monopoly. To put hotels on the Green monopoly costs

$3,000. If a player lands on a North Carolina Ave. or a Pacific Ave. hotel, the owner receives

$1,275. If a player lands on a Pennsylvania Ave. hotel, the owner receives $1,400. From

Table 3, the average revenue per dice roll earned from hotels on the Green monopoly is

1,275(.0294) � 1,275(.0300) � 1,400(.0279) � $114.80

Thus, per dollar invested, the Green monopoly yields only �1
3
1
,
4
0
.
0
8
0
0

� � $0.038 per dice roll.

This analysis shows that the Orange monopoly is superior to the Green monopoly. By

the way, why does the Orange get landed on so often?

Mean First Passage Times

For an ergodic chain, let mij � expected number of transitions before we first reach state

j, given that we are currently in state i; mij is called the mean first passage time from

state i to state j. In Example 4, m12 would be the expected number of bottles of cola pur-

chased by a person who just bought cola 1 before first buying a bottle of cola 2. Assume

that we are currently in state i. Then with probability pij, it will take one transition to go

from state i to state j. For k � j, we next go with probability pik to state k. In this case, it

will take an average of 1 � mkj transitions to go from i to j. This reasoning implies that

mij � pij (1) � �
k�j

pik (1 � mkj)

Since

pij � �
k�j

pik � 1

we may rewrite the last equation as

mij � 1 � �
k�j

pikmkj (13)

By solving the linear equations given in (13), we may find all the mean first passage times.

It can be shown that

mii � �
p

1

i

�

This can simplify the use of (13).

To illustrate the use of (13), let’s solve for the mean first passage times in Example 4.

Recall that p1 � �
2
3

� and p2 � �
1
3

�. Then

m11 � � 1.5 and m22 � � 3

Now (13) yields the following two equations:

m12 � 1 � p11m12 � 1 � 0.9m12, m21 � 1 � p22m21 � 1 � 0.8m21

Solving these two equations, we find that m12 � 10 and m21 � 5. This means, for exam-

ple, that a person who last drank cola 1 will drink an average of ten bottles of soda be-

1
�

1
�

Markov.lng
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fore switching to cola 2.

Solving for Steady-State Probabilities and 
Mean First Passage Times on the Computer

Since we solve for steady-state probabilities and mean first passage times by solving a

system of linear equations, we may use LINDO to determine them. Simply type in an ob-

jective function of 0, and type the equations you need to solve as your constraints.

Alternatively, you may use the following LINGO model (file Markov.lng) to determine

steady-state probabilities and mean first passage times for an ergodic chain.

MODEL:
1]
2]SETS:
3]STATE/1..2/:PI;
4]SXS(STATE,STATE):TPROB,MFP;
5]ENDSETS
6]DATA:
7]TPROB = .9,.1,
8].2,.8;
9]ENDDATA
10]@FOR(STATE(J)|J #LT# @SIZE(STATE):
11]PI(J) = @SUM(SXS(I,J): PI(I) * TPROB(I,J)););
12]@SUM(STATE:PI) = 1;
13]@FOR(SXS(I,J):MFP(I,J)=
14]1+@SUM(STATE(K)|K#NE#J:TPROB(I,K)*MFP(K,J)););

END

In line 3, we define the set of states and associate a steady-state probability (PI(I)) with

each state I. In line 4, we create for each pairing of states (I, J ) a transition probability

(TPROB(I, J )) which equals pij and MFP(I, J ) which equals mij. The transition probabil-

ities for the cola example are input in lines 7 and 8. In lines 10 and 11, we create (for

each state except the highest-numbered state) the steady-state equation

PI(J ) � �
I

PI(I) *

TPROB(I, J )

In line 12, we ensure that the

steady-state probabilities sum

to 1. In lines 13 and 14, we

create the equations that must

be solved to compute the

mean first passage times. For

each (I, J ), lines 13–14 create

the equation

MFP(I, J ) � 1 � �
K�JTPROB(I, K ) * MFP(K, J )

which is needed to compute

the mean first passage times.

P R O B L E M S
Group A

1 Find the steady-state probabilities for Problem 1 of
Section 17.3.

2 For the gambler’s ruin problem (Example 1), why is it
unreasonable to talk about steady-state probabilities?

3 For each of the following Markov chains, determine the
long-run fraction of the time that each state will be occupied.

a � � b � �
c Find all mean first passage times for part (b).

4 At the beginning of each year, my car is in good, fair, or
broken-down condition. A good car will be good at the
beginning of next year with probability .85; fair with
probability .10; or broken-down with probability .05. A fair
car will be fair at the beginning of the next year with
probability .70 or broken-down with probability .30. It costs
$6,000 to purchase a good car; a fair car can be traded in
for $2,000; and a broken-down car has no trade-in value and

0
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must immediately be replaced by a good car. It costs $1,000
per year to operate a good car and $1,500 to operate a fair
car. Should I replace my car as soon as it becomes a fair car,
or should I drive my car until it breaks down? Assume that
the cost of operating a car during a year depends on the type
of car on hand at the beginning of the year (after a new car,
if any, arrives).

5 A square matrix is said to be doubly stochastic if its
entries are all nonnegative and the entries in each row and
each column sum to 1. For any ergodic, doubly stochastic
matrix, show that all states have the same steady-state
probability.

6 This problem will show why steady-state probabilities
are sometimes referred to as stationary probabilities. Let
p1, p2, . . . , ps be the steady-state probabilities for an
ergodic chain with transition matrix P. Also suppose that
with probability pi, the Markov chain begins in state i.

a What is the probability that after one transition, the
system will be in state i? (Hint: Use Equation (8).)

b For any value of n(n � 1, 2, . . .), what is the prob-
ability that a Markov chain will be in state i after n
transitions?

c Why are steady-state probabilities sometimes called
stationary probabilities?

7 Consider two stocks. Stock 1 always sells for $10 or
$20. If stock 1 is selling for $10 today, there is a .80 chance
that it will sell for $10 tomorrow. If it is selling for $20
today, there is a .90 chance that it will sell for $20 tomorrow.
Stock 2 always sells for $10 or $25. If stock 2 sells today
for $10, there is a .90 chance that it will sell tomorrow for
$10. If it sells today for $25, there is a .85 chance that it
will sell tomorrow for $25. On the average, which stock will
sell for a higher price? Find and interpret all mean first
passage times. 

8 Three balls are divided between two containers. During
each period a ball is randomly chosen and switched to the
other container.

a Find (in the steady state) the fraction of the time that
a container will contain 0, 1, 2, or 3 balls.

b If container 1 contains no balls, on the average how
many periods will go by before it again contains no
balls? (Note: This is a special case of the Ehrenfest Dif-
fusion model, which is used in biology to model diffu-
sion through a membrane.)

9 Two types of squirrels—gray and black—have been seen
in Pine Valley. At the beginning of each year, we determine
which of the following is true:

There are only gray squirrels in Pine Valley.

There are only black squirrels in Pine Valley.

There are both gray and black squirrels in Pine Valley.

There are no squirrels in Pine Valley.

Over the course of many years, the following transition
matrix has been estimated.

Gray Black Both Neither

� �
a During what fraction of years will gray squirrels be
living in Pine Valley?

b During what fraction of years will black squirrels be
living in Pine Valley?

Group B

10 Payoff Insurance Company charges a customer
according to his or her accident history. A customer who
has had no accident during the last two years is charged a
$100 annual premium. Any customer who has had an
accident during each of the last two years is charged a $400
annual premium. A customer who has had an accident during
only one of the last two years is charged an annual premium
of $300. A customer who has had an accident during the last
year has a 10% chance of having an accident during the
current year. If a customer has not had an accident during
the last year, there is only a 3% chance that he or she will
have an accident during the current year. During a given
year, what is the average premium paid by a Payoff
customer? (Hint: In case of difficulty, try a four-state Markov
chain.)

11 Consider the following nonergodic chain:

P � � �
a Why is the chain nonergodic?

b Explain why Theorem 1 fails for this chain. Hint:
Find out if the following equation is true:

lim
n→∞

P12(n) � lim
n→∞

P32(n)

c Despite the fact that Theorem 1 fails, determine

lim
n→∞

P13(n), lim
n→∞

P21(n),

lim
n→∞

P43(n), lim
n→∞

P41(n)

12 Consider the following nonergodic chain:

P � � �
a Why is this chain nonergodic?

b Explain why Theorem 1 fails for this chain. (Hint:
Show that limn→∞ P11(n) does not exist by listing the
pattern that P11(n) follows as n increases.)

13 An important machine is known to never last more
than four months. During its first month of operation, it fails
10% of the time. If the machine completes its first month,
then it fails during its second month 20% of the time. If the
machine completes its second month of operation, then it
will fail during its third month 50% of the time. If the
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�
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�
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machine completes its third month, then it is sure to fail by
the end of the fourth month. At the beginning of each month,
we must decide whether or not to replace our machine with
a new machine. It costs $500 to purchase a new machine,

but if a machine fails during a month, we incur a cost of
$1,000 (due to factory downtime) and must replace the
machine (at the beginning of the next month) with a new
machine. Three maintenance policies are under consideration:

Policy 1 Plan to replace a machine at the beginning of its

fourth month of operation.
Policy 2 Plan to replace a machine at the beginning of its third month of operation.
Policy 3 Plan to replace a machine at the beginning of its second month of operation.

Which policy will give the lowest average monthly cost?

14 Each month, customers are equally likely to demand 1 or 2 computers from a Pearco dealer. All orders must be met from
current stock. Two ordering policies are under consideration:

Policy 1 If ending inventory is 2 units or less, order enough to bring next month’s beginning inventory to 4 units.
Policy 2 If ending inventory is 1 unit or less, order enough to bring next month’s beginning inventory up to 3 units.

The following costs are incurred by Pearco:

It costs $4,000 to order a computer.

It costs $100 to hold a computer in inventory for a month.

It costs $500 to place an order for computers. This is in addition to the per-customer cost of $4,000.

Which ordering policy has a lower expected monthly cost?

15 The Gotham City Maternity Ward contains 2 beds. Admissions are made only at the beginning of the day. Each day, there
is a .5 probability that a potential admission will arrive. A patient can be admitted only if there is an open bed at the beginning
of the day. Half of all patients are discharged after one day, and all patients that have stayed one day are discharged at the end
of their second day.

a What is the fraction of days where all beds are 
utilized?

b On the average, what percentage of the beds are 
utilized?

17.6 Absorbing Chains

Many interesting applications of Markov chains involve chains in which some of the

states are absorbing and the rest are transient states. Such a chain is called an absorb-

ing chain. Consider an absorbing Markov chain: If we begin in a transient state, then

eventually we are sure to leave the transient state and end up in one of the absorbing

states. To see why we are interested in absorbing chains, we consider the following two

absorbing chains.

E X A M P L E  7

The accounts receivable situation of a firm is often modeled as an absorbing Markov

chain.† Suppose a firm assumes that an account is uncollectable if the account is more

than three months overdue. Then at the beginning of each month, each account may be

classified into one of the following states:

State 1 New account

State 2 Payment on account is one month overdue.

State 3 Payment on account is two months overdue.

State 4 Payment on account is three months overdue.

Accounts Receivable

†This example is based on Cyert, Davidson, and Thompson (1963).
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State 5 Account has been paid.

State 6 Account is written off as bad debt.

Suppose that past data indicate that the following Markov chain describes how the status

of an account changes from one month to the next month:

New 1 month 2 months 3 months Paid Bad debt

� �
For example, if an account is two months overdue at the beginning of a month, there is a

40% chance that at the beginning of next month, the account will not be paid up (and

therefore be three months overdue) and a 60% chance that the account will be paid up.

To simplify our example, we assume that after three months, a debt is either collected or

written off as a bad debt.

Once a debt is paid up or written off as a bad debt, the account is closed, and no fur-

ther transitions occur. Hence, Paid and Bad Debt are absorbing states. Since every account

will eventually be paid up or written off as a bad debt, New, 1 Month, 2 Months, and 3

Months are transient states. For example, a two-month overdue account can follow the

path 2 Months–Collected, but there is no return path from Collected to 2 Months.

A typical new account will be absorbed as either a collected debt or a bad debt. A ques-

tion of major interest is: What is the probability that a new account will eventually be col-

lected? The answer is worked out later in this section.

E X A M P L E  8

The law firm of Mason and Burger employs three types of lawyers: junior lawyers, senior

lawyers, and partners. During a given year, there is a .15 probability that a junior lawyer

will be promoted to senior lawyer and a .05 probability that he or she will leave the firm.

Also, there is a .20 probability that a senior lawyer will be promoted to partner and a .10

probability that he or she will leave the firm. There is a .05 probability that a partner will

leave the firm. The firm never demotes a lawyer.

There are many interesting questions the law firm might want to answer. For example,

what is the probability that a newly hired junior lawyer will leave the firm before be-

coming a partner? On the average, how long does a newly hired junior lawyer stay with

the firm? The answers are worked out later in this section.

We model the career path of a lawyer through Mason and Burger as an absorbing

Markov chain with the following transition probability matrix:

Junior Senior Partner Leave as NP Leave as P

Work-Force Planning
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� �
The last two states are absorbing states, and all other states are transient. For example,

Senior is a transient state, because there is a path from Senior to Leave as Nonpartner,

but there is no path returning from Leave as Nonpartner to Senior (we assume that once

a lawyer leaves the firm, he or she never returns).

For any absorbing chain, one might want to know certain things. (1) If the chain be-

gins in a given transient state, and before we reach an absorbing state, what is the ex-

pected number of times that each state will be entered? How many periods do we expect

to spend in a given transient state before absorption takes place? (2) If a chain begins in

a given transient state, what is the probability that we end up in each absorbing state?

To answer these questions, we need to write the transition matrix with the states listed

in the following order: transient states first, then absorbing states. For the sake of defi-

niteness, let’s assume that there are s � m transient states (t1, t2, . . . , ts�m) and m ab-

sorbing states (a1, a2, . . . , am). Then the transition matrix for the absorbing chain may be

written as follows:

s � m m

columns columns

P � � � �
In this format, the rows and column of P correspond (in order) to the states t1, t2, . . . ,

ts�m, a1, a2, . . . , am. Here, I is an m � m identity matrix reflecting the fact that we can

never leave an absorbing state: Q is an (s � m) � (s � m) matrix that represents transi-

tions between transient states; R is an (s � m) � m matrix representing transitions from

transient states to absorbing states; 0 is an m � (s � m) matrix consisting entirely of ze-

ros. This reflects the fact that it is impossible to go from an absorbing state to a transient

state.

Applying this notation to Example 7, we let

t1 � New

t2 � 1 Month

t3 � 2 Months

t4 � 3 Months

a1 � Paid

a2 � Bad Debt

Then for Example 7, the transition probability matrix may be written as

R

I

Q

0

s � m rows

m rows

.0

.0

.05

.0

.1

.05

.10

.0

.1

.0

.0

.20

.95

.0

.0

.15

.70

.0

.0

.0

.80

.0

.0

.0

.0

Junior

Senior

Partner

Leave as nonpartner

Leave as partner
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New 1 month 2 months 3 months Paid Bad debt

� � �
Then s � 6, m � 2, and

Q � � �
4�4

R � � �
4�2

For Example 8, we let

t1 � Junior

t2 � Senior

t3 � Partner

a1 � Leave as nonpartner

a2 � Leave as partner

and we may write the transition probability matrix as

Junior Senior Partner Leave as NP Leave as P

� � �
Then s � 5, m � 2, and

Q � � . �
3�3

R � � �
3�2

We can now find out some facts about absorbing chains (see Kemeny and Snell (1960).

(1) If the chain begins in a given transient state, and before we reach an absorbing state,

what is the expected number of times that each state will be entered? How many periods

do we expect to spend in a given transient state before absorption takes place? Answer:

If we are at present in transient state ti, the expected number of periods that will be spent

in transient state tj before absorption is the ij th element of the matrix (I � Q)�1. (See

Problem 12 at the end of this section for a proof.) (2) If a chain begins in a given tran-

sient state, what is the probability that we end up in each absorbing state? Answer: If we

are at present in transient state ti, the probability that we will eventually be absorbed in

absorbing state aj is the ij th element of the matrix (I � Q)�1 R. (See Problem 13 at the

end of this section for a proof.)

The matrix (I � Q)�1 is often referred to as the Markov chain’s fundamental ma-

trix. The reader interested in further study of absorbing chains is referred to Kemeny and

Snell (1960).

0

0

.05

.05

.10

0

0

.20

.95

.15

.70

.0

.80

.0

.0

.0

.0

.05

.0

.1

.05

.10

.0

.1

.0

.0

.20

.95

.0

.0

.15

.70

.0

.0

.0

.80

.0

.0

.0

.0

Junior

Senior

Partner

Leave as nonpartner

Leave as partner

0

0

0

.3

.4

.5

.6

.7

0

0

.4

0

0

.5

0

0

.6

0

0

0

0

0

0

0

0

0

0

.3

0

1

.4

.5

.6

.7

1

0

0

0

.4

0

0

0

0

.5

0

0

0

0

.6

0

0

0

0

0

0

0

0

0

0

0

New

1 month

2 months

3 months

Paid

Bad debt
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E X A M P L E  7

1 What is the probability that a new account will eventually be collected?

2 What is the probability that a one-month-overdue account will eventually become a

bad debt?

3 If the firm’s sales average $100,000 per month, how much money per year will go 

uncollected?

Solution From our previous discussion, recall that

Q � � � R � � �
Then

I � Q � � �
By using the Gauss–Jordan method of Chapter 2, we find that

t1 t2 t3 t4

(I � Q)�1
� � �

To answer questions 1–3, we need to compute

a1 a2

(I � Q)�1R � � �
Then

1 t1 � New, a1 � Paid. Thus, the probability that a new account is eventually collected

is element 11 of (I � Q)�1R � .964.

2 t2 � 1 Month, a2 � Bad Debt. Thus, the probability that a one-month overdue account

turns into a bad debt is element 22 of (I � Q)�1R � .06.

3 From answer 1, only 3.6% of all debts are uncollected. Since yearly accounts pay-

able are $1,200,000, on the average, (.036)(1,200,000) � $43,200 per year will be 

uncollected.

E X A M P L E  8

1 What is the average length of time that a newly hired junior lawyer spends working

for the firm?

Work-Force Planning (Continued)

.036

.060

.120

.300

.964

.940

.880

.700

t1

t2

t3

t4

.12

.20

.40

.1

.30

.50

.1

.0

.60

.1

.0

.0

1

0

0

0

t1

t2

t3

t4

0

0

�.4

1

0

�.5

1

0

�.6

1

0

0

1

0

0

0

0

0

0

.3

.4

.5

.6

.7

0

0

.4

0

0

.5

0

0

.6

0

0

0

0

0

0

0

Accounts Receivable (Continued)
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2 What is the probability that a junior lawyer makes it to partner?

3 What is the average length of time that a partner spends with the firm (as a partner)?

Solution Recall that for Example 8,

Q � � . � R � � . �
Then

I � Q � � . �
By using the Gauss–Jordan method of Chapter 2, we find that

t1 t2 t3

(I � Q)�1
� � �

Then

a1 a2

10

�
4
3
0
�

20

2.5

�
1
3
0
�

0

5

0

0

t1

t2

t3

�.0

�.20

�.05

�.15

�.30

�0

.20

.0

.0

0

.0

.05

.05

.10

.0

.0

.20

.95

.15

.70

.0

.80

.0

.0

2

3

4

5

6

7

8

9

10

11

B C D E F

0.2 -0.15 0

I-Q 0 0.3 -0.2

0 0 0.05

5 2.5 10

(I-Q)
-1

0 3.333333 13.33333

0 0 20

 F I G U R E  8

(I � Q)�1R � � �
Then

1 Expected time junior

lawyer stays with firm � (ex-

.50

�
2
3

�

1

.50

�
1
3

�

0

t1

t2

t3

pected time junior lawyer

stays with firm as junior) �

(expected time junior lawyer

stays with firm as senior) �

(expected time junior lawyer

stays with firm as partner).

Now

†Based on Bessent and Bessent (1980).

IQinverse.xls
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Expected time as junior � (I

� Q)11
�1

� 5

Expected time as senior � (I

� Q)12
�1

� 2.5

Expected time as partner �

(I � Q)13
�1

� 10

Hence, the total expected time

that a junior lawyer spends

with the firm is 5 � 2.5 �

10 � 17.5 years.

2 The probability that a new

junior lawyer makes it to part-

ner is just the probability that

he or she leaves the firm as a

partner. Since t1 � Junior

Lawyer and a2 � Leave as

Partner, the answer is element

12 of (I � Q)�1R � .50.

3 Since t3 � Partner, we

seek the expected number of

years that are spent in t3, given

that we begin in t3. This is just

element 33 of (I � Q)�1
�

20 years. This is reasonable,

because during each year,

there is 1 chance in 20 that a

partner will leave the firm, so

it should take an average of

20 years before a partner

leaves the firm.

†Based on Deming and Glasser (1968).
‡Based on Thompson and McNeal (1967). §Based on Meredith (1973).
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TA B L E  4

Management
Accounting Consulting Division 1 Division 2 Division 3

Accounting 10% 30% 20% 20% 20%

Management 30% 20% 30% 0% 20%

R E M A R K S Computations with absorbing chains are greatly facilitated if we multiply matrices on a spreadsheet
with the MMULT command and find the inverse of (I � Q) with the MINVERSE function.

To use the Excel MINVERSE command to find (I � Q)�1, we enter (I � Q) into a spreadsheet
(see cell range C4:E6 of file IQinverse.xls) and select the range (C8:E10) where we want to com-
pute (I � Q)�1. Next we type the formula

�MINVERSE(C4:E6)

in the upper left-hand corner (cell C8) of the output range C8:E10. Finally, we select CONTROL
SHIFT ENTER (not just ENTER) to complete the computation of the desired inverse. The MIN-
VERSE function must be entered with CONTROL SHIFT ENTER because it is an array function.

†This section covers topics that may be omitted with no loss of continuity.
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We cannot edit or delete any part of a range computed by an array function. See Figure 8.

P R O B L E M S
Group A

1† The State College admissions office has modeled the path of a student through State College as a Markov chain:

F. So. J. Sen. Q. G.

� �
Each student’s state is observed at the beginning of each fall semester. For example, if a student is a junior at the beginning
of the current fall semester, there is an 80% chance that he will be a senior at the beginning of the next fall semester, a 15%
chance that he will still be a junior, and a 5% chance that he will have quit. (We assume that once a student quits, he never
reenrolls.)

a If a student enters State College as a freshman, how many years can he expect to spend as a student at State?

b What is the probability that a freshman graduates?

2† The Herald Tribble has obtained the following information about its subscribers: During the first year as subscribers, 20%
of all subscribers cancel their subscriptions. Of those who have subscribed for one year, 10% cancel during the second year.
Of those who have been subscribing for more than two years, 4% will cancel during any given year. On the average, how long
does a subscriber subscribe to the Herald Tribble?

3 A forest consists of two types of trees: those that are 0–5 ft and those that are taller than 5 ft. Each year, 40% of all 0–5-
ft tall trees die, 10% are sold for $20 each, 30% stay between 0 and 5 ft, and 20% grow to be more than 5 ft. Each year, 50%
of all trees taller than 5 ft are sold for $50, 20% are sold for $30, and 30% remain in the forest.

a What is the probability that a 0–5-ft tall tree will die before being sold?

b If a tree (less than 5 ft) is planted, what is the expected revenue earned from that tree?

4‡ Absorbing Markov chains are used in marketing to model the probability that a customer who is contacted by telephone will
eventually buy a product. Consider a prospective customer who has never been called about purchasing a product. After one call,
there is a 60% chance that the customer will express a low degree of interest in the product, a 30% chance of a high degree of
interest, and a 10% chance the customer will be deleted from the company’s list of prospective customers. Consider a customer
who currently expresses a low degree of interest in the product. After another call, there is a 30% chance that the customer will
purchase the product, a 20% chance the person will be deleted from the list, a 30% chance that the customer will still possess a
low degree of interest, and a 20% chance that the customer will express a high degree of interest. Consider a customer who
currently expresses a high degree of interest in the product. After another call, there is a 50% chance that the customer will have
purchased the product, a 40% chance that the customer will still have a high degree of interest, and a 10% chance that the customer
will have a low degree of interest.

a What is the probability that a new prospective customer will eventually purchase the product?

b What is the probability that a low-interest prospective customer will ever be deleted from the list?

c On the average, how many times will a new prospective customer be called before either purchasing the product or be-
ing deleted from the list?

5 Each week, the number of acceptable-quality units of a drug that are processed by a machine is observed: 
100, 50–100,
1–50, 0 (indicating that the machine was broken during the week). Given last week’s observation, the probability distribution
of next week’s observation is as follows.


100 50–100 1–50 0

� �
For example, if we observe a week in which more than 100 units are produced, then there is a .10 chance that during the next
week 50–100 units are produced.

a Suppose last week the machine produced 200 units. On average, how many weeks will elapse before the machine
breaks down?

.05

.2

.3

.1

.05

.1

.5

.0

.1

.6

.1

0

.8

.1

.1

0


100

50–100

1–50

0

.0

.0

.0

.85

.0

.1

.10

.05

.05

.05

.1

.0

.0

.0

.80

.10

.0

.0

.0

.85

.15

.0

.0

.0

.80

.10

.0

.0

.0

.0

.10

.0

.0

.0

.0

.0

Freshman

Sophmore

Junior

Senior

Quits

Graduates
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b Suppose last week the machine produced 50 units. On average, how many weeks will elapse before the machine breaks
down?

6 I now have $2, and my goal is to have $6. I will repeatedly flip a coin that has a .4 chance of coming up heads. If the coin
comes up heads, I win the amount I bet. If the coin comes up tails, I lose the amount of my bet. Let us suppose I follow the
bold strategy of betting Min($6 � current asset position, current asset position). This strategy (see Section 19.3) maximizes
my chance of reaching my goal. What is the probability that I reach my goal?

7 Suppose I toss a fair coin, and the first toss comes up heads. If I keep tossing the coin until I either see two consecutive
heads or two consecutive tails, what is the probability that I will see two consecutive heads before I see two consecutive tails?

8 Suppose each box of Corn Snaps cereal contains one of five different Harry Potter trading cards. On the average, how
many boxes of cereal will I have to buy to obtain a complete set of trading cards?

Group B

9 In the gambler’s ruin problem (Example 1), assume 
p � .60.

a What is the probability that I reach $4?

b What is the probability that I am wiped out?

c What is the expected duration of the game?

10§ In caring for elderly patients at a mental hospital, a major goal of the hospital is successful placement of the patients in
boarding homes or nursing homes. The movement of patients between the hospital, outside homes, and the absorbing state
(death) may be described by the following Markov chain (the unit of time is one month):

Hospital Homes Death

� �
Each month that a patient spends in the hospital costs the state $655, and each month that a patient spends in a home costs
the state $226. To improve the success rate of the placement of patients in homes, the state has recently begun a “geriatric
resocialization program” (GRP) to prepare the patients for functioning in the homes. Some patients are placed in the GRP and
then released to homes. These patients presumably are less likely to fail to adjust in the homes. Other patients continue to go
directly from the hospital to homes without taking part in the GRP. The state pays $680 for each month that a patient spends
in the GRP. The movement of the patients through various states is governed by the following Markov chain:

Homes Homes
GRP Hos. (GRP) (Direct) Dead

GRP

�
.854 .028 .112 0 .006

�Hospital . .013 .978 0 .003 .006

Homes
.025 0 .969 0 .006

(GRP)

Homes
0 .025 0 .969 .006

(Direct)

Dead 0 0 0 0 1

a Does the GRP save the state money?

b Under the old system and under the GRP, compute the expected number of months that a patient spends in the hospi-
tal.

11 Freezco, Inc., sells refrigerators. The company has issued a warranty on all refrigerators that requires free replacement
of any refrigerator that fails before it is three years old. We are given the following information: (1) 3% of all new refrigerators
fail during their first year of operation; (2) 5% of all one-year-old refrigerators fail during their second year of operation; and
(3) 7% of all two-year-old refrigerators fail during their third year of operation. A replacement refrigerator is not covered by
the warranty.

a Use Markov chain theory to predict the fraction of all refrigerators that Freezco will have to replace.

b Suppose that it costs Freezco $500 to replace a refrigerator and that Freezco sells 10,000 refrigerators per year. If the
company reduced the warranty period to two years, how much money in replacement costs would be saved?

12 For a Q matrix representing the transitions between transient states in an absorbing Markov chain, it can be shown that

(I � Q)�1
� I � Q � Q2

� � � � � Qn
� � � �

a Explain why this expression for (I � Q)�1 is plausible.

b Define mij � expected number of periods spent in transient state tj before absorption, given that we begin in state ti.
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(Assume that the initial period is spent in state ti.) Explain why mij � (probability that we are in state tj initially) � (prob-
ability that we are in state tj after first transition) � (probability that we are in state tj after second transition) � � � � �

(probability that we are in state tj after nth transition) � � � �.

c Explain why the probability that we are in state tj initially � ijth entry of the (s � m) � (s � m) identity matrix. Ex-
plain why the probability that we are in state tj after nth transition � ijth entry of Qn.

d Now explain why mij � ijth entry of (I � Q)�1.

13 Define

bij � probability of ending up in absorbing state aj

given that we begin in transient state ti
rij � ijth entry of R

qik � ikth entry of Q

B � (s � m) � m matrix whose ijth entry is bij

Suppose we begin in state ti. On our first transition, three types of events may happen:

Event 1 We go to absorbing state aj (with probability rij).
Event 2 We go to an absorbing state other than aj (with probability �k�j rik).

Event 3 We go to transient state tk (with probability qik).

a Explain why

bij � rij � �
k�s�m

k�1

qikbkj

b Now show that bij � ijth entry of (R � QB) and that B � R � QB.

c Show that B � (I � Q)�1R and that bij � ijth entry of B � (I � Q)�1R.

14 Consider an LP with five basic feasible solutions and a unique optimal solution. Assume that the simplex method begins
at the worst basic feasible solution, and on each pivot the simplex is equally likely to move to any better basic feasible solution.
On the average, how many pivots will be required to find the optimal solution to the LP?

Group C

15 General Motors has three auto divisions (1, 2, and 3). It also has an accounting division and a management consulting
division. The question is: What fraction of the cost of the accounting and management consulting divisions should be allocated
to each auto division? We assume that the entire cost of the accounting and management consulting departments must be
allocated to the three auto divisions. During a given year, the work of the accounting division and management consulting
division is allocated as shown in Table 4.

For example, accounting spends 10% of its time on problems generated by the accounting department, 20% of its time on
work generated by division 3, and so forth. Each year, it costs $63 million to run the accounting department and $210 million
to run the management consulting department. What fraction of these costs should be allocated to each auto division? Think
of $1 in costs incurred in accounting work. There is a .20 chance that this dollar should be allocated to each auto division, a
.30 chance it should be allocated to consulting, and a .10 chance to accounting. If the dollar is allocated to an auto division,
we know which division should be charged for that dollar. If the dollar is charged to consulting (for example), we repeat the
process until the dollar is eventually charged to an auto division. Use knowledge of absorbing chains to figure out how to
allocate the costs of running the accounting and management consulting departments among the three auto divisions.

16 A telephone sales force can model its contact with customers as a Markov chain. The six states of the chain are as follows:

State 1 Sale completed during most recent call
State 2 Sale lost during most recent call
State 3 New customer with no history
State 4 During most recent call, customer’s interest
level low
State 5 During most recent call, customer’s interest level medium
State 6 During most recent call, customer’s interest level high

Based on past phone calls, the following transition matrix
has been estimated:

1 2 3 4 5 6

� �
.0

.0

.15

.10

.35

.30

.0

.0

.20

.20

.25

.30

.0

.0

.25

.20

.15

.15

0

0

0

0

0

0

.0

.1

.30

.45

.10

.05

.1

.0

.10

.05

.15

.20

1

2

3

4

5

6

Census.lng
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a For a new customer, determine the average number
of calls made before the customer buys the product or
the sale is lost.

b What fraction of new customers will buy the product?

c What fraction of customers currently having a low
degree of interest will buy the product?

d Suppose a call costs $15 and a sale earns $190 in
revenue. Determine the “value” of each type of customer.

17 Seas Beginning sells clothing by mail order. An
important question is: When should the company strike a
customer from its mailing list? At present, the company
does so if a customer fails to order from six consecutive
catalogs. Management wants to know if striking a customer
after failure to order from four consecutive catalogs will
result in a higher profit per customer.

The following data are available: Six percent of all
customers who receive a catalog for the first time place an
order. If a customer placed an order from the last-received
catalog, then there is a 20% chance he or she will order
from the next catalog. If a customer last placed an order one
catalog ago, there is a 16% chance he or she will order from
the next catalog received. If a customer last placed an order
two catalogs ago, there is a 12% chance he or she will place
an order from the next catalog received. If a customer last
placed an order three catalogs ago, there is an 8% chance
he or she will place an order from the next catalog received.
If a customer last placed an order four catalogs ago, there
is a 4% chance he or she will place an order from the next
catalog received. If a customer last placed an order five
catalogs ago, there is a 2% chance he or she will place an
order from the next catalog received.

It costs $1 to send a catalog, and the average profit per
order is $15. To maximize expected profit per customer,
should Seas Beginning cancel customers after six nonorders
or four nonorders?

Hint: Model each customer’s evolution as a Markov chain
with possible states New, 0, 1, 2, 3, 4, 5, Canceled. A
customer’s state represents the number of catalogs received
since the customer last placed an order. “New” means the
customer received a catalog for the first time. “Canceled”
means that the customer has failed to order from six
consecutive catalogs. For example, suppose a customer placed
the following sequence of orders (O) and nonorders (NO):

NO NO O NO NO O O NO NO O NO NO NO NO NO
NO Canceled

Here we are assuming a customer is stricken from the
mailing list after six consecutive nonorders. For this
sequence of orders and nonorders, the states are (ith listed

state occurs right before ith catalog is received)

New 1 2 0 1 2 0 0 1 2 0 1 2 3 4 5 Canceled

You should be able to figure (for each cancellation policy)
the expected number of orders a customer will place before
cancellation and the expected number of catalogs a customer
will receive before cancellation. This will enable you to
compute expected profit per customer.

17.7 Work-Force Planning
Models†

Many organizations, like the

Mason and Burger law firm of

Example 8, employ several

categories of workers. For

long-term planning purposes,

it is often useful to be able to

predict the number of em-

ployees of each type who will

(if present trends continue) be

available in the steady state.

Such predictions can be made

via an analysis similar to the

one in Section 17.5 of steady-

state probabilities for Markov

chains.

More formally, consider an

organization whose members

are classified at any point in

time into one of s groups (la-

beled 1, 2, . . . , s). During

†Based on Pegels and Jelmert (1970).

TA B L E  5

Age of Blood
(beginning of day)

Chance of transfusion 0 1 2 3 4

Policy 1 .10 .20 .30 .40 .50

Policy 2 .50 .40 .30 .20 .10

‡Based on Babich (1992).

TA B L E  6

Death
Age Probability

0 0.007557

1–4 0.000383

5–9 0.000217

10–14 0.000896

15–24 0.001267

25–34 0.002213

35–44 0.004459

45–54 0.010941

55–64 0.025384

65–84 0.058031

85� 0.153270
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S U M M A R Y

Let Xt be the value of a system’s characteristic at time t. A discrete-time stochastic

process is simply a description of the relation between the random variables X0, X1, 

X2, . . . . A discrete-time stochastic process is a Markov chain if, for t � 0, 1, 2, . . . and

all states,

P(Xt�1 � it�1|Xt � it, Xt�1 � it�1, . . . , X1 � i1, X0 � i0)

� P(Xt�1 � it�1|Xt � it)

For a stationary Markov chain, the transition probability pij is the probability that

given the system is in state i at time t, the system will be in state j at time t � 1.

The vector q � [q1 q2 � � � qs] is the initial probability distribution for the

Markov chain. P(X0 � i) is given by qi.

n-Step Transition Probabilities

The n-step transition probability, pij(n), is the probability that n periods from now, the

state will be j, given that the current state is i. Pij(n) � ij th element of Pn.

Given the intial probability vector q, the probability of being in state j at time n is given

by q(column j of Pn).

Classification of States in a Markov Chain

Given two states i and j, a path from i to j is a sequence of transitions that begins in i

and ends in j, such that each transition in the sequence has a positive probability of oc-

curring. A state j is reachable from a state i if there is a path leading from i to j. Two

states i and j are said to communicate if j is reachable from i, and i is reachable from j.

A set of states S in a Markov chain is a closed set if no state outside of S is reachable

from any state in S.

A state i is an absorbing state if pii � 1. A state i is a transient state if there exists

a state j that is reachable from i, but the state i is not reachable from state j.

If a state is not transient, it is a recurrent state. A state i is periodic with period k 


1 if all paths leading from state i back to state i have a length that is a multiple of k. If a

recurrent state is not periodic, it is aperiodic. If all states in a chain are recurrent, aperi-

odic, and communicate with each other, the chain is said to be ergodic.

Steady-State Probabilities

Let P be the transition probability matrix for an ergodic Markov chain with states 1, 

2, . . . , s (with ij th element pij). After a large number of periods have elapsed, the proba-

every time period, a fraction

pij of those who begin a time

period in group i begin the

next time period in group j.

Also, during every time pe-

riod, a fraction pi, s�1 of all

group i members leave the or-

ganization. Let P be the s �
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bility (call it pj) that the Markov chain is in state j is independent of the initial state. The

long-run, or steady-state, probability pj may be found by solving the following set of lin-

ear equations:

pj � �
k�s

k�1

pkpkj ( j � 1, 2, . . . , s; omit one of these equations)

p1 � p2 � � � � � ps � 1

Absorbing Chains

A Markov chain in which one or more states is an absorbing state is an absorbing

Markov chain. To answer important questions about an absorbing Markov chain, we list

the states in the following order: transient states first, then absorbing states. Assume there

are s � m transient states (t1, t2, . . . , ts�m) and m absorbing states (a1, a2, . . . , am). Write

the transition probability matrix P as follows:

s � m m

columns columns

P � � � �
The following questions may now be answered. (1) If the chain begins in a given tran-

sient state, and before we reach an absorbing state, what is the expected number of times

that each state will be entered? How many periods do we expect to spend in a given tran-

sient state before absorption takes place? Answer: If we are at present in transient state ti,

the expected number of periods that will be spent in transient state tj before absorption is

the ij th element of the matrix (I � Q)�1. (2) If a chain begins in a given transient state,

what is the probability that we will end up in each absorbing state? Answer: If we are at

present in transient state ti, the probability that we will eventually be absorbed in absorb-

ing state aj is the ij th element of the matrix (I � Q)�1R.

Work-Force Planning Models

For an organization in which each member is classified into one of s groups,

pij � fraction of members beginning a time period in group i

who begin the next time period in group j

pi, s�1 � fraction of all group i members

who leave the organization during a period

P � s � (s � 1) matrix whose ij th entry is pij

Hi � number of group i members

hired at the beginning of each period

Ni � limiting number (if it exists) of group i members

Ni may be found by equating the number of people per period who enter group i with the

number of people per period who leave group i. Thus, (N1, N2, . . . , Ns) may be found by

solving

Hi � �
k�i

Nkpki � Ni �
k�i

pik (i � 1, 2, . . . , s)

R

I

Q

0

s � m rows

m rows
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R E V I E W  P R O B L E M S
Group A

1 A machine is used to produce precision tools. If the
machine is in good condition today, then 90% of the time,
it will be in good condition tomorrow. If the machine is in
bad condition today, then 80% of the time, it will be in bad
condition tomorrow. If the machine is in good condition, it
produces 100 tools per day. If the machine is in bad
condition, it produces 60 tools per day. On the average, how
many tools per day are produced? 
2 Customers buy cars from three auto companies. Given
the company from which a customer last bought a car, the
probability that she will buy her next car from each company
is as follows:

Will Buy Next from
Last Bought from Co. 1 Co. 2 Co. 3

� �
a If someone currently owns a company 1 car, what is
the probability that at least one of the next two cars she
buys will be a company 1 car?

b At present, it costs company 1 an average of $5,000
to produce a car, and the average price a customer pays
for one is $8,000. Company 1 is considering instituting
a five-year warranty. It estimates that this will increase
the cost per car by $300, but a market research survey
indicates that the probabilities will change as follows:

Will Buy Next from
Last Bought from Co. 1 Co. 2 Co. 3

� �
Should company 1 institute the five-year warranty?

3† A baseball team consists of 2 stars, 13 starters, and 10
substitutes. For tax purposes, the team owner must value the
players. The value of each player is defined to be the total
value of the salary he will earn until retirement. At the
beginning of each season, the players are classified into one
of four categories:

Category 1 Star (earns $1 million per year)
Category 2 Starter (earns $400,000 per year)
Category 3 Substitute (earns $100,000 per year)
Category 4 Retired (earns no more salary)

Given that a player is a star, starter, or substitute at the
beginning of the current season, the probabilities that he
will be a star, starter, substitute, or retired at the beginning
of the next season are as follows:

Next Season
This Season Star Starter Substitute Retired

� �
Determine the value of the team’s players.

.05

.10

.30

.1

.15

.20

.50

.0

.30

.50

.15

.0

.50

.20

.05

.0

Star

Starter

Substitute

Retired

.05

.10

.75

.10

.80

.10

.85

.10

.15

Co. 1

Co. 2

Co. 3

.10

.10

.70

.10

.85

.20

.80

.05

.10

Co. 1

Co. 2

Co. 3

4 The best-selling college statistics text, The Thrill of
Statistics, sells 5 million copies every fall. Some users keep
the book, and some sell it back to the bookstore. Suppose
that 90% of all students who buy a new book sell it back,
80% of all students who buy a once-used book sell it back,
and 60% of all students who buy a twice-used book sell it
back. If a book has been used four or more times, the cover
falls off, and it cannot be sold back.

a In the steady state, how many new copies of the
book will the publisher be able to sell each year?

b Suppose that a bookstore’s profit on each type of
book is as follows:

New book: $6

Once-used book: $3

Twice-used book: $2

Thrice-used book: $1

If the steady-state census is representative of the bookstore’s
sales, what will be its average profit per book?

5 Hearts Dog Food and Corporal Dog Food are battling
tooth and nail for the nation’s dog biscuit market. A dog
owner buys one box of dog biscuits per month. If a dog
owner’s last purchase was a Hearts box of biscuits, there is
a .8 chance that his next purchase will also be Hearts. If a
dog owner’s last purchase was a Corporal box of biscuits,
there is a .9 chance that his next purchase will also be
Corporal. It cost Hearts 80¢ to produce a box of biscuits,
which sells for $1.

a If there are 40 million dog owners in the United
States, what is Hearts’ annual expected profit?

b If Hearts sells each box of biscuits for 100 � x cents
(0 � x � 20), then a fraction .8 � �

10
x
0

� of all dog owners
whose last purchase was from Hearts will purchase their
next box of biscuits from Hearts. How can Hearts max-
imize profit?

6 A small video store tracks the number of times per week
a video is rented and estimates the following transition
probabilities:

5 times 4 times 3 times 2 times 1 time 0 time

� �
For example, if a video was rented 5 times this week, then
there is an 80% chance it will be rented 5 times next week,
a 10% chance it will be rented 4 times, and a 10% chance
it will be rented 3 times.

a Suppose a video was rented 5 times this week. On
the average, how many times will it be rented during the
next 2 weeks?

0

0

0

0

.4

1

0

0

.1

.1

.6

0

0

.1

.3

.4

0

0

.1

.2

.6

.5

0

0

.1

.7

0

0

0

0

.8

0

0

0

0

0

5 times

4 times

3 times

2 times

1 time

0 time

†Based on Flamholtz, Geis, and Perle (1984).
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b Suppose a video was rented 5 times this week. On
the average, how many more weeks will it be rented at
least once?

c Suppose a video was rented 5 times this week. On
the average, how many more times will it be rented?

7 Ross and Rachel have just tied the knot. The probability
that they are happy each day depends on whether they were
happy or sad during the last two days, in the following fashion:

Last two days Happy Sad

� �
For example, if the newlyweds were sad two days ago and
yesterday they were happy, then there is a 70% chance they
will be happy tomorrow and a 30% chance they will be sad
tomorrow. On what fraction of days will Ross and Rachel
be happy?

8 Suppose that during a given year, 15% of all untenured
processors leave a university (they are fired or find another
job), and 15% are given tenure. Also assume that during
each year, 5% of all tenured professors leave the university
(via retirement or finding another job). If the university
wants to have a faculty consisting of 200 untenured and 500
tenured professors, how many tenured and untenured
professors should be hired each year?

Group B

9 At the beginning of a period, a company observes its
inventory level. Then an order may be placed (and is
instantaneously received). Finally, the period’s demand is
observed. We are given the following information: (1) A $2
cost is assessed against each unit of inventory on hand at
the end of a period. (2) A $3 penalty is assessed against
each unit of demand not met on time. Assume that all
shortages result in lost sales. (3) Placing an order costs 50¢
per unit plus a $5 ordering cost. (4) During each period,
demand is equally likely to equal 1, 2, or 3 units.

The company is considering the following ordering
policy: At the end of any period, if the on-hand inventory is
1 unit or less, order sufficient units to bring the on-hand
inventory level at the beginning of the next period up to 4
units.

a What fraction of the time will the on-hand inventory
level at the end of each period be 0 unit? 1 unit? 2 units?
3 units? 4 units?

b Determine the average cost per period incurred by
this ordering policy.

c Answer parts (a) and (b) if all shortages are back-
logged. Assume that the cost for each unit backlogged
is $3.

10† In problem 3, suppose that in evaluating a player’s
value, the owner must discount future salaries. Assume that
$1 paid out in salary during the next season is equivalent to
90¢ paid out during the current season. Can you still
determine the value of the team’s players? (Hint: Modify

.2

.5

.3

.6

.8

.5

.7

.4

HH

HS

SH

SS

the probabilities in the transition probability matrix to
account for the discounting of future salaries, or look at
Problem 8 of Section 17.6.)

11‡ During any month, Cashco has a .5 chance of receiving
a $1,000 cash inflow and a .5 chance that there will be a
$1,000 cash outflow. For every $1,000 in cash on hand at
the end of a month, Cashco incurs a $15 cost (due to lost
interest). At the beginning of each month, Cashco can adjust
its on-hand cash balance upward or downward with the cost
per transaction being $20. Cashco can never let the on-hand
balance become negative. The company is considering the
following two cash management policies:

Policy 1 At the beginning of a month in which the on-
hand cash balance is $3,000, immediately reduce the cash
balance to $1,000. At the beginning of a month in which the
on-hand cash balance is $0, immediately bring the on-hand
cash balance up to $1,000.
Policy 2 At the beginning of a month in which the on-
hand cash balance is $4,000, immediately reduce the cash
balance to $2,000. At the beginning of a month in which the
on-hand cash balance is $0, immediately bring the on-hand
cash balance up to $2,000.

Which policy will incur a smaller expected monthly cost
(opportunity plus transaction)? The sequence of events
during each month is as follows:

a Observe beginning cash balance

b Adjust (if desired) cash balance

c Cash balance changes

d Opportunity cost is assessed

12 In the game of craps, we roll a pair of six-sided dice.
On the first throw, if we roll a 7 or an 11, we win right away.
If we roll a 2, a 3, or a 12, we lose right away. If we first
roll a total of 4, 5, 6, 8, 9, or 10, we keep rolling the dice
until we get either a 7 or the total rolled on the first throw.
If we get a 7, we lose. If we roll the same total as the first
throw, we win. Use knowledge of Markov chains to
determine our probability of winning at craps.

13 At the beginning of each day, a patient in a hospital is
classified into one of three conditions: good, fair, or critical.
At the beginning of the next day, the patient will either still
be in the hospital and be in good, fair, or critical condition
or will be discharged in one of three conditions: improved,
unimproved, or dead. The transition probabilities for this
situation are as follows:

Good Fair Critical

� �
Improved Unimproved Dead

� �
For example, a patient who begins the day in fair condition
has a 12% chance of being in critical condition the next day

.01

.03

.02

.03

.02

.01

.06

.03

.01

Good

Fair

Critical

.05

.12

.20

.20

.30

.25

.65

.50

.51

Good

Fair

Critical

‡Based on Eppen and Fama (1970).†Based on Flamholtz, Geis, and Perle (1984).



References 959

and a 3% chance of being discharged the next day in
improved condition.

a Consider a patient who enters the hospital in good
condition. On the average, how many days does this pa-
tient spend in the hospital?

b This morning there were 500 patients in good con-
dition, 300 in fair condition, and 200 patients in critical
condition in the hospital. Tomorrow morning the fol-
lowing admissions will be made: good condition, 50;
fair condition, 40; critical condition, 30. Predict tomor-
row morning’s hospital census.

c The hospital’s daily admissions are as follows: 20
patients in good condition, 10 patients in fair condition,
and 10 patients in critical condition. On the average,
how many patients of each type would you expect to see
in the hospital?

d What fraction of patients who enter the hospital in
good condition will leave the hospital in improved 
condition?

14 A major problem for a hospital is managing the database
containing patient records. Blair General Hospital is
considering two policies:

Policy 1 Dispose of a patient’s records if he or she has not
reentered the hospital in the last five years.
Policy 1 Dispose of a patient’s records if he or she has not
reentered the hospital in the last ten years.

The following information is available: If a patient has
been hospitalized, there is a 30% chance he or she will
reenter the hospital during the next year. If a patient has not
been hospitalized during the last year, there is a 20% chance
he or she will be hospitalized during the next year. If a
patient has not been hospitalized during the last two years,
there is a 10% chance he or she will be hospitalized during
the next year. If a patient has not been hospitalized during

the last three years, there is a 5% chance he or she will be
hospitalized during the next year. If a patient has not been
hospitalized during the last four years, there is a 3% chance
he or she will be hospitalized during the next year. If a
patient has not been hospitalized during the last five years,
there is a 2% chance he or she will be hospitalized during
the next year. If a patient has not been hospitalized for at
least six years, there is a 1% chance he or she will be
hospitalized during the next year.

Assume that the hospital admits an average of 10,000
new patients each year. For each policy, estimate the number
of patient records that will be in the system.†

15 Consider an n-state Markov chain in which each
transition probability is positive and the transition matrix is
symmetric; the entry in row I and column J of the transition
matrix is identical to the entry in row J and column I. 

a Why do we know that steady-state probabilities ex-
ist for this situation?

b What are the steady-state probabilities?

16‡ The Euro was introduced on January 1, 2002 as the
common currency for 15 European countries. Each Euro
has a marking on the coin indicating the country of origin.
For example, Euros minted in Portugal have a different
marking than Euros minted in Spain. European politicians
are interested in determining what fraction of Euros will
eventually end up circulating in each country. For example,
will 30% of all Euros circulate in France? How could
Markov chains be used to answer this question? What
parameters must be known before using Markov chain
theory to solve this problem?

†Based on Liu, Wang, and Guh (1991).
‡Based on “Statisticians Count Euros and Find More Than

Money,” New York Times, July 2, 2002.
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Match PuzzleE X A M P L E  1

MilkE X A M P L E  2

†This section covers topics that may be omitted with no loss of continuity.

18

Deterministic Dynamic Programming

Dynamic programming is a technique that can be used to solve many optimization problems.

In most applications, dynamic programming obtains solutions by working backward from the

end of a problem toward the beginning, thus breaking up a large, unwieldy problem into a 

series of smaller, more tractable problems.

We introduce the idea of working backward by solving two well-known puzzles and then

show how dynamic programming can be used to solve network, inventory, and resource-

allocation problems. We close the chapter by showing how to use spreadsheets to solve 

dynamic programming problems.

18.1 Two Puzzles†

In this section, we show how working backward can make a seemingly difficult problem

almost trivial to solve.

Suppose there are 30 matches on a table. I begin by picking up 1, 2, or 3 matches. Then

my opponent must pick up 1, 2, or 3 matches. We continue in this fashion until the last

match is picked up. The player who picks up the last match is the loser. How can I (the

first player) be sure of winning the game?

Solution If I can ensure that it will be my opponent’s turn when 1 match remains, I will certainly win.

Working backward one step, if I can ensure that it will be my opponent’s turn when 5 matches

remain, I will win. The reason for this is that no matter what he does when 5 matches re-

main, I can make sure that when he has his next turn, only 1 match will remain. For exam-

ple, suppose it is my opponent’s turn when 5 matches remain. If my opponent picks up 2

matches, I will pick up 2 matches, leaving him with 1 match and sure defeat. Similarly, if I

can force my opponent to play when 5, 9, 13, 17, 21, 25, or 29 matches remain, I am sure

of victory. Thus, I cannot lose if I pick up 30 � 29 � 1 match on my first turn. Then I sim-

ply make sure that my opponent will always be left with 29, 25, 21, 17, 13, 9, or 5 matches

on his turn. Notice that we have solved this puzzle by working backward from the end of the

problem toward the beginning. Try solving this problem without working backward!

I have a 9-oz cup and a 4-oz cup. My mother has ordered me to bring home exactly 6 oz

of milk. How can I accomplish this goal?
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Solution By starting near the end of the problem, I cleverly realize that the problem can easily be

solved if I can somehow get 1 oz of milk into the 4-oz cup. Then I can fill the 9-oz cup

and empty 3 oz from the 9-oz cup into the partially filled 4-oz cup. At this point, I will

be left with 6 oz of milk. After I have this flash of insight, the solution to the problem

may easily be described as in Table 1 (the initial situation is written last, and the final sit-

uation is written first).

P R O B L E M S
Group A

1 Suppose there are 40 matches on a table. I begin by
picking up 1, 2, 3, or 4 matches. Then my opponent must
pick up 1, 2, 3, or 4 matches. We continue until the last
match is picked up. The player who picks up the last match
is the loser. Can I be sure of victory? If so, how?

2 Three players have played three rounds of a gambling
game. Each round has one loser and two winners. The losing
player must pay each winner the amount of money that the
winning player had at the beginning of the round. At the end
of the three rounds each player has $10. You are told that
each player has won one round. By working backward,
determine the original stakes of the three players. [Note: If
the answer turns out to be (for example) 5, 15, 10, don’t
worry about which player had which stake; we can’t really
tell which player ends up with how much, but we can
determine the numerical values of the original stakes.]

Group B

3 We have 21 coins and are told that one is heavier than
any of the other coins. How many weighings on a balance
will it take to find the heaviest coin? (Hint: If the heaviest
coin is in a group of three coins, we can find it in one
weighing. Then work backward to two weighings, and 
so on.)

4 Given a 7-oz cup and a 3-oz cup, explain how we can
return from a well with 5 oz of water.

18.2 A Network Problem

Many applications of dynamic programming reduce to finding the shortest (or longest) path

that joins two points in a given network. The following example illustrates how dynamic

programming (working backward) can be used to find the shortest path in a network.

TA B L E  1

Moves in the Cup-and-Milk Problem

No. of Ounces No. of Ounces
in 9-oz Cup in 4-oz Cup

6 0

6 4

9 1

0 1

1 0

1 4

5 0

5 4

9 0

0 0
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Joe Cougar lives in New York City, but he plans to drive to Los Angeles to seek fame and

fortune. Joe’s funds are limited, so he has decided to spend each night on his trip at a

friend’s house. Joe has friends in Columbus, Nashville, Louisville, Kansas City, Omaha,

Dallas, San Antonio, and Denver. Joe knows that after one day’s drive he can reach

Columbus, Nashville, or Louisville. After two days of driving, he can reach Kansas City,

Omaha, or Dallas. After three days of driving, he can reach San Antonio or Denver. Fi-

nally, after four days of driving, he can reach Los Angeles. To minimize the number of

miles traveled, where should Joe spend each night of the trip? The actual road mileages

between cities are given in Figure 1.

Solution Joe needs to know the shortest path between New York and Los Angeles in Figure 1. We

will find it by working backward. We have classified all the cities that Joe can be in at the

beginning of the nth day of his trip as stage n cities. For example, because Joe can only

be in San Antonio or Denver at the beginning of the fourth day (day 1 begins when Joe

leaves New York), we classify San Antonio and Denver as stage 4 cities. The reason for

classifying cities according to stages will become apparent later.

The idea of working backward implies that we should begin by solving an easy prob-

lem that will eventually help us to solve a complex problem. Hence, we begin by finding

the shortest path to Los Angeles from each city in which there is only one day of driving

left (stage 4 cities). Then we use this information to find the shortest path to Los Ange-

les from each city for which only two days of driving remain (stage 3 cities). With this

information in hand, we are able to find the shortest path to Los Angeles from each city

that is three days distant (stage 2 cities). Finally, we find the shortest path to Los Ange-

les from each city (there is only one: New York) that is four days away.

To simplify the exposition, we use the numbers 1, 2, . . . , 10 given in Figure 1 to la-

bel the 10 cities. We also define cij to be the road mileage between city i and city j. For

example, c35 � 580 is the road mileage between Nashville and Kansas City. We let ft(i)

be the length of the shortest path from city i to Los Angeles, given that city i is a stage t

city.†

Stage 4 Computations

We first determine the shortest path to Los Angeles from each stage 4 city. Since there is

only one path from each stage 4 city to Los Angeles, we immediately see that f4(8) �

1,030, the shortest path from Denver to Los Angeles simply being the only path from Den-

ver to Los Angeles. Similarly, f4(9) � 1,390, the shortest (and only) path from San An-

tonio to Los Angeles.

Stage 3 Computations

We now work backward one stage (to stage 3 cities) and find the shortest path to Los An-

geles from each stage 3 city. For example, to determine f3(5), we note that the shortest

path from city 5 to Los Angeles must be one of the following:

Path 1 Go from city 5 to city 8 and then take the shortest path from city 8 to city 10.

Path 2 Go from city 5 to city 9 and then take the shortest path from city 9 to city 10.

The length of path 1 may be written as c58 � f4(8), and the length of path 2 may be writ-

ten as c59 � f4(9). Hence, the shortest distance from city 5 to city 10 may be written as

Shortest PathE X A M P L E  3

†In this example, keeping track of the stages is unnecessary; to be consistent with later examples, however,

we do keep track.
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f3(5) � min {
c58 � f4(8) � 610 � 1,030 � 1,640*

c59 � f4(9) � 790 � 1,390 � 2,180

[the * indicates the choice of arc that attains the f3(5)]. Thus, we have shown that the

shortest path from city 5 to city 10 is the path 5–8–10. Note that to obtain this result, we

made use of our knowledge of f4(8) and f4(9).

Similarly, to find f3(6), we note that the shortest path to Los Angeles from city 6 must

begin by going to city 8 or to city 9. This leads us to the following equation:

f3(6) � min {
c68 � f4(8) � 540 � 1,030 � 1,570*

c69 � f4(9) � 940 � 1,390 � 2,330

Thus, f3(6) � 1,570, and the shortest path from city 6 to city 10 is the path 6–8–10.

To find f3(7), we note that

f3(7) � min {
c78 � f4(8) � 790 � 1,030 � 1,820

c79 � f4(9) � 270 � 1,390 � 1,660*

Therefore, f3(7) � 1,660, and the shortest path from city 7 to city 10 is the path 7–9–10.

Stage 2 Computations

Given our knowledge of f3(5), f3(6), and f3(7), it is now easy to work backward one more

stage and compute f2(2), f2(3), and f2(4) and thus the shortest paths to Los Angeles from

city 2, city 3, and city 4. To illustrate how this is done, we find the shortest path (and its

length) from city 2 to city 10. The shortest path from city 2 to city 10 must begin by go-

ing from city 2 to city 5, city 6, or city 7. Once this shortest path gets to city 5, city 6, or

city 7, then it must follow a shortest path from that city to Los Angeles. This reasoning

shows that the shortest path from city 2 to city 10 must be one of the following:

Path 1 Go from city 2 to city 5. Then follow a shortest path from city 5 to city 10. A

path of this type has a total length of c25 � f3(5).

Los Angeles

10

Denver

8

San Antonio

9

Kansas City

5

Columbus

2

550

680

580 610

790

7901,050

790 540

900 760

660

510

700

830

270

940 1,390

770

Stage 1 Stage 5

Stage 2 Stage 3

Stage 4

1,030

Omaha

6

Nashville

3

Dallas

7

Louisville

4

New York

1

F I G U R E  1

Joe’s Trip Across the
United States



Path 2 Go from city 2 to city 6. Then follow a shortest path from city 6 to city 10. A

path of this type has a total length of c26 � f3(6).

Path 3 Go from city 2 to city 7. Then follow a shortest path from city 7 to city 10. This

path has a total length of c27 � f3(7). We may now conclude that

c25 � f3(5) � 680 � 1,640 � 2,320*

f2(2) � min �c26 � f3(6) � 790 � 1,570 � 2,360

c27 � f3(7) � 1,050 � 1,660 � 2,710

Thus, f2(2) � 2,320, and the shortest path from city 2 to city 10 is to go from city 2 to

city 5 and then follow the shortest path from city 5 to city 10 (5–8–10).

Similarly,

c35 � f3(5) � 580 � 1,640 � 2,220*

f2(3) � min �c36 � f3(6) � 760 � 1,570 � 2,330

c37 � f3(7) � 660 � 1,660 � 2,320

Thus, f2(3) � 2,220, and the shortest path from city 3 to city 10 consists of arc 3–5 and

the shortest path from city 5 to city 10 (5–8–10).

In similar fashion,

c45 � f3(5) � 510 � 1,640 � 2,150*

f2(4) � min �c46 � f3(6) � 700 � 1,570 � 2,270

c47 � f3(7) � 830 � 1,660 � 2,490

Thus, f2(4) � 2,150, and the shortest path from city 4 to city 10 consists of arc 4–5 and

the shortest path from city 5 to city 10 (5–8–10).

Stage 1 Computations

We can now use our knowledge of f2(2), f2(3), and f2(4) to work backward one more stage

to find f1(1) and the shortest path from city 1 to city 10. Note that the shortest path from

city 1 to city 10 must begin by going to city 2, city 3, or city 4. This means that the short-

est path from city 1 to city 10 must be one of the following:

Path 1 Go from city 1 to city 2 and then follow a shortest path from city 2 to city 10.

The length of such a path is c12 � f2(2).

Path 2 Go from city 1 to city 3 and then follow a shortest path from city 3 to city 10.

The length of such a path is c13 � f2(3).

Path 3 Go from city 1 to city 4 and then follow a shortest path from city 4 to city 10.

The length of such a path is c14 � f2(4). It now follows that

c12 � f2(2) � 550 � 2,320 � 2,870*

f1(1) � min �c13 � f2(3) � 900 � 2,220 � 3,120

c14 � f2(4) � 770 � 2,150 � 2,920

Determination of the Optimal Path

Thus, f1(1) � 2,870, and the shortest path from city 1 to city 10 goes from city 1 to city

2 and then follows the shortest path from city 2 to city 10. Checking back to the f2(2) cal-

culations, we see that the shortest path from city 2 to city 10 is 2–5–8–10. Translating the

numerical labels into real cities, we see that the shortest path from New York to Los An-

1 8 . 2 A Network Problem 965
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geles passes through New York, Columbus, Kansas City, Denver, and Los Angeles. This

path has a length of f1(1) � 2,870 miles.

Computational Efficiency of Dynamic Programming

For Example 3, it would have been an easy matter to determine the shortest path from

New York to Los Angeles by enumerating all the possible paths [after all, there are only

3(3)(2) � 18 paths]. Thus, in this problem, the use of dynamic programming did not re-

ally serve much purpose. For larger networks, however, dynamic programming is much

more efficient for determining a shortest path than the explicit enumeration of all paths.

To see this, consider the network in Figure 2. In this network, it is possible to travel from

any node in stage k to any node in stage k � 1. Let the distance between node i and node

j be cij. Suppose we want to determine the shortest path from node 1 to node 27. One way

to solve this problem is explicit enumeration of all paths. There are 55 possible paths from

node 1 to node 27. It takes five additions to determine the length of each path. Thus, ex-

plicitly enumerating the length of all paths requires 55(5) � 56 � 15,625 additions.

Suppose we use dynamic programming to determine the shortest path from node 1 to

node 27. Let ft(i) be the length of the shortest path from node i to node 27, given that

node i is in stage t. To determine the shortest path from node 1 to node 27, we begin by

finding f6(22), f6(23), f6(24), f6(25), and f6(26). This does not require any additions. Then

we find f5(17), f5(18), f5(19), f5(20), f5(21). For example, to find f5(21) we use the fol-

lowing equation:

f5(21) � min
j

{c21, j � f6( j)} ( j � 22, 23, 24, 25, 26)

Determining f5(21) in this manner requires five additions. Thus, the calculation of all the

f5(�)’s requires 5(5) � 25 additions. Similarly, the calculation of all the f4(�)’s requires 25

additions, and the calculation of all the f3(�)’s requires 25 additions. The determination of

all the f2(�)’s also requires 25 additions, and the determination of f1(1) requires 5 addi-

tions. Thus, in total, dynamic programming requires 4(25) � 5 � 105 additions to find

27
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the shortest path from node 1 to node 27. Because explicit enumeration requires 15,625

additions, we see that dynamic programming requires only 0.007 times as many additions

as explicit enumeration. For larger networks, the computational savings effected by dy-

namic programming are even more dramatic.

Besides additions, determination of the shortest path in a network requires compar-

isons between the lengths of paths. If explicit enumeration is used, then 55
� 1 � 3,124

comparisons must be made (that is, compare the length of the first two paths, then com-

pare the length of the third path with the shortest of the first two paths, and so on). If dy-

namic programming is used, then for t � 2, 3, 4, 5, determination of each ft(i) requires 

5 � 1 � 4 comparisons. Then to compute f1(1), 5 � 1 � 4 comparisons are required.

Thus, to find the shortest path from node 1 to node 27, dynamic programming requires a

total of 20(5 � 1) � 4 � 84 comparisons. Again, dynamic programming comes out far

superior to explicit enumeration.

Characteristics of Dynamic Programming Applications

We close this section with a discussion of the characteristics of Example 3 that are com-

mon to most applications of dynamic programming.

Characteristic 1

The problem can be divided into stages with a decision required at each stage. In Exam-

ple 3, stage t consisted of those cities where Joe could be at the beginning of day t of his

trip. As we will see, in many dynamic programming problems, the stage is the amount of

time that has elapsed since the beginning of the problem. We note that in some situations,

decisions are not required at every stage (see Section 18.5).

Characteristic 2

Each stage has a number of states associated with it. By a state, we mean the informa-

tion that is needed at any stage to make an optimal decision. In Example 3, the state at

stage t is simply the city where Joe is at the beginning of day t. For example, in stage 3,

the possible states are Kansas City, Omaha, and Dallas. Note that to make the correct de-

cision at any stage, Joe doesn’t need to know how he got to his current location. For ex-

ample, if Joe is in Kansas City, then his remaining decisions don’t depend on how he goes

to Kansas City; his future decisions just depend on the fact that he is now in Kansas City.

Characteristic 3

The decision chosen at any stage describes how the state at the current stage is trans-

formed into the state at the next stage. In Example 3, Joe’s decision at any stage is sim-

ply the next city to visit. This determines the state at the next stage in an obvious fash-

ion. In many problems, however, a decision does not determine the next stage’s state with

certainty; instead, the current decision only determines the probability distribution of the

state at the next stage.

Characteristic 4

Given the current state, the optimal decision for each of the remaining stages must not

depend on previously reached states or previously chosen decisions. This idea is known

as the principle of optimality. In the context of Example 3, the principle of optimality
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reduces to the following: Suppose the shortest path (call it R) from city 1 to city 10 is

known to pass through city i. Then the portion of R that goes from city i to city 10 must

be a shortest path from city i to city 10. If this were not the case, then we could create a

path from city 1 to city 10 that was shorter than R by appending a shortest path from city

i to city 10 to the portion of R leading from city 1 to city i. This would create a path from

city 1 to city 10 that is shorter than R, thereby contradicting the fact that R is a shortest

path from city 1 to city 10. For example, if the shortest path from city 1 to city 10 is

known to pass through city 2, then the shortest path from city 1 to city 10 must include

a shortest path from city 2 to city 10 (2–5–8–10). This follows because any path from city

1 to city 10 that passes through city 2 and does not contain a shortest path from city 2 to

city 10 will have a length of c12 � [something bigger than f2(2)]. Of course, such a path

cannot be a shortest path from city 1 to city 10.

Characteristic 5

If the states for the problem have been classified into one of T stages, there must be a re-

cursion that relates the cost or reward earned during stages t, t � 1, . . . , T to the cost

or reward earned from stages t � 1, t � 2, . . . , T. In essence, the recursion formalizes

the working-backward procedure. In Example 3, our recursion could have been written as

ft(i) � min
j

{cij � ft�1( j)}

where j must be a stage t � 1 city and f5(10) � 0.

We can now describe how to make optimal decisions. Let’s assume that the initial state

during stage 1 is i1. To use the recursion, we begin by finding the optimal decision for

each state associated with the last stage. Then we use the recursion described in charac-

teristic 5 to determine fT�1(�) (along with the optimal decision) for every stage T � 1

state. Then we use the recursion to determine fT�2(�) (along with the optimal decision)

for every stage T � 2 state. We continue in this fashion until we have computed f1(i1) and

the optimal decision when we are in stage 1 and state i1. Then our optimal decision in

stage 1 is chosen from the set of decisions attaining f1(i1). Choosing this decision at stage

1 will lead us to some stage 2 state (call it state i2) at stage 2. Then at stage 2, we choose

any decision attaining f2(i2). We continue in this fashion until a decision has been chosen

for each stage.

In the rest of this chapter, we discuss many applications of dynamic programming. The

presentation will seem easier if the reader attempts to determine how each problem fits

into the network context introduced in Example 3. In the next section, we begin by study-

ing how dynamic programming can be used to solve inventory problems.

P R O B L E M S
Group A

1 Find the shortest path from node 1 to node 10 in the
network shown in Figure 3. Also, find the shortest path from
node 3 to node 10.

2 A sales representative lives in Bloomington and must be
in Indianapolis next Thursday. On each of the days Monday,
Tuesday, and Wednesday, he can sell his wares in Indianapolis,
Bloomington, or Chicago. From past experience, he believes
that he can earn $12 from spending a day in Indianapolis, $16
from spending a day in Bloomington, and $17 from spending
a day in Chicago. Where should he spend the first three days
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and nights of the week to maximize his sales income less
travel costs? Travel costs are shown in Table 2.

Group B

3 I must drive from Bloomington to Cleveland. Several
paths are available (see Figure 4). The number on each arc
is the length of time it takes to drive between the two cities.
For example, it takes 3 hours to drive from Bloomington to

Cincinnati. By working backward, determine the shortest
path (in terms of time) from Bloomington to Cleveland.
[Hint: Work backward and don’t worry about stages—only
about states.]

18.3 An Inventory Problem

In this section, we illustrate how dynamic programming can be used to solve an inven-

tory problem with the following characteristics:

1 Time is broken up into periods, the present period being period 1, the next period 2,

and the final period T. At the beginning of period 1, the demand during each period is

known.

2 At the beginning of each period, the firm must determine how many units should be

produced. Production capacity during each period is limited.

3 Each period’s demand must be met on time from inventory or current production. Dur-

ing any period in which production takes place, a fixed cost of production as well as a

variable per-unit cost is incurred.

4 The firm has limited storage capacity. This is reflected by a limit on end-of-period in-

ventory. A per-unit holding cost is incurred on each period’s ending inventory.

5 The firm’s goal is to minimize the total cost of meeting on time the demands for pe-

riods 1, 2, . . . , T.

In this model, the firm’s inventory position is reviewed at the end of each period (say,

at the end of each month), and then the production decision is made. Such a model is

called a periodic review model. This model is in contrast to the continuous review mod-

els in which the firm knows its inventory position at all times and may place an order or

begin production at any time.

If we exclude the setup cost for producing any units, the inventory problem just de-

scribed is similar to the Sailco inventory problem that we solved by linear programming

in Section 3.10. Here, we illustrate how dynamic programming can be used to determine

a production schedule that minimizes the total cost incurred in an inventory problem that

meets the preceding description.

TA B L E  2

To

From Indianapolis Bloomington Chicago

Indianapolis — 5 2

Bloomington 5 — 7

Chicago 2 7 —
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A company knows that the demand for its product during each of the next four months

will be as follows: month 1, 1 unit; month 2, 3 units; month 3, 2 units; month 4, 4 units.

At the beginning of each month, the company must determine how many units should be

produced during the current month. During a month in which any units are produced, a

setup cost of $3 is incurred. In addition, there is a variable cost of $1 for every unit pro-

duced. At the end of each month, a holding cost of 50¢ per unit on hand is incurred. Ca-

pacity limitations allow a maximum of 5 units to be produced during each month. The

size of the company’s warehouse restricts the ending inventory for each month to 4 units

at most. The company wants to determine a production schedule that will meet all de-

mands on time and will minimize the sum of production and holding costs during the four

months. Assume that 0 units are on hand at the beginning of the first month.

Solution Recall from Section 3.10 that we can ensure that all demands are met on time by re-

stricting each month’s ending inventory to be nonnegative. To use dynamic programming

to solve this problem, we need to identify the appropriate state, stage, and decision. The

stage should be defined so that when one stage remains, the problem will be trivial to

solve. If we are at the beginning of month 4, then the firm would meet demand at mini-

mum cost by simply producing just enough units to ensure that (month 4 production) �

(month 3 ending inventory) � (month 4 demand). Thus, when one month remains, the

firm’s problem is easy to solve. Hence, we let time represent the stage. In most dynamic

programming problems, the stage has something to do with time.

At each stage (or month), the company must decide how many units to produce. To

make this decision, the company need only know the inventory level at the beginning of

the current month (or the end of the previous month). Therefore, we let the state at any

stage be the beginning inventory level.

Before writing a recursive relation that can be used to “build up” the optimal produc-

tion schedule, we must define ft(i) to be the minimum cost of meeting demands for months

t, t � 1, . . . , 4 if i units are on hand at the beginning of month t. We define c(x) to be the

cost of producing x units during a period. Then c(0) � 0, and for x � 0, c(x) � 3 � x.

Because of the limited storage capacity and the fact that all demand must be met on time,

the possible states during each period are 0, 1, 2, 3, and 4. Thus, we begin by determin-

ing f4(0), f4(1), f4(2), f4(3), and f4(4). Then we use this information to determine f3(0),

f3(1), f3(2), f3(3), and f3(4). Then we determine f2(0), f2(1), f2(2), f2(3), and f2(4). Finally,

we determine f1(0). Then we determine an optimal production level for each month. We

define xt(i) to be a production level during month t that minimizes the total cost during

months t, t � 1, . . . , 4 if i units are on hand at the beginning of month t. We now begin

to work backward.

Month 4 Computations

During month 4, the firm will produce just enough units to ensure that the month 4 de-

mand of 4 units is met. This yields

f4(0) � cost of producing 4 � 0 units � c(4) � 3 � 4 � $7 and x4(0) � 4 � 0 � 4

f4(1) � cost of producing 4 � 1 units � c(3) � 3 � 3 � $6 and x4(1) � 4 � 1 � 3

f4(2) � cost of producing 4 � 2 units � c(2) � 3 � 2 � $5 and x4(2) � 4 � 2 � 2

f4(3) � cost of producing 4 � 3 units � c(1) � 3 � 1 � $4 and x4(3) � 4 � 3 � 1

f4(4) � cost of producing 4 � 4 units � c(0) � $0 and x4(4) � 4 � 4 � 0

InventoryE X A M P L E  4
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Month 3 Computations

How can we now determine f3(i) for i � 0, 1, 2, 3, 4? The cost f3(i) is the minimum cost

incurred during months 3 and 4 if the inventory at the beginning of month 3 is i. For each

possible production level x during month 3, the total cost during months 3 and 4 is

(�
1

2
�)(i � x � 2) � c(x) � f4(i � x � 2) (1)

This follows because if x units are produced during month 3, the ending inventory for

month 3 will be i � x � 2. Then the month 3 holding cost will be (�
1

2
�)(i � x � 2), and

the month 3 production cost will be c(x). Then we enter month 4 with i � x � 2 units on

hand. Since we proceed optimally from this point onward (remember the principle of op-

timality), the cost for month 4 will be f4(i � x � 2). We want to choose the month 3 pro-

duction level to minimize (1), so we write

f3(i) � min
x

{(�
1

2
�)(i � x � 2) � c(x) � f4(i � x � 2)} (2)

In (2), x must be a member of {0, 1, 2, 3, 4, 5}, and x must satisfy 4 � i � x � 2 � 0. This

reflects the fact that the current month’s demand must be met (i � x � 2 � 0), and ending

inventory cannot exceed the capacity of 4(i � x � 2 	 4). Recall that x3(i) is any value of

x attaining f3(i). The computations for f3(0), f3(1), f3(2), f3(3), and f3(4) are given in Table 3.

Month 2 Computations

We can now determine f2(i), the minimum cost incurred during months 2, 3, and 4 given

that at the beginning of month 2, the on-hand inventory is i units. Suppose that month 2

production � x. Because month 2 demand is 3 units, a holding cost of (�
1

2
�)(i � x � 3) is

TA B L E  3

Computations for f3(i )

Total Cost f3(i )
i x (�

1
2

�)(i � x � 2) �c (x) f4(i � x � 2) Months 3, 4 x3(i )

0 2 0 � 5 � 5 7 5 � 7 � 12* f3 (0) � 12

0 3 ��
1
2

� � 6 � �
1
2
3
� 6 �

1
2
3
� � 6 � �

2
2
5
� x3(0) � 2

0 4 1 � 7 � 8 5 8 � 5 � 13

0 5 �
3
2

� � 8 � �
1
2
9
� 4 �

1
2
9
� � 4 � �

2
2
7
�

1 1 0 � 4 � 4 7 4 � 7 � 11 f3 (1) � 10

1 2 ��
1
2

� � 5 � �
1
2
1
� 6 �

1
2
1
� � 6 � �

2
2
3
� x3(1) � 5

1 3 1 � 6 � 7 5 7 � 5 � 12

1 4 �
3
2

� � 7 � �
1
2
7
� 4 �

1
2
7
� � 4 � �

2
2
5
�

1 5 2 � 8 � 10 0 10 � 0 � 10*

2 0 0 � 0 � 0 7 0 � 7 � 7* f3 (2) � 7

2 1 �
1
2

� � 4 � �
9
2

� 6 �
9
2

� � 6 � �
2
2
1
� x3(2) � 0

2 2 1 � 5 � 6 5 6 � 5 � 11

2 3 �
3
2

� � 6 � �
1
2
5
� 4 �

1
2
5
� � 4 � �

2
2
3
�

2 4 2 � 7 � 9 0 9 � 0 � 9

3 0 �
1
2

� � 0 � �
1
2

� 6 �
1
2

� � 6 � �
1
2
3
�* f3 (3) � �

1
2
3
�

3 1 1 � 4 � 5 5 5 � 5 � 10 x3(3) � 0

3 2 �
3
2

� � 5 � �
1
2
3
� 4 �

1
2
3
� � 4 � �

2
2
1
�

3 3 2 � 6 � 8 0 8 � 0 � 8

4 0 1 � 0 � 1 5 1 � 5 � 6* f3 (4) � 6

4 1 �
3
2

� � 4 � �
1
2
1
� 4 �

1
2
1
� � 4 � �

1
2
9
� x3(4) � 0

4 2 2 � 5 � 7 0 7 � 0 � 7
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incurred at the end of month 2. Thus, the total cost incurred during month 2 is (�
1

2
�)(i �

x � 3) � c(x). During months 3 and 4, we follow an optimal policy. Since month 3 be-

gins with an inventory of i � x � 3, the cost incurred during months 3 and 4 is f3(i �

x � 3). In analogy to (2), we now write

f2(i) � min
x

{(�
1

2
�)(i � x � 3) � c(x) � f3(i � x � 3)} (3)

where x must be a member of {0, 1, 2, 3, 4, 5} and x must also satisfy 0 	 i � x � 3 	

4. The computations for f2(0), f2(1), f2(2), f2(3), and f2(4) are given in Table 4.

Month 1 Computations

The reader should now be able to show that the f1(i)’s can be determined via the follow-

ing recursive relation:

f1(i) � min
x

{(�
1

2
�)(i � x � 1) � c(x) � f2(i � x � 1)} (4)

where x must be a member of {0, 1, 2, 3, 4, 5} and x must satisfy 0 	 i � x � 1 	 4.

Since the inventory at the beginning of month 1 is 0 units, we actually need only deter-

mine f1(0) and x1(0). To give the reader more practice, however, the computations for

f1(1), f1(2), f1(3), and f1(4) are given in Table 5.

Determination of the Optimal Production Schedule

We can now determine a production schedule that minimizes the total cost of meeting the

demand for all four months on time. Since our initial inventory is 0 units, the minimum

cost for the four months will be f1(0) � $20. To attain f1(0), we must produce x1(0) � 1

TA B L E  4

Computations for f2(i )

Total Cost f2(i )
i x (�

1
2

�)(i � x � 3) �c (x) f3(i � x � 3) Months 2–4 x2(i )

0 3 0 � 6 � 6 12 6 � 12 � 18 f2(0) � 16

0 4 ��
1
2

� � 7 � �
1
2
5
� 10 ��

1
2
5
� � 10 � �

3
2
5
� x2(0) � 5

0 5 1 � 8 � 9 17 9 � 7 � 16*

1 2 0 � 5 � 5 12 5 � 12 � 17 f2(1) � 15

1 3 ��
1
2

� � 6 � �
1
2
3
� 10 �

1
2
3
� � 10 � �

3
2
3
� x2(1) � 4

1 4 1 � 7 � 8 17 8 � 7 � 15*

1 5 �
3
2

� � 8 � �
1
2
9
� �

1
2
3
� �

1
2
9
� � �

1
2
3
� � 16

2 1 0 � 4 � 4 12 4 � 12 � 16 f2(2) � 14

2 2 ��
1
2

� � 5 � �
1
2
1
� 10 �

1
2
1
� � 10 � �

3
2
1
�* x2(2) � 3

2 3 1 � 6 � 7 17 7 � 7 � 14*

2 4 �
3
2

� � 7 � �
1
2
7
� �

1
2
3
� �

1
2
7
� � �

1
2
3
� � 15

2 5 2 � 8 � 10 16 10� 6 � 16

3 0 0 � 0 � 0 12 0 � 12 � 12* f2(3) � 12

3 1 ��
1
2

� � 4 � �
9
2

� 10 �
9
2

� � 10 � �
2
2
9
� x2(3) � 0

3 2 1 � 5 � 6 17 6 � 7 � 13

3 3 �
3
2

� � 6 � �
1
2
5
� �

1
2
3
� �

1
2
5
� � �

1
2
3
� � 14

3 4 2 � 7 � 9 16 9 � 6 � 15

4 0 ��
1
2

� � 0 � ��
1
2

� 10 ���
1
2

� � 10 � �
2
2
1
�* f2(4) � �

2
2
1
�

4 1 1 � 4 � 5 17 5 � 7 � 12 x2(4) � 0

4 2 �
3
2

� � 5 � �
1
2
3
� �

1
2
3
� �

1
2
3
� � �

1
2
3
� � 13

4 3 2 � 6 � 8 6 8 � 6 � 14
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unit during month 1. Then the inventory at the beginning of month 2 will be 0 � 1 �

1 � 0. Thus, in month 2, we should produce x2(0) � 5 units. Then at the beginning of

month 3, our beginning inventory will be 0 � 5 � 3 � 2. Hence, during month 3, we

need to produce x3(2) � 0 units. Then month 4 will begin with 2 � 2 � 0 � 0 units on

hand. Thus, x4(0) � 4 units should be produced during month 4. In summary, the opti-

mal production schedule incurs a total cost of $20 and produces 1 unit during month 1,

5 units during month 2, 0 units during month 3, and 4 units during month 4.

Note that finding the solution to Example 4 is equivalent to finding the shortest route join-

ing the node (1, 0) to the node (5, 0) in Figure 5. Each node in Figure 5 corresponds to

a state, and each column of nodes corresponds to all the possible states associated with a

given stage. For example, if we are at node (2, 3), then we are at the beginning of month

2, and the inventory at the beginning of month 2 is 3 units. Each arc in the network rep-

resents the way in which a decision (how much to produce during the current month)

transforms the current state into next month’s state. For example, the arc joining nodes (1,

0) and (2, 2) (call it arc 1) corresponds to producing 3 units during month 1. To see this,

note that if 3 units are produced during month 1, then we begin month 2 with 0 � 3 �

1 � 2 units. The length of each arc is simply the sum of production and inventory costs

during the current period, given the current state and the decision associated with the cho-

sen arc. For example, the cost associated with arc 1 would be 6 � (�
1

2
�)2 � 7. Note that

some nodes in adjacent stages are not joined by an arc. For example, node (2, 4) is not

joined to node (3, 0). The reason for this is that if we begin month 2 with 4 units, then at

the beginning of month 3, we will have at least 4 � 3 � 1 unit on hand. Also note that

we have drawn arcs joining all month 4 states to the node (5, 0), since having a positive

inventory at the end of month 4 would clearly be suboptimal.

TA B L E  5

Computations for f1(i )

f1(i )
i x (�

1
2

�)(i � x � 1) �c (x) f2(i � x � 1) Total Cost x1(i )

0 1 0 � 4 � 4 16 4 � 16 � 20* f1(0) � 20

0 2 ��
1
2

� � 5 � �
1
2
1
� 15 �

1
2
1
� � 15 � �

4
2
1
� x1(0) � 1

0 3 1 � 6 � 7 14 7 � 14 � 21

0 4 �
3
2

� � 7 � �
1
2
7
� 12 �

1
2
7
� � 12 � �

4
2
1
�

0 5 2 � 8 � 10 �
2
2
1
� 10� �

2
2
1
� � �

4
2
1
�

1 0 0 � 0 � 0 16 0 � 16 � 16* f1(1) � 16

1 1 ��
1
2

� � 4 � �
9
2

� 15 �
9
2

� � 15 � �
3
2
9
� x1(1) � 0

1 2 1 � 5 � 6 14 20

1 3 �
3
2

� � 6 � �
1
2
5
� 12 �

1
2
5
� � 12 � �

3
2
9
�

1 4 2 � 7 � 9 �
2
2
1
� 9 � �

2
2
1
� � �

3
2
9
�

2 0 ��
1
2

� � 0 � ��
1
2

� 15 ��
1
2

� � 15 � �
3
2
1
�* f1(2) � �

3
2
1
�

2 1 1 � 4 � 5 14 5 � 14 � 19 x1(2) � 0

2 2 �
3
2

� � 5 � �
1
2
3
� 12 �

1
2
3
� � 12 � �

3
2
7
�

2 3 2 � 6 � 8 �
2
2
1
� 8 � �

2
2
1
� � �

3
2
7
�

3 0 1 � 0 � 1 14 1 � 14 � 15* f1(3) � 15

3 1 �
3
2

� � 4 � �
1
2
1
� 12 �

1
2
1
� � 12 � �

3
2
5
� x1(3) � 0

3 2 2 � 5 � 7 �
2
2
1
� 7 � �

2
2
1
� � �

3
2
5
�

4 0 �
3
2

� � 0 � �
3
2

� 12 �
3
2

� � 12 � �
2
2
7
�* f1(4) � �

2
2
7
�

4 1 2 � 4 � 6 �
2
2
1
� 6 � �

2
2
1
� � �

3
2
3
� x1(4) � 0
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Returning to Example 4, the minimum-cost production schedule corresponds to the

shortest path joining (1, 0) and (5, 0). As we have already seen, this would be the path

corresponding to production levels of 1, 5, 0, and 4. In Figure 5, this would correspond

to the path beginning at (1, 0), then going to (2, 0 � 1 � 1) � (2, 0), then to (3, 0 �

5 � 3) � (3, 2), then to (4, 2 � 0 � 2) � (4, 0), and finally to (5, 0 � 4 � 4) � (5, 0).

Thus, our optimal production schedule corresponds to the path (1, 0)–(2, 0)–(3, 2)–(4,

0)–(5, 0) in Figure 5.

P R O B L E M S
Group A

1, 0

1, 1

1, 2

1, 3

1, 4

Month 1 Month 2 Month 3 Month 4

Month 5

2, 0

2, 1

2, 2

2, 3

2, 4

3, 0

3, 1

3, 2

3, 3

3, 4

4, 0

4, 1

4, 2 5, 0

4, 3

4, 4

F I G U R E  5

Network Representation
of Inventory Example

1 In Example 4, determine the optimal production
schedule if the initial inventory is 3 units.

2 An electronics firm has a contract to deliver the
following number of radios during the next three months;
month 1, 200 radios; month 2, 300 radios; month 3, 300
radios. For each radio produced during months 1 and 2, a
$10 variable cost is incurred; for each radio produced during
month 3, a $12 variable cost is incurred. The inventory cost
is $1.50 for each radio in stock at the end of a month. The
cost of setting up for production during a month is $250.

Radios made during a month may be used to meet demand
for that month or any future month. Assume that production
during each month must be a multiple of 100. Given that
the initial inventory level is 0 units, use dynamic
programming to determine an optimal production schedule.

3 In Figure 5, determine the production level and cost
associated with each of the following arcs:

a (2, 3)–(3, 1)

b (4, 2)–(5, 0)

18.4 Resource-Allocation Problems

Resource-allocation problems, in which limited resources must be allocated among sev-

eral activities, are often solved by dynamic programming. Recall that we have solved such

problems by linear programming (for instance, the Giapetto problem). To use linear pro-

gramming to do resource allocation, three assumptions must be made:

Assumption 1 The amount of a resource assigned to an activity may be any nonnegative

number.
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Assumption 2 The benefit obtained from each activity is proportional to the amount of

the resource assigned to the activity.

Assumption 3 The benefit obtained from more than one activity is the sum of the bene-

fits obtained from the individual activities.

Even if assumptions 1 and 2 do not hold, dynamic programming can be used to solve 

resource-allocation problems efficiently when assumption 3 is valid and when the amount

of the resource allocated to each activity is a member of a finite set.

Finco has $6,000 to invest, and three investments are available. If dj dollars (in thousands)

are invested in investment j, then a net present value (in thousands) of rj(dj) is obtained,

where the rj(dj)’s are as follows:

r1(d1) � 7d1 � 2 (d1 � 0)

r2(d2) � 3d2 � 7 (d2 � 0)

r3(d3) � 4d3 � 5 (d3 � 0)

r1(0) � r2(0) � r3(0) � 0 (d3 � 0)

The amount placed in each investment must be an exact multiple of $1,000. To maximize

the net present value obtained from the investments, how should Finco allocate the

$6,000?

Solution The return on each investment is not proportional to the amount invested in it [for exam-

ple, 16 � r1(2) 
 2r1(1) � 18]. Thus, linear programming cannot be used to find an op-

timal solution to this problem.†

Mathematically, Finco’s problem may be expressed as

max{r1(d1) � r2(d2) � r3(d3)}

s.t. d1 � d2 � d3 � 6

dj nonnegative integer ( j � 1, 2, 3)

Of course, if the rj(dj)’s were linear, then we would have a knapsack problem like those

we studied in Section 9.5.

To formulate Finco’s problem as a dynamic programming problem, we begin by iden-

tifying the stage. As in the inventory and shortest-route examples, the stage should be cho-

sen so that when one stage remains the problem is easy to solve. Then, given that the prob-

lem has been solved for the case where one stage remains, it should be easy to solve the

problem where two stages remain, and so forth. Clearly, it would be easy to solve when

only one investment was available, so we define stage t to represent a case where funds

must be allocated to investments t, t � 1, . . . , 3.

For a given stage, what must we know to determine the optimal investment amount?

Simply how much money is available for investments t, t � 1, . . . , 3. Thus, we define the

state at any stage to be the amount of money (in thousands) available for investments t, 

t � 1, . . . , 3. We can never have more than $6,000 available, so the possible states at any

stage are 0, 1, 2, 3, 4, 5, and 6. We define ft(dt) to be the maximum net present value

(NPV) that can be obtained by investing dt thousand dollars in investments t, t � 1, . . . ,

3. Also define xt(dt) to be the amount that should be invested in investment t to attain ft(dt).

We start to work backward by computing f3(0), f3(1), . . . , f3(6) and then determine f2(0),

f2(1), . . . , f2(6). Since $6,000 is available for investment in investments 1, 2, and 3, we

Resource AllocationE X A M P L E  5

†The fixed-charge approach described in Section 9.2 could be used to solve this problem.
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terminate our computations by computing f1(6). Then we retrace our steps and determine

the amount that should be allocated to each investment (just as we retraced our steps to

determine the optimal production level for each month in Example 4).

Stage 3 Computations

We first determine f3(0), f3(1), . . . , f3(6). We see that f3(d3) is attained by investing all

available money (d3) in investment 3. Thus,

f3(0) � 0 x3(0) � 0

f3(1) � 9 x3(1) � 1

f3(2) � 13 x3(2) � 2

f3(3) � 17 x3(3) � 3

f3(4) � 21 x3(4) � 4

f3(5) � 25 x3(5) � 5

f3(6) � 29 x3(6) � 6

TA B L E  6

Computations for f2 (0), f2 (1), . . . , f2 (6)

NPV from f2(d2)
d2 x2 r2(x2) f3(d2 � x2) Investments 2, 3 x2(d2)

0 0 0 0 0* f2(0) � 0

x2(0) � 0

1 0 0 9 9* f2(1) � 10

1 1 10 0 10* x2(1) � 1

2 0 0 13 13* f2(2) � 19

2 1 10 9 19* x2(2) � 1

2 2 13 0 13*

3 0 0 17 17* f2(3) � 23

3 1 10 13 23* x2(3) � 1

3 2 13 9 22*

3 3 16 0 16*

4 0 0 21 21* f2(4) � 27

4 1 10 17 27* x2(4) � 1

4 2 13 13 26*

4 3 16 9 25*

4 4 19 0 19*

5 0 0 25 25* f2(5) � 31

5 1 10 21 31* x2(5) � 1

5 2 13 17 30*

5 3 16 13 29*

5 4 19 9 28*

5 5 22 0 22*

6 0 0 29 29* f2(6) � 35

6 1 10 25 35* x2(6) � 1

6 2 13 21 34*

6 3 16 17 33*

6 4 19 13 32*

6 5 22 9 31*

6 6 25 0 25*
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Stage 2 Computations

To determine f2(0), f2(1), . . . , f2(6), we look at all possible amounts that can be placed in

investment 2. To find f2(d2), let x2 be the amount invested in investment 2. Then an NPV

of r2(x2) will be obtained from investment 2, and an NPV of f3(d2 � x2) will be obtained

from investment 3 (remember the principle of optimality). Since x2 should be chosen to

maximize the net present value earned from investments 2 and 3, we write

f2(d2) � max
x2

{r2(x2) � f3(d2 � x2)} (5)

where x2 must be a member of {0, 1, . . . , d2}. The computations for f2(0), f2(1), . . . , f2(6)

and x2(0), x2(1), . . . , x2(6) are given in Table 6.

Stage 1 Computations

Following (5), we write

f1(6) � max
x1

{r1(x1) � f2(6 � x1)}

where x1 must be a member of {0, 1, 2, 3, 4, 5, 6}. The computations for f1(6) are given

in Table 7.

Determination of Optimal Resource Allocation

Since x1(6) � 4, Finco invests $4,000 in investment 1. This leaves 6,000 � 4,000 �

$2,000 for investments 2 and 3. Hence, Finco should invest x2(2) � $1,000 in investment

2. Then $1,000 is left for investment 3, so Finco chooses to invest x3(1) � $1,000 in in-

vestment 3. Therefore, Finco can attain a maximum net present value of f1(6) � $49,000

by investing $4,000 in investment 1, $1,000 in investment 2, and $1,000 in investment 3.

Network Representation of Resource Example

As with the inventory example of Section 18.3, Finco’s problem has a network represen-

tation, equivalent to finding the longest route from (1, 6) to (4, 0) in Figure 6. In the fig-

ure, the node (t, d ) represents the situation in which d thousand dollars is available for in-

vestments t, t � 1, . . . , 3. The arc joining the nodes (t, d ) and (t � 1, d � x) has a length

rt(x) corresponding to the net present value obtained by investing x thousand dollars in

investment t. For example, the arc joining nodes (2, 4) and (3, 1) has a length r2(3) �

$16,000, corresponding to the $16,000 net present value that can be obtained by invest-

TA B L E  7

Computations for f1(6)

NPV from f1(6)
d1 x1 r1(x1) f2(6 � x1) Investments 1–3 x1(6)

6 0 0 35 35 f1(6) � 49

6 1 9 31 40 x1(6) � 4

6 2 16 27 43

6 3 23 23 46

6 4 30 19 49*

6 5 37 10 47

6 6 44 0 44
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ing $3,000 in investment 2. Note that not all pairs of nodes in adjacent stages are joined

by arcs. For example, there is no arc joining the nodes (2, 4) and (3, 5); after all, if you

have only $4,000 available for investments 2 and 3, how can you have $5,000 available

for investment 3? From our computations, we see that the longest path from (1, 6) to (4,

0) is (1, 6)–(2, 2)–(3, 1)–(4, 0).

Generalized Resource Allocation Problem

We now consider a generalized version of Example 5. Suppose we have w units of a re-

source available and T activities to which the resource can be allocated. If activity t is im-

plemented at a level xt (we assume xt must be a nonnegative integer), then gt(xt) units of

the resource are used by activity t, and a benefit rt(xt) is obtained. The problem of deter-

mining the allocation of resources that maximizes total benefit subject to the limited re-

source availability may be written as

max �
t�T

t�1

rt(xt) 	 w

(6)

s.t. �
t�T

t�1

gt(xt) 	 w

where xt must be a member of {0, 1, 2, . . . }. Some possible interpretations of rt(xt), gt(xt),

and w are given in Table 8.

To solve (6) by dynamic programming, define ft(d) to be the maximum benefit that can

be obtained from activities t, t � 1, . . . , T if d units of the resource may be allocated to

activities t, t � 1, . . . , T. We may generalize the recursions of Example 5 to this situa-

tion by writing

fT�1(d) � 0 for all d
(7)

ft(d) � max
xt

{rt(xt) � ft�1[d � gt(xt)]}

where xt must be a nonnegative integer satisfying gt(xt) 	 d. Let xt(d) be any value of xt

that attains ft(d). To use (7) to determine an optimal allocation of resources to activities

1, 2, . . . , T, we begin by determining all fT(�) and xT(�). Then we use (7) to determine all

fT�1(�) and xT�1(�), continuing to work backward in this fashion until all f2(�) and x2(�)

3, 6

3, 5

3, 4

4, 03, 3

3, 2

3, 1

3, 0

2, 6

2, 5

2, 4

2, 3

2, 2

2, 1

2, 0

1, 6

Stage 1

Stage 2 Stage 3

Stage 4

F I G U R E  6

Network Representation
of Finco
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have been determined. To wind things up, we now calculate f1(w) and x1(w). Then we im-

plement activity 1 at a level x1(w). At this point, we have w � g1[x1(w)] units of the re-

source available for activities 2, 3, . . . , T. Then activity 2 should be implemented at a

level of x2{w � g1[x1(w)]}. We continue in this fashion until we have determined the level

at which all activities should be implemented.

Solution of Knapsack Problems by Dynamic Programming

We illustrate the use of (7) by solving a simple knapsack problem (see Section 9.5). Then

we develop an alternative recursion that can be used to solve knapsack problems.

Suppose a 10-lb knapsack is to be filled with the items listed in Table 9. To maximize to-

tal benefit, how should the knapsack be filled?

Solution We have r1(x1) � 11x1, r2(x2) � 7x2, r3(x3) � 12x3, g1(x1) � 4x1, g2(x2) � 3x2, and g3(x3)

� 5x3. Define ft(d) to be the maximum benefit that can be earned from a d-pound knap-

sack that is filled with items of Type t, t � 1, . . . , 3.

Stage 3 Computations

Now (7) yields

f3(d) � max
x3

{12x3}

KnapsackE X A M P L E  6

TA B L E  8

Examples of a Generalized Resource Allocation Problem

Interpretation Interpretation of Interpretation
of rt (xt ) gt (xt ) of w

Benefit from placing xt Weight of xt type t items Maximum weight that
type t items in a knapsack knapsack can hold

Grade obtained in course t Number of hours per week xt Total number of study hours
if we study course t for xt spent studying course t available each week
hours per week

Sales of a product in Cost of assigning xt sales Total sales force budget
region t if xt sales reps are reps to region t
assigned to region t

Number of fire alarms per Cost per week of maintaining Total weekly budget for
week responded to within xt fire engines in precinct t maintaining fire engines
one minute if precinct t
is assigned xt engines

TA B L E  9

Weights and Benefits for Knapsack

Item Weight (lb) Benefit

1 4 11

2 3 7

3 5 12
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where 5x3 	 d and x3 is a nonnegative integer. This yields

f3(10) � 24

f3(5) � f3(6) � f3(7) � f3(8) � f3(9) � 12

f3(0) � f3(1) � f3(2) � f3(3) � f3(4) � 0

x3(10) � 2

x3(9) � x3(8) � x3(7) � x3(6) � x3(5) � 1

x3(0) � x3(1) � x3(2) � x3(3) � x3(4) � 0

Stage 2 Computations

Now (7) yields

f2(d) � max
x2

{7x2 � f3(d � 3x2)}

where x2 must be a nonnegative integer satisfying 3x2 	 d. We now obtain

7(0) � f3(10) � 24* x2 � 0

f2(10) � max �7(1) � f3(7) � 19 * x2 � 1

7(2) � f3(4) � 14 * x2 � 2

7(3) � f3(1) � 21 * x2 � 3

Thus, f2(10) � 24 and x2(10) � 0.

7(0) � f3(9) � 12 *x2 � 0

f2(9) � max �7(1) � f3(6) � 19 * x2 � 1

7(2) � f3(3) � 14 * x2 � 2

7(3) � f3(0) � 21* x2 � 3

Thus, f2(9) � 21 and x2(9) � 3.

7(0) � f3(8) � 12 * x2 � 0

f2(8) � max �7(1) � f3(5) � 19* x2 � 1

7(2) � f3(2) � 14 * x2 � 2

Thus, f2(8) � 19 and x2(8) � 1.

7(0) � f3(7) � 12 * x2 � 0

f2(7) � max �7(1) � f3(4) � 7 * x2 � 1

7(2) � f3(1) � 14* x2 � 2

Thus, f2(7) � 14 and x2(7) � 2.

7(0) � f3(6) � 12 * x2 � 0

f2(6) � max �7(1) � f3(3) � 7 * x2 � 1

7(2) � f3(0) � 14* x2 � 2

Thus, f2(6) � 14 and x2(6) � 2.

f2(5) � max �7(0) � f3(5) � 12* x2 � 0

7(1) � f3(2) � 7 * x2 � 1

Thus, f2(5) � 12 and x2(5) � 0.

f2(4) � max �7(0) � f3(4) � 0 * x2 � 0

7(1) � f3(1) � 7* x2 � 1
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Thus, f2(4) � 7 and x2(4) � 1.

f2(3) � max �7(0) � f3(3) � 0* x2 � 0

7(1) � f3(0) � 7* x2 � 1

Thus, f2(3) � 7 and x2(3) � 1.

f2(2) � 7(0) � f3(2) � 0 x2 � 0

Thus, f2(2) � 0 and x2(2) � 0.

f2(1) � 7(0) � f3(1) � 0 x2 � 0

Thus, f2(1) � 0 and x2(1) � 0.

f2(0) � 7(0) � f3(0) � 0 x2 � 0

Thus, f2(0) � 0 and x2(0) � 0.

Stage 1 Computations

Finally, we determine f1(10) from

11(0) � f2(10) � 24* x1 � 0

f1(10) � max �11(1) � f2(6)0 � 25* x1 � 1

11(2) � f2(2)0 � 22* x1 � 2

Determination of the Optimal Solution to Knapsack Problem

We have f1(10) � 25 and x1(10) � 1. Hence, we should include one Type 1 item in the

knapsack. Then we have 10 � 4 � 6 lb left for Type 2 and Type 3 items, so we should

include x2(6) � 2 Type 2 items. Finally, we have 6 � 2(3) � 0 lb left for Type 3 items,

and we include x3(0) � 0 Type 3 items. In summary, the maximum benefit that can be

gained from a 10-lb knapsack is f3(10) � 25. To obtain a benefit of 25, one Type 1 and

two Type 2 items should be included.

Network Representation of Knapsack Problem

Finding the optimal solution to Example 6 is equivalent to finding the longest path in Fig-

ure 7 from node (10, 1) to some stage 4 node. In Figure 7, for t 	 3, the node (d, t) rep-

resents a situation in which d pounds of space may be allocated to items of Type t, t � 1,

. . . , 3. The node (d, 4) represents d pounds of unused space. Each arc from a stage t node

to a stage t � 1 node represents a decision of how many Type t items are placed in the

knapsack. For example, the arc from (10, 1) to (6, 2) represents placing one Type 1 item

in the knapsack. This leaves 10 � 4 � 6 lb for items of Types 2 and 3. This arc has a

length of 11, representing the benefit obtained by placing one Type 1 item in the knap-

sack. Our solution to Example 6 shows that the longest path in Figure 7 from node (10,

1) to a stage 4 node is (10, 1)–(6, 2)–(0, 3)–(0, 4). We note that the optimal solution to a

knapsack problem does not always use all the available weight. For example, the reader

should verify that if a Type 1 item earned 16 units of benefit, the optimal solution would

be to include two type 1 items, corresponding to the path (10, 1)–(2, 2)–(2, 3)–(2, 4). This

solution leaves 2 lb of space unused.
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An Alternative Recursion for Knapsack Problems

Other approaches can be used to solve knapsack problems by dynamic programming. The

approach we now discuss builds up the optimal knapsack by first determining how to fill

a small knapsack optimally and then, using this information, how to fill a larger knapsack

optimally. We define g(w) to be the maximum benefit that can be gained from a w-lb knap-

sack. In what follows, bj is the benefit earned from a single Type j item, and wj is the

weight of a single Type j item. Clearly, g(0) � 0, and for w � 0,

g(w) � max
j

{bj � g(w � wj)} (8)

where j must be a member of {1, 2, 3}, and j must satisfy wj 	 w. The reasoning behind

(8) is as follows: To fill a w-lb knapsack optimally, we must begin by putting some type

of item into the knapsack. If we begin by putting a Type j item into a w-lb knapsack, the

best we can do is earn bj � [best we can do from a (w � wj)-lb knapsack]. After noting

that a Type j item can be placed into a w-lb knapsack only if wj 	 w, we obtain (8). We

define x(w) to be any type of item that attains the maximum in (8) and x(w) � 0 to mean

that no item can fit into a w-lb knapsack.

To illustrate the use of (8), we re-solve Example 6. Because no item can fit in a 0-, 1-,

or 2-lb knapsack, we have g(0) � g(1) � g(2) � 0 and x(0) � x(1) � x(2) � 0. Only a

Type 2 item fits into a 3-lb knapsack, so we have that g(3) � 7 and x(3) � 2. Continu-

ing, we find that 

10, 3

9, 3

8, 3

7, 3

6, 3

5, 3

4, 3

3, 3

2, 3

1, 3

0, 3

4, 4

3, 4

2, 4

1, 4

0, 4

10, 1

9, 1

8, 1

7, 1

6, 1

5, 1

4, 1

3, 1

2, 1

1, 1

0, 1

Stage 1 Stage 2 Stage 3 Stage 4

10, 2

9, 2

8, 2

7, 2

6, 2

5, 2

4, 2

3, 2

2, 2

1, 2

0, 2

F I G U R E  7

Network of
Representation of

Knapsack
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g(4) � max �11 � g(0) � 11* (Type 1 item)

7 � g(1) � 7 * (Type 2 item)

Thus, g(4) � 11 and x(4) � 1.

11 � g(1) � 11 (Type 1 item)

g(5) � max � 7 � g(2) � 7 * (Type 2 item)

12 � g(0) � 12* (Type 3 item)

Thus, g(5) � 12 and x(5) � 3.

11 � g(2) � 11* (Type 1 item)

g(6) � max � 7 � g(3) � 14* (Type 2 item)

12 � g(1) � 12* (Type 3 item)

Thus, g(6) � 14 and x(6) � 2.

11 � g(3) � 18* (Type 1 item)

g(7) � max � 7 � g(4) � 18* (Type 2 item)

12 � g(2) � 12* (Type 3 item)

Thus, g(7) � 18 and x(7) � 1 or x(7) � 2.

11 � g(4) � 22* (Type 1 item)

g(8) � max � 7 � g(5) � 19* (Type 2 item)

12 � g(3) � 19* (Type 3 item)

Thus, g(8) � 22 and x(8) � 1.

11 � g(5) � 23* (Type 1 item)

g(9) � max � 7 � g(6) � 21* (Type 2 item)

12 � g(4) � 23* (Type 3 item)

Thus, g(9) � 23 and x(9) � 1 or x(9) � 3.

11 � g(6) � 25* (Type 1 item)

g(10) � max � 7 � g(7) � 25* (Type 2 item)

12 � g(5) � 24* (Type 3 item)

Thus, g(10) � 25 and x(10) � 1 or x(10) � 2. To fill the knapsack optimally, we begin

by putting any x(10) item in the knapsack. Let’s arbitrarily choose a Type 1 item. This

leaves us with 10 � 4 � 6 lb to fill, so we now put an x(10 � 4) � 2 (Type 2) item in

the knapsack. This leaves us with 6 � 3 � 3 lb to fill, which we do with an x(6 � 3) �

2 (Type 2) item. Hence, we may attain the maximum benefit of g(10) � 25 by filling the

knapsack with two Type 2 items and one Type 1 item.

A Turnpike Theorem

For a knapsack problem, let

cj � benefit obtained from each type j item

wj � weight of each type j item type j item
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In terms of benefit per unit weight, the best item is the item with the largest value of �
w

cj

j

�.

Assume there are n types of items that have been ordered, so that

�
w

c1

1

� � �
w

c2

2

� � ��� � �
w

cn

n

�

Thus, Type 1 items are the best, Type 2 items are the second best, and so on. Recall from

Section 9.5 that it is possible for the optimal solution to a knapsack problem to use none

of the best item. For example, the optimal solution to the knapsack problem

max z � 16x1 � 22x2 � 12x3 � 8x4

s.t. 5x1 � 7x2 � 5x3 � 4x4 	14

xi nonnegative integer

is z � 44, x2 � 2, x1 � x3 � x4 � 0, and this solution does not use any of the best (Type

1) item. Assume that

�
w

c1

1

� � �
w

c2

2

�

Thus, there is a unique best item type. It can be shown that for some number w*, it is op-

timal to use at least one Type 1 item if the knapsack is allowed to hold w pounds, where

w � w*. In Problem 6 at the end of this section, you will show that this result holds for

w* �

Thus, for the knapsack problem

max z � 16x1 � 22x2 � 12x3 � 8x4

s.t. 5x1 � 7x2 � 5x3 � 4x4 	 w

xi nonnegative integer

at least one Type 1 item will be used if

w � � 280

This result can greatly reduce the computation needed to solve a knapsack problem. For

example, suppose that w � 4,000. We know that for w � 280, the optimal solution will

use at least one Type 1 item, so we can conclude that the optimal way to fill a 4,000-lb

knapsack will consist of one Type 1 item plus the optimal way to fill a knapsack of 

4,000 � 5 � 3,995 lb. Repeating this reasoning shows that the optimal way to fill a 

4,000-lb knapsack will consist of �
4,000

5

�280
� � 744 Type 1 items plus the optimal way to

fill a knapsack of 280 lb. This reasoning substantially reduces the computation needed to

determine how to fill a 4,000-lb knapsack. (Actually, the 280-lb knapsack will use at least

one Type 1 item, so we know that to fill a 4,000-lb knapsack optimally, we can use 745

Type 1 items and then optimally fill a 275-lb knapsack.)

Why is this result referred to as a turnpike theorem? Think about taking an automo-

bile trip in which our goal is to minimize the time needed to complete the trip. For a long

enough trip, it may be advantageous to go slightly out of our way so that most of the trip

will be spent on a turnpike, on which we can travel at the greatest speed. For a short trip,

it may not be worth our while to go out of our way to get on the turnpike.

Similarly, in a long (large-weight) knapsack problem, it is always optimal to use some

of the best items, but this may not be the case in a short knapsack problem. Turnpike re-

sults abound in the dynamic programming literature [see Morton (1979)].

16(5)
��

16 � 5(�
2

7

2
�)

c1w1
��

c1 � w1 ��
w

c2

2

��
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P R O B L E M S
Group A

1 J. R. Carrington has $4 million to invest in three oil well
sites. The amount of revenue earned from site i(i � 1, 2, 3)
depends on the amount of money invested in site i (see
Table 10). Assuming that the amount invested in a site must
be an exact multiple of $1 million, use dynamic
programming to determine an investment policy that will
maximize the revenue J. R. will earn from his three oil
wells.

2 Use either of the approaches outlined in this section to
solve the following knapsack problem:

max z � 5x1 � 4x2 � 2x3

s.t. 4x1 � 3x2 � 2x3 	 8

x1, x2, x3 � 0; x1, x2, x3 integer

3 The knapsack problem of Problem 2 can be viewed as
finding the longest route in a particular network.

a Draw the network corresponding to the recursion
derived from (7).

b Draw the network corresponding to the recursion
derived from (8).

4 The number of crimes in each of a city’s three police
precincts depends on the number of patrol cars assigned to
each precinct (see Table 11). Five patrol cars are available.
Use dynamic programming to determine how many patrol
cars should be assigned to each precinct.

5 Use dynamic programming to solve a knapsack problem
in which the knapsack can hold up to 13 lb (see Table 12).

Group B

6 Consider a knapsack problem for which

�
w

c1

1

� � �
w

c2

2

�

Show that if the knapsack can hold w pounds, and w � w*,
where

w* �

then the optimal solution to the knapsack problem must use
at least one Type 1 item.

c1w1
��

18.5 Equipment-Replacement Problems

Many companies and customers face the problem of determining how long a machine

should be utilized before it should be traded in for a new one. Problems of this type 

are called equipment-replacement problems and can often be solved by dynamic 

programming.

An auto repair shop always needs to have an engine analyzer available. A new engine an

lyzer costs $1,000. The cost mi of maintaining an engine analyzer during its ith year of

operation is as follows: m1 � $60, m2 � $80, m3 � $120. An analyzer may be kept for

TA B L E  10

Amount Invested
Revenue ($ Millions)

($ Millions) Site 1 Site 2 Site 3

0 4 3 13

1 7 6 17

2 8 10 8

3 9 12 13

4 11 14 15

TA B L E  11

No. of Patrol Cars Assigned to Precinct

Precinct 0 1 2 3 4 5

1 14 10 7 4 1 0

2 25 19 16 14 12 11

3 20 14 11 8 6 5

TA B L E  12

Item Weight (lb) Benefit

1 3 12

2 5 25

3 7 50

Equipment ReplacementE X A M P L E  7
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1, 2, or 3 years; after i years of use (i � 1, 2, 3), it may be traded in for a new one. If an

i-year-old engine analyzer is traded in, a salvage value si is obtained, where s1 � $800,

s2 � $600, and s3 � $500. Given that a new machine must be purchased now (time 0;

see Figure 8), the shop wants to determine a replacement and trade-in policy that mini-

mizes net costs � (maintenance costs) � (replacement costs) – (salvage value received)

during the next 5 years.

Solution We note that after a new machine is purchased, the firm must decide when the newly pur-

chased machine should be traded in for a new one. With this in mind, we define g(t) to

be the minimum net cost incurred from time t until time 5 (including the purchase cost

and salvage value for the newly purchased machine) given that a new machine has been

purchased at time t. We also define ctx to be the net cost (including purchase cost and sal-

vage value) of purchasing a machine at time t and operating it until time x. Then the ap-

propriate recursion is

g(t) � min
x

{ctx � g(x)} (t � 0, 1, 2, 3, 4) (9)

where x must satisfy the inequalities t � 1 	 x 	 t � 3 and x 	 5. Because the problem

is over at time 5, no cost is incurred from time 5 onward, so we may write g(5) � 0.

To justify (9), note that after a new machine is purchased at time t, we must decide

when to replace the machine. Let x be the time at which the replacement occurs. The re-

placement must be after time t but within 3 years of time t. This explains the restriction

that t � 1 	 x 	 t � 3. Since the problem ends at time 5, we must also have x 	 5. If

we choose to replace the machine at time x, then what will be the cost from time t to time

5? Simply the sum of the cost incurred from the purchase of the machine to the sale of

the machine at time x (which is by definition ctx) and the total cost incurred from time x

to time 5 (given that a new machine has just been purchased at time x). By the principle

of optimality, the latter cost is, of course, g(x). Hence, if we keep the machine that was

purchased at time t until time x, then from time t to time 5, we incur a cost of ctx � g(x).

Thus, x should be chosen to minimize this sum, and this is exactly what (9) does. We have

assumed that maintenance costs, salvage value, and purchase price remain unchanged

over time, so each ctx will depend only on how long the machine is kept; that is, each ctx

depends only on x � t. More specifically,

ctx � $1,000 � m1 � � � � � mx�t � sx�t

This yields

c01 � c12 � c23 � c34 � c45 � 1,000 � 60 � 800 � $260

c02 � c13 � c24 � c35 � 1,000 � 60 � 80 � 600 � $540

c03 � c14 � c25 � 1,000 � 60 � 80 � 120 � 500 � $760

We begin by computing g(4) and work backward until we have computed g(0). Then we

use our knowledge of the values of x attaining g(0), g(1), g(2), g(3), and g(4) to deter-

mine the optimal replacement strategy. The calculations follow.

At time 4, there is only one sensible decision (keep the machine until time 5 and sell

it for its salvage value), so we find

g(4) � c45 � g(5) � 260 � 0 � $260*

Year 1

Time
0

Time
1

Time
2

Time
3

Time
4

Time
5

Year 2 Year 3 Year 4 Year 5F I G U R E  8

Time Horizon for
Equipment

Replacement
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Thus, if a new machine is purchased at time 4, it should be traded in at time 5.

If a new machine is purchased at time 3, we keep it until time 4 or time 5. Hence,

g(3) � min �c34 � g(4) � 260 � 260 � $520* (Trade at time 4)

c35 � g(5) � 540 � 0 � $540 (Trade at time 5)

Thus, if a new machine is purchased at time 3, we should trade it in at time 4.

If a new machine is purchased at time 2, we trade it in at time 3, time 4, or time 5.

This yields

c23 � g(3) � 260 � 520 � $780 (Trade at time 3)

g(2) � min �c24 � g(4) � 540 � 260 � $800 (Trade at time 4)

c25 � g(5) � $760* (Trade at time 5)

Thus, if we purchase a new machine at time 2, we should keep it until time 5 and then

trade it in.

If a new machine is purchased at time 1, we trade it in at time 2, time 3, or time 4.

Then

c12 � g(2) � 260 � 760 � $1,020* (Trade at time 2)

g(1) � min �c13 � g(3) � 540 � 520 � $1,060* (Trade at time 3)

c14 � g(4) � 760 � 260 � $1,020* (Trade at time 4)

Thus, if a new machine is purchased at time 1, it should be traded in at time 2 or time 4.

The new machine that was purchased at time 0 may be traded in at time 1, time 2, or

time 3. Thus,

c01 � g(1) � 260 � 1,020 � $1,280* (Trade at time 1)

g(0) � min �c02 � g(2) � 540 � 760 � $1,300 (Trade at time 2)

c03 � g(3) � 760 � 520 � $1,280*,4 (Trade at time 3)

Thus, the new machine purchased at time 0 should be replaced at time 1 or time 3. Let’s

arbitrarily choose to replace the time 0 machine at time 1. Then the new time 1 machine

may be traded in at time 2 or time 4. Again we make an arbitrary choice and replace the

time 1 machine at time 2. Then the time 2 machine should be kept until time 5, when it

is sold for salvage value. With this replacement policy, we will incur a net cost of g(0) �

$1,280. The reader should verify that the following replacement policies are also optimal:

(1) trading in at times 1, 4, and 5 and (2) trading in at times 3, 4, and 5.

We have assumed that all costs remain stationary over time. This assumption was made

solely to simplify the computation of the ctx’s. If we had relaxed the assumption of sta-

tionary costs, then the only complication would have been that the ctx’s would have been

messier to compute. We also note that if a short planning horizon is used, the optimal re-

placement policy may be extremely sensitive to the length of the planning horizon. Thus,

more meaningful results can be obtained by using a longer planning horizon.

An equipment-replacement model was actually used by Phillips Petroleum to reduce

costs associated with maintaining the company’s stock of trucks (see Waddell (1983)).

Network Representation of Equipment-Replacement Problem

The reader should verify that our solution to Example 7 was equivalent to finding the

shortest path from node 0 to node 5 in the network in Figure 9. The length of the arc join-

ing nodes i and j is cij.



988 C H A P T E R 1 8 Deterministic Dynamic Programming

An Alternative Recursion

There is another dynamic programming formulation of the equipment-replacement model.

If we define the stage to be the time t and the state at any stage to be the age of the en-

gine analyzer at time t, then an alternative dynamic programming recursion can be de-

veloped. Define ft(x) to be the minimum cost incurred from time t to time 5, given that at

time t the shop has an x-year-old analyzer. The problem is over at time 5, so we sell the

machine at time 5 and receive �sx. Then f5(x) � �sx, and for t � 0, 1, 2, 3, 4,

ft(3) � �500 � 1,000 � 60 � ft�1(1) (Trade) (10)

ft(2) � min ��600 � 1,000 � 60 � ft�1(1) (Trade)
(10.1)

120 � ft�1(3) (Keep)

ft(1) � min ��800 � 1,000 � 60 � ft�1(1) (Trade)
(10.2)

80 � ft�1(2) (Keep)

f0(0) � 1,000 � 60 � f1(1) (Keep) (10.3)

The rationale behind Equations (10)–(10.3) is that if we have a 1- or 2-year-old analyzer,

then we must decide between replacing the machine or keeping it another year. In (10.1)

and (10.2), we compare the costs of these two options. For any option, the total cost from

t until time 5 is the sum of the cost during the current year plus costs from time t � 1 to

time 5. If we have a 3-year-old analyzer, then we must replace it, so there is no choice.

The way we have defined the state means that it is only possible to be in state 0 at time

0. In this case, we must keep the analyzer for the first year (incurring a cost of $1,060).

From this point on, a total cost of f1(1) is incurred. Thus, (10.3) follows. Since we know

that f5(1) � �800, f5(2) � �600, and f5(3) � �500, we can immediately compute all

the f4(�)’s. Then we can compute the f3(�)’s. We continue in this fashion until f0(0) is de-

termined (remember that we begin with a new machine). Then we follow our usual

method for determining an optimal policy. That is, if f0(0) is attained by keeping the 

machine, then we keep the machine for a year and then, during year 1, we choose the ac-

tion that attains f1(1). Continuing in this fashion, we can determine for each time whether

or not the machine should be replaced. (See Problem 1 below.)

P R O B L E M S

Group A

0

Time

1 2 3 4 5

F I G U R E  9

Network Representation
of Equipment
Replacement

1 Use Equations (10)–(10.3) to determine an optimal
replacement policy for the engine analyzer example.

2 Suppose that a new car costs $10,000 and that the annual
operating cost and resale value of the car are as shown in
Table 13. If I have a new car now, determine a replacement
policy that minimizes the net cost of owning and operating
a car for the next six years.

3 It costs $40 to buy a telephone from a department store.
The estimated maintenance cost for each year of operation
is shown in Table 14. (I can keep a telephone for at most
five years.) I have just purchased a new telephone, and my
old telephone has no salvage value. Determine how to
minimize the total cost of purchasing and operating a
telephone for the next six years.
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18.6 Formulating Dynamic Programming Recursions

In many dynamic programming problems (such as the inventory and shortest path exam-

ples), a given stage simply consists of all the possible states that the system can occupy

at that stage. If this is the case, then the dynamic programming recursion (for a min prob-

lem) can often be written in the following form:

ft(i) � min{(cost during stage t) � ft�1 (new state at stage t � 1)} (11)

where the minimum in (11) is over all decisions that are allowable, or feasible, when the

state at stage t is i. In (11), ft(i) is the minimum cost incurred from stage t to the end of

the problem (say, the problem ends after stage T ), given that at stage t the state is i.

Equation (11) reflects the fact that the minimum cost incurred from stage t to the end

of the problem must be attained by choosing at stage t an allowable decision that mini-

mizes the sum of the costs incurred during the current stage (stage t) plus the minimum

cost that can be incurred from stage t � 1 to the end of the problem. Correct formulation

of a recursion of the form (11) requires that we identify three important aspects of the

problem:

Aspect 1 The set of decisions that is allowable, or feasible, for the given state and stage.

Often, the set of feasible decisions depends on both t and i. For instance, in the inventory

example of Section 18.3, let

dt � demand during month tof month t

it � inventory at beginning of month t

In this case, the set of allowable month t decisions (let xt represent an allowable produc-

tion level) consists of the members of {0, 1, 2, 3, 4, 5} that satisfy 0 	 (it � xt � dt) 	

4. Note how the set of allowable decisions at time t depends on the stage t and the state

at time t, which is it.

Aspect 2 We must specify how the cost during the current time period (stage t) depends

on the value of t, the current state, and the decision chosen at stage t. For instance, in the

inventory example of Section 18.3, suppose a production level xt is chosen during month

t. Then the cost during month t is given by c(xt) � (�
1

2
�)(it � xt � dt).

Aspect 3 We must specify how the state at stage t � 1 depends on the value of t, the state

at stage t, and the decision chosen at stage t. Again referring to the inventory example,

the month t � 1 state is it � xt � dt.

If you have properly identified the state, stage, and decision, then aspects 1–3 shouldn’t

be too hard to handle. A word of caution, however: Not all recursions are of the form 

(11). For instance, our first equipment-replacement recursion skipped over time t � 1.

TA B L E  13

Age of Car Resale Operating
(Years) Value ($) Cost ($)

1 7,000 300 (year 1)

2 6,000 500 (year 2)

3 4,000 800 (year 3)

4 3,000 1,200 (year 4)

5 2,000 1,600 (year 5)

6 1,000 2,200 (year 6)

TA B L E  14

Maintenance
Year Cost ($)

1 20

2 30

3 40

4 60

5 70



This often occurs when the stage alone supplies sufficient information to make an opti-

mal decision. We now work through several examples that illustrate the art of formulat-

ing dynamic programming recursions.

The owner of a lake must decide how many bass to catch and sell each year. If she sells

x bass during year t, then a revenue r (x) is earned. The cost of catching x bass during a

year is a function c(x, b) of the number of bass caught during the year and of b, the num-

ber of bass in the lake at the beginning of the year. Of course, bass do reproduce. To model

this, we assume that the number of bass in the lake at the beginning of a year is 20% more

than the number of bass left in the lake at the end of the previous year. Assume that there

are 10,000 bass in the lake at the beginning of the first year. Develop a dynamic pro-

gramming recursion that can be used to maximize the owner’s net profits over a T-year

horizon.

Solution In problems where decisions must be made at several points in time, there is often a trade-

off of current benefits against future benefits. For example, we could catch many bass

early in the problem, but then the lake would be depleted in later years, and there would

be very few bass to catch. On the other hand, if we catch very few bass now, we won’t

make much money early, but we can make a lot of money near the end of the horizon. In

intertemporal optimization problems, dynamic programming is often used to analyze

these complex trade-offs.

At the beginning of year T, the owner of the lake need not worry about the effect that

the capture of bass will have on the future population of the lake. (At time T, there is no

future!) So at the beginning of year T, the problem is relatively easy to solve. For this rea-

son, we let time be the stage. At each stage, the owner of the lake must decide how many

bass to catch. We define xt to be the number of bass caught during year t. To determine an

optimal value of xt, the owner of the lake need only know the number of bass (call it bt)

in the lake at the beginning of year t. Therefore, the state at the beginning of year t is bt.

We define ft(bt) to be the maximum net profit that can be earned from bass caught dur-

ing years t, t � 1, . . . , T given that bt bass are in the lake at the beginning of year t. We

may now dispose of aspects 1–3 of the recursion.

Aspect 1 What are the allowable decisions? During any year, we can’t catch more bass

than there are in the lake. Thus, in each state and for all t, 0 	 xt 	 bt must hold.

Aspect 2 What is the net profit earned during year t? If xt bass are caught during a year

that begins with bt bass in the lake, then the net profit is r(xt) � c(xt, bt).

Aspect 3 What will be the state during year t � 1? At the end of year t, there will be 

bt � xt bass in the lake. By the beginning of year t � 1, these bass will have multiplied

by 20%. This implies that at the beginning of year t � 1, 1.2(bt � xt) bass will be in the

lake. Thus, the year t � 1 state will be 1.2(bt � xt).

We can now use (11) to develop the appropriate recursion. After year T, there are no

future profits to consider, so

fT (bT) � max
xT

{rT (xT) � c(xT, bT)}

where 0 	 xT 	 bT. Applying (11), we obtain

ft(bt) � max{r(xt) � c(xt, bt) � ft�1[1.2(bt � xt)]} (12)

where 0 	 xt 	 bt. To begin the computations, we first determine fT (bT) for all values of

bT that might occur [bT could be up to 10,000(1.2)T�1; why?]. Then we use (12) to work
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backward until f1(10,000) has been computed. Then, to determine an optimal fishing pol-

icy, we begin by choosing x1 to be any value attaining the maximum in the (12) equation

for f1(10,000). Then year 2 will begin with 1.2(10,000 � x1) bass in the lake. This means

that x2 should be chosen to be any value attaining the maximum in the (12) equation for

f2(1.2(10,000 � x1)). Continue in this fashion until the optimal values of x3, x4, . . . , xT

have been determined.

Incorporating the Time Value of Money 
into Dynamic Programming Formulations

A weakness of the current formulation is that profits received during later years are

weighted the same as profits received during earlier years. As mentioned in the discussion

of discounting (in Chapter 3), later profits should be weighted less than earlier profits.

Suppose that for some b � 1, $1 received at the beginning of year t � 1 is equivalent to

b dollars received at the beginning of year t. We can incorporate this idea into the dy-

namic programming recursion by replacing (12) with

ft(bt) � max
xt

{r(xt) � c(xt, bt) � bft�1[1.2(bt � xt)]} (12’)

where 0 	 xt 	 bt. Then we redefine ft(bt) to be the maximum net profit (in year t dollars)

that can be earned during years t, t � 1, . . . , T. Since ft�1 is measured in year t � 1 dollars,

multiplying it by b converts ft�1(�) to year t dollars, which is just what we want. In Example

8, once we have worked backward and determined f1(10,000), an optimal fishing policy is

found by using the same method that was previously described. This approach can be used

to account for the time value of money in any dynamic programming formulation.

An electric power utility forecasts that rt kilowatt-hours (kwh) of generating capacity will

be needed during year t (the current year is year 1). Each year, the utility must decide by

how much generating capacity should be expanded. It costs ct(x) dollars to increase gen-

erating capacity by x kwh during year t. It may be desirable to reduce capacity, so x need

not be nonnegative. During each year, 10% of the old generating capacity becomes ob-

solete and unusable (capacity does not become obsolete during its first year of operation).

It costs the utility mt(i) dollars to maintain i units of capacity during year t. At the be-

ginning of year 1, 100,000 kwh of generating capacity are available. Formulate a dynamic

programming recursion that will enable the utility to minimize the total cost of meeting

power requirements for the next T years.

Solution Again, we let time be the stage. At the beginning of year t, the utility must determine the

amount of capacity (call it xt) to add during year t. To choose xt properly, all the utility

needs to know is the amount of available capacity at the beginning of year t (call it it).

Hence, we define the state at the beginning of year t to be the current capacity level. We

may now dispose of aspects 1–3 of the formulation.

Aspect 1 What values of xt are feasible? To meet year t’s requirement of rt, we must have

it � xt � rt, or xt � rt � it. So the feasible xt’s are those values of xt satisfying xt � rt � it.

Aspect 2 What cost is incurred during year t? If xt kwh are added during a year that begins

with it kwh of available capacity, then during year t, a cost ct(xt) � mt(it � xt) is incurred.

Aspect 3 What will be the state at the beginning of year t � 1? At the beginning of year

t � 1, the utility will have 0.9it kwh of old capacity plus the xt kwh that have been added

during year t. Thus, the state at the beginning of year t � 1 will be 0.9it � xt.

Power PlantE X A M P L E  9
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We can now use (11) to develop the appropriate recursion. Define ft(it) to be the minimum

cost incurred by the utility during years t, t � 1, . . . , T, given that it kwh of capacity are

available at the beginning of year t. At the beginning of year T, there are no future costs

to consider, so

fT (iT) � min
xT

{cT(xT) � mT (iT � xT)} (13)

where xT must satisfy xT � rT � iT. For t � T,

ft(it) � min
xT

{ct(xt) � mt(it � xt) � ft�1(0.9it � xt)} (14)

where xt must satisfy xt � rt � it. If the utility does not start with any excess capacity, then

we can safely assume that the capacity level would never exceed rMAX � max
t�1, 2,..., T

{rt}.

This means that we need consider only states 0, 1, 2, . . . , rMAX. To begin computations, we

use (13) to compute fT (0), fT (1), . . . , fT (rMAX). Then we use (14) to work backward until

f1(100,000) has been determined. To determine the optimal amount of capacity that should

be added during each year, proceed as follows. During year 1, add an amount of capacity x1

that attains the minimum in the (14) equation for f1(100,000). Then the utility will begin year

2 with 90,000 � x1 kwh of capacity. Then, during year 2, x2 kwh of capacity should be added,

where x2 attains the minimum in the (14) equation for f2(90,000 � x1). Continue in this fash-

ion until the optimal value of xT has been determined.

Farmer Jones now possesses $5,000 in cash and 1,000 bushels of wheat. During month t,

the price of wheat is pt. During each month, he must decide how many bushels of wheat

to buy (or sell). There are three restrictions on each month’s wheat transactions: (1) Dur-

ing any month, the amount of money spent on wheat cannot exceed the cash on hand at

the beginning of the month; (2) during any month, he cannot sell more wheat than he has

at the beginning of the month; and (3) because of limited warehouse capacity, the ending

inventory of wheat for each month cannot exceed 1,000 bushels.

Show how dynamic programming can be used to maximize the amount of cash that

farmer Jones has on hand at the end of six months.

Solution Again, we let time be the stage. At the beginning of month t (the present is the beginning of

month 1), farmer Jones must decide by how much to change the amount of wheat on hand.

We define �wt to be the change in farmer Jones’s wheat position during month t: �wt � 0

corresponds to a month t wheat purchase, and �wt 	 0 corresponds to a month t sale of

wheat. To determine an optimal value for �wt, we must know two things: the amount of

wheat on hand at the beginning of month t (call it wt) and the cash on hand at the beginning

of month t, (call this ct). We define ft(ct, wt) to be the maximum cash that farmer Jones can

obtain at the end of month 6, given that farmer Jones has ct dollars and wt bushels of wheat

at the beginning of month t. We now discuss aspects 1–3 of the formulation.

Aspect 1 What are the allowable decisions? If the state at time t is (ct, wt), then restric-

tions 1–3 limit �wt in the following manner:

pt(�wt) 	 ct or �wt 	 �
p

ct

t

�

ensures that we won’t run out of money at the end of month t. The inequality �wt � �wt

ensures that during month t, we will not sell more wheat than we had at the beginning of

month t; and wt � �wt 	 1,000, or �wt 	 1,000 � wt, ensures that we will end month t

with at most 1,000 bushels of wheat. Putting these three restrictions together, we see that

Wheat SaleE X A M P L E  1 0
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�wt 	 �wt 	 min ��
p

ct

t

�, 1,000 � wt�
will ensure that restrictions 1–3 are satisfied during month t.

Aspect 2 Since farmer Jones wants to maximize his cash on hand at the end of month 6,

no benefit is earned during months 1 through 5. In effect, during months 1–5, we are do-

ing bookkeeping to keep track of farmer Jones’s position. Then, during month 6, we turn

all of farmer Jones’s assets into cash.

Aspect 3 If the current state is (ct, wt) and farmer Jones changes his month t wheat po-

sition by an amount �wt, what will be the new state at the beginning of month t � 1?

Cash on hand will increase by �(�wt)pt, and farmer Jones’s wheat position will increase

by �wt. Hence, the month t � 1 state will be [ct � (�wt)pt, wt � �wt].

We may now use (11) to develop the appropriate recursion. To maximize his cash po-

sition at the end of month 6, farmer Jones should convert his month 6 wheat into cash by

selling all of it. This means that �w6 � �w6. This leads to the following relation:

f6(c6, w6) � c6 � w6 p6 (15)

Using (11), we obtain for t � 6

ft(ct, wt) � max
�wt

{0 � ft�1[ct � (�wt)pt, wt � �wt]} (16)

where �wt must satisfy

�wt 	 �wt 	 min ��
p

ct

t

�, 1,000 � wt�
We begin our calculations by determining f6(c6, w6) for all states that can possibly oc-

cur during month 6. Then we use (16) to work backward until f1(5,000, 1,000) has been

computed. Next, farmer Jones should choose �w1 to attain the maximum value in the (16)

equation for f1(5,000, 1,000), and a month 2 state of [5,000 � p1(�w1), 1,000 � �w1] will

ensue. Farmer Jones should next choose �w2 to attain the maximum value in the (16)

equation for f2[5,000 � p1(�w1), 1,000 � �w1]. We continue in this manner until the op-

timal value of �w6 has been determined.

Sunco Oil needs to build enough refinery capacity to refine 5,000 barrels of oil per day

and 10,000 barrels of gasoline per day. Sunco can build refinery capacity at four loca-

tions. The cost of building a refinery at site t that has the capacity to refine x barrels of

oil per day and y barrels of gasoline per day is ct(x, y). Use dynamic programming to de-

termine how much capacity should be located at each site.

Solution If Sunco had only one possible refinery site, then the problem would be easy to solve.

Sunco could solve a problem in which there were two possible refinery sites, and finally,

a problem in which there were four refinery sites. For this reason, we let the stage repre-

sent the number of available oil sites. At any stage, Sunco must determine how much oil

and gas capacity should be built at the given site. To do this, the company must know how

much refinery capacity of each type must be built at the available sites. We now define

ft(ot, gt) to be the minimum cost of building ot barrels per day of oil refinery capacity and

gt barrels per day of gasoline refinery capacity at sites t, t � 1, . . . , 4.

To determine f4(o4, g4), note that if only site 4 is available, Sunco must build a refin-

ery at site 4 with o4 barrels of oil capacity and g4 barrels of gasoline capacity. This im-

plies that f4(o4, g4) � c4(o4, g4). For t � 1, 2, 3, we can determine ft(ot, gt) by noting that

Refinery CapacityE X A M P L E  1 1
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if we build a refinery at site t that can refine xt barrels of oil per day and yt barrels of

gasoline per day, then we incur a cost of ct(xt, yt) at site t. Then we will need to build a

total oil refinery capacity of ot � xt and a gas refinery capacity of gt � yt at sites t � 1,

t � 2, . . . , 4. By the principle of optimality, the cost of doing this will be ft�1(ot � xt, 

gt � y). Since 0 	 xt 	 ot and 0 	 yt 	 gt must hold, we obtain the following recursion:

ft(ot, gt) � min {ct(ot, gt) � ft�1(ot � xt, gt � yt)} (17)

where 0 	 xt 	 ot and 0 	 yt 	 gt. As usual, we work backward until f1(5,000, 10,000)

has been determined. Then Sunco chooses x1 and y1 to attain the minimum in the (17)

equation for f1 (5,000, 10,000). Then Sunco should choose x2 and y2 that attain the min-

imum in the (17) equation for f2(5,000 � x1, 10,000 � y1). Sunco continues in this fash-

ion until optimal values of x4 and y4 are determined.

The traveling salesperson problem (see Section 9.6) can be solved by using dynamic pro-

gramming. As an example, we solve the following traveling salesperson problem: It’s the

last weekend of the 2004 election campaign, and candidate Walter Glenn is in New York

City. Before election day, Walter must visit Miami, Dallas, and Chicago and then return

to his New York City headquarters. Walter wants to minimize the total distance he must

travel. In what order should he visit the cities? The distances in miles between the four

cities are given in Table 15.

Solution We know that Walter must visit each city exactly once, the last city he visits must be New

York, and his tour originates in New York. When Walter has only one city left to visit, his

problem is trivial: simply go from his current location to New York. Then we can work

backward to a problem in which he is in some city and has only two cities left to visit,

and finally we can find the shortest tour that originates in New York and has four cities

left to visit. We therefore let the stage be indexed by the number of cities that Walter has

already visited. At any stage, to determine which city should next be visited, we need to

know two things: Walter’s current location and the cities he has already visited. The state

at any stage consists of the last city visited and the set of cities that have already been

visited. We define ft(i, S) to be the minimum distance that must be traveled to complete a

tour if the t � 1 cities in the set S have been visited and city i was the last city visited.

We let cij be the distance between cities i and j.

Stage 4 Computations

We note that, at stage 4, it must be the case that S � {2, 3, 4} (why?), and the only pos-

sible states are (2, {2, 3, 4}), (3, {2, 3, 4}), and (4, {2, 3, 4}). In stage 4, we must go

from the current location to New York. This observation yields

Traveling SalespersonE X A M P L E  1 2

TA B L E  15

Distances for a Traveling Salesperson

City

New York Miami Dallas Chicago

1 New York — 1,334 1,559 1,809

2 Miami 1,334 — 1,343 1,397

3 Dallas 1,559 1,343 — 1,921

4 Chicago 1,809 1,397 1,921 —
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f4(2, {2, 3, 4}) � c21 � 1,334* (Go from city 2 to city 1)

f4(3, {2, 3, 4}) � c31 � 1,559* (Go from city 3 to city 1)

f4(4, {2, 3, 4}) � c41 � 809*1, (Go from city 4 to city 1)

Stage 3 Computations

Working backward to stage 3, we write

f3(i, S) � min
j�S

and j
1

{cij � f4[ j, S � { j}]} (18)

This result follows, because if Walter is now at city i and he travels to city j, he travels a dis-

tance cij. Then he is at stage 4, has last visited city j, and has visited the cities in S � { j}.

Hence, the length of the rest of his tour must be f4( j, S � { j}). To use (18), note that at 

stage 3, Walter must have visited {2, 3}, {2, 4}, or {3, 4} and must next visit the non-

member of S that is not equal to 1. We can use (18) to determine f3(�) for all possible states:

f3(2, {2, 3}) � c24 � f4(4, {2, 3, 4}) � 1,397 � 809 � 2,206* (Go from 2 to 4)

f3(3, {2, 3}) � c34 � f4(4, {2, 3, 4}) � 921 � 809 � 1,730* (Go from 3 to 4)

f3(2, {2, 4}) � c23 � f4(3, {2, 3, 4}) � 1,343 � 1,559 � 2,902* (Go from 2 to 3)

f3(4, {2, 4}) � c43 � f4(3, {2, 3, 4}) � 921 � 1,559 � 2,480* (Go from 4 to 3)

f3(3, {3, 4}) � c32 � f4(2, {2, 3, 4}) � 1,343 � 1,334 � 2,677* (Go from 3 to 2)

f3(4, {3, 4}) � c42 � f4(2, {2, 3, 4}) � 1,397 � 1,334 � 2,731* (Go from 4 to 2)

In general, we write, for t � 1, 2, 3,

ft(i, S ) �  min
j�S

and j
1

{cij � ft�1[ j, S � { j}]} (19)

This result follows, because if Walter is at present in city i and he next visits city j, then

he travels a distance cij. The remainder of his tour will originate from city j, and he will

have visited the cities in S � { j}. Hence, the length of the remainder of his tour must be

ft�1( j, S � { j}). Equation (19) now follows.

Stage 2 Computations

At stage 2, Walter has visited only one city, so the only possible states are (2, {2}), 

(3, {3}), and (4, {4}). Applying (19), we obtain

f2(2, {2}) � min �
c23 � f3(3, {2, 3}) � 1,343 � 1,730 � 3,073*

(Go from 2 to 3)

c24 � f3(4, {2, 4}) � 1,397 � 2,480 � 3,877

(Go from 2 to 4)

f2(3, {3}) � min �
c34 � f3(4, {3, 4}) � 921 � 2,731 � 3,652

(Go from 3 to 4)

c32 � f3(2, {2, 3}) � 1,343 � 2,206 � 3,549*

(Go from 3 to 2)

f2(4, {4}) � min �
c42 � f3(2, {2, 4}) � 1,397 � 2,902 � 4,299

(Go from 4 to 2)

c43 � f3(3, {3, 4}) � 921 � 2,677 � 3,598*

(Go from 4 to 3)
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Stage 1 Computations

Finally, we are back to stage 1 (where no cities have been visited). Since Walter is cur-

rently in New York and has visited no cities, the stage 1 state must be f1(1, {�}). Apply-

ing (19),

c12 � f2(2, {2}) � 1,334 � 3,073 � 4,407*

(Go from 1 to 2)

f1(1, {�}) � min �c13 � f2(3, {3}) � 1,559 � 3,549 � 5,108

(Go from 1 to 3)

c14 � f2(4, {4}) � 809 � 3,598 � 4,407*

(Go from 1 to 4)

So from city 1 (New York), Walter may go to city 2 (Miami) or city 4 (Chicago). We ar-

bitrarily have him choose to go to city 4. Then he must choose to visit the city that at-

tains f2(4, {4}), which requires that he next visit city 3 (Dallas). Then he must visit the

city attaining f3(3, {3, 4}), which requires that he next visit city 2 (Miami). Then Walter

must visit the city attaining f4(2, {2, 3, 4}), which means, of course, that he must next

visit city 1 (New York). The optimal tour (1–4–3–2–1, or New York–Chicago–Dallas–

Miami–New York) is now complete. The length of this tour is f1(1, {�}) � 4,407. As a

check, note that

New York to Chicago distance � 809 miles

Chicago to Dallas distance � 921 miles

Dallas to Miami distance � 1,343 miles

Miami to New York distance � 1,334 miles

so the total distance that Walter travels is 809 � 921 � 1,343 � 1,334 � 4,407 miles.

Of course, if we had first sent him to city 2, we would have obtained another optimal tour

(1–2–3–4–1) that would simply be a reversal of the original optimal tour.

