
Algorithms for Decision Making

Algorithms for Decision Making

Mykel J. Kochenderfer
Tim A. Wheeler
Kyle H. Wray

The MIT Press
Cambridge, Massachusetts
London, England

© 2022 Massachusetts Institute of Technology

This work is subject to a Creative Commons CC-BY-NC-ND license. Subject to such license, all rights are
reserved.

The MIT Press would like to thank the anonymous peer reviewers who provided comments on drafts of this
book. The generous work of academic experts is essential for establishing the authority and quality of our
publications. We acknowledge with gratitude the contributions of these otherwise uncredited readers.

This book was set in TEX Gyre Pagella by the authors in LATEX.
Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Kochenderfer, Mykel J., 1980– author. | Wheeler, Tim A. (Tim Allan), author. | Wray, Kyle H., author.
Title: Algorithms for decision making / Mykel J. Kochenderfer, Tim A. Wheeler, Kyle H. Wray.
Description: Cambridge : Massachusetts Institute of Technology, [2022] |

Includes bibliographical references and index.
Identifiers: LCCN 2021038701 | ISBN 9780262047012 (hardcover)
Subjects: LCSH: Decision support systems–Mathematics. | Algorithms.
Classification: LCC T58.62 .K666 2022 | DDC 658.4/03—dc23
LC record available at https://lccn.loc.gov/2021038701

10 9 8 7 6 5 4 3 2 1

https://lccn.loc.gov/2021038701

To our families

Contents

Preface xix
Acknowledgments xxi
1 Introduction 1

1.1 Decision Making 1
1.2 Applications 2
1.3 Methods 5
1.4 History 7
1.5 Societal Impact 12
1.6 Overview 14

part i probabilistic reasoning
2 Representation 19

2.1 Degrees of Belief and Probability 19
2.2 Probability Distributions 20
2.3 Joint Distributions 24
2.4 Conditional Distributions 29
2.5 Bayesian Networks 32
2.6 Conditional Independence 35
2.7 Summary 36
2.8 Exercises 38

viii contents

3 Inference 43
3.1 Inference in Bayesian Networks 43
3.2 Inference in Naive Bayes Models 48
3.3 Sum-Product Variable Elimination 49
3.4 Belief Propagation 53
3.5 Computational Complexity 53
3.6 Direct Sampling 54
3.7 Likelihood Weighted Sampling 57
3.8 Gibbs Sampling 60
3.9 Inference in Gaussian Models 63
3.10 Summary 65
3.11 Exercises 66

4 Parameter Learning 71
4.1 Maximum Likelihood Parameter Learning 71
4.2 Bayesian Parameter Learning 75
4.3 Nonparametric Learning 82
4.4 Learning with Missing Data 82
4.5 Summary 89
4.6 Exercises 89

5 Structure Learning 97
5.1 Bayesian Network Scoring 97
5.2 Directed Graph Search 99
5.3 Markov Equivalence Classes 103
5.4 Partially Directed Graph Search 104
5.5 Summary 106
5.6 Exercises 107

6 Simple Decisions 111
6.1 Constraints on Rational Preferences 111
6.2 Utility Functions 112
6.3 Utility Elicitation 114
6.4 Maximum Expected Utility Principle 116
6.5 Decision Networks 116
6.6 Value of Information 119
6.7 Irrationality 122
6.8 Summary 125
6.9 Exercises 125

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

contents ix

part i i sequential problems
7 Exact Solution Methods 133

7.1 Markov Decision Processes 133
7.2 Policy Evaluation 136
7.3 Value Function Policies 139
7.4 Policy Iteration 140
7.5 Value Iteration 141
7.6 Asynchronous Value Iteration 145
7.7 Linear Program Formulation 147
7.8 Linear Systems with Quadratic Reward 147
7.9 Summary 150
7.10 Exercises 151

8 Approximate Value Functions 161
8.1 Parametric Representations 161
8.2 Nearest Neighbor 163
8.3 Kernel Smoothing 164
8.4 Linear Interpolation 167
8.5 Simplex Interpolation 168
8.6 Linear Regression 172
8.7 Neural Network Regression 174
8.8 Summary 175
8.9 Exercises 177

9 Online Planning 181
9.1 Receding Horizon Planning 181
9.2 Lookahead with Rollouts 183
9.3 Forward Search 183
9.4 Branch and Bound 185
9.5 Sparse Sampling 187
9.6 Monte Carlo Tree Search 187
9.7 Heuristic Search 197
9.8 Labeled Heuristic Search 197
9.9 Open-Loop Planning 200
9.10 Summary 208
9.11 Exercises 209

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

x contents

10 Policy Search 213
10.1 Approximate Policy Evaluation 213
10.2 Local Search 215
10.3 Genetic Algorithms 215
10.4 Cross Entropy Method 218
10.5 Evolution Strategies 219
10.6 Isotropic Evolutionary Strategies 224
10.7 Summary 226
10.8 Exercises 226

11 Policy Gradient Estimation 231
11.1 Finite Difference 231
11.2 Regression Gradient 234
11.3 Likelihood Ratio 234
11.4 Reward-to-Go 237
11.5 Baseline Subtraction 241
11.6 Summary 245
11.7 Exercises 246

12 Policy Gradient Optimization 249
12.1 Gradient Ascent Update 249
12.2 Restricted Gradient Update 251
12.3 Natural Gradient Update 253
12.4 Trust Region Update 254
12.5 Clamped Surrogate Objective 257
12.6 Summary 263
12.7 Exercises 264

13 Actor-Critic Methods 267
13.1 Actor-Critic 267
13.2 Generalized Advantage Estimation 269
13.3 Deterministic Policy Gradient 272
13.4 Actor-Critic with Monte Carlo Tree Search 274
13.5 Summary 277
13.6 Exercises 277

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

contents xi

14 Policy Validation 281
14.1 Performance Metric Evaluation 281
14.2 Rare Event Simulation 285
14.3 Robustness Analysis 288
14.4 Trade Analysis 289
14.5 Adversarial Analysis 291
14.6 Summary 295
14.7 Exercises 295

part i i i model uncertainty
15 Exploration and Exploitation 299

15.1 Bandit Problems 299
15.2 Bayesian Model Estimation 301
15.3 Undirected Exploration Strategies 301
15.4 Directed Exploration Strategies 303
15.5 Optimal Exploration Strategies 306
15.6 Exploration with Multiple States 309
15.7 Summary 309
15.8 Exercises 311

16 Model-Based Methods 317
16.1 Maximum Likelihood Models 317
16.2 Update Schemes 318
16.3 Exploration 321
16.4 Bayesian Methods 326
16.5 Bayes-Adaptive Markov Decision Processes 329
16.6 Posterior Sampling 330
16.7 Summary 332
16.8 Exercises 332

17 Model-Free Methods 335
17.1 Incremental Estimation of the Mean 335
17.2 Q-Learning 336
17.3 Sarsa 338
17.4 Eligibility Traces 341

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

xii contents

17.5 Reward Shaping 343
17.6 Action Value Function Approximation 343
17.7 Experience Replay 345
17.8 Summary 348
17.9 Exercises 351

18 Imitation Learning 355
18.1 Behavioral Cloning 355
18.2 Data Set Aggregation 358
18.3 Stochastic Mixing Iterative Learning 358
18.4 Maximum Margin Inverse Reinforcement Learning 361
18.5 Maximum Entropy Inverse Reinforcement Learning 365
18.6 Generative Adversarial Imitation Learning 369
18.7 Summary 371
18.8 Exercises 372

part iv state uncertainty
19 Beliefs 379

19.1 Belief Initialization 379
19.2 Discrete State Filter 380
19.3 Kalman Filter 383
19.4 Extended Kalman Filter 385
19.5 Unscented Kalman Filter 387
19.6 Particle Filter 390
19.7 Particle Injection 394
19.8 Summary 395
19.9 Exercises 397

20 Exact Belief State Planning 407
20.1 Belief-State Markov Decision Processes 407
20.2 Conditional Plans 408
20.3 Alpha Vectors 411
20.4 Pruning 412
20.5 Value Iteration 416
20.6 Linear Policies 419
20.7 Summary 419
20.8 Exercises 422

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

contents xiii

21 Offline Belief State Planning 427
21.1 Fully Observable Value Approximation 427
21.2 Fast Informed Bound 429
21.3 Fast Lower Bounds 430
21.4 Point-Based Value Iteration 431
21.5 Randomized Point-Based Value Iteration 433
21.6 Sawtooth Upper Bound 436
21.7 Point Selection 440
21.8 Sawtooth Heuristic Search 442
21.9 Triangulated Value Functions 445
21.10 Summary 447
21.11 Exercises 448

22 Online Belief State Planning 453
22.1 Lookahead with Rollouts 453
22.2 Forward Search 453
22.3 Branch and Bound 456
22.4 Sparse Sampling 456
22.5 Monte Carlo Tree Search 457
22.6 Determinized Sparse Tree Search 459
22.7 Gap Heuristic Search 460
22.8 Summary 464
22.9 Exercises 467

23 Controller Abstractions 471
23.1 Controllers 471
23.2 Policy Iteration 475
23.3 Nonlinear Programming 478
23.4 Gradient Ascent 481
23.5 Summary 486
23.6 Exercises 486

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

xiv contents

part v multiagent systems
24 Multiagent Reasoning 493

24.1 Simple Games 493
24.2 Response Models 494
24.3 Dominant Strategy Equilibrium 497
24.4 Nash Equilibrium 498
24.5 Correlated Equilibrium 498
24.6 Iterated Best Response 503
24.7 Hierarchical Softmax 504
24.8 Fictitious Play 505
24.9 Gradient Ascent 509
24.10 Summary 509
24.11 Exercises 511

25 Sequential Problems 517
25.1 Markov Games 517
25.2 Response Models 519
25.3 Nash Equilibrium 520
25.4 Fictitious Play 521
25.5 Gradient Ascent 526
25.6 Nash Q-Learning 526
25.7 Summary 528
25.8 Exercises 530

26 State Uncertainty 533
26.1 Partially Observable Markov Games 533
26.2 Policy Evaluation 535
26.3 Nash Equilibrium 537
26.4 Dynamic Programming 540
26.5 Summary 542
26.6 Exercises 542

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

contents xv

27 Collaborative Agents 545
27.1 Decentralized Partially Observable Markov Decision Processes 545
27.2 Subclasses 546
27.3 Dynamic Programming 549
27.4 Iterated Best Response 550
27.5 Heuristic Search 550
27.6 Nonlinear Programming 551
27.7 Summary 554
27.8 Exercises 556

appendices
A Mathematical Concepts 561

A.1 Measure Spaces 561
A.2 Probability Spaces 562
A.3 Metric Spaces 562
A.4 Normed Vector Spaces 562
A.5 Positive Definiteness 564
A.6 Convexity 564
A.7 Information Content 565
A.8 Entropy 566
A.9 Cross Entropy 566
A.10 Relative Entropy 567
A.11 Gradient Ascent 567
A.12 Taylor Expansion 568
A.13 Monte Carlo Estimation 569
A.14 Importance Sampling 570
A.15 Contraction Mappings 570
A.16 Graphs 572

B Probability Distributions 573
C Computational Complexity 575

C.1 Asymptotic Notation 575
C.2 Time Complexity Classes 577
C.3 Space Complexity Classes 577
C.4 Decidability 579

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

xvi contents

D Neural Representations 581
D.1 Neural Networks 581
D.2 Feedforward Networks 582
D.3 Parameter Regularization 585
D.4 Convolutional Neural Networks 587
D.5 Recurrent Networks 588
D.6 Autoencoder Networks 592
D.7 Adversarial Networks 594

E Search Algorithms 599
E.1 Search Problems 599
E.2 Search Graphs 600
E.3 Forward Search 600
E.4 Branch and Bound 601
E.5 Dynamic Programming 604
E.6 Heuristic Search 604

F Problems 609
F.1 Hex World 609
F.2 2048 610
F.3 Cart-Pole 611
F.4 Mountain Car 612
F.5 Simple Regulator 613
F.6 Aircraft Collision Avoidance 614
F.7 Crying Baby 615
F.8 Machine Replacement 617
F.9 Catch 619
F.10 Prisoner’s Dilemma 621
F.11 Rock-Paper-Scissors 621
F.12 Traveler’s Dilemma 622
F.13 Predator-Prey Hex World 623
F.14 Multicaregiver Crying Baby 624
F.15 Collaborative Predator-Prey Hex World 625

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

contents xvii

G Julia 627
G.1 Types 627
G.2 Functions 640
G.3 Control Flow 643
G.4 Packages 645
G.5 Convenience Functions 648

References 651
Index 671

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

Preface

This book provides a broad introduction to algorithms for decision making under
uncertainty. We cover a wide variety of topics related to decision making, intro-
ducing the underlying mathematical problem formulations and the algorithms
for solving them. Figures, examples, and exercises are provided to convey the
intuition behind the various approaches.

This book is intended for advanced undergraduates and graduate students, as
well as professionals. It requires some mathematical maturity and assumes prior
exposure to multivariable calculus, linear algebra, and probability concepts. Some
review material is provided in the appendices. Disciplines where the book would
be especially useful include mathematics, statistics, computer science, aerospace,
electrical engineering, and operations research.

Fundamental to this textbook are the algorithms, which are all implemented
in the Julia programming language. We have found this language to be ideal for
specifying algorithms in human-readable form. The priority in the design of the
algorithmic implementations was interpretability rather than efficiency. Indus-
trial applications, for example, may benefit from alternative implementations.
Permission is granted, free of charge, to use the code snippets associated with
this book, subject to the condition that the source of the code is acknowledged.

Mykel J . Kochenderfer
Tim A. Wheeler
Kyle H. Wray
Stanford, California
February 28, 2022

Acknowledgments

This textbook has grown from a course on decision making under uncertainty
taught at Stanford. We are grateful to the students and teaching assistants who
have helped shape the course over the past six years.

The authors wish to thank the many individuals who have provided valu-
able feedback on early drafts of our manuscript, including Dylan Asmar, Drew
Bagnell, Safa Bakhshi, Edward Balaban, Jean Betterton, Raunak Bhattacharyya,
Kelsey Bing, Maxime Bouton, Hugo Buurmeijer, Austin Chan, Simon Chau-
vin, Shushman Choudhury, Jon Cox, Matthew Daly, Victoria Dax, Harrison
Delecki, Richard Dewey, Paul Diederichs, Dea Dressel, Ben Duprey, Torstein
Eliassen, Johannes Fischer, Rushil Goradia, Jayesh Gupta, Griffin Holt, Arec Jam-
gochian, Rohan Kapre, Mark Koren, Liam Kruse, Tor Lattimore, Bernard Lange,
Ritchie Lee, Sheng Li, Michael Littman, Robert Moss, Joshua Ott, Oriana Peltzer,
Francesco Piccoli, Nikhil Raghuraman, Jeffrey Sarnoff, Marc Schlichting, Ransalu
Senanayake, Chelsea Sidrane, Michael Sheehan, Chris Strong, Zach Sunberg, Abiy
Teshome, Alexandros Tzikas, Kemal Ure, Ziyu Wang, Josh Wolff, Anıl Yıldız, and
Zongzhang Zhang. We also would like to thank Sydney Katz, Kunal Menda, and
Ayan Mukhopadhyay for their contributions to the discussion in chapter 1. Ross
Alexander produced many of the exercises throughout the book. It has been a
pleasure working with Elizabeth Swayze from the MIT Press in preparing this
manuscript for publication.

The style of this book was inspired by Edward Tufte. Among other stylistic
elements, we adopted his wide margins and use of small multiples. The type-
setting of this book is based on the Tufte-LaTeX package by Kevin Godby, Bil
Kleb, and Bill Wood. The book’s color scheme was adapted from the Monokai
theme by Jon Skinner of Sublime Text (sublimetext.com) and a palette that better
accommodates individuals with color blindness.1 For plots, we use the viridis 1 B. Wong, “Points of View: Color

Blindness,” Nature Methods, vol. 8,
no. 6, pp. 441–442, 2011.

https://sublimetext.com

xxii acknowledgments

color map defined by Stéfan van der Walt and Nathaniel Smith.
We have also benefited from the various open-source packages on which this

textbook depends (see appendix G). The typesetting of the code was done with
the help of pythontex, which is maintained by Geoffrey Poore. The typeface used
for the algorithms is JuliaMono (github.com/cormullion/juliamono). The plotting
was handled by pgfplots, which is maintained by Christian Feuersänger.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

https://github.com/cormullion/juliamono

1 Introduction

Many important problems involve decision making under uncertainty, including
aircraft collision avoidance, wildfire management, and disaster response. When
designing automated decision-making systems or decision-support systems, it is
important to account for various sources of uncertainty while carefully balanc-
ing multiple objectives. We will discuss these challenges from a computational
perspective, aiming to provide the theory behind decision-making models and
computational approaches. This chapter introduces the problem of decision mak-
ing under uncertainty, provides some examples of applications, and outlines
the space of computational approaches. It then summarizes how various disci-
plines have contributed to our understanding of intelligent decision making and
highlights areas of potential societal impact. We conclude with an outline of the
remainder of the book.

1.1 Decision Making

An agent is an entity that acts based on observations of its environment. Agents
may be physical entities, like humans or robots, or they may be nonphysical enti-
ties, such as decision support systems that are implemented entirely in software.
As shown in figure 1.1, the interaction between the agent and the environment
follows an observe-act cycle or loop.

The agent at time t receives an observation of the environment, denoted as ot.
Observations may be made, for example, through a biological sensory process,
as in humans, or by a sensor system, like radar in an air traffic control system.
Observations are often incomplete or noisy; humans may not see an approaching
aircraft or a radar system might miss a detection due to electromagnetic interfer-
ence. The agent then chooses an action at through some decision-making process.

2 chapter 1. introduction

Environment Agent

Observation (ot)

Action (at)

Figure 1.1. Interaction between an
agent and its environment.

This action, such as sounding an alert, may have a nondeterministic effect on the
environment.

Our focus is on agents that interact intelligently to achieve their objectives over
time. Given the past sequence of observations, o1, . . . , ot, and knowledge of the
environment, the agent must choose an action at that best achieves its objectives
in the presence of various sources of uncertainty,1 including the following: 1 We focus here on discrete time

problems. Continuous time prob-
lems are studied in the field of
control theory. See D. E. Kirk, Opti-
mal Control Theory: An Introduction.
Prentice-Hall, 1970.

• outcome uncertainty, where the effects of our actions are uncertain,

• model uncertainty, where our model of the problem is uncertain,

• state uncertainty, where the true state of the environment is uncertain, and

• interaction uncertainty, where the behavior of the other agents interacting in the
environment is uncertain.

This book is organized around these four sources of uncertainty. Making decisions
in the presence of uncertainty is central to the field of artificial intelligence,2 as 2 A comprehensive introduction to

artificial intelligence is provided
by S. Russell and P. Norvig, Artifi-
cial Intelligence: A Modern Approach,
4th ed. Pearson, 2021.

well as many other fields, as outlined in section 1.4. We will discuss a variety of
algorithms, or descriptions of computational processes, for making decisions that
are robust to uncertainty.

1.2 Applications

The decision-making framework presented in the previous section can be applied
to a wide variety of domains. This section discusses a few conceptual examples
with real-world applications. Appendix F outlines additional notional problems
that are used throughout this text to demonstrate the algorithms we discuss.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

1.2. applications 3

1.2.1 Aircraft Collision Avoidance
To help prevent midair collisions between aircraft, we want to design a system
that can alert pilots to potential threats and direct them how to maneuver to
avoid them.3 The system communicates with the transponders of other aircraft 3 This application is discussed in

a chapter titled ‘‘Collision Avoid-
ance’’ by M. J. Kochenderfer, De-
cision Making Under Uncertainty:
Theory and Application. MIT Press,
2015.

to identify their positions with some degree of accuracy. Deciding what guidance
to provide to the pilots is challenging. There is uncertainty in how quickly the
pilots will respond and how aggressively they will comply with the guidance.
In addition, there is uncertainty in the behavior of other aircraft. We want our
system to alert sufficiently early to provide enough time for pilots to maneuver
their aircraft to avoid collisions, but we do not want our system to issue alerts too
early, which would result in many unnecessary maneuvers. Since this system is to
be used continuously worldwide, we need the system to provide an exceptional
level of safety.

1.2.2 Automated Driving
We want to build an autonomous vehicle that can safely drive in urban environ-
ments.4 The vehicle must rely on a suite of sensors to perceive its environment in 4 A similar application was ex-

plored by M. Bouton, A. Nakhaei,
K. Fujimura, and M. J. Kochender-
fer, “Safe Reinforcement Learning
with Scene Decomposition for Nav-
igating Complex Urban Environ-
ments,” in IEEE Intelligent Vehicles
Symposium (IV), 2019.

order tomake safe decisions. One type of sensor is lidar, which involvesmeasuring
laser reflections off the environment to determine distances to obstacles. Another
type of sensor is a camera, which, through computer vision algorithms, can detect
pedestrians and other vehicles. Both of these types of sensors are imperfect and
susceptible to noise and occlusions. For example, a parked truck may occlude a
pedestrianwhomay be trying to cross at a crosswalk. Our systemmust predict the
intentions and future paths of other vehicles, pedestrians, and other road users
from their observable behaviors in order to navigate safely to our destination.

1.2.3 Breast Cancer Screening
Worldwide, breast cancer is the most common cancer in women. Detecting breast
cancer early can help save lives, with mammography being the most effective
screening tool available. However, mammography carries with it potential risks,
including false positives, which can result in unnecessary and invasive diagnos-
tic follow-up. Research over the years has resulted in various population-based
screening schedules based on age to balance the benefits and risks of testing.
Developing a system that can make recommendations based on personal risk

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

4 chapter 1. introduction

characteristics and screening history has the potential to result in better health
outcomes.5 The success of such a system can be compared to populationwide 5 Such a concept is proposed by T.

Ayer, O. Alagoz, and N.K. Stout,
“A POMDP Approach to Personal-
ize Mammography Screening Deci-
sions,” Operations Research, vol. 60,
no. 5, pp. 1019–1034, 2012.

screening schedules in terms of total expected quality-adjusted life years, the num-
ber of mammograms, the prevalence of false positives, and the risk of undetected,
invasive cancer.

1.2.4 Financial Consumption and Portfolio Allocation
Suppose that we want to build a system that recommends how much of an
individual’s wealth should be consumed that year and how much should be
invested.6 The investment portfolio may include stocks and bonds with different 6 A related problem was studied

by R.C. Merton, “Optimum Con-
sumption and Portfolio Rules in a
Continuous-Time Model,” Journal
of Economic Theory, vol. 3, no. 4,
pp. 373–413, 1971.

levels of risk and expected return. The evolution of wealth is stochastic due to
uncertainty in both earned and investment income, often increasing until the
investor is near retirement, and then steadily decreasing. The enjoyment that
comes from the consumption of a unit of wealth in a year typically diminishes
with the amount consumed, resulting in a desire to smooth consumption over
the lifespan of the individual.

1.2.5 Distributed Wildfire Surveillance
Situational awareness is a major challenge when fighting wildfires. The state of a
fire evolves over time, influenced by factors such as wind and the distribution
of fuel in the environment. Many wildfires span large geographic regions. One
concept for monitoring a wildfire is to use a team of drones equipped with
sensors to fly above it.7 The sensing range of individual drones is limited, but

7 This application was explored by
K.D. Julian and M. J. Kochender-
fer, “Distributed Wildfire Surveil-
lance with Autonomous Aircraft
Using Deep Reinforcement Learn-
ing,”AIAA Journal of Guidance, Con-
trol, and Dynamics, vol. 42, no. 8,
pp. 1768–1778, 2019.

the information from the team can be fused to provide a unified snapshot of the
situation to drive resource allocation decisions. We would like the team members
to autonomously determine how to collaborate with each other to provide the best
coverage of the fire. Effective monitoring requires deciding how to maneuver to
cover areas where new sensor information is likely to be useful; spending time in
areas where we are certain of whether the fire is burning or not would be wasteful.
Identifying important areas to explore requires reasoning about the stochastic
evolution of the fire, given only imperfect knowledge of its current state.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

1.3. methods 5

1.2.6 Mars Science Exploration
Rovers have made important discoveries on and increased our understanding
of Mars. However, a major bottleneck in scientific exploration has been the com-
munication link between the rover and the operations team on Earth. It can take
as much as half an hour for sensor information to be sent from Mars to Earth
and for commands to be sent from Earth to Mars. In addition, guidance to rovers
needs to be planned in advance because there are limited upload and download
windows with Mars due to the positions of orbiters serving as information relays
between the planets. Recent research has suggested that the efficiency of science
exploration missions can be improved by a factor of five through the introduction
of greater levels of autonomy.8 Human operators would still provide high-level 8 This concept is presented and

evaluated by D. Gaines, G. Doran,
M. Paton, B. Rothrock, J. Russino, R.
Mackey, R. Anderson, R. Francis, C.
Joswig, H. Justice, K. Kolcio, G. Ra-
bideau, S. Schaffer, J. Sawoniewicz,
A. Vasavada, V. Wong, K. Yu,
andA.-a. Agha-mohammadi, “Self-
Reliant Rovers for Increased Mis-
sion Productivity,” Journal of Field
Robotics, vol. 37, no. 7, pp. 1171–
1196, 2020.

guidance on mission objectives, but the rover would have the flexibility to select
its own science targets using the most up-to-date information. In addition, it
would be desirable for rovers to respond appropriately to various hazards and
system failures without human intervention.

1.3 Methods

There are many methods for designing decision-making agents. Depending on
the application, some may be more appropriate than others. They differ in the
responsibilities of the designer and the tasks left to automation. This section
briefly overviews a collection of these methods. The book will focus primarily
on planning and reinforcement learning, but some of the techniques will involve
elements of supervised learning and optimization.

1.3.1 Explicit Programming
The most direct method for designing a decision-making agent is to anticipate all
the scenarios that the agent might find itself in and explicitly program what the
agent should do in response to each one. The explicit programming approachmay
work well for simple problems, but it places a large burden on the designer to pro-
vide a complete strategy. Various agent programming languages and frameworks
have been proposed to make programming agents easier.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

6 chapter 1. introduction

1.3.2 Supervised Learning
With some problems, it may be easier to show an agent what to do rather than to
write a program for the agent to follow. The designer provides a set of training
examples, and an automated learning algorithmmust generalize from these exam-
ples. This approach is known as supervised learning and has been widely applied
to classification problems. This technique is sometimes called behavioral cloning
when applied to learning mappings from observations to actions. Behavioral
cloning works well when an expert designer actually knows the best course of
action for a representative collection of situations. Although a wide variety of
different learning algorithms exist, they generally cannot perform better than
human designers in new situations.

1.3.3 Optimization
Another approach is for the designer to specify the space of possible decision
strategies and a performance measure to be maximized. Evaluating the perfor-
mance of a decision strategy generally involves running a batch of simulations.
The optimization algorithm then performs a search in this space for the optimal
strategy. If the space is relatively small and the performance measure does not
have many local optima, then various local or global search methods may be
appropriate. Although knowledge of a dynamic model is generally assumed to
run the simulations, it is not otherwise used to guide the search, which can be
important for complex problems.

1.3.4 Planning
Planning is a form of optimization that uses a model of the problem dynamics
to help guide the search. A broad base of literature explores various planning
problems, much of it focused on deterministic problems. For some problems,
it may be acceptable to approximate the dynamics with a deterministic model.
Assuming a deterministic model allows us to use methods that can more easily
scale to high-dimensional problems. For other problems, accounting for future
uncertainty is critical. This book focuses entirely on problems in which accounting
for uncertainty is important.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

1.4. history 7

1.3.5 Reinforcement Learning
Reinforcement learning relaxes the assumption in planning that a model is known
ahead of time. Instead, the decision-making strategy is learned while the agent
interacts with the environment. The designer only has to provide a performance
measure; it is up to the learning algorithm to optimize the behavior of the agent.
One of the interesting complexities that arises in reinforcement learning is that the
choice of action affects not only the immediate success of the agent in achieving its
objectives, but also the agent’s ability to learn about the environment and identify
the characteristics of the problem that it can exploit.

