Restricted Least Squares, Hypothesis Testing, and Prediction in the Classical Linear Regression
Model

A. Introduction and assumptions
The classical linear regression model can be written as
y=Xp+e @)

or
J,=x/P+re  (=1,.n. ()

where x,” is the tth row of the matrix X or simply as

J,=xB e (t=1,..1). 3)

where it is implicit that x, is a row vector containing the regressors for the tth time period. The classical
assumptions on the model can be summarized as

I y=XB +e
II EE|X)=0
III E@Ee'|X) = 6°I )

IV X is a nonstochastic matrix of rank &

V &~ N©O; Z=0%])

Assumption V as written implies II and III. With normally distributed disturbances, the joint density
(and therefore likelithood function) of y is
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The natural log of the likelihood function is given by
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Maximum likelihood estimators are obtained by setting the derivatives of (6) equal to zero and solving
the resulting k+1 equations for the k B’s and 0°. These first order conditions for the M.L estimators are
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The ordinary least squares estimator is obtained be minimizing the sum of squared errors which is
defined by
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The necessary condition for SSE (B) to be a minimum is that
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This gives the normal equations which can then be solved to obtain the least squares estimator

X'Xp = Xy

_ 11
- B = XXXy
The maximum likelihood estimator of B is the same as the least squares estimator.
B. Restricted least squares
1. Linear restrictions on 3
Consider a set of m linear constraints on the coefficients denoted by
RB = r R is mxk, ris mxl (12)

Restricted least squares estimation or restricted maximum likelihood estimation consists of
minimizing the objective function in (9) or maximizing the objective function in (6) subject to the
constraint in (12).

2. Constrained maximum likelihood estimates

Given that there is no constraint on 0%, we can differentiate equation 6 with respect to 0° to get an
estimator of 0% as a function of the restricted estimator of f. Doing so we obtain’
ol 1 1(1)? ", .
= =+ || o-xBYo-xB) =0

”
2 2 2 2
00 o (4} 13)

~ 6% = L XBYY (- XB)

where ¢ is the constrained maximum likelihood estimator. Now substitute this estimator for ¢°
back into the log likelihood equation (6) and simplify to obtain
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Note that the concentrated likelihood function (as opposed to the concentrated log likelihood
function) is given by
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The maximization problem defining the restricted estimator can then be stated as
max? = - 2 mon- 21|l (- xpy o-xpy| - 2
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st RPF = r

Clearly we maximize this likelihood function by minimizing the sum of squared errors (y - Xp)'(y -
X[B9). To maximize this subject to the constraint we form the Lagrangian function where A’ is an m
X 1 vector of Lagrangian multipliers

ge :_)’I_)’_2BNX1)/+B“X,X[¥ _ A‘/(r _ RB;) (17)

Differentiation with respect to <" and A yields the conditions

-2X'y + 2X'Xp°+ RA =0 (18)

RFF-r=0

Now multiply the first equation in (18) by R(X'X)" to obtain
-2R(X'X)"'X'y + 2Rp* + RX'X)'R'A = 0 (19)

Now solve this equation for A substituting B = (X'X) "Xy as appropriate

~2R(X'X) X"y + 2RP* + R(X'X)'R'A = 0

- R(X'X)'R'A = 2R(X'X) X"y - 2RP*
2RB - 2Rp* (20)
(Rx'3)'R'J" 2RP - 2RB)
2(R'27R )" - RP)

= A

The last step follows because RB° = r. Now substitute this back into the first equation in (18) to
obtain



_2X'y + 2X'XP + R'A = 0
- —2x'y + 2X'XPB° + R 2(Rex'0 'R - RB)] = 0
- X'Xp = X'y + R(RE'R) (r - RP) 21)
- B = X)X - (R R(RECRTR) ! - R
- B+ ' R(RE'XR) (- - RB)

With normally distributed errors in the model, the maximum likelihood and least squares estimates
of the constrained model are the same.