Computational Difficulties in Using Dynamic Programming

For traveling salesperson problems that are large, the state space becomes very large, and

the branch-and-bound approach outlined in Chapter 9 (along with other branch-and-

bound approaches) is much more efficient than the dynamic programming approach out-

lined here. For example, for a 30-city problem, suppose we are at stage 16 (this means

that 15 cities have been visited). Then it can be shown that there are more than 1 billion

possible states. This brings up a problem that limits the practical application of dynamic

programming. In many problems, the state space becomes so large that excessive com-

putational time is required to solve the problem by dynamic programming. For instance,

in Example 8, suppose that T � 20. It is possible that if no bass were caught during the

first 20 years, then the lake might contain 10,000(1.2)20
� 383,376 bass at the beginning

of year 21. If we view this example as a network in which we need to find the longest

route from the node (1, 10,000) (representing year 1 and 10,000 bass in the lake) to some

stage 21 node, then stage 21 would have 383,377 nodes. Even a powerful computer would

have difficulty solving this problem. Techniques to make problems with large state spaces

computationally tractable are discussed in Bersetkas (1987) and Denardo (1982).
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Nonadditive Recursions

The last two examples in this section differ from the previous ones in that the recursion

does not represent ft(i) as the sum of the cost (or reward) incurred during the current pe-

riod and future costs (or rewards) incurred during future periods.

Joe Cougar needs to drive from city 1 to city 10. He is no longer interested in minimiz-

ing the length of his trip, but he is interested in minimizing the maximum altitude above

sea level that he will encounter during his drive. To get from city 1 to city 10, he must

follow a path in Figure 10. The length cij of the arc connecting city i and city j represents

the maximum altitude (in thousands of feet above sea level) encountered when driving

from city i to city j. Use dynamic programming to determine how Joe should proceed

from city 1 to city 10.

Solution To solve this problem by dynamic programming, note that for a trip that begins in city i

and goes through stages t, t � 1, . . . , 5, the maximum altitude that Joe encounters will

be the maximum of the following two quantities: (1) the maximum altitude encountered

on stages t � 1, t � 2, . . . , 5 or (2) the altitude encountered when traversing the arc that

begins in stage t. Of course, if we are in a stage 4 state, quantity 1 does not exist.

After defining ft(i) as the smallest maximum altitude that Joe can encounter in a trip

from city i in stage t to city 10, this reasoning leads us to the following recursion:

f4(i) � ci,10{max[cij, ft�1}(j)]} (t � 1, 2, 3) (20)

ft(i) � min
j

{max[cij, ft�1( j)]} (t � 1, 2, 3)

where j may be any city such that there is an arc connecting city i and city j.

We first compute f4(7), f4(8), and f4(9) and then use (20) to work backward until f1(1)

has been computed. We obtain the following results:

f4(7) � 13* (Go from 7 to 10)

f4(8) � 8* (Go from 8 to 10)

f4(9) � 9* (Go from 9 to 10)

max [c57, f4(7)] � 13 (Go from 5 to 7)

f3(5) � min �max [c58, f4(8)] � 8* (Go from 5 to 8)

max [c59, f4(9)] � 10 (Go from 5 to 9)

Minimax Shortest RouteE X A M P L E  1 3

Stage 1 Stage 5

Stage 2

9

10 7

7

6
9

8

7
10

11

13

7

7

8

6

8

Stage 3 Stage 4

8

9

5 7

1031

4

2

6

F I G U R E  10

Joe’s Trip 
(Altitudes Given)
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max [c67, f4(7)] � 13 (Go from 6 to 7)

f3(6) � min �max [c68, f4(8)] � 8* (Go from 6 to 8)

max [c69, f4(9)] � 9 (Go from 6 to 9)

f2(2) � max [c25, f3(5)] � 9* (Go from 2 to 5)

f2(3) � max [c35, f3(5)] � 8* (Go from 3 to 5)

f2(4) � min �max [c45, f3(5)] � 11 (Go from 4 to 5)

max [c46, f3(6)] � 8* (Go from 4 to 6)

max [c12, f2(2)] � 10 (Go from 1 to 2)

f1(1) � min �max [c13, f2(3)] � 8* (Go from 1 to 3)

max [c14, f2(4)] � 8* (Go from 1 to 4)

To determine the optimal strategy, note that Joe can begin by going from city 1 to city 3

or from city 1 to city 4. Suppose Joe begins by traveling to city 3. Then he should choose

the arc attaining f2(3), which means he should next travel to city 5. Then Joe must choose

the arc that attains f3(5), driving next to city 8. Then, of course, he must drive to city 10.

Thus, the path 1–3–5–8–10 is optimal, and Joe will encounter a maximum altitude equal

to f1(1) � 8,000 ft. The reader should verify that the path 1–4–6–8–10 is also optimal.

Glueco is planning to introduce a new product in three different regions. Current estimates

are that the product will sell well in each region with respective probabilities .6, .5, and

.3. The firm has available two top sales representatives that it can send to any of the three

regions. The estimated probabilities that the product will sell well in each region when 0,

1, or 2 additional sales reps are sent to a region are given in Table 16. If Glueco wants to

maximize the probability that its new product will sell well in all three regions, then where

should it assign sales representatives? You may assume that sales in the three regions are

independent.

Solution If Glueco had just one region to worry about and wanted to maximize the probability that

the new product would sell in that region, then the proper strategy would be clear: Assign

both sales reps to the region. We could then work backward and solve a problem in which

Glueco’s goal is to maximize the probability that the product will sell in two regions. Fi-

nally, we could work backward and solve a problem with three regions. We define ft(s) as

the probability that the new product will sell in regions t, t � 1, . . . , 3 if s sales reps are

optimally assigned to these regions. Then

f3(2) � .7 (Assign 2 sales reps to region 3)

f3(1) � .55 (Assign 1 sales rep to region 3)

f3(0) � .3 (Assign 0 sales reps to region 3)

Sales AllocationE X A M P L E  1 4

TA B L E  16

Relation between Regional Sales and Sales Representatives

No. of Additional
Probability of Selling Well

Sales Representatives Region 1 Region 2 Region 3

0 .65 .55 .35

1 .85 .75 .55

2 .85 .85 .75
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Also, f1(2) will be the maximum probability that the product will sell well in all three re-

gions. To develop a recursion for f2(�) and f1(�), we define ptx to be the probability that

the new product sells well in region t if x sales reps are assigned to region t. For exam-

ple, p21 � .7. For t � 1 and t � 2, we then write

ft (s) � max
x

{ptx ft�1(s � x)} (21)

where x must be a member of {0, 1, . . . , s}. To justify (21), observe that if s sales reps

are available for regions t, t � 1, . . . , 3 and x sales reps are assigned to region t, then

ptx � probability that product sells in region t

ft�1(s � x) � probability that product sells well in regions t � 1, . . . , 3

Note that the sales in each region are independent. This implies that if x sales reps are 

assigned to region t, then the probability that the new product sells well in regions t, 

t � 1, . . . , 3 is ptx ft�1(s � x). We want to maximize this probability, so we obtain (21).

Applying (21) yields the following results:

(.5)f3(2 � 0) � .35

(Assign 0 sales reps to region 2)

f2(2) � max �(.7)f3(2 � 1) � .385*

(Assign 1 sales rep to region 2)

(.85)f3(2 � 2) � .255

(Assign 2 sales reps to region 2)

Thus, f2(2) � .385, and 1 sales rep should be assigned to region 2.

(.5)f3(1 � 0) � .275*

f2(1) � max �(Assign 0 sales reps to region 2)

(.7)f3(1 � 1) � .21

(Assign 1 sales rep to region 2)

Thus, f2(1) � .275, and no sales reps should be assigned to region 2.

f2(0) � (.5)f3(0 � 0) � .15*o region 2)

f2(0) � (Assign 0 sales reps to region 2)

Finally, we are back to the original problem, which is to find f1(2). Equation (21) yields

(.6)f2(2 � 0) � .231*

(Assign 0 sales reps to region 1)

(.8)f2(2 � 1) � .220
f1(2) � max �(Assign 1 sales rep to region 1)

(.85)f2(2 � 2) � .1275

(Assign 2 sales reps to region 1)

Thus, f1(2) � .231, and no sales reps should be assigned to region 1. Then Glueco needs

to attain f2(2 � 0), which requires that 1 sales rep be assigned to region 2. Glueco must

next attain f3(2 � 1), which requires that 1 sales rep be assigned to region 3. In summary,

Glueco can obtain a .231 probability of the new product selling well in all three regions

by assigning 1 sales rep to region 2 and 1 sales rep to region 3.
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1 At the beginning of year 1, Sunco Oil owns i0 barrels of
oil reserves. During year t(t � 1, 2, . . . , 10), the following
events occur in the order listed: (1) Sunco extracts and
refines x barrels of oil reserves and incurs a cost c(x): (2)
Sunco sells year t’s extracted and refined oil at a price of pt

dollars per barrel; and (3) exploration for new reserves
results in a discovery of bt barrels of new reserves.

Sunco wants to maximize sales revenues less costs over
the next 10 years. Formulate a dynamic programming
recursion that will help Sunco accomplish its goal. If Sunco
felt that cash flows in later years should be discounted, how
should the formulation be modified?

2 At the beginning of year 1, Julie Ripe has D dollars (this
includes year 1 income). During each year, Julie earns i dollars
and must determine how much money she should consume
and how much she should invest in Treasury bills. During a
year in which Julie consumes d dollars, she earns a utility of
ln d. Each dollar invested in Treasury bills yields $1.10 in cash
at the beginning of the next year. Julie’s goal is to maximize
the total utility she earns during the next 10 years.

a Why might ln d be a better indicator of Julie’s util-
ity than a function such as d2?

b Formulate a dynamic programming recursion that
will enable Julie to maximize the total utility she re-
ceives during the next 10 years. Assume that year t rev-
enue is received at the beginning of year t.

3 Assume that during minute t (the current minute is
minute 1), the following sequence of events occurs: (1) At
the beginning of the minute, xt customers arrive at the cash
register; (2) the store manager decides how many cash
registers should be operated during the current minute; 
(3) if s cash registers are operated and i customers are
present (including the current minute’s arrivals), c(s, i)
customers complete service; and (4) the next minute begins.

A cost of 10¢ is assessed for each minute a customer
spends waiting to check out (this time includes checkout
time). Assume that it costs c(s) cents to operate s cash
registers for 1 minute. Formulate a dynamic programming
recursion that minimizes the sum of holding and service
costs during the next 60 minutes. Assume that before the
first minute’s arrivals, no customers are present and that
holding cost is assessed at the end of each minute.

4 Develop a dynamic programming formulation of the
CSL Computer problem of Section 3.12.

5 To graduate from State University, Angie Warner needs
to pass at least one of the three subjects she is taking this
semester. She is now enrolled in French, German, and
statistics. Angie’s busy schedule of extracurricular activities
allows her to spend only 4 hours per week on studying.
Angie’s probability of passing each course depends on the
number of hours she spends studying for the course (see
Table 17). Use dynamic programming to determine how
many hours per week Angie should spend studying each
subject. (Hint: Explain why maximizing the probability of

passing at least one course is equivalent to minimizing the
probability of failing all three courses.)

6 E.T. is about to fly home. For the trip to be successful,
the ship’s solar relay, warp drive, and candy maker must all
function properly. E.T. has found three unemployed actors
who are willing to help get the ship ready for takeoff. Table
18 gives, as a function of the number of actors assigned to
repair each component, the probability that each component
will function properly during the trip home. Use dynamic
programming to help E.T. maximize the probability of
having a successful trip home.

7 Farmer Jones is trying to raise a prize steer for the
Bloomington 4-H show. The steer now weighs w0 pounds.
Each week, farmer Jones must determine how much food to
feed the steer. If the steer weighs w pounds at the beginning
of a week and is fed p pounds of food during a week, then
at the beginning of the next week, the steer will weigh 
g(w, p) pounds. It costs farmer Jones c(p) dollars to feed the
steer p pounds of food during a week. At the end of the 10th
week (or equivalently, the beginning of the 11th week), the
steer may be sold for $10/lb. Formulate a dynamic
programming recursion that can be used to determine how
farmer Jones can maximize profit from the steer.

Group B

8 MacBurger has just opened a fast-food restaurant in
Bloomington. Currently, i0 customers frequent MacBurger
(we call these loyal customers), and N � i0 customers frequent
other fast-food establishments (we call these nonloyal
customers). At the beginning of each month, MacBurger must
decide how much money to spend on advertising. At the end

P R O B L E M S
Group A

TA B L E  17

Hours of Study
Probability of Passing Course

per Week French German Statistics

0 .20 .25 .10

1 .30 .30 .30

2 .35 .33 .40

3 .38 .35 .44

4 .40 .38 .50

TA B L E  18

No. of Actors Assigned to Component

Component 0 1 2 3

Warp drive .30 .55 .65 .95

Solar relay .40 .50 .70 .90

Candy maker .45 .55 .80 .98



1 8 . 7 The Wagner-Whitin Algorithm and the Silver-Meal Heuristic 1001

of a month in which MacBurger spends d dollars on
advertising, a fraction p(d) of the loyal customers become
nonloyal customers, and a fraction q(d) of the nonloyal
customers become loyal customers. During the next 12
months, MacBurger wants to spend D dollars on advertising.
Develop a dynamic programming recursion that will enable
MacBurger to maximize the number of loyal customers the
company will have at the end of month 12. (Ignore the
possibility of a fractional number of loyal customers.)

9 Public Service Indiana (PSI) is considering five possible
locations to build power plants during the next 20 years. It will
cost ci dollars to build a plant at site i and hi dollars to operate
a site i plant for a year. A plant at site i can supply ki kilowatt-
hours (kwh) of generating capacity. During year t, dt kwh of
generating capacity are required. Suppose that at most one
plant can be built during a year, and if it is decided to build a
plant at site i during year t, then the site i plant can be used to
meet the year t (and later) generating requirements. Initially,
PSI has 500,000 kwh of generating capacity available.
Formulate a recursion that PSI could use to minimize the sum
of building and operating costs during the next 20 years.

10 During month t, a firm faces a demand for dt units of
a product. The firm’s production cost during month t consists
of two components. First, for each unit produced during
month t, the firm incurs a variable production cost of ct.
Second, if the firm’s production level during month t � 1 is
xt�1 and the firm’s production level during month t is xt,
then during month t, a smoothing cost of 5�xt � xt�1� will
be incurred (see Section 16.12 for an explanation of
smoothing costs). At the end of each month, a holding cost
of ht per unit is incurred. Formulate a recursion that will
enable the firm to meet (on time) its demands over the next
12 months. Assume that at the beginning of the first month,
20 units are in inventory and that last month’s production
was 20 units. (Hint: The state during each month must
consist of two quantities.)

11 The state of Transylvania consists of three cities with
the following populations: city 1, 1.2 million people; city 2,
1.4 million people; city 3, 400,000 people. The Transylvania
House of Representatives consists of three representatives.
Given proportional representation, city 1 should have d1 �

(�
1

3

.2
�) � 1.2 representatives; city 2 should have d2 � 1.4

representatives; and city 3 should have d3 � 0.40
representative. Each city must receive an integral number of
representatives, so this is impossible. Transylvania has
therefore decided to allocate xi representatives to city i,
where the allocation x1, x2, x3 minimizes the maximum
discrepancy between the desired and actual number of
representatives received by a city. In short, Transylvania
must determine x1, x2, and x3 to minimize the largest of the
following three numbers: �x1 � d1�, �x2 � d2�, �x3 � d3�. Use
dynamic programming to solve Transylvania’s problem.

12 A job shop has four jobs that must be processed on a
single machine. The due date and processing time for each
job are given in Table 19. Use dynamic programming to
determine the order in which the jobs should be done so as
to minimize the total lateness of the jobs. (The lateness of
a job is simply how long after the job’s due date the job is
completed; for example, if the jobs are processed in the
given order, then job 3 will be 2 days late, job 4 will be 4
days late, and jobs 1 and 2 will not be late.)

18.7 The Wagner–Whitin Algorithm and the Silver–Meal Heuristic†

The inventory example of Section 18.3 is a special case of the dynamic lot-size model.

Description of Dynamic Lot-Size Model

1 Demand dt during period t(t � 1, 2, . . . , T) is known at the beginning of period 1.

2 Demand for period t must be met on time from inventory or from period t production.

The cost c(x) of producing x units during any period is given by c(0) � 0, and for x � 0,

c(x) � K � cx, where K is a fixed cost for setting up production during a period, and c

is the variable per-unit cost of production.

3 At the end of period t, the inventory level it is observed, and a holding cost hit is in-

curred. We let i0 denote the inventory level before period 1 production occurs.

4 The goal is to determine a production level xi for each period t that minimizes the to-

tal cost of meeting (on time) the demands for periods 1, 2, . . . , T.

TA B L E  19

Processing Due Date
Time (Days from

Job (Days) Now)

1 2 14

2 4 14

3 6 10

4 8 16

†This section covers topics that may be omitted with no loss of continuity.
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L E M M A  2

L E M M A  1

5 There is a limit ct placed on period t’s ending inventory.

6 There is a limit rt placed on period t’s production.

In this section, we consider these first four points. We let xt � period t production. Period

t production can be used to meet period t demand.

E X A M P L E  1 5

We now determine an optimal production schedule for a five-period dynamic lot-size

model with K � $250, c � $2, h � $1, d1 � 220, d2 � 280, d3 � 360, d4 � 140, and

d5 � 270. We assume that the initial inventory level is zero. The solution to this example

is given later in this section.

Discussion of the Wagner–Whitin Algorithm

If the dynamic programming approach outlined in Section 18.3 were used to find an op-

timal production policy for Example 15, we would have to consider the possibility of pro-

ducing any amount between 0 and d1 � d2 � d3 � d4 � d5 � 1,270 units during period

1. Thus, it would be possible for the period 2 state (period 2’s entering inventory) to be

0, 1, . . . , 1,270 � d1 � 1,050, and we would have to determine f2(0), f2(1), . . . , f2(1,050).

Using the dynamic programming approach of Section 18.3 to find an optimal production

schedule for Example 15 would therefore require a great deal of computational effort. For-

tunately, however, Wagner and Whitin (1958) have developed a method that greatly sim-

plifies the computation of optimal production schedules for dynamic lot-size models.

Lemmas 1 and 2 are necessary for the development of the Wagner–Whitin algorithm.

Suppose it is optimal to produce a positive quantity during a period t. Then for some

j � 0, 1, . . . , T � t, the amount produced during period t must be such that after

period t’s production, a quantity dt � dt�1 � � � � � dt�j will be in stock. In other

words, if production occurs during period t, we must (for some j) produce an amount

that exactly suffices to meet the demands for periods t, t � 1, . . . , t � j.

Proof If the lemma is false, then for some t, some j � 0, 1, . . . , T� t � 1, and

some x satisfying 0 � x � dt�j�1, period t production must bring the stock level to

dt � dt�1 � � � � � dt�j � x, and at the beginning of period t � j � 1, our inven-

tory level would be x � dt�j�1. Thus, production must occur during period t � j �

1. By deferring production of x units from period t to period t � j � 1 (with all

other production levels unchanged), we save h( j � 1)x in holding costs while in-

curring no additional setup costs (because production is already occurring during

period t � j � 1). Thus, it cannot have been optimal to bring our period t stock level

to dt � dt�1 � � � � � dt�j � x. This contradiction proves the lemma.

If it is optimal to produce anything during period t, then it�1 � dt. In other words,

production cannot occur during period t unless there is insufficient stock to meet pe-

riod t demand.

Dynamic Lot-Size Model
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Proof If the lemma is false, there must be an optimal policy that (for some t) has

xt � 0 and it�1 � dt. If this is the case, then by deferring the period t production

of xt units to period t � 1, we save hxt in holding costs and possibly K (if the opti-

mal policy produces during period t � 1) in setup costs. Thus, any production

schedule having xt � 0 and it�1 � dt cannot be optimal.

Lemma 2 shows that no production will occur until the first period t for which it�1 �

dt, so production must occur during period t (or else period t’s demand would not be met

on time). Lemma 1 now implies that for some j � 0, 1, . . . , T � t, period t production

will be such that after period t’s production, on-hand stock will equal dt � dt�1 � � � � �

dt�j. Then Lemma 2 implies that no production can occur until period t � j � 1. Since

the entering inventory level for period t � j � 1 will equal zero, production must occur

during period t � j � 1. During period t � j � 1, Lemma 1 implies that period t � j �

1 production will (for some k) equal dt�j�1 � dt�j�2 � � � � � dt�j�k units. Then period

t � j � k � 1 will begin with zero inventory, and production again occurs, and so on.

With the possible exception of the first period, production will occur only during periods

in which beginning inventory is zero, and during each period in which beginning inven-

tory is zero (and dt 
 0), production must occur.

Using this insight, Wagner and Whitin developed a recursion that can be used to de-

termine an optimal production policy. We assume that the initial inventory level is zero.

(See Problem 1 at the end of this section if this is not the case.) Define ft as the minimum

cost incurred during periods t, t � 1, . . . , T, given that at the beginning of period t, the

inventory level is zero. Then f1, f2, . . . , fT must satisfy

ft � min (ctj � ft�j�1) (22)
j�0, 1, 2,..., T�t

where fT�1 � 0 and ctj is the total cost incurred during periods t, t � 1, . . . , t � j if pro-

duction during period t is exactly sufficient to meet demands for periods t, t � 1, . . . ,

t � j. Thus,

ctj � K � c(dt � dt�1 � � � � � dt�j) � h[ jdt�j � ( j � 1)dt�j�1 � � � � � dt�1]

where K is the setup cost incurred during period t, c(dt � dt�1 � � � � � dt�j) is the vari-

able production cost incurred during period t, and h[ jdt�j � ( j � 1)dt�j�1 � � � � � dt�1]

is the holding cost incurred during periods t, t � 1, . . . , t � j. For example, an amount

dt�j of period t production will be held in inventory for j periods (during periods t, t �

1, . . . , t � j �1), thereby incurring a holding cost of hjdt�j.

To find an optimal production schedule by the Wagner–Whitin algorithm, begin by us-

ing (22) to find fT. Then use (22) to compute fT�1, fT�2, . . . , f1. Once f1 has been deter-

mined, an optimal production schedule may be easily obtained.

E X A M P L E  1 5

Solution To illustrate the Wagner–Whitin algorithm, we find an optimal production schedule for

Example 15. The computations follow.

f6 � 0

f5 � 250 � 2(270) � f6 � 790* (Produce for period 5)

If we begin period 5 with zero inventory, we should produce enough during period 5 to

meet period 5 demand.

Dynamic Lot-Size Model (continued)
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f4 � min �
If we begin period 4 with zero inventory, we should produce enough during period 4 to

meet the demand for period 4.

f3 � min �
If we begin period 3 with zero inventory, we should produce enough during period 3 to

meet the demand for periods 3 and 4.

f2 � min �
If we begin period 2 with zero inventory, we should produce enough during period 2 to

meet the demand for period 2.

f1 � min�
If we begin period 1 with zero inventory, it is optimal to produce d1 � 220 units during

period 1; then we begin period 2 with zero inventory. Since f2 is attained by producing

period 2’s demand, we should produce d2 � 280 units during period 2; then we enter pe-

riod 3 with zero inventory. Since f3 is attained by meeting the demands for periods 3 and

4, we produce d3 � d4 � 500 units during period 3; then we enter period 5 with zero in-

ventory and produce d5 � 270 units during period 5. The optimal production schedule

will incur at total cost of f1 � $3,680.

250 � 2(220) � f2 � 3,680*

(Produce for period 1)

250 � 2(220 � 280) � 280 � f3 � 3,710

(Produce for periods 1, 2)

250 � 2(220 � 280 � 360) � 280 � 2(360) � f4 � 4,290

(Produce for periods 1, 2, 3)

250 � 2(220 � 280 � 360 � 140) � 280 � 2(360) � 3(140) � f5 � 4,460

(Produce for periods 1, 2, 3, 4)

250 � 2(220 � 280 � 360 � 140 � 270) � 280

� 2(360) � 3(140) � 4(270) � f6 � 5,290

(Produce for periods 1, 2, 3, 4, 5)

250 � 2(280) � f3 � 2,990*

(Produce for period 2)

250 � 2(280 � 360) � 360 � f4 � 3,210

(Produce for periods 2, 3)

250 � 2(280 � 360 � 140) � 360 � 2(140) � f5 � 3,240

(Produce for periods 2, 3, 4)

250 � 2(280 � 360 � 140 � 270) � 360 � 2(140) � 3(270) � f6 � 3,800

(Produce for periods 2, 3, 4, 5)

250 � 2(360) � f4 � 2,290

(Produce for period 3)

250 � 2(360 � 140) � 140 � f5 � 2,180*

(Produce for periods 3, 4)

250 � 2(360 � 140 � 270) � 140 � 2(270) � f6 � 2,470

(Produce for periods 3, 4, 5)

250 � 2(140) � f5 � 1,320*

(Produce for period 4)

250 � 2(140 � 270) � 270 � f6 � 1,340

(Produce for periods 4, 5)



For Example 15, any optimal production schedule must produce exactly d1 � d2 � d3 �

d4 � d5 � 1,270 units, incurring variable production costs of 2(1,270) � $2,540. Thus,

in computing the optimal production schedule, we may always ignore the variable pro-

duction costs. This substantially simplifies the calculations.

The Silver–Meal Heuristic

The Silver–Meal (S–M) heuristic involves less work than the Wagner–Whitin algorithm

and can be used to find a near-optimal production schedule. The S–M heuristic is based

on the fact that our goal is to minimize average cost per period (for the reasons stated,

variable production costs may be ignored). Suppose we are at the beginning of period 1

and are trying to determine how many periods of demand should be satisfied by period

1’s production. During period 1, if we produce an amount sufficient to meet demand for

the next t periods, then a cost of TC(t) � K � HC(t) will be incurred (ignoring variable

production costs). Here, HC(t) is the holding cost incurred during the next t periods (in-

cluding the current period) if production during the current period is sufficient to meet

demand for the next t periods.

Let AC(t) � �
TC

t
(t)
� be the average per-period cost incurred during the next t periods.

Since �
1
t
� is a decreasing convex function of t, as t increases, �

K
t
� decreases at a decreasing

rate. In most cases, �HC
t
(t)
� tends to be an increasing function of t (see Problem 4 at the end

of this section). Thus, in most situations, an integer t* can be found such that for t � t*,

AC(t � 1) 	 AC(t) and AC(t* � 1) � AC(t*). The S–M heuristic recommends that pe-

riod 1’s production be sufficient to meet the demands for periods 1, 2, . . . , t* (if no t* 

exists, period 1 production should satisfy the demand for periods 1, 2, . . . , T). Since t*

is a local (and perhaps a global) minimum for AC(t), it seems reasonable that producing

d1 � d2 � � � � � dt* units during period 1 will come close to minimizing the average per-

period cost incurred during periods 1, 2, . . . , t*. Next we apply the S–M heuristic while

considering period t* � 1 as the initial period. We find that during period t* � 1, the de-

mand for the next t1* periods should be produced. Continue in this fashion until the de-

mand for period T has been produced.

To illustrate, we apply the S–M heuristic to Example 15. We have

TC(1) � 250 AC(1) � �
25

1

0
� � 250

TC(2) � 250 � 280 � 530 AC(2) � �
53

2

0
� � 265

Since AC(2) � AC(1), t* � 1, and the S–M heuristic dictates that we produce d1 � 220

units during period 1. Then

TC(1) � 250 AC(1) � �
25

1

0
� � 250

TC(2) � 250 � 360 � 610 AC(2) � �
61

2

0
� � 305

Since AC(2) � AC(1), the S–M heuristic recommends producing d2 � 280 units during

period 2. Then

TC(1) � 250 AC(1) � �
25

1

0
� � 250

TC(2) � 250 � 140 � 390 AC(2) � �
39

2

0
� � 195

1 8 . 7 The Wagner-Whitin Algorithm and the Silver-Meal Heuristic 1005
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TC(3) � 250 � 2(270) � 140 � 930 AC(3) � �
93

3

0
� � 310

Since AC(3) � AC(2), period 3 production should meet the demand for the next two pe-

riods (periods 3 and 4). During period 3, we should produce d3 � d4 � 500 units. This

brings us to period 5. Period 5 is the final period, so d5 � 270 units should be produced

during period 5.

For Example 15 (and many other dynamic lot-size problems), the S–M heuristic yields

an optimal production schedule. In extensive testing, the S–M heuristic usually yielded 

a production schedule costing less than 1% above the optimal policy obtained by the 

Wagner–Whitin algorithm (see Peterson and Silver (1998)).

P R O B L E M S

Group A

1 For Example 15, suppose we had an inventory of 200
units. What would be the optimal production schedule?
What if the initial inventory were 400 units?

2 Use the Wagner–Whitin and Silver–Meal methods to
find production schedules for the following dynamic lot-
size problem: K � $50, h � $0.40, d1 � 10, d2 � 60, d3 �
20, d4 � 140, d5 � 90.

3 Use the Wagner–Whitin and Silver–Meal methods to
find production schedules for the following dynamic lot-

size problem: K � $30, h � $1, d1 � 40, d2 � 60, d3 �
10, d4 � 70, d5 � 20.

Group B

4 Explain why HC(t)/t tends to be an increasing funct-
ion of t.

18.8 Using Excel to Solve Dynamic Programming Problems†

In earlier chapters, we have seen that any LP problem can be solved with LINDO or

LINGO, and any NLP can be solved with LINGO. Unfortunately, no similarly user-

friendly package can be used to solve dynamic programming problems. LINGO can be

used to solve DP problems, but student LINGO can only handle a very small problem.

Fortunately, Excel can often be used to solve DP problems. Our three illustrations solve

a knapsack problem (Example 6), a resource-allocation problem (Example 5), and an in-

ventory problem (Example 4).

Solving Knapsack Problems on a Spreadsheet

Recall the knapsack problem of Example 6. The question is how to (using three types of

items) fill a 10-lb knapsack and obtain the maximum possible benefit. Recall that g(w) �

maximum benefit that can be obtained from a w-lb knapsack. Recall that

g(w) � max
j

{bj � g(w � wj)} (8)

where bj � benefit from a type j item and wj � weight of a type j item.

In each row of the spreadsheet (see Figure 11 or file Dpknap.xls) we compute g(w) for

various values of w. We begin by entering g(0) � g(1) � g(2) � 0 and g(3) � 7; [g(3) �

7 follows because a 3-lb item is the only item that will fit in a 3-lb knapsack]. The

†This section covers topics that may be omitted with no loss of continuity.

Dpknap.xls
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1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

3 0

KNAPSACK    ITEM1     ITEM2    ITEM3    g(SIZE) FIGURE11

SIZE KNAPSACK

0 0 PROBLEM

1 0 

2 0 

3 7 

4 11 7 -10000 11 

5 11 7 12 12 

6 11 14 12 14 

7 18 18 12 18 

8 22 19 19 22 

9 23 21 23 23 

10 25 25 24 25 

A A B C D E F G

F I G U R E  11

Knapsack Problem

columns labeled ITEM1, ITEM2, and ITEM3 correspond to the terms j � 1, 2, 3, re-

spectively, in (8). Thus, in the ITEM1 column, we should enter a formula to compute 

b1 � g(w � w1); in the ITEM2 column, we should enter a formula to compute b2 � g(w �

w2); in the ITEM3 column, we should enter a formula to compute b3 � g(w � w3). The

only exception to this occurs when a wj-lb item will not fit in a w-lb knapsack. In this sit-

uation, we enter a very negative number (such as 10,000) to ensure that a wj-lb item will

not be considered.

More specifically, in row 7, we want to compute g(4). To do this, we enter the follow-

ing formulas:

B7: 11 � E3 [This is b1 � g(4 � w1)]

C7: 7 � E4 [This is b2 � g(4 � w2)]

D7: �10,000 (This is because a 5-lb item will not fit in a 4-lb knapsack)

In E7, we compute g(4) by entering the formula �MAX(B7:D7). In row 8, we com-

pute g(5) by entering the following formulas:

B8: 11 � E4

C8: 7 � E5

D8: 12 � E3

To compute g(5), we enter �MAX(B8:D8) in E8. Now comes the fun part! Simply

copy the formulas from the range B8:E8 to B8:E13. Then g(10) will be computed in E13.

We see that g(10) � 25. Because both item 1 and item 2 attain g(10), we may begin fill-

ing a knapsack with a Type 1 or Type 2 item. We choose to begin with a Type 1 item. This

leaves us with 10 � 4 � 6 lb to fill. From row 9 we find that g(6) � 14 is attained by a

Type 2 item. This leaves us with 6 � 3 � 3 lb to fill. We also use a Type 2 item to attain

g(3) � 7. This leaves us with 0 lb. Thus, we conclude that we can obtain 25 units of ben-

efit by filling a 10-lb knapsack with two Type 2 items and one Type 1 item.
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By the way, if we had been interested in filling a 100-lb knapsack, we would have

copied the formulas from B8:E8 to B8:E103.

Solving a General Resource-Allocation 
Problem on a Spreadsheet

Solving a nonknapsack resource-allocation problem on a spreadsheet is more difficult. To

illustrate, consider Example 5 in which we have $6,000 to allocate between three invest-

ments. Define ft(d) � maximum NPV obtained from investments t, . . . , 3 given that d (in

thousands) dollars are available for investments t, . . . , 3. Then we may write

ft(d) � max
0 	 x 	 d

{rt(x) � ft�1(d � x)} (10)

where f4(d) � 0(d � 0, 1, 2, 3, 4, 5, 6), rt(x) � NPV obtained if x (in thousands) dollars

are invested in investment t, and the maximization in (10) is only taken over integral val-

ues for d. Our subsequent discussion will be simplified if we define Jt(d, x) � rt(x) �

ft�1(d � x) and rewrite (10) as

ft(d) � max
0 	 x 	 d

{Jt(d, x)} (10�)

We begin the construction of the spreadsheet (Figure 12 and file Dpresour.xls) by en-

tering the rt(x) in A1�H4. For example, r2(3) � 16 is entered in E3. In rows 18–20, we

have set up the computations to compute the Jt(d, x). These computations require using

the Excel �HLOOKUP command to look up the values of rt(x) (in rows 2–4) and 

ft�1(d � x) (in rows 11–14). For example, to compute J3(3, 1), we enter the following 

formula in I18:

�HLOOKUP(I$17,$B$1:$H$4,$A18�1)

� HLOOKUP(I$16-I$17,$B$10:$H$14,$A18�1)

The portion �HLOOKUP(I$17,$B$1:$H$4,$A18�1) of the formula in cell I18 finds

the column in B1:H4 whose first entry matches I17. Then we pick off the entry in row

A18 � 1 of that column. This returns r3(1) � 9. Note that H stands for horizontal lookup.

The portion HLOOKUP(I$16-I$17,$b$10:$h$14,$A18�1) finds the column in B10:H14

whose first entry matches I16-I17. Then we pick off the entry in row A18 � 1 of that col-

umn. This yields f4(3 � 1) � 0.

Dpresour.xls

A B C D E F G H I J K L M

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 0

REWARD 0 1 2 3 4 5 6 

PERIOD3 0 9 13 17 21 25 29 

PERIOD2 0 10 13 16 19 22 25 

PERIOD1 0 9 16 23 30 37 44 

FIGURE 12

RESOURCE ALLOCATION

VALUE 0 1 2 3 4 5 6 

PERIOD4 0 0 0 0 0 0 0 

PERIOD3 0 9 13 17 21 25 29 

PERIOD2 0 10 19 23 27 31 35 

PERIOD1 0 10 19 28 35 42 49 

d 0  1 1 2 2 2 3 3 3 3 4 4 

x 0  0 1 0 1 2 0 1 2 3 0 1 

1 0 0 9 0 9 13 0 9 13 17 0 9 

2 0 9 10 13 19 13 17 23 22 16 21 27 

3 0 10 9 19 19 16 23 28 26 23 27 32 

A

F I G U R E  12

Resource Allocation
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We now copy any of the Jt(d, x) formulas (such as the one in I18) to the range

B18:AC20.

The ft(d) are computed in AD18�AJ20. We begin by manually entering in AD18:AJ18

the formulas used to compute f3(0), f3(1), . . . , f3(6). These formulas are as follows:

AD18: 0 (Computes f3(0))

AE18: �MAX(C18:D18) (Computes f3(1))

AF18: �MAX(E18:G18) (Computes f3(2))

AG18: �MAX(H18:K18) (Computes f3(3))

AH18: �MAX(L18:P18) (Computes f3(4))

AI18: �MAX(Q18:V18) (Computes f3(5))

AJ18: �MAX(W18:AC18) (Computes f3(6))

We now copy these formulas from the range AD18:AJ18 to the range AD18:AJ20.

For our spreadsheet to work we must be able to compute the Jt(d, x) by looking up the

appropriate value of ft(d) in rows 11–14. Thus, in B11:H11, we enter a zero in each cell

[because f4(d) � 0 for all d]. In B12, we enter �AD18 [this is the cell in which f3(0) is

computed]. We now copy this formula to the range B12�H14.

Note that rows 11–14 of our spreadsheet are defined in terms of rows 18–20, and rows

18–20 are defined in terms of rows 11–14. This creates circularity or circular references

in our spreadsheet. To resolve the circular references in this (or any) spreadsheet, simply

select Tools, Options, Calculations and select the Iteration box. This will cause Excel to

resolve all circular references until the circularity is resolved.

N O P Q R S T U V W X Y Z

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 0

4 4 4 5 5 5 5 5 5 6 6 6 6 

2 3 4 0 1 2 3 4 5 0 1 2 3 

13 17 21 0 9 13 17 21 25 0 9 13 17 

26 25 19 25 31 30 29 28 22 29 35 34 33 

35 33 30 31 36 39 42 40 37 35 40 43 46 

A

AA AB AC AD AE AF AG AH A I AJ AK

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 0

6 6 6 0 1 2 3 4 5 6 

4 5 6 ft(0) ft(1) ft(2) ft(3) ft(4) ft(5) ft(6) t

21 25 29 0 9 13 17 21 25 29 3 

32 31 25 0 10 19 23 27 31 35 2 

49 47 44 0 10 19 28 35 42 49 1 

A

F I G U R E  12

(Continued)
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To determine how $6,000 should be allocated to the three investments, note that f1(6) �

49. Because f1(6) � J1(6, 4), we allocate $4,000 to investment 1. Then we must find f2(6 �

4) � 19 � J2(2, 1). We allocate $1,000 to investment 2. Finally, we find that f3(2 � 1) �

J3(1, 1) and allocate $1,000 to investment 3.

Solving an Inventory Problem on a Spreadsheet

We now show how to determine an optimal production policy for Example 4. An impor-

tant aspect of this production problem is that each month’s ending inventory must be be-

tween 0 and 4 units. We can ensure that this occurs by manually determining the allow-

able actions in each state. We will design our spreadsheet to ensure that the ending

inventory for each month must be between 0 and 4 inclusive.

Our first step in setting up the spreadsheet (Figure 13, file Dpinv.xls) is to enter the

production cost for each possible production level (0, 1, 2, 3, 4, 5) in B1:G2. Then we de-

fine ft(i) to be the minimum cost incurred in meeting demands for months t, t � 1, . . . ,

4 when i units are on hand at the beginning of month t. If dt is month t’s demand, then

for t � 1, 2, 3, 4 we may write

ft(i) �  min     {.5(i � x � dt) � c(x) � ft�1(i � x � dt)} (23)
x�0	i�x�dt	4

where c(x) � cost of producing x units during a month, and f5(i) � 0 for (i � 0, 1, 

2, 3, 4).

If we define Jt(i, x) � .5(i � x � dt) � c(x) � ft�1(i � x � dt) we may write

ft(i) � min      {Jt(i, x)}
x�0	i�x�dt	4

A B C D E F G H I J K L M

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

PROD COST 0 1 2 3 4 5 

0 4 5 6 7 8 

VALUE -5 0 1 2 3 4 5 

M5 10000 0 0 0 0 0 10000 

M4 10000 7 6 5 4 0 10000 

M3 10000 12 10 7 6.5 6 10000 

M2 10000 16 15 14 12 10.5 10000 

STATE 0 0 0 0 0 0 1 1 1 1 1 

ACTION 0 1 2 3 4 5 0 1 2 3 4 

DEMAND

4 10000 10004 10005 10006 7 8.5 10000 10004 10005 6 7.5 

2 10000 10004 12 12.5 13 13.5 10000 11 11.5 12 12.5 

3 10000 10004 10005 18 17.5 16 10000 10004 17 16.5 15 

1 10000 20 20.5 21 20.5 20.5 16 19.5 20 19.5 19.5 

A

F I G U R E  13

Inventory Example

N O P Q R S T U V W X Y Z

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 2 2 2 2 2 2 3 3 3 3 3 3 

5 0 1 2 3 4 5 0 1 2 3 4 5 

9 10000 10004 5 6.5 8 9.5 10000 4 5.5 7 8.5 10 

10 7 10.5 11 11.5 9 10010.5 6.5 10 10.5 8 10009.5 10011 

16 10000 16 15.5 14 15 16 12 14.5 13 14 15 10010.5 

10010.5 15.5 19 18.5 18.5 10009.5 10011 15 17.5 17.5 10008.5 10010 10011.5 

A

Dpinv.xls
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Next we compute Jt(i, x) in A13:AF16. For example, to compute J4(0, 2), we enter the

following formula in E13:

�HLOOKUP(E$11,$B$1�$G$2,2)

�.5*�1MAX(E$10�E$11�$A13,0)

�HLOOKUP(E$10�E$11�$A13,$B$4:$H$8,1�$AL13)

The first term in this sum yields c(x) (this is because E$11 is the production level). The

second term gives the holding cost for the month (this is because E$10�E$11�$A13

gives the month’s ending inventory). The final term yields ft�1(i � x � dt). This is be-

cause E$10�E$11�$A13 is the beginning inventory for month t � 1. The reference to

1�$AL13 in the final term ensures that we look up the value of ft�1(i � x � dt) in the

correct row [the values of the ft�1( ) will be tabulated in C5�G8]. Copying the formula

in E13 to the range C13:AF16 computes all the Jt(i, x).

In AG13:AK16, we compute the ft(d). To begin, we enter the following formulas in cells

AG13:AK13:

AG13: �MIN(C13:H13) [Computes f4(0)]

AH13: �MIN(I13:N13) [Computes f4(1)]

AI13: �MIN(O13:T13) [Computes f4(2)]

AJ13: �MIN(U13:Z13) [Computes f4(3)]

AK13: �MIN(AA13:AF13) [Computes f4(4)]

To compute all the ft(i), we now copy from the range AG13�AK13 to the range

AG13:AK16. For this to be successful, we need to have the correct values of the ft(i) in

B5:H8. In columns B and H of rows 5–8, we enter 10,000 (or any large positive number).

This ensures that it is very costly to end a month with an inventory that is negative or that

exceeds 4. This will ensure that each month’s ending inventory is between 0 and 4 inclu-

sive. In the range C5�G5, we enter a 0 in each cell. This is because f5(i) � 0 for i � 0,

1, 2, 3, 4. In cell C6, we enter �AG13; this enters the value of f1(0). By copying this for-

mula to the range C6:G8, we have created a table of the ft(d), which can be used (in rows

13–16) to look up the ft(d).

As with the spreadsheet we used to solve Example 5, our current spreadsheet exhibits

circular references. This is because rows 6–8 refer to rows 13–16, and rows 13–16 refer

to rows 6–8. Pressing F9 several times, however, resolves the circular references. You also

can resolve circular references by selecting Tools, Options, Calculations and checking the

Iterations box.

AA AB AC AD AE AF AG AH A I AJ AK AL

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

4 4 4 4 4 4 

0 1 2 3 4 5 F(0) F(1) F(2) F(3) F(4)

0 4.5 6 7.5 9 10010.5 7 6 5 4 0 1 

6 9.5 7 10008.5 10010 10011.5 12 10 7 6.5 6 2 

10.5 12 13 14 10009.5 10011 16 15 14 12 10.5 3 

13.5 16.5 10007.5 10009 10010.5 10012 20 16 15.5 15 13.5 4 

A

F I G U R E  13

(Continued)
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For any initial inventory level, we can now compute the optimal production schedule. For

example, suppose the inventory at the beginning of month 1 is 0. Then f1(0) � 20 � J1(0, 1).

Thus, it is optimal to produce 1 unit during month 1. Now we seek f2(0 � 1 � 1) � 16 �

J2(0, 5), so we produce 5 units during month 2. Then we seek f3(0 � 5 � 3) � 7 � J3(2, 0),

so we produce 0 units during month 3. Solving f4(2 � 0 � 2) � J4(0, 4), we produce 4 units

during month 4.

P R O B L E M S
Group A

1 Use a spreadsheet to solve Problem 2 of Section 18.3.

2 Use a spreadsheet to solve Problem 4 of Section 18.4.

3 Use a spreadsheet to solve Problem 5 of Section 18.4.

S U M M A R Y

Dynamic programming solves a relatively complex problem by decomposing the problem

into a series of simpler problems. First we solve a one-stage problem, then a two-stage prob-

lem, and finally a T-stage problem (T � total number of stages in the original problem).

In most applications, a decision is made at each stage (t � current stage), a reward is

earned (or a cost is incurred) at each stage, and we go on to the stage t � 1 state.

Working Backward

In formulating dynamic programming recursions by working backward, it is helpful to re-

member that in most cases:

1 The stage is the mechanism by which we build up the problem.

2 The state at any stage gives the information needed to make the correct decision at

the current stage.

3 In most cases, we must determine how the reward received (or cost incurred) during

the current stage depends on the stage t decision, the stage t state, and the value of t.

4 We must also determine how the stage t � 1 state depends on the stage t decision, the

stage t state, and the value of t.

5 If we define (for a minimization problem) ft(i) as the minimum cost incurred during

stages t, t � 1, . . . , T, given that the stage t state is i, then (in many cases) we may write

ft(i) � min {(cost during stage t) � ft�1(new state at stage t � 1)}, where the minimum

is over all decisions allowable in state i during stage t.

6 We begin by determining all the fT (�)’s, then all the fT�1(�)’s, and finally f1 (the initial

state).

7 We then determine the optimal stage 1 decision. This leads us to a stage 2 state, at

which we determine the optimal stage 2 decision. We continue in this fashion until the

optimal stage T decision is found.
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Wagner–Whitin Algorithm and Silver–Meal 
Heuristic for Dynamic Lot-Size Model

A periodic review inventory model in which each period’s demand is known at the be-

ginning of the problem is a dynamic lot-size model. A cost-minimizing production or 

ordering policy may be found via a backward recursion, a forward recursion, the 

Wagner–Whitin algorithm, or the Silver–Meal heuristic.

The Wagner–Whitin algorithm uses the fact that production occurs during a period if

and only if the period’s beginning inventory is zero. The decision during such a period is

the number of consecutive periods of demand that production should meet.

During a period in which beginning inventory is zero, the Silver–Meal heuristic com-

putes the average cost per period (setup plus holding) incurred in meeting the demand

during the next k periods. If k* minimizes this average cost, then the next k* periods of

demand should be met by the current period’s production.

Computational Considerations

Dynamic programming is much more efficient than explicit enumeration of the total cost

associated with each possible set of decisions that may be chosen during the T stages. Un-

fortunately, however, many practical applications of dynamic programming involve very

large state spaces, and in these situations, considerable computational effort is required to

determine optimal decisions.

R E V I E W  P R O B L E M S
Group A

1 3 6

2 5 8

9

4 7 10

3 3

2

2

2

2

5

2 2

4

3

3

2

4

4

4

1

F I G U R E  141 In the network in Figure 14, find the shortest path from
node 1 to node 10 and the shortest path from node 2 to 
node 10.

2 A company must meet the following demands on time:
month 1, 1 unit; month 2, 1 unit; month 3, 2 units; month
4, 2 units. It costs $4 to place an order, and a $2 per-unit
holding cost is assessed against each month’s ending
inventory. At the beginning of month 1, 1 unit is available.
Orders are delivered instantaneously.

a Use a backward recursion to determine an optimal
ordering policy.

b Use the Wagner–Whitin method to determine an op-
timal ordering policy.

c Use the Silver–Meal heuristic to determine an or-
dering policy.

3 Reconsider Problem 2, but now suppose that demands
need not be met on time. Assume that all lost demand is
backlogged and that a $1 per-unit shortage cost is assessed
against the number of shortages incurred during each month.
All demand must be met by the end of month 4. Use dynamic
programming to determine an ordering policy that
minimizes total cost.

4 Indianapolis Airlines has been told that it may schedule
six flights per day departing from Indianapolis. The
destination of each flight may be New York, Los Angeles,

or Miami. Table 20 shows the contribution to the company’s
profit from any given number of daily flights from
Indianapolis to each possible destination. Find the optimal
number of flights that should depart Indianapolis for each
destination. How would the answer change if the airline
were restricted to only four daily flights?
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5 I am working as a cashier at the local convenience store.
A customer’s bill is $1.09, and he gives me $2.00. I want to
give him change using the smallest possible number of
coins. Use dynamic programming to determine how to give
the customer his change. Does the answer suggest a general
result about giving change? Resolve the problem if a 20¢
piece (in addition to other United States coins) were
available.

6 A company needs to have a working machine during
each of the next six years. Currently, it has a new machine.
At the beginning of each year, the company may keep the
machine or sell it and buy a new one. A machine cannot be
kept for more than three years. A new machine costs $5,000.
The revenues earned by a machine, the cost of maintaining
it, and the salvage value that can be obtained by selling it at
the end of a year depend on the age of the machine (see
Table 21). Use dynamic programming to maximize the net
profit earned during the next six years.

7 A company needs the following number of workers
during each of the next five years: year 1, 15; year 2, 30;
year 3, 10; year 4, 30; year 5, 20. At present, the company
has 20 workers. Each worker is paid $30,000 per year. At
the beginning of each year, workers may be hired or fired.
It costs $10,000 to hire a worker and $20,000 to fire a
worker. A newly hired worker can be used to meet the
current year’s worker requirement. During each year, 10%
of all workers quit (workers who quit do not incur any firing
cost).

a With dynamic programming, formulate a recursion
that can be used to minimize the total cost incurred in
meeting the worker requirements of the next five years.

b How would the recursion be modified if hired work-
ers cannot be used to meet worker requirements until the
year following the year in which they are hired?

8 At the beginning of each year, Barnes Carr Oil sets the
world oil price. If a price p is set, then D(p) barrels of oil
will be demanded by world customers. We assume that

during any year, each oil company sells the same number of
barrels of oil. It costs Barnes Carr Oil c dollars to extract
and refine each barrel of oil. Barnes Carr cannot set too
high a price, however, because if a price p is set and there
are currently N oil companies, then g(p, N) oil companies
will enter the oil business [g(p, N) could be negative].
Setting too high a price will dilute future profits because of
the entrance of new companies. Barnes Carr wants to
maximize the discounted profit the company will earn over
the next 20 years. Formulate a recursion that will aid Barnes
Carr in meeting its goal. Initially, there are 10 oil companies.

9 For a computer to work properly, three subsystems of
the computer must all function properly. To increase the
reliability of the computer, spare units may be added to each
system. It costs $100 to add a spare unit to system 1, $300
to system 2, and $200 to system 3. As a function of the
number of added spares (a maximum of two spares may be
added to each system), the probability that each system will
work is given in Table 22. Use dynamic programming to
maximize the probability that the computer will work
properly, given that $600 is available for spare units.

Group B

10 During any year, I can consume any amount that does
not exceed my current wealth. If I consume c dollars during
a year, I earn ca units of happiness. By the beginning of the
next year, the previous year’s ending wealth grows by a
factor k.

a Formulate a recursion that can be used to maximize
total utility earned during the next T years. Assume I
originally have w0 dollars.

b Let ft(w) be the maximum utility earned during years
t, t � 1, . . . , T, given that I have w dollars at the be-
ginning of year t; and ct(w) be the amount that should
be consumed during year t to attain ft(w). By working
backward, show that for appropriately chosen constants
at and bt,

ft(w) � btw
a and ct(w) � atw

Interpret these results.

11 At the beginning of month t, farmer Smith has xt

bushels of wheat in his warehouse. He has the opportunity
to sell wheat at a price st dollars per bushel and can buy
wheat at pt dollars per bushel. Farmer Smith’s warehouse
can hold at most C units at the end of each month.

a Formulate a recursion that can be used to maximize
the total profit earned during the next T months.

b Let ft(xt) be the maximum profit that can be earned
during months t, t � 1, . . . , T, given that xt bushels of

TA B L E  20

Profit per Flight ($)

Number of Planes

Destination 1 2 3 4 5 6

New York 180 150 210 250 270 280

Los Angeles 100 195 275 325 300 250

Miami 190 180 265 310 350 320

TA B L E  21

Age of Machine at
Beginning of Year

0 Year 1 Year 2 Years

Revenues ($) 4,500 3,000 1,500

Operating Costs ($) 4,500 3,700 1,100

Salvage Value at End of Year ($) 3,000 1,800 500

TA B L E  22

Number of
Probability That a System Works

Spares System 1 System 2 System 3

0 .85 .60 .70

1 .90 .85 .90

2 .95 .95 .98
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wheat are in the warehouse at the beginning of month t.
By working backward, show that for appropriately cho-
sen constants at and bt,

ft(xt) � at � btxt

c During any given month, show that the profit-
maximizing policy has the following properties: (1) The

amount sold during month t will equal either xt or zero.
(2) The amount purchased during a given month will be
either zero or sufficient to bring the month’s ending
stock to C bushels.
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Probabilistic Dynamic Programming

Recall from our study of deterministic dynamic programming that many recursions were of the

following form:

ft (current state) � min
all feasible

(or max){costs during current stage � ft�1 (new state)}

decisions

For all the examples in Chapter 18, a specification of the current state and current decision

was enough to tell us with certainty the new state and the costs during the current stage. In

many practical problems, these factors may not be known with certainty, even if the current

state and decision are known. For example, in the inventory model of Section 18.3, we as-

sumed that each period’s demand was known at the beginning of the problem. In most situa-

tions, it would be more realistic to assume that period t ’s demand is a random variable whose

value is not known until after period t ’s production decision is made. Even if we know the cur-

rent period’s state (beginning inventory level) and decision (production during the current pe-

riod), the next period’s state and the current period’s cost will be random variables whose val-

ues are not known until the value of period t ’s demand is known. The Chapter 18 discussion

simply does not apply to this problem.

In this chapter, we explain how to use dynamic programming to solve problems in which

the current period’s cost or the next period’s state are random. We call these problems prob-

abilistic dynamic programming problems (or PDPs). In a PDP, the decision maker’s goal is

usually to minimize expected (or expected discounted) cost incurred or to maximize expected

(or expected discounted) reward earned over a given time horizon. Chapter 19 concludes with

a brief study of Markov decision processes. A Markov decision process is just a probabilistic

dynamic programming problem in which the decision maker faces an infinite horizon.

19.1 When Current Stage Costs Are Uncertain, 
but the Next Period’s State Is Certain

For problems in this section, the next period’s state is known with certainty, but the re-

ward earned during the current stage is not known with certainty (given the current state

and decision).

E X A M P L E  1

For a price of $1/gallon, the Safeco Supermarket chain has purchased 6 gallons of milk

from a local dairy. Each gallon of milk is sold in the chain’s three stores for $2/gallon.

The dairy must buy back for 50¢/gallon any milk that is left at the end of the day. Un-

fortunately for Safeco, demand for each of the chain’s three stores is uncertain. Past data

indicate that the daily demand at each store is as shown in Table 1. Safeco wants to allo-

Milk Distribution
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cate the 6 gallons of milk to the three stores so as to maximize the expected net daily

profit (revenues less costs) earned from milk. Use dynamic programming to determine

how Safeco should allocate the 6 gallons of milk among the three stores.

Solution With the exception of the fact that the demand (and therefore the revenue) is uncertain,

this problem is very similar to the resource allocation problems studied in Section 18.4.

Observe that since Safeco’s daily purchase costs are always $6, we may concentrate

our attention on the problem of allocating the milk to maximize daily expected revenue

earned from the 6 gallons.

Define

rt(gt) � expected revenue earned from gt gallons assigned to store t

ft(x) � maximum expected revenue earned from x gallons assigned

to stores t, t � 1, . . . , 3

Since f3(x) must by definition be the expected revenue earned from assigning x gallons of

milk to store 3, we see that f3(x) � r3(x). For t � 1, 2, we may write

ft(x) � max
gt

{rt(gt) � ft�1(x � gt)} (1)

where gt must be a member of {0, 1, . . . , x}. Equation (1) follows, because for any choice

of gt (the number of gallons assigned to store t), the expected revenue earned from store

t, t � 1, . . . , 3 will be the sum of the expected revenue earned from store t if gt gallons

are assigned to store t plus the maximum expected revenue that can be earned from the

stores t � 1, t � 2, . . . , 3 when x � gt gallons are assigned to these stores. To compute

the optimal allocation of milk to the stores, we begin by computing f3(0), f3(1), . . . , f3(6).

Then we use Equation (1) to compute f2(0), f2(1), . . . , f2(6). Finally we determine f1(6).

We begin by computing the rt(gt)’s. Note that it would be foolish to assign more than

3 gallons to any store. For this reason, we compute the rt(gt)’s only for gt � 0, 1, 2, or 3.

As an example, we compute r3(2), the expected revenue earned if 2 gallons are assigned

to store 3. If the demand at store 3 is for 2 or more gallons, both gallons assigned to store

3 will be sold, and $4 in revenue will be earned. If the demand at store 3 is 1 gallon, 1

gallon will be sold for $2, and 1 gallon will be returned for 50¢. Hence, if demand at store

3 is for 1 gallon, a revenue of $2.50 will be earned. Since there is a .60 chance that de-

mand at store 3 will be for 2 or more gallons and a .40 chance that store 3 demand will

be for 1 gallon, it follows that r3(2) � (.30 � .30)(4.00) � .40(2.50) � $3.40. Similar

computations yield the following results:

TA B L E  1

Probability Distributions for Daily Milk Demand

Daily Demand
(gallons) Probability

Store 1 1 .60

2 0

3 .40

Store 2 1 .50

2 .10

3 .40

Store 3 1 .40

2 .30

3 .30
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r3(0) � $0 r2(0) � $0 r1(0) � $0

r3(1) � $2.00 r2(1) � $2.00 r1(1) � $2.00

r3(2) � $3.40 r2(2) � $3.25 r1(2) � $3.10

r3(3) � $4.35 r2(3) � $4.35 r1(3) � $4.20

We now use (1) to determine an optimal allocation of milk to stores. Let gt(x) be an

allocation of milk to store t that attains ft(x). Then

f3(0) � r3(0) � 0 g3(0) � 0

f3(1) � r3(1) � 2.00 g3(1) � 1

f3(2) � r3(2) � 3.40 g3(2) � 2

f3(3) � r3(3) � 4.35 g3(3) � 3

We need not compute f3(4), f3(5), and f3(6), because an optimal allocation will never have

more than 3 gallons to allocate to a single store (demand at any store is never more than

3 gallons).

Using (1) to work backward, we obtain

f2(0) � r2(0) � f3(0 � 0) � 0 g2(0) � 0

f2(1) � max � g2(1) � 0 or 1

f2(2) � max � g2(2) � 1

f2(3) � max � g2(3) � 1

Note that in computing f2(4), f2(5), and f2(6), we need not consider any allocation for more

than 3 gallons to store 2 or any that leaves more than 3 gallons for store 3.

f2(4) � max � g2(4) � 2

f2(5) � max � g2(5) � 3

f2(6) � r2(3) � f3(6 � 3) � 4.35 � 4.35 � 8.70* g2(6) � 3

Finally,

f1(6) � max � g1(6) � 1 or 2

Thus, we can either assign 1 or 2 gallons to store 1. Suppose we arbitrarily choose to as-

sign 1 gallon to store 1. Then we have 6 � 1 � 5 gallons for stores 2 and 3. Since f2(5)

r1(0) � f2(6 � 0) � 0 � 8.70

r1(1) � f2(6 � 1) � 2.00 � 7.75 � 9.75*

r1(2) � f2(6 � 2) � 3.10 � 6.65 � 9.75*

r1(3) � f2(6 � 3) � 4.20 � 5.40 � 9.60

r2(2) � f3(5 � 2) � 3.25 � 4.35 � 7.60

r2(3) � f3(5 � 3) � 4.35 � 3.40 � 7.75*

r2(1) � f3(4 � 1) � 2.00 � 4.35 � 6.35

r2(2) � f3(4 � 2) � 3.25 � 3.40 � 6.65*

r2(3) � f3(4 � 3) � 4.35 � 2.00 � 6.35

r2(0) � f3(3 � 0) � 0 � 4.35 � 4.35

r2(1) � f3(3 � 1) � 2.00 � 3.40 � 5.40*

r2(2) � f3(3 � 2) � 3.25 � 2.00 � 5.25

r2(3) � f3(3 � 3) � 4.35 � 0 � 4.35

r2(0) � f3(2 � 0) � 0 � 3.40 � 3.40

r2(1) � f3(2 � 1) � 2.00 � 2.00 � 4.00*

r2(2) � f3(2 � 2) � 3.25 � 0 � 3.25

r2(0) � f3(1 � 0) � 2.00*

r2(1) � f3(1 � 1) � 2.00*
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is attained by g2(5) � 3, we assign 3 gallons to store 2. Then 5 � 3 � 2 gallons are avail-

able for store 3. Since g3(2) � 2, we assign 2 gallons to store 3. Note that although this

policy obtains the maximum expected revenue, f1(6) � $9.75, the total revenue actually

received on a given day may be more or less than $9.75. For example, if demand at each

store were 1 gallon, total revenue would be 3(2.00) � 3(0.50) � $7.50, whereas if de-

mand at each store were 3 gallons, all the milk would be sold at $2/gallon, and the total

revenue would be 6(2.00) � $12.00.

P R O B L E M S
Group A

1 In Example 1, find another allocation of milk that
maximizes expected daily revenue.

2 Suppose that $4 million is available for investment in
three projects. The probability distribution of the net present
value earned from each project depends on how much is

invested in each project. Let It be the random variable
denoting the net present value earned by project t. The
distribution of It depends on the amount of money invested
in project t, as shown in Table 2 (a zero investment in a
project always earns a zero NPV). Use dynamic programming
to determine an investment allocation that maximizes the

expected NPV obtained from the three investments.

19.2 A Probabilistic Inventory Model

In this section, we modify the inventory model of Section 18.3 to allow for uncertain de-

mand. This will illustrate the difficulties involved in solving a PDP for which the state

during the next period is uncertain (given the current state and current decision).

E X A M P L E  2 Three-Period Production Policy

TA B L E  2

Investment Probability for Problem 2

Investment
(millions) Probability

Project 1 $1 P(I1 � 2) � .6 P(I1 � 4) � .3 P(I1 � 5) � .1

$2 P(I1 � 4) � .5 P(I1 � 6) � .3 P(I1 � 8) � .2

$3 P(I1 � 6) � .4 P(I1 � 7) � .5 P(I1 � 10) � .1

$4 P(I1 � 7) � .2 P(I1 � 9) � .4 P(I1 � 10) � .4

Project 2 $1 P(I2 � 1) � .5 P(I2 � 2) � .4 P(I2 � 4) � .1

$2 P(I2 � 3) � .4 P(I2 � 5) � .4 P(I2 � 6) � .2

$3 P(I2 � 4) � .3 P(I2 � 6) � .3 P(I2 � 8) � .4

$4 P(I2 � 3) � .4 P(I2 � 8) � .3 P(I2 � 9) � .3

Project 3 $1 P(I3 � 0) � .2 P(I3 � 4) � .6 P(I3 � 5) � .2

$2 P(I3 � 4) � .4 P(I3 � 6) � .4 P(I3 � 7) � .2

$3 P(I3 � 5) � .3 P(I3 � 7) � .4 P(I3 � 8) � .3

$4 P(I3 � 6) � .1 P(I3 � 8) � .5 P(I3 � 9) � .4
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Consider the following three-period inventory problem. At the beginning of each period,

a firm must determine how many units should be produced during the current period. Dur-

ing a period in which x units are produced, a production cost c(x) is incurred, where c(0) �

0, and for x � 0, c(x) � 3 � 2x. Production during each period is limited to at most 4

units. After production occurs, the period’s random demand is observed. Each period’s de-

mand is equally likely to be 1 or 2 units. After meeting the current period’s demand out

of current production and inventory, the firm’s end-of-period inventory is evaluated, and

a holding cost of $1 per unit is assessed. Because of limited capacity, the inventory at the

end of each period cannot exceed 3 units. It is required that all demand be met on time.

Any inventory on hand at the end of period 3 can be sold at $2 per unit. At the beginning

of period 1, the firm has 1 unit of inventory. Use dynamic programming to determine a

production policy that minimizes the expected net cost incurred during the three periods.

Solution Define ft(i) to be the minimum expected net cost incurred during the periods t, t � 1,

. . . , 3 when the inventory at the beginning of period t is i units. Then

f3(i) � min
x

{c(x) � (�
1
2

�)(i � x � 1) � (�
1
2

�)(i � x � 2)
(2)

� (�
1
2

�)2(i � x � 1) � (�
1
2

�)2(i � x � 2)}

where x must be a member of {0, 1, 2, 3, 4} and x must satisfy (2 � i) � x � (4 � i).

Equation (2) follows, because if x units are produced during period 3, the net cost dur-

ing period 3 is (expected production cost) � (expected holding cost) � (expected salvage

value). If x units are produced, the expected production cost is c(x), and there is a �
1
2

� chance

that the period 3 holding cost will be i � x � 1 and a �
1
2

� chance that it will be i � x � 2.

Hence, the period 3 expected holding cost will be (�
1
2

�)(i � x � 1) � (�
1
2

�)(i � x � 2) �

i � x � �
3
2

�. Similar reasoning shows that the expected salvage value (a negative cost) at

the end of period 3 will be (�
1
2

�)2(i � x � 1) � (�
1
2

�)2(i � x � 2) � 2i � 2x � 3. To en-

sure that period 3 demand is met, we must have i � x � 2, or x � 2 � i. Similarly, to

ensure that ending period three inventory does not exceed 3 units, we must have i � x �

1 � 3, or x � 4 � i.

For t � 1, 2, we can derive the recursive relation for ft (i) by noting that for any month

t production level x, the expected costs incurred during periods t, t � 1, . . . , 3 are the

sum of the expected costs incurred during period t and the expected costs incurred dur-

ing periods t � 1, t � 2, . . . , 3. As before, if x units are produced during month t, the

expected cost during month t will be c(x) � (�
1
2

�)(i � x � 1) � (�
1
2

�)(i � x � 2). (Note that

during periods 1 and 2, no salvage value is received.) If x units are produced during month

t, the expected cost during periods t � 1, t � 2, . . . , 3 is computed as follows. Half of

the time, the demand during period t will be 1 unit, and the inventory at the beginning of

period t � 1 will be i � x � 1. In this situation, the expected costs incurred during pe-

riods t � 1, t � 2, . . . , 3 (assuming we act optimally during these periods) is ft�1(i �

x � 1). Similarly, there is a �
1
2

� chance that the inventory at the beginning of period t � 1

will be i � x � 2. In this case, the expected cost incurred during periods t � 1, t � 2,

. . . , 3 will be ft�1(i � x � 2). In summary, the expected cost during periods t � 1, t �

2, . . . , 3 will be (�
1
2

�) ft�1(i � x � 1) � (�
1
2

�) ft�1(i � x � 2). With this in mind, we may

write for t � 1, 2,

ft(i) � min
x

[c(x) � (�
1
2

�)(i � x � 1) � (�
1
2

�)(i � x � 2)
(3)

� (�
1
2

�) ft�1(i � x � 1) � (�
1
2

�) ft�1(i � x � 2)]

where x must be a member of {0, 1, 2, 3, 4} and x must satisfy (2 � i) � x � (4 � i).

Generalizing the reasoning that led to (3) yields the following important observation

concerning the formulation of PDPs. Suppose the possible states during period t � 1 are

s1, s2, . . . , sn and the probability that the period t � 1 state will be si is pi. Then the min-

imum expected cost incurred during periods t � 1, t � 2, . . . , end of the problem is
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�
i�n

i�1

pi ft�1(si)

where ft�1(si) is the minimum expected cost incurred from period t � 1 to the end of the

problem, given that the state during period t � 1 is si.

We define xt(i) to be a period t production level attaining the minimum in (3) for ft(i).

We now work backward until f1(1) is determined. The relevant computations are summa-

rized in Tables 3, 4, and 5. Since each period’s ending inventory must be nonnegative and

cannot exceed 3 units, the state during each period must be 0, 1, 2, or 3.

As in Section 18.3, we begin by producing x1(1) � 3 units during period 1. We cannot,

however, determine period 2’s production level until period 1’s demand is observed. Also,

TA B L E  3

Computations for f3(i )

Expected Expected
Holding Cost Salvage Value Total f3(i )

i x c (x) (i � x � �
3
2

�) (2i � 2x � 3) Expected Cost x3(i )

3 0 0 �
3
2

� 3 ��
3
2

�
* f3(3) � ��

3
2

�

3 1 5 �
5
2

� 5 �
5
2

� x3(3) � 0

2 0 0 �
1
2

� 1 ��
1
2

�
* f3(2) � ��

1
2

�

2 1 5 �
3
2

� 3 �
7
2

� x3(2) � 0

2 2 7 �
5
2

� 5 �
9
2

�

1 1 5 �
1
2

� 1 �
9
2

�
* f3(1) � �

9
2

�

1 2 7 �
3
2

� 3 �
1
2
1
� x3(1) � 1

1 3 9 �
5
2

� 5 �
1
2
3
�

0 2 7 �
1
2

� 1 �
1
2
3
�

* f3(0) � �
1
2
3
�

0 3 9 �
3
2

� 3 �
1
2
5
� x3(0) � 2

0 4 11 �
5
2

� 5 �
1
2
7
�

TA B L E  4

Computations for f2(i )

Expected
Expected Future Cost Total

Holding Cost ((�
1
2

�)f3(i � x � 1) Expected Cost f2(i )

i x c (x) (i � x � �
3
2

�) �(�
1
2

�)f3 (i � x � 2)) Periods 2,3 x2(i )

3 0 0 �
3
2

� 2 �
7
2

�
* f2(3) � �

7
2

�

3 1 5 �
5
2

� �1 �
1
2
3
� x2(3) � 0

2 0 0 �
1
2

� �
1
2
1
� 6* f2(2) � 6

2 1 5 �
3
2

� 2 �
1
2
7
� x2(2) � 0

2 2 7 �
5
2

� �1 �
1
2
7
�

1 1 5 �
1
2

� �
1
2
1
� 11 f2(1) � �

2
2
1
�

1 2 7 �
3
2

� 2 �
2
2
1
�

* x2(1) � 2 or 3

1 3 9 �
5
2

� �1 �
2
2
1
�

*

0 2 7 �
1
2

� �
1
2
1
� 13 f2(0) � �

2
2
5
�

0 3 9 �
3
2

� 2 �
2
2
5
�

* x2(0) � 3 or 4

0 4 11 �
5
2

� �1 �
2
2
5
�

*
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period 3’s production level cannot be determined until period 2’s demand is observed. To

illustrate the idea, we determine the optimal production schedule if period 1 and period

2 demands are both 2 units. Since x1(1) � 3, 3 units will be produced during period 1.

Then period 2 will begin with an inventory of 1 � 3 � 2 � 2 units, so x2(2) � 0 units

should be produced. After period 2’s demand of 2 units is met, period 3 will begin with

2 � 2 � 0 units on hand. Thus, x3(0) � 2 units will be produced during period 3.

In contrast, suppose that period 1 and period 2 demands are both 1 unit. As before,

x1(1) � 3 units will be produced during period 1. Then period 2 will begin with 1 �

3 � 1 � 3 units, and x2(3) � 0 units will be produced during period 2. Then period 3

will begin with 3 � 1 � 2 units on hand, and x3(2) � 0 units will be produced during

period 3. Note that the optimal production policy has adapted to the low demand by 

reducing period 3 production. This example illustrates an important aspect of dynamic

programming solutions for problems in which future states are not known with certainty

at the beginning of the problem: If a random factor (such as random demand) influences

transitions from the period t state to the period t � 1 state, the optimal action for period

t cannot be determined until period t’s state is known.

(s, S) Policies

Consider the following modification of the dynamic lot-size model of Section 18.7, for

which there exists an optimal production policy called an (s, S) inventory policy:

1 The cost of producing x � 0 units during a period consists of a fixed cost K and a per-

unit variable production cost c.

2 With a probability p(x), the demand during a given period will be x.

3 A holding cost of h per unit is assessed on each period’s ending inventory. If we are

short, a per-unit shortage cost of d is incurred. (The case where no shortages are allowed

may be obtained by letting d be very large.)

4 The goal is to minimize the total expected cost incurred during periods 1, 2, . . . , T.

5 All demands must be met by the end of period T.

For such an inventory problem, Scarf (1960) used dynamic programming to prove that

there exists an optimal production policy of the following form: For each t (t � 1, 2, . . . ,

T) there exists a pair of numbers (st, St) such that if it�1, the entering inventory for period

TA B L E  5

Computations for f1(1)

Expected
Expected Future Cost Total

Holding Cost ((�
1
2
�)f2(i � x � 1) Expected Cost f1(1)

x c (x) (i � x � �
3
2

�) �(�
1
2
�)f2(i � x � 2)) Periods 1–3 x1(1)

1 5 �
1
2

� �
2
2
3
� 17 f1(1) � �

6
4
5
�

2 7 �
3
2

� �
3

4

3
� �

6
4
7
� x1(1) � 3

3 9 �
5
2

� �
1
4
9
� �

6
4
5
�

*
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t, is less than st, then an amount St � it�1 is produced; if it�1 � st, then it is optimal not

to produce during period t. Such a policy is called an (s, S) policy.

For Example 2, our calculations show that s2 � 2, S2 � 3 or 4, s3 � 2, and S3 � 2.

Thus, if we enter period 2 with 1 or 0 units, we produce enough to bring our stock level

(before meeting period 2 demand) up to 3 or 4 units. If we enter period 2 with more than

1 unit, then no production should take place during period 2.

P R O B L E M S
Group A

1 For Example 2, suppose that the period 1 demand is 1
unit, and the period 2 demand is 2 units. What would be the
optimal production schedule?

2 Re-solve Example 2 if the end-of-period holding cost is
$2 per unit.

3 In Example 2, suppose that shortages are allowed, and
each shortage results in a lost sale and a cost incurred of $3.
Now re-solve Example 2.

Group B

4 Chip Bilton sells sweatshirts at State U football games.
He is equally likely to sell 200 or 400 sweatshirts at each
game. Each time Chip places an order, he pays $500 plus
$5 for each sweatshirt he orders. Each sweatshirt sells for
$8. A holding cost of $2 per shirt (because of the opportunity
cost for capital tied up in sweatshirts as well as storage
costs) is assessed against each shirt left at the end of a
game. Chip can store at most 400 shirts after each game.
Assuming that the number of shirts ordered by Chip must

be a multiple of 100, determine an ordering policy that maximizes expected profits earned during the first three games of the
season. Assume that any leftover sweatshirts have a value of $6.

19.3 How to Maximize the Probability of a Favorable Event Occurring†

There are many occasions on which the decision maker’s goal is to maximize the proba-

bility of a favorable event occurring. For instance, a company may want to maximize its

probability of reaching a specified level of annual profits. To solve such a problem, we

assign a reward of 1 if the favorable event occurs and a reward of 0 if it does not occur.

Then the maximization of expected reward will be equivalent to maximizing the proba-

bility that the favorable event will occur. Also, the maximum expected reward will equal

the maximum probability of the favorable event occurring. The following two examples

illustrate how this idea may be used to solve some fairly complex problems.

E X A M P L E  3

A gambler has $2. She is allowed to play a game of chance four times, and her goal is to

maximize her probability of ending up with a least $6. If the gambler bets b dollars on a

play of the game, then with probability .40, she wins the game and increases her capital

position by b dollars; with probability .60, she loses the game and decreases her capital

by b dollars. On any play of the game, the gambler may not bet more money than she has

available. Determine a betting strategy that will maximize the gambler’s probability of at-

taining a wealth of at least $6 by the end of the fourth game. We assume that bets of zero

dollars (that is, not betting) are permissible.

Solution Define ft(d) to be the probability that by the end of game 4, the gambler will have at least

Gambling Game

†This section covers topics that may be omitted with no loss of continuity.
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$6, given that she acts optimally and has d dollars immediately before the game is played

for the t th time. If we give the gambler a reward of 1 when her ending wealth is at least $6

and a reward of 0 if it is less, then ft(d) will equal the maximum expected reward that can

be earned during games t, t � 1, . . . , 4 if the gambler has d dollars immediately before the

t th play of the game. As usual, we define bt(d) dollars to be a bet size that attains ft(d).

If the gambler is playing the game for the fourth and final time, her optimal strategy

is clear: If she has $6 or more, don’t bet anything, but if she has less than $6, bet enough

money to ensure (if possible) that she will have $6 if she wins the last game. Note that if

she begins game 4 with $0, $1, or $2, there is no way to win (no way to earn a reward of

1). This reasoning yields the following results:

f4(0) � 0 b4(0) � $0

f4(1) � 0 b4(1) � $0 or $1

f4(2) � 0 b4(2) � $0, $1, or $2

f4(3) � .40 b4(3) � $3

f4(4) � .40 b4(4) � $2, $3, or $4

f4(5) � .40 b4(5) � $1, $2, $3, $4, or $5

For d � 6,

f4(d) � 1 b4(d) � $0, $1, . . . , $(d � 6)

With probability .40 win game t
ft�1(d � b)

(Expected reward)

With probability .60 lose game t
ft�1(d � b)

For t � 3, we can find a recursion for ft(d) by noting that if the gambler has d dollars, is

about to play the game for the t th time, and bets b dollars, then the following diagram

summarizes what can occur:

Thus, if the gambler has d dollars at the beginning of game t and bets b dollars, the 

expected reward (or expected probability of reaching $6) will be .4 ft�1(d � b) �

.6 ft�1(d � b). This leads to the following recursion:

ft(d) � max
b

(.4 ft�1(d � b) � .6 ft�1(d � b)) (4)

where b must be a member of {0, 1, . . . , d}. Then bt(d) is any bet size that attains the

maximum in (4) for ft(d). Using (4), we work backward until f1(2) has been determined.

Stage 3 Computations

f3(0) � 0 b3(0) � $0

f3(1) � max �
Thus, f3(1) � 0, and b3(1) � $0 or $1.

f3(2) � max �
Thus, f3(2) � .16, and b3(2) � $1 or $2.

.4 f4(2) � .6 f4(2) � 0 * (Bet $0)

.4 f4(3) � .6 f4(1) � .16* (Bet $1)

.4 f4(4) � .6 f4(0) � .16* (Bet $2)

.4 f4(1) � .6 f4(1) � 0* (Bet $0)

.4 f4(2) � .6 f4(0) � 0* (Bet $1)
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f3(3) � max �
Thus, f3(3) � .40, and b3(3) � $0 or $3.

f3(4) � max �
Thus, f3(4) � .40, and b3(4) � $0, $1, $2, $3, or $4.

f3(5) � max �
Thus, f3(5) � .64, and b3(5) � $1 or $2. For d � 6, f3(d) � 1, and b3(d) � $0, $1, . . . ,

$(d � 6).

Stage 2 Computations

f2(0) � 0 b2(0) � $0

f2(1) � max �
Thus, f2(1) � .064, and b2(1) � $1.

f2(2) � max �
Thus, f2(2) � .16, and b2(2) � $0, $1, or $2.

f2(3) � max �
Thus, f2(3) � .40, and b2(3) � $0 or $3.

f2(4) � max �
Thus, f2(4) � .496, and b2(4) � $1 or $2.

.4 f3(4) � .6 f3(4) � .40 (Bet $0)

.4 f3(5) � .6 f3(3) � .496* (Bet $1)

.4 f3(6) � .6 f3(2) � .496* (Bet $2)

.4 f3(7) � .6 f3(1) � .40 (Bet $3)

.4 f3(8) � .6 f3(0) � .40 (Bet $4)

.4 f3(3) � .6 f3(3) � .40* (Bet $0)

.4 f3(4) � .6 f3(2) � .256 (Bet $1)

.4 f3(5) � .6 f3(1) � .256 (Bet $2)

.4 f3(6) � .6 f3(0) � .40* (Bet $3)

.4 f3(2) � .6 f3(2) � .16* (Bet $0)

.4 f3(3) � .6 f3(1) � .16* (Bet $1)

.4 f3(4) � .6 f3(0) � .16* (Bet $2)

.4 f3(1) � .6 f3(1) � 0 (Bet $0)

.4 f3(2) � .6 f3(0) � .064* (Bet $1)

.4 f4(5) � .6 f4(5) � .40 (Bet $0)

.4 f4(6) � .6 f4(4) � .64* (Bet $1)

.4 f4(7) � .6 f4(3) � .64* (Bet $2)

.4 f4(8) � .6 f4(2) � .40 (Bet $3)

.4 f4(9) � .6 f4(1) � .40 (Bet $4)

.4 f4(10) � .6 f4(0) � .40 (Bet $5)

.4 f4(4) � .6 f4(4) � .40* (Bet $0)

.4 f4(5) � .6 f4(3) � .40* (Bet $1)

.4 f4(6) � .6 f4(2) � .40* (Bet $2)

.4 f4(7) � .6 f4(1) � .40* (Bet $3)

.4 f4(8) � .6 f4(0) � .40* (Bet $4)
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f2(5) � max �
Thus, f2(5) � .64, and b2(5) � $0, $1, or $2. For d � 6, f2(d) � 1 and b2(d) � $0, 

$1, . . . , $(d � 6).

Stage 1 Computations

f1(2) � max �
Thus, f1(2) � .1984, and b1(2) � $1 or $2. Hence, the gambler has a .1984 chance of

reaching $6. Suppose the gambler begins by betting b1(2) � $1. Then Figure 1 indicates

the various possibilities that can occur. By following the strategy outlined in the figure,

the gambler can reach her goal of $6 in two different ways. First, she can win game 1 and

game 3. This will occur with probability (.4)2
� .16. Second, the gambler can win if she loses

the first game but wins the next three games. This will occur with probability .6(.4)3
� .0384.

Hence, the gambler’s probability of reaching $6 is .16 � .0384 � .1984 � f1(2).

E X A M P L E  4

Martina McEnroe has two types of serves: a hard serve (H) and a soft serve (S).† The

probability that Martina’s hard serve will land in bounds is pH, and the probability that

her soft serve will land in bounds is pS. If Martina’s hard serve lands in bounds, there is

a probability wH that Martina will win the point. If Martina’s soft serve lands in bounds,

there is a probability wS that Martina will win the point. We assume that pH 	 pS and 

Tennis Serves

.4 f2(2) � .6 f2(2) � .16 (Bet $0)

.4 f2(3) � .6 f2(1) � .1984* (Bet $1)

.4 f2(4) � .6 f2(0) � .1984* (Bet $2)

.4 f3(5) � .6 f3(5) � .64* (Bet $0)

.4 f3(6) � .6 f3(4) � .64* (Bet $1)

.4 f3(7) � .6 f3(3) � .64* (Bet $2)

.4 f3(8) � .6 f3(2) � .496 (Bet $3)

.4 f3(9) � .6 f3(1) � .40 (Bet $4)

.4 f3(10) � .6 f3(0) � .40 (Bet $5)

†Based on material by E. V. Denardo, personal communication.

Game 1

Bet b1(2)  =  $1

Bet b2(3)  =  $0

Bet b3(3)  =  $3

Bet b3(3)  =  $3

Bet b3(2)  =  $2

Bet b4(4)  =  $2

Done

I lose

Done

I lose

Done

I win

Done

I win

Done

I lose

Done

I lose

Bet b2(1)  =  $1

Win

Lose

Win

Lose

Game 2

Win

Lose

Win

Lose

Win

Lose

Win

Lose

Game 3 Game 4

F I G U R E  1

Ways Gambler Can
Reach $6
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wH � wS. Martina’s goal is to maximize the probability of winning a point on which she

serves. Use dynamic programming to help Martina select an optimal serving strategy. Re-

member that if both serves are out of bounds, Martina loses the point.

Solution To maximize Martina’s probability of winning the point, we give her a reward of 1 if she

wins the point and a reward of 0 if she loses the point. We also define ft(t � 1, 2) to be

the probability that Martina wins a point if she plays optimally and is about to take her

t th serve. To determine the optimal serving strategy, we work backward, beginning with

f2. If Martina serves hard on the second serve, she will win the point (and earn a reward

of 1) with probability pHwH. Similarly, if she serves soft on the second serve, her expected

reward is pSwS. Thus, we have

f2 � max �
For the moment, let’s assume that

pSwS � pHwH (5)

If (5) holds, then Martina should serve soft on the second serve. In this situation, f2 �

pSwS.

To determine f1, we need to look at what happens on the first serve. If Martina serves

hard on the first serve, the events in Table 6 can occur, and Martina earns an expected re-

ward of pHwH � (1 � pH) f2. If Martina serves soft on the first serve, then the events in

Table 7 can occur, and Martina’s expected reward is pSwS � (1 � pS) f2. We now write

the following recursion for f1:

f1 � max �pHwH � (1 � pH) f2 (Serve hard)

pSwS � (1 � pS) f2 (Serve soft)

pHwH (Serve hard)

pSwS (Serve soft)

TA B L E  6

Computation of Expected Reward If First Serve Is Hard

Probability Expected Reward
Event of Event for Given Event

First serve in and pHwH 1
Martina wins point

First serve in and pH (1 � wH) 0
Martina loses point

First serve out of 1 � pH f2
bounds

TA B L E  7

Computation of Expected Reward If First Serve Is Soft

Probability Expected Reward
Event of Event for Given Event

First serve in and psws 1
Martina wins point

First serve in and ps (1 � ws) 0
Martina loses point

First serve out of 1 � ps f2
bounds
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From this equation, we see that Martina should serve hard on the first serve if

pHwH � (1 � pH) f2 � pSwS � (1 � pS) f2 (6)

(If (6) is not satisfied, Martina should serve soft on the first serve.)

Continuing with the assumption that pSwS � wHpH (which implies that f2 � pSwS), we

may substitute f2 � pSwS into (6) to obtain the result that Martina should serve hard on

the first serve if

pHwH � (1 � pH)pSwS � pSwS � (1 � pS)pSwS

or

pHwH � pSwS(1 � pH � pS) (7)

For example, if pH � .60, pS � .90, wH � .55, and wS � .50, then (5) and (7) are both

satisfied, and Martina should serve hard on her first serve and soft on her second serve.

On the other hand, if pH � .25, pS � .80, wH � .60, and wS � .45, then both serves should

be soft. The reason for this is that in this case, the hard serve’s advantage from the fact

that wH exceeds wS is outweighed by the fact that a hard serve on the first serve greatly

increases the chances of a double fault.

To complete our analysis, we must consider the situation where (5) does not hold. We

now show that if

pHwH � pSwS (8)

Martina should serve hard on both serves. Note that if (8) holds, then f2 � max {pHwH,

pSwS} � pHwH, and Martina should serve hard on the second serve. Now (6) implies that

Martina should serve hard on the first serve if

pHwH � (1 � pH)pHwH � pSwS � (1 � pS)pHwH

Upon rearrangement, the last inequality becomes

pHwH(1 � pS � pH) � pSwS

Dividing both sides of the last inequality by pSwS shows that Martina should serve hard

on the first serve if

�
p

p
H

S

w

w
H

S

� (1 � pS � pH) � 1

After noting that pHwH � pSwS and (1 � pS � pH) � 1 (because pS � pH), we see that

the last inequality holds. Thus, we have shown that if pHwH � pSwS, Martina should serve

hard on both serves. This is reasonable, because if it is optimal to serve hard on the sec-

ond (and this requires pHwH � pSwS), then it should be optimal to serve hard on the first

serve, because the danger of double-faulting (which is the drawback to the hard serve) is

less immediate on the first serve. Of course, Example 4 could have been solved using a

decision tree; see Problem 10 of Section 13.4.

In our solution to Example

4, we have shown how Mar-

tina’s optimal strategy depends

on the values of the parame-

ters defining the problem. This

is a kind of sensitivity analy-

sis like the one applied to lin-

ear programming problems in

Chapters 5 and 6.

P R O B L E M S
Group A

1 Vladimir Ulanowsky is playing Keith Smithson in a
two-game chess match. Winning a game scores 1 match
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point, and drawing a game scores �
1
2

� match point. After the
two games are played, the player with more match points is
declared the champion. If the two players are tied after two
games, they continue playing until someone wins a game
(the winner of that game will be the champion). During
each game, Ulanowsky can play one of two ways: boldly or
conservatively. If he plays boldly, he has a 45% chance of
winning the game and a 55% chance of losing the game. If
he plays conservatively, he has a 90% chance of drawing the
game and a 10% chance of losing the game. Ulanowsky’s
goal is to maximize his probability of winning the match.
Use dynamic programming to help him accomplish this
goal. If this problem is solved correctly, even though
Ulanowsky is the inferior player, his chance of winning the

match is over �
1
2

�. Explain this anomalous result.

2 Dickie Hustler has $2 and is going to toss an unfair coin
(probability .4 of heads) three times. Before each toss, he
can bet any amount of money (up to what he now has). If
heads comes up, Dickie wins the number of dollars he bets;
if tails comes up, he loses the number of dollars he bets.
Use dynamic programming to determine a strategy that
maximizes Dickie’s probability of having at least $5 after
the third coin toss.

Group B

3 Supppose that Army trails by 14 points in the Army–Navy

football game. Army’s guardian angel has assured the Army coach that his team will have the ball two more times during the
game and will score a touchdown (worth 6 points) each time it has the ball. The Army coach has also been assured that Navy
will not score any more points. Suppose a win is assigned a value of 1, a tie is .3, and a loss is 0. Army’s problem is to determine
whether to go for 1 or 2 points after each touchdown. A 1-point conversion is always successful, and a 2-point conversion is
successful only 40% of the time. The Army coach wants to maximize the expected reward earned from the outcome of the game.
Use dynamic programming to determine an optimal strategy. Then prove the following result: No matter what value is assigned
to a tie, it is never optimal to use the following strategy: Go for a 1-point conversion after the first touchdown and go for a 2-
point conversion after the second touchdown. Note that this (suboptimal) strategy is the one most coaches follow!

19.4 Further Examples of Probabilistic Dynamic Programming Formulations

Many probabilistic dynamic programming problems can be solved using recursions of the

following form (for max problems):

ft(i) � max
a

�(expected reward during stage t|i, a) � �
j

p( j|i, a, t) ft�1( j)� (9)

In (9), ft(i) is the maximum expected reward that can be earned during stages t, t � 1, . . .

end of the problem, given that the state at the beginning of stage t is i. The max in (9) is

taken over all actions a that are feasible when the state at the beginning of stage t is i. In

(9), p( j|i, a, t) is the probability that the next period’s state will be j, given that the cur-

rent (stage t) state is i and action a is chosen. Hence, the summation in (9) represents the

expected reward from stage t � 1 to the end of the problem. By choosing a to maximize

the right-hand side of (9), we are choosing a to maximize the expected reward earned

from stage t to the end of the problem, and this is what we want to do. The following are

six examples of probabilistic dynamic programming formulations.

E X A M P L E  5

Sunco Oil has D dollars to allocate for drilling at sites 1, 2, . . . , T. If x dollars are allo-

cated to site t, the probability is qt(x) that oil will be found on site t. Sunco estimates that

if site t has any oil, it is worth rt dollars. Formulate a recursion that could be used to en-

able Sunco to maximize the expected value of all oil found on sites 1, 2, . . . , T.

Solution This is a typical resource allocation problem (see Example 1). Therefore, the stage should

represent the number of sites, the decision for site t is how many dollars to allocate to site

t, and the state is the number of dollars available to allocate to sites t, t � 1, . . . , T. We

therefore define ft(d) to be the maximum expected value of the oil that can be found on

sites t, t � 1, . . . , T if d dollars are available to allocate to sites t, t � 1, . . . , T.

We make the reasonable assumption that qT(x) is a nondecreasing function of x. If this

is the case, then at stage T, all the money should be allocated to site T. This yields

Sunco Oil Drilling
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fT (d) � rTqT(d) � (1 � qT(d))0 � rTqT(d)

For t 	 T,

ft(d) � max
x

{rtqt(x) � ft�1(d � x)}

where x must satisfy 0 � x � d. The last recursion follows, because rtqt(x) is the expected

value of the reward for stage t, and since Sunco will have d � x dollars available for sites

t � 1, t � 2, . . . , T, ft�1(d � x) is the expected value of the oil that can be found by op-

timally drilling at sites t � 1, t � 2, . . . , T. To solve the problem, we would work back-

ward until f1(D) had been determined.

E X A M P L E  6

Each year, the owner of a lake must determine how many bass to capture and sell. Dur-

ing year t, a price pt will be received for each bass that is caught. If the lake contains b

bass at the beginning of year t, the cost of capturing x bass is ct(x|b). Between the time

that year t’s bass are caught and year t � 1 begins, the bass in the lake multiply by a ran-

dom factor D, where P(D � d) � q(d).

Formulate a dynamic programming recursion that can be used to determine a bass-

catching strategy that will maximize the owner’s net profit over the next ten years. At 

present, the lake contains 10,000 bass.

Solution As in Example 8 of Chapter 18, the stage is the year, the state is the number of bass in 

the lake at the beginning of the year, and the decision is how many bass to catch during

each year. We define ft(b) to be the maximum expected net profit that can be earned dur-

ing the years t, t � 1, . . . , 10 if the lake contains b bass at the beginning of year t. Then

f10(b) � max
x

{xp10 � c10(x|b)}

where 0 � x � b, and for t 	 10

ft(b) � max
x
�xpt � ct(x|b) � �

d

q(d) ft�1(d(b � x))�
In this recursion, x must satisfy 0 � x � b. To justify the recursion for t 	 10, first note

that the profits during year t are (with certainty) xpt � ct(x|b). Then with probability q(d),

year t � 1’s state will be d(b � x). It then follows that if x bass are caught during year t,

the maximum expected net profit that can be earned during the years t � 1, t � 2, . . . ,

10 will be

�
d

q(d) ft�1(d(b � x))

Hence, the recursion chooses the number of bass during year t to maximize the sum of

year t profits and future profits. To use this recursion, we work backward until f1(10,000)

is computed. Then, after the number of bass in the lake at the beginning of year t is ob-

served, we use the recursion to determine the number of bass that should be caught dur-

ing year t.

E X A M P L E  7

When Sally Mutton arrives at the bank, 30 minutes remain on her lunch break. If Sally

makes it to the head of the line and enters service before the end of her lunch break, she

earns reward r. However, Sally does not enjoy waiting in lines, so to reflect her dislike for

waiting in line, she incurs a cost c for each minute she waits. During a minute in which

n people are ahead of Sally, there is a probability p(x|n) that x people will complete their

transactions. Suppose that when Sally arrives, 20 people are ahead of her in line. Use dy-

Waiting in Line

Bass Fishing



1 9 . 4 Further Examples of Probabilistic Dynamic Programming Formulations 1031

namic programming to determine a strategy for Sally that will maximize her expected net

revenue (reward � waiting costs).

Solution When Sally arrives at the bank, she must decide whether to join the line or to give up and

leave. At any later time, she may also decide to leave if it is unlikely that she will be

served by the end of her lunch break. If 1 minute remained, Sally’s decision would be sim-

ple: She should stay in line if and only if her expected reward exceeds the cost of wait-

ing for 1 minute (c). Then we can work backward to a problem with 2 minutes left, and

so on. We define ft (n) to be the maximum expected net reward that Sally can receive from

time t to the end of her lunch break if at time t, n people are ahead of her. We let t � 0

be the present and t � 30 be the end of the problem. Since t � 29 is the beginning of the

last minute of the problem, we write

f29(n) � max �
This follows because if Sally chooses to leave at time 29, she earns no reward and incurs

no more costs. On the other hand, if she stays at time 29, she will incur a waiting cost of

c (a revenue of � c) and with probability p(n|n) will enter service and receive a reward

r. Thus, if Sally stays, her expected net reward is rp(n|n) � c.

For t 	 29, we write

ft(n) � max �
The last recursion follows, because if Sally stays, she will earn an expected reward (as in

the t � 29 case) of rp(n|n) � c during the current minute, and with probability p(k|n),

there will be n � k people ahead of her; in this case, her expected net reward from time

t � 1 to time 30 will be ft�1(n � k). If Sally stays, her overall expected reward received

from time t � 1, t � 2, . . . , 30 will be

�
k	n

p(k|n) ft�1(n � k)

Of course, if n people complete their transactions during the current minute, the problem

ends, and Sally’s future net revenue will be zero.

To determine Sally’s optimal waiting policy, we work backward until f0(20) is com-

puted. If f0(20) is attained by “stay,” Sally stays and sees how many people are ahead of

her at time 1. She continues to stay until a situation arises for which the optimal action is

“leave” or she begins to be served. In either case, the problem terminates.

Problems in which the decision maker can terminate the problem by choosing a par-

ticular action are known as stopping rule problems; they often have a special structure

that simplifies the determination of optimal policies. See Ross (1983) for more informa-

tion on stopping rule problems.

E X A M P L E  8

E. J. Korvair Department Store is trying to determine an optimal cash management pol-

icy. During each day, the demand for cash may be described by a random variable D,

where p(D � d) � p(d). At the beginning of each day, the store sends an employee to the

bank to deposit or withdraw funds. Each bank transaction costs K dollars. Then E. J.’s de-

mand for cash is met by cash left from the previous day plus money withdrawn (or mi-

nus money deposited). At the end of the day, the store determines its cash balance at the

store. If the cash balance is negative, a shortage cost of s dollars per dollar short is in-

curred. If the ending balance is positive, a cost of i dollars per dollar held is incurred (be-

Cash Management Policy

(Leave)

(Stay)

0

rp(n|n) � c � �
k	n

p(k|n) ft�1(n � k)

(Leave)

(Stay)

0

rp(n|n) � c
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cause of loss of interest that could have been earned by depositing cash in the bank). At

the beginning of day 1, the store has $10,000 cash on hand and a bank balance of

$100,000. Formulate a dynamic programming model that can be used to minimize the ex-

pected cost of filling the store’s cash needs for the next 30 days.

Solution To determine how much money should be withdrawn or deposited, E. J. needs to know

its cash on hand and bank balance at the beginning of the day. As usual, we let time be

the stage. At the beginning of each stage (or day), E. J. must decide how much to with-

draw from or deposit in the bank. We let ft(c, b) be the minimum expected cost incurred

by the store during days t, t � 1, . . . , 30, given that at the beginning of day t, the store

has c dollars cash at the store and b dollars in the bank.

We observe that

f30(c, b) � min
x
�Kd(x) � �

d�c�x

p(d)(c � x � d)i � �
d�c�x

p(d)(d � c � x)s� (10)

Here, x is the amount of money transferred from the bank to the store (if x 	 0 money

is transferred from the store to the bank). Since the store cannot withdraw more than b

dollars from the bank or deposit more than c dollars in the bank, x must satisfy b � x �

�c. Also, in (10), d(0) � 0 and d(x) � 1 for x 
 0. In short, Kd(x) picks up the transac-

tion cost (if there is a transaction). If d � c � x, the store will end the day with c � x �

d dollars, so a cost of i(c � x � d) is incurred (because of lost interest). Since this oc-

curs with probability p(d), the first sum in (10) represents the expected interest costs in-

curred during day 30. Also note that if d � c � x, the store will be d � c � x dollars

short, and a shortage cost of s(d � c � x) will be incurred. Again, this cost is incurred

with probability p(d). Hence, the second sum in (10) is the expected shortage cost in-

curred during day 30.

For t 	 30, we write

ft(c, b) � min
x
�Kd(x) � �

d�c�x

p(d)(c � x � d)i
(11)

� �
d�c�x

p(d)(d � c � x)s � �
d

p(d) ft�1(c � x � d, b � x)�
As in (10), x must satisfy b � x � � c. Also, the term Kd(x) and the first two summa-

tions yield the expected cost incurred during day t. If day t demand is d, then at the be-

ginning of day t � 1, the store will have c � x � d dollars cash on hand and a bank bal-

ance of b � x. Thus, with probability p(d), the store’s expected cost during days t � 1, 

t � 2, . . . , 30 will be ft�1(c � x � d, b � x). Weighting ft�1(c � x � d, b � x) by the

probability that day t demand will be d, we see that the last sum in (11) is the expected

cost incurred during days t � 1, t � 2, . . . , 30. Hence, (11) is correct. To determine the

optimal cash management policy, we would use (10) and (11) to work backward until

f1(10,000, 100,000) has been computed.

E X A M P L E  9

Robert Blue is trying to find a parking place near his favorite restaurant. He is approach-

ing the restaurant from the west, and his goal is to park as nearby as possible. The avail-

able parking places are pictured in Figure 2. Robert is nearsighted and cannot see ahead;

he can only see whether the space he is at now is empty. When Robert arrives at an empty

space, he must decide whether to park there or to continue to look for a closer space. Once

he passes a space, he cannot return to it. Robert estimates that the probability that space

t is empty is pt. If he does not end up with a parking space, he is embarrassed and incurs

a cost M (M is a big positive number). If he does park in space t, he incurs a cost |t |. Show

how Robert can use dynamic programming to develop a parking strategy that minimizes

Parking Spaces
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his expected cost.

Solution If Robert is at space T, his problem is easy to solve: park in space T if it is empty; oth-

erwise, incur a cost of M. Then Robert can work backward until he determines what to

do at space �T. For this reason, we let the space Robert is at represent the stage. In or-

der to make a decision at any stage, all Robert must know is whether or not the space is

empty (if a space is not empty, he must continue). Thus, the state at any stage is whether

or not the space is empty. Of course, if the space is empty, Robert’s decision is whether

to take the space or to continue.

We define

ft(o) � minimum expected cost if Robert is at space t and space t is occupied

ft(e) � minimum expected cost if Robert is at space t and space t is empty

If Robert is at space T, he will park in the space if it is empty (incurring a cost T ) or in-

cur a cost M if the space is occupied. Thus, we have fT (o) � M and fT(e) � T.

For t 	 T, we write

ft(o) � pt�1 ft�1(e) � (1 � pt�1) ft�1(o) (12)

ft(e) � min � (13)

To justify (12), note that if space t is occupied, Robert must next look at space t � 1. With

probability pt�1, space t � 1 will be empty; in this case, Robert’s expected cost will be

ft�1(e). Similarly, with probability (1 � pt�1), space t � 1 will be occupied, and Robert

will incur an expected cost of ft�1(o). Thus, Robert’s expected cost is

pt�1 ft�1(e) � (1 � pt�1) ft�1(o)

To justify (13), note that Robert can either take space t (incurring a cost of |t|) or con-

tinue. Thus, if Robert continues, his expected cost will be

pt�1 ft�1(e) � (1 � pt�1) ft�1(o)

Since Robert wants to minimize his expected cost, (13) follows. By using (12) and (13),

Robert can work backward to compute f�T(e) and f�T(o). Then he will continue until he

reaches an empty space at some location t for which the minimum in (13) is attained by

taking space t. If no such empty space is reached, Robert will not find a space, and he

will incur a cost M.

E X A M P L E  1 0

During month t(t � 1, 2, . . . , 60), expert safecracker Dirk Stack knows that he will be

offered a role in a bank job that will pay him dt dollars. There is, however, a probability

pt that month t’s job will result in his capture. If Dirk is captured, all his money will be

lost. Dirk’s goal is to maximize his expected asset position at the end of month 60. For-

mulate a dynamic programming recursion that will help Dirk accomplish his goal. At the

beginning of month 1, Dirk has $50,000.

Solution At the beginning of month 60, Dirk has no future to consider and his problem is easy to

solve, so we let time represent the stage. At the beginning of each month, Dirk must de-

Safecracker

(Take space t)

(Don’t take space t)

|t |

pt�1 ft�1(e) � (1 � pt�1) ft�1(o)

→ �T 1 � T 2 � T . . . �2 �1 0 1 2 . . . T

0 � Restaurant

F I G U R E  2

Location of 
Parking Places
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cide whether or not to take the current month’s job offer. In order to make this decision,

Dirk must know how much money he has at the beginning of the month. We define ft(d)

to be Dirk’s maximum expected asset position at the end of month 60, given that at the

beginning of month t, Dirk has d dollars. Then

f60(d) � max �
This result follows, because if Dirk takes the job during month 60, there is a probability

p60 that he will be caught and end up with zero dollars and a probability (1 � p60) that

he will not be caught and end up with d � d60 dollars. Of course, if Dirk does not take

the month 60 job, he ends month 60 with d dollars.

Extending this reasoning yields, for t 	 60,

ft(d) � max �
Note that if Dirk accepts month t’s job, there is a probability pt that he will be caught (and

end up with zero) and a probability (1 � pt) that he will successfully complete month t’s

job and earn dt dollars. In this case, Dirk will begin month t � 1 with d � dt dollars, and

his expected final cash position will be ft�1(d � dt). Of course, if Dirk rejects the month

t job, he begins month t � 1 with d dollars, and his expected final cash position will be

ft�1(d). Since Dirk wants to maximize his expected cash position at the end of month 60,

the recursion follows. By using the recursion, Dirk can work backward to compute

f1(50,000). Then he can decide whether to accept the month 1 job. Assuming he has not

been caught, he can then determine whether to accept the month 2 job, and so on.

As described in Section 18.8, spreadsheets can be used to solve dynamic programming

(Accept month t job)

(Reject month t job)

pt(0) � (1 � pt) ft�1(d � dt)

ft�1(d)

(Accept month 60 job)

(Reject month 60 job)

p60(0) � (1 � p60)(d � d60)

d

recursions. See Problems 14

and 15 for some examples of

how spreadsheets can be used

to solve PDPs.

P R O B L E M S
Group A

1 The space shuttle is about to go up on another flight.
With probability pt(z), it will use z type t fuel cells during
the flight. The shuttle has room for at most W fuel cells. If
at any time during the flight, all the type t fuel cells burn
out, a cost ct will be incurred. Assuming the goal is to
minimize the expected cost due to fuel cell shortages, set up
a dynamic programming model that could be used to
determine how to stock the space shuttle with fuel cells.
There are T different types of fuel cells.

2 At the beginning of each year, a firm observes its asset
position (call it d) and may invest any amount x (0 � x �
d) in a risky investment. During each year, the money
invested doubles with probability p and is completely lost
with probability 1 � p. Independently of this investment,
the firm’s asset position increases by an amount y with

probability qy (y may be negative). If the firm’s asset position
is negative at the beginning of a year, it cannot invest any
money during that year. The firm initially has $10,000 in
assets and wants to maximize its expected asset position ten
years from now. Formulate a dynamic programming
recursion that will help accomplish this goal.

3 Consider a machine that may be in any one of the states
0, 1, 2, . . . . At the beginning of each month, the state of the
machine is observed, and it is decided whether to replace or
keep the machine. If the machine is replaced, a new state 0
machine arrives instantaneously. It costs R dollars to replace
a machine. Each month that a state i machine is in operation,
a maintenance cost of c(i) is incurred. If a machine is in
state i at the beginning of a month, then with probability pij,
the machine will begin the next month in state j. At the
beginning of the first month, we own a state i0 machine.
Assuming that the interest rate is 12% per year, formulate a
dynamic programming recursion that could be used to
minimize the expected discounted cost incurred during the
next T months. Note that if we replace a machine at the
beginning of a month, we incur a maintenance cost of c(0)
during the month, and with probability p0i, we begin the
next month with a state i machine.

4 In the time interval between t and t � 1 seconds before
the departure of Braneast Airlines Flight 313, there is a
probability pt that the airline will receive a reservation for
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the flight and a probability 1 � pt that the airline will receive
no reservation. The flight can seat up to 100 passengers. At
departure time, if r reservations have been accepted by the
airline, there is a probability q(y|r) that y passengers will
show up for the flight. Each passenger who boards the flight
adds $500 to Braneast’s revenues, but each passenger who
shows up for the flight and cannot be seated receives $200
in compensation. Formulate a dynamic programming
recursion to enable the airline to maximize its expected
revenue from Flight 313. Assume that no reservations are
received more than 100,000 seconds before flight time.

5 At the beginning of each week, a machine is either
running or broken down. If the machine runs throughout the
week, it earns revenues of $100. If the machine breaks down
during a week, it earns no revenue for that week. If the
machine is running at the beginning of the week, we may
perform maintenance on it to lessen the chance of a
breakdown. If the maintenance is performed, a running
machine has a .4 chance of breaking down during the week;
if maintenance is not performed, a running machine has a .7
chance of breaking down during the week. Maintenance
costs $20 per week. If the machine is broken down at the
beginning of the week, it must be replaced or repaired. Both
repair and replacement occur instantaneously. Repairing a
machine costs $40, and there is a .4 chance that the repaired
machine will break down during the week. Replacing a
broken machine costs $90, but the new machine is guaranteed
to run throughout the next week of operation. Use dynamic
programming to determine a repair, replacement, and
maintenance policy that maximizes the expected net profit
earned over a four-week period. Assume that the machine is
running at the beginning of the first week.

6 I own a single share of Wivco stock. I must sell my
share at the beginning of one of the next 30 days. Each day,
the price of the stock changes. With probability q(x), the
price tomorrow will increase by x% over today’s stock price
(x can be negative). For example, with probability q(5),
tomorrow’s stock price will be 5% higher than today’s. Show
how dynamic programming can be used to determine a
strategy that maximizes the expected revenue earned from
selling the share of Wivco stock. Assume that at the
beginning of the first day, the stock sells for $10 per share.

Group B

7 The National Cat Foundling Home encourages people to
adopt its cats, but (because of limited funds) it allows each
prospective owner to inspect only four cats before choosing
one of them to take home. Ten-year-old Sara is eager to
adopt a cat and agrees to abide by the following rules. A
randomly selected cat is brought for Sara to see, and then
Sara must either choose the cat or reject it. If the first cat is
rejected, Sara sees another randomly selected cat and must
accept or reject it. This procedure continues until Sara has
selected her cat. Once Sara rejects a cat, she cannot go back
later and choose it as her pet. Determine a strategy for Sara
that will maximize her probability of ending up with the cat
she actually prefers.

8 Consider the following probabilistic inventory model:

a At the beginning of each period, a firm observes its
inventory position.

b Then the firm decides how many units to produce
during the current period. It costs c(x) dollars to produce
x units during a period.

c With probability q(d), d units are demanded during
the period. From units on hand (including the current
period’s production), the firm satisfies as much of the
demand as possible. The firm receives r dollars for each
unit sold. For each unit of demand that is unsatisfied, a
penalty cost p is incurred. All unsatisfied demand is as-
sumed to be lost. For example, if the firm has 20 units
available and current demand is 30, a revenue of 20r
would be received, and a penalty of 10p would be 
incurred.

d If ending inventory is positive, a holding cost of $1
per unit is incurred.

e The next period now begins.

The firm’s inital inventory is zero, and its goal is to minimize
the expected cost over a 100-period horizon. Formulate a
dynamic programming recursion that will help the firm
accomplish its goal.

9 Martha and Ken Allen want to sell their house. At the
beginning of each day, they receive an offer. We assume that
from day to day, the sizes of the offers are independent
random variables and that the probability that a given day’s
offer is for j dollars is pj . An offer may be accepted during
the day it is made or at any later date. For each day the
house remains unsold, a maintenance cost of c dollars is
incurred. The house must be sold within 30 days. Formulate
a dynamic programming recursion that Martha and Ken can
use to maximize their expected net profit (selling price �
maintenance cost). Assume that the maintenance cost for a
day is incurred before the current day’s offer is received and
that each offer is for an integer number of dollars.

10 An advertising firm has D dollars to spend on reaching
customers in T separate markets. Market t consists of kt

people. If x dollars are spent on advertising in market t, the
probability that a given person in market t will be reached
is pt(x). Each person in market t who is reached will buy ct

units of the product. A person who is not reached will not
buy any of the product. Formulate a dynamic programming
recursion that could be used to maximize the expected
number of units sold in T markets.

11 Georgia Stein is the new owner of the New York
Yankees. Each season, Georgia must decide how much
money to spend on the free agent draft. During each season,
Georgia can spend any amount of money on free agents up
to the team’s capital position at the beginning of the season.
If the Yankees finish in ith place during the season, their
capital position increases by R(i) dollars less the amount of
money spent in the free agent draft. If the Yankees finished
in ith place last season and spend d dollars on free agents
during the off-season, the probability that the Yankees will
finish in place j during the next season is pij(d)( j � 1, 2,
. . . , 7). Last season, the Yankees finished in first place, and
at the end of the season, they had a capital position of D
dollars. Formulate a dynamic programming recursion that
will enable the Yankees to maximize their expected cash
position at the end of T seasons.

12 Bailey Bliss is the campaign manager for Walter
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Glenn’s presidential campaign. He has D dollars to allocate
to T winner-take-all primaries. If xt dollars are allocated to
primary t, then with probability pt(xt), Glenn will win
primary t and obtain vt delegates. With probability 1 �

pt(xt), Glenn loses primary t and obtains no delegates. Glenn
needs K delegates to be nominated. Use dynamic
programming to help Bliss maximize Glenn’s probability of

being nominated. What aspect of a real campaign does the
present formulation ignore?

13 At 7 A.M., eight people leave their cars for repair at
Harry’s Auto Repair Shop. If person i’s car is ready by time
t (7 A.M. � time 0, and so on), he will pay Harry ri(t) dollars.
For example, if person 2’s car must be ready by 2 P.M., we

may have r2(8) � 0. Harry estimates that with probability pi(t), it will take t hours to repair person i’s car. Formulate a dynamic
programming recursion that will enable Harry to maximize his expected revenue for the day. His workday ends at 5 P.M. �
time 10.

14 In Example 10, suppose pt � t/60 and dt � t. Using a spreadsheet, solve for Dirk’s optimal strategy. (Hint: The possible
states are 50, 51, . . . , 1,880 (thousands).)

15 In Example 9, assume T � 10 and pt � |t|/10. Using a spreadsheet, solve for Robert’s optimal strategy.

19.5 Markov Decision Processes†

To use dynamic programming in a problem for which the stage is represented by time,

one must determine the value of T, the number of time periods over which expected rev-

enue or expected profit is maximized (or expected costs are minimized). T is referred to

as the horizon length. For instance, in the equipment-replacement problem of Section 18.5,

if our goal is to minimize costs over a 30-year period, then T � 30. Of course, it may be

difficult for a decision maker to determine exactly the most suitable horizon length. In

fact, when a decision maker is facing a long horizon and is not sure of the horizon length,

it is more convenient to assume that the horizon length is infinite.

Suppose a decision maker’s goal is to maximize the expected reward earned over an

infinite horizon. In many situations, the expected reward earned over an infinite horizon

may be unbounded. For example, if for any state and decision, the reward earned during

a period is at least $3, then the expected reward earned during an infinite number of pe-

riods will, no matter what decisions are chosen, be unbounded. In this situation, it is not

clear how a decision maker should choose a decision. Two approaches are commonly used

to resolve the problem of unbounded expected rewards over an infinite horizon.

1 We can discount rewards (or costs) by assuming that a $1 reward received during the

next period will have the same value as a reward of b dollars (0 	 b 	 1) received dur-

ing the current period. This is equivalent to assuming that the decision maker wants to

maximize expected discounted reward. Let M be the maximum reward (over all possible

states and choices of decisions) that can be received during a single period. Then the max-

imum expected discounted reward (measured in terms of current period dollars) that can

be received over an infinite period horizon is

M � Mb � Mb2
� � � � � �

1 �

M

b
� 	 ∞

Thus, discounting rewards (or costs) resolves the problem of an infinite expected reward.

2 The decision maker can choose to maximize the expected reward earned per period.

Then he or she would choose a decision during each period in an attempt to maximize

the average reward per period as given by

E � lim
n→∞

�reward earned during periods 1, 2, . . . , n
�����

†This section covers topics that may be omitted with no loss of continuity.
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Thus, if a $3 reward were earned each period, the total reward earned during an infinite num-

ber of periods would be unbounded, but the average reward per period would equal $3.

In our discussion of infinite horizon problems, we choose to resolve the problem of un-

bounded expected rewards by discounting rewards by a factor b per period. A brief dis-

cussion of the criterion of average reward per period is also included. Infinite horizon

probabilistic dynamic programming problems are called Markov decision processes (or

MDPs).

Description of an MDP

An MDP is described by four types of information:

1 State space

2 Decision set

3 Transition probabilities

4 Expected rewards

State Space

At the beginning of each period, the MDP is in some state i, where i is a member of S �

{1, 2, . . . , N}. S is referred to as the MDP’s state space.

Decision Set

For each state i, there is a finite set of allowable decisions, D(i).

Transition Probabilities

Suppose a period begins in state i, and a decision d � D(i) is chosen. Then with proba-

bility p( j|i, d), the next period’s state will be j. The next period’s state depends only on

the current period’s state and on the decision chosen during the current period (not on pre-

vious states and decisions). This is why we use the term Markov decision process.

Expected Rewards

During a period in which the state is i and a decision d � D(i) is chosen, an expected re-

ward of rid is received.

TA B L E  8

Next Period’s States of Machines

Present State
Probability That Machine Begins Next Week As

of Machine Excellent Good Average Bad

Excellent .7 .3 — —

Good — .7 .3 —

Average — — .6 .4

Bad — — — 1.0

until replaced
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At the beginning of each week, a machine is in one of four conditions (states): excellent

(E), good (G), average (A), or bad (B). The weekly revenue earned by a machine in each

type of condition is as follows: excellent, $100; good, $80; average, $50; bad, $10. After

observing the condition of a machine at the beginning of the week, we have the option of

instantaneously replacing it with an excellent machine, which costs $200. The quality of

a machine deteriorates over time, as shown in Table 8. For this situation, determine the

state space, decision sets, transition probabilities, and expected rewards.

Solution The set of possible states is S � {E, G, A, B}. Let

R � replace at beginning of current period

NR � do not replace during current period

Since it is absurd to replace an excellent machine, we write

D(E) � {NR} D(G) � D(A) � D(B) � {R, NR}

We are given the following transition probabilities:

p(E|NR, E) � .7 p(G|NR, E) � .3 p(A|NR, E) � 0 p(B|NR, E) � 0

p(E|NR, G) � 0 p(G|NR, G) � .7 p(A|NR, G) � .3 p(B|NR, G) � 0

p(E|NR, A) � 0 p(G|NR, A) � 0 p(A|NR, A) � .6 p(B|NR, A) � .4

p(E|NR, B) � 0 p(G|NR, B) � 0 p(A|NR, B) � 0 p(B|NR, B) � 1

If we replace a machine with an excellent machine, the transition probabilities will be

the same as if we had begun the week with an excellent machine. Thus,

p(E|G, R) � p(E|A, R) � p(E|B, R) � .7

p(G|G, R) � p(G|A, R) � p(G|B, R) � .3

p(A|G, R) � p(A|A, R) � p(A|B, R) � 0

p(B|G, R) � p(B|A, R) � p(B|B, R) � 0

If the machine is not replaced, then during the week, we receive the revenues given in the

problem. Therefore, rE,NR � $100, rG,NR � $80, rA,NR � $50, and rB,NR � $10. If we re-

place a machine with an excellent machine, then no matter what type of machine we had at

the beginning of the week, we receive $100 and pay a cost of $200. Thus, rE,R � rG,R �

rA,R � rB,R � �$100.

In an MDP, what criterion should be used to determine the correct decision? Answer-

ing this question requires that we discuss the idea of an optimal policy for an MDP.

D E F I N I T I O N ■

Period t’s decision may depend on the prior history of the process. Thus, period t’s de-

cision can depend on the state during periods 1, 2, . . . , t and the decisions chosen during

periods 1, 2, . . . , t � 1.

D E F I N I T I O N ■ A policy � is a stationary policy if whenever the state is i, the policy � chooses

(independently of the period) the same decision (call this decision �(i)). ■

A policy is a rule that specifies how each period’s decision is chosen. ■

Machine Replacement
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We let d represent an arbitrary policy and  represent the set of all policies. Then

Xt � random variable for the state of MDP at the beginning of period t (for

example, X2, X3, . . . , Xn)

X1 � given state of the process at beginning of period 1 (initial state)

dt � decision chosen during period t

Vd (i) � expected discounted reward earned during an infinite number of periods, given

that at beginning of period 1, state is i and stationary policy will be d

Then

Vd (i) � Ed ��
t�∞

t�1

bt�1rXtdt
|X1 � i�

where Ed (bt�1rXtdt
|X1 � i) is the expected discounted reward earned during period t,

given that at the beginning of period 1, the state is i and stationary policy d is followed.

In a maximization problem, we define

V(i) � max
d�

Vd (i) (14)

In a minimization problem, we define

V(i) � min
d�

Vd (i)

D E F I N I T I O N ■

The existence of a single policy d* that simultaneously attains all N maxima in (14) is

not obvious. If the rid’s are bounded, Blackwell (1962) has shown that an optimal policy

exists, and there is always a stationary policy that is optimal. (Even if the rid’s are not

bounded, an optimal policy may exist.)

We now consider three methods that can be used to determine an optimal stationary

policy:

1 Policy iteration

2 Linear programming

3 Value iteration, or successive approximations

Policy Iteration

Value Determination Equations

Before we can explain the policy iteration method, we need to determine a system of lin-

ear equations that can be used to find Vd (i) for i � S and any stationary policy d. Let d(i)

be the decision chosen by the stationary policy d whenever the process begins a period in

state i. Then Vd (i) can be found by solving the following system of N linear equations,

the value determination equations:

If a policy �* has the property that for all i � S

V(i) � V�*(i)

then �* is an optimal policy. ■
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Vd (i) � ri,d(i) � b �
j�N

j�1

p( j|i, d(i))Vd( j) (i � 1, 2, . . . , N) (15)

To justify (15), suppose we are in state i and we follow a stationary policy d. The current

period is period 1. Then the expected discounted reward earned during an infinite num-

ber of periods consists of ri,d(i) (the expected reward received during the current period)

plus b (expected discounted reward, to beginning of period 2, earned from period 2 on-

ward). But with probability p( j|i,d(i)), we will begin period 2 in state j and earn an ex-

pected discounted reward, back to period 2, of Vd ( j). Thus, the expected discounted re-

ward, discounted back to the beginning of period 2 and earned from the beginning of

period 2 onward, is given by

�
j�N

j�1

p( j|i, d(i))Vd ( j)

Equation (15) now follows.

To illustrate the use of the value determination equations, we consider the following

stationary policy for the machine replacement example:

d(E) � d(G) � NR d(A) � d(B) � R

This policy replaces a bad or average machine and does not replace a good or excellent

machine. For this policy, (15) yields the following four equations:

Vd (E) � 100 � .9(.7Vd (E) � .3Vd (G))

Vd (G) � 80 � .9(.7Vd (G) � .3Vd (A))

Vd (A) � �100 � .9(.7Vd (E) � .3Vd (G))

Vd (B) � �100 � .9(.7Vd (E) � .3Vd (G))

Solving these equations yields Vd (E) � 687.81, Vd (G) � 572.19, Vd (A) � 487.81, and

Vd (B) � 487.81.

Howard’s Policy Iteration Method

We now describe Howard’s (1960) policy iteration method for finding an optimal station-

ary policy for an MDP (max problem).

Step 1 Policy evaluation—Choose a stationary policy d and use the value determination

equations to find Vd(i)(i � 1, 2, . . . , N).

Step 2 Policy improvement—For all states i � 1, 2, . . . , N, compute

Td (i) � max
d�D(i)

�rid � b �
j�N

j�1

p( j|i, d)Vd ( j)� (16)

Since we can choose d � d(i) for i � 1, 2, . . . , N, Td(i) � Vd(i). If Td(i) � Vd(i) for i �

1, 2, . . . N, then d is an optimal policy. If Td (i) � Vd (i) for at least one state, then d is not

an optimal policy. In this case, modify d so that the decision in each state i is the deci-

sion attaining the maximum in (16) for Td (i). This yields a new stationary policy d� for

which Vd�(i) � Vd (i) for i � 1, 2, . . . N, and for at least one state i�, Vd�(i�) � Vd (i�). Re-

turn to step 1, with policy d� replacing policy d.

In a minimization problem, we replace max in (16) with min. If Td (i) � Vd (i) for i �

1, 2, . . . , N, then d is an optimal policy. If Td (i) 	 Vd (i) for at least one state, then d is



not an optimal policy. In this case, modify d so that the decision in each state i is the de-

cision attaining the minimum in (16) for Td (i). This yields a new stationary policy d� for

which Vd�(i) � Vd (i) for i � 1, 2, . . . N, and for at least one state i�, Vd�(i�) 	 Vd (i�). Re-

turn to step 1, with policy d� replacing policy d.

The policy iteration method is guaranteed to find an optimal policy for the machine re-

placement example after evaluating a finite number of policies. We begin with the fol-

lowing stationary policy:

d(E) � d(G) � NR d(A) � d(B) � R

For this policy, we have already found that Vd (E) � 687.81, Vd (G) � 572.19, Vd (A) �

487.81, and Vd (B) � 487.81. We now compute Td (E), Td (G), Td (A), and Td (B). Since NR

is the only possible decision in E,

Td (E) � Vd (E) � 687.81

and Td (E) is attained by the decision NR.

Td (G) � max �
Thus, Td (G) � 572.19 is attained by the decision NR.

Td (A) � max �
Thus, Td (A) � 489.03 is attained by the decision NR.

Td (B) � max �
Thus, Td (B) � Vd (B) � 487.81. We have found that Td (E) � Vd (E), Td (G) � Vd (G),

Td (B) � Vd (B), and Td (A) � Vd (A). Thus, the policy d is not optimal, and the policy d�

given by d�(E) � d�(G) � d�(A) � NR, d�(B) � R, is an improvement over d. We now

return to step 1 and solve the value determination equations for d�. From (15), the value

determination equations for d� are

Vd�(E) � 100 � .9(.7Vd�(E) � .3Vd�(G))

Vd�(G) � 80 � .9(.7Vd�(G) � .3Vd�(A))

Vd�(A) � 50 � .9(.6Vd�(A) � .4Vd�(B))

Vd�(B) � �100 � .9(.7Vd�(E) � .3Vd�(G))

Solving these equations, we obtain Vd�(E) � 690.23, Vd�(G) � 575.50, Vd�(A) � 492.35,

and Vd�(B) � 490.23. Observe that in each state i, Vd�(i) � Vd (i). We now apply the pol-

icy iteration procedure to d�. We compute

Td�(E) � Vd�(E) � 690.23

Td�(G) � max �
Thus, Td�(G) � Vd�(G) � 575.50 is attained by NR.

Td�(A) � max �
Thus, Td�(A) � Vd�(A) � 492.35 is attained by NR.

(R)

(NR)

�100 � .9(.7Vd�(E) � .3Vd�(G)) � 490.23

50 � .9(.6Vd�(A) � .4Vd�(B)) � Vd�(A) � 492.35*

(R)

(NR)

�100 � .9(.7Vd �(E) � .3Vd �(G)) � 490.23

80 � .9(.7Vd�(G) � .3Vd�(A)) � Vd�(G) � 575.50*

(R)

(NR)

�100 � .9(.7Vd (E) � .3Vd (G)) � Vd (B) � 487.81*

10 � .9Vd (B) � 449.03

(R)

(NR)

�100 � .9(.7Vd (E) � .3Vd (G)) � 487.81

50 � .9(.6Vd (A) � .4Vd (B)) � 489.03*

(R)

(NR)

�100 � .9(.7Vd (E) � .3Vd (G)) � 487.81

80 � .9(.7Vd (G) � .3Vd (A)) � Vd (G) � 572.19*

1 9 . 5 Markov Decision Processes 1041
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Td�(B) � max �
Thus, Td�(B) � Vd�(B) � 490.23 is attained by R.

For each state i, Td�(i) � Vd�(i). Thus, d� is an optimal stationary policy. To maximize

expected discounted rewards (profits), a bad machine should be replaced, but an excel-

lent, good, or average machine should not be replaced. If we began period 1 with an ex-

cellent machine, an expected discounted reward of $690.23 could be earned.

Linear Programming

It can be shown (see Ross (1983)) that an optimal stationary policy for a maximization

problem can be found by solving the following LP:

min z � V1 � V2 � � � � � VN

s.t. Vi � b �
j�N

j�1

p( j|i, d)Vj � rid (For each state i and each d � d(i))

s.t. All variables urs

For a minimization problem, we solve the following LP:

max z � V1 � V2 � � � � � VN

s.t. Vi � b �
j�N

j�1

p( j|i, d)Vj � rid (For each state i and each d � d(i))

s.t. All variables urs

The optimal solution to these LPs will have Vi � V(i). Also, if a constraint for state i and

decision d is binding (has no slack or excess), then decision d is optimal in state i.

R E M A R K S 1 In the objective function, the coefficient of each Vi may be any positive number.
2 If all the Vi’s are nonnegative (this will surely be the case if all the rid’s are nonnegative), we
may assume that all variables are nonnegative. If it is possible for some state to have V (i) negative,
then we must replace each variable Vi by V i� � V i�, where both V i� and V i� are nonnegative.
3 With LINDO, we may allow V(i) to be negative with the statement FREE Vi. With LINGO, use
the @FREE statement to allow a variable to assume a negative value.

Our machine replacement example yields the following LP:

min z � VE � VG � VA � VB

s.t. VE � 100 � .9(.7VE � .3VG) (NR in E)

s.t. VG � 80 � .9(.7VG � .3VA) (NR in G)

s.t. VG � �100 � .9(.7VE � .3VG) (R in G)

s.t. VA � 50 � .9(.6VA � .4VB) (NR in A)

s.t. VA � �100 � .9(.7VE � .3VG) (R in A)

s.t. VB � 10 � .9VB (NR in B)

s.t. VB � �100 � .9(.7VE � .3VG) (R in B)

All variables urs

The LINDO output for this LP yields VE � 690.23, VG � 575.50, VA � 492.35, and 

(R)

(NR)

�100 � .9(.7Vd�(E) � .3Vd�(G)) � Vd (B) � 490.23*

10 � .9Vd�(B) � 451.21
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VB � 490.23. These values agree with those found via the policy iteration method. The

LINDO output also indicates that the first, second, fourth, and seventh constraints have

no slack. Thus, the optimal policy is to replace a bad machine and not to replace an ex-

cellent, good, or average machine.

Value Iteration

There are several versions of value iteration (see Denardo (1982)). We discuss for a max-

imization problem the simplest value iteration scheme, also known as successive approx-

imations. Let Vt(i) be the maximum expected discounted reward that can be earned dur-

ing t periods if the state at the beginning of the current period is i. Then

Vt(i) � max
d�D(i)

�rid � b �
j�N

j�1

p( j|i, d)Vt�1( j)� (t � 1)

V0(i) � 0

This result follows, because during the current period, we earn an expected reward (in cur-

rent dollars) of rid, and during the next t � 1 periods, our expected discounted reward (in

terms of period 2 dollars) is

�
j�N

j�1

p( j|i, d)Vt�1( j)

Let dt(i) be the decision that must be chosen during period 1 in state i to attain Vt(i). For

an MDP with a finite state space and each D(i) containing a finite number of elements,

the most basic result in successive approximations states that for i � 1, 2, . . . , N,

|Vt(i) � V(i)| � �
1 �

bt

b
� max

i,d
|rid|

Recall that V(i) is the maximum expected discounted reward earned during an infinite

number of periods if the state is i at the beginning of the current period. Then

lim
t→∞

dt(i) � d*(i)

where d*(i) defines an optimal stationary policy. Since b 	 1, for t sufficiently large, Vt(i)

will come arbitrarily close to V(i). For instance, in the machine replacement example, 

b � .9 and max |rid | � 100. Thus, for all states, V50(i) would differ by at most 

(.9)50(�
1
.1
0
0
0

�) � $5.15 from V(i). The equation

lim
t→∞

dt(i) � d*(i)

implies that for t sufficiently large, the decision that is optimal in state i for a t-period

problem is also optimal in state i for an infinite horizon problem. This result is reminis-

cent of the turnpike theorem result for the knapsack problem that was discussed in Chap-

ter 6.

Unfortunately, there is usually no easy way to determine a t* such that for all i and 

t � t*, dt(i) � d*(i). (See Denardo (1982) for a partial result in this direction.) Despite

this fact, value iteration methods usually obtain a satisfactory approximation to the V(i)

and d*(i) with less computational effort than is needed by the policy iteration method or

by linear programming. Again, see Denardo (1982) for a discussion of this matter.

We illustrate the computation of V1 and V2 for the machine replacement example:
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V1(E) � 100 (NR)

V1(G) � max � � 80

V1(A) � max � � 50

V1(B) � max � � 10

The * indicates the action attaining V1(i). Then

V2(E) � 100 � .9(.7V1(E) � .3V1(G)) � 184.6 (NR)

V2(G) � max �
V2(A) � max �
V2(B) � max �

The * now indicates the decision d2(i) attaining V2(i). Observe that after two iterations of

successive aproximations, we have not yet come close to the actual values of V(i) and have

not found it optimal to replace even a bad machine.

In general, if we want to ensure that all the Vt(i)’s are within e of the corresponding

V(i), we would perform t* iterations of successive approximations, where

�
1

b

�

t*

b
� max

i,d
|rid| 	 e

There is no guarantee, however, that after t* iterations of successive approximations, the

optimal stationary policy will have been found.

Maximizing Average Reward per Period

We now briefly discuss how linear programming can be used to find a stationary policy

that maximizes the expected per-period reward earned over an infinite horizon. Consider

a decision rule or policy Q that chooses decision d � D(i) with probability qi(d) during

a period in which the state is i. A policy Q will be a stationary policy if each qi(d) equals

0 or 1. To find a policy that maximizes expected reward per period over an infinite hori-

zon, let pid be the fraction of all periods in which the state is i and the decision d � D(i)

is chosen. Then the expected reward per period may be written as

�
i�N

i�1
�

d�D(i)

pidrid (17)

What constraints must be satisfied by the pid? First, all pid’s must be nonnegative. Second,

�
i�N

i�1
�

d�D(i)

pid � 1

must hold. Finally, the fraction of all periods during which a transition occurs out of state

(NR)

(R)

10 � .9V1(B) � 19*

�100 � .9(.7V1(E) � .3V1(G)) � �15.4

(NR)

(R)

50 � .9(.6V1(A) � .4V1(B)) � 80.6*

�100 � .9(.7V1(E) � .3V1(G)) � �15.4

(NR)

(R)

80 � .9(.7V1(G) � .3V1(A)) � 143.9*

�100 � .9(.7V1(E) � .3V1(G)) � �15.4

(NR)

(R)

10*

�100

(NR)

(R)

50*

�100

(NR)

(R)

80*

�100
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j must equal the fraction of all periods during which a transition occurs into state j. This

is identical to the restriction on steady-state probabilities for Markov chains discussed in

Section 17.5. This yields (for j � 1, 2, . . . , n),

�
d�D( j)

pjd(1 � p( j| j, d)) � �
d�D(i)

�
i
j

pid p( j|i, d)

Rearranging the last equality yields (for j � 1, 2, . . . , N)

�
d�D( j)

pjd � �
d�D(i)

�
i�N

i�1

pid p( j|i, d)

Putting together our objective function (17) and all the constraints yields the following

LP:

max z � �
i�N

i�1
�

d�D(i)

pidrid

s.t. �
i�N

i�1
�

d�D(i)

pid � 1

s.t. �
d�D( j)

pjd � �
d�D(i)

�
i�N

i�1

pidp( j|i, d)

(18)

( j � 1, 2, . . . , N)

All pid�s � 0

It can be shown that this LP has an optimal solution in which for each i, at most one

pid � 0. This optimal solution implies that expected reward per period is maximized by

a solution in which each qi(d) equals 0 or 1. Thus, the optimal solution to (18) will occur

for a stationary policy. For states having pid � 0, any decision may be chosen without af-

fecting the expected reward per period.

We illustrate the use of (18) for Example 11 (machine replacement). For this example,

(18) yields

max z � 100pENR � 80pGNR � 50pANR � 10pBNR � 100(pGR � pAR � pBR)

s.t. pENR � pGNR � pANR � pBNR � pGR � pAR � pBR � 1

s.t. pENR � .7(pENR � pGR � pAR � pBR)

s.t. pGNR � pGR � .3(pGR � pAR � pBR � pENR) � .7pGNR

s.t. pAR � pANR � .3pGNR � .6pANR

s.t. pBR � pBNR � pBNR � .4pANR

Using LINDO, we find the op-

timal objective function value

for this LP to be z � 60. The

only nonzero decision vari-

ables are pENR � .35, pGNR

� .50, pAR � .15. Thus, an

average of $60 profit per pe-

riod can be earned by not re-

placing an excellent or good

machine but replacing an av-

erage machine. Since we are

replacing an average machine,

the action chosen during a pe-

riod in which a machine is in

bad condition is of no impor-

tance.

P R O B L E M S
Group A

1 A warehouse has an end-of-period capacity of 3 units.
During a period in which production takes place, a setup
cost of $4 is incurred. A $1 holding cost is assessed against
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each unit of a period’s ending inventory. Also, a variable
production cost of $1 per unit is incurred. During each
period, demand is equally likely to be 1 or 2 units. All
demand must be met on time, and b � .8. The goal is to
minimize expected discounted costs over an infinite horizon.

a Use the policy iteration method to determine an op-
timal stationary policy.

b Use linear programming to determine an optimal
stationary policy.

c Perform two iterations of value iteration.

2 Priceler Auto Corporation must determine whether or
not to give consumers 8% or 11% financing on new cars. If
Priceler gives 8% financing during the current month, the
probability distribution of sales during the current month
will be as shown in Table 9. If Priceler gives 11% financing
during the current month, the probability distribution of
sales during the current month will be as shown in Table 10.
“Good” sales represents 400,000 sales per month, “bad”
sales represents 300,000 sales per month. For example, if
last month’s sales were bad and Priceler gives 8% financing
during the current month, there is a .40 chance that sales

will be good during the current month. At 11% financing
rates, Priceler earns $1,000 per car, and at 8% financing,
Priceler earns $800 per car. Priceler’s goal is to maximize
expected discounted profit over an infinite horizon (use 
b � .98).

a Use the policy iteration method to determine an op-
timal stationary policy.

b Use linear programming to determine an optimal
stationary policy.

c Perform two iterations of value iteration.

d Find a policy that maximizes average profit per
month.

3 Suppose you are using the policy iteration method to
determine an optimal policy for an MDP. How might you
use LINDO to solve the value determination equations?

Group B

4 During any day, I may own either 0 or 1 share of a stock.
The price of the stock is governed by the Markov chain
shown in Table 11. At the beginning of a day in which I own
a share of stock, I may either sell it at today’s price or keep
it. At the beginning of a day in which I don’t own a share
of stock, I may either buy a share of stock at today’s price
or not buy a share. My goal is to maximize my expected
discounted profit over an infinite horizon (use b � .95).

a Use the policy iteration method to determine an op-
timal stationary policy.

b Use linear programming to determine an optimal

TA B L E  9

Current Month’s

Last Month’s
Sales

Sales Good Bad

Good .95 .05

Bad .40 .60

TA B L E  10

Current Month’s

Last Month’s
Sales

Sales Good Bad

Good .80 .20

Bad .20 .80

TA B L E  11

Today’s
Tomorrow’s Price

Price $0 $1 $2 $3

$0 .5 .3 .1 .1

$1 .1 .5 .2 .2

$2 .2 .1 .5 .2

$3 .1 .1 .3 .5

stationary policy.

c Perform two iterations of value iteration.

d Find a policy that maximizes average daily profit.

5 Ethan Sherwood owns two printing presses, on which he prints two types of jobs. At the beginning of each day, there is a
.5 probability that a type 1 job will arrive, a .1 probability that a type 2 job will arrive, and a .4 probability that no job will
arrive. Ethan receives $400 for completing a type 1 
job and $200 for completing a type 2 job. (Payment for each job is received in advance.) Each type of job takes an average
of three days to complete. To model this, we assume that each day a job is in press there is a �

1
3

� probability that its printing
will be completed at the end of the day. If both presses are busy at the beginning of the day, any arriving job is lost to the
system. The crucial decision is when (if ever) Ethan should accept the less profitable type 2 job. Ethan’s goal is to maximize
expected discounted profit (use b � .90).

a Use the policy iteration method to determine an optimal stationary policy.

b Use linear programming to determine an optimal stationary policy.

c Perform two iterations of value iteration.



S U M M A R Y Key to Formulating Probabilistic Dynamic 
Programming Problems (PDPs)

Suppose the possible states during period t � 1 are s1, s2, . . . sn, and the probability that

the period t � 1 state will be si is pi. Then the minimum expected cost incurred during

periods t � 1, t � 2, . . . , end of the problem is

�
i�n

i�1

pi ft�1(si)

where ft�1(si) is the minimum expected cost incurred from period t � 1 to the end of the

problem, given that the state during period t � 1 is si.

Maximizing the Probability of a Favorable Event Occurring

To maximize the probability that a favorable event will occur, assign a reward of 1 if the

favorable event occurs and a reward of 0 if it does not occur.

Markov Decision Processes

A Markov decision process (MDP) is simply an infinite-horizon PDP. Let Vd (i) be the

expected discounted reward earned during an infinite number of periods, given that at the

beginning of period 1, the state is i and the stationary policy d is followed.

For a maximization problem, we define

V(i) � max
d�D

Vd (i)

For a minimization problem, we define

V(i) � min
d�D

Vd (i)

If a policy d* has the property that for all i � S,

V(i) � Vd*(i)

then d* is an optimal policy. We can use the value determination equations to deter-

mine Vd (i):

Vd (i) � ri,d(i) � b �
j�N

j�1

p( j|i, d(i))Vd ( j) (i � 1, 2, . . . , N) (15)

An optimal policy for an MDP may be determined by one of three methods:

1 Policy iteration

2 Linear programming

3 Value iteration, or successive approximations

Policy Iteration

Summary 1047
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A summary of Howard’s policy iteration method for a maximization problem follows.

Step 1 Policy evaluation—Choose a stationary policy d and use the value determination

equations to find Vd(i)(i � 1, 2, . . . , N).

Step 2 Policy improvement—For all states i � 1, 2, . . . , N, compute

Td (i) � max
d�D(i)

�rid � b �
j�N

j�1

p( j |i, d)Vd ( j)� (16)

Since we can choose d � d(i) for i � 1, 2, . . . , N, Td(i) � Vd(i). If Td(i) � Vd(i) for i �

1, 2, . . . , N, then d is an optimal policy. If Td (i) � Vd (i) for at least one state, then d is

not an optimal policy. In this case, modify d so that the decision in each state i is the de-

cision attaining the maximum in (16) for Td (i). This yields a new stationary policy d� for

which Vd�(i) � Vd (i) for i � 1, 2, . . . , N, and for at least one state i�, Vd�(i�) � Vd (i�).

Return to step 1, with policy d� replacing policy d.

Linear Programming

In a maximization problem, V(i) for each state may be determined by solving the follow-

ing LP:

min z � V1 � V2 � � � � � VN

s.t. Vi � b �
j�N

j�1

p( j |i, d)Vj � rid (For each state i and each d � D(i))

All variables urs

If the constraint for state i and decision d has no slack, then decision d is optimal in state i.

Value Iteration, or
Successive Approximations

Let Vt(i) be the maximum ex-

pected discounted reward that

can be earned during t peri-

ods if the state at the begin-

ning of the current period is i.

Then

Vt(i) � max
d�D(i)

�rid � b �
j�N

j�1p( j|i, d)Vt�1( j)� (t � 1)

V0(i) � 0

As t grows large, Vt(i) will ap-

proach V(i). For t sufficiently

large, the decision that is opti-

mal in state i for a t-period

problem is also optimal in state

i for an infinite-horizon prob-

lem.

R E V I E W  P R O B L E M S
Group A

1 A company has five sales representatives available for
assignment to three sales districts. The sales in each district
during the current year depend on the number of sales
representatives assigned to the district and on whether the
national economy has a bad or good year (see Table 12). In

TA B L E  12

No. of Sales
Sales (millions)

Reps Assigned District District District
to District 1 2 3

0 $1, $4 $2, $5 $3, $4

1 $2, $6 $4, $6 $5, $5

2 $3, $7 $5, $6 $6, $7

3 $4, $8 $6, $6 $7, $7
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the Sales column for each district, the first number represents
sales if the national economy had a bad year, and the second
number represents sales if the economy had a good year.
There is a .3 chance that the national economy will have a
good year and a .7 chance that the national economy will
have a bad year. Use dynamic programming to determine an
assignment of sales representatives to districts that
maximizes the company’s expected sales.

2 At the beginning of each period, a company must
determine how many units to produce. A setup cost of $5 is
incurred during each period in which production takes place.
The production of each unit also incurs a $2 variable cost.
All demand must be met on time, and there is a $1 per-unit
holding cost on each period’s ending inventory. During each
period, it is equally likely that demand will equal 0 or 1 unit.
Assume that each period’s ending inventory cannot exceed
2 units.

a Use dynamic programming to minimize the expected
costs incurred during three periods. Assume that the ini-
tial inventory is 0 units.

b Now suppose that each unit demanded can be sold
for $4. If the demand is not met on time, the sale is lost.
Use dynamic programming to maximize the expected
profit earned during three periods. Assume that the ini-
tial inventory is 0 units.

c In parts (a) and (b), is an (s, S) policy optimal?

3 At Hot Dog Queen Restaurant, the following sequence
of events occurs during each minute:

a With probability p, a customer arrives and waits in
line.

b Hot Dog Queen determines the rate s at which cus-
tomers are served. If any customers are in the restaurant,
then with probability s, one of the customers completes
service and leaves the restaurant. It costs c(s) dollars per
period to serve customers at a rate s. Each customer
spends R dollars, and the customer’s food costs Hot Dog
Queen R � 1 dollars to prepare.

c For each customer in line at the end of the minute,
a cost of h dollars is assessed (because of customer 
inconvenience).

d The next minute begins.

Formulate a recursion that could be used to maximize
expected revenues less costs (including customer
inconvenience costs) incurred during the next T minutes.
Assume that initially there are no customers present.