1.4 History

The theory of automating the process of decision making has its roots in the
dreams of early philosophers, scientists, mathematicians, and writers. The ancient
Greeks began incorporating automation into myths and stories as early as 800 BC.
The word automaton was first used in Homer’s Iliad, which contains references to
the notion of automatic machines, including mechanical tripods used to serve
dinner guests.9 In the seventeenth century, philosophers proposed the use of logic 9 S. Vasileiadou, D. Kalligeropou-

los, and N. Karcanias, “Systems,
Modelling and Control in An-
cient Greece: Part 1: Mythical Au-
tomata,” Measurement and Control,
vol. 36, no. 3, pp. 76–80, 2003.

rules to automatically settle disagreements. Their ideas created the foundation
for mechanized reasoning.

Beginning in the late eighteenth century, inventors began creating automatic
machines to perform labor. In particular, a series of innovations in the textile
industry led to the development of the automatic loom, which in turn laid the
foundation for the first factory robots.10 In the early nineteenth century, the use of 10 N. J. Nilsson, The Quest for Artifi-

cial Intelligence. Cambridge Univer-
sity Press, 2009.intelligent machines to automate labor began to make its way into science fiction

novels. The word robot originated in the Czech writer Karel Čapek’s play titled
R.U.R., short for Rossum’s Universal Robots, about machines that could perform
work that humans would prefer not to do. The play inspired other science fiction
writers to incorporate robots into their writing. In the mid-twentieth century, the
notable writer and professor Isaac Asimov laid out his vision for robotics in his
famous Robot series.

A major challenge in practical implementations of automated decision making
is accounting for uncertainty. Even at the end of the twentieth century, George
Dantzig, most famous for developing the simplex algorithm, stated in 1991:

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

8 chapter 1. introduction

In retrospect it is interesting to note that the original problem that startedmy research
is still outstanding—namely the problem of planning or scheduling dynamically
over time, particularly planning dynamically under uncertainty. If such a problem
could be successfully solved it could (eventually through better planning) contribute
to the well-being and stability of the world.11 11 G.B. Dantzig, “Linear Program-

ming,” Operations Research, vol. 50,
no. 1, pp. 42–47, 2002.While decision making under uncertainty still remains an active area of research,

over the past few centuries, researchers and engineers have come closer to mak-
ing the concepts posed by these early dreamers possible. Current state-of-the-art
decision-making algorithms rely on a convergence of concepts developed in multi-
ple disciplines, including economics, psychology, neuroscience, computer science,
engineering, mathematics, and operations research. This section highlights some
major contributions from these disciplines. The cross-pollination between disci-
plines has led to many recent advances and will likely continue to support growth
in the future.

1.4.1 Economics
Economics requires models of human decision making. One approach to build-
ing such models involves utility theory, which was first introduced in the late
eighteenth century.12 Utility theory provides a means to model and compare the 12 G. J. Stigler, “TheDevelopment of

Utility Theory. I,” Journal of Political
Economy, vol. 58, no. 4, pp. 307–327,
1950.

desirability of various outcomes. For example, utility can be used to compare the
desirability of monetary quantities. In the Theory of Legislation, Jeremy Bentham
summarized the nonlinearity in the utility of money:

1st. Each portion of wealth has a corresponding portion of happiness.
2nd. Of two individuals with unequal fortunes, he who has the most wealth has the
most happiness.
3rd. The excess in happiness of the richer will not be so great as the excess of his
wealth.13 13 J. Bentham, Theory of Legislation.

Trübner & Company, 1887.
By combining the concept of utility with the notion of rational decision making,
economists in the mid-twentieth century established a basis for the maximum
expected utility principle. This principle is a key concept behind the creation of
autonomous decision-making agents. Utility theory also gave rise to the devel-
opment of game theory, which attempts to understand the behavior of multiple
agents acting in the presence of one another to maximize their interests.14

14 O. Morgenstern and J. von Neu-
mann, Theory of Games and Eco-
nomic Behavior. Princeton Univer-
sity Press, 1953.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

1.4. history 9

1.4.2 Psychology
Psychologists also study human decision making, typically from the perspective
of human behavior. By studying the reactions of animals to stimuli, psychologists
have been developing theories of trial-and-error learning since the nineteenth
century. Researchers noticed that animals tend to make decisions based on the
satisfaction or discomfort they experienced in previous similar situations. Russian
psychologist Ivan Pavlov combined this idea with the concept of reinforcement
after observing the salivation patterns of dogs when fed. Psychologists found
that a pattern of behavior could be strengthened or weakened using continuous
reinforcement of a particular stimulus. In the mid-twentieth century, the mathe-
matician and computer scientist Alan Turing expressed the possibility of allowing
machines to learn in the same manner:

The organization of a machine into a universal machine would be most impressive if
the arrangements of interference involve very few inputs. The training of a human
child depends largely on a system of rewards and punishments, and this suggests
that it ought to be possible to carry through the organising with only two interfering
inputs, one for ‘‘pleasure’’ or ‘‘reward’’ (R) and the other for ‘‘pain’’ or ‘‘punishment’’
(P).15 15 A.M. Turing, “Intelligent Ma-

chinery,” National Physical Labo-
ratory, Report, 1948.The work of psychologists laid the foundation for the field of reinforcement

learning, a critical technique used to teach agents to make decisions in uncertain
environments.16 16 R. S. Sutton and A.G. Barto, Rein-

forcement Learning: An Introduction,
2nd ed. MIT Press, 2018.

1.4.3 Neuroscience
While psychologists study human behavior as it happens, neuroscientists focus on
the biological processes used to create the behavior. At the end of the nineteenth
century, scientists found that the brain is composed of an interconnected network
of neurons, which is responsible for its ability to perceive and reason about the
world. Artificial intelligence pioneer Nils Nilsson describes the application of
these findings to decision making as follows:

Because it is the brain of an animal that is responsible for converting sensory in-
formation into action, it is to be expected that several good ideas can be found in
the work of neurophysiologists and neuroanatomists who study brains and their
fundamental components, neurons.17

17 N. J. Nilsson, The Quest for Artifi-
cial Intelligence. Cambridge Univer-
sity Press, 2009.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

10 chapter 1. introduction

In the 1940s, researchers first proposed that neurons could be considered as
individual ‘‘logic units” capable of performing computational operations when
pieced together into a network. This work served as a basis for neural networks,
which are used in the field of artificial intelligence to perform a variety of complex
tasks.

1.4.4 Computer Science
In the mid-twentieth century, computer scientists began formulating the problem
of intelligent decision making as a problem of symbolic manipulation through
formal logic. The computer program Logic Theorist, written in the mid-twentieth
century to perform automated reasoning, used this way of thinking to provemath-
ematical theorems. Herbert Simon, one of its inventors, addressed the symbolic
nature of the program by relating it to the human mind:

We invented a computer program capable of thinking nonnumerically, and thereby
solved the venerable mind/body problem, explaining how a system composed of
matter can have the properties of mind.18 18 Quoted by J. Agar, Science in the

20th Century and Beyond. Polity,
2012.These symbolic systems relied heavily on human expertise. An alternative ap-

proach to intelligence, called connectionism, was inspired in part by developments
in neuroscience and focuses on the use of artificial neural networks as a substrate
for intelligence. With the knowledge that neural networks could be trained for
pattern recognition, connectionists attempt to learn intelligent behavior from data
or experience rather than the hard-coded knowledge of experts. The connection-
ist paradigm underpinned the success of AlphaGo, the autonomous program
that beat a human professional at the game of Go, as well as much of the devel-
opment of autonomous vehicles. Algorithms that combine both symbolic and
connectionist paradigms remain an active area of research today.

1.4.5 Engineering
The field of engineering has focused on allowing physical systems, such as robots,
to make intelligent decisions. World-renowned roboticist Sebastian Thrun de-
scribes the components of these systems as follows:

Robotics systems have in common that they are situated in the physical world,
perceive their environments through sensors, and manipulate their environment
through things that move.19

19 S. Thrun, “Probabilistic Robot-
ics,” Communications of the ACM,
vol. 45, no. 3, pp. 52–57, 2002.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

1.4. history 11

To design these systems, engineers must address perception, planning, and acting.
Physical systems perceive the world by using their sensors to create a representa-
tion of the salient features of their environment. The field of state estimation has
focused on using sensor measurements to construct a belief about the state of the
world. Planning requires reasoning about the ways to execute the tasks they are
designed to perform. The planning process has been enabled by advances in the
semiconductor industry spanning many decades.20 Once a plan has been devised, 20 G.E. Moore, “Cramming More

Components onto Integrated Cir-
cuits,” Electronics, vol. 38, no. 8,
pp. 114–117, 1965.

an autonomous agent must act on it in the real world. This task requires both
hardware (in the form of actuators) and algorithms to control the actuators and
reject disturbances. The field of control theory has focused on the stabilization
of mechanical systems through feedback control.21 Automatic control systems 21 D.A. Mindell, Between Human

and Machine: Feedback, Control, and
Computing Before Cybernetics. JHU
Press, 2002.

are widely used in industry, from the regulation of temperature in an oven to the
navigation of aerospace systems.

1.4.6 Mathematics
An agent must be able to quantify its uncertainty to make informed decisions in
uncertain environments. The field of decisionmaking relies heavily on probability
theory for this task. In particular, Bayesian statistics plays an important role in this
text. In 1763, a paper of Thomas Bayes was published posthumously, containing
what would later be known as Bayes’ rule. His approach to probabilistic inference
fell in and out of favor until the mid-twentieth century, when researchers began to
find Bayesian methods useful in a number of settings.22 Mathematician Bernard 22 W.M. Bolstad and J.M. Curran,

Introduction to Bayesian Statistics.
Wiley, 2016.Koopman found practical use for the theory during World War II:

Every operation involved in search is beset with uncertainties; it can be understood
quantitatively only in terms of [...] probability. This may now be regarded as a truism,
but it seems to have taken the developments in operational research of the Second
World War to drive home its practical implications.23 23 B.O. Koopman, Search and Screen-

ing: General Principles withHistorical
Applications. Pergamon Press, 1980.Sampling-based methods (sometimes referred to as Monte Carlo methods) devel-

oped in the early twentieth century for large-scale calculations as part of the
Manhattan Project, made some inference techniques possible that would pre-
viously have been intractable. These foundations serve as a basis for Bayesian
networks, which increased in popularity later in the twentieth century in the field
of artificial intelligence.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

12 chapter 1. introduction

1.4.7 Operations Research
Operations research is concerned with finding optimal solutions to decision-making
problems such as resource allocation, asset investment, and maintenance schedul-
ing. In the late nineteenth century, researchers began to explore the application of
mathematical and scientific analysis to the production of goods and services. The
field was accelerated during the Industrial Revolution when companies began to
subdivide their management into departments responsible for distinct aspects of
overall decisions. During World War II, the optimization of decisions was applied
to allocating resources to an army. Once the war came to an end, businesses began
to notice that the same operations research concepts previously used to make
military decisions could help them optimize business decisions. This realization
led to the development of management science, as described by the organizational
theorist Harold Koontz:

The abiding belief of this group is that, if management, or organization, or planning,
or decision making is a logical process, it can be expressed in terms of mathematical
symbols and relationships. The central approach of this school is the model, for it is
through these devices that the problem is expressed in its basic relationships and in
terms of selected goals or objectives.24 24 H. Koontz, “The Management

Theory Jungle,”Academy ofManage-
ment Journal, vol. 4, no. 3, pp. 174–
188, 1961.

This desire to be able to better model and understand business decisions sparked
the development of a number of concepts used today, such as linear programming,
dynamic programming, and queuing theory.25 25 F. S. Hillier, Introduction to Opera-

tions Research. McGraw-Hill, 2012.

1.5 Societal Impact

Algorithmic approaches to decision making have transformed society and will
likely continue to in the future. This section briefly highlights a few ways that
decision-making algorithms can contribute to society and introduces challenges
that remain when attempting to ensure a broad benefit.26 26 A much more thorough discus-

sion is provided by Z.R. Shi, C.
Wang, and F. Fang, “Artificial Intel-
ligence for Social Good: A Survey,”
2020. arXiv: 2001.01818v1.

Algorithmic approaches have contributed to environmental sustainability. In
the context of energy management, for example, Bayesian optimization has been
applied to automated home energy management systems. Algorithms from the
field ofmultiagent systems are used to predict the operation of smart grids, design
markets for trading energy, and predict rooftop solar-power adoption. Algorithms
have also been developed to protect biodiversity. For example, neural networks
are used to automate wildlife censuses, game-theoretic approaches are used to

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/2001.01818v1

1.5. societal impact 13

combat poaching in forests, and optimization techniques are employed to allocate
resources for habitat management.

Decision-making algorithms have found success in the field of medicine for
decades. Such algorithms have been used for matching residents to hospitals
and organ donors to patients in need. An early application of Bayesian networks,
which we will cover in the first part of this book, was disease diagnosis. Since
then, Bayesian networks have been widely used in medicine for the diagnosis and
prognosis of diseases. The field ofmedical image processing has been transformed
by deep learning, and algorithmic ideas have recently played an important role
in understanding the spread of disease.

Algorithms have enabled us to understand the growth of urban areas and
facilitate their design. Data-driven algorithms have been widely used to improve
public infrastructure. For example, stochastic processes have been used to predict
failures in water pipelines, deep learning has improved traffic management,
and Markov decision processes and Monte Carlo methods have been employed
to improve emergency response. Ideas from decentralized multiagent systems
have optimized travel routes, and path-planning techniques have been used to
optimize the delivery of goods. Decision-making algorithms have been used for
autonomous cars and improving aircraft safety.

Algorithms for optimizing decisions can amplify the impact of its users, regard-
less of their intention. If the objective of the user of these algorithms, for example,
is to spread misinformation during a political election, then optimization pro-
cesses can help facilitate this. However, similar algorithms can be used to monitor
and counteract the spread of false information. Sometimes the implementation
of these decision-making algorithms can lead to downstream consequences that
their users did not intend.27 27 For a general discussion, see B.

Christian, The Alignment Problem.
Norton & Company, 2020. See also
the discussion by D. Amodei, C.
Olah, J. Steinhardt, P. Christiano,
J. Schulman, and D. Mané, “Con-
crete Problems in AI Safety,” 2016.
arXiv: 1606.06565v2.

Although algorithms have the potential to bring significant benefits, there
are also challenges associated with their implementation in society. Data-driven
algorithms often suffer from inherent biases and blind spots due to the way that
data is collected. As algorithms become part of our lives, it is important to under-
stand how the risk of bias can be reduced and how the benefits of algorithmic
progress can be distributed in a manner that is equitable and fair. Algorithms can
also be vulnerable to adversarial manipulation, and it is critical that we design
algorithms that are robust to such attacks. It is also important to extend moral
and legal frameworks for preventing unintended consequences and assigning
responsibility.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1606.06565v2

14 chapter 1. introduction

1.6 Overview

This book is divided into five parts. The first part addresses the problem of
reasoning about uncertainty and objectives in simple decisions at a single point
in time. The second extends decision making to sequential problems, where we
must make a sequence of decisions in response to information about the outcomes
of our actions as we proceed. The third addresses model uncertainty, where we
do not start with a known model and must learn how to act through interaction
with the environment. The fourth addresses state uncertainty, where imperfect
perceptual information prevents us from knowing the full environmental state.
The final part discusses decision contexts involving multiple agents.

1.6.1 Probabilistic Reasoning
Rational decisionmaking requires reasoning about our uncertainty and objectives.
This part of the book begins by discussing how to represent uncertainty as a prob-
ability distribution. Real-world problems require reasoning about distributions
over many variables. We will discuss how to construct these models, how to use
them to make inferences, and how to learn their parameters and structure from
data. We then introduce the foundations of utility theory and show how it forms
the basis for rational decision making under uncertainty through the maximum
expected utility principle. We then discuss how notions of utility theory can be
incorporated into the probabilistic graphical models introduced earlier in this
chapter to form what are called decision networks.

1.6.2 Sequential Problems
Many important problems require that we make a series of decisions. The same
principle of maximum expected utility still applies, but optimal decision making
in a sequential context requires reasoning about future sequences of actions and
observations. This part of the book will discuss sequential decision problems in
stochastic environments, where the outcomes of our actions are uncertain. We
will focus on a general formulation of sequential decision problems under the
assumption that the model is known and that the environment is fully observable.
We will relax both of these assumptions later in the book. Our discussion will
begin with the introduction of the Markov decision process (MDP), the standard

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

1.6. overview 15

mathematical model for sequential decision problems. We will discuss several
approaches for finding exact solutions to these types of problems. Because large
problems sometimes do not permit exact solutions to be found efficiently, we will
discuss a collection of both offline and online approximate solutionmethods, along
with a type of method that involves directly searching the space of parameterized
decision policies. Finally, we will discuss approaches for validating that our
decision strategies will perform as expected when deployed in the real world.

1.6.3 Model Uncertainty
In our discussion of sequential decision problems up to this point, we have
assumed that the transition and reward models are known. In many problems,
however, the dynamics and rewards are not known exactly, and the agent must
learn to act through experience. By observing the outcomes of its actions in the
form of state transitions and rewards, the agent is to choose actions that maximize
its long-term accumulation of rewards. Solving such problems in which there
is model uncertainty is the subject of the field of reinforcement learning and the
focus of this part of the book. We will discuss several challenges in addressing
model uncertainty. First, the agent must carefully balance the exploration of the
environment with the exploitation of knowledge gained through experience.
Second, rewards may be received long after the important decisions have been
made, so credit for later rewards must be assigned to earlier decisions. Third, the
agent must generalize from limited experience. We will review the theory and
some of the key algorithms for addressing these challenges.

1.6.4 State Uncertainty
In this part, we extend uncertainty to include the state. Instead of observing the
state exactly, we receive observations that have only a probabilistic relationship
with the state. Such problems can be modeled as a partially observable Markov
decision process (POMDP). A common approach to solving POMDPs involves
inferring a belief distribution over the underlying state at the current time step and
then applying a policy that maps beliefs to actions. This part begins by discussing
how to update our belief distribution, given a past sequence of observations and
actions. It then discusses a variety of exact and approximate methods for solving
POMDPs.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

16 chapter 1. introduction

1.6.5 Multiagent Systems
Up to this point, there has only been one agent making decisions within the envi-
ronment. This part expands the previous four parts to multiple agents, discussing
the challenges that arise from interaction uncertainty. We begin by discussing
simple games, where a group of agents simultaneously each select an action.
The result is an individual reward for each agent based on the combined joint
action. The Markov game (MG) represents a generalization of both simple games
to multiple states and the MDP to multiple agents. Consequently, the agents
select actions that can stochastically change the state of a shared environment.
Algorithms for MGs rely on reinforcement learning due to uncertainty about
the policies of the other agents. A partially observable Markov game (POMG) intro-
duces state uncertainty, further generalizing MGs and POMDPs, as agents now
receive only noisy local observations. The decentralized partially observable Markov
decision process (Dec-POMDP) focuses the POMG on a collaborative, multiagent
team where there is a shared reward among the agents. This part of the book
presents these four categories of problems and discusses exact and approximate
algorithms that solve them.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

part i
probabilistic reasoning

Rational decision making requires reasoning about our uncertainty and objec-
tives. Uncertainty arises from practical and theoretical limitations on our ability to
predict future events. For example, predicting exactly how a human operator will
respond to advice from a decision support system would require, among other
things, a detailed model of how the human brain works. Even the paths of satel-
lites can be difficult to predict. AlthoughNewtonian physics permit highly precise
predictions of satellite trajectories, spontaneous failures in attitude thrusters can
result in large deviations from the nominal path, and even small imprecisions can
compound over time. To achieve its objectives, a robust decision-making system
must account for various sources of uncertainty in the current state of the world
and future events. This part of the book begins by discussing how to represent un-
certainty using probability distributions. Real-world problems require reasoning
about distributions over many variables. We will discuss how to construct these
models, use them to make inferences, and learn their parameters and structure
from data. We then introduce the foundations of utility theory and show how it
forms the basis for rational decision making under uncertainty. Utility theory can
be incorporated into the probabilistic graphical models introduced earlier to form
what are called decision networks. We focus on single-step decisions, reserving
discussion of sequential decision problems for the next part of the book.

2 Representation

Computationally accounting for uncertainty requires a formal representation.
This chapter discusses how to represent uncertainty.1 We begin by introducing

1 A detailed discussion of a vari-
ety of approaches to representing
uncertainty is provided by F. Cuz-
zolin, The Geometry of Uncertainty.
Springer, 2021.

the notion of degree of belief and show how a set of axioms results in our ability
to use probability distributions to quantify our uncertainty.2 We discuss several

2 For a more comprehensive elabo-
ration, see E. T. Jaynes, Probability
Theory: The Logic of Science. Cam-
bridge University Press, 2003.

useful forms of distributions over both discrete and continuous variables. Because
many important problems involve probability distributions over a large number
of variables, we discuss a way to represent joint distributions efficiently that takes
advantage of conditional independence between variables.

2.1 Degrees of Belief and Probability

In problems involving uncertainty, it is essential to be able to compare the plausi-
bility of different statements. We would like to be able to represent, for example,
that proposition A is more plausible than proposition B. If A represents ‘‘my
actuator failed,’’ and B represents ‘‘my sensor failed,’’ thenwewouldwrite A ≻ B.
Using this basic relation ≻, we can define several other relations:

A ≺ B if and only if B ≻ A (2.1)
A ∼ B if and only if neither A ≻ B nor B ≻ A (2.2)
A � B if and only if A ≻ B or A ∼ B (2.3)
A � B if and only if B ≻ A or A ∼ B (2.4)

We want to make certain assumptions about the relationships induced by
the operators ≻, ∼, and ≺. The assumption of universal comparability requires
exactly one of the following to hold: A ≻ B, A ∼ B, or A ≺ B. The assumption of
transitivity requires that if A � B and B � C, then A � C. Universal comparability

20 chapter 2. representation

and transitivity assumptions lead to an ability to represent plausibility by a real-
valued function P that has the following two properties:3 3 See discussion in E. T. Jaynes,

Probability Theory: The Logic of Sci-
ence. Cambridge University Press,
2003.

P(A) > P(B) if and only if A ≻ B (2.5)
P(A) = P(B) if and only if A ∼ B (2.6)

If we make a set of additional assumptions4 about the form of P, then we can 4 The axiomatization of subjective
probability is given by P.C. Fish-
burn, “The Axioms of Subjec-
tive Probability,” Statistical Science,
vol. 1, no. 3, pp. 335–345, 1986.
A more recent axiomatization is
contained in M. J. Dupré and F. J.
Tipler, “New Axioms for Rigor-
ous Bayesian Probability,” Bayesian
Analysis, vol. 4, no. 3, pp. 599–606,
2009.

show that P must satisfy the basic axioms of probability (see appendix A.2). If we
are certain of A, then P(A) = 1. If we believe that A is impossible, then P(A) = 0.
Uncertainty in the truth of A is represented by values between the two extrema.
Hence, probability masses must lie between 0 and 1, with 0 ≤ P(A) ≤ 1.

2.2 Probability Distributions

A probability distribution assigns probabilities to different outcomes.5 There are 5 For an introduction to probability
theory, see D. P. Bertsekas and J.N.
Tsitsiklis, Introduction to Probability.
Athena Scientific, 2002.

different ways to represent probability distributions depending on whether they
involve discrete or continuous outcomes.

2.2.1 Discrete Probability Distributions

1 2 3 4 5 6

0.1

0.2

0.3

x
P
(x
)

Figure 2.1. A probability mass
function for a distribution over
1 : 6.

A discrete probability distribution is a distribution over a discrete set of values. We
can represent such a distribution as a probability mass function, which assigns
a probability to every possible assignment of its input variable to a value. For
example, suppose that we have a variable X that can take on one of n values:
1, . . . , n, or, using colon notation, 1 : n.6 Adistribution associatedwith X specifies the

6 We will often use this colon nota-
tion for compactness. Other texts
sometimes use the notation [1 . . n]
for integer intervals from 1 to n.
We will also use this colon nota-
tion to index into vectors and ma-
trices. For example x1:n represents
x1, . . . , xn. The colon notation is
sometimes used in programming
languages, such as Julia and MAT-
LAB.

n probabilities of the various assignments of values to that variable, in particular
P(X = 1), . . . , P(X = n). Figure 2.1 shows an example of a discrete distribution.

There are constraints on the probability masses associated with discrete distri-
butions. The masses must sum to 1:

n

∑
i=1

P(X = i) = 1 (2.7)

and 0 ≤ P(X = i) ≤ 1 for all i.
For notational convenience, we will use lowercase letters and superscripts as

shorthand when discussing the assignment of values to variables. For example,
P(x3) is shorthand for P(X = 3). If X is a binary variable, it can take on the value of
true or false.7 Wewill use 0 to represent false and 1 to represent true. For example, 7 Julia, like many other program-

ming languages, similarly treats
Boolean values as 0 and 1 in nu-
merical operations.

we use P(x0) to represent the probability that X is false.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

2.2. probability distributions 21

The parameters of a distribution govern the probabilities associated with differ-
ent assignments. For example, if we use X to represent the outcome of a roll of
a six-sided die, then we would have P(x1) = θ1, . . . , P(x6) = θ6, with θ1:6 being
the six parameters of the distribution. However, we need only five independent pa-
rameters to uniquely specify the distribution over the outcomes of the roll because
we know that the distribution must sum to 1.

2.2.2 Continuous Probability Distributions

dx

x

p
(x
)

Figure 2.2. Probability density
functions are used to represent con-
tinuous probability distributions.
If p(x) is a probability density, then
p(x)dx indicated by the area of the
blue rectangle is the probability
that a sample from the random
variable falls within the interval
(x, x + dx) as dx → 0.

A continuous probability distribution is a distribution over a continuous set of values.
Representing a distribution over a continuous variable is a little less straightfor-
ward than for a discrete variable. For instance, in many continuous distributions,
the probability that a variable takes on a particular value is infinitesimally small.
One way to represent a continuous probability distribution is to use a probability
density function (see figure 2.2), represented with lowercase letters. If p(x) is a
probability density function over X, then p(x)dx is the probability that X falls
within the interval (x, x + dx) as dx → 0. Similar to how the probability masses as-
sociated with a discrete distribution must sum to 1, a probability density function
p(x) must integrate to 1:

∫ ∞

−∞
p(x)dx = 1 (2.8)

−2 0 2

0

0.5

1

x

p(x)

cdfX(x)

Figure 2.3. The probability density
function and cumulative distribu-
tion function for a standard Gaus-
sian distribution.

Another way to represent a continuous distribution is with a cumulative distri-
bution function (see figure 2.3), which specifies the probability mass associated
with values below some threshold. If we have a cumulative distribution function
P associated with variable X, then P(x) represents the probability mass associ-
ated with X taking on a value less than or equal to x. A cumulative distribution
function can be defined in terms of a probability density function p as follows:

cdfX(x) = P(X ≤ x) =
∫ x

−∞
p(x′)dx′ (2.9)

Related to the cumulative distribution function is the quantile function, also
called the inverse cumulative distribution function (see figure 2.4). The value of
quantileX(α) is the value x such that P(X ≤ x) = α. In other words, the quantile
function returns the minimum value of x whose cumulative distribution value is
greater than or equal to α. Of course, we have 0 ≤ α ≤ 1.

0 0.5 1

−2

0

2

α

qu
an

til
e X

(α
)

Figure 2.4. The quantile function
for a standard Gaussian distribu-
tion.

