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LAGS AS INSTRUMENTS

Abstract

Lagged explanatory variable remain commonly used as instrumen-
tal variables (IVs) to address endogeneity concerns in empirical stud-
ies with observational data. Few theoretical studies, however, address
whether “lagged IVs” mitigate endogeneity. We develop a theoretical
setup in which dynamics among the endogenous explanatory variable
and the unobserved confounders cannot be ruled out and look at the
consequences of lagged IVs for bias and the root mean square error
(RMSE). We then use Monte Carlo simulations to illustrate our ana-
lytical findings. We show that when lagged explanatory variables have
no direct causal effect on the dependent variable or on the unobserved
confounders, the “lagged IV” method mitigates the endogeneity prob-
lem by reducing both bias and the root mean squared errors given
specific parameter values relative to the näıve OLS case. If either or
both of the causal relationships above are present, however, lagged IVs
increase both bias and the RMSE relative to OLS, and they virtually
blow up the likelihood of a Type I error to one.
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1 Introduction

The credibility revolution of the last few decades in applied economics has

brought about a greater emphasis on causal inference (Angrist and Pischke,

2010). One of the oldest of all working tools available to an applied econo-

metrician working with observational data and interested in the estimation

of a causal relationship is the use of instrumental variables (IVs).

To identify the causal relationship between an endogenous variable of in-

terest x and a dependent variable y in such a setup, one uses an instrument

z, on which x is conditioned before y is regressed on x̂, the predicted value

of x when conditioned on z (Angrist and Pischke, 2014).1 Under the right

conditions—namely that the instrumental (IV) be relevant, and that it sat-

isfies both the independence assumption and the exclusion restriction—the

coefficient on x̂ is the local average treatment effect (LATE) of x on y (Im-

bens and Angrist, 1994), i.e., the effect of x on y for the subset of compliers.

In a setup where x and z are both dichotomous and respectively refer to the

uptake of a treatment and the assignment to the same treatment, the subset

of compliers is the subset of observations for which x = 1 because z = 1.

But as every econometrics textbook is quick to emphasize, a good instrument—

one that satisfies the right conditions above—is hard to find. As a result,

applied econometricians often settle on less-than-ideal IVs in an effort to

“exogenize” x, doing so without carefully thinking through the consequences

1We focus in this paper on the case where there is a single endogenous variable of
interest, and for which there is a single IV.
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of their choices for bias and inference.

One such less-than-ideal identification strategy is the use of what we refer

to throughout this paper as a “lagged IV.” In the context above, a lagged

IV entails using a lag xit−1 of the variable of interest xit as an IV for xit.
2

The argument that is typically (and often implicitly) made in such cases is

that since xit−1 precedes xit in time, the causality runs entirely from xit−1

to xit, and since there is presumably a high degree of autocorrelation in x,

xit−1 should be a valid IV for xit−1. Though the latter is testable and tends

to be true in observational data, the former often confounds the notion of

statistical endogeneity with that of theoretical endogeneity.

Still, there might be cases where the use of a lagged IV might be war-

ranted. In this paper, we look at the consequences of a lagged IV on the

bias of the estimated coefficient on x̂, its root mean squared error (RMSE),

and on the likelihood of making a Type I error, i.e., on the likelihood of

rejecting the null hypothesis that the estimated coefficient on x̂ is equal to

zero when it is equal to zero. We first do so analytically, which allows iden-

tifying the precise conditions under which one can use a lagged IV. Though

we maintain the assumption of IV relevance throughout, we are careful to

characterize what happens when (i) both the independence assumption (i.e.,

the assumption that the IV should have no association with latent outcomes

2Though our notation implies the use of longitudinal data, it is not uncommon for
applied econometricians to use cross-sectional data where both the contemporaneous and
the lagged value of a specific variables was collected. This is usually done with the use of
a lagged IV identification strategy in mind.
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or with latent variables of interest) and the exclusion restriction (i.e., the

lagged IV influences the dependent variable only through the variable of in-

terest) hold, (ii) the independence assumption is violated but the exclusion

restriction holds, (ii) the independence assumption holds but the exclusion

restriction is violated, and (iv) both the independence assumption and the

exclusion restriction are violated. We next use Monte Carlo simulations to

show what happens to bias, RMSE, and the likelihood of a Type I error for

a broad range of the relevant parameters.

There is a small literature on the use of lagged variables for identifica-

tion. Blundell and Bond (1998, 2000) argue that since lagged explanatory

variables tend to only be weakly correlated with the first difference of the

endogenous explanatory variable, GMM using lagged explanatory variables

may not solve the endogeneity problem. Similarly, in his discussion of poor

practices surrounding the use of IVs in the marketing literature, Rossi (2014)

briefly touches upon how lagged IVs tend not to be valid. Reed (2015) and

Bellemare et al. (2017) both look at the practice of replacing an endogenous

variable with its lag, and Reed concludes that instead of using a lag as a

control variable, one should use it as an IV, adding that a lagged IV iden-

tification strategy only works if xt−1 satisfies both the exclusion restriction

and is a strong enough instrument. Reed, however, only considers situations

where endogeneity stems from simultaneity between y and x.

We build on Reed’s (2015) result and generalize it by bringing in the in-

dependence assumption in addition to the exclusion restriction and relevance
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of the IV as well as by considering any and all sources of statistical endogene-

ity, captured here by the presence of unobserved confounders affecting both

x and y. We then build on Bellemare et al.’s (2017) Monte Carlo framework

to explore the consequences of lagged IVs for bias, RMSE, and the likelihood

of making a Type I error.