4 At the beginning of 2004, the United States has B barrels
of oil. If x barrels of oil are consumed during a year, then

consumers earn a benefit (measured in dollars) of u(x). The
United States may spend money on oil exploration. If d
dollars are spent during a year on oil exploration, then there
is a probability p(d) that an oil field (containing 500,000
barrels of oil) will be found. Formulate a recursion that can
be used to maximize the expected discounted benefits less
exploration expenditures earned from the beginning of 2004
to the end of the year 2539.

5 I am a contestant on the popular TV show “Tired of
Fortune.” During the bonus round, I will be asked up to four
questions. For each question that is correctly answered, I
win a certain amount of money. One incorrect answer,
however, means that I lose all the money I have previously
won, and the game is over. If I elect to pass, or not answer
a question, the game is over, but I may keep what I have
already won. The amount of money I win for each correct
question and the probability that I will answer each question
correctly are shown in Table 13.

a My goal is to maximize the expected amount of
money won. Use dynamic programming to accomplish
this goal.

b Suppose that I am allowed to pass, or not answer a
question, and still go on to the next question. Now de-
termine how to maximize the amount of money won.

6 A machine in excellent condition earns $100 profit per
week, a machine in good condition earns $70 per week, and
a machine in bad condition earns $20 per week. At the
beginning of any week, a machine may be sent out for
repairs at a cost of $90. A machine that is sent out for
repairs returns in excellent condition at the beginning of the
next week. If a machine is not repaired, the condition of the
machine evolves in accordance with the Markov chain
shown in Table 14. The company wants to maximize its
expected discounted profit over an infinite horizon (b � .9).

a Use policy iteration to determine an optimal sta-
tionary policy.

b Use linear programming to detemine an optimal sta-
tionary policy.

c Perform two iterations of value iteration.

7 A country now has 10 units of capital. Each year, it may
consume any amount of the available capital and invest the
rest. Invested capital has a 50% chance of doubling and a
50% chance of losing half its value. For example, if the
country invests 6 units of capital, there is a 50% chance that
the 6 units will turn into 12 capital units and a 50% chance
that the invested capital will turn into 3 units. What strategy
should be used to maximize total expected consumption
over a four-year period?

TA B L E  13

Probability
of Correct

Question Answer Money Won

1 .6 $10,000

2 .5 $20,000

3 .4 $30,000

4 .3 $40,000

TA B L E  14

Next Week

This Week Excellent Good Bad

Excellent .7 .2 .1

Good 0 .7 .3

Bad 0 .1 .9
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8 The Dallas Mavericks trail by two points and have the
ball with 10 seconds remaining. They must decide whether
to take a two- or a three-point shot. Assume that once the
Mavericks take their shot, time expires. The probability that
a two-point shot is successful is TWO, and the probability
that a three-point shot is successful is THREE. If the game
is tied, an overtime period will be played. Assume that there
is a .5 chance the Mavericks will win in overtime. (Note:
This problem is often used on Microsoft job interviews.)

a Give a rule based on the values of TWO and THREE
that tells Dallas what to do.

b Typical values for an NBA team are TWO � .45 and
THREE � .35. Based on this information, what strategy
should most NBA teams follow?

9 At any time, the size of a tree is 0, 1, 2, or 3. We must
decide when to harvest the tree. Each year, it costs $1 to
maintain the tree. It costs $5 to harvest a tree. The sales
price for a tree of each size is as follows:

Tree Size Sales Price

0 $20

1 $30

2 $45

3 $49

The transition probability matrix for the size of the tree is
as follows:

0 1 2 3

� �
For example, 80% of all size 0 trees begin the next year as
size 0 trees, and 20% of all size 0 trees begin the next year
as size 1 trees. Assuming the discount factor for cash flows
is .9 per year, determine an optimal harvesting strategy.

10 For $50, we can enter a raffle. We draw a certificate
containing a number 100, 200, 300, . . . , 1,000. Each
number is equally likely. At any time, we can redeem the
highest-numbered certificate we have obtained so far for the
face value of the certificate. We may enter the raffle as many
times as we wish. Assuming no discounting, what strategy
would maximize our expected profit? How does this model
relate to the problem faced by an unemployed person who
is searching for a job?

11 At the beginning of each year, an aircraft engine is in
good, fair, or poor condition. It costs $500,000 to run a
good engine for a year, $1 million to run a fair engine for a
year, and $2 million to run a poor engine for a year. A fair
engine can be overhauled for $2 million, and it immediately
becomes a good engine. A poor engine can be replaced for
$3 million, and it immediately becomes a good engine. The

0

0

.3

1

0

.1

.7

0

.2

.9

0

0

.8

0

0

0

0

1

2

3

transition probability matrix for an engine is as follows:

Good Fair Poor

� �
The discount factor for costs is .9. What strategy minimizes
expected discounted cost over an infinite horizon?

Group B

12 A syndicate of college students spends weekends
gambling in Las Vegas. They begin week 1 with W dollars.
At the beginning of each week, they may wager any amount
of their money at the gambling tables. If they wager d
dollars, then with probability p, their wealth increases by d
dollars, and with probability 1 � p, their wealth decreases
by d dollars. Their goal is to maximize their expected wealth
at the end of T weeks.

a Show that if p � �
1
2

�, the students should bet all their
money.

b Show that if p 	 �
1
2

�, the students should bet no money.
(Hint: Define ft(w) as the maximum expected wealth at
the end of week T, given that wealth is w dollars at the
beginning of week t; by working backward, find an ex-

.1

.4

1

.2

.6

0

.7

0

0

Good

Fair

Poor

pression for ft(w).)

Group C

13 You have invented a new product: the HAL DVD player.
Each of 1,000 potential customers places a different value
on this product. A consumer’s valuation is equally likely to
be any number between $0 and $1,000. It costs $100 to
produce the HAL player. During a year in which we set a
price p for the product, all customers valuing the product at
$p or more will purchase the product. Each year, we set a
price for the product. What pricing strategy will maximize
our expected profit over three years? What commonly
observed phenomenon does this problem illustrate?

R E F E R E N C E S
The following books contain elementary discussions of
Markov decision processes and probabilistic dynamic pro-
gramming:
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Queuing Theory

Each of us has spent a great deal of time waiting in lines. In this chapter, we develop mathe-

matical models for waiting lines, or queues. In Section 20.1, we begin by discussing some ter-

minology that is often used to describe queues. In Section 20.2, we look at some distributions

(the exponential and the Erlang distributions) that are needed to describe queuing models. In

Section 20.3, we introduce the idea of a birth–death process, which is basic to many queu-

ing models involving the exponential distribution. The remainder of the chapter examines sev-

eral models of queuing systems that can be used to answer questions like the following:

1 What fraction of the time is each server idle?

2 What is the expected number of customers present in the queue?

3 What is the expected time that a customer spends in the queue?

4 What is the probability distribution of the number of customers present in the queue?

5 What is the probability distribution of a customer’s waiting time?

6 If a bank manager wants to ensure that only 1% of all customers will have to wait more

than 5 minutes for a teller, how many tellers should be employed?

20.1 Some Queuing Terminology

To describe a queuing system, an input process and an output process must be specified.

Some examples of input and output processes are given in Table 1.

The Input or Arrival Process

The input process is usually called the arrival process. Arrivals are called customers. In

all models that we will discuss, we assume that no more than one arrival can occur at a

given instant. For a case like a restaurant, this is a very unrealistic assumption. If more

than one arrival can occur at a given instant, we say that bulk arrivals are allowed.

Usually, we assume that the arrival process is unaffected by the number of customers

present in the system. In the context of a bank, this would imply that whether there are

500 or 5 people at the bank, the process governing arrivals remains unchanged.

There are two common situations in which the arrival process may depend on the num-

ber of customers present. The first occurs when arrivals are drawn from a small popula-

tion. Suppose that there are only four ships in a naval shipyard. If all four ships are be-

ing repaired, then no ship can break down in the near future. On the other hand, if all four

ships are at sea, a breakdown has a relatively high probability of occurring in the near 



1052 C H A P T E R 2 0 Queuing Theory

future. Models in which arrivals are drawn from a small population are called finite

source models. Another situation in which the arrival process depends on the number of

customers present occurs when the rate at which customers arrive at the facility decreases

when the facility becomes too crowded. For example, if you see that the bank parking lot

is full, you might pass by and come another day. If a customer arrives but fails to enter

the system, we say that the customer has balked. The phenomenon of balking was de-

scribed by Yogi Berra when he said, “Nobody goes to that restaurant anymore; it’s too

crowded.”

If the arrival process is unaffected by the number of customers present, we usually de-

scribe it by specifying a probability distribution that governs the time between successive

arrivals.

The Output or Service Process

To describe the output process (often called the service process) of a queuing system, we

usually specify a probability distribution—the service time distribution—which governs

a customer’s service time. In most cases, we assume that the service time distribution is

independent of the number of customers present. This implies, for example, that the server

does not work faster when more customers are present.

In this chapter, we study two arrangements of servers: servers in parallel and servers

in series. Servers are in parallel if all servers provide the same type of service and a cus-

tomer need only pass through one server to complete service. For example, the tellers in

a bank are usually arranged in parallel; any customer need only be serviced by one teller,

and any teller can perform the desired service. Servers are in series if a customer must

pass through several servers before completing service. An assembly line is an example

of a series queuing system.

Queue Discipline

To describe a queuing system completely, we must also describe the queue discipline and

the manner in which customers join lines.

The queue discipline describes the method used to determine the order in which cus-

tomers are served. The most common queue discipline is the FCFS discipline (first come,

first served), in which customers are served in the order of their arrival. Under the LCFS

discipline (last come, first served), the most recent arrivals are the first to enter service. If

we consider exiting from an elevator to be service, then a crowded elevator illustrates an

LCFS discipline. Sometimes the order in which customers arrive has no effect on the or-

TA B L E  1

Examples of Queuing Systems

Situation Input Process Output Process

Bank Customers arrive at bank Tellers serve the customers

Pizza parlor Requests for pizza delivery Pizza parlor sends out
are received truck to deliver pizzas

Hospital blood bank Pints of blood arrive Patients use up pints of
blood

Naval shipyard Ships at sea break down Ships are repaired and
and are sent to shipyard return to sea
for repairs
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der in which they are served. This would be the case if the next customer to enter service

is randomly chosen from those customers waiting for service. Such a situation is referred

to as the SIRO discipline (service in random order). When callers to an airline are put on

hold, the luck of the draw often determines the next caller serviced by an operator.

Finally, we consider priority queuing disciplines. A priority discipline classifies each

arrival into one of several categories. Each category is then given a priority level, and

within each priority level, customers enter service on an FCFS basis. Priority disciplines

are often used in emergency rooms to determine the order in which customers receive

treatment, and in copying and computer time-sharing facilities, where priority is usually

given to jobs with shorter processing times.

Method Used by Arrivals to Join Queue

Another factor that has an important effect on the behavior of a queuing system is the method

that customers use to determine which line to join. For example, in some banks, customers

must join a single line, but in other banks, customers may choose the line they want to join.

When there are several lines, customers often join the shortest line. Unfortunately, in many

situations (such as a supermarket), it is difficult to define the shortest line. If there are sev-

eral lines at a queuing facility, it is important to know whether or not customers are allowed

to switch, or jockey, between lines. In most queuing systems with multiple lines, jockeying

is permitted, but jockeying at a toll booth plaza is not recommended.

20.2 Modeling Arrival and Service Processes

Modeling the Arrival Process

As previously mentioned, we assume that at most one arrival can occur at a given instant

of time. We define ti to be the time at which the ith customer arrives. To illustrate this,

consider Figure 1. For i � 1, we define Ti � ti�1 � ti to be the ith interarrival time. Thus,

in the figure, T1 � 8 � 3 � 5, and T2 � 15 � 8 � 7. In modeling the arrival process,

we assume that the Ti’s are independent, continuous random variables described by the

random variable A. The independence assumption means, for example, that the value of

T2 has no effect on the value of T3, T4, or any later Ti. The assumption that each Ti is con-

tinuous is usually a good approximation of reality. After all, an interarrival time need not

be exactly 1 minute or 2 minutes; it could just as easily be, say, 1.55892 minutes. The as-

sumption that each interarrival time is governed by the same random variable implies that

the distribution of arrivals is independent of the time of day or the day of the week. This

is the assumption of stationary interarrival times. Because of phenomena such as rush

hours, the assumption of stationary interarrival times is often unrealistic, but we may of-

ten approximate reality by breaking the time of day into segments. For example, if we

were modeling traffic flow, we might break the day up into three segments: a morning

rush hour segment, a midday segment, and an afternoon rush hour segment. During each

of these segments, interarrival times may be stationary.

We assume that A has a density function a(t). Recall from Section 12.5 that for small

�t, P(t � A � t � �t) is approximately �ta(t). Of course, a negative interarrival time is

impossible. This allows us to write

P(A � c) � �c

0
a(t)dt and P(A � c) � �∞

c

a(t)dt (1)
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L E M M A  1

We define 	
l

1
	 to be the mean or average interarrival time. Without loss of generality, we

assume that time is measured in units of hours. Then 	
l

1
	 will have units of hours per ar-

rival. From Section 12.5, we may compute 	
l

1
	 from a(t) by using the following equation:

	
l

1
	 � �∞

0
ta(t)dt (2)

We define l to be the arrival rate, which will have units of arrivals per hour.

In most applications of queuing, an important question is how to choose A to reflect 

reality and still be computationally tractable. The most common choice for A is the expo-

nential distribution. An exponential distribution with parameter l has a density a(t) �

le�lt. Figure 2 shows the density function for an exponential distribution. We see that

a(t) decreases very rapidly for t small. This indicates that very long interarrival times are

unlikely. Using Equation (2) and integration by parts, we can show that the average or

mean interarrival time (call it E(A)) is given by

E(A) � 	
l

1
	 (3)

Using the fact that var A � E(A2) � E(A)2, we can show that

var A � 	
l

1
2	 (4)

No-Memory Property of the Exponential Distribution

The reason the exponential distribution is often used to model interarrival times is em-

bodied in the following lemma.

If A has an exponential distribution, then for all nonnegative values of t and h,

P(A � t � h|A � t) � P(A � h) (5)

Proof First note that from Equation (1), we have

P(A � h) � �∞

h

le�lt
� [�e�lt]h

∞
� e�lh (6)

Then

P(A � t � h|A � t) �

From (6),

P(A � t � h � A � t) � e�l(t�h) and P(A � t) � e�lt

Thus,

P(A � t � h|A � t) � 	
e�

e

l

�

(t

l

�

t

h)

	 � e�lh
� P(A � h)

P(A � t � h � A � t)
			

P(A � t)

t1  =  3

T1  =  8  –  3  =  5 T2  =  15  –  8  =  7

t2  =  8 t3  =  15
F I G U R E  1

Definition of 
Interarrival Times
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T H E O R E M  1

It can be shown that no other density function can satisfy (5) (see Feller (1957)). For

reasons that become apparent, a density that satisfies (5) is said to have the no-memory

property. Suppose we are told that there has been no arrival for the last t hours (this is

equivalent to being told that A � t) and are asked what the probability is that there will

be no arrival during the next h hours (that is, A � t � h). Then (5) implies that this prob-

ability does not depend on the value of t, and for all values of t, this probability equals

P(A � h). In short, if we know that at least t time units have elapsed since the last arrival

occurred, then the distribution of the remaining time until the next arrival (h) does not de-

pend on t. For example, if h � 4, then (5) yields, for t � 5, t � 3, t � 2, and t � 0,

P(A � 9|A � 5) � P(A � 7|A � 3) � P(A � 6|A � 2)

� P(A � 4|A � 0) � e�4l

The no-memory property of the exponential distribution is important, because it implies

that if we want to know the probability distribution of the time until the next arrival, then it

does not matter how long it has been since the last arrival. To put it in concrete terms, sup-

pose interarrival times are exponentially distributed with l � 6. Then the no-memory prop-

erty implies that no matter how long it has been since the last arrival, the probability dis-

tribution governing the time until the next arrival has the density function 6e�6t. This means

that to predict future arrival patterns, we need not keep track of how long it has been since

the last arrival. This observation can appreciably simplify analysis of a queuing system.

To see that knowledge of the time since the last arrival does affect the distribution of

time until the next arrival in most situations, suppose that A is discrete with P(A � 5) �

P(A � 100) � 	
1
2

	. If we are told that there has been no arrival during the last 6 time units,

we know with certainty that it will be 100 � 6 � 94 time units until the next arrival. On

the other hand, if we are told that no arrival has occurred during the last time unit, then

there is some chance that the time until the next arrival will be 5 � 1 � 4 time units and

some chance that it will be 100 � 1 � 99 time units. Hence, in this situation, the distri-

bution of the next interarrival time cannot easily be predicted with knowledge of the time

that has elapsed since the last arrival.

Relation Between Poisson Distribution and Exponential Distribution

If interarrival times are exponential, the probability distribution of the number of arrivals

occurring in any time interval of length t is given by the following important theorem.

Interarrival times are exponential with parameter l if and only if the number of ar-

rivals to occur in an interval of length t follows a Poisson distribution with para-

meter lt.

a(t)  =    e

t

  t

  e
  t

F I G U R E  2

Density Function for
Exponential Distribution
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A discrete random variable N has a Poisson distribution with parameter l if, for n �

0, 1, 2, . . . ,

P(N � n) � 	
e�

n

l

!

ln

	 (n � 0, 1, 2, . . .) (7)

If N is a Poisson random variable, it can be shown that E(N) � var N � l. If we define

Nt to be the number of arrivals to occur during any time interval of length t, Theorem 1

states that

P(Nt � n) � 	
e�l

n

t(

!

lt)n

	 (n � 0, 1, 2, . . .)

Since Nt is Poisson with parameter lt, E(Nt) � var Nt � lt. An average of lt arrivals

occur during a time interval of length t, so l may be thought of as the average number of

arrivals per unit time, or the arrival rate.

What assumptions are required for interarrival times to be exponential? Theorem 2 pro-

vides a partial answer. Consider the following two assumptions:

1 Arrivals defined on nonoverlapping time intervals are independent (for example, the

number of arrivals occurring between times 1 and 10 does not give us any information

about the number of arrivals occurring between times 30 and 50).

2 For small �t (and any value of t), the probability of one arrival occurring between

times t and t � �t is l�t � o(�t), where o(�t) refers to any quantity satisfying

lim
�t→0

	
o(

�

�

t

t)
	 � 0

Also, the probability of no arrival during the interval between t and t � �t is 1 � l�t �

o(�t), and the probability of more than one arrival occurring between t and t � �t is

o(�t).

T H E O R E M  2

If assumptions 1 and 2 hold, then Nt follows a Poisson distribution with parameter

lt, and interarrival times are exponential with parameter l; that is, a(t) � le�lt.

In essence, Theorem 2 states that if the arrival rate is stationary, if bulk arrivals can-

not occur, and if past arrivals do not affect future arrivals, then interarrival times will fol-

low an exponential distribution with parameter l, and the number of arrivals in any in-

terval of length t is Poisson with parameter lt. The assumptions of Theorem 2 may appear

to be very restrictive, but interarrival times are often exponential even if the assumptions

of Theorem 2 are not satisfied (see Denardo (1982)). In Section 20.12, we discuss how to

use data to test whether the hypothesis of exponential interarrival times is reasonable. In

many applications, the assumption of exponential interarrival times turns out to be a fairly

good approximation of reality.

Using Excel to Compute Poisson and Exponential Probabilities

Excel contains functions that facilitate the computation of probabilities concerning the

Poisson and exponential random variables.

The syntax of the Excel POISSON function is as follows:

■ �POISSON(x,MEAN,TRUE) gives the probability that a Poisson random variable

with mean � Mean is less than or equal to x.
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■ �POISSON(x,MEAN,FALSE) gives probability that a Poisson random variable

with mean � Mean is equal to x.

For example, if an average of 40 customers arrive per hour and arrivals follow a Poisson

distribution then the function �POISSON(40,40,TRUE) yields the probability .542 that

40 or fewer customers arrive during an hour. The function �POISSON(40,40,FALSE)

yields the probability .063 that exactly 40 customers arrive during an hour.

The syntax of the Excel EXPONDIST function is as follows:

■ �EXPONDIST(x,LAMBDA,TRUE) gives the probability that an exponential ran-

dom variable with parameter l assumes a value less than or equal to x.

■ �EXPONDIST(x,LAMBDA,FALSE) gives the value of the density function for

an exponential random variable with parameter l.

For example, suppose the average time between arrivals follows an exponential distribu-

tion with mean 10. Then l � .1, and �EXPONDIST(10,0.1,TRUE) yields the probabil-

ity .632 that the time between arrivals is 10 minutes or less.

The function �EXPONDIST(10,.1,FALSE) yields the height .037 of the density func-

tion for x � 10 and l � .1. See file Poissexp.xls and Figure 3.

Example 1 illustrates the relation between the exponential and Poisson distributions.

E X A M P L E  1

The number of glasses of beer ordered per hour at Dick’s Pub follows a Poisson distri-

bution, with an average of 30 beers per hour being ordered.

1 Find the probability that exactly 60 beers are ordered between 10 P.M. and 12 midnight.

2 Find the mean and standard deviation of the number of beers ordered between 9 P.M.

and 1 A.M.

3 Find the probability that the time between two consecutive orders is between 1 and 3

minutes.

Solution 1 The number of beers ordered between 10 P.M. and 12 midnight will follow a Poisson

distribution with parameter 2(30) � 60. From Equation (7), the probability that 60 beers

are ordered between 10 P.M. and 12 midnight is

	
e�6

6

0

0

6

!

060

	

Alternatively, we can find the answer with the Excel function �POISSON(60,60,FALSE).

This yields .051.

Beer Orders

F I G U R E  3

Poissexp.xls

3

4

5

6

7

8

9

10

11

12

13

14

15

16

C D E

Poisson Lambda

P(X=40)  40 0.541918

P(X<=40) 40 0.062947

Exponential

Lambda

P(X<=10) 0.1 0.632121

Density for X = 10 0.1 0.036788

A B
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2 We have l � 30 beers per hour; t � 4 hours. Thus, the mean number of beers ordered

between 9 P.M. and 1 A.M. is 4(30) � 120 beers. The standard deviation of the number of

beers ordered between 10 P.M. and 1 A.M. is (120)1/2 � 10.95.

3 Let X be the time (in minutes) between successive beer orders. The mean number of

orders per minute is exponential with parameter or rate 	
3
6
0
0
	 � 0.5 beer per minute. Thus,

the probability density function of the time between beer orders is 0.5e�0.5t. Then

P(1 � X � 3) � �3

1
(0.5e�0.5t)dt � e�0.5

� e�1.5 � .38

Alternatively, we can use Excel to find the answer with the formula

�EXPONDIST(3,.5,TRUE)�EXPONDIST(1,.5,TRUE)

This yields a probability of .383.

The Erlang Distribution

If interarrival times do not appear to be exponential, they are often modeled by an Erlang

distribution. An Erlang distribution is a continuous random variable (call it T) whose den-

sity function f (t) is specified by two parameters: a rate parameter R and a shape parame-

ter k (k must be a positive integer). Given values of R and k, the Erlang density has the

following probability density function:

f (t) � 	
R(

(

R

k

t)

�

k�1

1

e

)

�

!

Rt

	 (t � 0) (8)

Using integration by parts, we can show that if T is an Erlang distribution with rate pa-

rameter R and shape parameter k, then

E(T) � 	
R

k
	 and var T � 	

R

k
2	 (9)

To see how varying the shape parameter changes the shape of the Erlang distribution, we

consider for a given value of l, a family of Erlang distributions with rate parameter kl

and shape parameter k. By (9), each of these Erlangs has a mean of 	
l

1
	. As k varies, the

Erlang distribution takes on many shapes. For example, Figure 4 shows, for a given value

of l, the density functions for Erlang distributions having shape parameters 1, 2, 4, 6, and

20. For k � 1, the Erlang density looks similar to an exponential distribution; in fact, if

we set k � 1 in (8), we find that for k � 1, the Erlang distribution is an exponential dis-

tribution with parameter R. As k increases, the Erlang distribution behaves more and more

like a normal distribution. For extremely large values of k, the Erlang distribution ap-

proaches a random variable with zero variance (that is, a constant interarrival time). Thus,

by varying k, we may approximate both skewed and symmetric distributions.

It can be shown that an Erlang distribution with shape parameter k and rate parameter

kl has the same distribution as the random variable A1 � A2 � 
 
 
 � Ak, where each

Ai is an exponential random variable with parameter kl, and the Ai’s are independent ran-

dom variables.

If we model interarrival times as an Erlang distribution with shape parameter k, we are

really saying that the interarrival process is equivalent to a customer going through k

phases (each of which has the no-memory property) before arriving. For this reason, the

shape parameter is often referred to as the number of phases of the Erlang distribution.
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Modeling the Service Process

We now turn our attention to modeling the service process. We assume that the service

times of different customers are independent random variables and that each customer’s

service time is governed by a random variable S having a density function s(t). We let 	
m
1

	

be the mean service time for a customer. Of course,

	
m

1
	 � �∞

0
ts(t)dt

The variable 	
m
1

	 will have units of hours per customer, so m has units of customers per

hour. For this reason, we call m the service rate. For example, m � 5 means that if cus-

tomers were always present, the server could serve an average of 5 customers per hour,

and the average service time of each customer would be 	
1
5

	 hour. As with interarrival times,

we hope that service times can be accurately modeled as exponential random variables.

If we can model a customer’s service time as an exponential random variable, we can de-

termine the distribution of a customer’s remaining service time without having to keep

track of how long the customer has been in service. Also note that if service times follow

an exponential density s(t) � me�mt, then a customer’s mean service time will be 	
m
1

	.

As an example of how the assumption of exponential service times can simplify com-

putations, consider a three-server system in which each customer’s service time is gov-

erned by an exponential distribution s(t) � me�mt. Suppose all three servers are busy, and

a customer is waiting (see Figure 5). What is the probability that the customer who is

waiting will be the last of the four customers to complete service? From Figure 5, it is

clear that the following will occur. One of customers 1–3 (say, customer 3) will be the

first to complete service. Then customer 4 will enter service. By the no-memory property,

customer 4’s service time has the same distribution as the remaining service times of cus-

tomers 1 and 2. Thus, by symmetry, customers 4, 1, and 2 will have the same chance of

being the last customer to complete service. This implies that customer 4 has a 	
1
3

	 chance

of being the last customer to complete service. Without the no-memory property, this

problem would be hard to solve, because it would be very difficult to determine the prob-

f (t)

k  =  20

k  =  6

k  =  4

k  =  2

k  =  1

t
1

F I G U R E  4

Density Functions for
Erlang Distributions
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ability distribution of the remaining service time (after customer 3 completes service) of

customers 1 and 2.

Unfortunately, actual service times may not be consistent with the no-memory prop-

erty. For this reason, we often assume that s(t) is an Erlang distribution with shape para-

meter k and rate parameter km. From (9), this yields a mean service time of 	
m
1

	. Modeling

service times as an Erlang distribution with shape parameter k also implies that a cus-

tomer’s service time may be considered to consist of passage through k phases of service,

in which the time to complete each phase has the no-memory property and a mean of 	
k
1
m
	

(see Figure 6). In many situations, an Erlang distribution can be closely fitted to observed

service times.

In certain situations, interarrival or service times may be modeled as having zero vari-

ance; in this case, interarrival or service times are considered to be deterministic. For ex-

ample, if interarrival times are deterministic, then each interarrival time will be exactly 	
l

1
	,

and if service times are deterministic, each customer’s service time will be exactly 	
m

1
	.

The Kendall–Lee Notation for Queuing Systems

We have now developed enough terminology to describe the standard notation used to de-

scribe many queuing systems. The notation that we discuss in this section is used to de-

scribe a queuing system in which all arrivals wait in a single line until one of s identical

parallel servers is free. Then the first customer in line enters service, and so on (see Fig-

ure 7). If, for example, the customer in server 3 is the next customer to complete service,

then (assuming an FCFS discipline) the first customer in line would enter server 3. The

next customer in line would enter service after the next service completion, and so on.

To describe such a queuing system, Kendall (1951) devised the following notation.

Each queuing system is described by six characteristics:

1/2/3/4/5/6

Customer 1

Customer 2

Customer 3

Customer 4

F I G U R E  5

Example of Usefulness
of Exponential

Distribution

Phase 1
Service

begins

Service

ends

Exponential

with mean

1/k µ

Exponential

with mean

1/k µ

Exponential

with mean

1/k µ

Phase 2 Phase k

F I G U R E  6

Representation of
Erlang Service Time
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The first characteristic specifies the nature of the arrival process. The following stan-

dard abbreviations are used:

M � Interarrival times are independent, identically distributed (iid)

� random variables having an exponential distribution.

D � Interarrival times are iid and deterministic.

Ek � Interarrival times are iid Erlangs with shape parameter k.

GI � Interarrival times are iid and governed by some general distribution.

The second characteristic specifies the nature of the service times:

M � Service times are iid and exponentially distributed.

D � Service times are iid and deterministic.

Ek � Service times are iid Erlangs with shape parameter k.

G � Service times are iid and follow some general distribution.

The third characteristic is the number of parallel servers. The fourth characteristic de-

scribes the queue discipline:

FCFS � First come, first served

LCFS � Last come, first served

SIRO � Service in random order

GD � General queue discipline

The fifth characteristic specifies the maximum allowable number of customers in the

system (including customers who are waiting and customers who are in service). The sixth

characteristic gives the size of the population from which customers are drawn. Unless

the number of potential customers is of the same order of magnitude as the number of

servers, the population size is considered to be infinite. In many important models 4/5/6

is GD/∞/∞. If this is the case, then 4/5/6 is often omitted.

As an illustration of this notation, M/E2/8/FCFS/10/∞ might represent a health clinic

with 8 doctors, exponential interarrival times, two-phase Erlang service times, an FCFS

queue discipline, and a total capacity of 10 patients.

The Waiting Time Paradox

We close this section with a brief discussion of an interesting paradox known as the wait-

ing time paradox.

Server 1

Server 2
Customers

leave

Customer goes to

first empty server

Server 3

F I G U R E  7

Single-Line Queuing
System with Parallel

Servers
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Suppose the time between the arrival of buses at the student center is exponentially

distributed, with a mean of 60 minutes. If we arrive at the student center at a randomly

chosen instant, what is the average amount of time that we will have to wait for a bus?

The no-memory property of the exponential distribution implies that no matter how

long it has been since the last bus arrived, we would still expect to wait an average of 60

minutes until the next bus arrived. This answer is indeed correct, but it appears to be con-

tradicted by the following argument. On the average, somebody who arrives at a random

time should arrive in the middle of a typical interval between arrivals of successive buses.

If we arrive at the midpoint of a typical interval, and the average time between buses is

60 minutes, then we should have to wait, on the average, (	
1
2

	)60 � 30 minutes for the next

bus. Why is this argument incorrect? Simply because the typical interval between buses

is longer than 60 minutes. The reason for this anomaly is that we are more likely to ar-

rive during a longer interval than a shorter interval. Let’s simplify the situation by as-

suming that half of all buses run 30 minutes apart and half of all buses run 90 minutes

apart. One might think that since the average time between buses is 60 minutes, the av-

erage wait for a bus would be (	
1
2

	)60 � 30 minutes, but this is incorrect. Look at a typi-

cal sequence of bus interarrival times (see Figure 8). Half of the interarrival times are 30

minutes, and half are 90 minutes. Clearly, there is a 	
30

9
�
0
90

	 � 	
3
4

	 chance that one will arrive

during a 90-minute interarrival time and a 	
30

3
�
0
90

	 � 	
1
4

	 chance that one will arrive during a 30-

minute interarrival time. Thus, the average-size interarrival time into which a customer 

arrives is (	
3
4

	)(90) � (	
1
4

	)(30) � 75 minutes. Since we do arrive, on the average, in the middle

of an interarrival time, our average wait will be (	
3
4

	)(	
1
2

	)90 � (	
1
4

	)(	
1
2

	)30 � 37.5 minutes, which

is longer than 30 minutes.

Returning to the case where interarrival times are exponential with mean 60 minutes,

the average size of a typical interarrival time turns out to be 120 minutes. Thus, the av-

erage time that we will have to wait for a bus is (	
1
2

	)(120) � 60 minutes. Note that if buses

always arrived 60 minutes apart, then the average time a person would have to wait for a

bus would be (	
1
2

	)(60) � 30 minutes. In general, it can be shown that if A is the random

variable for the time between buses, then the average time until the next bus (as seen by

an arrival who is equally likely to come at any time) is given by

	
1

2
	 �E(A) � 	

v

E

a

(

r

A

A

)
	�

For our bus example, l � 	
6
1
0
	, so Equations (3) and (4) show that E(A) � 60 minutes and

var A � 3,600 minutes2. Substituting into this formula yields

Expected waiting time � 	
1
2

	 (60 � 	
3,

6
6
0
00
	) � 60 minutes

P R O B L E M S
Group A

30 90 90

Arrival of a bus

30

F I G U R E  8

The Waiting 
Time Paradox

1 Suppose I arrive at an M/M/7/FCFS/8/∞ queuing system
when all servers are busy. What is the probability that I will
complete service before at least one of the seven customers
in service?

2 The time between buses follows the mass function shown
in Table 2. What is the average length of time one must wait
for a bus?
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3 There are four sections of the third grade at Jefferson
Elementary School. The number in each section is as
follows: section 1, 20 students; section 2, 25 students;
section 3, 35 students; section 4, 40 students. What is the
average size of a third-grade section? Suppose the board of
education randomly selects a Jefferson third-grader. On the
average, how many students will be in her class?

4 The time between arrivals of buses follows an
exponential distribution, with a mean of 60 minutes.

a What is the probability that exactly four buses will
arrive during the next 2 hours?

b That at least two buses will arrive during the next 2
hours?

c That no buses will arrive during the next 2 hours?

d A bus has just arrived. What is the probability that
it will be between 30 and 90 minutes before the next bus
arrives?

5 During the year 2000, there was an average of .022 car
accident per person in the United States. Using your
knowledge of the Poisson random variable, explain the truth
in the statement, “Most drivers are better than average.”

6 Suppose it is equally likely that a plane flight is 50%,
60%, 70%, 80%, or 90% full.

a What fraction of seats on a typical flight are full?
This is known as the flight load factor.

b We are always complaining that there are never
empty seats on our plane flights. Given the previous in-
formation, what is the average load factor on a plane trip
I take?

7 An average of 12 jobs per hour arrive at our departmental
printer.

a Use two different computations (one involving the
Poisson and another the exponential random variable) to
determine the probability that no job will arrive during
the next 15 minutes.

b What is the probability that 5 or fewer jobs will ar-
rive during the next 30 minutes?

TA B L E  2

Time Between
Buses Probability

30 minutes 	
1
4

	

1 hour 	
1
4

	

2 hours 	
1
2

	

20.3 Birth–Death Processes

In this section, we discuss the important idea of a birth–death process. We subsequently use

birth–death processes to answer questions about several different types of queuing systems.

We define the number of people present in any queuing system at time t to be the state of

the queuing system at time t. For t � 0, the state of the system will equal the number of peo-

ple initially present in the system. Of great interest to us is the quantity Pij(t) which is defined

as the probability that j people will be present in the queuing system at time t, given that at

time 0, i people are present. Note that Pij(t) is analogous to the n-step transition probability

Pij(n) (the probability that after n transitions, a Markov chain will be in state j, given that the

chain began in state i), discussed in Chapter 17. Recall that for most Markov chains, the Pij(n)

approached a limit pj, which was independent of the initial state i. Similarly, it turns out that

for many queuing systems, Pij(t) will, for large t, approach a limit pj, which is independent

of the initial state i. We call pj the steady state, or equilibrium probability, of state j.

For the queuing systems that we will discuss, pj may be thought of as the probability

that at an instant in the distant future, j customers will be present. Alternatively, pj may be

thought of (for time in the distant future) as the fraction of the time that j customers are

present. In most queuing systems, the value of Pij(t) for small t will critically depend on

i, the number of customers initially present. For example, if t is small, then we would ex-

pect that P50,1(t) and P1,1(t) would differ substantially. However, if steady-state probabili-

ties exist, then for large t, both P50,1(t) and P1,1(t) will be near p1. The question of how

large t must be before the steady state is approximately reached is difficult to answer. The

behavior of Pij(t) before the steady state is reached is called the transient behavior of the

queuing system. Analysis of the system’s transient behavior will be discussed in Section

20.16. For now, when we analyze the behavior of a queuing system, we assume that the

steady state has been reached. This allows us to work with the pj’s instead of the Pij(t)’s.
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We now discuss a certain class of continuous-time stochastic processes, called

birth–death processes, which includes many interesting queuing systems. For a birth–death

process, it is easy to determine the steady-state probabilities (if they exist).

A birth–death process is a continuous-time stochastic process for which the system’s

state at any time is a nonnegative integer (see Section 17.1 for a definition of a continuous-

time stochastic process). If a birth–death process is in state j at time t, then the motion of

the process is governed by the following laws.

Laws of Motion for Birth–Death Processes

Law 1 With probability lj�t � o(�t), a birth occurs between time t and time t � �t.† A

birth increases the system state by 1, to j � 1. The variable lj is called the birth rate in

state j. In most queuing systems, a birth is simply an arrival.

Law 2 With probability mj�t � o(�t), a death occurs between time t and time t � �t. A

death decreases the system state by 1, to j � 1. The variable mj is the death rate in state

j. In most queuing systems, a death is a service completion. Note that m0 � 0 must hold,

or a negative state could occur.

Law 3 Births and deaths are independent of each other.

Laws 1–3 can be used to show that the probability that more than one event (birth or

death) occurs between t and t � �t is o(�t). Note that any birth–death process is com-

pletely specified by knowledge of the birth rates lj and the death rates mj. Since a nega-

tive state cannot occur, any birth–death process must have m0 � 0.

Relation of Exponential Distribution 
to Birth–Death Processes

Most queuing systems with exponential interarrival times and exponential service times

may be modeled as birth–death processes. To illustrate why this is so, consider an

M/M/1/FCFS/∞/∞ queuing system in which interarrival times are exponential with para-

meter l and service times are exponentially distributed with parameter m. If the state

(number of people present) at time t is j, then the no-memory property of the exponen-

tial distribution implies that the probability of a birth during the time interval [t, t � �t]

will not depend on how long the system has been in state j. This means that the proba-

bility of a birth occurring during [t, t � �t] will not depend on how long the system has

been in state j and thus may be determined as if an arrival had just occurred at time t.

Then the probability of a birth occurring during [t, t � �t] is

��t

0
le�ltdt � 1 � e�l�t

By the Taylor series expansion given in Section 11.1,

e�l�t
� 1 � l�t � o(�t)

This means that the probability of a birth occurring during [t, t � �t] is l�t � o(�t).

From this we may conclude that the birth rate in state j is simply the arrival rate l.

To determine the death rate at time t, note that if the state is zero at time t, then nobody

is in service, so no service completion can occur between t and t � �t. Thus, m0 � 0. 

†Recall from Section 20.2 that o(�t) means that lim
�t→0

	
o(

�

�

t

t)
	 � 0.
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If the state at time t is j � 1, then we know (since there is only one server) that exactly

one customer will be in service. The no-memory property of the exponential distribution

then implies that the probability that a customer will complete service between t and t �

�t is given by

��t

0
me�mtdt � 1 � e�m�t

� m�t � o(�t)

Thus, for j � 1, mj � m. In summary, if we assume that service completions and arrivals

occur independently, then an M/M/1/FCFS/∞/∞ queuing system is a birth–death process.

The birth and death rates for the M/M/1/FCFS/∞/∞ queuing system may be represented

in a rate diagram (see Figure 9).

More complicated queuing systems with exponential interarrival times and exponen-

tial service times may often be modeled as birth–death processes by adding the service

rates for occupied servers and adding the arrival rates for different arrival streams. For ex-

ample, consider an M/M/3/FCFS/∞/∞ queuing system in which interarrival times are ex-

ponential with l � 4 and service times are exponential with m � 5. To model this sys-

tem as a birth–death process, we would use the following parameters (see Figure 10):

lj � 4 ( j � 0, 1, 2, . . .)

m0 � 0, m1 � 5, m2 � 5 � 5 � 10, mj � 5 � 5 � 5 � 15 ( j � 3, 4, 5, . . .)

If either interarrival times or service times are nonexponential, then the birth–death

process model is not appropriate.† Suppose, for example, that service times are not ex-

ponential and we are considering an M/G/1/FCFS/∞/∞ queuing system. Since the service

times for an M/G/1/FCFS/∞/∞ system may be nonexponential, the probability that a death

(service completion) occurs between t and t � �t will depend on the time since the last

service completion. This violates law 2, so we cannot model an M/G/1/FCFS/∞/∞ system

as a birth–death process.

µ µ

0 1 2 j  –  1 j  +  1j

µ µ

Represents a “death  (service completion)

“

Represents a “birth  (arrival)

“

State

F I G U R E  9

Rate Diagram for
M/M/1/FCFS/∞/∞

Queuing System

0State

4

5

4

10

4

=  4 =  5

15

4

15

4

15

1 2 3 4 5

µ

F I G U R E  10

Rate Diagram for
M/M/3/FCFS/∞/∞

Queuing System

†A modified birth–death model can be developed if service times and interarrival times are Erlang distributions.
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Derivation of Steady-State Probabilities 
for Birth–Death Processes

We now show how the pj’s may be determined for an arbitrary birth–death process. The

key is to relate (for small �t) Pij(t � �t) to Pij(t). The way to do this is to note that there

are four ways for the state at time t � �t to be j. For j � 1, the four ways are shown in

Table 3. For j � 1, the probability that the state of the system will be j � 1 at time t and

j at time t � �t is (see Figure 11)

Pi, j�1(t)(lj�1�t � o(�t))

Similar arguments yield (II) and (III). (IV) follows, because if the system is in a state

other than j, j � 1, or j � 1 at time t, then to end up in state j at time t � �t, more than

one event (birth or death) must occur between t and t � �t. By law 3, this has probabil-

ity o(�t). Thus,

Pij(t � �t) � (I) � (II) � (III) � (IV)

After regrouping terms in this equation, we obtain

Pij(t � �t) � Pij(t)

� �t(lj�1Pi, j�1(t) � mj�1Pi, j�1(t) � Pij(t)mj � Pij(t)lj) (10)

� o(�t)(Pi, j�1(t) � Pi, j�1(t) � 1 � 2Pij(t))

Since the underlined term may be written as o(�t), we rewrite (10) as

Pij(t � �t) � Pij(t) � �t(lj�1Pi, j�1(t) � mj�1Pi, j�1(t) � Pij(t)mj � Pij(t)lj) � o(�t)

Dividing both sides of this equation by �t and letting �t approach zero, we see that for

all i and j � 1,

P�ij(t) � lj�1Pi, j�1(t) � mj�1Pi, j�1(t) � Pij(t)mj � Pij(t)lj (10�)

Since for j � 0, Pi, j�1(t) � 0 and mj � 0, we obtain, for j � 0,

P�i,0(t) � m1Pi,1(t) � l0Pi,0(t)

This is an infinite system of differential equations. (A differential equation is simply an

equation in which a derivative appears.) In theory, these equations may be solved for the

Pij(t). In reality, however, this system of equations is usually extremely difficult to solve.

All is not lost, however. We can use (10�) to obtain the steady-state probabilities pj ( j �

0, 1, 2, . . .). As with Markov chains, we define the steady-state probability pj to be

lim
t→∞

Pij(t)

Then for large t and any initial state i, Pij(t) will not change very much and may be

thought of as a constant. Thus, in the steady state (t large), P�ij(t) � 0. In the steady state,

TA B L E  3

Computations of Probability That State at Time t � �t Is j

State at State at Probability of This
Time t Time t � �t Sequence of Events

j � 1 j Pi, j�1(t) (lj�1�t � o(�t)) � (I)

j � 1 j Pi, j�1(t) (mj�1�t � o(�t)) � (II)

j j Pi, j(t) (1 � mj �t � lj�t � 2o(�t)) � (III)

Any other state j o(�t) � (IV)
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also, Pi, j�1(t) � pj�1, Pi, j�1(t) � pj�1, and Pij(t) � pj will all hold. Substituting these

relations into (10�), we obtain, for j � 1,

lj�1pj�1 � mj�1pj�1 � pjmj � pjlj � 0 (10�)

lj�1pj�1 � mj�1pj�1 � pj(lj � mj) ( j � 1, 2, . . .)

For j � 0, we obtain

m1p1 � p0l0

Equations (10�) are an infinite system of linear equations that can be easily solved for the

pj’s. Before discussing how to solve (10�), we give an intuitive derivation of (10�), based

on the following observation: At any time t that we observe a birth–death process, it must

be true that for each state j, the number of times we have entered state j differs by at most

1 from the number of times we have left state j.

Suppose that by time t, we have entered state 6 three times. Then one of the cases in

Table 4 must have occurred. For example, if Case 2 occurs, we begin in state 6 and end

up in some other state. Since we have observed three transitions into state 6 by time t, the

following events (among others) must have occurred:

Start in state 6 Enter state 6 (second time)

Leave state 6 (first time) Leave state 6 (third time)

Enter state 6 (first time) Enter state 6 (third time)

Leave state 6 (second time) Leave state 6 (fourth time)

Hence, if Case 2 occurs, then by time t, we must have left state 6 four times.

This observation suggests that for large t and for j � 0, 1, 2, . . . (and for any initial

conditions), it will be true that

(11)

�

Assuming the system has settled down into the steady state, we know that the system

spends a fraction pj of its time in state j. We can now use (11) to determine the steady-

state probabilities pj. For j � 1, we can only leave state j by going to state j � 1 or state

j � 1, so for j � 1, we obtain

� pj(lj � mj) (12)

Since for j � 1 we can only enter state j from state j � 1 or state j � 1,

� pj�1lj�1 � pj�1mj�1 (13)

Substituting (12) and (13) into (11) yields

pj�1lj�1 � pj�1mj�1 � pj(lj � mj) ( j � 1, 2, . . .) (14)

Expected no. of entrances into state j
				

Expected no. of departures from state j
					

Expected no. of entrances into state j
				

Expected no. of departures from state j
					

j  –  1State

Time 0 t

Pi, j  –  1(t) j  –  1(∆t)  +  o(∆t)

t  +  ∆t

i j

F I G U R E  11

Probability That State
Is j � 1 at Time t and

j at Time t � �t Is
Pi,j�1(t )(lj�1(�t ) �

o(�t ))
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For j � 0, we know that m0 � p�1 � 0, so we also have

p1m1 � p0l0 (14�)

Equations (14) and (14�) are often called the flow balance equations, or conservation

of flow equations, for a birth–death process. Note that (14) expresses the fact that in the

steady state, the rate at which transitions occur into any state i must equal the rate at which

transitions occur out of state i. If (14) did not hold for all states, then probability would

“pile up” at some state, and a steady state would not exist.

Writing out the equations for (14) and (14�), we obtain the flow balance equations for

a birth–death process:

( j � 0) p0l0 � p1m1

( j � 1) (l1 � m1)p1 � l0p0 � m2p2

( j � 2) (l2 � m2)p2 � l1p1 � m3p3 (15)








( jth equation) (lj � mj)pj � lj�1pj�1 � mj�1pj�1

Solution of Birth–Death Flow Balance Equations

To solve (15), we begin by expressing all the pj’s in terms of p0. From the ( j � 0) equa-

tion, we obtain

p1 � 	
p

m

0l

1

0
	

Substituting this result into the ( j � 1) equation yields

l0p0 � m2p2 � 	
(l1 �

m

m

1

1)p0l0
	

m2p2 � 	
p0(

m

l0

1

l1)
	

Thus,

p2 � 	
p0

m

(l

1m

0l

2

1)
	

We could now use the ( j � 3) equation to solve for p3 in terms of p0 and so on. If we

define

cj � 	
l

m

0l

1m

1

2



















l

m

j�

j

1
	

TA B L E  4

Relation between Number of Transitions into and out of a State by Time t

Number of Transitions
Initial State State of Time t Out of State 6 by Time t

Case 1: state 6 State 6 3

Case 2: state 6 Any state except 6 4

Case 3: any state
except state 6 State 6 2

Case 4: any state
except state 6 Any state except 6 3
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then it can be shown that

pj � p0cj (16)

(See Problem 1 at the end of this section.) Since at any given time, we must be in some

state, the steady-state probabilities must sum to 1:

�
j�∞

j�0

pj � 1 (17)

Substituting (16) into (17) yields

p0 �1 � �
j�∞

j�1

cj� � 1 (18)

If �j�1
j�∞ cj is finite, we can use (18) to solve for p0:

p0 �
(19)

Then (16) can be used to determine p1, p2, . . . . It can be shown that if �j�1
j�∞ cj is infi-

nite, then no steady-state distribution exists. The most common reason for a steady-state

failing to exist is that the arrival rate is at least as large as the maximum rate at which

customers can be served.

Using a Spreadsheet to Compute Steady-State Probabilities

The following example illustrates how a spreadsheet can be used to compute steady-state

probabilities for a birth–death process.

E X A M P L E  2

Indiana Bell customer service representatives receive an average of 1,700 calls per hour.

The time between calls follows an exponential distribution. A customer service represen-

tative can handle an average of 30 calls per hour. The time required to handle a call is

also exponentially distributed. Indiana Bell can put up to 25 people on hold. If 25 people

are on hold, a call is lost to the system. Indiana Bell has 75 service representatives.

1 What fraction of the time are all operators busy?

2 What fraction of all calls are lost to the system?

Solution In Figure 12 (file Bell.xls), we set up a spreadsheet to compute the steady-state probabil-

ities for this birth–death process. We let the state i at any time equal the number of callers

whose calls are being processed or are on hold. We have that for i � 0, 1, 2, . . . , 99, 

li � 1,700. The fact that any calls received when 75 � 25 � 100 calls are in the system

are lost to the system implies that l100 � 0. Then no state i � 100 can occur (why?). We

have u0 � 0 and for i � 1, 2, . . . , 75, mi � 30i. For i � 75, mi � 30(75) � 2,250.

To answer parts (1) and (2), we need to compute the steady-state probabilities pi �

fraction of the time the state is i. In cells A4:A104, we enter the possible states of the sys-

tem (0–100). To do this, enter 0 in cell A4 and 1 in A5. Then select the range A4:A5 and

drag the cursor to A6:A104. In B4, type the arrival rate of 1,700 and just drag the cursor

Indiana Bell

1
		

1 � �
j�∞

j�1

cj

Bell.xls
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A B C D

Prob(i>=75)

INDIANA BELL EXAMPLE 0 .012759326

STATE LAMBDA MU CJ PROB

0 1700 0 1 2.451E-25

1 1700 30 56.6666667 1.3889E-23

2 1700 60 1605.55556 3.9352E-22

3 1700 90 30327.1605 7.4332E-21

4 1700 120 429634.774 1.053E-19

5 1700 150 4869194.1 1.1934E-18

6 1700 180 45986833.2 1.1271E-17

7 1700 210 372274364 9.1244E-17

8 1700 240 2636943411 6.4631E-16

9 1700 270 1.6603E+10 4.0694E-15

10 1700 300 9.4084E+10 2.306E-14

11 1700 330 4.8467E+11 1.1879E-13

12 1700 360 2.2887E+12 5.6097E-13

13 1700 390 9.9765E+12 2.4452E-12

14 1700 420 4.0381E+13 9.8974E-12

15 1700 450 1.5255E+14 3.739E-11

16 1700 480 5.4029E+14 1.3242E-10

17 1700 510 1.801E+15 4.4141E-10

18 1700 540 5.6697E+15 1.3896E-09

19 1700 570 1.691E+16 4.1445E-09

20 1700 600 4.791E+16 1.1743E-08

21 1700 630 1.2928E+17 3.1687E-08

22 1700 660 3.33E+17 8.1618E-08

23 1700 690 8.2043E+17 2.0109E-07

24 1700 720 1.9371E+18 4.7479E-07

25 1700 750 4.3908E+18 1.0762E-06

26 1700 780 9.5697E+18 2.3455E-06

27 1700 810 2.0085E+19 4.9227E-06

28 1700 840 4.0648E+19 9.9627E-06

29 1700 870 7.9426E+19 1.9467E-05

30 1700 900 1.5003E+20 3.6772E-05

31 1700 930 2.7424E+20 6.7217E-05

32 1700 960 4.8564E+20 0.00011903

33 1700 990 8.3393E+20 0.00020439

34 1700 1020 1.3899E+21 0.00034066

35 1700 1050 2.2503E+21 0.00055154

36 1700 1080 3.5421E+21 0.00086817

37 1700 1110 5.4248E+21 0.00132962

38 1700 1140 8.0897E+21 0.00198277

39 1700 1170 1.1754E+22 0.00288095

40 1700 1200 1.6652E+22 0.00408134

41 1700 1230 2.3015E+22 0.00564088

42 1700 1260 3.1052E+22 0.00761072

43 1700 1290 4.0921E+22 0.01002963

44 1700 1320 5.2701E+22 0.01291694

45 1700 1350 6.6364E+22 0.01626578

46 1700 1380 8.1753E+22 0.02003755

47 1700 1410 9.8567E+22 0.02415875

48 1700 1440 1.1636E+23 0.02852075

49 1700 1470 1.3457E+23 0.03298318

50 1700 1500 1.5251E+23 0.03738094

51 1700 1530 1.6946E+23 0.04153437

52 1700 1560 1.8467E+23 0.04526182

53 1700 1590 1.9744E+23 0.04839314

54 1700 1620 2.0719E+23 0.05078292

55 1700 1650 2.1347E+23 0.0523218

56 1700 1680 2.1601E+23 0.05294468

E F

F I G U R E  12

Indiana Bell
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down to B5:B104 to create the arrival rates for all states. To create the service rates, en-

ter 0 in cell C4. Then enter 30 in C5 and 60 in cell C6. Then select the range C5:C6 and

drag the cursor down to C79. This creates the service rates for states 0–75. In C80, enter

2,250 and drag that result down to C81:C104. This creates the service rate (2,250) for

states 76–100. In the cell range D4:D104, we calculate the cj’s that are needed to com-

pute the steady-state probabilities. To begin, we enter a 1 in D4. Since c1 � l0/m1, we en-

ter �B4/C5 in cell D5. Since c2 � c1l1/m2, we enter �D5*B5/C6 into D6. Copying from

D6 to D7:D104 now generates the rest of the cj’s. In E4, we compute p0 by entering

�SUM(D$4:D$104). In E5, we compute p1 by entering �D5*E$4. Copying from the

range E5 to the range E5:E104 generates the rest of the steady-state probabilities. We can

now answer questions (1) and (2).

A A B C D E F

6 1

6 2

6 3

6 4

6 5

6 6

6 7

6 8

6 9

7 0

7 1

7 2

7 3

7 4

7 5

7 6

7 7

7 8

7 9

8 0

8 1

8 2

8 3

8 4

8 5

8 6

8 7

8 8

8 9

9 0

9 1

9 2

9 3

9 4

9 5

9 6

9 7

9 8

9 9

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

57 1700 1710 2.1E+23 0.0526351 

58 1700 1740 2.1E+23 0.0514251 

59 1700 1770 2.0E+23 0.0493913 

60 1700 1800 1.9E+23 0.0466473 

61 1700 1830 1.8E+23 0.0433336 

62 1700 1860 1.6E+23 0.039606 

63 1700 1890 1.5E+23 0.0356244 

64 1700 1920 1.3E+23 0.0315425 

65 1700 1950 1.1E+23 0.0274985 

66 1700 1980 9.6E+22 0.0236099 

67 1700 2010 8.1E+22 0.0199685 

68 1700 2040 6.8E+22 0.0166405 

69 1700 2070 5.6E+22 0.0136661 

70 1700 2100 4.5E+22 0.011063 

71 1700 2130 3.6E+22 0.0088296 

72 1700 2160 2.8E+22 0.0069492 

73 1700 2190 2.2E+22 0.0053944 

74 1700 2220 1.7E+22 0.0041308 

75 1700 2250 1.3E+22 0.0031211 

76 1700 2250 9.6E+21 0.0023581 

77 1700 2250 7.3E+21 0.0017817 

78 1700 2250 5.5E+21 0.0013462 

79 1700 2250 4.1E+21 0.0010171 

80 1700 2250 3.1E+21 0.0007685 

81 1700 2250 2.4E+21 0.0005806 

82 1700 2250 1.8E+21 0.0004387 

83 1700 2250 1.4E+21 0.0003315 

84 1700 2250 1.0E+21 0.0002504 

85 1700 2250 7.7E+20 0.0001892 

86 1700 2250 5.8E+20 0.000143 

87 1700 2250 4.4E+20 0.000108 

88 1700 2250 3.3E+20 0.0000816 

89 1700 2250 2.5E+20 0.0000617 

90 1700 2250 1.9E+20 0.0000466 

91 1700 2250 1.4E+20 0.0000352 

92 1700 2250 1.1E+20 0.0000266 

93 1700 2250 8.2E+19 0.0000201 

94 1700 2250 6.2E+19 0.0000152 

95 1700 2250 4.7E+19 0.0000115 

96 1700 2250 3.5E+19 0.0000087 

97 1700 2250 2.7E+19 0.0000065 

98 1700 2250 2.0E+19 0.0000049 

99 1700 2250 1.5E+19 0.0000037 

100 0 2250 1.2E+19 0.0000028 
F I G U R E  12

(Continued)
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1 We seek p75 � p76 � 
 
 
 � p100. To obtain this, we enter the command

�SUM(E79:E104) in cell F2 and obtain .013.

2 An arriving call is turned away if the state equals 100. A fraction p100 � .0000028 of

all arrivals will be turned away. Thus, the phone company is providing very good service!

In Sections 20.4–20.6 and 20.9–20.10, we apply the theory of birth–death processes to

determine the steady-state probability distributions for a variety of queuing systems. Then

we use the steady-state probability distributions to determine other quantities of interest

(such as expected waiting time and expected number of customers in the system).

Birth–death models have been used to model phenomena other than queuing systems.

For example, the number of firms in an industry can be modeled as a birth–death process:

The state of the industry at any given time is the number of firms that are in business; a

birth corresponds to a firm entering the industry; and a death corresponds to a firm go-

ing out of business.

P R O B L E M S
Group A

1 Show that the values of the pj’s given in (16) do indeed
satisfy the flow balance equations (14) and (14�).

2 My home uses two light bulbs. On average, a light bulb
lasts for 22 days (exponentially distributed). When a light
bulb burns out, it takes an average of 2 days (exponentially
distributed) before I replace the bulb.

a Formulate a three-state birth–death model of this 
situation.

b Determine the fraction of the time that both light
bulbs are working.

c Determine the fraction of the time that no light bulbs
are working.

Group B

3 You are doing an industry analysis of the Bloomington
pizza industry. The rate (per year) at which pizza restaurants
enter the industry is given by p, where p � price of a pizza
in dollars. The price of a pizza is assumed to be max(0,
16 � .5F), where F � number of pizza restaurants in
Bloomington. During a given year, the probability that a
pizza restaurant fails is 1/(10 � p). Create a birth–death
model of this situation.

a In the steady state, estimate the average number of
pizza restaurants in Bloomington.

b What fraction of the time will there be more than 20
pizza restaurants in Bloomington?

20.4 The M/M/1/GD/∞/∞ Queuing System 
and the Queuing Formula L � lW

We now use the birth–death methodology explained in the previous section to analyze

the properties of the M/M/1/GD/∞/∞ queuing system. Recall that the M/M/1/GD/∞/∞

queuing system has exponential interarrival times (we assume that the arrival rate per

unit time is l) and a single server with exponential service times (we assume that each

customer’s service time is exponential with rate m). In Section 20.3, we showed that an

M/M/1/GD/∞/∞ queuing system may be modeled as a birth–death process with the 

following parameters:

lj � l ( j � 0, 1, 2, . . .)

m0 � 0 (20)

mj � m ( j � 1, 2, 3, . . .)
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Derivation of Steady-State Probabilities

We can use Equations (15)–(19) to solve for pj, the steady-state probability that j cus-

tomers will be present. Substituting (20) into (16) yields

p1 � 	
l

m

p0
	, p2 � 	

l

m

2p
2

0
	, . . . , pj � 	

l

m

jp

j

0
	 (21)

We define r � 	
m

l
	. For reasons that will become apparent later, we call r the traffic in-

tensity of the queuing system. Substituting (21) into (17) yields

p0(1 � r � r2
� 
 
 
) � 1 (22)

We now assume that 0 � r  1. Then we evaluate the sum S � 1 � r � r2 � 
 
 
 as

follows: Multiplying S by r yields rS � r � r2 � r3 � 
 
 
. Then S � rS � 1, and

S � 	
1 �

1

r
	 (23)

Substituting (23) into (22) yields

p0 � 1 � r (0 � r  1) (24)

Substituting (24) into (21) yields

pj � r j(1 � r) (0 � r  1) (25)

If r � 1, however, the infinite sum in (22) “blows up” (try r � 1, for example, and you

get 1 � 1 � 1 � 
 
 
). Thus, if r � 1, no steady-state distribution exists. Since r � 	
m

l
	,

we see that if l � m (that is, the arrival rate is at least as large as the service rate), then

no steady-state distribution exists.

If r � 1, it is easy to see why no steady-state distribution can exist. Suppose l � 6

customers per hour and m � 4 customers per hour. Even if the server were working all

the time, she could only serve an average of 4 people per hour. Thus, the average num-

ber of customers in the system would grow by at least 6 � 4 � 2 customers per hour.

This means that after a long time, the number of customers present would “blow up,” and

no steady-state distribution could exist. If r � 1, the nonexistence of a steady state is not

quite so obvious, but our analysis does indicate that no steady state exists.

Derivation of L

Throughout the rest of this section, we assume that r  1, ensuring that a steady-state

probability distribution, as given in (25), does exist. We now use the steady-state proba-

bility distribution in (25) to determine several quantities of interest. For example, assum-

ing that the steady state has been reached, the average number of customers present in the

queuing system (call it L) is given by

L � �
j�∞

j�0

jpj � �
j�∞

j�0

jr j(1 � r)

� (1 � r) �
j�∞

j�0

jr j

Defining

S� � �
j�∞

j�0

jr j
� r � 2r2

� 3r3
� 
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we see that rS� � r2
� 2r3

� 3r4
� 
 
 
. Subtracting yields

S� � r S� � r � r2
� 
 
 
 � 	

1 �

r

r
	

Thus,

S� � 	
(1 �

r

r)2
	

and

L � (1 � r) 	
(1 �

r

r)2
	 � 	

1 �

r

r
	 � 	

m �

l

l
	 (26)

Derivation of Lq

In some circumstances, we are interested in the expected number of people waiting in line

(or in the queue). We denote this number by Lq. Note that if 0 or 1 customer is present in

the system, then nobody is waiting in line, but if j people are present ( j � 1), there will

be j � 1 people waiting in line. Thus, if we are in the steady state,

Lq � �
j�∞

j�1

( j � 1)pj � �
j�∞

j�1

jpj � �
j�∞

j�1

pj

� L � (1 � p0) � L � r

where the last equation follows from (24). Since L � 	
1�

r

r
	, we write

Lq � 	
1 �

r

r
	 � r � 	

1

r

�

2

r
	 � 	

m(m

l

�

2

l)
	 (27)

Derivation of Ls

Also of interest is Ls, the expected number of customers in service. For an M/M/1/GD/∞/∞

queuing system,

Ls � 0p0 � 1(p1 � p2 � 
 
 
) � 1 � p0 � 1 � (1 � r) � r

Since every customer who is present is either in line or in service, it follows that for any

queuing system (not just an M/M/1/GD/∞/∞ system), L � Ls � Lq. Thus, using our for-

mulas for L and Ls, we could have determined Lq from

Lq � L � Ls � 	
1 �

r

r
	 � r � 	

1

r

�

2

r
	

The Queuing Formula L � lW

Often we are interested in the amount of time that a typical customer spends in a queu-

ing system. We define W as the expected time a customer spends in the queuing system,

including time in line plus time in service, and Wq as the expected time a customer spends

waiting in line. Both W and Wq are computed under the assumption that the steady state

has been reached. By using a powerful result known as Little’s queuing formula, W and



2 0 . 4 The M/M/1/GD/∞/∞ Queuing System and the Queuing Formula L � lW 1075

Wq may be easily computed from L and Lq. We first define (for any queuing system or

any subset of a queuing system) the following quantities:

l � average number of arrivals entering the system per unit time

L � average number of customers present in the queuing system

Lq � average number of customers waiting in line

Ls � average number of customers in service

W � average time a customer spends in the system

Wq � average time a customer spends in line

Ws � average time a customer spends in service

In these definitions, all averages are steady-state averages. For most queuing systems, Lit-

tle’s queuing formula may be summarized as in Theorem 3.

T H E O R E M  3

For any queuing system in which a steady-state distribution exists, the following re-

lations hold:

L � lW (28)

Lq � lWq (29)

Ls � lWs (30)

Before using these important results, we present an intuitive justification of (28). First

note that both sides of (28) have the same units (we assume the unit of time is hours).

This follows, because L is expressed in terms of number of customers, l is expressed in

terms of customers per hour, and W is expressed in hours. Thus, lW has the same units

(customers) as L. For a rigorous proof of Little’s theorem, see Ross (1970). We content

ourselves with the following heuristic discussion.

Consider a queuing system in which customers are served on a first come, first served

basis. An arbitrary arrival enters the system (assume that the steady state has been

reached). This customer stays in the system until he completes service, and upon his de-

parture, there will be (on the average) L customers present in the system. But when this

customer leaves, who will be left in the system? Only those customers who arrive during

the time the initial customer spends in the system. Since the initial customer spends an

average of W hours in the system, an average of lW customers will arrive during his stay

in the system. Hence, L � lW. The “real” proof of L � lW is virtually independent of

the number of servers, the interarrival time distribution, the service discipline, and the ser-

vice time distribution. Thus, as long as a steady state exists, we may apply Equations

(28)–(30) to any queuing system.

To illustrate the use of (28) and (29), we determine W and Wq for an M/M/1/GD/∞/∞

queuing system. From (26),

L � 	
1 �

r

r
	

Then (28) yields

W � 	
L

l
	 � 	

l(1

r

� r)
	 � 	

m �

1

l
	 (31)
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From (27), we obtain

Lq � 	
m(m

l

�

2

l)
	

and (29) implies

Wq � 	
L

l

q
	 � 	

m(m

l

� l)
	 (32)

Notice that (as expected) as r approaches 1, both W and Wq become very large. For r near

zero, Wq approaches zero, but for small r, W approaches 	
m

1
	, the mean service time.

The following three examples show applications of the formulas we have developed.

E X A M P L E  3

An average of 10 cars per hour arrive at a single-server drive-in teller. Assume that the

average service time for each customer is 4 minutes, and both interarrival times and ser-

vice times are exponential. Answer the following questions:

1 What is the probability that the teller is idle?

2 What is the average number of cars waiting in line for the teller? (A car that is being

served is not considered to be waiting in line.)

3 What is the average amount of time a drive-in customer spends in the bank parking

lot (including time in service)?

4 On the average, how many customers per hour will be served by the teller?

Solution By assumption, we are dealing with an M/M/1/GD/∞/∞ queuing system for which l �

10 cars per hour and m � 15 cars per hour. Thus, r � 	
1
1
0
5
	 � 	

2
3

	.

1 From (24), p0 � 1 � r � 1 � 	
2
3

	 � 	
1
3

	. Thus, the teller will be idle an average of one-

third of the time.

2 We seek Lq. From (27),

Lq � 	
1

r

�

2

r
	 � � 	

4

3
	 customers

3 We seek W. From (28), W � 	
L
l

	. Then from (26).

L � 	
1 �

r

r
	 � � 2 customers

Thus, W � 	
1
2
0
	 � 	

1
5

	 hour � 12 minutes (W will have the same units as l).

4 If the teller were always busy, he would serve an average of m � 15 customers per

hour. From part (1), we know that the teller is only busy two-thirds of the time. Thus, dur-

ing each hour, the teller will serve an average of (	
2
3

	)(15) � 10 customers. This must be

the case, because in the steady state, 10 customers are arriving each hour, so each hour,

10 customers must leave the system.

E X A M P L E  4

Suppose that all car owners fill up when their tanks are exactly half full.† At the present

time, an average of 7.5 customers per hour arrive at a single-pump gas station. It takes an

Service Station

	
2
3

	

	

(	
2
3

	)2

	
1 � 	

2
3

	

Drive-in Banking

†This example is based on Erickson (1973).
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average of 4 minutes to service a car. Assume that interarrival times and service times are

both exponential.

1 For the present situation, compute L and W.

2 Suppose that a gas shortage occurs and panic buying takes place. To model this phe-

nomenon, suppose that all car owners now purchase gas when their tanks are exactly

three-quarters full. Since each car owner is now putting less gas into the tank during each

visit to the station, we assume that the average service time has been reduced to 3	
1
3

	 min-

utes. How has panic buying affected L and W ?

Solution 1 We have an M/M/1/GD/∞/∞ system with l � 7.5 cars per hour and m � 15 cars per

hour. Thus, r � 	
7
1
.
5
5
	 � .50. From (26), L � 	

1�

.5
.
0
50
	 � 1, and from (28), W � 	

L
l

	 � 	
7
1
.5
	 � 0.13

hour. Hence, in this situation, everything is under control, and long lines appear to be 

unlikely.

2 We now have an M/M/1/GD/∞/∞ system with l � 2(7.5) � 15 cars per hour. (This

follows because each car owner will fill up twice as often.) Now m � 	
3.

6
3
0
33
	 � 18 cars per

hour, and r � 	
1
1
5
8
	 � 	

5
6

	. Then

L � � 5 cars and W � 	
L

l
	 � 	

1

5

5
	 � 	

1

3
	 hours � 20 minutes

Thus, panic buying has caused long lines.

Example 4 illustrates the fact that as r approaches 1, L and therefore W increase

rapidly. Table 5 illustrates this fact.

A Queuing Optimization Model

Example 5 shows how queuing theory can be used as an aid in decision making.

	
5
6

	

	

TA B L E  5

Relation between r and L for an
M/M/1/GD/∞/∞ System

L for an
r M/M/1/GD/∞/∞ System

0.30 0.43

0.40 0.67

0.50 1.00

0.60 1.50

0.70 2.33

0.80 4.00

0.90 9.00

0.95 19.00

0.99 99.00
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†This example is based on Brigham (1955).

E X A M P L E  5

Machinists who work at a tool-and-die plant must check out tools from a tool center.† An

average of ten machinists per hour arrive seeking tools. At present, the tool center is

staffed by a clerk who is paid $6 per hour and who takes an average of 5 minutes to han-

dle each request for tools. Since each machinist produces $10 worth of goods per hour,

each hour that a machinist spends at the tool center costs the company $10. The company

is deciding whether or not it is worthwhile to hire (at $4 per hour) a helper for the clerk.

If the helper is hired, the clerk will take an average of only 4 minutes to process requests

for tools. Assume that service and interarrival times are exponential. Should the helper be

hired?

Solution Problems in which a decision maker must choose between alternative queuing systems

are called queuing optimization problems. In the current problem, the company’s goal

is to minimize the sum of the hourly service cost and the expected hourly cost due to

the idle times of machinists. In queuing optimization problems, the component of cost

due to customers waiting in line is referred to as the delay cost. Thus, the firm wants to

minimize

	
Expe

H

ct

o

e

u

d

r

cost
	 � 	

serv

h

ic

o

e

ur

cost
	 �

The computation of the hourly service cost is usually simple. The easiest way to compute

the hourly delay cost is to note that

� � � � �
In our problem,

� � � � �
Thus,

� 10W and � 10Wl

We can now compare the expected cost per hour if the helper is not hired to the expected

cost per hour if the helper is hired. If the helper is not hired, l � 10 machinists per hour

and m � 12 machinists per hour. From (31), W � 	
12�

1
10

	 � 	
1
2

	 hour. Since the clerk is paid

$6 per hour, we have that

	
Serv

H

ic

o

e

ur

cost
	 � $6 and � 10(	

1
2

	)10 � $50
expected delay cost
			

expected delay cost
			

Expected delay cost
			

average hours machinist

spends in system

$10
		

Expected delay cost
			

expected customers
			

expected delay cost
			

Expected delay cost
			

expected delay cost
			

Tool Center



2 0 . 4 The M/M/1/GD/∞/∞ Queuing System and the Queuing Formula L � lW 1079

Thus, without the helper, the expected hourly cost is 6 � 50 � $56. With the helper, 

m � 15 customers per hour. Then W � 	
15�

1
10

	 � 	
1
5

	 hour and

� 10(	
1
5

	)(10) � $20

Since the hourly service cost is now 6 � 4 � $10 per hour, the expected hourly cost with

the helper is 20 � 10 � $30. Thus, the helper should be hired, because he saves 50 �

20 � $30 per hour in delay costs, which more than makes up for his $4-per-hour salary.

The queuing formula L � lW is very general and can be applied to many situations

that do not seem to be queuing problems. Think of any situation where a quantity (such

as mortgage loan applications, potatoes at McDonald’s, revenues from computer sales)

flows through a system. If we let

L � average amount of quantity present

l � rate at which quantity arrives at system

W � average time a unit of quantity spends in system

then L � lW or W � L/l.

Here are some examples of L � lW in non-queuing situations.

E X A M P L E  6

Our local MacDonald’s uses an average of 10,000 pounds of potatoes per week. The av-

erage number of pounds of potatoes on hand is 5,000. On the average, how long do pota-

toes stay in the restaurant before being used?

Solution We are given that L � 5,000 pounds and l� 10,000 pounds/week. Therefore, W � 5,000

pounds/(10,000 pounds/week) � .5 week.

E X A M P L E  7

A local computer store sells $300,000 worth of computers per year. On average accounts

receivable are $45,000. On average, how long does it take from the time a customer is

billed until the store receives payment?

Solution We are given that L � $45,000 and l � $300,000/year. Therefore W � $45,000/

($300,000/year) � .15 year.

A Spreadsheet for the M/M/1/GD/∞/∞ Queuing System

Figure 13 (file MM1.xls) gives a template that can be used to compute important quanti-

ties for the M/M/1/GD/∞/∞ queuing system. Simply input l in cell A4 and m in cell B4.

L, Lq, Ls, W, Wq, and Ws are computed in rows 6 and 8. Column B prints out the steady-

state probabilities (computed from (24) and (25)). We are assuming that l and m are such

that the probability that more than 1,000 customers will be present is very small. In Fig-

ure 13, we have input the values of l and m for Example 3.

Accounts Receivable

Potatoes at McDonald’s

Expected delay cost
			

MM1.xls
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

A B C

M/M/1 QUEUE

LAMBDA? MU? RO

10 15 0.66666667

L LQ LS

2 1.33333333 0.66666667

W WQ WS

0.2 0.13333333 0.06666667

J PI(J)

0 0.33333333

1 0.22222222

2 0.14814815

3 0.09876543

4 0.06584362

5 0.04389575

6 0.02926383

7 0.01950922

8 0.01300615

9 0.00867076

10 0.00578051

11 0.00385367

12 0.00256912

13 0.00171274

14 0.00114183

15 0.00076122

16 0.00050748

17 0.00033832

18 0.00022555

19 0.00015036

20 0.00010024

21 6.6829E-05

22 4.4552E-05

23 2.9702E-05

24 1.9801E-05

25 1.3201E-05

26 8.8005E-06

27 5.867E-06

28 3.9113E-06

29 2.6075E-06

30 1.7384E-06  
F I G U R E  13

M/M/1 Queue
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P R O B L E M S
Group A

A A B C D

4 1

4 2

4 3

4 4

4 5

4 6

4 7

4 8

4 9

5 0

5 1

5 2

5 3

5 4

5 5

5 6

5 7

5 8

5 9

6 0

6 1

6 2

6 3

6 4

6 5

6 6

6 7

6 8

6 9

7 0

7 1

7 2

7 3

7 4

7 5

7 6

7 7

7 8

7 9

8 0

31 0.0000012 

32 0.0000008 

33 0.0000005 

34 0.0000003 

35 0.0000002 

36 0.0000002 

37 0.0000001 

38 6.8E-08 

39 4.5E-08 

40 3.0E-08 

41 2.0E-08 

42 1.3E-08 

43 8.9E-09 

44 6.0E-09 

45 4.0E-09 

46 2.6E-09 

47 1.8E-09 

48 1.2E-09 

49 7.8E-10 

50 5.2E-10 

51 3.5E-10 

52 2.3E-10 

53 1.5E-10 

54 1.0E-10 

55 6.9E-11 

56 4.6E-11 

57 3.1E-11 

58 2.0E-11 

59 1.4E-11 

60 9.1E-12 

61 6.0E-12 

62 4.0E-12 

63 2.7E-12 

64 1.8E-12 

65 1.2E-12 

66 8.0E-13 

67 5.3E-13 

68 3.5E-13 

69 2.4E-13 

70 1.6E-13 
F I G U R E  13

(Continued)

1† Each airline passenger and his or her luggage must be
checked to determine whether he or she is carrying weapons
onto the airplane. Suppose that at Gotham City Airport, an
average of 10 passengers per minute arrive (interarrival
times are exponential). To check passengers for weapons,
the airport must have a checkpoint consisting of a metal
detector and baggage X-ray machine. Whenever a check-

point is in operation, two employees are required. A
checkpoint can check an average of 12 passengers per
minute (the time to check a passenger is exponential). Under
the assumption that the airport has only one checkpoint,
answer the following questions:

a What is the probability that a passenger will have to
wait before being checked for weapons?

b On the average, how many passengers are waiting in
line to enter the checkpoint?

†Based on Gilliam (1979).
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c On the average, how long will a passenger spend at
the checkpoint?

2 The Decision Sciences Department is trying to
determine whether to rent a slow or a fast copier. The
department believes that an employee’s time is worth $15
per hour. The slow copier rents for $4 per hour and it takes
an employee an average of 10 minutes to complete copying
(exponentially distributed). The fast copier rents for $15 per
hour and it takes an employee an average of 6 minutes to
complete copying. An average of 4 employees per hour need
to use the copying machine (interarrival times are
exponential). Which machine should the department rent?

3 For an M/M/1/GD/∞/∞ queuing system, suppose that
both l and m are doubled.

a How is L changed?

b How is W changed?

c How is the steady-state probability distribution
changed?

4 A fast-food restaurant has one drive-through window.
An average of 40 customers per hour arrive at the window.
It takes an average of 1 minute to serve a customer. Assume
that interarrival and service times are exponential.

a On the average, how many customers are waiting in
line?

b On the average, how long does a customer spend at
the restaurant (from time of arrival to time service is
completed)?

c What fraction of the time are more than 3 cars waiting
for service (this includes the car (if any) at the window)?

5 On a typical Saturday, Red Lobster serves 1,000
customers. The restaurant is open for 12 hours. On average,
150 customers are present. How long does an average
customer spend in the restaurant?

6 Our local maternity ward delivers 1,500 babies per year.
On the average, 5 beds in the maternity ward are filled. How
long does the average mother stay in the maternity ward?

7 Assume that an average of 125 packets per second of
information arrive to a router and that it takes an average of
.002 second to process each packet. Assuming exponential
interarrival and service times, answer the following
questions.

a What is the average number of packets waiting for
entry into the router?

b What is the probability that 10 or more packets are
present?

Group B

8 Referring to Problem 1, suppose the airline wants to
determine how many checkpoints to operate to minimize
operating costs and delay costs over a ten-year period.
Assume that the cost of delaying a passenger for 1 hour is
$10 and that the airport is open every day for 16 hours per
day. It costs $1 million to purchase, staff, and maintain a
metal detector and baggage X-ray machine for a ten-year
period. Finally, assume that each passenger is equally likely
to enter a given checkpoint.

9† Each machine on Widgetco’s assembly line gets out of
whack an average of once a minute. Laborers are assigned
to reset a machine that gets out of whack. The company
pays each laborer cs dollars per hour and estimates that each
hour of idle machine time costs the company cm dollars in
lost production. Data indicate that the time between
successive breakdowns of a machine and the time to reset a
machine are exponential. Widgetco plans to assign each
worker a certain number of machines to watch over and
repair. Let M � total number of Widgetco machines, w �
number of laborers hired by Widgetco, and R � 	

M
w

	 �
machines assigned to each laborer.

a Express Widgetco’s hourly cost in terms of R and M.

b Show that the optimal value of R does not depend
on the value of M.

c Use calculus to show that costs are minimized by
choosing

R �

d Suppose cm � 78¢ and cs � $2.75. Widgetco has 200
machines, and a laborer can reset a machine in an aver-
age of 7.8 seconds. How can Widgetco minimize costs?

e In parts (a)–(d), we have tacitly assumed that at any
point in time, the rate at which the machines assigned to
a worker break down does not depend on the number of
his or her assigned machines that are currently working
properly. Does this assumption seem reasonable?

10 Consider an airport where taxis and customers arrive
(exponential interarrival times) with respective rates of 1
and 2 per minute. No matter how many other taxis are
present, a taxi will wait. If an arriving customer does not
find a taxi, the customer immediately leaves.

a Model this system as a birth–death process (Hint:
Determine what the state of the system is at any given
time and draw a rate diagram.)

b Find the average number of taxis that are waiting for
a customer.

c Suppose all customers who use a taxi pay a $2 fare.
During a typical hour, how much revenue will the taxis
receive?

11 A bank is trying to determine which of two machines
should be rented to process checks. Machine 1 rents for
$10,000 per year and processes 1,000 checks per hour.
Machine 2 rents for $15,000 per year and processes 1,600
checks per hour. Assume that the machines work 8 hours a
day, 5 days a week, 50 weeks a year. The bank must process
an average of 800 checks per hour, and the average check
processed is for $100. Assume an annual interest rate of
20%. Then determine the cost to the bank (in lost interest)
for each hour that a check spends waiting for and undergoing
processing. Assuming that interarrival times and service
times are exponential, which machine should the bank rent?

12‡ A tire plant must produce an average of 100 tires per
day. The plant produces tires in a batch of size x. The plant

	
6

m

0
	

		

†Based on Vogel (1979).
‡Based on Karmarkar (1985).



2 0 . 5 The M/M/1/GD/c/∞ Queuing System 1083

manager must determine the batch size x that minimizes the
time a batch spends in the plant. From the time a batch of
tires arrives, it takes an average of 	

2
1
0
	 of a day to set up the

plant for production of tires. Once the plant is set up, it
takes an average of 	

1
1
50
	 day to produce each tire. Assume that

the time to produce a batch of tires is exponentially
distributed and that the time for a batch of tires to “arrive”
is also exponentially distributed. Determine the batch size
that minimizes the expected time a batch spends in the plant
(from arrival of batch to time production of batch is
completed).

13 A worker at the State Unemployment Office is
responsible for processing a company’s forms when it opens
for business. The worker can process an average of 4 forms
per week. In 2002, an average of 1.8 companies per week
submitted forms for processing, and the worker had a
backlog of .45 week. In 2003, an average of 3.9 companies
per week submitted forms for processing, and the worker
had a 5-week backlog. The poor worker was fired and sued
to get his job back. The court said that since the amount of
work submitted to the worker had approximately doubled,
the worker’s backlog should have also doubled. Since his

backlog increased by more than a factor of 10, he must have
been slacking off, so the state was justified in firing him.
Use queuing theory to defend the worker (based on an actual
case!).

14 For the M/M/1/GD/∞/∞ queuing model, show that the
following results hold:

a W � (L � 1)Ws.

b Wq � LWs.

c Interpret the results in (a) and (b).

15 From the time a request for data is submitted until the
request is fulfilled, a database takes an average of 3 seconds
to respond to a request for data. We find that the database
is idle around 20% of the time. Answer the following
questions, assuming that the database can be modeled as an
M/M/1 system.

a What is the average service time per database query?

b What is the average number of queries in the 
system?

c What is the probability that 5 or more queries are
present?

20.5 The M/M/1/GD/c/∞ Queuing System

In this section, we analyze the M/M/1/GD/c/∞ queuing system. Recall that this queuing

system is an M/M/1/GD/∞/∞ system with a total capacity of c customers. The

M/M/1/GD/c/∞ system is identical to the M/M/1/GD/∞/∞ system except for the fact that

when c customers are present, all arrivals are turned away and are forever lost to the sys-

tem. As in Section 20.4, we assume that interarrival times are exponential with rate l, and

service times are exponential with rate m. Then the M/M/1/GD/c/∞ system may be mod-

eled (see Figure 14) as a birth–death process with the following parameters:

lj � l ( j � 0, 1, . . . , c � 1)

lc � 0 (33)

m0 � 0

mj � m ( j � 1, 2, . . . , c)

Since lc � 0, the system will never reach state c � 1 (or any higher-numbered state). As

in Section 20.4, it is convenient to define r � 	
m

l
	. Then we can apply Equations (16)–(19) to

find that if l � m, the steady-state probabilities for the M/M/1/GD/c/∞ model are given by

p0 � 	
1

1

�

�

rc

r

�1
	

pj � r jp0 ( j � 1, 2, . . . , c) (34)

pj � 0 ( j � c � 1, c � 2, . . .)

µ

0 1 2 c  –  1 c

µ µ

F I G U R E  14

Rate Diagram for
M/M/1/GD/c/∞

Queuing System
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Combining (34) with the fact that L � �j�c
j�0 jpj, we can show that when l � m,

L � (35)

If l � m, then all the cj’s in (16) equal 1, and all the pj’s must be equal. Hence, if l �

m, the steady-state probabilities for the M/M/1/GD/c/∞ system are

pj � 	
c �

1

1
	 ( j � 0, 1, . . . , c)

(36)

L � 	
2

c
	

As with the M/M/1/GD/∞/∞ system, Ls � 0p0 � 1(p1 � p2 � 
 
 
) � 1 � p0. As be-

fore, we may determine Lq from Lq � L � Ls.

Determination of W and Wq from (28) and (29) is a tricky matter. Recall that in (28)

and (29), l represents the average number of customers per unit time who actually enter

the system. In our finite capacity model, an average of l arrivals per unit time arrive, but

lpc of these arrivals find the system filled to capacity and leave. Thus, an average of 

l � lpc � l(1 � pc) arrivals per unit time will actually enter the system. Combining

this fact with (28) and (29) yields

W � 	
l(1 �

L

pc)
	 and Wq � 	

l(1

L

�

q

pc)
	 (37)

For an M/M/1/GD/c/∞ system, a steady state will exist even if l � m. This is because,

even if l � m, the finite capacity of the system prevents the number of people in the sys-

tem from “blowing up.”

E X A M P L E  8

A one-man barber shop has a total of 10 seats. Interarrival times are exponentially dis-

tributed, and an average of 20 prospective customers arrive each hour at the shop. Those

customers who find the shop full do not enter. The barber takes an average of 12 minutes

to cut each customer’s hair. Haircut times are exponentially distributed.

1 On the average, how many haircuts per hour will the barber complete?

2 On the average, how much time will be spent in the shop by a customer who enters?

Solution 1 A fraction p10 of all arrivals will find the shop is full. Thus, an average of l(1 � p10)

will enter the shop each hour. All entering customers will receive a haircut, so the barber

will give an average of l(1 � p10) haircuts per hour. From our problem, c � 10, l � 20

customers per hour, and m � 5 customers per hour. Then r � 	
2
5
0
	 � 4, and (34) yields

p0 � 	
1

1

�

�

4

4
11	

and

p10 � 410 �	1
1

�

�

4

4
11

	� � 	
�

1

3

�

(4

4

1

1

0

1

)
	 � .75

Thus, an average of 20(1 � 	
3
4

	) � 5 customers per hour will receive haircuts. This means

that an average of 20 � 5 � 15 prospective customers per hour will not enter the shop.

2 To determine W, we use (35) and (37). From (35),

Barber Shop

r[1 � (c � 1)rc
� crc�1]

			
(1 � rc�1)(1 � r)
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L � � 9.67 customers

Then (37) yields

W � � 1.93 hours

This barber shop is crowded, and the barber would be well advised to hire at least one

more barber!

A Spreadsheet for the M/M/1/GD/c/∞ Queuing System

Figure 15 (file MM1CAP.xls) gives a template that can be used to compute important

quantities for the M/M/1/GD/c/∞ queuing system. Input l in cell B2, m in cell C2, and c

(we assume c � 1,000) in cell D2. In cell F2, the steady-state probability that the state is

c is given. This is the fraction of all arrivals who find the system full. In row 4, the quan-

tities L, Ls, Lq, W, Ws, and Wq are computed. In column E, the steady-state probabilities

are computed from equations (16)–(18). In Figure 15, we have input the data from Ex-

ample 8.

P R O B L E M S
Group A

9.67
		

4[1 � 11(410) � 10(411)]
			

(1 � 411)(1 � 4)

1 A service facility consists of one server who can serve
an average of 2 customers per hour (service times are
exponential). An average of 3 customers per hour arrive at
the facility (interarrival times are assumed exponential).
The system capacity is 3 customers.

a On the average, how many potential customers enter
the system each hour?

b What is the probability that the server will be busy?

2 An average of 40 cars per hour (interarrival times are
exponentially distributed) are tempted to use the drive-in
window at the Hot Dog King Restaurant. If a total of more
than 4 cars are in line (including the car at the window) a
car will not enter the line. It takes an average of 4 minutes
(exponentially distributed) to serve a car.

a What is the average number of cars waiting for the
drive-in window (not including a car at the window)?

b On the average, how many cars will be served per
hour?

c I have just joined the line at the drive-in window. On
the average, how long will it be before I have received
my food?

3 An average of 125 packets of information per minute
arrive at an internet router. It takes an average of .002 
second to process a packet of information. The router is
designed to have a limited buffer to store waiting messages.
Any message that arrives when the buffer is full is lost to
the system. Assuming that interarrival and service times are

exponentially distributed, how big a buffer size is needed to
ensure that at most 1 in a million messages is lost?

Group B

4 Show that if r � 1

1 � r � r2
� 
 
 
 � rc

� 	
1

1

�

�

rc

r

�1

	

(Hint: Recall how we evaluated 1 � r � r2 � 
 
 
.)

5 Use the answer to Problem 3 to derive the steady-state
probabilities for the M/M/1/GD/c/∞ system given in
Equation (34).

6 Two one-man barber shops sit side by side in Dunkirk
Square. Each can hold a maximum of 4 people, and any
potential customer who finds a shop full will not wait for a
haircut. Barber 1 charges $11 per haircut and takes an
average of 12 minutes to complete a haircut. Barber 2
charges $5 per haircut and takes an average of 6 minutes to
complete a haircut. An average of 10 potential customers
per hour arrive at each barber shop. Of course, a potential
customer becomes an actual customer only if he finds that
the shop is not full. Assuming that interarrival times and
haircut times are exponential, which barber will earn more
money?

7 A small mail order firm Seas Beginnings has one phone
line. An average of 60 people per hour call in orders, and it
takes an average of 1 minute to handle a call. Time between

MM1CAP.xls
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

A B C D E F G
M/M/1/GD/c LAMBDA? MU? c? RO PI(c) TURNED AWAY

20 5 10 4 0.75000018 15.00000358

L LS LQ W WS WQ

9.66666929 0.99999928 8.66667 1.93333524 0.2 1.733335241

STATE LAMBDA(J) MU(J) CJ PROB #IN QUEUE   COLA*COLE

0 20 0 1 7.1526E-07 0 0

1 20 5 4 2.861E-06 0 2.86102E-06

2 20 5 16 1.1444E-05 1 2.28882E-05

3 20 5 64 4.5776E-05 2 0.000137329

4 20 5 256 0.00018311 3 0.000732422

5 20 5 1024 0.00073242 4 0.00366211

6 20 5 4096 0.00292969 5 0.017578129

7 20 5 16384 0.01171875 6 0.08203127

8 20 5 65536 0.04687501 7 0.375000089

9 20 5 262144 0.18750004 8 1.687500402

10 0 5 1048576 0.75000018 9 7.500001788

11 0 5 0 0 10 0

12 0 5 0 0 11 0

13 0 5 0 0 12 0

14 0 5 0 0 13 0

15 0 5 0 0 14 0

16 0 5 0 0 15 0

17 0 5 0 0 16 0

18 0 5 0 0 17 0

19 0 5 0 0 18 0

20 0 5 0 0 19 0

21 0 5 0 0 20 0

22 0 5 0 0 21 0

23 0 5 0 0 22 0

24 0 5 0 0 23 0

25 0 5 0 0 24 0

26 0 5 0 0 25 0

27 0 5 0 0 26 0

28 0 5 0 0 27 0  

F I G U R E  15

calls and time to handle calls are exponentially distributed.
If the phone line is busy, Seas Beginnings can put up to 
c � 1 people on hold. If c � 1 people are on hold, a caller
gets a busy signal and calls a competitor (Air End). Seas
Beginnings wants only 1% of all callers to get a busy signal.

How many people should the company be able to put on
hold?
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20.6 The M/M/s/GD/∞/∞ Queuing System

We now consider the M/M/s/GD/∞/∞ system. We assume that interarrival times are ex-

ponential (with rate l), service times are exponential (with rate m), and there is a single

line of customers waiting to be served at one of s parallel servers. If j � s customers are

present, then all j customers are in service; if j � s customers are present, then all s

servers are occupied, and j � s customers are waiting in line. Any arrival who finds an

idle server enters service immediately, but an arrival who does not find an idle server joins

the queue of customers awaiting service. Banks and post office branches in which all cus-

tomers wait in a single line for service can often be modeled as M/M/s/GD/∞/∞ queuing

systems.

To describe the M/M/s/GD/∞/∞ system as a birth–death model, note that (as in the

M/M/1/GD/∞/∞ model) lj � l ( j � 0, 1, 2, . . .). If j servers are occupied, then service

completions occur at a rate

� jm

Whenever j customers are present, min ( j, s) servers will be occupied. Thus, mj � min

( j, s)m. Summarizing, we find that the M/M/s/GD/∞/∞ system can be modeled as a

birth–death process (see Figure 16) with parameters

lj � l ( j � 0, 1, . . .)

mj � jm ( j � 0, 1, . . . , s) (38)

mj � sm ( j � s � 1, s � 2, . . .)

we define r � 	
s
l

m
	. For r  1, substituting (38) into (16)–(19) yields the following steady-

state probabilities:

p0 � (39)

pj � 	
(sr

j

)

!

jp0
	 ( j � 1, 2, . . . , s) (39.1)

pj � 	
(

s

s

!

r

s

)
j

j

�

p

s

0
	 ( j � s, s � 1, s � 2, . . .) (39.2)

If r � 1, no steady state exists. In other words, if the arrival rate is at least as large as the

maximum possible service rate (l � sm), the system “blows up.”

From (39.2) it can be shown that the steady-state probability that all servers are busy

is given by

P( j � s) � 	
s!

(

(

s

1

r)

�

sp0

r)
	 (40)

1
			

�
i�(s�1)

i�0

	
(s

i

r

!

)i

	 � 	
s!(

(

1

sr

�

)s

r)
	

m � m � 
 
 


jm’s

sµ

0 1 2 s

µ 2µ

s  +  1
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Rate Diagram for
M/M/s/GD/∞/∞
Queuing System

�



1088 C H A P T E R 2 0 Queuing Theory

Table 6 tabulates P( j � s) for a variety of situations. It can also be shown that

Lq � 	
P(

1

j

�

�

r

s)r
	 (41)

Then (28) yields

Wq � 	
L

l

q
	 � 	

P

s

(

m

j

�

�

l

s)
	 (42)

To determine L (and then W), we use the fact that L � Lq � Ls. Since Ws � 	
m

1
	, Equation

(30) shows that Ls � 	
m

l
	. Then

L � Lq � 	
m

l
	 (43)

Also,

W � 	
L

l
	

� 	
L

l

q
	 � 	

m

1
	

(44)

� Wq � 	
m

1
	

�	
P

s

(

m

j

�

�

l

s)
	 � 	

m

1
	

When we need to determine L, Lq, W, or Wq, we begin by looking up P( j � s) in Table

6. Then we use (41)–(44) to calculate the quantity we want. If we are interested in the

steady-state probability distribution, we find P( j � s) in Table 6 and then use (40) to ob-

tain p0. Then (39.1) and (39.2) yield the entire steady-state distribution. The following

two examples illustrate the use of the preceding formulas.

TA B L E  6

P ( j � s) for the M/M/s/GD/∞/∞ Queuing System

r s � 2 s � 3 s � 4 s � 5 s � 6 s � 7

.10 .02 .00 .00 .00 .00 .00

.20 .07 .02 .00 .00 .00 .00

.30 .14 .07 .04 .02 .01 .00

.40 .23 .14 .09 .06 .04 .03

.50 .33 .24 .17 .13 .10 .08

.55 .39 .29 .23 .18 .14 .11

.60 .45 .35 .29 .24 .20 .17

.65 .51 .42 .35 .30 .26 .21

.70 .57 .51 .43 .38 .34 .30

.75 .64 .57 .51 .46 .42 .39

.80 .71 .65 .60 .55 .52 .49

.85 .78 .73 .69 .65 .62 .60

.90 .85 .83 .79 .76 .74 .72

.95 .92 .91 .89 .88 .87 .85
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E X A M P L E  9

Consider a bank with two tellers. An average of 80 customers per hour arrive at the bank

and wait in a single line for an idle teller. The average time it takes to serve a customer is

1.2 minutes. Assume that interarrival times and service times are exponential. Determine

1 The expected number of customers present in the bank

2 The expected length of time a customer spends in the bank

3 The fraction of time that a particular teller is idle

Solution 1 We have an M/M/2/GD/∞/∞ system with l � 80 customers per hour and m � 50 cus-

tomers per hour. Thus r � 	
2(

8
5
0
0)
	 � 0.80  1, so a steady state does exist. (For l � 100,

no steady state would exist.) From Table 6, P( j � 2) � .71. Then (41) yields

Lq � 	
1

.80

�

(.7

.8

1

0

)
	 � 2.84 customers

and from (43), L � 2.84 � 	
8
5
0
0
	 � 4.44 customers.

2 Since W � 	
L
l

	, W � 	
4
8
.4
0
4

	 � 0.055 hour � 3.3 minutes.

3 To determine the fraction of time that a particular server is idle, note that he or she is

idle during the entire time that j � 0 and half the time (by symmetry) that j � 1. The

probability that a server is idle is given by p0 � 0.5p1. Using the fact that P( j � 2) �

.71, we obtain p0 from (40):

p0 � 	
s!P( j �

(sr

s

)

)
2

(1 � r)
	 � 	

2!(.71

(

)

1

(

.

1

6)

�

2

.80)
	 � .11

Now (39.1) yields

p1 � 	
(1.6

1

)

!

1p0
	 � .176

Thus, the probability that a particular teller is idle is p0 � 0.5p1 � .11 � 0.5(.176) �

.198. We could have determined p0 directly from (39):

p0 � � 	
1 � 1.

1

6 � 6.4
	 � 	

1

9
	

This is consistent with our computation of p0 � .11.

E X A M P L E  1 0

The manager of a bank must determine how many tellers should work on Fridays. For

every minute a customer stands in line, the manager believes that a delay cost of 5¢ is in-

curred. An average of 2 customers per minute arrive at the bank. On the average, it takes

a teller 2 minutes to complete a customer’s transaction. It cost the bank $9 per hour to

hire a teller. Interarrival times and service times are exponential. To minimize the sum of

service costs and delay costs, how many tellers should the bank have working on Fridays?

Solution Since l � 2 customers per minute and m � 0.5 customer per minute, 	
s
l

m
	  1 requires

that 	
4
s

	  1 or s � 5. Thus, there must be at least 5 tellers, or the number of customers

present will “blow up.” We now compute, for s � 5, 6, . . . ,

�
expected delay cost
			

Expected service cost
			

Bank Staffing

1
				

Bank Tellers
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Since each teller is paid 	
6
9
0
	 � 15¢ per minute,

� 0.15s

As in Example 4,

� � � � �
But

� 0.05Wq

Since an average of 2 customers arrive per minute,

� 2(0.05Wq) � 0.10Wq

For s � 5, r � 	
.5

2
(5)
	 � .80 and P( j � 5) � .55. From (42),

Wq � 	
5(.5

.5

)

5

� 2
	 � 1.1 minutes

Thus, for s � 5,

� 0.10(1.1) � 11¢

and, for s � 5,

� 0.15(5) � 0.11 � 86¢

Since s � 6 has a service cost per minute of 6(0.15) � 90¢, 6 tellers cannot have a lower

total cost than 5 tellers. Hence, having 5 tellers serve is optimal. Putting it another way,

adding an additional teller can save the bank at most 11¢ per minute in delay costs. Since

an additional teller cost 15¢ per minute, it cannot be optimal to hire more than 5 tellers.

In addition to a customer’s expected time in the system, the distribution of a customer’s

waiting time is of interest. For example, if all customers who have to wait more than 5

minutes at a supermarket checkout counter decide to switch to another store, the proba-

bility that a given customer will switch to another store equals P(W � 5). To determine

this probability, we need to know the distribution of a customer’s waiting time. For an

M/M/s/FCFS/∞/∞ queuing system, it can be shown that

P(W � t) � e�mt �1 � P( j � s) �†

(45)

P(Wq � t) � P( j � s) exp [�sm(1 � r)t] (46)

To illustrate the use of (45) and (46), suppose that in Example 7 (for s � 5), the bank

manager wants to know the probability that a customer will have to wait in line for more

than 10 minutes. For s � 5, r � .80, P( j � 5) � .55, and m � 0.5 customer per minute.

(46) yields

P(Wq � 10) � .55 exp [�5(0.5)(1 � .80)(10)] � .55 e�5
� .004

1 � exp [�mt(s � 1 � sr)]
				

s � 1 � sr

Total expected cost
			

Expected delay cost
			

Expected delay cost
			

Expected delay cost
			

expected delay cost
			

expected customers
			

Expected delay cost
			

Expected service cost
			

†If s � 1 � sr, then P(W � t) � e�mt(1 � P( j � s)mt).
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Thus, the bank manager can be sure that the chance of a customer’s having to wait more

than 10 minutes is quite small.

A Spreadsheet for the M/M/s/GD/∞/∞ Queuing System

Figure 17 (file Multiple.xls) gives a template that can be used to compute the important

quantities for the M/M/s/GD/∞/∞ queuing system. In cell B2 we input l, in cell C2 we

input m, and in cell D2 we input s. In cell B6, we compute P( j � s). In row 4, the quan-

tities L, Ls, Lq, W, Ws, and Wq are computed. In A8, we compute P(Wq � t) for the value

of t input in cell B8. In cell C8, we compute P(W � t) for the value of t input in cell B8.

Steady-state probabilities are computed in column E (we are assuming that there is a small

probability that more than 1,000 customers are present). In Figure 17, we have input data

for Example 10 (with 5 servers).

Having a spreadsheet to compute quantities of interest for the M/M/s system enables

us to use spreadsheet techniques such as Data Tables and Goal Seek to answer questions

of interest. For example, reconsider Example 10. To determine the number of servers that

minimizes expected cost per minute, we would like to vary the number of servers (start-

ing with 5) and compute expected cost per minute for different numbers of servers. This

is easily done with a one-way data table. (See Figure 18.)

Step 1 Enter the possible number of servers (5–8) in cells J5:J8.

Step 2 Enter the formula for expected cost per minute one column over to the right and

one row above where the possible number of servers are listed. This is in cell K4.

�0.15*D2�B2*G4*0.05

Step 3 Highlight the table range. This includes the inputs, the calculated formula, and

the range where values of the calculated formula are placed. In our example, the table

range is J4:K8.

Step 4 Select Data Table and choose One-Way Table (because we are changing only one

input, the number of servers).

Step 5 Fill in the dialog box as shown in Figure 19. This instructs Excel to repeatedly

place the input values in the left-hand column of the table range in cell D2 (number of

servers) and recalculate our formula (expected cost per minute, which is entered in cell

K4). We then obtain the expected cost per minute for 5–8 servers. As before, we find that

5 servers yield the lowest expected cost per minute.

As another example of how we can use powerful spreadsheet tools to answer important

queuing questions, suppose we want to know (for 5 servers) the 90th percentile of a cus-

tomer’s time in the system. That is, we wish to know the value of t that makes P(W � t)

equal to .10. This may easily be determined with the Excel Goal Seek feature. Goal Seek

enables us to find what value of one cell (the changing cell) causes a formula in another

cell (the set cell) to assume a desired value (called the to value).

To use Goal Seek to find the 90th percentile of a customer’s time in the system, we se-

lect Tools Goal Seek and fill in the dialog box as shown in Figure 20. This dialog box

finds the value for t in B8 that makes P(W � t) (computed in C8) equal to .1. We find

that with 5 servers, 10% of all customers will spend at least 6.7 minutes in the bank. See

Figure 21.

We note that the precision of Goal Seek may be improved by selecting Tools Options

Calculation and setting Maximum Change to a smaller number than the default value of

.001. For example, a Maximum Change of .000001 ensures that upon completion of the

Goal Seek operation, P(W � q) will be within .000001 of .10.

Multiple.xls
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

A B C D E F G H

M/M/s/GD LAMBDA? MU? s? RO

2 0.5 5 0.8

L LS LQ W WS WQ

6.21645022 4 2.21645022 3.10822511 1.999999999 1.108225109

STATE P(j>=s)

1 0.55411255

P(Wq>t) t? P(W>t)

0.019390014 6.70521931 0.10000006

STATE LAMBDA(J) MU(J) CJ PROB #IN QUEUE COLA*COLE COLE*COLF

0 2 0 1 0.01298701 0 0 0

1 2 0.5 4 0.05194805 0 0.051948052 0

2 2 1 8 0.1038961 0 0.207792208 0

3 2 1.5 10.6666667 0.13852814 0 0.415584416 0

4 2 2 10.6666667 0.13852814 0 0.554112554 0

5 2 2.5 8.53333333 0.11082251 0 0.554112554 0

6 2 2.5 6.82666667 0.08865801 1 0.531948052 0.08865801

7 2 2.5 5.46133333 0.07092641 2 0.496484848 0.14185281

8 2 2.5 4.36906667 0.05674113 3 0.453929004 0.17022338

9 2 2.5 3.49525333 0.0453929 4 0.408536104 0.1815716

10 2 2.5 2.79620267 0.03631432 5 0.363143203 0.1815716

11 2 2.5 2.23696213 0.02905146 6 0.319566019 0.17430874

12 2 2.5 1.78956971 0.02324117 7 0.27889398 0.16268816

13 2 2.5 1.43165577 0.01859293 8 0.241708116 0.14874346

14 2 2.5 1.14532461 0.01487435 9 0.208240839 0.13386911

15 2 2.5 0.91625969 0.01189948 10 0.178492147 0.11899476

16 2 2.5 0.73300775 0.00951958 11 0.152313299 0.10471539

17 2 2.5 0.5864062 0.00761566 12 0.129466304 0.09138798

18 2 2.5 0.46912496 0.00609253 13 0.109665575 0.07920292

19 2 2.5 0.37529997 0.00487403 14 0.092606486 0.06823636

20 2 2.5 0.30023998 0.00389922 15 0.077984409 0.05848831

21 2 2.5 0.24019198 0.00311938 16 0.065506904 0.04991002

22 2 2.5 0.19215358 0.0024955 17 0.054901024 0.04242352

23 2 2.5 0.15372287 0.0019964 18 0.04591722 0.03593522

24 2 2.5 0.12297829 0.00159712 19 0.038330897 0.03034529

25 2 2.5 0.09838264 0.0012777 20 0.031942414 0.02555393

26 2 2.5 0.07870611 0.00102216 21 0.026576088 0.0214653

27 2 2.5 0.06296489 0.00081773 22 0.022078597 0.01798997

28 2 2.5 0.05037191 0.00065418 23 0.018317058 0.01504615

29 2 2.5 0.04029753 0.00052334 24 0.015176991 0.01256027

30 2 2.5 0.03223802 0.00041868 25 0.012560268 0.01046689

31 2 2.5 0.02579042 0.00033494 26 0.010383155 0.00870845

32 2 2.5 0.02063233 0.00026795 27 0.008574476 0.00723471

33 2 2.5 0.01650587 0.00021436 28 0.007073943 0.00600213

34 2 2.5 0.01320469 0.00017149 29 0.005830644 0.0049732

35 2 2.5 0.01056376 0.00013719 30 0.004801707 0.00411575

36 2 2.5 0.008451 0.00010975 31 0.003951119 0.00340235

37 2 2.5 0.0067608 8.7803E-05 32 0.003248698 0.00280968

38 2 2.5 0.00540864 7.0242E-05 33 0.0026692 0.00231799  
 

F I G U R E  17
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Using LINGO for M/M/s/GD/∞/∞ Computations

The LINGO function @PEB( ) yields the probability that all servers are busy (P( j �

s)) for an M/M/s/GD/∞/∞ system. The @PEB function has two arguments: the first is the

value of l/m and the second is the number of servers. Thus, for Example 9, @PEB

(80/50,2) � .711111 yields P( j � 2).

The @PEB function can be used to solve queuing optimization problems with LINGO.

For instance, to determine the cost-minimizing number of servers in Example 10, we

would input the following problem into LINGO:

MODEL:
1) MIN=.10*@PEB(4,S)/(.5*S-2) + .15*S;
2) S>5;
END

In line 1 .10*@PEB(4,S)/(.5*S�2) is the expected cost per minute due to customers wait-

ing in line, while .15*S is the per-minute service cost. Line 2 follows, because we need

at least 5 servers for a steady state to exist. LINGO outputs S � 5 with an objective func-

tion value of .860823 (this is expected cost per minute).

2

3

4

5

6

7

8

J K

Servers 0.86082251

5 0.86082251

6 0.92847608

7 1.05900734

8 1.2029522  F I G U R E  18

 

7

8

A B C

P(Wq>t) t? P(W>t)

0.019390014 6.70521931 0.10000006  

F I G U R E  19

F I G U R E  20

F I G U R E  21
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P R O B L E M S
Group A

1 A supermarket is trying to decide how many cash
registers to keep open. Suppose an average of 18 customers
arrive each hour, and the average checkout time for a
customer is 4 minutes. Interarrival times and service times
are exponential, and the system may be modeled as an
M/M/s/GD/∞/∞ queuing system. It costs $20 per hour to
operate a cash register, and a cost of 25¢ is assessed for
each minute the customer spends in the cash register area.
How many registers should the store open?

2 A small bank is trying to determine how many tellers to
employ. The total cost of employing a teller is $100 per day,
and a teller can serve an average of 60 customers per day.
An average of 50 customers per day arrive at the bank, and
both service times and interarrival times are exponential. If
the delay cost per customer-day is $100, how many tellers
should the bank hire?

3 In this problem, all interarrival and service times are
exponential.

a At present, the finance department and the market-
ing department each have one typist. Each typist can
type 25 letters per day. Finance requires that an average
of 20 letters per day be typed, and marketing requires
that an average of 15 letters per day be typed. For each
department, determine the average length of time elaps-
ing between a request for a letter and completion of the
letter.

b Suppose that the two typists were grouped into a
typing pool; that is, each typist would be available to
type letters for either department. For this arrangement,
calculate the average length of time between a request
for a letter and completion of the letter.

c Comment on the results of parts (a) and (b).

d Under the pooled arrangement, what is the proba-
bility that more than .200 day will elapse between a re-
quest for a letter and completion of the letter?

4 MacBurger’s is attempting to determine how many
servers (or lines) should be available during the breakfast
shift. During each hour, an average of 100 customers arrive
at the restaurant. Each line or server can handle an average
of 50 customers per hour. A server costs $5 per hour, and
the cost of a customer waiting in line for 1 hour is $20.
Assuming that an M/M/s/GD/∞/∞ model is applicable,
determine the number of lines that minimizes the sum of
delay and service costs.

5 An average of 100 customers arrive each hour at the
Gotham City Bank. The average service time for each
customer is 1 minute. Service times and interarrival times
are exponential. The manager wants to ensure that no more
than 1% of all customers will have to wait in line for more
than 5 minutes. If the bank follows the policy of having all
customers join a single line, how many tellers must the bank
hire?

6 An average of 90 patrons per hour arrive at a hotel lobby
(interarrival times are exponential), waiting to check in. At

present, there are 5 clerks, and patrons are waiting in a single
line for the first available clerk. The average time for a clerk
to service a patron is 3 minutes (exponentially distributed).
Clerks earn $10 per hour, and the hotel assesses a waiting
time cost of $20 for each hour that a patron waits in line.

a Compute the expected cost per hour of the current
system.

b The hotel is considering replacing one clerk with an
Automatic Clerk Machine (ACM). Management esti-
mates that 20% of all patrons will use an ACM. An
ACM takes an average of 1 minute to service a patron.
It costs $48 per day (1 day � 8 hours) to operate an
ACM. Should the hotel install the ACM? Assume that
all customers who are willing to use the ACM wait in a
single queue.

7 An average of 50 customers per hour arrive at a small
post office. Interarrival times are exponentially distributed.
Each window can serve an average of 25 customers per
hour. Service times are exponentially distributed. It costs
$25 per hour to open a window, and the post office values
the time a customer spends waiting in line at $15 per
customer-hour. To minimize expected hourly costs, how
many postal windows should be opened?

8 An average of 300 customers per hour arrive at a huge
branch of bank 2. It takes an average of 2 minutes to serve
each customer. It costs $10 per hour to keep open a teller
window, and the bank estimates that it will lose $50 in
future profits for each hour that a customer waits in line.
How many teller windows should bank 2 open?

9 An average of 40 students per hour arrive at the MBA
computing lab. The average student uses a computer for 20
minutes. Assume exponential interarrival and service times.

a If we want the average time a student waits for a PC
to be at most 10 minutes, how many computers should
the lab have?

b If we want 95% of all students to spend 5 minutes
or less waiting for a PC, how many PCs should the lab
have?

10 A data storage system consists of 3 disk drives sharing
a common queue. An average of 50 storage requests arrive
per second. The average time required to service a request
is .03 second. Assuming that interarrival times and service
times are exponential, determine:

a The probability that a given disk drive is busy

b The probability that no disk drives are busy

c The probability that a job will have to wait

d The average number of jobs present in the storage
system

11 A Northwest Airlines ticket counter forecasts that 200
people per hour will need to check in. It takes an average of
two minutes to service a customer. Assume that interarrival
times and service times are exponential and that all
customers wait in a single line for the first available agent.
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a If we want the average time a customer spends in
line and in service to be 30 minutes or less, how many
ticket agents should be on duty?

b If we want 95% of all customers to wait 45 minutes
or less in line, how many ticket agents should be on
duty?

Group B

12 An average of 100 customers per hour arrive at Gotham
City Bank. It takes a teller an average of 2 minutes to serve
a customer. Interarrival and service times are exponential.
The bank currently has four tellers working. The bank
manager wants to compare the following two systems with
regard to average number of customers present in the bank
and the probability that a customer will spend more than 8
minutes in the bank:

System 1 Each teller has her own line, and no jockeying

between lines is permitted.

System 2 All customers wait in a single line for the first

available teller.

If you were the bank manager, which system would you
prefer?

13 A muffler shop has three mechanics. Each mechanic
takes an average of 45 minutes to install a new muffler.

Suppose an average of 1 customer per hour arrives. What is
the expected number of mechanics that are busy at any
given time? Answer this question without assuming that
service times and interarrival times are exponential.

14 Consider the following two queuing systems:

System 1 An M/M/1 system with arrival rate l and service

rate 3m.

System 2 An M/M/3 system with arrival rate l and each

server working at rate m.

Without doing extensive calculations, which system will
have the smaller W and L? (Hint: Write down the birth–death
parameters for each system. Then determine which system
is more efficient.)

15 (Requires the use of a spreadsheet or LINGO) The
Carco plant in Bedford produces windshield wipers for
Fords. In a given day, each machine in the plant can produce
1,000 wipers. The plant operates 250 days per year, and
Ford will need 3 million wipers per year. It costs $50,000
per year to operate a machine. For each day that a wiper is
delayed, a cost of $100 (due to production downtime at
other plants) is incurred. How many machines should the
Ford plant have? Assume that interarrival times and service
times are exponential.

20.7 The M/G/∞/GD/∞/∞ and GI/G/∞/GD/∞/∞ Models

There are many examples of systems in which a customer never has to wait for service

to begin. In such a system, the customer’s entire stay in the system may be thought of as

his or her service time. Since a customer never has to wait for service, there is, in essence,

a server available for each arrival, and we may think of such a system as an infinite-server

(or self-service) system. Two examples of an infinite-server system are given in Table 7.

Using the Kendall–Lee notation, an infinite-server system in which interarrival and ser-

vice times may follow arbitrary probability distributions may be written as

GI/G/∞/GD/∞/∞ queuing system. Such a system operates as follows:

1 Interarrival times are iid with common distribution A. Define E(A) � 	
l

1
	. Thus, l is

the arrival rate.

2 When a customer arrives, he or she immediately enters service. Each customer’s time

in the system is governed by a distribution S having E(S) � 	
m

1
	.

TA B L E  7

Examples of Infinite-Server Queuing Systems

Service Time
Situation Arrival (time in system) State of System

Industry Firm enters Time until firm leaves Number of firms in
industry industry industry

College program Student enters Time student remains Number of students
program in program in program
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Let L be the expected number of customers in the system in the steady state, and W

be the expected time that a customer spends in the system. By definition, W � 	
m
1

	. Then

Equation (30) implies that

L � 	
m

l
	 (47)

Equation (47) does not require any assumptions of exponentiality. If interarrival times are

exponential, it can be shown (even for an arbitrary service time distribution) that the

steady-state probability that j customers are present (call it pj) follows a Poisson distri-

bution with mean 	
m

l
	. This implies that

pj �

The following example is a typical application of a GI/G/∞/GD/∞/∞ system.

E X A M P L E  1 1

During each year, an average of 3 ice cream shops open up in Smalltown. The average

time that an ice cream shop stays in business is 10 years. On January 1, 2525, what is the

average number of ice cream shops that you would find in Smalltown? If the time between

the opening of ice cream shops is exponential, what is the probability that on January 1,

2525, there will be 25 ice cream shops in Smalltown?

Solution We are given that l � 3 shops per year and 	
m

1
	 � 10 years per shop. Assuming that the

steady state has been reached, there will be an average of L � l(	
m

1
	) � 3(10) � 30 shops

in Smalltown. If interarrivals of ice cream shops are exponential, then

p25 � 	
(30)

2

2

5

5e

!

�30

	 � .05

Of course, we could also compute the probability that there are 25 ice cream shops with

the Excel formula

�POISSON(30,25,0)

This yields .045.

P R O B L E M S
Group A

Smalltown Ice Cream Shops

(	
m

l
	) j e�l/m

		
j!

1 Each week, the Columbus Record Club attracts 100 new
members. Members remain members for an average of one
year (1 year � 52 weeks). On the average, how many
members will the record club have?

2 The State U doctoral program in business admits an
average of 25 doctoral students each year. If a doctoral
student spends an average of 4 years in residence at State
U, how many doctoral students would one expect to find
there?

3 There are at present 40 solar energy construction firms
in the state of Indiana. An average of 20 solar energy

construction firms open each year in the state. The average
firm stays in business for 10 years. If present trends continue,
what is the expected number of solar energy construction
firms that will be found in Indiana? If the time between the
entries of firms into the industry is exponentially distributed,
what is the probability that (in the steady state) there will
be more than 300 solar energy firms in business? (Hint: For
large l, the Poisson distribution can be approximated by a
normal distribution.)
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20.8 The M/G/1/GD/∞/∞ Queuing System

In this section, we consider a single-server queuing system in which interarrival times are

exponential, but the service time distribution (S) need not be exponential. Let l be the ar-

rival rate (assumed to be measured in arrivals per hour). Also define 	
m

1
	 � E(S) and s 2 �

var S.

In Kendall’s notation, such a queuing system is described as an M/G/1/GD/∞/∞ queu-

ing system. An M/G/1/GD/∞/∞ system is not a birth–death process, because the proba-

bility that a service completion occurs between t and t � �t when the state of the system

at time t is j depends on the length of time since the last service completion (because ser-

vice times no longer have the no-memory property). Thus, we cannot write the probabil-

ity of a service completion between t and t � �t in the form m�t, and a birth–death model

is not appropriate.

Determination of the steady-state probabilities for an M/G/1/GD/∞/∞ queuing system

is a difficult matter. Since the birth–death steady-state equations are no longer valid, a dif-

ferent approach must be taken. Markov chain theory is used to determine pi�, the proba-

bility that after the system has operated for a long time, i customers will be present at the

instant immediately after a service completion occurs (see Problem 5 at the end of this

section). It can be shown that pi� � pi, where pi is the fraction of the time after the sys-

tem has operated for a long time that i customers are present (see Kleinrock (1975)).

Fortunately, however, utilizing the results of Pollaczek and Khinchin, we may deter-

mine Lq, L, Ls, Wq, W, and Ws. Pollaczek and Khinchin showed that for the M/G/1/GD/∞/∞

queuing system,

Lq � 	
l

2

2

(

s

1

2

�

�

r

r

)

2

	 (48)

where r � 	
m

l
	. Since Ws � 	

m

1
	, (30) implies that Ls � l(	

m

1
	) � r. Since L � Ls � Lq, we

obtain

L � Lq � r (49)

Then (29) and (28) imply that

Wq � 	
L

l

q
	 (50)

W � Wq � 	
m

1
	 (51)

It can also be shown that p0, the fraction of the time that the server is idle, is 1 � r. (See

Problem 2 at the end of this section.) This result is similar to the one for the M/M/1/GD/∞/∞

system.

To illustrate the use of (48)–(51), consider an M/M/1/GD/∞/∞ system with l � 5 cus-

tomers per hour and m � 8 customers per hour. From our study of the M/M/1/GD/∞/∞

model, we know that

L � 	
m �

l

l
	 � 	

8 �

5

5
	 � 	

5

3
	 customers

Lq � L � r � 	
5

3
	 � 	

5

8
	 � 	

2

2

5

4
	 customers

W � 	
L

l
	 � � 	

1

3
	 hour

	
5

3
	

	
5



1098 C H A P T E R 2 0 Queuing Theory

Wq � 	
L

l

q
	 � � 	

2

5

4
	 hour

From (3) and (4), we know that E(S) � 	
1
8

	 hour and var S � 	
6
1
4
	 hour2. Then (48) yields

Lq � � 	
2

2

5

4
	 customers

L � Lq � r � 	
2

2

5

4
	 � 	

5

8
	 � 	

4

2

0

4
	 � 	

5

3
	 customers

Wq � 	
L

l

q
	 � � 	

2

5

4
	 hour

W � 	
L

l
	 � � 	

1

3
	 hour

To demonstrate how the variance of the service time can significantly affect the efficiency

of a queuing system, we consider an M/D/1/GD/∞/∞ queuing system having l and m iden-

tical to the M/M/1/GD/∞/∞ system that we have just analyzed. For this M/D/1/GD/∞/∞

model, E(S) � 	
1
8

	 hour and var S � 0. Then

Lq � � 	
2

4

5

8
	 customer

Wq � 	
L

l

q
	 � � 	

4

5

8
	 hour

In this M/D/1/GD/∞/∞ system, a typical customer will spend only half as much time in

line as in an M/M/1/GD/∞/∞ queuing system with identical arrival and service rates. As

this example shows, even if mean service times are not decreased, a decrease in the vari-

ability of service times can substantially reduce queue size and customer waiting time.

P R O B L E M S
Group A

	
2

4

5

8
	

	

�	
5

8
	�

2

		

2 �1 � 	
5

8
	�

	
5

3
	

	
5

	
2

2

5

4
	

	

	
(

6

5

4

)2

	 � �	
5

8
	�

2

		

2 �1 � 	
5

8
	�

	
2

2

5

4
	

	

1 An average of 20 cars per hour arrive at the drive-in
window of a fast-food restaurant. If each car’s service time
is 2 minutes, how many cars (on the average) will be waiting
in line? Assume exponential interarrival times.

2 Using the fact that Ls � 	
m

l
	, demonstrate that for an

M/G/1/GD/∞/∞ queuing system, the probability that the
server is busy is r � 	

m

l
	.

3 An average of 40 cars per hour arrive to be painted at a
single-server GM painting facility. 95% of the cars require
1 minute to paint; 5% must be painted twice and require 2.5
minutes to paint. Assume that interarrival times are
exponential.

a On the average, how long does a car wait before be-
ing painted?

b If cars never had to be repainted, how would your
answer to part (a) change?

Group B

4 Consider an M/G/1/GD/∞/∞ queuing system in which an
average of 10 arrivals occur each hour. Suppose that each
customer’s service time follows an Erlang distribution, with
rate parameter 1 customer per minute and shape parameter 4.

a Find the expected number of customers waiting in
line.
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b Find the expected time that a customer will spend in
the system.

c What fraction of the time will the server be idle?

5 Consider an M/G/1/GD/∞/∞ queuing system in which
interarrival times are exponentially distributed with
parameter l and service times have a probability density
function s(t). Let Xi be the number of customers present an
instant after the ith customer completes service.

a Explain why X1, X2, . . . , Xk, . . . is a Markov chain.

b Explain why Pij � P(Xk�1 � j|Xk � i) is zero for 
j  i � 1.

c Explain why for i � 0, Pi,i�1 � (probability that no
arrival occurs during a service time); Pii � (probability
that one arrival occurs during a service time); and for j

� i, Pij � (probability that j � i � 1 arrivals occur dur-
ing a service time).

d Explain why, for j � i � 1 and i � 0,

Pij � �∞

0
dx

Hint: The probability that a service time is between x and 
x � �x is �xs(x). Given that the service time equals x, the
probability that j � i � 1 arrivals will occur during the
service time is

	
e

(

�

j

l

�

x(l

i

x)

�

j�

1

i�

)!

1

	

s(x)e�lx(lx) j�i�1

			

20.9 Finite Source Models: The Machine Repair Model

With the exception of the M/M/1/GD/c/∞ model, all the models we have studied have dis-

played arrival rates that were independent of the state of the system. As discussed previ-

ously, there are two situations where the assumption of the state-independent arrival rates

may be invalid:

1 If customers do not want to buck long lines, the arrival rate may be a decreasing func-

tion of the number of people present in the queuing system. For an illustration of this sit-

uation, see Problems 4 and 5 at the end of this section.

2 If arrivals to a system are drawn from a small population, the arrival rate may greatly

depend on the state of the system. For example, if a bank has only 10 depositors, then at

an instant when all depositors are in the bank, the arrival rate must be zero, while if fewer

than 10 people are in bank, the arrival rate will be positive.

Models in which arrivals are drawn from a small population are called finite source mod-

els. We now analyze an important finite source model known as the machine repair (or

machine interference) model.

In the machine repair problem, the system consists of K machines and R repair peo-

ple. At any instant in time, a particular machine is in either good or bad condition. The

length of time that a machine remains in good condition follows an exponential distribu-

tion with rate l. Whenever a machine breaks down, the machine is sent to a repair cen-

ter consisting of R repair people. The repair center services the broken machines as if they

were arriving at an M/M/R/GD/∞/∞ system.

Thus, if j � R machines are in bad condition, a machine that has just broken will im-

mediately be assigned for repair; if j � R machines are broken, j � R machines will be wait-

ing in a single line for a repair worker to become idle. The time it takes to complete repairs

on a broken machine is assumed exponential with rate m (or mean repair time is 	
m

1
	). Once

a machine is repaired, it returns to good condition and is again susceptible to breakdown.

The machine repair model may be modeled as a birth–death process, where the state j at

any time is the number of machines in bad condition. Using the Kendall–Lee notation, the

model just described may be expressed as an M/M/R/GD/K/K model. The first K indicates

that at any time, no more than K customers (or machines) may be present, and the second

K indicates that arrivals are drawn from a finite source of size K.

Table 8 exhibits the interpretation of each state for a machine repair model having 

K � 5 and R � 2 (G � machine in good condition; B � broken machine). To find the

birth–death parameters for the machine repair model (see Figure 22), note that a birth cor-
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responds to a machine breaking down and a death corresponds to a machine having just

been repaired. To figure out the birth rate in state j, we must determine the rate at which

machines break down when the state of the system is j. When the state is j, there are 

K � j machines in good condition. Since each machine breaks down at rate l, the total

rate at which breakdowns occur when the state is j is

lj � � (K � j)l

To determine the death rate for the machine repair model, we proceed as we did in our

discussion of the M/M/s/GD/∞/∞ queuing model. When the state is j, min ( j, R) repair

people will be busy. Since each occupied repair worker completes repairs at rate m, the

death rate mj is given by

mj � jm ( j � 0, 1, . . . , R)

mj � Rm ( j � R � 1, R � 2, . . . , K)

If we define r � 	
m

l
	, an application of (16)–(18) yields the following steady-state proba-

bility distribution:

pj � � � r jp0 ( j � 0, 1, . . . , R)

(52)

pj � � �r j j!p0 ( j � R � 1, R � 2, . . . , K)

R!R j�R

In (52),

� � � 	
j!(K

K

�

!

j)!
	

K

j

K

j

K

j

l � l � 
 
 
 �l

(K � j)l’s

TA B L E  8

Possible States in a Machine Repair Problem When K � 5 and R � 2

No. of Good No. of Repair
State Machines Repair Queue Workers Busy

0 G G G G G 0

1 G G G G 1

2 G G G 2

3 G G B 2

4 G B B 2

5 B B B 2

0

State is

number of

machines

in bad

condition

5

1 2 3 4 5

4 3 2

µ 2 µ 2 µ 2 µ 2 µ

F I G U R E  22

Rate Diagram for
M/M/R/GD/K/K Queuing

System When R � 2, 
K � 5

�
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where 0! � 1, and for n � 1, n! � n(n � 1) 
 
 
 (2)(1). To use (52), begin by finding p0

from the fact that p0 � p1 � 
 
 
 � pk � 1. Using the steady-state probabilities in (52),

we can determine the following quantities of interest:

L � expected number of broken machines

Lq � expected number of machines waiting for service

W � average time a machine spends broken (down time)

Wq � average time a machine spends waiting for service

Unfortunately, there are no simple formulas for L, Lq, W, and Wq. The best we can do is

to express these quantities in terms of the pj’s:

L � �
j�K

j�0

jpj (53)

Lq � �
j�K

j�R

( j � R)pj (54)

We can now use (28) and (29) to obtain W and Wq. Since the arrival rate is state-

dependent, the average number of arrivals per unit time is given by l�, where

l� � �
j�K

j�0

pjlj � �
j�K

j�0

l(K � j)pj � l(K � L) (55)

If (28) is applied to the machines being repaired and to those machines awaiting repairs,

we obtain

W � 	
L

l�
	 (56)

Applying (29) to the machines awaiting repair, we obtain

Wq � 	
L

l�
q
	 (57)

The following example illustrates the use of these formulas.

E X A M P L E  1 2

The Gotham Township Police Department has 5 patrol cars. A patrol car breaks down and

requires service once every 30 days. The police department has two repair workers, each

of whom takes an average of 3 days to repair a car. Breakdown times and repair times are

exponential.

1 Determine the average number of police cars in good condition.

2 Find the average down time for a police car that needs repairs.

3 Find the fraction of the time a particular repair worker is idle.

Solution This is a machine repair problem with K � 5, R � 2, l � 	
3
1
0
	 car per day, and m � 	

1
3

	 car

per day. Then

r � � 	
1

1

0
		

	
1
3

	

Patrol Cars

	
3

1

0
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From (52),

p1 � � � �	
1

1

0
	� p0 � .5p0

p2 � � � �	
1

1

0
	�

2

p0 � .1p0

p3 � � � �	
1

1

0
	�

3

	
2

3

!

!

2
	 p0 � .015p0 (58)

p4 � � � �	
1

1

0
	�

4

	
2!

4

(2

!

)2	 p0 � .0015p0

p5 � � � �	
1

1

0
	�

5

	
2!

5

(2

!

)3	 p0 � .000075p0

Then p0(1 � .5 � .1 � .015 � .0015 � .000075) � 1, or p0 � .619. Now (58) yields

p1 � .310, p2 � .062, p3 � .009, p4 � .001, and p5 � 0.

1 The expected number of cars in good condition is K � L, which is given by

K � �
j�5

j�0

jpj � 5 � [0(.619) � 1(.310) � 2(.062) � 3(.009) � 4(.001) � 5(0)]

� 5 � .465 � 4.535 cars in good condition

2 We seek W � 	
L

l�
	. From (55),

l� � �
j�5

j�0

l(5 � j)pj � 	
3

1

0
	 (5p0 � 4p1 � 3p2 � 2p3 � p4 � 0p5)

� 	
3

1

0
	[5(.619) � 4(.310) � 3(.062) � 2(.009) � 1(.001) � 0(0)]

� 0.151 car per day

or

l� � l(K � L) � 	
4.

3

5

0

35
	 � 0.151 car per day

Since L � 0.465 car, we find that W � 	
0
.0
.4
1
6
5
5
1

	 � 3.08 days.

3 The fraction of the time that a particular repair worker will be idle is p0 � 0.5p1 �

.619 � .5(.310) � .774.

If there were three repair people, the fraction of the time that a particular server would

be idle would be p0 � (	
2
3

	)p1 � (	
1
3

	)p2, and for a repair staff of R people, the probability

that a particular server would be idle is given by

p0 � 	
(R �

R

1)p1
	 � 	

(R �

R

2)p2
	 � 
 
 
 � 	

pR

R
�1
	

A Spreadsheet for the Machine Repair Problem

Figure 23 (file Machrep.xls) gives a spreadsheet template for the machine repair model.

In cell B2, we input l; in cell C2, m; in cell D2, the number of repairers; and in cell F2,

5

5

5

4

5

3

5

2

5

1

Machrep.xls
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the number of machines. In row 4, L, Lq, Ls, W, Wq, and Ws are computed. Ls equals the

expected number of machines (in the steady state) being repaired and Ws equals the ex-

pected time that a broken machine spends being repaired. In column E, the steady-state

probabilities are computed. We are assuming that K � 1,000. In Figure 23, we have in-

put the information for Example 12.

Using LINGO for Machine Repair Model Computations

The LINGO function @PFS(K*l/m,R,K) will yield L, the expected number (in the steady

state) of machines in bad condition. The FS stands for Finite Source. Thus, for Exam-

ple 12, @PFS(5*(1/30)/(1/3),2,5) will yield .465.

P R O B L E M S
Group A

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

A B C D E F G H
MACHINE LAMBDA? MU? R? RO K?

REPAIR 0.03333333 0.33333333 3 0.1 5

MODEL L LS LQ W WS WQ

0.45494681 0.45450532 0.0004415 3.00291412 3 0.002914124

STATE LAMBDA(J) MU(J) CJ PROB #IN QUEUE   COLA*COLE COLE*COLF

0 0.16666667 0 1 0.62085236 0 0 0

1 0.13333333 0.33333333 0.5 0.31042618 0 0.310426181 0

2 0.1 0.66666667 0.1 0.06208524 0 0.124170472 0

3 0.06666667 1 0.01 0.00620852 0 0.018625571 0

4 0.03333333 1 0.00066667 0.0004139 1 0.001655606 0.0004139

5 0 1 2.2222E-05 1.3797E-05 2 6.89836E-05 2.7593E-05

6 0 1 0 0 3 0 0

7 0 1 0 0 4 0 0

8 0 1 0 0 5 0 0  F I G U R E  23

1 A laundromat has 5 washing machines. A typical
machine breaks down once every 5 days. A repairer can
repair a machine in an average of 2.5 days. Currently, three
repairers are on duty. The owner of the laundromat has the
option of replacing them with a superworker, who can repair
a machine in an average of 	

5
6

	 day. The salary of the
superworker equals the pay of the three regular employees.
Breakdown and service times are exponential. Should the
laundromat replace the three repairers with the superworker?

2 My dog just had 3 frisky puppies who jump in and out
of their whelping box. A puppy spends an average of 10
minutes (exponentially distributed) in the whelping box
before jumping out. Once out of the box, a puppy spends an
average of 15 minutes (exponentially distributed) before
jumping back into the box.

a At any given time, what is the probability that more
puppies will be out of the box than will be in the box?

b On the average, how many puppies will be in the
box?

Group B

3† Gotham City has 10,000 streetlights. City investigators
have determined that at any given time, an average of 1,000
lights are burned out. A streetlight burns out after an average
of 100 days of use. The city has hired Mafia, Inc., to replace
burned-out lamps. Mafia, Inc.’s contract states that the
company is supposed to replace a burned-out street lamp in
an average of 7 days. Do you think that Mafia, Inc. is living
up to the contract?

4 This problem illustrates balking. The Oryo Cookie Ice
Cream Shop in Dunkirk Square has three competitors. Since

†Based on Kolesar (1979).
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people don’t like to wait in long lines for ice cream, the
arrival rate to the Oryo Cookie Ice Cream Shop depends on
the number of people in the shop. More specifically, while
j � 4 customers are present in the Oryo shop, customers
arrive at a rate of (20 � 5j) customers per hour. If more than
4 people are in the Oryo shop, the arrival rate is zero. For
each customer, revenues less raw material costs are 50¢.
Each server is paid $3 per hour. A server can serve an
average of 10 customers per hour. To maximize expected
profits (revenues less raw material and labor costs), how
many servers should Oryo hire? Assume that interarrival
and service times are exponential.

5 Suppose that interarrival times to a single-server system
are exponential, but when n customers are present, there is
a probability 	

n �
n

1
	 that an arrival will balk and leave the

system before entering service. Also assume exponential
service times.

a Find the probability distribution of the number of
people present in the steady state.

b Find the expected number of people present in the
steady state. (Hint: The fact that

ex � 1 � x � 	
2

x2

!
	 � 	

3

x3

!
	 � 
 
 


may be useful.)

6 For the machine repair model, show that W �

K/l� � (1/l).

7 (Requires use of a spreadsheet or LINGO) The machine
repair model may often be used to approximate the behavior
of a computer’s CPU (central processing unit). Suppose that
20 terminals (assumed to always be busy) feed the CPU.
After the CPU responds to a user, he or she takes an average
of 80 seconds before sending another request to the CPU
(this is called the think time). The CPU takes an average of

2 seconds to respond to any request. On the average, how
long will a user have to wait before the CPU acts on his or
her request? How will your answer change if there are 30
terminals? 40 terminals? Of course, you must make
appropriate assumptions about exponentiality to answer this
question.

8 Allbest airlines has 100 planes. Planes break down an
average of twice a year and take one week to fix. Assuming
the times between breakdowns and repairs are exponential,
how many repairmen are needed to ensure that there is at
least a 95% chance that 90 or more planes are available?
(Hint: Use a one-way data table.)

9 An army has 200 tanks. Tanks need maintenance 10
times per year, and maintenance takes an average of 2 days.
The army would like to have an average of at least 180 tanks
working. How many repairmen are needed? Assume
exponential interarrival and service times. (Hint: Use a one-
way data table.)

Group C

10 Bectol, Inc. is building a dam. A total of 10 million cu
ft of dirt is needed to construct the dam. A bulldozer is used
to collect dirt for the dam. Then the dirt is moved via dumpers
to the dam site. Only one bulldozer is available, and it rents
for $100 per hour. Bectol can rent, at $40 per hour, as many
dumpers as desired. Each dumper can hold 1,000 cu ft of
dirt. It takes an average of 12 minutes for the bulldozer to
load a dumper with dirt, and each dumper an average of five
minutes to deliver the dirt to the dam and return to the
bulldozer. Making appropriate assumptions about exponen-
tiality, determine how Bectol can minimize the total expected
cost of moving the dirt needed to build the dam. (Hint: There
is a machine repair problem somewhere!)

20.10 Exponential Queues in Series and Open Queuing Networks

In the queuing models that we have studied so far, a customer’s entire service time is spent

with a single server. In many situations (such as the production of an item on an assem-

bly line), the customer’s service is not complete until the customer has been served by

more than one server (see, for example, Figure 24).

Upon entering the system in Figure 24, the arrival undergoes stage 1 service (after

waiting in line if all stage 1 servers are busy on arrival). After completing stage 1 service,

the customer waits for and undergoes stage 2 service. This process continues until the cus-

tomer completes stage k service. A system like Figure 24 is called a k-stage series (or

tandem) queuing system. A remarkable theorem due to Jackson (1957) is as follows (see

Heyman and Sobel (1984) for a proof).

T H E O R E M  4

If (1) interarrival times for a series queuing system are exponential with rate l, 

(2) service times for each stage i server are exponential, and (3) each stage has an

infinite-capacity waiting room, then interarrival times for arrivals to each stage of

the queuing system are exponential with rate l.
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For this result to be valid, each stage must have sufficient capacity to service a stream

of arrivals that arrives at rate l; otherwise, the queue will “blow up” at the stage with in-

sufficient capacity. From our discussion of the M/M/s/GD/∞/∞ queuing system in Section

20.6, we see that each stage will have sufficient capacity to handle an arrival stream of rate

l if and only if, for j � 1, 2, . . . , k, l � sjmj. If l  sjmj, Jackson’s result implies that

stage j of the system in Figure 24 may be analyzed as an M/M/sj/GD/∞/∞ system with ex-

ponential interarrival times having rate l and exponential service times with a mean ser-

vice time of 	
m

1

j

	. The usefulness of Jackson’s result is illustrated by the following example.

E X A M P L E  1 3

The last two things that are done to a car before its manufacture is complete are installing

the engine and putting on the tires. An average of 54 cars per hour arrive requiring these

two tasks. One worker is available to install the engine and can service an average of 60

cars per hour. After the engine is installed, the car goes to the tire station and waits for its

tires to be attached. Three workers serve at the tire station. Each works on one car at a

time and can put tires on a car in an average of 3 minutes. Both interarrival times and ser-

vice times are exponential.

1 Determine the mean queue length at each work station.

2 Determine the total expected time that a car spends waiting for service.

Solution This is a series queuing system with l � 54 cars per hour, s1 � 1, m1 � 60 cars per hour,

s2 � 3, and m2 � 20 cars per hour (see Figure 25). Since l  m1 and l  3m2, neither

queue will “blow up,” and Jackson’s theorem is applicable. For stage 1 (engine), r �
	
5
6
4
0
	 � .90. Then (27) yields

Lq (for engine) � �	1
r

�

2

r
	� � 		1

(.

�

90

.

)

9

2

0
	
 � 8.1 cars

Now (32) yields

Wq (for engine) � 	
L

l

q
	 � 	

8

5

.

4

1
	 � 0.15 hour

Auto Assembly

F I G U R E  24

Exponential Queues in Series

Stage 1

Output 1 =

Input 2

Output 2 =

Input 3, etc.

s2 servers

Rate µ2

s1 servers

Rate µ1

sk servers

Rate µk

Input

rate  

Stage 2

Output

Stage k
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For stage 2 (tires), r � 	
3(

5
2
4
0)
	 � .90. Table 6 yields P( j � 3) � .83. Now (41) yields

Lq (for tires) � 	
1

.83

�

(.9

.9

0

0

)
	 � 7.47 cars

Then

Wq (for tires) � 	
L

l

q
	 � 	

7

5

.4

4

7
	 � 0.138 hour

Thus, the total expected time a car spends waiting for engine installation and tires is 

0.15 � 0.138 � 0.288 hour.

Open Queuing Networks

We now describe open queuing networks, a generalization of queues in series. As in Fig-

ure 24, assume that station j consists of sj exponential servers, each operating at rate mj.

Customers are assumed to arrive at station j from outside the queuing system at rate rj.

These interarrival times are assumed to be exponentially distributed. Once completing ser-

vice at station i, a customer joins the queue at station j with probability pij and completes

service with probability

1 � �
j�k

j�1

pij

Define lj, the rate at which customers arrive at station j (this includes arrivals at station

j from outside the system and from other stations). l1, l2, . . . , lk can be found by solv-

ing the following system of linear equations:

lj � rj � �
i�k

i�1

pijli ( j � 1, 2, . . . , k)

This follows, because a fraction pij of the li arrivals to station i will next go to station j.

Suppose simj � lj holds for all stations. Then it can be shown that the probability distribu-

tion of the number of customers present at station j and the expected number of customers

present at station j can be found by treating station j as an M/M/sj /GD/∞/∞ system with ar-

rival rate lj and service rate mj. If for some j, sjmj � lj, then no steady-state distribution of

=  54 cars/hour Stage 1 Stage 2

Cars wait

to have engine

installed

Cars wait

to have tires

installed

µ1  =  60 cars/hour

Engine

installer

µ2  =  20 cars/hour

Tire

installer 1

µ2  =  20 cars/hour

Tire

installer 2

µ2  =  20 cars/hour

Tire

installer 3
F I G U R E  25

Series Queuing System
for Automobile
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customers exists. Remarkably, the numbers of customers present at each station are inde-

pendent random variables. That is, knowledge of the number of people at all stations other

than station j tells us nothing about the distribution of the number of people at station j! This

result does not hold, however, if either interarrival or service times are not exponential.

To find L, the expected number of customers in the queuing system, simply add up the

expected number of customers present at each station. To find W, the average time a cus-

tomer spends in the system, simply apply the formula L � lW to the entire system. Here,

l � r1 � r2 � 
 
 
 � rk, because this represents the average number of customers per

unit time arriving at the system. The following example illustrates the analysis of open

queuing networks.

E X A M P L E  1 4

Consider two servers. An average of 8 customers per hour arrive from outside at server

1, and an average of 17 customers per hour arrive from outside at server 2. Interarrival times

are exponential. Server 1 can serve at an exponential rate of 20 customers per hour, and

server 2 can serve at an exponential rate of 30 customers per hour. After completing service

at server 1, half of the customers leave the system, and half go to server 2. After complet-

ing service at server 2, 	
3
4

	 of the customers complete service, and 	
1
4

	 return to server 1.

1 What fraction of the time is server 1 idle?

2 Find the expected number of customers at each server.

3 Find the average time a customer spends in the system.

4 How would the answers to parts (1)–(3) change if server 2 could serve only an aver-

age of 20 customers per hour?

Solution We have an open queuing network with r1 � 8 customers/hour and r2 � 17 customers/hour.

Also, p12 � .5, p21 � .25, and p11 � p22 � 0. We can find l1 and l2 by solving l1 �

8 � .25l2 and l2 � 17 � .5l1. This yields l1 � 14 customers/hour and l2 � 24 

customers/hour.