There are many different parameterized families of distributions. We outline
several in appendix B. A simple distribution family is the uniform distribution

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

22 chapter 2. representation

U (a, b), which assigns probability density uniformly between a and b, and zero
elsewhere. Hence, the probability density function is p(x) = 1/(b− a) for x in
the interval [a, b]. We can use U (x | a, b) to represent the density at x.8 The support 8 Some texts use a semicolon to sep-

arate the parameters of the distri-
bution. For example, one can also
write U (x; a, b).

of a distribution is the set of values that are assigned nonzero density. In the case
of U (a, b), the support is the interval [a, b]. See example 2.1.

The uniform distribution U (0, 10) assigns equal probability to all values in
the range [0, 10] with a probability density function:

U (x | 0, 10) =

1/10 if 0 ≤ x ≤ 10

0 otherwise
(2.10)

The probability that a random sample from this distribution is equal to
the constant π is essentially zero. However, we can define nonzero probabili-
ties for samples being within some interval, such as [3, 5]. For example, the
probability that a sample lies between 3 and 5 given the distribution plotted
here is:

∫ 5

3
U (x | 0, 10)dx =

5− 3

10
=

1

5
(2.11)

The support of this distribution is the interval [0, 10].

−15 −10 −5 0 5 10 15

0

0.1

x

U(
x
|0

,1
0
)

Example 2.1. An example of a
uniform distribution with a lower
bound of 0 and an upper bound of
10.

Another common distribution for continuous variables is the Gaussian distribu-
tion (also called the normal distribution). The Gaussian distribution is parameter-
ized by a mean µ and variance σ2:

p(x) = N (x | µ, σ2) (2.12)

Here, σ is the standard deviation, which is the square root of the variance. The
variance is also commonly denoted by ν. We use N (µ, σ2) to represent a Gaus-

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

2.2. probability distributions 23

sian distribution with parameters µ and σ2 and N (x | µ, σ2) to represent the
probability density at x, as given by

N (x | µ, σ2) =
1

σ
φ

(

x− µ

σ

)

(2.13)

where φ is the standard normal density function:

φ(x) =
1√
2π

exp

(

− x2

2

)

(2.14)

Appendix B shows plots of Gaussian density functions with different parameters.
Although a Gaussian distribution is often convenient because it is defined by

only two parameters and makes computation and derivation easy, it has some
limitations. It assigns nonzero probability to large positive and negative values,
whichmaynot be appropriate for the quantitywe are trying tomodel. For example,
we might not want to assign nonzero probabilities for aircraft flying below the
ground or at infeasible altitudes. We can use a truncated Gaussian distribution (see
figure 2.5) to bound the support of possible values; that is, the range of values
assigned nonzero probabilities. The density function is given by

N (x | µ, σ2, a, b) =

1
σ φ
(

x−µ
σ

)

Φ
(

b−µ
σ

)

−Φ
(

a−µ
σ

) (2.15)

when x is within the interval (a, b).

−2 0 2

0

0.2

0.4

x

pr
ob

ab
ili
ty

de
ns

ity

full
truncated

Figure 2.5. The probability density
functions for a unit Gaussian distri-
bution and the same distribution
truncated between −1 and 2.

The function Φ is the standard normal cumulative distribution function, as given
by

Φ(x) =
∫ x

−∞
φ(x′)dx′ (2.16)

The Gaussian distribution is unimodal, meaning that there is a point in the
distribution at which the density increases on one side and decreases on the
other side. There are different ways to represent continuous distributions that
are multimodal. One way is to use a mixture model, which is a mixture of multiple
distributions. We mix together a collection of unimodal distributions to obtain
a multimodal distribution. A Gaussian mixture model is a mixture model that is
simply a weighted average of various Gaussian distributions. The parameters of
a Gaussian mixture model include the parameters of the Gaussian distribution
components µ1:n, σ2

1:n, as well as their weights ρ1:n. The density is given by

p(x | µ1:n, σ2
1:n, ρ1:n) =

n

∑
i=1

ρiN (x | µi, σ2
i) (2.17)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

24 chapter 2. representation

where the weights must sum to 1. Example 2.2 shows a Gaussian mixture model
with two components.

We can create a Gaussian mixture model with components µ1 = 5, σ1 = 2

and µ2 = −5, σ2 = 4, weighted according to ρ1 = 0.6 and ρ2 = 0.4. Here we
plot the density of two components scaled by their weights:

−10 −5 0 5 10
0.00

0.05

0.10

x

p
(x
)

scaled components
mixture density

Example 2.2. An example of a
Gaussian mixture model.

Another approach to representing multimodal continuous distributions is
through discretization. For example, we can represent a distribution over a con-
tinuous variable as a piecewise-uniform density. The density is specified by the
bin edges, and a probability mass is associated with each bin. Such a piecewise-
uniform distribution is a type of mixture model where the components are uni-
form distributions.

2.3 Joint Distributions

A joint distribution is a probability distribution over multiple variables. A distribu-
tion over a single variable is called a univariate distribution, and a distribution over
multiple variables is called amultivariate distribution. If we have a joint distribution
over two discrete variables X and Y, then P(x, y) denotes the probability that
both X = x and Y = y.

From a joint distribution, we can compute a marginal distribution of a variable
or a set of variables by summing out all other variables using what is known as
the law of total probability:9 9 If our distribution is continuous,

thenwe integrate out the other vari-
ables when marginalizing. For ex-
ample:

p(x) =
∫

p(x, y)dy

P(x) = ∑
y

P(x, y) (2.18)

This property is used throughout this book.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

2.3. joint distributions 25

Real-world decision making often requires reasoning about joint distributions
involving many variables. Sometimes there are complex relationships between
the variables that are important to represent. We may use different strategies to
represent joint distributions depending on whether the variables involve discrete
or continuous values.

2.3.1 Discrete Joint Distributions
If the variables are discrete, the joint distribution can be represented by a table like
the one shown in table 2.1. That table lists all the possible assignments of values
to three binary variables. Each variable can only be 0 or 1, resulting in 23 = 8

possible assignments. As with other discrete distributions, the probabilities in
the table must sum to 1. It follows that although there are eight entries in the
table, only seven of them are independent. If θi represents the probability in the
ith row in the table, then we only need the parameters θ1, . . . , θ7 to represent the
distribution because we know that θ8 = 1− (θ1 + . . . + θ7).

Table 2.1. Example of a joint distri-
bution involving binary variables
X, Y, and Z.

X Y Z P(X, Y, Z)

0 0 0 0.08
0 0 1 0.31
0 1 0 0.09
0 1 1 0.37
1 0 0 0.01
1 0 1 0.05
1 1 0 0.02
1 1 1 0.07

If we have n binary variables, then we need as many as 2n − 1 independent
parameters to specify the joint distribution. This exponential growth in the num-
ber of parameters makes storing the distribution in memory difficult. In some
cases, we can assume that our variables are independent, which means that the
realization of one does not affect the probability distribution of the other. If X

and Y are independent, which is sometimes written as X⊥Y, then we know that
P(x, y) = P(x)P(y) for all x and y. Suppose we have binary variables X1, . . . , Xn

that are all independent of each other, resulting in P(x1:n) = ∏i P(xi). This fac-
torization allows us to represent this joint distribution with only n independent
parameters instead of the 2n − 1 required when we cannot assume independence
(see table 2.2). Independence can result in an enormous savings in terms of
representational complexity, but it is often a poor assumption.

Table 2.2. If we know the variables
in table 2.1 are independent,we can
represent P(x, y, z) using the prod-
uct P(x)P(y)P(z). This representa-
tion requires only one parameter
for each of the three univariate dis-
tributions.

X P(X)

0 0.85
1 0.15

Y P(Y)

0 0.45
1 0.55

Z P(Z)

0 0.20
1 0.80

We can represent joint distributions in terms of factors. A factor φ over a set of
variables is a function from assignments of those variables to the real numbers. In
order to represent a probability distribution, the real numbers in the factor must
be nonnegative. A factor with nonnegative values can be normalized such that it
represents a probability distribution. Algorithm 2.1 provides an implementation
for discrete factors, and example 2.3 demonstrates how they work.

Another approach to reduce the storage required to represent joint distributions
with repeated values is to use a decision tree. A decision tree involving three discrete

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

26 chapter 2. representation

struct Variable
name::Symbol
r::Int # number of possible values

end

const Assignment = Dict{Symbol,Int}
const FactorTable = Dict{Assignment,Float64}

struct Factor
vars::Vector{Variable}
table::FactorTable

end

variablenames(ϕ::Factor) = [var.name for var in ϕ.vars]

select(a::Assignment, varnames::Vector{Symbol}) =
Assignment(n=>a[n] for n in varnames)

function assignments(vars::AbstractVector{Variable})
names = [var.name for var in vars]
return vec([Assignment(n=>v for (n,v) in zip(names, values))

for values in product((1:v.r for v in vars)...)])
end

function normalize!(ϕ::Factor)
z = sum(p for (a,p) in ϕ.table)
for (a,p) in ϕ.table

ϕ.table[a] = p/z
end
return ϕ

end

Algorithm 2.1. Types and func-
tions relevant to working with fac-
tors over a set of discrete variables.
A variable is given a name (repre-
sented as a symbol) and may take
on an integer from 1 to m. An as-
signment is a mapping from vari-
able names to values represented
as integers. A factor is defined by
a factor table, which assigns val-
ues to different assignments in-
volving a set of variables and is
a mapping from assignments to
real values. This mapping is repre-
sented by a dictionary. Any assign-
ments not contained in the dictio-
nary are set to 0. Also included in
this algorithm block are some util-
ity functions for returning the vari-
able names associatedwith a factor,
selecting a subset of an assignment,
enumerating possible assignments,
and normalizing factors. As dis-
cussed in appendix G.3.3, product
produces the Cartesian product of
a set of collections. It is imported
from Base.Iterators.

We can instantiate the table from table 2.1 using the Factor type using the
following code:
requires convenience functions from appendix G.5
X = Variable(:x, 2)
Y = Variable(:y, 2)
Z = Variable(:z, 2)
ϕ = Factor([X, Y, Z], FactorTable(

(x=1, y=1, z=1) => 0.08, (x=1, y=1, z=2) => 0.31,
(x=1, y=2, z=1) => 0.09, (x=1, y=2, z=2) => 0.37,
(x=2, y=1, z=1) => 0.01, (x=2, y=1, z=2) => 0.05,
(x=2, y=2, z=1) => 0.02, (x=2, y=2, z=2) => 0.07,

))

Example 2.3. Constructing a dis-
crete factor. The construction of the
factor table using named tuples takes
advantage of the utility functions de-
fined in appendix G.5.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

2.3. joint distributions 27

variables is shown in example 2.4. Although the savings in this example in terms of
the number of parameters may not be significant, it can become quite substantial
when there are many variables and many repeated values.

Suppose we have the following table representing a joint probability dis-
tribution. We can use the decision tree to the right of it to more compactly
represent the values in the table. Red arrows are followed when a variable is
0, and blue arrows are followed when a variable is 1. Instead of storing eight
probabilities, we store only five, along with a representation of the tree.

X Y Z P(X, Y, Z)

0 0 0 0.01
0 0 1 0.01
0 1 0 0.50
0 1 1 0.38
1 0 0 0.02
1 0 1 0.03
1 1 0 0.02
1 1 1 0.03

X

Y Z

0.01 Z 0.02 0.03

0.50 0.38

Example 2.4. A decision tree can
be a more efficient representation
of a joint distribution than a table.

2.3.2 Continuous Joint Distributions
We can also define joint distributions over continuous variables. A rather simple
distribution is the multivariate uniform distribution, which assigns a constant prob-
ability density everywhere there is support. We can use U (a, b) to represent a
uniform distribution over a box, which is a Cartesian product of intervals, with
the ith interval being [ai, bi]. This family of uniform distributions is a special type
of multivariate product distribution, which is a distribution defined in terms of the
product of univariate distributions. In this case,

U (x | a, b) = ∏
i

U (xi | ai, bi) (2.19)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

28 chapter 2. representation

We can create a mixture model from a weighted collection of multivariate
uniform distributions, just as we can with univariate distributions. If we have a
joint distribution over n variables and k mixture components, we need to define
k(2n + 1)− 1 independent parameters. For each of the k components, we need
to define the upper and lower bounds for each of the variables as well as their
weights. We can subtract 1 because the weights must sum to 1. Figure 2.6 shows
an example that can be represented by five components.

−10−5 0 5 10
−10

−5

0

5

10

x1

x
2

0.000

0.001

0.002

0.003

Figure 2.6. A density function for
a mixture of multivariate uniform
distributions.

It is also common to represent piecewise constant density functions by dis-
cretizing each of the variables independently. The discretization is represented
by a set of bin edges for each variable. These bin edges define a grid over the
variables. We then associate a constant probability density with each grid cell.
The bin edges do not have to be uniformly separated. In some cases, it may be
desirable to have increased resolution around certain values. Different variables
might have different bin edges associated with them. If there are n variables and
m bins for each variable, then we need mn − 1 independent parameters to define
the distribution—in addition to the values that define the bin edges.

In some cases, it may be more memory efficient to represent a continuous
joint distribution as a decision tree in a manner similar to what we discussed
for discrete joint distributions. The internal nodes compare variables against
thresholds and the leaf nodes are density values. Figure 2.7 shows a decision tree
that represents the density function in figure 2.6.

x1 < −5

x2 < 0 0.003

x1 < 0 0.0027

x2 < 5 0.003

0.0002 0.0027

Figure 2.7. An example of a de-
cision tree that represents a piece-
wise constant joint probability den-
sity defined over x1 and x2 over the
interval [−10, 10]2.

Another useful distribution is the multivariate Gaussian distribution with the
density function

N (x | µ, Σ) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(x− µ)⊤Σ

−1(x− µ)
)

(2.20)

where x is in R
n, µ is the mean vector, and Σ is the covariance matrix. The density

function given here requires that Σ be positive definite.10 The number of indepen-

10 This definition is reviewed in ap-
pendix A.5.

dent parameters is equal to n+ (n+ 1)n/2, the number of components in µ added
to the number of components in the upper triangle of matrix Σ.11 Appendix B

11 If we know the parameters in the
upper triangle of Σ, we know the
parameters in the lower triangle as
well, because Σ is symmetric.

shows plots of different multivariate Gaussian density functions. We can also
define multivariate Gaussian mixture models. Figure 2.8 shows an example of one
with three components.

If we have a multivariate Gaussian with all the variables independent, then
the covariance matrix Σ is diagonal with only n independent parameters. In fact,

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

2.4. conditional distributions 29

−10 0 10
−10

0

10

x1

x
2

µ = [0, 0], Σ = [1 0; 0 1]

−10 0 10

x1

µ = [0, 5], Σ = [3 0; 0 3]

−10 0 10

x1

µ = [3, 3], Σ = [4 2; 2 4]

−10 0 10

x1

mixture

0.00

0.02

0.04

Figure 2.8. Multivariate Gaussian
mixture model with three compo-
nents. The components are mixed
together with the weights 0.1, 0.5,
and 0.4, respectively.

we can write the density function as a product of univariate Gaussian densities:

N (x | µ, Σ) = ∏
i

N (xi | µi, Σii) (2.21)

2.4 Conditional Distributions

The previous section introduced the idea of independence, which can help reduce
the number of parameters used to define a joint distribution. However, as was
mentioned, independence can be too strong of an assumption. This section will
introduce the idea of conditional independence, which can help reduce the num-
ber of independent parameters without making assumptions that are as strong.
Before discussing conditional independence, we will first introduce the notion of
a conditional distribution, which is a distribution over a variable given the value of
one or more other ones.

The definition of conditional probability states that

P(x | y) =
P(x, y)

P(y)
(2.22)

where P(x | y) is read as ‘‘probability of x given y.’’ In some contexts, it is common
to refer to y as evidence.

Since a conditional probability distribution is a probability distribution over
one or more variables given some evidence, we know that

∑
x

P(x | y) = 1 (2.23)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

30 chapter 2. representation

for a discrete X. If X is continuous, it integrates to 1.
We can incorporate the definition of conditional probability into equation (2.18)

to obtain a slightly different form of the law of total probability:

P(x) = ∑
y

P(x | y)P(y) (2.24)

for a discrete distribution.
Another useful relationship that follows from the definition of conditional

probability is Bayes’ rule:12 12 Named for the English statis-
tician and Presbyterian minister
Thomas Bayes (c. 1701–1761) who
provided a formulation of this the-
orem. A history is provided by S. B.
McGrayne, The Theory That Would
Not Die. Yale University Press, 2011.

P(x | y) =
P(y | x)P(x)

P(y)
(2.25)

If we have a representation of a conditional distribution P(y | x), we can apply
Bayes’ rule to swap y and x to obtain the conditional distribution P(x | y).

We will now discuss a variety of ways to represent conditional probability
distributions over discrete and continuous variables.

2.4.1 Discrete Conditional Models
A conditional probability distribution over discrete variables can be represented
using a table. In fact, we can use the same discrete factor representation that
we used in section 2.3.1 for joint distributions. Table 2.3 shows an example of a
table representing P(X | Y, Z) with all binary variables. In contrast with a joint
table (e.g., table 2.1), the column containing the probabilities need not sum to
1. However, if we sum over the probabilities that are consistent with what we
are conditioning on, we must get 1. For example, conditioning on y0 and z0 (the
evidence), we have

P(x0 | y0, z0) + P(x1 | y0, z0) = 0.08 + 0.92 = 1 (2.26)

Table 2.3. An example of a condi-
tional distribution involving the bi-
nary variables X, Y, and Z.

X Y Z P(X | Y, Z)

0 0 0 0.08
0 0 1 0.15
0 1 0 0.05
0 1 1 0.10
1 0 0 0.92
1 0 1 0.85
1 1 0 0.95
1 1 1 0.90

Conditional probability tables can become quite large. If we were to create
a table like table 2.3, in which all variables can take on m values and we are
conditioning on n variables, there would be mn+1 rows. However, since the m

values of the variable we are not conditioning on must sum to 1, there are only
(m− 1)mn independent parameters. There is still an exponential growth in the
number of variables onwhichwe condition.When there aremany repeated values
in the conditional probability table, a decision tree (introduced in section 2.3.1)
may be a more efficient representation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

2.4. conditional distributions 31

2.4.2 Conditional Gaussian Models
A conditional Gaussian model can be used to represent a distribution over a con-
tinuous variable given one or more discrete variables. For example, if we have a
continuous variable X and a discrete variable Y with values 1 : n, we can define a
conditional Gaussian model as follows:13 13 This definition is for a mixture of

univariate Gaussians, but the con-
cept can be easily generalized to a
mixture of multidimensional Gaus-
sians.p(x | y) =

N (x | µ1, σ2
1) if y1

...
N (x | µn, σ2

n) if yn

(2.27)

with parameter vector θ = [µ1:n, σ1:n]. All 2n of those parameters can be varied
independently. If we want to condition on multiple discrete variables, we just
need to add more cases and associated parameters.

2.4.3 Linear Gaussian Models
The linear Gaussian model of P(X | Y) represents the distribution over a continu-
ous variable X as a Gaussian distribution with the mean being a linear function
of the value of the continuous variable Y. The conditional density function is

p(x | y) = N (x | my + b, σ2) (2.28)

with parameters θ = [m, b, σ]. The mean is a linear function of y defined by
parameters m and b. The variance is constant. Figure 2.9 shows an example.

−10 0 10

−10

0

10

x

y

0.00

0.01

0.02

0.03

Figure 2.9. A linear Gaussian
model with

p(x | y) = N (x | 2y + 1, 102)

2.4.4 Conditional Linear Gaussian Models
The conditional linear Gaussian model combines the ideas of conditional Gaussian
and linear Gaussian models to be able to condition a continuous variable on both
discrete and continuous variables. Suppose that we want to represent p(X | Y, Z),
where X and Y are continuous and Z is discrete with values 1 : n. The conditional
density function is then

p(x | y, z) =

N (x | m1y + b1, σ2
1) if z1

...
N (x | mny + bn, σ2

n) if zn

(2.29)

Here, the parameter vector θ = [m1:n, b1:n, σ1:n] has 3n components.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

32 chapter 2. representation

2.4.5 Sigmoid Models
We can use a sigmoid14 model to represent a distribution over a binary variable 14 A sigmoid is an S-shaped curve.

There are different ways to define
such a curve mathematically, but
we will focus on the logit model.

conditioned on a continuous variable. For example, we may want to represent
P(x1 | y), where x is binary and y is continuous. Of course, we could just set a
threshold θ and say that P(x1 | y) = 0 if y < θ, and P(x1 | y) = 1 otherwise.
However, in many applications, we may not want to have such a hard threshold
that results in assigning zero probability to x1 for certain values of y.

Instead of a hard threshold, we could use a soft threshold, which assigns low
probabilities when below a threshold and high probabilities when above a thresh-
old. One way to represent a soft threshold is to use a logit model, which produces
a sigmoid curve:

P(x1 | y) =
1

1 + exp
(

−2
y−θ1

θ2

) (2.30)

The parameter θ1 governs the location of the threshold, and θ2 controls the ‘‘soft-
ness’’ or spread of the probabilities. Figure 2.10 shows a plot of P(x1 | y) with a
logit model. −4 −2 0 2 4

0

0.5

1

y

P
(x

1
|y

)

θ2 = 1 θ2 = 2

θ2 = 3 θ2 = 10

Figure 2.10. The logit model with
θ1 = 0 and different values for θ2.

2.4.6 Deterministic Variables
Some problems may involve a deterministic variable, whose value is fixed given
evidence. In other words, we assign probability 1 to a value that is a determin-
istic function of its evidence. Using a conditional probability table to represent
a discrete deterministic variable is possible, but it is wasteful. A single variable
instantiation will have probability 1 for each parental instantiation, and the re-
maining entries will be 0. Our implementation can take advantage of this sparsity
for a more compact representation. Algorithms in this text using discrete factors
treat any assignments missing from the factor table as having value 0, making it
so that we have to store only the assignments that have nonzero probability.

2.5 Bayesian Networks

A Bayesian network can be used to represent a joint probability distribution.15 The

15 For an in-depth treatment of
Bayesian networks and other forms
of probabilistic graphical models,
see D. Koller and N. Friedman,
Probabilistic Graphical Models: Prin-
ciples and Techniques. MIT Press,
2009.

structure of a Bayesian network is defined by a directed acyclic graph consisting of
nodes and directed edges.16 Each node corresponds to a variable. Directed edges

16 Appendix A.16 reviews common
graph terminology.

connect pairs of nodes, with cycles in the graph being prohibited. The directed

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

2.5. bayesian networks 33

edges indicate direct probabilistic relationships.17 Associatedwith each node Xi is 17 In causal networks, the direction
of the edges indicate causal rela-
tionships between variables. How-
ever, causality is not required in
general Bayesian networks. J. Pearl,
Causality: Models, Reasoning, and In-
ference, 2nd ed. Cambridge Univer-
sity Press, 2009.

a conditional distribution P(Xi | Pa(Xi)), where Pa(Xi) represents the parents of
Xi in the graph. Algorithm 2.2 provides an implementation of a Bayesian network
data structure. Example 2.5 illustrates the application of Bayesian networks to a
satellite-monitoring problem.

struct BayesianNetwork
vars::Vector{Variable}
factors::Vector{Factor}
graph::SimpleDiGraph{Int64}

end

Algorithm 2.2. A discrete Bayesian
network representation in terms of
a set of variables, factors, and a
graph. The graph data structure is
provided by Graphs.jl.

The chain rule for Bayesian networks specifies how to construct a joint distribu-
tion from the local conditional probability distributions. Suppose that we have
the variables X1:n and want to compute the probability of a particular assignment
of all these variables to values P(x1:n). The chain rule says

P(x1:n) =
n

∏
i=1

P(xi | pa(xi)) (2.31)

where pa(xi) is the particular assignment of the parents of Xi to their values.
Algorithm2.3 provides an implementation for Bayesian networkswith conditional
probability distributions represented as discrete factors.

function probability(bn::BayesianNetwork, assignment)
subassignment(ϕ) = select(assignment, variablenames(ϕ))
probability(ϕ) = get(ϕ.table, subassignment(ϕ), 0.0)
return prod(probability(ϕ) for ϕ in bn.factors)

end

Algorithm 2.3. A function for
evaluating the probability of an
assignment given a Bayesian
network bn. For example, if bn is
as defined in example 2.5, then
a = (b=1,s=1,e=1,d=2,c=1)
probability(bn, Assignment(a))
returns 0.034228655999999996.In the satellite example, suppose we want to compute the probability that

nothing is wrong; that is, P(b0, s0, e0, d0, c0). From the chain rule,

P(b0, s0, e0, d0, c0) = P(b0)P(s0)P(e0 | b0, s0)P(d0 | e0)P(c0 | e0) (2.32)

Ifwe had fully specified a joint distribution over the five variables B, S, E, D, and
C, thenwewould have needed 25− 1 = 31 independent parameters. The structure
assumed in our Bayesian network allows us to specify the joint distribution using
only 1 + 1 + 4 + 2 + 2 = 10 independent parameters. The difference between

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

34 chapter 2. representation

In the margin is a Bayesian network for a satellite-monitoring problem involv-
ing five binary variables. Fortunately, battery failure and solar panel failures
are both rare, although solar panel failures are somewhat more likely than
battery failures. Failures in either can lead to electrical system failure. There
may be causes of electrical system failure other than battery or solar panel
failure, such as a problem with the power management unit. An electrical
system failure can result in trajectory deviation, which can be observed from
the Earth by telescope, as well as a communication loss that interrupts the
transmission of telemetry and mission data down to various ground stations.
Other anomalies not involving the electrical system can result in trajectory
deviation and communication loss.

Associated with each of the five variables are five conditional probability
distributions. Because B and S have no parents, we only need to specify P(B)

and P(S). The code here creates a Bayesian network structure with example
values for the elements of the associated factor tables. The tuples in the factor
tables index into the domains of the variables, which is {0, 1} for all the
variables. For example, (e=2,b=1,s=1) corresponds to (e1, b0, s0).
requires convenience functions from appendix G.5
B = Variable(:b, 2); S = Variable(:s, 2)
E = Variable(:e, 2)
D = Variable(:d, 2); C = Variable(:c, 2)
vars = [B, S, E, D, C]
factors = [

Factor([B], FactorTable((b=1,) => 0.99, (b=2,) => 0.01)),
Factor([S], FactorTable((s=1,) => 0.98, (s=2,) => 0.02)),
Factor([E,B,S], FactorTable(

(e=1,b=1,s=1) => 0.90, (e=1,b=1,s=2) => 0.04,
(e=1,b=2,s=1) => 0.05, (e=1,b=2,s=2) => 0.01,
(e=2,b=1,s=1) => 0.10, (e=2,b=1,s=2) => 0.96,
(e=2,b=2,s=1) => 0.95, (e=2,b=2,s=2) => 0.99)),

Factor([D, E], FactorTable(
(d=1,e=1) => 0.96, (d=1,e=2) => 0.03,
(d=2,e=1) => 0.04, (d=2,e=2) => 0.97)),

Factor([C, E], FactorTable(
(c=1,e=1) => 0.98, (c=1,e=2) => 0.01,
(c=2,e=1) => 0.02, (c=2,e=2) => 0.99))

]
graph = SimpleDiGraph(5)
add_edge!(graph, 1, 3); add_edge!(graph, 2, 3)
add_edge!(graph, 3, 4); add_edge!(graph, 3, 5)
bn = BayesianNetwork(vars, factors, graph)

Example 2.5. A Bayesian network
representing a satellite-monitoring
problem. Here is the structure of
the network represented as a di-
rected acyclic graph. Associated
with each node is a conditional
probability distribution.