On the one hand, we find that if the lagged IV xit−1 has no direct causal

impact (i) on the dependent variable nor (ii) on the unobserved confounder,

it violates the independence assumption, but not the exclusion restriction.

In this case, a lagged IV can mitigate the endogeneity problems by reducing

bias and the root mean square error (RMSE) relative to OLS for common

ranges of parameter values. Even in this case, however, the likelihood of a

Type I error remains large. On the other hand, we find that if the lagged IV

xit−1 has a direct causal impact (i) on the dependent variable, on (ii) on the

unobserved confounder, or both, then it violates the exclusion restriction in

addition to the independence assumption. In such cases, a lagged IV worsens

the endogeneity problem by increasing bias as well as the RMSE relative to

OLS. Moreover, in such cases, the likelihood of Type I error is almost always

equal to one for common ranges of parameter values. In practical terms,

this means that the use of a lagged IV often leads one to report coefficients

estimates of questionable economic significance (because of the increased

bias) and statistical significance (because of the greater likelihood of a Type

I error). Worse, the use of lagged IVs will tend to lead one to conclude that

a causal relationship exists where it does not.
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The remainder of this paper is organized as follows. In section 2, we

present our conceptual framework and discuss the independence and exclu-

sion restriction assumptions made when using IVs, and how the violation of

either or both of those assumptions by a lagged IV can compromise identifi-

cation. We then present some evidence about how common the use of lagged

IVs is in economics. Section 3 derives our analytical results and show the

bias of lagged IV compared to that of OLS. In section 4, we conduct Monte

Carlo simulations aimed at exploring the properties of lagged IV compared

to OLS, and show the consequences of using a lagged IV for identification

on the bias, RMSE, and likelihood of a Type I error. Section 5 summarizes

our main findings and concludes with a list of recommendations for applied

econometricians.

2 The Problem with Lagged IVs

In this section, we first lay out our conceptual framework, which allows us to

state the problem with using a lagged IV to identify a causal relationship of

interest. We then discuss how widespread the use of lagged IVs remains is

in the literature, focusing on the economics literature of the past five years.
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2.1 Nature of the Problem

Suppose we have the structural equation

yit = βxit + θxit−1 + δuit + εit, (1)

where y, x, and ε respectively denote the dependent variable, the variable of

interest, and an error term with mean zero, as usual, but where u denotes

confounders. We refer to equation (1) as “structural” because it summarizes

the exact causal relationships between y and the variables on the right-hand

side.

Suppose that Cov(xit, uit) 6= 0 and that uit is unobserved, i.e., there is

an endogeneity problem. If θ 6= 0, the lagged variable of interest xit−1 has a

direct causal impact on the dependent variable yit; similarly, if θ = 0, xit−1

has no direct causal impact on yit.

We specify two autocorrelation functions: one for x, and one for u, such

that

xit = ρxit−1 + κuit + ηit, (2)

and

uit = φuit−1 + ψxit−1 + υit. (3)

Using the framework laid out in equations (1), (2), and (3), we can explore
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four distinct endogeneity scenarios:

1. θ = 0 and ψ = 0, i.e., the lagged variable of interest has no direct causal

impact on the dependent variable, nor does it have a causal impact on

the unobserved confounder.

2. θ 6= 0 and ψ = 0, i.e., the lagged variable of interest has a direct causal

impact on the dependent variable, but it does not have a causal impact

on the unobserved confounder.

3. θ = 0 and ψ 6= 0, i.e., the lagged variable of interest has no direct

causal impact on the dependent variable, but it has a causal impact on

the unobserved confounder.

4. θ 6= 0 and ψ 6= 0, i.e., the lagged variable of interest has a direct causal

impact on the dependent variable, and it has a causal impact on the

unobserved confounder.

Recall that one of the key assumption of the local average treatment effect

(LATE) theorem is the independence assumption, which implies that the IV

should have no association with latent outcomes or with latent variables of

interest (Angrist and Pischke 2009). Here, this means that

[{yit(xit, xit−1);∀xit, xit−1}, {xit(xit−1)∀xit−1}] ⊥ xit−1, (4)

which implies that the lagged IV should have an effect that is similar effect

to what random assignment of xit does.
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Another key assumption of the LATE theorem is the exclusion restriction,

i.e., that yit(xit, xit−1) only be a function of xit. Generally speaking, this

assumption—the exclusion restriction—requires that the lagged IV influence

the dependent variable only through the variable of interest. This is denoted

as

yit(xit, xit−1) = yit(xit, x
′

it−1)∀x
′

it−1 6= xit−1. (5)

We now turn to discussing the four scenarios above, beginning with those

scenarios that feature endogeneity, viz. scenarios 2 to 4.

In scenario 2, since θ 6= 0, xit−1 directly influences yit via its marginal

effect θ. In Scenario 3, although θ = 0, ψ 6= 0, and xit−1 still influences yit

via marginal effect θψ, derived from equations (2) and (3). Therefore, both

scenario 2 and 3 violate not only the independence assumption, but also the

exclusion restriction, and so they will result in biased estimates. A similar

result obtains for scenario 4, which is just a combination of the undesirable

features (i.e., θ 6= 0 and ψ 6= 0) in scenarios 2 and 3.