1 Server 1 may be treated as an M/M/1/GD/∞/∞ system with l � 14 customers/hour

and m � 20 customers/hour. Then p0 � 1 � r � 1 � .7 � .3. Thus, server 1 is idle 30%

of the time.

2 From (26), we find L at server 1 � 	
20

1
�

4
14

	 � 	
7
3

	 and L at server 2 � 	
30

2
�

4
24

	 � 4. Thus,

an average of 4 � 	
7
3

	 � 	
1
3
9
	 customers will be present in the system.

3 W � 	
L
l

	, where l � 8 � 17 � 25 customers/hour. Thus,

W � � 	
1

7

9

5
	 hour

4 In this case, s2m2 � 20  l2, so no steady state exists.

Network Models of Data Communication Networks

Queuing networks are commonly used to model data communication networks. The queuing

models enable us to determine the typical delay faced by transmitted data and also to design

the network. Our discussion is based on Tannenbaum (1981). See file Compnetwork.xls.

�	
1

3

9
	�

	
25

Open Queuing Network Example

Compnetwork.xls
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Consider a data communication network with 5 nodes (A, B, C, D, E). Suppose each

data packet transmitted consists of 800 bits, and the number of packets per second that

must be transmitted between each pair of nodes is as shown in Figure 26.

For example, an average of 5 packets per second must be sent from node A to node B.

Packets are not always transmitted over the most direct route. Suppose the routings used

to transmit each type of message are as shown in Figure 27.

For example, all messages that must go from A to D are transmitted via the route

A–B–D. Each arc or route connecting two nodes has a capacity measured in thousands of

bits per second. For example, an arc with 16,000 bits/second of capacity can “serve”

16,000/800 � 20 packets/second. Each arc’s capacity in thousands of bits per second is

given in Figure 28. We are interested, of course, in the expected delay for a packet. Also,

if total network capacity is limited, it is important to determine the capacity on each arc

that will minimize the expected delay for a packet. The usual way to approach this prob-

lem is to treat each arc as if it were an independent M/M/1 queue and determine the ex-

pected time spent by each packet transmitted through that arc by the formula

23
24
25
26
27
28

A B C D E F G

Packets/second A B C D E
A 0 5 4 1 7
B 5 0 6 3 2
C 4 6 0 3 3
D 1 3 3 0 3
E 7 2 3 3 0  

30
31
32
33
34
35

A B C D E F G

A B C D E
Route used A - AB ABC ABD AE

B BA - BC BD BDE
C CBA CB - CD CDE
D DBA DB DC - DCE
E EA EDB EDC ECD -  

 

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

B C D E F

Line

Packets 
per 
second

Capacity 
(000) bits 
per 
second

Service 
Rate in 
Packets 
per 
second

W in 
seconds

AB 10 20 25 0.066667
AE 7 20 25 0.055556
BC 10 15 18.75 0.114286
BD 6 10 12.5 0.153846
CD 9 10 12.5 0.285714
CE 3 10 12.5 0.105263
DE 5 10 12.5 0.133333
BA 10 20 25 0.066667
EA 7 20 25 0.055556
CB 10 15 18.75 0.114286
DB 6 10 12.5 0.153846
DC 9 10 12.5 0.285714
EC 3 10 12.5 0.105263
ED 5 10 12.5 0.133333  F I G U R E  28

F I G U R E  27

F I G U R E  26
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W � 	
m �

1

l
	

To illustrate, consider arc AB. Packets that are to be transmitted from A to B, A to C and

A to D will use this arc. This is a total of 5 � 4 � 1 � 10 packets per second. Suppose

arc AB has a capacity of 20,000 bits per second. Then for arc AB, m � 20,000/800 � 25

packets per second, and l � 10 packets per second. Then

W � 	
25 �

1

10
	 � .06667 second

In rows 5–18 of Figure 28, we compute W for each arc in the communications network.

Note that the network is assumed symmetric (that is, AB arrival rate and capacity equals

BA arrival rate and capacity), so rows 12–18 are just copies of rows 5–11.

To determine the average delay faced by a packet, we use the following formula:

Average delay per packet �

In Figure 29, we computed the average delay per packet in cell C20 with the formula

�SUMPRODUCT(C5:C18,F5:F18)/SUM(C24:G28)

Thus, average delay per packet is .18 second per packet.

�
all arcs

(Arc arrival rate) * (expected time spent in arc)

						
Total number of arrivals

19
20
21
22

B C

Mean 0.180416
Time in system
seconds  

1
2

3

4

5
6

7

8
9

10

11
12

13

14
15

16
17

18

19
20

B C D E F G

800
bits/packet

Line

Packets 
per 

second

Capacity 

(000) bits 
per 

second

Service 
Rate in 

Packets 
per 

second

W in 

seconds Diff

AB 10 18.31869 22.89836 0.077529 12.89836
AE 7 14.23287 17.79109 0.092669 10.79109

BC 10 18.31662 22.89577 0.077545 12.89577

BD 6 12.79577 15.99471 0.100053 9.994709
CD 9 16.98872 21.2359 0.081727 12.2359

CE 3 8.052237 10.0653 0.141537 7.065296

DE 5 11.2951 14.11888 0.109663 9.118877
BA 10 18.31869 22.89836 0.077529 12.89836

EA 7 14.23287 17.79109 0.092669 10.79109

CB 10 18.31662 22.89577 0.077545 12.89577
DB 6 12.79577 15.99471 0.100053 9.994709

DC 9 16.98872 21.2359 0.081727 12.2359
EC 3 8.052237 10.0653 0.141537 7.065296

ED 5 11.2951 14.11888 0.109663 9.118877

Total cap 200
Mean 0.121843  

F I G U R E  29

F I G U R E  30
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Suppose we had only 200,000 bits/second of total capacity to allocate to the network.

How should we allocate capacity to minimize the expected delay per packet? See the sheet

Optimization in file Compnetwork.xls (Figure 30). In G5:G18, we compute Service rate

(in packets/second) � Arrival rate (in packets/second). We constrain this to be at least .01

so that a steady-state exists. Then our Solver window is as shown in Figure 31.

We choose capacities D5:D11 (remember that D12:D18 are just copies of D5:D11) to

minimize expected system time (C20). We ensure that each arc’s service rate exceeds its

arrival rate (G5:G11�.01), each capacity is nonnegative (D5:D11�0), and total capacity

is at most 200,000 (D19�200). We find that we can reduce expected time in the system

for a packet to .1218 second.

Of course, we are assuming a static routing, in which arrival rates to each node do not

vary with the state of the network. In reality, many sophisticated dynamic routing schemes

have been developed. A dynamic routing scheme would realize, for example, that if arc

AB is congested and arc AD is relatively free, we should send messages directly from A

to D instead of via route A–B–D.

F I G U R E  31

P R O B L E M S
Group A

1 A Social Security Administration branch is considering
the following two options for processing applications for
social security cards:

Option 1 Three clerks process applications in parallel from
a single queue. Each clerk fills out the form for the appli-
cation in the presence of the applicant. Processing time is
exponential with a mean of 15 minutes. Interarrival times
are exponential.
Option 2 Each applicant first fills out an application with-
out the clerk’s help. The time to accomplish this is expo-
nentially distributed, with a mean of 65 minutes. When the
applicant has filled out the form, he or she joins a single line

to wait for one of the three clerks to check the form. It takes
a clerk an average of 4 minutes (exponentially distributed)
to review an application.

The interarrival time of applicants is exponential, and an
average of 4.8 applicants arrive each hour. Which option
will get applicants out of the office more quickly?

2 Consider an automobile assembly line in which each car
undergoes two types of service: painting, then engine
installation. Each hour, an average of 22.4 unpainted chassis
arrive at the assembly line. It takes an average of 2.4 minutes
to paint a car and an average of 3.75 minutes to install an
engine. The assembly line has one painter and two engine
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installers. Assume that interarrival times and service times
are exponential.

a On the average, how many painted cars without com-
pletely installed engines will be in the facility?

b On the average, how long will a painted car have to
wait before installation of its engine begins?

3 Consider the following queuing systems:

System 1 An average of 40 customers arrive each hour;
interarrival times are exponential. Customers must com-
plete two types of service before leaving the system. The
first server takes an average of 30 seconds (exponentially
distributed) to perform type 1 service. After waiting in line,
each customer obtains type 2 service (exponentially distrib-
uted with a mean of 1 minute) from a single server. After
completing type 2 service, a customer leaves the system.

System 2 The arrival process for system 2 is identical to
the interarrival process for system 1. In system 2, a cus-
tomer must complete only one type of service. Service time
averages 1.5 minutes and is exponentially distributed. Two
servers are available.

In which system does a typical customer spend less time?

4 An average of 120 students arrive each hour (interarrival
times are exponential) at State College’s Registrar’s Office
to change their course registrations. To complete this
process, a person must pass through three stations. Each
station consists of a single server. Service times at each
station are exponential, with the following mean times:
station 1, 20 seconds; station 2, 15 seconds; station 3, 12
seconds. On the average, how many students will be present
in the registrar’s office for changing courses?

5 An average of 10 jobs per hour arrive at a job shop.
Interarrival times of jobs are exponentially distributed. It
takes an average of 	

1
3
0
	 minutes (exponentially distributed) to

complete a job. Unfortunately, 	
1
3

	 of all completed jobs need
to be reworked. Thus, with probability 	

1
3

	, a completed job
must wait in line to be reworked. In the steady state, how
many jobs would one expect to find in the job shop? What
would the answer be if it took an average of 5 minutes to
finish a job?

6 Consider a queuing system consisting of three stations
in series. Each station consists of a single server, who can
process an average of 20 jobs per hour (processing times at
each station are exponential). An average of 10 jobs per
hour arrive (interarrival times are exponential) at station 1.
When a job completes service at station 2, there is a .1
chance that it will return to station 1 and a .9 chance that it
will move on to station 3. When a job completes service at
station 3, there is a .2 chance that it will return to station 2
and a .8 chance that it will leave the system. All jobs
completing service at station 1 immediately move on to
station 2.

a Determine the fraction of time each server is busy.

b Determine the expected number of jobs in the 
system.

c Determine the average time a job spends in the 
system.

7 Before completing production, a product must pass
through three stages of production. On the average, a new

product begins at stage 1 every 6 minutes. The average time
it takes to process the product at each stage is as follows:
stage 1, 3 minutes; stage 2, 2 minutes; stage 3, 1 minute.
After finishing at stage 3, the product is inspected (assume
this takes no time). Ten percent of the final products are
found to have a defective part and must return to stage 1 and
go through the entire system again. After completing stage
3, 20% of the final products are found to be defective. They
must return to stage 2 and pass through 2 and 3 again. On
the average, how many jobs are in the system? Assume that
all interarrival times and service times are exponential and
that each stage consists of a single server.

8 A data communication network consists of three nodes,
A, B, and C. Each packet transmitted contains 500 bits of
information. The number of packets per second to be
transmitted between each pair of nodes is as follows:

A B C

	 

The routing used for each pair of nodes is as follows:

A B C

	 

Assume that the capacities (in thousands of bits per second)
for each arc are as follows:

Arc Capacity

AB 12
AC 13
BC 15
BA 12
CA 13
CB 15

a Compute the expected delay for a packet.

b If a total of 75,000 bits/second of capacity is avail-
able, how should it be allocated?

9† Jobs arrive to a file server consisting of a CPU and two
disks (disk 1 and disk 2). Currently there are six clients, and
an average of three jobs per second arrive. Each visit to the
CPU takes an average of .01 second, each visit to disk 1
takes an average of .02 second, and each visit to disk 2 takes
an average of .03 second. An entering job first visits the
CPU. After each visit to the CPU, with probability 7/16 the
job next visits disk 1, with probability 8/16 the job next
visits disk 2, and with probability 1/16 the job is completed.
After visiting disk 1 or 2, the job immediately returns to the
CPU.

a On the average, how many times does a job visit the
CPU? How about disk 1? How about disk 2?

b On the average, how long does a job spend in the
CPU? How long in disk 1? How long in disk 2? How
long in the system?

10 Suppose the file server in Problem 9 now has 8 clients.
Answer the questions in Problem 9.

AC

BAC

—

ACB

—

CAB

—

BCA

CA

A

B

C

3

6

0

4

0

6

0

4

3

A

B

C

†Based on Jain (1991).
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11 Suppose we install a cache for disk 2. This will increase
the mean time taken for a CPU visit by 30% and the mean
time for a visit to disk 2 by 10%. On the other hand, the cache
for disk 2 ensures that half the time the job was going to go
to disk 2 the job will actually stay at the CPU and be processed
there. Does the cache improve the operation of the system?

12 Suppose we eliminate disk 2. What will happen to the
system response time? In this problem, you may assume
that all requests that leave the CPU go to disk 1.

20.11 The M/G/s/GD/s/∞ System (Blocked Customers Cleared)

In many queuing systems, an arrival who finds all servers occupied is, for all practical

purposes, lost to the system. For example, a person who calls an airline for a reservation

and gets a busy signal will probably call another airline. Or suppose that someone calls

in a fire alarm and no engines are available; the fire will then burn out of control. Thus,

in some sense, a request for a fire engine that occurs when no engines are available may

be considered lost to the system. If arrivals who find all servers occupied leave the sys-

tem, we call the system a blocked customers cleared, or BCC, system. Assuming that

interarrival times are exponential, such a system may be modeled as an M/G/s/GD/s/∞

system.

For an M/G/s/GD/s/∞ system, L, W, Lq, and Wq are of limited interest. For example,

since a queue can never occur, Lq � Wq � 0. If we let 	
m
1

	 be the mean service time and l

be the arrival rate, then W � Ws � 	
m

1
	.

In most BCC systems, primary interest is focused on the fraction of all arrivals who

are turned away. Since arrivals are turned away only when s customers are present, a frac-

tion ps of all arrivals will be turned away. Hence, an average of lps arrivals per unit time

will be lost to the system. Since an average of l(1 � ps) arrivals per unit time will actu-

ally enter the system, we may conclude that

L � Ls � 	
l(1 �

m

ps)
	

For an M/G/s/GD/s/∞ system, it can be shown that ps depends on the service time distri-

bution only through its mean (	
m

1
	). This fact is known as Erlang’s loss formula. In other

words, any M/G/s/GD/s/∞ system with an arrival rate l and mean service time of 	
m

1
	

will have the same value of ps. If we define r � 	
m

l
	, then for a given value of s, the value

of ps can be found from Figure 32. Simply read the value of r on the x-axis. Then the 

y-value on the s-server curve that corresponds to r will equal ps. The following example

illustrates the use of Figure 32.

E X A M P L E  1 5

An average of 20 ambulance calls per hour are received by Gotham City Hospital. An am-

bulance requires an average of 20 minutes to pick up a patient and take the patient to the

hospital. The ambulance is then available to pick up another patient. How many ambu-

lances should the hospital have to ensure that there is at most a 1% probability of not be-

ing able to respond immediately to an ambulance call? Assume that interarrival times are

exponentially distributed.

Solution We are given that l � 20 calls per hour, and 	
m

1
	 � 	

1
3

	 hour. Thus, r � 	
m

l
	 � 	

2
3
0
	 � 6.67. For

r � 6.67, we seek the smallest value of s for which ps is .01 or smaller. From Figure 32,

we see that for s � 13, ps � .011; and for s � 14, ps � .005. Thus, the hospital needs

14 ambulances to meet its desired service standards.

Ambulance Calls



2
0

.
1

1
The M

/G/s/GD/s/∞
System (Blocked Customers Cleared)

1
1

1
3

F I G U R E  32

Loss Probabilities for M/G/s/GD/s/∞ Queuing System

Source: Reprinted by permission of the publisher from Introduction to Queuing Theory by Robert B. Cooper. p. 316. Copyright©1980 by Elsevier Science Publishing Co., Inc.
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A Spreadsheet for the BCC MODEL

In Figure 33 (file Bcc.xls) we give a spreadsheet template for the M/G/s/GD/s/∞ queuing

system. In cell B2, we input l; in cell C2, m; and in cell D2, the number of servers. In

B4, we compute the expected number (in the steady state) of busy servers. In cell C4, we

compute the value of ps tabulated in Figure 32. Column E gives the steady-state proba-

bilities for this model. We are assuming s � 1,000. In Figure 33, we have input the val-

ues of l, m, and s for Example 15.

Using LINGO for BCC Computations

The LINGO function @PEL(l/m,s) will yield ps. For Example 15, the function

@PEL(20/3,13) yields .010627, as in Figure 32. The @PEL function may be used to solve

a problem (such as Problem 6) where we seek the number of servers minimizing expected

cost per-unit time when cost is the sum of service cost and cost due to lost business.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

A B C D E F G

BCC MODEL LAMBDA? MU? s?

20 3 14

L OR LS PI(s)

6.63320534 0.0050192

STATE LAMBDA(J) MU(J) CJ PROB #IN QUEUE  COLA*COLE

0 20 0 1 0.00127738 0 0

1 20 3 6.66666667 0.00851587 0 0.008515872

2 20 6 22.2222222 0.02838624 0 0.056772479

3 20 9 49.382716 0.06308053 0 0.189241596

4 20 12 82.3045267 0.10513422 0 0.420536879

5 20 15 109.739369 0.14017896 0 0.700894799

6 20 18 121.932632 0.1557544 0 0.934526398

7 20 21 116.126316 0.14833752 0 1.038362665

8 20 24 96.7719303 0.1236146 0 0.988916824

9 20 27 71.6829114 0.09156637 0 0.824097353

10 20 30 47.7886076 0.06104425 0 0.610442484

11 20 33 28.9627925 0.03699651 0 0.406961656

12 20 36 16.0904403 0.02055362 0 0.246643428

13 20 39 8.25150783 0.01054032 0 0.137024127

14 0 42 3.92928944 0.0050192 0 0.070268783

15 0 42 0 0 1 0

16 0 42 0 0 2 0

17 0 42 0 0 3 0

18 0 42 0 0 4 0

19 0 42 0 0 5 0  
 

F I G U R E  33

Bcc.xls
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P R O B L E M S
Group A

1 Suppose that a fire department receives an average of 24
requests for fire engines each hour. Each request causes a
fire engine to be unavailable for an average of 20 minutes.
To have at most a 1% chance of being unable to respond to
a request, how many fire engines should the fire department
have?

2 A telephone order sales company must determine how
many telephone operators are needed to staff the phones
during the 9-to-5 shift. It is estimated that an average of 480
calls are received during this period and that the average
call lasts for 6 minutes. If the company wants to have at
most 1 chance in 100 of a caller receiving a busy signal,
how many operators should be hired for the 9-to-5 shift?
What assumption does the answer require? 

3 In Example 15, suppose the hospital had 10 ambulances.
On the average, how many ambulances would be en route
or returning from a call?

4 A phone system is said to receive 1 Erlang of usage per
hour if callers keep lines busy for an average of 3,600
seconds per hour. Suppose a phone system receives 2
Erlangs of usage per hour. If you want only 1% of all calls
blocked, how many phone lines do you need?†

5 (Requires the use of a spreadsheet or LINGO) At the
peak usage time, an average of 200 people per hour attempt
to log on the Jade Vax. The average length of time somebody
spends on the Vax is 20 minutes. If the Indiana University
Computing Service wants to ensure that during peak usage
only 1% of all users receive an “All ports busy” message,
how many ports should the Jade Vax have?

6 (Requires the use of a spreadsheet or LINGO) US
Airlines receives an average of 500 calls per hour from
customers who want to make a reservation (time between
calls follows an exponential distribution). It takes an average
of 3 minutes to handle each call. Each customer who buys

a ticket contributes $100 to US Airlines profit. It costs $15
per hour to staff a telephone line. Any customer who receives
a busy signal will purchase a ticket on another airline. How
many telephone lines should US Airlines have?

Group B

7 On the average, 26 patrons per year come to the I.U.
library to borrow the I Ching (assume that interarrival times
are exponential). Borrowers who find the book unavailable
leave and never return. A borrower keeps a copy of the I
Ching for an average of 4 weeks.

a If the library has only one copy, what is the expected
number of borrowers who will come to borrow the I
Ching each year and find that the book is not available?

b Suppose that each person who comes to borrow the
I Ching and is unable to is considered to cost the library
$1 in goodwill. A copy of the I Ching lasts two years
and costs $11. A thief has just stolen the library’s only
copy. To minimize the sum of purchasing and goodwill
costs over the next two years, how many copies of the I
Ching should be purchased?

8‡ A company’s warehouse can store up to 4 units of a
good. Each month, an average of 10 orders for the good are
received. The times between the receipt of successive orders
are exponentially distributed. When an item is used to fill
an order, a replacement item is immediately ordered, and it
takes an average of one month for a replacement item to
arrive. If no items are on hand when an order is received,
the order is lost. What fraction of all orders will be lost due
to shortages? (Hint: Let the storage space for each item be
a server and think about what it means for a server to be
busy. Then come up with an appropriate definition of
“service” time.)

20.12 How to Tell Whether Interarrival Times 
and Service Times Are Exponential§

How can we determine whether the actual data are consistent with the assumption of ex-

ponential interarrival times and service times? Suppose, for example, that interarrival

times of t1, t2, . . . , tn have been observed. It can be shown that a reasonable estimate of

the arrival rate l is given by

l̂ �

n
	

�
i�n

i�1

ti

†Based on Green (1987). ‡Based on Karush (1957).

§This section covers topics that may be omitted with no loss of continuity.



1116 C H A P T E R 2 0 Queuing Theory

For example, if t1 � 20, t2 � 30, t3 � 40, and t4 � 50, we have seen 4 arrivals in 140

time units, or an average of 1 arrival per 35 time units. In this case, our estimate of the

arrival rate l̂ is given by

l̂ � � 	
3

1

5
	

customer per unit time. Given l̂ , we can try to determine whether t1, t2, . . . , tn are con-

sistent with the assumption that interarrival times are governed by an exponential distri-

bution with rate l̂ and density l̂e�l̂t. The easiest way to test this conjecture is by using

a chi-square goodness-of-fit test to determine whether it is reasonable to conclude that t1,

t2, . . . , tn represent a random sample from a random variable with a given density func-

tion f (t). A Kolmogorov–Smirnov test may also be used (see Law and Kelton (1990)).

To begin, we break up the set of possible interarrival times into k categories. Under the

assumption that f (t) does govern interarrival times, we determine the number of the ti’s

that we would expect to fall into category i. We call this number ei. Then we count up

how many of the observed ti’s actually were in category i. We call this number oi. Next,

we use the following formula to compute the observed value of the chi-square statistic,

written x 2(obs):

x 2(obs) � �
i�k

i�1

	
(oi �

ei

ei)
2

	

The value of x 2(obs) follows a chi-square distribution, with k � 2 degrees of freedom.

Important percentile points of the chi-square distribution are tabulated in Table 9.

If x 2(obs) is small, it is reasonable to assume that the ti’s are samples from a random

variable with density function f (t). (After all, a perfect fit would have oi � ei for i � 1,

2, . . . , k, resulting in a x 2 value of zero.) If x 2(obs) is large, it is reasonable to assume

that the ti’s do not represent a random sample from a random variable with density f (t).

More formally, we are interested in testing the following hypotheses:

H0: t1, t2, . . . , tn is a random sample from a random variable

with density f (t)

Ha: t1, t2, . . . , tn is not a random sample from a random variable

with density function f (t)

Given a value of a (the desired Type I error), we accept H0 if x 2(obs) � x 2
k�r�1(a) and

accept Ha if x 2(obs) � x 2
k�r�1(a). From Table 9, we obtain x 2

k�r�1(a) which represents

the point in the x 2
k�r�1 table that has an area a to the right of it. Here, r is the number

of parameters that must be estimated to specify the interarrival time distribution. To find

x 2
k�r�1(a) in Excel, we simply enter the formula CHINV(Alpha, k�r�1). Thus, if inter-

arrival times are exponential, r � 1, and if interarrival times follow a normal distribution

or an Erlang distribution, r � 2. When choosing the boundaries for the k categories, it is

desirable to ensure that each ei is at least 5, k � 30, and the ei’s be kept as equal as pos-

sible. Example 16 illustrates the use of the chi-square test.

E X A M P L E  1 6

The following interarrival times (in minutes) have been observed: 0.01, 0.07, 0.03, 0.08,

0.04, 0.10, 0.05, 0.10, 0.11, 1.17, 1.50, 0.93, 0.54, 0.19, 0.22, 0.36, 0.27, 0.46, 0.51, 0.11,

0.56, 0.72, 0.29, 0.04, 0.73. Does it seem reasonable to conclude that these observations

come from an exponential distribution?

Solution There are 25 observations with �i�1
i�25 ti � 9.19. Thus, l� � 	

9
2
.1
5
9

	 � 2.72 arrivals per minute.

We now test whether or not our data are consistent with an exponential random variable

Interarrival Times: Exponential or Not Exponential?

4
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TA B L E  9

Percentiles of Chi-Square Distribution

d.f. a
v .990 .950 .900 .500 .100 .050 .025 .010 .005

1 .0002 .004 .02 .45 2.71 3.84 5.02 6.63 7.88

2 .02 .10 .21 1.39 4.61 5.99 7.38 9.21 10.60

3 .11 .35 .58 2.37 6.25 7.81 9.35 11.34 12.84

4 .30 .71 1.06 3.36 7.78† 9.49 11.14 13.28 14.86

5 .55 1.15 1.61 4.35 9.24 11.07 12.83 15.09 16.75

6 .87 1.64 2.20 5.35 10.64 12.59 14.45 16.81 18.55

7 1.24 2.17 2.83 6.35 12.02 14.07 16.01 18.48 20.28

8 1.65 2.73 3.49 7.34 13.36 15.51 17.53 20.09 21.95

9 2.09 3.33 4.17 8.34 14.68 16.92 19.02 21.67 23.59

10 2.56 3.94 4.87 9.34 15.99 18.31 20.48 23.21 25.19

11 3.05 4.57 5.58 10.34 17.28 19.68 21.92 24.72 26.76

12 3.57 5.23 6.30 11.34 18.55 21.03 23.34 26.22 28.30

13 4.11 5.89 7.04 12.34 19.81 22.36 24.74 27.69 29.82

14 4.66 6.57 7.79 13.34 21.06 23.68 26.12 29.14 31.32

15 5.23 7.26 8.55 14.34 22.31 25.00 27.49 30.58 32.80

16 5.81 7.96 9.31 15.34 23.54 26.30 28.85 32.00 34.27

17 6.41 8.67 10.09 16.34 24.77 27.59 30.19 33.41 35.72

18 7.01 9.39 10.86 17.34 25.99 28.87 31.53 34.81 37.16

19 7.63 10.12 11.65 18.34 27.20 30.14 32.85 36.19 38.58

20 8.26 10.85 12.44 19.34 28.41 31.41 34.17 37.57 40.00

21 8.90 11.59 13.24 20.34 29.62 32.67 35.48 38.93 41.40

22 9.54 12.34 14.04 21.34 30.81 33.92 36.78 40.29 42.80

23 10.20 13.09 14.85 22.34 32.01 35.17 38.08 41.64 44.18

24 10.86 13.85 15.66 23.34 33.20 36.42 39.36 42.98 45.56

25 11.52 14.61 16.47 24.34 34.38 37.65 40.65 44.31 46.93

26 12.20 15.38 17.29 25.34 35.56 38.89 41.92 45.64 48.29

27 12.88 16.15 18.11 26.34 36.74 40.11 43.19 46.96 49.64

28 13.56 16.93 18.94 27.34 37.92 41.34 44.46 48.28 50.99

29 14.26 17.71 19.77 28.34 39.09 42.56 45.72 49.59 52.34

30 14.95 18.49 20.60 29.34 40.26 43.77 46.98 50.89 53.67

40 22.16 26.51 29.05 39.34 51.81 55.76 59.34 63.69 66.77

50 29.71 34.76 37.69 49.33 63.17 67.50 71.42 76.15 79.49

60 37.48 43.19 46.46 59.33 74.40 79.08 83.30 88.38 91.95

70 45.44 51.74 55.33 69.33 85.53 90.53 95.02 100.43 104.21

80 53.54 60.39 64.28 79.33 96.58 101.88 106.63 112.33 116.32

90 61.75 69.13 73.29 89.33 107.57 113.15 118.14 124.12 128.30

100 70.06 77.93 82.36 99.33 118.50 124.34 129.56 135.81 140.17

Source: Richard A. Johnson and Dean W. Wichern, Applied Multivariate Statistical Analysis, © 1982, p. 583. Reprinted by permission of Prentice Hall,

Inc., Englewood Cliffs, New Jersey.

†Note: For example, P(�2
4 � 7.78) � .10.

2 2(   )r �

�
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(call it A) having a density f (t) � 2.72e�2.72t. We choose five categories so as to ensure

that the probability that an observation from A falls into each of the five categories is .20.

This yields ei � 25(.20) � 5 for each category. To set the category boundaries, we need

to determine the cumulative distribution function, F(t), for A:

F(t) � P(A � t) � �t

0
2.72e�2.72s ds � 1 � e�2.72t

Then we choose the categories to be as follows:

Category 1 0 � t  m1 minutes

Category 2 m1 � t  m2 minutes

Category 3 m2 � t  m3 minutes

Category 4 m3 � t  m4 minutes

Category 5 m4 � t minutes

where F(m1) � .20, F(m2) � .40, F(m3) � .60, and F(m4) � .80.

Since F(t) � 1 � e�2.72t, we see that for any number p, the value of t satisfying 

F(t) � p may be found as follows:

1 � e�2.72t � p

1 � p � e�2.72t

Taking logarithms (to base e) of both sides yields

t � 	
ln

�

(1

2

�

.72

p)
	

m1 � 	
�

ln

2

.

.

8

7

0

2
	 � 0.08

m2 � 	
�

ln

2

.

.

6

7

0

2
	 � 0.19

m3 � 	
�

ln

2

.

.

4

7

0

2
	 � 0.34

m4 � 	
�

ln

2

.

.

2

7

0

2
	 � 0.59

Hence, our categories are as follows:

Category 1 0 � t  0.08 minute

Category 2 0.08 � t  0.19 minute

Category 3 0.19 � t  0.34 minute

Category 4 0.34 � t  0.59 minute

Category 5 0.59 � t

After classifying the data into these categories, we find that o1 � 6, o2 � 5, o3 � 4, 

o4 � 5, and o5 � 5. By the construction of our categories, e1 � e2 � e3 � e4 � e5 �

.20(25) � 5. We now compute x2(obs):

x 2(obs) � 	
(6 �

5

5)2

	 � 	
(5 �

5

5)2

	 � 	
(4 �

5

5)2

	 � 	
(5 �

5

5)2

	 � 	
(5 �

5

5)2

	

� .20 � 0 � .20 � 0 � 0 � .40
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We arbitrarily choose a � .05. Since we are trying to fit an exponential distribution to in-

terarrival times, r � 1. Then x 2
3(.05) � 7.81, and we see that for a � .05, we can accept

the hypothesis that the observed interarrival times come from an exponential distribution

with l � 2.72 arrivals per minute.

Alternatively, we could have found the cutoff point for the chi-square test with the 

formula

�CHINV(.05,3)

This formula yields the value 7.81.

To test whether service times are exponentially distributed, simply apply the preceding

approach to observed service times s1, s2, . . . , sn. Begin by obtaining an estimate (call it

m̂) of the actual service rate m from

m̂ �

Then use the chi-square test to test whether or not it is reasonable to assume that the ob-

served service times are observations from an exponential distribution with density m̂e�m̂t.

P R O B L E M
Group A

n
			

1 A travel agency wants to determine if the length of
customers’ phone calls can be adequately modeled by an
exponential distribution. Last week, the agency recorded the
length of all phone calls and obtained the following results

(in seconds): 4, 6, 5, 8, 9, 10, 12, 8, 16, 20, 24, 27, 33, 37,
43, 50, 58, 68, 70, 78, 88, 100, 120, 130. Do these data
indicate that the length of phone calls to the travel agency
is governed by an exponential distribution?

20.13 Closed Queuing Networks

For manufacturing units attempting to implement just-in-time manufacturing, it makes

sense to maintain a constant level of work in process. For a busy computer network, it

may be convenient to assume that as soon as a job leaves the system, another job arrives

to replace it. Such manufacturing and computer systems, where there is a constant num-

ber of jobs present, may be modeled as closed queuing networks. Recall that in an open

queuing network, the numbers of jobs at each server were independent random variables.

Since the number of jobs in the system is always constant, the distribution of jobs at dif-

ferent servers cannot be independent. We now discuss Buzen’s algorithm, which can be

used to determine steady-state probabilities for closed queuing networks.

We let Pij be the probability that a job will go to server j after completing service at

station i. Let P be the matrix whose (i�j)th entry is Pij.We assume that service times at

server j follow an exponential distribution with parameter mj. The system has s servers,

and at all times, exactly N jobs are present. We let ni be the number of jobs present 

at server i. Then the state of the system at any given time can be defined by an 

n-dimensional vector n � (n1, n2, . . . , ns). The set of possible states is given by SN �

{n such that all ni � 0 and n1 � n2 � 
 
 
 � ns � N}.

Let lj equal the arrival rate to server j. Since there are no external arrivals, we may set

all rj � 0 and obtain the values of the lj’s from the equation used in the open network

situation. That is,



1120 C H A P T E R 2 0 Queuing Theory

lj � �
i�s

i�1

liPij j � 1, 2, . . . , s (59)

Since jobs never leave the system, for each i, �j�s
j�1 Pij � 1. This fact causes equation (59)

to have no unique solution. Fortunately, it turns out that we can use any solution to (59)

to help us get steady-state probabilities. If we define

ri � 	
m

li

i

	

then we determine, for any state n, its steady-state probability IIN(n) from the following

equation:

�N(n) � (60)

Here, G(N) � �n	SN
r1

n1 r2
n2


rs

ns.

Buzen’s algorithm gives us an efficient way to determine (in a spreadsheet) G(N). Once

we have the steady-state probability distribution, we can easily determine other measures

of effectiveness, such as expected queue length at each server and expected time a job

spends during each visit to a server, fraction of time a server is busy, and the throughput

for each server ( jobs per second processed by each server).

To obtain G(N), we recursively compute the quantities Ci(k), for i � 1, 2, . . . , s and 

k � 0, 1, . . . , N. We initialize the recursion with C1(k) � rk
1, k � 0, 1, . . . , N and Ci(0) �

1, i � 1, 2, . . . , s. For other values of k and i, we build up the values of Ci(k) recursively

via the following relationship:

Ci(k) � Ci�1(k) � riCi(k � 1)

Then it can be shown that G(N) � Cs(N). We illustrate the use of Buzen’s algorithm with

the following example.†

E X A M P L E  17

Consider a flexible manufacturing system in which 10 parts are always in process. Each

part requires two operations. Each part begins by having operation 1 done at machine 1.

Then, with probability .75 the part has operation 2 processed on machine 2, and with

probability .25 the part has operation 2 processed on machine 3. Once a part completes

operation 2, the part leaves the system and is immediately replaced by another part. We

are given the following machine rates (the time for each operation is exponentially dis-

tributed): m1 � .25 minute, m2 � .48 minute, and m3 � .08 minute.

a Find the probability distribution of the number of parts at each machine.

b Find the expected number of parts present at each machine.

c What fraction of the time is each machine busy?

d How many parts per minute are completed by each machine?

Solution Our work is in file Buzen.xls. To begin, we need to compute one solution to the equations

(59) defining l1, l2, and l3. We must solve

l1 � l2 � l3

l2 � .75l1

l3 � .25l1

Flexible Manufacturing System

r1
n1 r2

n2


rn
ns

		
G(N)

Buzen.xls

†From Kao (1996).
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There are an infinite number of solutions to this system. Arbitrarily choosing l1 � 1

yields the solution l2 � .75 and l3 � .25. In cells G8:I8, we compute ri � 	
m

li

i

	. In

G10:G20, we compute C1(k) � rk
1, k � 0, 1, . . . , 10, and in G10:I10, we enter Ci(0) �

1, i � 1, 2, 3. Copying from H11 to H11:I20 the formula

�G11�H$8*H10

implements the recursion Ci(k) � Ci�1(k) � riCi(k � 1). Then we can find G(10) �

7,231,883 from the value of C3(10) in cell H20. See Figure 34.

We can now generate all possible system states efficiently by starting with n1 � 0 and list-

ing those states in order of increasing values of n2. Then we increase n1 to 1 and list all states

in increasing values of n2, etc. Once we have n1 � 10, we will have listed all states. (See Fig-

ure 35.) To efficiently generate all possible states, we copy down from C25 the formula

�IF(D25�0,B25�1,B25)

This formula increments n1 by 1 if n3 � 0 (which is the same as having n2 � 10 � n1).

Otherwise, the formula keeps n1 constant.

Then we copy down from D25 the formula

�IF(B25-B24�1,0,C24�1)

This formula makes n2 � 0 if we have just increased the value of n1; otherwise, the for-

mula increments the value of n2 by 1.

Finally, from E25, we copy down the formula

�10-B24-C24

This ensures that n3 � 10 � n1 � n2.

In E24:E89 we use (60) to compute the steady-state probability for each state by copy-

ing from E24 to E25:E89 the formula

�($G$8^B24)*($H$8^C24)*($I$8^D24)/$I$20

Part (a) Next, we answer part (a) by determining the probability distribution of the num-

ber of parts at each machine. We use the SUMIF function and a one-way data table to ac-

complish this goal. To begin, compute in H24 the probability of 0 parts at machine 1 with

the formula

�SUMIF($B$24:$B$89,I23,E24:E89)

This formula adds up every number in column D (which contains state probabilities) for

the rows in which column B (which is parts at machine 1) has a 0 entry. See Figure 36.

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F G H I

Mui 0.25 0.48 0.08

phoi 4 1.5625 3.125

1 2 3

0 1 1 1

1 4 5.5625 8.6875

2 16 24.6914063 51.83984

3 64 102.580322 264.5798

4 256 416.281754 1243.094

5 1024 1674.44024 5559.108

6 4096 6712.31287 24084.53

7 16384 26871.9889 102136.1

8 65536 107523.483 426698.9

9 262144 430149.442 1763583

10 1048576 1720684.5 7231883  F I G U R E  34
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23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

B C D E

Parts at 1 Parts at 2 Parts at 3 Probability

0 0 10 0.01228143

0 1 9 0.00614071

0 2 8 0.00307036

0 3 7 0.00153518

0 4 6 0.00076759

0 5 5 0.00038379

0 6 4 0.0001919

0 7 3 9.5949E-05

0 8 2 4.7974E-05

0 9 1 2.3987E-05

0 10 0 1.1994E-05

1 0 9 0.01572023

1 1 8 0.00786011

1 2 7 0.00393006

1 3 6 0.00196503

1 4 5 0.00098251

1 5 4 0.00049126

1 6 3 0.00024563

1 7 2 0.00012281

1 8 1 6.1407E-05

1 9 0 3.0704E-05

2 0 8 0.02012189

2 1 7 0.01006094

2 2 6 0.00503047

2 3 5 0.00251524

2 4 4 0.00125762

2 5 3 0.00062881

2 6 2 0.0003144

2 7 1 0.0001572

2 8 0 7.8601E-05

3 0 7 0.02575602

3 1 6 0.01287801

3 2 5 0.006439

3 3 4 0.0032195

3 4 3 0.00160975

3 5 2 0.00080488

3 6 1 0.00040244

3 7 0 0.00020122

4 0 6 0.0329677

4 1 5 0.01648385

4 2 4 0.00824193

4 3 3 0.00412096

4 4 2 0.00206048

4 5 1 0.00103024

4 6 0 0.00051512

5 0 5 0.04219866

5 1 4 0.02109933

5 2 3 0.01054967

5 3 2 0.00527483

5 4 1 0.00263742

5 5 0 0.00131871

6 0 4 0.05401429

6 1 3 0.02700714

6 2 2 0.01350357

6 3 1 0.00675179

6 4 0 0.00337589

7 0 3 0.06913829

7 1 2 0.03456914

7 2 1 0.01728457

7 3 0 0.00864229

8 0 2 0.08849701

8 1 1 0.0442485

8 2 0 0.02212425

9 0 1 0.11327617

9 1 0 0.05663809

10 0 0 0.1449935  F I G U R E  35
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Selecting the table range G24:H35 and column input cell I23 enables us to loop

through and compute the steady-state probabilities for each number of parts at machine

1. In a similar fashion, we obtain the following steady-state probability distributions for

machines 2 and 3. See Figure 37.

Part (b) The mean number of parts present at machine 1 may be computed as �i�0
i�10i*

(Probability of i parts at machine 1). In cell K31, we compute the mean number of parts

at machine 1 with the formula

�SUMPRODUCT(G25:G35,H25:H35)

In a similar fashion, we compute the mean number of parts at machines 2 and 3 in cells

K32 and K33. See Figure 38. Note that machine 1 is clearly the bottleneck.

Part (c) To compute the probability that each machine is busy, we just subtract from 1

the probability that each machine has 0 parts. These computations are done in L31:L33.

We find that machine 1 is busy 97% of the time, machine 2 38% of the time, and ma-

chine 3 76% of the time.

 

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

G H I

Parts

Prob 0

Machine 1 

parts 0.02455086

0 0.02455086

1 0.03140975

2 0.04016518

3 0.05131082

4 0.06542029

5 0.08307862

6 0.10465268

7 0.12963429

8 0.15486976

9 0.16991426

10 0.1449935  

37

38

39

40

41

42

43

44

45

46

47

48

G H

Machine 2 

Parts 0.61896518

0 0.61896518

1 0.23698584

2 0.09017388

3 0.03402481

4 0.01269126

5 0.00465769

6 0.00166949

7 0.00057718

8 0.00018798

9 5.4691E-05

10 1.1994E-05  

 

50

51

52

53

54

55

56

57

58

59

60

61

G H

Machine 3 

Parts 0.23793036

0 0.23793036

1 0.18587372

2 0.14519511

3 0.1133962

4 0.08851582

5 0.06900306

6 0.0536088

7 0.0412822

8 0.03105236

9 0.02186094

10 0.01228143  
 

F I G U R E  36

F I G U R E  37
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Part (d) To compute the mean number of service completions per minute by each ma-

chine, we simply multiply the probability that a machine is busy by the machine’s service

rate. These computations are done in M31:M33. We find that machine 1 on average com-

pletes .24 part/minute, machine 2 .18 part/minute, and machine 3 .06 part/minute.

P R O B L E M S
Group A

F I G U R E  38

29

30

31

32

33

J K L M

Mean 

Number

Mean 

Number Prob busy

Completions per 

second

Machine 1 6.696224299 0.97544914 0.243862285

Machine 2 0.609634749 0.38103482 0.182896714

Machine 3 2.694140952 0.76206964 0.060965571  

1 Jobs arrive to a file server consisting of a CPU and two
disks (disk 1 and disk 2). With probability 13/20, a job goes
from CPU to disk 1, and with probability 6/20, a job goes
from CPU to disk 2. With probability 1/20, a job is finished
after its CPU operation and is immediately replaced by
another job. There are always 3 jobs in the system. The
mean time to complete the CPU operation is .039 second.
The mean time to complete the disk 1 operation is .18
second, and the mean time to complete the disk 2 operation
is .26 second.

a Determine the steady-state distribution of the num-
ber of jobs at each part of the system.

b What is the average number of jobs at CPU? Disk
1? Disk 2?

c What is the probability that CPU is busy? Disk 1?
Disk 2?

d What is the average number of jobs completed per
second by CPU? Disk 1? Disk 2?

2 A manufacturing process always has 8 parts in process.
A part must successfully complete two steps (step 1 and
step 2) to be completed. A single machine performs step 1
and can process an average of 8 parts per minute. A single
machine performs step 2 and can process 11 parts per
minute. Unfortunately, step 2 is not totally reliable. (Step 1
is totally reliable, however.) Each time a part is sent through
step 2, there is a 10% chance that step 2 must be repeated.

a Find the steady-state distribution of parts at each
machine.

b Find the average number of parts at each 
machine.

c Find the probability that each machine is busy.

d Find the number of parts per minute successfully
completing service at each machine.

20.14 An Approximation for the G/G/m Queuing System

In most situations, interarrival times follow an exponential random variable. (See Denardo

(1982) for an explanation of this fact.) Often, however, service times do not follow an ex-

ponential distribution. When interarrival times and service times each follow a nonexpo-

nential random variable, we call the queuing system a G/G/m system. The first G indi-

cates that interarrival times always follow the same (but not necessarily exponential)

random variable, while the second G indicates that service times always follow the same

(but not necessarily exponential) random variable. For these situations, the templates dis-

cussed in the previous sections of this chapter are not valid. Fortunately, the Allen–

Cunneen approximation (see Tanner (1995)) often gives a good approximation to L, W,
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Lq, and Wq for G/G/m systems. The file ggm.xls contains a spreadsheet implementation

of the Allen–Cunneen approximation. The user need only input the following information:

■ The average number of arrivals per unit time (�) in cell B3.

■ The average rate at which customers can be serviced (m) in cell B4.

■ The number of servers (s) in cell B5.

■ The squared coefficient of variation—(variance of interarrival times)/(mean inter-

arrival time)2—of interarrival times in cell B6.

■ The squared coefficient of variation—(variance of service times)/(mean service

time)2—of service times in cell B7.

The squared coefficient of variation for interarrival or service times can easily be esti-

mated with the Excel functions �AVERAGE and �VARP. Recall that the exponential

random variable has the property that variance � mean2. Thus, the squared coefficient of

variation for exponential interarrival or service times will equal 1, and the amount by

which the squared coefficient of variation for interarrival or service times differs from 1

indicates the degree of departure from exponentiality. The Allen–Cunneen approximation

is exact if interarrival times and service times are exponential. Extensive testing by Tan-

ner indicates that in a wide variety of situations, the values of L, W, Lq, and Wq obtained

by the approximation are within 10% of their true values. Here is an illustration of the

Allen–Cunneen approximation.

E X A M P L E  1 8

The NBD Bank branch in Bloomington, Indiana has 6 tellers. At peak times, an average

of 4.8 customers per minute arrive at the bank. It takes a teller an average of 1 minute to

serve a customer. The squared coefficient of variation for both interarrival times and ser-

vice times is .5. Estimate the average time a customer will have to wait before seeing a

teller. On average, how many customers will be present?

Solution After inputting the relevant information in cells B3 through B7 (see Figure 39), we find

that on average, a customer will wait .216 minute for a teller. On average, 5.83 customers

will be present in the bank. Congestion seems to be well under control. This favorable

outcome is largely due to the low squared coefficient of variation for both interarrival and

service times. For example, if both squared coefficients of variation were 4, then Wq

would be 1.73 minutes, an 800% increase.

NBD Bank

ggm.xls

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A B C D

G/G/m Template

Allen-Cunneen Approximation

Lambda 4.8

Mu 1

s 6

CV arrive 0.5

CV service 0.5

u 4.8

ro 0.8

R(s,mu) 0.82322

EC(s,mu) 0.517772

Wq 0.215738

Lq 1.035544

W 1.215738

L 5.835544F I G U R E  39
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P R O B L E M S
Group A

Problems 1–4 refer to Example 18.

1 NBD believes the congestion level is satisfactory if the
average number of customers in line equals the number of
servers. For the information given in the example, what is
the maximum arrival rate that can be satisfactorily handled
with 6 servers?

2 Show how the average time a customer must wait for a
teller depends on the number of servers.

3 Using a two-way data table, determine how changes in
the squared coefficient of variation for interarrival and
service times affect the average number of customers in the
NBD branch.

4 Suppose a teller costs $30 per hour. Suppose the bank
values a customer’s time at NBD at $c per hour. Show 
how variations in c affect the number of tellers that NBD
should use.

5 Southbest Airlines has an average of 230 customers per
hour arriving at a ticket counter where 8 agents are working.
Each agent can serve an average of 30 customers per hour.
The squared coefficient of variation for the interarrival times
is 1.5 and 2 for the service times.

a On average, how many customers will be present at
the ticket counter?

b On average, how long will a customer have to wait
for an agent?

20.15 Priority Queuing Models†

There are many situations in which customers are not served on a first come, first served

(FCFS) basis. In Section 20.1, we also discussed the service in random order (SIRO) and

last come, first served (LCFS) queue disciplines. Let WFCFS, WSIRO, and WLCFS be the

random variables representing a customer’s waiting time in queuing systems under the dis-

ciplines FCFS, SIRO, and LCFS, respectively. It can be shown that

E(WFCFS) � E(WSIRO) � E(WLCFS)

Thus, the average time (steady-state) that a customer spends in the system does not de-

pend on which of these three queue disciplines is chosen. It can also be shown that

var WFCFS  var WSIRO  var WLCFS (61)

Since a large variance is usually associated with a random variable that has a relatively large

chance of assuming extreme values, (61) indicates that relatively large waiting times are most

likely to occur with an LCFS discipline and least likely to occur with an FCFS discipline.

This is reasonable, because in an LCFS system, a customer can get lucky and immediately

enter service but can also be bumped to the end of a long line. In FCFS, however, the cus-

tomer cannot be bumped to the end of a long line, so a very long wait is relatively unlikely.

In many organizations, the order in which customers are served depends on the cus-

tomer’s “type.” For example, hospital emergency rooms usually serve seriously ill patients

before they serve nonemergency patients. Also, in many computer systems, longer jobs

do not enter service until all shorter jobs in the queue have been completed. Models in

which a customer’s type determines the order in which customers undergo service are

called priority queuing models.

The following scenario encompasses many priority queuing models (including all the

models discussed in this section). Assume there are n types of customers (labeled type 1,

type 2, . . . , type n). The interarrival times of type i customers are exponentially distrib-

uted with rate li. Interarrival times of different customer types are assumed to be inde-

pendent. The service time of a type i customer is described by a random variable Si (not

necessarily exponential). We assume that lower-numbered customer types have priority

over higher-numbered customer types.

†This section covers topics that may be omitted with no loss of continuity.
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Nonpreemptive Priority Models

We begin by considering nonpreemptive priority models. In a nonpreemptive model, a

customer’s service cannot be interrupted. After each service completion, the next cus-

tomer to enter service is chosen by giving priority to lower-numbered customer types

(with ties broken on an FCFS basis). For example, if n � 3 and three type 2 and four type

3 customers are present, the next customer to enter service would be the type 2 customer

who was the first of that type to arrive.

In the Kendall–Lee notation, a nonpreemptive priority model is indicated by labeling

the fourth characteristic as NPRP. To indicate multiple customer types, we subscript the

first two characteristics with i’s. Thus, Mi/Gi/
 
 
 would represent a situation in which the

interarrival times for the ith customer type are exponential and the service times for the

ith customer type have a general distribution. In what follows, we let

Wqk � expected steady-state waiting time in line spent by a type k customer

Wk � expected steady-state time in the system spent by a type k customer

Lqk � expected steady-state number of type k customers waiting in line

Lk � expected steady-state number of type k customers in the system

The Mi/Gi/1/NPRP/∞/∞ Model

Our first results concern the single-server, nonpreemptive Mi/Gi/1/NPRP/∞/∞ system. De-

fine ri � 	
m
li

i

	, a0 � 0, and ak � �i�k
i�1ri. We assume† that

�
i�n

i�1

	
m

li

i

	  1

Then

Wqk �

Lqk � lkWqk
(62)

Wk � Wqk � 	
m

1

k

	

Lk � lkWk

The following example illustrates the use of (62).

E X A M P L E  1 9

A copying facility gives shorter jobs priority over long jobs. Interarrival times for each

type of job are exponential, and an average of 12 short jobs and 6 long jobs arrive each

hour. Let type 1 job � short job and type 2 job � long job. Then we are given that

E(S1) � 2 minutes E(S2
1) � 6 minutes2 � 	

6

1

00
	 hour2

E(S2) � 4 minutes E(S2
2) � 18 minutes2 � 	

2

1

00
	 hour2

Determine the average length of time each type of job spends in the copying facility.

Copying Priority

�
k�n

k�1

lkE(Sk
2)/2

			
(1 � ak�1)(1 � ak)

†If this condition does not hold, then for one or more customer types, no steady-state waiting time will exist.
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Solution We are given that l1 � 12 jobs per hour, l2 � 6 jobs per hour, and m1 � 30 jobs per

hour, and m2 � 15 jobs per hour. Then r1 � 	
1
3
2
0
	 � .4 and r2 � 	

1
6
5
	 � .4. Since r1 � r2 

1, a steady state will exist. Now a0 � 0, a1 � .4, and a2 � .4 � .4 � .8. Equations (62)

now yield

Wq1 �

�

� � 0.042 hour
(1 � 0)(1 � .4)

Wq2 �

�

� � 0.208 hour
(1 � .4)(1 � .8)

Also,

W1 � Wq1 � 	
m

1

1

	 � 0.042 � 0.033 � 0.075 hour

W2 � Wq2 � 	
m

1

2

	 � 0.208 � 0.067 � 0.275 hour

Thus, as expected, the long jobs spend much more time in the copying facility than the

short jobs do.

The Mi/Gi/1/NPRP/∞/∞ Model 
with Customer-Dependent Waiting Costs

Consider a single-server, nonpreemptive priority system in which a cost ck is charged for

each unit of time that a type k customer spends in the system. If we want to minimize the

expected cost incurred per unit time (in the steady state), what priority ordering should

be placed on the customer types? Suppose the n customer types are numbered such that

c1m1 � c2m2 � 
 
 
 � cnmn (63)

Then expected cost is minimized by giving the highest priority to type 1 customers, the

second-highest priority to type 2 customers, and so forth, and the lowest priority to type

n customers. To see why this priority ordering is reasonable, observe that when a type k

customer is being served, cost leaves the system at a rate ckmk. Thus, cost can be mini-

mized by giving the highest priority to customer types with the largest values of ckmk.

As a special case of this result, suppose we want to minimize L, the expected number

of jobs in the system. Let c1 � c2 � 
 
 
 � cn � 1. Then at any time, the cost per unit

time is equal to the number of customers in the system. Thus, the expected cost per unit

time will equal L. Now (63) becomes

m1 � m2 � 
 
 
 � mn or 	
m

1

1

	 � 	
m

1

2

	 � 
 
 
 � 	
m

1

n

	

Thus, we may conclude that the expected number of jobs in the system will be minimized

if the highest priority is given to the customer types with the shortest mean service time.

This priority discipline is known as the shortest processing time (SPT) discipline.

	
1,

3

2

0

00
	

	

6 �	
2

1

00
	�

	
2

12 �	
6

1

00
	�

		
2

	
1,

3

2

0

00
	

	

6 �	
2

1

00
	�

	
2

12 �	
6

1

00
	�

		
2
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The Mi/M/s/NPRP/∞/∞ Model

To obtain tractable analytic results for multiserver priority systems, we must assume that

each customer type has exponentially distributed service times with a mean of 	
m
1

	, and that

type i customers have interarrival times that are exponentially distributed with rate li.

Such a system with s servers is denoted by the notation Mi/M/s/NPRP/∞/∞. For this

model,

Wqk � (64)

In (64),

ak � �
i�k

i�1

	
s

l

m

i
	 (k � 1)

a0 � 0, and P( j � s) is obtained from Table 6 for an s-server system having

r �

Example 20 illustrates the use of (64).

E X A M P L E  2 0

Gotham Township has 5 police cars. The police department receives two types of calls:

emergency (type 1) and nonemergency (type 2) calls. Interarrival times for each type of

call are exponentially distributed, with an average of 10 emergency and 20 nonemergency

calls being received each hour. Each type of call has an exponential service time, with a

mean of 8 minutes (assume that, on the average, 6 of the 8 minutes is the travel time from

the police station to the call and back to the station). Emergency calls are given priority

over nonemergency calls. On the average, how much time will elapse between the place-

ment of a nonemergency call and the arrival of a police car?

Solution We are given that s � 5, l1 � 10 calls per hour, l2 � 20 calls per hour, m � 7.5 calls

per hour, r � 	
1
5
0
(
�

7.5
2
)
0

	 � .80, a0 � 0, a1 � 	
3
1
7
0
.5
	 � .267, and a2 � 	

10
3
�

7.5
20

	 � .80. From Table

6, with s � 5 and r � .80, P( j � 5) � .55. Then (64) yields

Wq2 � � 	
5

.5

.5

5

0
	 � 0.10 hour � 6 minutes

The average time between the placement of a nonemergency call and the arrival of the

car is Wq2 � (	
1
2

	) (total travel time per call) � 6 � 3 � 9 minutes.

Preemptive Priorities

We close our discussion of priority queuing systems by discussing a single-server pre-

emptive queuing system. In a preemptive queuing system, a lower-priority customer (say,

a type i customer) can be bumped from service whenever a higher-priority customer ar-

rives. Once no higher-priority customers are present, the bumped type i customer reen-

ters service. In a preemptive resume model, a customer’s service continues from the

point at which it was interrupted. In a preemptive repeat model, a customer begins ser-

vice anew each time he or she reenters service. Of course, if service times are exponen-

.55
			

Police Response

l1 � l2 � 
 
 
 � ln
			

sm

P( j � s)
			
sm(1 � ak�1)(1 � ak)
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tially distributed, the resume and repeat disciplines are identical. (Why?) In the

Kendall–Lee notation, we denote a preemptive queuing system by labeling the fourth

characteristic PRP. We now consider a single-server Mi/M/1/PRP/∞/∞ system in which the

service time of each customer is exponential with mean 	
m
1

	 and the interarrival times for

the ith customer type are exponentially distributed with rate li. Then

Wk � (65)

where a0 � 0 and

ak � �
i�k

i�1

	
l

m

i
	

For obvious reasons, preemptive disciplines are rarely used if the customers are peo-

ple. Preemptive disciplines are sometimes used, however, for “customers” like computer

jobs. The following example illustrates the use of (65).

E X A M P L E  2 1

On the Podunk U computer system, faculty jobs (type 1) always preempt student jobs

(type 2). The length of each type of job follows an exponential distribution, with mean

30 seconds. Each hour, an average of 10 faculty and 50 student jobs are submitted. What

is the average length of time between the submission and completion of a student’s com-

puter job? Assume that interarrival times are exponential.

Solution We are given that m � 2 jobs per minute, l1 � 	
1
6

	 job per minute, and l2 � 	
5
6

	 job per

minute. Then

a0 � 0, a1 � � 	
1

1

2
	, a2 � 	

1

1

2
	 � � 	

1

2
	

Equation (65) yields

W2 � � 	
1

1

2

1
	 minutes � 1.09 minutes

An average of 1.09 minutes will elapse between the time a student submits a job and the

time the job is completed.

P R O B L E M S
Group A

	
1

2
	

		

�1 � 	
1

1

2
	� �1 � 	

1

2
	�

	
5

6
	

	
2

	
1

6
	

	
2

University Computer System

	
m

1
	

			
(1 � ak�1)(1 � ak)

1 English professor Jacob Bright has one typist, who types
for 8 hours per day. He submits three types of jobs to the
typist: tests, research papers, and class handouts. The
information in Table 10 is available. Professor Bright has
told the typist that tests have priority over research papers,

and research papers have priority over class handouts.
Assuming a nonpreemptive system, determine the expected
time that Professor Bright will have to wait before each type
of job is completed.
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2 Suppose a supermarket uses a system in which all
customers wait in a single line for the first available cashier.
Assume that the service time for a customer who purchases
k items is exponentially distributed, with mean k seconds.
Also, a customer who purchases k items feels that the cost
of waiting in line for 1 minute is 	

$
k
1
	. If customers can be

assigned priorities, what priority assignment will minimize
the expected waiting cost incurred by the supermarket’s
customers? Why would a customer’s waiting cost per minute
be a decreasing function of k?

3 Four doctors work in a hospital emergency room that
handles three types of patients. The time a doctor spends

with each type of patient is exponentially distributed, with
a mean of 15 minutes. Interarrival times for each customer
type are exponential, with the average number of arrivals
per hour for each patient type being as follows: type 1, 3
patients; type 2, 5 patients; type 3, 3 patients. Assume that
type 1 patients have the highest priority, and type 3 patients
have the lowest priority (no preemption is allowed). What is
the average length of time that each type of patient must
wait before seeing a doctor?

4 Consider a computer system to which two types of
computer jobs are submitted. The mean time to run each
type of job is 	

m
1

	. The interarrival times for each type of job
are exponential, with an average of li type i jobs arriving
each hour. Consider the following three situations.

a Type 1 jobs have priority over type 2 jobs, and pre-
emption is allowed.

b Type 1 jobs have priority over type 2 jobs, and no
preemption is allowed.

c All jobs are serviced on a FCFS basis.

Under which system are type 1 jobs best off? Worst off?
Answer the same questions for type 2 jobs.

20.16 Transient Behavior of Queuing Systems

Throughout the chapter, we have assumed that the arrival rate, service rate, and number

of servers have stayed constant over time. This allows us to talk reasonably about the ex-

istence of a steady state. In many situations, the arrival rate, service rate, and number of

servers may vary. Here are some examples.

■ A fast-food restaurant is likely to experience a much larger arrival rate during the

time from noon to 1:30 P.M. than during other hours of the day. Also, the number

of servers (in a restaurant with parallel servers) will vary during the day, with

more servers available during the busier periods.

■ Since most heart attacks occur during the morning, a coronary care unit will ex-

perience more arrivals during the morning.

■ Most voters vote either before or after work, so a polling place will be less busy

during the middle of the day.

When the parameters defining the queuing system vary over time, we say that the system

is nonstationary. Consider, for example, a fast-food restaurant that opens at 10 A.M. and

closes at 6 P.M. We are interested in the probability distribution of the number of cus-

tomers present at all times between 10 A.M. and closing. We call these probability distri-

butions transient probabilities. For example, if we want to determine the probability that

at least 10 customers are present, this probability will surely be larger at 12:30 P.M. than

at 3 P.M.

We now assume that at time t, interarrival times are exponential with rate l(t). Also,

s(t) servers are available at time t, with service times exponential with rate m(t). We as-

sume that the maximum number of customers present at any time is given by N. To de-

termine transient probabilities, we choose a small length of time �t and assume at most

one event (an arrival or service completion) can occur during an interval of length �t. We

assume that k customers are currently present at time t, and that

TA B L E  10

Frequency E(Si ) E (S 2
i )

Type of Job (number per day) (hours) (hours)2

Test 2 1 2

Research paper 0.5 4 20

Class handout 5 0.5 0.50
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■ The probability of an arrival during an interval of length �t is l(t)*(�t).

■ The probability of more than one arrival during a time interval of length �t is

o(�t).

■ Arrivals during different intervals are independent.

■ The probability of a service completion during an interval of length �t is given

by min (s(t), k)*mt�t.

■ The probability of more than one service completion during a time interval of

length �t is o(�t).

When arrivals are governed by the first three assumptions, we say that arrivals follow a

nonhomogeneous Poisson process. Our assumptions imply that, given the arrival rate and

service rate, the expected number of arrivals and/or service completions during the next

�t will match what we expect. The source of the error in our approximation is the fact

that at least two events can occur during a length of time �t. The probability of this oc-

curring is o(�t), so if we make �t small enough, our approximation should not cause large

errors in computing transient probabilities.

We now define Pi(t) to be the probability that i customers are present at time t. We will

assume (although this is not necessary) that the system is initially empty, so P0(0) � 1

and for i � 0, P0(i) � 0. Then, given knowledge of Pi(t), we may compute Pi(t � �t) as

follows:

P0(t � �t) � (1 � l(t)�t)P0(t) � m(t)�tP1(t)

Pi(t � �t) � l(t)�tPi�1(t) � (1 � l(t)�t � min(s(t), i)m(t)�t)Pi(t) � min(s(t),

� i � 1)m(t)�tPi�1(t), N � 1 � i � 1

PN(t � �t) � l(t)�tPN�1(t) � (1 � min(s(t), N)m(t))�tPN(t)

As previously stated, these equations are based on the assumption that if the state at time

t is i, then during the next �t, the probability of an arrival is l(t) �t, and the probability

of a service completion is min(s(t), i)m(t)�t. The first equation then follows after observ-

ing that being in state 0 at time t � �t can only happen if we were in state 1 at time t and

had a service completion during the next �t or were in state 0 at time t and had no arrival

during the next �t. The second equation follows after observing that for N � 1 � i � 1,

we can only be in state i at time t � �t if one of the following occurs.

■ We were in state i � 1 at time t and had an arrival during the next �t.

■ We were in state i � 1 at time t and had a service completion during the next �t.

■ We were in state i at time t, and no arrival or service completion occurred during

the next �t.

The final equation follows after observing that to be in state N at time t � �t, one of the

following must occur:

■ We were in state N � 1 at time t, and an arrival occurs during the next �t.

■ We were in state N at time t, and no service completion occurs during the next �t.

The following example shows how we can use our approximations to determine tran-

sient probabilities for a nonstationary queuing system.

E X A M P L E  2 2

A small fast-food restaurant is trying to model the lunchtime rush. The restaurant opens

at 11 A.M., and all customers wait in one line to have their orders filled. The arrival rate

per hour at different times is as shown in Table 11. Arrivals follow a nonhomogeneous

Lunchtime Rush
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Poisson process. The restaurant can serve an average of 50 people per hour. Service times

are exponential. Management wants to model the probability distribution of customers

from 11 A.M. through 2 P.M.

a At 12:30 P.M., estimate the average number of people in line or in service.

b At 11:30 A.M., estimate the average number of people in line or in service.

Solution Our work is in the file restaurant.xls. (See Figure 40.) We use 5-second time increments

and proceed as follows:

Step 1 In E4, we compute the probability of a service completion in 5 seconds by mul-

tiplying the hourly service rate by �t � 1/720.

Step 2 In column A, we use the Excel DATA FILL command to generate times ranging

in 5-second increments from 0 to 10,800 (2 P.M.).

Step 3 By copying from B11 to B11:B2171 the formula

A11/3600

we convert the time in seconds to hours.

Step 4 By copying from C11 to C12:C2171 the formula

�VLOOKUP(B11,$G$2:$H$7,2)/720

we look up the hourly arrival rate for the current time and convert it to a 5-second arrival

rate by multiplying the hourly arrival rate by �t � 1/720. Note that the arrival rate is

highly nonstationary. This fact will greatly affect the system’s level of congestion.

Step 5 We assume that a maximum of N � 30 customers will be present. Therefore, we

need 31 columns to compute the probability of 0, 1, . . . 30 people being present at each

time. At time 0, we assume that the restaurant is empty, so the probability that 0 people

are present equals 1. For i at least 1, there is a 0 probability of i people being present.

These probabilities are entered in row 11 of columns D–AH.

Step 6 In cell D12, we compute the probability that nobody is in the system at time 5

seconds with the formula

�(1-C11)*D11�sprob*E11

This formula implements the first of our approximating equations.

Step 7 By copying from cell E12 to E12:AG12 the formula

�$C11*D11�(1-$C11-sprob)*E11�sprob*F11

we compute the probability that 1, 2, . . . , 29 people are present after 5 seconds. This for-

mula implements our second approximating equation.

TA B L E  11

Time Hourly Arrival Rate

11–11.30 A.M. 30

11:30 A.M.–noon 40

Noon–12:30 P.M. 50

12:30 P.M.–1 P.M. 60

1 P.M.–1:30 P.M. 35

1:30 P.M.–2 P.M. 25

restaurant.xls
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Step 8 In cell AH12, we compute the probability that 30 people are present after 5 sec-

onds with the formula

�(1-sprob)*AH11�C11*AG11

This implements the third approximating equation.

Step 9 Select the cell range D12:AH12 and position the cursor over the crosshair in the

lower right-hand corner of cell AH12. Now double-clicking the left mouse button will

copy the formulas in D12:AH12 down to match the number of rows in column C. Thus,

we have now completed our computation of the probability distribution of customers from

11 A.M. to 2 P.M. See Figure 41.

Part (a) In cell K5, we compute the expected number of customers present at 12:30 P.M.

(note that row 1091 has time 1.5 hours or 5,400 seconds) with the formula

�SUMPRODUCT($D$9:$AH$9,D1091:AH1091)

We find that an average of 6.25 customers will be present at 12:30 P.M.

1

2

3
4

5

6
7

8
9

10

11
12

13

14
15

16
17

18

19
20

A B C D E F G H

0 30

srate 50 0.5 40
sprob 0.069444 1 50

1.5 60

2 35
2.5 25

0 1 2 3 4

Time Hour Arrival Prob Prob 0 Prob 1 Prob 2 Prob 3 Prob 4

0 0 0.04166667 1 0 0 0 0
5 0.001389 0.04166667 0.958333 0.041667 0 0 0

10 0.002778 0.04166667 0.921296 0.076968 0.001736 0 0

15 0.004167 0.04166667 0.888254 0.106924 0.00475 7.23E-05 0
20 0.005556 0.04166667 0.858669 0.132384 0.008683 0.000262 3.01E-06

25 0.006944 0.04166667 0.832084 0.154055 0.013252 0.000595 1.36E-05
30 0.008333 0.04166667 0.808112 0.172528 0.01824 0.001082 3.69E-05

35 0.009722 0.04166667 0.786422 0.188297 0.023477 0.001724 7.79E-05

40 0.011111 0.04166667 0.766731 0.201773 0.028834 0.002516 0.000141
45 0.0125 0.04166667 0.748795 0.213303 0.034212 0.003448 0.000231  F I G U R E  40

2
3
4
5
6
7
8
9
10
11
12
13
14

D E F G H I J K L M AH

0 30
srate 50 0.5 40 minutes
sprob 0.069444 1 50

1.5 60 Mean # 6.253338 Mean# 1.430961
2 35 12:30 11:30

2.5 25

0 1 2 3 4 5 6 7 8 9 30
Prob 0 Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Prob 6 Prob 7 Prob 8 Prob 9 Prob 30

1 0 0 0 0 0 0 0 0 0 0
0.958333 0.041667 0 0 0 0 0 0 0 0 0
0.921296 0.076968 0.001736 0 0 0 0 0 0 0 0
0.888254 0.106924 0.00475 7.23E-05 0 0 0 0 0 0 0  

F I G U R E  41
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Part (b) Note that row 371 is time 11:30 A.M. In cell M5, the formula

�SUMPRODUCT(D9:AH9,D371:AH371)

shows that an average of only 1.43 customers are expected to be present at 11:30.

P R O B L E M S
Group A

1† A single machine is used between 8 A.M. and 4 P.M. to
perform EKGs (electrocardiograms). There are 3 waiting
spaces, and any arrival finding no available waiting space is
lost to the system. The arrival rate per hour at time t (t � 0
is 8 A.M., and t � 8 is 4 P.M.) is given by

l(t) � 9.24 � 1.584 cos�	
1

p

.5

t

1
	� � 7.897 sin�	

3

p

.0

t

2
	�

� 10.434 cos�	
4

p

.5

t

3
	� � 4.293 cos�	

6

p

.0

t

4
	�

Assume that service times are exponential and an average
of 7 EKGs can be completed per hour. Also assume that
arrivals follow a nonhomogeneous Poisson process.
Determine how the probability that an arriving patient is
lost to the system varies during the day.

2 The polls are open in Gotham City from 11 A.M. to 
6 P.M. The city has 3 voting machines. It takes an average

of 1.5 minutes (exponentially distributed) for a voter to
complete voting. The arrival rate of voters throughout the
day is as shown in Table 12. What is the probability that all
voting will be completed by 6:30 P.M.?

S U M M A R Y Exponential Distribution

A random variable X has an exponential distribution with parameter l if the density of

X is given by

f (t) � le�lt (t � 0)

Then

E(X) � 	
l

1
	 and var X � 	

l

1
2	

The exponential distribution has the no-memory property. This means, for instance, that

if interarrival times are exponentially distributed with rate or parameter l, then no mat-

ter how long it has been since the last arrival, there is a probability l�t that an arrival

will occur during the next �t time units.

Interarrival times are exponential with parameter l if and only if the number of ar-

rivals to occur in an interval of length t follows a Poisson distribution with parameter lt.

The mass function for a Poisson distribution with parameter l is given by

P(N � n) � 	
e�

n

l

!

ln

	 (n � 0, 1, 2, . . .)

TA B L E  12

Time Hourly Arrival Rate

11 A.M.–noon 80

Noon–1 P.M. 125

1 P.M.–2 P.M. 110

2 P.M.–3 P.M. 90

3 P.M.–4 P.M. 80

4 P.M.–5 P.M. 70

5 P.M.–6 P.M. 100
†Based on Kao (1996).
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Erlang Distribution

If interarrival or service times are not exponential, an Erlang random variable can often

be used to model them. If T is an Erlang random variable with rate parameter R and shape

parameter k, the density of T is given by

f (t) � 	
R(

(

R

k

t)

�

k�1

1

e

)

�

!

Rt

	 (t � 0)

and

E(T) � 	
R

k
	 and var T � 	

R

k
2	

Birth–Death Processes

For a birth-death process, the steady-state probability (pj) or fraction of the time that the

process spends in state j can be found from the following flow balance equations:

( j � 0) p0l0 � p1m1

( j � 1) (l1 � m1)p1 � l0p0 � m2p2

( j � 2) (l2 � m2)p2 � l1p1 � m3p3








( jth equation) (lj � mj)pj � lj�1pj�1 � mj�1pj�1

The jth flow balance equation states that the expected number of transitions per unit time

out of state j � (expected number of transitions per unit time into state j). The solution

to the balance equations is found from

pj � p0 	
l

m

0l

1m

1

2



















l

m

j�

j

1
	 ( j � 1, 2, . . .)

and the fact that p0 � p1 � 
 
 
 � 1.

Notation for Characteristics of Queuing Systems

pj � steady-state probability that j customers are in system

L � expected number of customers in system

Lq � expected number of customers in line (queue)

Ls � expected number of customers in service

W � expected time a customer spends in system

Wq � expected time a customer spends waiting in line

Ws � expected time a customer spends in service

l � average number of customers per unit time

m � average number of service completions per unit time (service rate)

r � 	
s

l

m
	 � traffic intensity
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The M/M/1/GD/∞/∞ Model

If r � 1, no steady state exists. For r  1,

pj � r j (1 � r) ( j � 0, 1, 2, . . .)

L � 	
m �

l

l
	

Lq � 	
m(m

l

�

2

l)
	

Ls � r

W � 	
m �

1

l
	

Wq � 	
m(m

l

� l)
	

Ws � 	
m

1
	

(The last three formulas were obtained from the L, Lq, and Ls formulas via the relation 

L � lW.)

The M/M/1/GD/c/∞ Model

If l � m,

p0 � 	
1

1

�

�

rc

r

�1
	

pj � r jp0 ( j � 1, 2, . . . , c)

pj � 0 ( j � c � 1, c � 2, . . .)

L �

If l � m,

pj � 	
c �

1

1
	 ( j � 0, 1, . . . , c)

L � 	
2

c
	

For all values of l and m,

Ls � 1 � p0

Lq � L � Ls

W � 	
l(1 �

L

pc)
	

Wq � 	
l(1

L

�

q

pc)
	

Ws � 	
m

1
	

r[1 � (c � 1)rc
� crc�1]

			
(1 � rc�1)(1 � r)
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The M/M/s/GD/∞/∞ Model

For r � 1, no steady state exists. For r  1,

p0 �

pj � 	
(sr)

j!

j p0
	 ( j � 1, 2, . . . , s)

pj � 	
(s

s

r

!s

)
j

j

�

p

s

0
	 ( j � s, s � 1, s � 2, . . .)

P( j � s) � 	
s

(

!

s

(

r

1

)

�

s p

r

0

)
	 (tabulated in Table 6)

Lq � 	
P(

1

j

�

�

r

s)r
	

Wq � 	
P

s

(

m

j

�

�

l

s)
	

Ls � 	
m

l
	

Ws � 	
m

1
	

L � Lq � 	
m

l
	

W � 	
L

l
	

The M/G/∞/GD/∞/∞ Model

L � Ls � 	
m

l
	

W � Ws � 	
m

1
	

Wq � Lq � 0

The M/G/1/GD/∞/∞ Model

s 2
� variance of service time distribution

Lq � 	
l

2

2

(

s

1

2

�

�

r

r

)

2

	

L � Lq � r

Ls � l �	
m

1
	�

Wq � 	
L

l

q
	

1
			

�
i�s�1

i�0

	
(s

i

r

!

)i

	 � 	
s!(

(

1

sr

�

)s

r)
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W � Wq � 	
m

1
	

Ws � 	
m

1
	

p0 � 1 � r

Machine Repair (M/M/R/GD/K/K) Model

r � 	
m

l
	

L � expected number of broken machines

Lq � expected number of machines waiting for service

W � average time a machine spends broken

Wq � average time a machine spends waiting for service

pj � steady-state probability that j machines are broken

l � rate at which machine breaks down

m � rate at which machine is repaired

Also,

pj � � � r jp0 ( j � 0, 1, . . . , R)

�
� �r j j!p0

( j � R � 1, R � 2, . . . , K)
R!R j�R

L � �
j�K

j�0

jpj

Lq � �
j�K

j�R

( j � R)pj

l� � �
j�K

j�0

pjlj � �
j�K

j�0

l(K � j)pj � l(K � L)

W � 	
L

l�
	

Wq � 	
L

l�
q
	

Exponential Queues in Series

If a steady state exists and if (1) interarrival times for a series queuing system are expo-

nential with rate l; (2) service times for each stage i server are exponential; and (3) each

stage has an infinite-capacity waiting room, then interarrival times for arrivals to each

stage of the queuing system are exponential with rate l.

K

j

K

j
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The M/G/s/GD/s/∞ Model

A fraction ps of all customers are lost to the system, and ps depends only on the arrival

rate l and on the mean 	
m

1
	 of the service time. Figure 21 can be used to find ps.

What to Do If Interarrival or Service Times 
Are Not Exponential

A chi-square test may be used to determine if the actual data indicate that interarrival or

service times are exponential. If interarrival and/or service times are not exponential, then

L, Lq, W, and Wq may be approximated by Allen–Cunneen formula.

For many queuing systems, there is no formula or table that can be used to compute

the system’s operating characteristics. In this case, we must resort to simulation (see

Chapters 21 and 22).

Closed Queuing Network

Manufacturing and computer systems in which there is a constant number of jobs present

may be modeled as closed queuing networks.

We let Pij be the probability that a job will go to server j after completing service at

station i. Let P be the matrix whose (i � j)th entry is Pij .We assume that service times

at server j follow an exponential distribution with parameter mj. The system has s servers,

and at all times, exactly N jobs are present. We let ni be the number of jobs present 

at server i. Then the state of the system at any given time can be defined by an n-

dimensional vector n � (n1, n2, . . . , ns). The set of possible states is given by SN � {n

such that all ni � 0 and n1 � n2 � 
 
 
 � ns � N}.

Let lj equal the arrival rate to server j. Since there are no external arrivals, we may set

all rj � 0 and obtain the values of the lj’s from the equation used in the open network

situation. That is,

lj � �
i�s

i�1

liPij j � 1, 2, . . . , s

Since jobs never leave the system, for each i, �j�s
j�1 Pij � 1. This fact causes the above

equation to have no unique solution. Fortunately, it turns out that we can use any solution

to help us get steady-state probabilities. If we define

ri � 	
m

li

i

	

then we determine, for any state n, its steady-state probability �N(n) from the following

equation:

�N(n) �

Here, G(N) � �n	SN
r1

n1 r2
n2 
 
 
 rs

ns.

Buzen’s algorithm gives us an efficient way to determine (in a spreadsheet) G(N). Once

we have the steady-state probability distribution, we can easily determine other measures

of effectiveness, such as expected queue length at each server and expected time a job

r1
n1 r2

n2 
 
 
 rn
ns

		
G(N)
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spends during each visit to a server, fraction of time a server is busy, and the throughput

for each server ( jobs per second processed by each server).

To obtain G(N), we recursively compute the quantities Ci(k) for i � 1, 2, . . . , s and 

k � 0, 1, . . . , N. We initialize the recursion with C1(k) � rk
1, k � 0, 1, . . . , N and 

Ci(0) � 1, i � 1, 2, . . . , s. For other values of k and i, we build up the values of Ci(k) 

recursively via the following relationship:

Ci(k) � Ci�1(k) + riCi(k � 1)

Then it can be shown that G(N) � Cs(N).

An Approximation for the G/G/m Queuing System

In most situations, interarrival times follow an exponential random variable. Often, how-

ever, service times do not follow an exponential distribution. When interarrival times and

service times each follow a nonexponential random variable, we call the queuing system

a G/G/m system. For these situations, the templates discussed in the previous sections of

this chapter are not valid. Fortunately, the Allen–Cunneen approximation often gives a

good approximation to L, W, Lq, and Wq for G/G/m systems. The file ggm.xls contains a

spreadsheet implementation of the Allen–Cunneen approximation. The user need only in-

put the following information:

■ The average number of arrivals per unit time (l) in cell B3.

■ The average rate at which customers can be serviced (m) in cell B4.

■ The number of servers (s) in cell B5.

■ The squared coefficient of variation—(variance of interarrival times)/(mean inter-

arrival time)2—of interarrival times in cell B6.

■ The squared coefficient of variation—(variance of service times)/(mean service

time)2—of service times in cell B7.

The Allen–Cunneen approximation is exact if interarrival times and service times are ex-

ponential. Extensive testing by Tanner indicates that in a wide variety of situations, the

values of L, W, Lq, and Wq obtained by the approximation are within 10% of their true

values.

Transient Behavior of Queuing Systems

We define Pi(t) to be the probability that i customers are present at time t. We then as-

sume (although this is not necessary) that the system is initially empty, so P0(0) � 1 and,

for i � 0, P0(i) � 0. Then, given knowledge of Pi(t), we may compute Pi(t � �t) as 

follows:

P0(t � �t) � (1 � l(t)�t)P0(t) � m(t)�tP1(t)

Pi(t � �t) � l(t)�tPi�1(t) � (1 � l(t)�t � min(s(t), i)m(t)�t)Pi(t) � min(s(t),

i � 1)m(t)�tPi�1(t), N � 1 � i � 1

PN(t � �t) � l(t)�tPN�1(t) � (1 � min(s(t), N)m(t))�tPN(t)

These equations are based on the assumption that, if the state at time t is i, then during

the next �t, the probability of an arrival is l(t) �t, and the probability of a service com-

pletion is min(s(t), i)m(t)�t.

ggm.xls
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R E V I E W  P R O B L E M S
Group A

1 Buses arrive at the downtown bus stop and leave for the
mall stop. Past experience indicates that 20% of the time,
the interval between buses is 20 minutes; 40% of the time,
the interval is 40 minutes; and 40% of the time, the interval
is 2 hours. If I have just arrived at the downtown bus stop,
how long, on the average, should I expect to wait for a bus?

2 Registration at State University proceeds as follows:
Upon entering the registration hall, the students first wait in
line to register for classes. A single clerk handles registration
for classes, and it takes the clerk an average of 2 minutes to
handle a student’s registration. Next, the student must wait
in line to pay fees. A single clerk handles the payment of
fees. The clerk takes an average of 2 minutes to process a
student’s fees. Then the student leaves the registration
building. An average of 15 students per hour arrive at the
registration hall.

a If interarrival and service times are exponential,
what is the expected time a student spends in the regis-
tration hall?

b What is the probability that during the next 5 min-
utes, exactly 2 students will enter the registration hall?

c Without any further information, what is the proba-
bility that during the next 3 minutes, no student will ar-
rive at the fee clerk’s desk?

d Suppose the registration system is changed so that a
student can register for classes and pay fees at the same
station. If the service time at this single station follows
an Erlang distribution with rate parameter 1.5 per minute
and shape parameter 2, what is the expected time a stu-
dent spends waiting in line?

3 At the Smalltown post office, patrons wait in a single
line for the first open window. An average of 100 patrons
per hour enter the post office, and each window can serve
an average of 45 patrons per hour. The post office estimates
a cost of 10¢ for each minute a patron waits in line and
believes that it costs $20 per hour to keep a window open.
Interarrival times and service times are exponential.

a To minimize the total expected hourly cost, how
many windows should be open?

b If the post office’s goal is to ensure that at most 5%
of all patrons will spend more than 5 minutes in line,
how many windows should be open?

4 Each year, an average of 500 people pass the New York
state bar exam and enter the legal profession. On the average,
a lawyer practices law in New York State for 35 years.
Twenty years from now, how many lawyers would you expect
there to be in New York State?

5 There are 5 students and one keg of beer at a wild and
crazy campus party. The time to draw a glass of beer follows
an exponential distribution, with an average time of 2
minutes. The time to drink a beer also follows an exponential
distribution, with a mean of 18 minutes. After finishing a
beer, each student immediately goes back to get another
beer.

a On the average, how long does a student wait in line
for a beer?

b What fraction of the time is the keg not in use?

c If the keg holds 500 glasses of beer, how long, on
the average, will it take to finish the keg?

6 The manager of a large group of employees must decide
if she needs another photocopying machine. The cost of a
machine is $40 per 8-hour day whether or not the machine
is in use. An average of 4 people per hour need to use the
copying machine. Each person uses the copier for an average
of 10 minutes. Interarrival times and copying times are
exponentially distributed. Employees are paid $8 per hour,
and we assume that a waiting cost is incurred when a worker
is waiting in line or is using the copying machine. How
many copying machines should be rented?

7 An automated car wash will wash a car in 10 minutes.
Arrivals occur an average of 15 minutes apart (exponentially
distributed).

a On the average, how many cars are waiting in line
for a wash?

b If the car wash could be speeded up, what wash time
would reduce the average waiting time to 5 minutes?

8 The Newcoat Painting Company has for some time been
experiencing high demand for its automobile repainting
service. Since it has had to turn away business, management
is concerned that the limited space available to store cars
awaiting painting has cost lost revenue. A small vacant lot
next to the painting facility has recently been made available
for lease on a long-term basis at a cost of $10 per day.
Management believes that each lost customer costs $20 in
profit. Current demand is estimated to be 21 cars per day
with exponential interarrival times (including those turned
away), and the facility can service at an exponential rate of
24 cars per day. Cars are processed on an FCFS basis.
Waiting space is now limited to 9 cars but can be increased
to 20 cars with the lease of the vacant lot. Newcoat wants
to determine whether the vacant lot should be leased.
Management also wants to know the expected daily lost
profit due to turning away customers if the lot is leased.
Only one car can be painted at a time.

9 At an exclusive restaurant, there is only one table and
waiting space for only one other group; others that arrive
when the waiting space is filled are turned away. The arrival
rate follows an exponential distribution with a rate of one
group per hour. It takes the average group 1 hour
(exponentially distributed) to be served and eat the meal.
What is the average time that a group spends waiting for a
table?

10 The owner of an exclusive restaurant has two tables but
only one waiter. If the second table is occupied, the owner
waits on that table himself. Service times are exponentially
distributed with mean 1 hour, and the time between arrivals
is exponentially distributed with mean 1.5 hours. When the
restaurant is full, people must wait outside in line.
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a What percentage of the time is the owner waiting on
a table?

b If the owner wants to spend at most 10% of his time
waiting on tables, what is the maximum arrival rate that
can be tolerated?

11 Ships arrive at a port facility at an average rate of 2
ships every 3 days. On the average, it takes a single crew 1
day to unload a ship. Assume that interarrival and service
times are exponential. The shipping company owns the port
facility as well as the ships using that facility. It is estimated
to cost the company $1,000 per day that each ship spends
in port. The crew servicing the ships consists of 100 workers,
who are each paid an average of $30 per day. A consultant
has recommended that the shipping company hire an
additional 40 workers and split the employees into two
equal-sized crews of 70 each. This would give each crew an
unloading or loading time averaging 	

3
2

	 days. Which crew
arrangement would you recommend to the company?

12 An average of 40 jobs per day arrive at a factory. The
time between arrivals of jobs is exponentially distributed.
The factory can process an average of 42 jobs per day, and
the time to process a job is exponentially distributed.

a What is the probability that exactly 180 jobs arrive
at the factory during a 5-day period?

b On the average, how long does it take before a job
is completed (measured from the time the job arrives at
the factory)?

c What fraction of the time is the factory idle?

d What is the probability that work on a job will be-
gin within 2 days of its arrival at the factory?

13 A printing shop receives an average of 1 order per day.
The average length of time required to complete an order 
is .5 day. At any time, the print shop can work on at most
one job.

a On the average, how many jobs are present in the
print shop?

b On the average, how long will a person who places
an order have to wait until it is finished?

c What is the probability that an order will be finished
within 2 days of its arrival?

Group B

14 The mail order firm of L. L. Pea receives an average of
200 calls per hour (times between calls are exponentially
distributed). It takes an L. L. Pea operator an average of 3
minutes to handle a call. If a caller gets a busy signal, L. L.
Pea assumes that he or she will call Seas Beginning (a
competing mail order house), and L. L. Pea will lose an
average of $30 in profit. The cost of keeping a phone line
open is $9 per hour. How many operators should L. L. Pea
have on duty?

15 Each hour, an average of 3 type 1 and 3 type 2
customers arrive at a single-server station. Interarrival times
for each customer type are exponential and independent.
The average service time for a type 1 customer is 6 minutes,
and the average service time for a type 2 customer is 3
minutes (all service times are exponentially distributed).
Consider the following three service arrangements:

Arrangement 1 All customers wait in a single line and are

served on an FCFS basis.

Arrangement 2 Type 1 customers are given nonpreemp-

tive priority over type 2 customers.

Arrangement 3 Type 2 customers are given nonpreemp-

tive priority over type 1 customers.

Which arrangement will result in the smallest average per-
customer waiting time? Which arrangement will result in
the largest average per-customer waiting time?

16 Podunk University Operations Research Department
has two phone lines. An average of 30 people per hour try
to call the OR Department, and the average length of a
phone call is 1 minute. If a person attempts to call when
both lines are busy, he or she hangs up and is lost to the
system. Assume that the time between people attempting to
call and service times is exponential.

a What fraction of the time will both lines be free?
What fraction of the time will both lines be busy? What
fraction of the time will exactly one line be free?

b On the average, how many lines will be busy?

c On the average, how many callers will hang up each
hour?

17† Smalltown has two ambulances. Ambulance 1 is based at
the local college, and ambulance 2 is based downtown. If a
request for an ambulance comes from the college, the college-
based ambulance is sent if it is available. Otherwise, the
downtown-based ambulance is sent (if available). If no
ambulance is available, the call is assumed to be lost to the
system. If a request for an ambulance comes from anywhere
else in the town, the downtown-based ambulance is sent if it is
available. Otherwise, the college-based ambulance is sent if
available. If no ambulance is available, the call is considered
lost to the system. The time between calls is exponentially
distributed. An average of 3 calls per hour are received from
the college, and an average of 4 calls per hour are received
from the rest of the town. The average time (exponentially
distributed) it takes an ambulance to respond to a call and be
ready to respond to another call is shown in Table 13.

a What fraction of the time is the downtown ambu-
lance busy?

b What fraction of the time is the college ambulance
busy?

c What fraction of all calls will be lost to the system?

d On the average, who waits longer for an ambulance,
a college student or a town person?

18 An average of 10 people per hour arrive (interarrival
times are exponential) intending to swim laps at the local

TA B L E  13

Ambulance
Ambulance Goes to

Comes From College Noncollege

College 4 minutes 7 minutes

Downtown 5 minutes 4 minutes

†Based on Carter (1972).
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YMCA. Each intends to swim an average of 30 minutes.
The YMCA has three lanes open for lap swimming. If one
swimmer is in a lane, he or she swims up and down the right
side of the lane. If two swimmers are in a lane, each swims
up and down one side of the lane. Swimmers always join
the lane with the fewest number of swimmers. If all three
lanes are occupied by two swimmers, a prospective swimmer
becomes disgusted and goes running.

a What fraction of the time will 3 people be swim-
ming laps?

b On the average, how many people are swimming
laps in the pool?

c How many lanes does the YMCA need to allot to lap
swimming to ensure that at most 5% of all prospective
swimmers will become disgusted and go running?

19† (Requires use of a spreadsheet) An average of 140
people per year apply for public housing in Boston. An
average of 20 housing units per year become available.
During a given year, there is a 10% chance that a family on
the waiting list will find private housing and remove
themselves from the list. Assume that all relevant random
variables are exponentially distributed.

a On the average, how many families will be on the
waiting list?

b On the average, how much time will a family spend
on the list before obtaining housing (either public or pri-
vate)? For the last question, remember that L � lW!
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Simulation

Simulation is a very powerful and widely used management science technique for the analy-

sis and study of complex systems. In previous chapters, we were concerned with the formu-

lation of models that could be solved analytically. In almost all of those models, our goal was

to determine optimal solutions. However, because of complexity, stochastic relations, and so

on, not all real-world problems can be represented adequately in the model forms of the pre-

vious chapters. Attempts to use analytical models for such systems usually require so many

simplifying assumptions that the solutions are likely to be inferior or inadequate for implemen-

tation. Often, in such instances, the only alternative form of modeling and analysis available to

the decision maker is simulation.

Simulation may be defined as a technique that imitates the operation of a real-world sys-

tem as it evolves over time. This is normally done by developing a simulation model. A simu-

lation model usually takes the form of a set of assumptions about the operation of the system,

expressed as mathematical or logical relations between the objects of interest in the system.

In contrast to the exact mathematical solutions available with most analytical models, the sim-

ulation process involves executing or running the model through time, usually on a computer,

to generate representative samples of the measures of performance. In this respect, simula-

tion may be seen as a sampling experiment on the real system, with the results being sample

points. For example, to obtain the best estimate of the mean of the measure of performance,

we average the sample results. Clearly, the more sample points we generate, the better our

estimate will be. However, other factors, such as the starting conditions of the simulation, the

length of the period being simulated, and the accuracy of the model itself, all have a bearing

on how good our final estimate will be. We discuss such issues later in the chapter.

As with most other techniques, simulation has its advantages and disadvantages. The ma-

jor advantage of simulation is that simulation theory is relatively straightforward. In general, sim-

ulation methods are easier to apply than analytical methods. Whereas analytical models may

require us to make many simplifying assumptions, simulation models have few such restric-

tions, thereby allowing much greater flexibility in representing the real system. Once a model

is built, it can be used repeatedly to analyze different policies, parameters, or designs. For ex-

ample, if a business firm has a simulation model of its inventory system, various inventory poli-

cies can be tried on the model rather than taking the chance of experimenting on the real-

world system. However, it must be emphasized that simulation is not an optimizing technique.

It is most often used to analyze “what if” types of questions. Optimization with simulation is

possible, but it is usually a slow process. Simulation can also be costly. However, with the de-

velopment of special-purpose simulation languages, decreasing computational cost, and ad-

vances in simulation methodologies, the problem of cost is becoming less important.

In this chapter, we focus our attention on simulation models and the simulation technique.

We present several examples of simulation models and explore such concepts as random

numbers, time flow mechanisms, Monte Carlo sampling, simulation languages, and statistical

issues in simulation.
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21.1 Basic Terminology

We begin our discussion by presenting some of the terminology used in simulation. In

most simulation studies, we are concerned with the simulation of some system. Thus, in

order to model a system, we must understand the concept of the system. Among the many

different ways of defining a system, the most appropriate definition for simulation prob-

lems is the one proposed by Schmidt and Taylor (1970).

D E F I N I T I O N ■

In practice, however, this definition generally tends to be more flexible. The exact de-

scription of the system usually depends on the objectives of the simulation study. For ex-

ample, what may be a system for a particular study may be only a subset of the overall

system for another.

Systems generally tend to be dynamic—their status changes over time. To describe this

status, we use the concept of the state of a system.

D E F I N I T I O N ■

As an example of a system, let us consider a bank. Here, the system consists of the

servers and the customers waiting in line or being served. As customers arrive or depart,

the status of the system changes. To describe these changes in status, we require a set of

variables called the state variables. For example, the number of busy servers, the num-

ber of customers in the bank, the arrival time of the next customer, and the departure time

of the customers in service together describe every possible change in the status of the

bank. Thus, these variables could be used as the state variables for this system. In a sys-

tem, an object of interest is called an entity, and any properties of an entity are called at-

tributes. For example, the bank’s customers may be described as the entities, and the char-

acteristics of the customers (such as the occupation of a customer) may be defined as the

attributes.

Systems may be classified as discrete or continuous.

D E F I N I T I O N ■

A bank is an example of a discrete system, since the state variables change only when

a customer arrives or when a customer finishes being served and departs. These changes

take place at discrete points in time.

D E F I N I T I O N ■

A chemical process is an example of a continuous system. Here, the status of the sys-

tem is changing continuously over time. Such systems are usually modeled using differ-

ential equations. We do not discuss any continuous systems in this chapter.

A continuous system is one in which the state variables change continuously

over time. ■

A discrete system is one in which the state variables change only at discrete or

countable points in time. ■

The state of a system is the collection of variables necessary to describe the

status of the system at any given time. ■

A system is a collection of entities that act and interact toward the

accomplishment of some logical end. ■
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There are two types of simulation models: static and dynamic.

D E F I N I T I O N ■

We usually refer to a static simulation as a Monte Carlo simulation.

D E F I N I T I O N ■

Within these two classifications, a simulation may be deterministic or stochastic. A de-

terministic simulation model is one that contains no random variables; a stochastic 

simulation model contains one or more random variables. Discrete and continuous simu-

lation models are similar to discrete and continuous systems. In this chapter, we concentrate

mainly on discrete stochastic models. Such models are called discrete-event simulation

models. Discrete-event simulation concerns the modeling of a stochastic system as it

evolves over time by a representation in which state variables change only at discrete points

in time.

21.2 An Example of a Discrete-Event Simulation

Before we proceed to the details of simulation modeling, it will be useful to work through

a simple simulation example to illustrate some of the basic concepts in discrete-event sim-

ulation. The model we have chosen as our initial example is a single-server queuing sys-

tem. Customers arrive into this system from some population and either go into service

immediately if the server is idle or join a waiting line (queue) if the server is busy. Ex-

amples of this kind of a system are a one-person barber shop, a small grocery store with

only one checkout counter, and a single ticket counter at an airline terminal.

The same model was studied in Chapter 20 in connection with queuing theory. In that

chapter, we used an analytical model to determine the various operating characteristics of

the system. However, we had to make several restrictive assumptions to use queuing the-

ory. In particular, when we studied an M/M/1 system, we had to assume that both inter-

arrival times and service times were exponentially distributed. In many situations, these

assumptions may not be appropriate. For example, arrivals at an airline counter generally

tend to occur in bunches, because of such factors as the arrivals of shuttle buses and con-

necting flights. For such a system, an empirical distribution of arrival times must be used,

which implies that the analytical model from queuing theory is no longer feasible. With

simulation, any distribution of interarrival times and service times may be used, thereby

giving much more flexibility to the solution process.

To simulate a queuing system, we first have to describe it. For this single-server sys-

tem, we assume that arrivals are drawn from an infinite calling population. There is un-

limited waiting room capacity, and customers will be served in the order of their arrival—

that is, on a first come, first served (FCFS) basis. We further assume that arrivals occur

one at a time in a random fashion, with the distribution of interarrival times as specified

in Table 1. All arrivals are eventually served, with the distribution of service times shown

in Table 2. Service times are also assumed to be random. After service, all customers re-

turn to the calling population. This queuing system can be represented as shown in Fig-

ure 1.

Before dealing with the details of the simulation itself, we must define the state of this

system and understand the concepts of events and clock time within a simulation. For this

A dynamic simulation is a representation of a system as it evolves over time. ■

A static simulation model is a representation of a system at a particular point in

time. ■
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example, we use the following variables to define the state of the system: (1) the number

of customers in the system; (2) the status of the server—that is, whether the server is busy

or idle; and (3) the time of the next arrival.

Closely associated with the state of the system is the concept of an event. An event is

defined as a situation that causes the state of the system to change instantaneously. In the

single-server queuing model, there are only two possible events that can change the state

of the system: an arrival into the system and a departure from the system at the comple-

tion of service. In the simulation, these events will be scheduled to take place at certain

points in time. All the information about them is maintained in a list called the event list.

Within this list, we keep track of the type of events scheduled and, more important, the

time at which these events are scheduled to take place. Time in a simulation is maintained

using a variable called the clock time. The concept of clock time will become clearer as

we work through the example.

We begin this simulation with an empty system and arbitrarily assume that our first

event, an arrival, takes place at clock time 0. This arrival finds the server idle and enters

service immediately. Arrivals at other points in time may find the server either idle or

busy. If the server is idle, the customer enters service. If the server is busy, the customer

joins the waiting line. These actions can be summarized as shown in Figure 2.

Next, we schedule the departure time of the first customer. This is done by randomly

generating a service time from the service time distribution (described later in the chap-

ter) and setting the departure time as

Departure time � clock time now � generated service time (1)

TA B L E  1

Interarrival Time Distribution

Interarrival Time
(minutes) Probability

1 .20

2 .30

3 .35

4 .15

TA B L E  2

Service Time Distribution

Service Time
(minutes) Probability

1 .35

2 .40

3 .25

An arrival

Idle Busy

Customer enters service Customer joins queue

Status

of server

Calling

population

Arrivals

Queue

Server Departures

F I G U R E  2

Flowchart for an Arrival

F I G U R E  1

Single-Server Queuing
System



2 1 . 2 An Example of a Discrete-Event Simulation 1149

Also, we now schedule the next arrival into the system by randomly generating an inter-

arrival time from the interarrival time distribution and setting the arrival time as

Arrival time � clock time now � generated interarrival time (2)

If, for example, we have generated a service time of 2 minutes, then the departure time

for the first customer will be set at clock time 2. Similarly, if we have generated an in-

terarrival time of 1 minute, the next arrival will be scheduled for clock time 1.

Both these events and their scheduled times are maintained on the event list. Once we

have completed all the necessary actions for the first arrival, we scan the event list to de-

termine the next scheduled event and its time. If the next event is determined to be an ar-

rival, we move the clock time to the scheduled time of the arrival and go through the pre-

ceding sequence of actions for an arrival. If the next event is a departure, we move the

clock time to the time of the departure and process a departure. For a departure, we check

whether the length of the waiting line is greater than zero. If it is, we remove the first cus-

tomer from the queue and begin service on this customer by setting a departure time us-

ing Equation (1). If no one is waiting, we set the status of the system to idle. These de-

parture actions are summarized in Figure 3.

This approach of simulation is called the next-event time-advance mechanism, be-

cause of the way the clock time is updated. We advance the simulation clock to the time

of the most imminent event—that is, the first event in the event list. Since the state vari-

ables change only at event times, we skip over the periods of inactivity between the events

by jumping from event to event. As we move from event to event, we carry out the ap-

propriate actions for each event, including any scheduling of future events. We continue

in this manner until some prespecified stopping condition is satisfied. However, the pro-

cedure requires that at any point in the simulation, we have an arrival and a departure

scheduled for the future. Thus, a future arrival is always scheduled when processing a new

arrival into the system. A departure time, on the other hand, can only be scheduled when

a customer is brought into service. Thus, if the system is idle, no departures can be sched-

uled. In such instances, the usual practice is to schedule a dummy departure by setting

the departure time equal to a very large number—say, 9,999 (or larger if the clock time

is likely to exceed 9,999). This way, our two events will consist of a real arrival and a

dummy departure.

The jump to the next event in the next-event mechanism may be a large one or a small

one; that is, the jumps in this method are variable in size. We contrast this approach with

the fixed-increment time-advance method. With this method, we advance the simulation

clock in increments of �t time units, where �t is some appropriate time unit, usually 1

time unit. After each update of the clock, we check to determine whether any event is

scheduled to take place at the current clock time. If an event is scheduled, we carry out

the appropriate actions for the event. If none is scheduled, or if we have completed all the

F I G U R E  3
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required actions for the current time, we update the simulation clock by �t units and re-

peat the process. As with the next-event approach, we continue in this manner until the

prespecified stopping condition is reached. The fixed-increment time-advance mechanism

is often simpler to comprehend, because of its fixed steps in time. For most models, how-

ever, the next-event mechanism tends to be more efficient computationally. Consequently,

we use only the next-event approach in developing the models for the rest of the chapter.

We now illustrate the mechanics of the single-server queuing system simulation, using

a numerical example. In particular, we want to show how the simulation model is repre-

sented in the computer as the simulation progresses through time. The entire simulation

process for the single-server queuing model is presented in the flowchart in Figure 4. All

the blocks in this flowchart are numbered for easy reference. For simplicity, we assume

that both the interarrival times (ITs) and the service times (STs) have already been gen-

erated for the first few customers from the given probability distributions in Tables 1 and

2. These times are shown in Table 3, from which we can see that the time between the

first and the second arrival is 2 time units, the time between the second and the third ar-

rival is also 2 time units, and so on. Similarly, the service time for the first customer is 

3 time units, ST for the second customer is also 3 time units, and so on.

To demonstrate the simulation model, we need to define several variables:

TM � clock time of the simulation

AT � scheduled time of the next arrival

DT � scheduled time of the next departure

SS � status of the server (1 � busy, 0 � idle)

WL � length of the waiting line

MX � length (in time units) of a simulation run

Having taken care of these preliminaries, we now begin the simulation by initializing all

the variables (block 1 in Figure 4). Since the first arrival is assumed to take place at time

0, we set AT � 0. We also assume that the system is empty at time 0, so we set SS � 0,

WL � 0, and DT � 9,999. (Note that DT must be greater than MX). This implies that our

list of events now consists of two scheduled events: an arrival at time 0 and a dummy de-

parture at time 9,999. This completes the initialization process and gives us the computer

representation of the simulation shown in Table 4.

We are now ready for our first action in the simulation: searching through the event

list to determine the first event (block 2). Since our simulation consists of only two events,

we simply determine the next event by comparing AT and DT. (In other simulations, we

might have more than two events, so we would have to have an efficient system of search-

ing through the event list.) An arrival is indicated by AT � DT, a departure by DT � AT.

At this point, AT � 0 is less than DT � 9,999, indicating that an arrival will take place

next. We label this event 1 and update the clock time, TM, to the time of event 1 (block

3). That is, we set TM � 0.

The arrival at time 0 finds the system empty, indicated by the fact that SS � 0 (block

4). Consequently, the customer enters service immediately. For this part of the simulation,

we first set SS � 1 to signify that the server is now busy (block 6). We next generate a

service time (block 7) and set the departure time for this customer (block 8). From Table

3, we see that ST for customer 1 is 3. Since TM � 0 at this point, we set DT � 3 for the

first customer. In other words, customer 1 will depart from the system at clock time 3. Fi-

nally, to complete all the actions of processing an arrival, we schedule the next arrival into

the system by generating an interarrival time, IT (block 9), and setting the time of this ar-

rival using the equation AT � TM � IT (block 10). Since IT � 2, we set AT � 2. That

is, the second arrival will take place at clock time 2. At the end of event 1, our computer

representation of the simulation will be as shown in Table 4.
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At this stage of the simulation, we proceed to block 18 to determine whether the clock

time, TM, has exceeded the specified time length of simulation, MX. If it has, we print

out the results (block 19) and stop the execution of the simulation model. If it has not, we

continue with the simulation. We call this the termination process. We execute this process

at the end of each event. However, for this example, we assume that MX is a large num-

ber. Consequently, from here on, we will not discuss the termination process.

Initialize state variables

Is

AT  <  DT

?

1

Set TM  =  AT

Generate IT

Update WL  =  WL  +  1 Update WL  =  WL  –  1Set SS  =  1 SS  =  0

Process

an arrival

Server

busy

Server

idle

Process

a departure

WL  =  0 WL  >  0

Set TM  =  DT

Is

WL  >  0

?

Is

SS  =  0

?

Is

TM  ≥  MX

?

2

3 11

124

5 6 13 15

Generate STGenerate ST DT  =  9,999

7 14 16

Set DT  =  TM  +  STSet DT  =  TM  +  ST

Set AT  =  TM  +  IT

8

9

17

10

18
19

Continue

Print the results

and stop

Continue

NO YES

F I G U R E  4

Flowchart for Simulation Model for Single-Server Queuing System
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At this point, we loop back to block 2 to determine the next event. Since AT � 2 and

DT � 3, the next event, event 2, will be an arrival at time 2. Having determined the next

event, we now advance the simulation to the time of this arrival by updating TM to 2.

The arrival at time 2 finds the server busy, so we put this customer in the waiting line

by updating WL from 0 to 1 (block 5). Since the present event is an arrival, we now sched-

ule the next arrival into the system. Given that IT � 2 for arrival 3, the next arrival takes

place at clock time 4. This completes all the necessary actions for event 2. We again loop

back to block 2 to determine the next event. From the computer representation of the sys-

tem in Table 4, we see that at this point (end of event 2), DT � 3 is less than AT � 4.

This implies that the next event, event 3, will be a departure at clock time 3. We advance

the clock to the time of this departure; that is, we update TM to 3 (block 11).

TA B L E  3

Generated Interarrival and Service Times

Customer Interarrival Service
Number Time (IT ) Time (ST )

1 — 3

2 2 3

3 2 2

4 3 1

5 4 1

6 2 2

7 1 1

8 3 2

9 3 —

TA B L E  4

Computer Representation of the Simulation

End of Type of Customer
System Variables Event List

Event Event Number TM SS WL AT DT

0 Initialization — 0 0 0 0 9,999

1 Arrival 1 0 1 0 2 3

2 Arrival 2 2 1 1 4 3

3 Departure 1 3 1 0 4 6

4 Arrival 3 4 1 1 7 6

5 Departure 2 6 1 0 7 8

6 Arrival 4 7 1 1 11 8

7 Departure 3 8 1 0 11 9

8 Departure 4 9 0 0 11 9,999

9 Arrival 5 11 1 0 13 12

10 Departure 5 12 0 0 13 9,999

11 Arrival 6 13 1 0 14 15

12 Arrival 7 14 1 1 17 15

13 Departure 6 15 1 0 17 16

14 Departure 7 16 0 0 17 9,999

15 Arrival 8 17 1 0 20 19
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At time 3, we process the first departure from the system. With the departure, the

server now becomes idle. We check the status of the waiting line to see whether there are

any customers waiting for service (block 12). Since WL � 1, we have one customer wait-

ing. We remove this customer from the waiting line, set WL � 0 (block 15), and bring

this customer into service by generating a service time, ST (block 16), and setting the de-

parture time using the relation DT � TM � ST (block 17). From Table 3, we see that for

customer 2, ST � 3. Since TM � 3, we set DT � 6. We have now completed all the ac-

tions for event 3, giving us the computer representation shown in Table 4.

From here on, we leave it to the reader to work through the logic of the simulation for

the rest of the events in this example. Table 4 shows the status of the simulation at the

end of each of these events. Note that at the end of events 8, 10, and 14 (all departures),

the system becomes idle. During the sequence of actions for these events, we set SS � 0

(block 13) and DT � 9,999 (block 14). In each case, the system stays idle until an arrival

takes place. This simulation is summarized in the time continuum diagram in Figure 5.

Here, the A’s represent the arrivals and the D’s the departures. Note that the hatched ar-

eas, such as the one between times 9 and 11, signify that the system is idle.

This simple example illustrates some of the basic concepts in simulation and the way

in which simulation can be used to analyze a particular problem. Although this model is

not likely to be used to evaluate many situations of importance, it has provided us with a

specific example and, more important, has introduced a variety of key simulation con-

cepts. In the rest of the chapter, we analyze some of these simulation concepts in more

detail. No mention was made in the example of the collection of statistics, but procedures

can be easily incorporated into the model to determine the measures of performance of

this system. For example, we could expand the flowchart to calculate and print the mean

waiting time, the mean number in the waiting line, and the proportion of idle time. We

discuss statistical issues in detail later in the chapter.

21.3 Random Numbers and Monte Carlo Simulation

In our queuing simulation example, we saw that the underlying movement through time

is achieved in the simulation by generating the interarrival and the service times from the

specified probability distributions. In fact, all event times are determined either directly

or indirectly by these generated service and interarrival times. The procedure of generat-

ing these times from the given probability distributions is known as sampling from prob-

ability distributions, or random variate generation, or Monte Carlo sampling. In this sec-

tion, we present and discuss several different methods of sampling from discrete

distributions. We initially demonstrate the technique using a roulette wheel and then ex-

pand it by carrying out the sampling using random numbers.

The principle of sampling from discrete distributions is based on the frequency inter-

pretation of probability. That is, in the long run, we would like the outcomes to occur with

the frequencies specified by the probabilities in the distribution. For example, if we con-

sider the service time distribution in Table 2, we would like, in the long run, to generate

A1

0 2 4

3 6 8 9 12 15 16 19

7 11 13 14 17 20
Time

A2 A3

D1 D2 D3 D4 D5 D6 D7 D8

A4 A5 A6 A7 A8 A9

F I G U R E  5

Time Continuum
Representation of

Single-Server
Simulation
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a service time of 1 minute 35% of the time, a service time of 2 minutes 40% of the time,

and a service time of 3 minutes 25% of the time. In addition to obtaining the right fre-

quencies, the sampling procedure should be independent; that is, each generated service

time should be independent of the service times that precede it and follow it.

To achieve these two properties using a roulette wheel, we first partition the wheel into

three segments, each proportional in area to a probability in the distribution (see Figure

6). For example, the first segment (say, S1) is allocated 35% of the area of the roulette

wheel. This area corresponds to the probability of .35 and the service time of 1 minute.

The second segment, S2, covers 40% of the area and corresponds to the probability of .40

and the service time of 2 minutes. Finally, the third segment, S3, is allocated the remain-

ing 25% of the area, corresponding to the probability .25 and the service time of 3 min-

utes. If we now spin the roulette wheel and the pointer falls in segment S1, it means that

we have generated a service time of 1 minute; in segment S2, 2 minutes; and in segment

S3, 3 minutes. If the roulette wheel is fair, as we assume, then in the long run, (1) we will

generate the service times with approximately the same frequency as specified in the dis-

tribution, and (2) the results of each spin will be independent of the results that precede

and follow it.

We now expand on this technique by using numbers for segmentation instead of areas.

We assume that the roulette wheel has 100 numbers on it, ranging from 00 to 99, inclu-

sive. We further assume that the segmentation is such that each number has the same prob-

ability, .01, of showing up. Using this method of segmentation, we allocate 35 numbers

(say, from 00 to 34) to the service time of 1 minute. Since each number has a probabil-

ity .01 of showing up, the 35 numbers together are equivalent to a probability of .35. Sim-

ilarly, if we allocate the numbers from 35 to 74 to the service time of 2 minutes, and the

numbers from 75 to 99 to the service time of 3 minutes, we achieve the desired proba-

bilities. As before, we spin the roulette wheel to generate the service times, but with this

method, the numbers directly determine the service times. In other words, if we generate

a number between 00 and 34, we set the service time equal to 1 minute; between 35 and

74, to 2 minutes; and between 75 and 99, to 3 minutes.

This procedure of segmentation and using a roulette wheel is equivalent to generating

integer random numbers between 00 and 99. This follows from the fact that each random

Pointer

Spin

S3

25%

x  =  3

S1

35%

x  =  1

S2

40%

x  =  2
F I G U R E  6

Segmentation of
Roulette Wheel



number in a sequence (in this case from 00 to 99) has an equal probability (in this case,

.01) of showing up, and each random number is independent of the numbers that precede

and follow it. If we now had a procedure for generating the 100 random numbers between

00 and 99, then instead of spinning a roulette wheel to obtain a service time, we could

use a generated random number. Technically, a random number, Ri, is defined as an inde-

pendent random sample drawn from a continuous uniform distribution whose probability

density function (pdf) is given by

f (x) � �
Thus, each random number will be uniformly distributed over the range between 0 and 1.

Because of this, these random numbers are usually referred to as U(0, 1) random num-

bers, or simply as uniform random numbers.

Random Number Generators

Uniform random numbers can be generated in many different ways. Since our interest in

random numbers is for use within simulations, we need to be able to generate them on a

computer. This is done using mathematical functions called random number generators.

Most random number generators use some form of a congruential relationship. Exam-

ples of such generators include the linear congruential generator, the multiplicative gen-

erator, and the mixed generator. The linear congruential generator is by far the most

widely used. In fact, most built-in random number functions on computer systems use this

generator. With this method, we produce a sequence of integers x1, x2, x3, . . . between 0

and m � 1 according to the following recursive relation:

xi�1 � (axi � c) modulo m (i � 0, 1, 2, . . .)

The initial value of x0 is called the seed, a is the constant multiplier, c is the increment,

and m is the modulus. These four variables are called the parameters of the generator. Us-

ing this relation, the value of xi�1 equals the remainder from the division of axi � c by

m. The random number between 0 and 1 is then generated using the equation

Ri � �
m

xi
� (i � 1, 2, 3, . . .)

For example, if x0 � 35, a � 13, c � 65, and m � 100, the algorithm works as follows:

Iteration 0 Set x0 � 35, a � 13, c � 65, and m � 100.

Iteration 1 Compute

x1 � (ax0 � c) modulo m

x1 � [13(35) � 65] modulo 100

x1 � 20

Deliver

R1 � �
x

m
1
�

R1 � �
1

2

0

0

0
�

R1 � 0.20

0 � x � 1

otherwise

1

0

2 1 . 3 Random Numbers and Monte Carlo Simulation 1155



1156 C H A P T E R 2 1 Simulation

Iteration 2 Compute

x2 � (ax1 � c) modulo m

x2 � [13(20) � 65] modulo 100

x2 � 25

Deliver

R2 � �
x

m
2
�

R2 � �
1

2

0

5

0
�

R2 � 0.25

Iteration 3 Compute

x3 � (ax2 � c) modulo m

			

and so on.

Each random number generated using this method will be a decimal number between

0 and 1. Note that although it is possible to generate a 0, a random number cannot equal

1. Random numbers generated using congruential methods are called pseudorandom

numbers. They are not true random numbers in the technical sense, because they are

completely determined once the recurrence relation is defined and the parameters of the

generator are specified. However, by carefully selecting the values of a, c, m, and x0, the

pseudorandom numbers can be made to meet all the statistical properties of true random

numbers. In addition to the statistical properties, random number generators must have

several other important characteristics if they are to be used efficiently within computer

simulations. (1) The routine must be fast; (2) the routine should not require a lot of core

storage; (3) the random numbers should be replicable; and (4) the routine should have a

sufficiently long cycle—that is, we should be able to generate a long sequence without

repetition of the random numbers.

There is one important point worth mentioning at this stage: Most programming lan-

guages have built-in library functions that provide random (or pseudorandom) numbers

directly. Therefore, most users need only know the library function for a particular sys-

tem. In some systems, a user may have to specify a value for the seed, x0, but it is un-

likely that a user would have to develop or design a random number generator. However,

for more information on random numbers and random number generators, the interested

reader may consult Banks and Carson (1984), Knuth (1998), or Law and Kelton (1991).

Computer Generation of Random Numbers

We now take the method of Monte Carlo sampling a stage further and develop a proce-

dure using random numbers generated on a computer. The idea is to transform the U(0,

1) random numbers into integer random numbers between 00 and 99 and then to use these

integer random numbers to achieve the segmentation by numbers. The transformation is

a relatively straightforward procedure. If the (0, 1) random numbers are multiplied by 100,

they will be uniformly distributed over the range from 0 to 100. Then, if the fractional

part of the number is dropped, the result will be integers from 00 to 99, all equally likely.

For example, if we had generated the random number 0.72365, multiplying it by 100 gives
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TA B L E  5

Two-Digit Integer Random Numbers

69 56 30 32 66 79 55 24 80 35 10 98

92 92 88 82 13 04 86 31 13 23 44 93

13 42 51 16 17 29 62 08 59 41 47 72

25 96 58 14 68 15 18 99 13 05 03 83

34 78 50 89 98 93 70 11 49 01 9 35

64 43 71 48 36 78 53 67 37 57 25 17

84 59 68 45 12 53 68 38 18 60 02 82

31 28 52 89 27 35 34 74 96 93 45 63

21 17 71 55 32 74 20 68 44 34 53 68

91 84 39 25 20 83 60 62 99 61 32 98

55 86 18 93 51 77 68 37 69 02 85 60

43 16 20 42 82 17 41 50 54 21 25 43

40 98 71 03 68 05 37 02 86 17 38 99

42 37 72 33 72 43 51 60 17 94 51 39

18 06 28 75 69 80 33 69 12 25 53 36

13 20 42 92 57 08 24 06 41 12 89 95

58 18 98 89 08 60 89 93 58 13 29 34

63 68 69 62 07 49 95 48 20 03 71 90

92 54 29 31 80 28 48 45 92 71 31 33

84 11 57 64 93 69 86 22 23 84 38 60

33 24 65 76 87 95 98 47 00 71 31 97

53 08 80 85 73 13 25 35 22 82 26 43

02 19 61 38 00 21 42 79 31 70 00 17

22 81 43 44 78 88 30 31 15 63 09 99

38 25 32 92 11 55 18 52 47 30 43 87

04 61 82 18 82 75 12 19 44 87 77 93

06 54 51 64 81 98 63 47 57 52 74 56

51 51 00 41 78 84 42 79 06 82 58 53

99 93 87 86 83 79 16 33 53 34 40 32

29 12 64 73 38 08 49 32 53 33 91 90

31 78 93 25 37 51 68 40 34 47 83 76

81 69 27 35 71 12 69 78 96 93 35 96

26 73 28 81 38 09 55 10 27 29 52 46

92 29 08 15 73 26 33 05 89 08 26 99

00 86 32 46 80 22 97 19 99 95 53 20

39 25 07 41 74 71 01 64 23 69 74 95

38 86 41 38 71 91 75 54 65 73 47 86

41 74 68 21 74 89 43 19 98 74 09 50

63 53 45 07 47 15 58 75 88 51 88 99

00 54 86 59 77 09 54 55 99 15 67 63

01 38 88 03 71 88 72 39 76 45 11 07

38 05 53 31 18 11 26 65 61 77 19 03

34 43 19 12 35 02 09 86 69 90 53 50

23 41 56 34 77 30 50 02 34 68 49 16

57 24 80 69 51 81 83 05 19 45 30 20

93 86 08 08 99 62 75 97 29 51 68 96

16 10 38 33 32 25 34 66 72 17 51 97

75 28 35 14 01 00 98 51 74 10 79 30

53 38 65 32 78 77 64 11 31 06 73 47

91 90 95 95 66 80 10 90 51 24 81 06
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us 72.365. Truncating the decimal portion of the number will leave us with the integer

random number 72. On the computer, we achieve this transformation by first generating

a U(0, 1) random number. Next, we multiply it by 100. Finally, we store the product us-

ing an integer variable; this final stage will truncate the decimal portion of the number.

This procedure will give us integer random numbers between 00 and 99. Table 5 lists

some integer pseudorandom numbers obtained using this procedure. (These random num-

bers will be used in several examples later in the chapter.)

We now formalize this procedure and use it to generate random variates for a discrete

random variable. The procedure consists of two steps: (1) We develop the cumulative

probability distribution (cdf) for the given random variable, and (2) we use the cdf to al-

locate the integer random numbers directly to the various values of the random variable.

To illustrate this procedure, we use the distribution of interarrival times from the queuing

example of Section 21.2 (see Table 1). If we develop the cdf for this distribution, we get

the probabilities shown in Table 6. The first interarrival time of 1 minute occurs with a

probability of .20. Thus, we need to allocate 20 random numbers to this outcome. If we

assign the 20 numbers from 00 to 19, we utilize the decimal random number range from

0 to 0.19999. Note that the upper end of this range lies just below the cumulative proba-

bility of .20. For the interarrival time of 2 minutes, we allocate 30 random numbers. If we

assign the integer numbers from 20 to 49, we notice that this covers the decimal random

number range from 0.20 to 0.49999. As before, the upper end of this range lies just be-

low the cumulative probability of .50, but the lower end coincides with the previous cu-

mulative probability of .20. If we now allocate the integer random numbers from 50 to 84

to the interarrival time of 3 minutes, we notice that these numbers are obtained from the

decimal random number range from 0.50 (the same as the cumulative probability associ-

ated with an interarrival time of 2 minutes) to 0.84999, which is a fraction smaller than

.85. Finally, the same analyses apply to the interarrival time of 4 minutes. In other words,

the cumulative probability distribution enables us to allocate the integer random number

ranges directly. Once these ranges have been specified for a given distribution, all we must

do to obtain the value of a random variable is generate an integer random number and

match it against the random number allocations. For example, if the random number had

turned out to be 35, this would translate to an interarrival time of 2 minutes. Similarly,

the random number 67 would translate to an interarrival time of 3 minutes, and so on. We

now demonstrate these concepts in an example of a Monte Carlo simulation.

21.4 An Example of Monte Carlo Simulation

In this section, we use a Monte Carlo simulation to simulate a news vendor problem (see

Chapter 16).

TA B L E  6

Cumulative Distribution Function 
and Random Number Ranges for Interarrival Times

Interarrival Time Cumulative Random
(minutes) Probability Probability Number Ranges

1 .20 .20 00–19

2 .30 .50 20–49

3 .35 .85 50–84

4 .15 1.00 85–99
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E X A M P L E  1

Pierre’s Bakery bakes and sells french bread. Each morning, the bakery satisfies the de-

mand for the day using freshly baked bread. Pierre’s can bake the bread only in batches

of a dozen loaves each. Each loaf costs 25¢ to make. For simplicity, we assume that the

total daily demand for bread also occurs in multiples of 12. Past data have shown that this

demand ranges from 36 to 96 loaves per day. A loaf sells for 40¢, and any bread left over

at the end of the day is sold to a charitable kitchen for a salvage price of 10¢/loaf. If de-

mand exceeds supply, we assume that there is a lost-profit cost of 15¢/loaf (because of

loss of goodwill, loss of customers to competitors, and so on). The bakery records show

that the daily demand can be categorized into three types: high, average, and low. These

demands occur with probabilities of .30, .45, and .25, respectively. The distribution of the

demand by categories is given in Table 7. Pierre’s would like to determine the optimal

number of loaves to bake each day to maximize profit (revenues � salvage revenues �

cost of bread � cost of lost profits).

Solution To solve this problem by simulation, we require a number of different policies to evalu-

ate. Here, we define a policy as the number of loaves to bake each day. Each given pol-

icy is then evaluated over a fixed period of time to determine its profit margin. The pol-

icy that gives the highest profit is selected as the best policy.

In the simulation process, we first develop a procedure for generating the demand for

the day:

Step 1 Determine the type of demand—that is, whether the demand for the day is high,

average, or low. To do this, calculate the cdf for this distribution and set up the random

number assignments (see Table 8). Then, to determine the type of demand, all we have to

do is to generate a two-digit random number and match it against the random number al-

locations in this table.

Step 2 Generate the actual demand for the day from the appropriate demand distribution.

The cdf and the random number allocations for the distribution of each of the three de-

mand types are presented in Table 9. Then, to generate a demand, we simply generate an

integer random number and match it against the appropriate random number assignments.

For example, if our demand type was “average” in step 1, the random number 80 would

translate into a demand of 72. Similarly, if the type of demand was “high” in step 1, the

random number 9 would translate into a demand of 48.

The simulation process for this problem is relatively simple. For each day, we gener-

ate a demand for the day. Then we evaluate the various costs for a given policy. Suppose,

for example, that the policy is to bake 60 loaves each day. If the demand for a particular

Pierre’s Bakery

TA B L E  7

Demand Distribution by Demand Categories

Demand Probability
Distribution

Demand High Average Low

36 .05 .10 .15

48 .10 .20 .25

60 .25 .30 .35

72 .30 .25 .15

84 .20 .10 .05

96 .10 .05 .05
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day turns out to be 72, we have 60(0.40) � $24.00 in revenues, 60(0.25) � $15.00 in pro-

duction costs, and 12(0.15) � $1.80 in lost-profit costs (because of the shortfall of 12

loaves). This gives us a net profit of 24.00 � 15.00 � 1.80 � $7.20 for that day.

Using this procedure, we calculate a profit margin for each day in the simulation. To

evaluate a policy, we run the simulation for a fixed number of days for the given policy.

At the end of the simulation, we average the profit margins over the set number of days

to obtain the expected profit margin per day for the policy. Note that the procedure in this

simulation is different from the queuing simulation, in that the present simulation does

not evolve over time in the same way. Here, each day is an independent simulation. Such

simulations are commonly referred to as Monte Carlo simulations.

To illustrate this procedure, we present in Table 10 a manual simulation for the first 15

days for a policy where we bake 60 loaves per day. From this table, the demand for both

day 1 and day 2 turns out to be 60 loaves. (Random numbers used in this example were

obtained from Table 5.) This demand generates a revenue of $24.00 for each of these days.

Since the 60 loaves cost $15.00 to bake, our profit margin for each of the first 2 days is

$9.00. On day 3, the demand is 72, giving us a shortfall of 12 loaves. As shown in the

table, the profit margin for day 3 is $7.20 (24.00 � 15.00 � 1.80). On day 4, we gener-

ate a demand of 48. Since our policy is to bake 60 loaves, we will have 12 loaves left

over. The 48 loaves sold give us revenues of only $19.20. However, the 12 loaves left over

provide an additional $1.20 in salvage revenue, yielding a profit of $5.40 (19.20 �

1.20 � 15.00) for day 4.

If we now complete the manual simulation for the period of 15 days, the total profit

earned during this time comes to $97.20. This gives us an average daily profit figure of
�
97

1
.
5
20
� � $6.48. However, this cannot be accepted as the final profit margin for this policy.

The simulation results over this short a period are likely to be highly dependent on the

sequence of random numbers generated, so they cannot be accepted as statistically valid.

The simulation would have to be carried out over a long period of time before the profit

margin could be accepted as truly representative. These statistical issues are discussed

later. In the meantime, we have evaluated several different policies for this problem using

TA B L E  8

Distribution of Demand Type

Type of Cumulative Random Number
Demand Probability Distribution Ranges

High .30 .30 00–29

Average .45 .75 30–74

Low .25 1.00 75–99

TA B L E  9

Distribution by Demand Type

Cumulative
Distribution Random Number Ranges

Demand High Average Low High Average Low

36 .05 .10 .15 00–04 00–09 00–14

48 .15 .30 .40 05–14 10–29 15–39

60 .40 .60 .75 15–39 30–59 40–74

72 .70 .85 .90 40–69 60–84 75–89

84 .90 .95 .95 70–89 85–94 90–94

96 1.00 1.00 1.00 90–99 95–99 95–99
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a simulation model on a computer. The results of these policies are presented in Table 11.

We see that the best policy for Pierre’s Bakery is to bake 72 loaves each day. This table

also compares the results from the simulation with the exact solution for each policy. We

can see that simulation does a remarkable job of converging to the right solution. The

closeness of the two solutions is not totally unexpected, since we ran the simulation model

for 10,000 days for each policy.

P R O B L E M S
Group A

TA B L E  10

Simulation Table for Baking 60 Loaves per Day

Random No. Type of Random No. Lost Salvage
Day for Demand Type Demand for Demand Demand Revenue Profit Revenue Profit

1 69 Average 56 60 $24.00 — — $9.00

2 30 Average 32 60 $24.00 — — $9.00

3 66 Average 79 72 $24.00 $1.80 — $7.20

4 55 Average 24 48 $19.20 — $1.20 $5.40

5 80 Low 35 48 $19.20 — $1.20 $5.40

6 10 High 98 96 $24.00 $5.40 — $3.60

7 92 Low 88 72 $24.00 $1.80 — $7.20

8 82 Low 17 48 $19.20 — $1.20 $5.40

9 04 High 86 84 $24.00 $3.60 — $5.40

10 31 Average 13 48 $19.20 — $1.20 $5.40

11 23 High 44 72 $24.00 $1.80 — $7.20

12 93 Low 13 36 $14.40 — $2.40 $1.80

13 42 Average 51 60 $24.00 — — $9.00

14 16 High 17 60 $24.00 — — $9.00

15 29 High 62 72 $24.00 $1.80 — $7.20

TA B L E  11

Evaluation of Policies

No. of Loaves
Average Daily Profit

Policy Baked Daily Exact Simulation

A 36 $1.273 $1.273

B 48 $4.347 $4.349

C 60 $6.435 $6.436

D 72 $6.917 $6.915

E 84 $6.102 $6.104

F 96 $4.653 $4.642

Use the random numbers in Table 5 to solve the following
problems.

1 Simulate the single-server queuing system described in
Section 21.2 for the first 25 departures from the system to

develop an estimate for the expected time in the waiting
line. Is this a reasonable estimate? Explain.

2 Perform the simulation for Pierre’s Bakery for 25 more
days (days 16 through 40) for policy C in Table 11. Compare
the answer with the results in the table.
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21.5 Simulations with Continuous Random Variables

The simulation examples presented thus far used only discrete probability distributions

for the random variables. However, in many simulations, it is more realistic and practical

to use continuous random variables. In this section, we present and discuss several pro-

cedures for generating random variates from continuous distributions. The basic principle

is very similar to the discrete case. As in the discrete method, we first generate a U(0, 1)

random number and then transform it into a random variate from the specified distribu-

tion. The process for carrying out the transformation, however, is quite different from the

discrete case.

There are many different methods for generating continuous random variates. The se-

lection of a particular algorithm will depend on the distribution from which we want to

generate, taking into account such factors as the exactness of the random variables, the

computational and storage efficiencies, and the complexity of the algorithm. The two most

commonly used algorithms are the inverse transformation method (ITM) and the accep-

tance–rejection method (ARM). Between these two methods, it is possible to generate ran-

dom variables from almost all of the most frequently used distributions. We present a de-

tailed description of both these algorithms, along with several examples for each method.

In addition to this, we present two methods for generating random variables from the nor-

mal distribution.

Inverse Transformation Method

The inverse transformation method is generally used for distributions whose cumulative

distribution function can be obtained in closed form. Examples include the exponential,

Group B

3 Consider the simplest form of craps. In this game, we
roll a pair of dice. If we roll a 7 or an 11 on the first throw,
we win right away. If we roll a 2 or a 3 or a 12, we lose right
away. Any other total (that is, 4, 5, 6, 8, 9, or 10) gives us
a second chance. In this part of the game, we keep rolling
the dice until we get either a 7 or the total rolled on the first
throw. If we get a 7, we lose. If we roll the same total as on
the first throw, we win. Assuming that the dice are fair,
develop a simulation experiment to determine what
percentage of the time we win.

4 Tankers arrive at an oil port with the distribution of
interarrival times shown in Table 12. The port has two
terminals, A and B. Terminal B is newer and therefore more
efficient than terminal A. The time it takes to unload a tanker
depends on the tanker’s size. A supertanker takes 4 days to
unload at terminal A and 3 days at terminal B. A midsize
tanker takes 3 days at terminal A and 2 days at terminal B.
The small tankers take 2 days at terminal A and 1 day at
terminal B. Arriving tankers form a single waiting line in
the port area until a terminal becomes available for service.
Service is given on an FCFS basis. The type of tankers and
the frequency with which they visit this port is given by the
distribution in Table 13. Develop a simulation model for
this port. Compute such statistics as the average number of

TA B L E  12

Interarrival Times
(days) Probability

1 .20

2 .25

3 .35

4 .15

5 .05

TA B L E  13

Type of Tanker Probability

Supertanker .40

Midsize tanker .35

Small tanker .25

tankers in port, the average number of days in port for a
tanker, and the percentage of idle time for each of the
terminals. (Hint: Use the flowchart in Figure 4 and modify
it for a multiserver queuing system.)
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the uniform, the triangular, and the Weibull distributions. For distributions whose cdf does

not exist in closed form, it may be possible to use some numerical method, such as a

power-series expansion, within the algorithm to evaluate the cdf. However, this is likely

to complicate the procedure to such an extent that it may be more efficient to use a dif-

ferent algorithm to generate the random variates. The ITM is relatively easy to describe

and execute. It consists of the following three steps:

Step 1 Given a probability density function f (x) for a random variable X, obtain the cu-

mulative distribution function F(x) as

F(x) � �x

�∞

f (t)dt

Step 2 Generate a random number r.

Step 3 Set F(x) � r and solve for x. The variable x is then a random variate from the

distribution whose pdf is given by f (x).

We now describe the mechanics of the algorithm using an example. For this, we con-

sider the distribution given by the function

f (x) � �
A function of this type is called a ramp function. It can be represented graphically as

shown in Figure 7. The area under the curve, f (x) � �
2
x

�, represents the probability of the

occurrence of the random variable X. We assume that in this case, X represents the ser-

vice times of a bank teller. To obtain random variates from this distribution using the in-

verse transformation method, we first compute the cdf as

F(x) � �x

0
�
2

t
� dt

� �
x

4

2

�

This cdf is represented formally by the function

F(x) � �
Next, in step 2, we generate a random number r. Finally, in step 3, we set F(x) � r and

solve for x.

�
x

4

2

� � r

x � 
2�r�

Since the service times are defined only for positive values of x, a service time of x �

�2�r� is not feasible. This leaves us with x � 2�r� as the solution for x. This equation

is called a random variate generator or a process generator. Thus, to obtain a service

time, we first generate a random number and then transform it using the preceding equa-

tion. Each execution of the equation will give us one service time from the given distri-

bution. For instance, if a random number r � 0.64 is obtained, a service time of x �

2�0.64� � 1.6 will be generated.

x � 0

0 � x � 2

x � 2

0

�
x

4

2

�

1

0 � x � 2

otherwise

�
2

x
�

0
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Graphically, the inverse transformation method can be represented as shown in Figure

8. We see from this graph that the range of values for the random variable (that is, 0 �

x � 2) coincides with the cumulative probabilities, 0 � F(x) � 1.0. In other words, for

any value of F(x) over the interval [0, 1], there exists a corresponding value of the ran-

dom variable, given by x. Since a random number is also defined in the range between 0

and 1, this implies that a random number can be translated directly into a corresponding

value of x using the relation r � F(x). The solution for x in terms of r is known as tak-

ing the inverse of F(x), denoted by x � F �1(r)—hence the name inverse transformation.

Note that if r is equal to 0, we will generate a random variate equal to 0, the smallest pos-

sible value of x. Similarly, if we generate a random number equal to 1, it will be trans-

formed to 2, the largest possible value of x.

To show that the ITM generates numbers with the same distribution as x, consider the

fact that for any two numbers x1 and x2, the probability P(x1 � X � x2) � F(x2) � F(x1).

Then what we have to show is that the probability that the generated value of X lies be-

tween x1 and x2 is also the same. From Figure 8, we see that the generated value of X will

be between x1 and x2 if and only if the chosen random number is between r1 � F(x1) and

r2 � F(x2). Thus, the probability that the generated value of X is between x1 and x2 is

also F(x2) � F(x1). This shows that the ITM does indeed generate numbers with the same

distribution as X.

f(x)

x
1 20

1

F I G U R E  7

The pdf of a Ramp
Function

F(x)

x
x1 x2 20

1

r2

r1

F I G U R E  8

Graphical
Representation of

Inverse Transformation
Method
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As this example shows, the major advantage of the inverse transformation method is

its simplicity and ease of application. However, as mentioned earlier, we must be able to

determine F(x) in closed form for the desired distribution before we can use the method

efficiently. Also, in this example, we see that we need exactly one random number to pro-

duce one random variable. Other methods, such as the acceptance–rejection method, may

require several random numbers to generate a single value of X. The following three ex-

amples illustrate the application of the ITM.

E X A M P L E  2

As mentioned in Chapter 20, the exponential distribution has important applications in the

mathematical representation of queuing systems. The pdf of the exponential distribution

is given by

f (x) � �
Use the inverse transformation method to generate observations from an exponential 

distribution.

Solution In step 1, we compute the cdf. This is given by

F(x) � �
Next, we generate a random number r and set F(x) � r to solve for x. This gives us

1 � e�lx
� r

Rearranging to

e�lx
� 1 � r

and taking the natural logarithm of both sides, we have

�lx � ln(1 � r)

Finally, solving for x gives the solution

x � ��
l

1
� ln(1 � r)

To simplify our computations, we can replace (1 � r) with r. Since r is a random num-

ber, (1 � r) will also be a random number. This means that we have not changed any-

thing except the way we are writing the U(0,1) random number. Thus, our process gen-

erator for the exponential distribution will now be

x � ��
l

1
� ln r

For instance, r � �
1
e

� yields x � �
l

1
�, and r � 1 yields x � 0.

E X A M P L E  3

Consider a random variable X that is uniformly distributed on the interval [a, b]. The pdf

of this distribution is given by the function

f (x) � � a � x � b

otherwise

�
b �

1

a
�

0

The Uniform Distribution

x � 0

x � 0

0

1 � e�lx

x � 0, l � 0

otherwise

le�lx

0

The Exponential Distribution
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Use the ITM to generate observations from this random variable.

Solution The cdf of this distribution is given by

F(x) � �
To use the ITM to generate observations from a uniform distribution, we first generate a

random number r and then set F(x) � r to solve for x. This gives

�
b

x �

�

a

a
� � r

Solving for x yields

x � a � (b � a)r

as the process generator for the uniform distribution. For example, r � �
1
2

� yields x � �
a�

2
b

�,

r � 1 yields x � b, r � 0 yields x � a, and so on.

E X A M P L E  4

Consider a random variable X whose pdf is given by

f (x) � �
Use the ITM to generate observations from the distribution. This distribution, called a tri-

angular distribution, is represented graphically in Figure 9. It has the endpoints [2, 6], and

its mode is at 3. We can see that 25% of the area under the curve lies in the range of x

from 2 to 3, and the other 75% lies in the range from 3 to 6. In other words, 25% of the

values of the random variable X lie between 2 and 3, and the other 75% fall between 3

and 6. The triangular distribution has important applications in simulation. It is often used

to represent activities for which there are few or no data. (For a detailed account of this

distribution, see Banks and Carson (1984) or Law and Kelton (1991).)

Solution The cdf of this triangular distribution is given by the function

F(x) � �
For simplicity, we redefine F(x) � (�

1
4

�)(x � 2)2, for 2 � x � 3, as F1(x), and F(x) �

(��
1
1
2
�)(x2

� 12x � 24), for 3 � x � 6, as F2(x).

This cdf can be represented graphically as shown in Figure 10. Note that at x � 3, 

F(3) � 0.25. This implies that the function F1(x) covers the first 25% of the range of the

cdf, and F2(x) applies over the remaining 75% of the range. Since we now have two sep-

arate functions representing the cdf, the ITM has to be modified to account for these two

functions, their ranges, and the distribution of the ranges. As far as the ITM goes, the dis-

tribution of the ranges is the most important. This distribution is achieved by using the

random number from step 2. In other words, if r � 0.25, we use the function F1(x) � (�
1
4

�)

(x � 2)2 in step 3. Otherwise, we use F2(x) � (��
1
1
2
�)(x2

� 12x � 24). Since r � 0.25 for

25% of the time and r � 0.25 for the other 75%, we achieve the desired distribution. In

x � 2

2 � x � 3

3 � x � 6

otherwise

0

�
1
4

�(x � 2)2

��
1
1
2
�(x2

� 12x � 24)

1

2 � x � 3

3 � x � 6

otherwise

�
1
2

�(x � 2)

�
1
2

�(2 � �
3
x

�)

0

The Triangular Distribution

x � a

a � x � b

x � b

0

�
b

x �

�

a

a
�

1
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either case, we set the function F1(x) or F2(x) equal to r and solve for x. That is, we solve

one of the following equations:

(�
1
4

�)(x � 2)2
� r for 0 � r � 0.25

(��
1
1
2
�)(x2

� 12x � 24) � r for 0.25 � r � 1.0

x will then be our random variable of interest.

As the graph in Figure 10 shows, a random number between 0 and 0.25 will be trans-

formed into a value of x between 2 and 3. Similarly, if r � 0.25, it will be transformed

into a value of x between 3 and 6.

f(x)

x
1 2 3 4 5 60

1
2

F(x)

F2(x)

F1(x)

x
1 2 3 4 5 60

1.0

0.25

F I G U R E  9

Density Function for a
Triangular Distribution

F I G U R E  10

The cdf of a Triangular
Distribution



To solve the first equation, (�
1
4

�)(x � 2)2
� r, we multiply the equation by 4 and then

take the square root of both sides. This gives us

x � 2 � 
 �4r�
x � 2 
 2�r�

Since x is defined only for values greater than 2, x � 2 � 2�r� is infeasible, leaving

x � 2 � 2�r�

as the process generator for a random number in the range from 0 to 0.25. Note that when

r � 0, x � 2, the smallest possible value for this range. Similarly, when we generate r �

0.25, it will be transformed to x � 3.

To solve the second equation, (��
1
1
2
�)(x2

� 12x � 24) � r, we can use one of two meth-

ods: (1) employing the quadratic formula or (2) completing the square. (See Banks and

Carson (1984) for details of the quadratic formula method.) Here, we use the method of

completing the square. We multiply the equation by �12 and rearrange the terms to get

x2
� 12x � �24 � 12r

To complete the square, we first divide the x term’s coefficient by 2. This gives us �6.

Next, we square this value to get 36. Finally, we add this resultant to both sides of the

equation. This leaves us with the equation

x2
� 12x � 36 � 12 � 12r

(x � 6)2
� 12 � 12r

Writing the equation in this form enables us to take the square root of both sides. That is,

x � 6 � 
�12 � 1�2r�
x � 6 
 2�3 � 3r�

As before, part of the solution is infeasible. In this case, x is feasible only for values less

than 6. Thus, we use only the equation x � 6 � 2�3 � 3r� as our process generator. Note

that when r � 0.25, our random variate is equal to 3. Similarly, when r � 1, we gener-

ate a random variate equal to 6.

Acceptance–Rejection Method

There are several important distributions, including the Erlang (used in queuing models)

and the beta (used in PERT), whose cumulative distribution functions do not exist in

closed form. For these distributions, we must resort to other methods of generating ran-

dom variates, one of which is the acceptance–rejection method (ARM). This method is

generally used for distributions whose domains are defined over finite intervals. Thus,

given a distribution whose pdf, f (x), is defined over the interval a � x � b, the algorithm

consists of the following steps.

Step 1 Select a constant M such that M is the largest value of f (x) over the interval 

[a, b].

Step 2 Generate two random numbers, r1 and r2.

Step 3 Compute x* � a � (b � a)r1. (This ensures that each member of [a, b] has an

equal chance to be chosen as x*.)

1168 C H A P T E R 2 1 Simulation
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Step 4 Evaluate the function f (x) at the point x*. Let this be f (x*).

Step 5 If

r2 � �
f (

M

x*)
�

deliver x* as a random variate from the distribution whose pdf is f (x). Otherwise, reject

x* and go back to step 2.

Note that the algorithm continues looping back to step 2 until a random variate is ac-

cepted. This may take several iterations. For this reason, the algorithm can be relatively

inefficient. The efficiency, however, is highly dependent on the shape of the distribution.