B S

E

D C

P(B) P(S)

P(E | B, S)

P(D | E) P(C | E)

B battery failure
S solar panel failure
E electrical system failure
D trajectory deviation
C communication loss

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

2.6. conditional independence 35

10 and 31 does not represent an especially significant savings in the number of
parameters, but the savings can become enormous in larger Bayesian networks.
The power of Bayesian networks comes from their ability to reduce the number
of parameters required to specify a joint probability distribution.

2.6 Conditional Independence

The reason that a Bayesian network can represent a joint distribution with fewer
independent parameters than would normally be required is the conditional in-
dependence assumptions encoded in its graphical structure.18 Conditional inde- 18 If the conditional independence

assumptions made by the Bayesian
network are invalid, then we run
the risk of not properly modeling
the joint distribution, as will be dis-
cussed in chapter 5.

pendence is a generalization of the notion of independence introduced in sec-
tion 2.3.1. Variables X and Y are conditionally independent given Z if and only
if P(X, Y | Z) = P(X | Z)P(Y | Z). The assertion that X and Y are conditionally
independent given Z is written as (X⊥Y | Z). It is possible to show from this
definition that (X⊥Y | Z) if and only if P(X | Z) = P(X | Y, Z). Given Z, in-
formation about Y provides no additional information about X, and vice versa.
Example 2.6 shows an instance of this.

Suppose the presence of satellite trajectory deviation (D) is conditionally
independent of whether we have a communication loss (C) given knowledge
of whether we have an electrical system failure (E). We would write this
(D⊥C | E). If we know that we have an electrical system failure, then the
fact that we observe a loss of communication has no impact on our belief
that there is a trajectory deviation. We may have an elevated expectation
that there is a trajectory deviation, but that is only because we know that an
electrical system failure has occurred.

Example 2.6. Conditional indepen-
dence in the satellite-tracking prob-
lem.

We can use a set of rules to determine whether the structure of a Bayesian
network implies that two variables must be conditionally independent given a set
of other evidence variables.19 Suppose that we want to check whether (A⊥B | C) 19 Even if the structure of a network

does not imply conditional inde-
pendence, there may still be con-
ditional independence due to the
choice of conditional probability
distributions. See exercise 2.10.

is implied by the network structure, where C is a set of evidence variables.We have
to check all possible undirected paths from A to B for what is called d-separation.
A path between A and B is d-separated by C if any of the following is true:

1. The path contains a chain of nodes, X → Y → Z, such that Y is in C.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

36 chapter 2. representation

2. The path contains a fork, X ← Y → Z, such that Y is in C.

3. The path contains an inverted fork (also called a v-structure), X → Y ← Z, such
that Y is not in C and no descendant of Y is in C. Example 2.7 provides some
intuition for this rule.

We say that A and B are d-separated by C if all the paths between A and B

are d-separated by C. This d-separation implies that (A⊥B | C).20 Example 2.8
20 An algorithm for efficiently de-
termining d-separation is a bit com-
plicated. See algorithm 3.1 in D.
Koller and N. Friedman, Probabilis-
tic Graphical Models: Principles and
Techniques. MIT Press, 2009.

demonstrates this process for checking whether a graph implies a particular
conditional independence assumption.

If we have X → Y → Z (chain) or X ← Y → Z (fork) with evi-
dence at Y, then X and Z are conditionally independent, meaning that
P(X | Y, Z) = P(X | Y). Interestingly, if the directions of the arrows were
slightly different, with X → Y ← Z (inverted fork), then X and Z may no
longer be conditionally independent given Y. In other words, it may be the
case that P(B | E) 6= P(B | S, E). To provide some intuition, consider the
inverted fork path from battery failure B to solar panel failure S via electrical
system failure E. Suppose we know that we have an electrical failure. If we
know that we do not have a battery failure, then we are more inclined to
believe that we have a solar panel failure because it is an alternative cause of
the electrical failure. Conversely, if we found out that we do have a battery
failure, then our belief that we have a solar panel failure decreases. This effect
is referred to as explaining away. Observing a solar panel failure explains
away the cause of the electrical system failure.

Example 2.7. Intuition behind
conditional independence assump-
tions implied (and not implied) in
chains, forks, and inverted forks.

Sometimes the term Markov blanket21 of node X is used to refer to the minimal 21 Named after the Russian math-
ematician Andrey Andreyevich
Markov (1856–1922). J. Pearl, Prob-
abilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

set of nodes that, if their values were known, make X conditionally independent
of all other nodes. A Markov blanket of a particular node turns out to consist of
its parents, its children, and the other parents of its children.

2.7 Summary

• Representing uncertainty as a probability distribution is motivated by a set of
axioms related to the comparison of the plausibility of different statements.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

2.7. summary 37

Suppose thatwewant to determinewhether the network shown in themargin
implies that (D⊥B | F). There are two undirected paths from D to B. We
need to check both paths for d-separation.

The path D ← A → C ← B involves the fork D ← A → C, followed
by an inverted fork, A → C ← B. There is no evidence at A, so there is
no d-separation from the fork. Since F is a descendant of C, there is no d-
separation along the inverted fork. Hence, there is no d-separation along this
path.

The secondpath, D → E← C ← B, involves the inverted fork D → E← C

and a chain, E← C ← B. Since F is a descendant of E, there is no d-separation
along the inverted fork. Because there is no d-separation along the chain part
of this path either, there is no d-separation along this path from D to B.

For D and B to be conditionally independent given F, there must be d-
separation along all undirected paths from D to B. In this case, neither of the
two paths has d-separation. Hence, conditional independence is not implied
by the network structure.

Example 2.8. Conditional indepen-
dence assumptions implied by the
graphical structure below.

A

E

F

D C

B

• There are many families of both discrete and continuous probability distribu-
tions.

• Continuous probability distributions can be represented by density functions.

• Probability distribution families can be combined in mixtures to create more
flexible distributions.

• Joint distributions are distributions over multiple variables.

• Conditional distributions are distributions over one or more variables given
the values of evidence variables.

• A Bayesian network is defined by a graphical structure and a set of conditional
distributions.

• Depending on the structure of the Bayesian network, we can represent joint
distributions with fewer parameters due to conditional independence assump-
tions.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

38 chapter 2. representation

2.8 Exercises
Exercise 2.1. Consider a continuous random variable X that follows the exponential distri-
bution parameterized by λ with density p(x | λ) = λ exp(−λx) with nonnegative support.
Compute the cumulative distribution function of X.

Solution: We start with the definition of the cumulative distribution function. Since the
support of the distribution is lower-bounded by x = 0, there is no probability mass in
the interval (−∞, 0), allowing us to adjust the lower bound of the integral to 0. After
computing the integral, we obtain cdfX(x):

cdfX(x) =
∫ x

−∞
p(x′)dx′

cdfX(x) =
∫ x

0
λe−λx′ dx′

cdfX(x) = −e−λx′
∣

∣

∣

x

0

cdfX(x) = 1− e−λx

Exercise 2.2. For the density function in figure 2.6, what are the five components of the
mixture? (There are multiple valid solutions.)

Solution: One solution is U ([−10,−10], [−5, 10]), U ([−5, 0], [0, 10]), U ([−5,−10], [0, 0]),
U ([0,−10], [10, 5]), and U ([0, 5], [10, 10]).

Exercise 2.3. Given the following table representation of P(X, Y, Z), generate an equivalent
compact decision tree representation:

X Y Z P(X, Y, Z)

0 0 0 0.13
0 0 1 0.02
0 1 0 0.05
0 1 1 0.02
1 0 0 0.13
1 0 1 0.01
1 1 0 0.05
1 1 1 0.17
2 0 0 0.13
2 0 1 0.12
2 1 0 0.05
2 1 1 0.12

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

2.8. exercises 39

Solution:We start with the most common probabilities: 0.13, which occurs when Z = 0 and
Y = 0, and 0.05, which occurs when Z = 0 and Y = 1. We choose to make Z the root of
our decision tree, and when Z = 0, we continue to a Y node. Based on the value of Y, we
branch to either 0.13 or 0.05. Next, we continue with cases when Z = 1. The most common
probabilities are 0.02, which occurs when Z = 1 and X = 0, and 0.12, which occurs when
Z = 1 and X = 2. So, when Z = 1, we choose to continue to an X node. Based on the
whether X is 0, 1, or 2, we continue to 0.02, a Y node, or 0.12, respectively. Finally, based
on the value of Y, we branch to either 0.01 or 0.17.

Z

Y

0.13 0.05

X

0.02 Y

0.01 0.17

0.12

Exercise 2.4. Suppose that we want to specify a multivariate Gaussian mixture model with
three components defined over four variables. We require that two of the three Gaussian
distributions assume independence between the four variables, while the other Gaussian
distribution is defined without any independence assumptions. How many independent
parameters are required to specify this mixture model?

Solution: For a Gaussian distribution over four variables (n = 4) with independence
assumptions, we need to specify n + n = 2n = 8 independent parameters; there are four
parameters for the mean vector and four parameters for the covariance matrix (which is
equivalent to the mean and variance parameters of four independent univariate Gaussian
distributions). For a Gaussian distribution over four variables without independence
assumptions, we need to specify n + n(n + 1)/2 = 14 independent parameters; there are
4 parameters for the mean vector and 10 parameters for the covariance matrix. In addition,
for our three mixture components (k = 3), we need to specify k − 1 = 2 independent
parameters for the weights. Thus, we need 2(8) + 1(14) + 2 = 32 independent parameters
to specify this mixture distribution.

Exercise 2.5. We have three independent variables X1:3 defined by piecewise-constant
densities with 4, 7, and 3 bin edges, respectively. How many independent parameters are
required to specify their joint distribution?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

40 chapter 2. representation

Solution: If we have a piecewise-constant density with m bin edges, then there are m− 1

bins and m− 2 independent parameters. For this problem, there will be (4− 2) + (7−
2) + (3− 2) = 8 independent parameters.

Exercise 2.6. Suppose that we have four continuous random variables, X1, X2, Y1, and
Y2, and we want to construct a linear Gaussian model of X = X1:2 given Y = Y1:2; that is,
p(X | Y). How many independent parameters are required for this model?

Solution: In this case, our mean vector for the Gaussian distribution is two-dimensional
and requires four independent parameters for the transformation matrix M and two inde-
pendent parameters for the bias vector b. We also require three independent parameters
for the covariance matrix Σ. In total, we need 4 + 2 + 3 = 9 independent parameters to
specify this model:

p(x | y) = N (x |My + b, Σ)

Exercise 2.7. Given the following Bayesian network, in which each node can take on one of
four values, how many independent parameters are there? What is the percent reduction
in the number of independent parameters required when using the following Bayesian
network compared to using a full joint probability table?

D

F

E C

A

B

Solution: The number of independent parameters for each node is equal to (k− 1)km, where
k is the number of values that the node can take on and m is the number of parents that the
node has. Variable A has 3, B has 12, C has 48, D has 3, E has 12, and F has 48 independent
parameters. There are 126 total independent parameters for this Bayesian network.

The number of independent parameters required to specify a joint probability table
over n variables that can take on k values is equal to kn − 1. Therefore, specifying a joint
probability table would require 46 − 1 = 4096 − 1 = 4095 independent parameters.
The percent reduction in the number of independent parameters required is (4095 −
126)/4095 ≈ 96.9 %.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

2.8. exercises 41

Exercise 2.8. Given the following Bayesian network, is A d-separated from E, given C?

A

E

D C

B

Solution: There are two paths from A to E: A → D → E and A → C → E. There is
d-separation along the second path, but not the first. Hence, A is not d-separated from E

given C.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

42 chapter 2. representation

Exercise 2.9. Given the following Bayesian network, determine the Markov blanket of B:

A

B

C

D

E

F

G

H

Solution: Paths from B to A can only be d-separated given A. Paths from B to D can only be
d-separated given D. Paths from B to E, and simultaneously F, G, and H, can be efficiently
d-separated given E. Paths from B to C are naturally d-separated due to a v-structure;
however, since E must be contained in our Markov blanket, paths from B to C given E can
only be d-separated given C. So, the Markov blanket of B is {A, C, D, E}.

Exercise 2.10. In a Bayesian network with structure A → B, is it possible for A to be
independent of B?

Solution: There is a direct arrow from A to B, which indicates that independence is not
implied. However, this does not mean that they are not independent. Whether A and B are
independent depends on the choice of conditional probability tables. We can choose the
tables so that there is independence. For example, suppose that both variables are binary
and P(a) = 0.5 is uniform and P(b | a) = 0.5. Clearly, P(A)P(B | A) = P(A)P(B), which
means they are independent.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

3 Inference

The previous chapter explained how to represent probability distributions. This
chapter will show how to use these probabilistic representations for inference,
which involves determining the distribution over one or more unobserved vari-
ables given the values associated with a set of observed variables. It begins by
introducing exact inference methods. Because exact inference can be computation-
ally intractable depending on the structure of the network, we will also discuss
several algorithms for approximate inference.

3.1 Inference in Bayesian Networks

In inference problems, we want to infer a distribution over query variables given
some observed evidence variables. The other nodes are referred to as hidden variables.
We often refer to the distribution over the query variables, given the evidence, as
a posterior distribution.

To illustrate the computations involved in inference, recall the Bayesian network
from example 2.5, the structure of which is reproduced in figure 3.1. Suppose we
have B as a query variable and evidence D = 1 and C = 1. The inference task is to
compute P(b1 | d1, c1), which corresponds to computing the probability that we
have a battery failure given an observed trajectory deviation and communication
loss.

B S

E

D C

Figure 3.1. Bayesian network struc-
ture from example 2.5.

From the definition of conditional probability introduced in equation (2.22),
we know that

P(b1 | d1, c1) =
P(b1, d1, c1)

P(d1, c1)
(3.1)

44 chapter 3. inference

To compute the numerator, wemust use a process known asmarginalization, where
we sum out variables that are not involved (in this case S and E):

P(b1, d1, c1) = ∑
s

∑
e

P(b1, s, e, d1, c1) (3.2)

We know from the chain rule for Bayesian networks introduced in equation (2.31)
that

P(b1, s, e, d1, c1) = P(b1)P(s)P(e | b1, s)P(d1 | e)P(c1 | e) (3.3)
All the components on the right side are specified in the conditional probability
distributions associated with the nodes in the Bayesian network. We can com-
pute the denominator in equation (3.1) using the same approach, but with an
additional summation over the values for B.

This process of using the definition of conditional probability, marginaliza-
tion, and applying the chain rule can be used to perform exact inference in any
Bayesian network. We can implement exact inference using factors. Recall that
factors represent discrete multivariate distributions. We use the following three
operations on factors to achieve this:
• We use the factor product (algorithm 3.1) to combine two factors to produce a

larger factor whose scope is the combined scope of the input factors. If we have
φ(X, Y) and ψ(Y, Z), then φ · ψ will be over X, Y, and Z with (φ · ψ)(x, y, z) =

φ(x, y)ψ(y, z). The factor product is demonstrated in example 3.1.
• We use factor marginalization (algorithm 3.2) to sum out a particular variable

from the entire factor table, removing it from the resulting scope. Example 3.2
illustrates this process.

• We use factor conditioning (algorithm 3.3) with respect to some evidence to
remove any rows in the table inconsistent with that evidence. Example 3.3
demonstrates factor conditioning.
These three factor operations are used together in algorithm 3.4 to perform

exact inference. It starts by computing the product of all the factors, conditioning
on the evidence, marginalizing out the hidden variables, and normalizing. One
potential issue with this approach is the size of the product of all the factors. The
size of the factor product is equal to the product of the number of values each
variable can assume. For the satellite example problem, there are only 25 = 32

possible assignments, but many interesting problems would have a factor product
that is too large to enumerate practically.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

3.1 . inference in bayesian networks 45

function Base.:*(ϕ::Factor, ψ::Factor)
ϕnames = variablenames(ϕ)
ψnames = variablenames(ψ)
ψonly = setdiff(ψ.vars, ϕ.vars)
table = FactorTable()
for (ϕa,ϕp) in ϕ.table

for a in assignments(ψonly)
a = merge(ϕa, a)
ψa = select(a, ψnames)
table[a] = ϕp * get(ψ.table, ψa, 0.0)

end
end
vars = vcat(ϕ.vars, ψonly)
return Factor(vars, table)

end

Algorithm 3.1. An implementation
of the factor product, which con-
structs the factor representing the
joint distribution of two smaller fac-
tors ϕ and ψ. If we want to compute
the factor product of ϕ and ψ, we
simply write ϕ*ψ.

The factor product of two factors produces a new factor over the union of
their variables. Here, we produce a new factor from two factors that share a
variable:

X Y φ1(X, Y)

0 0 0.3

0 1 0.4

1 0 0.2

1 1 0.1

Y Z φ2(Y, Z)

0 0 0.2

0 1 0.0

1 0 0.3

1 1 0.5

X Y Z φ3(X, Y, Z)

0 0 0 0.06

0 0 1 0.00

0 1 0 0.12

0 1 1 0.20

1 0 0 0.04

1 0 1 0.00

1 1 0 0.03

1 1 1 0.05

Example 3.1. An illustration of
a factor product combining two
factors representing φ1(X, Y) and
φ2(Y, Z) to produce a factor repre-
senting φ3(X, Y, Z).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

46 chapter 3. inference

function marginalize(ϕ::Factor, name)
table = FactorTable()
for (a, p) in ϕ.table

a′ = delete!(copy(a), name)
table[a′] = get(table, a′, 0.0) + p

end
vars = filter(v -> v.name != name, ϕ.vars)
return Factor(vars, table)

end

Algorithm 3.2. A method for
marginalizing a variable named
name from a factor ϕ.

Recall the joint probability distribution P(X, Y, Z) from table 2.1. We can
marginalize out Y by summing the probabilities in each row that have match-
ing assignments for X and Z:

X Y Z φ(X, Y, Z)

0 0 0 0.08

0 0 1 0.31

0 1 0 0.09

0 1 1 0.37

1 0 0 0.01

1 0 1 0.05

1 1 0 0.02

1 1 1 0.07

X Z φ(X, Z)

0 0 0.17

0 1 0.68

1 0 0.03

1 1 0.12

Example 3.2. A demonstration of
factor marginalization.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

3.1 . inference in bayesian networks 47

in_scope(name, ϕ) = any(name == v.name for v in ϕ.vars)

function condition(ϕ::Factor, name, value)
if !in_scope(name, ϕ)

return ϕ
end
table = FactorTable()
for (a, p) in ϕ.table

if a[name] == value
table[delete!(copy(a), name)] = p

end
end
vars = filter(v -> v.name != name, ϕ.vars)
return Factor(vars, table)

end

function condition(ϕ::Factor, evidence)
for (name, value) in pairs(evidence)

ϕ = condition(ϕ, name, value)
end
return ϕ

end

Algorithm 3.3. Two methods for
factor conditioning given some evi-
dence. The first takes a factor ϕ and
returns a new factor whose table
entries are consistent with the vari-
able named name having the value
value. The second takes a factor ϕ
and applies evidence in the form
of a named tuple. The in_scope
method returns true if the variable
named name is within the scope of
the factor ϕ.

Factor conditioning involves dropping any rows inconsistent with the evi-
dence. Here is the factor from table 2.1, and we condition on Y = 1. All rows
for which Y 6= 1 are removed:

X Y Z φ(X, Y, Z)

0 0 0 0.08

0 0 1 0.31

0 1 0 0.09

0 1 1 0.37

1 0 0 0.01

1 0 1 0.05

1 1 0 0.02

1 1 1 0.07

X Z φ(X, Z)

0 0 0.09

0 1 0.37

1 0 0.02

1 1 0.07

Y = 1

Example 3.3. An illustration of set-
ting evidence, in this case for Y, in
a factor. The resulting values must
be renormalized.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

48 chapter 3. inference

struct ExactInference end

function infer(M::ExactInference, bn, query, evidence)
ϕ = prod(bn.factors)
ϕ = condition(ϕ, evidence)
for name in setdiff(variablenames(ϕ), query)

ϕ = marginalize(ϕ, name)
end
return normalize!(ϕ)

end

Algorithm 3.4. A naive exact in-
ference algorithm for a discrete
Bayesian network bn, which takes
as input a set of query variable
names query and evidence asso-
ciating values with observed vari-
ables. The algorithm computes a
joint distribution over the query
variables in the form of a factor.
We introduce the ExactInference
type to allow infer to be called
with different inference methods,
as shall be seen in the rest of this
chapter.3.2 Inference in Naive Bayes Models

The previous section presented a generalmethod for performing exact inference in
any Bayesian network. This section discusses how this same method can be used
to solve classification problems for a special kind of Bayesian network structure
known as a naive Bayes model. This structure is given in figure 3.2. An equivalent
but more compact representation is shown in figure 3.3 using a plate, shown here
as a rounded box. The i = 1 : n in the bottom of the box specifies that the i in the
subscript of the variable name is repeated from 1 to n.

C

O1 · · · On

Class

Observed features
Figure 3.2. A naive Bayes model.

C

Oi

i = 1 : n

Class

Observed features

Figure 3.3. Plate representation of
a naive Bayes model.

In the naive Bayes model, class C is the query variable, and the observed
features O1:n are the evidence variables. The naive Bayes model is called naive
because it assumes conditional independence between the evidence variables
given the class. Using the notation introduced in section 2.6, we can say (Oi⊥Oj |
C) for all i 6= j. Of course, if these conditional independence assumptions do
not hold, then we can add the necessary directed edges between the observed
features.

We have to specify the prior P(C) and the class-conditional distributions P(Oi | C).
As done in the previous section, we can apply the chain rule to compute the joint
distribution:

P(c, o1:n) = P(c)
n

∏
i=1

P(oi | c) (3.4)

Our classification task involves computing the conditional probability P(c | o1:n).
From the definition of conditional probability, we have

P(c | o1:n) =
P(c, o1:n)

P(o1:n)
(3.5)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

3.3. sum-product variable elimination 49

We can compute the denominator by marginalizing the joint distribution:

P(o1:n) = ∑
c

P(c, o1:n) (3.6)

The denominator in equation (3.5) is not a function of C and can therefore be
treated as a constant. Hence, we can write

P(c | o1:n) = κP(c, o1:n) (3.7)

where κ is a normalization constant such that ∑c P(c | o1:n) = 1. We often drop κ

and write
P(c | o1:n) ∝ P(c, o1:n) (3.8)

where the proportional to symbol ∝ is used to represent that the left side is propor-
tional to the right side. Example 3.4 illustrates how inference can be applied to
classifying radar tracks.

We can use this method to infer a distribution over classes, but for many
applications, we have to commit to a particular class. It is common to classify
according to the class with the highest posterior probability, arg maxc P(c | o1:n).
However, choosing a class is really a decision problem that often should take into
account the consequences of misclassification. For example, if we are interested in
using our classifier to filter out targets that are not aircraft for the purpose of air
traffic control, then we can afford to occasionally let a few birds and other clutter
tracks through our filter. However, we would want to avoid filtering out any real
aircraft because that could lead to a collision. In this case, we would probably
want to classify a track as a bird only if the posterior probability were close to 1.
Decision problems will be discussed in chapter 6.

3.3 Sum-Product Variable Elimination

A variety of methods can be used to perform efficient inference in more compli-
cated Bayesian networks. One method is known as sum-product variable elimination,
which interleaves eliminating hidden variables (summations) with applications
of the chain rule (products). It is more efficient to marginalize variables out as
early as possible to avoid generating large factors.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

50 chapter 3. inference

Suppose that we have a radar track and we want to determine whether it
was generated by a bird or an aircraft. We base our inference on airspeed
and the amount of heading fluctuation. The first represents our belief about
whether a target is a bird or an aircraft in the absence of any information
about the track. Here are example class-conditional distributions for airspeed
v as estimated from radar data:

0 20 40 60 80 100
0

2

4

6

8

×10−2

v (m/s)

p
(v
|c
)

Aircraft
Bird

Suppose from the chain rule, we determine:

P(bird, slow, little heading fluctuation) = 0.03

P(aircraft, slow, little heading fluctuation) = 0.01

Of course, these probabilities do not sum to 1. If we want to determine the
probability that a target is a bird given the evidence, then we would make
the following calculation:

P(bird | slow, little heading fluctuation) = 0.03

0.03 + 0.01
= 0.75

Example 3.4. Radar target classifi-
cation in which we want to deter-
mine whether a radar track corre-
sponds to a bird or an aircraft.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

3.3. sum-product variable elimination 51

We will illustrate the variable elimination algorithm by computing the distribu-
tion P(B | d1, c1) for the Bayesian network in figure 3.1. The conditional probability
distributions associated with the nodes in the network can be represented by the
following factors:

φ1(B), φ2(S), φ3(E, B, S), φ4(D, E), φ5(C, E) (3.9)

Because D and C are observed variables, the last two factors can be replaced with
φ6(E) and φ7(E) by setting the evidence D = 1 and C = 1.

We then proceed by eliminating the hidden variables in sequence. Different
strategies can be used for choosing an ordering, but for this example, we arbitrarily
choose the ordering E and then S. To eliminate E, we take the product of all the
factors involving E and then marginalize out E to get a new factor:

φ8(B, S) = ∑
e

φ3(e, B, S)φ6(e)φ7(e) (3.10)

We can now discard φ3, φ6, and φ7 because all the information we need from them
is contained in φ8.

Next, we eliminate S. Again, we gather all remaining factors that involve S and
marginalize out S from the product of these factors:

φ9(B) = ∑
s

φ2(s)φ8(B, s) (3.11)

We discard φ2 and φ8 and are left with φ1(B) and φ9(B). Finally, we take the prod-
uct of these two factors and normalize the result to obtain a factor representing
P(B | d1, c1).

This procedure is equivalent to computing the following:

P(B | d1, c1) ∝ φ1(B)∑
s

(

φ2(s)∑
e

(

φ3(e | B, s)φ4(d
1 | e)φ5(c

1 | e)
)

)

(3.12)

This produces the same result as, but is more efficient than, the naive procedure
of taking the product of all the factors and then marginalizing:

P(B | d1, c1) ∝ ∑
s

∑
e

φ1(B)φ2(s)φ3(e | B, s)φ4(d
1 | e)φ5(c

1 | e) (3.13)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

52 chapter 3. inference

The sum-product variable elimination algorithm is implemented in algorithm3.5.
It takes as input a Bayesian network, a set of query variables, a list of observed
values, and an ordering of the variables. We first set all observed values. Then,
for each variable, we multiply all factors containing it and then marginalize that
variable out. This new factor replaces the consumed factors, and we repeat the
process for the next variable.

For many networks, variable elimination allows inference to be done in an
amount of time that scales linearly with the size of the network, but it has ex-
ponential time complexity in the worst case. What influences the amount of
computation is the variable elimination order. Choosing the optimal elimination
order is NP-hard,1 meaning that it cannot be done in polynomial time in the 1 S. Arnborg, D.G. Corneil, and

A. Proskurowski, “Complexity of
Finding Embeddings in a k-Tree,”
SIAM Journal on Algebraic Discrete
Methods, vol. 8, no. 2, pp. 277–284,
1987.

worst case (section 3.5). Even if we found the optimal elimination order, variable
elimination can still require an exponential number of computations. Variable
elimination heuristics generally try to minimize the number of variables involved
in the intermediate factors generated by the algorithm.

struct VariableElimination
ordering # array of variable indices

end

function infer(M::VariableElimination, bn, query, evidence)
Φ = [condition(ϕ, evidence) for ϕ in bn.factors]
for i in M.ordering

name = bn.vars[i].name
if name ∉ query

inds = findall(ϕ->in_scope(name, ϕ), Φ)
if !isempty(inds)

ϕ = prod(Φ[inds])
deleteat!(Φ, inds)
ϕ = marginalize(ϕ, name)
push!(Φ, ϕ)

end
end

end
return normalize!(prod(Φ))

end

Algorithm 3.5. An implementa-
tion of the sum-product variable
elimination algorithm, which takes
in a Bayesian network bn, a list
of query variables query, and ev-
idence evidence. The variables are
processed in the order given by
ordering.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

3.4. belief propagation 53

3.4 Belief Propagation

An approach to inference known as belief propagation works by propagating ‘‘mes-
sages’’ through the network using the sum-product algorithm in order to compute
the marginal distributions of the query variables.2 Belief propagation requires 2 A tutorial on the sum-product

algorithm with a discussion of
its connections to many other al-
gorithms developed in separate
communities is provided by F.
Kschischang, B. Frey, and H.-A.
Loeliger, “Factor Graphs and the
Sum-Product Algorithm,” IEEE
Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, 2001.

linear time but provides an exact answer only if the network does not have undi-
rected cycles. If the network has undirected cycles, then it can be converted to a
tree by combining multiple variables into single nodes by using what is known
as the junction tree algorithm. If the number of variables that have to be combined
into any one node in the resulting network is small, then inference can be done
efficiently. A variation of belief propagation known as loopy belief propagation can
provide approximate solutions in networks with undirected cycles. Although this
approach does not provide any guarantees and may not converge, it can work
well in practice.3 3 Belief propagation and related al-

gorithms are covered in detail by
D. Barber, Bayesian Reasoning and
Machine Learning. Cambridge Uni-
versity Press, 2012.