Since in scenario 3, xit−1 has a direct impact on uit, which could include

more than one unobserved covariate, it implies that xit−1 could have more

than one causal path whereby it influences yit. Accordingly, even if theoreti-

cal arguments state that the lagged variable of interest has no direct impact

on the dependent variable—in other words, even if those arguments make

the case that scenario 2 does not hold—it is difficult to argue against the
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possible existence of scenarios 3 and 4, which both results in a violation of

the exclusion restriction.

Turning to scenario 1, although the lagged IV in this case has neither a

direct causal impact on the dependent variable nor on the unobserved con-

founder, the lagged IV may still indirectly be correlated with the dependent

variable. Specifically, since uit−1 influences both uit and uit−1, xit−1 and

uit have a simultaneous relationship. In other words, as xit−1 changes, uit

changes contemporaneously (albeit not causally), and so yit changes as well.

In this case although xit−1 influences yit only through xit, which satisfies the

exclusion restriction, the IV xit−1 violates the independence assumption be-

cause it does not serve as a random exogenous shock. In other words, the

independence assumption can only be satisfied by assuming that there are

no dynamics among unobserved confounders (Bellemare et al. 2017). There-

fore, even if the dynamic causal impacts are restricted and thus exclusion

restriction is satisfied, a lagged IV can still be problematic because of the

unavoidable violation of independence assumption that it entails.

To understand how a violation of either the independence assumption

or of the exclusion restriction influences bias, we rely on conditional expec-

tations. Without any loss of generality, suppose that xit is a dichotomous

variable. For OLS, the average treatment effect (ATE) is such that

E(yit|xit = 1)− E(yit|xit = 0) =

E(y1it − y0it|xit) +
E(y0it|xit = 1)− E(y0it|xit = 0)

E(xit|xit = 1)− E(xit|xit = 0)
, (6)
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where the estimation bias stems from selection bias, or the second term on

the RHS of equation (6), whose denominator we know to be equal to 1.

Under lagged IV, assuming that the independence assumption and exclu-

sion restriction both hold, and further assuming monotonicity of the effect

of xit−1 on xit as well as the existence of the first-stage regression, per the

LATE theorem we know that the local average treatment effect (LATE) is

such that

E(yit|xit−1 = 1)− E(yit|xit−1 = 0)

E(xit|xit−1 = 1)− E(xit|xit−1 = 0)
= E(y1it − y0it|x1it > x0it). (7)

But if neither the independence assumption nor the exclusion restriction are

satisfied, the LATE becomes

E[y0it + (y1it − y0it)x1it|xit−1 = 1]− E[y0it + (y1it − y0it)x0it|xit−1 = 0]

E(xit|xit = 1)− E(xit|xit = 0)
+

E(y0it|xit−1 = 1)− E(y0it|xit−1 = 0)

E(xit|xit−1 = 1)− E(xit|xit−1 = 0)
. (8)

In this case, because the exclusion restriction is not satisfied, the second

term appears, which could be even larger than E(y0it|xit=1)−E(y0it|xit=0)
E(xit|xit=1)−E(xit|xit=0)

. This

implies that the bias from lagged IV estimation may be even larger than the

bias from näıve OLS estimation.

Even if the exclusion restriction is satisfied and the second item in equa-

tion (8) collapses to zero, the violation of the independence assumption im-
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plies that we simply cannot have

E[y0it + (y1it − y0it)x1it|xit−1 = 1] = E[y0it + (y1it − y0it)x1it], (9)

nor can we have

E[y0it + (y1it − y0it)x0it|xit−1 = 0] = E[y0it + (y1it − y0it)x0it]. (10)

Thus we cannot derive the LATE in equation (8) similarly as in equation (7),

such that

E[y0it + (y1it − y0it)x1it|xit−1 = 1]− E[y0it + (y1it − y0it)x0it|xit−1 = 0]

E(xit|xit−1 = 1)− E(xit|xit−1 = 0)

= E(y1it − y0it|x1it > x0it) (11)

which makes ambiguous whether the estimation bias in OLS is smaller than

that in lagged IV estimation ambiguous. This implies that even in scenario

1, lagged IV estimation remains problematic. What’s more, the assumption

that there are no dynamics among unobserved confounders, which has to

hold in order for the independence assumption to be satisfied, is unlikely to

hold in most—if not all—cases.

2.2 Extent of the Problem

To see how common the practice of lagged IV is, we examine the articles

published in the top journals in economics from 2013 to 2018. We identify
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the articles using lagged IV, either as the core identification strategy or as a

robustness check on the core identification strategy.

Table 1 shows the number of papers using lagged IV published in the

American Economic Review, Econometrica, the Journal of Political Econ-

omy, the Quarterly Journal of Economics, the Review of Economic Studies,

and the Review of Economics and Statistics from 2013 to 2018.

In total, we identify 21 papers using a lagged IV. All these papers use

one or more lagged explanatory variables as IVs to mitigate endogeneity

concerns. Doraszelski et al. (2018), for instance, instrument a firms’ bid

for a balancing mechanism in month t with the same firm’s bid in month

t− 1. Most of those lagged IV papers mention that the availability of lagged

explanatory variables is one of the key reasons why those same variables are

used as IVs. Those papers, however, do not address the difference between

the bias of the lagged IV method and that of OLS in details. In Bøler et al.

(2015), for instance, one cannot rule out that the lagged explanatory variable

could have a direct causal effect on the dependent variable, as in scenarios 2

and 4 above, which casts doubt on those results of theirs that rely on lagged

IV as an identification strategy.