There are several ways by which the method can be made more efficient. One of these is

to use a function in step 1 instead of a constant. See Fishman (1978) or Law and Kelton

(1991) for details of the algorithm.

We now illustrate the details of the algorithm using a ramp function. Consider a ran-

dom variable X whose pdf is given by the function

f (x) � �
In step 1 of the ARM, it is generally useful to graph the pdf. Since our objective is to ob-

tain the largest value of f (x) over the domain of the function, graphing will enable us to

determine the value of M simply by inspection. The graph of the pdf is shown in Figure

11. We see that the largest value of f (x) occurs at x � 1 and is equal to 2. In other words,

we set M � 2 in step 1. Next, we generate two random numbers, r1 and r2. In step 3, we

transform the first random number, r1, into an X value, x*, using the relationship x* �

a � (b � a)r1. This step is simply a procedure for randomly generating a value of the

random variable X. Given that we are using a random number r1 to determine x*, every

value over the interval [a, b] has an equal probability of showing up. Note that if r1 � 0,

x* will be equal to a, the left endpoint of the domain. Similarly, if r1 � 1, x* will be equal

to b, the right endpoint of the domain. Since a � 0 and b � 1 for this distribution, it fol-

lows that x* � r1. This value of x* now becomes our potential random variate for the cur-

rent iteration. In steps 4 and 5, we have to determine whether to accept or reject x*. We first

evaluate the function f (x) at x � x* to obtain f (x*) and then compute �
f (

M

x*)
�. If r2 � �

f (

M

x*)
�, we

accept x*. Otherwise, we reject x*. Substituting x* � r1 in f (x) gives us f (x*) � 2r1. Since

M � 2, the term �
f (

M

x*)
� reduces to r1. Given this, our decision rule (in step 5) for accepting

x* simplifies to a comparison of r2 and r1. If r2 � r1, we accept x* as our random vari-

ate. Otherwise, we go back to step 2 and repeat the process until we obtain an acceptance.

0 � x � 1

otherwise

2x

0

f(x)

x
10

2

F I G U R E  11

The pdf of a Ramp
Function



1170 C H A P T E R 2 1 Simulation

For example, if r1 � 0.7 and r2 � 0.6, we choose x � 0.7, and if r1 � 0.7 and r2 � 0.8,

no value of the random variable is generated. For this problem, exactly half the random

variates generated in step 3 will be rejected in step 5.

E X A M P L E  5

Use the acceptance–rejection method to generate random variates from a triangular dis-

tribution whose pdf is given by

f (x) � �
Solution For simplicity, we redefine f (x) � ��

1
6

� � �
1
x
2
� as f1(x), and f (x) � �

4
3

� � �
6
x

� as f2(x). This dis-

tribution is represented graphically in Figure 12.

Since this distribution is defined over two intervals, we must modify steps 4 and 5 of

the acceptance–rejection method to account for these ranges. The first three steps of the

algorithm, however, stay the same as before. That is, step 1 determines M, step 2 gener-

ates r1 and r2, and step 3 transforms r1 into a value x* of X.

From the graph of the pdf in Figure 12, it is clear that M � �
1
3

�. This distribution has the

endpoints [2, 8], which implies that a � 2 and b � 8. If we now substitute these end-

points in step 3, the x* values are generated by the equation x* � 2 � 6r1. Then we see

that if r1 is between 0 and �
2
3

�, x* will lie in the range from 2 to 6. If r1 � �
2
3

�, x* will lie in

the interval [6, 8]. To account for this, we make our first modification in step 4. If x* lies

between 2 and 6, then in step 4, we use the function f1(x) to evaluate f (x*). Otherwise,

we use f2(x) to compute f (x*). Step 4 now can be summarized as follows: If 2 � x* � 6,

f(x*) � f1(x*)

f(x*) � ��
1

6
� � �

1

x*

2
�

� �
r

2
1
�

If 6 � x* � 8,

f (x*) � f2(x*)

f(x*) � �
4

3
� � �

x

6

*
�

� 1 � r1

2 � x � 6

6 � x � 8

��
1
6

� � �
1
x
2
�

�
4
3

� � �
6
x

�

The Acceptance–Rejection Method

f(x)

f1(x) f2(x)

x
1 3 4 5 6 7 80

1
3

2

F I G U R E  12
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The next step in the algorithm is either to accept or to reject the current value of x*. 

We accept x* if the condition r2 � �
f (

M

x*)
� is satisfied. However, following step 4, we need

to evaluate this condition over the two intervals by substituting the appropriate function,

f (x*), into the relation. In other words, step 5 for this distribution will now be as 

follows: For 2 � x* � 6, we accept x* if r2 � �
f1(

M

x*)
� —that is, if r2 � �

3
2
r1�. For 6 � x* 

� 8, we accept x* if r2 � �
f2(

M

x*)
�—that is, if r2 � 3(1 � r1). If x* is rejected, we go back

to step 2 and repeat the process.

As before, some of the x* values will be rejected. In this case, also, the probability of

accepting a random variate is .5. That is, one half of all random variates generated in step

3 will, in the long run, be rejected in step 5.

We now give an intuitive justification of the validity of the ARM. In particular, we want

to show that the ARM does generate observations from the given random variable X. For

any number x the ARM should yield P(x � X � x � �) � f (x)�. Now the probability

that the ARM generates an observation between x and x � � is given by

� �
i�∞

i�1

� �
i�∞

i�1
�1 � �

M(b

1

� a)
��

i�1

�
M(

f

b

(x

�

)�

a)
�

� �
M(

f

b

(x

�

)�

a)
� � � � f (x)�

where we have used the fact that on any ARM iteration, there is a probability 1/M

(b � a) that a value of the random variable will be generated (see Problem 6), and that

for c � 1,

�
i�∞

i�1

ci�1
� �

1 �

1

c
�

Direct and Convolution Methods for the Normal Distribution

Because of the importance of the normal distribution, considerable attention has been paid

to generating normal random variates. This has resulted in many different algorithms for

the normal distribution. Both the inverse transformation method and the acceptance–

rejection method are inappropriate for the normal distribution, because (1) the cdf does not

exist in closed form and (2) the distribution is not defined over a finite interval. Although

it is possible to use numerical methods within the ITM and to truncate the distribution for

the acceptance–rejection method, other methods tend to be much more efficient. In this

section, we describe two such methods—first, an algorithm based on convolution tech-

niques, and then a direct transformation algorithm that produces two standard normal

variates with mean 0 and variance 1.

The Convolution Algorithm

In the convolution algorithm, we make direct use of the Central Limit Theorem. The Cen-

tral Limit Theorem states that the sum Y of n independent and identically distributed ran-

1
���

(probability first i � 1 iterations yield no value and

ith iteration yields a value between x and x � �)
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dom variables (say, Y1, Y2, . . . , Yn, each with mean m and finite variance s2) is ap-

proximately normally distributed with mean nm and variance ns2. If we now apply this

to U(0, 1) random variables, R1, R2, . . . , Rn, with mean m � 0.5 and s2 � �
1
1
2
�, it follows

that

Z �

is approximately normal with mean 0 and variance 1. We would expect this approxima-

tion to work better as the value of n increases. However, most simulation literature sug-

gests using a value of n � 12. Using 12 not only seems adequate but, more important,

has the advantage that it simplifies the computational procedure. If we now substitute 

n � 12 into the preceding equation, the process generator simplifies to

Z � �
12

i�1

Ri � 6

This equation avoids a square root and a division, both of which are relatively time-

consuming routines on a computer.

If we want to generate a normal variate X with mean m and variance s2, we first gen-

erate Z using this process generator and then transform it using the relation X � m �

sZ. Note that this convolution is unique to the normal distribution and cannot be extended

to other distributions. Several other distributions do, of course, lend themselves to con-

volution methods. For example, we can generate random variates from an Erlang distri-

bution with shape parameter k and rate parameter kl, using the fact that an Erlang ran-

dom variable can be obtained by the sum of k iid exponential random variables, each with

parameter kl.

The Direct Method

The direct method for the normal distribution was developed by Box and Muller (1958).

Although it is not as efficient as some of the newer techniques, it is easy to apply and ex-

ecute. The algorithm generates two U(0, 1) random numbers, r1 and r2, and then trans-

forms them into two normal random variates, each with mean 0 and variance 1, using the

direct transformations

Z1 � (�2 ln r1)1/2 sin 2pr2

Z2 � (�2 ln r1)1/2 cos 2pr2

As in the convolution method, it is easy to transform these standardized normal variates

into normal variates X1 and X2 from the distribution with mean m and variance s2, using

the equations

X1 � m � sZ1

X2 � m � sZ2

The direct method produces exact normal random variates, whereas the convolution

method gives us only approximate normal random variates. For this reason, the direct

method is much more commonly used. For details of these and other normal algorithms,

see Fishman (1978) or Law and Kelton (1991).

�
n

i�1

Ri � 0.5n

��
(�

1
n
2
�)1/2



2 1 . 6 An Example of a Stochastic Simulation 1173

P R O B L E M S
Group A

1 Consider a continuous random variable with the
following pdf:

f (x) � �
Develop a process generator for these breakdown times
using the inverse transformation method and the
acceptance–rejection method.

2 A job shop manager wants to develop a simulation model
to help schedule jobs through the shop. He has evaluated the
completion times for all the different types of jobs. For one
particular job, the times to completion can be represented
by the following triangular distribution:

f (x) � �
Develop a process generator for this distribution using the
inverse transformation method.

3 Given the continuous triangular distribution in Figure
13, develop a process generator using the inverse
transformation method.

2 � x � 4

4 � x � 10

�
8
x

� � �
1
4

�

�
1
2
0
4
� � �

2
x
4
�

0 � x � 1

1 � x � 3

�
1
2

�

�
3
4

� � �
4
x

�

Group B

4 For Problem 2, develop a computer program for the
process generator. Generate 100 random variates and
compare the mean and variance of this sample against the
theoretical mean and variance of this distribution. Now
repeat the experiment for the following numbers of random
variates: 250; 500; 1,000; and 5,000. From these
experiments, what can be said about the process generator?

5 A machine operator processes two types of jobs, A and
B, during the course of the day. Analyses of past data show
that 40% of all jobs are type A jobs, and 60% are type B
jobs. Type A jobs have completion times that can be
represented by an Erlang distribution with rate parameter 5
and shape parameter 2. Completion times of type B jobs can
be represented by the following triangular distribution:

f (x) � �
If jobs arrive at an exponential rate of 10 per hour, develop
a simulation model to calculate the percentage of idle time
of the operator and the average number of jobs in the line
waiting to be processed.

6 Show that on any iteration of the acceptance–rejection
method, there is a probability �

M(b
1
�a)
� that a value of the

random variable is generated.

7 We all hate to bring small change to the store. Using
random numbers, we can eliminate the need for change and
give the store and the customer a fair shake.

a Suppose you buy something that costs $.20. How
could you use random numbers (built into the cash reg-
ister system) to decide whether you should pay $1.00 or
nothing? This eliminates the need for change!

b If you bought something for $9.60, how would you
use random numbers to eliminate the need for change?

c In the long run, why is this method fair to both the
store and the customer?
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21.6 An Example of a Stochastic Simulation

We now present an example of a simulation using some of the concepts covered in Sec-

tion 21.5. We consider the case of Cabot, Inc., a large mail order firm in Chicago. Orders

arrive into the warehouse via telephones. At present, Cabot maintains 10 operators at work

24 hours a day. The operators take the orders and feed them directly into a central com-

puter, using terminals. Each operator has one terminal. At present, the company has a to-

tal of 11 terminals. That is, if all terminals are working, there will be 1 spare terminal.
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A terminal that is online may break down. If that happens, the terminal is removed

from the workstation and is replaced with a spare, if one is available. If none is available,

the operator must wait until one becomes available. During this time, this operator does

not take any orders. The broken terminal is sent to the workshop, where the company has

one repair channel allocated to repairing terminals. At the completion of a repair, the ter-

minal either acts as a spare or goes directly into service if an operator is waiting for a ter-

minal. The flow of terminals in the system is shown in Figure 14.

The Cabot managers believe that the terminal system needs evaluation, because the

downtime of operators due to broken terminals has been excessive. They feel that the

problem can be solved by the purchase of some additional terminals for the spares pool.

Accountants have determined that a new terminal will cost a total of $75 per week in such

costs as investment cost, capital cost, maintenance, and insurance. It has also been esti-

mated that the cost of terminal downtime, in terms of delays, lost orders, and so on, is

$1,000 per week. Given this information, the Cabot managers would like to determine

how many additional terminals they should purchase.

This model is a version of the machine repair problem (see Section 20.9). In such models

(if both the breakdown and the repair times can be represented by the exponential dis-

tribution), it is easy to find an analytical solution to the problem using birth–death

processes. However, in analyzing the historical data for the terminals, it has been deter-

mined that although the breakdown times can be represented by the exponential distribu-

tion, the repair times can be adequately represented only by the triangular distribution.

This implies that analytical methods cannot be used; we must use simulation.

To simulate this system, we first require the parameters of both the distributions. For

the breakdown time distribution, the data show that the breakdown rate is exponential and

equal to 1 per week per terminal. In other words, the time between breakdowns for a ter-

minal is exponential with a mean equal to 1 week. Analysis for the repair times (measured

in weeks) shows that this distribution can be represented by the triangular distribution

f (x) � �
which has a mean of 0.075 week. That is, the repair staff can, on the average, repair 13.33

terminals per week. We represent the repair time distribution graphically in Figure 15.

To find the optimum number of terminals for the system, we must balance the cost of

the additional terminals against the increased revenues (because of reduced downtime

costs) generated as a result of the increase in the number of terminals. In the simulation,

we increase the number of terminals in the system, n, from the present total of 11 in in-

crements of 1. For this fixed value of n, we then run our simulation model to estimate the

net revenue. Net revenue here is defined as the difference between the increase in rev-

enues due to the additional terminals and the cost of these additional terminals. We keep

0.025 � x � 0.075

0.075 � x � 0.125

�10 � 400x

50 � 400x

Spares
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Failure

Completion
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repair
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on adding terminals until the net revenue position reaches a peak. Thus, our primary ob-

jective in the simulation is to determine the net revenue for a fixed number of terminals.

To calculate the net revenue, we first compute the average number of online terminals,

ELn (or equivalently, the average number of downtime terminals, EDn), for a fixed num-

ber of terminals in the system, n. In fact, EDn is simply equal to n � ELn. Once we 

have a value for ELn, we can compute the expected weekly downtime costs, given by

1,000(10 � ELn). Then the increase in revenues as a result of increasing the number of

terminals from 11 to n is 1,000(ELn � EL11).

Mathematically, we compute ELn as

ELn � �

where

T � length of the simulation

N(t) � number of terminals online at time t (0 � t � T)

Ai � area of rectangle under N(t) between ei�1 and ei

� (where ei is the time of the ith event)

m � number of events that occur in the interval [0, T]

This computation is illustrated in Figure 16 for n � 10. In this example, we start with 10

terminals online at time 0. Between time 0 and time e1, the time of the first event, the to-

tal online time for all the terminals is given by 10e1, since each terminal is online for a

period of e1 time units. Similarly, the total online time between events 1 and 2 is 9

(e2 � e1), given that the breakdown at time e1 leaves us with only 9 working terminals

between time e1 and time e2. If we now run this simulation over T time units and sum up

the areas A1, A2, A3, . . . , we can get an estimate for EL10 by dividing this sum by T. This

statistic is called a time-average statistic. As long as the simulation is run for a suffi-

ciently long period of time, our estimate for EL10 should be fairly close to the actual.

In this simulation, we would like to set up the process in such a way that it will be pos-

sible to collect the statistics to compute the areas A1, A2, A3, . . . . That is, as we move

from event to event, we would like to keep track of at least the number of terminals on-

line between the events and the time between events. To do this, we first define the state

of the system as the number of terminals in the repair facility. From this definition, it fol-

lows that the only time the state of the system will change is when there is either a break-

down or a completion of a repair. This implies that there are two events in this simula-

tion: breakdown and completion of repairs.

�
m

i�1

Ai

�
T

�T

0
N(t)dt

�
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To set up the simulation, our first task is to determine the process generators for both

the breakdown and the repair times. Since both these distributions have cdf’s in closed

form, we use the ITM to develop the process generators. For the exponential distribution,

the process generator is simply

x � �log r

In the case of the repair times, applying the ITM gives us

x � 0.025 � �0.005r� (0 � r � 0.5)

and

x � 0.125 � �0.005(�1 � r)� (0.5 � r � 1.0)

as the process generators.

Within this experiment, we run several different simulations, one for each different

value of n. Since n at present equals 11, we begin the experiment with this number and

increase n until the net revenues reach a peak. For each n, we start the simulation in the

state where there are no terminals in the repair facility. In this state, all 10 operators are

online and any remaining terminals are in the spares pool.

Our first action in the simulation is to schedule the first series of events, the breakdown

times for the terminals presently online. We do this in the usual way, by generating an ex-

ponential random variate for each online terminal from the breakdown distribution and

setting the time of breakdown by adding this generated time to the current clock time,

which is zero. Having scheduled these events, we next determine the first event, the first

breakdown, by searching through the current event list. We then move the simulation

clock to the time of this event and process this breakdown.

To process a breakdown, we take two separate series of actions: (1) Determine whether

a spare is available. If one is available, bring the spare into service and schedule the break-

down time for this terminal. If none is available, update the back-order position. (2) De-

termine whether the repair staff is idle. If so, start the repair on the broken terminal by

generating a random variate from the service times distribution and scheduling the com-

pletion time of the repair. If the repair staff is busy, place the broken terminal in the re-

pair queue. Having completed these two series of actions, we now update all the statisti-

cal counters. These actions are summarized in the system flow diagram in Figure 17. We
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t
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proceed with the simulation by determining the next event and moving the clock to the

time of this event. If the next event is another breakdown, we repeat the preceding series

of actions. Otherwise, we process a completion of a repair.

To process the completion of a repair, we also undertake two series of actions. (1) At

the completion of a repair, we have an additional working terminal, so we determine

whether the terminal goes directly to an operator or to the spares pool. If a back order ex-

ists, we bring the terminal directly into service and schedule the time of the breakdown

for this terminal in the usual manner. If no operator is waiting for a terminal, the termi-

nal goes into the spares pool. (2) We check the repair queue to see whether any terminals

are waiting to be repaired. If the queue is greater than zero, we bring the first terminal

from the queue into repair and schedule the time of the completion of this repair. Other-

wise, we set the status of the repair staff to idle. Finally, at the completion of these ac-

tions, we update all the statistical counters. This part of the simulation is summarized in

Figure 18.

We proceed with the simulation (for a given n) by moving from event to event until

the termination time T. At this time, we calculate all the relevant measures of performance

from the statistical counters. Our key measure is the net revenue for the current value of

n. If this revenue is greater than the revenue for a system with n � 1 terminals, we in-

crease the value of n by 1 and repeat the simulation with n � 1 terminals in the system.
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Otherwise, the net revenue has reached a peak. If this is the case, we stop the experiment

and accept n � 1 terminals as the optimal number of terminals to have in the system. This

simulation experiment is summarized in Figure 19. For this experiment, we assume that

the maximum number of terminals we can have is 25. (Note that the variable REVO in

the flowchart is revenue for the system with n � 1 terminals.)

For this problem, we ran a complete experiment, whose results are summarized in

Table 14. In this table, we show the overall effect on the net revenues as we increase the

number of terminals from 11. For example, when we increase n from 11 to 12, the ex-

pected number of online terminals increases from 9.362 to 9.641, for a net increase of

0.279. This results in an increase of $279 in revenues per week at a cost of $75, giving

us a net revenue increase of $204 per week. Similarly, if we increase the number of ter-

minals from 11 to 13, we have a net increase of $289. The net increase peaks with 14 ter-

minals in the system. This is further highlighted by the graph in Figure 20.

The simulation outlined in this example can be used to analyze other policy options that

management may have. For example, instead of purchasing additional terminals, Cabot

could hire a second repair worker or choose a preventive maintenance program for the 

terminals. Alternatively, the company might prefer a combination of these policies. The sim-

ulation model provides a very flexible mechanism for evaluating alternative policies.
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DO over n
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21.7 Statistical Analysis in Simulations

As previously mentioned, output data from simulation always exhibit random variability,

since random variables are input to the simulation model. For example, if we run the same

simulation twice, each time with a different sequence of random numbers, the statistics

generated for the two simulations will almost certainly have different values. Because of

this, we must utilize statistical methods to analyze output from simulations. If the perfor-

mance of the system is measured by a parameter (say, u), then our objective in the simu-

lation will be to develop an estimate û of u, and determine the accuracy of the estimator

û . We measure this accuracy by the standard deviation (also called the standard error) of

û . The overall measure of variability is generally stated in the form of a confidence in-

terval at a given level of confidence. Thus, the purpose of the statistical analysis is to es-

timate this confidence interval.

Determination of the confidence intervals in simulation is complicated by the fact that

output data are rarely, if ever, independent. That is, the data are autocorrelated. For ex-

ample, in a queuing simulation, the waiting time of a customer often depends on the prior

TA B L E  14

Simulation Results for the Terminal System

No. of Terminals (n)

11 12 13 14 15

ELn 9.362 9.641 9.801 9.878 9.931

EDn 0.638 0.359 0.199 0.122 0.069

ELn – EL11 — 0.279 0.439 0.516 0.569

Increase in revenue — $279 $439 $516 $569

Cost of terminals — $75 $150 $225 $300

Net revenue — $204 $289 $291 $269
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customers. Similarly, in an inventory simulation, the models are usually set up such that

the beginning inventory on a given day is the ending inventory from the previous day,

thereby creating a correlation. This means that the classical methods of statistics, which

assume independence, are not directly applicable to the analysis of simulation output data.

Thus, we must modify the statistical methods to make proper inferences from simulation

data.

In addition to the problem of autocorrelation, we may have a second problem, in that

the specification of the initial conditions of the system at time 0 may influence the out-

put data. For example, suppose that in the queuing simulation from Section 9.2, the ar-

rival and the service distributions are such that the average waiting time per customer ex-

ceeds 15 minutes. In other words, the system is heavily congested. If we were to begin

this simulation with no one in the system, the first few customers would have either zero

or very small waiting times. These initial waiting times are highly dependent on the start-

ing conditions and may therefore not be representative of the steady-state behavior of the

system. This initial period of time before a simulation reaches steady state is called the

transient period or warmup period.

There are two ways of overcoming the problems associated with the transient period.

The first approach is to use a set of initial conditions that are representative of the system

in steady state. However, in many simulations, it may be difficult to set such initial con-

ditions. This is particularly true of queuing simulations. The alternative approach is to let

the simulation run for a while and discard the initial part of the simulation. With this ap-

proach, we are assuming that the initial part of the simulation warms the model up to an

equilibrium state. Since we do not collect any statistics during the warmup stage, we can

reduce much of the initialization bias. Unfortunately, there are no easy ways to assess how

much initial data to delete to reduce the initialization bias to negligible levels. Since each

simulation model is different, it is up to the analyst to determine when the transient pe-

riod ends. Although this is a difficult process, there are some general guidelines one can

use. For these and other details of this topic, see Law and Kelton (1991).

Simulation Types

For the purpose of analyzing output data, we generally categorize simulations into one of

two types: terminating simulations and steady-state simulations. A terminating simula-

tion is one that runs for a duration of time TE, where E is a specified event (or events)

that stops the simulation. The event E may be a specified time, in which case the simula-

tion runs for a fixed amount of time. Or, if it is a specified condition, the length of the

simulation will be a random variable. A steady-state simulation is one that runs over a

long period of time; that is, the length of the simulation goes to “infinity.”

Often, the type of model determines which type of output analysis is appropriate for a

particular simulation. For example, in the simulation of a bank, we would most likely use

a terminating simulation, since the bank physically closes every evening, giving us an ap-

propriate terminating event. When simulating a computer system, a steady-state simula-

tion may be more appropriate, since most large computer systems do not shut down ex-

cept in cases of breakdowns or maintenance. However, the system or model may not

always be the best indicator of which simulation would be the most appropriate. It is quite

possible to use the terminating simulation approach for systems more suited to steady-

state simulations, and vice versa. In this section, we provide a detailed description of the

statistical analysis associated with terminating simulations. The analysis for steady-state

simulations is much more involved. For details of the latter, see Banks and Carson (1984)

or Law and Kelton (1991).
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Suppose we make n independent replications using a terminating simulation approach.

If each of the n simulations is started with the same initial conditions and is executed us-

ing a different sequence of random numbers, then each simulation can be treated as an

independent replication. For simplicity, we assume that there is only a single measure of

performance, represented by the variable X. Thus, Xj is the estimator of the measure of

performance from the jth replication. Then, given the conditions of the replications, the

sequence X1, X2, . . . , Xn will be iid random variables. With these iid random variables,

we can use classical statistical analysis to construct a 100(1 � a)% confidence interval

for u � E(X) as follows:

X� 
 t(a/2,n�1) 	�
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n

2

�
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and t(a,n�1) is the number such that for a t-distribution with n � 1 degrees of freedom,

P(tn�1 � t(a,n�1)) � a

(see Table 13 in Chapter 24). This probability can also be computed in Excel with the for-

mula

�TINV(2*alpha,degrees of freedom)

The overall mean X� is simply the average of the X-values computed over the n samples

and can be used as the best estimate of the measure of performance. The quantity S 2 is

the sample variance.

To illustrate the terminating simulation approach, we use an example from the Cabot,

Inc. case. For this illustration, we assume there are 11 terminals in the system, and we

perform only 10 independent terminating runs of the simulation model. The terminating

event, E, is a fixed time. That is, all 10 simulations are run for the same length of time.

The results from these runs are shown in Table 15. The overall average for these 10 runs

TA B L E  15

Sample Averages of Number
of OnLine Terminals 
from 10 Replications

Run Number xj

1 9.252

2 9.273

3 9.413

4 9.198

5 9.532

6 9.355

7 9.155

8 9.558

9 9.310

10 9.269
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for the expected number of terminals online turns out to be 9.331. (Compare this average

with the result in Table 14 of 9.362, which was obtained using the steady-state approach.)

If we now calculate the sample variance, we find S 2 � 0.018. Since t(.025,9) � 2.26, we

obtain

9.331 
2.26 	�
0.0

1

1

0

80
�
 � 9.331 
 0.096

as the 95% confidence interval for this sample.

We could have also computed t(.025,9) in Excel with the formula

�TINV(.05,9)

This yields 2.26, which is consistent with the table in Chapter 24.

The length of the confidence interval will, of course, depend on how good our sample

results are. If this confidence interval is unacceptable, we can reduce its length by either

increasing the number of terminating replications or the length of each simulation. For

example, if we increase the number of runs from 10 to 20, we improve the results on two

fronts. First, the overall average (9.359) approaches the result from the steady-state sim-

ulation; second, the confidence interval length decreases from 0.192 to 0.058. As we saw

in this example, the terminating simulation approach offers a relatively easy method for

analyzing output data. However, it must be emphasized that other methods for analyzing

simulation data may be more efficient for a given problem. For a detailed treatment of this

topic, see Banks and Carson (1984) or Law and Kelton (1991).

21.8 Simulation Languages

One of the most important aspects of a simulation study is the computer programming.

Writing the computer code for a complex simulation model is often a difficult and ardu-

ous task. Because of this, several special-purpose computer simulation languages have

been developed to simplify the programming. In this section, we describe several of the

best-known and most readily available simulation languages, including GPSS, GASP IV,

and SLAM.

Most simulation languages use one of two different modeling approaches or orienta-

tions: event scheduling or process interaction. As we have seen, in the event-scheduling

approach, we model the system by identifying its characteristic events and writing rou-

tines to describe the state changes that take place at the time of each event. The simula-

tion evolves over time by updating the clock to the next scheduled event and making what-

ever changes are necessary to the system and the statistics by executing the routines. In

the process-interaction approach, we model the system as a series of activities that an en-

tity (or a customer) must undertake as it passes through the system. For example, in a

queuing simulation, the activities for an entity consist of arriving, waiting in line, getting

service, and departing from the system. Thus, using the process-interaction approach, we

model these activities instead of events. When programming in a general-purpose lan-

guage such as FORTRAN or BASIC, we generally use the event-scheduling approach.

GPSS uses the process-interaction approach. SLAM allows the modeler to use either ap-

proach or even a mixture of the two, whichever is the most appropriate for the model be-

ing analyzed.

Of the general-purpose languages, FORTRAN is the most commonly used in simula-

tion. In fact, several simulation languages, including GASP IV and SLAM, use a FOR-

TRAN base. Generally, simulation programs in FORTRAN are written as a series of sub-

routines, one for each major function of the simulation process. This is particularly true
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of the FORTRAN-based simulation languages. For example, in GASP IV, there are ap-

proximately 30 FORTRAN subroutines and functions. These include a time-advance rou-

tine, random variate generation routines, routines to manage the future events list, rou-

tines to collect statistics, and so on. To use GASP IV, we must provide a main program,

an initialization routine, and the event routines. For the rest of the program, we use the

GASP routines. Because of these prewritten routines, GASP IV provides a great deal of

programming flexibility. For more details of this language, see Pritsker (1974).

GPSS, in contrast to GASP, is a highly structured special-purpose language. It was de-

veloped by IBM. GPSS does not require writing a program in the usual sense. The lan-

guage is made up of about 40 standard statements or blocks. Building a GPSS model then

consists of combining these sets of blocks into a flow diagram so that it represents the

path an entity takes as it passes through the system. For example, for a single-server queu-

ing system, the statements are of the form GENERATE (arrive in the system), QUEUE

(join the waiting line), DEPART (leave the queue to enter service), ADVANCE (advance

the clock to account for the service time), RELEASE (release the service facility at the

end of service), and TERMINATE (leave the system). The simulation program is then

compiled from these statements of the flow diagram. GPSS was designed for relatively

easy simulation of queuing systems. However, because of its structure, it is not as flexi-

ble as GASP IV, especially for the nonqueuing type of simulations. For a more detailed

description of GPSS, see Schriber (1974).

SLAM was developed by Pritsker and Pegden (1979). It allows us to develop simula-

tion models as network models, discrete-event models, continuous models, or any com-

bination of these. The discrete-event orientation is an extension of GASP IV. The network

representation can be thought of as a pictorial representation of a system through which

entities flow. In this respect, the structure of SLAM is similar to that of GPSS. Once the

network model of the system has been developed, it is translated into a set of SLAM pro-

gram statements for execution on the computer.

In Chapter 22, we will show how to use the powerful, user-friendly Process Model

package that is included on this book’s CD-ROM.

The decision of which language to use is one of the most important that a modeler or

an analyst must make in performing a simulation study. The simulation languages offer

several advantages. The most important of these is that the special-purpose languages pro-

vide a natural framework for simulation modeling and most of the features needed in pro-

gramming a simulation model. However, this must be balanced against the fact that the

general-purpose languages allow greater programming flexibility, and that languages like

FORTRAN and BASIC are much more widely used and available.

21.9 The Simulation Process

In this chapter, we have considered several simulation models and presented a number of

key simulation concepts. We now discuss the process for a complete simulation study and

present a systematic approach of carrying out a simulation. A simulation study normally

consists of several distinct stages. These are presented in Figure 21. However, not all sim-

ulation studies consist of all these stages or follow the order stated here. On the other

hand, there may even be considerable overlap between some of these stages.

The initial stage of any scientific study, including a simulation project, requires an ex-

plicit statement of the objectives of the study. This should include the questions to be an-

swered, the hypothesis to be tested, and the alternatives to be considered. Without a clear

understanding and description of the problem, the chances of successful completion and

implementation are greatly diminished. Also in this step, we address issues such as the
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performance criteria, the model parameters, and the identification and definition of the

state variables. It is, of course, very likely that the initial formulation of the problem will

undergo many modifications as the study proceeds and as we learn more about the situa-

tion being studied. Nevertheless, a clear initial statement of the objectives is essential.

The next stage is the development of the model and the collection of data. The devel-

opment of the model is probably the most difficult and critical part of a simulation study.

Here, we try to represent the essential features of the systems under study by mathemat-

ical or logical relations. There are few firm rules to guide an analyst on how to go about

this process. In many ways, this is as much an art as a science. However, most experts

agree that the best approach is to start with a simple model and make it more detailed and

complex as one learns more about the system.

Having developed the model, we next put it into a form in which it can be analyzed

on the computer. This usually involves developing a computer program for the model. One
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Perform simulation runs

Analyze output data

Document and implement runs

Simulation

complete

?

Collect data and develop

a model
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of the key decisions here is the choice of the language. As noted earlier, the special-

purpose languages require less programming than the general-purpose languages but are less

flexible and tend to require longer computer running times. In either case, the program-

ming part of the study is likely to be a time-consuming process, since simulation pro-

grams tend to be long and complex. Once the program has been developed and debugged,

we determine whether the program is working properly. In other words, is the program

doing what it is supposed to do? This process is called the verification step and is usually

difficult, since for most simulations, we will not have any results with which to compare

the computer output.

If we are satisfied with the program, we now move to the validation stage. This is an-

other critical part of a simulation study. In this step, we validate the model to determine

whether it realistically represents the system being analyzed and whether the results from

the model will be reliable. As with the verification stage, this is generally a difficult

process. Each model presents a different challenge. However, there are some general

guidelines that one can follow. For more on these procedures, see Law and Kelton (1991)

or Shannon (1979). If we are satisfied at this stage with the performance of the model,

we can use the model to conduct the experiments to answer the questions at hand. The

data generated by the simulation experiments must be collected, processed, and analyzed.

The results are analyzed not only as the solution to the model but also in terms of statis-

tical reliability and validity. Finally, after the results are processed and analyzed, a deci-

sion must be made whether to perform any additional experiments.

The primary emphasis in this chapter has been on sampling procedures and model con-

struction. As a result, many topics of the simulation process are either not covered or

treated only briefly. However, these are important issues in simulation, and the reader in-

terested in using simulation should consult Law and Kelton (1991), Shannon (1979),

Banks and Carson (1984), or Ross (1996).

S U M M A R Y Introduction to Simulation

Simulation may be defined as a technique that imitates the operation of a real-world sys-

tem as it evolves over a period of time. There are two types of simulation models: static

and dynamic. A static simulation model represents a system at a particular point in time.

A dynamic simulation model represents a system as it evolves over time. Simulations

can be deterministic or stochastic. A deterministic simulation contains no random vari-

ables, whereas a stochastic simulation contains one or more random variables. Finally,

simulations may be represented by either discrete or continuous models. A discrete sim-

ulation is one in which the state variables change only at discrete points in time. In a con-

tinuous simulation, the state variables change continuously over time. In this chapter, we

have dealt only with discrete stochastic models. Such models are called discrete-event

simulation models.

The Simulation Process

The simulation process consists of several distinct stages. Each study may be somewhat

different, but in general, we use the following framework:

1 Formulate the problem.

2 Collect data and develop a model.

3 Computerize the model.



4 Verify the computer model.

5 Validate the simulation model.

6 Design the experiment.

7 Perform the simulation runs.

8 Document and implement.

Generating Random Variables

Random variables are represented using probability distributions. The procedure for gen-

erating random variables from given probability distributions is known as random variate

generation or Monte Carlo sampling. The principle of sampling is based on the fre-

quency interpretation of probability and requires a steady stream of random numbers. We

generate random numbers for this procedure using congruential methods. The most com-

monly used of the congruential methods is the linear congruential method. Random

numbers generated from a linear congruential generator use the following relation:

xi�1 � (axi � c) modulo m (i � 0, 1, 2, . . .)

This gives us the remainder from the division of (axi � c) by m. The random numbers are

delivered using the relation

Ri � �
m

xi
� (i � 1, 2, 3, . . .)

For discrete distributions, Monte Carlo sampling is achieved by allocating ranges of ran-

dom numbers according to the probabilities in the distribution. For continuous distribu-

tions, we generate random variates using one of several algorithms, including the inverse

transformation method and the acceptance–rejection method. The inverse transforma-

tion method requires a cdf in closed form and consists of the following steps.

Step 1 Given a probability density function f (x), develop the cumulative distribution

function as

F(x) � �x

�∞

f (t)dt

Step 2 Generate a random number r.

Step 3 Set F(x) � r and solve for x. The variable x is then a random variate from the

distribution whose pdf is given by f (x).

The acceptance–rejection method requires the pdf to be defined over a finite interval.

Thus, given a probability density function f (x) over the interval a � x � b, we execute

the acceptance–rejection algorithm as follows.

Step 1 Select a constant M such that M is the largest value of f (x) over the interval [a, b].

Step 2 Generate two random numbers, r1 and r2.

Step 3 Compute x* � a � (b � a)r1.

Step 4 Evaluate the function f (x) at the point x*. Let this be f (x*).

Step 5 If r2 � �
f (

M

x*)
�, deliver x* as a random variate. Otherwise, reject x* and go back to

step 2.

Summary 1187
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Between these two methods, it is possible to generate random variates from almost all of

the commonly used distributions. The one exception is the normal distribution. For the

normal distribution, we generate random variates directly by transforming the random

numbers r1 and r2 into standardized normal variates, Z1 and Z2, using the relations

Z1 � (�2 ln r1)1/2 sin 2p r2

Z2 � (�2 ln r1)1/2 cos 2p r2

Types of Simulations

In discrete-event simulations, we generally simulate using the next-event time-advance

approach. In this procedure, the simulation evolves over time by updating the clock to the

next scheduled event and taking whatever actions are necessary for each event. The events

are scheduled by generating random variates from probability distributions. Data from a

simulation can be analyzed using either a terminating simulation approach or a steady-

state simulation approach. In terminating simulations, we make n independent replications

of the model, using the same initial conditions but running each replication with a dif-

ferent sequence of random numbers. If the measure of performance is represented by the

variable X, this approach gives us the estimators X1, X2, . . . , Xn from the n replications.

These estimators are used to develop a 100(1 � a)% confidence interval as

X� 
 t(a/2,n�1) 	�
S

n

2

�

for a fixed value of n.

Simulation gives us the flexibility to study systems that are too complex for analytical

methods. However, it must be put into proper perspective. Simulation models are time

consuming and costly to construct and run. Additionally, the results may not be very pre-

cise and are often hard to validate. Simulation can be a powerful tool, but only if it is used

properly.

R E V I E W  P R O B L E M S
Group A

1 Use the linear congruential generator to obtain a
sequence of 10 random numbers, given that a � 17, c � 43,
m � 100, and x0 � 31.

2 A news vendor sells newspapers and tries to maximize
profits. The number of papers sold each day is a random
variable. However, analysis of the past month’s data shows
the distribution of daily demand in Table 16. A paper costs
the vendor 20¢. The vendor sells the paper for 30¢. Any
unsold papers are returned to the publisher for a credit of
10¢. Any unsatisfied demand is estimated to cost 10¢ in
goodwill and lost profit. If the policy is to order a quantity
equal to the preceding day’s demand, determine the average
daily profit of the news vendor by simulating this system.
Assume that the demand for day 0 is equal to 32.

3 An airport hotel has 100 rooms. On any given night, it
takes up to 105 reservations, because of the possibility of
no-shows. Past records indicate that the number of daily
reservations is uniformly distributed over the integer range
[96, 105]. That is, each integer number in this range has an

equal probability, .1, of showing up. The no-shows are
represented by the distribution in Table 17. Develop a
simulation model to find the following measures of
performance of this booking system: the expected number
of rooms used per night and the percentage of nights when
more than 100 rooms are claimed.

TA B L E  16

Demand per Day Probability

30 .05

31 .15

32 .22

33 .38

34 .14

35 .06
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4 The university library has one copying machine for the
students to use. Students arrive at the machine with 
the distribution of interarrival times shown in Table 18. The
time to make a copy is uniformly distributed over the range
[16, 25] seconds. Analysis of past data has shown that the
number of copies a student makes during a visit has 
the distribution in Table 19. The librarian feels that under
the present system, the lines in front of the copying machine
are too long and that the time a student spends in the system
(waiting time � service time) is excessive. Develop a
simulation model to estimate the average length of the
waiting line and the expected waiting time in the system.

5 A salesperson in a large bicycle shop is paid a bonus if
he sells more than 4 bicycles a day. The probability of
selling more than 4 bicycles a day is only .40. If the number
of bicycles sold is greater than 4, the distribution of sales is
as shown in Table 20. The shop has four different models of
bicycles. The amount of the bonus paid out varies by type.
The bonus for model A is $10; 40% of the bicycles sold are
of this type. Model B accounts for 35% of the sales and
pays a bonus of $15. Model C has a bonus rating of $20 and
makes up 20% of the sales. Finally, model D pays a bonus
of $25 for each sale but accounts for only 5% of the sales.
Develop a simulation model to calculate the bonus a
salesperson can expect in a day.

6 A heart specialist schedules 16 patients each day, 1
every 30 minutes, starting at 9 A.M. Patients are expected to
arrive for their appointments at the scheduled times.
However, past experience shows that 10% of all patients
arrive 15 minutes early, 25% arrive 5 minutes early, 50%
arrive exactly on time, 10% arrive 10 minutes late, and 5%
arrive 15 minutes late. The time the specialist spends with
a patient varies, depending on the type of problem. Analysis
of past data shows that the length of an appointment has the

distribution in Table 21. Develop a simulation model to
calculate the average length of the doctor’s day.

Group B

7 Suppose we are considering the selection of the reorder
point, R, of a (Q, R) inventory policy. With this policy, we
order up to Q when the inventory level falls to R or less.
The probability distribution of daily demand is given in
Table 22. The lead time is also a random variable and has
the distribution in Table 23. We assume that the “order up
to” quantity for each order stays the same at 100. Our interest
here is to determine the value of the reorder point, R, that
minimizes the total variable inventory cost. This variable
cost is the sum of the expected inventory carrying cost, the
expected ordering cost, and the expected stockout cost. All
stockouts are backlogged. That is, a customer waits until an
item is available. Inventory carrying cost is estimated to be
20¢/unit/day and is charged on the units in inventory at 
the end of a day. A stockout costs $1 for every unit short.
The cost of ordering is $10 per order. Orders arrive at the
beginning of a day. Develop a simulation model to simulate
this inventory system to find the best value of R.

8 A large car dealership in Bloomington, Indiana, employs
five salespeople. All salespeople work on commission; they
are paid a percentage of the profits from the cars they sell.
The dealership has three types of cars: luxury, midsize, and
subcompact. Data from the past few years show that the car
sales per week per salesperson have the distribution in Table
24. If the car sold is a subcompact, a salesperson is given a
commission of $250. For a midsize car, the commission is
either $400 or $500, depending on the model sold. On the

TA B L E  17

Number
of No-Shows Probability

0 .10

1 .20

2 .25

3 .30

4 .10

5 .05

TA B L E  18

Interarrival Time
(minutes) Probability

1 .20

2 .25

3 .40

4 .10

5 .05

TA B L E  19

Number
of Copies Probability

6 .20

7 .25

8 .35

9 .15

10 .05

TA B L E  20

No. of Bicycles
Sold Probability

5 .35

6 .45

7 .15

8 .05

TA B L E  21

Length of
Appointment
(minutes) Probability

24 .10

27 .20

30 .40

33 .15

36 .10

39 .05

TA B L E  22

Daily Demand
(units) Probability

12 .05

13 .15

14 .25

15 .35

16 .15

17 .05

TA B L E  23

Lead Time
(days) Probability

1 .20

2 .30

3 .35

4 .15

TA B L E  24

No. of Cars
Sold Probability

0 .10

1 .15

2 .20

3 .25

4 .20

5 .10
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midsize cars, a commission of $400 is paid out 40% of the
time, and $500 is paid out the other 60% of the time. For a
luxury car, commission is paid out according to three
separate rates: $1,000 with a probability of 35%, $1,500
with a probability of 40%, and $2,000 with a probability of
25%. If the distribution of type of cars sold is as shown in
Table 25, what is the average commission for a salesperson
in a week?

9 Consider a bank with 4 tellers. Customers arrive at an
exponential rate of 60 per hour. A customer goes directly
into service if a teller is idle. Otherwise, the arrival joins a
waiting line. There is only one waiting line for all the tellers.
If an arrival finds the line too long, he or she may decide to
leave immediately (reneging). The probability of a customer
reneging is shown in Table 26. If a customer joins the waiting
line, we assume that he or she will stay in the system until

TA B L E  25

Type of Car
Sold Probability

Subcompact .40

Midsize .35

Luxury .25

TA B L E  26

Length Probability
of Queue (q) of Reneging

6 � q � 8 .20

9 � q � 10 .40

11 � q � 14 .60

q � 14 .80

served. Each teller serves at the same service rate. Service
times are uniformly distributed over the range [3, 5].
Develop a simulation model to find the following measures
of performance for this system: (1) the expected time a
customer spends in the system, (2) the percentage of
customers who renege, and (3) the percentage of idle time
for each teller.

10 Jobs arrive at a workshop, which has two work centers
(A and B) in series, at an exponential rate of 5 per hour.
Each job requires processing at both these work centers,
first on A and then on B. Jobs waiting to be processed at
each center can wait in line; the line in front of work center
A has unlimited space, and the line in front of center B has
space for only 4 jobs at a time. If this space reaches its
capacity, jobs cannot leave center A. In other words, center
A stops processing until space becomes available in front of
B. The processing time for a job at center A is uniformly
distributed over the range [6, 10]. The processing time for
a job at center B is represented by the following triangular
distribution:

f (x) � �
Develop a simulation model of this system to determine the
following measures of performance: (1) the expected
number of jobs in the workshop at any given time, (2) the
percentage of time center A is shut down because of shortage
of queuing space in front of center B, and (3) the expected
completion time of a job.

1 � x � 3

3 � x � 5

�
1
4

�(x � 1)

�
1
4

�(5 � x)
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Simulation with Process Model

In Chapter 21, we learned how to build simulation models of many different situations. In this

chapter, we will explain how the powerful, user-friendly simulation package Process Model can

be used to simulate queuing systems.

22.1 Simulating an M/M/1 Queuing System

After installing Process Model from the book’s CD-ROM, you can start Process Model

by selecting Start Programs Process Model 4. You will see the screen shown in Figure 1,

where some key icons have been labeled.

It is simple to simulate an M/M/1 queuing system having l � 10 arrivals/hour and 

m � 15 customers/hour. See file MM1.igx. Assume that these are calls for directory 

assistance.

Step 1 Click on one of the arrival icons (a person or a phone) and drag the icon to the

blank part of the screen (called the Layout portion). We have chosen to use the phone

icon. Your screen should look like Figure 2.

Step 2 Select the Process rectangle and drag it right over the arrival icon. Click on it and

drag it to the right. You will now have a double-arrowed connection between the arrival

icon and the Process rectangle. The double-arrowed icon indicates the arrival of entities

into the system. Later we will tell Process Model that interarrival times are exponential

with mean 6 minutes. After Taking Calls is typed within the Process rectangle, the Lay-

out window looks as shown in Figure 3.

Step 3 Choose one of the server icons to represent a telephone operator (say, the person

with the computer) and drag this icon to the Layout window above the Take Calls Process

rectangle. Then type the word “operator” to indicate a phone operator. Next, click on the

Connector Line tool in the Toolbox and place the cursor over the operator. We then click

once and drag a connection down to the Take Calls activity. This indicates that the oper-

ator can take calls. The Layout window should now look as shown in Figure 4.

Step 4 Next, tell Process Model to make interarrival times exponential. Process Model

works off the mean interarrival time or service time, not the arrival or service rates.

Process Model supports many distributions, including the triangular, normal, and Erlang

random variables. For now, we will use the exponential distribution. Since the average

time between arrivals is 6 minutes, we will model the interarrival times as E(6). (E stands

for exponential.) To enter the interarrival time distribution, click on the double arrow con-

necting Call to Take Calls and fill in the dialog box as shown in Figure 5. Entering Peri-

odic and E(6) ensures that interarrival times will be generated over and over as indepen-

dent exponential random variables with mean 6.

MM1.igx
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Step 5 We now need to tell Process Model that service times are exponential with mean

4. To do this, click on the Take Calls Process rectangle and fill in the dialog box as shown

in Figure 6.

Step 6 We have now completed the model setup. Select File Save As and save the model.

(All models have the suffix .igx.)

Step 7 To run the simulation, select Simulation and then Options and fill in the dialog

box as shown in Figure 7.

We have chosen to run the system for 4,000 hours. Choosing a Warmup length of 

1 hour, the first hour of running the simulation will not be used in the collection of sta-

tistics. To start the simulation, choose Simulation Save and Simulation. As the simulation

progresses, telephone calls moving through the flowchart illustrate the flow of calls

through the process. Resources or servers will show a green light when the resource is

being utilized and a blue light when idle. Counters above and to the left of each activity

represent the number of calls waiting to be processed. The speed of the simulation can be

Connector line

      Arrivals                                  

  or resources       

Process

rectangle

Servers    

F I G U R E  1
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F I G U R E  2
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controlled by moving the Speed Control bar, left for slower and right for faster. By choos-

ing Simulation End Simulation, you may stop the simulation at any time. During the sim-

ulation, an on-screen scoreboard tracks the following quantities:

■ Quantity Processed (total number of units to leave the system)

■ Cycle Time (average time a unit spends in the system)

F I G U R E  4

F I G U R E  5

F I G U R E  6
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■ Value Added Time (time a unit spends in service)

■ Cost Per Unit (if costs are associated with the resources, the cost incurred per

unit serviced is computed)

After completing the simulation, you are asked if you want to view the output. If so, you

will see an output similar to Figure 8, and the output may be saved as a text file. Figure

8 includes comments (in boldface) to explain the key portions of the output.

If we treat this output as representative of the system’s steady state, we have the fol-

lowing parameter estimates:

■ �0 � .3363

■ �0 � �1 � .5634

■ Ws � 4.01 minutes

■ Wq � 7.71 minutes

■ W � 11.72 minutes

For an M/M/1 system, we can compute the steady-state values of these quantities exactly.

Since r � 10/15 � .667, we find from Equation (24) of Chapter 20 that �0 � 1 � .667 �

.333. From (25) of Chapter 20, we find that �1 � .667(1 � .667) � .222. Thus, �0 �

�1 � .555. Clearly Ws � 4 minutes. From Formula (31) of Chapter 20, W � �
15 �

1
10

� �

.2 hour � 12 minutes. Then Wq � 12 � 4 � 8 minutes. Note that the simulation yields

very close agreement with the steady-state estimates.

22.2 Simulating an M/M/2 System

Let us modify the previous example by changing the number of operators to 2 and en-

suring that up to 2 operators can be working on calls at the same time. See file MM2.igx.

To change the number of operators to 2, click on the resource and fill in the dialog box

as shown in Figure 9.

To ensure that two operators can work on calls at the same time click on the Process

rectangle Take Calls and modify it as in Figure 10.

After saving this file as MM2.igx and running it for 1,000 hours, we obtain the output

shown in Figure 11. (Boldface comments explain key portions.)

F I G U R E  7

MM2.igx
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-----------------------------------------------------------------------
---------
General Report
Output from C:\Program Files\ProcessModel 4\mm1.mod
Date: Aug/13/2002   Time: 07:50:42 AM
-----------------------------------------------------------------------
---------
Scenario        : Normal Run
Replication     : 1 of 1
Warmup Time     : 1 hr
Simulation Time : 3986.90
-----------------------------------------------------------------------
---------

ACTIVITIES

                                               Average
Activity       Scheduled              Total    Minutes   Average
Maximum   Current
Name               Hours  Capacity  Entries  Per Entry  Contents
Contents  Contents  % Util
-------------  ---------  --------  -------  ---------  --------  -----
---  --------  ------
Take Call in Q    3985.90       999    39581       7.71      1.27
21         1    0.13
Take Call        3985.90         1    39581       4.01      0.66
1         1   66.37

In the nearly 3,986 hours for which data was collected, almost exactly 10

arrivals per hour occurred. The total time spent by a call in queue

(waiting) averaged 7.71 minutes, and total service time averaged 4.01

minutes.

ACTIVITY STATES BY PERCENTAGE (Multiple Capacity)

                                         %
Activity       Scheduled      %  Partially     %
Name               Hours  Empty   Occupied  Full
-------------  ---------  -----  ---------  ----
Take Call inQ    3985.90  56.34      43.66  0.00

The queue for calls was empty 56.34% of the time.

ACTIVITY STATES BY PERCENTAGE (Single Capacity)

Activity   Scheduled          %      %        %        %
Name           Hours  Operation   Idle  Waiting  Blocked
---------  ---------  ---------  -----  -------  -------
Take Call    3985.90      66.37  33.63     0.00     0.00

The operator was idle 33.63% of the time.F I G U R E  8
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RESOURCES

                                      Average
                              Number  Minutes
Resource         Scheduled  Of Times      Per
Name      Units      Hours      Used    Usage  % Util
--------  -----  ---------  --------  -------  ------
Staff         1    3985.90     39581     4.01   66.37
Staff was busy 66.37% of the time, and average staff usage per

call processed was 4.01 minutes.

RESOURCE STATES BY PERCENTAGE

Resource  Scheduled       %      %     %
Name          Hours  In Use   Idle  Down
--------  ---------  ------  -----  ----
Staff       3985.90   66.37  33.63  0.00

Staff was busy 66.37% of the time.

ENTITY SUMMARY  (Times in Scoreboard time units)

                     Average    Average
                       Cycle         VA
Entity        Qty       Time       Time  Average
Name    Processed  (Minutes)  (Minutes)     Cost
------  ---------  ---------  ---------  -------
Call        39580      11.72       4.01     1.33

Each call spent an average of 11.72 minutes in the system.

F I G U R E  8

(Continued)

F I G U R E  9

F I G U R E  10
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-----------------------------------------------------------------------
---------
General Report
Output from C:\Program Files\ProcessModel 4\second.mod
Date: Aug/13/2002   Time: 03:08:49 PM
-----------------------------------------------------------------------
---------
Scenario        : Normal Run
Replication     : 1 of 1
Warmup Time     : 1 hr
Simulation Time : 4001 hr
-----------------------------------------------------------------------
---------

ACTIVITIES

                                                Average
Activity        Scheduled              Total    Minutes   Average
Maximum   Current
Name                Hours  Capacity  Entries  Per Entry  Contents
Contents  Contents  % Util
--------------  ---------  --------  -------  ---------  --------  ----
----  --------  ------
Take Calls inQ       4000       999    39968       0.51      0.08
7         0    0.01
We see that an average of almost exactly 10 arrivals per hour have been

observed.

Take Calls           4000         2    39970       4.03      0.67
2         0   33.60

ACTIVITY STATES BY PERCENTAGE (Multiple Capacity)

                                          %
Activity        Scheduled      %  Partially      %
Name                Hours  Empty   Occupied   Full
--------------  ---------  -----  ---------  -----
Take Calls inQ       4000  94.34       5.66   0.00
Take Calls           4000  49.58      33.64  16.78
We see that 5.66% of the time, people are waiting. Note from the M/M/s

template below that probability of people waiting = probability >2 people

present = 1 - .5 - .333 - .111 = .0566.

RESOURCES

                                        Average
                                Number  Minutes
Resource           Scheduled  Of Times      Per
Name        Units      Hours      Used    Usage  % Util
----------  -----  ---------  --------  -------  ------
Operator.1      1       4000     19971     4.03   33.60
Operator.2      1       4000     19999     4.03   33.60
Operator        2       8000     39970     4.03   33.60
Each operator’s mean service time is 4.03 minutes (compared to the 4

minutes we input).F I G U R E  11
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22.3 Simulating a Series System

In this section, we use Process Model to simulate a series queuing system. We will take

the case of the auto assembly line (Example 13 of Section 20.10).

E X A M P L E  1

The last two things that are done to a car before its manufacture is complete are installing

the engine and putting on the tires. An average of 54 cars per hour arrive requiring these

Auto Assembly

RESOURCE STATES BY PERCENTAGE

Resource    Scheduled       %      %     %
Name            Hours  In Use   Idle  Down
----------  ---------  ------  -----  ----
Operator.1       4000   33.60  66.40  0.00
Operator.2       4000   33.60  66.40  0.00
Operator         8000   33.60  66.40  0.00

Each operator was busy 33.60% of the time. Note from the steady-state

probabilities in the M/M/s template that the probability that a server is busy is

.5*(Prob. 1 person present) + Prob(>=2 people present) = .5*(.333) + .167 = .333.

ENTITY SUMMARY  (Times in Scoreboard time units)

                     Average    Average
                       Cycle         VA
Entity        Qty       Time       Time  Average
Name    Processed  (Minutes)  (Minutes)     Cost
------  ---------  ---------  ---------  -------
Call        39970       4.55       4.03     0.00
The average time a call spends in the system is 4.55 minutes. From the M/M/s

spreadsheet, we find that W = 4.5 minutes.

VARIABLES
                                 Average
Variable               Total     Minutes  Minimum  Maximum  Current
Average
Name                 Changes  Per Change    Value    Value    Value
Value
-------------------  -------  ----------  -------  -------  -------  --
-----
Avg BVA Time Entity        1        0.00        0        0        0
0
Avg BVA Time Call      39971        6.00        0        0        0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A B C D E F G

M/M/s/GD LAMBDA? MU? s? RO

 10 15 2 0.33333333

L LS LQ W WS WQ

0.75 0.66666667 0.08333333 0.075 0.066666667 0.008333333

STATE P(j>=s)

1 0.16666667

P(Wq>t) t? P(W>t)

9.57313E-60 6.70521931 3.1296E-44

STATE LAMBDA(J) MU(J) CJ PROB #IN QUEUE COLA*COLE

0 10 0 1 0.5 0 0

1 10 15 0.66666667 0.33333333 0 0.333333333

2 10 30 0.22222222 0.11111111 0 0.222222222

F I G U R E  11
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two tasks. One worker is available to install the engine and can service an average of 60

cars per hour. After the engine is installed, the car goes to the tire station and waits for its

tires to be attached. Three workers serve at the tire station. Each works on one car at a

time and can put tires on a car in an average of 3 minutes. Assume that interarrival times

and service times are exponential. Simulate this system for 400 hours.

Solution See file Carassembly.igx. The key to creating a queuing network with Process Model is

to build the diagram one service center at a time. We begin by creating the arrivals as in

Section 22.1. Then we create the engine production center as in Section 22.1. Then we

drag the Process rectangle over the Engine production center and pull it to the right to

create the Tire production center. Of course, we must change the number of servers at the

Tire production center to 3 (and also change the capacity of the tire operation to 3). We

must enter service times of E(1) for the Engine production center and E(3) for the Tire

production center. For the interarrival times, we must enter E(1.11), since there is an ar-

rival an average of every 60/54 � 1.1 minutes. The flowchart looks like Figure 12.

Note that clicking on the arrow connecting the Engine and Tire rectangles results in

the dialog box shown in Figure 13. This indicates that 100% of all cars completing En-

gine installation are sent to the Tire station. We also adjusted the Move time from 1 minute

to 0 minute. The Move time indicates how many minutes are needed to move from the

Engine to the Tire station. Suppose, for example 70% of the jobs completing Engine in-

stallation are sent to other stations (such as Final inspection), and 30% are sent on to the

Tire station. We would model this by changing the percentage on the arrow joining En-

gine and Final inspection to 70%. The percentage going from Engine to Tire would auto-

matically adjust to 30%. We will see how this works in the next example.

F I G U R E  12

Carassembly.igx
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-----------------------------------------------------------------------
---------
General Report
Output from C:\Program Files\ProcessModel 4\carassembly.mod
Date: Aug/15/2002   Time: 10:14:13 AM
-----------------------------------------------------------------------
---------
Scenario        : Normal Run
Replication     : 1 of 1
Warmup Time     : 1 hr
Simulation Time : 404.88
-----------------------------------------------------------------------
---------

ACTIVITIES

                                            Average
Activity    Scheduled              Total    Minutes   Average   Maximum
Current
Name            Hours  Capacity  Entries  Per Entry  Contents  Contents
Contents  % Util
----------  ---------  --------  -------  ---------  --------  --------
--------  ------
Engine inQ     403.88       999    21741       8.32      7.46        54
1    0.75
Engine         403.88         1    21741       1.00      0.89         1
1   89.82
Tire inQ       403.88      1000    21743       8.00      7.18        46
0    0.72
Tire           403.88         3    21746       3.02      2.71         3
3   90.45
An average of 21,741/403.88 = 53.83 arrivals per hour were observed.

ACTIVITY STATES BY PERCENTAGE (Multiple Capacity)

                                      %
Activity    Scheduled      %  Partially      %
Name            Hours  Empty   Occupied   Full
----------  ---------  -----  ---------  -----
Engine inQ     403.88  19.24      80.76   0.00
Tire inQ       403.88  25.74      74.26   0.00
Tire           403.88   2.37      15.20  82.42
19% of the time, no cars are waiting for engine installation. 26% of the

time, no cars are waiting for tire installation. 82.4% of the time, all tire

installers are busy; 2.37% of the time, no tire installers are busy; and

15.2% of the time, some (but not all) tire installers are busy.

F I G U R E  13

F I G U R E  14

After running the simulation for 400 hours (with a 1-hour warmup period), we ob-

tained the results shown in Figure 14 (explanatory comments in boldface).
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ACTIVITY STATES BY PERCENTAGE (Single Capacity)

Activity  Scheduled          %      %        %        %
Name          Hours  Operation   Idle  Waiting  Blocked
--------  ---------  ---------  -----  -------  -------
Engine       403.88      89.82  10.18     0.00     0.00
The engine installer is busy 89.8% of the time. (In the steady state, she

should be busy 90% of the time according to �0 = �.

RESOURCES

                                       Average
                               Number  Minutes
Resource          Scheduled  Of Times      Per
Name       Units      Hours      Used    Usage  % Util
---------  -----  ---------  --------  -------  ------
Worker         1     403.88     21741     1.00   89.82
Worker2.1      1     403.88      7250     3.02   90.45
Worker2.2      1     403.88      7258     3.02   90.46
Worker2.3      1     403.88      7238     3.02   90.45
Worker2        3    1211.64     21746     3.02   90.45

Mean service time at the Engine station is 1 minute. At the Tire station, 

mean service time is 3.02 minutes.

RESOURCE STATES BY PERCENTAGE

Resource   Scheduled       %      %     %
Name           Hours  In Use   Idle  Down
---------  ---------  ------  -----  ----
Worker        403.88   89.82  10.18  0.00
Worker2.1     403.88   90.45   9.55  0.00
Worker2.2     403.88   90.46   9.54  0.00
Worker2.3     403.88   90.45   9.55  0.00
Worker2      1211.64   90.45   9.55  0.00
Tire workers appear to be busy around 90.5% of the time, and the engine 

installer is busy 89.9% of the time.

ENTITY SUMMARY  (Times in Scoreboard time units)

                     Average    Average
                       Cycle         VA
Entity        Qty       Time       Time  Average
Name    Processed  (Minutes)  (Minutes)     Cost
------  ---------  ---------  ---------  -------
Car         21743      20.36       4.02     0.00
Average time in the system is 20.4 minutes. In our discussion of

Example 13 of Chapter 20, we found total time (in steady state) in the 

system to equal mean engine service time + mean tire installation time + 
mean time waiting for engine + mean time waiting for tires = 1 + 3 + 60(.15) +

60(.138) = 21.4 minutes.

Name                 Changes  Per Change    Value    Value    Value
Value
-------------------  -------  ----------  -------  -------  -------  --
-----
Avg BVA Time Entity        1        0.00        0        0        0
0
Avg BVA Time Car       21744        1.11        0        0        0
0

VARIABLES

                                 Average
Variable               Total     Minutes  Minimum  Maximum  Current
Average

F I G U R E  14
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The Effect of a Finite Buffer

Suppose we have only enough space for two cars to wait for tire installation. This is called

a buffer of size 2. We assume that if there are two cars waiting for tire installation, the

engine installation center must shut down until there is room to “store” a car waiting for

tire installation. To model this, change the Input Capacity in the Tire Activity dialog box

to 2. (See Figure 15.) Rerunning the simulation, we now find the average time for a car

in the system is nearly 6 hours! Clearly, we need more storage space. Even with a buffer

of size 10, total time in the system is increased by around 50%.

22.4 Simulating Open Queuing Networks

In this section, we show how to use Process Model to simulate open queuing networks.

To illustrate, we simulate Example 14 from Section 20.10.

E X A M P L E  2

An open queuing network consists of two servers: server 1 and server 2. An average of 

8 customers per hour arrive from outside at server 1. An average of 17 customers per hour

arrive from outside at server 2. Interarrival times are exponential. Server 1 can serve at

an exponential rate of 20 customers per hour, and server 2 can serve at an exponential

rate of 30 customers per hour. After completing service at server 1, half the customers

leave the system and half go to server 2. After completing service at server 2, 75% of 

the customers complete service and 25% return to server 1. Simulate this system for 

400 hours.

Solution See file Open.igx. To begin, we need to create two arrival entities: one representing ex-

ternal arrivals to server 1 and one representing external arrivals to server 2. After creat-

ing Process rectangles for server 1 and server 2, we use the Connector tool to create a link

from server 1 to server 2, a link from server 2 to server 1, and a link from Server 1 and

2 to exit the system. For server 1, arrivals are E(7.5), and for server 2, arrivals are E(3.53).

Service time for server 1 is E(3), while service time for server 2 is E(2). After clicking

on the link from server 1 to server 2, we make sure that the routing percentage is 50% (this

is the default). After clicking on the link from server 2 to server 1, we change the rout-

ing percentage to 25%. Note that the routing percentages on the exit links automatically

adjust so that the total routing percentage leaving a service center is 100%. As an exam-

ple, the dialog box on the link leaving server 2 and going to server 1 should be filled in

Open Queuing Network

F I G U R E  15

Open.igx
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as shown in Figure 16. There, the Move time from server 2 to server 1 is made equal to

0, and we ensured that 25% of all customers completing server 2 go instantly to server 1.

This implies that 75% of all customers completing server 2 instantly leave the system.

(Click on the arc leaving server 2 if you do not believe this.) Note that the default Move

times must always be adjusted from 1 minute unless you want a move time of 1 minute.

The flowchart is shown in Figure 17. Note that as the simulation runs, some calls move

between the servers, and some exit the system. Seeing this movement really makes the

F I G U R E  16

F I G U R E  17



2 2 . 4 Simulating Open Queuing Networks 1205

-----------------------------------------------------------------------
---------
General Report
Output from C:\Program Files\ProcessModel 4\open.mod
Date: Aug/15/2002   Time: 10:17:11 AM
-----------------------------------------------------------------------
---------
Scenario        : Normal Run
Replication     : 1 of 1
Warmup Time     : 4 hr
Simulation Time : 404 hr
-----------------------------------------------------------------------
---------

ACTIVITIES

                                              Average
Activity      Scheduled              Total    Minutes   Average
Maximum   Current
Name              Hours  Capacity  Entries  Per Entry  Contents
Contents  Contents  % Util
------------  ---------  --------  -------  ---------  --------  ------
--  --------  ------
Server 1 inQ        400       999     5485       6.69      1.52
14         3    0.15
Server 1            400         1     5482       3.02      0.69
1         1   69.07
Server 2 inQ        400       999     9627       7.69      3.08
32         0    0.31
Server 2            400         1     9628       2.00      0.80
1         0   80.28
Note: Server 1 processes around 14 calls per hour, while server   2

processes around 24 calls per hour. This agrees with the results we

obtained in our analysis of Example 14 in Chapter 20.

ACTIVITY STATES BY PERCENTAGE (Multiple Capacity)

                                        %
Activity      Scheduled      %  Partially     %
Name              Hours  Empty   Occupied  Full
------------  ---------  -----  ---------  ----
Server 1 inQ        400  45.19      54.81  0.00
Server 2 inQ        400  35.44      64.56  0.00

F I G U R E  18

ACTIVITY STATES BY PERCENTAGE (Single Capacity)

Activity  Scheduled          %      %        %        %
Name          Hours  Operation   Idle  Waiting  Blocked
--------  ---------  ---------  -----  -------  -------
Server 1        400      69.07  30.93     0.00     0.00
Server 2        400      80.28  19.72     0.00     0.00

Server 1 is busy 69.1% of the time, while server 2 is busy 80.3% of the

time.

45% of the time, no jobs are waiting at server 1. 35% of the time, no jobs are

waiting at server 2.

concept of an open queuing network come alive. The simulation output is shown in Fig-

ure 18 (with explanatory comments in boldface).
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RESOURCES

                                      Average
                              Number  Minutes
Resource         Scheduled  Of Times      Per
Name      Units      Hours      Used    Usage  % Util
--------  -----  ---------  --------  -------  ------
Staff         1        400      6787     2.83   80.04
Staff2        1        400      8323     1.99   69.32

RESOURCE STATES BY PERCENTAGE

Resource  Scheduled       %      %     %
Name          Hours  In Use   Idle  Down
--------  ---------  ------  -----  ----
Staff           400   80.04  19.96  0.00
Staff2          400   69.32  30.68  0.00

ENTITY SUMMARY  (Times in Scoreboard time units)

                     Average    Average
                       Cycle         VA
Entity        Qty       Time       Time  Average
Name    Processed  (Minutes)  (Minutes)     Cost
------  ---------  ---------  ---------  -------
Call         3114      16.30       4.57     0.00
Call2        6885      13.92       3.13     0.00

Calls that first arrive from outside to server 1 spend an average of

16.3 minutes in the system and 4.57 minutes in service. Calls that

first arrive from outside to server 2 spend an average of 13.92 minutes

in the system and 3.13 minutes in service.

Avg BVA Time Call       3115        7.70        0        0        0
0
Avg BVA Time Call2      6886        3.48        0        0        0
0

                                 Average
Variable               Total     Minutes  Minimum  Maximum  Current
Average
Name                 Changes  Per Change    Value    Value    Value
Value
-------------------  -------  ----------  -------  -------  -------  --
-----
Avg BVA Time Entity        1        0.00        0        0        0
0

VARIABLES

F I G U R E  18

(Continued)

22.5 Simulating Erlang Service Times

As we saw in Chapter 20, service times often do not follow an exponential distribution.

The Erlang distribution is often used to model nonexponential service times. An Erlang

distribution can be defined by a mean and a shape parameter k. The shape parameter must

be an integer. It can be shown that

Standard deviation of Erlang � �
m

�
ea

k�
n

�
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Therefore, if we know the mean and standard deviation of the service times, we may de-

termine an appropriate value of k. The syntax for generating Erlang service times in

Process Model is ER(Mean, k). We now illustrate how to simulate a queuing system with

Erlang service times.

E X A M P L E  3

A walk-in hospital clinic has four doctors. An average of 12 patients per hour arrive at

the clinic (interarrival times are assumed to be exponential). A doctor can see an average

of 4 patients per hour, with the standard deviation of service times being 8.66 minutes.

Simulate the operation of this clinic for 1,000 hours.

Solution See file Doctor.igx. The flowchart is shown in Figure 19. We must remember to adjust the

number of doctors to 4 and the See Doctor capacity to 4. By clicking on the arrow con-

necting Customer and See Doctor, we can input the interarrival times as E(5). We know

that the mean service time is 15 minutes. To estimate the shape parameter k, we solve

�
�
15

k�
� � 8.66 minutes. This yields k � 3. We now fill in the See Doctor dialog box as shown

in Figure 20. This ensures that up to 4 patients can be seen at once and that service times

will follow an Erlang random variable with mean 15 minutes and shape parameter 3. (This

implies a standard deviation of 8.66 minutes.)

The output is shown in Figure 21, with explanatory comments in boldface.

Walk-in Clinic

F I G U R E  19

Doctor.igx
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F I G U R E  20

ACTIVITY STATES BY PERCENTAGE (Multiple Capacity)

                                          %
Activity        Scheduled      %  Partially      %
Name                Hours  Empty   Occupied   Full
--------------  ---------  -----  ---------  -----
See Doctor inQ       1000  64.88      35.12   0.00
See Doctor           1000   3.65      45.95  50.40
35% of all patients will have to wait for a doctor. All doctors are

busy 50% of the time, and all doctors are idle 4% of the time. Between  1

and 3 doctors are busy 46% of the time.

RESOURCES

                                      Average
                              Number  Minutes
Resource         Scheduled  Of Times      Per
Name      Units      Hours      Used    Usage  % Util
--------  -----  ---------  --------  -------  ------
Doctor.1      1       1000      2983    15.11   75.13
Doctor.2      1       1000      3025    14.90   75.12
Doctor.3      1       1000      2976    15.14   75.12
Doctor.4      1       1000      2980    15.12   75.12
Doctor        4       4000     11964    15.07   75.12
The average service time varies from a low of 14.9 minutes for

Doctor 1 to a high of 15.14 minutes for Doctor 3.

General Report
Output from C:\Program Files\ProcessModel 4\doctors.mod
Date: Aug/14/2002   Time: 10:29:27 AM
-----------------------------------------------------------------------
---------
Scenario        : Normal Run
Replication     : 1 of 1
Simulation Time : 1000 hr
-----------------------------------------------------------------------
---------

ACTIVITIES

                                                Average
Activity        Scheduled              Total    Minutes   Average
Maximum   Current
Name                Hours  Capacity  Entries  Per Entry  Contents
Contents  Contents  % Util
--------------  ---------  --------  -------  ---------  --------  ----
----  --------  ------
See Doctor inQ       1000       999    11964       5.37      1.07
23         0    0.11
See Doctor           1000         4    11964      15.07      3.00
4         2   75.12

This implies that average time waiting for doctor is 5.37 minutes and

average service time is 15.07 minutes.

F I G U R E  21
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Variable                 Total     Minutes  Minimum  Maximum  Current
Average
Name                   Changes  Per Change    Value    Value    Value
Value
---------------------  -------  ----------  -------  -------  -------
-------
Avg BVA Time Entity          1        0.00        0        0        0
0
Avg BVA Time Customer    11963        5.01        0        0        0
0

RESOURCE STATES BY PERCENTAGE

Resource  Scheduled       %      %     %
Name          Hours  In Use   Idle  Down
--------  ---------  ------  -----  ----
Doctor.1       1000   75.13  24.87  0.00
Doctor.2       1000   75.12  24.88  0.00
Doctor.3       1000   75.12  24.88  0.00
Doctor.4       1000   75.12  24.88  0.00
Doctor         4000   75.12  24.88  0.00
Each doctor is busy about 75% of the time. This is reasonable because

(12 patients/hour)*(15 minutes/patient)= 180 minutes/hour of work

arrives for doctors, and doctors have 240 minutes per hour to work, 

so they should be busy 75% of the time.

ENTITY SUMMARY  (Times in Scoreboard time units)

                       Average    Average
                         Cycle         VA
Entity          Qty       Time       Time  Average
Name      Processed  (Minutes)  (Minutes)     Cost
--------  ---------  ---------  ---------  -------
Customer      11962      20.45      15.07     0.00
On average, a patient spends a total of 20.45 minutes in the system.

(Send me to this clinic!!)

VARIABLES

                                   Average

F I G U R E  21
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22.6 What Else Can Process Model Do?

Our discussion of Process Model has only scratched the surface of its capabilities. Other

modeling features include the following.

■ Bulk arrivals and services. At a restaurant, people often arrive in groups. This

arrival pattern is called bulk arrivals. Consider an amusement park ride seating 

40 people. The attendant waits until 40 people are present and then runs the ride.

This service mechanism is known as bulk service.

■ Reneging. Perhaps people hang up when calling an 800 number if they are put on

hold more than 5 minutes. Process Model can accommodate such balking or

reneging behavior.

■ Variation in arrival pattern. At a restaurant or bank, the arrival rate varies sub-

stantially over the course of a day (or a whole week). Variable arrival rate patterns

can easily be simulated with Process Model.

■ Variation in number of servers. During the day, workers take breaks and go to

lunch. Also, many companies vary the number of servers during the day. Process

Model can easily accommodate variation in service capacity.

■ Priorities. In an emergency room, more seriously ill patients are given priority

over earlier arriving, less ill patients. Process Model can handle complex priority

mechanisms.

For more details on these and other features of Process Model, consult the online 

manual.

R E V I E W  P R O B L E M S
Group A

1 At a manufacturing assembly line, 30 jobs arrive per
hour. Each job must pass through two production stages:
stage 1 and stage 2. Stage 1 takes an average of 1 minute to
complete, and 1 worker is available to perform stage 1.
After completing stage 1, the job immediately passes to
stage 2. Stage 2 takes an average of 2 minutes to complete,
and 2 workers are available to work on stage 2. After
completing stage 2, each job is inspected. Inspection takes
an average of 3 minutes, and 3 workers are available to
perform inspection. After inspection, 10% of the jobs must
be returned to stage 1, and they then repeat both stages 1
and 2. After inspection, 20% of all jobs return to stage 2 and
repeat stage 2. Assume that interarrival times and service
times are exponential.

a What is the average time a job spends in the system
from arrival to completion?

b What percentage of the time is each worker busy?

2 The United Airlines security station for Terminal C in
Indianapolis has 3 X-ray machines. During the busy early
morning hours, an average of 400 passengers per hour arrive
at Terminal C (with exponential interarrival times). Each 
X-ray machine can handle an average of 150 passengers per
hour (with exponential service times for X-ray machines).

After going through security, 90% of the customers are free
to go to their flight, but 10% must be “wanded.” Three
people are available to do the wanding. Wanding requires a
mean of 4 minutes, with a standard deviation of 2 minutes.

a How long does it take the average passenger to pass
through security?

b If there were no wanding, how long would it take the
average passenger to pass through security?

c Which would improve the situation more: adding an
X-ray machine or adding an additional person to per-
form wanding?

3 Consider an emergency room. An average of 10 patients
arrive per hour (interarrival times are exponential). Upon
entering, the patient fills out a form. Assume that this always
takes 5 minutes. Then each patient is processed by one of
two registration clerks. This takes an average of 7 minutes
(exponentially distributed). Then each patient walks 2 min-
utes to a waiting room and waits for one of 4 doctors. The
time a doctor takes to see a patient averages 20 minutes,
with a standard deviation of 10 minutes.

a On the average, how long does a patient spend in the
emergency room?
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b On the average, how much of this time is spent wait-
ing for a doctor?

c What percentage of the time is each doctor busy?

4 The Indiana University Credit Union has 4 tellers
working. It takes an average of 3 minutes (exponentially
distributed) to serve a customer. Assume that an average of
60 customers per hour arrive at the Credit Union (interarrival
times are exponential).

a How long do customers have to wait for a teller?

b What percentage of the time is a teller busy?

5 A pharmacist has to fill an average of 15 orders per hour
(interarrival times are exponentially distributed). 80% of the
orders are relatively simple and take 2 minutes to fill. 20%
of the orders take 10 minutes to fill.

a What percentage of the time is the pharmacist busy?

b On average, how long does it take to get a prescrip-
tion filled?

6 Solve Problem 5 if the service times followed a normal
distribution with mean 3 minutes and standard deviation .5
minute. Use the syntax N(3,.5) to generate service times.

7 At Indiana Pacer games, 10,000 fans must enter through
10 checkpoints in the hour before each game (interarrival
times are exponential). It takes exactly 3 seconds to have a
ticket processed. How long does an average ticketholder
spend from arrival to passing through the checkpoint?

8 Since September 11, 2001, each Pacer ticketholder’s
clothing and handbags are searched. Assume that this takes
exactly 10 seconds and occurs right after the ticketholder
passes through the checkpoint. Four people are available at
each checkpoint to do the searching. How long does the
average ticketholder spend from arrival to passing through
the checkpoint?
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Simulation with the Excel 
Add-in @Risk

Many simulations, particularly those involving financial applications can easily be performed

with the Excel add-in @Risk. @Risk makes it easy to generate random variables. For example,

to generate a standard normal random variable in a cell, just enter the formula �RISKNOR-

MAL(0,1). If you want to run 10,000 iterations of a spreadsheet, just tell @Risk to run 10,000

iterations. Then @Risk provides a complete statistical or graphical summary of the results. In

this chapter, we will see how @Risk can be used to simulate a wide variety of situations, rang-

ing from the NPV of a new project to the probability of winning at craps.

23.1 Introduction to @Risk: The News Vendor Problem

@Risk is used to model situations where decisions are to be made under uncertainty. Here

is an easy example. See the @Risk crib sheet in Appendix 1.

E X A M P L E  1

Our bookstore must determine how many 2005 nature calendars to order in August 2004.

It costs $2.00 to order each calendar, and we sell each calendar for $4.50. After January

1, 2005, leftover calendars are returned for $.75. Our best guess is that the number of cal-

endars demanded is governed by the following probabilities.

Demand Probability

100 .3

150 .2

200 .3

250 .15

300 .05

How many calendars should we order?

Solution The final result is in file Newsdiscrete.xls. See Figure 1.

Step 1 Enter parameter values in C3:C5.

Step 2 It can be shown that ordering an amount equal to one of the possible demands

for calendars always maximizes expected profit. For now, we enter a trial order quantity

of 200 calendars in cell C1.

Ordering Calendars

Newsdiscrete.xls
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Step 3 To tell @Risk to generate demand according to the above probabilities, type in

C2 the formula

�RISKDISCRETE(F5:F9,G5:G9)

This generates a demand for calendars of 100 30% of the time, 150 20% of the time, etc.

Essentially, for each iteration, @Risk generates a random number between 0 and 1. Then

random numbers �.3 yield a demand of 100, random numbers �.3 and �.5 yield a de-

mand of 150, random numbers �.5 and �.8 yield a demand of 200, random numbers �.8

and �.95 yield a demand of 250, and random numbers �.95 yield a demand of 300. Of

course, successive random numbers generated by @Risk are independent of each other.

This demand could also have been generated with the formula

�RISKDISCRETE({100,150,200,250,300},{.3,.2,.3,.15,.05})

In either format, the demands are listed first, followed by the probabilities. To see the

spreadsheet recalculate when you hit F9, select Simulation Settings (the third icon from

left) and choose from the Sampling tab Recalculation, and then choose Monte Carlo. Ap-

proximately 30% of the time a demand of 100 will occur, around 20% of the time a de-

mand of 150 will occur, etc. If you change Sampling Recalculation to True EV, the mean

of the random variable (172.5) will appear. If you change Sampling Recalculation to Ex-

pected Value, the value of the random variable nearest to the mean (in this case 150) will

occur. We recommend always leaving Sampling Type on Latin Hypercube, because it is

much more accurate than Monte Carlo. To illustrate how Latin Hypercube sampling works,

suppose we told @Risk to sample from a normal distribution with mean 100 and standard

deviation 15. The 5th, 10th, . . . , 95th percentile of a standard normal distribution can be

found (using the NORMSINV function) to equal the values shown in Figure 2.

Suppose we want to simulate 100 values of a normal random variable with mean 100

and standard deviation 15. Then @Risk will ensure that 5 are less than or equal to 75.33,

5 are between 75.33 and 80.78, etc. Thus, the simulation will yield a very accurate rep-

resentation of the random variable’s distribution. In particular, our simulated means, vari-

ances, and other statistics will be much more accurate than if we used the Monte Carlo

simulation. With Monte Carlo, 8 of 100 generated values could be �75.33, 3 out of 100

generated values between 75.33 and 80.78, etc.

Step 4 In cell B7, compute full-price revenue with the formula

�C3*MIN(C1,C2)

This ensures that we sell at full price the minimum of quantity ordered and quantity 

demanded.

Step 5 In B8, compute salvage revenue with the formula

�C4*IF(C1�C2,(C1-C2),0)

1
2
3
4
5
6
7
8
9

10

A B C D E F G

Order quantity 100

Quantity demanded 100

Sales price $4.50

Salvage value $0.75 demand prob

Purchase  price $2.00 100 0.3

150 0.2

Full price revenue $450.00 200 0.3

Salvage revenue $0.00 250 0.15

Costs $200.00 300 0.05

Profit $250.00F I G U R E  1
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This ensures that the number left over is (number ordered) � (number demanded)—as

long as that is �0.

Step 6 In B9, compute ordering costs with the formula

�C1*C5

Step 7 In cell B10, compute profit with the formula

�B7�B8�B9

We now want to compute profit for each possible order quantity (100, 150, 200, 250, or

300). The RISKSIMTABLE function makes this easy to do.

5
6

7

8
9

10

11
12

13

14
15

16

17
18

19

20
21

22

23
24

D E

Percentile Value
0.05 75.3272

0.1 80.77672

0.15 84.4535
0.2 87.37568

0.25 89.88266

0.3 92.13399
0.35 94.22019

0.4 96.19979

0.45 98.11508
0.5 100

0.55 101.8849

0.6 103.8002
0.65 105.7798

0.7 107.866

0.75 110.1173
0.8 112.6243

0.85 115.5465

0.9 119.2233
0.95 124.6728  F I G U R E  2

13

14

15
16

17

18

19
20

21

22

23
24

25

26

27
28

29

D E F G H I J K L

Name Workbook Worksheet Cell Sim# Minimum Mean Maximum

Output 1 Profit newsdiscrete.xlsSheet1 B10 1 250 250 250

Output 1 Profit newsdiscrete.xlsSheet1 B10 2 187.5 318.75 375

Output 1 Profit newsdiscrete.xlsSheet1 B10 3 125 350 500

Output 1 Profit newsdiscrete.xlsSheet1 B10 4 62.5 325 625

Output 1 Profit newsdiscrete.xlsSheet1 B10 5 0 271.875 750

Input 1 Order quantinewsdiscrete.xlsSheet1 C1 1 100 100 100

Input 1 Order quantinewsdiscrete.xlsSheet1 C1 2 150 150 150

Input 1 Order quantinewsdiscrete.xlsSheet1 C1 3 200 200 200

Input 1 Order quantinewsdiscrete.xlsSheet1 C1 4 250 250 250

Input 1 Order quantinewsdiscrete.xlsSheet1 C1 5 300 300 300

Input 2 Quantity demnewsdiscrete.xlsSheet1 C2 1 100 172.5 300

Input 2 Quantity demnewsdiscrete.xlsSheet1 C2 2 100 172.5 300

Input 2 Quantity demnewsdiscrete.xlsSheet1 C2 3 100 172.5 300

Input 2 Quantity demnewsdiscrete.xlsSheet1 C2 4 100 172.5 300

Input 2 Quantity demnewsdiscrete.xlsSheet1 C2 5 100 172.5 300  

F I G U R E  3
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Step 8 In cell C1, enter the possible order quantities (100, 150, 200, 250, 300) with the

formula

�RISKSIMTABLE({100,150,200,250,300})

We could also have entered this RISKSIMTABLE function with the formula

�RISKSIMTABLE(F5:F9)

Note that if we obtain the arguments of an @Risk function such as RISKSIMTABLE or

RISKDISCRETE by pointing to a different cell, we need to omit the { and } brackets.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

D E F G H I

      

Name  Profit Profit Profit Profit Profit

Description Output (SimOutput (Sim#2) Output (SimOutput (SimOutput (Sim

Cell  B10 B10 B10 B10 B10

Minimum 250 187.5 125 62.5 0

Maximum 250 375 500 625 750

Mean 250 318.75 350 325 271.875

Std Deviatio 0 85.96629 163.5405 208.8956 225.6981

Variance 0 7390.203 26745.5 43637.39 50939.61

Skewness Error! -0.8715626 -0.397861 3.47E-02 0.2893988

Kurtosis Error! 1.758383 1.42927 1.627334 2.06803

Errors Calcu 0 0 0 0 0

Mode 250 375 500 62.5 0

5% Perc 250 187.5 125 62.5 0

10% Perc 250 187.5 125 62.5 0

15% Perc 250 187.5 125 62.5 0

20% Perc 250 187.5 125 62.5 0

25% Perc 250 187.5 125 62.5 0

30% Perc 250 187.5 125 62.5 0

35% Perc 250 375 312.5 250 187.5

40% Perc 250 375 312.5 250 187.5

45% Perc 250 375 312.5 250 187.5

50% Perc 250 375 312.5 250 187.5

55% Perc 250 375 500 437.5 375

60% Perc 250 375 500 437.5 375

65% Perc 250 375 500 437.5 375

70% Perc 250 375 500 437.5 375

75% Perc 250 375 500 437.5 375

80% Perc 250 375 500 437.5 375

85% Perc 250 375 500 625 562.5

90% Perc 250 375 500 625 562.5

95% Perc 250 375 500 625 562.5

Filter Minimum

Filter Maximum

Type (1 or 2)

# Values Fil 0 0 0 0 0

Scenario #1 >75% >75% >75% >75% >75%

Scenario #2 <25% <25% <25% <25% <25%

Scenario #3 >90% >90% >90% >90% >90%

Target #1 (V 400 400 400 400 400

Target #1 (P 100% 100% 50% 50% 80%

Target #2 (V 250 375 500 625 750

Target #2 (P 99% 99% 99% 99% 99%

Target #3 (V 360 360 360 360 360

Target #3 (P 100% 30% 50% 50% 50%  F I G U R E  4
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On the first simulation, @Risk will put 100 in this cell and run the desired number of it-

erations. On the second simulation, @Risk will put 150 in this cell and run the desired

number of iterations. Finally, on the fifth simulation, @Risk will put 300 in this cell and

run the desired number of iterations.

Step 9 With the cursor in B10, select B10 as an output cell by selecting the single arrow

icon. Note that the phrase RiskOutput() � appears before our Profit formula, indicating

that Profit is an output cell. We could have entered this phrase instead of using the icon.

Step 10 Select the Simulations Settings icon. From the Iteration tab, select 1,000 itera-

tions and 5 simulations. From Sampling tab, choose Latin Hypercube from the Sampling

option. This will cause @Risk to recalculate demand and profit 1,000 times for each of

the five order quantities. In general, if you have a RISKSIMTABLE in your spreadsheet,

the number of simulations should equal the number of values in the RISKSIMTABLE. If

you do not use a RISKSIMTABLE, leave Simulations at 1.

Step 11 Select the Run Simulation icon shown here. After running the simulation, you

will see the summary statistics shown in Figure 3. The first simulation is for 100 calen-

dars ordered, the second for 150 calendars ordered, etc.

To obtain detailed statistics, select Insert Detailed Statistics and obtain Figure 4. To paste

the statistics into the spreadsheet, right click on Results and then select Copy. Click on

the X icon and choose Paste to insert the results into the original spreadsheet.

Interpretation of Statistical Output Figures 3 and 4 show that average profit for 1,000 trials

when 200 calendars are ordered (for example) is $350.00. From Figure 4, the standard de-

viation for 1,000 trials is $163.54. It appears that ordering 200 calendars maximizes ex-

pected profit, but a case can be made for ordering 150 calendars. For 10% less expected

profit, we can cut risk in half. The decision depends on the store’s degree of aversion to risk.

R E M A R K S 1 The RISKSIMTABLE function uses the same set of random numbers to generate demand for
each simulation. Thus, for each order quantity, the profit keys off the same set of demands.
2 You can return to the Results at any time by selecting the Results icon.
3 You can return to your worksheet from Results by selecting Window Show Excel Window. You
may also click on the X icon (for Excel).

Finding a Confidence Interval for Expected Profit

If we ran 1,000 more trials in Example 1, @Risk would generate a different set of prof-

its†, and we would get a different estimate of average profit. So no simulation gives av-

erage profit exactly. How accurate is the estimate of average profit @Risk gives?

From Section 21.9, we can be 95% sure that average or expected profit for 200 calen-

dars is between

(Mean profit) �t(.025, 199) mean standard error

Using the Excel formula TINV(.05,199) � 1.97, we find t(.025, 199) � 1.97. Here,

Mean standard error � 	
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†When the seed is set (from Simulation Settings Sampling) to 0, each time you run a simulation you will ob-

tain different results. Other possible seed values are integers between 1 and 32,767. Whenever a nonzero seed

is chosen, the same values for the input cells and output cells will occur. For example, if we choose a seed

value of 10, then each time we run the simulation we will obtain exactly the same results. We often choose a

seed of 1. If you also choose a seed of 1, your statistical output should exactly match ours.



Thus, we are 95% sure that expected profit is between 350 � 1.97(163.54)/�1,000�, or

$339.81 and $360.19.

To be 95% confident of estimating the mean within $1, how many iterations are

needed? The required number of iterations must satisfy
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	 � 1 or iterations � 322.172
� 103,796

To achieve a precise estimate of expected profit requires many iterations!

Modeling Normal Demand with the RISKNORMAL Function

In Example 1, the assumption of discrete demand is unrealistic. Let’s suppose demand is

normally distributed, with a mean of 200 and a standard deviation of 30. Then we are 68%

sure that demand is between 170 and 230, 95% sure between 140 and 270, etc. To model

normal demand, simply change cell C2’s formula to

�RISKNORMAL(200,30)

(See file Normalsim.xls.) This implies (for example), by the well-known rule of thumb,

that 68% of the time demand will be between 170 and 230, 95% of the time between 140

and 260, and 99.7% of the time between 110 and 290.

@Risk generates a normal random variable by the inverse transformation method.

First, we generate a random number that is equally likely to be any value between 0 and

1. Suppose we generate .6. Then the generated value of the normal random variable will

be the 60th percentile of the random variable (�NORMINV(.6,200,30)).

With normal demand, any order quantity is reasonable, because demand may assume

any value. We will still try the same set of order quantities, however. After running the sim-

ulation and selecting Insert Detailed Statistics, we obtain the output shown in Figure 5.

Figure 5 shows that ordering 200 calendars yields a higher mean profit than ordering

100, 150, 250, or 300 calendars. Plotting the expected profit for each order quantity yields

the graph shown in Figure 6.

Under the assumption that profit is a unimodal function of order quantity (which is in-

deed correct), Figure 6 shows that expected profit is maximized by ordering between 150

and 250 calendars. Another RISKSIMTABLE (with values 160, 170, 180, 190, 200, 210,

220, 230, 240, 250) would help zero in on the actual best order quantity (which turns out

to be 213 calendars).

R E M A R K To preclude the demand for calendars being a fraction, you could change the formula in cell C2 to

�ROUND(RISKNORMAL(200,30),0)

Then each demand generated by the RISKNORMAL function will be rounded to the nearest 
integer.

Finding Targets and Percentiles

At the bottom of the Detailed Statistics output, we may enter targets as values or per-

centages. Enter a value and @Risk tells you for what fraction of iterations the output cell

was less than or equal to target. For example, we entered 400 under value and found that

the profit for ordering 200 calendars was less than or equal to $400 18.7% of the time.

We entered 34% under percentage and found that 34% of the time, profit was less than

or equal to $453.44. We entered 99% under percentage and found that 99% of the time,

2 3 . 1 Introduction to @Risk: The News Vendor Problem 1217

Normalsim.xls
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Name  Profit Profit Profit Profit Profit

Description Output (SimOutput (Sim#2) Output (SimOutput (SimOutput (Sim

Cell  B10 B10 B10 B10 B10

Minimum 238.7325 176.2325 113.7325 51.23248 -11.26752

Maximum 250 375 500 625 722.9146

Mean 249.9887 372.7469 455.0987 435.2473 374.9326

Std Deviatio 0.3563102 13.68735 65.79792 107.9455 112.4699

Variance 0.1269569 187.3436 4329.366 11652.22 12649.48

Skewness -31.52797 -8.285047 -1.647313 -0.230145 -1.48E-02

Kurtosis 996.006 85.60149 5.455792 2.672569 2.967134

Errors Calcu 0 0 0 0 0

Mode 250 375 500 625 390.5545

5% Perc 250 375 314.0754 251.5754 189.0754

10% Perc 250 375 355.4924 292.9924 230.4924

15% Perc 250 375 382.9496 320.4496 257.9496

20% Perc 250 375 405.072 342.572 280.072

25% Perc 250 375 423.7888 361.2888 298.7888

30% Perc 250 375 440.8098 378.3098 315.8098

35% Perc 250 375 456.6077 394.1077 331.6077

40% Perc 250 375 471.358 408.858 346.358

45% Perc 250 375 485.665 423.165 360.665

50% Perc 250 375 499.9558 437.4558 374.9558

55% Perc 250 375 500 451.3856 388.8856

60% Perc 250 375 500 465.8172 403.3172

65% Perc 250 375 500 480.6487 418.1487

70% Perc 250 375 500 496.4514 433.9514

75% Perc 250 375 500 513.1733 450.6732

80% Perc 250 375 500 532.158 469.658

85% Perc 250 375 500 553.6349 491.135

90% Perc 250 375 500 581.4592 518.9592

95% Perc 250 375 500 621.5056 559.0056

Filter Minimum

Filter Maximum

Type (1 or 2)

# Values Fil 0 0 0 0 0

Scenario #1 >75% >75% >75% >75% >75%

Scenario #2 <25% <25% <25% <25% <25%

Scenario #3 >90% >90% >90% >90% >90%

Target #1 (V 400 400 400 400 400

Target #1 (P 100% 100% 18.70% 36.90% 58.82%

Target #2 (V 250 375 500 625 634.03864

Target #2 (P 99% 99% 99% 99% 99%

Target #3 (V 360 360 360 360 360

Target #3 (P 100% 3.60% 10.70% 24.60% 44.72%

Target #4 (Value) 453.44424

Target #4 (Perc%) 34%  F I G U R E  5

F I G U R E  6
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profit was less than or equal to $500. We entered $360 under value and found that profit

was less than or equal to $360 10.7% of the time.

Creating Graphs with @Risk

To create a histogram of possible profits in Example 1, go to the Results menu and right

click on the output cell Profit from the Explorer style list. Then choose Histogram and the

third simulation (for 200 calendars ordered) to obtain a histogram similar to Figure 7. By

moving the sliders at the bottom of the graph, you may zero in on the probability of any

range of values. For example, there is an 18.7% chance that profit will be $400 or less.

To paste any graph into Excel, right click on the graph and select Copy. You may also

copy a graph into Excel by selecting Graph in Excel Option.

If we right click on a selected graph, we may change it to a cumulative ascending

graph. See Figure 8.

Figure 8 gives the probability that profit is less than or equal to the x-value. Thus, there

is around a 19% chance that profit is 
$400.

By right clicking on a histogram or cumulative ascending graph and selecting Format,

we can obtain a cumulative descending graph. (See Figure 9.) In a cumulative de-

scending graph, the y-coordinate is the probability that profit exceeds the x-coordinate.

For example, there is approximately an 81% probability that profit will exceed $400.

Using the Report Settings Option

You may also create graphs and statistical reports directly with the Report Settings op-

tion. By choosing the Report Settings icon, any output may be sent directly to the current

workbook or a new workbook. For example, see Figure 10. Checking the dialog box as

shown there, and choosing Generate Reports Now, would place the output that has been

generated in a new workbook.
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 Distribution for Profit/B10 (Sim#3)
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Using @Risk Statistics

Instead of generating large reports, you may just want your spreadsheet to show the mean

and standard deviation (and possibly other statistics) of your output cells. @Risk 4.5 con-

tains statistical functions that accomplish this goal. To see how this works, enter in cell

F12 the formula

�RISKMEAN($B$10,F11)

and copy this formula to G12:J12. In F12, this keeps track of the mean of the first simu-

lation. In G12, it keeps track of the mean for the second simulation, etc.
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Cumulative Descending
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For example, in cell F12 we entered the formula

�RISKSTDDEV($B$10,F11)

Then we copied this formula from F12 to G12:J12. This formula keeps track of the stan-

dard deviation from each order quantity. The results are as follows:

 

F I G U R E  10

10

11

12

13

E F G H I J

1 2 3 4 5

mean $249.99 $372.75 $455.10 $435.25 $374.93

sigma $0.36 $13.69 $65.80 $107.95 $112.47  

For example, in the third simulation, for which we ordered 200 calendars, the mean profit

for 1,000 iterations was $455.10, with a standard deviation of $65.80.

P R O B L E M S
Group A

1 Explain why expected profit must be maximized by
ordering a quantity equal to some possible demand for
calendars. (Hint: If this is not the case, then some order
quantity, such as 190 calendars, must maximize expected
profit. If ordering 190 calendars maximizes expected profit,
then it must yield a higher expected profit than an order size

of 150. But then an order of 200 calendars must also yield
a larger expected profit than 190 calendars. This contradicts
the assumed optimality of ordering 190 calendars!)

2 In August 2004, a car dealer is trying to determine how
many 2005 cars should be ordered. Each car ordered in
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August 2004 costs $10,000. The demand for the dealer’s
2005 models has the probability distribution shown in Table
1. Each car sells for $15,000. If demand for 2005 cars
exceeds the number of cars ordered in August, the dealer
must reorder at a cost of $12,000 per car. Excess cars may
be disposed of at $9,000 per car. Use simulation to determine
how many cars should be ordered in August. For your
optimal order quantity, find a 95% confidence interval for
expected profit.

3 Suppose that the bookstore in Example 1 receives no
money for the first 50 excess calendars returned, but still
receives $.75 for each subsequent calendar returned. Does
this change the optimal order quantity?

4 A TSB (Tax Saver Benefit plan) allows you to put money
into an account at the beginning of the calendar year to use
for medical expenses. This amount is not subject to federal
tax (hence the phrase TSB). As you pay medical expenses
during the year, you are reimbursed by the administrator of
the TSB, until the TSB account is exhausted. The catch is,
however, that any money left in the TSB at the end of the
year is lost to you. You estimate that it is equally likely that
your medical expenses for next year will be $3,000, $4,000,
$5,000, $6,000, or $7,000. Your federal income tax rate is
40%. Assume your annual salary is $50,000.

a How much should you put in a TSB? Consider both
expected disposable income and the standard deviation
of disposable income in your answer. (Hint: Your simu-

lation will indicate that two options have nearly the same
expected disposable income.)

b Does your annual salary influence the correct 
decision?

Group B

5 For Problem 2, suppose that the demand for cars is
normally distributed with m � 40 and s � 7. Use simulation
to determine an optimal order quantity. For your optimal
order quantity, determine a 95% confidence interval for
expected profit.

6 Six months before its annual convention, the American
Medical Association must determine how many rooms to
reserve. At this time, the AMA can reserve rooms at a cost
of $50 per room. The AMA must pay the $50 room cost
even if the room is not occupied. The AMA believes that the
number of doctors attending the convention will be normally
distributed, with a mean of 5,000 and a standard deviation
of 1,000. If the number of people attending the convention
exceeds the number of rooms reserved, extra rooms must be
reserved at a cost of $80 per room. Use simulation to
determine the number of rooms that should be reserved to
minimize the expected cost to the AMA.

7 A ticket from Indianapolis to Orlando on Deleast
Airlines sells for $150. The plane can hold 100 people. It
costs $8,000 to fly an empty plane. The airline incurs variable
costs of $30 (food and fuel) for each person on the plane.
If the flight is overbooked, anyone who cannot get a seat
receives $300 in compensation. On the average, 95% of all
people who have a reservation show up for the flight. To
maximize expected profit, how many reservations for the
flight should be taken by Deleast? (Hint: The @Risk
function RISKBINOMIAL can be used to simulate the
number of passengers who show up. If the number of
reservations taken is in cell A2, then the formula

�RISKBINOMIAL(A2,.95)

will generate the number of customers who actually show
up for a flight!)

TA B L E  1

No. of Cars
Demanded Probability

20 .30

25 .15

30 .15

35 .20

40 .20

23.2 Modeling Cash Flows from a New Product

In this section, we will show how GM and Eli Lilly model the cash flows from new prod-

ucts. We begin by discussing the important triangular random variable.

The Triangular Random Variable

Managers often analyze in terms of best case, worst case, and most likely outcome. They

often fail to realize that any value between the best and worst cases may occur. The tri-

angular random variable can help.

Suppose we want to model first-year market share for a new product. We feel that the

worst case is 20%, the most likely share is 40%, and the best case is 70%. We will model

year 1 market share with a triangular random variable. See Figure 11. Basically, @Risk

generates year 1 market share by making the likelihood of a given share proportional to
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the height of the triangle in Figure 11. Thus, a 40% year 1 market share is most likely;

all simulated market shares will be between 20% and 70%. A 30% market share occurs

half as often as a year 1 40% market share, etc. The maximum height of the triangle is 4,

because that makes the total area under the triangle equal to 1. The probability of market

share being in a given range is equal to the area in that range under the triangle. For ex-

ample, the chance of market share being at most 40% is .5*(4)*(.4 � .2) � .4 or 40%.

To display this distribution, choose the Define Distributions icon and select the triangu-

lar random variable. Enter min � 0.2, m. likely � 0.4, and max � 0.7. You will see the

picture in Figure 11.

E X A M P L E  2

GM is trying to estimate the cash flows from a new car that will sell for 5 years. During

the current year (year 0), a fixed development cost of $1.4 billion is incurred. This cost

is depreciated on a straight-line basis over the next 5 years. Year 1 unit sales of the new

model are assumed to follow a triangular random variable with worst case of 100,000

units, most likely case of 150,000 units, and best case of 170,000 units. Sales during years

2–5 are assumed to “decay” at the same rate each year. This annual decay rate is assumed

to follow a triangular random variable with best case of 5%, most likely case of 8%, and

worst case of 10%. Each year, a car sells for $15,000. During year 1, each car sold incurs

a variable cost of $10,000. Due to increased labor costs, the variable cost of producing

the car increases 4% a year. The tax rate is 40%, and cash flows are discounted at 15% a

year. (Assume all cash flows occur at the end of the year.)

a Estimate the mean NPV of the cash flows from the new car.

b What fraction of the time will the new model add value to GM?

General Motors

 
 

F I G U R E  11

 



1224 C H A P T E R 2 3 Simulation with the Excel Add-in @Risk

Solution Our work is in file Gmcashflow.xls. (See Figure 12.)

Recall that in years 1–5, cash flow � after-tax profit � depreciation.

Step 1 In cell B11, enter the fixed cost of 1.4e9. In cell B20, enter the year 0 cash flow

with the formula

��B11

Step 2 In cell E12, compute year 1 unit sales with the formula

�RISKTRIANG(100000,150000,170000)

The syntax of the RISKTRIANG function requires that the lowest value of the random

variable be entered first, followed by the most likely value, followed by the largest value.

Step 3 In cell D7, simulate the decay rate with the formula

�RISKTRIANG(0.05,0.08,0.1)

Step 4 In cells F12:I12, compute unit sales for years 2–5 by copying from F12 to

G12:I12 the formula

�(1-decay_rate)*E12

The cell D7 has been named decay_rate.

Step 5 Enter in E13:I13 the unit price of $15,000.

Step 6 In cell E14, enter the year 1 variable cost of $10,000. Then in cells F14:I14, com-

pute the variable cost for years 1–5 by copying from F14 to G14:I14 the formula

�E14*(1�$D$5)

Step 7 Copying from E15 to F15:I15 the formula

�E13*E12

computes the sales revenue for each year.

F I G U R E  12

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

C D E F G H I

tax rate 0.4

cost growth 0.04

discount rate 0.15

decay rate 0.072255268

Time

0 1 2 3 4 5

Cost 1.40E+09

Unit Sales 144227.4769 133806.2819 124138.0731 115168.4433 106846.9166

Price 15,000.00$              15,000.00$             15,000.00$                 15,000.00$              15,000.00$                

Unit cost 10,000.00$              10,400.00$             10,816.00$                 11,248.64$              11,698.59$                

Revenues 2,163,412,154.19$  2,007,094,228.55$ 1,862,071,096.57$     1,727,526,649.90$  1,602,703,748.32$    

Variable Cost 1,442,274,769.46$  1,391,585,331.79$ 1,342,677,398.70$     1,295,488,358.34$  1,249,957,799.41$    

Depreciation 280,000,000.00$     280,000,000.00$    280,000,000.00$        280,000,000.00$     280,000,000.00$       

Before tax profit 441,137,384.73$     335,508,896.76$    239,393,697.87$        152,038,291.56$     72,745,948.91$         

After tax profit 264,682,430.84$     201,305,338.05$    143,636,218.72$        91,222,974.93$       43,647,569.34$         

Cash flow -1400000000 544,682,430.84$     481,305,338.05$    423,636,218.72$        371,222,974.93$     323,647,569.34$       

npv  cash flows $77,633,524.27

 

Gmcashflow.xls
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Step 8 Copying from E16 to F16:I16 the formula

�E14*E12

computes the variable cost for each year.

Step 9 In cells E17:I17, compute the depreciation for each of years 1–5 by copying from

E17 to F17:I17 the formula

�$D$11/5

Step 10 By copying from E18 to F18:I18 the formula

�E15-E16-E17

we determine before-tax profit for years 1–5.

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

H I

 gmcashflowdecay.xls

Name  npv  cash flows / Time

Description  Output 

Cell  Sheet1!D22

Minimum -2.19E+08

Maximum 2.55E+08

Mean 4.31E+07

Std Deviation 9.92E+07

Variance 9.84E+15

Skewness -0.3451601

Kurtosis 2.396719

Errors Calculated 0

Mode 6.10E+07

5% Perc -1.35E+08

10% Perc -1.03E+08

15% Perc -7.06E+07

20% Perc -4.68E+07

25% Perc -3.02E+07

30% Perc -8040124

35% Perc 9848326

40% Perc 2.64E+07

45% Perc 4.13E+07

50% Perc 5.76E+07

55% Perc 6.90E+07

60% Perc 8.02E+07

65% Perc 9.26E+07

70% Perc 1.04E+08

75% Perc 1.18E+08

80% Perc 1.32E+08

85% Perc 1.49E+08

90% Perc 1.66E+08

95% Perc 1.90E+08

Filter Minimum

34

35

36

37

38

39

L M N

95% CI

for Mean

NPV

Lower 3.69E+07 43-2(99)/sqrt(1000)

Upper 4.94E+07 43+2(99)/sqrt(1000)  F I G U R E  13
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Step 11 By copying from E19 to F19:I19 the formula

�(1-tax_rate)*E18

we determine after-tax profit for years 1–5.

Step 12 By copying from E20 to F20:I20 the formula

�E19�E17

we add each year’s depreciation to its after-tax profit to compute the year’s cash flow.

Step 13 Assuming end-of-year cash flows, the formula

�NPV(0.15,D20:I20)

in cell D22 computes the NPV of all cash flows.

Step 14 After making cell D22 an output cell and running 1,000 iterations, we obtain the

statistical output shown in Figure 13 and the graphical output in Figure 14.

From Figure 13, the mean NPV of cash flows (or risk-adjusted NPV) is $43 million.

We are 95% certain that mean NPV is between $37 million and $49 million. Figure 14

shows that there is a 32% chance the project will have cash flows with a negative NPV

(thereby reducing the company’s value) and a 68% chance that cash flows will have a pos-

itive NPV.

The Lilly Model

In the car business, a new model virtually always has reduced sales every year. A new

drug, however, sees increased sales in the first few years, followed by reduced sales. To

model this form of the product life cycle, we must incorporate the following sources of

uncertainty. (Note that we assume that total number of years for which the drug is sold is

known).

■ Number of years for which unit sales increase

■ Average annual percentage increase in sales during the sales-increase portion of

the sales period

■ Average annual percentage decrease in sales during the sales-decrease portion of

the sales period

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Distribution for npv  cash flows / Time/D22
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Values in Millions

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

                        

 Mean=4.313917E+07 

-250 -200 -150 -100 -50 0 50 100 150 200 250 300

0000

-250 -200 -150 -100 -50 0 50 100 150 200 250 300

 31.88% 68.12%

 -250  0 

 Mean=4.313917E+07  Mean=4.313917E+07 

0.000

F I G U R E  14
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Example 3 shows how to model this type of product life cycle. See file Lillygrowth.xls

and Figure 15.

E X A M P L E  3

Lilly is producing a new drug that will be sold for 10 years. Year 1 unit sales are assumed

to follow a triangular random variable with worst case 100,000 units, most likely case

150,000, and best case 170,000. The year 0 fixed cost of developing the drug is $1.6 bil-

lion, to be depreciated on a 10-year straight-line basis. Sales are equally likely to increase

for 3, 4, 5, or 6 years, with the average percentage increase during those years following

a triangular random variable with worst case 5%, most likely case 8%, and best case 10%.

During the remainder of the 10-year sales life of the drug, unit sales will decrease at a

rate governed by a triangular random variable having best case 8%, most likely case 12%,

and worst case 18%. During each year, a unit of the drug sells for $15,000. Year 1 vari-

able cost of producing a unit of the drug is $10,000. The unit variable cost of producing

the drug increases at 4% a year.

a Estimate the mean NPV of the drug’s cash flows.

b What is the probability that the drug will add value to Lilly?

c What source of uncertainty is the most important driver of the drug’s NPV?

Solution After dragging our formulas to create years 6–10 and changing the depreciation in row

17 to be over a 10-year period, we simulate random variables in D3 (length of sales in-

crease), D7 (annual percentage rate of sales increase), and D8 (annual percentage rate of

sales decrease) with the following formulas

Cell D3: �RISKDUNIFORM({3,4,5,6})

The RISKDUNIFORM variable is a discrete random variable that assigns equal proba-

bility to each listed value.

Cell D7: �RISKTRIANG(0.05,0.08,0.1)

Cell D8: �RISKTRIANG(0.08,0.12,0.18)

Eli Lilly

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

B C D E F G H I J K L M N

Growth then decay

length of growth 5

tax rate 0.4

cost growth 0.04

discount rate 0.15

growth rate 0.055313219

decay rate 0.117781276

Time

0 1 2 3 4 5 6 7 8 9 10

Cost 1.60E+09

Unit Sales 1.12E+05 1.18E+05 1.25E+05 1.32E+05 1.39E+05 1.47E+05 1.29E+05 1.14E+05 1.01E+05 8.88E+04

Price 1.50E+04 1.50E+04 1.50E+04 1.50E+04 1.50E+04 1.50E+04 1.50E+04 1.50E+04 1.50E+04 1.50E+04

Unit cost 1.00E+04 1.04E+04 1.08E+04 1.12E+04 1.17E+04 1.22E+04 1.27E+04 1.32E+04 1.37E+04 1.42E+04

Revenues 1.68E+09 1.77E+09 1.87E+09 1.98E+09 2.08E+09 2.20E+09 1.94E+09 1.71E+09 1.51E+09 1.33E+09

Variable Cost 1.12E+09 1.23E+09 1.35E+09 1.48E+09 1.63E+09 1.78E+09 1.64E+09 1.50E+09 1.38E+09 1.26E+09

Depreciation 1.60E+08 1.60E+08 1.60E+08 1.60E+08 1.60E+08 1.60E+08 1.60E+08 1.60E+08 1.60E+08 1.60E+08

Before tax profit 4.00E+08 3.84E+08 3.62E+08 3.34E+08 2.99E+08 2.56E+08 1.44E+08 5.01E+07 -2.77E+07 -9.19E+07

After tax profit 2.40E+08 2.30E+08 2.17E+08 2.00E+08 1.79E+08 1.53E+08 8.62E+07 3.01E+07 -1.66E+07 -5.51E+07

Cash flow -1600000000 4.00E+08 3.90E+08 3.77E+08 3.60E+08 3.39E+08 3.13E+08 2.46E+08 1.90E+08 1.43E+08 1.05E+08

npv  cash flows ($290,597,621.28)  

F I G U R E  15

Lillygrowth.xls
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In cell E12, we generate year 1 units sales with the formula

�RISKTRIANG(100000,150000,170000)

Copying from F12 to G12:N12 the formula

�IF(F10
length_of_growth�1,E12*(1�growth_rate),E12*(1-decay_rate))

generates unit sales for years 2–10. Note that our formula increases annual sales by the

growth rate for length-of-growth years and decreases annual sales by decay rate during

later years. (D3 is named length_of_growth, D7 is named growth_rate, and D8 is named 

decay_rate.)

We used Autoconvergence to determine the number of iterations for @Risk to run. Un-

der Simulation Settings, selecting Iterations Auto and a change of 1% ensures that @Risk

will keep running iterations until, during the last 100 iterations, the mean, standard devi-

ation, and selected other statistics change by 1% or less. In this example, @Risk ran 1,800

iterations, yielding the results in Figure 16. There was an estimated mean of �$29 mil-

lion and a 54% chance of negative NPV. Right clicking on NPV from the Explorer inter-

face yields the histogram in Figure 17. The histogram shows a 53% chance that the drug

will decrease Lilly’s NPV.

For part (c), use a tornado graph to determine the key drivers of NPV. To obtain a tor-

nado graph, you must have selected the Collect All Outputs box from the Simulation Set-

tings Sampling dialog box. (Unless you want a tornado graph, it is probably best to

uncheck that box. Checking that box adds a column to your output for each @Risk func-

tion in the model, and this can clutter up the output.) Right click on NPV in the Explorer

interface and select Tornado Graph. We can obtain a correlation and/or regression tornado

graph as shown in Figures 18 and 19.

Each bar of the correlation tornado graph (Figure 18) gives the correlation of the

@Risk random variable with NPV. For example,

■ Year 1 unit sales has a .98 correlation with NPV.

■ Annual growth rate has a .14 correlation with NPV.

In short, the uncertainty about year 1 unit sales is very important for determining NPV,

but other random variables could probably be replaced by their mean without changing

the distribution of NPV by much.

For each @Risk random variable, the regression tornado graph (Figure 19) computes

the standardized regression coefficient for the @Risk random variable when we try to pre-

dict NPV from all @Risk random variables in the spreadsheet. A standardized regression

coefficient tells us (after adjusting for other variables in the equation) the number of stan-

dard deviations by which NPV changes when the given @Risk random variable changes

by one standard deviation. For example,

■ A one standard deviation change in year 1 unit sales will (ceteris paribus) change

NPV by .98 standard deviation.

■ A one standard deviation change in annual growth rate will increase NPV by .15

standard deviation (ceteris paribus).

Again it is clear that the uncertainty for year 1 sales is really all that matters here; other

random variables may as well be replaced by their means.
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C D E

  

  

Name  npv  cash flo

Description  Output 

Cell  D22

Minimum -3.54E+08

Maximum 2.37E+08

Mean -2.86E+07

Std Deviation 1.23E+08

Variance 1.52E+16

Skewness -0.34653

Kurtosis 2.440396

Errors Calculated 0.00E+00

Mode 2.33E+07

5% Perc -2.52E+08

10% Perc -2.06E+08

15% Perc -1.71E+08

20% Perc -1.41E+08

25% Perc -1.14E+08

30% Perc -9.07E+07

35% Perc -6.99E+07

40% Perc -5.01E+07

45% Perc -3.21E+07

50% Perc -1.31E+07

55% Perc 4.01E+06

60% Perc 1.94E+07

65% Perc 3.26E+07

70% Perc 4.98E+07

75% Perc 6.48E+07

80% Perc 8.02E+07

85% Perc 9.80E+07

90% Perc 1.23E+08

95% Perc 1.56E+08

Filter Minimum

Filter Maximum

Type (1 or 2)

# Values Filtered 0

Scenario #1 >75%

Scenario #2 <25%

Scenario #3 >90%

Target #1 (Value) 0

Target #1 (Perc%) 53.73%  

 Distribution for npv  cash flows / Time/D22
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 Mean=-2.855069E+07 

-400 -300 -200 -100 0 100 200 300

-400

-400 -300 -200 -100 0 100 200 300

 53.73% 46.27%
 -400  0 

 Mean=-2.855069E+07  Mean=-2.855069E+07 

F I G U R E  16
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P R O B L E M S
Group A

 

 

 

 

 

 

 Correlations for npv  cash flows / Time/D22

Correlation Coefficients

 

 

 

 

                  

 decay rate / Growth then d.../D8-.018

length of growth / Growth .../D3  .086

growth rate / Growth then .../D7  .139

Unit Sales/E12  .981

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Regression Sensitivity for npv  cash flows /
Time/D22

Std b Coefficients

                 

 decay rate / Growth then d.../D8-.005

 length of growth / Growth .../D3  .083

 growth rate / Growth then .../D7  .148

 Unit Sales/E12  .983

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

F I G U R E  18

F I G U R E  19

1 Dord Motors is considering whether to introduce a new
model: the Racer. The profitability of the Racer will depend
on the following factors:

■ Fixed cost of developing Racer: Equally likely to be
$3 billion or $5 billion.

■ Sales: Year 1 sales will be normally distributed with
m � 200,000 and s � 50,000.
Year 2 sales will be normally distributed with m �
year 1 sales and s � 50,000.
Year 3 sales will be normally distributed with m �
year 2 sales and s � 50,000.
For example, if year 1 sales � 180,000, then the mean
for year 2 sales will be 180,000.

■ Price: Year 1 price � $13,000
Year 2 price � 1.05*{(year 1 price) � $30*(% by
which year 1 sales exceed expected year 1 sales)}
The 1.05 is the result of inflation!
Year 3 price � 1.05*{(year 2 price) � $30*(% by
which year 2 sales exceed expected year 2 sales)}
For example, if year 1 sales � 180,000, then
year 2 price � 1.05*{13,000 � 30(�10)} � $13,335

■ Variable cost per car: During year 1, the variable cost
per car is equally likely to be $5,000, $6,000, $7,000,
or $8,000.
Variable cost for year 2 � 1.05*(year 1 variable cost)
Variable cost for year 3 � 1.05*(year 2 variable cost)
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Your goal is to estimate the NPV of the new car dur-
ing its first three years. Assume that cash flows are
discounted at 10%; that is, $1 received now is equiv-
alent to $1.10 received a year from now.

a Simulate 400 iterations and estimate the mean and
standard deviation of the NPV the first three years of
sales.

b I am 95% sure that the expected NPV of this project
is between _____ and _____.

c Use the Target option to determine a 95% confi-
dence interval for the actual NPV of the Racer during
its first three years of production.

d Use a tornado graph to analyze which factors are
most influential in determining the NPV of the Racer.

2 Trucko produces the Goatco truck. The company wants
information about the discounted profits earned during the
next three years. During a given year, the total number of
trucks sold in the United States is 500,000 � 50,000*GNP �
40,000*INF, where

GNP � % increase in GNP during year

INF � % increase in Consumer Price Index during year

Value Line has made the predictions given in Table 2 for the
increase in GNP and INF during the next three years.

In the past, 95% of Value Line’s GNP predictions have
been accurate within 6% of the actual GNP increase, and
95% of Value Line’s INF predictions have been accurate
within 5% of the actual inflation increase.

At the beginning of each year, a number of competitors
may enter the trucking business. At the beginning of a year,
the probability that a certain number of competitors will
enter the trucking business is given in Table 3.

Before competitors join the industry at the beginning of
year 1, there are two competitors. During a year that begins
(after competitors have entered the business, but before any
have left) with c competitors, Goatco will have a market
share given by .5*(.9)c. At the end of each year, there is a
20% chance that each competitor will leave the industry.

The sales price of the truck and production cost per
truck are given in Table 4.

a Simulate 500 times the next three years of Truckco’s
profit. Estimate the mean and variance of the discounted
three-year profits (use a discount rate of 10%).

b Do the same if during each year there is a 50%
chance that each competitor leaves the industry.

(Hint: You can model the number of firms leaving the
industry in a given period with the RISKBINOMIAL
function. For example, if the number of competitors in the
industry is in cell A8, then the number of firms leaving the
industry during a period can be modeled with the statement
�RISKBINOMIAL(A8,.20). Just remember that the
RISKBINOMIAL function is not defined if its first argument
equals 0.)

Group B

3 You have the opportunity to buy a project that yields at
the end of years 1–5 the following (random) cash flows:

End of year 1 cash flow is normal with mean 1,000 and
standard deviation 200.

For t � 1, end of year t cash flow is normal with Mean �
actual end of year (t � 1) cash flow and Standard deviation �
.2*(mean of year t cash flow).

a Assuming cash flows are discounted at 10%, deter-
mine the expected NPV (in time 0 dollars) of the cash
flows of this project.

b Suppose we are given the following option: At the
end of year 1, 2, 3, or 4, we may give up our right to fu-
ture cash flows. In return for doing this, we receive the
abandonment value given in Table 5.

Assume that we make the abandonment decision as follows:
We abandon if and only if the expected NPV of the cash
flows from the remaining years is smaller than the
abandonment value. For example, suppose end of year 1
cash flow is $900. At this point in time, our best guess is
that cash flows from years 2–5 will also be $900. Thus, we
would abandon the project at the end of year 1 if $3,000
exceeded the NPV of receiving $900 for four straight years.
Otherwise, we would continue. What is the expected value
of the abandonment option?

TA B L E  2

Year 1 2 3

GNP 3% 5% 4%

INF 4% 7% 3%

TA B L E  3

Number
of Competitors Probability

0 .50

1 .30

2 .10

3 .10

TA B L E  4

Year 1 Year 2 Year 3

Sales price $15,000 $16,000 $17,000

Variable cost $12,000 $13,000 $14,000

TA B L E  5

Time Abandoned Value Received

End of year 1 $3,000

End of year 2 $2,600

End of year 3 $1,900

End of year 4 $900
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4 Mattel is developing a new Madonna doll. Managers
have made the following assumptions.

It is equally likely that the doll will sell for two, four,
six, eight, or ten years.

At the beginning of year 1, the potential market for the
doll is 1 million. The potential market grows by an average
of 5% per year. They are 95% sure that the growth in 
the potential market during any year will be between 3%
and 7%.

They believe their share of the potential market during
year 1 will be at worst 20%, most likely 40%, and at best
50%. All values between 20% and 50% are possible.

The variable cost of producing a doll during year 1 is
equally likely to be $4 or $6.

The sales price of the doll during year 1 will be $10.
Each year, the sales price and variable cost of producing

the doll will increase by 5%.
The fixed cost of developing the doll (incurred in year

0) is equally likely to be $4, $8, or $12 million.
At time 0, there is one competitor in the market. During

each year that begins with four or fewer competitors, there
is a 20% chance that a new competitor will enter the market.

To determine year t unit sales (for t � 1), proceed as
follows. Suppose that at the end of year t � 1, x competitors
were present. Then assume that during year t, a fraction 
.9 � .1*x of loyal customers (last year’s purchasers) will
buy a doll during the next year and a fraction .2 � .04*x of
people currently in the market who did not purchase a doll
last year will purchase a doll from the company this year.
We now generate a prediction for year t unit sales. Of course,
this prediction will not be precise. We assume that it is sure
to be accurate within 15%, however.

Cash flows are discounted at 10% per year.

a Estimate the expected NPV (in time 0 dollars) of
this project.

b You are 95% sure the expected NPV of this project
is between _____ and _____.

c You are 95% sure that the actual NPV of the project
is between _____ and _____.

d What two factors does the tornado diagram indicate
are key drivers of the project’s profitability?

5 GM is thinking of marketing a new car, the Batmobile.
It is equally likely that the car will take 1, 2, or 3 years to
develop. This may be modeled by a RISKDUNIFORM
random variable. A RISKDUNIFORM function is equally
likely to assume any of the values listed in the cell.

Development cost is assumed equally split over
development time. The best case is development cost of

$300 million, the most likely case is $800 million, and the
worst case is $1.7 billion.

The product will begin sales during the year after
development concludes. The number of years the car will be
sold is assumed to be governed by the probability
distribution in Table 6.

The size of the market during the first year of sales is
unknown, but the worst case is a market size of 100,000, the
most likely case is 145,000, and the best case is 165,000.
Annual growth in market size is unknown, but is assumed
to have a worst case of 1% per year, a most likely case of
6% a year, and a best case of 8% per year.

First-year market share is unknown, but the worst case
is a 30% market share, the most likely case is 45%, and the
best case is 50%. After the first year of sales, market share
will fluctuate. On average, next year’s share will equal this
year’s share. We are 95% sure that next year’s market share
will be within 40% of this year’s market share.

During the first year of sales, price is unknown, with a
worst-case price of $16,000, a most likely price of $17,500,
and a best-case price of $18,000. Each year, price increases
by 5%.

During the first year of sales, the best-case estimate for
the cost of producing a car is $11,000, the most likely cost
is $13,000, and the worst-case cost is $14,500. Each year,
variable cost increases by 5%.

The discount rate for this project is 15%.

a You are 95% sure that mean NPV for this project is
between _____ and _____.

b What is the probability that the project will add
value to the company?

c What are the key drivers of the project’s success?

d Construct a graph that illustrates the range of possi-
ble NPVs that might be generated by this project.

TA B L E  6

Years Probability

4 .1

5 .3

6 .4

7 .2

23.3 Project Scheduling Models

In Chapter 7, we used linear programming to determine the length of time needed to com-

plete a project. We also learned how to identify critical activities, where an activity is crit-

ical if increasing its activity time by a small amount increases the length of time needed

to complete the project by the same amount. Our discussion there required the assump-

tion that all activity times are known with certainty. In reality, these times are usually un-
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certain. Of course, this implies that the length of time needed to complete the project is

also uncertain. It also implies that for each activity, there is a probability (not necessarily

equal to 0 or 1) that the activity is critical.

To illustrate, suppose that activities A and B can begin immediately. Activity C can then

begin as soon as activities A and B are both completed, and the project is completed as

soon as activity C is completed. Activity C is clearly on the critical path, but what about

A and B? Let’s say that the expected activity times of A and B are 10 and 12. If we use

these expected times and ignore any uncertainty about the actual times—that is, if we pro-

ceed as we did in Chapter 7—then activity B is definitely a critical activity. However, sup-

pose there is some positive probability that A can have duration 12 and B can have dura-

tion 11. Under this scenario, A is a critical activity. Therefore, we cannot say in advance

which of the activities, A or B, will be critical. However, by using simulation we can see

how likely it is that each of these activities is critical. We can also see how long the en-

tire project is likely to take. We illustrate with the following example.

E X A M P L E  4

Tom Lingley, an independent contractor, has agreed to build a new room on an existing

house. He plans to begin work on Monday morning, June 1. The main question is when

he will complete his work, given that he works only on weekdays. The owner of the house

is particularly hopeful that the room will be ready by Saturday, June 27, that is, in 20 or

fewer working days. The work proceeds in stages, labeled A through J, as summarized in

Table 7. Three of these activities, E, F, and G, will be done by separate independent sub-

contractors. The expected durations of the activities (in days) are shown in the table. How-

ever, these are only best guesses. Lingley knows that the actual activities times can vary

because of unexpected delays, worker illnesses, and so on. He would like to use computer

simulation to see (1) how long the project is likely to take, (2) how likely it is that the proj-

ect will be completed by the deadline, and (3) which activities are likely to be critical.

Solution We first need to choose distributions for the uncertain activity times. Then, given any ran-

domly generated activity times, we will illustrate a method for calculating the length of

the project and identifying the activities on the critical path.

The Pert Distribution As always, there are several reasonable candidate probability distri-

butions we could use for the random activity times. Here we illustrate a distribution that

Construction Project with Uncertain Activity Times

TA B L E  7

Activity Time Data

Description Index Predecessors Expected Duration

Prepare foundation A None 4

Put up frame B A 4

Order custom windows C None 11

Erect outside walls D B 3

Do electrical wiring E D 4

Do plumbing F D 3

Put in ductwork G D 4

Hang drywall H E, F, G 3

Install windows I B, C 1

Paint and clean up J H 2
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has become popular in project scheduling, called the Pert distribution.† As shown in Fig-

ure 20, it is a “rounded” version of the triangular distribution that is specified by three pa-

rameters: a minimum value, a most likely value, and a maximum value. The distribution

in the figure uses the values 7, 10, and 19 for these three values, which implies a mean

of 11. We will use this distribution for activity C. Similarly, for the other activities, we

choose parameters for the Pert distribution that lead to the means in Table 7. In reality, it

would be done the other way around. The contractor would estimate the minimum, most

likely, and maximum parameters for the various activities, and the means would follow

from these.

Developing the Simulation Model The key to the model is representing the project network

in activity-on-arc form, as in Figure 21, and then finding Ej for each j, where Ej is the ear-

liest time we can get to node j. When the nodes are numbered so that all arcs go from

lower-numbered nodes to higher-numbered nodes, we can calculate the Ej’s iteratively,

starting with E1 � 0, with the equation

Ej � max(Ei � tij) (1)

Here, the maximum is taken over all arcs leading into node j, and tij is the activity time

on such an arc. Then En is the time to complete the project, where n is the index of the

finish node. This will make it very easy to calculate the project length.

F I G U R E  20

Pert Distribution

†It is named after the acronym PERT (Program Review and Evaluation Technique) that is synonymous with

project scheduling in an uncertain environment.
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We also need a method for identifying the critical activities for any given activity

times. By definition, an activity is critical if a small increase in its activity time causes

the project time to increase. Therefore, we will keep track of two sets of activity times

and associated project times. The first uses the simulated activity times. The second adds

a small amount, such as 0.001 day, to a “selected” activity’s time. By using the

RISKSIMTABLE function with a list as long as the number of activities, we can make

each activity the “selected” activity in this method. The spreadsheet model appears in Fig-

ure 22, and the details are as follows. (See the Projectsim.xls file.)

Inputs Enter the parameters of the Pert activity time distributions in the shaded cells and

the implied means next to them. As discussed above, we actually chose the minimum,

most likely, and maximum values while in @Risk’s Model window to achieve the means

in Table 7. Note that some of these distributions are symmetric about the most likely

value, whereas others are skewed.

Activity Times Generate random activity times in column I by entering the formula

�RISKPERT(E5,F5,G5)

in cell I5 and copying it down.

F I G U R E  21

Project Network for
Room-Building Project

Projectsim.xls

1

2

3
4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

A B C D E F G H I J

Room construction project

Data on activity network

Activity Code Numeric index Predecessors Min Most likely Max Implied mean Duration Duration+

Prepare foundation A 1 None 1.5 3.5 8.5 4 2.158 2.159

Put up frame B 2 A 3 4 5 4 4.513 4.513

Order custom windows C 3 None 7 10 19 11 9.572 9.572

Erect outside walls D 4 B 2 2.5 6 3 3.322 3.322

Do electrical wiring E 5 D 3 3.5 7 4 3.282 3.282

Do plumbing F 6 D 2 2.5 6 3 2.377 2.377

Put in duct work G 7 D 2 4 6 4 4.668 4.668

Hang dry wall H 8 E,F,G 2.5 3 3.5 3 3.197 3.197

Install windows I 9 B,C 0.5 1 1.5 1 1.384 1.384
Paint and clean up J 10 H 1.5 2 2.5 2 1.677 1.677

Index of activity to increase 1

Event times

Node Event time Event time+

1 0 0

2 2.158 2.159

3 6.671 6.672

4 9.572 9.572

5 9.993 9.994

6 14.661 14.662

7 17.858 17.859

8 19.536 19.537

Increase in project time? 1

Parameters of PERT distributions

F I G U R E  22

Project Scheduling Simulation Model
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Augmented Activity Times We want to successively add a small amount to each activity’s

time to determine whether it is on the critical path. To do this, enter the formula

�RISKSIMTABLE({1, 2, 3, 4, 5, 6, 7, 8, 9, 10})

in cell B16. (We use a list of length 10 because there are 10 activities.) Then enter the

formula

�I5�IF(Index�C5,0.001,0)

in cell J5 and copy it down. (Here, Index is the range name of cell B16.) For example, if

we are checking whether activity D (the 4th activity) is critical, the Index cell will be 4,

and we will run a simulation where activity D’s time is augmented by 0.001 and the other

activity times are unchanged.

Event Times We want to use Equation (1) to calculate the node event times in the range

B20:B27. There is no quick way to enter the required formulas. (We see no way of using

Copy and Paste.) We need to use the project network as a guide for each node. Begin by

entering 0 in cell B20. Then enter the appropriate formulas in the other cells. For exam-

ple, the formulas in cells B22, B23, and B27 are

�B21�I6

�MAX(B20�I7,B21�I6)

and

�RISKOUTPUT()�MAX(B23�I13,B26�I14)

To understand these, note that node 3 has only one arc leading into it, and this arc origi-

nates at node 2. No MAX is required for this node’s equation. In contrast, node 4 has two

arcs leading into it, from nodes 1 and 2, so a MAX is required. Similarly, node 8 requires

a MAX, because it has two arcs leading into it. Also, it is the finish node, so we desig-

nate its event time cell as an @Risk output cell—it contains the time to complete the 

project.

Augmented Event Times Copy the formulas in the range B20:B27 to the range C20:C27

to calculate the event times when the selected activity’s time is augmented by 0.001.

Project Time Increases? To check whether the selected activity’s increased activity time

increases the project time, enter the formula

�RISKOUTPUT()�IF(C27�B17,1,0)

If this calculates to 1, then the selected activity is critical for these particular activity

times. Otherwise, it is not. Note that this cell is also designated as an @Risk output cell.

Using @Risk We set the number of iterations to 1,000 and the number of simulations to

10 (one for each activity that we want to check for being critical). After running @Risk,

we request the histogram of project times in Figure 23. In Chapter 7, when the activity

times were not considered random, the project time was 20 days. Now it varies from a

low of 15.89 days to a high of 25.50 days, with an average of 20.42 days.† Although the

5th and 95th percentiles appear in the figure, it might be more interesting (and depress-

ing) to Tom Lingley to see the probabilities of various project times being exceeded. For

example, we entered 20 in the Left X box next to the histogram. The Left P value implies

that there is about a 57% chance that the project will not be completed within 20 days.

†It can be shown mathematically that the expected project time is always greater than when the expected ac-

tivity times are used to calculate the project time, as we did in Chapter 7. In other words, an assumption of

certainty always leads to an underestimation of the true expected project time.
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Similarly, the values in the Right X and Right P boxes imply that the chance of the proj-

ect lasting longer than 23 days is slightly greater than 5%. This is certainly not good news

for Lingley, and he might have to resort to the crashing we discussed in Chapter 8.

The summary measures for the B29 output cell appear in Figure 24. Each “simulation”

in this output represents one selected activity being increased slightly. The Mean column

indicates the fraction of iterations where the project time increases as a result of the se-

lected activity’s time increase. Hence, it represents the probability that this activity is crit-

ical. For example, the first activity (A) is always critical, the third activity (C) is never

critical, and the fifth activity (E) is critical about 45% of the time. More specifically, we

see that the critical path always includes activities A, B, D, H, J, and one of the three “par-

allel” activities E, F, and G.

P R O B L E M S
Group A

F I G U R E  23

Histogram of Project
Completion Time

F I G U R E  24

Probabilities of
Activities Being Critical

1 The city of Bloomington is about to build a new water
treatment plant. Once the plant is designed (D), we can
select the site (S), the building contractor (C), and the

operating personnel (P). Once the site is selected, we can
erect the building (B). We can order the water treatment
machine (W) and prepare the operations manual (M) only
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after the contractor is selected. We can begin training (T)
the operators when both the operations manual and operating
personnel selection are completed. When the treatment plant
and the building are finished, we can install the treatment
machine (I). Once the treatment machine is installed and
operators are trained, we can obtain an operating license
(L). The estimated mean and standard deviation of the time

(in months) needed to complete each activity are given in
Table 8. Use simulation to estimate the probability that the
project will be completed in (a) under 50 days and (b) more
than 55 days. Also estimate the probabilities that B, I, and
T are critical activities.

2 To complete an addition to the Business Building, the
activities in Table 9 need to be completed (all times are in
months). The project is completed once Room 111 has been
destroyed and the main structure has been built.

a Estimate the probability that it will take at least 3
years to complete the addition.

b For each activity, estimate the probability that it will
be a critical activity.

3 To build Indiana University’s new law building, the
activities in Table 10 must be completed (all times are in
months).

a Estimate the probability that the project will take
less than 30 months to complete.

b Estimate the probability that the project will take
more than 3 years to complete.

c For each of the activities A, B, C, and G, estimate
the probability that it is a critical activity.

TA B L E  8

Mean Standard Deviation

Activity D 6 1.5

Activity S 2 3.0

Activity C 4 1.0

Activity P 3 1.0

Activity B 24 6.0

Activity W 14 4.0

Activity M 3 0.4

Activity T 4 1.0

Activity I 6 1.0

Activity L 3 6.0

TA B L E  9

Predecessors Mean Time Standard Deviation

Activity A: Hire workers — 4 0.6

Activity B: Dig big hole A 9 2.5

Activity C: Pour foundation B 5 1.0

Activity D: Destroy room A 7 2.0

Activity E: Build main structure C 10 1.5

TA B L E  10

Predecessors Mean Time Standard Deviation

Activity A: Obtain funding — 6 0.6

Activity B: Design building A 8 1.3

Activity C: Prepare site A 2 0.2

Activity D: Lay foundation B, C 2 0.3

Activity E: Erect walls and roof D 3 1.0

Activity F: Finish exterior E 3 0.6

Activity G: Finish interior D 7 1.5

Activity H: Landscape grounds F, G 5 1.2

23.4 Reliability and Warranty Modeling

In today’s high-tech world, it is very important to be able to compute the probability that

a system made up of machines will work for a desired amount of time. The subject of es-

timating the distribution of machine failure times and the distribution of time to failure

of a system is known as reliability theory.



Distribution of Machine Life

We assume the length of time (call it X) until failure of a machine is a continuous ran-

dom variable having a distribution function F(t) � P(X 
 t) and a density function f (t).

Thus, for small �t, the probability that a machine will fail between time t and t � �t is

approximately f (t)�t. The failure rate of a machine at time t [call it r(t)] is defined to be

(1/�t) times the probability that the machine will fail between time t and time t � �t,

given that the machine has not failed by time t. Thus,

r(t) � �	
�

1

t
	� Prob(X is between t and t � �t|X � t) � 	

�t(1

�

�

tf(t

F

)

(t))
	 � 	

(1 �

f (t

F

)

(t))
	

If r(t) is an increasing function of t, the machine is said to have an increasing failure rate

(IFR). If r(t) is a decreasing function of t, the machine is said to have a decreasing fail-

ure rate (DFR).

Consider an exponential distribution which has f (t) � le�lt and F(t) � 1 � e�lt. Then

we find that

r(t) � 	
l

e

e
�

�

l

l

t

t

	 � l

Thus, a machine whose lifetime follows an exponential random variable has constant fail-

ure rate. This is analogous to the no-memory property of the exponential distribution dis-

cussed in Chapter 20.

The random variable that is most frequently used to model the time till failure of a ma-

chine is the Weibull random variable. The Weibull random variable has the following

density and distribution functions:

f (t) � 	
ax

b

a

e

�1

	 e�(t/b)e

F(t) � 1 � e(�t/b)a

It can be shown that if b �1, the Weibull random variable exhibits DFR, and if b � 1,

the Weibull random variable exhibits IFR. The @Risk function RISKWEIBULL(alpha,

beta) will generate an observation for a Weibull random variable having parameters a and

b. If you input the mean and variance of observed machine times to failure into cells D4

and D5, respectively, of workbook Weibest.xls, the workbook computes the unique values

of a and b that yield the observed mean and variance of times to failure. For example,

we see in Figure 25 that if the mean time to machine failure were 12 months and the stan-

dard deviation were 6 months, then a Weibull with a � 2.2 and b � 13.55 would yield

the desired mean and variance.

Common Types of Machine Combinations

Three common types of machine combinations are as follows:

■ A series system. A series system functions only as long as each machine func-

tions. See Figure 26(a).

■ A parallel system. A parallel system functions as long as at least one machine

functions. See Figure 26(b).
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Weibest.xls
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■ A k out of n system. A k out of n system consists of n machines and is consid-

ered working as long as k machines are working.

Of course, by combining these types, a very complex system may be modeled. We now

show how to use @Risk to model the probability that a machine system will last a de-

sired amount of time.

E X A M P L E  5

Assume that the Hubble telescope contains four large mirrors. The time (in months) un-

til a mirror fails follows a Weibull random variable with a � 25 and b � 50.

a For certain types of pictures to be useful, all mirrors must be working. What is the

probability that the telescope can produce these types of pictures for at least 5 years?

b Certain types of pictures can be taken as long as at least one mirror is working. What

is the probability that these pictures can be taken for at least 7 years?

c Certain types of pictures can be taken as long as at least two mirrors are working.

What is the probability that these pictures can be taken for at least 6 years?

Solution See file Reliability.xls.

Step 1 We begin by generating the length of time until each mirror fails in C3:C6 by

copying from C3 to C4:C6 the formula

�RISKWEIBULL(25,50)

Hubble Telescope

 

1
2
3
4
5
6

7
8

A B C D E F G

Estimating Weibull
Distribution Parameters

Mean time to failure 12
Variance of time to Failure 36
Second Moment of failure time 180

Second moment/(mean)^2 1.25 Beta 13.54976
Alpha Alpha 2.2  

 
F I G U R E  25

1

1

At least one of 

the n must work.
2

n

(b)  Parallel system

(a)  Series system 

       All n must work.

2 n

F I G U R E  26

Reliability.xls
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1
2

3
4

5

6
7

8

9

10

A B C

Hubble Telescope
Mirror 1 49.30487
Mirror 2 30.19602

Mirror 3 38.99237

 Mirror 4 37.64995

Time all 4 

work 30.19602
Time till 

last one 

fails 49.30487
Last time 

2 are 
working 38.99237  F I G U R E  27

10
11

12

13
14

15

16
17

18

19
20

21
22

23

24
25

26

27
28

29
30

31

32
33

34

35
36

37

38
39

40
41

42

43
44

45

46
47

48

49

F G H I

Name  Time all 4 wTime till lasLast time 2
DescriptionOutput Output Output 

Cell  C8 C9 C10

Minimum 3.733206 31.46502 27.71785
Maximum 66.0223 101.8234 80.49436

Mean 35.63382 64.18716 54.32821

Std Deviati 10.08293 9.306231 8.747266
Variance 101.6655 86.60596 76.51466

Skewness -0.104045 0.121514 -2.73E-02

Kurtosis 2.737432 3.290648 2.910271
Errors Calc 0 0 0

Mode 34.15707 62.93507 58.45681
5% Perc 18.52796 49.15086 39.91564

10% Perc 22.40516 52.22929 42.77759

15% Perc 24.85496 54.84017 44.97655
20% Perc 26.80984 56.5674 46.99073

25% Perc 28.67021 57.84864 48.3152

30% Perc 30.25738 59.51218 49.89228
35% Perc 31.90257 60.52841 50.94405

40% Perc 33.26531 61.73524 52.26505
45% Perc 34.4916 62.83329 53.25808

50% Perc 35.7727 63.89499 54.54087

55% Perc 37.04685 65.06183 55.4865
60% Perc 38.58305 66.16101 56.72353

65% Perc 39.88355 67.578 58.00496

70% Perc 41.17931 68.97778 58.9762
75% Perc 42.88946 70.39309 60.089

80% Perc 44.47398 71.75684 61.61526

85% Perc 46.13106 73.66335 63.45758
90% Perc 48.46651 76.06507 65.64239

95% Perc 51.94818 79.72974 68.19598
Filter Minimum

Filter Maximum

Filter Type
# Values F 0 0 0

Scenario # >75% >75% >75%

Scenario #2<25% <25% <25%
Scenario #3>90% >90% >90%

Target #1 ( 60 84 72

Target #1 ( 99.54% 98.29% 98.00%  F I G U R E  28
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Step 2 Part (a) is a series system. We can take the desired pictures until the first mirror

fails. The first mirror fails at the smallest of the four mirror failure times. Thus, the length

of time for which the first type of picture can be taken is computed in cell C8 with the

formula

�MIN(C3:C6)

Step 3 Part (b) is a parallel system. We can take the desired pictures until the time the

last mirror fails. We compute the time the last mirror fails in cell C9 with the formula

�MAX(C3:C6)

Step 4 Part (c) is a 2 out of 4 system. We can take the desired pictures until the time of

the third mirror failure. The time of the third mirror failure is the second largest of the

failure times. We compute the time of the third mirror failing in cell C10 with the 

formula

�LARGE(C3:C6,2)

This formula computes the second largest of the mirror failure times. Of course, this is

the time the third mirror fails. See Figure 27.