We can rearrange (21) in the following useful fashion
B =+ X0 'R(RE'X)'R) (- - RP)
- - B - X R(RE'X)R) (- - RB) 22)
- x'x(p - B) = R(RX''R)*(- - RB)

Now multiply both sides of (22) by (B - B) = (» - RB)' (R(X'3)™" R} "R(X"X) ™ to obtain
(B-B) cx'x)(p - B) = (- - RB)(REX'X'R )R R(RX') 'R (- RB)

23)
= (- rB) (R0 R (- RB)

We can rearrange equation 21 in another useful fashion by multiplying both sides by X and then
subtracting both sides from y. Doing so we obtain

Xp = Xp + XX’ R(RE'X) 'R ) [ - RB)
~y - XP -y - XPp - X' R(RE'XR) (- - RB) @4)
¢ - XX'X)'R(RX'X)'R')" (- - RB)

= U

where u is the estimated residual from the constrained regression. Consider also u'u which is the
sum of squared errors from the constrained regression.

wu= (¢ - (- RB) (RX'®7R)'RE) X ) - X' R(RE%)R) (- - RB))
= fe- ¢ XXX R(RE'X)R) M - BB)- (- RB) (REXX)R)TREKR) X
+ (- RB) (RE2)R)TREXX) X XXX R(REX) R - - RP) (25)
= fe- ¢ XXX R(RE'X)R) M - BB)- - RB)Y (REXX)R)TREKR) X
+ (- RB) (Rex'%)R) " - RB)

where e is the estimated residual vector from the unconstrained model. Now remember that in
ordinary least squares X'e = 0 as can be seen by rewriting equation 10 as follows
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Using this information in equation 25 we obtain

wu=de- e XXX R(REX'X)R) (- - RB)-(r- RB) (RX'X)'R)'RX' D)X
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+
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Thus the difference in the sum of squared errors in the constrained and unconstrained models can

be written as a quadratic form in the difference betweenRB and r where B = (X'X)71X"y is the
unconstrained ordinaty least squates estimate.

Equation 21 can be rearranged in yet another fashion that will be useful in finding the variance of the

constrained estimator. First write the ordinary least square estimator as a function of f and € as
follows

B=XX"XYy
= (X'X)X'(XB + €) (28)
- B+ (XXX
Then substitute this expression for 6in equation 21 as follows
B = B+ 0 'R(RE'%)R) " (- - RB)
- B+ XX x'e + XX 'R(REXR) - R(B + %) X's))
- B+ (XXX + (XX R(REX'X)R ) - RB-RECIXE)  (29)
=B - B = XX X'e+ XY R(REX'X'R)(-RX'X)'X'e), = RB
=B - B = XX X'e- (X R(REX'Y R RED X e

Now define the matrix M° as follows

M =1 - ¢ R(RE9R) R (30)

We can then write B - P as
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B - B = (XX X'e - (0 'R(RX'D) 'R TRECD) X'
- [r- e R{RE® R ) R o) e
=M X'X)'X'e
- m[p - p]

Statistical properties of the restricted least squares estimates

(31)

a. expected value of B¢
B =B+ X' R(REX'X) 'R (r - RP)
E@) - EG) + E[x'x) R(Re'%) R ) (- - RB)]
- B+ [0 R(REX'X) 'R ) - REB))] (32)
- B+ [ R(RX'®'R) (- - RB)]

= B, if the constraint is true

b. variance of p*
Var () = E[(B- 8) (B - )]
E(f -B)(B - B)' =EIM‘X'X) "' X'ee' X(X'X) "' M"]
=M‘X'X) " X'E(ee’) X(X'X) "M "
- MS(X'X) X 0 I X(X'X) M
o MX'X) X X(X'X) M
o’ M (X'X)'M"

(33)