3.5 Computational Complexity

We can show that inference in Bayesian networks is NP-hard by using an NP-
complete problem called 3SAT.4 It is easy to construct a Bayesian network from 4 G. F. Cooper, “The Computa-

tional Complexity of Probabilis-
tic Inference Using Bayesian Belief
Networks,” Artificial Intelligence,
vol. 42, no. 2–3, pp. 393–405, 1990.
The Bayesian network construction
in this section follows that text. See
appendix C for a brief review of
complexity classes.

an arbitrary 3SAT problem. For example, consider the following 3SAT formula:5

5 This formula also appears in ex-
ample C.3 in appendix C.

F(x1, x2, x3, x4) =

(x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x2 ∨ x3) ∧
(x2 ∨ ¬x3 ∨ x4)

(3.14)

where¬ represents logical negation (‘‘not’’),∧ represents logical conjunction (‘‘and’’),
and ∨ represents logical disjunction (‘‘or’’). The formula consists of a conjunction
of clauses, which are disjunctions of what are called literals. A literal is simply a
variable or its negation.

Figure 3.4 shows the corresponding Bayesian network representation. The
variables are represented by X1:4, and the clauses are represented by C1:3. The
distributions over the variables are uniform. The nodes representing clauses
have as parents the participating variables. Because this is a 3SAT problem, each
clause node has exactly three parents. Each clause node assigns probability 0

to assignments that do not satisfy the clause and probability 1 to all satisfying
assignments. The remaining nodes assign probability 1 to true if all their parents

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

54 chapter 3. inference

are true. The original problem is satisfiable if and only if P(y1) > 0. Hence,
inference in Bayesian networks is at least as hard as 3SAT.

X1 X2 X3 X4

C1 C2 C3

D1 D2 Y

Figure 3.4. Bayesian network rep-
resenting a 3SAT problem.

The reason we go to the effort of showing that inference in Bayesian networks
is NP-hard is so that we know to avoid wasting time looking for an efficient, exact
inference algorithm that works on all Bayesian networks. Therefore, research over
the past couple of decades has focused on approximate inference methods, which
are discussed next.

3.6 Direct Sampling

Motivated by the fact that exact inference is computationally intractable, many
approximation methods have been developed. One of the simplest methods
for inference is based on direct sampling, where random samples from the joint
distribution are used to arrive at a probability estimate.6 To illustrate this point, 6 Sometimes approaches involv-

ing random sampling are referred
to as Monte Carlo methods. The
name comes from the Monte Carlo
Casino in Monaco. An introduc-
tion to randomized algorithms and
their application to a variety of
problem domains is provided by R.
Motwani and P. Raghavan,Random-
ized Algorithms. Cambridge Univer-
sity Press, 1995.

suppose that we want to infer P(b1 | d1, c1) from a set of n samples from the joint
distribution P(b, s, e, d, c). We use parenthetical superscripts to indicate the index
of a sample, where we write (b(i), s(i), e(i), d(i), c(i)) for the ith sample. The direct
sample estimate is

P(b1 | d1, c1) ≈ ∑i(b
(i) = 1∧ d(i) = 1∧ c(i) = 1)

∑i(d
(i) = 1∧ c(i) = 1)

(3.15)

We use the convention where a logical statement in parentheses is treated numer-
ically as 1 when true and 0 when false. The numerator is the number of samples
consistent with b, d, and c all set to 1, and the denominator is the number of
samples consistent with d and c all set to 1.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

3.6. direct sampling 55

Sampling from the joint distribution represented by a Bayesian network is
straightforward. The first step involves finding a topological sort of the nodes in the
Bayesian network. A topological sort of the nodes in a directed acyclic graph is
an ordered list such that if there is an edge A→ B, then A comes before B in the
list.7 For example, a topological sort for the network in figure 3.1 is B, S, E, D, C. 7 A.B. Kahn, “Topological Sorting

of Large Networks,” Communica-
tions of the ACM, vol. 5, no. 11,
pp. 558–562, 1962. An implemen-
tation of topological sorting is pro-
vided by the Graphs.jl package.

A topological sort always exists, but it may not be unique. Another topological
sort for the network is S, B, E, C, D.

Once we have a topological sort, we can begin sampling from the conditional
probability distributions. Algorithm 3.6 shows how to sample from a Bayesian
network given an ordering X1:n that represents a topological sort. We draw a
sample from the conditional distribution associated with Xi given the values of
the parents that have already been assigned. Because X1:n is a topological sort,
we know that all the parents of Xi have already been instantiated, allowing this
sampling to be done. Direct sampling is implemented in algorithm 3.7 and is
demonstrated in example 3.5.

function Base.rand(ϕ::Factor)
tot, p, w = 0.0, rand(), sum(values(ϕ.table))
for (a,v) in ϕ.table

tot += v/w
if tot >= p

return a
end

end
return Assignment()

end

function Base.rand(bn::BayesianNetwork)
a = Assignment()
for i in topological_sort(bn.graph)

name, ϕ = bn.vars[i].name, bn.factors[i]
a[name] = rand(condition(ϕ, a))[name]

end
return a

end

Algorithm 3.6. A method for
sampling an assignment from a
Bayesian network bn. We also pro-
vide a method for sampling an as-
signment from a factor ϕ.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

56 chapter 3. inference

Suppose we draw 10 random samples from the network in figure 3.1. We
are interested in inferring P(b1 | d1, c1). Only 2 of the 10 samples (pointed
to in the table) are consistent with observations d1 and c1. One sample has
b = 1, and the other sample has b = 0. From these samples, we infer that
P(b1 | d1, c1) = 0.5. Of course, we would want to use more than just 2
samples to accurately estimate P(b1 | d1, c1).

B S E D C

0 0 1 1 0

0 0 0 0 0

1 0 1 0 0

1 0 1 1 1

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 1 1 1

0 0 0 0 0

0 0 0 1 0

Example 3.5. An example of how
direct samples from a Bayesian net-
work can be used for inference.

struct DirectSampling
m # number of samples

end

function infer(M::DirectSampling, bn, query, evidence)
table = FactorTable()
for i in 1:(M.m)

a = rand(bn)
if all(a[k] == v for (k,v) in pairs(evidence))

b = select(a, query)
table[b] = get(table, b, 0) + 1

end
end
vars = filter(v->v.name ∈ query, bn.vars)
return normalize!(Factor(vars, table))

end

Algorithm 3.7. The direct sam-
pling inference method, which
takes a Bayesian network bn, a
list of query variables query, and
evidence evidence. The method
draws m samples from the Bayesian
network and retains those samples
that are consistent with the evi-
dence. A factor over the query vari-
ables is returned. This method can
fail if no samples that satisfy the
evidence are found.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

3.7. likelihood weighted sampling 57

3.7 Likelihood Weighted Sampling

The problem with direct sampling is that we may waste time generating samples
that are inconsistent with the observations, especially if the observations are
unlikely. An alternative approach is called likelihood weighted sampling, which
involves generating weighted samples that are consistent with the observations.

To illustrate, we will again attempt to infer P(b1 | d1, c1). We have a set of n

samples, where the ith sample is again denoted (b(i), s(i), e(i), d(i), c(i)). The weight
of the ith sample is wi. The weighted estimate is

P(b1 | d1, c1) ≈ ∑i wi(b
(i) = 1∧ d(i) = 1∧ c(i) = 1)

∑i wi(d(i) = 1∧ c(i) = 1)
(3.16)

=
∑i wi(b

(i) = 1)

∑i wi
(3.17)

To generate these weighted samples, we begin with a topological sort and
sample from the conditional distributions in sequence. The only difference in
likelihood weighting is how we handle observed variables. Instead of sampling
their values from a conditional distribution, we assign variables to their observed
values and adjust the weight of the sample appropriately. The weight of a sample
is simply the product of the conditional probabilities at the observed nodes.
Likelihood weighted sampling is implemented in algorithm 3.8. Example 3.6
demonstrates inference with likelihood weighted sampling.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

58 chapter 3. inference

struct LikelihoodWeightedSampling
m # number of samples

end

function infer(M::LikelihoodWeightedSampling, bn, query, evidence)
table = FactorTable()
ordering = topological_sort(bn.graph)
for i in 1:(M.m)

a, w = Assignment(), 1.0
for j in ordering

name, ϕ = bn.vars[j].name, bn.factors[j]
if haskey(evidence, name)

a[name] = evidence[name]
w *= ϕ.table[select(a, variablenames(ϕ))]

else
a[name] = rand(condition(ϕ, a))[name]

end
end
b = select(a, query)
table[b] = get(table, b, 0) + w

end
vars = filter(v->v.name ∈ query, bn.vars)
return normalize!(Factor(vars, table))

end

Algorithm 3.8. The likelihood
weighted sampling inference
method, which takes a Bayesian
network bn, a list of query
variables query, and evidence
evidence. The method draws
m samples from the Bayesian
network but sets values from
evidence when possible, keeping
track of the conditional probability
when doing so. These probabilities
are used to weight the samples
such that the final inference
estimate is accurate. A factor over
the query variables is returned.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

3.7. likelihood weighted sampling 59

The table here shows five likelihood weighted samples from the network in
figure 3.1. We sample from P(B), P(S), and P(E | B, S), as we would with
direct sampling. When we come to D and C, we assign D = 1 and C = 1. If
the sample has E = 1, then the weight is P(d1 | e1)P(c1 | e1); otherwise, the
weight is P(d1 | e0)P(c1 | e0). If we assume

P(d1 | e1)P(c1 | e1) = 0.95

P(d1 | e0)P(c1 | e0) = 0.01

then we may approximate from the samples in the table:

P(b1 | d1, c1) =
0.95

0.95 + 0.95 + 0.01 + 0.01 + 0.95
≈ 0.331

B S E D C Weight
1 0 1 1 1 P(d1 | e1)P(c1 | e1)

0 1 1 1 1 P(d1 | e1)P(c1 | e1)

0 0 0 1 1 P(d1 | e0)P(c1 | e0)

0 0 0 1 1 P(d1 | e0)P(c1 | e0)

0 0 1 1 1 P(d1 | e1)P(c1 | e1)

Example 3.6. Likelihood weighted
samples from a Bayesian network.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

60 chapter 3. inference

C

D

P(c1) = 0.001

P(d1 | c0) = 0.001
P(d1 | c1) = 0.999

Figure 3.5. Chemical detection
Bayesian network, with C indi-
cating whether the chemical is
present and D indicating whether
the chemical is detected.

Although likelihood weighting makes it so that all samples are consistent with
the observations, it can still be wasteful. Consider the simple chemical detection
Bayesian network shown in figure 3.5, and assume that we detected a chemical of
interest. We want to infer P(c1 | d1). Because this network is small, we can easily
compute this probability exactly by using Bayes’ rule:

P(c1 | d1) =
P(d1 | c1)P(c1)

P(d1 | c1)P(c1) + P(d1 | c0)P(c0)
(3.18)

=
0.999× 0.001

0.999× 0.001 + 0.001× 0.999
(3.19)

= 0.5 (3.20)

If we use likelihood weighting, then 99.9 % of the samples will have C = 0,
with a weight of 0.001. Until we get a sample of C = 1, which has an associated
weight of 0.999, our estimate of P(c1 | d1) will be 0.

3.8 Gibbs Sampling

An alternative approach to inference is to use Gibbs sampling,8 which is a kind of 8 Named for the American scientist
Josiah Willard Gibbs (1839–1903),
who, with James Clerk Maxwell
and Ludwig Boltzman, created the
field of statistical mechanics.

Markov chain Monte Carlo technique. Gibbs sampling involves drawing samples
consistent with the evidence in a way that does not involve weighting. From these
samples, we can infer the distribution over the query variables.

Gibbs sampling involves generating a sequence of samples, starting with an
initial sample, x

(1)
1:n , generated randomly with the evidence variables set to their

observed values. The kth sample x
(k)
1:n depends probabilistically on the previous

sample, x
(k−1)
1:n . We modify x

(k−1)
1:n in place to obtain x

(k)
1:n as follows. Using any

ordering of the unobserved variables, which need not be a topological sort, x
(k)
i is

sampled from the distribution represented by P(Xi | x
(k)
−i). Here, x

(k)
−i represents

the values of all other variables except Xi in sample k. Sampling from P(Xi | x
(k)
−i)

can be done efficiently because we only need to consider the Markov blanket of
variable Xi (see section 2.6).

Unlike the other sampling methods discussed so far, the samples produced
by this method are not independent. However, it can be proven that, in the
limit, samples are drawn exactly from the joint distribution over the unobserved

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

3.8. gibbs sampling 61

variables given the observations. Algorithm 3.9 shows how to compute a factor
for P(Xi | x−i). Gibbs sampling is implemented in algorithm 3.10.

function blanket(bn, a, i)
name = bn.vars[i].name
val = a[name]
a = delete!(copy(a), name)
Φ = filter(ϕ -> in_scope(name, ϕ), bn.factors)
ϕ = prod(condition(ϕ, a) for ϕ in Φ)
return normalize!(ϕ)

end

Algorithm 3.9. A method for ob-
taining P(Xi | x−i) for a Bayesian
network bn given a current assign-
ment a.

Gibbs sampling can be applied to our running example. We can use our m

samples to estimate
P(b1 | d1, c1) ≈ 1

m ∑
i

(b(i) = 1) (3.21)

Figure 3.6 compares the convergence of the estimate of P(c1 | d1) in the chem-
ical detection network using direct, likelihood weighted, and Gibbs sampling.
Direct sampling takes the longest to converge. The direct sampling curve has long
periods during which the estimate does not change because samples are incon-
sistent with the observations. Likelihood weighted sampling converges faster in
this example. Spikes occur when a sample is generated with C = 1, and then
gradually decrease. Gibbs sampling, in this example, quickly converges to the
true value of 0.5.

As mentioned earlier, Gibbs sampling, like other Markov chain Monte Carlo
methods, produces samples from the desired distribution in the limit. In practice,
we have to run Gibbs for some amount of time, called the burn-in period, before
converging to a steady-state distribution. The samples produced during burn-in
are normally discarded. If many samples are to be used from a single Gibbs
sampling series, it is common to thin the samples by keeping only every hth
sample because of potential correlation between samples.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

62 chapter 3. inference

function update_gibbs_sample!(a, bn, evidence, ordering)
for i in ordering

name = bn.vars[i].name
if !haskey(evidence, name)

b = blanket(bn, a, i)
a[name] = rand(b)[name]

end
end

end

function gibbs_sample!(a, bn, evidence, ordering, m)
for j in 1:m

update_gibbs_sample!(a, bn, evidence, ordering)
end

end

struct GibbsSampling
m_samples # number of samples to use
m_burnin # number of samples to discard during burn-in
m_skip # number of samples to skip for thinning
ordering # array of variable indices

end

function infer(M::GibbsSampling, bn, query, evidence)
table = FactorTable()
a = merge(rand(bn), evidence)
gibbs_sample!(a, bn, evidence, M.ordering, M.m_burnin)
for i in 1:(M.m_samples)

gibbs_sample!(a, bn, evidence, M.ordering, M.m_skip)
b = select(a, query)
table[b] = get(table, b, 0) + 1

end
vars = filter(v->v.name ∈ query, bn.vars)
return normalize!(Factor(vars, table))

end

Algorithm 3.10. Gibbs sampling
implemented for a Bayesian net-
work bn with evidence evidence
and an ordering ordering. The
method iteratively updates the as-
signment a for m iterations.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

3.9. inference in gaussian models 63

0 2,000 4,000 6,000 8,000
0

0.2

0.4

0.6

0.8

1

number of samples

es
tim

at
eo

fP
(c

1
|d

1
)

direct sampling
likelihood weighted
Gibbs sampling

Figure 3.6. A comparison of
sampling-based inferencemethods
on the chemical detection network.
Both likelihood weighted and di-
rect sampling have poor conver-
gence due to the rarity of events,
whereas Gibbs sampling is able
to converge to the true value effi-
ciently, even with no burn-in pe-
riod or thinning.

3.9 Inference in Gaussian Models

If the joint distribution is Gaussian, we can perform exact inference analytically.
Two jointly Gaussian random variables a and b can be written

[

a

b

]

∼ N
([

µa

µb

]

,

[

A C

C⊤ B

])

(3.22)

The marginal distribution of a multivariate Gaussian is also Gaussian:

a ∼ N (µa, A) b ∼ N (µb, B) (3.23)

The conditional distribution of a multivariate Gaussian is also Gaussian, with
a convenient closed-form solution:

p(a | b) = N
(

a | µa|b, Σa|b
)

(3.24)
µa|b = µa + CB−1(b− µb) (3.25)
Σa|b = A−CB−1C⊤ (3.26)

Algorithm 3.11 shows how to use these equations to infer a distribution over a
set of query variables given evidence. Example 3.7 illustrates how to extract the
marginal and conditional distributions from a multivariate Gaussian.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

64 chapter 3. inference

function infer(D::MvNormal, query, evidencevars, evidence)
μ, Σ = D.μ, D.Σ.mat
b, μa, μb = evidence, μ[query], μ[evidencevars]
A = Σ[query,query]
B = Σ[evidencevars,evidencevars]
C = Σ[query,evidencevars]
μ = μa + C * (B\(b - μb))
Σ = A - C * (B \ C')
return MvNormal(μ, Σ)

end

Algorithm 3.11. Inference in a mul-
tivariate Gaussian distribution D.
A vector of integers specifies the
query variables in the query ar-
gument, and a vector of integers
specifies the evidence variables
in the evidencevars argument.
The values of the evidence vari-
ables are contained in the vector
evidence. The Distributions.jl
package defines the MvNormal dis-
tribution.

Consider
[

x1

x2

]

∼ N
([

0

1

]

,

[

3 1

1 2

])

The marginal distribution for x1 is N (0, 3), and the marginal distribution
for x2 is N (1, 2).

The conditional distribution for x1 given x2 = 2 is

µx1|x2=2 = 0 + 1 · 2−1 · (2− 1) = 0.5

Σx1|x2=2 = 3− 1 · 2−1 · 1 = 2.5

x1 | (x2 = 2) ∼ N (0.5, 2.5)

We can perform this inference calculation using algorithm 3.11 by construct-
ing the joint distribution
D = MvNormal([0.0,1.0],[3.0 1.0; 1.0 2.0])
and then calling infer(D, [1], [2], [2.0]).

Example 3.7. Marginal and condi-
tional distributions for a multivari-
ate Gaussian.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

3.10. summary 65

3.10 Summary

• Inference involves determining the probability of query variables given some
evidence.

• Exact inference can be done by computing the joint distribution over the vari-
ables, setting evidence, and marginalizing out any hidden variables.

• Inference can be done efficiently in naive Bayesmodels, in which a single parent
variable affects many conditionally independent children.

• The variable elimination algorithm can make exact inference more efficient by
marginalizing variables in sequence.

• Belief propagation represents another method for inference, in which informa-
tion is iteratively passed between factors to arrive at a result.

• Inference in a Bayesian network can be shown to be NP-hard through a re-
duction to the 3SAT problem, motivating the development of approximate
inference methods.

• Approximate inference can be done by directly sampling from the joint distri-
bution represented by a Bayesian network, but it may involve discarding many
samples that are inconsistent with the evidence.

• Likelihood weighted sampling can reduce computation required for approxi-
mate inference by only generating samples that are consistentwith the evidence
and weighting each sample accordingly.

• Gibbs sampling generates a series of unweighted samples that are consistent
with the evidence and can greatly speed approximate inference.

• Exact inference can be done efficiently through matrix operations when the
joint distribution is Gaussian.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

66 chapter 3. inference

3.11 Exercises
Exercise 3.1. Given the following Bayesian network and its associated conditional proba-
bility distributions, write the equation required to perform exact inference for the query
P(a1 | d1).

A B C D

Solution: We first expand the inference expression using the definition of conditional
probability.

P(a1 | d1) =
P(a1, d1)

P(d1)

We can rewrite the numerator as a marginalization over the hidden variables and we can
rewrite the denominator as a marginalization over both the hidden and query variables:

P(a1 | d1) =
∑b ∑c P(a1, b, c, d1)

∑a ∑b ∑c P(a, b, c, d1)

The definition of the joint probability in both the numerator and the denominator can be
rewritten using the chain rule for Bayesian networks and the resulting equation can be
simplified by removing constants from inside the summations:

P(a1 | d1) =
∑b ∑c P(a1)P(b | a1)P(c | b)P(d1 | c)

∑a ∑b ∑c P(a)P(b | a)P(c | b)P(d1 | c)

=
P(a1)∑b ∑c P(b | a1)P(c | b)P(d1 | c)

∑a ∑b ∑c P(a)P(b | a)P(c | b)P(d1 | c)

=
P(a1)∑b P(b | a1)∑c P(c | b)P(d1 | c)

∑a P(a)∑b P(b | a)∑c P(c | b)P(d1 | c)

Exercise 3.2. Given the following Bayesian network and its associated conditional proba-
bility distributions, write the equation required to perform an exact inference for the query
P(c1, d1 | a0, f 1).

A B C

D E F

Solution: We first expand the inference expression using the definition of conditional
probability:

P(c1, d1 | a0, f 1) =
P(a0, c1, d1, f 1)

P(a0, f 1)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

3.11. exercises 67

We can rewrite the numerator as a marginalization over the hidden variables, and we can
rewrite the denominator as a marginalization over both the hidden and query variables:

P(c1, d1 | a0, f 1) =
∑b ∑e P(a0, b, c1, d1, e, f 1)

∑b ∑c ∑d ∑e P(a0, b, c, d, e, f 1)

The definition of the joint probability in both the numerator and the denominator can be
rewritten using the chain rule for Bayesian networks, and the resulting equation can be
simplified by removing constants from inside the summations. Note that there are multiple
possible orderings of the summations in the final equation:

P(c1, d1 | a0, f 1) =
∑b ∑e P(a0)P(b | a0, c1)P(c1)P(d1 | a0)P(e | b, c1, d1)P(f 1 | e)

∑b ∑c ∑d ∑e P(a0)P(b | a0, c)P(c)P(d | a0)P(e | b, c, d)P(f 1 | e)

=
P(a0)P(c1)P(d1 | a0)∑b ∑e P(b | a0, c1)P(e | b, c1, d1)P(f 1 | e)

P(a0)∑b ∑c ∑d ∑e P(b | a0, c)P(c)P(d | a0)P(e | b, c, d)P(f 1 | e)

=
P(c1)P(d1 | a0)∑b P(b | a0, c1)∑e P(e | b, c1, d1)P(f 1 | e)

∑c P(c)∑b P(b | a0, c)∑d P(d | a0)∑e P(e | b, c, d)P(f 1 | e)

Exercise 3.3. Suppose thatwe are developing an object detection system for an autonomous
vehicle driving in a city. Our vehicle’s perception system reports an object’s size S (either
small, medium, or large) and speed V (either slow, moderate, or fast). We want to design
a model that will determine the class C of an object—either a vehicle, pedestrian, or a
ball—given observations of the object’s size and speed. Assuming a naive Bayes model
with the following class prior and class-conditional distributions, what is the detected
class given observations S = medium and V = slow?

C P(C)

vehicle 0.80
pedestrian 0.19
ball 0.01

C S P(S | C)

vehicle small 0.001
vehicle medium 0.009
vehicle large 0.990
pedestrian small 0.200
pedestrian medium 0.750
pedestrian large 0.050
ball small 0.800
ball medium 0.199
ball large 0.001

C V P(V | C)

vehicle slow 0.2
vehicle moderate 0.2
vehicle fast 0.6
pedestrian slow 0.5
pedestrian moderate 0.4
pedestrian fast 0.1
ball slow 0.4
ball moderate 0.4
ball fast 0.2

Solution: To compute the posterior distribution P(c | o1:n), we use the definition of the joint
distribution for a naive Bayes model in equation (3.4):

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

68 chapter 3. inference

P(c | o1:n) ∝ P(c)
n

∏
i=1

P(oi | c)

P(vehicle | medium, slow) ∝ P(vehicle)P(S = medium | vehicle)P(V = slow | vehicle)
P(vehicle | medium, slow) ∝ (0.80)(0.009)(0.2) = 0.00144

P(pedestrian | medium, slow) ∝ P(pedestrian)P(S = medium | pedestrian)P(V = slow | pedestrian)
P(pedestrian | medium, slow) ∝ (0.19)(0.75)(0.5) = 0.07125

P(ball | medium, slow) ∝ P(ball)P(S = medium | ball)P(V = slow | ball)
P(ball | medium, slow) ∝ (0.01)(0.199)(0.4) = 0.000796

Since P(pedestrian | medium, slow) has the largest probability, the object is classified as a
pedestrian.

Exercise 3.4. Given the 3SAT formula in equation (3.14) and the Bayesian network structure
in figure 3.4, what are the values of P(c1

3 | x1
2, x0

3, x1
4) and P(y1 | d1

2, c0
3)?

Solution: We have P(c1
3 | x1

2, x0
3, x1

4) = 1 because x1
2, x0

3, x1
4 makes the third clause true, and

P(y1 | d1
2, c0

3) = 0, because Y = 1 requires that both D2 and C3 be true.

Exercise 3.5. Give a topological sort for each of the following directed graphs:

D

A

C

F

B

E

(1)

D

A

C

F

B

E

(2)

Solution: There are three valid topological sorts for the first directed graph (Bayesian
network): (F, D, A, B, C, E), (D, A, F, B, C, E), and (D, F, A, B, C, E). There are no valid
topological sorts for the second directed graph since it is cyclic.