Step 5 We now select cells C8:C10 as output cells and run 1,000 iterations. After using

targets with the Detailed Statistics output, we obtain the results in Figure 28.

We find in part (a) that there is a 99.54% chance that all four mirrors will fail in 60

months or less, and only a .46% chance that all four mirrors will work for at least 60

months. In part (b), we find that there is a 98.29% chance that all four mirrors will fail

within 7 years, and only a 1.71% chance that all four mirrors will be working for at least

7 years. In part (c), we find that there is a 98% chance that two or more mirrors will be

working for 72 months or less, and only a 2% chance that two or more mirrors will be

working for at least 72 months.

Estimating Warranty Expenses

If we know the distribution of the time till failure of a purchased product, @Risk makes

it a simple matter to estimate the distribution of warranty costs associated with a product.

The idea is illustrated in the following example.

E X A M P L E  6

The time until first failure of a refrigerator (in years) follows a Weibull random variable

with a � 6.7 and b � 8.57. If a refrigerator fails within 5 years, we must replace it with

a new refrigerator costing $500. If the replacement refrigerator fails within 5 years, we

must also replace that refrigerator with a new one costing $500. Thus, the warranty stays

in force until a refrigerator lasts at least 5 years. Estimate the average warranty cost in-

curred with the sale of a new refrigerator. (Do not worry about discounting costs.)

Solution See file Refrigerator.xls. We enter the length of time a refrigerator lasts in cell C6 with

the formula

�RISKWEIBULL(6.7,8.57)

Refrigerator Failure

Refrigerator.xls
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We are not sure how many replacement refrigerators we might have to provide for the cus-

tomer. By selecting the Define Distributions icon when we are in cell C6, we can move

the sliders on the Weibull density function and determine the probability that we will have

to replace a given refrigerator. We find that there is only a 2.7% chance that a refrigera-

tor will have to be replaced. Then the chance that at least 5 refrigerators will have to be

replaced is (.027)5 � .000014. Thus, generating only 5 refrigerator lifetimes should give

us an accurate estimate of total cost. We therefore copy the RISKWEIBULL formula from

C6 to C7:C10. See Figure 29.

In cell D6, we compute the cost associated with a sold refrigerator with the 

formula

�IF(C6�5,500,0)

In cells D7:D10, we compute the cost (if any) associated with any replacement refriger-

ators by copying from D7 to D8:D10 the formula

�IF(AND(D6�0,C7�5),500,0)

This formula picks up the cost of a replacement if and only if the previous refrigerator

failed and the current refrigerator lasts less than 5 years.

In cell D11, we compute total cost with the formula

�SUM(D6:D10)

After running 1,000 iterations and making cell D11 an output cell (see below), we find

the mean warranty cost per refrigerator to be $14.50. Note that maximum cost was

$1,000, so on at least one iteration, two refrigerators needed to be replaced.

1
2

3
4

5

6
7

8
9

10

11
12

A B C D E F G

Refrigerator
Warranty

Number Lasts Cost

1 8.113087 0
2 6.91762 0 .027^5

3 7.233594 0 1.43489E-08
4 8.776642 0

5 7.120917 0

Total cost 0
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11
12
13

F G H I J K L M

Name Workbook Worksheet Cell Minimum Mean Maximum
Output 1 Total cost / Cosrefrigerator Sheet1 D11 0 14.5 1000  
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P R O B L E M S
Group A

Assume that the lifetimes of all machines described follow
a Weibull random variable.

1 Suppose an auto engine consists of 12 components in
series. The mean lifetime of each component is 5 years,
with a standard deviation of 2 years.

a What is the probability that the engine will work for
at least 2 years?

b If the engine were a parallel system, what is the
probability that the engine would work for at least 10
years?

c If at least 8 engine components need to work for the
engine to work, what is the probability that the engine
will work for at least 7 years?

2 An aircraft engine lasts an average of 5 years, with a
standard deviation of 3 years before it needs to be replaced.
Consider a plane with 4 new engines. On the average, how
long will it be until an engine needs to be replaced?

3 A one-mile length of street has 5 street lights, equally
spaced. The mean lifetime of a street light is 3 years, with
a standard deviation of 1 year. Assume that all 5 lights have
just been replaced. The street is considered too dark if at
least one part of the street has no light working within .5
mile. On the average, how long will it be until the street is
considered too dark?

4 In the refrigerator example, suppose the warranty works
as follows. If a refrigerator fails at any time within 5 years
of purchase, we give the consumer a prorated refund on the
$500 purchase price. For example, if the refrigerator fails
after 4 years, we pay the customer $100. If the refrigerator
fails after 3 years, we pay the customer $200. Estimate our
expected warranty expense per refrigerator sold.

5 The time to failure of a TV picture tube averages 5
years, with a standard deviation of 3 years. It costs an
average of $250 to repair or replace a TV picture tube.
Determine fair prices for a 3-year, 4-year, or 5-year warranty.

23.5 The RISKGENERAL Function

What if a continuous random variable (such as market share) does not appear to follow a

normal or triangular distribution? We can model it with the RISKGENERAL function.

E X A M P L E  7

Suppose that market shares between 0% and 60% are possible. A 45% share is most likely.

There are five market-share levels for which we feel comfortable about comparing the rel-

ative likelihoods (see Table 11).

From the table, a market share of 45% is 8 times as likely as 10%; 20% and 55% are

equally likely, etc. This distribution cannot be triangular, because then 20% would be

(20/45) as likely as the peak of 45%. In fact, 20% is .75 as likely as 45%. See Figure 30

and file Riskgeneral.xls for our analysis.

To model market share, enter the formula

�RISKGENERAL(0,60,{10,20,45,50,55},{1,6,8,7,6})

RISKGENERAL Distribution

TA B L E  11

Market Share Relative Likelihood

10% 1

20% 6

45% 8

50% 7

55% 6

Riskgeneral.xls
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The syntax of RISKGENERAL is as follows.

■ Begin with the smallest and largest possible values.

■ Then enclose in {} the numbers for which you feel you can compare relative 

likelihoods.

■ Finally, enclose in {} the relative likelihoods of the numbers you have previously

listed.

Running this in @Risk yields the output in Figure 31. Note that 20 is 6/8 as likely as 45;

10 is 1/8 as likely as 45; 50 is 7/8 as likely as 45; 55 is 6/8 as likely as 45, etc. In be-

1
2
3
4
5
6
7
8
9

10
11
12
13

B C D E F G

EXAMPLE OF
RISKGENERAL
DISTRIBUTION

Minimum 0
Maximum 60

Specified Points
10 1
20 6
45 8
50 7
55 6

35.75 =RISKGENERAL(0,60,{10,20,45,50,55},{1,6,8,7,6} )
F I G U R E  30

 Distribution for DISTRIBUTION

P
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A
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IT

Y

 

0.00

0.02

0.03

0.05

0.06

0.08

1.5 11.0 20.5 30.0 39.5 49.0 58.5
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36

C D

Share Likelihood
0 0

10 1
20 6
45 8
50 7
55 6
60 0

Likelihood

0
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0 50 100

Share
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Likelihood
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tween the given points, the density function changes at a linear rate. Thus, 30 would have

a likelihood of

6 �	
(30 �

(45

20

�

)*

2

(8

0)

� 6)
	 � 6.8

Basically what @Risk has done is to take the curve constructed by connecting (with

straight lines) the points (0, 0), (10,1), . . . , (55,6), (60,0). @Risk rescales the height of

this curve so that the area under it equals 1, and then randomly selects points based on

the height of the curve. Thus, a share around 45 is 8/6 as likely as a share around 20, etc.

Figure 32 illustrates this idea.

R E M A R K For the spreadsheet in Figure 30, the syntax

�RISKGENERAL(0,60,D8:D12,E8:E12)

is also acceptable.

Suppose we select the Define Distributions icon. Then we choose the RISKGENERAL

random variable and select Apply. Now we can directly insert the RISKGENERAL (or

any other) random variable into a cell.

After entering the appropriate parameters for the RISKGENERAL random variable,

we will see the histogram shown in Figure 33. We are also given statistical information,

such as the mean and variance, for the random variable. If we select Apply, the formula

defining the desired RISKGENERAL random variable will be entered into the cell.

 

F I G U R E  33
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23.6 The RISKCUMULATIVE Random Variable

With the RISKGENERAL function, we estimated the relative likelihood of a random vari-

able taking on various values. With the RISKCUMULATIVE function, we estimate the

cumulative probability that the random variable is less than or equal to several given val-

ues. The RISKCUMULATIVE function can be used to approximate the cumulative dis-

tribution function for any continuous random variable.

E X A M P L E  8

A large auto company’s net income for North American operations (NAO) for the next

year may be between 0 and $10 billion. The auto company estimates there is a 10% chance

that net income will be less than or equal to $1 billion, a 70% chance that net income will

be less than or equal to $5 billion, and a 90% chance that net income will be less than or

equal to $9 billion. Use @Risk to simulate NAO’s net income for the next year.

RISKCUMULATIVE

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

A B C D E F G H

Cumulative distribution

Min 0
Max 10 4.2
x P(X<=x) Slope 4.2 RiskCumul(B3,B4,A6:A8,B6:B8)

1 0.1 0.1
5 0.7 0.15    
9 0.9 0.05 Name  P(X<=x)

>9 0.1 DescriptionOutput 
Cell  D5
Minimum = 4.89E-03
Maximum = 9.999967
Mean = 4.199986
Std Deviati 2.773699
Variance = 7.693407
Skewness 0.589373
Kurtosis = 2.285831
Errors Calc 0
Mode = 3.43314
5% Perc = 0.497997
10% Perc = 0.999338 10%ile is 1!
15% Perc = 1.333212
20% Perc = 1.665637
25% Perc = 1.996866
30% Perc = 2.332803
35% Perc = 2.664376
40% Perc = 2.996635
45% Perc = 3.330816
50% Perc = 3.663554
55% Perc = 3.995894
60% Perc = 4.33135
65% Perc = 4.664128
70% Perc = 4.997442 70%ile is 5!
75% Perc = 5.995409
80% Perc = 6.993743
85% Perc = 7.99109
90% Perc = 8.989162 90%ile is near 9
95% Perc = 9.499336

F I G U R E  34
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Solution Our work is in the file Cumulative.xls. See Figure 34. The RISKCUMULATIVE function

takes as inputs (in order) the following quantities:

■ The smallest value assumed by the random variable

■ The largest value assumed by the random variable

■ Intermediate values assumed by the random variable

■ For each intermediate value, the cumulative probability that the random variable

is less than or equal to the intermediate value

In cell D5, we enter the following formula to simulate NAO’s annual net income:

�RISKCUMUL(B3,B4,A6:A8,B6:B8)

We could have also used the following formula in cell D4:

�RISKCUMUL(0,10,{1,5,9},{0.1,0.7,0.9})

@Risk will now ensure that

■ For net income x between 0 and $1 billion, the cumulative probability that net in-

come is less than or equal to x rises with a slope equal to 	.
1
1

�

�

0
0

	 � .1.

■ For net income x between $1 billion and $5 billion, the cumulative probability

that net income is less than or equal to x rises with a slope equal to 	.7
5

�

�

.
1
1

	 � .15.

■ For net income x between $5 billion and $9 billion, the cumulative probability

that net income is less than or equal to x rises with a slope equal to 	.9
9

�

�

.
5
7

	 � .05.

■ For net income x greater than $9 billion, the cumulative probability that net in-

come is less than or equal to x rises with a slope equal to 	
1
1
0
�

�

.9
9

	 � .10.

After running 1,600 iterations we found the output in Figure 34. Note that the 10th

percentile of the random variable is near 1, the 70th percentile is near 5, and the 90th per-

centile is near 9. Figure 35 displays a cumulative ascending graph of net income. Note

that (as described previously) the slope of the graph is relatively constant between 0 and

1, between 1 and 5, between 5 and 9, and between 9 and 10.

F I G U R E  35
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23.7 The RISKTRIGEN Random Variable

When we use the RISKTRIANG function, we are assuming we know the absolute worst

and absolute best case that can occur. Many companies, such as Eli Lilly, prefer to use a

triangular random variable in which the worst case and best case are defined by a per-

centile of the random variable. For example, at Eli Lilly the 10th percentile of demand,

most likely demand, and 90th percentile of demand often define forecasts. The following

example shows how to use the RISKTRIGEN function to model uncertainty.

E X A M P L E  9

Eli Lilly believes there is a 10% chance that its new drug Niagara’s market share will be

25% or less, a 10% chance that market share will be 70% or more, and the most likely

market share is 40%. Use @Risk to model the market share for Niagara.

Solution Our work is in the file Risktrigen.xls. See Figure 36. In B7, we just entered the formula

�RISKTRIGEN(B3,B4,B5,10,90)

RISKTRIGEN

 

1
2
3
4
5
6
7

A B

trigen function

10%ile 0.25
Most likely 0.4
90 %ile 0.7

share 0.464537F I G U R E  36

F I G U R E  37

Risktrigen.xls
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The syntax of the RISKTRIGEN function is as follows:

�RISKTRIGEN(lower value, most likely value, higher value, percentile for lower

value, percentile for higher value)

In Figure 37, we show the density function for the market share. Note that @Risk picks

the worst case for RISKTRIGEN (around 10%), so the chance of a market share below

25% is .10. @Risk picks the best case for RISKTRIGEN (around 89%), so the probabil-

ity of a share exceeding 70% is .10. When we ran 1,600 iterations, with cell B7 being the

output cell, we obtained the output in Figure 38.

Note that the 10th percentile is almost exactly 25%, and the 90th percentile is almost

exactly 70%.

23.8 Creating a Distribution Based on a Point Forecast

We are constantly inundated by forecasts:

■ The government predicts the GDP will grow by 4% during the next year.

■ The Eli Lilly marketing department predicts that demand for a given drug will be

400,000,000 d.o.t. (days of therapy) during the next year.

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

C D

Name  
DescriptionOutput 
Cell  [trigen.xls]S
Minimum = 9.73E-02
Maximum = 0.886495
Mean = 0.464533
Std Deviati 0.166746
Variance = 2.78E-02
Skewness 0.22598
Kurtosis = 2.398804
Errors Calc 0
Mode = 0.401881
5% Perc = 0.203626
10% Perc = 0.249634
15% Perc = 0.285171
20% Perc = 0.315337
25% Perc = 0.341713
30% Perc = 0.365485
35% Perc = 0.387192
40% Perc = 0.407964
45% Perc = 0.428942
50% Perc = 0.450952
55% Perc = 0.473918
60% Perc = 0.498488
65% Perc = 0.524349
70% Perc = 0.552427
75% Perc = 0.58265
80% Perc = 0.61619
85% Perc = 0.654338
90% Perc = 0.699825
95% Perc = 0.758373F I G U R E  38



2 3 . 8 Creating a Distribution Based on a Point Forecast 1251

■ A Wall Street guru predicts that the Dow will go up 20% during the next 12

months.

■ The bookmakers forecast that the Pacers will beat the Rockets by 6 in the open-

ing game of the 2005 NBA season.

Although the forecasts may be the best available, they are almost sure to be incorrect. For

example, the bookmakers’ prediction that the Pacers will win by 6 points is incorrect un-

less the Pacers win by exactly 6 points. In short, any single-valued (or point) forecast im-

plies a distribution for the quantity being forecasted. How can we find a random variable

that correctly models the uncertainty inherent in the point forecast? The key to putting a

distribution around a point forecast is to have some historical data about the accuracy of

past forecasts of the quantity of interest. For example, with regard to our forecast for the

Dow, we might have the forecast made in January of each of the past 10 years for the per-

centage change in the Dow and the actual change in the Dow for each of those years. We

begin by seeing if past forecasts exhibit any bias. For each past forecast, we determine

(actual value)/(forecast value). Then we average these ratios. If our forecasts are unbiased,

this average should be around 1. Any significant deviation from 1 would indicate a sig-

nificant bias.† For example, if the average of actual/forecast is 2, the actual results tend

to be around twice our forecast. To correct for this bias, we should automatically double

our forecast. If the average of actual/forecast is .5, the actual results tend to be around

half our forecast; to eliminate bias, we should automatically halve our forecast. Once we

have eliminated forecast bias, we look at the standard deviation of the percentage errors

of the unbiased forecast. We use the following @Risk random variable to model the quan-

tity being forecast.

RISKNORMAL(unbiased forecast, (percentage standard deviation of unbiased

forecasts)*(unbiased forecast))

E X A M P L E  1 0

The file Drugforecast.xls contains actual and forecast sales (in millions of d.o.t.) for the

years 1995–2002. See Figure 39. The forecast for 2003 is that 60 million d.o.t. will be

sold. How would you model actual sales of the drug for 2003?

Solution Step 1 In cells F5:F12, check for bias by computing actual sales/forecast sales for each

year. To do this, copy from F5 to F6:F12 the formula

�D5/E5

Step 2 In cell F2, compute the bias of the original forecasts by averaging each year’s ac-

tual/forecast sales.

�AVERAGE(F5:F12)

We find that actual sales tend to come in 8% under forecast.

Step 3 In G5:G12, correct past biased forecasts by multiplying them by .92. Simply copy

from G5 to G6:G12 the formula

�$F$2*E5

Drug Forecast

†To see if the bias is significantly different from 1, compute

If this exceeds t(a/2,n�1) then there is significant bias. We usually choose a � .05.

Average of (actual)/(forecast) � 1
				

Drugforecast.xls
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Step 4 In H5:H12, compute each year’s percentage error for the unbiased forecast. Copy

from H5 to H6:H12 the formula

�D5/G5

Step 5 In cell I2, compute the standard deviation of the percentage errors with the 

formula

�STDEV(H5:H12)

We find that the standard deviation of past unbiased forecasts has been around 11% of

the unbiased forecast. We now model the 2003 sales of the drug (in millions of d.o.t.) with

the formula

�RISKNORMAL(60*(.918), (60*.918)*.114) or RISKNORMAL(55.08,6.27)

See Figure 40.

23.9 Forecasting the Income of a Major Corporation

In many large corporations, different parts of a company make forecasts for quarterly net

income. An analyst in the CEO’s office pulls together the individual predictions to fore-

cast the entire company’s net income. In this section, we show an easy way to pool fore-

casts from different portions of a company and create a probabilistic forecast for the en-

tire company.

So far, we have usually assumed that @Risk functions in different cells are indepen-

dent. For example, the value of a RISKNORMAL(0,1) in cell A6 has no effect on the

value of a RISKNORMAL(0,1) in any other cell. In many situations, however, variables

of interest might be correlated. For example, a weak yen will lower the price of a 

Japanese car in the United States and hurt GM market share. Since higher price incen-

tives increase market share, GM market share may also be negatively correlated with car

1
2

3

4

5
6

7

8
9

10

11
12

C D E F G H I

mean std dev
mean 0.918031 1 0.113753

Year Actual Sales Forecast A/F

Unbiased 
forecast

%age 
error

1995 17 22 0.772727 20.19668 84%
1996 59 61 0.967213 55.9999 105%

1997 46 51 0.901961 46.81959 98%

1998 85 86 0.988372 78.95067 108%
1999 98 103 0.951456 94.5572 104%

2000 94 118 0.79661 108.3277 87%

2001 24 22 1.090909 20.19668 119%
2002 14 16 0.875 14.6885 95%  

 
F I G U R E  39
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14
15

16

E F

Mean 2003 55.08187

Sigma 2003 6.2657  
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price. Also, net income of NAO (North American operations) is often correlated with net

income in Europe. The following example shows how to model correlations with @Risk.

Recall that the correlation between two random variables must lie between �1 and �1.

■ Correlation near �1 implies a strong positive linear relationship.

■ Correlation near �1 implies a strong negative linear relationship.

■ Correlation near �.5 implies a moderate positive linear relationship.

■ Correlation near �.5 implies a moderate negative linear relationship.

■ Correlation near 0 implies a weak linear relationship.

E X A M P L E  1 1

Suppose GM CEO Rick Waggoner has received the following forecast for quarterly net

income (in billions of dollars) for Europe, NAO, Latin America, and Asia. See Figure 41

and file Corrinc.xls.

For example, we believe Latin American income will be on average $.4 billion. Based

on past forecast records, the standard deviation of forecast errors is 25%, so the standard

deviation of net income is $.1 billion. We assume that actual income will follow a nor-

mal distribution. Historically, net income in different parts of the world has been corre-

lated. Suppose the correlations are as given in B10:F13. Latin America and Europe are

most correlated, and Asia and NAO are least correlated. What is the probability that total

net income will exceed $4 billion?

Solution To correlate the net incomes of the different regions, we use the RISKCORRMAT func-

tion. The syntax is as follows:

� Actual @Risk formula, RISKCORRMAT(correlation matrix, relevant column

of matrix)

where

Correlation matrix: cells where correlations between variables are located

Relevant column: column of correlation matrix that gives correlations for this cell

Actual @Risk formula: distribution of the random variable

Forecasting GM Net Income

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A B C D E F G

Net Income Consolidation
with correlation Goal is 4 billion!

Mean Std. Dev Actual

1 LA 0.4 0.1 0.449011 0.521472

2 NAO 2 0.4 1.256578 1.264837

3 Europe 1.1 0.3 1.14203 0.994558

4 Asia 0 .8 0.3 0.685143 0.707549

Total!! 3.532761 3.488417

Correlations LA NAO Europe Asia

LA 1 0.6 0.7 0.5

NAO 0.6 1 0.6 0.4

Europe 0.7 0.6 1 0.5

Asia 0.5 0.4 0.5 1

       F I G U R E  41

Corrinc.xls
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Step 1 Generate actual Latin American income in cell E4 with the formula

�RISKNORMAL(C4,D4,RISKCORRMAT($C$11:$F$14,A4))

This ensures that the correlation of Latin American income with other incomes is created

according to the first column of C11:F14. Also, Latin American income will be normally

distributed, with a mean of $.4 billion and standard deviation of $.1 billion.

Step 2 Copying the formula in E4 to E5:E7 (respectively) generates the net income in

each region and tells @Risk to use the correlations in C11:F14.

Step 3 In cell E8, compute total income with the formula

�SUM(E4:E7)

Step 4 Cell E8 has been made the output cell. We find from Targets (value of 4) that

there is a 36% chance of not meeting the $4 billion target. Also, the standard deviation

of net income is $895 million. See Figure 42.

54

55

56

57

B C D E F

Scenario #3 = >90%

Target #1 (Value) 4  

Target #1 (Perc%) 35.72%

36% chance we fail 

to meet target

 
 

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

B C D

Name  Total!! / Actual
Description  Output 
Cell  E8
Minimum = 1.858541
Maximum = 6.71191
Mean = 4.300031
Std Deviation = 0.895158
Variance = 0.801308
Skewness = -5.82E-02
Kurtosis = 2.894021
Errors Calculated 0
Mode = 4.470891
5% Perc = 2.756473
10% Perc = 3.186955
15% Perc = 3.364678
20% Perc = 3.554199
25% Perc = 3.715597
30% Perc = 3.854618
35% Perc = 3.96633
40% Perc = 4.080534
45% Perc = 4.173182
50% Perc = 4.306374
55% Perc = 4.413318
60% Perc = 4.530555
65% Perc = 4.632649
70% Perc = 4.7776
75% Perc = 4.907873
80% Perc = 5.04496
85% Perc = 5.216321
90% Perc = 5.456462
95% Perc = 5.758535  F I G U R E  42
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What If Net Incomes Are Not Correlated?

In workbook Nocorrinc.xls, we ran the simulation of Example 10, assuming that the net

incomes in different regions were independent (that is, had 0 correlation). The results ap-

pear in Figure 43. Note that the absence of correlation has reduced the standard deviation

to $600 million and our chance of not meeting our $4 billion income target. This is be-

cause if the incomes of all the regions are independent, then it is likely that a high income

in one region will be cancelled out by a low income in another region. If the incomes of

the regions are positively correlated, these correlations reduce the diversification or hedg-

ing effect.

Checking the Correlations

We can check that @Risk actually did correctly correlate net incomes. Make sure to check

Collect Distribution Samples when you run the simulation. Once you have run the simu-

lation, select the Data option from the Results menu. The results of each iteration will ap-

pear in the bottom half of the screen. You can Edit Copy Paste this data to a blank work-

sheet. See Figure 44. Now check the correlations between each region’s net income with

Data Analysis Tools Correlation. Select Data Analysis Tools Correlations and fill in the

15

16

17

18

19

20

21

22

B C D

Name  Total!! / Actual

Description  Output 

Cell  E8

Minimum = 2.174825

Maximum = 6.290998

Mean = 4.299921

Std Deviation = 0.605397

Variance = 0.366506  
 

53

54

55

56

57

58

B C D E F

Target #1 (Value)= 4

Target #1 (Perc%)= 30.76%

 
31% chance we fail 

to meet target
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5

6
7

8

9

10

11
12

13

14

907

908

B C D E F G H I J K L

      

Name  Total!! / Ac LA / Actual NAO / ActuEurope / AcAsia / Actual
DescriptionOutput Normal(C4 Normal(C5 Normal(C6 Normal(C7,D7) 

Iteration#  /E8 E4 E5 E6 E7 LA NAO Europe Asia

1 4.804644 0.478546 2.196594 1.351783 0.777721 LA 1

2 4.132098 0.441263 1.699526 1.184871 0.806438 NAO 0.591262 1

3 6.129157 0.496915 2.453791 1.91255 1.265901 Europe 0.702735 0.587704 1
4 6.54744 0.57896 2.424948 1.968532 1.574999 Asia 0.498132 0.399115 0.496651 1

5 3.057065 0.319965 1.517732 0.968105 0.251263

6 5.324339 0.488499 2.292126 1.084479 1.459235

899 4.735623 0.469691 2.19903 1.466369 0.600534

900 4.901974 0.507751 2.242637 1.004801 1.146786  

F I G U R E  44

Nocorrinc.xls
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dialog box as in Figure 45. Note that the correlations between the net incomes are virtu-

ally identical to what we entered in the spreadsheet.

23.10 Using Data to Obtain Inputs for New Product Simulations

Many companies use subjective estimates to obtain inputs for new product simulations.

For example, market size may be subjectively modeled as a triangular random variable,

with the marketing department coming to a consensus on best-case, worst-case, and most

likely scenarios. In many situations, however, past data may be used to obtain estimates

of key variables. We now discuss how past data on similar products or projects can be

used to model share, price, volume, and cost uncertainty. The utility of any model will

depend on the type of data available.

The Scenario Approach to Modeling Volume Uncertainty

When trying to model volume of sales for a new product in the auto and drug industries,

it is common to look for similar products sold in the past. We often have knowledge of

the following:

■ Accuracy of forecasts for year 1 sales volume

■ Data on how sales change after the first year

Consider Figure 46—data on actual and forecast year 1 sales for seven similar products.

See file Volume.xls. For example, for product 1, actual year 1 sales were 80,000; the fore-

cast for year 1 was 44,396. The percentage change in sales from year to year for the seven

products is given in Figure 47.

For example, product 1 sales went up 43% during the second year, 33% during the

third year, etc.

Suppose we forecast year 1 sales to be 90,000 units. How can we model the uncertain

volume in product sales?

Step 1 From cell D11 (formula �AVERAGE(D4:D10)) of Figure 46, we see that past

forecasts for year 1 sales of similar products have overforecast the actual sales by 36.3%.

 
F I G U R E  45
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Step 2 Therefore, we can create unbiased forecasts in column E by copying the formula

�$D$11*C4

from E4 to E5:E10.

Step 3 In column F, we compute the percentage error of our unbiased forecasts. In cell

F4, we compute the percentage error for product 1 with the formula

�B4/E4

Copying this formula from F4 to F5:F10 generates percentage errors for the other 

products.

Step 4 In cell F11, we compute the standard deviation (26.7%) of these percentage er-

rors with the formula

�STDEV(F4:F10)

We are now ready to model 10 years of sales for the new product. To generate year 1 sales,

we model year 1 sales to be normally distributed, with a mean of 1.36*90,000 and a stan-

dard deviation of .267*(90,000*1.267). To model sales for years 2–10, we use @Risk to

randomly choose one of the seven volume-change patterns (or scenarios) from Figure 47.

Then we use the chosen scenario to generate sales growth for years 2–10.

Step 5 In cell G4, we choose a scenario with the formula

�RISKDUNIFORM(A14:A20)

This formula gives a 1/7 chance of choosing each scenario.

3

4

5

6

7

8

9

10

11

B C D E F

Actual Forecast

Actual/For

ecast

Unbiased 

forecast %age error

80000 44396 1.8019641 60516.733 1.3219484

100000 99209 1.0079731 135233.01 0.7394644

120000 94808 1.265716 129233.95 0.9285486

150000 96813 1.5493787 131966.99 1.1366479

180000 172862 1.0412931 235630.31 0.7639085

200000 108770 1.8387423 148265.72 1.3489295

55000 53052 1.0367187 72315.832 0.7605527

mean 1.3631123 stdev 0.2677479F I G U R E  46
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13

14

15

16

17

18

19

20

A B C D E F G H I J

Scenario Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10

1 1.43 1.33 0.93 0.75 0.57 0.40 0.37 0.38 0.24

2 1.39 1.13 0.96 0.59 0.49 0.45 0.46 0.40 0.24

3 1.30 1.38 0.98 0.84 0.80 0.65 0.57 0.48 0.35

4 1.47 1.49 1.36 1.15 1.20 1.15 0.93 0.99 0.71

5 1.23 1.06 0.73 0.45 0.39 0.31 0.28 0.23 0.15

6 1.26 1.22 1.08 0.79 0.77 0.70 0.60 0.60 0.49

7 1.30 1.02 0.84 0.62 0.45 0.32 0.27 0.24 0.22
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Step 6 In H4, we generate year 1 sales with the formula

�RISKNORMAL(I1*D11,(I1*D11)*F11)

This implies that

Mean year 1 sales � (biased forecast)(factor to correct for bias)

(Standard deviation year 1 sales) � (unbiased forecast for year 1 sales)*(standard

deviation of errors as percentage of unbiased forecast)

Step 7 In cell I4, we generate year 2 sales with the formula

�H4*VLOOKUP($G$4,$A$14:$J$20,I3)

This formula takes year 1 generated sales and multiplies it by the year 2 growth factor for

the chosen scenario. Copying this formula to I4:Q4 generates sales for years 2–10. See

Figure 48.

Modeling Statistical Relationships 
with One Independent Variable

Suppose we want to model the dependence of a variable Y on a single independent vari-

able X. We proceed as follows.

Step 1 Try to find the straight line, power curve, and exponential curve that best fit the

data. The easiest way to do this is to plot the points with Excel and use the Trend Curve

feature.

■ The straight line is of the form Y � a � bX.

■ The power function is of the form Y � axb.

■ The exponential function is of the form Y � aebX.

Step 2 For each curve and each data point, compute the percentage error

Step 3 For each curve, compute mean absolute percentage error (MAPE) by averaging

the absolute percentage errors.

Step 4 Choose the curve that yields the lowest MAPE as the best fit.

Actual value of Y � predicted value of Y
					

Predicted value of Y

F I G U R E  48

 
 
 
 
 
 

1
2

3
4

G H I J K L M N O P Q

Year 1 Forecast 90000
Year

Scenari
o 1 2 3 4 5 6 7 8 9 10

4 102588.9 151164 225922 306360.9 351610 420801.1 484511.5 451618.5 445300.1 314821.9
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Step 5 Does at least one of the three curves appear to have some predictive value? Check

the plot for this, or look at the p-value from the regression; it should be 
 .15. If so,

model the uncertainty associated with the relationship between X and Y as follows:

■ If the straight line is the best fit, then model Y as

�RISKNORMAL(prediction, standard deviation of actual (not percentage) errors)

■ If the power curve or the exponential curve is the best fit, then model Y as

�RISKNORMAL(prediction, prediction*(standard deviation of percentage errors))

E X A M P L E  1 2

We are not sure of the cost of building capacity for a new drug, but we believe that costs

will run around 50% more (in real terms) than for the drug Zozac. Table 12 gives data on

the costs incurred when capacity was built for Zozac.

For example, when 110,000 units of capacity for Zozac were built, the cost was

$654,000 (in today’s dollars). How would you model the uncertain cost of building ca-

pacity for the new product?

Solution See the file Capacity.xls.

Step 1 To begin, we plot the best-fitting straight line, power curve, and exponential

curve. To do this, use Chart Wizard (X-Y option 1) and click on points till they turn gold.

Next, choose the desired curve and select R-SQ and the Equation option. We obtain the

graphs in Figures 49–51.

Step 2 In C3:E8 (see Figure 52), we compute the predictions for each curve. In C3:C8,

we compute the straight-line predictions by copying from C3 to C3:C8 the formula

�5.0623*A3�77.516

In D3:D8, we compute the power curve prediction by copying from D3 to D3:D8 the 

formula

�13.483*A3^0.8229

In E3:E8, we compute the exponential curve predictions by copying from E3 to E3:E8 the

formula

�164.52*EXP(0.0114*A3)

Step 3 In F3:H8, we use

Actual value of Y � predicted value of Y
					

Predicted value of Y

Modeling the Cost of Building Capacity

TA B L E  12

Capacity Cost
(thousands) ($ thousands)

20 156

50 350

80 490

110 654

140 760

160 890

Capacity.xls
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1

2

3

4

5

6

7

8

A B C D E

Capacity Cost Modeling

Capacity(00Cost(000's)

Linear 

Prediction

Power 

Prediction

Exponential 

Prediction

20 156 178.762 158.6369 206.6511577

50 350 330.631 337.1855 290.9152953

80 490 482.5 496.4086 409.5390027

110 654 634.369 645.132 576.5327482

140 760 786.238 786.7474 811.6199132

160 890 887.484 878.1261 1019.463863  

F I G U R E  49

F I G U R E  50

F I G U R E  51

F I G U R E  52
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to compute the percentage error for each model. (See Figure 53.) To do this, simply copy

the formula

�($B3-C3)/C3

from F3 to F3:H8.

Step 4 In I3:K9, we compute the MAPE for each equation. We begin by computing the

absolute percentage error for each point and each curve by copying the formula

�ABS(F3)

from I3:K8.

Next we compute the MAPE for each equation by copying the formula

�AVERAGE(I3:I8)

from I9:K9.

Step 5 We find that the power curve (see J9) has the lowest MAPE. Therefore, we model

the cost of adding capacity with a power curve. By entering in G9 the formula

�STDEV(G3:G8)

we find 2.6% to be the standard deviation of the percentage errors for the power curve.

We now model the cost of adding capacity for the new product with the formula

�1.5*RISKNORMAL(13.483*(Capacity)^.8229,.026*13.483*(Capacity)^.8229)

That is, our best guess for the cost of adding capacity has a mean equal to the power curve

forecast and a standard deviation equal to 2.6% of our forecast.

E X A M P L E  1 3

We are bidding against a competitor for a construction project and want to model her bid.

In the past, her bid has been closely related to our (estimated) cost of completing the proj-

ect. See file Biddata.xls and Figure 54.

Figures 55–57 give the best fitting linear, power, and exponential curves.

As in Example 12, we compute predictions and MAPEs for each curve (see Figure 58).

The linear curve has the smallest MAPE. Computing the actual errors for the linear

curve’s predictions (in column F) and their standard deviation, we find a standard devia-

tion of .94. Therefore, we model our competitor’s bid as

�RISKNORMAL(1.489*(Our cost) � 1.7893, .94)

Bidding on a Construction Project

1

2

3

4

5

6

7

8

9

10

F G H I J K

%age 

Error 

Linear

%age 

Error 

Power

%age Error 

Exponential

APE 

Linear

APE 

Power

APE 

Exponential

-0.127331 -0.016622 -0.2451046 0.127331 0.016622 0.24510464

0.058582 0.038004 0.20309934 0.058582 0.038004 0.20309934

0.015544 -0.01291 0.19646724 0.015544 0.01291 0.19646724

0.030946 0.013746 0.13436748 0.030946 0.013746 0.13436748

-0.033372 -0.033997 -0.0636011 0.033372 0.033997 0.06360109

0.002835 0.013522 -0.1269921 0.002835 0.013522 0.12699211

St dev 0.026132 0.044768 0.021467 0.16160532

MAPE  
 

F I G U R E  53

Biddata.xls
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1

2
3
4
5
6
7
8
9

10
11
12

A B C D E F

(All numbers in 000's)

Our cost Comp1 bid

Linear 
prediction

Power 
prediction

Exponential 
prediction

Actual Linear 
Error

10 13 13.1027 13.35697 16.3795084 -0.1027
14 20 19.0587 19.07213 19.5315493 0.9413
16 22 22.0367 21.96795 21.3282198 -0.0367
18 25 25.0147 24.88511 23.2901627 -0.0147
30 44 42.8827 42.73548 39.4893521 1.1173
25 34 35.4377 35.23444 31.6909474 -1.4377
38 56 54.7947 54.88668 56.1502464 1.2053
44 63 63.7287 64.10133 73.114819 -0.7287
24 33 33.9487 33.74424 30.3267775 -0.9487

stdev 0.94189151
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E X A M P L E  1 4

For similar products, the year after the first competitor comes in has historically shown a

significant price drop. Figure 59 contains data on this situation.

For example, for the first product, a competitor entered in year 1. During year 2, a 22%

price drop was observed, after allowing for a normal inflationary increase of 5% during

the second year. Model the effect on price the year after the first competitor enters the

market. See file Pricedata.xls.

Solution Figures 60–62 give the best-fitting linear, power, and exponential curves. The extremely

low R2 values imply that the year of entry has little or no effect on the price drop the year

after the first competitor comes in. Therefore, we model price drop as a RISKNORMAL

function, using the mean and standard deviation found in D14 and D15. If a competitor

enters during year t, we would model the year t � 1 price with the formula

�1.05*(year t price)*RISKNORMAL(.803,.0366)

Note: .803 � 1 � .197.

The Effects of New Competition on Price

2
3
4
5
6
7
8
9

10
11
12
13

G H I J K L

Linear 
%age 
error

Power 
%age 
error

Exponenti
al %age 
error

Linear abs 
%age 
error

Power abs 
%age 
error

Exponenti
al %age 
error

-0.00784 -0.02673 -0.20633 0.007838 0.026726 0.206325
0.04939 0.048651 0.023984 0.04939 0.048651 0.023984

-0.00167 0.001459 0.031497 0.001665 0.001459 0.031497
-0.00059 0.004617 0.073415 0.000588 0.004617 0.073415
0.026055 0.029589 0.114224 0.026055 0.029589 0.114224
-0.04057 -0.03504 0.072862 0.04057 0.035035 0.072862
0.021997 0.020284 -0.00268 0.021997 0.020284 0.002676
-0.01143 -0.01718 -0.13834 0.011434 0.017181 0.138342
-0.02795 -0.02206 0.088147 0.027945 0.022055 0.088147

0.020831 0.022844 0.083497
MAPE

F I G U R E  58

3
4
5
6
7
8
9

10
11
12
13
14
15

B C D

Year competitor enters
Share drop 
next year

Price drop 
next year

1 35 22
1 33 21
2 20 17
3 15 15
3 13 19
4 14 24
5 10 15
6 9 22
5 11 25
4 13 17

Mean 19.7
Std Dev 3.622461F I G U R E  59

Pricedata.xls
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Here, the assumption is that the market drop during a year is normally distributed. To

check this, we could compute the skewness (with the SKEW function) and kurtosis (with

the KURT function) of the data. If both the skewness and kurtosis are near 0, the mar-

ket drop is probably normally distributed. An alternate approach to modeling the drop in

price is to use the formula RISKDUNIFORM(D4:D13). This ensures that the drop in

price is equally likely to assume one of the observed values. This approach has the ad-

vantage of not automatically assuming normality. The disadvantage, however, is that 

using the RISKDUNIFORM function implies that only 10 values of price drop are 

possible.
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R
2
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P R O B L E M S
Group A

1 You are considering developing a new product. Forecast
year 1 sales are for 80,000 units, and the year 1 price is
$4.00 per unit. In file Simidata.xls you are given data on
seven similar products from the past. (See Figure 63.)

For example,

For product 1, actual sales were 92.26% of forecast sales.

Year 2 price (in real dollars) was 76.7% of year 1 price.

Year 2 demand was 30.7% more than year 1 demand.

Product 1 only sold for 6 years.

The risk-adjusted discount rate is 11% per year. We assume
that the price index will climb 5% per year.

We are unsure about the fixed cost of developing the
product. It is equally likely to be $50,000 or $150,000. We
are also unsure about the year 1 variable cost of producing
it. It is equally likely to be $1, $1.50, or $2. After year 1,
variable cost will climb by 5% per year. It costs $3 to build
one unit of annual capacity.

a Assuming 80,000 units of annual capacity, estimate
the 10-year risk-adjusted NPV of this product.

b What capacity level do you recommend?

2 You are trying to estimate NPV of profit for a new
computer product, which you are confident will sell for ten
years. You are given the following information.

The hurdle rate is 15%. Assume end of year for profits.
The total cost of developing the product will be spread

equally over the product’s life. Total development cost will
be between $2 billion and $11 billion. There is a 25% chance
that total fixed cost is $3 billion or less, a 50% chance of $6
billion or less, and a 75% chance of $9 billion or less.

The total year 1 market size (in terms of annual unit
sales) is unknown but is believed to be between 0 and 600
million units. Unit sales of 100 million and 500 million are
equally likely. Unit sales of 200 million and 400 million are
equally likely, and are 4 times as likely as sales of 100

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6
7
8

9
10
11

12
13
14

15
16
17

18
19
20

21
22
23

24
25
26

27

A B C D E F G H

Other Products 1 2 3 4 5 6 7
F orecast Year 1 10000 15000 20000 25000 30000 18000 12000
A ctual Y ear 1 9226 18544 20147 24093 27517 21670 12345

Y ear 1  P rice 10.00$        11.00$    12.00$    9 .00$      8 .00$      7 .00$      9 .00$      
Y ear 2  P rice % age change 0 .7671376 1.01958 1.157148 0.799233 0.66222 0.96338 1.108995
Y ear 3  P rice % age change 0.77301544 0.916731 0.629211 0.763033 0.785409 1.12807 0.770459

Y ear 4  P rice % age change 0.93641094 1.07326 0.704279 1.032535 1.214266 0.607159 0.635232
Y ear 5  P rice % age change 0.62486148 0.838744 0.730323 1.128628 1.222691 0.915762 0.709054
Y ear 6  P rice % age change 0 .9909713 0.836317 1.178683 0.835511 1.186193 0.98035 0.870983

Y ear 7  P rice % age change 0 1.154532 0.778286 1.008012 1.155539 0.83953 1.044165
Y ear 8  P rice % age change 0 1.002691 0.991726 0.70686 0.871703 0 0.789561
Y ear 9  P rice % age change 0 0.866046 0.933498 0 0.748535 0 0.800709

Y ear 10 P rice % age change 0 0 1.137376 0 0.804221 0 0.963354
Y ear 2 %  change in  dem and 1.30771172 1.257895 1.30467 1.326283 1.371715 1.203553 1.246827
Y ear 3  % age change change in  dem and 1.35463816 1.176022 1.439216 1.681935 1.186842 1.105765 0.705081

Y ear 4 %  change change in  dem and 0.89116031 1.156565 0.940743 1.060037 0.953028 1.280444 0.927083
Y ear 5  % age change change in  dem and 0.62 0.728722 0.956427 0.744345 0.711915 0.710494 0.536207
Y ear 6 %  change change in  dem and 0.53 0.529757 0.571999 0.6862 0.613999 0.572403 0.393907

Y ear 7  % age change change in  dem and 0 0.298447 0.193459 0.375018 0.432 0.269806 0.561965
Y ear 8  % age change change in  dem and 0 0.305065 0.314531 0.298697 0.294049 0 0.288539
Y ear 9  % age change change in  dem and 0 0.2 0.25 0 0.2 0 0.22

Y ear 10 % age change change in  dem and 0 0 0.15 0 0.16 0 0.12

F I G U R E  63
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million. Sales of 300 million are 5 times as likely as sales
of 100 million. Each year, market growth is expected to
average 5%, and during each year we are 95% sure that
market growth will be between 3% and 7%.

Our most likely year 1 market share is 30%. There is a
5% chance that our market share will be less than or equal
to 10% and a 5% chance that our market share will be more
than 40%. A triangular distribution appears to be reasonable
for market share. In later years, we expect market share, on
average, to equal the previous year’s share, but there is a
95% chance that market share could change by up to 20%
of its current value.

The year 1 price charged for each unit follows a triangular
random variable, with the most likely value $50, worst 
case $45, and best case $60. Each year, unit price will
increase 5%.

The year 1 unit variable cost of production follows a
triangular random variable with worst case $30, best case
$20, and most likely case $24. Each year, variable costs will
increase 5%.

a You are 95% sure that the mean NPV of the project
is between _____ and _____. Run 1,600 iterations.

b What is the chance that this project will meet its hur-
dle rate?

c What are key drivers of the project’s profitability?

3 You are trying to model what fraction of market share a
new drug will lose the year a competitor comes in. Table 13
gives information for similar drugs. For example,
competition for one drug entered the market 2 years after
our drug, and we then lost 21% of our market share. How
would you model the effect of competition on our product
sales?

Group B

4 You own a small biotech firm. Eli Daisy wants to buy
the rights to a potential cancer drug you are developing.

There is no way you could sell the product yourself. It will
cost you $350,000 (payable at end of year 0) to develop the
drug. Here’s what Daisy has offered. At the end of years
1–8, Daisy will pay you 10% of the sales revenue for the
drug, up to a maximum of $700,000. You discount cash
flows at 20% per year. Each year, the drug sells for $20 per
unit. You believe that the drug will sell 50,000 units during
year 1. Table 14 shows your forecasts and actual year 1 sales
for similar products in the past.

The pattern of sales for similar products is as follows.
For a certain number of years, sales increase by a given
percentage. Then, for all remaining years, sales decrease by
a given percentage. You believe there is a 20% chance that
sales will increase for 2 years, a 50% chance for 3 years,
and a 30% chance for 4 years.

The percentage increase during the first path of the
product life cycle will be between 2% and 20% per year.
There is one chance in four that the annual percentage
increase during this part of the product life cycle will be 5%
or less; one chance in two of 15% or less, and three chances
in 4 of 18% of less.

The annual percentage decrease during the remaining
portion of the product life cycle will be between 2% and
10%. A 6% annual decrease is four times as likely as an 8%
annual decrease. A 4% annual decrease is twice as likely as
an 8% annual decrease.

Based on this information, would you take the deal?
Explain your answer. What is the single most important
driver of the deal’s NPV?

5 You are trying to evaluate the profitability of a new drug
produced by Eli Lilly. The drug will be sold during the years
2005–2010.

Development cost will be charged on September 10,
2004. The development cost will be between $.5 million and
$5 million. A development cost of $2 million is four times
as likely as a development cost of $1 million. A development
cost of $4 million is twice as likely as a development cost
of $1 million.

Unit sales during 2005 will be between 80,000 and
240,000. There is a 25% chance that 2005 unit sales will be
less than or equal to 100,000 units, a 50% chance that they
will be less than or equal to 140,000 units, and a 75%
chance that they will be less than or equal to 200,000 units.

After year 1, sales will decay at a constant annual rate.
For similar products, the decay rates have been 5%, 6%,
8%, 9%, 10%, 4%, 3%, and 8%.

Each year, you will charge $45 for the product.
Each year’s variable production cost will depend on the

number of units sold. For a drug with similar cost structure,

TA B L E  13

Year 
Competitor Drop in
Entered Share

2 21

3 17

4 15

5 13

6 12

2 20

4 16

5 12

6 11

7 10

8 9

8 10

10 9

12 8

TA B L E  14

Predicted Actual

40,000 37,000

50,000 42,000

60,000 56,000

70,000 67,000

80,000 75,000
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the variable cost as a function of units produced was as
shown in Figure 64. For example, during year 1, 40,000
units were produced, and the cost was $813,323. (See file
Sim3data.xls.)

Assume that cash flows are discounted at 10% and cash
flows for years 2005–2010 may be considered to be received
midyear (June 30).

a After running 900 iterations, you are 95% sure that
actual NPV earned by the drug (in 09/10/04 dollars) is
between _____ and _____.

b What is the key driver of the drug’s NPV?

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

F G

000's 000's

Units 

produced Cost

40 813.323

50 999.459

60 1230.911

70 1399.077

80 1592.645

90 1812.399

100 2013.139

110 2709.943

120 3405.542

130 4096.212

140 4815.177

150 5516.294

160 6200.432

170 6914.829

180 7613.689

190 8320.617

200 9012.181
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(Hint: In modeling annual variable cost, you need not do a
MAPE. From the proper plot, the appropriate model should
be clear.)

6 GM is considering producing a new car. GM’s current
net income for each of the next 6 years is assumed to be
$100 million, which we assume to be received on June 30
of the years 2004–2009. The tax rate is 40%. Assume that
no other GM projects involve depreciation. The fixed cost
of developing the new car will be between $20 million and
$40 million, with a most likely value of $25 million. The
entire fixed cost is incurred on June 30, 2004 and is
depreciated on a straight-line basis during the years
2005–2009. All future cash flows are received midyear. The
car is assumed to be sold during the years 2005–2009.
Forecast for 2005 unit sales is 15,000. Past forecasts and
actual sales during the first year of similar models are as
shown in Figure 65.

During the years 2006–2009, sales are assumed to decay
at the same rate each year. This rate will be between 5% and
20%, with a 12% decay rate twice as likely as an 8% decay
rate and a 16% decay rate three times as likely as an 8%
decay rate. During 2005, the car will sell for $13,000. The
price will increase by the same percentage each year, with
1%, 2%, and 3% price increases being equally likely. During
2005, variable costs are $11,000. During 2006–2009,
variable costs will increase by the same percentage, with
increases of 2%, 4%, and 6% being equally likely. Discount
cash flows at 15%. Should GM produce the car?

23.11 Simulation and Bidding

In situations in which you must bid against competitors, simulation can often be used to

determine an appropriate bid. Usually you do not know what a competitor will bid, but

you may have an idea about the range of bids a competitor may choose. In this section,

we show how to use simulation to determine a bid that maximizes your expected profit.

First, we briefly discuss generating observations from a uniformly distributed random

variable.
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11

12

13

14

15

16

K L

Actual Forecast

20000 26000

30000 35000

10000 14000

40000 48000

50000 62000  
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Uniform Random Variables

A random variable is said to be uniformly distributed on the closed interval [a, b] (writ-

ten U(a, b)) if the random variable is equally likely to assume any value between a and b

inclusive. To generate samples from a U(a, b) random variable, enter the formula

�RISKUNIFORM(a,b)

into a cell.

We now show how to use simulation to determine a bid that maximizes expected profit.

E X A M P L E  1 5

You are going to make a bid on a construction project. You believe it will cost you $10,000

to complete the project. Four competitors are going to bid against you. Based on past his-

tory, you believe that each competitor’s bid is equally likely to be any value between your

cost of completing the project and triple your cost of completing the project. You also be-

lieve that each competitor’s bid is independent of the other competitors’ bids. What bid

maximizes your expected profit?

Solution In our solution, all amounts will be in thousands of dollars. The statement of the problem

implies that each competitor’s bid is U(10, 30), and the bids of the competitors are inde-

pendent. Our simulation is shown in Figure 66 (file Bid.xls). We proceed as follows.

Step 1 In cell C3, we enter the cost of the project.

Step 2 In cell C4, we enter ten possible bids (11, 12, 13, 14, 15, 16, 17, 18, 19, and 20)

with the formula

�RISKSIMTABLE({11,12,13,14,15,16,17,18,19,20})

Bidding

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

A B C D E F

Bidding Example

My cost(thousands) 10

My bid(thousands) 11

Competitor 1 Bid 15.23686647

Competitor 2 Bid 24.37239289

Competitor 3 Bid 23.26008201

Competitor 4 Bid 25.59600472

Profit(thousands) 1

Cell Name Minimum Mean Maximum

C9 (Sim#1) Profit(thousa... 0 0.81 1

C9 (Sim#2) Profit(thousa... 0 1.3 2

C9 (Sim#3) Profit(thousa... 0 1.575 3

C9 (Sim#4) Profit(thousa... 0 1.66 4

C9 (Sim#5) Profit(thousa... 0 1.5625 5

C9 (Sim#6) Profit(thousa... 0 1.41 6

C9 (Sim#7) Profit(thousa... 0 1.155 7

C9 (Sim#8) Profit(thousa... 0 0.96 8

C9 (Sim#9) Profit(thousa... 0 0.7425 9

C9 (Sim#10) Profit(thous... 0 0.55 10
F I G U R E  66

Bidding Simulation

Bid.xls



2 3 . 1 2 Playing Craps with @Risk 1269

Step 3 In C5, we generate the bid of the first competitor by entering the formula

�RISKUNIFORM(C$3,3*C$3)

Copying this formula to the range C6:C8 generates the bids of the other three competi-

tors. (Why does this ensure that their bids are independent?)

Step 4 In cell C9, we compute the actual profit for this trial by entering the formula

�IF(C4��MIN(C5:C8),C4-C3,0)

This ensures that if we win the bid (C4
MIN(C5:C8)), then our profit equals our bid less

the project cost of $10,000; if we don’t win the bid (C4�MIN(C5:C8)), then we earn no

profit. This statement assumes that we win all ties, but the chance of a tie bid is negligi-

ble (why?), so this really does not matter. To see how things work, hit the recalculation

(F9) button and see how the cells of the spreadsheet change.

Step 5 To determine the bid that maximizes expected profit, we ran 400 iterations of this

spreadsheet for each bid with @Risk. From Figure 66, it appears that a bid between

$13,000 and $15,000 will maximize expected profit (with an expected profit of $1,660).

Step 6 To zero in on the bid that maximizes expected profit, we replaced the formula in

cell C4 with

�RISKSIMTABLE({13.2,13.4,13.6,13.8,14,14.2,14.4,14.6,14.8})

One hundred iterations of this spreadsheet indicate that a bid of around $14,200 maxi-

mizes expected profit (an expected profit of around $1,800 is earned).

P R O B L E M S
Group A

1 If the number of competitors in Example 15 were to
double, how would the optimal bid change?

2 If the average bid for each competitor stayed the same,
but their bids exhibited less variability, would the optimal
bid increase or decrease? To study this question, assume
that each competitor’s bid follows each of the following
random variables:

a U(15, 25)

b U(18, 22)

3 Warren Millken is attempting to take over Biotech
Corporation. The worth of Biotech depends on the success

or failure of several drugs under development. Warren does
not know the actual (per share) worth of Biotech, but the
current owners of Biotech do know the actual worth of the
company. Warren assumes that Biotech’s actual worth is
equally likely to be between $0 and $100 per share. Biotech
will accept Warren’s offer if it exceeds the true worth of the
company. For example, if the current owners think Biotech
is worth $40 per share and Warren bids $50 per share, they
will accept the bid. If the current owners accept Warren’s
bid, then Warren’s corporate strengths immediately increase
Biotech’s market value by 50%. How much should War-
ren bid?

23.12 Playing Craps with @Risk

Craps is a very complex game. With @Risk, it is easy to estimate the probability of win-

ning at craps.
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E X A M P L E  1 6

In the game of craps, a player tosses two dice. If the first toss yields a 2, 3, or 12, the

player loses. If the player rolls a 7 or 11 on the first toss, he or she wins. Otherwise, 

the player continues tossing the dice until he or she either matches the number thrown on

the first roll (called the point) or tosses a 7. Rolling the point before rolling a 7 wins.

Rolling a 7 before the point loses. By complex calculations, it can be shown that a player

wins at craps 49.3% of the time. Use @Risk to verify this.

Solution The key observation is that we do not know how many rolls the game will take. Suppose

the game does not end on the first toss. The least likely points to be made are 4 and 10

which have probability 3/36 � 1/12 of being made. Therefore, after the first toss, there is

at least a (1/12) � probability of 7 � (1/12) � (1/6) � (1/4) chance that the game will

end on each toss. Thus, the chance of the game continuing on each toss is at most (3/4).

After (say) 50 tosses, the probability that the game is still going on is at most .7549
� 7

in 10,000,000. Therefore, we can cut off the game after 50 tosses and not worry about the

(fewer than 1 in a million) games that go on beyond 50 tosses. After each dice roll, we

keep track of the game status:

0 � game lost

1 � game won

2 � game still going

The output cell will keep track of the status of the game after the 50th toss. A 1 will in-

dicate a win, and a 0 will indicate a loss. The work is in the file Craps.xls. See Figure 67.

Step 1 In B2, we use the RISKDUNIFORM function (discrete uniform random variable)

to generate the roll of the dice on the first toss with the formula

�RISKDUNIFORM($AD$9:$AD$14)

The RISKDUNIFORM function ensures that each of its arguments is equally likely.

Therefore, each die has an equal (1/6) chance of yielding a 1, 2, 3, 4, 5, or 6.

Craps

F I G U R E  67

1
2
3
4
5
6
7
8
9
10

A B C D E F G H AX AY

TOSS# 1 2 3 4 5 6 7 49 50
Die Toss 1 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Die Toss 2 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Total 7 7 7 7 7 7 7 7 7
GAME STATUS 1 1 1 1 1 1 1 1 1
0=LOSS WIN?? 1
1=WIN
2=STILL GOING 95% CI
LOWER
UPPER  

Craps.xls



Copying this formula to the range B2:AY3 generates both dice rolls for 30 tosses. Note

that we have hidden rolls 8–28.

Step 2 In B4:AY4, we compute the total dice roll on all 30 rolls by copying from B4 to

C4:AY4 the formula

�SUM(B4:C4)

Step 3 In cell B5, we determine the game status after the first roll with the formula

�IF(OR(B4�2,B4�3,B4�12),0,IF(OR(B4�7,B4�11),1,2))

Note that a 2, 3, or 12 will result in a loss, a 7 or 11 will result in a win, and any other

roll will result in the game continuing.

Step 4 In cell C5, we compute the status of the game after the second roll with the 

formula

�IF(OR(B5�0,B5�1),B5,IF(C4�$B4,1,IF(C4�7,0,2)))

Note that if the game ended on the first roll, we maintain the status of the game. If we

make our point, we record a win with a 1. If we roll a 7, we record a loss. Otherwise, the

game is still going.

Copying this formula from C5 to D5:AY5 records the game status after rolls 2–50. The

game result is in AY5, which we copy to C6 so that we can easily see it. After running

4,000 iterations with output cell C6, we obtain a 48.3% chance of winning. With 10,000

iterations, we usually obtain a probability very close to 49.3%.

23.13 Simulating the NBA Finals

The Indiana Pacers came within two plays (one questionable foul call on Dale Davis in

game 6 and Travis Best missing a shot in game 4) of winning the 2000 NBA cham-

pionship. Before the series, what was the probability that the Lakers would win the se-

ries? From the Sagarin ratings (found at http://www.kiva.net/~jsagarin/), we found that the

Lakers are around 4 points better than the Pacers. The home team has a 3-point edge, and

games play out according to a normal distribution, with mean equal to our prediction and

a standard deviation of 12 points. Past history shows that the Sagarin forecasts exhibit no

bias. In the file Finals.xls and Figure 68, we simulate the 2000 NBA Finals. Recall that

the Lakers were at home during games 1, 2, 6, and 7, while the Pacers were at home dur-

ing games 3–5. (Note: We always make a series go 7 games, because we do not know

when it will actually end.) If the Lakers win at least 4 of the 7 games, they win the se-

ries, which is indicated by a 1 in cell I14. We have named the cells in D2:D5 with the

range names given in C2:C5.

Step 1 In G5:G11, we generate our forecast for each game by copying the formula

�IF(F5�“LA”,HE�LA-IND,-HE�LA-IND)

from G5 to G6:G11.

Step 2 In H5:H11, we generate the Lakers’ margin of victory in each game as normally

distributed with a standard deviation of 12 and mean given in column G. Just copy from

H5 to H6:H11 the formula

�RISKNORMAL(G5,STDEV)

2 3 . 1 3 Simulating the NBA Finals 1271

Finals.xls
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Step 3 In I5:I11, we determine if the Lakers won the game by copying from I5 to I6:I11

the formula

�IF(H6�0,1,0)

Step 4 In cell I12, we compute the total number of Lakers wins in the series with the

formula

�SUM(I5:I11)

Step 5 Note that if the Lakers win at least 4 games, they win the series. In cell I14, we

determine if the Lakers win the series with the formula

�IF(I12��4,1,0)

From the @Risk output, we find that the Lakers had an 80% chance to win the series. The

bookmakers had L.A. as a 7-1 favorite, which means (after taking out a 10% profit) they

believed that the Lakers had around a 90% chance to win.

R E V I E W  P R O B L E M S
Group A

1
2
3
4

5
6
7
8
9

10
11
12
13

14
15
16
17
18

19
20
21
22

23

B C D E F G H I

NBA Finals 2000

IND 5
LA 9
HE 3 Game Home LA Forecast LA Margin LA Win

STDEV 12 1 LA 7 1.312640391 1
2 LA 7 0.911581437 1
3 IND 1 -0.423239113 0
4 IND 1 22.02026177 1
5 IND 1 -13.825966 0

6 LA 7 -5.963644407 0
7 LA 7 -2.505744158 0

LA total wins 3

LA Wins series? 0

       
Name  NPV LA Wins series? / LA Win

Description  Output Output 
Cell  []Sheet1!F8[finals.xls]Sheet1!I14
Minimum = 0 0
Maximum = 0 1

Mean = 0 0.796875  

F I G U R E  68

1 The New York Knicks and the Chicago Bulls are ready
for the best-of-seven NBA Eastern finals. The two teams are
evenly matched, but the home team wins 60% of the games
between the two teams. The sequence of home and away
games is to be chosen by the Knicks. The Knicks have the
home edge and will be the home team for four of the seven
scheduled games. They have the following choices (home
team is listed for each game):

Sequence 1: NY, NY, CHIC, CHIC, NY, CHIC, NY
Sequence 2: NY, NY, CHIC, CHIC, CHIC, NY, NY

Use simulation to show that either sequence gives the Knicks
the same chance of winning the series.

2† You currently have $100. Each week, you can invest
any amount of money you currently have in a risky
investment. With probability .4, the amount you invest is
tripled (e.g., if you invest $100, you increase your asset

†Based on Kelly (1956).
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position by $300), and with probability .6, the amount you
invest is lost. Consider the following investment strategies:

(1) Each week, invest 10% of your money.

(2) Each week, invest 30% of your money.

(3) Each week, invest 50% of your money.

Simulate 100 weeks of each strategy 50 times. Which
strategy appears to be best? In general, if you can multiply
your investment by M with probability p and lose your
investment with probability q, you should invest a fraction
	
p(M

M
�

�

1)
1
� q

	 of your money each week. This strategy maximizes
(for a favorable game) the expected growth rate of your
fortune and is known as the Kelly criterion.

3† The Magellan mutual fund has beaten the Standard and
Poor’s 500 during 11 of the last 13 years. People use this as
an argument that you can “beat the market.” Here’s another
way to look at it that shows that Magellan’s beating the
market 11 out of 13 times is not unusual. Consider 50 mutual
funds, each of which has a 50% chance of beating the market
during a given year. Use simulation to estimate the
probability that over a 13-year period the “best” of the 50
mutual funds will beat the market for at least 11 out of 13
years. This probability turns out to exceed 40%, which
means that the best mutual fund’s beating the market 11 out
of 13 years is not an unusual occurrence!

4 You have made it to the final round of “Let’s Make a
Deal.” You know that there is $1 million behind either door
1, door 2, or door 3. It is equally likely that the prize is
behind any of the three doors. The two doors without a prize
have nothing behind them. You randomly choose door 2.
Before you see whether the prize is behind door 2, Monty
chooses to open a door that has no prize behind it. For the
sake of definiteness, suppose that before door 2 is opened,
Monty reveals that there is no prize behind door 3. You now
have the opportunity to switch and choose door 1. Should
you switch?

Use a spreadsheet to simulate this situation 400 times.
For each “trial” use an @Risk function to generate the door
behind which the prize lies. Then use another @Risk
function to generate the door that Monty will open. Assume
that Monty plays as follows: Monty knows where the prize
is and will open an empty door, but he cannot open door 2.
If the prize is really behind door 2, Monty is equally likely
to open door 1 or door 3. If the prize is really behind door
1, Monty must open door 3. If the prize is really behind
door 3, Monty must open door 1.

5 Star-crossed soap-opera lovers Noah and Julia have had
a big argument. Julia’s sister Maria wants Noah and Julia to
make up, so she has told them both to go to the romantic
gazebo at 1 P.M. Unfortunately, Noah and Julia are not
punctual. Each is equally likely to show up at the gazebo
any time between 1 and 2 P.M. Assuming that each will stay
for 20 minutes, what is the probability that they will meet?
You can model the arrival of each person using a
RISKUNIFORM random variable. For example,
RISKUNIFORM(1,2) is equally likely to choose any number
between 1 and 2 (including the endpoints 1 and 2).

6 The game of Chuck-a-Luck is played as follows: You
pick a number between 1 and 6 and toss three dice. If your
number does not appear, you lose $1. If your number appears
x times, you win $x. On the average, how much money will
you win or lose on each play of the game?

7 I toss a die several times until the total number of spots
I have seen is at least 13. What is the most likely total that
will occur?

Group B

8‡ When the team is behind late in the game, a hockey
coach usually waits until there is one minute left before
pulling the goalie. Actually, coaches should pull their goalies
much sooner. Suppose that if both teams are at full strength,
each team scores an average of .05 goal per minute. Also
suppose that if you pull your goalie, you score an average
of .08 goal per minute, while your opponent scores an
average of .12 goal per minute. Suppose you are one goal
behind with five minutes left in the game. Consider the
following two strategies:

Strategy 1: Pull your goalie if you are behind at any point
in the last five minutes of the game; put him back in if you
tie the score or go ahead.

Strategy 2: Pull your goalie if you are behind at any point
in the last minute of the game; put him back in if you tie
the score or go ahead.

Which strategy maximizes your chance of winning or tying
the game? Simulate the game using ten-second increments
of time. Use the RISKBINOMIAL function to determine
whether a team scores a goal in a given ten-second segment.
It is acceptable to do this because the probability of scoring
two or more goals in a ten-second period is near 0.

9 Suppose we toss an ordinary die 5 times. A 4-straight
occurs if exactly 4 (not 5) of our rolls are consecutive
integers. For example, if we roll 1, 2, 3, 4, 6 we have a 4-
straight. Also 3, 4, 5, 6, 1, 1 is a 4-straight. However 2, 3,
4, 5, 6 is not a 4-straight. After running 4,000 iterations, you
are 95% sure that the chance of tossing a 4-straight is
between _____ and _____.

10 Buffie the Vampire Slayer is going to Las Vegas to
relax. She is going to play the following game of blackjack.
She throws a pair of dice until the cumulative total of her
tosses is at least 4. If her total is 8 or more, she loses.
Assuming that Buffie has not yet lost, the croupier (Spike)
tosses the dice until his total is at least 4. If Spike’s total is
8 or more, then Buffie (assuming she did not total 8 or
more) wins. Otherwise, we compare Spike’s and Buffie’s
totals. The high total wins, with a tie going to Spike. After
running 900 iterations, you are 95% sure Buffie’s chance of
winning the game is between _____ and _____.

11 Wheaties is producing cereals with five different sets
of trading cards:

■ Rock stars
■ NBA stars
■ Baseball stars
■ Hockey stars
■ Football stars

†Based on Marcus (1990). ‡Based on Morrison and Wheat (1984).
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Each box contains one set of trading cards, and you do not
know which set is in a box until you open it.

a On the average, how many boxes are needed to ob-
tain all five sets of trading cards?

b You are 95% sure that between _____ and _____
boxes of Wheaties must be purchased to obtain all five
sets of trading cards.
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Forecasting Models

In previous chapters, we have often blindly substituted numbers into problems without con-

sidering where the numbers came from. For example, in the Giapetto LP (Example 1 in Chap-

ter 3), we assumed that the variable cost of producing a train was $21. In reality, we would

have to estimate the cost of producing a train. This can be done using the method of simple

linear regression, explained in Section 24.6.

In Chapters 15 and 16, we used inventory theory to determine production quantities and

reorder points. To use the models of Chapters 15 and 16, we need to be able to forecast the

demand for a product. In Sections 24.1–24.5, we discuss extrapolation and smoothing meth-

ods that can be used to forecast future demand for a product.

As another example of how we can use “good forecasts,” suppose that we want to use the

queuing models of Chapter 20 to determine how the number of tellers at a bank should vary

with the day of the week and the time of day. To tackle this problem, we need to determine

how the rate at which customers enter the bank depends on the time of day and the day of

the week. For example, if we knew that over half the bank’s customers arrived during the lunch

hour (noon to 1 P.M.), that would have a significant effect on the optimal staffing policy.

In this chapter, we discuss two important types of forecasting methods: extrapolation meth-

ods and causal forecasting methods. In Sections 24.1–24.5, we discuss extrapolation meth-

ods, which are used to forecast future values of a time series from past values of a time se-

ries. To illustrate, consider Lowland Appliance Company’s monthly sales of TVs, compact disc

players (CDs), and air conditioners (ACs) for the last 24 months, given in Table 1. In an ex-

trapolation forecasting method, it is assumed that past patterns and trends in sales will con-

tinue in future months. Thus, past data on appliance sales (and no other information) are used

to generate forecasts for appliance sales during future months. Extrapolation methods (unlike

the causal forecasting methods described in Sections 24.6–24.8) don’t take into account

what “caused” past data; they simply assume that past trends and patterns will continue in

the future.

Causal forecasting methods attempt to forecast future values of a variable (called the de-

pendent variable) by using past data to estimate the relationship between the dependent vari-

able and one or more independent variables. For example, Lowland might try to forecast fu-

ture monthly sales of air conditioners by using past data to determine how air conditioner sales

are related to independent variables such as price, advertising, and the month of the year.

Causal forecasting methods will be discussed in Sections 24.6–24.8.

24.1 Moving-Average Forecasting Methods

Let x1, x2, . . . , xt, . . . be observed values of a time series, where x t is the value of 

the time series observed during period t. One of the most commonly used forecasting
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methods is the moving-average method. We define ft,1 to be the forecast period for period

t � 1 made after observing xt. For the moving-average method,

ft,1 � average of the last N observations

ft,1 � average of xt, xt�1, xt�2, . . . , xt�N�1

where N is a given parameter.

To illustrate the moving-average method, we choose N � 3 and use the moving-

average method to forecast TV sales for the first six months of data in Table 1. The re-

sulting computations are given in Table 2. For months 1–3, we have not yet observed three

months of data, so (for N � 3) we cannot develop a moving-average forecast for sales for

these months. For month 4, we find our forecast, f3,1 � �
30�3

3
2�30
� � 30.67. For month 5,

our forecast is f4,1 � �
32�3

3
0�39
� � 33.67. For month 6, our forecast is f5,1 � �

30�3
3
9�33
� � 34.

Note that from one period to the next, our forecast “moves” by replacing the “oldest”

observation in the average by the most recent observation.

Choice of N

How should we choose N, the number of periods used to compute the moving average?

To answer this question, we need to define a measure of forecast accuracy. We will use

the mean absolute deviation (MAD) as our measure of forecast accuracy. Before defin-

ing the MAD, we need to define the concept of a forecast error. Given a forecast for xt,

we define et to be the error in our forecast for xt, to be given by

et � xt � (forecast for xt)

From Table 2, we find e4 � 39 � 30.67 � 8.33, e5 � 33 � 33.67 � �0.67, and e6 �

34 � 34 � 0. The MAD is simply the average of the absolute values of all the et’s. Thus,

for periods 1–6, our moving-average forecast yields a MAD given by

MAD � �
|e4| � |e

3
5| � |e6|
� � �

8.33 � 0

3

.67 � 0
� � 3

Thus, on the average, our forecasts for TV sales are off by 3 TVs per month.

TA B L E  1

Lowland Appliance Sales

Month TV Sales CD Sales AC Sales Month TV Sales CD Sales AC Sales

1 30 40 13 13 38 79 36

2 32 47 7 14 30 82 21

3 30 50 23 15 35 80 47

4 39 49 32 16 30 85 81

5 33 56 58 17 34 94 112

6 34 53 60 18 40 89 139

7 34 55 90 19 36 96 230

8 38 63 93 20 32 100 201

9 36 68 63 21 40 100 122

10 39 65 39 22 36 105 84

11 30 72 37 23 40 108 74

12 36 69 29 24 34 110 62
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We are trying to forecast next month’s TV sales as an average of the last N months’

actual sales. What value of N will minimize our mean absolute error (obtained by aver-

aging the actual error incurred during each month)? We will try N � 1, 2, . . . , 12.

We begin with an explanation of the Excel OFFSET function. This function lets you

pick out a cell range relative to a given location in the spreadsheet. The syntax of the 

OFFSET function is as follows:

OFFSET(reference, rows, columns, height, width)

■ Reference is the cell from which you base the row and column references.

■ Rows helps locate the upper left-hand corner of the OFFSET range. Rows is mea-

sured by number of rows up or down (up is negative, and down is positive) from

the cell reference.

■ Columns helps locate the upper left-hand corner of the OFFSET range. Columns

is measured by number of columns left or right (left is negative, and right is posi-

tive) from the cell reference.

■ Height is the number of rows in the selected range.

■ Width is the number of columns in the selected range.

File Offsetexample.xls contains some examples of how the OFFSET function works. See

Figure 1. The nice thing about the OFFSET function is that it can be copied like any for-

mula. The next section will show the true power of the OFFSET function.

Our work is in file Tvsales.xls. We begin creating a forecast in month 13, because that

is the first month in which 12 months of historical data are available. See Figures 2 

and 3.

Step 1 By copying from C17 to C18:C28 the formula

�AVERAGE(OFFSET(B17,-$D$3,0,$D$3,1))

obtain the average of the last D3 months of data.

■ B17 ensures that we define our range relative to the cell directly to the left of the

cell where the formula is entered.

■ -$D$3 ensures that our range begins D3 rows above the row where the formula is

entered.

■ The 0 ensures that the OFFSET range will always remain in column B.

■ $D$3 ensures that we average the last D3 observations.

■ 1 ensures that the OFFSET range includes a single column.

TA B L E  2

Moving-Average Forecasts (N � 3) 
for TV Sales

Actual Predicted
Month Sales Sales

1 30 —

2 32 —

3 30 —

4 39 �
30 � 3

3

2 � 30
�

5 33 �
32 � 3

3

0 � 39
�

6 34 �
30 � 3

3

9 � 33
�

Offsetexample.xls

Tvsales.xls
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

A B C D E F G H I J K

Offset examples

1 2 3 4 1 2 3 4

5 6 7 8 5 6 7 8

9 10 11 12 9 10 11 12

=SUM(OFFSET(B7,-1,1,2,1)) 8 =SUM(OFFSET(H6,0,1,3,2)) 39

1 2 3 4

5 6 7 8

9 10 11 12

=SUM(OFFSET(E16,-2,-3,2,3)) 24

 

F I G U R E  1

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

A B

Month

TV Sales 

Actual

1.00 30

2.00 32

3.00 30

4.00 39

5.00 33

6.00 34

7.00 34

8.00 38

9.00 36

10.00 39

11.00 30

12.00 36

13.00 38

14.00 30

15.00 35

16.00 30

17.00 34

18.00 40

19.00 36

20.00 32

21.00 40

22.00 36

23.00 40

24.00 34  
 

F I G U R E  2
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Step 2 By copying from D17 to D18:D28 the formula

�ABS(B17-C17)

compute the absolute value of the error in each month’s forecast (based on a D3-month

moving average).

Step 3 In cell F4, compute the average of the absolute errors (often called the MAD)

with the formula

�AVERAGE(D17:D28)

Step 4 Enter the trial number of periods for the moving average (1–12) in G9:G20, and

in cell H8, enter the MAD with the formula

�F4

Step 5 After selecting the table range G8:H20 and choosing a one-way data table with

the column input cell of D3, we find that a 5-period moving average yields the smallest

MAD (3.02).

Step 6 We obtain the minimum MAD in cell H21 with the formula

�MIN(H9:H20)

Step 7 Entering in cell H22 the formula

�MATCH(H21,H9:H21,0)

gives the number of periods (5) yielding the smallest MAD.

2
3

4

5
6

7

8
9

10

11
12

13
14

15
16
17

18
19

20
21

22
23

24
25
26

27
28

A B C D E F G H
# OF 

PERIODS
1

Month

TV Sales 

Actual

Moving 
average 

forecast Abs error MAD 5
1.00 30
2.00 32

3.00 30

4.00 39

# of 

periods 5
5.00 33 1 5

6.00 34 2 3.666666667
7.00 34 3 3.361111111
8.00 38 4 3.333333333

9.00 36 5 3.016666667
10.00 39 6 3.111111111
11.00 30 7 3.226190476
12.00 36 8 3.21875

13.00 38 36 2 9 3.055555556
14.00 30 38 8 10 3.083333333

15.00 35 30 5 11 3.045454545
16.00 30 35 5 12 3.111111111
17.00 34 30 4 Min 3.016666667

18.00 40 34 6 best # 5
19.00 36 40 4

20.00 32 36 4
21.00 40 32 8

22.00 36 40 4
23.00 40 36 4

24.00 34 40 6  F I G U R E  3
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Moving-average forecasts perform well for a time series that fluctuates about a con-

stant base level. From Figure 4, it appears that monthly TV sales fluctuate about a base

level of 35. More formally, moving-average forecasts work well if

xt � b � �t (1)

where b is the base level for the series and �t is the random fluctuation in period t about

the base level.

From Figures 5 and 6, we see that sales of CD players and air conditioners are not well

described in Equation (1). From Figure 5, we see that there is an upward trend in CD

player sales, so they do not fluctuate about a base level. From Figure 6, we find that air

conditioner sales exhibit seasonality: The peaks and valleys of the series repeat at regu-

lar 12-month intervals. Figure 6 also shows that air conditioner sales exhibit an upward
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TV Sales

F I G U R E  5

CD Player Sales
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trend. In situations where trend and/or seasonality are present, the moving-average method

usually yields poor forecasts. To close this section, we note that in addition to trend and

seasonality, a time series may exhibit cyclic behavior. For example, auto sales often fol-

low the business cycle of the national economy. Cyclic behavior is much more irregular

than a seasonal pattern and is often hard to detect.

24.2 Simple Exponential Smoothing

If a time series fluctuates about a base level, simple exponential smoothing may be used

to obtain good forecasts for future values of the series. To describe simple exponential

smoothing, let At � smoothed average of a time series after observing xt. After observ-

ing xt, At is the forecast for the value of the time series during any future period. The key

equation in simple exponential smoothing is

At � axt � (1 � a)At�1 (2)

In (2), a is a smoothing constant that satisfies 0 � a � 1. To initialize the forecasting

procedure, we must have (before observing x1) a value for A0. Usually, we let A0 be the

observed value for the period immediately preceding period 1. As with moving-average

forecasts, we let ft,k be the forecast for xt�k made at the end of period t. Then

At � ft,k (3)

Assuming that we are trying to forecast one period ahead, our error for predicting xt (writ-

ten again as et) is given by

et � xt � ft�1,1 � xt � At�1 (4)

To understand (2) better, we use (4) to rewrite (2) as

At � At�1 � a(xt � At�1) � At�1 � aet
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Air Conditioner Sales
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Thus, our new forecast At � ft, 1 is equal to our old forecast (At�1) plus a fraction of our

period t error (et). This implies that if we “overpredict” xt, we lower our forecast, and if

we “underpredict” xt, we raise our forecast. For larger values of the smoothing constant

a, more weight is given to the most recent observation (see Remark 3 at the end of the

section).

We illustrate simple exponential smoothing (with a � 0.1) for the first six months of

TV sales. The results are given in Table 3. We assume that 32 TVs were sold last month,

so we initialize the procedure with A0 � 32. Here are some illustrations of the computa-

tions:

At � 0.1x1 � 0.9A0 � 0.1(30) � 0.9(32) � 31.8

f0,1 � A0 � 32

e1 � x1 � A0 � 30 � 32 � �2

f1,1 � A1 � 31.8

e2 � x2 � A1 � 32 � 31.8 � 0.2

A2 � 0.1x2 � 0.9A1 � 0.1(32) � 0.9(31.8) � 31.82

For months 1–6, the MAD of our forecast is given by

MAD �

� 2.26

For the entire 24-month period, we can determine (using a one-way data table) the value

of a yielding the lowest MAD. The results are given in Table 4. It appears that a value of

a between 0.20 and 0.30 yields the lowest MAD.

R E M A R K S 1 Since a � 1, exponential smoothing “smooths out” variations in a time series by not giving to-
tal weight to the last observation.
2 If a � �

N�

2
1

�, simple exponential smoothing (with smoothing parameter a) and an N-period 
moving-average forecast will both yield similar forecasts. For example, a � 0.33 is roughly equiv-
alent to a five-period moving average.
3 To see why we call the method exponential smoothing, consider (2) for t � 1:

At�1 � axt�1 � (1 � a)At�2 (5)

Substituting (5) into (2) yields

At � axt � (1 � a)[axt�1 � (1 � a)At�2]

� axt � a(1 � a)xt�1 � (1 � a)2At�2 (6)

Note that

At�2 � axt�2 � (1 � a)At�3 (7)

|�2| � |0.2| � |�1.82 | � |7.36| � |0.63| � |1.56|
������

6

TA B L E  3

Simple Exponential Smoothing for TV Sales (a � .1)

Month Actual Sales Forecast At et

1 30 32.82 31.8 �2.00

2 32 31.82 31.82 0.20

3 30 31.82 31.64 �1.82

4 39 31.64 32.37 7.36

5 33 32.37 32.44 0.63

6 34 32.44 32.60 1.56
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Substituting (7) into (6) yields

At � axt � a(1 � a)xt�1 � a(1 � a)2xt�2 � (1 � a)3At�3

Repeating this process yields

At � axt � a(1 � a)xt�1 � a(1 � a)2xt�2 � � � � � a(1 � a)kxt�k � � � � (8)

Since a � a(1 � a) � a(1 � a)2
� � � � � 1, (8) shows that if we go back an “infinite” number

of periods, our current smoothed average is a weighted average of all past observations. The weight
given to the observation from k periods in the past declines exponentially (by a factor of 1 � a).
The larger the value of a, the more weight is given to the most recent observations. For example,
for a � 0.2, the three most recent observations have 49% of the weight (20%, 16%, and 13%),
whereas for a � 0.5, the three most recent observations have 88% of the weight (50%, 25%, and
13%).
4 In practice, a is usually chosen to equal 0.10, 0.30, or 0.50. If the value of a that minimizes the
MAD exceeds 0.5, then trend, seasonality, or cyclical variation is probably present, and simple ex-
ponential smoothing is not a recommended forecast technique. In such cases, better forecasts will
probably be provided by either Holt’s method (exponential smoothing with trend, discussed in Sec-
tion 24.3) or Winter’s method (exponential smoothing with trend and seasonality, discussed in Sec-
tion 24.4).
5 Even if a time series is not fluctuating about a constant base level, simple exponential smooth-
ing may still provide good forecasts. If xt � mt � �t and mt � mt�1 � dt, where �t and dt are in-
dependent error terms each having mean 0, then simple exponential smoothing will provide good
forecasts. This implies that if the mean demand (mt) for a product is randomly shifting over time,
simple exponential smoothing will still provide good forecasts of product demand.

24.3 Holt’s Method: Exponential Smoothing with Trend

If we believe that a time series exhibits a linear trend (and no seasonality), Holt’s method

often yields good forecasts. At the end of the tth period, Holt’s method yields an estimate

of the base level (Lt) and the per-period trend (Tt) of the series. For example, suppose that

L20 � 20 and T20 � 2. This means that after observing x20, we believe that the base level

of the series is 20 and that the base level is increasing by two units per period. Thus, five

periods from now, we estimate that the base level of the series will equal 30.

After observing xt, equations (9) and (10) are used to update the base and trend esti-

mates. a and b are smoothing constants, each between 0 and 1.

Lt � axt � (1 � a)(Lt�1 � Tt�1) (9)

Tt � b(Lt � Lt�1) � (1 � b)Tt�1 (10)

TA B L E  4

MAD for TV Sales

a MAD

0.05 3.20

0.10 3.04

0.15 2.94

0.20 2.89

0.25 2.88

0.30 2.90

0.35 2.94

0.40 2.98

0.45 3.05

0.50 3.13
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To compute Lt, we take a weighted average of the following two quantities:

1 xt, which is an estimate of the period t base level from the current period

2 Lt�1 � Tt�1, which is an estimate of the period t base level based on previous data

To compute Tt, we take a weighted average of the following two quantities:

1 An estimate of trend from the current period given by the increase in the smoothed

base from period t � 1 to period t

2 Tt�1, which is our previous estimate of the trend

As before, we define ft,k to be the forecast for xt�k made at the end of period t. Then

ft,k � Lt � kTt (11)

To initialize Holt’s method, we need an initial estimate (call it L0) of the base and an

initial estimate (call it T0) of the trend. We might set T0 equal to the average monthly in-

crease in the time series during the previous year, and we might set L0 equal to last

month’s observation.

From Figure 5, it is clear that CD player sales exhibit an upward trend, but no obvious

seasonal pattern is present. Therefore, Holt’s method should yield good forecasts. Let’s

assume that CD player sales during each of the last 12 months are given by 4, 6, 8, 10,

14, 18, 20, 22, 24, 28, 31, and 34. Then

T0 �

� �
34

1

�

1

4
� � 2.73

We then estimate L0 � 34.

Applying the Holt method to the first six months of sales (using a � 0.30 and 

b � 0.10) we obtain the results shown in Table 5. Here are some illustrations of the 

calculations:

L1 � 0.30x1 � 0.70(L0 � T0) � 0.3(40) � 0.7(34 � 2.73) � 37.71

T1 � 0.1(L1 � L0) � 0.9T0 � 0.1(37.71 � 34) � 0.9(2.73) � 2.83

f1,1 � L1 � T1 � 37.71 � 2.83 � 40.54

e2 � x2 � f1,1 � 47 �40.54 � 6.46

(6 � 4) � (8 � 6) � (10 � 8) � � � � � (34 � 31)
������

11

TA B L E  5

Holt’s Method for CD Player Sales (a � 0.30, b � 0.10)

ft�1,1 et

Month Sales Lt Tt (Lt�1 � Tt�1) (xt � ft�1,1)

1 40 37.71 2.83 36.73 3.27

2 47 42.48 3.02 40.54 6.46

3 50 46.85 3.16 45.50 4.50

4 49 49.70 3.13 50.01 �1.01

5 56 53.78 3.22 52.83 3.17

6 53 55.80 3.10 57.00 �4.00
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For the first six months of CD player sales, we find

MAD � � 3.74

For the entire 24-month period, we find MAD � 2.85.

As one more illustration of Equation (11), suppose that we want to make a forecast at

the end of month 6 for month 10 CD player sales. From (11), we find that f6,4 � L6 �

4T6 � 55.80 � 4(3.10) � 68.2. By trying various combinations of a and b, we could find

the values of a and b that minimize the MAD. If these values are not both less than 0.5,

then seasonality or cyclical behavior is probably present, and another forecasting method

should be used.

In summary, Holt’s method will provide good forecasts for a series with a linear trend.

Such a series may be modeled as xt � a � bt � �t, where

a � base level at beginning of period 1

b � per-period trend

�t � error term for period t

A multiplicative version of Holt’s method (see Problem 15) can be used to generate

good forecasts for a series of the form xt � abt
�t. Here, the value of b represents the per-

centage growth in the base level of the series during each period. Thus, b � 1.1 implies

that the base level of the series is increasing by 10% per period. In this model, �t is a ran-

dom error factor with a mean of 1.

A Spreadsheet Implementation of the Holt Method

Figure 7 (obtained from the file Holt.xls) contains an implementation of the Holt method.

In columns B and C, we have typed in the 24 months of CD player sales obtained from

Table 1. In cells D4 and E4, we have input L0 and T0. Trial values of alpha and beta ap-

pear in cells E2 and F2. In cell D5, we compute L1 by inputting the formula

�E$2*C5�(1�E$2)*(D4�E4). In cell E5, we compute T1 by inputting the formula

�F$2*(D5�D4)�(1�F$2)*E4. In cell F5, we compute f0,1 from the formula �D4�E4.

In cell G5, we compute e1 from the formula �C5�F5. In cell H5, we compute |e1| from

the formula �ABS(G5). Copying the formulas from the range C5:H5 to the range C5:H28

completes the implementation of the Holt method. The formula �AVERAGE(H5:H28) in

cell G2 computes the MAD (2.85) for the 24 months.

We can use an Excel two-way data table to determine values of a and b that yield a

small MAD. We input possible values for a in a cell range B31:B39 and values for b in

the cell range C30:K30. We input a formula to compute the MAD (�G2) into cell B30.

Invoking the DATATABLE command, we choose the table range B30:K39. Then we se-

lect cell E2 as the column input cell and cell F2 as the row input cell. This causes the 

values in B1:B39 to be input into E2 and the values in C30:K30 to be input into cell F2.

After selecting OK, for each combination of a and b in the table Excel computes the

MAD. We see that of the combinations listed, a � .10 and b � .40 yields the lowest MAD

(2.70). If we wanted to obtain an even lower MAD, we could explore values of a and b

near .10 and .40, respectively, by creating another data table. By the way, F9 will recal-

culate the last data table you have created in your spreadsheet.

3.27 � 6.46 � 4.5 � 1.01 � 3.17 � 4.00
�����

6

Holt.xls
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24.4 Winter’s Method: Exponential Smoothing with Seasonality

The appropriately named Winter’s method is used to forecast time series for which trend

and seasonality are present. As previously mentioned, Figure 6 shows that air conditioner

sales exhibit an upward trend and seasonality, so Winter’s method is a logical candidate

for forecasting these sales.

To describe Winter’s method, we require two definitions. Let c � the number of peri-

ods in the length of the seasonal pattern (c � 4 for quarterly data, and c � 12 for monthly

data). Let st be an estimate of a seasonal multiplicative factor for month t, obtained after

observing xt. For instance, suppose month 7 is July and s7 � 2. Then after observing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

B C D E F G H I J K

HOLT METHOD ALPHA BETA MAD=

0.3 0.1 2.84686937

MONTH CD SALES Lt Tt f(t-1,1) et |et|

0 34 2.73

1 40 37.711 2.8281 36.73 3.27 3.27

2 47 42.47737 3.021927 40.5391 6.4609 6.4609

3 50 46.8495079 3.15694809 45.499297 4.500703 4.500703

4 49 49.7045192 3.12675441 50.006456 -1.006456 1.00645599

5 56 53.7818915 3.2218162 52.8312736 3.1687264 3.1687264

6 53 55.8025954 3.10170497 57.0037077 -4.0037077 4.00370772

7 55 57.7330103 2.98457596 58.9043004 -3.9043004 3.90430038

8 63 61.4023104 3.05304837 60.7175862 2.28241378 2.28241378

9 68 65.5187511 3.15938761 64.4553587 3.54464127 3.54464127

10 65 67.5746971 3.04904345 68.6781387 -3.6781387 3.67813872

11 72 71.0366184 3.09033123 70.6237406 1.37625945 1.37625945

12 69 72.5888647 2.93652274 74.1269496 -5.1269496 5.12694962

13 79 76.5677712 3.04076112 75.5253875 3.47461252 3.47461252

14 82 80.3259726 3.11250515 79.6085324 2.39146765 2.39146765

15 80 82.4069345 3.00935081 83.4384778 -3.4384778 3.4384778

16 85 85.2913997 2.99686226 85.4162853 -0.4162853 0.41628527

17 94 90.0017834 3.1682144 88.2882619 5.71173805 5.71173805

18 89 91.9189984 3.04311447 93.1699978 -4.1699978 4.16999776

19 96 95.273479 3.07425108 94.9621129 1.0378871 1.0378871

20 100 98.8434111 3.12381918 98.3477301 1.65226989 1.65226989

21 100 101.377061 3.06480227 101.96723 -1.9672303 1.96723025

22 105 104.609304 3.08154636 104.441863 0.55813656 0.55813656

23 108 107.783596 3.09082084 107.690851 0.30914923 0.30914923

24 110 110.612091 3.06458835 110.874416 -0.8744164 0.87441638

BETA

2.84686937 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 2.85549229 2.79917857 2.73752333 2.70190155 2.74959079 2.79516165 2.83287197 2.86298631 2.92313769

0.2 2.76620734 2.73280037 2.76089108 2.78733151 2.84068253 2.92107922 2.97420106 2.98283649 2.99339222

0.3 2.84686937 2.87216928 2.90902939 2.95265285 2.98980036 3.04270174 3.13130108 3.21889032 3.2935572

0.4 2.96069374 3.0030147 3.05465632 3.110774 3.17038284 3.23467306 3.30196817 3.35141111 3.38544721

0.5 3.0707409 3.1289783 3.19166282 3.25002095 3.31027756 3.36404349 3.42489473 3.50405565 3.58298443

0.6 3.19398831 3.26198014 3.33253292 3.39877183 3.48348934 3.58574625 3.68496609 3.78162671 3.87646977

0.7 3.31493308 3.39345284 3.47449093 3.59818192 3.71792621 3.83504256 3.95075646 4.06889148 4.21031682

0.8 3.43163015 3.52755966 3.66950469 3.80654215 3.940503 4.07309251 4.26812614 4.4709749 4.67844324

0.9 3.53843635 3.69071551 3.844996 4.02099412 4.2282208 4.45607616 4.68692747 4.9520137 5.24579003  

F I G U R E  7

Holt’s Method
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month 7’s air conditioner sales, we believe that July air conditioner sales will (all other

things being equal) be twice the sales expected during an average month. If month 24 is

December, and s24 � 0.4, then after observing month 24 sales, we predict that December

air conditioner sales will be 40% of the expected sales during an average month. In what

follows, Lt and Tt have the same meaning as they did in Holt’s method. Each period, Lt,

Tt, and st are updated (in that order) by using Equations (12)–(14). Again, a, b, and g are

smoothing constants, each of which is between 0 and 1.

Lt � a �
st

x

�

t

c

� � (1 � a)(Lt�1 � Tt�1) (12)

Tt � b(Lt � Lt�1) � (1 � b)Tt�1 (13)

st � g �
L

xt

t

� � (1 � g)st�c (14)

Equation (12) updates the estimate of the series base by taking a weighted average of the

following two quantities:

1 Lt�1 � Tt�1, which is our base level estimate before observing xt

2 The deseasonalized observation �
st

x

�

t

c

�, which is an estimate of the base obtained from

the current period

Equation (13) is identical to the Tt equation (10) used to update trend in the Holt

method.

Equation (14) updates the estimate of month t’s seasonality by taking a weighted av-

erage of the following two quantities:

1 Our most recent estimate of month t’s seasonality (st�c)

2 �
L

xt

t

�, which is an estimate of month t’s seasonality, obtained from the current month

At the end of period t, the forecast ( ft,k) for month t � k is given by

ft,k � (Lt � kTt)st�k�c (15)

Thus, to forecast the value of the series during period t � k, we multiply our estimate of

the period t � k base (Lt � kTt) by our most recent estimate of month (t � k)’s season-

ality factor (st�k�c).

Initialization of Winter’s Method

To obtain good forecasts with Winter’s method, we must obtain good initial estimates of

base, trend, and all seasonal factors. Let

L0 � estimate of base at beginning of month 1

T0 � estimate of trend at beginning of month 1

s�11 � estimate of January seasonal factor at beginning of month 1 (16)

s�10 � estimate of February seasonal factor at beginning of month 1

�
�
�

s0 � estimate of December seasonal factor at beginning of month 1

A variety of methods are available to estimate the parameters in (16). We choose a sim-

ple method that requires two years of data. Suppose that the last two years of sales (by

month) were as follows:
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Year �2: 4, 3, 10, 14, 25, 26, 38, 40, 28, 17, 16, 13

Year �1: 9, 6, 18, 27, 48, 50, 75, 77, 52, 33, 31, 24

Total sales during year � 2 � 234

Total sales during year � 1 � 450

We estimate T0 by

T0 � 

or

T0 � � 1.5

To estimate L0, we first determine the average monthly demand during year �1(�
4
1
5
2
0

�). This

estimates the base at the middle of year �1 (month 6.5 of year �1). To bring this esti-

mate to the end of month 12 of year �1, we add (12 � 6.5)T0 � 5.5T0. Thus, our esti-

mate of L0 � 37.5 � 5.5(1.5) � 45.75.

To estimate the seasonality factor for a given month (say, January � s�11), we take an

estimate of January seasonality for year �2 and year �1 and average them. In year �2,

average monthly demand was �
2
1
3
2
4

� � 19.5; in January of year �2, 4 air conditioners were

sold. Therefore,

Year �2 estimate of January seasonality � �
19

4

.5
� � 0.205

Similarly,

Year �1 estimate of January seasonality � �
37

9

.5
� � 0.240

Finally, we obtain s�11 � �
0.205

2
�0.24
� � 0.22. In similar fashion, we obtain

s�10 � 0.16, s�9 � 0.50, s�8 � 0.72, s�7 � 1.28, s�6 � 1.33,

s�5 � 1.97, s�4 � 2.05, s�3 � 1.41, s�2 � 0.88, s�1 � 0.82, s0 � 0.65

As a check, initial seasonal factor estimates should average to 1.

Before showing how (12)–(14) are used, we demonstrate how to use (15) for forecast-

ing. At the beginning of month 1, our forecast for month 1 air conditioner sales is

f0,1 � (L0 � T0)s0�1�12 � (45.75 � 1.5)0.22 � 10.40

At the beginning of month 1, our forecast for month 7 air conditioner sales is

f0,7 � (L0 � 7T0)s0�7�12 � (45.75 � 7(1.5))1.97 � 110.81

For a � 0.5, b � 0.4, g � 0.6, applying Winter’s method to the first 12 months of air

conditioner sales data yields the results in Table 6.

We illustrate the computations by computing L1, T1, and s1.

L1 � 0.5 ��
s�

x1

11

�� � 0.5(L0 � T0) � 0.5 ��
0

1

.2

3

2
�� � 0.5(45.75 � 1.5) � 53.17

T1 � 0.4(L1 � L0) � 0.6T0 � 0.4(53.17 � 45.75) � 0.6(1.5) � 3.87

s1 � 0.6 ��
L

x1

1

�� � 0.4s�11 � 0.6 ��53

1

.

3

17
�� � 0.4(0.22) � 0.23

�
4
1
5
2
0

� � �
2
1
3
2
4

�

��
12

(Avg. monthly sales during year �1) � (Avg. monthly sales during year �2)
��������

12
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Thus, at the end of month 1, our forecast for (say) month 7 air conditioner sales is f1,6 �

(L1 � 6T1)s1�6�12 � (53.17 � 6(3.87))1.97 � 150.49. Our forecast for month 7 at the

end of month 1 exceeds the forecast for month 7 made at the beginning of month 1, be-

cause month 1 sales were higher than predicted.

For all 24 months of data, spreadsheet calculations show that MAD � 10.48.

R E M A R K S 1 Since Winter’s method uses three smoothing constants, it is quite a chore to find the combina-
tion of a, b, and g values that yields the smallest MAD. The use of a spreadsheet to do Winter’s
method is discussed in Review Problem 3. The Excel Solver can aid in finding good values of a,
b, and g. Just use Solver to find parameter values that minimize MAD.
2 Although the values of a and b that minimize MAD should not exceed 0.5 (as in the Holt
method), it is not uncommon for the best value of g to exceed 0.5. This is because for monthly data,
each monthly seasonal factor is updated during only �

1
1
2
� of all periods. Since the seasonality factors

are updated so infrequently, we may need to give more weight to each observation, so g 	 0.5 is
not out of the question.
3 Figure 8 shows how well forecasts of air conditioner sales (for a � 0.5, b � 0.4, and g � 0.6)
compare to actual air conditioner sales. The agreement between predicted and actual sales is quite
good except during months 15 and 17. During these months, our forecasts are much too high. Per-
haps new salespeople were hired during these two months, causing sales to be less than anticipated.

Forecasting Accuracy

For any forecasting model in which forecast errors are normally distributed, we may use

MAD to estimate se � standard deviation of our forecast errors. The relationship between

MAD and se is given in Formula (17).

se � 1.25 MAD (17)

Assuming that errors are normally distributed, we know that approximately 68% of our

predictions should be within se of the actual value, and approximately 95% of our pre-

dictions should be within 2se of the actual value. Thus, for our air conditioner sales pre-

dictions, we find that se � 1.25(10.48) � 13.10. So we would expect that for about

0.68(24) � 16 of 24 months, our predictions for sales would be off by at most 13.10 air

conditioners, and for 0.95(24) � 23 of 24 months, our predictions would be off by at most

2(13.10) � 26.2 air conditioners. Actually, our predictions for air conditioner sales are ac-

curate within 13.10 during 17 months and accurate within 26.2 during 22 months.

TA B L E  6

Winter’s Method for Air Conditioners (a � 0.5, b � 0.4, g � 0.6)

Month Sales Lt Tt st ft�1,1 Error

1 13 53.17 3.87 0.23 10.40 2.60

2 7 50.39 1.21 0.15 9.13 �2.13

3 23 48.80 0.09 0.48 25.80 �2.80

4 32 46.67 �0.80 0.70 35.20 �3.20

5 58 45.59 �0.91 1.28 58.71 �0.71

6 60 44.90 �0.82 1.33 59.42 0.58

7 90 44.88 �0.50 1.99 86.82 3.18

8 93 44.87 �0.30 2.06 90.97 2.03

9 63 44.62 �0.28 1.41 62.84 0.16

10 39 44.33 �0.29 0.88 39.02 �0.02

11 37 44.58 �0.07 0.83 36.12 0.88

12 29 44.56 �0.05 0.65 28.93 0.07
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We note that in most situations where a forecast is required, knowing something about

the probable accuracy of the forecast is almost as important as the actual forecast. Thus,

this short subsection is very important!

P R O B L E M S
Group A

2 4 6 8 10 12 14 16 18 20 22 24

Month

S
al

es

20

40
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100
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140

160

180

200

220

240

=  Actual sales

=  Forecast sales

0

1 Simple exponential smoothing (with a � 0.2) is being
used to forecast monthly beer sales at Gordon’s Liquor
Store. After observing April’s demand, the predicted demand
for May is 4,000 cans of beer.

a At the beginning of May, what is the prediction for
July’s beer sales?

b Actual demand during May and June is as follows:
May, 4,500 cans of beer; June, 3,500 cans of beer. After
observing June’s demand, what is the forecast for July’s
demand?

c The demand during May and June averages out to
�
4,500�

2
3,500
� � 4,000 cans per month. This is the same as

the forecast for monthly sales before we observed the
May and June data. Yet after observing the May and
June demands for beer, our forecast for July demand has
decreased from what it was at the end of April. Why?

2 We are predicting quarterly sales for soda at Gordon’s
Liquor Store using Winter’s method. We are given the
following information:

Seasonality factors: fall � 0.8 spring � 1.2

winter � 0.7 summer � 1.3

Current base estimate � 400 cases per quarter

Current trend estimate � 40 cases per quarter

a � 0.2 b � 0.3 g � 0.5

Now sales of 650 cases during the summer quarter are
observed.

a Use this information to update the estimates of base,
trend, and seasonality.

b After observing the summer demand, forecast de-
mand for the fall quarter and the winter quarter.

3 We are using Winter’s method and monthly data to
forecast the GDP. (All numbers are in billions of dollars.)
At the end of January 2005, Lt � 600 and Tt � 5. We are
given the following seasonalities: January, 0.80; February,
0.85; December, 1.2. During February 2005, the GDP is at
a level of 630. At the end of February what is the forecast
for the December 2005 level of the GDP? Use a � b �

g � 0.5.

4 We are using the Holt method to predict monthly VCR
sales at Highland Appliance. At the end of October, 2005,
Lt � 200 and Tt � 10. During November, 2005, 230 VCRs
are sold. At the end of November, MAD � 25, and we are
95% sure that VCR sales for December, 2005 will be
between _____ and _____. Use a � b � 0.5.

5 We are using simple exponential smoothing to predict
monthly electric shaver sales at Hook’s Drug Store. At the
end of October 2006, our forecast for December 2006 sales
was 40. In November 50 shavers were sold, and during
December 45 shavers were sold. Suppose a � 0.50. At the
end of December, 2006, what is our prediction for the total
number of shavers that will be sold during March and April
of 2007?

F I G U R E  8

Air Conditioner Sales
Predictions
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6 We are using simple exponential smoothing to predict
monthly auto sales at Bloomington Ford. The company
believes that sales do not exhibit trend or seasonality, so
simple exponential smoothing has yielded satisfactory
forecasts for the most part. Each March, however, Bloom-
ington Ford has observed that sales tend to exceed the simple
exponential smoothing forecast (AFeb) by 200. Suppose that
at the end of February 2004, At � 600. During March 2004,
900 cars are sold.

a Using a � 0.3, determine (at the end of March 2004)
a forecast for April 2004 car sales.

b Assume that at the end of March, MAD � 60. We
are 95% sure that April sales will be between _____ and
_____.

7 The University Credit Union is open Monday through
Saturday. Winter’s method is being used (with a � b �
g � 0.5) to predict the number of customers entering the
bank each day. After incorporating the arrivals of October
16, Lt � 200 customers, Tt � 1 customer, and the
seasonalities are as follows: Monday, 0.90; Tuesday, 0.70;
Wednesday, 0.80; Thursday, 1.1; Friday, 1.2; Saturday, 1.3.
For example, this means that on a typical Monday, the
number of customers is 90% of the number of customers
entering the bank on an average day. On Tuesday, October
17, 182 customers enter the bank. At the close of business
on October 17, make a prediction for the number of
customers to enter the bank on October 25.

8 The Holt method (exponential smoothing with trend and
without seasonality) is being used to forecast weekly car
sales at TOD Ford. Currently, the base is estimated to be 50
cars per week, and the trend is estimated to be 6 cars per
week. During the current week, 30 cars are sold. After
observing the current week’s sales, forecast the number of
cars to be sold during the week that begins three weeks after
the conclusion of the current week. Use a � b � 0.3.

9 Winter’s method (with a � 0.2, b � 0.1, and g � 0.5)
is being used to forecast the number of customers served
each day by Last National Bank. The bank is open Monday
through Friday. At present, the following seasonalities have
been estimated: Monday, 0.80; Tuesday, 0.90; Wednesday,
0.95; Thursday, 1.10; Friday, 1.25. A seasonality of 0.80 for
Monday means that on a Monday, the number of customers
served by the bank tends to be 80% of average. Currently,
the base is estimated to be 20 customers, and the trend is
estimated to equal 1 customer. After observing that on
Monday 30 customers are served by the bank, predict the
number of customers to be served by the bank on Wednesday.

10 We have been assigned to forecast the number of
aircraft engines ordered each month by Engine Company.
At the end of February, the forecast is that 100 engines will
be ordered during April. During March, 120 engines are
ordered.

a Using a � 0.3, determine (at the end of March) a
forecast for the number of orders placed during April.
Answer the same question for May.

b Suppose at the end of March, MAD � 16. At the
end of March, we are 68% sure that April orders will be
between _____ and _____.

11 Winter’s method is being used to forecast quarterly
U.S. retail sales (in billions of dollars). At the end of the first

quarter, Lt � 300, Tt � 30, and the seasonal indexes are as
follows: quarter 1, 0.90; quarter 2, 0.95; quarter 3, 0.95;
quarter 4, 1.20. During the second quarter, retail sales are
$360 billion. Assume a � 0.2, b � 0.4, and g � 0.5.

a At the end of the second quarter, develop a forecast
for retail sales during the fourth quarter of the year.

b At the end of the second quarter, develop a forecast
for the second quarter of the following year.

Group B

12 Simple exponential smoothing with a � 0.3 is being
used to predict sales of radios at Lowland Appliance.
Predictions are made on a monthly basis. After observing
August radio sales, the forecast for September is 100 radios.

a During September, 120 radios are sold. After ob-
serving September sales, what is the prediction for Oc-
tober radio sales? For November radio sales?

b It turns out that June sales were recorded as 10 ra-
dios. Actually, however, 100 radios were sold in June.
After correcting for this error, what would be the pre-
diction for October radio sales?

13 In our discussion of Winter’s method, a monthly
seasonality of (say) 0.80 for January means that during
January, air conditioner sales are expected to be 80% of the
sales during an average month. An alternative approach to
modeling seasonality is to let the seasonality factor for each
month represent how far above average air conditioner sales
will be during the current month. For instance, if sJan �
�50, then air conditioner sales during January are expected
to be 50 less than air conditioner sales during an average
month. If sJuly � 90, then air conditioner sales during July
are expected to be 90 more than air conditioner sales during
an average month. Let

st � the seasonality for month t after month t
demand is observed

Lt � the estimate of base after month t
demand is observed

Tt � the estimate of trend after month t demand
is observed

Then the Winter’s method equations given in the text are
modified to be as follows (* indicates multiplication):

Lt � a * (I ) � (1 � a) * (Lt�1 � Tt�1)

Tt � b * (Lt � Lt�1) � (1 � b) * Tt�1

st � g * (II ) � (1 � g) * st�12

a What should I and II be?

b Suppose that month 13 is a January, L12 � 30, 
T12 � �3, s1 � �50, and s2 � �20. Let a � g �

b � 0.5. Suppose 12 air conditioners are sold during
month 13. At the end of month 13, what is the predic-
tion for air conditioner sales during month 14?

14 Winter’s method assumes a multiplicative seasonality
but an additive trend. For example, a trend of 5 means that
the base will increase by 5 units per period. Suppose there
is actually a multiplicative trend. Then (ignoring seasonality)
if the current estimate of the base is 50 and the current
estimate of the trend is 1.2, we would predict demand to
increase by 20% per period. Ignoring seasonality, we would
thus forecast the next period’s demand to be 50(1.2) and
forecast the demand two periods in the future to be 50(1.2)2.
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If we want to use a multiplicative trend in Winter’s method,
we should use the following equations:

Lt � a * ��
st

x

�

t

c

�� � (1 � a) * (I)

Tt � b * (II ) � (1 � b) * Tt�1

st � g * ��
L

xt

t

�� � (1 � g)* st�12

a Determine what I and II should be.

b Suppose we are working with monthly data and
month 12 is a December, month 13 a January, and so on.
Also suppose that L12 � 100, T12 � 1.2, s1 � 0.90, 
s2 � 0.70, and s3 � 0.95. Suppose x13 � 200. At the
end of month 13, what is the prediction for x15? Assume
a � b � g � 0.5.

15 Holt’s method assumes an additive trend. For example,
a trend of 5 means that the base will increase by 5 units per
period. Suppose there is actually a multiplicative trend.
Thus, if the current estimate of the base is 50 and the current
estimate of the trend is 1.2, we would predict demand to
increase by 20% per period. So we would forecast the next
period’s demand to be 50(1.2) and forecast the demand two
periods in the future to be 50(1.2)2. If we want to use a
multiplicative trend in Holt’s method, we should use the
following equations:

Lt � a * (xt) � (1 � a) * (I )

Tt � b * (II ) � (1 � b) * Tt�1

a Determine what I and II should be.

b Suppose we are working with monthly data and
month 12 is a December, month 13 a January, and so on.
Also suppose that L12 � 100 and T12 � 1.2. Suppose
x13 � 200. At the end of month 13, what is the predic-
tion for x15? Assume a � b � 0.5.

16 A version of simple exponential smoothing can be
used to predict the outcome of sporting events. To illustrate,
consider pro football. We first assume that all games are
played on a neutral field. Before each day of play, we assume
that each team has a rating. For example, if the Bears’ rating
is �10 and the Bengals’ rating is �6, we would predict the
Bears to beat the Bengals by 10 � 6 � 4 points. Suppose
the Bears play the Bengals and win by 20 points. For this
observation, we “underpredicted” the Bears’ performance
by 20 � 4 � 16 points. The best a for pro football is 0.10.
After the game, we therefore increase the Bears’ rating by
16(0.1) � 1.6 and decrease the Bengals’ rating by 1.6 points.
In a rematch, the Bears would be favored by (10 � 1.6) �
(6 � 1.6) � 7.2 points.

a How does this approach relate to the equation At �

At�1 � a(et)?

b Suppose the home-field advantage in pro football is
3 points; that is, home teams tend to outscore visiting
teams by an average of 3 points a game. How could the
home-field advantage be incorporated into this system?

c How could we determine the best a for pro football?

d How might we determine ratings for each team at
the beginning of the season?

e Suppose we tried to apply the above method to pre-
dict pro football (16-game schedule), college football
(11-game schedule), college basketball (30-game sched-
ule), and pro basketball (82-game schedule). Which
sport would have the smallest optimal a? Which sport
would have the largest optimal a?

f Why would this approach probably yield poor fore-
casts for major league baseball?

24.5 Ad Hoc Forecasting

Suppose we want to determine how many tellers a bank must have working each day to

provide adequate service. In order to use the queuing models of Chapter 20 to answer this

question, we need to be able to predict the number of customers who will enter the bank

each day. The bank manager believes that the month of the year and the day of the week

influence the number of customers entering the bank. (The bank is open Monday through

Saturday, except for holidays.) Can we develop a simple forecasting model to help the

bank predict the number of customers who will enter each day?

The number of customers entering the bank each day during the last year is given in

Table 7. We have used 1 � Monday, 2 � Tuesday, . . . , 6 � Saturday, and 7 � Sunday to

denote the days of the week. A “Y” in the AH column means that the day is the day af-

ter the bank was closed for a holiday.

Let xt � number of customers entering the bank on day t. We postulate that xt � B 


DWt 
 Mt 
 �t, where

B � base level of customer traffic corresponding to an average day

DWt � day of the week factor corresponding to the day of the week on which day t falls

Mt � month factor corresponding to the month during which day t occurs

�t � random error term whose average value equals 1
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TA B L E  7

Arrivals to Bank

Month Day M Day W Customer AH Forecast

1 1 1

1 2 2 431 Y 399.13

1 3 3 271 415.88

1 4 4 362 416.51

1 5 5 696 560.10

1 6 6 315 356.32

1 7 7

1 8 1 330 493.98

1 9 2 352 399.13

1 10 3 606 415.88

1 11 4 550 416.51

1 12 5 626 560.10

1 13 6 392 356.32

1 14 7

1 15 1 540 493.98

1 16 2 474 399.13

1 17 3 457 415.88

1 18 4 401 416.51

1 19 5 691 560.10

1 20 6 388 356.32

1 21 7

1 22 1 533 493.98

1 23 2 384 399.13

1 24 3 360 415.88

1 25 4 515 416.51

1 26 5 325 560.10

1 27 6 412 356.32

1 28 7

1 29 1 592 493.98

1 30 2 366 399.13

1 31 3 512 415.88

2 1 4 476 425.33

2 2 5 531 571.97

2 3 6 303 363.87

2 4 7

2 5 1 474 504.45

2 6 2 255 407.58

2 7 3 282 424.69

2 8 4 321 425.33

2 9 5 416 571.97

2 10 6 257 363.87

2 11 7

2 12 1 638 504.45

2 13 2 506 407.58

2 14 3 420 424.69

2 15 4 459 425.33

2 16 5 515 571.97

(Continued)
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TA B L E  7

(Continued)

Month Day M Day W Customer AH Forecast

2 17 6 501 363.87

2 18 7

2 19 1 556 504.45

2 20 2 510 407.58

2 21 3 436 424.69

2 22 4 512 425.33

2 23 5 547 571.97

2 24 6 319 363.87

2 25 7

2 26 1 637 504.45

2 27 2 474 407.58

2 28 3 487 424.69

2 29 4 402 425.33

3 1 5 778 574.26

3 2 6 374 365.32

3 3 7

3 4 1 544 506.46

3 5 2 485 409.21

3 6 3 361 426.39

3 7 4 315 427.03

3 8 5 423 574.26

3 9 6 357 365.32

3 10 7

3 11 1 649 506.46

3 12 2 351 409.21

3 13 3 405 426.39

3 14 4 404 427.03

3 15 5 483 574.26

3 16 6 411 365.32

3 17 7

3 18 1 309 506.46

3 19 2 453 409.21

3 20 3 515 426.39

3 21 4 380 427.03

3 22 5 426 574.26

3 23 6 427 365.32

3 24 7

3 25 1 489 506.46

3 26 2 341 409.21

3 27 3 471 426.39

3 28 4 517 427.03

3 29 5 647 574.26

3 30 6 415 365.32

3 31 7

4 1 1 363 483.02

4 2 2 337 390.27

4 3 3 314 406.65

(Continued)
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TA B L E  7

(Continued)

Month Day M Day W Customer AH Forecast

4 4 4 465 407.26

4 5 5 584 547.67

4 6 6 313 348.41

4 7 7

4 8 1 376 483.02

4 9 2 292 390.27

4 10 3 484 406.65

4 11 4 227 407.26

4 12 5 496 547.67

4 13 6 395 348.41

4 14 7

4 15 1 625 483.02

4 16 2 430 390.27

4 17 3 454 406.65

4 18 4 372 407.26

4 19 5 455 547.67

4 20 6 253 348.41

4 21 7

4 22 1 432 483.02

4 23 2 469 390.27

4 24 3 392 406.65

4 25 4 467 407.26

4 26 5 684 547.67

4 27 6 349 348.41

4 28 7

4 29 1 750 483.02

4 30 2 409 390.27

5 1 3 348 373.31

5 2 4 230 373.88

5 3 5 630 502.78

5 4 6 358 319.85

5 5 7

5 6 1 269 443.43

5 7 2 107 358.27

5 8 3 360 373.31

5 9 4 208 373.88

5 10 5 547 502.78

5 11 6 325 319.85

5 12 7

5 13 1 473 443.43

5 14 2 337 358.27

5 15 3 317 373.31

5 16 4 341 373.88

5 17 5 338 502.78

5 18 6 369 319.85

5 19 7

5 20 1 618 443.43

(Continued)
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TA B L E  7

(Continued)

Month Day M Day W Customer AH Forecast

5 21 2 458 358.27

5 22 3 457 373.31

5 23 4 572 373.88

5 24 5 668 502.78

5 25 6 318 319.85

5 26 7

5 27 1 300 443.43

5 28 2 469 358.27

5 29 3 434 373.31

5 30 4 419 373.88

5 31 5

6 1 6 432 Y 354.08

6 2 7

6 3 1 463 490.89

6 4 2 457 396.62

6 5 3 273 413.27

6 6 4 327 413.90

6 7 5 554 556.60

6 8 6 256 354.08

6 9 7

6 10 1 465 490.89

6 11 2 479 396.62

6 12 3 437 413.27

6 13 4 585 413.90

6 14 5 616 556.60

6 15 6 318 354.08

6 16 7

6 17 1 724 490.89

6 18 2 390 396.62

6 19 3 550 413.27

6 20 4 266 413.90

6 21 5 410 556.60

6 22 6 303 354.08

6 23 7

6 24 1 514 490.89

6 25 2 353 396.62

6 26 3 397 413.27

6 27 4 539 413.90

6 28 5 411 556.60

6 29 6 413 354.08

6 30 7

7 1 1 583 484.44

7 2 2 477 391.42

7 3 3 410 407.85

7 4 4

7 5 5 615 Y 549.29

7 6 6 288 349.44

(Continued)
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TA B L E  7

(Continued)

Month Day M Day W Customer AH Forecast

7 7 7

7 8 1 478 484.44

7 9 2 298 391.42

7 10 3 253 407.85

7 11 4 366 408.46

7 12 5 410 549.29

7 13 6 270 349.44

7 14 7

7 15 1 541 484.44

7 16 2 331 391.42

7 17 3 318 407.85

7 18 4 441 408.46

7 19 5 651 549.29

7 20 6 300 349.44

7 21 7

7 22 1 608 484.44

7 23 2 401 391.42

7 24 3 390 407.85

7 25 4 391 408.46

7 26 5 619 549.29

7 27 6 391 349.44

7 28 7

7 29 1 413 484.44

7 30 2 474 391.42

7 31 3 503 407.85

8 1 4 267 418.33

8 2 5 619 562.56

8 3 6 370 357.88

8 4 7

8 5 1 406 496.15

8 6 2 432 400.87

8 7 3 333 417.70

8 8 4 327 418.33

8 9 5 647 562.56

8 10 6 407 357.88

8 11 7

8 12 1 396 496.15

8 13 2 664 400.87

8 14 3 508 417.70

8 15 4 519 418.33

8 16 5 555 562.56

8 17 6 365 357.88

8 18 7

8 19 1 492 496.15

8 20 2 420 400.87

8 21 3 360 417.70

8 22 4 469 418.33

(Continued)
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TA B L E  7

(Continued)

Month Day M Day W Customer AH Forecast

8 23 5 488 562.56

8 24 6 326 357.88

8 25 7

8 26 1 465 496.15

8 27 2 384 400.87

8 28 3 280 417.70

8 29 4 292 418.33

8 30 5 649 562.56

8 31 6 493 357.88

9 1 7

9 2 1

9 3 2 459 Y 391.76

9 4 3 353 408.21

9 5 4 287 408.82

9 6 5 471 549.77

9 7 6 266 349.74

9 8 7

9 9 1 505 484.87

9 10 2 528 391.76

9 11 3 342 408.21

9 12 4 551 408.82

9 13 5 525 549.77

9 14 6 304 349.74

9 15 7

9 16 1 479 484.87

9 17 2 258 391.76

9 18 3 263 408.21

9 19 4 450 408.82

9 20 5 540 549.77

9 21 6 297 349.74

9 22 7

9 23 1 399 484.87

9 24 2 264 391.76

9 25 3 479 408.21

9 26 4 459 408.82

9 27 5 915 549.77

9 28 6 247 349.74

9 29 7

9 30 1 725 484.87

10 1 2 197 390.39

10 2 3 326 406.78

10 3 4 374 407.39

10 4 5 477 547.85

10 5 6 367 348.52

10 6 7

10 7 1 317 483.17

10 8 2 205 390.39

(Continued)
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TA B L E  7

(Continued)

Month Day M Day W Customer AH Forecast

10 9 3 519 406.78

10 10 4 483 407.39

10 11 5 489 547.85

10 12 6 345 348.52

10 13 7

10 14 1 660 483.17

10 15 2 262 390.39

10 16 3 395 406.78

10 17 4 522 407.39

10 18 5 582 547.85

10 19 6 335 348.52

10 20 7

10 21 1 503 483.17

10 22 2 396 390.39

10 23 3 548 406.78

10 24 4 471 407.39

10 25 5 528 547.85

10 26 6 344 348.52

10 27 7

10 28 1 419 483.17

10 29 2 429 390.39

10 30 3 609 406.78

10 31 4 519 407.39

11 1 5 674 596.31

11 2 6 352 379.35

11 3 7

11 4 1 360 525.91

11 5 2 500 424.92

11 6 3 339 442.76

11 7 4 326 443.43

11 8 5 459 596.31

11 9 6 255 379.35

11 10 7

11 11 1 432 525.91

11 12 2 527 424.92

11 13 3 394 442.76

11 14 4 424 443.43

11 15 5 388 596.31

11 16 6 356 379.35

11 17 7

11 18 1 635 525.91

11 19 2 309 424.92

11 20 3 613 442.76

11 21 4 580 443.43

11 22 5 627 596.31

11 23 6 514 379.35

11 24 7

(Continued)
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To begin, we estimate B � average number of arrivals per day the bank is open �

438.33. We illustrate the estimation of the DWt by

DWt for Monday �

� �
4

4

9

3

2

8

.

.

0

3

7

3
� � 1.122

average number of arrivals on Mondays bank is open
������

TA B L E  7

(Continued)

Month Day M Day W Customer AH Forecast

11 25 1 686 525.91

11 26 2 452 424.92

11 27 3 384 442.76

11 28 4

11 29 5 701 Y 596.31

11 30 6 425 379.35

12 1 7

12 2 1 291 510.06

12 3 2 407 412.12

12 4 3 458 429.42

12 5 4 243 430.06

12 6 5 449 578.34

12 7 6 315 367.91

12 8 7

12 9 1 633 510.06

12 10 2 429 412.12

12 11 3 375 429.42

12 12 4 540 430.06

12 13 5 615 578.34

12 14 6 455 367.91

12 15 7

12 16 1 385 510.06

12 17 2 472 412.12

12 18 3 576 429.42

12 19 4 321 430.06

12 20 5 679 578.34

12 22 7

12 23 1 407 510.06

12 24 2 328 412.12

12 25 3

12 26 4 491 Y 430.06

12 27 5 586 578.34

12 28 6 367 367.91

12 29 7

12 30 1 707 510.06

12 31 2 400 412.12
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Similarly, we find

DWt for Tuesday � 0.907

DWt for Wednesday � 0.945

DWt for Thursday � 0.947

DWt for Friday � 1.273

DWt for Saturday � 0.809

To estimate Mt (say, for May), we write

Mt for May �

� �
43

3

8

9

.

5

33
� � 0.901

In a similar fashion, we find the Mt for the remaining months:

Mt for January � 1.004

Mt for February � 1.025

Mt for March � 1.029

Mt for April � 0.982

Mt for June � 0.998

Mt for July � 0.984

Mt for August � 1.008

Mt for September � 0.985

Mt for October � 0.982

Mt for November � 1.069

Mt for December � 1.037

To illustrate how the forecasts in Table 7 were generated, consider how we would gen-

erate a forecast for the number of customers to enter the bank on Thursday, February 1,

of the current year. Assuming �t equals its average value of 1, we would forecast B 


(DWt for Thursday) 
 (Mt for February) � 438.33(0.947)(1.025) � 425.48 customers

would enter. (The difference from the printout value shown in the table is due to round-

ing of DWt and Mt values.) To forecast customer arrivals for a future day (say, Saturday,

February 8, of next year), we would obtain B 
 (DWt for Saturday) 
 (Mt for February) �

438.33 (0.809)(1.025) � 363.47 customers.

For the data given in Table 7, our simple model yielded a MAD of 79.1. If this method

were used to generate forecasts for the coming year, however, the MAD would probably

exceed 79.1. This is because we have fit our parameters to past data; there is no guaran-

tee that future data will “know” that they should follow the same pattern as past data. We

have also neglected to consider whether or not an upward trend in the data is present (see

Problem 3).

Suppose the bank manager observes that on the day after a holiday, bank traffic is much

higher than the model predicts. The data in Table 8 indicate that this is indeed the case.

How can we use this information to obtain more accurate customer forecasts for days af-

ter holidays? From Table 8, we find that the average value of Actual/Forecast for days af-

ter a holiday is 1.15. Thus, for any day after a holiday, we obtain a new forecast simply

by multiplying our previous forecast by 1.15.

average number of arrivals on May day for which bank is open
�������
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P R O B L E M S
Group A

1 Suppose the bank is a college credit union and that on
days when the college’s professors get paid, bank traffic is
much higher than usual. Assuming that college professors
are paid on the first weekday of each month, how could we
incorporate this fact into the forecasting procedure described
in this section?

2 Suppose again that the bank is a college credit union,
but now the staff gets paid every other Friday. Again, bank

traffic is much higher than usual on staff paydays. How
could we incorporate this fact into the forecasting procedure
described in this section?

3 Suppose that the number of customers entering the bank
is growing at around 20% per year. How could we
incorporate this fact into the forecasting procedure described
in this section?

24.6 Simple Linear Regression

Often, we try to predict the value of one variable (called the dependent variable) from

the value of another variable (the independent variable). Some examples follow:

Dependent Variable Independent Variable

Sales of product Price of product

Automobile sales Interest rate

Total production cost Units produced

If the dependent variable and the independent variable are related in a linear fashion, sim-

ple linear regression can be used to estimate this relationship. In Section 24.7, we will

discuss how to estimate nonlinear relationships.

To illustrate simple linear regression, let’s recall the Giapetto problem (Example 1 in

Chapter 3). To set up this problem, we need to determine the cost of producing a soldier

and the cost of producing a train. Let’s suppose that we want to determine the cost of pro-

ducing a train. To estimate this cost, we have observed for ten weeks the number of trains

produced each week and the total cost of producing those trains. This information is given

in Table 9.

The data from Table 9 are plotted in Figure 9. Observe that there appears to be a strong

linear relationship between xi (number of trains produced during week i) and yi (cost of

producing trains made during week i). The line plotted in Figure 9 appears, in a way to

be made precise later, to come close to capturing the linear relationship between units pro-

duced and production cost. We will soon see how this line was chosen.

TA B L E  8

Bank Traffic on Day after Holiday

Day after Forecast
Holiday Actual (rounded) Actual/Forecast

January 2 431 399 1.08

June 1 432 354 1.22

July 5 615 549 1.12

September 3 459 392 1.17

November 29 701 596 1.18

December 26 491 430 1.14
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To begin, we model the linear relationship between xi and yi by the following equation:

yi � b0 � b1xi � �i

where �i is an error term representing the fact that in a week during which xi trains are

produced, the production cost might not always equal b0 � b1xi. If �i 	 0, the cost of

producing xi trains during week i will exceed b0 � b1xi, whereas if �i � 0, the cost of

producing xi trains during week i will be less than b0 � b1xi. However, we expect �i to

average out to 0, so the expected cost during a week in which xi trains are produced is 

b0 � b1xi.

The true values of b0 and b1 are unknown. Suppose we estimate b0 using b̂0 and es-

timate b1 using b̂1. Then our prediction for yi (since the average value of �i � 0) is given

by ŷi � b̂0 � b̂1xi.

Suppose we have data points of the form (x1, y1), (x2, y2), . . . , (xn, yn). How should we

choose values of b̂0 and b̂1 that yield good estimates of b0 and b1? We select values of

b̂0 and b̂1 that make our predictions  ŷi � b̂0 � b̂1xi close to the actual data points (xi,

yi). To formalize this idea, define ei � error or residual for data point i � (actual cost yi) �

(predicted cost ŷi) � yi � b̂0 � b̂1xi. We now choose b̂0 and b̂1 to minimize

F(b̂0, b̂1) � � ei
2

� � ( yi � b̂0 � b̂1xi)
2
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Scatterplot of Cost of
Producing Trains

TA B L E  9

Weekly Cost Data on Trains

Week Trains Produced Cost of Producing Trains

1 10 $257.40

2 20 $601.60

3 30 $782.00

4 40 $765.40

5 45 $895.50

6 50 $1,133.00

7 60 $1,152.80

8 55 $1,132.70

9 70 $1,459.20

10 40 $970.10
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The values b̂0 and b̂1 minimizing F(b̂0, b̂1) are called the least squares estimates of b0

and b1. As described in Example 19 in Chapter 11, we find b̂0 and b̂1 by setting

� � 0

The resulting values of b̂0 and b̂1 are given by

b̂1 � b̂0 � y� � b̂1x� (18)

where x� � average value of all xi’s and y� � average value of all yi’s.

We call ŷi � b̂0 � b̂1xi the least squares regression line. Essentially, if the least

squares line fits the points well (in a sense to be made more precise later), we will use

b̂0 � b̂1xi as our prediction for y1.

Usually, the least squares line is determined by computer. Excel, Minitab, and many

other popular packages will provide b̂0 and b̂1. For the sake of completeness, however, the 

computations needed to determine b̂0 and b̂1 for the data in Table 9 are given in Table

10, where we have used

x� � � 42 and y� � � 914.97

From Table 10 (which can easily be implemented on a spreadsheet), we find that �(xi �

x�)( yi � y�) � 53,756.6 and �(xi � x�)2
� 3,010. From (18), we now find that

b̂1 � �
53

3

,

,

7

0

5

1

6

0

.6
� � 17.86 and b̂0 � 914.97 � (17.86)42 � 164.88

Our least squares line is ŷ � 164.88 � 17.86x. Thus, we estimate that each extra train in-

curs a variable cost of b̂1 � $17.86.

Our predictions and errors for all ten weeks are given in Table 11. To illustrate the com-

putations, consider the first point (10,257.4). The predicted cost is ŷ 1 � 164.88 �

17.86(10) � 343.5, and the error is given by e1 � 257.4 � 343.5 � �86.1.

Every least squares line has two properties:

1 It passes through the point (x�, y�). Thus, during a week in which Giapetto produced 

x� � 42 trains, we would predict that these trains would cost $914.97 to produce.

� yi
�
10

� xi
�
10

�(xi � x�)(yi � y�)
��

�(xi � x�)2

�F
�
�b̂1

�F
�
�b̂0

TA B L E  10

Computation of b̂0 and b̂1 for Train Cost Data

xi yi xi � x� yi � y� (xi � x�)(yi � y�) (xi � x�)
2

10 257.4 �32 �657.57 21,042.24 1,024

20 601.6 �22 �313.37 6,894.14 484

30 782.0 �12 �132.97 1,595.64 144

40 765.4 �2 �149.57 299.14 4

45 895.5 3 �19.47 �58.41 9

50 1,133.0 8 218.03 1,744.24 64

60 1,152.8 18 237.83 4,280.94 324

55 1,132.7 13 217.73 2,830.49 169

70 1,459.2 28 544.23 15,238.44 784

40 970.1 �2 55.13 �110.26 4
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2 �ei � 0. The least squares line “splits” the data points, in the sense that the sum of

the vertical distances from points above the least squares line to the least squares line

equals the sum of the vertical distances from points below the least squares line to the

least squares line.

How Good a Fit?

How do we determine how well the least squares line fits our data points? To answer this

question, we need to discuss three components of variation: sum of squares total (SST),

sum of squares error (SSE), and sum of squares regression (SSR). Sum of squares to-

tal is given by SST � �( yi � y�)2. SST measures the total variation of yi about its mean

y�. Sum of squares error is given by SSE � �( yi � ŷ i)
2 � �ei

2. If the least squares line

passes through all the data points, SSE � 0. Thus, a small SSE would indicate that the

least squares line fits the data well. We define sum of squares regression to be SSR �

�( ŷ i � y�)2. It can be shown that

SST � SSR � SSE (19)

Note that SST is a function only of the values of y. For a good fit, SSE will be small,

so (19) shows that SSR will be large for a good fit. More formally, we may define the co-

efficient of determination (R2) for y by

R2
� �

S

S

S

S

R

T
� � percentage of variation in y explained by x

Equivalently, (19) allows us to write

1 � R2
� �

S

S

S

S

E

T
� � percentage of variation in y not explained by x

From computer output, we find that SST � 1,021,762 and SSE � 61,705. Then (19)

yields SSR � SST � SSE � 960,057. Thus, we find that R2
� �

1
9
,0
6
2
0
1
,0
,7
5
6
7
2

� � 0.94. This

means that the number of trains produced during a week explains 94% of the variation in

the weekly cost of producing trains. All other factors combined can explain at most 6%

of the variation in weekly cost, so we can be quite sure that the linear relationship be-

tween x and y is strong.

A measure of the linear association between x and y is the sample linear correlation

rxy. A sample correlation near �1 indicates a strong positive linear relationship between

TA B L E  11

Computations of Errors

xi yi ŷi ei

10 257.4 343.5 �86.1

20 601.6 522.1 79.5

30 782.0 700.7 81.3

40 765.4 879.3 �113.9

45 895.5 968.5 �73.0

50 1,133.0 1,057.8 75.2

60 1,152.8 1,236.4 �83.6

55 1,132.7 1,147.1 �14.4

70 1,459.2 1,415.3 44.2

40 970.1 879.3 90.8
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x and y; a sample correlation near �1 indicates a strong negative linear relationship be-

tween x and y; and a sample correlation near 0 indicates a weak linear relationship be-

tween x and y.

By the way, if b̂1 � 0, then rxy equals ��R2�, whereas if b̂1  0, the sample corre-

lation between x and y is given by ��R2�. Thus, in our cost example, rxy � �0.94� �

0.97, indicating a strong linear relationship between x and y.

Forecasting Accuracy

A measure of the accuracy of predictions derived from regression is given by the stan-

dard error of the estimate (se). If we let n � number of observations, se is given by

se � ��
n

S

�

SE

2
��

For our example,

se � ��
1

6

0

1,

�

705�2
�� � 87.8

It is usually true† that approximately 68% of the values of y will be within se of the pre-

dicted value ŷ , and 95% of the values of y will be within 2se of the predicted value ŷ . In

the current example, we expect that 68% of our cost estimates will be within $87.80 of

the true cost, and 95% will be within $175.60. In actuality, for 80% of our data points,

actual cost is within se of the predicted cost, and for 100% of our data points, actual cost

is within 2se of the predicted cost.

Any observation for which y is not within 2se of ŷ is called an outlier. Outliers repre-

sent unusual data points and should be carefully examined. Of course, if an outlier is the

result of a data entry error, it should be corrected. If an outlier is in some way uncharac-

teristic of the remaining data points, it may be better to omit the outlier and re-estimate

the least squares line. Since all the errors are smaller than 2se in absolute value, there are

no outliers in our cost example.

t-Tests in Regression

Using a t-test, we can test the significance of a linear relationship. To test H0: b1 � 0 (no

significant linear relationship between x and y) against Ha: b1 � 0 (significant linear 

relationship between x and y) at a level of significance a, we compute the t-statistic 

given by

t �
b̂1

��

†Actually, approximately 68% of the points should be within

se �1 � �
1

n
�� � �

�
(

(

x�xi

�

�

x�
x

)

�

2

�)2��
of ŷ, and 95% of the points should be within

2se �1 � �
1

n
�� � �

�
(

(

x�xi

�

�

x�
x

)

�

2

�)2��
of ŷ.
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TA B L E  12

Percentage Points of the t-Distribution†

df a � 0.1 a � 0.05 a � 0.025 a � 0.01 a � 0.005

1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921

17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831

22 1.321 1.717 2.074 2.508 2.819

23 1.319 1.714 2.069 2.500 2.807

24 1.318 1.711 2.064 2.492 2.797

25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779

27 1.314 1.703 2.052 2.473 2.771

28 1.313 1.701 2.048 2.467 2.763

29 1.311 1.699 2.045 2.462 2.756

30 1.310 1.697 2.042 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704

60 1.296 1.671 2.000 2.390 2.660

120 1.289 1.658 1.980 2.358 2.617

240 1.285 1.651 1.970 2.342 2.596

inf. 1.282 1.645 1.960 2.326 2.576

†Computed by P. J. Hildebrand. Reprinted with permission of PWS-KENT Publishing

Company.

t

�
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StdErr(b̂1) measures the uncertainty in our estimate of b1; it can usually be found on a

computer printout. We reject H0 if |t| � t(a/2,n�2), where t(a/2,n�2) is obtained from Table

12. For our cost example, StdErr(b̂1) � 1.6 (found from a computer printout), so t �
�
17
1
.
.
8
6
6

� � 11.16. Using a � 0.05, we find t(.025,8) � 2.306, so we reject H0 and again con-

clude that there is a strong linear relationship between x and y.

Assumptions Underlying the Simple Linear Regression Model

Statistical analysis of the simple linear regression model requires that the following as-

sumptions hold.

Assumption 1

The variance of the error term should not depend on the value of the independent vari-

able x. This assumption is called homoscedasticity. If the variance of the error term de-

pends on x, then we say that heteroscedasticity is present. To see whether the ho-

moscedasticity assumption is satisfied, we plot the errors on the y-axis and the value of x

on the x-axis. Figure 10 illustrates a situation where the homoscedasticity assumption is

satisfied; the figure indicates no tendency for the size of the errors to depend on x. In Fig-

ure 11, however, the magnitude of the errors tends to increase as x increases. This is an

example of heteroscedasticity. Using ln y or y1/2 as the dependent variable will often elim-

inate heteroscedasticity.

Assumption 2

Errors are normally distributed. This assumption is not of vital importance, so we will not

discuss it further.

Assumption 3

The errors should be independent. This assumption is often violated when data are col-

lected (as in our example) over time. Independence of the errors implies that knowing the

value of one error should tell us nothing about the value of the next (or any other) error.

15 25 35 455
x

e

14
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10
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6

4

2
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–10
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–14F I G U R E  10
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The validity of this assumption can be checked by plotting the errors in time-series se-

quence. In Figure 12, we find that the errors had the following signs: � � � � � � �

� � � � �. This sequence of errors exhibits the following pattern: a positive error (cor-

responding to underprediction of the actual value of y) is usually followed by another pos-

itive error, and a negative error (corresponding to overprediction of the actual value of y)

is usually followed by another negative error. This pattern indicates that successive errors

are not independent; it is referred to as positive autocorrelation. In other words, positive

autocorrelation indicates that successive errors have a positive linear relationship and are

not linearly independent. If the sequence of errors in time sequence resembles Figure 13,

we have negative autocorrelation. Here, the sequence of errors is � � � � � � � �

� � � �. This indicates that a positive error tends to be followed by a negative error,

and vice versa. The conclusion is that successive errors have a negative linear relationship

and are not independent. In Figure 14, we have the following sequence of errors: � � �

� � � � � � � � �. Here, no obvious pattern is present, and the independence as-

sumption appears to be satisfied. Observe that the errors “average out” to 0, so we would

expect about half our errors to be positive and half to be negative. Thus, if there is no pat-

tern in the errors, we would expect the errors to change sign about half the time. This ob-

servation enables us to formalize the preceding discussion as follows.

15 25 35 455
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e
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1 If the errors change sign very rarely (much less than half the time), they probably vi-

olate the independence assumption, and positive autocorrelation is probably present.

2 If the errors change sign very often (much more than half the time), they probably vi-

olate the independence assumption, and negative autocorrelation is probably present.

3 If the errors change sign about half the time, they probably satisfy the independence

assumption.

If positive or negative autocorrelation is present, correcting for the autocorrelation will

often result in much more accurate forecasts. See pages 215–221 of Pindyck and Rubin-

feld (1989) for details.

Running Regressions with Excel

Figure 15 (file Cost.xls) illustrates how to run a regression with Excel. We have input the

data from Table 9 in the cell range A2:B11 and then invoked the Tools Data Analysis 
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t

e

–4

–6

–2

2

4

6

0

3 51 7 9 11
t

e
–2

–4

6

4

2

–6

–8

–10

–12

0

F I G U R E  13

Negative
Autocorrelation

F I G U R E  14

No Autocorrelation

Cost.xls



2 4 . 6 Simple Linear Regression 1311

Regression Command.† Fill in the dialog box as shown in Figure 16. The Y range B1:B11

contains the name of the dependent variable and the values of the dependent variable. The

X range A1:A11 contains the name of the independent variable and the values of the in-

dependent variable. Since the first row of the X and Y ranges include labels, we checked

the Labels box. We checked cell B15 as the upper left-hand corner of the Output Range.

We did not check the Residuals box. If we had, we would have obtained the predicted

value and residual for each observation. Figure 15 shows the results of the regression.

Let’s examine what the important numbers in the output mean. (We omit discussion of

the portions of the output that are irrelevant to our discussion of regression.)

R Square This is r2 � .939609.

Multiple R This is the square root of r2, with the sign of Multiple R being the same as

the slope of the regression line.

Standard Error This is se � 87.82.

Observations This is the number of data points (10).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

A B C D E F G H

trains cost yihatr e

10 257.4 9.32060032 248.0794 COST REGRESSION

20 601.6 18.6412006 582.958799 EXAMPLE

30 782 27.961801 754.038199

40 765.4 37.2824013 728.117599

45 895.5 41.9427014 853.557299

50 1133 46.6030016 1086.397

60 1152.8 55.9236019 1096.8764

55 1132.7 51.2633018 1081.4367

70 1459.2 65.2442022 1393.9558

40 970.1 37.2824013 932.817599

SUMMARY O UTPUT

Regression Statistics

Multiple R 0.9693343

R Square 0.9396089

Adjusted R Squ 0.93206

Standard Error 87.824643

Observations 10

ANOVA

df SS MS F Significance F

Regression 1 960057.16 960057.16 124.4698887 3.72837E-06

Residual 8 61705.344 7713.168

Total 9 1021762.5

Coefficients tandard Erro t Stat P-value Lower 95% Upper 95%

Intercept 164.87791 72.743329 2.2665708 0.053174264 -2.8686199 332.62443

trains 17.859336 1.6007855 11.156607 3.72837E-06 14.16791514 21.550756

 

†If the Analysis Tool Pak does not show up when you select Tools Data, go to Tools Add Ins and check the

Analysis Tool Pak and Analysis Tool Pak Vba boxes.

F I G U R E  15
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SS column The Regression entry (96,057.16) is SSR. The Residual entry (61,705.34) is

SSE. The Total entry (1,021,762.5) is SST.

Coefficients column The Intercept entry (164.88) gives the value of b̂0 � 164.88, and the

trains entry (17.86) gives the value of b̂1 � 17.86.

t stat This gives the observed t-statistic (coefficient/standard error) for the Intercept and

the Trains variable.

Standard Error column The Intercept entry gives the standard error b̂0 � 72.74, and the

Trains entry gives the standard error b̂1 � 1.60. The coefficient entry divided by the stan-

dard error entry yields the t-statistic for the intercept or slope (tabulated in the next 

column).

P-value For the intercept and slope, this gives Probability(|tn�2| � |Observed t-statistic|).

If, for example, the p-value for Trains is less than a, we reject H0: b1 � 0; otherwise, we

accept b1 � 0. For a � .05, we reject b1 � 0. For p-value � .05, it is borderline whether

or not to accept the hypothesis that b0 � 0.

In cell C2, we obtain ŷ1 by inputting the formula �D$14�A2*C$20. In cell D2, we ob-

tain e1 by inputting the formula �B2�C2. Copying from the range C2:D2 to C2:D11 cre-

ates predictions and errors for all observations.