The matrix M is not symmetric, but it is idempotent as can be seen by multiplying it by itself.
MM = [1 - @% ' R(RE'R)R][T - X% R(REX'X%)R) R
- - XX R(RE'X)R)'R - x'0'R(RE'XR )R
+ X0 R(REX'%)'R) T RX'%)'R(RE'X)'R) 'R (34)
- 1 - 20 R(RE'IR)IR + X R(RE'IR) TR
-1 - X'%'R(RE'%)'R)'R

Now consider the expression for the variance of f We can write it out and simplify to obtain
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We can also write this is another useful form
Var(ﬁ”) = 0-2 [(XI}Q—I _ (XI}Q_l RI(R(XI}Q—lRI)_1R(XI}<>—1 ] (36)
— 0.2 (X’X)_1 _ 02(X’X)_1 RI(R(XIX)_1RI)_1R(XIX)_1

The variance of the restricted least squares estimator is thus the variance of the ordinary least squares
estimator minus a positive semi-definite matrix, implying that the restricted least squares estimator
has a lower variance that the OLS estimator.

4. Testing the restrictions on the model using estimated residuals

We showed previously (equation 109 in the section on statistical inference) that

(r-RB) RX'X)'R'1"(r-RB)

~ F(m, n- k) 37

Consider the numerator in equation 37. It can be written in terms of the residuals from the
restricted and unrestricted models using equation 27

wu=ée+(r-RP) (REX'XR) (- - RP)
~ w'u-ce=(r-RB) (RX'X'R)'(r - RB)
u'n - ¢ee (38)

-~ 2 -~ F(mn-k)
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Denoting the sum of squared residuals from a particular model by SSE(B) we obtain



SSE(B*) - SSE(B)
SSE(B)
n— k

(39

~ F(m, n - k)

Rather than performing the hypothesis test by inverting the matrix [R(X'X)'R’] and then pre and

post multiplying by » — Rﬁ , we simply run two different regressions and compute the F statistic
from the constrained and unconstrained residuals.

The form of the test statistic in equation 39 is referred to as a test based on the change in the
objective function. A number of tests fall in this category. The idea is to compare the sum of
squates in the constrained and unconstrained models. If the restriction causes SSE to be
significantly larger than otherwise, this is evidence that the data to not satisfy the restriction and we
reject the hypothesis that the restriction holds. The general procedure for such tests is to run two
regressions as follows.

1) Estimate the regression model without imposing any constraints on the vector B. Let the
associated sum of squared errors (SSE) and degtrees of freedom be denoted by SSE and (n - k),
respectively.

2) Estimate the same regression model where the B is constrained as specified by the
hypothesis. Let the associated sum of squared errors (SSE) and degtees of freedom be denoted
by SSE(B) and (n - k)°, respectively.

3) Perform test using the following statistic

SSE(B*) - SSE(B)
SSE(B)
n - k

(40)

~ Fm, n - k)

where m = (n-k)° - (n-k) is the number of independent restrictions imposed on B by the
hypothesis. For example, if the hypothesis was H.: B, + B, =4, B, = 0, then the numerator
degrees of freedom (q) is equal to 2. If the hypothesis is valid, then SSE() and (SSE) should
not be significantly different from each other. Thus, we reject the constraint if the F value is
large. Two useful references on this type of test are Chow and Fisher.

5. Testing the restrictions on the model using a likelihood ratio (LR) test

a.

idea and definition

The likelihood ratio (LR) test is a common method of statistical inference in classical statistics.
The LR test statistic reflects the compatibility between a sample of data and the null hypothesis
through a comparison of the constrained and unconstrained likelihood functions. It is based on
determining whether there as been a significant reduction in the value of the likelihood (ot log-
likelihood) value as a result of imposing the hypothesized constraints on the parameters 0 in the
estimation process. Formally let the random sample (X, X,, . .., X,) have the joint probability
density function f(x,, X, - . . , X,; 0) and the associated likelihood function L(0; x,, x,, . . . , X, ).
The generalized likelihood ratio (GLR) is defined as
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where sup denotes the supremum of the function over the set of parameters satisfying the null
hypothesis (H,), or the set of parameters that would satisfy either the null or alternative (H,)
hypothesis. A generalized likelihood ratio test for testing H, against the alternative H, is given
by the following test rule:

Reject H if and only if A(x ,x,,~,x_ ) < ¢ (42)

where c is the critical value from a yet to be determined distribution. For an o test the constant
c is chosen to satisfy

J@eeHOTE(G) = JupeeHOP(A'(Xl’XZ’m’Xn) < 0;0) = o (43)

where 1(0) is the power function of the statistical test.

We use the term “generalized” likelihood ratio as compared to likelihood ratio to indicate that
the two likelihood functions in the ratio are “optimized” with respect to 0 over the two different
domains. The literature often refers to this as a likelihood ratio test without the modifier
generalized and we will often follow that convention.

likelihood ratio test for the classical normal linear regression model

Consider the null hypothesis in the classical normal linear regression model R = r. The
likelihood function evaluated at the restricted least squares estimates from equation 15 is

"

L™ = @m) 2

"

2,2 (44)

= (- XB"Y - XP)

In an analogous manner we can write the likelihood function evaluated at the OLS estimates as

"

L' = 2w 2

"

Liy-xBy o-xB)| 2¢ 2 (45)

The generalized likelihood ratio statistic is then
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We reject the null hypothesis for small values of A or small values of the right hand side of
equation 46. The difficulty is that we not know the distribution of the right hand side of

equation 46. Note that we can write it in terms of estimated residuals as
A ( - XB) (y—XB”)] 3
O0-XB) (-XB)
_ ( ”'”) 2 @7)

e'e

e=y- XB
w=y- Xp

This can then be written as

3 = ( u'u] "%

e ¢ (48)
SSE (B°)
SSE(B)

-2
2

So we reject the null hypothesis that RB = r if

SSE(B)
SSE(B)

_r
2 <

A =

(49)

n

~ e | SSE@)

SSE(B)

2 ¢
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Now subtract% = 1 from both sides of equation 49 and simplify
SSE ()
_2 . -2
W7o SSE@) | S
SSE ()
2 . 2
Lo SSE@) _ SSE@) _ SSE®) | 7w SSER) (50)
SSE@B) SSE@)  SSEQ) SSEB)
2 2
A7 g SSE@) - SSEG®) |, v
SSE(B)
Now multiply by n -k to obtain
-2 ‘ -2
2 h_ - SSE@) - SSE@) . v,
SSE(B)
(51
2 - -2
R n—/e()L . 1) _n—k| SSE@) - SSE@) | | n—,é( i 1)
" ” SSEB) ”

We reject the null hypothesis if the value in equation 51 is greater than some arbitrary value

() )

m

The question is then finding the distribution of the test statistic in equation 51. We can also
write the test statistic as

m

SSE(B°) - SSE(B)
(A [ 1) = (52)
,,, SSEB)
n-k

We have already shown that the numerator in equation 52 is the same as the numerator in
equations 37-39. Therefore this statistic is equivalent to the those statistics and is distributed as
an F. Specifically,

m

SSE(B°) - SSE(B)
»

= ~ F(m, n - k) (53)
m SSE(B)

n-A

Therefore the likelihood ratio test and the F test for a set of linear restrictions R = r in the
classical normal linear regression model are equivalent.
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c. asymptotic distribution of the likelihood ratio statistic

We show in section on non-linear estimation that

tpypp L(O3x),%,,% )
~2InA (x5, 0x) = 20| — =20 - 0) £ Ry 69
J‘”pBeHouHa'L(e’ 1° Z’III’XII)

where (© is the value of the log-likelihood function for the model estimated subject to the null
hypothesis, { is the value of the log-likelihood function for the unconstrained model, and there
are m restrictions on the parameters in the form R(0) = r.