Our review of the literature shows that lagged IVs remain common in

economics. Moreover, it shows that several authors believe that lagging en-

dogenous variable is a somewhat valid identification strategy, because it is

at least exogenous to some extent and satisfies the relevance restriction. In

the analysis that follows, we explore contrast lagged IV with OLS, and we
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specifically look at what lagged IV does to bias.

3 Analytical Derivations

The conceptual framework above demonstrates why lagged IV estimation

is unlikely to make endogeneity problems go away, and why it is likely to

aggravate them. To characterize the LATE under lagged IV quantitatively,

we compare the bias under OLS and under lagged IV. For simplicity, we

set up a bivariate regression scenario, and discuss the AR(1) process in the

data generation process both for the endogenous explanatory variable and

the unobserved confounder.

Since the causal relationships of interest in scenarios 2 to 4 suffer from

endogeneity, we quantitatively discuss the estimation bias only for scenario

1, viz. the simplest case. Following Bellemare et. al. (2017), we consider the

following setup:

yit = βxit + δuit + εit, (12)

xit = ρxit−1 + κuit + ηit, (13)

and

uit = φuit−1 + ωit, (14)
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where y is the dependent variable, x is the variable of interest, and u repre-

sents all unobserved confounders. Since the unobserved confounder is omitted

from equation (12), estimating it by OLS will return a biased estimate β̂OLS

of β. The AR(1) process in equation (13) implies that xit determined both

by its lagged value xit−1 and by the contemporaneous value uit unobserved

confounder. Similarly, the AR(1) process in equation (14) implies that uit

is only determined by its lagged value. In what follows, we assume that

ρ, φ ∈ (0, 1), that εit ∼ N(0, σ2
ε ), ηit ∼ N(0, σ2

η), and ωit ∼ N(0, σ2
ω).

3.1 Bias of OLS Estimation

Without unobserved confounder, OLS yields unbiased estimates. Given the

fact that the unobserved confounders are almost always present in observa-

tional data, the magnitude of the bias from OLS estimation is a function of

Cov(xit, uit), V ar(xit), as well as δ, i.e., the magnitude of the causal effect of

the unobserved confounder on yit:

E(β̂OLS|xit) =
Cov(xit, yit)

V ar(xit)

=
Cov(xit, βxit + δuit + εit)

V ar(xit)

= β + δ
Cov(xit, uit)

V ar(xit)
. (15)

If either δ = 0 or Cov(xit, yit) = 0, i.e., if uit has no impact on yit, or uit

is uncorrelated with xit, then endogeneity is not an issue, and we get the

standard result that E(β̂OLS|xit) = β.
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Using the derivations in Appendix A, we have that

Cov(xit, uit) = κ
V ar(uit)

1− φρ
. (16)

Plugging this last equation into equation (15), we get an expression for the

bias of OLS that is such that

E(β̂OLS|xit) = β +
δκV ar(uit)

(1− φρ)V ar(xit)
, (17)

which shows the bias arising from OLS.

3.2 Bias of Lagged IV Estimation

Now consider what happens when using xt−1 as an IV for xt. This implies

that

E(β̂IV |xit) =
Cov(xit−1, yit)

Cov(xit−1xit)
. (18)

Plugging equation (12) into equation (18), we get

E(β̂IV |xit) =
Cov(xit−1, βxit + δuit + εit)

Cov(xit−1, xit)
, (19)
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and so

E(β̂IV |xit) = β + δ
Cov(xit−1, uit)

V ar(xit−1)

= β + δ

Cov(xit−1,uit)
Cov(xit−1,xit)

ρ+ κCov(xit−1,uit)
Cov(xit−1,xit)

. (20)

Using the derivations in the Appendix, we also have

Cov(xit−1, uit)

V ar(xit−1)
=

Cov(xit−1, φuit−1 + ωit)

V ar(xit−1)

= φ
Cov(xit−1, uit−1)

V ar(xit−1)

=
φκV ar(uit)

(1− φρ)V ar(xit)
. (21)

Therefore, we have

E(β̂IV |xit) = β +
δφκV ar(uit)

ρ(1− φρ)V ar(xit) + φκ2V ar(uit)
(22)

= β +
δκV ar(uit)

ρ
φ
(1− φρ)V ar(xit) + κ2V ar(uit)

. (23)

Equation (23) shows the bias of the lagged IV method.
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3.3 Comparing the Bias of OLS with that of Lagged

IV

We can now compare the bias of OLS with that of lagged IV, i.e., equations

(17) and (23), or

E(β̂OLS|xit) = β +
δκV ar(uit)

(1− φρ)V ar(xit)
(24)

with

E(β̂IV |xit) = β +
δκV ar(uit)

ρ
φ
(1− φρ)V ar(xit) + κ2V ar(uit)

. (25)

Setting up an inequality between the two yields

β +
δκV ar(uit)

(1− φρ)V ar(xit)
R

β +
δκV ar(uit)

ρ
φ
(1− φρ)V ar(xit) + κ2V ar(uit)

(26)

or

δκV ar(uit)

(1− φρ)V ar(xit)
R

δκV ar(uit)
ρ
φ
(1− φρ)V ar(xit) + κ2V ar(uit)

, (27)

This is equivalent to

ρ

φ
(1− φρ)V ar(xit) + κ2V ar(uit) R (1− φρ)V ar(xit), (28)
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so that we need to consider how the parameter ratio ρ
φ

and the parameter κ

affect this comparison.