Obtaining a Scatterplot with Excel

To obtain a scatterplot with Excel, let the range where your independent variable is be the

X range. Then let the range where your dependent variable is be the Y range. Then select

X-Y Graph.

24.7 Fitting Nonlinear Relationships

Often, a plot of points of the form (xi, yi) indicates that y is not a linear function of x. In

such cases, however, the plot may indicate that there is a nonlinear relationship between

F I G U R E  16
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x and y. For example, if the plot of the (xi, yi) looks like any of parts (a)–(i) of Figure 17,

a nonlinear relationship between x and y is indicated.

The following procedure may be used to estimate a nonlinear relationship.

Step 1 Plot the points and find which part of Figure 17 best fits the data. For illustrative

purposes, suppose the data look like part (c).

Step 2 The second column of Table 13 gives the functional relationship between x and

y. For part (c), this would be y � b0 exp(b1x).

Step 3 Transform each data point according to the rules in the third column of Table 13.

Thus, if part (c) of the figure is relevant, we transform each value of y into ln y and trans-

y
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Graphs of Linearizable
Functions†

†Reprinted by permission from C. Daniel and F. Wood, Fitting Functions to Data, Copyright 1980, John Wiley

and Sons.
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TA B L E  13

How to Fit a Nonlinear Relationship

If Graph We Have the Transform Estimate of
Looks Like Functional (xi , yi ) Functional
Figure 17 Part Relationship into Relationship

(a) or (b) y � b0xb1 (ln xi, ln yi) ŷ � exp(b̂ � s2
e /2)xb̂1

(c) or (d) y � b0 exp(b1x) (xi, ln yi) ŷ � exp(b̂0 � b̂1x � s2
e /2)

(e) or (f ) y � b0 � b1(ln x) (ln xi, yi) ŷ � b̂0 � b̂1 (ln x)

(g) or (h) y � �
b0x

x

� b1

� ��
x

1

i

� , �
y

1

i

�� ŷ � �
b̂0x

x

� b̂1

�

(i) y � exp�b0 � �
b

x

1
�� ��

x

1

i

� , ln yi� ŷ � exp(b̂0 �  
ˆ

�
b

x

1
� � s2

e /2)

form each value of x into x. Given the relationship in the second column of Table 13, the

transformed data in Table 13 should, if plotted, indicate a straight-line relationship. For

part (c), for example, if y � b0 exp(b1x), then taking natural logarithms of both sides

yields ln y � ln(b0) � b1x, so there is indeed a linear relationship between x and ln y.

Step 4 Estimate the least squares regression line for the transformed data. If b̂0 is the

intercept of the least squares line (for transformed data), b̂1 is the slope of the least

squares line (for transformed data), and se is the standard error of the regression estimate,

then we read the estimated relationship from the final column of Table 13. Thus, if part

(c) were relevant, we would estimate that ŷ � exp(b̂0 � b̂1x � se
2/2).

To illustrate the idea, suppose we want to predict future VCR sales for an appliance

store. Sales for the last 24 months are given in Table 14 and are plotted in Figure 18 (where

each dot indicates actual sales). We will use x � number of the month as the independent

variable. Figure 18 indicates an S-shaped relationship between x � number of the month

and y � sales during the month (like part (i) of Figure 17). So according to Table 13,

y � exp �b0 � �
b

x
1
��

Following the third column of Table 13, we now estimate the least squares regression

line for the points (�
1
1

�, ln 23), (�
1
2

�, ln 156), . . . , (�
2
1
4
�, ln 3,495). We find b̂0 � 8.387, se �

.276, and b̂1 � �5.788. From the last column of Table 13, we obtain the estimated rela-

tionship between x and y:

ŷ � exp �8.387 � .5(.276)2
� �

5.7

x

88
��

� exp �8.425 � �
5.7

x

88
��

To illustrate how this formula could be used to predict future sales, suppose we want

to predict VCR sales during month 26. For x � 26, we would forecast that

y � exp �8.425 � �
5.

2

7

6

88
�� � 3,649.3 VCRs

would be sold.

R E M A R K S 1 For the regression on the points (�
1
1

�, ln 23), (�
1
2

�, ln 156), . . . , R2
� 0.95. This means that 95% 

of the variation in ln y is explained by variation in �
1
x

�. Unfortunately, this does not tell us anything
about how accurate our predictions of actual sales ( y) are likely to be. For this, we compute the 
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VCR Sales

TA B L E  14

VCR Sales

Month Sale of VCRs

1 23

2 156

3 330

4 482

5 1,209

6 1,756

7 2,000

8 2,512

9 2,366

10 2,942

11 2,872

12 2,937

13 3,136

14 3,241

15 3,149

16 3,524

17 3,542

18 3,312

19 3,547

20 3,376

21 3,375

22 3,403

23 3,697

24 3,495
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predicted sales for each month, and ei � (actual month i sales) � (predicted month i sales). By av-
eraging |ei| for the 24 months, we find the MAD of our predictions to be 170.3. By applying (17),
we may estimate the standard deviation of our forecasts to be 1.25(170.3) � 212.88. Thus, 95% of
the time, we would expect our predictions for VCR sales to be accurate within 2(212.88) � 425.76
VCRs.
2 If we had mistakenly tried to fit a straight line to this data, we would have obtained se � 546,
so fitting the S-shaped curve has greatly improved our forecasts.

Using a Spreadsheet to Fit a Nonlinear Relationship

Figure 19 (file VCR.xls) shows how we can use a spreadsheet to fit a curve to the data in

Table 14. We input the data in the cell range A2:B26. In columns C and D, we create the
VCR.xls

A A B C D E F G H

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

3 3

3 4

3 5

3 6

3 7

3 8

3 9

4 0

4 1

MAD= 170.2927 VCR EXAMPLE

MONTH SALES 1/MONTH LNSALES PREDICT ERROR ABSERR

1 23 1 3.1354942 13.969974 9.0300255 9.0300255 

2 156 0.5 5.049856 252.37307 -96.37307 96.373067 

3 330 0.3333333 5.7990927 662.20451 -332.2045 332.20451 

4 482 0.25 6.1779441 1072.6714 -590.6714 590.6714 

5 1209 0.2 7.0975489 1432.6874 -223.6874 223.6874 

6 1756 0.1666667 7.4707938 1737.5658 18.434166 18.434166 

7 2000 0.1428571 7.6009025 1994.303 5.6969922 5.6969922 

8 2512 0.125 7.8288345 2211.4573 300.54274 300.54274 

9 2366 0.1111111 7.768956 2396.5747 -30.57475 30.574747 

10 2942 0.1 7.9868449 2555.765 386.23499 386.23499 

11 2872 0.0909091 7.9627639 2693.8455 178.15445 178.15445 

12 2937 0.0833333 7.9851439 2814.5945 122.4055 122.4055 

13 3136 0.0769231 8.0507034 2920.9846 215.01543 215.01543 

14 3241 0.0714286 8.0836372 3015.3711 225.62887 225.62887 

15 3149 0.0666667 8.0548402 3099.6364 49.363637 49.363637 

16 3524 0.0625 8.167352 3175.2979 348.70211 348.70211 

17 3542 0.0588235 8.1724468 3243.5904 298.40965 298.40965 

18 3312 0.0555556 8.1053075 3305.5268 6.47315 6.47315 

19 3547 0.0526316 8.1738575 3361.9455 185.05446 185.05446 

20 3376 0.05 8.1244469 3413.5452 -37.54522 37.545218 

21 3375 0.047619 8.1241506 3460.9127 -85.91273 85.912726 

22 3403 0.0454545 8.1324127 3504.5442 -101.5442 101.54423 

23 3697 0.0434783 8.215277 3544.8619 152.13809 152.13809 

24 3495 0.0416667 8.1590887 3582.2271 -87.22711 87.227114 

Regression Output:

Constant 8.3867886 

Std Err of Y Est 0.2761082 

R Squared 0.9527748 

No. of Observations 24 

Degrees of Freedom 22 

X Coefficient(s) -5.787996 

Std Err of Coef. 0.2747317 

F I G U R E  19
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transformed variables 1/MONTH and LNSALES. In C3, we input the formula 1/A3. In

D3, we input the formula �LN(B3). Copying from the range C3:D3 to C3:D26 yields the

transformed values of xi and yi. We now run a regression with the X range C3:C26 and

the Y range D3:D26. The results of this regression are used to predict VCR sales in each

month. In cell E3, we enter the formula �EXP(C$47�C$48/A3�.5(C$37^2)) to gener-

ate a forecast for month 1 VCR sales. In cell F3, we determine e1 with the formula

�B3�E3. In cell G3, we determine |e1| with the formula �ABS(F3). Copying from the

range E3:G3 to the range E3:G26 generates forecasts and errors for all 24 months. In cell

C1, we compute the MAD for all 24 months with the formula �AVERAGE(G3:G26).

Utilizing the Excel Trend Curve

The Excel Trend Curve makes it easy to fit an equation to a set of data. After creating an

X-Y scatterplot, click on the points in the graph until the points turn gold. Then select

Chart Add Trendline. See Figure 20.

■ Choosing Linear yields the straight line that best fits the points.

■ Choose Logarithmic if the scatterplot looks like (e) or (f) in Figure 17. Then Ex-

cel yields the best-fitting equation of the form y � b0 � b1(ln(x)).

■ Choose Power if the scatterplot looks like (a) or (b) in Figure 17. Then Excel

yields the best-fitting equation of the form y � b0xb1.

■ Choose Exponential if the scatterplot looks like (c) or (d) in Figure 17. Then Ex-

cel yields the best-fitting equation of the form y � b0eb1x.

■ Choosing Polynomial of order n (n � 1, 2, 3, 4, 5, or 6) yields the best-fitting

equation of the form y � b0 � b1x � b2x2
� � � � � bnxn

Before having Trend Curve fit the curve, select Options and select Display Equation on

Chart and Display R2 on Chart. The R2 value displayed is the R2 associated with the lin-

ear regression based on the transformed (xi, yi) listed in the third column of Table 13. For

the Linear, Polynomial, and Logarithmic options, choosing Intercept � 0 will set b0 � 0.

Figure 21 shows the results obtained from Trend Curve when applied to find the best-

fitting straight line for the data in worksheet Cost.xls. Note that the R2 and equation es-

timates match those we obtained from the Analysis Tool Pak.

F I G U R E  20

Cost.xls
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24.8 Multiple Regression

In many situations, more than one independent variable may be useful in predicting the

value of a dependent variable. We then use multiple regression. For example, to predict

the monthly sales for a national fast-food chicken chain, we might consider using the fol-

lowing independent variables: national income, price of chicken, dollars spent on adver-

tising during the current month, and dollars spent on advertising during the previous

month.

Suppose we are using k independent variables to predict the dependent variable y and

we have n data points of the form ( yi, x1i, x2i, . . . , xki), where xji � value of jth inde-

pendent variable for ith data point and yi � value of dependent variable for ith data point.

In multiple regression, we model the relationship between y and the k independent vari-

ables by

yi � b0 � b1x1i � b2x2i � � � � � bkxki � �i

where �i is an error term with mean 0, representing the fact that the actual value of yi may

not equal b0 � b1x1i � b2x2i � � � � � bkxki. bj may be thought of as the increase in y if

the value of the jth independent variable is increased by 1 and all other independent vari-

ables are held constant. Thus, bj is analogous to �
∂

∂

x

y

j

�, where xj is the jth independent 

variable.

Estimation of the bi’s

Suppose we estimate bi (i � 0, 1, 2, . . . , k) using b̂ i. Then our prediction or estimate for

yi is given by

ŷi � b̂0 � b̂1x1i � b̂2x2i � � � � � b̂kxki

As in Section 24.6, we define ei � yi � ŷi and choose b̂0, b̂1, . . . , b̂k to minimize �ei
2.

Usually, these least squares estimates of b0, b1, . . . , bk will be obtained from a computer

package such as Minitab or Excel. We call

ŷi � b̂0 � b̂1x1i � b̂2x2i � � � � � b̂kxki

the least squares regression equation.

E X A M P L E  1

We want to predict maintenance expense ( y) for a truck during the current year, from the

independent variables x1 � miles driven (in thousands) during the current year and x2 �

Truck Maintenance

Predicting Cost from Trains Produced

y = 17.859x + 164.88

R2 = 0.9396

0

500

1,000

1,500

2,000

0 20 40 60 80

cost
T

ra
in

s

cost

Linear (cost)
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age of the truck (in years) at the beginning of the current year. We are given the infor-

mation in Table 15.

Solution Computer output for this example is given in Table 16. Reading down the Coefficient col-

umn and rounding to two decimal places, we obtain b̂0 � 17.74, b̂1 � 4.06, and b̂2 �

98.51. Thus, we would predict annual maintenance cost for a truck from

ŷ � 17.74 � 4.06x1 � 98.51x2 (20)

For a five-year-old truck that is driven 10,000 miles during a year, we predict annual

maintenance costs by 17.74 � 4.06(10) � 98.51(5) � $550.89.

From (20), we conclude that (holding the age of the truck constant) driving an extra

thousand miles during a year increases annual maintenance costs by b̂1 � $4.06, and that

an increase of one year in the age of the truck (holding miles driven constant) increases

annual maintenance costs by b̂2 � $98.51.

Goodness of Fit Revisited

For multiple regression, we define SSR, SSE, and SST as we did in Section 24.6. We also

find that R2
� �

S
S

S
S

R
T
� � percentage of variation in y explained by the k independent 

variables and 1 � R2
� percentage of variation in y not explained by the k independent

variables. If we define the standard error of the estimate as

se � ��
(n �

SS

k�E

� 1)
��

TA B L E  15

Truck Maintenance Data

y x1 x2

$832 6 8

$733 7 7

$647 9 6

$553 11 5

$467 13 4

$373 15 3

$283 17 2

$189 18 1

$96 19 0

TA B L E  16

Computer Output for Example 1

Standard
Variable Coefficient Error t-Value

Constant 17.73846 31.0271 0.57171

x1 4.061538 1.56742 2.59123

x2 98.50769 2.756428 35.73744

Standard error of estimate � 2.106157
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then (as in Section 24.6) we expect approximately 68% of the y-values to be within se of

ŷ and approximately 95% of the y-values to be within 2se of ŷ . We have already seen from

Table 16 that se � 2.106. Thus, 95% of the time, we expect our predictions for annual

truck maintenance expenditures to be accurate within $4.21.

Hypothesis Testing

If we have included independent variables x1, x2, . . . , xk in a multiple regression, we of-

ten want to test

H0: bi � 0 (xi does not have a significant effect on y when the other

independent variables are included in the regression equation)

against

Ha: bi � 0 (xi does have a significant effect on y when the other

independent variables are included in the regression equation)

To test these hypotheses, we compute

t �

where StdErr(b̂ i) measures the amount of uncertainty present in our estimate of bi.

StdErr(b̂ i) (and often the t-statistic) is read from computer output. At a level of signifi-

cance a, we reject H0 if |t| 	 t(a/2,n�k�1). From Table 16, we find that (t for x1) � 2.59

and (t for x2) � 35.74. Suppose a � 0.05. Since t(.025,9�2�1) � 2.447, we reject H0 for

each independent variable and conclude that both miles driven and age of the truck have

a significant effect on annual maintenance cost.

Usually, variables included in a regression equation should have significant t-statistics.

(a � 0.10 or a � 0.05 are commonly used levels of significance in regression analysis.)

If an independent variable has an insignificant t-statistic, we usually remove the indepen-

dent variable from the equation and obtain new least squares estimates. To illustrate this

idea, suppose we have the data shown in Table 17 on sales at the Bloomington Happy

Chicken Restaurant during the last 20 years (file Chicken.xls). (POP � population within

10 miles of Happy Chicken Restaurant, AD � thousands of dollars spent on advertising

during the current year, LAGAD � thousands of dollars spent on advertising during the

previous year, and SALES � sales in thousands of dollars.)

We attempt to estimate the model

SALES � b0 � b1YEAR � b2POP � b3AD � b4LAGAD � �

We are using YEAR as an independent variable in the hopes of picking up a possible up-

ward trend in sales. LAGAD is used as an independent variable because we believe that

last year’s advertising might affect this year’s sales. We obtain the following estimated re-

gression equation (t-statistics for each independent variable are in parentheses):

SALES � 10,951.51 � 169.51 YEAR � .059 POP � 122.38 AD � 276.93 LAGAD

(1.91) (�.70) (13.84) (28.92)

(21)

We cannot use the first year of data, since LAGAD is undefined. Since t(.05,19�4�1) �

1.761, we find that all independent variables except for POP are significant for a � 0.10.

Thus, YEAR, AD, and LAGAD appear to have a significant effect on sales. After 

b̂ i
��

Chicken.xls
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dropping the insignificant variable POP from the equation, we obtain the following esti-

mated regression equation:

SALES � 5150.94 � 108.58 YEAR � 121.59 AD � 274.30 LAGAD

(8.29) (14.10) (31.72)

All independent variables are significant. Also, we find R2
� 0.99 and se � 309. Thus,

we are reasonably satisfied with this equation and expect that 95% of the time, our pre-

diction for sales will be within $618,000 of actual sales.

Choosing the Best Regression Equation

How can we choose between several regression equations having different sets of inde-

pendent variables? We usually want to choose the equation with the lowest value of se,

since that will yield the most accurate forecasts. We also want the t-statistics for all vari-

ables in the equation to be significant. These two objectives may conflict, in which case

it is difficult to determine the “best” equation. If the available computer printout contains

the Cp statistic, then the regression chosen should have a Cp value close to (number of in-

dependent variables in the equation) � 1. For example, if a regression with three inde-

pendent variables has Cp � 80, we can be sure that it is not a “good” regression. Actu-

ally, if a regression has Cp much larger than p, it means that at least one important variable

has been omitted from the regression. (See Daniel and Wood (1980) for a discussion of

the Cp statistic.)

TA B L E  17

Happy Chicken Sales Data

Year POP AD LAGAD Sales

1 96,020 30 — 13,000

2 102,558 20 30 15,713

3 101,792 15 20 12,937

4 104,347 25 15 12,872

5 106,180 30 25 16,227

6 106,562 15 30 15,388

7 105,209 25 15 13,180

8 109,185 35 25 17,199

9 109,976 40 35 20,674

10 110,659 20 40 20,350

11 111,844 25 20 14,444

12 111,576 35 25 17,530

13 113,784 5 35 16,711

14 112,482 12 5 19,715

15 116,487 16 12 12,248

16 117,316 21 16 13,856

17 117,830 22 21 15,285

18 118,148 24 22 15,620

19 118,481 26 24 17,158

20 121,069 28 26 17,800
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Multicollinearity

If an estimated regression equation contains two or more independent variables that ex-

hibit a strong linear relationship, we say that multicollinearity is present. A strong linear

relationship between some of the independent variables may make the computer’s esti-

mates of the bi’s unreliable. In certain circumstances, multicollinearity can even cause a

variable that should have bi positive to have b̂ i substantially less than 0. The Happy

Chicken example illustrates multicollinearity. We began with both YEAR and POP as in-

dependent variables, and as POP and YEAR both increase over time, we would expect a

strong positive linear relationship to exist between them. Indeed, the correlation between

YEAR and POP is 0.98. To see that the estimates of bYEAR and bPOP are unreliable, note

that in (21), b̂POP � 0, indicating that an increase in the number of customers near Happy

Chicken decreases sales. This anomaly is due to multicollinearity. The strong linear rela-

tionship between YEAR and POP makes it difficult for the computer to estimate bPOP and

bYEAR accurately. After we drop POP from the estimated equation, the multicollinearity

problem disappears, because there is no strong linear relationship between any of the re-

maining independent variables.

By the way, if an exact linear relationship exists between two or more independent vari-

ables, there are an infinite number of combinations of the b̂ i’s which will minimize the sum

of the squared errors, and most computer packages will print an error message. For ex-

ample, if we let x1 � U.S. consumer expenditure during a year, x2 � U.S. investment dur-

ing a year, x3 � U.S. government expenditure during a year, and x4 � U.S. national income

during a year, it is well known that x4 � x1 � x2 � x3. In this case, we cannot use x1, x2,

x3, and x4 as independent variables; at least one should be dropped from the equation.

Dummy Variables

Often, a nonquantitative or qualitative independent variable may influence the dependent

variable. Some examples are as follows:

Dependent Variable Categorical Independent Variable

Salary of employee Race of employee

Consumer expenditures Whether it is a wartime or a

during year peacetime year

Customers entering bank on a given day Day of the week

Air conditioner sales during a given month Month of the year

In each of these situations, the independent variable does not assume a numerical value,

but it may be classified into one of c categories. To illustrate, for monthly air conditioner

sales, c � 12, and for the consumer expenditure example, c � 2.

Let the possible values of the categorical variable be listed as value 1, value 2, . . . ,

value c. To model the effect of a categorical variable on a dependent variable, we define

c � 1 dummy variables as follows:

x1 � 1 if observation takes on value 1 of categorical variable

x1 � 0 otherwise

x2 � 1 if observation takes on value 2 of categorical variable

x2 � 0 otherwise

���

xc�1 � 1 if observation takes on value c � 1 of categorical variable

xc�1 � 0 otherwise
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We now include x1, x2, . . . , xc�1 (along with any other relevant independent variables) in

the estimated regression equation.

To illustrate the use of dummy variables, suppose we are trying to predict the number

of customers to enter the University Credit Union each day. The bank manager believes

that bank traffic is influenced by the day of the week (the credit union is open Monday

through Friday) and by whether or not the day is a payday for university employees. We

are given the number of people to enter the bank during 18 randomly chosen days. (Day

1 is the present, day 6 is a week from now, and so on.) The relevant information is given

in Table 18.

In this situation, there are two categorical variables of interest: the day of the week 

(c � 5) and whether or not a day is a payday (c � 2). For the day of the week, we define

value 1 � Monday, value 2 � Tuesday, value 3 � Wednesday, value 4 � Thursday, and

value 5 � Friday. Then we let

x1 � 1 if day is a Monday x1 � 0 otherwise

x2 � 1 if day is a Tuesday x2 � 0 otherwise

x3 � 1 if day is a Wednesday x3 � 0 otherwise

x4 � 1 if day is a Thursday x4 � 0 otherwise

For whether or not a day is a payday, we define c � 1 � 1 dummy variables. Letting value

1 � payday and value 2 � not a payday, we define

x5 � 1 if day is a payday x5 � 0 otherwise

To account for a possible trend in the number of customers, we include T � number

of the day as an independent variable. To illustrate how this information would be coded

on the computer, we “code” the last two observations:

TA B L E  18

Customer Traffic at University Credit Union

University Customers Entering
Day Number Day of Week Payday? Credit Union

1 Monday No 515

12 Tuesday No 360

18 Wednesday Yes 548

23 Wednesday No 386

24 Thursday No 440

46 Monday Yes 687

48 Wednesday No 350

52 Tuesday No 430

54 Thursday No 370

55 Friday No 496

70 Friday No 506

81 Monday No 509

89 Thursday Yes 508

104 Thursday No 396

106 Monday No 600

108 Wednesday No 266

122 Tuesday No 360

130 Friday Yes 521

152 Tuesday No 398
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We obtain the following estimated regression equation (t-statistics in parentheses):

ŷ � 496.1 � � � � � �

For a � 0.10, we find that all independent variables except T are significant. After elim-

inating T from the estimated equation, we obtain the following equation:

ŷ � 466.2 � � � � �
(22)

For a � 0.10, all independent variables are significant, so this equation appears satisfac-

tory. We also find that R2
� 0.85 and se � 48.8. Thus, on 95% of all days, our prediction

for the number of customers entering the credit union should be accurate within 2(48.8) �

97.6 customers.

Interpretation of Coefficients of Dummy Variables

How do we interpret the coefficients of dummy variables? To illustrate, let’s determine

how whether or not a day is a payday affects credit union traffic. On a payday, x5 � 1,

and we predict that 466.2 � 80.4x1 � 79.2x2 � 109.8x3 � 68.8x4 � 124.3 customers will

enter the credit union. On a day that is not a payday, x5 � 0, and we predict that 466.2 �

80.4x1 � 79.2x2 � 109.8x3 � 68.8x4 customers will enter the credit union. Subtracting,

we find that on a payday, we predict (all other things being equal) that b̂5 � 124.3 more

customers will enter the credit union than on a day that is not a payday.

To see how the day of the week influences credit union traffic, we note that (22) yields

a different prediction for each day of the week. For Monday, x1 � 1, x2 � x3 � x4 � 0,

and we obtain ŷ � 466.2 � 80.4 � 124.3x5 � 546.6 � 124.3x5. For Tuesday, x2 � 1, 

x1 � x3 � x4 � 0, and we obtain ŷ � 466.2 � 79.2 � 124.3x5 � 387 � 124.3x5. For

Wednesday, x3 � 1, x2 � x1 � x4 � 0, and we obtain ŷ � 466.2 � 109.8 � 124.3x5 �

356.4 � 124.3x5. For Thursday, x4 � 1, x1 � x3 � x2 � 0, and we obtain ŷ � 466.2 �

68.8 � 124.3x5 � 397.4 � 124.3x5. For Friday, x1 � x2 � x3 � x4 � 0, and we obtain 

ŷ � 466.2 � 124.3x5. Thus, we find that (all other things being equal) credit union traf-

fic is heaviest on Mondays, next heaviest on Fridays, third heaviest on Thursdays, fourth

heaviest on Tuesdays, and lightest on Wednesdays.

Multiplicative Models

Often, we believe that there is a relationship of the following form:

Y � b0x1
b1x2

b2 � � � xk
bk (23)

To estimate such a relationship, simply take logarithms of both sides of (23). This yields

ln Y � ln b0 � b1(ln x1) � b2(ln x2) � � � � � bk(ln xk)

Thus, to estimate (23), we run a multiple regression with the dependent variable being ln

Y and the independent variables being ln x1, ln x2, . . . , ln xk. To illustrate the idea, sup-

pose we want to determine how the annual operating costs of an insurance company de-

pend on the number of home insurance and car insurance policies that have been written.

124.3x5

(4.24)

68.8x4

(�1.79)

109.8x3

�(2.86)

79.2x2

(�2.0)

80.4x1

(2.1)

127.1x5

(4.43)

74.8x4

(�1.99)

122.5x3

(�3.17)

78.5x2

(�2.04)

71.1x1

(1.87)

0.36T

(�1.29)

Customers

521

398

x5

1

0

x4

0

0

x3

0

0

x2

0

1

x1

0

0

T

130

152
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Table 19 gives relevant information for ten branches of the insurance company (file

Branch.xls).

To fit the model Y � b0x1
b1x2

b2, where Y � annual operating cost, x1 � home insurance

policies, and x2 � car insurance policies, we would input into the computer points of the

form (ln 124,000, ln 400, ln 1,200), and so on. The least squares estimates obtained are

Constant term estimate � 5.339

Estimate for b1 � 0.583

Estimate for b2 � 0.409

This regression yields an R2 of 0.998, indicating a very good fit. The constant term esti-

mate is an estimate of ln b0, so our actual estimate of b0 is e5.339 � 208.3, and we esti-

mate that Y � 208.3x1
0.583x2

0.409. To illustrate the use of this equation, we predict annual

operating cost for an insurance branch writing 500 home policies and 1,200 car policies.

For this branch, we obtain Y � 208.3(500)0.583(1,200)0.409 � $141,767.

Heteroscedasticity and Autocorrelation 
in Multiple Regression

By plotting the errors in time-series sequence, we may check (as described in Section

24.6) to see whether the errors from a multiple regression are independent. If autocorre-

lation is present and the errors do not appear to be independent, then correcting for au-

tocorrelation will usually yield better forecasts.

By plotting the errors (on the y-axis) against the predicted value of y (on the x-axis),

we can determine whether homoscedasticity or heteroscedasticity is present. If ho-

moscedasticity is present, the plot should show no obvious pattern (that is, the plot should

resemble Figure 10), whereas if heteroscedasticity is present, the plot should show an ob-

vious pattern indicating that the errors somehow depend on the predicted value of y (per-

haps as in Figure 11). If heteroscedasticity is present, the t-tests described in this section

are invalid.

TA B L E  19

Insurance Company Branch Data

Annual
Operating Number of Home Number of Car

Branch Cost Insurance Policies Insurance Policies

1 $124,000 400 1,200

2 $71,000 350 360

3 $136,000 600 800

4 $219,000 800 1,800

5 $230,000 900 1,600

6 $75,000 200 1,000

7 $56,000 120 900

8 $110,000 340 1,100

9 $120,000 490 900

10 $144,000 700 800

Branch.xls
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Implementing Multiple Regression on a Spreadsheet

In Figures 22 and 23 (file Credit.xls) we have run the regression for the data in Table 18.

In the cell range A3:A21, we input the customer count for each day, and in the cell range

B3:B21, the number of each day. In the cell range H3:H21, we input the day of the week

for each observation (1 � Monday, . . . , 5 � Friday). In the cell range G3:G21, a dummy

variable indicates whether each day is a payday. We then used �IF statements to create the

dummy variables for the day of the week. In cell C3, we input the formula �IF(H3�1,1,0).

This places a 1 in C3, indicating the first observation is on a Monday. In cell D3, we en-

ter the formula �IF(H3�2,1,0); in cell E3, �IF(H3�3,1,0); and in cell F3 �IF(H3�4,1,0).

Copying from the range C3:F3 to the range C3:F21 generates the values of the dummy

variables for all observations. To run the regression, select the Y range of A2:A21 and the

X range of B2:G21. The regression output has the following interpretation:

Intercept This is b̂0 � 496.0857.

Standard Error This is se � 48.84517.

R Square This is R2 � .845927. This means that together, all the independent variables

in the regression explain 84.6% of the variation in the number of customers arriving daily.

Observations This is the number of data points (19).

Total df This is the degrees of freedom (n � k � 1 � 19 � 6 � 1) used for the t-test of

H0: bi � 0 against H1: b � 0.

Coefficients For each independent variable, this column yields the coefficient of the in-

dependent variable in the least squares equation. For example, b̂T � �0.36222.

Standard Error For each independent variable, this row yields StdErr b̂ i. For example,

StdErr b̂T � 0.279852. The X Coefficient divided by the Std Err of Coef. yields the 

t-statistic for testing H0: bi � 0 against H1: bi � 0.

t Stat This gives the observed t-statistic (coefficient/standard error) for the Intercept and

all independent variables. For example, the t-statistic for Monday is 1.87.

Standard Error column The Intercept entry gives the standard error b̂0 � 37.66, and the

coefficient entries give the standard error for each independent variable. For example,
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A B C D E F G H

CREDIT UNION EXAMPLE

CUSTOMER   DAY# MON TUES WED THUR PAYDAY? DAYWK

515 1 1 0 0 0 0 1

360 12 0 1 0 0 0 2

548 18 0 0 1 0 1 3

386 23 0 0 1 0 0 3

440 24 0 0 0 1 0 4

687 46 1 0 0 0 1 1

350 48 0 0 1 0 0 3

430 52 0 1 0 0 0 2

370 54 0 0 0 1 0 4

496 55 0 0 0 0 0 5

506 70 0 0 0 0 0 5

509 81 1 0 0 0 0 1

508 89 0 0 0 1 1 4

396 104 0 0 0 1 0 4

600 106 1 0 0 0 0 1

266 108 0 0 1 0 0 3

360 122 0 1 0 0 0 2

521 130 0 0 0 0 1 5

398 152 0 1 0 0 0 2  

Credit.xls

F I G U R E  22

Credit Union Example



2 4 . 8 Multiple Regression 1327

standard error b̂Monday � 38.07. The coefficient entry divided by the standard error entry

yields the t-statistic for the intercept or slope (tabulated in the next column).

P-value For the intercept and each independent variable in a regression with k indepen-

dent variables, this gives Probability(|tn-k-1| � |Observed t-statistic|). If, for example, the 

p-value for Wednesday is less than a, we reject H0: bWednesday � 0; otherwise, we accept

bWednesday � 0. For a � .05, we reject bWednesday � 0.

The Data Analysis Regression Tool can handle a maximum of 15 independent vari-

ables. The data for the independent variables must be in adjacent columns.

P R O B L E M S
Group A

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

B  C D E F G

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.9197432

R Square 0.8459275

Adjusted R Square 0.7478813

Standard Error 51.017121

Observations 19

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.9197432

R Square 0.8459275

Adjusted R Square 0.7688912

Standard Error 48.845174

Observations 19

ANOVA

df SS MS F Significance F

Regression 6 157192.73 26198.789 10.980899 0.0002823

Residual 12 28630.212 2385.851

Total 18 185822.95

Coefficients tandard Erro t Stat P-value Lower 95%

Intercept 496.08565 37.660289 13.172646 1.7E-08 414.03093

   DAY# -0.362218 0.2798522 -1.294318 0.2199096 -0.971963

MON 71.076945 38.076099 1.8667076 0.0865578 -11.88375

TUES -78.47826 38.509376 -2.0379 0.0642282 -162.383

WED- 122.5236 38.6517 -3.16994 0.0080705 -206.7384

THUR -74.82254 37.669971 -1.986265 0.070328 -156.8984

PAYDAY? 127.10854 28.682168 4.4316224 0.0008188 64.615462

 F I G U R E  23

1 For the years 1961–1970, the annual return on General
Motors stock and the return on the Standard and Poor’s
market index were as given in Table 20 (file Beta.xls).

a Let Y � return on General Motors stock during 
a year and X � return on Standard and Poor’s index 
during a year. Financial theory suggests that Y � b0 �

b1X � �, where b1 is called the beta for General Mo-
tors. Give an interpretation for the beta of a stock (in
this case, General Motors), and use the data in Table 20
to estimate the beta for General Motors.

b Does the Standard and Poor’s index appear to have
a significant effect (for a � 0.05) on the return on Gen-
eral Motors stock?

c What percentage of the variation in the return on
General Motors Stock is explained by variation in the
Standard and Poor’s index?

d What percentage of the variation in the return on
General Motors stock is unexplained by variation in
Standard and Poor’s index?

e During a year in which the Standard and Poor’s in-
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dex increased by 15%, what would we predict for the re-
turn on General Motors stock?

2 We are trying to determine the number of labor hours
required to produce a unit of a product. We are given the
information in Table 21 (file Learn.xls). For example, the
2nd unit produced required 517 labor hours, and the 600th
unit produced required 34 labor hours.

a Try to determine a relationship between the number
of units already produced and the labor hours needed to
produce the next unit. Why is this relationship called the
learning curve?

b How many labor hours would be needed to produce
the 800th unit?

c We are 95% sure that the prediction in part (b) is ac-
curate within _____ hours.

3 Quarterly sales for a department store over a six-year
period are given in Table 22 (file Sales.xls).

a Use multiple regression to develop a model that can

be used to predict future quarterly sales. (Hint: Use
dummy variables and an independent variable for the
number of the quarter (quarter 1, quarter 2, . . . , quar-
ter 24).

b Letting Yt � sales during quarter number t, discuss
how to fit the following model to the data in Table 22:

Yt � b0bt
1b2

x2b3
x3b4

x4

where x2 � 1 if t is a first quarter, x3 � 1 if t is a second
quarter, and x4 � 1 if t is a fourth quarter. (Hint: Take
logarithms of both sides.)

c Interpret the answer to part (b).

d Which model appears to yield better predictions for
sales?

4 To determine how price influences sales, a company
changed the price of a product over a 20-week period. The
price charged each week and the number of units sold are
given in Table 23 (file Price.xls). Develop a model to relate
sales to price.

5 Confederate Express Service is attempting to determine
how its shipping costs for a month depend on the number
of units shipped during a month. For the last 15 months, the
number of units shipped and total shipping cost are given in
Table 24 (file Ship.xls).

TA B L E  20

Return on Return on
General Standard
Motors and Poor’s

Year Stock Index

1961 12% 21%

1962 2% �3%

1963 38% 15%

1964 26% 20%

1965 18% 12%

1966 �10% 0%

1967 0% 10%

1968 9% 10%

1969 �2% 2%

1970 �1% �15%

TA B L E  21

Cumulative Labor Hours Needed
Production for Last Unit

1 715

2 517

10 239

20 174

40 126

60 104

100 82

150 68

200 59

300 47

500 37

600 34

TA B L E  22

Sales
Year Quarter (millions)

1984 1 $50,147

1984 2 $49,325

1984 3 $57,048

1984 4 $76,781

1985 1 $48,617

1985 2 $50,898

1985 3 $58,517

1985 4 $77,691

1986 1 $50,862

1986 2 $53,028

1986 3 $58,849

1986 4 $79,660

1987 1 $51,640

1987 2 $54,119

1987 3 $65,681

1987 4 $85,175

1988 1 $56,405

1988 2 $60,031

1988 3 $71,486

1988 4 $92,183

1989 1 $60,800

1989 2 $64,900

1989 3 $76,997

1989 4 $103,337
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a Determine a relationship between units shipped
and monthly shipping cost.

b Plot the errors for the predictions in order of time
sequence. Is there any unusual pattern?

c We have been told that there was a trucking strike
during months 11–15, and we believe that this may
have influenced shipping costs. How could the an-
swer to part (a) be modified to account for the effects
of the strike?

After accounting for the effects of the strike, does the
unusual pattern in part (b) disappear?

Group B

6 In Example 1, we ran a regression with only x1 (miles
driven) as an independent variable. We found the

TA B L E  23

Price Units Sold

$1 1,145

$2 788

$3 617

$4 394

$5 275

$6 319

$7 289

$8 241

$9 259

$10 176

$11 179

$12 232

$13 183

$14 181

$15 222

$16 212

$17 186

$18 110

$19 183

$20 172

coefficient of x1 in this regression to be �51.68. This appears
to indicate (contrary to what we would expect) that
increasing the miles driven will lead to decreased
maintenance costs. Explain this result. (Hint: Estimate the
correlation between x1 and x2.)

7 Suppose we are trying to fit a curve to data, and part (i)
of Figure 17 is relevant. Explain why the points of the 
form (�

x
1

i

�, ln yi) should, when plotted, indicate a straight-line
relationship.

8 Consider the regression in which we estimated cost of
running an insurance company as a function of the number
of home and car insurance policies. If there were a 1%
increase in the number of car insurance policies, by what
percentage would we predict that total costs would increase?

9 In the example in which we predicted the number of
customers to enter the credit union, suppose that we had
used five (instead of four) dummy variables to represent the
days of the week. What problem would have arisen?

TA B L E  24

Units Total
Month Shipped Shipping Cost

1 300 $1,060

2 400 $1,380

3 500 $1,640

4 200 $740

5 300 $1,060

6 350 $1,190

7 460 $1,520

8 480 $1,580

9 120 $540

10 760 $2,420

11 580 $2,200

12 340 $1,470

13 120 $790

14 100 $720

15 500 $1,960

S U M M A R Y Moving-Average Forecasts

ft,1 � average of last N observations

et � xt � (prediction for xt)

MAD � average value of |et|

Choose N to minimize MAD.



Simple Exponential Smoothing

At � smoothed average at end of period t

At � ft,k � forecast for period t � k made at end of period t

At � axt � (1 � a)At�1

Choose a to minimize MAD.

Holt’s Method

Holt’s method is used when trend is present, but there is no seasonality.

Lt � estimate of base at end of period t

Tt � estimate of per-period trend at end of period t

Lt � axt � (1 � a)(Lt�1 � Tt�1)

Tt � b(Lt � Lt�1) � (1 � b)Tt�1

ft,k � Lt � kTt

Winter’s Method

Winter’s method is used when we believe that trend and seasonality may be present.

st � estimate for month t seasonal factor at the end of month t

Lt � �
s

a

t�

xt

c

� � (1 � a)(Lt�1 � Tt�1)

Tt � b(Lt � Lt�1) � (1 � b)Tt�1

st � �
g

L

x

t

t
� � (1 � g)st�c

ft,k � (Lt � kTt)st�k�c

For all extrapolation methods, we expect 68% of our predictions to be within se � 1.25

MAD of the actual value and 95% of our predictions to be within 2se of the actual value.

Simple Linear Regression

Given data points (x1, y1), . . . , (xn, yn), we estimate a linear relationship between x and y

by ŷ � b̂0 � b̂1x, where

b̂1 � �
�(xi

�
�

(xi

x�
�

)( y

x�
i

)2

� y�)
� and b̂0 � y� � b̂1x�

R2
� �

S

S

S

S

R

T
� � percentage of variation in y explained by x

rxy � sample linear correlation between x and y

� (rxy indicates the strength of the linear relationship between x and y)

se � ��
n

S

�

SE

2
��
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We expect 68% of our predictions to be within se of the actual value and 95% of our

predictions to be within 2se of the actual value.

A t-statistic exceeding t(a/2,n�2) in absolute value is evidence (at level of significance

a) that there is a significant linear relationship between x and y.

Fitting a Nonlinear Relationship

Step 1 Plot the points and find the part of Figure 17 that best fits the data.

Step 2 The second column of Table 13 gives the functional relationship between x

and y.

Step 3 Transform each data point according to the rules in the third column of Table 13.

Step 4 Estimate the least squares regression line for the transformed data. If b̂0 is the

intercept of the least squares line (for transformed data) and b̂1 is the slope of the least

squares line (for transformed data), then we read the estimated relationship from the fi-

nal column of Table 13.

Multiple Regression

Multiple regression is used when more than one independent variable is needed to pre-

dict y.

R2 � percentage of variation in y explained by the independent variables

Reject H0: bi � 0 at a level of significance a if (t for xi) � t(a/2,n�k�1), where k is the

number of independent variables being used to predict y.

If there is a strong linear relationship between two or more independent variables, then

b̂ i may be an unreliable estimate of bi. In such cases, we say that multicollinearity is

present.

If a nonquantitative or qualitative independent variable (such as the day of the week or

the month of the year) is believed to influence a dependent variable, dummy variables

may be used to model the effect of the qualitative independent variable on the dependent

variable. If the qualitative variable can assume c values, use only c � 1 dummy variables.

R E V I E W  P R O B L E M S
Group A

1 Table 25 gives data concerning pork sales (file Pork.xls).
Price is in dollars per hundred lb sold, quantity sold is in
billions of pounds, per-capita income is in dollars, U.S.
population is in millions, and GNP is in billions of dollars.

a Use this data to develop a regression equation that
could be used to predict the quantity of pork sold dur-
ing future periods. Is autocorrelation, heteroscedasticity,
or multicollinearity a problem?

b Suppose that during each of the next two quarters,
price � $45, U.S. population � 240, GNP � 2,620, and
per-capita income � $10,000. Predict the quantity of
pork sold during each of the next two quarters.

c 68% of the time, we expect our prediction for pork
sales to be accurate within _____.

d Use Winter’s method to develop a forecast for pork
sales during the next two quarters. (Use the first two
years to initialize.)

2 We are to predict sales for a motel chain based on the
information in Table 26 (file Motel.xls).

a Use this data and multiple regression to make pre-
dictions for the motel chain’s sales during the next four
quarters. Assume that advertising during each of the
next four quarters is $50,000.
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TA B L E  25

Price of Quantity Per-Capita U.S.
Quarter Year Pork Sold Income Population GNP

1 1975 39.35 30.44 8,255 212 1,549

2 1975 46.11 29.23 8,671 213 1,589

3 1975 58.83 25.12 8,583 214 1,629

4 1975 52.22 28.35 8,649 215 1,669

1 1976 47.99 28.95 8,775 216 1,718

2 1976 49.19 27.83 8,812 217 1,768

3 1976 43.88 29.53 8,884 218 1,818

4 1976 34.25 35.92 8,967 219 1,868

1 1977 39.08 32.94 9,036 220 1,918

2 1977 40.87 31.86 9,125 221 1,978

3 1977 43.85 30.74 9,280 222 2,038

4 1977 41.38 34.99 9,399 223 2,098

1 1978 47.44 32.43 9,487 224 2,148

2 1978 47.84 32.65 9,530 225 2,218

3 1978 48.52 31.58 9,622 226 2,288

4 1978 50.05 35.40 9,732 227 2,338

1 1979 51.98 33.98 9,813 228 2,398

2 1979 48.04 37.58 9,778 229 2,448

3 1979 38.52 38.59 9,809 230 2,478

4 1979 36.39 43.47 9,867 231 2,508

1 1980 36.31 41.24 9,958 232 2,539

2 1980 31.18 43.00 9,805 235 2,598

3 1980 46.23 37.57 9,882 235 2,598

TA B L E  26

Potential Advertising
Customers (thousands of Sales

Quarter (thousands) dollars) Season (millions)

1 100 30 Winter 1,200

2 105 20 Spring 880

3 111 15 Summer 1,800

4 117 40 Fall 1,050

5 122 10 Winter 1,700

6 128 50 Spring 350

7 135 5 Summer 2,500

8 142 40 Fall 760

9 149 20 Winter 2,300

10 156 10 Spring 1,000

11 164 60 Summer 1,570

12 172 5 Fall 2,430

13 181 35 Winter 1,320

14 190 15 Spring 1,400

15 200 70 Summer 1,890

16 210 25 Fall 3,200

17 221 30 Winter 2,200

18 232 60 Spring 1,440

19 243 80 Summer 4,000

20 264 60 Fall 4,100
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b Use the Holt method to make forecasts for the mo-
tel chain’s sales during the next four quarters.

c Use simple exponential smoothing to make predic-
tions for the motel chain’s sales during the next four
quarters.

d Use Winter’s method to determine predictions for
the motel chain’s sales during the next four quarters.

e Which forecasts would be expected to be the most
reliable? (Hint: Use advertising, lagged by one period,
as an independent variable.)

3 Table 27 gives the following data for monthly U.S.
housing sales (in thousands of houses) for 1965–1972.

a Use the years 1965–1966 to initialize the parameters
for Winter’s method. Then find values of a, b, and g that
yield a MAD (for 1967–1972) of less than 3.5. (Hint: It
may be necessary to use a 	 0.5.)

b We would expect 68% of our forecasts to be accu-
rate within _____ and 95% of our forecasts to be accu-
rate within _____.

c Check to see whether the data are consistent with the
answer to part (b).

d Although we have not discussed autocorrelation for
smoothing methods, good forecasts derived from

smoothing methods should exhibit no autocorrelation.
Do the forecast errors for this problem exhibit autocor-
relation?

e It has been stated that if only trend and seasonality
are important factors, then a should be at most 0.5. Ex-
plain why this problem required a 	 0.5.

f At the end of December 1972, what is the forecast
for housing sales during the first three months of 1973?

Note: This assignment is a snap on a spreadsheet.
The spreadsheet might be set up as in Table 28. In B14,
enter �A$3*A14/D2�(1-A$3)*(B13�C13). Insert
analogous formulas in C14, D14, E14. Remember that
the forecast must be made before “seeing” A14. In F14,
enter �A14-E14. In G14, enter �ABS(F14). Copy from
B14:G14 to ??. To compute MAD, average the absolute
errors for each month (rows 14–85).

4 Using x as the independent variable and y as the
dependent variable, find the least squares line for the
following three data points:

x y

1 2

4 5

7 2

TA B L E  27

Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

1965 38 44 53 49 54 57 51 58 48 44 42 37

1966 42 43 53 49 49 40 40 36 29 31 26 23

1967 29 32 41 44 49 47 46 47 43 45 34 31

1968 35 43 46 46 43 41 44 47 41 40 32 32

1969 34 40 43 42 43 44 39 40 33 32 31 28

1970 34 29 36 42 43 44 44 48 45 44 40 37

1971 45 49 62 62 58 59 64 62 50 52 50 44

1972 51 56 60 65 64 63 63 72 61 65 51 47

TA B L E  28

Row A B C D E F G

1 SALES BASE TREND SEASON FORE ERR ABSERR

2 ALPHA BETA GAMMA S-11

3 .1 .2 .3 S-10

�

�

�

13 LO TO SO

14 29

15 32

�

�

85 47
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5 We are trying to predict the number of uses of automatic
bank teller machines as a function of time. The data are
given in Table 29. Here, x � number of years after 1980 and
y � number of monthly uses of ATMs (in millions) during
the given year. The estimated regression equation is ŷ �
102.3 � 34.8x. We are given that SST � 74,100, SSE �

1,298, and StdErr(b̂1) � 1.76.

a Test H0: b1 � 0 against Ha: b1 � 0 for a � 0.05.
Interpret the result.

b Find the correlation between x and y.

c Is the 1987 entry an outlier?

d If present trends continue, what is the approximate
probability that during 1990, more than 470 million
ATM transactions per month will occur? (Hint: Use the
fact that the errors are normally distributed.)

6 Carboco puts metal coatings on jet propeller blades. The
harder the coating, the higher the quality of the coating. The
coating is shot onto the blade using pressurized gas
contained in an F-gun. Carboco can control the temperature
and gas pressure in the F-gun and can also control the room
humidity. To see how gas pressure, temperature, and
humidity influence hardness, Carboco engineers have run a
regression for which the dependent variable is

HARD � hardness of a coating
� and the independent variables are

HUMIDI � room humidity

TEMP � 1 if temperature level is high

� 0 if temperature level is low

PRESS � 1 if gas pressure is high

� 0 if gas pressure is low

T*P � product of TEMP and PRESS

We assume that temperature and gas pressure have only two
possible levels, low and high. The relevant data are given in
Table 30 (file Temp.xls).

a Ignoring considerations of heteroscedasticity, multi-
collinearity, and autocorrelation, which equation should
be used to predict hardness? Explain.

b What combination of gas pressure and temperature
setting will maximize hardness?

c Explain how changing temperature from a low level
to a high level affects hardness. Be specific!

TA B L E  29

x y

0 100

1 130

2 170

3 200

4 260

5 300

6 305

7 330

8 380

7 We have been assigned to determine how the total weekly
production cost for Widgetco depends on the number of
widgets produced during the week. The following model
has been proposed:

Y � b0 � b1X � b2X 2
� b3X 3

� �

where X � number of widgets produced during the week
and Y � total production cost for the week. For 15 weeks
of data, we found that SSR � 215,475 and SST � 229,228.
For this model, we obtain the following estimated regression
equation (t-statistics for each coefficient are in parentheses):

ŷ � �29.7 � 19.8X � 0.39X 2
� 0.005X 3

(0.78) (0.62) (1.25)

a For a � 0.10, test H0: bi � 0 against Ha: bi � 0
(i � 1, 2, 3).

b Determine R2 for this model. How can the high R2

value be reconciled with the answer to part (a)?

8 Let Yt � sales during month t (in thousands of dollars)
for a photography studio (SALES in Table 31) and Pt �

price charged for portraits during month t (PRICE). Use a
computer to fit the following model to the data in Table 31
(file Portrait.xls):

Yt � b0 � b1Yt�1 � b2Pt � �t

Thus, last month’s sales and the current month’s price are
independent variables.

a If the price of a portrait during month 21 is $10,
what would we predict for month 21’s sales?

b Does there appear to be a problem with autocorrela-
tion, heteroscedasticity, or multicollinearity?

TA B L E  30

Humidi Temp Press Hard

40 1 0 148

60 1 0 209

50 1 0 177

70 1 0 208

80 1 0 262

60 1 1 248

65 1 1 253

70 1 1 263

35 1 1 184

45 1 1 220

70 0 0 129

28 0 0 53

49 0 0 98

89 0 0 170

90 0 0 172

34 0 1 80

56 0 1 90

77 0 1 151

23 0 1 58

56 0 1 107
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9 The U.S. GNP during the years 1975–1984 is given in
Table 32 in billions of dollars (file GNP.xls).

a Plot x � years after 1974 against GNP, and use the
plot to describe how to fit a curve that could be used to
predict GNP during future years.

TA B L E  31

Month Sales Price

1 400 5

2 1,042 4

3 1,129 8

4 1,110 6

5 1,336 6

6 1,363 10

7 1,177 9

8 603 8

9 582 12

10 697 9

11 586 8

12 673 9

13 546 10

14 334 11

15 27 8

16 76 9

17 298 10

18 746 6

19 962 7

20 907 8

b When the regression on transformed data is done,
we find that b̂0 � 6.86 and b̂1 � 0.105. What is the pre-
diction for 1985 GNP?

Group B

10 Suppose the true relationship between Y and time t is
given by

Y � b0eb1t
� �

where b1 	 0. If we try to fit our usual linear model Y �

b0 � b1t � � to the data, are we likely to encounter
autocorrelation? Heteroscedasticity? Multicollinearity?

TA B L E  32

Year GNP

1975 1,060

1976 1,170

1977 1,305

1978 1,455

1979 1,630

1980 1,800

1981 2,000

1982 2,220

1983 2,450

1984 2,730
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� � � � � � � � � � �A P P E N D I X 1

@Risk Crib Sheet

@Risk Icons

Once you are familiar with the function of the @Risk icons, you will find @Risk easy to

learn. Here is a description of the icons.

Opening an @Risk Simulation

This icon allows you to open up a saved @Risk simulation. I do not recommend saving

simulations. Instead, I paste results into a spreadsheet.

Saving an @Risk Simulation

This icon allows you to save an @Risk simulation, including data and simulation settings.

Simulation Settings

This icon allows you to control the settings for the simulation. Clicking on this icon ac-

tivates the dialog box shown in Figure 1. There follows a description of what each of the

tabs can do.

Iterations Tab

Various options are associated with the Iterations tab.

#Iterations #Iterations is how many times you want @Risk to recalculate the spreadsheet.

For example, choosing 100 iterations means that 100 values of your output cells will be

tabulated.

F I G U R E  1
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#Simulations Leave this at 1 unless you have a �RISKSIMTABLE functon in the spread-

sheet. In this case, choose #Simulations to equal the number of values in SIMTABLE. For

example, if we have the formula �RISKSIMTABLE({100,150,200,250,300}) in cell A1,

set #Simulations to 5. The first simulation will place 100 in A1, the second simulation

will place 150 in A1, and the fifth simulation will place 300 in A1. #Iterations will be run

for each simulation.

Pause on Error Checking this box causes @Risk to pause if an error occurs in any cell

during the simulation. @Risk will highlight the cells where the error occurs.

Update Display Checking this box causes @Risk to show the results of each iteration on

the screen. This is nice, but it slows things down.

See Figure 2. The Sampling tab options are as follows.

Sampling Type While a little slower, Latin Hypercube sampling is much more accurate

than Monte Carlo sampling. To illustrate, Latin Hypercube guarantees for a given cell that

5% of observations will come from the bottom 5th percentile of the actual random vari-

able, 5% will come from the top 5th percentile of the actual random variable, etc. If we

choose Monte Carlo sampling, 8% of our observations may come from the bottom 5% of

the actual distribution, when in reality only 5% of observations should do so. When sim-

ulating financial derivatives, it is crucial to use Latin Hypercube.

Standard Recalc If you choose Expected Value, you obtain the expected value of the ran-

dom variable unless the random variable is discrete. Then you obtain the possible value

of the random variable that is closest to the random variable’s expected value. For in-

stance, for a statement

�RISKDISCRETE({1,2,},{.6,.4})

the expected value is 1(.6) � 2(.4) � 1.4, so Expected Value enters a 1.

If you choose the Monte Carlo option, when you hit F9, all the random cells will re-

calculate. This makes it much easier to understand and debug the spreadsheet. Thus, with

Monte Carlo selected,

�RISKDISCRETE({1,2,},{.6,.4})

will return a 1 60% of the time and a 2 40% of the time.

 

F I G U R E  2
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If you choose the True EV option, then the actual expected value of the random vari-

able will be returned. Thus,

�RISKDISCRETE({1,2,},{.6,.4})

will yield a 1.4.

Collecting Distribution Samples Check All if you want to get Tornado Graphs, Scenario

Analysis, or Extract Data. Also check this box if you want statistics on cells generated by

@Risk functions. You can always check this box if you like, but if you have many @Risk

functions in your spreadsheet, checking the box will slow down the simulation. Checking

Inputs Marked With Collect will collect data on a subset of your risk functions marked

with Riskcollect.

Random Number Generator Seed When the seed is set to 0, each time you run a simula-

tion, you will obtain different results. Other possible seed values are integers between 1

and 32,767. Whenever a nonzero seed is chosen, the same values for the input cells and

output cells will occur. For example, if we choose a seed value of 10, each time we run

the simulation, we will obtain exactly the same results.

Autoconvergence

Under #Iterations, you may select Auto. See Figure 3. You may then select a percentage

such as 1%. Then @Risk keeps running until during the last 100 iterations, the mean and

standard deviation change by at most 1%. This can be a lot of iterations! I prefer to choose

the number of iterations myself by setting

�
�
2s

n�
�

equal to the desired level of accuracy for the output cell’s mean. Here, s � standard de-

viation of output cell for a trial simulation (say, 400 iterations). For example, if a trial sim-

ulation yields s � 100 and I want to be 95% sure that I am estimating the population

mean within 10, I need

�
2(

�
10

n�
0)

� � 10

or n � 400.
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Macro Tab

See Figure 4. The Macro tab enables @Risk to run a macro before or after each iteration

of a simulation. For example, checking After Each Iteration’s Recalc and entering Macro1

after evaluating each ouput cell would result in the following sequence of events:

■ Compute @Risk functions and calculate output cells.

■ Run Macro1.

■ Compute @Risk functions and calculate output cells, etc.

Select Output Cells

This icon enables you to select an output cell or cells for which @Risk will create statis-

tics. Simply select a range of cells and click on the icon to select the range as output cells.

You may select as many ranges as you desire.

List Input and Output Cells

This icon lists all output cells. Also listed are cells containing @Risk functions. These are

called input cells. From this list, you can change the names of output cells or delete out-

put cells.

Run Simulation

This icon starts the simulation. The status of the simulation is shown in the lower left-hand

corner of your screen. Hitting the Escape key allows you to terminate the simulation.

Show Results

This icon allows you to see results. There are two windows:

■ Summary Results, containing Minimum, Mean, and Maximum for all input and

output cells.

■ Simulation Statistics, containing more detailed statistics.

Clicking the Hide icon will send you back to your worksheet. To paste your statistics into

your worksheet, simply select a window and Edit Copy Paste it into the worksheet.

Define Distribution Icon

This icon allows you to see the mass function or density function for any random vari-

able. You may also use this icon directly to enter any @Risk formula into a cell.

 

F I G U R E  4
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Graphing

To obtain a graph, right click on the cell from the Explorer interface. Then choose the

type of graph desired. To copy the graph into Excel, right click on the graph and select

Copy or Graph in Excel.

A histogram gives the fraction of iterations assuming different values. The histogram

in Figure 5 was generated for a cell containing the formula

�RISKNORMAL(100,15)

The histogram indicates that the input cell was bell-shaped and that the most common

values of the input cell were around 100.

For a cumulative ascending graph (Figure 6), the y-axis gives the fraction of iterations

yielding a value � the value on the x-axis. Thus, about 50% of all iterations in this case

yielded a value � 100.

For a cumulative descending graph, the y-axis gives the fraction of iterations yielding

a value � the value on the x-axis. In Figure 7, this input cell exceeded 85 about 84% of

the time.

An area graph replaces bars with smooth areas. A fitted curve smooths out the varia-

tion in bar heights before creating an area graph.

F I G U R E  5
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Targets

At the bottom of the Simulation Statistics window is a Target option. You may enter a

Value or Percentile, and @Risk fills in the one you left out. For

�RISKNORMAL(100,15)

we obtained the following results:

Target #1 (Value)= 85
Target #1 (Perc%)= 15.87%
Target #2 (Value)= 130
Target #2 (Perc%)= 97.75%
Target #3 (Value)= 114.9159
Target #3 (Perc%)= 84%

■ We entered Target#1(Value) of 85, and @Risk reported that the cell was �85

15.87% of the time.

■ We entered Target#2(Value) of 130, and @Risk reported that the cell was �130

97.75% of the time.

■ We entered Target#3(Perc%) of 84%, and @Risk reported that 84% of the time,

the cell was �114.92.

Extracting Data

Sometimes you may want to see the values of @Risk functions and output cells that

@Risk created on the iterations run. If so, check Collect Distribution Samples under Sim-

ulation Settings and then click on Data in the Results window. You can then Edit Copy

Paste the data to your spreadsheet and subject it to further analysis.

Sensitivity

If you want a Tornado Graph, right click on the output cell and select Tornado Graph.

This also requires that you check Collect Distribution Samples. You may choose either a

Correlation or a Regression graph. Tornado graphs let you know which input cells have

the largest influence on your output cell(s).

@Risk Functions

We now illustrate some of the most useful @Risk functions.

The RISKDISCRETE Function

This generates a discrete random variable that takes on a finite number of values with

known probabilities. See Figure 8. First, enter the possible values of the random variable

F I G U R E  7
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and then the probability for each value. Thus, �RISKDISCRETE({1,2,3,4},{.3,.2,.4,.1})

would generate 1 30% of the time, 2 20% of the time, 3 40% of the time, and 4 10% of

the time.

If the values and probabilities were entered in A2:B5, we could have entered this ran-

dom variable with formula

�RISKDISCRETE(A2:A5, B2:B5)

The RISKSIMTABLE Function

Suppose we enter

�RISKSIMTABLE({100,150,200,250,300})

in cell A5, and #Iterations is 100. If we change #Simulations to 5, then on the first sim-

ulation, 100 iterations are run with 100 in cell A5. On the second simulation, 100 itera-

tions are run with 150 in cell A5. Finally, on the fifth simulation, 100 iterations are run

with 300 in cell A5. If the five arguments for the �RISKSIMTABLE function were in

B1:B5, we could have also entered the �RISKSIMTABLE function as

�RISKSIMTABLE(B1:B5)

The RISKDUNIFORM Function

See Figure 9. We use the RISKDUNIFORM function when a random variable assumes

several equally likely values. Thus,

�RISKDUNIFORM({1,2,3,4})

is equally likely to generate 1, 2, 3, or 4. If 1, 2, 3, 4 were entered in A1:A4, then we

could have entered

�RISKDUNIFORM(A1:A4)

The RISKBINOMIAL Function

See Figure 10. Use the �RISKBINOMIAL function when you have repeated independent

trials, each having the same probability of success. For example, if there are 5 competi-

F I G U R E  8
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tors who might enter an industry this year, each competitor has a 40% chance of enter-

ing, and entrants are independent, then we could model this situation with the formula

�RISKBINOMIAL(5,.4)

The RISKNORMAL Function

See Figure 11. Use this function to model a continuous, symmetric (or bell-shaped) ran-

dom variable. The formula

�RISKNORMAL(100,15)

F I G U R E  9
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will yield

■ a value between 85 and 115 68% of the time 

■ a value between 70 and 130 95% of the time 

■ a value between 55 and 145 99.7% of the time 

The RISKTRIANG Function

See Figure 12. This function enables us to model a nonsymmetrical continuous random

variable. It generalizes the well-known idea of best-case, worst-case, and most likely sce-

narios. For example,

�RISKTRIANG(.2,.4,.8)

could be used to model market share if we felt that the worst-case market share was 20%,

the most likely market share was 40%, and the best-case market share was 80%. Note that

the probability that the market share is between 30% and 40% would be the area under

this triangle between .3 and .4. The entire triangle has an area of 1. This fact determines

the height of the triangle.

F I G U R E  11
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The RISKTRIGEN Function

See Figure 13. Sometimes we want to use a triangular random variable, but we are not

sure of the absolute best and worst possibilities. We may believe that there is a 10%

chance that market share will be less than or equal to 30%, that the most likely share is

40%, and that there is a 10% chance that share will exceed 75%. The RISKTRIGEN func-

tion is used in this situation. The formula

�RISKTRIGEN(.3,.4,.75,10,90)

would be appropriate for this situation. Then @Risk draws a triangle that yields

■ A 10% chance that market share is less than or equal to 30%. This requires a

worst possible market share of around 20%.

■ A most likely market share of 40%.

■ A 10% chance that market share is greater than or equal to 75%. This requires a

best possible market share of around 95%.

Again, the probability of a market share between 20% and 50% is just the area under the

triangle between 20% and 50%.

The RISKUNIFORM Function

See Figure 14. Suppose a competitor’s bid is equally likely to be anywhere between 10 and

30 thousand dollars. This can be modeled by a uniform random variable with the formula

�RISKUNIFORM(10,30)

Again, this function makes any bid between 10 and 30 thousand dollars equally likely.

The probability of a bid between 15 and 28 thousand would be the area of the rectangle

bounded by x � 15 and x � 28. This would equal (28 � 15)(.05) � .65.

The RISKGENERAL Function

What if a continuous random variable does not appear to follow a normal or a triangular

distribution? We can model it with the �RISKGENERAL function.

F I G U R E  13
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Suppose that a market share of between 0 and 60% is possible, and a 45% share is

most likely. There are five market-share levels for which we feel comfortable about com-

paring relative likelihood. (See Table 1.) Thus, a market share of 45% is 8 times as likely

as 10%; 20% and 55% are equally likely; etc. Note that this distribution cannot be trian-

gular, because then 20% would be (20/45) as likely as peak of 45%, and 20% would be

.75 as likely as 45%. To model this, enter the formula

�RISKGENERAL(0,60,{10,20,45,50,55},{1,6,8,7,6})

The syntax of RISKGENERAL is as follows:

■ Begin with the smallest and largest possible values.

■ Then enclose in {} the numbers for which you feel you can compare relative 

likelihoods.

■ Finally, enclose in {} the relative likelihoods of the numbers you have previously

listed.

Running this in @Risk yields the output shown in Figure 15. Note that 20 is 6/8 likely as

45; 10 is 1/8 as likely as 45; 50 is 7/8 as likely as 45; 55 is 6/8 as likely as 45; etc. In be-

F I G U R E  14
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Market Share Relative Likelihood

10% 1

20% 6

45% 8

50% 7

55% 6



A P P E N D I X 1 @Risk Crib Sheet 1347

tween the given points, the density function changes at a linear rate. Thus, 30 would have

a likelihood of

6 � �
(30

(

�

45

2

�

0)*

2

(

0

8

)

-6)
� � 6.8

Modeling Correlations

Suppose we have three normal random variables, each having mean 0 and standard devi-

ation 1, correlated as follows:

■ Variable 1 and variable 2 have .7 correlation.

■ Variable 1 and variable 3 have a .8 correlation.

■ Variable 2 and variable 3 have a .75 correlation.

To model this correlation structure, we use the �RISKCORRMAT command. Simply en-

ter your correlation matrix somewhere in the worksheet. In Figure 16, we chose C27:E29.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F G
EXAMPLE OF
RISKGENERAL
DISTRIBUTION

Minimum 0
Maximum 60

Specified Points
10 1
20 6
45 8
50 7
55 6

45.28889 =RISKGENERAL(0,60,{10,20,45,50,55},{1,6,8,7,6} )

 Distribution for DISTRIBUTION

P
R

O
B

A
B

IL
IT

Y

 

0.00

0.02

0.03

0.05

0.06

0.08

1.5 11.0 20.5 30.0 39.5 49.0 58.5
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25

26

27

28

29

30

31

32

33

B C D E F G H

1 0.7 0.8

0.7 1 0.75

0.8 0.75 1

1 Variable 1 1.793028 risknormal(0,1,riskcorrmat(c27:e29,1))

2 Variable 2 -0.449129 risknormal(0,1,riskcorrmat(c27:e29,2))

3 Variable 3 -0.521328 risknormal(0,1,riskcorrmat(c27:e29,3))  F I G U R E  16



1348 A P P E N D I X 1 @Risk Crib Sheet

For each variable, type in front of the variable’s actual distribution the syntax

�Actual Risk Function, RISKCORRMAT(Matrix, i)

Here, Matrix (C27:E29 in this case) indicates where the correlation matrix resides, and i

is the column of the correlation matrix that contains the correlations for variable i. Thus,

for variable 1, the correlations come from the first column of the correlation matrix.

If you run a simulation and extract the data for cells D31:D33, you will find that

■ Each cell has a mean of around 0 and a standard deviation around 1.

■ Each cell follows a normal distribution.

■ D31 has around a .7 correlation with D32.

■ D31 has around a .8 correlation with D33.

■ D32 has around a .75 correlation with D33.

Truncating Random Variables

Suppose you believe that market share for a product is approximately normally distrib-

uted, with mean .6 and standard deviation .1. This random variable could exceed 1 or be

negative, which would be inconsistent with the fact that market share must be between 0

and 1. To resolve this, you may enter the random variable from the Define Distribution

icon as shown in Figure 17.

You could also type in formula

�RISKNORMAL(.6,.1,RISKTRUNCATE(0,1))

Then @Risk generates a normal random variable with mean .6 and standard deviation .1.

If the random variable assumes a value between 0 (the lower truncation value) and 1 (the

upper truncation value), that value is retained. Otherwise, another value is generated. The

truncation values must be within 5 standard deviations of the mean.

F I G U R E  17



The RISKPERT Function

This function is similar to the RISKTRIANG function. The RISKPERT function is used

to model the duration of projects. For example,

�RISKPERT(5,10,20)

would be used to model the duration of an activity that always takes at least 5 days, never

takes more than 20 days, and is most likely to take 10 days. Whereas RISKTRIANG has

a piecewise linear density function, the RISKPERT density has no linear segments. It is

a special case of a Beta random variable.

Common Error Message

The error message “Invalid number of arguments” means that an incorrect syntax has

been used with an @Risk function. For example, �RISKDUNIFORM({A1:A7}) may

have been used instead of �RISKDUNIFORM(A1:A7).

A P P E N D I X 1 @Risk Crib Sheet 1349
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C A S E  1

Help, I’m Not Getting Any Younger!

Profile of a university professor:

■ 45-year-old formerly athletic male

■ 215 pounds

■ 71 inches tall

■ Exercises no more than once a week. Walks 0.5

miles daily to and from the car while carrying a

10-pound briefcase.

■ Family history of adult diabetes.

I need help! My diet is terrible, and I have been

gaining weight and feeling more tired.

I heard that Professor George Dantzig of Stanford

once used linear programming to construct a diet. It

would be great if you could tell me what to eat dur-

ing each day. So, because I’m a firm believer in math-

ematical models, I want you to use linear program-

ming to determine a reasonable diet for me to eat

during a week. It is your job to collect data for use in

the model.

I have the following requirements for the diet:

■ I like variety. You cannot prescribe a diet in which

I eat just one food during the entire week (like 10

boxes of Total cereal). I would like to eat at least

15 different foods during the week.

■ You have to give me something from each of the

four basic food groups (dairy, fruit and vegetable,

meat, and grains)—not Mcfood, frozen food, pizza

food, or food on a stick.

■ I like nutrition. You cannot prescribe a diet that

does not meet minimum daily requirements for es-

sential minerals and vitamins. You cannot prescribe

a diet in which I gain a lot of weight. I could stand

to lose a few pounds.

■ I hate Brussels sprouts, sweet potatoes, pears, and

organ meats such as liver and kidney.

■ Forget about any canned fruits or vegetables. Yuck.

■ I do not eat any pork or pork products.

■ I am not a big fan of frozen dinners, no matter how

nutritious or convenient they are.

■ I don’t drink milk with any meal except breakfast.

■ I work for the university, so I have a limited bud-

get for food. Try to keep costs less than $100 per

week (the lower the better).

■ I might consider taking vitamin pills to get nutri-

tional requirements, but I would rather eat food.

Key Questions

■ What should I eat at each meal?

■ If I allowed less variety, would your recommenda-

tion change?

■ If I allowed more than $100 per week, would your

recommendation change? How?

■ What key minerals and vitamins constrain the 

solution?

C A S E  2

Solar Energy for Your Home

As our ability to extract and process fossil fuels de-

creases, many people are looking to renewable re-

sources to meet their energy needs. In particular, solar

energy is becoming an advanced technology that has

economic promise. In areas with large solar insola-

tions, there can be enough energy to power an entire

home. The amount of solar energy reaching the earth

each year is many times greater than worldwide energy

demand; it varies, of course, with location, time of day,

and season. Sunlight is also a widespread resource and

can be captured from virtually anywhere on earth.

There are two categories of home solar systems:

passive and active. In a passive system, the solar en-

ergy heats a material that is used in a productive man-

ner. For example, in Arizona it is common to use a

passive solar system to heat swimming pools and the

water used in the home. Every building has some of

its heating requirements met by solar energy. Sunlight

passing through windows is a source of heat, and the

value of passive solar heating is enhanced by proper

building insulation. A well-insulated building requires

less energy for heating; thus, much of the heating load

can be met by passive solar features. Optimum pas-

sive solar design begins with the layout of a building

lot; a house must be oriented so that it can take full

advantage of available solar energy.

Active systems are more complex and generally in-

volve converting the solar energy to electrical energy.

Photovoltaic (PV) cells use the energy of the sun to

produce electricity. They produce none of the green-

house or acid gas emissions that are commonly asso-

ciated with the use of fossil fuels to generate electric-
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ity. The main barrier to increased use of this technol-

ogy is cost. A common semiconducting material used

in PV cells is single crystal silicon. Single crystal sil-

icon cells are generally the most efficient type of PV

cells, converting as much as 23% of incoming solar

energy into electricity. The main problem with them

is their production cost. Polycrystalline silicon cells

are less expensive to manufacture but less efficient

than single crystal cells (15% to 17%). Thin films

(0.001–0.002 mm thick) of amorphous or uncrystal-

lized silicon are another PV alternative. These thin

films are inexpensive and may be easily deposited on

materials such as glass and metal, thus lending them-

selves to mass production. Amorphous silicon thin-

film PV cells are widely used in commercial elec-

tronics, powering watches and calculators. These cells,

however, are not especially efficient—12% in the lab,

7% for commercial cells—and they degrade with time,

losing as much as 50% of their efficiency with expo-

sure to sunlight.

Solar power is an intermittent source of electricity.

If PV cells are your only source, then the storage of

electricity may be necessary. Electricity for a home

can be stored in batteries, which can be expensive.

Also, to generate sufficient electricity, you need a

large area of collectors on your roof or somewhere on

your property. The amount of solar energy captured

depends on the surface area of the collectors and their

conversion efficiency.

A solar energy system can often be looked at as a

conservation system. Figure 1 depicts one way to look

at the daily flow of energy.

Your job is to design an active solar system for a

home in your area. For the analysis, you will have to

collect data on:

■ system cost and efficiency,

■ daily solar insolation in your area (usually mea-

sured in watts/meter2; this information can be found

locally where weather data are stored and col-

lected), and

■ typical daily power requirements for a home in

your area.

The costs of the system generally include a fixed com-

ponent and variable components that depend on the

total area of the PV collectors, the type of material

used in the collector (usually only material is chosen),

and the amount of battery storage needed. Your analy-

sis should cover at least 6 months of data (12 months

would be better, because you would like your design

to be appropriate for the entire year). You should as-

sume that all energy requirements for the home will

be met by this system (no natural gas will be used for

heating or cooking, for example).

Your design should include the following:

■ the area of the PV collectors and the amount of

battery storage that you need,

■ an estimate of the cost of the system (you may in-

clude any tax advantages that accrue from the pur-

chase of solar energy systems),

■ a profile of the battery storage levels at the end of

each day for a six-month period,

■ an estimate of cost savings (or loss) over buying 

your electrical power from the local utility company.

C A S E  3

Golf-Sport: Managing Operations

Golf-Sport is a small-sized company that produces

high-quality components for people who build their

own golf clubs and prebuilt sets of clubs. There are

five components—steel shafts, graphite shafts, forged

iron heads, metal wood heads, and metal wood heads

with titanium inserts—made in three plants—Chan-

dler, Glendale, and Tucson—in the Golf-Sport sys-

tem. Each plant can produce any of the components,

although each plant has a different set of individual

constraints and unit costs. These constraints cover la-

bor and packaging machine time (the machine is used

by all components); the specific values for each com-

ponent–plant combination are given in Tables 1–3.

Note that even though the components are identical in

the three plants, different production processes are

used, and therefore the products use different amounts

of resources in different plants.

Besides component sales, the company takes the

components and manufactures sets of golf clubs. Each

set requires 13 shafts, 10 iron heads, and 3 wood

Day t
Battery storage

end of day t –1

Battery storage

end of day t

Electrical usage in day t

Electrical energy from sun in day t

FIGURE 1

Daily Energy Flow
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TA B L E  1

Product-Resource Constraints: Chandler

Resources

Labor Packing Advertising
Products (Minutes/Unit) (Minutes/Unit) ($/Unit)

Steel shafts 1 4 1.0

Graphite shafts 1.5 4 1.5

Forged iron heads 1.5 5 1.1

Metal wood heads 3 6 1.5

Titanium insert heads 4 6 1.9

Monthly availability 12,000 20,000 —
(minutes)

TA B L E  2

Product-Resource Constraints: Glendale

Resources

Labor Packing Advertising
Products (Minutes/Unit) (Minutes/Unit) ($/Unit)

Steel shafts 3.5 7 1.1

Graphite shafts 3.5 7 1.1

Forged iron heads 4.5 8 1.1

Metal wood heads 4.5 9 1.2

Titanium insert heads 5.0 7 1.9

Monthly availability 15,000 40,000 —
(minutes)

TA B L E  3

Product-Resource Constraints: Tucson

Resources

Labor Packing Advertising
Products (Minutes/Unit) (Minutes/Unit) ($/Unit)

Steel shafts 3 7.5 1.3

Graphite shafts 3.5 7.5 1.3

Forged iron heads 4 8.5 1.3

Metal wood heads 4.5 9.5 1.3

Titanium insert heads 5.5 8.0 1.9

Monthly availability 22,000 35,000 —
(minutes)
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heads. All of the shafts in a set must be the same type

(steel or graphite), and all of the wood heads must be

the same type (metal or metal with inserts). Assembly

times for the sets at each plant are shown in Table 4.

Each plant of Golf-Sport has a retail outlet to sell

components and sets, and the specific plant is the only

supplier for its retail outlet. The minimum and maxi-

mum amounts of demand for each plant–product pair

are given in Table 5. Note that, although the mini-

mums must be satisfied, you do not need to satisfy de-

mand up to the maximum amount.

This planning problem is for two months. The costs

in Table 6 increase by 12% for the second month, and

production times are stationary. Inventory costs are

based on end-of-period inventory for each product set

and cost out at 8% of the cost values in Table 6. Table

7 lists the revenue generated by each product. Ini-

tially, there is no inventory.

The corporation controls the capital available for

expenses; the cash requirements for each product are

given in the last column of Tables 1–3. There is a to-

tal of $20,000 available for advertising for the entire

system during each month, and any money not spent

in a month is not available the next month. The cor-

poration also controls graphite. Each shaft requires 4

ounces of graphite; a total of 1,000 pounds is avail-

able for each of the two months.

Your job is to determine a recommendation for the

company. A recommendation must include a plan for

production and sales. In addition, you should also ad-

dress the following sensitivity-analysis issues in your

recommendation:

■ If you could get more graphite or advertising cash,

how much would you like, how would you use it,

and what would you be willing to pay?

■ At what site(s) would you like to add extra pack-

ing machine hours, assembly hours, and/or extra

labor hours? How much would you be willing to

pay per hour and how many extra hours would you

like?

■ Marketing is trying to get Golf-Sport to consider

an advertising program that promises a 50% in-

crease in their maximum demand. Can we handle

this with the current system or do we need more

resources? How much more is the production go-

ing to cost if we take on the additional demand?

TA B L E  4

Time Total Time Available
Plant (Minutes per set) (Minutes)

Chandler 65 5,500

Glendale 60 5,000

Tucson 65 6,000

TA B L E  5

Minimum and Maximum Product Demand per Month

Store (or Plant)

Products Chandler Glendale Tucson

Steel shafts [0, 2,000] [0, 2,000] [0, 2,000]

Graphite shafts [100, 2,000] [100, 2,000] [50, 2,000]

Forged iron heads [200, 2,000] [200, 2,000] [100, 2,000]

Metal wood heads [30, 2,000] [30, 2,000] [15, 2,000]

Titanium insert heads [100, 2,000] [100, 2,000] [100, 2,000]

Set: Steel, metal [0, 200] [0, 200] [0, 200]

Set: Steel, insert [0, 100] [0, 100] [0, 100]

Set: Graphite, metal [0, 300] [0, 300] [0, 300]

Set: Graphite, insert [0, 400] [0, 400] [0, 400]

TA B L E  6

Material, Production, and Assembly Costs ($) per Part or Set

Plants

Products Chandler Glendale Tucson

Steel shafts 6 5 7

Graphite shafts 19 18 20

Forged iron heads 4 5 5

Metal wood heads 10 11 12

Titanium insert heads 26 24 27

Set: Steel, metal 178 175 180

Set: Steel, insert 228 220 240

Set: Graphite, metal 350 360 370

Set: Graphite, insert 420 435 450
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C A S E  4

Vision Corporation: Production 
Planning and Shipping

Vision is a large company that produces video-

capturing devices for military applications such as

missiles, long-range cameras, and aerial drones. Four

different types of cameras (differing mainly by lens

type) are made in the three plants in the system. Each

plant can produce any of the four camera types, 

although each plant has its own individual constraints

and unit costs. These constraints cover labor and ma-

chining restrictions, and the specific values are given

in Tables 8–10. Note that even though the products

are identical in the three plants, different production

processes are used and thus the products use different

amounts of resources in different plants. The corpo-

ration controls the material that goes into the lenses;

the material requirements for each product are given

in the last column of Tables 8–10. A total of 3,500

pounds of material is available for the entire system

during the planning period.

Transport has 3 major customers (RAYco, HONco,

and MMco) for its products. The maximum sales for

each customer–product pair is given in Table 11. Prod-

uct sales prices are given in Table 12, and the ship-

ping costs from each plant to each customer are de-

tailed in Table 13. Table 14 contains the production

costs for each product–plant pair.

All shipping from plants 1 and 2 that goes to

RAYco or HONco must go through a special inspec-

tion. These units are sent to a central site, inspected,

and then sent to their destination. The capacity of this

special inspection site is 1,500 pieces.

Your job is to determine a recommendation for the

company. A recommendation must include a plan for

production and shipping as well as the cost and rev-

enue generated from each plant. In addition, you

should address the following potential issues in your

recommendation:

■ If you could get more material, how much would

you like? How would you use it? What would you

be willing to pay?

■ If you could get more inspection capacity, how

much would you like? How would you use it? What

would you be willing to pay?

TA B L E  7

Revenue per Part or Set ($)

Plants

Products Chandler Glendale Tucson

Steel shafts 10 10 12

Graphite shafts 25 25 30

Forged iron heads 8 8 10

Metal wood heads 18 18 22

Titanium insert heads 40 40 45

Set: Steel, metal 290 290 310

Set: Steel, insert 380 380 420

Set: Graphite, metal 560 560 640

Set: Graphite, insert 650 650 720

TA B L E  8

Product-Resource Constraints: Plant 1

Resources

Labor Machine Material
Products (Hours/Unit) (Hours/Unit) (Lb./Unit)

Small 3 8 1.0

Medium 3 8.5 1.1

Large 4 9 1.2

Precision 4 9 1.3

Total available 6,000 10,000 —

TA B L E  9

Product-Resource Constraints: Plant 2

Resources

Labor Machine Material
Products (Hours/Unit) (Hours/Unit) (Lb./Unit)

Small 3.5 7 1.1

Medium 3.5 7 1.0

Large 4.5 8 1.1

Precision 4.5 9 1.4

Total available 5,000 12,500 —

TA B L E  10

Product-Resource Constraints: Plant 3

Resources

Labor Machine Material
Products (Hours/Unit) (Hours/Unit) (Lb./Unit)

Small 3 7.5 1.1

Medium 3.5 7.5 1.1

Large 4 8.5 1.3

Precision 4.5 8.5 1.3

Total available 3,000 6,000 —



1356 A P P E N D I X 2 Cases

■ At what plant(s) would you like to add extra ma-

chine hours? How much would you be willing to

pay per hour? How many extra hours would you

like?

■ Marketing is trying to get RAYco to consider a

50% increase in its demand. Can we handle this

with the current system or do we need more re-

sources? How much more money can we make if

we take on the additional demand?

C A S E  5

Material Handling in a General 
Mail-Handling Facility†

For more than 200 years, the United States Postal Ser-

vice (USPS) has delivered mail across the country.

Daily delivery goes to some 137 million households;

in 2001, the USPS processed and delivered more than

207 billion pieces of mail to a delivery network that

grew by 1.7 million new addresses. Clearly, the USPS

is the largest material handler (in terms of pieces) in

the world. Statistics recorded by Pricewaterhouse

Coopers show that 94% of first-class mail destined for

next-day delivery received overnight service—and

this was a record performance for a second straight

year. Despite the high volume, the USPS managed to

cut costs by $900 million in 2001 while maintaining

record service performance and high levels of cus-

tomer satisfaction.

To process mail quickly, one must use advanced

mechanization. Mail-sorting machines can process 10

letters per second (we are long past the days of hand

sorting in front of a large set of post boxes). Sorting

using the zip�4 standard can result in a mail sort

down to an individual carrier’s walk sequence, which

saves significant carrier time.

Five major operations can be performed on each

letter, and each operation has its own machine:

Automatic facer and canceller (AFC) This machine

cancels the stamp and orients all of the letters so

that the stamp is in the upper-right corner. This

machine also separates mail into one of three

streams—automation, mechanization, or manual.

Letter sorting machine (LSM) This machine is semi-

automated and helps human operators sort mail.

The operator reads the address and then types in a

destination code. The machine then routes the let-

ter to the appropriate bin.

Optical character reader (OCR) This machine reads

handwritten or typed addresses and then prints a

machine-readable barcode on the envelope.

Barcode sorter (BCS) This machine reads the bar-

code on the letter (either printed by the OCR or by

the sender’s equipment) and then sorts it to a bin.

TA B L E  11

Maximum Product Sales ($) per Unit

Customers

Products RAYco HONco MMco

Small 200 400 200

Medium 300 300 400

Large 500 200 300

Precision 200 400 300

TA B L E  12

Product Sales Price ($) per Unit

Customers

Products RAYco HONco MMco

Small 17 16 16

Medium 18 18 17

Large 22 22 23

Precision 29 26 27

TA B L E  13

Shipping Costs ($) per Unit

Customers

Plant RAYco HONco MMco

1 1.0 1.6 1.1

2 1.2 1.5 1.0

3 1.4 1.5 1.3

TA B L E  14

Production Costs ($) per Unit

Plant

Products 1 2 3

Small 14 13 14

Medium 16 17 15

Large 18 20 19

Precision 26 24 23

†Based on work done jointly with Ron Askin and Sanjay Jagdale,

1994.



One of the keys to faster processing and increasing

utilization is an effective material-handling and data

system. Each tray has a barcode that describes the

salient characteristics of its mail. When a sorting ma-

chine is ready for operation (say, for example, that we

are going to sort down to a group of 10 zip codes), a

call goes out to bring all trays with appropriate mail

to the appropriate BCS machine. The data system

must (1) know where those trays are located, (2) go

and get them, (3) bring the trays to the machine-input

area, and (4) exit the area. The faster this can be done,

the better.

The network for our GMF is given in Figure 3.

Each machine has an input and output point. For ex-

ample, nodes 1 and 28 are the inputs and output, 

respectively, for AFC 1. For this application, the 

material-handling system is an overhead monorail.

Carriers that hold one tray circulate around the sys-

tem to pick up and deliver trays; they rest in the park-

ing lot when not in use. The arcs in the diagram are

the links of the monorail; all links are one-way. The

dotted lines on Figure 3 represent links that are above

the machine level and offer shortcuts across the facil-

ity. The facility also contains switches (nodes 29, 18,

and 32) that allow carriers to change directions. Node

34 is the link to the shipping dock, and all trays enter

and exit the system at this point.

The carriers travel at approximately 1 mile per

hour, and there must be 15 feet between carriers on

the same link. For the purpose of this study, assume

that there is a bypass at each node so a carrier can

pass other carriers that are stopped for loading and

unloading operations. Also assume that the switches

operate quickly relative to the speed of the vehicles so

that collisions do not occur and the switch capacity is

not constraining. Figure 3 is drawn approximately to

scale. The facility is approximately 220 feet long by

160 feet wide. At 1 mile per hour, it takes a carrier

approximately 2.5 minutes to run the length of the fa-

cility (from node 14 to node 1, for example).

Table 15 contains the tray movement loads for the

peak hour. Each load has an origin node, a destination

node, and the number of trays that must be moved.

Each load is a leg in the route for a particular tray of

mail. The system must have capacity to move an empty

carrier from the parking lot to the origin, load the tray,

move the tray to the destination, unload the tray, and

then return to the parking lot. All carriers are dis-

patched from the parking lot because this simplifies

the logic of the scheduler. By capacity, there must be

a sufficient number of vehicles and the capacity on

each link between nodes cannot be overloaded. As-
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Delivery barcode sorter (DBCS) This machine does

a two-pass sort that uses barcodes with the zip�4

code and sorts down almost to a walk sequence.

When using the DBCS, the result is such that a

carrier requires little to no processing at the carrier

station to deliver the mail.

Items known as f lats (for example, magazines and

8.5 � 11–inch envelopes) also are processed through

the system. A flat-sorting machine (FSM) is used in a

semiautomated process. An operator loads a piece

onto the machine and keys in a code based on the

flat’s address; the machine then routes the piece to an

appropriate bin.

A letter that enters a general mail facility (GMF)

follows a routing that depends on the machine read-

ability of the address and the presence of an existing

barcode. Although many routes are possible, the ma-

jor ones are given in Figure 2. Once letters go through

the AFC, they are stored in cardboard or plastic trays

that hold approximately 400 letters. The letters are

moved in these trays throughout the facility, and each

machine sorts the mail into different trays.

As part of quality improvement, the post office is

always looking for ways to cut costs while expediting

mail processing. To meet goals for overnight delivery

and three-day cross-country delivery, letters that ar-

rive by 6 p.m. from box pickup must be processed that

night and be on planes or trucks for the next destina-

tion. Because the sorting and character-reading ma-

chines cost millions of dollars each, increasing ma-

chine use and saving the purchase of even one machine

in a GMF is a significant achievement.

AFC OCR BCS DOCK

AFC BCS DBCS DOCK

AFC OCR LSM

AFC LSM DOCK

AFC OCR DOCK

AFC BCS DOCK

BCS DBCS DOCK

FIGURE 2

Processing Routes for Letters
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sume that it takes one minute to perform a loading or

unloading operation.

Your jobs are to:

■ Determine if this system has enough material-

handling capacity for moving the trays in the peak

hour (we generally design for peak hour so that we

are sure that the system will not get bogged down

when demand is high).

■ Suggest where we might add extra track to relieve

capacity congestion. This should be minimized be-

cause track cost is high.

■ Determine the flows of trays through the network

during the peak hour. Which routes are chosen for

each load?

FIGURE 3

General Mail Facility: Track Layout
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1

2

30
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TA B L E  15

Load Data for the Peak Hour

Load Number Origin Node Destination Node Number of Trays

1 33 1 15

2 28 4 20

3 22 14 30

4 10 33 30

5 24 8 15

6 21 33 30

7 24 4 5

8 25 33 15

9 27 17 15

10 13 33 40
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■ Determine places in the network that are risky—

that is, if a link goes down, machines can be cut

off from the material-handling system.

■ Estimate the total carrier travel distance during the

peak hour.

■ Investigate the effect of reducing the intercarrier

spacing. You need space between carriers to pre-

vent carrier collisions. If we put better sensors on

the front of the carriers, they can stop more quickly

and we can have less spacing.

Some tips:

■ This is a difficult problem. Be patient and try not

to become discouraged.

■ Do not forget the empty carrier movements to the

origin and from the destination.

■ Compute the capacity on each arc. Initially, as-

sume a single lane. To increase capacity, consider

multiple lanes between nodes or consider adding

arcs to give more paths between origin nodes and

destination nodes.

■ A precise formulation of this problem can be larger

than most problems you have seen. You should not

undertake to solve a large-sized formulation unless

you have software that can handle large problems.

Some approximate formulations are more manage-

able, but they still can require hundreds of vari-

ables and constraints.

C A S E  6

Selecting Corporate Training Programs†

Introduction

Training has become a major cost of doing business. A

1995 survey of all U.S. businesses with 100 or more

employees revealed that approximately $52 billion was

being spent on training; it has been estimated that $90

to $100 billion is being spent for training overall. 

Developing strategies to implement cross-training is a

current topic in the operations research (OR) literature.

Management consultants advocate aggressive educa-

tion and professional development to remain competi-

tive in the global and local markets. Employees now

expect job and skill growth to be a major component

of their duties.

Increased training costs have occurred for many

reasons. Employees view training in the form of for-

mal degrees and documented technical skills as im-

portant for job security. Technology is changing at a

rapid pace. It has been claimed that high schools and

universities are not producing the skills needed by in-

dustry, so industry must train and reeducate recent

graduates. For high school graduates, this may in-

clude training in technology-based skills; for college

graduates, this may include developing nontechnical

skills such as leadership, communications, interper-

sonal relations, and ethics.

Problem Environment

For a corporation, the primary purpose of training is

to ensure that employees have the key skills needed to

effectively manage and operate the business. There

are many options for providing training. For example,

to train staff members in computer skills, a corpora-

tion may use any of the following strategies:

■ hiring an outside consultant to develop and present

an on-site training course,

■ using corporate personnel to develop and present

an on-site training course,

■ purchasing a training course and having employees

use it for self-study,

■ contracting with a local college or university to

provide training, or

■ sending employees to an off-site training seminar.

The above possibilities are for a single skill. The

purpose of many training programs, however, is to

give employees a broad set of skills. Often the skill

sets of two or more programs partially overlap. When

this happens, the corporation must choose the set of

programs that give employees the required skills for

their jobs and the appropriate employees for each

training program. In any case, training decisions made

in an ad-hoc “pay-as-you-go” manner will be ineffi-

cient and generally result in additional expense.

To give the decision problem structure, the follow-

ing assumptions are appropriate:

■ We have a known study period—for example, the

next 3 or the next 5 years—over which we need to

plan training. The study period should fit with the

overall business strategy and enable accurate esti-

mates for training needs and available resources.

■ There is a known set of skills that employees need.

Among others, these may include technical, inter-

personal, communication, and management skills.

†Based on work done jointly with John V. Farr, and David A. Thomas

at USMA, 1995.
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TA B L E  16

Skills List

No. Skill No. Skill

1 New employee orientation 22 Stress management

2 Performance appraisals 23 Computer programming

3 Personal computer apps 24 Diversity

4 Leadership 25 Data processing/MIS

5 Sexual harassment 26 Planning

6 Team building 27 Public speaking and presentation

7 Safety 28 Strategic planning

8 Hiring and selection process 29 Writing skills

9 New equipment operation 30 Negotiating skills

10 Training the trainer 31 Finance

11 Product knowledge 32 Marketing

12 Decision making 33 Substance abuse

13 Listening skills 34 Ethics

14 Time management 35 Outplacement and retirement

15 Conducting meetings 36 Creativity

16 Quality imiprovements 37 Purchasing

17 Delegation skills 38 Smoking cessation

18 Problem solving 39 Financial and business literacy

19 Goal setting 40 Reengineering

20 Managing change 41 Foreign language

21 Motivation

TA B L E  17

Salary and Skills Required for Each Job Classification

Person Salary ($) Skills 1–20

Senior Manager 250,000 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0

Project Manager 200,000 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0

Professional 150,000 1 1 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 0 0 1

Sales 150,000 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1

Technician 100,000 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Administrative 80,000 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Assistant

Person Skills 21–41

Senior Manager 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 0

Project Manager 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1

Professional 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1

Sales 0 0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1

Technician 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Administrative 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0
Assistant
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■ Employees are divided into classes. In each class,

we have estimates for (1) the number of employ-

ees, (2) the employee hourly wage, (3) the number

of employees that require each particular skill, and

(4) the maximum time available for training em-

ployees in each class during the study period.

■ There is a list of training programs. For each pro-

gram, we assume we have (1) the set of skills

taught, (2) the cost, (3) the development time, 

(4) the completion time for an employee, and 

(5) the maximum number of employees who can

participate per decision cycle.

■ Training is equally effective for all people, thus we

are concerned with which programs to offer and

which employees in each class to assign to each

program. If we know the quality of the training for

individual skills for individual classes, then we can

relax this assumption.

Potential Corporate Setting

Your job is to develop models to aid businesses and

corporations in determining the appropriate training

programs to use. The type of model and issues often

depend on the size of the corporation and the potential

TA B L E  18

Enrollment Cost and Skills of Each Program

Program Enrollment Cost ($) Skills 1–20

Program 1 500 1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0

Program 2 300 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Program 3 500 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1

Program 4 575 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0

Program 5 800 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0

Program 6 400 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

Program 7 200 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

Program 8 1,000 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0

Program 9 200 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

Program 10 500 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Program 11 700 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

Program 12 600 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

Program 13 400 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0

Program 14 900 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0

Program 15 700 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0

Program Skills 21–41

Program 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Program 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Program 3 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0

Program 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1

Program 5 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0

Program 6 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0

Program 7 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

Program 8 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0

Program 9 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Program 10 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0

Program 11 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0

Program 12 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0

Program 13 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

Program 14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1

Program 15 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1
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are 15 programs available for use; Table 18 contains

the cost per person and the skills covered for each

program. In Table 18, a 1 in the row for program p

and the column for skill s implies that program p con-

tains skill s. Table 19 lists the programs that conflict

in time with other programs (for example, programs

3, 5, and 8 conflict with program 1). An employee

cannot take two programs simultaneously. It is com-

pany policy that each employee is limited to 15 days

for training per year.

Key Questions

Your job is to develop a recommendation for the com-

pany for addressing its training needs. In particular,

you should address the following key questions:

■ Which training programs should we be using? What

is the assignment of personnel to those programs?

■ Identify programs with heavy use that may justify

the development of an in-house course. How much

would you be willing to pay for that development

if you could use the program for the next three

years?

■ We have the opportunity to negotiate prices for

programs. Which programs would you suggest are

candidates for negotiation?

■ What skills are especially expensive for us to cover?

If we were to develop our own programs, what

skills should be covered?

■ Would your recommendation change if we allowed

more days of training per year?

C A S E  7

BestChip: Expansion Strategy

BestChip (BC) is a large nationwide corporation that

produces low-fat snack products for an expanding

market (pun intended). Basically, BC takes materials

(corn, wheat, and potatoes) and turns them into two

types of snacks: chips (regular and green onion) and

party mix (one variety). BC is expanding into the

western United States and is considering sites for lo-

cating production facilities.

BC currently has eight candidate sites. Table 20

shows the sites’ purchase prices and the purchase and

shipping cost per ton of each material to each site.

The purchase cost represents the yearly amortized

cost of opening and operating the site (exclusive of

uses of the models. For large corporations, there are

many employees in each class, so it is not necessary to

model and schedule down to the individual employee.

Concentrate instead on the assignment of classifica-

tions to programs and ignore the assignment of spe-

cific individuals to programs. Also, sufficient resources

exist to develop internal training programs, hence you

should consider program development costs as well as

employee costs (lost work time, travel, lodging, meals,

course materials) in the objective. A large corporation

can use the model to plan the development of courses.

This will help determine (1) program-development

costs so that in-house programs are cost-effective and

(2) appropriate programs for each employee classifica-

tion so that, on average, there is sufficient time to com-

plete the assigned programs within the available time.

For small businesses, the focus is often different.

Typically, these companies do not develop in-house

programs because they do not train enough employ-

ees to justify development costs. Because the number

of employees is small, it is important to model down

to the employee level and schedule employees so that

both training and job tasks can be completed.

Your OR consulting firm has been hired to design

the training program for a small company. There are

no in-house classes, and vendors provide all training.

The company has determined 41 skills that are im-

portant for its employees; these are listed in Table 16.

There are six employees; the salary level and skills re-

quired for each person are given in Table 17. You can

assume that there are 250 working days per year. There

TA B L E  19

Interfering Programs

Program Number (Days Long) Programs that Interfere

Program 1 (2) 3 5 8

Program 2 (2) 3 7 10

Program 3 (4) 1 2 12

Program 4 (3) 6 7 14

Program 5 (2) 1 9 12

Program 6 (3) 4 7 11 14

Program 7 (5) 2 4 6

Program 8 (2) 1 10 13

Program 9 (3) 5 15

Program 10 (3) 2 8

Program 11 (2) 6 12 15

Program 12 (4) 3 5 11

Program 13 (3) 8 14

Program 14 (4) 4 6 13

Program 15 (3) 9 11
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shipping costs). Each site may produce as many as

20,000 tons of product per year.

BC has six major customers, and all demand is

shipped by truck from the plant to the customer ware-

house. The shipping cost depends on the tonnage and

distance and comes to $0.15 per ton-mile. The cus-

tomers, their location, and their yearly demand in tons

for each product are listed in Table 21. You must meet

demand.

The makeup of the products does not depend on

the production plant. Table 22 gives the product-

ingredient mix data. The company requires that we

consolidate our business, so we cannot locate plants

in more than two states.

For this analysis, ignore the differences in property

and income tax rates between the states (this is usually

critical, but it gets us far afield of the key issue of math

programming). In addition, many critical factors actu-

ally determine locations; for example, the method of

financing the site purchase will also be a major factor

in the decision—but we will ignore that also.

Your job is to determine how we should expand

into the west and develop alternatives. Questions you

should answer include:

■ What sites should be selected? How should the

customers be served?

■ If gasoline gets more expensive and our trucking

costs change, then how is the recommendation 

affected?

■ If rail freight costs for material shipping increase,

then how is the recommendation affected?

Please consider other sensitivity-analysis issues

that you feel might be important for management’s

decision-making process.

TA B L E  20

Site Information and Material Shipping Cost

Material Shipping Cost ($/Ton)

Site Location Purchase Cost ($/Year) Corn Wheat Potato

Yuma, AZ 125,000 10 5 16

Fresno, CA 130,000 12 8 11

Tucson, AZ 140,000 9 10 15

Pomona, CA 160,000 11 7 14

Santa Fe, NM 150,000 8 14 10

Flagstaff, AZ 170,000 10 12 11

Las Vegas, NV 155,000 13 12 9

St. George, UT 115,000 14 15 8

TA B L E  21

Demand Information

Demand

Company Location Regular Green Onion Party Mix

Jones Salt Lake City 1,300 900 1,700

YZCO Albuquerque 1,400 1,100 1,700

Square Q Phoenix 1,200 800 1,800

AJ Stores San Diego 1,900 1,200 2,200

Sun Quest Los Angeles 1,900 1,400 2,300

Harm’s Path Tucson 1,500 1,000 1,400

TA B L E  22

Product-Ingredient Mix

Ingredient

Product Corn Wheat Potato

Regular chips 70 20 10

Green onion chips 30 15 55

Party mix 20 50 30
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C A S E  8

Emergency Vehicle Location in Springfield

You are the logistics manager for the Springfield Fire

Department. You are to develop a recommendation for

providing emergency service to Springfield. The de-

partment’s resources include engine trucks, ladder

trucks, and paramedic vehicles. The budget suggests

a total of 15 vehicles are fundable in the coming year.

Currently, seven engines, three ladder trucks, and five

paramedic vehicles are in operation. This system runs

24 hours per day.

The city has been divided into 10 zones (see Fig-

ure 4). The map is drawn to scale. For each zone, the

department has estimated the number of fire calls, the

number of false alarms, and the number of medical

calls per 12-hour day. These data are listed in Table

23. Currently, there are five fire stations in the city;

these are listed in Figure 4. Each existing station costs

$20,000 per year to operate. The yearly costs for each

potential station (including the amortized cost of con-

struction) are also listed in Table 23. Each station can

hold two vehicles at most.

For fire calls, an engine and a ladder truck must re-

spond. For medical calls, a paramedic vehicle always

responds and an engine also goes when one is avail-

able and closer than the nearest paramedic vehicle.

On average, fire calls take 2.5 hours, false alarms 10

minutes, and medical calls 45 minutes.

TA B L E  23

Demand Information per Year

Zone Fire Calls False Alarms Medical Calls Base Cost ($/Year)

1 100 200 1000 40,000

2 50 100 450 Existing

3 75 100 600 35,000

4 120 75 1300 50,000

5 150 100 1400 Existing

6 300 150 1000 50,000

7 200 100 800 Existing

8 250 175 1000 Existing

9 100 25 900 Existing

10 75 50 650 35,000

1

2

3 4

10

5

8

97

6

X

X

X

X

X

X marks the spot of the existing sites and the possible sites in each zone

X

X

X

X
X

FIGURE 4

Map of the City (17 miles by 11 miles)



hire subcontractors, ensure each task is completed

within specification, determine how much labor to as-

sign to each task, and generally ensure the project’s

success.

SD is really a subcontractor within the larger proj-

ect of building the power plant. Table 24 details SD’s

plant-construction and data-system-design tasks. SD

is directly in charge of tasks 2, 6, 7, 10, 14, 15, and

19. The remaining tasks in Table 24 interact with those

in SD’s charge. Assume that the remaining tasks 

(1) will start whenever their predecessor tasks are com-

plete and (2) will finish exactly after their duration.

To shorten the seven SD tasks, you must pay addi-

tional labor and overhead costs. Table 25 lists the

functions you can use to compute the cost of chang-

ing each task duration to a new value. (Note: tj is the

original duration of task j; dj is the minimum duration

of task j.) The table also lists the lowest possible task-

duration value. You may not increase the duration of

any task.

The revenue that SD obtains from the project de-

pends not only on its tasks but also on when the total

project is completed. The project is due at day 900,

and SD receives the contract price of $600,000 if the

project is done then. If the project is finished x days

early, then SD receives a total of $600,000 �

$15,000x0.7 in revenue. If SD finishes x days late, then

it receives $600,000 � $20,000x1.4 in revenue.

Expediting tasks can be profitable and necessary to

meet deadlines, although employees do not really like

it. Task completion quality is a function of the task

completion time, and we would like to have a high

quality. This may conflict with our objective of max-

imizing profit. Because quality affects future revenues,

it is difficult to estimate the dollar impact of poor

quality. If tj is the original duration of task j and xj is

the expedited duration time for task j, then quality,

measured on a scale of 0–100 (with 100 being the

best), can be represented by the function

100 � min [100, (tj � xj)
2.2]

This is only the quality for a task. It is unclear how

one might quantify the quality of the project.

Your job is to determine how we should proceed

with our tasks. Your analysis should answer some of

the following questions:

■ What tasks are critical to project completion? What

tasks will you expedite?

■ How are you measuring system quality, and how

does your recommendation measure up relative to

that objective?

C A S E  9 System Design: Project Management 1365

When vehicles are dispatched on a call, the closest

idle vehicle is dispatched first. If no vehicles are idle,

then the call must be sent to a private provider; these

responses cost the city $5,000 per medical call,

$15,000 per fire call, and $200 per false alarm. There

is no queueing. The street network is largely rectan-

gular, and the fire department estimates that the cost

per mile for travel is $1.50 per mile for engines and

ladders and $0.75 per mile for paramedic units.

Your job is to design a system for the fire depart-

ment. The questions that should be considered are

these:

■ What sites should be selected and how should the

vehicles be distributed?

■ If travel gets more expensive, how is the recom-

mendation affected?

■ If the cost of using the private provider increases,

then how should the system be changed?

■ Is all of this equipment needed to serve the public?

■ How much more demand can be handled with the

full complement of vehicles?

Your write-up should include a description of your

models and any assumptions made in model formula-

tion. You will have to make simplifying assumptions,

because this problem has details that may be difficult

to model. There are many ways to model parts of this

system, and you can use different approaches to an-

swer different questions. You may use Excel or

LINDO, or you may use heuristics. Your call will de-

pend on your modeling approaches.

Hint: This case is less specific and has vague com-

ponents; simplify as a first approach and then get

more complex. If you try to include everything, you

will become frustrated because this does not fit any

standard modeling paradigm.

C A S E  9

System Design: Project Management†

System Design (SD) is a small corporation that con-

tracts to manage systems and industrial engineering

projects. In this case it must manage the design and

construction of a power plant’s data-processing and

data-collection system. SD’s role in the project is to

†This material is expanded from a homework problem in Applied

Mathematical Programming by Wayne Winston.
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■ How much money do you make on the project?

■ What will you give the decision maker to help with

the decision?

■ If we can move minimum duration days to lower

values, then which values would you like to reduce?

■ If you could control additional tasks by paying

more money, which ones would you like to take,

and how much would you be willing to pay for

control?

C A S E 10

Modular Design for the Help-You Company

The Help-You Company is in the business of manu-

facturing first-aid kits for cars, hikers, campers, sports

teams, and scouting groups. The company is located

in Tucson, Arizona, and all materials must be sent to

Tucson and then shipped to customers’ warehouses.

The company has done extensive market surveys of

TA B L E  24

Task Information

Task Duration Immediate
Task No. Task Name (Days) Predecessor Tasks

1 Preliminary system description 40 —

2 Develop specifications 100 1

3 Client approval 50 2

4 Develop input-output summary 60 2

5 Develop alarm list 40 4

6 Develop log formats 40 3, 5

7 Software definition 35 3

8 Hardware requirements 35 3

9 Finalize input-output summary 60 5, 6

10 Analysis performance calculations 70 9

11 Automatic turbine startup analysis 65 9

12 Boiler guides analysis 30 9

13 Fabricate and ship 200 10, 11, 12

14 Software preparation 80 7, 10, 11

15 Install and check 130 13, 14

16 Termination and wiring lists 30 9

17 Schematic wiring lists 60 16

18 Pulling terminals and cables 60 15, 17

19 Operational test 125 18

20 First firing 1 19

TA B L E  25

Expediting Costs ($1,000) and Limits

Duration (Days)

Task No. Current tj Minimum dj Cost to Decrease tj by x Days

2 100 70 1.5x1.8

6 40 20 2x2.0

7 35 20 1x2.0

10 70 40 1.8x1.9

14 80 60 1.9x1.6

15 130 120 0.95x2.7

19 125 80 0.9x2.9
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its customers; Table 26 shows its estimates for the de-

mand for its kits in the coming year.

Each kit contains the individual items shown in

Table 27, which are listed with their base sizes in

pounds. Help-You, for example, can buy packs of 

Acetaminophen extra-strength caplets. Each pack con-

tains 12 tablets and costs Help-You $1.50.

Help-You buys the individual items and then as-

sembles kits based on the requirements for each part

in each kit as shown in Table 28.

These are minimum requirements in that the cus-

tomer expects at least the listed quantity of each item

in each specific kit. For example, in the kit for

campers, there must be at least four blankets and at

least three cold units (six cold packs) as well as the

other items.

There are two strategies available for assembly of

the kits:

■ In direct assembly, the exact requirements are put

into each kit.

■ In modular assembly, one or more standard mod-

ules are developed that can be assembled and com-

bined into a kit with enough modules so that the

minimum requirements for each item are met. A

graphic of the approach is detailed in Figure 5.

If you design a module, for example, that has two

units of Band-Aids (as well as the other items) and

place three of these modules in a scouting kit, then the

kit will have 3*2 � 6 units of Band-Aids; this will

meet the requirement of four units of Band-Aids for

scouting kits. In this example, there is an “overage”

of two extra units of Band-Aids that costs

2 * $1 per unit � $2

per each scout kit demanded. Also, the total unit con-

tent in a module cannot weigh more than 15 pounds

(an assembly requirement).

Direct assembly meets requirements exactly, al-

though it usually has higher labor costs than modular

assembly. For storing inventory, modules are easier to

use because they tend to be smaller than kits.

Develop a strategy for modular assembly. The key

costs of the modular system are the overages that oc-

cur. Your strategy must include the following:

■ the number of modules you are designing (the more

modules you have, the closer you can match re-

quirements exactly, although the higher the costs

for assembly and inventory);

■ the unit content of each module designed; and

■ an estimate for the total number of each module 

required.

Your analysis should consider issues such as:

■ the trade-off between the number of different mod-

ules designed and the total overage cost (you do

not need to try more than five different modules—

why?);

TA B L E  26

Kit Demand

Type Number of Kits Sold

Cars 1,000

Hikers 800

Campers 100

Sports teams 200

Scouting groups 300

TA B L E  27

Item Cost and Base Size

Item Cost ($) Base Unit Base Unit Weight (Lb.)

Adhesive Band-Aids 1 10 per pack 0.20

Ace bandages 2 1 bandage 0.20

Flares 4 3 per pack 1.00

Blankets 15 1 blanket 2.00

Adhesive tape 2.50 1 roll 0.40

Cold packs 4 2 per pack 0.80

Sunburn cream 3.50 1 tube 0.40

Antiseptic cream 2 1 tube 0.50

Acetaminophen extra-strength 1.50 12 tablets 0.30

caplets

Rubber gloves 1.50 3 pairs 0.20
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■ the sensitivity of your solution to the kit demand

estimates (for example, what happens to your rec-

ommendations if the number of scouting kits sold

changes by 20%?);

■ the sensitivity of your recommendations to the unit

cost values;

■ the sensitivity of your recommendations to the

weight limit on the size of each module; and

■ discussion about your confidence that you have the

optimal solution in light of what you have covered

concerning convex functions and sets.

C A S E  11

Brite Power: Capacity Expansion

Brite Power is a small power provider in the Finger

Lakes region of New York state. Because of Califor-

nia’s power shortage in summer 2001, Brite Power’s

board of directors has decided to commission a study

to ensure that the company has sufficient power until

2020. The study requires a time horizon of 16 years;

the first decisions can be implemented in January

2005. Even though operations plans for power com-

panies are important, this study is at a higher level.

TA B L E  28

Item to Kit Requirements (Base Units)

Kit Item Cars Hikers Campers Sports Teams Scouting Groups

Ace bandages 1 2 4 12 6

Band-Aids 0 2 4 4 4

Flares 2 1 1 0 2

Blankets 1 1 4 2 3

Adhesive tape 2 2 3 6 4

Cold packs 2 2 3 6 3

Sunburn cream 1 2 4 4 5

Antiseptic cream 1 2 3 2 4

Acetaminophen caplets 1 2 4 6 6

Rubber gloves 1 1 2 10 5

Car Hiker Camping

Modules

Sports Scouts

Band-Aids Gloves

Ace bandage Tape

Flares Blankets

FIGURE 5

Modular Assembly
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Our concern is with power capacity during the year

and not with day-to-day or hour-to-hour power-usage

fluctuations.

By the start of 2005, Brite will have plants with 60

megawatts’ worth of production capacity. Estimates of

demand for power from the company for the years 2005

to 2020 have been made and are listed in Table 29.

The economics of a coal-fired plant run according

to a power law—that is, the cost of a new plant in

constant dollars (sometimes called “year 0 dollars”)

follows the following estimation rule:

cost of plant with capacity K �

� �
0.8

*cost of the base size plant

For this analysis, the base plant’s production capac-

ity is 5 megawatts; its cost is $18 million. The company

estimates inflation at 4% per year for the duration of

the time horizon. The company uses a discount rate of

12% per year; this assumes that actual dollars are used

in the analysis [1 actual dollar in year 1 is equivalent to

1/(1.12) � .89 dollars now in year 0].

The time required for constructing a new plant is

two years. The project requires 65% of the cost at the

start of the first year; the remaining 35% is spent at

the start of the second year. If Brite Power starts a new

capacity K
���
capacity of base size plant

plant in 2007, for example, then 65% of the costs oc-

cur in 2007 and 35% in 2008; the plant then comes

online and can be used to satisfy demand in 2009.

With this lead time, it is clear that Brite Power needs

to do advanced planning.

Brite Power can build plants with 5-, 10-, 15-, and

20-megawatt capacities. If the company invests now

in research for new technologies ($3 million per year

for 5 years), then it can reduce the exponent in the

power model from 0.8 to 0.65.

Besides building new capacity, Brite Power must

operate plants; operations costs are based on the

amount of capacity used. If demand in year t is Dt

megawatts and total capacity in year t is Ct megawatts,

then the operations cost in constant dollars for the

year is:

��
D

Ct

t

��0.5

* Dt * $400,000

By and large, the company must satisfy all demand

in the year, although there are opportunities to buy 

3 megawatts per year from neighboring power com-

panies at $600,000 per megawatt (in constant 

dollars).

Key Questions

■ The Brite Board would like to know when to aug-

ment capacity. How big should the expansions be?

When should they start?

■ What are the actual dollars spent over the time

horizon to acquire and satisfy demand? What is the

discounted value of these expenditures?

■ Should the company invest in research to lower the

power law coefficient?

■ If demand estimates are increased or decreased,

then how would the plan change?

■ If the $400,000 value in the operations cost

changes, then how would the plan change?

TA B L E  29

Demand Demand
Year (Megawatts) Year (Megawatts)

2005 54 2013 87

2006 58 2014 87

2007 63 2015 90

2008 63 2016 90

2009 69 2017 100

2010 75 2018 110

2011 77 2019 110

2012 77 2020 120



A P P E N D I X 3

Answers to Selected Problems

Chapter 2

S E C T I O N  2.1

1 a � A � � �
b 3A � � �
c A � 2B is undefined.

d AT
� � �

e BT
� � �

f AB � � �
g BA is undefined.

2 � � � � �� �
S E C T I O N  2.2

1 � �� � � � � or � � �
S E C T I O N  2.3

1 No solution.

2 Infinite number of solutions of the form x1 � 2 � 2k,
x2 � 2 � k, x3 � k.

3 x1 � 2, x2 � �1.
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1

2

�0

�1

1

2

7

8

9

4

5

6

1

2

3

9
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24

3

12

21

�3

�6
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�2
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�8

�1

�4

�7

S E C T I O N  2.4

1 Linearly dependent.

2 Linearly independent.

S E C T I O N  2.5

2 A�1
� � �

3 A�1 does not exist.

8 a �
1
1
00
�B�1.

S E C T I O N  2.6

2 30.

R E V I E W  P R O B L E M S

1 Infinite number of solutions of the form x1 � k � 1, 
x2 � 3 � k, x3 � k.

3 � � � � �� �
4 x1 � 0, x2 � 1.

13 Linearly independent.

14 Linearly dependent.

15 a Only if a, b, c, and d are all nonzero will rank A �

4. Thus, A�1 exists if and only if all of a, b, c, and d
are nonzero.

b Applying the Gauss-Jordan method, we find if a, b,
c, and d are all nonzero,

A�1
� � �

18 �4.
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Chapter 3

S E C T I O N  3.1

1 max z � 30x1 � 100x2

1 s.t. x1 � x2 � 7 (Land constraint)

4x1 � 10x2 � 40 (Labor constraint)

1 s.t. 10x1 + 10 x2 � 30 (Government constraint)

x1, x2 � 0

2 No, the government constraint is not satisfied.

b No, the labor constraint is not satisfied.

c No, x2 � 0 is not satisfied.

S E C T I O N  3.2

1 z � $370, x1 � 3, x2 � 2.8.

3 z � $14, x1 � 3, x2 � 2.

4 a We want to make x1 larger and x2 smaller, so we
move down and to the right.

b We want to make x1 smaller and x2 larger, so we
move up and to the left.

b We want to make both x1 and x2 smaller, so we move
down and to the left.

S E C T I O N  3.3

1 No feasible solution.

2 Alternative optimal solutions.

3 Unbounded LP.

S E C T I O N  3.4

1 For i � 1, 2, 3, let xi � tons of processed factory i
waste. Then the appropriate LP is

min z � 15x1 � 10x2 � 20x3

s.t. 0.10x1 � 0.20x2 � 0.40x3 � 30 (Pollutant 1)

s.t. 0.45x1 � 0.25x2 � 0.30x3 � 40 (Pollutant 2)

x1, x2, x3 � 0

It is doubtful that the processing cost is proportional to the
amount of waste processed. For example, processing 10
tons of waste is probably not 10 times as costly as processing
1 ton of waste. The Divisibility and Certainty Assumptions
seem reasonable.

S E C T I O N  3.5

1 Let x1 � number of full-time employees (FTE) who
start work on Sunday, x2 � number of FTE who start work
on Monday, . . . , x7 � number of FTE who start work on
Saturday; x8 � number of part-time employees (PTE) who
start work on Sunday, . . . , x14 � number of PTE who start
work on Saturday. Then the appropriate LP is

min z � 15(8)(5)(x1 � x2 � � � � � x7)

min z � � 10(4)(5)(x8 � x9 � � � � � x14)

s.t. 8(x1 � x4 � x5 � x6 � x7) � 4(x8 � x11 � x12

� x13 � x14) � 88 (Sunday)

s.t. 8(x1 � x2 � x5 � x6 � x7) � 4(x8 � x9 � x12

� x13 � x14) � 136 (Monday)

s.t. 8(x1 � x2 � x3 � x6 � x7) � 4(x8 � x9 � x10

� x13 � x14) � 104 (Tuesday)

s.t. 8(x1 � x2 � x3 � x4 � x7) � 4(x8 � x9 � x10

� x11 � x14) � 120 (Wednesday)

s.t. 8(x1 � x2 � x3 � x4 � x5) � 4(x8 � x9 � x10

� x11 � x12) � 152 (Thursday)

s.t. 8(x2 � x3 � x4 � x5 � x6) � 4(x9 � x10 � x11

� x12 � x13) � 112 (Friday)

s.t. 8(x3 � x4 � x5 � x6 � x7) � 4(x10 � x11 � x12

� x13 � x14) � 128 (Saturday)

20(x8 � x9 � x10 � x11 � x12 � x13 � x14)

� 0.25(136 � 104 � 120 � 152 � 112 � 128

�88)

(The last constraint ensures that part-time labor
will fulfill at most 25% of all labor requirements)

All variables � 0

3 Let x1 � number of employees who start work on Sunday
and work five days, x2 � number of employees who start
work on Monday and work five days, . . . , x7 � number of
employees who start work on Saturday and work five days.
Also let o1 � number of employees who start work on
Sunday and work six days, . . . , o7 � number of employees
who start work on Saturday and work six days. Then the
appropriate LP is

min z � 250(x1 � x2 � � � � � x7)

min z � + 312(o1 � o2 � � � � � o7)

s.t. x1 � x4 � x5 � x6 � x7 � o1 � o3 � o4

� o5 � o6 � o7 � 11 (Sunday)

s.t. x1 � x2 � x5 � x6 � x7 � o1 � o2 � o4

� o5 � o6 � o7 � 17 (Monday)

s.t. x1 � x2 � x3 � x6 � x7 � o1 � o2 � o3

� o5 � o6 � o7 � 13 (Tuesday)

s.t. x1 � x2 � x3 � x4 � x7 � o1 � o2 � o3

� o4 � o6 � o7 � 15 (Wednesday)

s.t. x1 � x2 � x3 � x4 � x5 � o1 � o2 � o3

� o4 � o5 � o7 � 19 (Thursday)

s.t. x2 � x3 � x4 � x5 � x6 � o1 � o2 � o3

� o4 � o5 � o6 � 14 (Friday)

s.t. x3 � x4 � x5 � x6 � x7 � o2 � o3 � o4

� o5 � o6 � o7 � 16 (Saturday)

All variables � 0



S E C T I O N  3.6

2 NPV of investment 1

= �6 � �
1

5

.1
� � �

(1.

7

1)2� � �
(1.

9

1)3� � $2.00.

NPV of investment 2

= �8 � �
1

3

.1
� � �

(1.

9

1)2� � �
(1.

7

1)3� � $1.97.

Let x1 � fraction of investment 1 that is undertaken and
x2 � fraction of investment 2 that is undertaken. If we
measure NPV in thousands of dollars, we want to solve the
following LP:

max z � 2x1 � 1.97x2

s.t. 6x1 � 8x2 � 10

5x1 � 3x2 � 7

x1 � 3x2 � 1

x2 � 1

All variables � 0

The optimal solution to this LP is x1 � 1, x2 � 0.5, z �

$2,985.

S E C T I O N  3.7

1 z � $2,500, x1 � 50, x2 � 100.

S E C T I O N  3.8

1 Let ingredient 1 � sugar, ingredient 2 � nuts, ingredient
3 � chocolate, candy 1 � Slugger, and candy 2 � Easy
Out. Let xij � ounces of ingredient i used to make candy j.
(All variables are in ounces.) The appropriate LP is

max z � 25(x12 � x22 � x32) � 20(x11 � x21 � x31)

s.t. x11 � x12 � 100 (Sugar constraint)

x21 � x22 � 20 (Nuts constraint)

x31 � x32 � 30 (Chocolate constraint)

x22 � 0.2(x12 � x22 � x32)

x21 � 0.1(x11 � x21 � x31)

x31 � 0.1(x11 � x21 � x31)

All variables � 0

S E C T I O N  3.9

1 Let x1 � hours of process 1 run per week

1 Let x2 � hours of process 2 run per week

1 Let x3 � hours of process 3 run per week

1 Let g2 � barrels of gas 2 sold per week

1 Let o1 � barrels of oil 1 purchased per week

1 Let o2 � barrels of oil 2 purchased per week

1 max z � 9(2x1) � 10g2 � 24(2x3) � 5x1 � 4x2

1372 A P P E N D I X  3 Answers to Selected Problems

1 max z � � x3 � 2o1 � 3o2

1 max z � s.t. o1 � 2x1 � x2

1 max z � s.t. o2 � 3x1 � 3x2 � 2x3

1 max z � s.t. o1 � 200

1 max z � s.t. o2 � 300

g2 � 3x3 � x1 � 3x2 (Gas 2 production)

x1 � x2 � x3 � 100 (100 hours per week
of cracker time)

All variables � 0

5 Let A � total number of units of A produced

B � total number of units of B produced

CS � total number of units of C produced (and
sold)

AS � units of A sold

BS � units of B sold

max z � 10AS � 56BS � 100CS

s.t. A � 2B � 3C � 40

A � AS � 2B

B � BS � CS

All variables � 0

S E C T I O N  3.10

1 Let xt � production during month t and it � inventory
at end of month t.

1 min z � 5x1 � 8x2 � 4x3 � 7x4

1 min z = � 2i1 � 2i2 � 2i3 � 2i4 � 6i4

1 s.t. i1 � x1 � 50

1 s.t. i2 � i1 � x2 � 65

1 s.t. i3 � i2 � x3 � 100

1 s.t. i4 � i3 � x4 � 70

All variables � 0

S E C T I O N  3.11

3 Let A � dollars invested in A, B � dollars invested in
B, c0 � leftover cash at time 0, c1 � leftover cash at time
1, and c2 � leftover cash at time 2. Then a correct
formulation is

max z � c2 � 1.9B

s.t. A � c0 � 10,000

(Time 0 available � time 0 invested)

0.2A � c0 � B � c1

(Time 1 available � time 1 invested)

1.5A � c1 � c2

(Time 2 available � time 2 invested)

All variables � 0



The optimal solution to this LP is B � c0 � $10,000, A �
c1 � c2 � 0, and z � $19,000. Notice that it is optimal to
wait for the “good” investment (B) even though leftover
cash earns no interest.

S E C T I O N  3.12

2 Let JAN1 � number of computers rented at beginning
of January for one month, and so on. Also define IJAN �
number of computers available to meet January demand,
and so on. The appropriate LP is

min z � 200(JAN1 � FEB1 � MAR1 � APR1

min z � + MAY1 � JUN1) � 350(JAN2 � FEB2

min z � + MAR2 � APR2 � MAY2 � JUN2)

min z � + 450(JAN3 � FEB3 � MAR3 � APR3)

min z � + MAY3 � JUN3) � 150MAY3

min z � � 300 JUN3 � 175JUN2

s.t. IJAN � JAN1 � JAN2 � JAN3

IFEB � IJAN � JAN1 � FEB1 � FEB2 � FEB3

s.t. IMAR � IFEB � JAN2 � FEB1 � MAR1

� MAR2 � MAR3

IAPR � IMAR � FEB2 � MAR1 � JAN3

� APR1 � APR2 � APR3

IMAY � IAPR � FEB3 � MAR2 � APR1

s.t. IMAY � � MAY1 � MAY2 � MAY3

IJUN � IMAY � MAR3 � APR2 � MAY1

� JUN1 � JUN2 � JUN3

IJAN � 9

IFEB � 5

IMAR � 7

IAPR � 9

IMAY � 10

IJUN � 5

All variables � 0

R E V I E W  P R O B L E M S

2 Let x1 � number of chocolate cakes baked and x2 �

number of vanilla cakes baked. Then we must solve

max z � x1 � �
1

2
� x2

s.t. �
1

3
� x1 � �

2

3
� x2 � 8

4x1 � x2 � 30

x1, x2 � 0

The optimal solution is z � �
$6

7

9
�, x1 � �

3

7

6
�, x2 � �

6

7

6
�.

8 Let x1 � acres of farm 1 devoted to corn, x2 � acres of
farm 1 devoted to wheat, x3 � acres of farm 2 devoted to
corn, x4 acres of farm 2 devoted to wheat. Then a correct
formulation is

min z � 100x1 � 90x2 � 120x3 � 80x4

s.t. x1 � x2 � 100

(Farm 1 land)

x3 � x4 � 100

(Farm 2 land)

500x1 � 650x3 � 7,000

(Corn requirement)

400x2 � 350x4 � 11,000

(Wheat requirement)

x1, x2, x3, x4 � 0

9 Let x1 � units of process 1, x2 � units of process 2, and
x3 � modeling hours hired. Then a correct formulation is

max z � 5(3x1 � 5 x2) � 3(x1 � 2x2)

� 2(2x1 � 3x2) � 100x3

s.t. x1 � 2x2 � 20,000 (Limited labor)

2x1 � 3x2 � 35,000 (Limited chemicals)

3x1 � 5x2 � 1,000 � 200x3

(Perfume production � perfume demands)

x1, x2, x3 � 0

17 Let OT � number of tables made of oak, OC � number
of chairs made of oak, PT � number of tables made of pine,
and PC � number of chairs made of pine. Then the correct
formulation is

max z � 40(OT � PT) � 15(OC � PC)

s.t. 17(OT) � 5(OC) � 150

(Use at most 150 board ft of oak)

30PT � 13PC � 210

(Use at most 210 board ft of pine)

OT, OC, PT, PC � 0

18 Let school 1 � Cooley High, and school 2 � Walt
Whitman High. Let Mij � number of minority students who
live in district i who will attend school j, and let NMij �

number of nonminority students who live in district i who
will attend school j. Then the correct LP is

min z � (M11 � NM11) � 2(M12 � NM12)

� 2(M21 � NM21) � (M22 � NM22)

� (M31 � NM31) � (M32 � NM32)

s.t. M11 � M12 � 50

M21 � M22 � 50

M31 � M32 � 100

NM11 � NM12 � 200

NM21 � NM22 � 250

NM31 � NM32 � 150
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For school 1, we obtain the following blending constraints:

0.20 �

� 0.30

This yields the following two LP constraints:

0.8M11 � 0.8M21 � 0.8M31 � 0.2NM11

� 0.2NM21 � 0.2NM31> � 0

0.7M11 � 0.7M21 � 0.7M32 � 0.3NM11

� 0.3NM21 � 0.3NM31 � 0

For school 2, we obtain the following blending constraints:

0.20 �

� 0.30

This yields the following two LP constraints:

0.8M12 � 0.8M22 � 0.8M32 � 0.20NM12

� 0.20NM22 � 0.20NM32 � 0

0.7M12 � 0.7M22 � 0.7M32 � 0.30NM12

� 0.30NM22 � 0.30NM32 � 0

We must also ensure that each school has between 300 and
500 students. Thus, we also need the following constraints:

300 � M11 � NM11 � M21 � NM21 � M31 � NM31

� 500

300 � M12 � NM12 � M22 � NM22 � M32 � NM32

� 500

To complete the formulation, add the sign restrictions that
all variables are � 0.

47 For i 	 j, let Xij � number of workers who get off days
i and j of week (day 1 � Sunday, day 2 � Monday, . . . , day
7 � Saturday).

max z � X12 � X17 � X23 � X34 � X45 � X56 � X67

s.t. X17 � X27 � X37 � X47 � X57 � X67 � 2

(Saturday constraint)

s.t. X12 � X13 � X14 � X15 � X16 � X17 � 12

(Sunday constraint)

s.t. X12 � X23 � X24 � X25 � X26 � X27 � 12

(Monday constraint)

s.t. X13 � X23 � X34 � X35 � X36 � X37 � 6

(Tuesday constraint)

s.t. X14 � X24 � X34 � X45 � X46 � X47 � 5

(Wednesday constraint)

s.t. X15 � X25 � X35 � X45 � X56 � X57 � 14

(Thursday constraint)

M12 � M22 � M32�����
M12 � M22 � M32 � NM12 � NM22 � NM32

M11 � M21 � M31�����
M11 � M21 � M31 � NM11 � NM21 � NM31
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s.t. X16 � X26 � X36 � X46 � X56 � X67 � 9

(Friday constraint)

All variables � 0

49 Let Xij � money invested at beginning of month i for
a period of j months. After noting that for each month
(money invested) � (bills paid) � (money available), we
obtain the following formulation:

max z � 1.08X14 � 1.03X23 � 1.01X32 � 1.001X41

s.t. X11 � X12 � X13 � X14 � 600 � 400 � 400

(Month 1)

s.t. X21 � X22 � X23 � 500 � 1.001X11 � 800

(Month 2)

s.t. X31 � X32 � 500 � 1.01X12 � 1.001X21 � 300

(Month 3)

s.t. X41 � 250 � 1.03X13 � 1.01X22 � 1.001X31 � 300

(Month 4)

All variables � 0

53 Let T1 � number of type 1 turkeys purchased

53 Let T2 � number of type 2 turkeys purchased

D1 � pounds of dark meat used in cutlet 1

W1 � pounds of white meat used in cutlet 1

D2 � pounds of dark meat used in cutlet 2

W2 � pounds of white meat used in cutlet 2

Then the appropriate formulation is

max z � 4(W1 � D1) � 3(W2 � D2) � 10T1 � 8T2

s.t. W1 � D1 � 50 (Cutlet 1 demand)

s.t. W2 � D2 � 30 (Cutlet 2 demand)

s.t. W1 � W2 � 5T1 � 3T2 (Don’t use more white
meat than you have)

D1 � D2 � 2T1 � 3T2 (Don’t use more dark meat
than you have)

W1/(W1 � D1) � 0.7 or 0.3W1 � 0.7D1

W2/(W2 � D2) � 0.6 or 0.4W2 � 0.6D2

T1, T2, D1, W1, D2, W2 � 0

Chapter 4

S E C T I O N  4.1

1 max z � 3x1 � 2x2

1 s.t. 2x1 � x2 � s1 + s2 � s3 � 100

x1 � x2 + s1 + s2 � 80

x1 � s3 � 40



3 min z � 3x1 � x2

1 s.t. x1 + x2 � e1 + s2 � 3

1 s.t. x1 � x2 � s2 � 4

1 s.t. 2x1 � x2 � 3

S E C T I O N  4.4

1 From Figure 2 of Chapter 3, we find the extreme points
of the feasible region.

Point Basic Variables

H � (0, 0) s1 � 100, s2 � 80, s3 � 40

E � (40, 0) x1 � 40, s1 � 20, s2 � 40

F � (40, 20) x1 � 40, x2 � 20, s2 � 20

G � (20, 60) x1 � 20, x2 � 60, s3 � 20

D � (0, 80) x2 � 80, s1 � 20, s3 � 40

S E C T I O N  4.5

1 z � 180, x1 � 20, x2 � 60.

2 z � �
3

3

2
�, x1 � �

1

3

0
�, x2 � �

4

3
�.

S E C T I O N  4.6

1 z � �5, x1 � 0, x2 � 5.

S E C T I O N  4.7

2 Solution 1: z � 6, x1 � 0, x2 � 1; solution 2: z � 6, 

x1 � �
5

1

6

7
�, x2 � �

4

1

5

7
�. By averaging these two solutions, we

obtain solution 3: z � 6, x1 � �
2

1

8

7
�, x2 � �

3

1

1

7
�.

S E C T I O N  4.8

1 x1 � 4,999, x2 � 5,000 has z � 10,000.

S E C T I O N  4.10

1 a Both very small numbers (for example, 0.000003)
and large numbers (for example, 3,000,000) appear in
the problem.

b Let x1 � units of product i produced (in millions).
If we measure our profit in millions of dollars, the LP
becomes

1 max � 6x1 � 4x2 � 3x3

1 s.t. 4x1 � 3x2 � 2x3 � 3 (Million labor hours)

1 s.t. 3x1 � 2x2 � x3 � 2 (lb of pollution)

1 s.t. 3x1, x2, x3 � 0

S E C T I O N  4.11

1 z � 16, x1 � x2 � 2. The point where all three constraints
are binding (x1 � x2 � 2) corresponds to the following
three sets of basic variables:

Set 1 � {x1, x2, s1}

Set 2 � {x1, x2, s2}

Set 3 � {x1, x2, s3}

S E C T I O N S  4.12 A N D  4.13

1 z � 1, x1 � x2 � 0, x3 � 1.

4 Infeasible LP.

S E C T I O N  4.14

1 Let it � i
t � i�t be the inventory position at the end of
month t. For each constraint in the original problem, replace
it by i
t � i�t. Also add the sign restrictions i
t � 0 and i�t � 0.
To ensure that demand is met by the end of quarter 4, add
constraint i �4 � 0. Replace the terms involving it in the
objective function by

(100i
1 � 100i�1 � 100i
2 � 100i�2

� 100i
3 � 110i�3 � 100i
4 � 110i�4)

2 z � 5, x1 � 1, x2 � 3.

S E C T I O N  4.16

2 Let xi � number of lots purchased from supplier i. The
appropriate LP is

min z � 10s�

1 � 6s�

2 � 4s�

3 � s�

4

s.t. 60x1 � 50x2 � 40x3 � s�

1 � s�

1 � 5,000

(Excellent chips)

s.t. 20x1 � 35x2 � 20x3 � s�

2 � s�

2 � 3,000

(Good chips)

s.t. 20x1 � 15x2 � 40x3 � s�

3 � s�

3 � 1,000

(Mediocre chips)

s.t. 400x1 � 300x2 � 250x3 � s�

4 � s�

4 � 28,000

(Budget constraint)

All variables � 0

R E V I E W  P R O B L E M S

4 Unbounded LP.

5 z � �6, x1 � 0, x2 � 3.

6 Infeasible LP.

8 z � 12, x1 � x2 � 2.

10 Four types of furniture.

15 z � �
1

2

7
�, x2 � �

3

2
�, x4 � �

1

2
�.

17 a �c � 0 and b � 0.

b b � 0 and c � 0. Also need a2 > 0 and/or a3 > 0
to ensure that when x1 is pivoted in, a feasible solution
results. If only a3 > 0, then we need b to be strictly
positive.
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c �c 	 0, a2 � 0, a3 � 0 ensures that x1 can be
made arbitrarily large and z will become arbitrarily
large.

20 Let ct � net number of drivers hired at the beginning
of the year t. Then ct � ht � ft, where ht � number of drivers
hired at beginning of year t, and ft � number of drivers fired
at beginning of year t. Also let dt � number of drivers after
drivers have been hired or fired at beginning of year t. Then
a correct formulation is (cost in thousands of dollars)

min z � 10(d1 � d2 � d3 � d4 � d5)

� 2(f1 � f2 � f3 � f4 � f5)

� 4(h1 � h2 � h3 � h4 � h5)

s.t. d1 � 50 � h1 � f1

s.t. d2 � d1 � h2 � f2

s.t. d3 � d2 � h3 � f3

s.t. d4 � d3 � h4 � f4

s.t. d5 � d4 � h5 � f5

s.t. d1 � 60, d2 � 70, d3 � 50, d4 � 65, 

s.t. d5 � 75

All variables � 0

26 Let
Rt � robots available during quarter t

(after robots are bought or sold for the quarter)

Bt � robots bought during quarter t

St � robots sold during quarter t

I
t � cars in inventory at end of quarter t

Ct � cars produced during quarter t

I�t � backlogged demand for cars at end of quarter t

Then a correct formulation is

min z � 500(R1 � R2 � R3 � R4)

� 200(I
1 � I
2 � I
3 � I
4)

� 5,000(B1 � B2 � B3 � B4)

� 3,000(S1 � S2 � S3 � S4)

� 300(I �1 � I�2 � I �3 � I�4)

s.t. R1 � 2 � B1 � S1

s.t. R2 � R1 � B2 � S2

s.t. R3 � R2 � B3 � S3

s.t. R4 � R3 � B4 � S4

I
1 � I �1 � C1 � 600

I
2 � I�2 � I
1 � I �1 � C2 � 800

I
3 � I �3 � I
2 � I�2 � C3 � 500

I
4 � I�4 � I
3 � I �3 � C4 � 400

s.t. R4 � 2

s.t. C1 � 200R1

s.t. C2 � 200R2
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s.t. C3 � 200R3

s.t. C4 � 200R4, I�4 � 0

B1, B2, B3, B4 � 2

All variables � 0

Chapter 5

S E C T I O N  5.1

1 Decision variables remain the same. New z-value is
$210.

4 a �
5

3

0
� � c1 � 350.

c 4,000,000 � HIW � 84,000,000;  x1 � 3.6 � 0.15�,
x2 � 1.4 � 0.025�.

f $310,000.

S E C T I O N  5.2

1 a $3,875.

b Decision variables remain the same. New z-value is
$3,750.

c Solution remains the same.

3 a Still 90¢.

b 95¢.

c 95¢.

d Still 90¢.

e 82.5¢.

f 30¢ or less.

g 22.5¢ or less.

S E C T I O N  5.3

3 2.5¢.

4 $2.

5 Buy raw material, because it will reduce cost by $6.67.

S E C T I O N  5.4

3 See Figures 1–4.

FIGURE 1



R E V I E W  P R O B L E M S

1 a $1,046,667.

b Yes.

c $33.33.

b $333.33.

7 a Decision variables remain unchanged. New z-value
is $1,815,000.

b Pay $0 for an additional 100 board ft of lumber. Pay
$1,350 for an additional 100 hours of labor.

c $1,310,000.

d $1,665,000.

Chapter 6

S E C T I O N  6.1

1 Decision variables remain the same. New z-value is
$210.

S E C T I O N  6.2

1 z � 4s1 � 5s2 � 28

x1 � s1 � s2 � 6

x2 � s1 � 2s2 � 10

S E C T I O N  6.3

3 x1 � 2, x2 � 0, x3 � 8, z � 280 (same as original
solution).

5 Home computer tables should not be produced.

6 a Profit for candy bar 1 � 6¢. If type 1 candy bar
earns 7¢ profit, new optimal solution is z � $3.50, 
x1 � 50, x2 � x3 � 0.

b 5¢ � candy bar 2 profit � 15¢. If candy bar 2 profit
is 13¢, decision variables remain the same, but profit is
now $4.50.

c �
10

3

0
� � sugar � 100.

d z � $3.40, x1 � 0, x2 � 20, x3 � 40. If 30 oz of
sugar is available, current basis is no longer optimal,
and problem must be solved again.

e Make type 1 candy bars.

f Make type 4 candy bars.

8 a $16,667.67 � comedy cost � $350,000.

b 4 million � HIW � 84 million. For 40 million HIW
exposures, new optimal solution is x1 � 5.4, 
x2 � 1.1, z � $350,000.

c Advertise on news program.

S E C T I O N  6.4

1 Yes.

2 No.

4 Yes.
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FIGURE 2

FIGURE 3

FIGURE 4



S E C T I O N  6.5

1 min w � y1 � 3y2 � 4y3

s.t. �y1 � y2 � y3 � 2

y1 � y2 � 2y3 � 1

y1, y2, y3 � 0

2 max z � 4x1 � x2 � 3x3

s.t. 2x1 � x2 � x3 � 1

x1 � x2 � 2x3 � �1

x1, x2, x3 � 0

3 min w � 5y1 � 7y2 � 6y3 � 4y4

s.t. y1 � 2y2 � y4 � �4

1 s.t. y1 � y2 � 2y3 � �1

1 s.t. y1 � y2 � 2y3 � y4 � �2

1 s.t. y1 � y1, y2 � 0; y3 � 0; y4 urs

4 max z � 6x1 � 8x2

s.t. x1 � x2 � 4

1 s.t. 2x1 � x2 � 2

1 s.t. 2x1 � 2x2 � �1

1 s.t. x1 � 0; x2 urs

S E C T I O N  6.7

1 a min w � 100y1 � 80y2 � 40y3

s.t. 2y1 � y2 � y3 � 3

y1 � y2 � 2

1 a s.t. y1 , y2, y3 � 0

b and c y1 � 1, y2 � 1, y3 � 0, w � 180. Observe
that this solution has a w-value that equals the optimal
primal z-value. Since this solution is dual feasible, it
must be optimal (by Lemma 2) for the dual.

2 a min w � 3y1 � 2y2 � y3

s.t. y1 � y3 � �2

y1 � y2 � �1

y1 � y2 � y3 � 1

b y1 � coefficient of s1 in optimal row 0 � 0

b y2 � �(coefficient of e2 in optimal row 0)

b y2 � �1

b y3 � coefficient of a3 in optimal row 0 � M

b y2 � 2

b y2 � coeffiOptimal w-value � 0.

9 Dual is max w � 28y1 � 24y2

s.t. 7y1 � 2y2 � 50

2y1 � 12y2 � 100

y1, y2 � 0

Optimal dual solution is w � $320,000, y1 � 5, y2 � 7.5.
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S E C T I O N  6.8

2 b New z-value � $3.40.

c New z-value � $2.60.

d Since current basis is no longer optimal, the current
shadow prices cannot be used to determine the new 
z-value.

5 b Skilled labor shadow price � 0, unskilled labor
shadow price � 0, raw material shadow price � 15, and
product 2 constraint shadow price � �5.

We would be willing to pay $0 for an additional hour
of either type of labor. We would pay up to $15 for an extra
unit of raw material. Reducing the product 2 marketing
requirement by 1 unit will save the company $5.

c �b3 � 5, so new z-value � 435 � 5(15) � $510.

d Since shadow price of each labor constraint is zero,
the optimal z-value remains unchanged.

e For a 5-unit requirement, �b4 � 2. Thus, new 
z-value � 435 � 2(�5) � $425. For a 2-unit requirement,
�b4 � �1. Thus, new z-value � 435 � (�1)(�5) �

$440.

6 a If purchased at the given price of $1, an extra unit
of raw material increases profits by $2.50. Thus, the firm
would be willing to pay up to 1 � 2.5 � $3.50 for an
extra unit of raw material.

b Both labor constraints are nonbinding. All we can
say is that if an additional hour of skilled labor were
available at $3/hour, we would not buy it, and if an
additional hour of unskilled labor were available at
$2/hour, we would not buy it.

7 a New z-value � $380,000.

b New z-value � $290,000.