6. Some examples

a. two linear constraints

Consider the unconstrained model

5,7 B+ By, + By, tBx, e, (55)

with the usual assumptions. Consider the null hypothesis H,: , = B, = 0 which consists of
two restrictions on the coefficients. We can test this hypothesis by running two regressions and
then forming the test statistic.

1) Estimate

5,7 B+ By, + By, tBx, e, (56)

and obtain SSE = (n - 4)s® where s” is the estimated variance from the unrestricted
model.

2) Estimate

2,=B, B, e, (57)

and obtain SSE® = (n - 2)s* where s” is the estimated variance from the unrestricted
model.

3) Construct the test statistic

SSE(F") -SSE(B)  SSE(P) - SSE(P)

(n-F° - (n-& 2
F(m,n-k) = xi]?f) = Si]j:(f) (58)

SSE(B°) - SSE(B)
SSE(B)

(5
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equality of coefficients in two separate regressions (possibly different time periods)

We sometimes want to test the equality of the full set of regression coefficients in two
regressions. Consider the two models below

gt = X't + €, n, obsetvations

59
g% = XB% + € n, observations &)
We may want to test the hypothesis H: ' = * where there are k coefficients and thus k
restrictions. Rewrite the model in stacked form as
1 1 1 1
X 0 €
, =17 - P, (60)
5? 0o x? |p? g2

and estimate as usual to obtain SSE (no restriction). Note that (n-k) =n, +n, - 2k. Then
impose the restriction (hypothesis that ' = * = ) by writing the model in equation 60 as

1 Xl 81
5= - B+ (61)
J/2 XZ 82

Estimate equation 61 using least squares to obtain the constrained sum of squared errors SSE*
with degrees of freedom (n - k)* = n; + n, - k. Then construct the test statistics

SSEB)-SSE(B)  SSE(P*) - SSE(P)

(n-k° - (n-& &
F(k,n +n, -2k) = SSE(B) = SSE(B)
T2 n-k n +n,-2k (62)

SSE(B") - SSE(B)
SSE(B)

) n1+n2—2/é
-
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C. TForecasting

1.

introduction
Let

J, = F(x,B) + ¢, (63)
denote the stochastic relationship between the variable y, and the vector of variables x, = (X,1,..., X)-

B represents a vector of parameters. Forecasts are generally made by estimating the vector of
parameters B, determining the appropriate vector x, (sometimes forecasted by £ )and then

evaluating

J, = F(%,B) (64)

The forecast error is given by

fe=9,-J, (65)

There are at least four factors which contribute to forecast errotr.

a. incorrect functional form

Incorrect Functional Form

X,

P+ B - population regression line




b.
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the existence of the random disturbance €,
Even if the "appropriate" value of x, were known with certainty and the parameters § were

known, the forecast error would not be zero because of the presence of €. The forecast error is
given by

Je (B Anown)

0;; (B known) = Variance(fe) (66)

J, = J,(Bknown) =y, - F(x,PB) = ¢,

Var(e) = o>
Confidence intervals for y, would be obtained from
Pe[F(x,B) - t,,0 <y, < F(x,B) +¢,0] = 1-a (67)

We can see this graphically as
Confidence Intervals for Regression Line

¥i | _ el
B+ 6%,

uncertainty about 3
Consider a set of n;, observations not included in the original sample of n observations. Let X

denote the n, observations on the regressors and y, the observations on y. The relevant model
for this out of sample forecast is

Iy = X Bt g (68)

where E(g,) = 0 and E(g&,") = 021” and g, is independent of € from the sample period.
0
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Now consider a forecast for y, given by

g, = X, B (69)

where P is the OLS estimator obtained using the initial n observations. Then let v, be the set of
forecast errors defined by

v =0y ~ %B =0 - X,X' XX (70)

We can show that v, has an expectation of zero as follows

E@) = E@, - X,B)=XB -XB =0 (71)