By comparing ρ
φ
(1 − φρ) with (1 − φρ), we know on the one hand that

because ρ, φ ∈ (0, 1), if ρ
φ
< 1, ρ

φ
(1 − φρ) < (1 − φρ). On the other hand, if

ρ
φ
> 1, then ρ

φ
(1− φρ) > (1− φρ).

If ρ
φ
< 1, then, ρ

φ
(1− φρ)V ar(xit) < (1− φρ)V ar(xit). Thus, if κ is small

enough, κ2V ar(uit), the bias of lagged IV is always larger than that of OLS.

With κ large enough, however, the bias of lagged IV is actually smaller than

the bias of OLS.

If ρ
φ
> 1, then, ρ

φ
(1 − φρ)V ar(xit) > (1 − φρ)V ar(xit). Thus, we always

have that ρ
φ
(1− φρ)V ar(xit) + κ2V ar(uit) > (1− φρ)V ar(xit), in which case

the bias of lagged IV is always smaller than that of OLS.

To sum up, κ and ρ
φ

are the key quantities, because they determine

whether the bias of lagged IV exceeds the bias of OLS. According to our

derivations, it is only in cases where κ is small and ρ
φ
< 1 that the bias of

lagged IV is larger than the bias of OLS. In other cases, the bias in lagged

IV is smaller than that of OLS. Therefore, even in scenario 1—the case with

the least amount of endogeneity—using a lagged IV does not guarantee unbi-

asedness. In section 4, we show simulation results that test these theoretical

findings for a range of credible values of κ and ρ
φ
.
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3.4 Root Mean Square Error of OLS and Lagged IV

We continue with scenario 1 and derive the RMSE for both OLS and lagged

IV. The expression for the RMSE under OLS estimation is such that

RMSE(β̂OLS) =

√
σ2

SSTx
+

[
δκV ar(uit)

(1− φρ)V ar(xit)

]2
(29)

where SSTx is the total sum of squares of xit.

Similarly, the expression for RMSE under lagged IV estimation is such

that

RMSE(β̂IV ) =

√
MSE(β̂IV )

=

√
V ar(β̂IV ) +Bias(β̂IV )2, (30)

which is equivalent to

RMSE(β̂IV ) =

√√√√V ar(β̂IV ) +

[
δκV ar(uit)

ρ
φ
(1− φρ)V ar(xit) + κ2V ar(uit)

]2
, (31)

or more explicitly to

RMSE(β̂IV ) =

√√√√√√ V ar
(
β + δκV ar(uit)

ρ
φ
(1−φρ)V ar(xit)+κ2V ar(uit)

)
+
[

δκV ar(uit)
ρ
φ
(1−φρ)V ar(xit)+κ2V ar(uit)

]2 . (32)

We know that the first term under the square root is zero, since the expression
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in parentheses is constant. Therefore,

RMSE(β̂IV ) =
δκV ar(uit)

ρ
φ
(1− φρ)V ar(xit) + κ2V ar(uit)

. (33)

Note that RMSE(β̂OLS) > δκV ar(uit)
(1−φρ)V ar(xit) . From the last section, we know

that if the bias from lagged IV estimates is smaller than that of OLS, it has

to be the case that

δκV ar(uit)

(1− φρ)V ar(xit)
>

δκV ar(uit)
ρ
φ
(1− φρ)V ar(xit) + κ2V ar(uit)

, (34)

which leads to the conclusion that RMSE(β̂OLS) > RMSE(β̂IV ). Con-

versely, if the bias in lagged IV is larger than that of OLS, then the inequal-

ity flips and RMSE(β̂OLS) < RMSE(β̂IV ). Whether RMSE is larger under

one estimator versus the other depends directly on whether the bias of the

former exceeds that of the latter.

4 Monte Carlo Simulations

We have shown analytically that lagged a variable of interest as an IV for

itself can either alleviate or aggravate the issues deriving from the presence

of endogeneity. In this section, we build on the Monte Carlo setup developed

by Bellemare et al. (2017) to simulate the four scenarios outlined in our

conceptual framework so as to quantitatively discuss bias of both the lagged

IV and OLS estimates, along with the RMSE and the likelihood of a Type I
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error under both methods.

4.1 Setup

We start with scenario 1. Figure 1 illustrates our theoretical framework and

parameterizes the relations between the dependent variable, the variable of

interest, and the unobserved confounder. As shown, the unobserved con-

founder is correlated both with y and with x. The effect δ of u on y, is

normalized to 1. The effect β of x on y is assigned a value ranging from 0 to

2.

Apart from those, the effect κ of u on x, is assigned a value of 0.5 and 2

to see its impact on the two biases. In addition, autocorrelation parameters

ρ and φ are set respectively at 0.5 and {0, 0.1, 0.2, ..., 0.9}, so that when ρ

ranges from 0 to 1 and φ = 0.5, we can study what happens both when ρ
φ
< 1

and when ρ
φ
> 1, and likewise when ρ = 0.5 and φ ranges from 0 to 1.

Following Bellemare et al. (2017), for each simulation, we generate a

panel in which N = 100 units are observed T = 50 periods each, for a

total of NT = 5, 000 observations. Our simulation follows the same data

generating process (DGPs) as in section 3. Each set of parameter values,

shown in Table 2, are simulated 100 times. Then three estimators of β are

illustrated: (i) the näıve estimator (β̂NAIV E), or a regression of yit on xit that

ignores unobserved confounders, (ii) the lagged IV estimator (β̂LAGIV ), or a

regression of yit on xit which relies on xit−1 as an IV for xit, and (iii) the

“correct” estimator (β̂CORRECT ), which regresses yit on xit and uit.
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Here, the correct estimator is the counterfactual, and since applied re-

searchers cannot observe confounders, our DGPs test the performance of

both OLS and lagged IV by comparing each of their bias with the correct es-

timator, whose bias is zero. To make our analysis simple and straightforward,

we only consider one-period autocorrelation.