S E C T I O N  6.9

1 The current basis is no longer optimal. We should make
computer tables, because they sell for $35 each and use only
$30 worth of resources.

2 a Current basis remains optimal if type 1 profit � 6¢.

S E C T I O N  6.10

1 a min w � 600y1 � 400y2 � 500y3

s.t. 4y1 � y2 � 3y3 � 6

1 a s.t. 9y1 � y2 � 4y3 � 10

1 a s.t. 7y1 � 3y2 � 2y3 � 9

1 a s.t. 10y1 � 40y2 � y3 � 20

1 a s.t. 10y1 y1, y2, y3, y4 � 0

b w � �
2,8

3

00
�, y1 � �

2

5

2
�, y2 � �

1

2

5
�, y3 � 0.

S E C T I O N  6.11

1 z � �9, x1 � 0, x2 � 14, x3 � 9.

2 a The current solution is still optimal.

b The LP is now infeasible.



c The new optimal solution is z � 10, x1 � 1, 
x2 � 4.

S E C T I O N  6.12

4 Only HPER is inefficient.

R E V I E W  P R O B L E M S

1 a min w � 6y1 � 3y2 � 10y3

1 a s.t. y1 � y2 � 2y3 � 4

1 a s.t. 2y1 � y2 � y3 � 1

1 a s.y1 urs; y2 � 0; y3 � 0

Optimal dual solution is w � �
5

3

8
�, y1 � ��

2

3
�, y2 � 0, y3 � �

7

3
�.

b 9 � b3 � 12. If b3 � 11, the new optimal solution
is z � �

6

3

5
�, x1 � �

1

3

6
�, x2 � �

1

3
�.

2 c1 � �
1

2
�.

3 a min w � 6y1 � 8y2 � 2y3

3 a s.t. y1 � 6y2 + y3 � 5

3 a s.t. y1 � y3 � 1

3 a s.t. y1 � y2 � y3 � 2

3 a s.t. y1, y2, y3 � 0

Optimal dual solution is w � 9, y1 � 0, y2 � �
5

6
�, y3 � �

7

6
�.

b 0 � c1 � 6.

c c2 � �
7

6
�.

4 a New z-value � 32,540 � 10(88) � $33,420.
Decision variables remain the same.

b Can’t tell, since allowable increase is 	 1.

c $0.

d 32,540 � (�2)(�20) � $32,580.

e Produce jeeps.

8 a New z-value � $266.20.

b New z-value � $270.70. Decision variables remain
the same.

c $12.60.

d 20¢.

e Produce product 3.

17 z � �16, x1 � 8, x2 � 0.

20 Optimal primal solution: z � 13, x1 � 1, x2 � x3 � 0,
x4 � 2. Optimal dual solution: w � 13, y1 � 1, y2 � 1.

21 a c1 � 3.

b c2 � �
4

3
�.

c 0 � b1 � 9.

d b2 � 10.

28 LP 2 optimal solution: z � 550, x1 � 0.5, x2 � 5.
Optimal solution to dual of LP 2: w � 550, y1 � y2 � �

10

3

0
�.

36 b2 � 3.
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Chapter 7

S E C T I O N  7.1

1



3
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5



7 This is a maximization problem, so number in each cell
is a revenue, not a cost.

Laroach in month 1.
In Problem 7 of Section 7.1, Cliff gets 20,000 acres at

site 1 and 20,000 acres at site 2. Blake gets 80,000 acres at
site 2. Alexis gets 80,000 acres at site 1.

S E C T I O N  7.4

2 Current basis remains optimal if c34 � 7.

4 New optimal solution is x12 � 12, x13 � 23, x21 � 45,
x23 � 5, x32 � 8, x34 � 30, and z � 1,020 � 2(3) � 2(10)
� 994.

S E C T I O N  7.5

1 Person 1 does job 2, person 2 does job 1, person 3 does
no job, person 4 does job 4, and person 5 does job 3.

8 a Company 1 does route 1, company 2 does route 2,
company 3 does route 3, and company 4 does route 4.

b Company 3 does routes 3 and 1, company 2 does
routes 2 and 4.
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12 a Replace the M’s by incorporating a backlogging
cost. For example, month 3 regular production can 
be used to meet month 1 demand at a cost of 400 �
2(30) � $460.

b Add a supply point called “lost sales,” with cost of
shipping a unit to any month’s demand being $450.
Supply of “lost sales” supply point should equal total
demand. Then adjust dummy demand point’s demand
to rebalance the problem.

c A shipment from month 1 production to month 4
demand should have a cost of M.

d For each month, add a month i subcontracting
supply point, with a supply of 10 and a cost that is $40
more than the cost for the corresponding month i
regular supply point. Then adjust the demand at the
dummy demand point so that the problem is balanced.

S E C T I O N S  7.2 A N D  7.3

The optimal solution to Problem 1 of Section 7.1 is to ship 10
units from warehouse 1 to customer 2, 30 units from warehouse
1 to customer 3, and 30 units from warehouse 2 to customer 1.

The optimal solution to Problem 5 of Section 7.1 is to
buy 4 gallons from Daisy in month 2 and 3 gallons from

S E C T I O N  7.6

1 a



b
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from Bi to Bj means one black student from district i goes
to school in district j. The costs of M ensure that shipments
from Wi to Bj or Bi to Wj cannot occur (table on next page).

8 Optimal solution is z � 1,580, x11 � 40, x12 � 10, x13

� 10, x22 � 50, x32 � 10, x34 � 30.

13 Optimal solution is z � 98, x13 � 5, x21 � 3, x24 � 7,
x32 � 3, x33 � 7, x34 � 5.

25 Sell painting 1 to customer 1, painting 2 to customer
2, painting 3 to customer 3, and painting 4 to customer 4.

c

R E V I E W  P R O B L E M S

3 Meet January demand with 30 units of January
production. Meet February demand with 5 units of January
production, 10 units of February production, and 15 units of
March production. Meet March demand with 20 units of
March production.

4 Maid 1 does the bathroom, maid 2 straightens up, maid
3 does the kitchen, maid 4 gets the day off, and maid 5
vacuums.

7 Shipping 1 unit from Wi to Wj means one white student
from district i goes to school in district j. Shipping 1 unit



Chapter 8

S E C T I O N  8.2

2 1–2–5 (length 14).

3

M � large number to prevent shipping a unit through a
nonexistent arc.

5 Replace the car at times 2, 4, and 6. Total cost � $14,400.

S E C T I O N  8.3

1 max z � x0

1 s.t. xso,1 � 6, xso,2 � 2, x12 � 1, x32 � 3,

1 s.t. x13 � 3, x3,si � 2, x24 � 7, x4,si � 7
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1 s.t. x0 � xso,1 � xso,2 (Node so)

1 s.t. xso,1 � x13 � x12 (Node 1)

1 s.t. x12 � x32 � xso,2 � x24 (Node 2)

1 s.t. x13 � x32 � x3,si (Node 3)

1 s.t. x24 � x4,si (Node 4)

1 s.t. x3,si � x4,si � x0 (Node si )

1 s.t. All variables � 0



Maximum flow � 6. Cut associated with V
 � {2, 3, 4, si}
has capacity 6.

2 max z � x0

1 s.t. xso,1 � 2, x12 � 4, x1,si � 3, x2,si � 2,

1 s.t. x23 � 1, x3,si � 2, xso,3 � 1

1 s.t. x0 � xso,1 � xso,3 (Node so)

1 s.t. xso,1 � x1,si � x12 (Node 1)

1 s.t. x12 � x23 � x2,si (Node 2)

1 s.t. x23 � xso,3 � x3,si (Node 3)

1 s.t. x1,si � x2,si � x3,si � x0 (Node si )

1 s.t. All variables � 0

Maximum flow � 3. Cut associated with V
 � {1, 2, 3, si}
has capacity 3.

6 See Figure 5. An arc of capacity 1 goes from each
package type node to each truck node. If maximum flow �
21, all packages can be delivered.
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S E C T I O N  8.4

4 a See Figure 7.

FIGURE 5

7 See Figure 6. If maximum flow � 4, then all jobs can
be completed.

FIGURE 6

FIGURE 7

b Critical path is A–C–G (project duration is 14 days).

c Start project by June 13.

d min z � x8 � x1

d s.t. x2 � x1 � 3

d s.t. x3 � x2 � 6

d s.t. x4 � x2 � 2

d s.t. x5 � x4 � 3

d s.t. x5 � x3 � 1

d s.t. x6 � x5 � 1.5

d s.t. x8 � x6 � 2

d s.t. x8 � x7 � 3(x7 � x3 � 2)

d s.t. x8 � x2 � 3

d s.t. x8 � x3 � 5

All variables urs

5 a See Figure 8. A–B–E–F–G and A–B–C–G are critical
paths. Duration of project is 26 days.

FIGURE 8

Activity Total Float Free Float

A 0 0

B 0 0

C 0 0

D 8 8

E 0 0

F 0 0

G 0 0



b min z � 30A � 15B � 20C � 40D

b min z �� 20E � 30F � 40G

b s.t. x2 � x1 � 5 � A

b s.t. x3 � x2 � 8 � B

b s.t. x4 � x3 � 4 � E

b s.t. x5 � x3 � 10 � C

b s.t. x5 � x4 � 6 � F

b s.t. x6 � x3 � 5 � D

b s.t. x6 � x5 � 3 � G

b s.t. x6 � x1 � 20

b s.t. A � 2, B � 3, C � 1, D � 2, E � 2,

b s.t. F � 3, G � 1

b s.t. A, B, C, D, E, F, G � 0

All other variables urs

8 b From the LP output, we find the critical path
1–2–3–4–5–6. This implies that activities A, B, E, F, and
G are critical. (Since 1–2–3–5–6 is also a critical path,
activity C is also a critical activity, but the LP does not
give us this information.)

S E C T I O N  8.5

1 min z � 4x12 � 3x24 � 2x46 � 3x13

1 min z � � 3x35 � 2x25 � 2x56

1 s.t. x12 � x13 � 1 (Node 1)

1 s.t. x12 � x24 � x25 (Node 2)

1 s.t. x13 � x35 (Node 3)

1 s.t. x24 � x46 (Node 4)

1 s.t. x25 � x56 (Node 5)

1 s.t. x46 � x56 � 1 (Node 6)

xij � 0

If xij � 1, the shortest path from node 1 to node 6 contains
arc (i, j); if xij � 0, the shortest path from node 1 to node 6
does not contain arc (i, j).

4 a See Figure 9. All arcs have infinite capacity.

Arc Shipping Cost

Bos.–Chic. 800 � 80 � $1,880

Bos.–Aus. 800 � 220 � $1,020

Bos.–L.A. 800 � 280 � $1,080

Ral.–Chic. 900 � 100 � $1,000

Ral.–Aus. 900 � 140 � $1,040

Ral.–L.A. 900 � 170 � $1,070

Chic.–Aus. $40

Chic.–L.A. $50

Problem is balanced, so no dummy point is needed.

City Net Outflow

Boston 400

Raleigh 300

Chicago 0

L.A. �400

Austin �300

5

Arc Unit Cost

S.D.–Dal. $420

S.D.–Hous. $100

L.A.–Dal. $300

L.A.–Hous. $110

S.D.–Dummy $0

L.A.–Dummy $0

Dal.–Chic. 700 � 550 � $1,250

Dal.–N.Y. 700 � 450 � $1,150

Hous.–Chic. 900 � 530 � $1,430

Hous.–N.Y. 900 � 470 � $1,370

Net Outflow
City (100,000 barrels/day)

San Diego �5

L.A. �4

Dallas �0

Houston �0

Chicago �4

N.Y. �3

Dummy �2

S E C T I O N  8.6

2 The MST consists of the arcs (1, 3), (3, 5), (3, 4), and
(3, 2). Total length of MST is 15.

S E C T I O N  8.7

1 c z � 8, x12 � x25 � x56 � 1, x13 � x24 � x35 �

x46 � 0.

3 z � 590, x12 � 20, x24 � 20, x34 � 2, x35 � 2, x13 �

12, x23 � 0, x25 � 0, x45 � 0.
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FIGURE 9



R E V I E W  P R O B L E M S

1 a N.Y.–St. Louis–Phoenix–L.A. uses 2,450 gallons of
fuel.

2 a See Figure 10.
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s.t. 3x1 � x2 � 3x3 � 3x4 � 3x5 � x6 � 2x7 � 10
(Shooting)

s.t. x1 � 3x2 � 2x3 � 3x4 � 3x5 � 2x6 � 2x7 � 10
(Rebounding)

s.t. x6 � x3 � 1

s.t. �x4 � x5 � 2 � 2y
(If x1  0, then x4 � x5 � 2)

s.t. x1 � 2(1 � y)

s.t. x2 � x3 � 1

.x1, x2, . . . , x7, y all 0–1 variables

3 Let x1 � units of product 1 produced

3 Let x2 � units of product 2 produced

3 Let yi � �
Then the appropriate IP is

max z � 2x1 � 5x2 � 10y1 � 20y2

s.t. 3x1 � 6x2 � 120

s.t. x1 3 � 6x2� 40y1

s.t. 3x1 � 6x2 � 20y2

x1, x2 � 0; y1, y2 � 0 or 1

6 y1 � �

6 y2 � �

6 y3 � �

6 y4 � �

6 y5 � �

6 y6 � �
6 y7 � �
Then the appropriate IP is

min z � y1 � y2 � y3 � y4 � y5 � y6 � y7

s.t. y1 � y2 � y3 � y4 � y7 � 2 (Math)

s.t. y2 � y4 � y5 � y7 � 2 (OR)

s.t. y3 � y5 � y6 � 2 (Computers)

s.t. y4 � y1

s.t. y5 � y6

if forecasting is taken

otherwise

1

0

if introduction to computer
programming is taken

otherwise

1

0

if computer simulation is taken

otherwise

1

0

if business statistics is taken

otherwise

1

0

if data structure is taken

otherwise

1

0

if operations research is taken

otherwise

1

0

if calculus is taken

otherwise

1

0

if any product i is ordered

otherwise

1

0

FIGURE 10

2 max z � x0

2 s.t. x12 � x13 � x0 (Node 1)

2 s.t. x12 � x24 � x25 (Node 2)

2 s.t. x13 � x34 � x35 (Node 3)

2 s.t. x24 � x34 � x46 (Node 4)

2 s.t. x25 � x35 � x56 (Node 5)

2 s.t. x46 � x56 � x0 (Node 6)

2 s.t. x12 � 500, x13 � 400, x24 � 300,

2 s.t. x25 � 250, x34 � 200, x35 � 150,

2 s.t. x46 � 400, x56 � 350

All variables � 0

5 The MST consists of the following arcs: N.Y.–Clev.,
N.Y.–Nash., Nash.–Dal., Dal.–St.L., Dal.–Pho., Pho.–L.A.,
and S.L.C.–L.A. Total length of the MST is 4,300.

Chapter 9

S E C T I O N  9.2

1 Let x1 � �
Then the appropriate IP is

max z � 3x1 � 2x2 � 2x3 � x4 � 3x5 � 3x6 � x7

s.t. x1 � x3 � x5 � x7 � 4 (Guards)

s.t. x3 � x4 � x5 � x6 � x7 � 2 (Forwards)

s.t. x2 � x4 � x6 � 1 (Center)

s.t. x1 � x2 � x3 � x4 � x5 � x6 � x7 � 5

s.t. 3x1 � 2x2 � 2x3 � x4 � 3x5 � 3x6 � 3x7 � 10
(Ballhandling)

if player i starts

otherwise

1

0



s.t. y3 � y6

s.t. y7 � y4

y1, y2, . . . , y7 � 0 or 1

10 Add the constraints x � y � 3 � Mz, 2x � 5y �

12 � M(1 � z), z � 0 or 1, where M is a large positive
number.

11 Add the constraints y � 3 � Mz, 3 � x � (1 � z)M,
z � 0 or 1, where M is a large positive number.

13 Let xi � number of workers employed on line i

yi � �
Then the appropriate IP is

min z � 1,000y1 � 2,000y2 � 500x1 � 900x2

13 s.t. 20x1 � 50x2 � 120

13 s.t. 30x1 � 35x2 � 150

13 s.t. 40x1 � 45x2 � 200

13 s.t. x1 � 7y1

13 s.t. x2 � 7y2

x1, x2 � 0; y1, y2 � 0 or 1

14 a Let xi � �
Then the appropriate IP is

min z � 3x1 � 5x2 � x3 � 2x4 � x5 � 4x6

min z � � 3x7 � x8 � 2x9 � 2x10

s.t. x1 � x2 � x4 � x5 � x8 � x9 � 1 (File 1)

s.t. x1 � x3 � 1 (File 2)

s.t. x2 � x5 � x7 � x10 � 1 (File 3)

s.t. x3 � x6 � x8 � 1 (File 4)

s.t. x1 � x2 � x4 � x6 � x7 � x9 � x10 � 1 (File 5)

xi � 0 or 1 (i � 1, 2, . . . , 10)

b Add the constraints 1 � x2 � 2y, x3 � x5 �

2(1 � y), y � 0 or 1 (need M � 2, because x3 � x5 �

2 is possible). We could also have added the constraints
x2 � x3 and x2 � x5.

S E C T I O N  9.3

1 z � 20, x1 � 4, x2 � 0.

2 z � $400,000. (x1 � 6, x2 � 1) and (x1 � 4, x2 � 2)
are both optimal solutions.

4 z � 8, x1 � 2, x2 � 0.

S E C T I O N  9.4

1 z � 5.6, x1 � 1.2, x2 � 2.

if disk i is used

otherwise

1

0

if line i is used

otherwise

1

0

S E C T I O N  9.5

2 max z � 60x1 � 48x2 � 14x3 � 31x4 � 10x5

s.t. 800x1 � 600x2 � 300x3 � 400x4 � 200x5 � 1,100

xi � 0 or 1

Optimal solution is z � 79, x2 � x4 � 1, x1 � x3 �

x5 � 0.

S E C T I O N  9.6

1 Do jobs in the following order: job 2, job 1, job 3, and
job 4. Total delay is 20 minutes.

2 LFR—LFP—LP—LR—LFR has a total cost of $330.

8 Warehouse 1 to factory 1, warehouse 2 to factory 3,
warehouse 3 to factory 4, warehouse 4 to factory 2,
warehouse 5 to factory 5 has a total cost of $35,000.

S E C T I O N  9.7

1 z � 4, x1 � x2 � x4 � x5 � 1, x3 � 0.

2 z � 3, x1 � x3 � 1, x2 � 0.

S E C T I O N  9.8

1 z � 110, x1 � 4, x2 � 3.

R E V I E W  P R O B L E M S

3 Let zi � �
3 xi � �
3 yi � �
Then the appropriate IP is

max z � 16.7z1 � 17.7z2 � � � � � 17.7z6 � 8.8x1

max z � � 9.4x2 � � � � � 9.1x6 � 7.9y1

max z � � 8.3y2 � � � � � 8.6y6

s.t. z1 � z2 � � � � � z6 � 3

s.t. x1 � x2 � � � � � x6 � 1

s.t. y1 � y2 � � � � � y6 � 1

s.t. x1 � y1 � z1 � 1

s.t. x2 � y2 � z2 � 1

s.t. x3 � y3 � z3 � 1

s.t. x4 � y4 � z4 � 1

s.t. x5 � y5 � z5 � 1

s.t. x6 � y6 � z6 � 1

All variables 0 or 1

if gymnast i enters only floor exercises

otherwise

1

0

if gymnast i enters only balance beam

otherwise

1

0

if gymnast i enters both events

otherwise

1

0
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4 Let xij � �
Then the appropriate IP is

min z � 110x11 � 220x12 � 37.5x21 � 127.5x22

min z � � 80x31 � 80x32 � 117x41 � 36x42

min z � � 135x51 � 54x52

s.t. 110x11 � 75x21 � 100x31 � 90x41 � 90x51 � 150
(School 1 � 150 students)

s.t. 110x12 � 75x22 � 100x32 � 90x42 � 90x52 � 150
(School 2 � 150 students)

0.20 � ,

or 0 � 8x11 � 10x21 � 10x31 � 22x41 � 12x51

0.20 � ,

or 0 � 8x12 � 10x22 � 10x32 � 22x42 � 12x52

x11 � x12 � 1

x21 � x22 � 1

x31 � x32 � 1

x41 � x42 � 1

x51 � x52 � 1

All variables 0 or 1

5 Let x1 � �
5 Let x2 � �
5 Let x3 � �
5 Let x4 � �
5 Let x5 � �
Then the appropriate IP is

max z � 6x1 � 5x2 � 3x3 � 3x4 � 2x5

s.t. 6x1 � 4x2 � 3x3 � 2x4 � 2x5 � 12

s.t. 6x1 � 4x2 � x3 � x4 � 2x5 � 2

s.t. 6x1 � x2 � x3 � 2x4 � 2x5 � 2

s.t. 6x1 � x2 � 3x3 � 2x4 � 2x5 � 1

All variables 0 or 1

10 Use two 20¢ coins, one 50¢ coin, and one 1¢ coin.

13 Infeasible.

if TS is signed

otherwise

1

0

if ST is signed

otherwise

1

0

if DE is signed

otherwise

1

0

if BS is signed

otherwise

1

0

if RS is signed

otherwise

1

0

30x12 � 5x22 � 10x32 � 40x42 � 30x52
�����
110x12 � 75x22 � 100x32 � 90x42 � 90x52

30x11 � 5x21 � 10x31 � 40x41 � 30x51
�����
110x11 � 75x21 � 100x31 � 90x41 � 90x51

if students from district i
are sent to school j

otherwise

1

0
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26 Let

xit � �
Then the appropriate IP (in thousands) is

max z � 100x11 � 50x12 � 60x21 � 30x22 � 40x31

s.t. 30x11 � 20x21 � 20x31 � 60 (Year 1 workers)

s.t. 30(x11 � x12) � 20(x21 � x22)

s.t. � 20(x31 � x32) � 60 (Year 2 workers)

s.t. 30(x12 � x13) � 20(x22 � x23)

s.t. � 20(x31 � x32 � x33) � 60 (Year 3 workers)

s.t. 30(x13 � x14) � 20(x23 � x24)

s.t. � 20(x32 � x33 � x34) � 60 (Year 4 workers)

s.t. �
s.t.

�
s.t. x21 � x22 � x23 � 1

All variables 0 or 1

27 Let yi � �

27 Let xij � �
Then the appropriate IP is

min z � 45y1 � 50y2 � 55y3 � 60y4

s.t. 100x11 � 200x12 � 300x13 � 500x14 � 800x15

� 400y1

s.t. 100x21 � 200x22 � 300x23 � 500x24 � 800x25

� 500y2

s.t. 100x31 � 200x32 � 300x33 � 500x34 � 800x35

� 600y3

s.t. 100x41 � 200x42 � 300x43 � 500x44 � 800x45

� 1,100y4

s.t. x11 � x21 � x31 � x41 � 1

s.t. x12 � x22 � x32 � x42 � 1

s.t. x13 � x23 � x33 � x43 � 1

s.t. x14 � x24 � x34 � x44 � 1

s.t. x15 � x25 � x35 � x45 � 1

All variables 0 or 1

if truck i is used to deliver to grocer j

otherwise

1

0

if truck i is used

otherwise

1

0

(Building 2 is finished
by end of year 4)

(Each building is
started at most once)

x11 � x12 � x13 � x14 � 1

x21 � x22 � x23 � x24 � 1

x31 � x32 � x33 � x34 � 1

(No more than one building
begins during each year)

x11 � x21 � x31 � 1

s.t. x12 � x22 � x32 � 1

s.t. x13 � x23 � x33 � 1

if building i is started during year t

otherwise

1

0



Chapter 10

S E C T I O N S  10.1 A N D 10.2

1 z � 11, x1 � 3, x2 � 0, x3 � 2.

2 z � 10, x1 � 2, x2 � 2.

S E C T I O N  10.3

2 Let xi � number of 15-ft boards cut according to
combination i, where

3-Ft 5-Ft 8-Ft
Combination Boards Boards Boards

1 0 1 1

2 2 0 1

3 0 3 0

4 1 2 0

5 3 1 0

6 5 0 0

Then we want to solve

min z � x1 � x2 � x3 � x4 � x5 � x6

s.t. 2x2 � x4 � 3x5 � 5x6 � 10

s.t. x1 � 3x3 � 2x4 � x5 � 20

s.t. x1 � x2 � 15

s.t. xi � 0

The optimal solution is z � �
5
3
5
�, x1 � 10, x2 � 5, x3 � �

1
3
0
�.

S E C T I O N  10.4

1 z � 40, x1 � 3, x2 � 2, x3 � 3.

3 z � 15, x1 � 0, x2 � 0, x3 � 3.

S E C T I O N  10.5

1 z � 29.5, x1 � 2, x2 � 0.5, x3 � 4, x4 � x5 � 0.

3 z � �
8
1
1
3
�, x1 � �

1
1
2
3
�, x2 � �

1
1
1
3
�.

S E C T I O N  10.6

1 y1 � x1 � [�
3
8

� �
1
4

� �
3
8

�].

R E V I E W  P R O B L E M S

1 z � 9, x1 � x3 � 0, x2 � 3.

3 z � �12, x2 � 2, x4 � 10, x1 � x3 � 0.

5 Maximum profit is $540. Optimal production levels are

Product 1 at plant 1 � �
5
3

� units

Product 1 at plant 2 � �
10
3
0

� units

Product 2 at plant 1 � �
29
9
0

� units

Product 2 at plant 2 � 0 units

Chapter 11

S E C T I O N  11.1

1 3.

3 a �xe�x
� e�x.

e �
3

x
�.

5 ln(1 � x) � x � �
x

2

2

� � �
3

x

p

3

3� for some p between 1 and
1 � x.

7 a k.

b The maximum size of the market (as measured in
sales per year).

9 The machine time is the better buy.

S E C T I O N  11.2

1 a Let S � soap opera ads and F � football ads. Then
we want to solve the following LP:

min z � 50S � 100F

s.t. 5S1/2 � 17F1/2
� 40 (Men)

s.t. 20S1/2 � 7F1/2
� 60 (Women)

S, F � 0

b Since doubling S does not double the contribution of
S to the constraints, we are violating the Proportionality
Assumption. Additivity is not violated.

5 a � b � c � 20.

S E C T I O N  11.3

1 Convex.

2 Neither convex nor concave.

5 Concave.

8 Concave.

S E C T I O N  11.4

1 If fixed cost is $5,000, spend $10,000 on advertising. If
fixed cost is $20,000, don’t spend any money on advertising.

2 Without tax, produce 12.25 units; with tax, produce 12
units.

5 z � 1, x � 1.

S E C T I O N  11.5

2 After four iterations, the interval of uncertainty is
[�0.42, 0.17).
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S E C T I O N  11.6

1 x � ,

1 y � .

3 q1 � 98.5, q2 � 1.

6 (0, 0) is a saddle point. (�
3

2
�, �

3

2
�) and (�

3

2
�, ��

3

2
�) are each a

local minimum.

S E C T I O N  11.7

3 Successive points are (�
1

2
�, �

3

4
�), (�

3

4
�, �

3

4
�), (�

3

4
�, �

7

8
�).

S E C T I O N  11.8

2 L � K � �
1

3

0
�; produce 10 machines.

4 x1 � �
9

1

0

3

0
�, x2 � �

4

1

0

3

0
�, � � �

13

2

1/2

� � 1. An extra dollar

spent on promotion would increase profit by approximately

$��13

2

1/2

� � 1�.

S E C T I O N  11.9

1 Capacity � 27.5 kwh. Peak price � $65. Off-peak price
� $20.

2 z � 21/2, x1 � �
2

2

1/2

�, x2 � ��
2

2

1/2

�.

6 z � �
1

2
�, x1 � �

1

2
�, x2 � �

3

2
�.

S E C T I O N  11.10

1 min z � 0.09x2
1 � 0.04x2

2 � 0.01x2
3

� 0.012x1x2 � 0.008x1x3 � 0.010x2x3

s.t. x1 � x2 � x3 � 0

x1 � x2 � x3 � 100

x1, x2, x3 � 0

4 p1 � $292.81, p2 � $158.33. Pay no money for an
additional hour of labor. Pay up to (approximately) $53.81
for another chip.

S E C T I O N  11.11

1 Using grid points 0, 0.5, 1, 1.5, and 2 for x1 and grid
points 0, 0.5, 1, 1.5, 2, and 2.5 for x2, we obtain the following
approximating problem:

min z � 0.25�12 � �13 � 2.25�14 � 4�15 � 0.25�22

min z � � �23 � 2.25�24 � 4�25 � 6.25�26

s.t. 0.25�12 � �13 � 2.25�14 � 4�15 � 2(0.25�22

s.t. 0.25�12 � �23 � 2.25�24 � 4�25 � 6.25�26) � 4

s.t. 0.25�12 � �13 � 2.25�14 � 4�15 � 0.25�22

s.t. 0.25�12 � �23 � 2.25�24 � 4�25 � 6.25�26 � 6

y1 � y2 � � � � � yn
���

n

x1 � x2 � � � � � xn
���

n
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s.t. �11 � �12 � �13 � �14 � �15 � 1

s.t. �21 � �22 � �23 � �24 � �25 � �26 � 1

All variables nonnegative

Adjacency Assumption

S E C T I O N  11.12

1 x1
� [0 1] and x2

� [�
1

3
� �

5

6
�].

S E C T I O N  11.13

2 First we attempt to maximize output by solving

max z � 20x11 � 12x12 � 10x13 � 12x21 � 15x22

max z � � 9x23 � 6x31 � 5x32 � 10x33

s.t. x11 � x12 � x13 � 1

s.t. x21 � x22 � x23 � 1

s.t. x31 � x32 � x33 � 1

s.t. x11 � x21 � x31 � 1

s.t. x12 � x22 � x32 � 1

s.t. x13 � x23 � x33 � 1

All xij � 0

Here xij fraction of day worker i spends working on product
j. This LP has optimal solution x11 � x22 � x33 � 1, with
Output � 45 and Happiness � 6 � 5 � 8 � 19. Thus, point
(45, 19) is on a tradeoff curve. Now add constraint

6x11 � 8x12 � 10x13 � 6x21 � 5x22 � 9x23 � 9x31

� 10x32 � 8x33 � HAPP

where HAPP � 20, 25, and 26. (HAPP cannot exceed 26.)
This yields four points on the tradeoff curve in Figure 11.
Value of Output is optimal z-value for each LP.

27

Output

19

20

21

H
ap

p
in

es
s

29 31 33 35 37 39 41 43 45

22

23

24

25

26

27

FIGURE 11



R E V I E W  P R O B L E M S

2 Locate the store at point 7. In general, locate store at
arithmetic mean of the location of all customers.

3 a Use �
9

8

3
� units of raw material, sell �

9

4

3
� units of product

1, and sell �
1

2

5
� units of product 2.

c Pay slightly less than $5 for an extra unit of raw
material.

5 [1.18, 1.63).

7 Produce 20 units during each of the three months.

18 Locate the store at point 5; in general, locate store at
the median of the customer’s locations.

Chapter 12

S E C T I O N  12.1

1 �
e10

2

� 1
� .

3 Ih � �
d

2

h
� .

S E C T I O N  12.2

1 2y(2y � y2) � 3y � 2(y2
� y).

S E C T I O N  12.3

1 a �
2

9
�.

c No.

e �
1

4
�.

S E C T I O N  12.4

1 �
2

3
�.

3 .001.

S E C T I O N  12.5

1 a Let S � number sold. Then E(S) � �
29

3

0
�, and 

var S � �
20

9

0
�.

3 a F(a) � 0 for a � 0, F(a) � 1 � e�a for a � 0.

b E(X) � 1 var X � 1.

c e�1
� e�2.

S E C T I O N  12.6

2 .8749.

R E V I E W  P R O B L E M S

3 �
2

2

5
�.

5 a E(X) � 85; var X � 9,000.

b P�Z � �
(

9

9

1

,0

�

00)

8
1

5
/2�� � .476.

7 a �
1

6
�.

b .004996.

Chapter 13

S E C T I O N  13.1

1 Maximin decision; small campaign. Maximax decision:
large campaign. Minimax regret decision: large campaign.

2 Maximin decision; don’t build. Maximax decision:
build. Maximax regret decision: build. Expected value
decision: build.

5 Maximin decision: $6,000, $8,000, or $11,000 bid.
Maximax decision: $11,000 bid. Minimax regret decision:
$11,000 bid. Expected value decision: $11,000 bid.

S E C T I O N  13.2

1 a Risk-averse.

b Prefer L1; risk premium for L2 � $339.

2 a Risk-seeking.

b Prefer L2; risk premium for L2 � �$235.

6 b $1,900.

7 Take statistics course.

13 L1 is preferred.

S E C T I O N  13.4

1 Hire the geologist. If she gives a favorable report, drill;
if she gives an unfavorable report, don’t drill. Expected
profit is $180,000; EVSI � $20,000; EVPI � $55,000.

4 Market without testing. Expected profit � $16,000;
EVSI � $3,800; EVPI � $14,000.

9 Play daringly during the first game. If he wins the first
game, play conservatively during the second game. If he
loses the first game, play daringly during the second game.
If tied after two games, play daringly during the third game.

12 a Buy the gold now.

b Wait for Congress and (if possible) buy the gold
later.

S E C T I O N  13.5

2 Hire the geologist. If he predicts an earthquake, build at
Roy Rogers; if he predicts no earthquake, build at Diablo.
Expected total cost � $13,900,000. EVSI � $1,100,000;
EVPI � $2,000,000.

4 Hire the firm. If it predicts a hit, air the show. If it
predicts a flop, don’t air the show. Expected profit �

$35,000; EVSI � $50,000; EVPI � $75,000.

S E C T I O N  13.6

1 c National’s utility function is of the form .3u1(x1) 
� .5u2(x2) � .2u1(x1)u2(x2).
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6 d k3  0.

S E C T I O N  13.7

1 a Professor 2 should receive the bigger raise.

c Pairwise comparison matrix is consistent.

R E V I E W  P R O B L E M S

1 a Invest in money market fund.

b Invest in gold.

c Money market fund has a maximum regret of $500.

d All investments have the same expected return.

2 Because of the risk-averse nature of the utility function,
invest in the least risky investment (the money market fund).

5 a Invest all money in stocks.

b Indifferent between hiring and not hiring forecaster.
Expected final asset position � $1,160,000; EVSI �
$10,000; EVPI � $20,000.

12 If all potential litterers are risk-averse, then raising the
fine will result in the larger decrease in littering.

Chapter 14

S E C T I O N  14.1

1 Value to row player � 2. Row player plays row 1, and
column player plays column 1.

2 Value to row player � 6. Row player plays row 2, and
column player plays column 1 or column 3.

S E C T I O N  14.2

1 Value to row player � �
4

3
�. Row player’s optimal strategy

is (�
2

3
�, �

1

3
�) and column player’s optimal strategy is (�

2

3
�, �

1

3
�, 0).

8 State’s optimal strategy is, with probability �
1

2
�, play A

first and B second; with probability �
1

2
�, play B first and A

second. Ivy’s optimal strategy is, with probability �
1

2
�, play X

first and Y second; with probability �
1

2
�, play X second and Y

first. Value of game to State � �
1

2
�.

S E C T I O N  14.3

1 a

Soldier
Gunner 1 2 3 4 5

Spot A 1 1 0 0 0

Spot B 0 1 1 0 0

Spot C 0 0 1 1 0

Spot D 0 0 0 1 1

b Columns 2 and 4 are dominated.

c Expected value to the gunner � �
1

3
�.

d Always firing at A.
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e Gunner’s LP is

max z � v

s.t. v � x1

s.t. v � x1 � x2

s.t. v � x2 � x3

s.t. v � x3 � x4

s.t. v � x4

s.t. x1 � x2 � x3 � x4 � 1

s.t.x1, x2, x3, x4 � 0; v urs

Soldier’s LP is

min w

s.t. w � y1 � y2

s.t. w � y2 � y3

s.t. w � y3 � y4

s.t. w � y4 � y5

s.t. y1 � y2 � y3 � y4 � y5 � 1

s.t.y1, y2, y3, y4, y5 � 0; w urs

3 Value to row player � �
5

2
�. Row player’s optimal strategy

is (�
1

2
�, �

1

2
�), and column player’s optimal strategy is (�

3

4
�, �

1

4
�, 0).

S E C T I O N  14.4

1 (9, �1) is an equilibrium point.

3 This is a Prisoner’s Dilemma game, with the equilibrium
point occurring where each borough opposes the other
borough’s bond issues. Reward is $0 to each borough.

S E C T I O N  14.7

2 Core consists of the point (25, 25, 25, 25).

3 a v({ }) � $0; v({1}) � v({2}) � v({3}) � �$2;
v({1, 2}) � v({2, 3}) � v({1, 3}) � $2; v({1, 2, 3}) 
� $3.

b and c The Shapley value gives $1 to each player.
The core is ($1, $1, $1).

7 Assuming that the runway costs $1/ft, the Shapley value
recommends the following fees per landing: type 1, $20;
type 2, $�

24

7

0
�; type 3, $�

44

7

0
�; type 4, $�

1,1

7

40
�.

R E V I E W  P R O B L E M S

1 Both stores will be located at point B, and the two firms
will each have 26 customers.

3 b Value to row player � ��
1

5

1
�. For each player, the

optimal strategy is (�
1

4

1
�, �

1

4

1
�, �

1

3

1
�).

6 a v({ }) � v({49}) � v({50}) � v({1}) � v({1, 49})
� 0; v({1, 50}) � v({49, 50}) � v({1, 49, 50}) � 1.

b Core consists of point (0, 0, 1).

c Shapley value gives �
1

6
� to player 1, �

1

6
� to player 2, and

�
2

3
� to player 3.



Chapter 15

S E C T I O N  15.2

1 a 4,000 gallons.

b 12 orders per year.

c One month.

e For a 2-week lead time, reorder point � �
48

2

,0

6

00
� �

1,846.15 gallons. For a 10-week lead time, reorder point
� 1,230.77 gallons.

3 a Send out �
7

3

.0

0

7
� � 4.24 trucks per hour.

b Send out �
3

5

0
� � 6 trucks per hour.

12 b Six trainees in each program.

c Run 4.5 programs per year.

d 2.25 trainees.

S E C T I O N  15.3

1 Order 300 boxes per year. Place 3.2 orders per year.

5 Order 100 thermometers.

S E C T I O N  15.4

2 Optimal run size � 692.82. Do 34.64 runs per year.

S E C T I O N  15.5

2 Whenever dealer is 10 cars short, an order for 50 cars
should be placed. Maximum shortage will be 10 cars.

S E C T I O N  15.6

1 Demand is too lumpy to justify using EOQ.

R E V I E W  P R O B L E M S

1 a 268.33 desks.

b 22.36 orders per year.

c 2(22.36)(300) � $13,416.

d For 1-week lead time, reorder point � 115.38 desks;
for 5-week lead time, reorder point � 40.93 desks.

e Order 342.05 desks 17.54 times per year.

3 The EOQ for the lowest price is optimal. Thus, 417.79
cameras should be ordered.

Chapter 16

S E C T I O N  16.2

1 a q � 6.

b q � 2.

c E(q) is not a convex function of q.

S E C T I O N  16.3

1 Order 35 cars.

3 q* will decrease.

5 a Order 60 cells.

S E C T I O N  16.4

2 $775,000, using F(.25) � .60.

3 107.5 trees, using F(.25) � .60.

S E C T I O N  16.5

1 Locate at �
2

2

1/2

�.

S E C T I O N  16.6

1 Order quantity � 45.61, reorder point � 32.6, safety
stock � 12.6.

2 a Reorder print � 57.9, safety stock � 17.9.

b Reorder print � 60.60, safety stock � 20.60.

S E C T I O N  16.7

1

Reorder
SLM1 Point

80% 11.06

90% 16.46

95% 20.24

99% 26.30

For SLM2 � 0.5 stockout per year, the reorder point is 32.06.

3 a SLM1 � 98.75%.

b r � 20 is the smallest reorder point with SLM1

exceeding 95%.

c Need a reorder point of at least 30 units.

S E C T I O N  16.8

1 R � 0.23 years and S � 3,241.

S E C T I O N  16.9

1 Type A items: 1 and 2; type B items: 3 through 6; type
C items: 7 through 10. See Figure 12.
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S E C T I O N  16.10

1 a See Figure 13.
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S E C T I O N  17.4

1 2.

2 Yes.

3 a State 4.

b States 1, 2, 3, 5, and 6.

c {1, 3, 5} and {2, 6}.

4 P1 is ergodic; P2 is not ergodic.

S E C T I O N  17.5

1 Urban, �
1

3

8

8

3
�; suburban, �

1

9

8

0

3
�; rural, �

1

5

8

5

3
�.

3 a State 1, �
3

5
�; state 2, �

2

5
�.

4 Replace a fair car.

7 Expected price of stock 1 � $16.67; expected price of
stock 2 � $16.00.

S E C T I O N  17.6

1 a 1.11 � 0.99 � 0.99 � 0.88 � 3.97.

b .748.

2 1 � 0.80 � 18 � 19.80 years.

11 a 14.3%.

b Reducing warranty period will save $715,000 �

$392,500 � $322,500.

S E C T I O N  17.7

1 7,778 freshmen, 7,469 sophomores, 8,057 juniors, and
7,162 seniors.

2 Each working adult must contribute $2,000 more.

R E V I E W  P R O B L E M S

1 An average of �
26

3

0
� tools per day will be produced.

2 a .815.

b Annual profit without warranty � (3,000)(total

market size)(�
1

4
�). Annual profit with warranty �

(2,700)(total market size)(�
4

9
�). Profit with warranty is

larger.

3 Value of star � $4,400,000; value of starter �
$3,199,000; value of substitute � $1,600,000.

4 a Each year, 1,638,270 new books, 1,474,443 once-
used books, 1,179,554 twice-used books, and 707,733
thrice-used books will be sold.

Chapter 18

S E C T I O N  18.1

1 Begin by picking up 4 matches. On each successive
turn, pick up 5 � (number of matches picked up by opponent
on last turn).

2 The players began with $16.25, $8.75, and $5.00.

FIGURE 13

R E V I E W  P R O B L E M S

1 a Bake 40 dozen cookies.

b Bake 58.6 dozen cookies.

c Bake 55 dozen cookies.

3 a Order quantity � 707.11, shortage cost � $12.41.

b Order quantity � 707.11. Assuming a penalty for
lost sales of 8 � 5 � $3, shortage cost � $9.12.

c Reorder point of zero will do the job.

Chapter 17

S E C T I O N  17.2

Sunny Cloudy

1 � �
2 State

0 1 2 3 4

� �
4 Let SC denote that yesterday was sunny and today is
cloudy, and so on.

SS SC CS CC

� �
S E C T I O N  17.3

1 a Urban, .651; suburban, .258; rural, .091.

b 31.5%.

0

.60

0

.80

0

.40

0

.20

.05

0

.30

0

.95

0

.70

0

SS

SC

CS

CC

�
1

3
�

�
1

3
�

0

0

�
1

3
�

�
1

3
�

�
1

3
�

0

�
1

3
�

�
1

3
�

�
1

3
�

�
1

3
�

�
1

3
�

�
1

3
�

�
1

3
�

0

0

�
1

3
�

�
1

3
�

0

0

0

�
1

3
�

0

0

0

1

2

3

4

.10

.80

.90

.20

Sunny

Cloudy



S E C T I O N  18.2

1 1–3–5–8–10, 1–4–6–9–10, and 1–4–5–8–10 are all
shortest paths from node 1 to node 10 (each has length 11).
The path 3–5–8–10 is the shortest path from node 3 to node
10 (this path has length 7).

3 Bloomington–Indianapolis–Dayton–Toledo–Cleveland
takes 8 hours.

S E C T I O N  18.3

1 Produce no units during month 1, 3 units during month
2, no units during month 3, and 4 units during month 4.
Total cost is $15.00

2 Month 1, 200 radios; month 2, 600 radios; month 3, no
radios. Total cost is $8,950.

3 a Produce 1 unit. Cost associated with arc is $4.50.

S E C T I O N  18.4

1 Site 1, $1 million; site 2, $2 million; site 3, $1 million.
Total revenue is $24 million.

2 Obtain a benefit of 10 with two type 1 items or two type
2 and one type 3 item.

3 a See Figure 14.

S E C T I O N  18.6

1 Let ft(i) be the maximum expected net profit earned
during years t, t � 1, . . . , 10, given that Sunco has i barrels
of reserves at the beginning of year t. Then

f10(i) � max
x

{xp10 � c(x)}

where x must satisfy 0 � x � i. For t � 9,

ft(i) � max
x

{xpt � c(x) � ft�1(i � bt � x)} (1)

where 0 � x � i. We use Equation (1) to work backward
until f1(i0) is determined. If discounting is allowed, let b �

the discount factor. Then we redefine ft(i) to be measured in
terms of year t dollars. Then we replace (1) with (1
):

ft(i) � max
x

{xpt � c(x) � bft�1(i � bt � x)} (1�)

where 0 � x � b.

2 b Let ft(d) be the maximum utility that can be earned
during years t, t � 1, . . . , 10, given that d dollars are
available at the beginning of year t (including year t
income). During year 10, it makes sense to consume all
available money (after all, there is no future). Thus,
f10(d) � ln d. For t � 9,

ft(d) � max
c

{ln c � ft�1(1.1(d � c) � i)}

where 0 � c � d. We work backward from the f10(�)’s
to f1(D).

5 French, 1 hour; English, no hours; statistics, 3 hours.
There is a .711 chance of passing at least one course.

7 Define ft (w) to be the maximum net profit (revenues less
costs) obtained from the steer during weeks t, t � 1, . . . ,
10, given that the steer weighs w pounds at the beginning of
week t. Now

f10(w) � max
p

{10g(w, p) � c(p)}

where 0 � p. Then for t � 9,

ft(w) � max
p

{�c(p) � ft�1(g(w, p))}

Farmer Jones should work backward until f1(w0) has been
computed.

8 Define ft(i, d) to be the maximum number of loyal
customers at the end of month 12, given that there are i loyal
customers at the beginning of month t and d dollars available
to spend on advertising during months t, t � 1, . . . , 12. If
there is only one month left, all available funds should be
spent during that month. This yields

f12(i, d) � (1 � p(d))i � (N � i)q(d)

For t � 11,

ft(i, d) � max
x

{ft�1[(1 � p(x))i � (N � i)q(x), d � x]}

where 0 � x � d. We work backward until f1(i0, D) has been
determined.

10 Let ft(it, xt�1) be the minimum cost incurred during
months t, t � 1, . . . , 12, given that inventory at the
beginning of month t is it, and production during month 
t � 1 was xt�1. Then

f12(i12, x11) � min
x12

{c12x12 � 5|x12 � x11|

� h12(i12 � x12 � d12)}
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FIGURE 14

5 One type 2 item and one type 3 item yield a benefit 
of 75.

S E C T I O N  18.5

2 Trade in car whenever it is two years old (at times 2, 4,
and 6). Net cost is $14,400.



where x12 must satisfy x12 � 0 and i � x12 � d12. For 
t � 11,

ft(it, xt�1)

� min
xt

{ctxt � 5|xt � xt�1| � ht(i � xt � dt)

� ft�1(it � xt � dt, xt)}

where xt must satisfy xt � 0 and it � xt � dt. We work
backward until f1(20, 20) has been computed.

S E C T I O N  18.7

1 If initial inventory is 200 units, only modification is to
produce 200 fewer units during period 1.

2 The Wagner–Whitin and Silver–Meal methods both
yield the following production schedule: period 1, 90 units;
period 4, 230 units. Total cost is $176.

R E V I E W  P R O B L E M S

1 Shortest path from node 1 to node 10 is 1–4–8–10.
Shortest path from node 2 to node 10 is 2–5–8–10.

2 Month 2, 1 unit; month 3, 4 units. Total cost is $12.

4 For 6 flights, the airline earns $540 with 3 Miami, 2
L.A. and 1 N.Y. flight; or 3 Miami and 3 L.A. flights. For
four flights, the airline earns $375 with 2 Miami and 2 L.A.
flights.

5 Without the 20¢ piece, use one 50¢, one 25¢, one 10¢,
one 5¢, and one 1¢ piece. With the 20¢ piece, use one 50¢,
two 20¢, and one 1¢ piece.

7 a Let ft(w) be the minimum cost incurred in meeting
demands for the years t, t � 1, . . . , 5, given that (before
hiring and firing for year t) w workers are available.

ht � workers hired at beginning of year t

dt � workers fired at beginning of year t

wt � workers required during year t

Then

ft(w) � min
ht ,dt

{10,000ht � 20,000dt

� 30,000(w � ht � dt) � ft�1(ht � .9(w � dt))

where ht and dt must satisfy 0 � ht, 0 � dt � w, and 
w � ht � dt � wt.

Chapter 19

S E C T I O N  19.1

1 Two gallons of milk to each store.

2 $2 million to investment 1, $0 to investment 2, and $2
million to investment 3.

S E C T I O N  19.2

1 Produce 3 units during period 1, no units during period
2, and 1 unit during period 3.
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2 At any time, produce the number of units needed to
bring the period’s stock level (before the period’s demand is
met) to 2 units.

S E C T I O N  19.3

1 Ulanowsky should play boldly during the first game. If
he wins the first game, then he should play conservatively
in the second game. If he loses the first game, then he should
play boldly in the second game. If there is a tie-breaking
game, Ulanowsky should play boldly. His chance of winning
the match is .537.

2 On the first toss, Dickie should bet $2. If he loses, he is
wiped out, but if he wins, he bets $1 on the second toss. If
he wins on the second toss, he stops. If he loses on the
second toss, he bets $2 on the third toss.

S E C T I O N  19.4

2 Let ft(d) be the maximum expected asset position of the
firm at the end of year 10, given that at the beginning of
year t, the firm has d dollars in assets. Then

f10(d) � max
i

�p 	
y

qy(d � i � y)

� (1 � p)	
y

qy(d � i � y)�
where 0 � i � d. For t � 9,

ft(d) � max
i

�p 	
y

qy ft�1(d � i � y)

� (1 � p)	
y

qy ft�1(d � i � y)�
We work backward until f1(10,000) has been computed.

5 We should always do maintenance on a running machine
and always repair a broken machine.

6 Let ft(p) be the maximum expected revenue earned from
selling a share of Wivco stock during days t, t � 1, . . . , 30,
given that the price of a share at the beginning of day t is p
dollars. Then

f30(p) � p (Sell stock)

and for t � 29,

(Sell stock)
ft(p) � max �

p

	
x

q(x)ft�1((1 � x/100)p)� (Keep stock)

We work backward until f1(10) has been determined, and we
continue until the optimal action is to sell the stock.

7 Sara should not accept the first cat, but any later cat that
is the best Sara has seen so far should be accepted. The
probability that Sara will get her preferred cat is �

1

2

1

4
�.

8 Define ft (i) to be the minimum net expected cost incurred
during periods t, t � 1, . . . , 100, given that the inventory
level is i at the beginning of period t. Then

f100(i) � min
x
� 	

d�i�x

qd(i � x � d � rd)

� 	
di�x

qd(p(d � i � x) � r(i � x)) � c(x)�



where x � 0. For t � 99,

ft(i) � min
x
� 	

d�i+x

qd(i � x � d � rd)

� 	
di�x

(p(d � i � x) � r(i � x))qd � c(x)

� 	
d�i�x

qdft�1(i � x � d)

� 	
di�x

qdft�1(0)�
where x � 0. We work backward until f1(0) has been
determined.

10 Define ft(d) to be the maximum expected number of
units sold in markets t, t � 1, . . . , T, given that d dollars
are available to spend on these markets. Then

fT(d) � cTkTpT(d)

and for t � T � 1,

ft(d) � max
x

{ctktpt (x) � ft�1(d � x)}

where 0 � x � d. We work backward until f1(D) has been
computed.

S E C T I O N  19.5

1 a

Period’s Period’s
Beginning Production
Inventory Level

0 4

1 3

2 0

3 0

2 a Always charge 11% interest rate on loans.

R E V I E W  P R O B L E M S

1 Assign 2 sales reps to district 1, 1 sales rep to district 2,
and 2 sales reps to district 3.

2 a Produce 2 units during period 1. During period 2,
produce 1 or 2 units if beginning inventory is 0; if beginning
inventory for period 2 is 1 or 2 units, produce no units
during period 2. During period 3, produce 1 unit if beginning
inventory is 0; otherwise, produce no units during period 3.

4 Let ft(b) be the maximum discounted net benefit earned
during years t, t � 1, . . . , 2039, given that b barrels of oil
are available at the beginning of year t. Then

ft(b) � max
d, x

{u(x) � d � bp(d) ft�1(b � x

� 500,000) � b(1 � p(d)) ft�1(b � x)}

where 0 � d and 0 � x � b. We work backward until
f2004(B) is determined and then compute the optimal
consumption strategy.

5 a Try to answer the first two questions and then stop.
The expected amount of money won is $9,000.

Chapter 20

S E C T I O N  20.2

1 �
6

7
�.

2 �
5

1

5

1

5
� minutes.

4 a �
2e

3

�2

� � .09.

b 1 � e�2
� 2e�2

� .594.

S E C T I O N  20.3

2 b �
1

1

2

4

1

4
�.

c �
1

1

44
�.

S E C T I O N  20.4

1 a �
5

6
�.

b �
2

6

5
� passengers.

c �
1

2
� minute.

3 a Unchanged.

b Cut in half.

c Unchanged.

8 Two checkpoints.

10 b 1 taxi.

c $120 per hour.

S E C T I O N  20.5

1 a 1.75 customers per hour.

b �
1

1

1

3

4

0
�.

6 Barber 1’s average hourly revenue � $53.23. Barber 2’s
average hourly revenue � $40.00.

S E C T I O N  20.6

1 Two registers.

3 a Finance, �
1

5
� day; Marketing, �

1

1

0
� day.

b 0.078 day.

d .07.

4 4 servers.

13 �
3

4
� mechanic.

14 System 1 is more efficient.

S E C T I O N  20.7

1 5,200 members.
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3 200 firms. The probability that there are at least 3,200
firms is zero.

S E C T I O N  20.8

1 �
2

3
� car.

4 a �
5

6
� customer.

b 9 minutes.

c �
1

3
�.

S E C T I O N  20.9

1 Superworker is better.

2 a �
1

8

2

1

5
�.

b �
6

5
� puppies.

S E C T I O N  20.10

2 a 2.73 cars.

b 0.06 hour.

4 �
1

3

1
� students.

S E C T I O N  20.11

1 15 fire engines.

7 b 2 copies.

S E C T I O N  20.12

1 Using four categories (each having ei � 6), we accept
the hypothesis that the length of a telephone call is
exponential with mean �

1,

2

0

4

24
� seconds.

S E C T I O N  20.15

1 Tests spend an average of �
1

8

9
� hours in the system, research

papers spend an average of �
2

4

7
� hours in the system, and class

handouts spend an average of �
2

2

3
� hours in the system.

2 Highest priority to k � 1 customers, next highest priority
to k � 2 customers, and so on.
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R E V I E W  P R O B L E M S

2 a 8 minutes.

b �
(1.25

2

)2e

!

�1.25

� � .22.

c e�0.75
� .47.

3 a 3 windows.

b 3 windows.

6 2 copiers

7 a �
2

3
� car.

b 8.2 minutes.

8 Rent the vacant lot. Then expected daily lost profit is
21(20)(0.008) � $3.36.

9 �
1

2
� hour.

11 Have one crew of 100 workers.

16 a Both lines are free �
1

8

3
� of time, one line is free �

1

4

3
� of

the time, and both lines are busy �
1

1

3
� of the time.

b �
1

6

3
� line.

c 30(�
1

1

3
�) � �

3

1

0

3
� callers per hour.

Chapter 21

S E C T I O N  21.4

1 Approximately 0.76 minute. The answer may vary
according to the random numbers used in the computations.

3 See Figure 15. Variables used in the model:

VALUE � face value from the roll of the dice

WINS � total number of wins up to current
simulation

LOSSES � total number of losses up to current
simulation

POINT � face value from the first roll

PWON � proportion of wins



S E C T I O N  21.5

1 ITM: Generate a random number r.

If (r � 0.5) then

Ifx � 2r

else

Ifx � 3 � 2
2 � 2r�

endif

ARM: Generate two random numbers, r1 and r2.

Set x* � 3r1

If (x* � 1) then

IfAccept x* as the random variate

else

IfIf (r2 � �
3

2
�(1 � r1)) then

IfIfAccept x* as the random variate
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Ifelse

IfIfReject x* and repeat the process

Ifendif

endif

2 Generate a random number r.

If (r � 0.25) then

Ifx � 2 � 4
r�

else

Ifx � 10 � 4
3 � 3r�

endif

4
E (x) var x

After 250 variates 5.274 2.823

After 500 variates 5.318 2.755

After 1,000 variates 5.364 2.856

After 5,000 variates 5.344 2.887

Theoretical values 5.333 2.889

R E V I E W  P R O B L E M S

1 0.70, 0.33, 0.04, 0.11, 0.30, 0.53, 0.44, 0.91, 0.90, 0.73.

3 See Figure 16. Variables used in the model:

DAY � current day in the simulation

EXC � total number of days with net demand
greater than 100

NRES � number of rooms reserved for the current
day in simulation

NNSH � number of no-shows for the current day in
simulation

NUSD � number of rooms used on the current day
in simulation

PERCENT � percentage of days when net demand
exeeded 100
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Chapter 24

S E C T I O N  24.4

1 a 4,000 cases.

b 3,980 cases.

2 a New base � 452; new trend � 43.6; new summer
seasonality � 1.37.

b Forecast for winter quarter � 377.44.

4 95% sure that December sales will be between 172.5
and 297.5.

12 a 106.

b 115.26.

S E C T I O N  24.5

1 For each professor’s payday, compute

Actual customers
��
Forecast customers

FIGURE 16



Average these ratios. Suppose we obtain 1.3. Then to obtain
forecast for a day on which professors are paid, compute a
forecast by our basic method and multiply this forecast by
1.3.

S E C T I O N  24.8

1 a Estimate beta � 0.88.

b Yes.

c 45%.

e 16.1%.

3 a SALES � 52,900 � 912.5T � 9,859Q1 � 8,467Q2

� 20,129Q4, where T � quarter number and Qi �

dummy variable for quarter i.

d The part (b) model has smaller standard error than
the part (a) model. Thus, the part (b) model will yield a
better forecast.

4 SALES � e7 PRICE�0.67.

5 b Indicates positive autocorrelation.
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� � � � � � � � � � �� � � � � � � � � � �

Index

ABC inventory classification

system, 910–912

Absorbing Markov chains,

942–947

Absorbing states, in Markov

chains, 932

Acceptance-rejection method

(ARM), 1162, 1168–1171

Activity

critical, 437, 469

dummy, 433

Activity on arc (AOA) network,

432, 434, 468

Adding a new activity, 287, 325

Additive cost function, 774

Additive independence, 778

Additive value function, 774

Additivity assumption, 53, 62

Ad hoc forecasting, 1292–

1302

Adjacency assumption, 690

Adjacent basic feasible

solutions, 137–138

Advertising

Lagrange multiplier, 667

Leon Burnit Advertising

Agency, 191–198

Prisoner’s Dilemma game,

829

AHP. See Analytic hierarchy

process

AII (average inventory

investment), 915

Airline maximum flow

problem, 421–422

Airline overbooking example,

887–888

Airport pricing, 840–841

Algebra. See Linear algebra

Algorithm

Buzen’s, 1119

convolution, 1171–1172

cutting plane, 545–548, 

552

decomposition, 570,

576–592, 606–607

exponential time, 190

greedy, 457

minimum spanning tree

(MST), 457–458

polynomial time, 190

simplex. See Simplex

algorithm

Wagner-Whitin, 1003–1005

Allen-Cunneen approximation,

1124–1125

Allowable range, 234–236, 239

Alternative optimal solutions,

63–65, 113, 152, 212

Ambulance calls example,

1112–1114

Analytic hierarchy process

(AHP)

consistency in, 788–789

described, 785–786

scoring alternative objectives

in, 789–791

spreadsheets and, 791–793

weights for, 786–788

AOA (activity on arc) network,

432, 434, 468

Aperiodic states, in Markov

chains, 933

Approximating problem,

691–692

Arc

artificial, 420

backward, 424, 468

bad, 457

capacity, 420

defined, 413

dummy, 434, 444

equipment replacement

problem, 415–417

forward, 424

heuristics, 534–535, 

551–552

tree, 514

ARM (acceptance-rejection

method), 1162, 1168–1171

Arms race prisoner’s dilemma

game, 830

Array function MMULT, 19

Arrival processes, in queuing

theory, 1051–1052,

1053–1059

Arrival rate, in queuing theory,

1054

Art dealer example, 764

Artificial arc, 420

Artificial variables

defined, 173

formulas, 272

Assembly of kits case,

1366–1368

Assignment problems, 393

computer solution, 397–398

Hungarian method, 395–397,

405–406

machine assignment problem,

393–394

unbalanced, 395

Assumptions. See also Lemma

additivity, 53, 62

certainty, 54, 62

divisibility, 54, 62, 384

proportionality, 53, 62

Attributes, in decision making

mutually preferentially

independent (mpi), 775

mutually utility independent

(mui), 777

preferentially independent

(pi), 774–775

utility independent (ui), 777

Attributes, in simulations, 1146

Auto assembly example

as series queuing system,

1105–1106

simulated with Process

Model, 1199–1203

Auto company manufacturing

example, 63–66

Autocorrelation, in linear

regression forecasting

negative, 1309

positive, 1309

AVERAGE function, 1125

Average inventory investment

(AII), 915

Average yield example, 5

Axioms for utility theory

complete ordering, 745

compound lottery, 746–747

continuity, 745

independence, 745–746

unequal probability, 746

Backlogged demands, 

103, 847

Back-ordered case of reorder

point model, 891–895

Back orders, 847, 868–872

Backtracking, defined, 520

Backward arc, 424, 468

Bads, Inc. example, 903–906

Bakeco example, 611–612

Baker, K., 74

Baker example, 185–186

Balanced transportation

problem, 363, 402, 404,

417

Balking, in queuing theory, 1052

Banks, J., 1156, 1168, 1181,

1183, 1186

Bank staffing example,

1292–1301

Barber shop example,

1084–1085

Base levels, in moving-average

forecasts, 1280

Basic economic order quantity

model

assumptions of, 848

derivation of, 849–852

holding costs and, 854

nonzero lead time and,

854–856

power-of-two ordering

policies, 857–858

sensitivity of total cost and,

852–853

spreadsheets and, 856

Basic feasible solution (bfs)

adjacent, 137–138

computing row 0, 461–462

defined, 132, 210

degenerate, 169, 376

extreme points, 132–134, 153

for MCNFPs, 460–461

minimum-cost method,

378–380



new, 143–147

northwest corner method,

376–378, 383, 405

rows, 144–147

transportation problems,

373–382, 405

Vogel’s method, 380–382

BASIC programming language,

and simulations,

1183–1184

Basic solution of simplex

algorithm, 131–134

Basic variable (BV)

cases, 30–32

defined, 30, 45

infeasible basis, 275

objective function coefficient,

278–281, 288

sensitivity analysis, 278–281,

390–391

simplex algorithm, 131–132

suboptimal basis, 275

Bayes’ rule, 713–714, 767–773

BCC. See Blocked customers

cleared queuing system

Beer orders example,

1057–1058

BestChip expansion strategy,

1362–1366

Best outcomes, 747–748

Bevco example, 172–178,

179–184, 208, 209

bfs. See Basic feasible solution

Big M method, 172–178, 211,

267

Binding constraint, 58, 113

Binomial random variable, 731

Birth-death processes

defined, 1064

exponential distribution,

1064–1065

laws of motion for, 1064

M/M/1/GD/c/∞ queuing

system, 1083–1085

M/M/1/GD/∞/∞ queuing

system, 1072–1081

M/M/s/GD/∞/∞ queuing

system, 1087–1093

steady-state probabilities for,

1063, 1066–1072

Birth rate, 1064

Blackwell, D., 1039

Blending problems, 85–92

modeling issues, 91

oil blending, 86–91, 92,

492–494

steel industry, 92

Sunco Oil, 86–91

Texaco, 92

Blocked customers cleared

(BCC) queuing system,

1112–1114

computing with LINGO,

1114

spreadsheet for, 1114

Bodin, L., 536

Bond portfolios, 107

Bottlenecks, 593–597, 608

Box, G., 1172

Branch-and-bound method for

solving problems, 550–551

combinatorial optimization,

527–538

implicit enumeration,

542–545, 552

integer programming (IP),

573, 575

knapsack, 524–526, 551

machine-scheduling, 528–530

mixed IP, 523–524, 551

pure IP, 512–522, 551

trees. See Branch-and-bound

trees

Branch-and-bound trees

machine-scheduling, 529

mixed IP, 524

traveling salesperson, 532

Braneast Airlines example,

852–853

Breadco Bakeries, 154–157,

208–210

Break points of the function,

490–491

Brite Power capacity expansion

case, 1368–1369

Brute production process

model, 95–97

Bulk arrivals, in queuing

theory, 1051

Burnit goal programming

example, 191–198

Buying disks example, 860–864

Buying price of a lottery, 755

Buzen’s algorithm, 1119

BV. See Basic variable

CAD (computer-aided

dispatch), 8

Calculus

continuity and discontinuity,

611–612

differentiation, 612–613, 710

Fundamental Theorem of,

708, 716

higher derivatives, 613

integral, 707–710

limits, 613

partial derivatives, 613–615

Taylor series expansion, 

613

Callen, J., 335

Camper, Josie, example, 479

Candea, D., 911–912

Candidate solution, 519, 551

Candy bar pricing NLP,

645–647

Canonical form

basic variables, 144–147

defined, 141

optimal for a max problem,

147–148

Capacity of a cut, 427–428

Capital budgeting problem,

76–81

Carrying costs, 847

Carson, J., 1156, 1168, 1181,

1183, 1186

Cases, 1350–1369

Cash management policy

example, 1031–1032

cdf (cumulative distribution

function), 715–717

Ceiling of expected loss,

810–811, 817

Cell

Changing, 202, 204, 206

defined, 363, 866

Target, 202

Centering transformation,

599–600

Central constraints, 576, 582,

591, 606, 607

Central Limit Theorem, 444,

723, 726

convolution algorithm and,

1171–1172

Certainty assumption, 54, 62

Certainty equivalent of a

lottery, 749

Chain, defined, 413

Chanelle perfume model, 95–97

Changing Cell, 202, 204, 206

Characteristic function in 

n-person game theory, 832,

843

Cheapest-insertion heuristics

(CIH), 534–536, 552

Chemco NLP example,

696–698

“Chicken” game, 830–831

CHINV function, 1116

Chopra, S., 873

CI (consistency index), 788

CIH (cheapest-insertion

heuristics), 534–536, 552

Circular references, 1009–1010

Circularity, 1009–1010

CITGO Petroleum example,

6–7

Clock time, in simulations,

1148

Closed path, defined, 456

Closed queuing networks,

1119–1124

Closed set of states, in Markov

chains, 932

Clothing fixed-charge IP

problem, 480–483

Coefficient

of determination, in linear

regression forecasting,

1305

graphical analysis of

objective function,

227–228, 252, 262–263

LINDO output, 234–235,

253, 281

objective function. See

Objective function

coefficient

technological, 51, 112

Coin toss game with bluffing,

811–814

Colaco marketing example,

758–764

Cola example, 929–931,

935–937

Column generation for solving

large-scale LPs, 570–576,

584, 606

Column player, 817–825,

842–843

Combinatorial optimization

problems

defined, 527

machine-scheduling problem,

528–530

traveling salesperson problem

(TSP), 527, 530–538

Complementary pivoting, 686

Complementary slackness,

325–328, 345, 822–825

Complete Ordering Axiom, 

745

Completion of a node,

540–542, 544

Complexity growth rate of

exponential algorithms,

802

Compound lotteries, 743

Compound Lottery Axiom,

746–747

Computer

Microsoft Project, 441

languages. See Software

packages. See Software

sensitivity analysis and,

232–241

for solving assignment

problems, 397–398

for solving transportation

problems, 368–369

Computer-aided dispatch

(CAD), 8

Concave function, 630–636

Conditional probability, 711

Condo Construction Company

example, 889
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Confidence intervals, finding

with @Risk, 1216–1218

Conservation of flow equations,

1068

Consistency index (CI), 788

Constant, 20

Constant demand assumption,

847

Constant failure rate of a

machine, 1239

Constant lead time assumption,

847–848

Constant-sum games, 806,

842–843

Constraints

binding, 58, 113

central, 576, 582, 591, 606,

607

convexity, 581, 591, 607

cut constraint, 546–548

defined, 2–3, 112

demand, 361

either-or constraints in IP,

487–489, 550

equality, 127–130

if-then constraints, 490, 550

linear programming

problems, 51–52, 112

nonbinding, 59

nonlinear programming

problems, 616

qualifications, 671, 677–678

redundant, 90

right-hand side. See Right-

hand side (rhs) of

constraint

surrogate, 544–545

upper-bound, 593

Continuity Axiom, 745

Continuous demand, 886–888

Continuous functions, 

611–612

Continuous ordering

assumption, 848

Continuous random variables

defined, 716–717

means of, 718

methods of generating,

1162–1172

normal distribution, 722

variances of, 718

Continuous rate inventory

models, 865–867

Continuous review policies,

848, 896–897

Continuous systems, in

simulations, 1146

Convex

combination, 135, 578, 607

feasible region, 62

function, 630–636, 701

set, 59, 113

Convexity constraints, 581, 591,

607

Convolution algorithm,

generating continuous

random variables with,

1171–1172

Copying priority example,

1127–1128

Corner points, 59, 133

Corporate-training programs

selection case, 1359–1362

Cost. See also Reduced cost

matrix, 394, 396

variable, 362

Covariance of random variables,

719–720

CPM (critical path method),

468–469

CPM-PERT project–scheduling

models, 468–469

application of, 432–433

crashing the project, 439–441

critical path, defined, 437,

469

early event time, 434–435,

468

finding the critical path, 437,

438–439, 441–443

free float, 438, 469

history of, 431–432

late event time, 434,

435–436, 469

PERT difficulties, 445–446

PERT procedures, 443–445,

470

project network, 433–434

total float, 436–437, 469

Craps, playing with @Risk,

1269–1271

Crashing the project, 439–441

Critical activity, defined, 437,

469

Critical path method (CPM).

See CPM-PERT project-

scheduling models

CSL Computer

service problem, 109–111

stock example, 924, 927

Cumulative ascending graphs,

creating with @Risk,

1219–1220

Cumulative descending graphs,

creating with @Risk,

1219–1220

Cumulative distribution

function (cdf), 715–717

Current basis

effect of changing right-hand

side of constraint,

282–285

no longer optimal, 280–281,

284–285

optimal, 280

Customers, in queuing theory,

1051

Cut constraint, 546–548

Cutting plane algorithm,

545–548, 552

Cutting stock problem, 

570–576

Cycle

defined, 456

in economic order quantity

models, 850, 869, 891

Cyclic behavior, in forecasting,

1281

Cycling, defined, 170

Dakota Furniture Company

problem

adding a new activity, 287,

325

alternative optimal solutions,

152–153

changing basic variable,

278–281

changing nonbasic variable,

276–278

changing right-hand side of

constraint, 283–285

dual, 296–297, 302–303,

306–307

dual optimal solution, 310,

330–334

dual prices, 319–320

duality and sensitivity

analysis, 323–325

formulas, 267–274

LINDO output, 158–161,

281–282

nonbasic variables, 285–287

nonnegative shadow price,

315–316

100% Rule, 292, 293–294

product form of the inverse,

569, 605–606

revised simplex algorithm,

563–566

sensitivity analysis, 276

shadow price, 314–315

simplex algorithm, 140–141

tableaus, 277–278, 281, 285,

286, 331–333

Theorem of Complementary

Slackness, 326–328

Dantzig, G., 49

Dantzig-Wolfe decomposition

algorithm, 570, 576–592,

606–607

Data Envelopment Analysis

(DEA) method, 335–340

DEA (Data Envelopment

Analysis) method, 335–340

Death rate, 1064

Decision fork of a decision

tree, 759

Decision making under

uncertainty

Bayes’ rule, 767–771

criteria for, 737–741

decision trees, 758–764

framing effects, 755,

757–758

prospect theory, 755–757

utility theory, 741–755

Decision making with multiple

objectives

in the absence of uncertainty,

774–783

analytic hierarchy process

(AHP), 785–793

goal programming, 774–776

multiattribute utility

functions, 776–783

Decision set, in Markov

decision processes, 1037

Decision trees

Bayes’ rule, 767–771

risk aversion, 761–763

terminology, 759

Decision variables

changing right-hand side of

constraint, 284

defined, 2

Decomposition algorithm, 570,

576–592, 606–607

Decreasing failure rate (DFR)

of a machine, 1239

Definite integrals, 708

Degeneracy and sensitivity

analysis, 240–241,

320–321

Degenerate bfs, 169, 376

Degenerate LP, 134, 169,

240–241

Delinquency movement matrix

(DMM), 9

Delta Airlines schedule

development using

Karmarkar’s method, 191

Demand

continuous, 886–887

discrete, 881–884

in inventory models,

847–848

Demand constraint, 361

Demand point

defined, 361, 400

description of problem, 362

dummy, 363, 365, 401–402,

406

in transshipment problem,

400–403, 406

Denardo, E., 1042–1043

Dependent variable, in linear

regression forecasting, 1302
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Derivative

differentiation, 612–613

function, 612

higher, 613

partial, 613–615

second-order partial,

614–615

Determinants of a square

matrix, 42–43, 46

Deterministic dynamic

programming. See

Dynamic programming

Deterministic service times, for

queues, 1060

Deterministic simulation model,

1147

Deviational variables, 192

DFR (decreasing failure rate) of

a machine, 1239

Diagonal elements, 36

Diet problem

conversion to standard form,

128–130

dual, 297, 303–304

Excel Solver solution,

203–205

LINDO output, 161–162, 291

linear programming, 68–71,

1351

100% Rule for changing

objective function

coefficients, 290–292

100% Rule for changing

right-hand sides,

292–293, 294

Differentiation, 612–613, 710

Dijkstra’s algorithm, 416–417,

467, 801

Direction of unboundedness,

134–136, 157–158

Direct method,  generating

continuous random

variables with, 1171–1172

Discontinuous function, 611

Discrete demand, 881–884

Discrete-event simulations,

1147–1153

Discrete random variables

defined, 715

means of, 718

variances of, 718–719

Discrete systems, in

simulations, 1146

Divisibility assumption, 54, 62,

384

DMM (delinquency movement

matrix), 9

Dominated actions, 738

Dominated player, 812

Dominated solution, 695

Dominated strategies, 812–813,

826, 842

Domination, 834–835, 843

Dorian Auto example

direction of unboundedness,

134–136

either-or constraint, 488–489

graphical solution, 60–62

media selection, 494–496

Doyle, T., 536

Drug game, 832, 835, 839–840

Drug pricing when exchange

rates change, 643–645

Dual, 262, 343

complementary slackness,

325–328, 345, 822–825

defined, 295

economic interpretation,

302–304

formulas, 267–274

LP, 295–301

nonnormal LP, 298–301

nonnormal max problem,

299–300

nonnormal min problem,

300–301

normal max problem,

295–297

normal min problem,

295–297

optimal solution of max

problem, 310–312, 344

optimal solution of min

problem, 312–313, 344

prices, 237–238, 240

sensitivity analysis and. See

Sensitivity analysis

simplex method, 329–334,

345, 521–522, 547–548

Dual Theorem, 304, 307–313,

343

Karmarkar’s method, 603

problem, 308

proof, 307, 309

shadow price and, 313–315,

319–321

weak duality, 305–307

Duality

sensitivity analysis and,

323–325, 344–345

weak, 305–307

Dummy

activity, 433

arc, 434, 444

demand point, 363, 365,

401–402, 406

variables, in multiple

regression forecasting,

1322, 1324

Dynamic aspect of PAYMENT

model, 10

Dynamic lot-size model,

1001–1005

Dynamic programming

characteristics of

applications, 965–968

computational difficulties,

996

computational efficiency,

966–977

dynamic lot-size model,

1001–1002

equipment-replacement

problems, 985–989

Excel solutions, 1006–1012

inventory problem, 969–974

knapsack problem, 979–984

minimax shortest route

example, 997–998

network problem, 962–966

nonadditive recursions,

997–999

probabilistic, 1016–1045

recursions, 989–999

resource-allocation problems,

974–979

Silver-Meal heuristic,

1005–1006

time value of money,

991–996

Wagner-Whitin algorithm,

1002–1005

working backward, 961–962

Dynamic scheduling problem,

74, 109–111

Dynamic simulation, 1147

Early event time, 434–435, 468

Economic interpretation of the

dual, 302–304

Economic order quantity

(EOQ), 851

Economic order quantity (EOQ)

inventory models

assumptions of, 847–848

with back orders allowed,

868–872

basic, 848–858

continuous rate, 865–867

multiple product, 873–876

with quantity discounts,

859–864

(r, q) models and (s, S )

models, 890–897

service level approach,

898–907

uses of, 872–873

Efficient frontier, 696

Efficient market hypothesis, 

927

Either-or constraints in IP,

487–489, 550

Element, ijth, defined, 11

Elementary matrix, 568

Elementary row operation

(ERO), 22–24

Gauss-Jordan method of

solution, 22–27, 44–45

Type 1, 23, 25–27, 44

Type 2, 23, 25–27, 28–29, 44

Type 3, 23, 29–30, 44

Eli Lilly example, 1226–1230

Emergency vehicle location in

Springfield case,

1364–1365

Empirical analysis for a

heuristic, 536

EMU (expected maximization

of utility), 755–756

Entering variable

determining, 142–143

nonbasic, 386–387

pivot, 143–147

Entities, in simulations, 1146

EOQ. See Economic order

quantity

Equality constraint, 127–130

Equations

flow balance, 450, 470

normal, 657

Equilibrium distribution, 935

Equilibrium point, 805, 828,

843

Equipment-replacement

problems

alternative recursion, 988

dynamic programming

solution, 985–989

network representation,

987–988

Equivalent lotteries, 742

Ergodic Markov chains,

933–934

Erlang distribution, 1058–1059

Erlang’s loss formula, 1112

Erlang service times, simulating

with Process Model,

1206–1209

ERO. See Elementary row

operation

Euing Gas IP problem, 492–494

Event fork of a decision tree,

759

Event list, in simulations, 1148

Events

defined, 432, 711

independent, 711

maximizing probabilities of

favorable, 1023–1028

mutually exclusive, 711

in simulations, 1148

Event time, 434–436

EVPI (expected value of perfect

information), 763–764

EVSI (expected value of

sample information), 763

EVWOI (expected value with

original information), 763
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EVWPI (expected value with

perfect information),

763–764, 770

EVWSI (expected value with

sample information), 763

Excel. See also Spreadsheets

computing NPV, 77–78

dynamic programming and,

1006–1012

functions. See Excel

functions

infeasible LPs and, 208, 209

integer programming (IP)

and, 499–502, 522

inventory problem,

1010–1012

knapsack problem,

1006–1008

linear programming (LP) and,

202–210

LINGO data and, 369–370

machine repair model,

1102–1103

nonlinear programming

(NLP) and, 626–628,

645–647, 683–684

normal distribution, 726

normal loss function,

905–906

Poisson random variable,

1056–1058

queuing systems, 1093–1094,

1114

resource-allocation problem,

1008–1010

@Risk. See @Risk Excel

add-in

simple linear regression and,

1310–1311

tolerance option, 522

transportation problem,

370–371

Trend Curve, in forecasting,

1317–1318

unbounded LPs and, 

208–210

value of option, 207–208

Excel functions

AVERAGE, 1125

CHINV, 1116

EXPONDIST, 1057

HLOOKUP,  1008

MINVERSE, 41, 947

MMULT, 19, 791, 931, 947

NORMDIST, 726, 729

NORMINV, 727–729

OFFSET, 1277–1278

POISSON, 1056–1058

@Risk add-in. See @Risk

functions

SUMIF, 1121

SUMPRODUCT, 1123

TINV, 1182

VARP, 1125

VLOOKUP, 1132

XNPV, 79

Excess variable

conversion to equality

constraint, 128–130

defined, 128

formula, 272

sensitivity analysis and,

239–240, 272

Exchange curves, 913–916

Exchange rate nonlinear

problems, 643–647

Exchange surfaces, 916–917

Expected maximization of

utility (EMU), 755–756

Expected rewards, in Markov

decision processes, 1037

Expected value criterion, 740

Expected value of perfect

information (EVPI),

763–764

Expected value of sample

information (EVSI), 763

Expected value with original

information (EVWOI), 763

Expected value with perfect

information (EVWPI),

763–764, 770

Expected value with sample

information (EVWSI), 763

Experiments, in probability, 710

EXPONDIST function, 1057

Exponential distribution

birth-death processes,

1064–1065

generating random numbers

with, 1165

no-memory property,

1054–1055

Poisson distribution,

1055–1056

of queue arrival times, 1054

Exponential interarrival times,

1115–1119

Exponential queues, 1104–1106

Exponential service times,

1115–1119

Exponential smoothing

with seasonality, 1286–1290

simple, 1281–1283

with trend, 1283–1286

Exponential time algorithm,

defined, 190

Exponential utility, 753–754

Extreme point, 59

Extremum candidates, 

637–642

Failure rate of a machine

constant, 1239

decreasing (DFR), 1239

increasing (IFR), 1239

Farmer Leary’s shadow price

example, 247

Fathomed, 515, 551

FCFS (first come, first served)

discipline, 1052

Feasible directions method,

693–695

Feasible region

convex, 62

decomposition algorithm,

579, 580

defined, 3, 54, 112

integer programming, 512

nonlinear linear problem, 616

unbounded, 62

Financial models

bond portfolios, 107

multiperiod, 105–107

Finco Investment Corporation

example, 105–107

Finco resource-allocation

example, 975–979

Finish node, 433

Finite buffer, in simulation of

series queuing systems,

1203

Finite source models, in

queuing theory, 1052,

1099

Firerock tire production

problem, 624–626

First come, first served (FCFS)

queues, 1052

First iteration of Karmarkar’s

method, 601–602

Fixed charge, defined, 481

Fixed-charge IP problems, 549

Gandhi Cloth Company,

480–483

lockbox, 483–486

Fixed-increment time-advance

method, in simulations,

1149

Fixed variable, 540, 541

Float

free, 438, 469

total, 436–437, 469

Floor of expected reward, 810,

811, 817

Flow balance equations, 450,

470, 1068–1069

Fly-by-Night Airlines, 

421–422

Ford-Fulkerson method for

solving maximum-flow

problems, 424–429,

467–468

Forecast error, 1276

Forecasting models

ad hoc, 1292–1302

fitting nonlinear

relationships,

1312–1318

Holt’s method, 1283–1286

moving-average, 1275–1281

multiple regression,

1318–1327

simple exponential

smoothing, 1281–1283

simple linear regression,

1302–1312

spreadsheets, 1285–1286,

1310–1312, 1316–1317,

1326–1327

Winter’s method, 1286–1290

Forecasting modules, CITGO

Petroleum example, 7

Formulas

dual, 267–274

optimal tableau, 267–273

FORTRAN computer language,

and simulations,

1183–1184

Forward arc, 424

Framing effects, 755, 757–758

Frank and Wolfe, 694

@FREE function, 1042

Free float, 438, 469

Free variable, 540–541

Fruit Computer Company

example, 769–771, 780–782

Functions

array, 19

break points, 490–491

characteristic, 832, 843

continuous, 611–612

convex and concave NLPs,

630–636

cost, 774

cumulative distribution (cdf),

715–717

derivative, 612

discontinuous, 611

Excel. See Excel functions

linear. See Linear function

LINGO. See LINGO

functions

normal loss, 899–906

objective function coefficient.

See Objective function

coefficient

objective function of NLP,

616

piecewise. See Piecewise

linear function

potential, 602

probability density (pdf),

716–717

ramp, 1163

@Risk. See @Risk functions

unimodal, 649–650

utility. See Utility functions
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value, 774

Fundamental Theorem of

Calculus, 708, 716

Gambler’s ruin example, 923,

925–926

Gambling game example,

1023–1026

Game theory, 842–843

advertising prisoner’s

dilemma game, 829

airport pricing, 840–841

arms race prisoner’s dilemma

game, 830

“chicken” game, 830–831

constant-sum games, 806,

842–843

constant-sum TV game, 806

dominance, 834–835

drug game, 832, 835,

839–840

garbage game, 832, 836

land development game,

832–833, 834–835,

836–837

linear programming and

zero-sum games,

816–817

n-person, 832–833, 836–837,

843

odds and evens, 807–808,

809–811

prisoner’s dilemma, 827–830,

843

saddle point. See Saddle

point

Shapley value, 837–838,

843–844

two-person constant-sum

games, 806

two-person nonconstant-sum

games, 827–831, 843

two-person zero-sum games.

See Two-person zero-

sum games

uses of, 803

Gandhi Cloth Company

example

Excel Solver solution,

499–502

fixed-charge problem,

480–483

LINDO solution, 497

Garbage game, 832, 836

Gasoline illustration of matrix

multiplication, 17–18

GASP IV programming

language, and simulations,

1183–1184

Gauss-Jordan method

computing optimal tableau

example, 273

determination of linearly

independent or linearly

dependent vectors,

34–35, 45–46

elementary row operation

(ERO), 22–27, 44–45

finding solutions, 24–27

inverse of a matrix, 37–40,

46

linear system with infinite

solutions, 28–29

linear system with no

solution, 28

solving systems of linear

equations, 22, 30–31

summary, 29–30

GE Capital example, 9–10

Geometrical interpretation

Kuhn-Tucker conditions,

674–677

Lagrange multipliers, 

665–666

Geometric random variable,

731–732

Generalized resource allocation

problem, 978–979

General Motors example,

1223–1226

G/G/m queuing system,

1124–1125

Giapetto’s Woodcarving

problem, 49, 53

additivity assumption, 53

certainty assumption, 54

constraints, 51

decision variables, 49–50

divisibility assumption, 54

feasible region, 54–55, 57,

59–60

forecasting, 1302–1312

graphical solution, 57

objective function, 50–51

objective function coefficient

and optimal z-value,

251–252

optimal solution, 55, 58,

228–230, 263–265

proportionality assumption,

53

sensitivity analysis, 227–231,

262–265

sign restrictions, 52

GI/G/∞/GD/∞/∞ queuing

model, 1095–1096

Gilmore, P., 570, 576

Global maximum of NLP, 642

Glueco example, 998–999

Goal programming, 65, 127,

191

in decision making, 774–776

preemptive, 194–198

simplex, 194

using LINDO or LINGO for

solving problems,

197–198

weight, 193

Golden, B., 536

Golden section search, 649–654

Golf-Sport operations

management case,

1352–1355

Gomory, R., 570, 576

Gotham City summers example,

720

GPSS programming language,

and simulations,

1183–1184

Gradient vector, 661

Graph, defined, 413

Graphical solution. See also

Two-variable linear

programming problems,

graphical solution of

Dorian Auto problem, 134

Giapetto’s Woodcarving

problem, 57

objective function coefficient,

227–228, 252, 262–263

odds-and-evens game,

809–811

optimal solution, 228–230,

252, 263–265

Powerco problem, 362

sensitivity analysis, 341–342

Greedy algorithm, 457

Half-space, defined, 138

Happy Chicken restaurant

example, 1320–1322

Hax, A., 911–912

Help-You Company case,

1366–1368

Help, I’m Not Getting Any

Younger! case, 1351

Hessian, 634–636, 655, 656

Heteroscedasticity,  in

forecasting, 1078, 1325

Heuristic method

nearest-neighbor heuristics

(NNH), 534, 535–536,

551

restaurant scheduling

problem, 75

solving traveling salesperson

problems (TSPs),

534–536, 551–552

Higher derivatives, 613

HLOOKUP function, 1008

Holding costs

defined, 847

in economic order quantity

models, 854

Holt’s method of forecasting

described, 1283–1285

spreadsheet implementation,

1285–1286

Homoscedasticity,  in linear

regression forecasting,

1308

Horizon length, in Markov

decision processes, 1036

Hospital DEA example,

335–340

Howard’s policy iteration

method, 1040–1041

Hubble telescope example,

1240–1242

Hungarian method of solution,

395–397, 405–406

Identity matrix, defined, 36

IFR (increasing failure rate) of

a machine, 1239

If-then constraints, 490, 550

ijth element, 11

Immediate predecessor, 435,

468

Immediate successor, 436, 469

Implicit enumeration to solve

IPs, 540–545, 552

Improvement in z-value,

265–266

Imputation, 833, 843

Increasing failure rate (IFR) of

a machine, 1239

Indefinite integrals, 707–708

Independence Axiom, 745–746

Independent events, 711

Independent random variables,

719–720

Independent variables, in linear

regression forecasting, 1302

Indiana Bell example,

1069–1072

Infeasible basis of BV, 275

Infeasible LP, 63, 113

Infinite-server system, 1095

Input processes, in queuing

theory, 1051–1052

Initial node, 413

Initial probability distribution,

925

Integer programming (IP),

475–477, 549–552. See

also Integer programming

problems

cutting plane algorithm,

545–548, 552

feasible region, 476–477

formulations, 477–480, 549

LP relaxation, 476–477, 

512, 513, 523, 525,

546–548

piecewise linear functions,

490–496, 550

simple, 476–477
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Integer programming problems

(IP), 54

branch-and-bound method.

See Branch-and-bound

method for solving

problems

capital-budgeting IP, 478–480

combinatorial optimization,

527–538

defined, 475

either-or constraints,

487–489, 550

Excel Solver solutions,

499–502, 522

facility-location set-covering,

486–487

fixed-charge, 480–486, 549

formulating, 477–480

if-then constraints, 490, 550

implicit enumeration,

540–545, 552

knapsack, 479, 524–526

LINDO solutions, 496–497

LINGO solutions, 497–499

lockbox, 483–486, 490,

497–499

machine-scheduling, 528–530

mixed, 475, 523–524

pure, 475, 512–522, 540, 

551

set-covering, 486–487

traveling salesperson. See

Traveling salesperson

problem

Integral calculus. See Calculus

Integrals

definite, 707

differentiation of, 710

indefinite, 707–708

Leibniz’s rule for

differentiating, 710

Interval of uncertainty,

650–654

Inventory

backtracking, 520

LIFO rule. See LIFO rule

Inventory models

with back orders allowed,

868–872

basic economic order quantity

models, 848–858

continuous rate, 865–867

costs involved in, 846–847

economic order quantity

models, 847–848

and linear programming,

100–103

multiple-product, 873–876

probabilistic, 880–917,

1019–1023

with quantity discounts,

859–864

spreadsheets and, 856,

863–864, 867–868,

871–872

uses of, 872–873

Inventory problem

dynamic programming

solution, 969–974

Excel solution, 1010–1012

probabilistic dynamic

programming solution,

1019–1023

as transportation problem,

366–368

Inverse, product form of,

567–569, 605–606

Inverse of a matrix, 36–39

defined, 37

Excel, 41

Gauss-Jordan method, 37–40,

46

matrix with no inverse,

39–40

solving linear systems, 40

Inverse transformation method

(ITM), 1162–1168

IP. See Integer programming

Isocost line, 58

Isoprofit line, 58

Iteration, defined, 145, 146

ith principal minor, 634

ITM (inverse transformation

method), 1162, 1168

Jackson, J., 1104

Joint probabilities, 713

Jumptracking, defined, 

520

Kahneman, D., 755–758

Karmarkar’s method for solving

LPs, 190–191, 597–598,

608

centering transformation,

599–600

description and example,

600–601

first iteration, 601–602

interior point method, 803

LP standard form, 602–605

potential function, 602

projection, 598–599

Keeney, R., 775–780

Kelton, W., 1156, 1169, 1172,

1181, 1183, 1186

Kendall-Lee notation for

queuing systems,

1060–1061

Knapsack problems

alternative recursion,

982–983

branch-and-bound method

solution, 524–526, 551

defined, 479

dynamic programming

solution, 979–984

Excel solution, 1006–1008

network representation,

981–982

turnpike theorem, 983–984

Kolmogorov-Smirnov test, 1116

k out of n system, in machine

combinations, 1240

Krajewski, L., 75

k-stage series queuing system,

1104

kth leading principal minor, 

634

Kuhn-Tucker (KT) conditions,

670–674

constraint qualifications, 671,

677–678

geometrical interpretation,

674–677

LINGO solution, 678–679

in quadratic programming

problems, 684–686

Labeling method in solving

maximum-flow problems,

425, 426

Lagrange multipliers, 

663–665

advertising problem, 667

geometrical interpretation,

665–666

optimal solution, 668

sensitivity analysis and,

666–668

Land development game,

596–597, 598–599,

600–601

Last come, first served (LCFS)

queues, 1052

Late event time, 434, 435–436,

469

Law, A.M., 1156, 1169, 1172,

1181, 1183, 1186

Laws of motion for birth-death

processes, 1064

LCFS (last come, first served)

discipline, 1052

Lead time

in inventory models, 847

nonzero, 854–856

Least squares estimates, in

linear regression

forecasting, 1304

Least squares method, in

nonlinear programming,

657–658

Least squares regression

equation, in multiple

regression forecasting,

1308

Least squares regression line, in

linear regression

forecasting, 1304

Leather Limited problem,

127–128, 132–134, 135

Leatherco example, 

316–317

Leibniz’s rule, 710

Lemma. See also Assumptions

capacity of cut, 427–428

dual theorem, 307

Karmarkar’s centering

transformation, 599

method of steepest ascent,

662

no-memory property,

1054–1055

utility functions, 747

Wagner-Whitin algorithm,

1002–1003

weak duality, 305, 307

Leon Burnit Advertising

Agency goal programming

example, 191–198

LIFO (last in, first out) rule

backtracking, 520

defined, 515

implicit enumeration, 543

Limits in calculus, 610

LINDO (Linear Interactive and

Discrete Optimizer)

computer package, 74, 158

ALLOWABLE DECREASE,

234, 239, 282, 285, 320

ALLOWABLE INCREASE,

234, 239, 281, 285, 320

assignment problems,

397–398

CURRENT COEF, 281

CURRENT RHS, 285

degeneracy, 240–241

diet problem, 161–162, 291

DUAL PRICE, 237, 240,

319–321, 339

integer programming

problems, 496–497

menu commands. See

LINDO menu

commands

minimization problems,

233–234, 236

OBJECTIVE COEFFICIENT

RANGES, 234–235,

253, 281

optional modeling

statements, 220–221

Parametrics feature, 248

preemptive goal programming

for problem solving,

197–198

REDUCED COST, 236, 240,

320
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RIGHTHAND SIDE

RANGES, 236, 237,

239, 253, 285, 320

sensitivity analysis, 232–241,

281–282

shadow prices, 319–321, 342,

344

TABLEAU command, 162,

240, 320

trade-off curve problem,

740–741

transportation problems, 368

two-person zero-sum games,

825–826

LINDO menu commands,

217–220

edit, 218

file, 217–218

help, 220

reports, 219

solve, 219

window, 219–220

Line segment joining, 14–15

Linear algebra

equations. See Linear

equations

matrices. See Matrix

vectors. See Vectors

Linear combination, 32

Linear dependence, 32–36, 46

defined, 33

determination of, 34–35

Linear equations

basic variables, 30–32, 45

matrices and, 20–22, 44

solutions, defined, 20

solving by Gauss-Jordan

method, 22–32, 44–45

Linear function

defined, 52

piecewise, 249, 252,

490–496, 550

Linear independence, 32–36,

45–46

defined, 33

determination of, 34–36

Linear inequalities

defined, 52

graphing of, 56

Linear programming (LP), 49

additivity assumption, 53, 

62

alternative or multiple

optimal solutions,

63–65, 113, 152, 212

certainty assumption, 54, 62

conversion to standard form,

127–130, 141–142, 210

degenerate, 134, 169,

240–241

divisibility assumption, 54,

62, 384

dual, 295–301

finding a critical path, 437,

438–439, 441–443

infeasible LP. See Infeasible

LP

Karmarkar’s method for

solving, 190–191

in Markov decision

processes, 1042

nondegenerate, 168

optimal bfs, 136–139, 142

Phase I and II, 179–184, 212

problems. See Linear

programming problems

proportionality assumption,

53, 62

scaling of, 167

solution. See Simplex

algorithm

standard form, 127–130,

141–142, 210, 602–605

three-dimensional, 138–139

unbounded. See Unbounded

LP

zero-sum games and,

816–826

Linear programming (LP)

problem

constraints, 51–52, 112

decision variables, 2, 49–50

defined, 53

examples. See Linear

programming problem

examples

Excel Solver, 202–210

feasible region, 54–55, 57,

112

formulating, 113

maximum flow, 467

nonlinear programming vs.,

617–619

objective function, 2, 50, 112

objective function coefficient,

50–51, 112

optimal solution, 55, 58, 112,

142

parts of, 112

sign restrictions, 52, 112,

128–130

solving large-scale problems

using column

generation, 570–576,

584, 606

solving using complementary

slackness, 328, 345,

822–825

two-variable. See Two-

variable linear

programming problems

Linear programming problem

examples. See also

Problems

auto manufacturer, 63–66

baker, 185–186

Bevco, 172–178, 179–184,

208, 209

blending problems, 85–92

Breadco Bakeries, 154–157,

208–210

Burnit goal programming,

191–198

capital budgeting, 76–81

CITGO Petroleum, 6–7

Dakota Furniture Company.

See Dakota Furniture

Company problem

diet. See Diet problem

Dorian Auto, 60–62,

134–136

Farmer Leary’s, 247

financial, 105–107

Giapetto’s Woodcarving. See

Giapetto’s Woodcarving

problem

inventory, 100–103

Leather Limited, 127–128,

132–134, 135

Mondo Motorcycles,

186–188

multiperiod decision,

100–103, 105–107,

109–111

Police Patrol Scheduling

System (PPSS), 7–9

post office scheduling,

72–75, 165–166

production process, 95–97

Sailco Corporation. See

Sailco Corporation

problem

short-term financial planning

problem, 82–85

Star Oil Company, 80–81

Tucker, Inc. See Tucker, Inc.,

example

Winco Products. See Winco

Products example

work scheduling, 72–75,

109–111

Linear systems

infinite solutions, 28–29

matrix inverses for solving,

40, 46

with no solution, 28

LINGO computer package, 74,

163, 221

assignment problems,

397–398

data from Excel spreadsheet,

369–370

determining critical path,

441–443

functions. See LINGO

functions

fundamentals, 221

integer programming

problems, 497–499

maximum-flow problems,

423–424

MCNFP, 453–454

menu commands. See

LINGO menu

commands

nonlinear programming

problems, 617, 647–648,

659, 669, 678–679,

682–683

preemptive goal

programming for

problem solving,

197–198

trade-off curve problem,

698–699

transportation problems,

368–369

traveling salesperson (TSP)

problem, 537–538

two-person zero-sum games,

825–826

LINGO functions, 

225–226

@FREE, 1042

@PEB, 1093

@PEL, 1114

@PSL, 899, 905

LINGO menu commands,

222–224

edit, 223

file, 222

help, 224

LINGO, 223–224

window, 224

Little’s queuing formula,

1074–1077

Local extremum, 619–620

Local maximum, 619

Lockbox IP problem

branch-and-bound method,

520

fixed-charge problem,

483–486

if-then constraints, 490

solving with LINGO,

497–499

Loop

defined, 374

entering variable and, 388

importance of concept,

374–375

minimum spanning tree and,

456

transportation problem,

382–383, 405

Lost sales case, 847

of reorder point model,

895–896
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Lotteries

buying price, 755

certainty equivalent of, 749

compound, 743

defined, 741

equivalent, 742

nondegenerate, 750

risk premiums of, 749–750

selling price, 755

simple, 743

utility theory and, 741–745

Lower bound, defined, 

519

Lowland Appliance example,

910, 1275–1290

LP. See Linear programming

Machine repair model,

1099–1103

computing with LINGO,

1103

spreadsheet for, 1102–1103

Machine replacement problem,

Markov decision processes

and, 1037–1038

Machine-scheduling problem,

528–530

Machineco assignment

problem, 393–398

MAD (mean absolute

deviation), 1276

Mail-handling case, 1356–1359

Management science, defined, 1

MAPE (mean absolute

percentage error), 1258

Marginal analysis, 880–881

Marginal probability, 713

Markov chains

absorbing, 942–947

classification of states in,

931–934

defined, 924–927

fundamental matrix, 945

LINGO and, 939–940

mean first passage times,

939–940

n-step transition probabilities,

928–931

steady-state probabilities,

934–938 

stochastic process, 

923–924

work-force planning models,

950–953

Markov decision processes

(MDPs)

described, 1036–1037

linear programming, 1042

maximizing average reward,

1044–1045

policies, 1038–1039

policy iteration, 1039

value determination

equations, 1039–1041

value iteration, 1042–1044

Markowitz, 681

Mason and Burger law firm

example, 943–945,

946–947, 952–953

Matchmaking problem, 422–423

Material-handling case,

1356–1359

Mathematical models, 1

Matrix

addition of, 14–15

cost, 394, 396

defined, 11, 43

equal, 12

elementary, 568

fundamental, 945

generators, 163

identity, 36

ijth element, 11–12

inverse, 36–41, 46

minor, 42

multiplication. See Matrix

multiplication

pairwise comparison, 786

product, 16, 44

rank of, 34–35, 46

representation, 21–22

reward. See Reward matrix

scalar multiple, 14

square, 36, 42–43, 46

systems of linear equations,

20–22

transition probability, 

925

transpose of, 15–16

undefined product, 17

Matrix multiplication

examples, 16–17

Excel, 19

gasoline illustration, 17–18

properties, 18–19

Max problem

finding the dual, 343, 344

interpreting the dual,

302–303

simplex algorithm, 140–148

nonnormal, 299–300

normal, 295–297

optimal solution, 310–312,

344

solving with dual simplex

method, 329–334, 345

unbounded LP, 154–157

unconstrained NLP, 

655–659

Maximax criterion, 739

Maximin criterion, 738–739

Maximizing average reward per

period, in Markov decision

processes, 1044–1045

Maximizing favorable-event

probabilities, in

probabilistic dynamic

programming, 1024–1028

Maximum-flow problems, 467

defined, 419–420

Ford-Fulkerson method for

solving, 424–429,

467–468

formulating an MCNFP,

451–453, 470–471

labeling method, 425, 426

LP solution, 420–423

matchmaking problem,

422–423

solving with LINGO,

423–424

McKenzie, P., 75

MCNFP. See Minimum-cost

network flow problem

MDPs. See Markov decision

processes

Mean absolute deviation

(MAD), 1276

Mean absolute percentage error

(MAPE), 1258

Mean first passage times,

939–940

Media selection with piecewise

linear functions, 494–496

Meindl, P., 873

Method of feasible directions,

693–695

Method of steepest ascent,

660–663

M/G/1/FCFS/∞/∞ queuing

system, 1065

M/G/1/GD/∞/∞ queuing

system, 1097–1098

M/G/∞/GD/∞/∞ queuing model,

1095–1096

M/G/s/GD/s/∞ queuing system,

1112–1114

computing with LINGO,

1114

spreadsheet for, 1114

Mi/Gi/1/NPRP/∞/∞ queuing

model, 1126–1130

with customer-dependent

waiting costs,

1128–1129

Mi/M/s/NPRP/∞/∞ queuing

model, 1129

Microsoft Project, 441

Military Airlift Command

routes determined using

Karmarkar’s method,

190–191

Minimax regret, 739–740

Minimax shortest route,

997–998

Minimax Theorem, 818–819

Minimization (min) problems

finding the dual, 343, 344

graphical solution of, 60–62

interpreting the dual,

303–304

LINDO output, 233–234, 236

nonnormal, 300–301

normal, 295–297

optimal solution, 312–313,

344

ratio test, 151

reduced cost, 161, 162

simplex algorithm, 149–151,

161, 212

solving with dual simplex

method, 333–334

unconstrained NLP, 655–659

Minimum-cost method for

finding bfs, 378–380

Minimum-cost network flow

problems (MCNFPs), 450,

470–471

basic feasible solutions,

460–461

maximum flow problem,

451–453

network simplex method,

459–460, 471

solving with LINGO,

453–454

transportation problem,

450–451

Minimum spanning tree (MST),

456–458

Minor of a matrix, defined, 42

MINVERSE function, 41, 947

Mixed integer programming

problem, 475, 523–524,

551

Mixed strategy, 808–809

M/M/1/FCFS/∞/∞ queuing

system, 1065

M/M/1/GD/c/∞ queuing system,

1083–1085

M/M/1/GD/∞/∞ queuing

system, 1072–1081

M/M/1 queuing systems,

simulated with Process

Model, 1191–1195

M/M/2 queuing systems,

simulated with Process

Model, 1195–1199

M/M/R/GD/K/K queuing model,

1099–1103

M/M/s/GD/∞/∞ queuing

system, 1087–1093

computing with LINGO,

1093

spreadsheet for, 1091–1093

MMULT function, 19, 791,

931, 947

Modeling, 1
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blending problems, 91

descriptive, 1

deterministic, 4–5

dynamic, 4, 100

dynamic lot-size, 1001–1005

integer, defined, 4

inventory, 100–103

linear, 4

linear optimization, 10

linear programming (LP),

6–7

multiperiod. See Multiperiod

network. See Network

models

noninteger, 4

nonlinear, 4

optimization, complete, 3–4

optimization, 2

PAYMENT, 9–10

periodic review, 848, 969

prescriptive, 2

production process, 95–97

production-smoothing costs,

186–188

seven-step model-building

process, 5–6

static, 4, 100

stochastic, 1–2, 4, 1147,

1173–1180

Modular design for the Help-

You Company case,

1366–1368

Mondo Motorcycles example,

186–188

Monopolistic pricing, 641, 656,

676–677

Monte Carlo sampling, 

1153

Monte Carlo simulations

defined, 1147

exemplified, 1158–1161

Morgenstern, Oskar, 804, 834,

842

mpi (mutually preferentially

independent) attributes,

774

MST (minimum spanning tree),

456–458

mui (mutually utility

independent) attributes,

777

Muller, M., 1172

Multiattribute decision

problems, 773–774

Multiattribute utility functions,

776–783

Multicollinearity, in multiple

regression forecasting,

1322

Multilinear utility function,

777–778

Multiperiod

decision problems, 100–103

financial models, 105–107

work scheduling, 109–111

Multiple-product economic

order quantity models,

873–876

Multiple optimal solutions,

63–65

Multiple regression forecasting

autocorrelation in, 1325

choosing the best regression

equation, 1321

described, 1318

dummy variables, 1322–1323

goodness of fit, 1319–1320

heteroscedasticity in, 1325

hypothesis testing,

1320–1321

multicollinearity in, 1322

multiplicative models,

1324–1325

spreadsheets, 1326–1327

Multipliers, simplex, 461, 471

Mutually exclusive events, 

711

Mutually preferentially

independent (mpi)

attributes, 774

Mutually utility independent

(mui) attributes, 777

NBA finals, simulating with

@Risk, 1271–1272

NBD Bank example, 1125

NBV. See Nonbasic variable

n-dimensional unit simplex, 598

n-person games, 832–833,

834–837, 843

Nearest-neighbor heuristics

(NNH), 534, 535–536, 551

Necessary conditions, 703

Negative autocorrelation, in

linear regression

forecasting, 1309

Net present value (NPV), 76–81

Network

defined, 413

equipment-replacement

problem, 987–988

inventory example, 969–974

knapsack problem, 981–982

problem, 962–966

project, 432

resource-allocation problem,

974–979

simplex, 421, 450, 459–465,

471

simplex algorithm, 452

Network models, 413–414

CPM-PERT. See CPM-PERT

project-scheduling

models

defined, 413

Dijkstra’s algorithm,

416–417, 467

example, 414

maximum-flow problems,

419–429, 451–453,

467–468

minimum-cost network flow

problems (MCNFPs),

450–454, 470–471

minimum spanning tree

(MST) problems,

456–458

network simplex, 421, 450,

459–465, 471

shortest-path problem as

transshipment problem,

417–418, 467

shortest-path problems,

414–418, 467

transportation simplex, 452

Network simplex method, 421,

450, 459–465, 471

New activities, 287, 325

News vendor problems,

737–740

continuous demand, 886–888

discrete demand, 881–884

simulating with @Risk,

1211–1221

Next-event time-advance

mechanism, in simulations,

1149

Nickles, J. C., lockbox problem.

See Lockbox IP problem

Node

completion of, 540–542, 544

defined, 413

equipment-replacement

problem, 415–417

finish, 433

implicit enumeration, 542–545

initial, 413

jumptracking, 520

terminal, 413

tree, 514

unconnected, 457

NNH (nearest-neighbor

heuristics), 534, 535–536,

551

No-memory property,

1054–1055

Nonadditive recursions, 

Nonbasic variable (NBV)

cases, 30–32

defined, 30, 45

duality and sensitivity

analysis, 324–325

entering, 386–387

pricing out, 384–386,

563–566, 585–588,

590–591

reduced cost, 277–278

in sensitivity analysis,

276–277, 285–287, 288,

390

of simplex algorithm,

131–132

Nonbinding constraint, 59

Nonconvex sets, 59

Nondegenerate LP, defined, 168

Nonhomogeneous Poisson

process, 1132

Nonlinear programming, 610

determinants, 42

differential calculus, 610–615

Nonlinear programming

problems (NLP), 610

constraints, 616

continuous function, 611–612

convex and concave

functions, 630–636, 701

defined, 616

Excel Solver solutions,

616–618, 645–647,

683–684

feasible directions method,

693–695

feasible region, 616

global maximum, 642

golden section search,

639–644

Kuhn-Tucker (KT)

conditions, 670–679

Lagrange multipliers,

663–668

least squares estimation,

657–658

linear programming vs.,

617–619

LINGO solution, 617,

647–648, 659, 669,

678–679, 682–683

local extremum, 619–620

maxima, minima, and saddle

points, 655–659, 659

method of steepest ascent,

660–663

objective function, 616

one variable, 638–638

pareto optimality, 695–700

points, 637–642, 651–654

pricing, 642–647, 656, 669,

679

Proctor and Ramble trade-off

curve, 698–699

product profitability, 612–613

production maximization

example, 617

profit maximization by

monopolist, 641, 656,

676–677

quadratic programming

problem (QPP), 680–686
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Nonlinear programming

problems (NLP)

(continued)

separable programming,

688–692

Taylor series expansion, 613

trade-off curves, 695–700

unconstrained, 616, 655–659

Nonlinear relationships, in

forecasting

Excel Trend Curve and,

1317–1318

fitting, 1312–1318

graphs of linearizable

functions, 1313

spreadsheets and, 1316–1317

Nonnormal LP, finding the dual,

298–301

Nonstationary queuing system,

1131

Nonzero lead time, 854–856

Normal distribution

Central Limit Theorem, 723,

726

defined, 722

Excel and, 726

properties of, 723

standardization and, 723

z-transforms, 730–732

Normal equation, 657

Normal loss function

defined, 899

computing with Excel,

905–906

computing with LINGO, 

899

table of values, 900–903

Normal max problem, defined,

295–297

Normal min problem, defined,

295–297

Normalized vector, 661

NORMDIST function, 726,

729, 906

NORMINV function, 727–729

Northwest corner method for

finding bfs, 376–378, 383,

405

Notation, 342, 404

NPV (net present value), 76–81

n-step transition probabilities,

928–931

Number referred to as scalar,

14

Objective function

defined, 2, 112

Giapetto’s Woodcarving

problem, 50

NLP, 616

row 0 version, 140

Objective function coefficient

basic variable, 278–281, 288,

390–391

nonbasic variable, 276–278,

288, 324, 390

defined, 50–51, 112

graphical analysis, 227–228

graphical analysis of change,

252, 262–263, 227–228

100% Rule, 289–292

optimal z-value and,

251–252, 253–254

ranges, 234–236, 253, 288,

343

Odds and evens game,

807–808, 809–811

OFFSET function, 1277–1278

Ohm City Appliances example,

874–876

Oil blending problems, 86–91,

92, 492–494

Oilco NLP, 590–593, 688–689

100% Rule

changing objective function

coefficients, 289–292

changing right-hand sides,

292–294

One-way data table, 1091

On-order inventory level, 907

Open queuing networks

described, 1106–1107

simulated with Process

Model, 1203–1206

Operations research (OR), 1

Optimal basis, 280–281

Optimal bfs in an LP, 136–139,

142

Optimal policies, in Markov

decision processes,

1038–1039

Optimal solution

alternative, 63–65, 113, 152,

212

defined, 3, 55, 112

dual simplex method,

330–332

Giapetto’s Woodcarving

problem, 55, 58,

228–230, 263–265

graphical analysis, 228–230,

252, 263–265

nonlinear programming

problem, 616

simplex algorithm, 152–153,

212

transportation problems, 

405

Optimal strategy, 811, 814, 842

Optimal z-value, 248–252,

253–254

OR (operations research), 1

Ordering costs, 846

Original space, 600

Output processes, in queuing

theory, 1052

Overstocking costs, 882

Pairwise comparison matrices,

786–787

Parallel system, in machine

combinations, 1239

Pareto optimal solutions,

695–700

Parking spaces example,

1032–1033

Partial derivatives, 613–615

Path

defined, 414

in Markov chains, 931

Patrol cars example, 1101–1103

PAYMENT model of GE

Capital, 9–10

pdf (probability density

function), 716–717

PDP. See Probabilistic dynamic

programming

@PEB function, 1093

@PEL function, 1114

Percentile of chi-square

distribution table, 1117

Perfect information, 763–764

Performance guarantee for a

heuristic, 535

Periodic review models, 848, 969

Periodic review policy, 910–913

Periodic states, in Markov

chains, 933

PERT (Product Evaluation and

Review Technique). See

CPM-PERT project-

scheduling models

Pert distribution, 1233–1234

Peterson, R., 872–873

Phase I LP, 179–184, 212

Phase II LP, 179–184, 212

pi (preferentially independent)

attributes, 774–775

Piecewise linear function

defined, 249

integer programming and,

490–496, 550

minimization problem, 252

Pierre’s Bakery example,

1159–1161

Pivot row, 144

Pivot term, 144

Pivoting

defined, 144

network simplex, 462–463

transportation problems,

382–384, 405

pmf (probability mass

function), 715

Points

break, 490–491

corner, 59, 133

demand. See Demand point

dummy demand, 363, 365,

401–402, 406

equilibrium, 805, 828, 843

extreme, 59–60, 132–134,

153

NLP, 637–642, 651–654

saddle. See Saddle point

stationary, 655, 656

supply, 361, 362, 400–403,

406

transshipment, 400–403

Poisson distribution, of queue

arrival times, 1055–1056

POISSON function, 1056–1058

Poisson random variable, 731

computing with Excel,

1056–1058

Polaris missile development,

431

Police Patrol Scheduling

System (PPSS), 7–9

Policies, in Markov decision

processes, 1038–1039

Policy iteration, in Markov

decision processes,

1039–1041

Pollaczek and Khinchin, 1097

Polyhedron, 138

Polynomial time algorithm,

defined, 190

Portfolio optimization problem,

680–684

Positive autocorrelation, in

linear regression

forecasting, 1309

Posterior probabilities

computing with LINGO, 771

defined, 713, 767–768 

Post office

material handling case,

1356–1359

scheduling problem, 72–75,

165–166

Potential function in

Karmarkar’s method, 602

Power capacity expansion case,

1368–1369

Powerco problem

basic feasible solutions,

373–375

entering nonbasic variable,

386–387

linear programming model,

360–365

network, 414

northwest corner bfs, 383,

384–385

pivoting procedure, 383

pricing out nonbasic

variables, 384–386
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sensitivity analysis, 390–392

solving using LINGO,

368–371

tableau, 389, 391, 392

Power-of-two ordering policies,

857–858

Pratt’s measure of absolute risk

aversion, 801

Predecessor

of the activity, 432

immediate, 435, 468

Prediction problem, 11

Preemptive goal programming,

194–198

Preemptive queuing systems,

1129–1130

Preemptive repeat model, 1129

Preemptive resume model, 1129

Preferentially independent (pi)

attributes, 774–775

Price break points, 860

Prices

dual, 237–238

shadow. See Shadow price

Pricing

monopolistic, 641, 656,

676–677

nonlinear, 642–647, 656,

669, 679

Pricing out

defined, 285

nonbasic variables, 384–386,

563–566, 585–588,

590–591

Primal

defined, 295

problem, 304–305, 308

Principle of optimality,

967–968

Priority queuing models

described, 1126

Mi/Gi/1/NPRP/∞/∞,

1127–1129

Mi/M/s/NPRP/∞/∞, 1129

nonpreemptive, 1127

preemptive, 1129–1130

Prior probabilities, 713, 767

Prisoner’s Dilemma games,

827–834, 843

Probabilistic analysis for a

heuristic, 535–536

Probabilistic dynamic

programming (PDP)

exemplified, 1029–1034

inventory model, 1019–1023

Markov decision processes

(MDPs), 1036–1045

maximizing favorable-event

probabilities, 1023–1028

with uncertain stage costs but

certain states,

1016–1019

Probabilistic inventory models

ABC inventory classification

system, 910–912

continuous demand, 886–888

continuous review policies,

896–897

discrete demand, 881–884

exchange curves, 913–917

marginal analysis, 880–881

periodic review policy,

907–910

single-period decision

models, 880, 888–889

uncertain demand, 890–897,

898–907

Probability

conditional, 711

joint, 713

marginal, 713

normal distribution and,

722–729

n-step transition, 

928–931

posterior, 713

prior, 713

transient, 1131

transition, 925, 1037

Probability density function

(pdf), 716–717

Probability mass function

(pmf), 715

Problems

assignment. See Assignment

problems

cases, 1350–1359

cutting stock, 570–576

dual. See Dual

equipment replacement,

415–416, 978–979,

985–989

games. See Game theory

integer programming. See

Integer programming

problems

inventory, 969–974,

1010–1012

knapsack, 979–984

linear. See Linear

programming problem

examples

machine-replacement,

1037–1038

matchmaking maximum-flow

problem, 422–423

maximum-flow. See

Maximum-flow

problems

minimum spanning tree

algorithm, 457–458

multiattribute decision,

773–774

network, 962–966

network simplex solution to

MCNFP, 463–465

news vendor, 737–740,

881–888, 1212–1221

nonlinear programming

problems. See Nonlinear

programming problems

prediction, 11

primal, 304–305, 308

queuing optimization, 

1078

ranking, 11

resource allocation, 974–979,

1008–1010

shadow price, 316–319

shortest-path, 414–418, 467

stopping rule, 1031

traffic MCNFP, 452–454

transportation. See

Transportation problems

transshipment, 400–403, 406,

417–418, 467

traveling salesperson (TSP),

534–536, 551–552,

994–996

Process generators, 1163

Process Model computer

program, simulating with,

1191–1210

Erlang service times,

1206–1209

M/M/1 queuing systems,

1191–1195

M/M/2 queuing systems,

1195–1199

open queuing networks,

1203–1206

series queuing systems,

1199–1203

Process yield, defined, 1

Proctor and Ramble trade-off

curve, 698–699

Product

matrix, 16, 44

scalar, 13, 44

undefined matrix, 17

Product Evaluation and Review

Technique (PERT). See

CPM-PERT project-

scheduling models

Product form of the inverse,

567–569, 605–606

Product profitability problem,

612–613

Production maximization

example, 617

Production process models,

95–97

Production-smoothing costs,

103

Profit pollution trade-off curve

problem, 696–698

Programming. See Goal

programming; Integer

programming; Linear

programming

Project

diagram, 432

management case, 1365–1366

network, 432

Project scheduling models, with

@Risk, 1232–1237

Projection, 598–599

Proof

capacity of cut, 427–428

of Dual Theorem, 307, 309

Proportionality assumption, 53,

62

Prospect theory, 755–757

Prozac demand example,

727–728

Pseudorandom numbers, 1156

@PSL function, 899, 905

Pure integer programming

problem, 475, 512–522,

540, 551

Pure strategy, 808

Quadratic programming

problem (QPP), 680–686

Quantity discounts, in

economic order quantity

models, 859–864

Queue disciplines, 1052–1053

Queuing optimization model,

1077–1079

Queuing optimization problems,

1078

Queuing systems

Kendall-Lee notation for,

1060–1061

transient behavior of,

1131–1135

Queuing theory

birth-death processes,

1063–1072

blocked customers cleared

(BCC) system,

1112–1114

closed queuing networks,

1119–1124

exponential interarrival and

service times,

1114–1119

exponential queues,

1104–1106

finite source models,

1099–1103

G/G/m queuing system,

1124–1125

GI/G/∞/GD/∞/∞ queuing

model, 1095–1096

machine repair model,

1099–1103
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Queuing theory (continued)

M/G/1/GD/∞/∞ queuing

system, 1097–1098

M/G/∞/GD/∞/∞ queuing

model, 1095–1096

M/G/s/GD/s/∞ queuing

system, 1112–1114

M/M/1/GD/c/∞ queuing

system, 1083–1085

M/M/1/GD/∞/∞ queuing

system, 1072–1081

M/M/s/GD/∞/∞ queuing

system, 1087–1093

modeling arrival processes,

1053–1059

modeling service processes,

1059–1060

open queuing networks,

1106–1107

priority queuing models,

1126–1130

series queuing networks,

1104–1106

terminology, 1051–1053

transient behavior,

1131–1135

Raiffa, H., 775–780

Ramp functions, 1163

Rand, DuPont, 431

Rand, Sperry, 431

Random index (RI), 789

Randomized strategies,

808–809

Random number generators,

1155–1156

Random numbers

computer-generated,

1156–1158

two-digit table, 1157

Random variables

binomial, 731

continuous, 716–717

covariance of, 719–720

defined, 715

discrete, 715

geometric, 731–732

independent, 719

means of, 717–718, 720–721

normal distribution of,

722–729

Poisson, 731

standard deviation of, 718

sums of, 720–721

triangular, 1222–1223

variances of, 717–719,

720–721

uniform, 1268

Weibull, 1239

z-transforms and, 

730–732

Random variate generation, in

simulations, 1153, 1163

Range

allowable, 234–236, 239

objective coefficient,

234–236, 253, 288, 343

right-hand side, 236–237,

239, 253, 285, 343

Rank of a matrix, 46

defined, 34

determination of, 34–35

Ranking problem, 11

Ratio test

decomposition algorithm,

588, 589

minimization problem, 151

requirements, 184

unbounded LPs, 156

winner, 143, 144, 148, 211

Reachable states, in Markov

chains, 931

Recurrent states, in Markov

chains, 933

Recursions

dynamic programming,

989–999

equipment replacement

problem, 988

knapsack problem, 982–983

nonadditive, 989–999

Reduced cost

defined, 147, 253

minimization problem, 161,

162

nonbasic variable, 277–278

sensitivity analysis and,

236–237, 240, 253, 343

Redundant constraint, 90

Refinery example. See Sunco

Oil

Refrigerator failure example,

1242–1243

Regression analysis

CITGO Petroleum example,

7

Regularity conditions, 671

Relative extremum, 619–620

Relaxation of the IP, 476–477,

512, 513, 523, 525,

546–548

Reliability modeling, with

@Risk, 1238–1243

Reliability theory, 1238

Reorder points, 854

computing with LINGO, 905

safety stock level and,

894–895

Reorder point models

back-ordered case, 891–895

lost sales case, 895–896

Repetitive ordering assumption,

847

Resource-allocation problems

dynamic programming

solution, 974–979

Excel solution, 1008–1010

Restricted master, 581,

582–585, 591, 607

Reward matrix

advertising game, 829

arms race, 830

coin-toss game with bluffing,

812, 813

Prisoner’s Dilemma, 828, 829

Stone, Paper, Scissors game,

816–817

swerve game, 830

two-person zero-sum game,

803

Reward vector, 833, 843

RI (random index), 789

Right-hand side (rhs) of

constraint

changing, 228–230, 282–285,

288, 292–294, 332–333

defined, 112

LINDO, 236, 237, 239, 253,

285, 320

sensitivity analysis, 237–238

Right-hand side ranges,

236–237, 239, 253, 285,

343

Risk, in utility theory, 749–754

Risk-averse decision making,

750–753

Risk aversion, decision trees

and, 761–763

@Risk Excel add-in, 1212–1272

bidding simulations and,

1267–1269

creating a distribution based

on a point forecast with,

1250–1252

crib sheet, 1336–1349

forecasting the income of a

major corporation with,

1252–1256

modeling cash flows from

new products with,

1222–1230

obtaining inputs for new

product simulations

with, 1256–1264

playing craps with,

1269–1271

project scheduling with,

1232–1237

reliability and warranty

modeling with,

1238–1243

simulating the NBA finals

with, 1271–1272

simulating the news vendor

problem with,

1212–1221

statistics, 1220–1221

triangular random variable

and, 1222–1223

@Risk functions. See also

@Risk crib sheet,

1341–1349

RISKBINOMIAL, 1222,

1231

RISKCORRMAT, 1253–1254

RISKCUMULATIVE,

1247–1248

RISKDISCRETE, 1213,

1215–1216

RISKDUNIFORM, 1227,

1232, 1257, 1264

RISKGENERAL, 1244–1246

RISKMEAN, 1220

RISKNORMAL, 1217,

1251–1252

RISKPERT, 1235

RISKSIMTABLE,

1214–1216, 1235–1236

RISKSTDDEV, 1221

RISKTRIANG, 1224

RISKTRIGEN, 1249–1250

RISKWEIBULL, 1240, 1242

Risk-neutral decision making,

750–753

Risk premium of a lottery,

749–750

Risk-seeking decision making,

750–753

Risk tolerance, 753

Ritzman, L., 75

Rohn, E., 107

Rolling horizon, 103

Roundy, R., 857–858

Row 0 version of the objective

function, 140

Row player, 816–817, 818–825,

842–843

(r, q) models, 890–897

(R, S) periodic review policy,

907–910

Rylon Corporation problem,

95–97

Saddle point, 804–805, 807

condition, 805

constant-sum TV game, 806

NLP, 656, 658–659

odds and evens, 807

two-person zero-sum game,

804–805, 816, 822

Safeco supermarket milk

distribution example,

1016–1019

Safecracker example,

1033–1034

Safety stock, 894–895

determining, 898–907

Sailco Corporation problem
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Excel Solver solution,

205–207

inventory problem as

transportation problem,

366–368

LINGO solution, 163–165

multiperiod decision

problem, 101–103

tableau, 367

Salvage value, 103

Sample linear correlation, in

linear regression

forecasting, 1305

Sample space, in probability,

711

San Francisco Police

Department scheduling,

7–9

Scalar multiple of a matrix, 

14

Scalar product of two vectors,

13, 44

Scaling of LPs, 167

Scarf, H., 1022

Scenarios, 1257

Scheduling problem, 74,

109–111

Schmidt, J.W., 1146

Schrage, Linus, 158

Seasonality, in forecasting,

1280

Second-order partial

derivatives, 614–615

Selling price of a lottery, 755

Semicond short-term financial-

planning problem, 82–85

Sensitivity analysis, 262, 342

adding a new activity, 287,

325

basic variable, 278–281,

390–391

computer and, 232–241

defined, 227, 262, 275

degeneracy, 240–241,

320–321

DUAL PRICE, 237–238, 240

duality and, 323–325,

344–345. See also

Duality

excess variables, 239–240,

272

formulas, 267–274

graphical analysis of

objective function

coefficient, 227–228,

252, 262–263

graphical analysis of optimal

solution, 228–230, 252,

263–265, 341–342

importance of, 231, 266

Lagrange multipliers and,

666–668

LINDO output, 232–241,

281–282

nonbasic variable, 276–277,

285–287, 288, 390

100% Rule, 289–294

objective function coefficient

ranges, 234–236, 253,

288, 343

optimal z–value, 248–252,

253–254

reduced costs, 236–237, 240,

253, 343

right-hand side changes,

282–285, 288

right-hand side ranges,

236–238, 253, 285

shadow price. See Shadow

price

slack variables, 239–240,

249, 272

summary, 288

transportation problems,

390–392, 406–407

Separable programming

problems, 688–692

Series queuing networks

exponential queues in,

1104–1106

simulated with Process

Model, 1199–1203

Series system, in machine

combinations, 1239

Servers in parallel, 1052

Servers in series, 1052

Service level approach,

898–907

Service Level Measure 1

(SLM1), 898–899,

903–906

Service Level Measure 2

(SLM2), 898–899,

906–907

Service processes, in queuing

theory, 1052, 1059–1060

Service in random order (SIRO)

discipline, in queuing

theory, 1053

Service time distribution, in

queuing theory, 1052

Set-covering problems,

486–487

Setup costs, 846

Seven-step model-building

process, 5–6

Shadow price, 252–253, 344

decomposition algorithm,

588–592

defined, 230–231, 265–266,

313, 342

Dual Theorem and, 313–315

equality constraint, 238

Leatherco example, 316–317

LINDO output, 319–321,

342, 344

managerial use of, 

246–248

nonnegative, 238, 315–316

nonpositive, 238

normal max problem,

314–315

premium, 316–317

signs, 238–239, 253,

315–319

Shapley, Lloyd, 837

Shapley value, 837–841,

843–844

Sharpe, 681

Shortage costs, 847

Shortest-path problems, 414

Dijkstra’s algorithm,

416–417, 467

equipment replacement

example, 415–416

Powerco example, 

414–415

transshipment problem,

417–418, 467

Short-term financial-planning

problem, 82–85

Sign

restrictions, 52, 112,

128–130

shadow price, 238–239, 253,

315–319

Silver, E., 872–873

Silver-Meal heuristic,

1005–1006

Simple linear regression, in

forecasting

assumptions underlying,

1298–1310

described, 1302

forecasting accuracy and,

1306

goodness of fit, 1305–1306

running with Excel,

1310–1311

t-tests in, 1306–1308

Simple lotteries, 743

Simplex

algorithm. See Simplex

algorithm

dual simplex method,

329–334, 345, 521–522,

547–548

goal programming, 194

method. See Simplex method

multipliers, 461, 471

network, 421, 450, 459–465,

471

tableaus, 148–149, 279

transportation, 452

Simplex algorithm, 127,

210–212

adjacent basic feasible

solutions, 137–138

alternative optimal solutions,

152–153, 212

basic and nonbasic variables,

131–132

Big M method, 172–178, 211

convergence, 168–171

degenerate LPs, 168–171

direction of unboundedness,

134–136

Excel Solver for solving LPs,

202–210

geometry of three-

dimensional LPs,

138–139

goal programming, 191–198

history of, 49

infeasible LP, 177–178

Karmarkar’s method,

190–191

LINDO. See LINDO

computer package

LINGO. See LINGO

computer package

matrix generators, 163

max problem, 140–148

nonbasic variable, 131–132

optimal bfs, 136–139, 142

preparing LP for solution,

210

preview, 130–134

revised, 562–566, 605–606

scaling of LPs, 167

solving minimization

problems 149–151, 161,

212

two-phase simplex method,

178–184, 211–212

unbounded LPs, 154–158,

211

unrestricted-in-sign variables,

184–188, 212

Simplex method

network, 421, 450, 459–465,

471

solving max problems,

329–334, 345

solving transportation

problems, 382–389, 452

upper-bounded variables,

593–597, 607–608

Simulation

computer languages,

1183–1184

with continuous random

variables, 1162–1172

described, 1145

discrete-event, 1147–1153

Monte Carlo, 1153–1161

with Process Model,

1191–1210
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Simulation (continued)

process of simulation studies,

1184–1186

random numbers, 1153–1158

with @Risk. See @Risk

Excel add-in

of single-server queuing

systems, 1147–1153

statistical analysis,

1180–1183

stochastic, 1173–1180

terminology, 1146–1147

types of, 1181–1183

Single-period decision models,

880, 888–889

Single-server queuing systems

M/G/1/GD/∞/∞ queuing

system, 1097–1098

Mi/Gi/1/NPRP/∞/∞ queuing

model, 1126–1130

M/M/1/GD/c/∞ queuing

system, 1083–1085

M/M/1/GD/∞/∞ queuing

system, 1072–1081

simulating, 1147–1153

Sink, defined, 419

SIRO (service in random order)

discipline, 1053

Slack variable

complementary slackness,

325–328, 345, 822–825

defined, 128–130

feasible solutions, 132

formula, 272

LINDO, 160, 161

sensitivity analysis and,

239–240, 249, 272

SLAM programming language,

and simulations,

1183–1185

SLM1 (Service Level Measure

1), 898–899, 903–906

SLM2 (Service Level Measure

2), 898–899, 906–907

Smalltown ice cream shops

example, 1096

Smoothing constant, in

forecasting, 1281

Smalltown optometry clinic

example, 870–871

Software

BASIC, 1183–1184

CAD, 8

Excel. See Excel

FORTRAN, 1183–1184

GASP IV, 1183–1184

GPSS, 1183–1184

LINDO. See LINDO

LINGO. See LINGO

Process Model. See Process

Model

SLAM, 1193–1185

Solar Energy for Your Home

case, 1351–1352

Solution. See also Simplex

algorithm

Karmarkar’s method for

solving LPs, 

190–191

linear system, 20

Solver. See Excel Solver

Source, defined, 419

Space

half-space, 138

original, 600

transformed, 600

Spanning tree, 456–458, 462,

463–464

Spreadsheets

Analytic hierarchy process

(AHP), 791–793

Economic order quantity, 

856

Excel Solver. See Excel

Solver

general resource-allocation

problem, 978–979

Golden Section Search,

653–654

inventory problem,

1010–1012

forecasting models,

1285–1286, 1310–1312,

1316–1317, 1326–1327

knapsack problems,

1006–1008

LINGO data from Excel

spreadsheet, 369–370

machine repair model,

1102–1103

queuing systems, 1093–1094,

1114

transportation problem

solution, 370–371

Springfield Fire Department

case, 1364–1365

Square matrix

defined, 36

determinants, 42–43, 46

(s, S) models, 890–897

(s, S) policies, 1022–1023

SSE (sum of squares error),

1305

SSR (sum of squares

regression), 1305

SST (sum of squares total),

1305

Standard error of the estimate,

in linear regression

forecasting, 1306

Standard form of LP, 127–130,

141–142, 210

Standardization, of random

variables, 723

Standard normal cumulative

probabilities, table of,

724–725

Star Oil Company problem,

80–81

State-of-the-world decision-

making model, 737–740

States, in dynamic

programming, 967

States, in Markov chains

absorbing, 932

aperiodic, 933

closed set of, 932

communication between, 932

periodic, 933

reachable, 931

recurrent, 933

transient, 932

States of queuing systems, 

1063

States, in simulations, 1146

State space, in Markov decision

processes, 1037

State University computer

problem, 457–458

State variables, in simulations,

1146

Static scheduling problem, 74

Static simulation models, 1147

Stationarity Assumption, in

Markov chains, 925

Stationary Markov chain, 914

Stationary point, 655, 656

Stationary policies, in Markov

decision processes, 1038

Statistical analysis, in

simulations, 1180–1183

Steady-state census, 951–953

Steady-state distribution, 935

Steady-state probabilities

in Markov chains, 934–940

in queuing systems, 1063,

1066–1072, 1073

Steady-state simulations, 1181

Steel industry blending, 92

Steelco problem example,

317–319, 576–592

Steepest ascent method,

660–663

Stewart, W., 536

Stigler, G., 70–71

Stochastic process

continuous-time, 924

defined, 923

discrete-time, 923

Stochastic simulation models

defined, 1147

exemplified, 1173–1180

Stockco capital budgeting

problem, 478–480,

525–526

Stockout costs, 847

Stone, Paper, Scissors game,

816–822

Stopping rule problems, 1031

Strategies

dominated, 812–813, 826,

842

mixed, 818–819

optimal, 811, 814, 842

pure, 818

randomized, 818–819

Strictly concave utility

functions, 750–752

Strictly convex utility functions,

750–752

Suboptimal basis BV, 275

Subproblems

branch-and-bound, 513–522,

550

decomposition algorithm,

584–590

Substitution, upper-bound, 593,

608

Subtours, 531, 534, 536–537,

552

SUMIF function, 1121

Sum of squares 

error (SSE), 1305

regression (SSR), 1305

total (SST), 1305

SUMPRODUCT function, 

1123

Sunco Oil example

dynamic programming,

993–994

maximum flow problem,

420–421, 428–429

oil blending problem, 86–91

probabilistic dynamic

programming,

1029–1030

Superadditivity, defined, 833

Supply and demand in

transportation problem,

363–365

Supply constraint, defined, 361

Supply Distribution Marketing

(SDM) System, CITGO

Petroleum, 7

Supply point, 361, 362,

400–403, 406

Surplus variable, 128, 160, 161

Surrogate constraints, 544–545

System, defined, 1

Systems, in machine

combinations

k out of n, 1239

parallel, 1239

series, 1239

Systems, in simulation, 1146

System Design Project

Management case,

1365–1366
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Tableaus

Dakota problem, 277–278,

281, 285, 286, 331–333

expressing constraints,

269–270

Leatherco, 317

LINDO command, 162, 240,

320

optimal, 271–272, 311, 342

Powerco, 389, 391, 392

Sailco, 367

simplex, 148–149, 279

Telfa problem, 518–519

transportation, 363–364

Tannenbaum, A., 1107

Tanner, M., 1124–1125

Target Cell, 202

Taylor, R.E., 1146

Taylor series expansion, 613

t-distribution, percentage points

table, 1307

Technological coefficients, 51,

112

Telfa Corporation problem,

branch-and-bound method

of solving, 513–522,

545–548

Tennis serves example,

1026–1028

Terminal branch of a decision

tree, 759

Terminal node, 413

Terminating simulations, 1181

Texaco blending, 92

Theorems

additive value functions, 775

balanced transportation

problem, 375

Central Limit, 444, 723, 726,

1171–1172

Complementary Slackness,

325–327, 345, 822–825

decomposition algorithm,

578

Dual. See Dual Theorem

extreme point of LP, 132

Fundamental Theorem of

Calculus, 708, 716

game. See Game theory

k-stage series queuing

system, 1104

Kuhn-Tucker conditions, 671,

673, 674

Lagrange multipliers, 664,

665

Little’s queuing formula,

1075

Markov chains, 934

minimax, 818–819

multilinear functions, 778

n-person game, 835, 838,

843

nonlinear problem, 632–633,

634, 638, 655–656

optimal bfs of an LP,

136–137

Poisson distribution, 1055,

1056

power-of-two ordering

policies, 857–858

representation, 135

turnpike, 983–984

Three-dimensional LPs,

geometry of, 138–139

Time-average statistics, 1175

Time value of money in

dynamic programming

formulations, 991–996

TINV function, 1182

Tool center example,

1078–1079

Tornado graph, 1228, 1230

Total float, 436–437, 469

Trade-off curves, 695, 704

Traffic intensity of a queuing

system, 1073

Traffic MCNFP, 452–454

Training programs for

corporations case,

1359–1362

Transformation, 599–600

Transformed space, 600

Transient analysis, 936

Transient behavior 

of Markov chains, 936

of queuing systems, 1063,

1131–1135

Transient period, in simulations,

1181

Transient probabilities, 1131

Transient states, in Markov

chains, 932

Transition, in Markov chains,

925

Transition probability, 914,

1037

Transportation problems

assignment problems,

393–398, 405–406

balanced, 363, 402, 404, 417

basic feasible solutions,

373–382, 405

Excel Solver, 370–371

formulating as MCNFP,

450–451

general description, 362–363

inventory problems as,

366–368

minimum-cost method,

378–380

northwest corner method,

376–378, 383, 405

optimal solutions, 405

pivoting, 382–384, 405

sensitivity analysis for,

390–392, 406–407

simplex method, 382–389, 452

solving on the computer,

368–371

supply exceeds demand,

363–365

supply is less than demand,

365

tableau, 363–364

transshipment problems,

400–403, 406, 417–418,

467

Vogel’s method, 380–382

Transshipment point, 400–403

Transshipment problems,

400–403, 406, 417–418,

467

Traveling salesperson problem

(TSP), 527

branch-and-bound approach,

530–534, 551

solving with dynamic

programming, 994–996

heuristics, 534–536, 551–552

integer programming

formulation, 536–537

LINGO solutions, 537–538

subtours, 531

Tree

arc, 514

branch-and-bound. See

Branch-and-bound trees

defined, 514

jumptracking, 520

machine-scheduling problem,

529

minimum spanning tree

(MST), 456–458

mixed IP, 524

node, 514

salesperson problem, 532

spanning, 456–458, 462,

463–464

Trends, in forecasting, 1280

Triangular distribution,

generating random

numbers with, 1166–1168

Triangular random variable,

1222–1223

Truckco NLP, 623–624

Truck maintenance example,

1318–1319

TSP. See Traveling salesperson

problem

t-tests in linear regression

forecasting, 1306–1308

Tucker, Inc., example

dual prices, 237–239

LINDO output, 233–234, 235

managerial use of shadow

prices, 247–248

reduced costs, 236

shadow price, 237–239,

247–248

Turnover ratio, 859

Turnpike theorem, 983–984

Tversky, A., 755–758

TV game, 806

Two-bin policy, 896

Two-Finger Morra, 823–826

Two-person constant-sum

games, 806

Two-person nonconstant-sum

games, 827–832, 843

Two-person zero-sum games,

803–805, 842–843

characteristics, 803–805

coin-toss game with bluffing,

811–814

complementary slackness for

solving, 822–825

mixed strategies, 808–809

odds and evens, 807–808,

809–811

randomized strategies,

808–809

Stone, Paper, Scissors,

816–822

summary of solution, 826

theory assumptions, 804–805

Two-Finger Morra, 823–826

Two-phase simplex method,

178–184, 211–212

Two-variable linear

programming problems,

graphical solution of

binding constraint, 58, 113

convex sets, 59, 113

extreme point, 59–60

feasible solution, 57–58

graphing a linear inequality,

56

minimization problems,

60–62

nonbinding constraint, 59

optimal solution, 58

ui (utility independent)

attributes, 777

Unbalanced assignment

problem, 395, 406

Unbounded feasible region, 

62

Unbounded LP

defined, 63, 66, 113

directions of unboundedness

and, 157–158

example problem, 67

Excel Solver and, 208–210

simplex algorithm, 154–158,

211

Unboundedness, direction of,

134–136
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Uncertain demand, in

probabilistic inventory

models, 890–897, 898–907

Uncertainty

decision making in the

absence of, 774–783

decision making under,

737–771

Unconstrained NLP, 616,

655–659

Understocking costs, 882

Unequal Probability Axiom, 746

Uniform distribution,

generating random

numbers with, 1165–1166

Uniform random variables,

1268

Unimodal function, 649–650

Unimodular, 520

Unit purchasing costs, 846

University computer system

example, 1130

University Credit Union

example, 1323–1324,

1326–1327

Unrestricted in sign (urs), 52,

112

Unrestricted-in-sign variables,

184–188, 212

Upper-bound constraint, 593

Upper bound in Telfa

Corporation problem, 513

Upper-bound substitution, 593,

608

Upper-bounded variables,

593–597, 607–608

urs (unrestricted in sign), 52,

112

Utility functions

additive independence,

778–779

concavity and convexity of,

750–752

defined, 744

multiattribute, 776–783

multilinear, 777

Utility independent (ui)

attributes, 777

Utility theory

axioms, 745–747

best and worst outcomes,

747–748

estimating utility functions,

748–749

exponential utility, 753–754

framing effects, 755,

757–758

prospect theory, 755–757

risk and, 749–754

terminology, 741–745

Values

Solver option, 207–208

game, 805, 811, 819

Value determination equations,

296–297

Value functions, 774

additive, 774

Value iteration, in Markov

decision processes,

1042–1044

Variability coefficient, 872

Variables

artificial, 173, 272

basic variable (BV). See

Basic variable

cost, 362

decision. See Decision

variables

defined, 20

dependent, 1302

deviational, 192

dummy, 1322

entering, 142–147

excess. See Excess variable

fixed, 540, 541

free, 540–541

independent, 1302

nonbasic variable (NBV). See

Nonbasic variable

random. See Random

variables

slack. See Slack variable

surplus, 128, 160, 161

state, 1146

unrestricted-in-sign,

184–188, 212

upper-bounded, 593–597,

607–608

VARP function, 1125

Vectors

addition of, 14

column, 12, 17

defined, 43

dimension, 12

gradient, 661

linearly dependent, 33–35,

45–46

linearly independent, 33–36,

45–46

m-dimensional, 12–13

normalized, 661

row, 12, 17

scalar product of two vectors,

13, 44

zero, 12

Vertices, defined, 413

Vision Corporation production

and shipping case,

1355–1356

VLOOKUP function, 1132

Vogel’s method for finding a

bfs, 380–382

von Neumann, John, 804, 834,

842

von Neumann-Morgenstern 

utility theory, 741–745

axioms, 745–747

Wagner-Whitin algorithm,

1003–1005

Waiting in line example,

1030–1031

Waiting time paradox,

1061–1062

Walton Bookstore example,

883–884

Warehouse location problems,

623–624

Warmup period, in simulations,

1181

Warranty modeling, with

@Risk, 1238–1243

Water shortage problem,

365–366

Weak duality, 305–307

Weibull random variable, 

1239

Weight goal programming, 

193

Widgetco, 400–403, 433–434,

438–446

Winco Products example

LINDO output, 232–233

LINDO Parametrics feature,

248–249

managerial use of shadow

prices, 246–247

objective function coefficient

ranges, 234–236

RHS sensitivity analysis,

237–238

shadow prices, 

237–239

Winner of the ratio test, 143,

144, 148, 211

Winter’s method of forecasting

described, 1286–1287

forecasting accuracy and,

1289–1290

initialization of, 

1287–1289

Wivco Toy Corporation

example, 777

Wolfe and Frank, 694

Wolfe’s method for solving

QPPs, 684–686

Woodco cutting stock problem,

570–576

Work-force planning models,

950–953

Work-scheduling problems,

72–75, 109–111

Worst outcomes, 747–748

Wozac, 1–2

z-transforms, 730–732

z-value

changing right-hand side of

constraint, 284, 253

if current basis is no longer

optimal, 248–252

as function of objective

function coefficient,

253–254

improvement of, 265–266

Zero-sum games and linear

programming, 816–826.

See also Two-person zero-

sum games
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