Now consider the variance of the forecast error. We can derive it as
E@,') = E@, - X,B) ¢, - X,B)’
= B(X,p +e, - X,B) (X,B +e - X,B)
= E(X,(B - B) + &) (X,(B - B) +e)
= E(X,(B - B) - &) (X,(B - B) - &)
- EX,(B - B) - ) (B - BY%, - ¢
= E(X,(B - BY(B - BYX, - e, (B - BYX, - X,B - Bye,’ + g8,

(72)

Now note that &, andf} - B are independent by the independence of €, and € and the

independence of € and B - B which we proved earlier in the section on statistical inference
(equations 59-62). As a result the middle two terms in (72) will have an expectation of zero. We
then obtain

EGy) = E[X,(B - BYB - BYX," - 2B - BYX,’ - X,B - Bye, + 2,8
XOE((G - B)(G - B)I>Xol + E(8080'>
X X' X)X + 0%l

(73)

o (X,(xX' X)X, + I

This indicates the sampling variability is composed of two parts, that due to the equation error,
€,, and that due to the error in estimating the unknown parameters. We should note that

Jy = XOG can be viewed as an estimator of E(y,) and as a predictor of y,. In other words
Jy = XOG is the best predictor we have of the regression line, and of an individual y,. The least

squares estimator of E(y,) isXOB which has expected value XOB. Now consider the covariance
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matrix for the random vector (Xoﬁ - XOB). To simplify the derivation write it as

(Xoﬁ - Xoﬁ) = Xo(ﬁ - B) Then we can compute this covariance as

XE(B - BB - BY)x,’
X,0*(X'X)"' X’ (74)

E(X,8 - B)(B - BY'X,)

o (X, (X' X)X,

This is less than the covariance in equation 73 by the variance of the equation error 6°I. Now
consider the case where n, = 1 and we are forecasting a given y, for a given x,, where x,’ is a row
vector. Then the predicted value of y, for a given value of x, is given by

Jo = %' B (75)

The prediction error is given by

A

prediction etror = v, =y, - §, (76)

The variance of the prediction error is given by

Var(yo —j()) = oz(xo'(X'X)_1x0 + 1) (77)

The variance of E(y, | x,) is

Var(ﬁo - Xoﬁ) = ¢* (xo'(XX)_1x0) (78)

Based on these variances we can consider confidence intervals for y, and E(y, | x,) where we
estimate 0” with s*>. The confidence intetval for E(y, | x,)is

Pefr, B - b, 8 <v, <x/B g, ] 1-a (79)

where 5 is the square root of the variance in equation 78. The confidence interval for y, is given
0

by

Pr[xO'B e S < ¥, < xt'B iy, 5] = 1-a (80)

where 5 is the square root of the variance in equation 77. Graphically the confidence bounds in

predicting an individual y, are wider than in predicting the expected value of y,.
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Confidence Intervals for Prediction

CI for vy, e

"
.k
L]

_..__-+"-i. CI fDI‘ E(YD|XD)

20 40 60 80 100 120
uncertainty about X. In many situations the value of the independent variable also needs to be
predicted along with the value of y. A "poot" estimate of x, will likely result in a poor forecast
fory.
predictive tests

One way to consider the accuracy of a model is to estimate it using only part of the data. Then
use the remaining observations as a test of the model.

1) Compute B using observations 1 to n,.

2) Compute j = XB using the observations on the x's from n, to n.

3) Compare the predicted values of y with the actual ones from the sample for
observations n, to n.
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That equation 38 is distributed as an F random variable can also be seen by remembering that an F is
the ratio of two chi-square random variable, each divided by its degrees of freedom. We have

pteviously shown (equation 177 in the section on Statistical Inference) that SSE (G) is distributed as

a X’(n-k) random variable. Note that the vector r - RBis distributed normally with a mean of zero.
Its variance is given by

Var(r - RB) = RVar(B)R’
Ro*(X'X) 'R’ (81)

— 02 R(X,X)_IR'
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