As in Bellemare et al. (2017), three criteria are used to evaluate the

performance of the lagged IV method: (i) bias, (ii) RMSE, and (iii) the

likelihood of Type I error, i.e., the odds of rejecting the null hypothesis that

β = 0 when it is, in fact, true.

4.2 Scenario 1

For each combination of parameter values, β̂NAIV E, β̂LAGIV , and β̂CORRECT

are saved from each of the 100 simulations, then the average bias as well as

the corresponding RMSE and likelihood of Type I error are plotted.

Figure 2 summarizes the simulation results when κ = 0.5 and 2, ρ = 0.5,

and φ ranges from 0 to 1. The simulation results show that both β̂NAIV E and

β̂LAGIV are biased because of the unobserved confounder. As φ increases, the

bias of both OLS and lagged IV estimates also increases, which is consistent

with the theoretical predictions in sections 3.1 and 3.2. More importantly,

as predicted in section 3.3, the bias of lagged IV is smaller than the bias of

OLS when κ = 0.5, and φ < 0.5. That is, when ρ
φ
> 1, no matter the value

of κ, the bias of lagged IV is always smaller than that of OLS.

When κ = 0.5 and φ > 0.5, that is, when ρ
φ
< 1, the bias in lagged IV is

24



still smaller than that of OLS. As ρ
φ

gets smaller, however, the bias of lagged

IV becomes larger than the bias of OLS. When κ gets larger and goes to 2,

the bias of lagged IV is always smaller than the bias of OLS.

In line with our derivations of RMSE, the respective RMSEs for OLS

and lagged IV show patterns similar to their respective biases. These results

provide supportive evidence for our mathematical argument that using a

lagged variable of interest as an IV could mitigate the endogeneity problem.

For that to be true, however, it has to be the case that the autocorrelation

in the unobserved confounders is small and that the impact of unobserved

confounders on y is small—two untestable conditions.

Similar to our results for bias and RMSE, when κ > 0, and as φ ranges

from 0 to 1, the likelihood of making a Type I error rises dramatically. The

reason is that lagged IV identification will lead to nonzero estimates of β even

if β = 0 because the effect δ of the unobserved confounder on the dependent

variable and the effect κ of the unobserved confounders on the variable of

interest are both nonzero. In addition, the likelihood of rejecting a true

null rises dramatically and gets close to 1 as φ increases. Accordingly, these

results and interpretations suggest that using lagged explanatory variable as

instruments for themselves can hardly help mitigate the likelihood of Type I

error.

Figure 3 shows simulation results when φ = 0.5, ρ ranges from 0 to 1,

and κ = 0.5 or 2. These results show that both β̂NAIV E and β̂LAGIV are

still biased. As ρ ranges from 0.5 to 1, bias decreases both for β̂NAIV E and
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β̂LAGIV . More importantly, when κ = 0.5 and ρ > 0.5 (i.e., when ρ
φ
> 1), no

matter the value of κ, the bias of lagged IV is always smaller than that of

OLS. When κ = 0.5 and ρ < 0.5 (i.e., when ρ
φ
< 1), the bias in lagged IV is

still smaller than that of OLS. As ρ
φ

gets smaller, however, the bias of lagged

IV exceeds that of OLS. Here, too, RMSEs exhibit a pattern that is in line

with that of the biases. As regards the likelihood of Type I error, Figure 3

shows that when φ = 0.5, and ρ ranges from 0 to 1, the likelihood of rejecting

a true null is almost always equal to 1. This echoes the findings in Figure 2.

In sum, our simulation results convey an unambiguous message: If the

lagged variable of interest has no direct effect on the dependent variable or

on the unobserved confounder, a lagged IV can reduce bias and the RMSE.

This is only true, however, for specific parameter values such that the ratio

ρ
φ

of the explanatory variable’s autocorrelation parameter to the unobserved

confounder’s autocorrelation parameter is small, and the impact of the unob-

served confounder on the explanatory variable is also small. Still, our results

leave little hope for the likelihood of Type I error, which is always high under

either OLS or lagged IV.

These results imply that even if the exclusion restriction holds, the lagged

IV method remains problematic. Since lagged IV estimation violates the in-

dependence assumption because of the lagged explanatory variable’s simulta-

neous relationship with the unobserved confounder and the resulting indirect

relationship with the dependent variable, it only mitigates endogeneity to a

limited extent, and it may even aggravate the problem for some values of the

26



parameters.3

We also discuss the cases in which (i) the lagged explanatory variable

has a direct effect on the dependent variable, (ii) the lagged explanatory

variable has a direct effect on the unobserved confounder, and (iii) the lagged

explanatory variable has direct effects on both the dependent variable and on

the unobserved confounder. These cases coincide with scenarios 2 to 4 in our

conceptual framework. These three cases yield different results regarding

estimation bias and RMSE, in that both bias and RMSE from lagged IV

estimation are significantly larger than those from OLS. Moreover, in these

three cases, the likelihood of a Type I error is either close to or equal to

1, and significantly under lagged IV than under OLS. These results imply

that when lagged IV estimation violates both the exclusion restriction and

the independence assumption, it makes the endogeneity problem worse than

under näıve OLS estimation.