Exercise 3.6. Suppose that we have the following Bayesian network and we are interested
in generating an approximation of the inference query P(e1 | b0, d1) using likelihood
weighted sampling. Given the following samples, write the expressions for each of the
sample weights. In addition, write the equation for estimating P(e1 | b0, d1) in terms of
the sample weights wi.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

3.11. exercises 69

A

B C

D E

A B C D E

0 0 0 1 0
1 0 0 1 0
0 0 0 1 1
1 0 1 1 1
0 0 1 1 0
1 0 1 1 1

Solution: For likelihood weighted sampling, the sample weights are the product of the
distributions over evidence variables conditioned on the values of their parents. Thus, the
general form for our weights is P(b0 | a)P(d1 | b0, c). We then match each of the values for
each sample from the joint distribution:

A B C D E Weight
0 0 0 1 0 P(b0 | a0)P(d1 | b0, c0)
1 0 0 1 0 P(b0 | a1)P(d1 | b0, c0)
0 0 0 1 1 P(b0 | a0)P(d1 | b0, c0)
1 0 1 1 1 P(b0 | a1)P(d1 | b0, c1)
0 0 1 1 0 P(b0 | a0)P(d1 | b0, c1)
1 0 1 1 1 P(b0 | a1)P(d1 | b0, c1)

To estimate P(e1 | b0, d1), we simply need to sum the weights of samples consistent
with the query variable and divide this by the sum of all the weights:

P(e1 | b0, d1) =
∑i wi(e

(i) = 1)

∑i wi
=

w3 + w4 + w6

w1 + w2 + w3 + w4 + w5 + w6

Exercise 3.7. Each year, we receive student scores on standardizedmathematics M, reading
R, and writing W exams. Using data from prior years, we create the following distribution:

M

R

W

∼ N

81

82

80

,

25 −9 −16

−9 36 16

−16 16 36

Compute the parameters of the conditional distribution over a student’s math and reading
test scores, given a writing score of 90.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

70 chapter 3. inference

Solution: If we let a represent the vector of math and reading scores and b represent the
writing score, the joint and conditional distributions are as follows:

[

a

b

]

∼ N
([

µa

µb

]

,

[

A C

C⊤ B

])

p(a | b) = N
(

a | µa|b, Σa|b
)

µa|b = µa + CB−1(b− µb)

Σa|b = A−CB−1C⊤

In the example, we have the following definitions:

µa =

[

81

82

]

µb =
[

80
]

A =

[

25 −9

−9 36

]

B =
[

36
]

C =

[

−16

16

]

Thus, the parameters of our conditional distribution given b = W = 90 are

µM,R|W=90 =

[

81

82

]

+

[

−16

16

]

1

36
(90− 80) ≈

[

76.5

86.4

]

ΣM,R|W=90 =

[

25 −9

−9 36

]

−
[

−16

16

]

1

36

[

−16 16
]

≈
[

25 −9

−9 36

]

−
[

7.1 −7.1

−7.1 7.1

]

=

[

17.9 −1.9

−1.9 28.9

]

Given that the student scores a 90 on the writing test, based on our conditional distribution,
we expect the student to earn a 76.5 on the math test, with a standard deviation of

√
17.9,

and an 86.4 on the reading test, with a standard deviation of
√

28.9.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

4 Parameter Learning

We have assumed so far that the parameters and structure of our probabilistic
models were known. This chapter addresses the problem of learning or fitting
model parameters from data.1 We begin by introducing an approach where we

1 This chapter focuses on learn-
ing model parameters from data,
which is an important component
of the field of machine learning. A
broad introduction to the field is
provided by K. P. Murphy, Proba-
bilistic Machine Learning: An Intro-
duction. MIT Press, 2022.

identify the parameters of a model that maximize the likelihood of observing
the data. After discussing the limitations of such an approach, we introduce an
alternative Bayesian approach, in which we start with a probability distribution
over the unknown parameters and then update that distribution based on the
observed data using the laws of probability. We then discuss probabilistic models
that avoid committing to a fixed number of parameters.

4.1 Maximum Likelihood Parameter Learning

In maximum likelihood parameter learning, we attempt to find the parameters of a
distribution that maximize the likelihood of observing the data. If θ represents
the parameters of a distribution, then the maximum likelihood estimate is

θ̂ = arg max
θ

P(D | θ) (4.1)

where P(D | θ) is the likelihood that our probability model assigns to the data
D occurring when the model parameters are set to θ.2 We often use the ‘‘hat’’ 2 Here, wewrite P(D | θ) as if it is a

probability mass associated with a
discrete distribution. However, our
probability model may be continu-
ous, in which case we are working
with densities.

accent (‘‘·̂’’) to indicate an estimate of a parameter.
There are two challenges associated with maximum likelihood parameter

learning. One is to choose an appropriate probability model by which we define
P(D | θ). We often assume that the samples in our data D are independently and
identically distributed, which means that our samples D = o1:m are drawn from a

72 chapter 4. parameter learning

distribution oi ∼ P(· | θ) with

P(D | θ) = ∏
i

P(oi | θ) (4.2)

Probability models could include, for example, the categorical distributions or
Gaussian distributions mentioned in earlier chapters.

The other challenge is performing the maximization in equation (4.1). For
many common probability models, we can perform this optimization analytically.
Others may be difficult. A common approach is to maximize the log-likelihood,
often denoted as ℓ(θ). Since the log-transformation is monotonically increasing,
maximizing the log-likelihood is equivalent to maximizing the likelihood:3 3 Although it does not matter

whether we maximize the natural
logarithm (base e) or the common
logarithm (base 10) in this equa-
tion, throughout this book we will
use log(x) to mean the logarithm
of x with base e.

θ̂ = arg max
θ

∑
i

log P(oi | θ) (4.3)

Computing the sum of log-likelihoods is typically much more numerically stable
compared to computing the product ofmany small probabilitymasses or densities.
The remainder of this section will demonstrate how to optimize equation (4.1)
for different types of distributions.

4.1.1 Maximum Likelihood Estimates for Categorical Distributions
Suppose that the random variable C represents whether a flight will result in
a midair collision, and we are interested in estimating the distribution P(C).
Because C is either 0 or 1, it is sufficient to estimate the parameter θ = P(c1).
What we want to do is infer θ from data D. We have a historical database spanning
a decade consisting of m flights with n midair collisions. Our intuition, of course,
tells us that a good estimate for θ, given the data D, is n/m. Under the assumption
of independence of outcomes between flights, the probability of a sequence of m

outcomes in D with n midair collisions is:

P(D | θ) = θn(1− θ)m−n (4.4)

The maximum likelihood estimate θ̂ is the value for θ that maximizes equa-
tion (4.4), which is equivalent to maximizing the logarithm of the likelihood:

ℓ(θ) = log
(

θn(1− θ)m−n
) (4.5)

= n log θ + (m− n) log(1− θ) (4.6)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

4.1. maximum likelihood parameter learning 73

We can use the standard technique for finding the maximum of a function by
setting the first derivative of ℓ to 0 and then solving for θ. The derivative is given
by

∂

∂θ
ℓ(θ) =

n

θ
− m− n

1− θ
(4.7)

We can solve for θ̂ by setting the derivative to 0:
n

θ̂
− m− n

1− θ̂
= 0 (4.8)

After a few algebraic steps, we see that, indeed, θ̂ = n/m.
Computing the maximum likelihood estimate for a variable X that can assume

k values is also straightforward. If n1:k are the observed counts for the k different
values, then the maximum likelihood estimate for P(xi | n1:k) is given by

θ̂i =
ni

∑
k
j=1 nj

(4.9)

4.1.2 Maximum Likelihood Estimates for Gaussian Distributions
In a Gaussian distribution, the log-likelihood of the mean µ and variance σ2 with
m samples is given by

ℓ(µ, σ2) ∝ −m log σ− ∑i(oi − µ)2

2σ2
(4.10)

Again, we can set the derivative to 0 with respect to the parameters and solve for
the maximum likelihood estimate:

∂
∂µ ℓ(µ, σ2) =

∑i(oi − µ̂)

σ̂2
= 0 (4.11)

∂
∂σ ℓ(µ, σ2) = −m

σ̂
+

∑i(oi − µ̂)2

σ̂3
= 0 (4.12)

After some algebraic manipulation, we get

µ̂ =
∑i oi

m
σ̂2 =

∑i(oi − µ̂)2

m
(4.13)

Figure 4.1 provides an example of fitting a Gaussian to data.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

74 chapter 4. parameter learning

0 20 40 60 80 100
0

1

2

3

×10−2

v (m/s)

p
(v
)

True
Estimated

Figure 4.1. Suppose that we have
airspeed measurements o1:m from
m aircraft tracks, and we want
to fit a Gaussian model. This
figure shows a Gaussian with
the maximum likelihood estimates
µ̂ = 51.5 m/s and σ̂ = 15.9 m/s.
The ‘‘true’’ distribution is shown
for comparison. In this case, the
Gaussian is a fairly reasonable ap-
proximation of the true distribu-
tion.

4.1.3 Maximum Likelihood Estimates for Bayesian Networks
We can apply maximum likelihood parameter learning to Bayesian networks.
Here, we will assume that our network is composed of a set of n discrete variables
that we denote as X1:n. Our data D = {o1, . . . , om} consists of observed samples
from those variables. In our network with structure G, ri is the number of instan-
tiations of Xi, and qi is the number of instantiations of the parents of Xi. If Xi has
no parents, then qi = 1. The jth instantiation of the parents of Xi is denoted as
πij.

The factor table for Xi thus has riqi entries, resulting in a total of ∑
n
i=1 riqi

parameters in our Bayesian network. Each parameter is written as θijk and deter-
mines

P(Xi = k | πij) = θijk (4.14)
Although there are ∑

n
i=1 riqi parameters, only ∑

n
i=1(ri − 1)qi are independent. We

use θ to represent the set of all parameters.
Weuse mijk to represent the number of times Xi = k given parental instantiation

j in the data set. Algorithm 4.1 provides an implementation of a function for
extracting these counts or statistics from a data set. The likelihood is given in

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

4.2. bayesian parameter learning 75

terms of mijk:

P(D | θ, G) =
n

∏
i=1

qi

∏
j=1

ri

∏
k=1

θ
mijk

ijk (4.15)

Similar to the maximum likelihood estimate for the univariate distribution in
equation (4.9), themaximum likelihood estimate in our discrete Bayesian network
model is

θ̂ijk =
mijk

∑k′ mijk′
(4.16)

Example 4.1 illustrates this process.

function sub2ind(siz, x)
k = vcat(1, cumprod(siz[1:end-1]))
return dot(k, x .- 1) + 1

end

function statistics(vars, G, D::Matrix{Int})
n = size(D, 1)
r = [vars[i].r for i in 1:n]
q = [prod([r[j] for j in inneighbors(G,i)]) for i in 1:n]
M = [zeros(q[i], r[i]) for i in 1:n]
for o in eachcol(D)

for i in 1:n
k = o[i]
parents = inneighbors(G,i)
j = 1
if !isempty(parents)

j = sub2ind(r[parents], o[parents])
end
M[i][j,k] += 1.0

end
end
return M

end

Algorithm 4.1. A function for ex-
tracting the statistics, or counts,
from a discrete data set D, assum-
ing a Bayesian network with vari-
ables vars and structure G. The
data set is an n×m matrix, where
n is the number of variables and
m is the number of data points.
This function returns an array M of
length n. The ith component con-
sists of a qi × ri matrix of counts.
The sub2ind(siz, x) function re-
turns a linear index into an array
with dimensions specified by siz
given coordinates x. It is used to
identify which parental instantia-
tion is relevant to a particular data
point and variable.

4.2 Bayesian Parameter Learning

Bayesian parameter learning addresses some of the drawbacks of maximum like-
lihood estimation, especially when the amount of data is limited. For example,
suppose that our aviation safety database was limited to the events of the past
week, and we found no recorded midair collisions. If θ is the probability that a
flight results in a midair collision, then the maximum likelihood estimate would

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

76 chapter 4. parameter learning

Suppose that we have a small network, A→ B← C, and we want to extract
the statistics from data matrix D. We can use the following code:
G = SimpleDiGraph(3)
add_edge!(G, 1, 2)
add_edge!(G, 3, 2)
vars = [Variable(:A,2), Variable(:B,2), Variable(:C,2)]
D = [1 2 2 1; 1 2 2 1; 2 2 2 2]
M = statistics(vars, G, D)

The output is an array M consisting of these three count matrices, each of size
qi × ri:

[

2 2
]

0 0

0 0

2 0

0 2

[

0 4
]

We can compute the maximum likelihood estimate by normalizing the rows
in the matrices in M:
θ = [mapslices(x->normalize(x,1), Mi, dims=2) for Mi in M]

which produces

[

0.5 0.5
]

nan nan
nan nan

1 0

0 1

[

0 1
]

As we can see, the first and second parental instantiations of the second
variable B leads to nan (‘‘not a number’’) estimates. Because there are no
observations of those two parental instantiations in the data, the denominator
of equation (4.16) equals zero, making the parameter estimate undefined.
Most of the other parameters are not nan. For example, the parameter θ112 =

0.5 means that the maximum likelihood estimate of P(a2) is 0.5.

Example 4.1. Using the
statistics function for ex-
tracting the statistics from a data
set. Bayesian parameter learning
can be used to avoid nan values,
but we must specify a prior.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

4.2. bayesian parameter learning 77

be θ̂ = 0. Believing that there is zero chance of a midair collision is not a reason-
able conclusion unless our prior hypothesis was, for example, that all flights were
perfectly safe.

The Bayesian approach to parameter learning involves estimating p(θ | D),
the posterior distribution over θ given our data D. Instead of obtaining a point
estimate θ̂ as in maximum likelihood estimation, we obtain a distribution. This
distribution can help us quantify our uncertainty about the true value of θ. We
can convert this distribution into a point estimate by computing the expectation:

θ̂ = Eθ∼p(·|D)[θ] =
∫

θp(θ | D)dθ (4.17)

In some cases, however, the expectation may not be an acceptable estimate, as
illustrated in figure 4.2. An alternative is to use the maximum a posteriori estimate:

θ̂ = arg max
θ

p(θ | D) (4.18)

This estimate corresponds to a value of θ that is assigned the greatest density.
This is often referred to as the mode of the distribution. As shown in figure 4.2,
the mode may not be unique.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

θ

p
(θ
)

Figure 4.2. An example of a distri-
bution where the expected value
of θ is not a good estimate. The
expected value of 0.5 has a lower
density than occurs at the extreme
values of 0 or 1. This distribution
happens to be a beta distribution, a
type of distribution wewill discuss
shortly, with parameters (0.2, 0.2).

Bayesian parameter learning can be viewed as inference in a Bayesian network
with the structure in figure 4.3, which makes the assumption that the observed
variables are conditionally independent of each other. As with any Bayesian
network, we must specify p(θ) and P(Oi | θ). We often use a uniform prior p(θ).
The remainder of this section discusses how to apply Bayesian parameter learning
to different models of P(Oi | θ).

θ

Oi

i = 1 : n

Parameter

Observations

Figure 4.3. Bayesian network rep-
resenting parameter learning.

4.2.1 Bayesian Learning for Binary Distributions
Suppose we want to learn the parameters of a binary distribution. Here, we will
use P(o1 | θ) = θ. To infer the distribution over θ in the Bayesian network in
figure 4.3, we can proceed with the standard method for performing inference

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

78 chapter 4. parameter learning

discussed in chapter 3. Here, we will assume a uniform prior:

p(θ | o1:m) ∝ p(θ, o1:m) (4.19)

= p(θ)
m

∏
i=1

P(oi | θ) (4.20)

=
m

∏
i=1

P(oi | θ) (4.21)

=
m

∏
i=1

θoi (1− θ)1−oi (4.22)

= θn(1− θ)m−n (4.23)

The posterior is proportional to θn(1− θ)m−n, where n is the number of times
Oi = 1. To find the normalization constant, we integrate

∫ 1

0
θn(1− θ)m−n dθ =

Γ(n + 1)Γ(m− n + 1)

Γ(m + 2)
(4.24)

where Γ is the gamma function. The gamma function is a real-valued generalization
of the factorial. If m is an integer, then Γ(m) = (m− 1)!. Taking normalization
into account, we have

p(θ | o1:m) =
Γ(m + 2)

Γ(n + 1)Γ(m− n + 1)
θn(1− θ)m−n (4.25)

= Beta(θ | n + 1, m− n + 1) (4.26)

The beta distribution Beta(α, β) is defined by parameters α and β, and curves for
this distribution are shown in figure 4.4. The distribution Beta(1, 1) corresponds
to the uniform distribution spanning 0 to 1.

The distribution Beta(α, β) has mean
α

α + β
(4.27)

When α and β are both greater than 1, the mode is

α− 1

α + β− 2
(4.28)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

4.2. bayesian parameter learning 79

0 0.2 0.4 0.6 0.8 1
0

1

2

3

θ

p
(θ
)

Beta(1, 1)

Beta(2, 2)

Beta(6, 2)

Figure 4.4. An overlay of several
beta probability densities.

Conveniently, if a beta distribution is used as a prior over a parameter of a
binary distribution, then the posterior is also a beta distribution. In particular,
if the prior is given by Beta(α, β) and we make an observation oi, then we get a
posterior of Beta(α+ 1, β) if oi = 1 and Beta(α, β+ 1) if oi = 0. Hence, if we started
with a prior given by Beta(α, β) and our data showed that there were n collisions
out of m flights, then the posterior would be given by Beta(α + n, β + m− n). The
α and β parameters in the prior are sometimes called pseudocounts because they
are treated similarly to the observed counts of the two outcome classes in the
posterior, although the pseudocounts need not be integers.

Choosing the prior, in principle, should be done without knowledge of the
data used to compute the posterior. Uniform priors often work well in practice,
although if expert knowledge is available, then it can be encoded into the prior.
For example, suppose that we had a slightly bent coin and we wanted to estimate
θ, the probability that the coin would land heads. Before we collected any data
by flipping the coin, we would start with a belief θ that is likely to be around
0.5. Instead of starting with a uniform prior Beta(1, 1), we might use Beta(2, 2)

(shown in figure 4.4), which gives more weight to values near 0.5. If we were
more confident in an estimate near 0.5, then we could reduce the variance of the
prior by increasing the pseudocounts. The prior Beta(10, 10) is muchmore peaked
than Beta(2, 2). In general, however, the importance of the prior diminishes with
the amount of data used to compute the posterior. If we observe m flips and n

were heads, then the difference between Beta(1 + n, 1 + m− n) and Beta(10 +

n, 10 + m− n) is negligible if we observe thousands of coin flips.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

80 chapter 4. parameter learning

4.2.2 Bayesian Learning for Categorical Distributions
The Dirichlet distribution4 is a generalization of the beta distribution and can 4 This distribution is named af-

ter the German mathematician Jo-
hann Peter Gustav Lejeune Dirich-
let (1805–1859).

be used to estimate the parameters of categorical distributions. Suppose that X

is a discrete random variable that takes integer values from 1 to n. We define
the parameters of the distribution to be θ1:n, where P(xi) = θi. Of course, the
parameters must sum to 1, and so only the first n− 1 parameters are independent.
The Dirichlet distribution can be used to represent both the prior and the posterior
distribution and is parameterized by α1:n. The density is given by

Dir(θ1:n | α1:n) =
Γ(α0)

∏
n
i=1 Γ(αi)

n

∏
i=1

θ
αi−1
i (4.29)

where α0 is used to denote the summation of the parameters α1:n.5 If n = 2, then 5 See appendix B for plots of Dirich-
let distribution densities for differ-
ent parameters.it is easy to see that equation (4.29) is equivalent to the beta distribution.

It is common to use a uniform prior where all the Dirichlet parameters α1:n are
set to 1. As with the beta distribution, the parameters in the Dirichlet are often
referred to as pseudocounts. If the prior over θ1:n is given by Dir(α1:n) and there
are mi observations of X = i, then the posterior is given by

p(θ1:n | α1:n, m1:n) = Dir(θ1:n | α1 + m1, . . . , αn + mn) (4.30)

The distribution Dir(α1:n) has a mean vector whose ith component is
αi

∑
n
j=1 αj

(4.31)

When αi > 1, the ith component of the mode is

αi − 1

∑
n
j=1 αj − n

(4.32)

As we have seen, Bayesian parameter estimation is straightforward for binary
and discrete random variables because it involves simply counting the various
outcomes in the data. Bayes’ rule can be used to infer the distribution over the
parameters for other parametric distributions. Depending on the choice of prior
and the form of the parametric distribution, calculating the posterior over the
space of parameters also might be done analytically.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

4.2. bayesian parameter learning 81

4.2.3 Bayesian Learning for Bayesian Networks
We can apply Bayesian parameter learning to discrete Bayesian networks. The
prior over the Bayesian network parameters θ can be factorized as follows:

p(θ | G) =
n

∏
i=1

qi

∏
j=1

p(θij) (4.33)

where θij = (θij1, . . . , θijri
). The prior p(θij), under some weak assumptions,

can be shown to follow a Dirichlet distribution Dir(αij1, . . . , αijri
). Algorithm 4.2

provides an implementation for creating a data structure holding αijk, where all
entries are 1, corresponding to a uniform prior.

After observing data in the form of mijk counts (as introduced in section 4.1.3),
the posterior is then

p(θij | αij, mij) = Dir(θij | αij1 + mij1, . . . , αijri
+ mijri

) (4.34)

similar to equation (4.30). Example 4.2 demonstrates this process.

function prior(vars, G)
n = length(vars)
r = [vars[i].r for i in 1:n]
q = [prod([r[j] for j in inneighbors(G,i)]) for i in 1:n]
return [ones(q[i], r[i]) for i in 1:n]

end

Algorithm 4.2. A function for gen-
erating a prior αijk where all en-
tries are 1. The array of matrices
that this function returns takes the
same form as the statistics gener-
ated by algorithm4.1. To determine
the appropriate dimensions, the
function takes as input the list of
variables vars and structure G.

We can compute the parameters of the posterior associated with a Bayesian
network through simple addition of the prior parameters and counts (equa-
tion (4.34)). If we use the matrix of counts M obtained in example 4.1, we can
add it to the matrices of prior parameters α = prior(vars, G) to obtain the
set of posterior parameters M + α:

[

3 3
]

1 1

1 1

3 1

1 3

[

1 5
]

Example 4.2. Computing the pos-
terior parameters in a Bayesian net-
work. Note that unlike example 4.1,
here we do not have nan values.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

82 chapter 4. parameter learning

4.3 Nonparametric Learning

The previous two sections assumed that the probabilistic model was of a fixed
form and that a fixed set of parameters were to be learned from the data. An
alternative approach is based on nonparametric methods in which the number of
parameters scales with the amount of data. A common nonparametric method is
kernel density estimation (algorithm 4.3). Given observations o1:m, kernel density
estimation represents the density as follows:

p(x) =
1

m

m

∑
i=1

φ(x− oi) (4.35)

where φ is a kernel function, which integrates to 1. The kernel function is used to
assign greater density to values near the observed data points. A kernel function is
generally symmetric, meaning that φ(x) = φ(−x). A common kernel is the zero-
mean Gaussian distribution. When such a kernel is used, the standard deviation
is often referred to as the bandwidth, which can be tuned to control the smoothness
of the density function. Larger bandwidths generally lead to smoother densities.
Bayesian methods can be applied to the selection of the appropriate bandwidth
based on the data. The effect of the bandwidth choice is shown in figure 4.5.

gaussian_kernel(b) = x->pdf(Normal(0,b), x)

function kernel_density_estimate(ϕ, O)
return x -> sum([ϕ(x - o) for o in O])/length(O)

end

Algorithm 4.3. The method
gaussian_kernel returns a
zero-mean Gaussian kernel φ(x)
with bandwidth b. Kernel density
estimation is also implemented for
a kernel ϕ and list of observations
O.

4.4 Learning with Missing Data

When learning the parameters of our probabilistic model we may have missing
entries in our data.6 For example, if we are conducting a survey, some respondents 6 Learning with missing data is the

subject of a large body of litera-
ture. A comprehensive introduc-
tion and review is provided by G.
Molenberghs, G. Fitzmaurice,M.G.
Kenward, A. Tsiatis, and G. Ver-
beke, eds.,Handbook ofMissingData
Methodology. CRC Press, 2014.

may decide to skip a question. Table 4.1 shows an example of a data set with
missing entries involving three binary variables: A, B, and C. One approach to
handling missing data is to discard all the instances that are incomplete, where
there are one or more missing entries. Depending on how much of the data is
missing, we might have to discard much of it. In table 4.1, we would have to
discard all but one of the rows, which can be wasteful.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

4.4. learning with missing data 83

0

0.2

0.4

0.6

0.8

1

p
(x
)

bandwidth = 0.01 bandwidth = 0.1

4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

x

p
(x
)

bandwidth = 0.2

4 5 6 7 8

x

bandwidth = 0.5

Figure 4.5. Kernel density estima-
tion applied to the same data set
using zero-mean Gaussian kernels
with different bandwidths. The his-
togram in blue shows the underly-
ing data set frequencies, and the
black lines indicate the probability
density from kernel density estima-
tion. Larger bandwidths smooth
out the estimate, whereas smaller
bandwidths can overfit to specific
samples.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

84 chapter 4. parameter learning

A B C

1 1 0
? 1 1
1 ? ?
? ? ?

Table 4.1. Example of data consist-
ing of four instances with six miss-
ing entries.

We can learn model parameters from missing data using either a maximum
likelihood or a Bayesian approach. If taking a Bayesian maximum a posteriori
approach, we want to find the estimate

θ̂ = arg max
θ

p(θ | Dobs) (4.36)

= arg max
θ

∑
Dmis

p(θ | Dobs, Dmis)P(Dmis | Dobs) (4.37)

where Dobs and Dmis consist of all the observed and missing data, respectively.
If the data is continuous, then the sum would be replaced by an integral. The
marginalization over the missing data can be computationally expensive. The
same marginalization also affects the computational tractability of a Bayesian
approach.

This section discusses two general approaches for learning with missing data
without having to enumerate over all the possible combinations of missing values.
The first involves learning the distribution parameters using predicted values of
the missing entries. The second involves an iterative approach for improving our
parameter estimates.

We will focus on the context where data is missing at random, meaning that
the probability that an entry is missing is conditionally independent of its value,
given the values of the observed variables. An example of a situation that does
not adhere to this assumption might include radar data containing measurements
of the distance to a target, but the measurement may be missing either due to
noise or because the target is beyond the sensing range. The fact that an entry is
missing is an indication that the value is more likely to be high. Accounting for
this form of missingness requires different models and algorithms from what we
discuss here.7 7 Different missingness mechanisms

and associated inference tech-
niques are reviewed by R. J.A.
Little and D. B. Rubin, Statistical
Analysis with Missing Data, 3rd ed.
Wiley, 2020.

4.4.1 Data Imputation
An alternative to discarding incomplete instances is to impute the values of
missing entries. Data imputation is the process of inferring values for missing
entries. One way to view imputation is as an approximation of equation (4.37),
where we find

D̂mis = arg max
Dmis

p(Dmis | Dobs) (4.38)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

4.4. learning with missing data 85

Once we have the imputed missing values, we can use that data to produce a
maximum posteriori estimate:

θ̂ = arg max
θ

p(θ | Dobs) ≈ arg max
θ

p(θ | Dobs, D̂mis) (4.39)

or, alternatively, we can take a maximum likelihood approach.
Solving equation (4.38) may still be computationally challenging. One sim-

ple approach for discrete data sets is to replace missing entries with the most
commonly observed value, called the marginal mode. For example, in table 4.1, we
might replace all the missing values for A with its marginal mode of 1.

A B C

−6.5 0.9 4.2
? 4.4 9.2

7.8 ? ?
? ? ?

Table 4.2. Example of data with
continuous values.

Continuous data often lacks duplicates. However, we can fit a distribution
to continuous values and then use the mode of the resulting distribution. For
example, we might fit a Gaussian distribution to the data in table 4.2, and then
fill in the missing entries with the mean of the observed values associated with
each variable. The top-left plot in figure 4.6 illustrates the effect of this approach
on two-dimensional data. The red lines show how values with missing first or
second components are paired with their imputed counterparts. We can then use
the observed and imputed data to arrive at a maximum likelihood estimate of
the parameters of a joint Gaussian distribution. As we can see, this method of
imputation does not always produce sensible predictions and the learned model
is quite poor.

We can often do better if we account for the probabilistic relationships between
the observed and unobserved variables. In figure 4.6, there is clearly correlation
between the two variables; hence, knowing the value of one variable can help
predict the value of the other variable. A common approach to imputation, called
nearest-neighbor imputation, is to use the values associated with the instance that
is nearest with respect to a distance measure defined on the observed variables.
The top-right plot in figure 4.6 uses the Euclidean distance for imputation. This
approach tends to lead to better imputations and learned distributions.