4.3 Scenario 2

As is discussed in scenario 2 in conceptual framework, when lagged endoge-

nous explanatory variable has direct causal impact on the explained variable,

our model setup becomes

yit = βxit + θxit−1 + δuit + εit, (35)

3In the appendix, we also discuss the case in which fixed effects are included in estima-
tion. That analysis yields results that are similar to our main results.
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xit = ρxit−1 + κuit + ηit, (36)

and

uit = φuit−1 + υit, (37)

where xit−1 has a direct effect on yit with marginal effect θ, which we nor-

mal to 1 in our simulations. Figure 4 shows the causal relationships in our

simulations.

Figure 5 and 6 show simulation results for this case. In contrast with

results in Figures 2 and 3, using xit−1 as an IV for xit introduces more bias

and a larger RMSE than OLS, and the likelihood of a Type I error gets

very close to one for a wide range of parameter values. These results imply

that since lagged IVs violate not only the independence assumption but also

the exclusion restriction, they cannot mitigate the endogeneity problem, and

may even aggravate it.

4.4 Scenario 3

We now add the lagged endogenous explanatory variable as another deter-

minant of the dependent variable, as in scenario 3. In this case, our model

setup becomes

yit = βxit + δuit + εit, (38)
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xit = ρxit−1 + κuit + ηit, (39)

and

uit = φuit−1 + ψxit−1 + υit, (40)

where xit−1 also has a causal effect on uit with marginal effect ψ, which is

also normalized to 1 in our simulations. Figure 7 shows the causal relation-

ships in our simulations. Figures 8 and 9 show that using xit−1 as an IV for

xit increases bias and RMSE relative to OLS, and once again, the likelihood

of a Type I error gets very close to 1. These results imply that since us-

ing the lagged explanatory variable as an IV violates both the independence

assumption and the exclusion restriction, the lagged IV method cannot mit-

igate endogeneity, and it may even aggravate the problem. What’s worse, as

was explained in the conceptual framework, since there could exist more than

one potential causal path from xit−1 to uit, it is difficult to argue that the

exclusion restriction is satisfied by assuming xit−1 influences yit only through

xit.

4.5 Scenario 4

We now add the lagged endogenous explanatory variable’s causal impact both

on the dependent variable and on the unobserved confounder, as is discussed

in scenario 4 in conceptual framework. Specifically, our model setup becomes
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yit = βxit + θxit−1 + δuit + εit, (41)

xit = ρxit−1 + κuit + ηit, (42)

and

uit = φuit−1 + ψxit−1 + υit, (43)

where xit−1 has a direct causal effect on yit with the marginal effect θ, which

is normalized to 1, and also has a causal effect on uit with the marginal effect

of ψ, which is also normalized as 1 in our simulation. Figure 10 shows the

causal relationships in our simulations.

Figures 11 and 12 show that using xit−1 as an IV for xit increases the

bias and RMSE relative to OLS; exceptionally in this case, the likelihood of

a Type I error is always equal to 1 given a wide range of parameter values.

These results also imply that a lagged IV violates not only the independence

assumption, but also the exclusion restriction. So once again, the endogeneity

problem is not mitigated, and it can even be made worse.
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5 Summary and Concluding Remarks

In this paper, we have looked at the consequences of using the lagged value of

an endogenous variable of interet as an instrument for that same variable—

what we have dubbed “lagged IV”—for bias, the RMSE, and the likelihood

of a Type I error. We have done so both analytically as well as with the aid

of Monte Carlo simulations.

We find on the one hand that if the lagged IV has no direct causal impact

on (i) the dependent variable nor (ii) the unobserved confounder, it violates

the independence assumption, but not the exclusion restriction. In this case,

a lagged IV can mitigate the endogeneity problems by reducing bias and the

root mean squared error (RMSE) for common ranges of parameter values.

But even in such a case, the likelihood of a Type I error remains large. On

the other hand, we find that if the lagged IV has a direct causal impact on

(i) the dependent variable, (ii) the unobserved confounder, or (iii) both, it

violates the exclusion restriction as well as the independence assumption.

In such cases, a lagged IV worsens the endogeneity problem by increasing

bias as well as the RMSE. Additionally the likelihood of a Type I error in

such cases is almost always equal to one for common ranges of parameter

values. In practical terms, this means that the use of a lagged IV often leads

one to report coefficients estimates of questionable economic and statistical

significance. Worse, the use of lagged IVs will tend to lead one to conclude

that a statistically significant relationship exists where it in fact does not.
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The implications of our findings for the practice of applied econometrics

are obvious. Unless one can make the claim that both the independence

assumption and the exclusion restriction hold, lagged IVs should be avoided

in the name of bias, RMSE, and the likelihood of a Type I error. But

given that the independence assumption requires that one make the dubious

assumption that there are no dynamics among unobserved confounders, this

essentially means that lagged IVs should be avoided entirely.

Our review of the recent literature in economics shows that the practice

of using lagged IVs remains common. The implications of our findings for

editors and reviewers of journals in the social sciences are thus that they

should be especially skeptical of any finding that involves a lagged IV. In

most cases, estimation results relying on a lagged IV identification strategy

are no better than a näıve OLS, and so the latter should be favored over the

former. At the very least, lagged IV results should be subjected to a battery

of robustness checks. Better yet, they should only be presented when a viable

alternative identification strategy is shown or comparison.