An alternative approach is to fit a distribution to the fully observed data and
then use that distribution to infer the missing values. We can use the inference
algorithms from the previous chapter to perform this inference. For example, if
our data is discrete and we can assume a Bayesian network structure, we can use
variable elimination or Gibbs sampling to produce a distribution over the missing
variables for an instance from the observed variables. From this distribution, we
might use the mean or mode to impute the missing values. Alternatively, we can

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

86 chapter 4. parameter learning

−4 −2 0 2 4

−4

−2

0

2

4

marginal mode

−4 −2 0 2 4

−4

−2

0

2

4

nearest

−4 −2 0 2 4

−4

−2

0

2

4

posterior mode

Marker is data that is: Density ellipse estimated from:
observed all data (ground truth)
missing observed and imputed
imputed observed only

−4 −2 0 2 4

−4

−2

0

2

4

posterior sample

Figure 4.6. A demonstration of im-
putation techniques. Shown here
are ellipses where the density of
the maximum likelihood estimate
of the joint distribution equals 0.02.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

4.4. learning with missing data 87

pull a sample from this distribution. If our data is continuous and we can assume
that the data is jointly Gaussian, we can use algorithm 3.11 to infer the posterior
distribution. The bottom plots in figure 4.6 demonstrate imputation using these
posterior mode and posterior sampling approaches.

4.4.2 Expectation-Maximization
The expectation-maximization (EM) category of approaches involves iterative im-
provement of the distribution parameter estimate θ̂.8 We begin with an initial θ̂, 8 Expectation-maximization was

introduced by A. P. Dempster,
N.M. Laird, and D. B. Rubin,
“Maximum Likelihood from
Incomplete Data via the EM
Algorithm,” Journal of the Royal
Statistical Society, Series B (Method-
ological), vol. 39, no. 1, pp. 1–38,
1977.

which may be a guess, randomly sampled from a prior distribution over distribu-
tion parameters, or estimated using one of the methods discussed in section 4.4.1.
At each iteration, we perform a two-step process to update θ̂.

The first step is called the expectation step (E-step), where we use the current
estimate of θ to infer completions of the data. For example, if we are modeling
our data using a discrete Bayesian network, we can use one of our inference
algorithms to infer a distribution over the missing entries for each instance. When
extracting the counts, we apply a weighting proportional to the likelihood of the
completions as shown in example 4.3. In cases where there are many missing
variables, there may be too many possible completions to practically enumerate,
making a sampling-based approach attractive. We may also want to use sampling
as an approximation method when our variables are continuous.

The second step is called the maximization step (M-step), where we attempt to
find a new θ̂ that maximizes the likelihood of the completed data. If we have
a discrete Bayesian network with the weighted counts in the form shown in
example 4.3, then we can perform the same maximum likelihood estimate as
discussed earlier in this chapter. Alternatively, we can use a maximum a posteriori
estimate if we want to incorporate a prior.

This approach is not guaranteed to converge to model parameters that max-
imize the likelihood of the observed data, but it can work well in practice. To
reduce the risk of the algorithm converging to only a local optimum, we can run
the algorithm to convergence from many different initial points in the param-
eter space. We simply choose the resulting parameter estimate in the end that
maximizes likelihood.

Expectation-maximization can even be used to impute values for variables that
are not observed at all in the data. Such variables are called latent variables. To
illustrate, suppose we have a Bayesian network Z → X, where X is continuous

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

88 chapter 4. parameter learning

Suppose that we have a binary Bayesian network with A→ B. We start by
assuming that θ̂ implies

P(a1) = 0.5 P(b1 | a0) = 0.2 P(b1 | a1) = 0.6

Using these parameters, we can expand the data set with missing values
(left) to a weighted data set with all possible individual completions (right):

A B

1 1

0 1

0 ?

? 0

A B weight
1 1 1

0 1 1

0 0 1− P(b1 | a0) = 0.8

0 1 P(b1 | a0) = 0.2

0 0 αP(a0)P(b0 | a0) = α0.4 = 2/3

1 0 αP(a1)P(b0 | a1) = α0.2 = 1/3

The α in the calculation here is a normalization constant, which enforces that
each instance is expanded to instances whose weights sum to 1. The count
matrices are then

[

(2 + 2/3) (1 + 1/3)
]

[

(0.8 + 2/3) 1.2

1/3 1

]

Example 4.3. Expanding an in-
complete data set using assumed
model parameters.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

4.5. summary 89

and Z is discrete and can take on one of three values. Our model assumes p(x | z)

is conditional Gaussian. Our data set contains only values for X, but none for
Z. We start with an initial θ̂ and use it to infer a probability distribution over
the values of Z, given the value of X for each instance. The distribution over
entry completions are then used to update our estimate of the parameters of P(Z)

and P(X | Z) as illustrated in example 4.4. We iterate to convergence, which
often occurs very quickly. The parameters that we obtain in this example define a
Gaussian mixture model, which was introduced in section 2.2.2.

4.5 Summary

• Parameter learning involves inferring the parameters of a probabilistic model
from data.

• A maximum likelihood approach to parameter learning involves maximizing
a likelihood function, which can be done analytically for some models.

• A Bayesian approach to parameter learning involves inferring a probability
distribution over the underlying parameter using Bayes’ rule.

• The beta and Dirichlet distributions are examples of Bayesian priors that are
easily updated with evidence.

• In contrast with parametric learning, which assumes a fixed parameterization
of a probability model, nonparametric learning uses representations that grow
with the amount of data.

• We can approach the problem of learning parameters from missing data using
methods such as data imputation or expectation-maximization, where we
make inferences based on observed values.

4.6 Exercises
Exercise 4.1. Suppose that Anna is shooting basketball free throws. Before we see her
play, we start with an independent uniform prior over the probability that she successfully
makes a basket per shot. We observe her take three shots, with two of them resulting in
successful baskets. What is the probability that we assign to her making the next basket?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

90 chapter 4. parameter learning

We have a Bayesian network Z → X, where Z is a discrete latent variable
with three values and X is continuous with p(x | z)modeled as a conditional
Gaussian. Hence, we have parameters defining P(z1), P(z2), and P(z3), as
well as µi and σi for each of the three Gaussian distributions associated with
different values of Z. In this example, we use an initial parameter vector θ̂
that specifies P(zi) = 1/3 and σi = 1 for all i. We spread out the means with
µ1 = −4, µ2 = 0, and µ3 = 4.

Suppose our first instance in our data has X = 4.2. We want to infer the
distribution over Z for that instance:

P(zi | X = 4.2) =
P(zi)N (4.2 | µi, σ2

i)

∑j P(zj)N (4.2 | µj, σ2
j)

We compute this distribution for all the instances in our data set. For the
weighted completions, we can obtain a new estimate for θ̂. We estimate P(zi)

by taking the mean across the instances in our data set. To estimate µi and
σi, we use the mean and standard deviation of the values for X over the
instances in our data set, weighted by the probability of zi associated with
the various instances.

We repeat the process until convergence occurs. The plot here shows three
iterations. The histogram was generated from the values of X. The dark blue
function indicates the inferred density. By the third iteration, our parameters
of the Gaussian mixture model closely represent the data distribution.

−5 0 5
0

0.1

0.2

0.3

0.4

x

p
(x
)

Iteration 1

−5 0 5

x

Iteration 2

−5 0 5

x

Iteration 3

Example 4.4. Expectation maxi-
mization applied to learning the
parameters of a Gaussian mixture
model.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

4.6. exercises 91

Solution: We denote the probability of making a basket as θ. Since we start with a uniform
prior Beta(1, 1) and observe two baskets and one miss, our posterior is then Beta(1+ 2, 1+

1) = Beta(3, 2). We want to compute the probability of a basket as follows:

P(basket) =
∫

P(basket | θ)Beta(θ | 3, 2)dθ =
∫

θ Beta(θ | 3, 2)dθ

This expression is just the expectation (or mean) of a beta distribution, which gives us
P(basket) = 3/5.

Exercise 4.2. Consider a continuous random variable X that follows the Laplace distribution
parameterized by µ and b, with density

p(x | µ, b) =
1

2b
exp

(

−|x− µ|
b

)

Compute the maximum likelihood estimates of the parameters of a Laplace distribution
given a data set D of m independent observations x1:m. Note that ∂|u|/∂x = sign(u)∂u/∂x ,
where the sign function returns the sign of its argument.

Solution: Since the observations are independent, we can write the log-likelihood function
as the summation:

ℓ(µ, b) =
m

∑
i=1

log

[

1

2b
exp

(

−|xi − µ|
b

)]

= −
m

∑
i=1

log 2b−
m

∑
i=1

|xi − µ|
b

= −m log 2b− 1

b

m

∑
i=1

|xi − µ|

To obtain the maximum likelihood estimates of the true parameters µ and b, we take the
partial derivatives of the log-likelihood with respect to each of the parameters, set them to
zero, and solve for each parameter. First, we solve for µ̂:

∂
∂µ ℓ(µ, b) =

1

b̂

m

∑
i=1

sign(xi − µ)

0 =
1

b̂

m

∑
i=1

sign(xi − µ̂)

0 =
m

∑
i=1

sign(xi − µ̂)

µ̂ = median(x1:m)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

92 chapter 4. parameter learning

Now, solving for b̂:

∂
∂b ℓ(µ, b) = −m

b
+

1

b2

m

∑
i=1

|xi − µ̂|

0 = −m

b̂
+

1

b̂2

m

∑
i=1

|xi − µ̂|

m

b̂
=

1

b̂2

m

∑
i=1

|xi − µ̂|

b̂ =
1

m

m

∑
i=1

|xi − µ̂|

Thus, the maximum likelihood estimates for the parameters of a Laplace distribution are µ̂,
the median of the observations, and b̂, the mean of absolute deviations from the median.

Exercise 4.3. This question explores the application of maximum likelihood estimation to
censored data, where some measurements are only partially known. Suppose that we are
building electric motors for a quadcopter drone, and we want to produce a model of how
long they last until failure. Although there may bemore suitable distributions for modeling
the reliability of components,9 we will use an exponential distribution parameterized by 9 K. S. Trivedi and A. Bobbio, Reli-

ability and Availability Engineering.
Cambridge University Press, 2017.

λ with probability density function λ exp(−λx) and cumulative distribution function
1− exp(−λx). We fly five drones. Three have motor failures after 132 hours, 42 hours,
and 89 hours. We stopped testing the other two after 200 hours without failure; we do not
know their failure times; we just know that they are greater than 200 hours. What is the
maximum likelihood estimate for λ given this data?

Solution: This problem has n = 3 fully observed measurements and m = 2 censored mea-
surements. We use ti to represent the ith fully observed measurement and tj to represent
the jth censored measurement. The likelihood of a single measurement above tj is the
complement of the cumulative distribution function, which is simply exp(−λtj). Hence,
the likelihood of the data is

(

n

∏
i=1

λe−λti

)

m

∏
j=1

e−λtj

We use our standard approach of maximizing the log-likelihood, which is given by

ℓ(λ) =
n

∑
i=1

(log λ− λti) +
m

∑
j=1

−λtj

The derivative with respect to λ is

∂ℓ

∂λ
=

n

λ
−

n

∑
i=1

ti −
m

∑
j=1

tj

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

4.6. exercises 93

Setting this derivative to 0, we can solve for λ to obtain the maximum likelihood estimate:

λ̂ =
n

∑
n
i=1 ti + ∑

m
j=1 tj

=
3

132 + 42 + 89 + 200 + 200
≈ 0.00452

The mean of the exponential distribution is 1/λ, making the mean in our problem 221

hours.

Exercise 4.4. We have a Bayesian network where the variables X1:3 can take on values in
{1, 2} and X4 can take on values in {1, 2, 3}. Given the data set D of observations o1:m, as
illustrated here, generate the maximum likelihood estimates of the associated conditional
distribution parameters θ.

X1

X4 X3

X2

D =

1 2 1 1 1 2 1 2 1 1

2 2 2 1 2 1 1 1 2 1

2 2 2 1 1 1 1 1 2 1

3 2 1 1 1 3 3 1 1 1

Solution:Wecan generate countmatrices Mi of size qi× ri for each node by iterating through
the data set and storing the counts. We then normalize each row in the count matrices to
yield the matrices containing the maximum likelihood estimates of the parameters:

M1 =
[

7 3
]

M2 =

3 1

0 0

2 0

0 2

0 1

0 1

M3 =
[

6 4
]

M4 =

[

5 0 2

1 1 1

]

θ̂1 =
[

0.7 0.3
]

θ̂2 =

0.75 0.25

nan nan
1.0 0.0

0.0 1.0

0.0 1.0

0.0 1.0

θ̂3 =
[

0.6 0.4
]

θ̂4 ≈
[

0.71 0.0 0.29

0.33 0.33 0.34

]

Exercise 4.5. We have a biased coin, and we want to estimate the Bernoulli parameter
φ that specifies the probability the coin lands on heads. If the first toss lands on heads
(o1 = 1), answer the following questions:
• What is the maximum likelihood estimate of φ?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

94 chapter 4. parameter learning

• Using a uniform prior, what is the maximum a posteriori estimate of φ?
• Using a uniform prior, what is the expectation of our posterior distribution over φ?
Solution: Since our first toss lands on heads, we have n = 1 successes and m = 1 trials.
• The maximum likelihood estimate of φ is n/m = 1.
• Using a uniform Beta(1, 1) prior, the posterior distribution is Beta(1 + n, 1 + m− n) =

Beta(2, 1). The maximum a posteriori estimate of φ or mode of the posterior distribution
is

α− 1

α + β− 2
=

2− 1

2 + 1− 2
= 1

• The mean of the posterior distribution is
α

α + β
=

2

2 + 1
=

2

3

Exercise 4.6. Suppose we are given the following data set, with one missing value. What
is the value that will be imputed using marginal mode imputation, assuming that the
marginal distribution is a Gaussian? What is the value that will be imputed using nearest-
neighbor imputation?

X1 X2

0.5 1.0
? 0.3
−0.6 −0.3

0.1 0.2

Solution: Assuming that the marginal distribution over X1 is a Gaussian, we can compute
the marginal mode, which is the mean parameter of the Gaussian distribution:

µ =
1

m

m

∑
i=1

xi =
0.5− 0.6 + 0.1

3
= 0

Thus, formarginalmode imputation, themissing valuewill be set to 0. For nearest-neighbor
imputation, the nearest sample to X2 = 0.3 is the fourth sample, so the missing value will
be set to 0.1.
Exercise 4.7. Suppose we are given a data set over two variables X1:2, with several missing
values. We assume that X1:2 are jointly Gaussian and use the fully-observed samples to fit
the following distribution:

[

X1

X2

]

∼ N
([

5

2

]

,

[

4 1

1 2

])

What is the value that will be imputed for X1 for the sample X2 = 1.5 using posterior
mode imputation? What distribution do we need to sample from for posterior sample
imputation?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

4.6. exercises 95

Solution: Since we assumed that X1:2 are jointly Gaussian, the posterior distribution over X1

given X2 is also Gaussian, and its mode is the mean parameter of the posterior distribution.
We can compute the mean of the posterior distribution as follows:

p(x1 | x2) = N
(

x1 | µx1|x2
, σ2

x1|x2

)

µx1|x2=1.5 = 5 + (1)(2)−1(1.5− 2) = 4.75

Thus, for posterior mode imputation, the missing value will be set to 4.75. For posterior
sample imputation, we will sample a value X1 ∼ N (4.75, 3.5).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

5 Structure Learning

The previous chapters of this book assumed that the structures of our probabilistic
models were known. This chapter discusses methods for learning the structure
of models from data.1 We begin by explaining how to compute the probability 1 Overviews of Bayesian network

structure learning can be found
in the following textbooks: D.
Koller and N. Friedman, Probabilis-
tic Graphical Models: Principles and
Techniques. MIT Press, 2009. R. E.
Neapolitan, Learning Bayesian Net-
works. Prentice Hall, 2003.

of a graphical structure, given the data. Generally, we want to maximize this
probability. Because the space of possible graphical structures is usually too large
to enumerate, we also discuss ways to search this space efficiently.

5.1 Bayesian Network Scoring

We want to be able to score a network structure G based on how well it models
the data. A maximum a posteriori approach to structure learning involves finding
a G that maximizes P(G | D). We first explain how to compute a Bayesian score
based on P(G | D) to measure how well G models the data. We then explain how
to go about searching the space of networks for the highest-scoring network. Like
inference in Bayesian networks, it can be shown that for general graphs and input
data, learning the structure of a Bayesian network is NP-hard.2

2 See D.M. Chickering, “Learn-
ing Bayesian Networks is NP-
Complete,” in Learning from Data:
Artificial Intelligence and Statistics
V, D. Fisher and H.-J. Lenz, eds.,
Springer, 1996, pp. 121–130. D.M.
Chickering, D. Heckerman, and C.
Meek, “Large-Sample Learning of
Bayesian Networks is NP-Hard,”
Journal of Machine Learning Research,
vol. 5, pp. 1287–1330, 2004.

We compute P(G | D) using Bayes’ rule and the law of total probability:

P(G | D) ∝ P(G)P(D | G) (5.1)

= P(G)
∫

P(D | θ, G)p(θ | G)dθ (5.2)

where θ contains the network parameters as introduced in the previous chapter.
Integrating with respect to θ results in3 3 For the derivation, see the ap-

pendix of G. F. Cooper and E. Her-
skovits, “A Bayesian Method for
the Induction of Probabilistic Net-
works from Data,” Machine Learn-
ing, vol. 4, no. 9, pp. 309–347, 1992.

P(G | D) = P(G)
n

∏
i=1

qi

∏
j=1

Γ(αij0)

Γ(αij0 + mij0)

ri

∏
k=1

Γ(αijk + mijk)

Γ(αijk)
(5.3)

98 chapter 5. structure learning

where the values for αijk are the pseudocounts and mijk are the counts, as intro-
duced in the previous chapter. We also define

αij0 =
ri

∑
k=1

αijk mij0 =
ri

∑
k=1

mijk (5.4)

Finding the G that maximizes equation (5.2) is the same as finding the G that
maximizes what is called the Bayesian score:

log P(G | D) = log P(G) +
n

∑
i=1

qi

∑
j=1

(

log

(

Γ(αij0)

Γ(αij0 + mij0)

)

+
ri

∑
k=1

log

(

Γ(αijk + mijk)

Γ(αijk)

))

(5.5)

The Bayesian score is more convenient to compute numerically because it is
easier to add the logarithm of small numbers together than to multiply small
numbers together. Many software libraries can compute the logarithm of the
gamma function directly.

A variety of graph priors have been explored in the literature, although a
uniform prior is often used in practice, in which case log P(G) can be dropped
from the computation of the Bayesian score in equation (5.5). Algorithm 5.1
provides an implementation.

function bayesian_score_component(M, α)
p = sum(loggamma.(α + M))
p -= sum(loggamma.(α))
p += sum(loggamma.(sum(α,dims=2)))
p -= sum(loggamma.(sum(α,dims=2) + sum(M,dims=2)))
return p

end

function bayesian_score(vars, G, D)
n = length(vars)
M = statistics(vars, G, D)
α = prior(vars, G)
return sum(bayesian_score_component(M[i], α[i]) for i in 1:n)

end

Algorithm 5.1. An algorithm
for computing the Bayesian score
for a list of variables vars and
a graph G given data D. This
method uses a uniform prior
αijk = 1 for all i, j, and k
as generated by algorithm 4.2.
The loggamma function is provided
by SpecialFunctions.jl. Chap-
ter 4 introduced the statistics
and prior functions. Note that
log(Γ(α)/Γ(α + m)) = log Γ(α)−
log Γ(α + m), and that log Γ(1) =
0.

A by-product of optimizing the structure with respect to the Bayesian score
is that we are able to find the right balance in the model complexity, given the
available data. We do not want a model that misses out on capturing important
relationships between variables, but we also do not want a model that has too
many parameters to be adequately learned from limited data.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

5.2. directed graph search 99

To illustrate how the Bayesian score helps us balance model complexity, con-
sider the network in figure 5.1. The value of A weakly influences the value of B,
and C is independent of the other variables. We sample from this ‘‘true’’ model to
generate data D, and then try to learn the model structure. There are 25 possible
network structures involving three variables, but we will focus on the scores for
the models in figure 5.2.

A

B

C

P(a1) = 0.5

P(b1 | a0) = 0.45
P(b1 | a1) = 0.5

P(c1) = 0.5

Figure 5.1. A simple Bayesian net-
work to illustrate how the Bayesian
score helps us balance model com-
plexity.A

B

C

A

B

C

A B C

True model
1 + 2 + 1 = 4 parameters

Completely connected
1 + 2 + 4 = 7 parameters

Completely unconnected
1 + 1 + 1 = 3 parameters

Figure 5.2. Three Bayesian network
structures with varying levels of
complexity.

Figure 5.3 shows how the Bayesian scores of the completely connected and
unconnected models compare to the true model as the amount of data increases.
In the plot, we subtract the score of the true model, so values above 0 indicate
that the model provides a better representation than the true model, given the
available data. The plot shows that the unconnected model does better than the
true model when there are fewer than 5× 103 samples. The completely connected
model never does better than the true model, but it starts to do better than the
unconnected model at about 104 samples because there are sufficient data to
adequately estimate its seven independent parameters.

5.2 Directed Graph Search

In a directed graph search, we search the space of directed acyclic graphs for one that
maximizes the Bayesian score. The space of possible Bayesian network structures
grows superexponentially.4 With 10 nodes, there are 4.2× 1018 possible directed 4 R.W. Robinson, “Counting La-

beled Acyclic Digraphs,” in Ann
Arbor Conference on Graph Theory,
1973.

acyclic graphs. With 20 nodes, there are 2.4× 1072. Except for Bayesian networks
with few nodes, we cannot enumerate the space of possible structures to find
the highest-scoring network. Therefore, we have to rely on a search strategy.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

100 chapter 5. structure learning

0 5,000 10,000 15,000 20,000

−30

−20

−10

0

number of samples

Ba
ye

sia
n
sc
or

er
ela

tiv
et

ot
ru

em
od

el

Completely connected
Completely unconnected

Figure 5.3. Bayesian network struc-
ture learning balances model com-
plexity with the available data.
The completely connected model
never outperforms the true model,
whereas the completely uncon-
nected model eventually underper-
forms when more than about 5×
103 samples have been drawn. This
result indicates that simpler mod-
els can outperform complicated
models when data is scarce—even
when a more complicated model
generated the samples.

Fortunately, search is a general problem, and a wide variety of generic search
algorithms have been studied over the years.

One of the most common search strategies is called K2.5 The search (algo- 5 The name comes from the fact
that it is an evolution of a sys-
tem called Kutató. The algorithm
was introduced by G. F. Cooper
and E. Herskovits, “A Bayesian
Method for the Induction of Prob-
abilistic Networks from Data,” Ma-
chine Learning, vol. 4, no. 9, pp. 309–
347, 1992.

rithm 5.2) runs in polynomial time but does not guarantee finding a globally
optimal network structure. It can use any scoring function, but it is often usedwith
the Bayesian score because of its ability to balance the complexity of the model
with the amount of data available. K2 begins with a graph with no directed edges
and then iterates over the variables according to a provided ordering, greedily
adding parents to the nodes in a way that maximally increases the score. It is
common for K2 to impose an upper bound on the number of parents for any one
node to reduce the required computation. The original K2 algorithm assumed a
unit uniform Dirichlet prior with αijk = 1 for all i, j, and k, but any prior can be
used in principle.

A general search strategy is local search, which is sometimes called hill climbing.
Algorithm 5.3 provides an implementation of this concept. We start with an initial
graph and then move to the highest-scoring neighbor. The neighborhood of a
graph consists of the graphs that are only one basic graph operation away, where
the basic graph operations include introducing an edge, removing an edge, and
reversing an edge. Of course, not all operations are possible from a particular

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

5.2. directed graph search 101

struct K2Search
ordering::Vector{Int} # variable ordering

end

function fit(method::K2Search, vars, D)
G = SimpleDiGraph(length(vars))
for (k,i) in enumerate(method.ordering[2:end])

y = bayesian_score(vars, G, D)
while true

y_best, j_best = -Inf, 0
for j in method.ordering[1:k]

if !has_edge(G, j, i)
add_edge!(G, j, i)
y′ = bayesian_score(vars, G, D)
if y′ > y_best

y_best, j_best = y′, j
end
rem_edge!(G, j, i)

end
end
if y_best > y

y = y_best
add_edge!(G, j_best, i)

else
break

end
end

end
return G

end

Algorithm 5.2. K2 search of the
space of directed acyclic graphs us-
ing a specified variable ordering.
This variable ordering imposes a
topological ordering in the result-
ing graph. The fit function takes
an ordered list variables vars and
a data set D. The method starts
with an empty graph and itera-
tively adds the next parent that
maximally improves the Bayesian
score.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

102 chapter 5. structure learning

graph, and operations that introduce cycles into the graph are invalid. The search
continues until the current graph scores no lower than any of its neighbors.

An opportunistic version of local search is implemented in algorithm 5.3. Rather
than generating all graph neighbors at every iteration, this method generates a
single random neighbor and accepts it if its Bayesian score is greater than that of
the current graph.

struct LocalDirectedGraphSearch
G # initial graph
k_max # number of iterations

end

function rand_graph_neighbor(G)
n = nv(G)
i = rand(1:n)
j = mod1(i + rand(2:n)-1, n)
G′ = copy(G)
has_edge(G, i, j) ? rem_edge!(G′, i, j) : add_edge!(G′, i, j)
return G′

end

function fit(method::LocalDirectedGraphSearch, vars, D)
G = method.G
y = bayesian_score(vars, G, D)
for k in 1:method.k_max

G′ = rand_graph_neighbor(G)
y′ = is_cyclic(G′) ? -Inf : bayesian_score(vars, G′, D)
if y′ > y

y, G = y′, G′
end

end
return G

end

Algorithm 5.3. Local directed
graph search, which starts with
an initial directed graph G and
opportunistically moves to a ran-
dom graph neighbor whenever its
Bayesian score is greater. It repeats
this process for k_max iterations.
Random graph neighbors are gen-
erated by either adding or remov-
ing a single edge. This algorithm
can be extended to include revers-
ing the direction of an edge. Edge
addition can result in a graph with
cycles, in which case we assign a
score of −∞.

Local search can get stuck in local optima, preventing it from finding the globally
optimal network structure. Various strategies have been proposed for addressing
local optima, including the following:6 6 The field of optimization is quite

vast, and many methods have been
developed for addressing local op-
tima. This textbook provides an
overview: M. J. Kochenderfer and
T.A. Wheeler, Algorithms for Opti-
mization. MIT Press, 2019.

• Randomized restart. Once a local optima has been found, simply restart the
search at a random point in the search space.

• Simulated annealing. Instead of always moving to the neighbor with greatest
fitness, the search can visit neighbors with lower fitness according to some
randomized exploration strategy. As the search progresses, the randomness in

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

5.3. markov equivalence classes 103

the exploration decreases according to a particular schedule. This approach
is called simulated annealing because of its inspiration from annealing in
metallurgy.

• Genetic algorithms. The procedure begins with an initial random population of
points in the search space represented as binary strings. Each bit in a string
indicates the presence or absence of an arrow between two nodes. Stringmanip-
ulation thus allows for searching the space of directed graphs. The individuals
in the population reproduce at a rate proportional to their score. Individuals
selected for reproduction have their strings recombined randomly through
genetic crossover, which involves selecting a crossover point on two randomly
selected individuals and then swapping the strings after that point. Mutations
are also introduced randomly into the population by randomly flipping bits in
the strings. The process of evolution continues until a satisfactory point in the
search space is found.

• Memetic algorithms. This approach, sometimes called genetic local search, is
simply a combination of genetic algorithms and local search. After genetic
recombination, local search is applied to the individuals.