Causal inference usually requires experimental data to identify the treat-

ment effect of variables of interest. With observational data, natural experi-

ments are usually indispensable to provide with an exogenous shock in causal

identification (Angrist and Krueger, 2001, Freedman 2005), although they

lack underlying theoretical relationships (Rosenzweig and Wolpin, 2000).

Therefore, valid instrumental variables are likely from natural experiments

because in this sense, they are very likely to be exogenous and satisfy both the
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independence assumption and the exclusion restriction. Lagged explanatory

variables, on the contrary, have simultaneous relationship with the unob-

served confounder that influences the dependent variable, lacking the exo-

geneity as natural experiments do, thus can hardly provide with additional

information in causal inference.
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Appendix

Derivation of Cov(x, u)

Following Bellemare et al. (2017), given equations (2) and (3), we have

Cov(xit−1, uit−1) = Cov

(
1

ρ
xit −

κ

ρ
uit −

1

ρ
ηt,

1

φ
ut −

1

φ
νt

)
. (44)

We then have

Cov(xit−1, uit−1) =
1

φρ
[Cov(xit, uit)− κV ar(uit)], (45)

which yields

Cov(xit, uit)− κV ar(uit) = φρCov(xit−1, uit−1). (46)

Since ρ, φ ∈ (0, 1), both x and u revert to their means, i.e., Cov(xit, uit) does

not depend on t, and so we have

Cov(xit, uit) = Cov(xit−1, uit−1). (47)

From equation (46), we thus know that

Cov(xit, uit) = Cov(xit−1, uit−1) =
κV ar(uit)

1− φρ
. (48)
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Extensions to the Monte Carlo Simulations

In this section, we discuss controlling fixed effects to address unobserved

heterogeneity in estimation using scenario 1 as example. So far, our DGPs

incorporate no unit-level unobserved heterogeneity, in other words, we are

using the pooled estimator for β. Fixed effects, however, are commonly used

to account for unobserved heterogeneity.

Introducing unobserved unit-level heterogeneity to account for unit fixed

effects, our simulation results remain identical to previous ones. As Figures

13 and 14 show, using a lagged explanatory variable as an IV yields smaller

bias and RMSE in fixed effect estimates than in OLS estimates at first; but

as φ goes up, or as ρ goes down, bias and RMSE in fixed effect estimates

gets larger and become gradually slightly larger than those of the näıve OLS

estimates. Similar to the simulation results in section 4, the likelihood a

Type I error rises dramatically and becomes close to 1 as φ goes up from

0 to 1; when ρ ranges from 0 to 1, the likelihood of rejecting the true null

hypothesis is mostly equal to 1.
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Table 1: Number of Articles Using Lagged IVs, 2013-2018

Journal Number of Articles
American Economic Review 5
Econometrica 1
Journal of Political Economy 1
Quarterly Journal of Economics 4
Review of Economic Studies 3
Review of Economics and Statistics 7
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Table 2: Simulation Parameters

Parameter Causal Pathway Simulation Values
Basic Parameters
β Xt → Yt {0, 2}
δ Ut → Yt {1}
θ Xt−1 → Yt {1}
ψ Xt−1 → Ut {1}
Key Parameters
κ Ut → Xt, Ut−1 → Xt−1 {0.5, 2}
φ Ut−1 → Ut {0, 0.1, 0.2, ..., 0.9}, {0.5}
ρ Xt−1 → Xt {0.5}, {0, 0.1, 0.2, ..., 0.9}
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Figure 1: Monte Carlo Simulations

Xt−1 Xt Yt

Ut−1 Ut

ηt−1 ηt

νtνt−1

εt

ρ β

κ κ δ
φ

Notes : Visual representation of the Monte Carlo simulations setup. Greek
letters denote parameters; X denotes the variable of interest; U denotes un-
observed confounders; Y is the dependent variable.

Figure 2: Monte Carlo Results with κ = 0.5 and 2 and φ ranging from 0 to
1.
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Figure 3: Monte Carlo Results with κ = 0.5 and 2 and ρ ranging from 0 to
1.

Figure 4: Monte Carlo Simulations
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Figure 5: Monte Carlo Results with κ = 0.5 and 2 and φ ranging from 0 to
1. Lagged Causality in Dependent Variable.

Figure 6: Monte Carlo Results with κ = 0.5 and 2 and ρ ranging from 0 to
1. Lagged Causality in Dependent Variable.
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Figure 7: Monte Carlo Simulations
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Figure 8: Monte Carlo Results with κ = 0.5 and 2 and φ ranging from 0 to
1. Lagged Causality in Unobserved Confounders.
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Figure 9: Monte Carlo Results with κ = 0.5 and 2 and ρ ranging from 0 to
1. Lagged Causality in Unobserved Confounders.

Figure 10: Monte Carlo Simulations
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Figure 11: Monte Carlo Results with κ = 0.5 and 2 and φ ranging from 0
to 1. Lagged Causality in Both the Dependent Variable and the Unobserved
Confounders.

Figure 12: Monte Carlo Results with κ = 0.5 and 2 and ρ ranging from 0
to 1. Lagged Causality in Both the Dependent Variable and the Unobserved
Confounders.
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Figure A1: Monte Carlo Results with κ = 0.5 and 2 and φ ranging from 0
to 1. Fixed Effects Used in Näıve Specification.

Figure A2: Monte Carlo Results with κ = 0.5 and 2 and ρ ranging from 0 to
1. Fixed Effects Used in Näıve Specification.
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