• Tabu search. Previous methods can be augmented to maintain a tabu list con-
taining recently visited points in the search space. The search algorithm avoids
neighbors in the tabu list.

Some search strategies may work better than others on certain data sets, but in
general, finding the global optima remains NP-hard. Many applications, however,
do not require the globally optimal network structure. A locally optimal structure
is often acceptable.

5.3 Markov Equivalence Classes

As discussed earlier, the structure of a Bayesian network encodes a set of con-
ditional independence assumptions. An important observation to make when
trying to learn the structure of a Bayesian network is that two different graphs
can encode the same independence assumptions. As a simple example, the two-
variable network A → B has the same independence assumptions as A ← B.
Solely on the basis of the data, we cannot justify the direction of the edge between
A and B.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

104 chapter 5. structure learning

If two networks encode the same conditional independence assumptions, we
say that they are Markov equivalent. It can be proven that two graphs are Markov
equivalent if and only if they have (1) the same edges, without regard to di-
rection; and (2) the same set of immoral v-structures. An immoral v-structure is
a v-structure X → Y ← Z, with X and Z not directly connected, as shown in
figure 5.4. A Markov equivalence class is a set containing all the directed acyclic
graphs that are Markov equivalent to each other. A method for checking Markov
equivalence is given in algorithm 5.4.

X

Y

Z X

Y

Z

moral immoral Figure 5.4. Moral and immoral v-
structures.

In general, two structures belonging to the sameMarkov equivalence class may
be given different scores. However, if the Bayesian score is used with Dirichlet
priors such that κ = ∑j ∑k αijk is constant for all i, then two Markov equivalent
structures are assigned the same score.7 Such priors are called BDe, and a special 7 This was shown by D. Hecker-

man, D. Geiger, and D.M. Chick-
ering, “Learning Bayesian Net-
works: The Combination of Knowl-
edge and Statistical Data,” Machine
Learning, vol. 20, no. 3, pp. 197–243,
1995.

case is the BDeu prior,8 which assigns αijk = κ/(qiri). Although the commonly

8 W.L. Buntine, “Theory Refine-
ment on Bayesian Networks,” in
Conference on Uncertainty in Artifi-
cial Intelligence (UAI), 1991.

used uniform prior αijk = 1 does not always result in identical scores being
assigned to structures in the same equivalence class, they are often fairly close. A
scoring function that assigns the same score to all structures in the same class is
called score equivalent.

5.4 Partially Directed Graph Search

A Markov equivalence class can be represented as a partially directed graph, some-
times called an essential graph or a directed acyclic graph pattern. A partially directed
graph can contain both directed edges and undirected edges. An example of a
partially directed graph that encodes a Markov equivalence class is shown in
figure 5.5. A directed acyclic graph G is a member of the Markov equivalence
class encoded by a partially directed graph G′ if and only if G has the same edges
as G′ without regard to direction and has the same immoral v-structures as G′.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

5.4. partially directed graph search 105

function are_markov_equivalent(G, H)
if nv(G) != nv(H) || ne(G) != ne(H) ||

!all(has_edge(H, e) || has_edge(H, reverse(e))
for e in edges(G))

return false
end
for (I, J) in [(G,H), (H,G)]

for c in 1:nv(I)
parents = inneighbors(I, c)
for (a, b) in subsets(parents, 2)

if !has_edge(I, a, b) && !has_edge(I, b, a) &&
!(has_edge(J, a, c) && has_edge(J, b, c))
return false

end
end

end
end

return true
end

Algorithm 5.4. A method for de-
termining whether the directed
acyclic graphs G and H are Markov
equivalent. The subsets function
from IterTools.jl returns all sub-
sets of a given set and a specified
size.

A C E

B D

Markov equivalence class

A C E

B D

Member

A C E

B D

Member
A C E

B D

Nonmember

Figure 5.5. A Markov equivalence
class and examples of members
and a nonmember. The nonmem-
ber does not belong to the Markov
equivalence class because it in-
troduces an immoral v-structure,
A → B ← C, which is not in-
dicated in the partially directed
graph.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

106 chapter 5. structure learning

Instead of searching the space of directed acyclic graphs, we can search the
space of Markov equivalence classes represented by partially directed graphs.9 9 Details of how to search this

space are provided by D.M. Chick-
ering, “Learning Equivalence
Classes of Bayesian-Network Struc-
tures,” Journal of Machine Learning
Research, vol. 2, pp. 445–498, 2002.

Although the space of Markov equivalence classes is, of course, smaller than the
space of directed acyclic graphs, it is not significantly smaller; the ratio of directed
acyclic graphs to equivalence classes asymptotes to around 3.7 fairly quickly.10

10 S. B. Gillispie and M.D. Perlman,
“The Size Distribution for Markov
Equivalence Classes of Acyclic Di-
graph Models,” Artificial Intelli-
gence, vol. 141, no. 1–2, pp. 137–155,
2002.

A problem with hill climbing in the space of directed acyclic graphs is that the
neighborhood may consist of other graphs that are in the same equivalence
class with the same score, which can lead to the search becoming stuck in a local
optimum. Searching the space of equivalence classes allows us to jump to different
directed acyclic graphs outside the current equivalence class.

Any of the general search strategies presented in section 5.2 can be used. If a
form of local search is used, then we need to define the local graph operations
that define the neighborhood of the graph. Examples of local graph operations
include:

• If an edge between X and Y does not exist, add either X−Y or X → Y.

• If X−Y or X → Y, then remove the edge between X and Y.

• If X → Y, then reverse the direction of the edge to get X ← Y.

• If X−Y− Z, then add X → Y ← Z.

To score a partially directed graph, we generate a member of its Markov equiva-
lence class and compute its score.

5.5 Summary

• Fitting a Bayesian network to data requires selecting the Bayesian network
structure that dictates the conditional dependencies between variables.

• Bayesian approaches to structure learning maximize the Bayesian score, which
is related to the probability of the graph structure given a data set.

• The Bayesian score promotes simpler structures for smaller data sets and
supports more complicated structures for larger data sets.

• The number of possible structures is superexponential in the number of vari-
ables, and finding a structure that maximizes the Bayesian score is NP-hard.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

5.6. exercises 107

• Directed graph search algorithms like K2 and local search can be efficient but
do not guarantee optimality.

• Methods like partially directed graph search traverse the space of Markov
equivalence classes, which may be more efficient than searching the larger
space of directed acyclic graphs.

5.6 Exercises
Exercise 5.1. How many neighbors does an edgeless directed acyclic graph with m nodes
have?

Solution:Of the three basic graph operations,we can only add edges.We can add any edge to
an edgeless directed acyclic graph and it will remain acyclic. There are m(m− 1) = m2−m

node pairs, and therefore that many neighbors.

Exercise 5.2. How many networks are in the neighborhood of the following Bayesian
network?

A B

C D

Solution: We can perform the following graph operations:
• Add A→ D, D → A, D → C

• Remove A→ B, A→ C, B→ C, D → B

• Flip A→ B, B→ C, D → B

Thus, there are 10 Bayesian networks in the neighborhood.

Exercise 5.3. Suppose we start local search with a Bayesian network G. What is the fewest
number of iterations of local search that could be performed to converge to the optimal
Bayesian network G∗?

G A B C D E F

G∗ A B C D E F

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

108 chapter 5. structure learning

Solution: At each iteration, local search can move from the original network to a network in
its neighborhood, which is at most one edge operation from the original network. Since
there are three differences between the edges of G and G∗, performing local search from
G would require a minimum of three iterations to arrive at G∗. One potential minimal
sequence of local search iterations could be flipping A→ B, removing B→ C, and adding
E→ D. We assume that the graphs formed with these edge operations yielded the highest
Bayesian scores of all graphs in the considered neighborhood.

Exercise 5.4. Draw the partially directed acyclic graph representing the Markov equiv-
alence class of the following Bayesian network. How many graphs are in this Markov
equivalence class?

A B C

D E F

Solution: The Markov equivalence class can be represented by the following partially
directed acyclic graph:

A B C

D E F
There are six networks in this Markov equivalence class, which are shown here:

A B C

D E F

A B C

D E F

A B C

D E F

A B C

D E F

A B C

D E F

A B C

D E F

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

5.6. exercises 109

Exercise 5.5. Give an example of a partially directed acyclic graph with four nodes that
does not define a nonempty Markov equivalence class.

Solution: Consider the following partially directed acyclic graph:

A B

C D

We cannot replace the undirected edge with a directed edge because doing so would
introduce a new v-structure.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

6 Simple Decisions

This chapter introduces the notion of simple decisions, where we make a single
decision under uncertainty.1 We will study the problem of decision making from 1 Simple decisions are simple

compared to sequential problems,
which are the focus of the rest of
the book. Simple decisions are
not necessarily simple to solve,
though.

the perspective of utility theory, which involves modeling the preferences of an
agent as a real-valued function over uncertain outcomes.2 This chapter begins

2 Schoemaker provides an
overview of the development
of utility theory. See P. J.H.
Schoemaker, “The Expected Utility
Model: Its Variants, Purposes,
Evidence and Limitations,”
Journal of Economic Literature,
vol. 20, no. 2, pp. 529–563, 1982.
Fishburn surveys the field. See
P.C. Fishburn, “Utility Theory,”
Management Science, vol. 14, no. 5,
pp. 335–378, 1968.

by discussing how a small set of constraints on rational preferences can lead to
the existence of a utility function. This utility function can be inferred from a
sequence of preference queries. We then introduce the maximum expected utility
principle as a definition of rationality, a central concept in decision theory that
will be used as a driving principle for decision making in this book.3 We show

3 A survey of the field of decision
theory is provided by M. Peterson,
An Introduction to Decision Theory.
Cambridge University Press, 2009.

how decision problems can be represented as decision networks and show an
algorithm for solving for an optimal decision. The concept of value of information
is introduced, which measures the utility gained through observing additional
variables. The chapter concludes with a brief discussion of how human decision
making is not always consistent with the maximum expected utility principle.

6.1 Constraints on Rational Preferences

We began our discussion on uncertainty in chapter 2 by identifying the need to
compare our degree of belief in different statements. This chapter requires the
ability to compare the degree of desirability of two different outcomes. We state
our preferences using the following operators:

• A ≻ B if we prefer A over B.

• A ∼ B if we are indifferent between A and B.

• A � B if we prefer A over B or are indifferent.

112 chapter 6. s imple decis ions

Just as beliefs can be subjective, so can preferences.
In addition to comparing events, our preference operators can be used to

compare preferences over uncertain outcomes. A lottery is a set of probabilities
associated with a set of outcomes. For example, if S1:n is a set of outcomes and
p1:n are their associated probabilities, then the lottery involving these outcomes
and probabilities is written as

[S1 : p1; . . . ; Sn : pn] (6.1)

The existence of a real-valued measure of utility emerges from a set of assump-
tions about preferences.4 From this utility function, it is possible to define what it 4 The theory of expected utility

was introduced by the Swiss math-
ematician and physicist Daniel
Bernoulli (1700–1782) in 1738. See
D. Bernoulli, “Exposition of a New
Theory on the Measurement of
Risk,” Econometrica, vol. 22, no. 1,
pp. 23–36, 1954.

means to make rational decisions under uncertainty. Just as we imposed a set of
constraints on beliefs, we will impose some constraints on preferences:5

5 These constraints are some-
times called the von Neumann–
Morgenstern axioms, named
after the Hungarian-American
mathematician and physicist John
von Neumann (1903–1957) and
the Austrian-American economist
Oskar Morgenstern (1902–1977).
They formulated a variation of
these axioms. See J. von Neumann
and O. Morgenstern, Theory of
Games and Economic Behavior.
Princeton University Press, 1944.
Critiques of these axioms are
discussed by P. Anand, “Are
the Preference Axioms Really
Rational?” Theory and Decision,
vol. 23, no. 2, pp. 189–214, 1987.

• Completeness. Exactly one of the following holds: A ≻ B, B ≻ A, or A ∼ B.

• Transitivity. If A � B and B � C, then A � C.

• Continuity. If A � C � B, then there exists a probability p such that [A : p; B :

1− p] ∼ C.

• Independence. If A ≻ B, then for any C and probability p, [A : p; C : 1− p] �
[B : p; C : 1− p].

These are constraints on rational preferences. They say nothing about the preferences
of actual human beings; in fact, there is strong evidence that humans are not
always rational (a point discussed further in section 6.7). Our objective in this
book is to understand rational decision making from a computational perspective
so that we can build useful systems. The possible extension of this theory to
understanding human decision making is only of secondary interest.

6.2 Utility Functions

Just as constraints on the comparison of the plausibility of different statements
lead to the existence of a real-valued probability measure, constraints on ratio-
nal preferences lead to the existence of a real-valued utility measure. It follows
from our constraints on rational preferences that there exists a real-valued utility
function U such that

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

6.2. utility functions 113

• U(A) > U(B) if and only if A ≻ B, and

• U(A) = U(B) if and only if A ∼ B.

The utility function is unique up to a positive affine transformation. In other words,
for any constants m > 0 and b, U′(S) = mU(S) + b if and only if the preferences
induced by U′ are the same as U. Utilities are like temperatures: you can com-
pare temperatures using Kelvin, Celsius, or Fahrenheit, all of which are affine
transformations of each other.

It follows from the constraints on rational preferences that the utility of a lottery
is given by

U([S1 : p1; . . . ; Sn : pn]) =
n

∑
i=1

piU(Si) (6.2)

Example 6.1 applies this equation to compute the utility of outcomes involving a
collision avoidance system.

Suppose that we are building a collision avoidance system. The outcome of
an encounter of an aircraft is defined by whether the system alerts (A) and
whether a collision occurs (C). Because A and C are binary, there are four
possible outcomes. So long as our preferences are rational, we can write our
utility function over the space of possible lotteries in terms of four parameters:
U(a0, c0), U(a1, c0), U(a0, c1), and U(a1, c1). For example,

U([a0, c0 : 0.5; a1, c0 : 0.3; a0, c1 : 0.1; a1, c1 : 0.1])

is equal to

0.5U(a0, c0) + 0.3U(a1, c0) + 0.1U(a0, c1) + 0.1U(a1, c1)

Example 6.1. A lottery involving
the outcomes of a collision avoid-
ance system.

If the utility function is bounded, thenwe can define a normalized utility function,
where the best possible outcome is assigned utility 1 and the worst possible
outcome is assigned utility 0. The utility of each of the other outcomes is scaled
and translated as necessary.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

114 chapter 6. s imple decis ions

6.3 Utility Elicitation

In building a decision-making or decision support system, it is often helpful to
infer the utility function from a human or a group of humans. This approach is
called utility elicitation or preference elicitation.6 One way to go about doing this 6 A variety of methods for utility

elicitation are surveyed by P.H. Far-
quhar, “Utility Assessment Meth-
ods,” Management Science, vol. 30,
no. 11, pp. 1283–1300, 1984.

is to fix the utility of the worst outcome S to 0 and the best outcome S to 1. So
long as the utilities of the outcomes are bounded, we can translate and scale the
utilities without altering our preferences. If we want to determine the utility of
outcome S, then we determine probability p such that S ∼ [S : p; S : 1− p]. It then
follows that U(S) = p. Example 6.2 applies this process to determine the utility
function associated with a collision avoidance problem.

In our collision avoidance example, the best possible event is to not alert and
not have a collision, and so we set U(a0, c0) = 1. The worst possible event
is to alert and have a collision, and so we set U(a1, c1) = 0. We define the
lottery L(p) to be [a0, c0 : p; a1, c1 : 1− p]. To determine U(a1, c0), we must
find p such that (a1, c0) ∼ L(p). Similarly, to determine U(a0, c1), we find p

such that (a0, c1) ∼ L(p).

Example 6.2. Utility elicitation ap-
plied to collision avoidance.

It may be tempting to use monetary values to infer utility functions. For exam-
ple, if we are building a decision support system for managing wildfires, it may
be tempting to define a utility function in terms of the monetary cost incurred by
property damage and the monetary cost for deploying fire suppression resources.
However, it is well known in economics that the utility of wealth, in general, is
not linear.7 If there were a linear relationship between utility and wealth, then 7 H. Markowitz, “The Utility of

Wealth,” Journal of Political Econ-
omy, vol. 60, no. 2, pp. 151–158,
1952.

decisions should be made in terms of maximizing expected monetary value.
Someone who tries to maximize expected monetary value would have no use
for insurance because the expected monetary values of insurance policies are
generally negative.

Instead of trying to maximize expected wealth, we generally want to maximize
the expected utility of wealth. Of course, different people have different utility
functions. Figure 6.1 shows an example of a utility function. For small amounts
of wealth, the curve is roughly linear, where $100 is about twice as good at $50.
For larger amounts of wealth, however, the curve tends to flatten out; after all,

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

6.3. utility elicitation 115

$1000 is worth less to a billionaire than it is to the average person. The flattening
of the curve is sometimes referred to as diminishing marginal utility.

0
0

x

U
(x
)

Figure 6.1. The utility of wealth x
is often modeled as linear for small
values and then concave for larger
values, exhibiting risk aversion.

When discussing monetary utility functions, the three terms listed here are
often used. To illustrate this, assume that A represents being given $50 and B

represents a 50 % chance of winning $100.

• Risk neutral. The utility function is linear. There is no preference between $50
and the 50 % chance of winning $100 (A ∼ B).

• Risk seeking. The utility function is convex. There is a preference for the 50 %

chance of winning $100 (A ≺ B).

• Risk averse. The utility function is concave. There is a preference for the $50
(A ≻ B).

There are several common functional forms for modeling risk aversion of scalar
quantities,8 such as wealth or the availability of hospital beds. One is quadratic 8 These functional forms have been

well studied within economics and
finance. J. E. Ingersoll, Theory of Fi-
nancial Decision Making. Rowman
and Littlefield Publishers, 1987.

utility:
U(x) = λx− x2 (6.3)

where the parameter λ > 0 controls the risk aversion. Since we generally want
this utility function to be monotonically increasing when modeling the utility of
quantities like wealth, we would cap this function at x = λ/2. After that point,
the utility starts decreasing. Another simple form is exponential utility:

U(x) = 1− e−λx (6.4)

with λ > 0. Although it has a convenient mathematical form, it is generally not
viewed as a plausible model of the utility of wealth. An alternative is the power
utility:

U(x) =
x1−λ − 1

1− λ
(6.5)

with λ ≥ 0 and λ 6= 1. The logarithmic utility

U(x) = log x (6.6)

with x > 0 can be viewed as a special case of the power utility where λ → 1.
Figure 6.2 shows a plot of the power utility function with the logarithmic utility
as a special case.

1 2 3 4
0

0.5

1

1.5

2

x

U
(x
)

λ = 0 λ→ 1

λ = 5 λ = 10

Figure 6.2. Power utility functions.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

116 chapter 6. s imple decis ions

6.4 Maximum Expected Utility Principle

We are interested in the problem of making rational decisions with imperfect
knowledge of the state of the world. Suppose that we have a probabilistic model
P(s′ | o, a), which represents the probability that the state of the world becomes
s′, given that we observe o and take action a. We have a utility function U(s′) that
encodes our preferences over the space of outcomes. Our expected utility of taking
action a, given observation o, is given by

EU(a | o) = ∑
s′

P(s′ | a, o)U(s′) (6.7)

The principle of maximum expected utility says that a rational agent should choose
the action that maximizes expected utility:

a∗ = arg max
a

EU(a | o) (6.8)

Because we are interested in building rational agents, equation (6.8) plays a
central role in this book.9 Example 6.3 applies this principle to a simple decision 9 The importance of the maximum

expected utility principle to the
field of artificial intelligence is dis-
cussed by S. Russell and P. Norvig,
Artificial Intelligence: A Modern Ap-
proach, 4th ed. Pearson, 2021.

problem.

6.5 Decision Networks

A decision network, sometimes called an influence diagram, is a generalization of a
Bayesian network to include action and utility nodes so that we may compactly
represent the probability and utility models defining a decision problem.10 The 10 An extensive discussion of de-

cision networks can be found
in F.V. Jensen and T.D. Nielsen,
Bayesian Networks and Decision
Graphs, 2nd ed. Springer, 2007.

state, action, and observation spaces in the previous section may be factored, and
the structure of a decision network captures the relationships between the various
components.

Decision networks are composed of three types of nodes:

• A chance node corresponds to a random variable (indicated by a circle).

• An action node corresponds to a decision variable (indicated by a square).

• A utility node corresponds to a utility variable (indicated by a diamond) and
cannot have children.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

6.5. decis ion networks 117

Suppose that we are trying to decide whether to bring an umbrella on our
vacation given the weather forecast for our destination. We observe the
forecast o, which may be either rain or sun. Our action a is either to bring
our umbrella or leave our umbrella. The resulting state s′ is a combination of
whether we brought our umbrella and whether there is sun or rain at our
destination. Our probabilistic model is as follows:

o a s′ P(s′ | a, o)

forecast rain bring umbrella rain with umbrella 0.9
forecast rain leave umbrella rain without umbrella 0.9
forecast rain bring umbrella sun with umbrella 0.1
forecast rain leave umbrella sun without umbrella 0.1
forecast sun bring umbrella rain with umbrella 0.2
forecast sun leave umbrella rain without umbrella 0.2
forecast sun bring umbrella sun with umbrella 0.8
forecast sun leave umbrella sun without umbrella 0.8

As shown in the table, we assume that our forecast is imperfect; rain
forecasts are right 90 % of the time and sun forecasts are right 80 % of the
time. In addition, we assume that bringing an umbrella does not affect the
weather, though some may question this assumption. The utility function is
as follows:

s′ U(s′)

rain with umbrella −0.1
rain without umbrella −1
sun with umbrella 0.9
sun without umbrella 1

We can compute the expected utility of bringing our umbrella if we forecast
rain using equation (6.7):

EU(bring umbrella | forecast rain) = 0.9×−0.1 + 0.1× 0.9 = 0

Likewise, we can compute the expected utility of leaving our umbrella if we
forecast rain using equation (6.7):

EU(leave umbrella | forecast rain) = 0.9×−1 + 0.1× 1 = −0.8

Hence, we will want to bring our umbrella.

Example 6.3. Applying the princi-
ple of maximum expected utility to
the simple decision of whether to
bring an umbrella.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

118 chapter 6. s imple decis ions

There are three kinds of directed edges:
• A conditional edge ends in a chance node and indicates that the uncertainty in

that chance node is conditioned on the values of all its parents.

• An informational edge ends in an action node and indicates that the decision
associated with that node is made with knowledge of the values of its parents.
(These edges are often drawn with dashed lines and are sometimes omitted
from diagrams for simplicity.)

• A functional edge ends in a utility node and indicates that the utility node is
determined by the outcomes of its parents.

Like Bayesian networks, decision networks cannot have cycles. The utility asso-
ciated with an action is equal to the sum of the values at all the utility nodes.
Example 6.4 illustrates how a decision network canmodel the problem of whether
to treat a disease, given the results of diagnostic tests.

We have a set of results from diagnostic tests thatmay indicate the presence of
a particular disease. Given what is known about the tests, we need to decide
whether to apply a treatment. The utility is a function of whether a treatment
is applied and whether the disease is actually present. Conditional edges
connect D to O1, O2, and O3. Informational edges are not explicitly shown
in the illustration, but they would connect the observations to T. Functional
edges connect T and D to U.

T D U(T, D)

0 0 0

0 1 −10

1 0 −1

1 1 −1

T

D U

O1 O2 O3

Treat?

Disease?

Results from diagnostic tests

Example 6.4. An example of a
decision network used to model
whether to treat a disease, given
information from diagnostic tests.

Solving a simple problem (algorithm 6.1) requires iterating over all possible
decision instantiations to find a decision that maximizes expected utility. For each

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

6.6. value of information 119

instantiation,we evaluate the associated expected utility.We begin by instantiating
the action nodes and observed chance nodes. We can then apply any inference
algorithm to compute the posterior over the inputs to the utility function. The
expected utility is the sum of the values at the utility nodes. Example 6.5 shows
how this process can be applied to our running example.

struct SimpleProblem
bn::BayesianNetwork
chance_vars::Vector{Variable}
decision_vars::Vector{Variable}
utility_vars::Vector{Variable}
utilities::Dict{Symbol, Vector{Float64}}

end

function solve(𝒫::SimpleProblem, evidence, M)
query = [var.name for var in 𝒫.utility_vars]
U(a) = sum(𝒫.utilities[uname][a[uname]] for uname in query)
best = (a=nothing, u=-Inf)
for assignment in assignments(𝒫.decision_vars)

evidence = merge(evidence, assignment)
ϕ = infer(M, 𝒫.bn, query, evidence)
u = sum(p*U(a) for (a, p) in ϕ.table)
if u > best.u

best = (a=assignment, u=u)
end

end
return best

end

Algorithm 6.1. A simple problem
as a decision network. A decision
network is a Bayesian networkwith
chance, decision, and utility vari-
ables. Utility variables are treated
as deterministic. Because variables
in our Bayesian network take val-
ues from 1 : ri , the utility variables
are mapped to real values by the
utilities field. For example, if we
have a utility variable :u1, the ith
utility associatedwith that variable
is utilities[:u1][i]. The solve
function takes as input the prob-
lem, evidence, and an inference
method. It returns the best assign-
ment to the decision variables and
its associated expected utility.

A variety of methods have been developed to make evaluating decision net-
works more efficient.11 One method involves removing action and chance nodes

11 R.D. Shachter, “Evaluating In-
fluence Diagrams,” Operations Re-
search, vol. 34, no. 6, pp. 871–882,
1986. R.D. Shachter, “Probabilis-
tic Inference and Influence Dia-
grams,”Operations Research, vol. 36,
no. 4, pp. 589–604, 1988.from decision networks if they have no children, as defined by conditional, infor-

mational, or functional edges. In example 6.5, we can remove O2 and O3 because
they have no children. We cannot remove O1 because we treated it as observed,
indicating that there is an informational edge from O1 to T (although it is not
drawn explicitly).

6.6 Value of Information

Wemake decisions based onwhatwe observe. Inmany applications, it is natural to
want to quantify the value of information, which is how much observing additional
variables is expected to increase our utility.12 For example, in the disease treatment

12 R.A. Howard, “Information
Value Theory,” IEEE Transactions
on Systems Science and Cybernetics,
vol. 2, no. 1, pp. 22–26, 1966.
Applications to decision networks
can be found in: S. L. Dittmer and
F.V. Jensen, “Myopic Value of In-
formation in Influence Diagrams,”
in Conference on Uncertainty in
Artificial Intelligence (UAI), 1997.
R.D. Shachter, “Efficient Value
of Information Computation,”
in Conference on Uncertainty in
Artificial Intelligence (UAI), 1999.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

120 chapter 6. s imple decis ions

We can use equation (6.7) to compute the expected utility of treating a disease
for the decision network in example 6.4. For now, we will assume that we
have the result from only the first diagnostic test and it came back positive.
If we wanted to make the knowledge of the first diagnostic test explicit in
the diagram, then we would draw an informational edge from O1 to T, and
we would have

EU(t1 | o1
1) = ∑

o3

∑
o2

∑
d

P(d, o2, o3 | t1, o1
1)U(t1, d, o1

1, o2, o3)

We can use the chain rule for Bayesian networks and the definition of con-
ditional probability to compute P(d, o2, o3 | t1, o1

1). Because the utility node
depends only on whether the disease is present and whether we treat it, we
can simplify U(t1, d, o1

1, o2, o3) to U(t1, d). Hence,

EU(t1 | o1
1) = ∑

d

P(d | t1, o1
1)U(t1, d)

Any of the exact or approximate inference methods introduced in the previ-
ous chapter can be used to evaluate P(d | t1, o1

1). To decide whether to apply
a treatment, we compute EU(t1 | o1

1) and EU(t0 | o1
1) and make the decision

that provides the highest expected utility.

Example 6.5. Decision network
evaluation of the diagnostic test
problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

6.6. value of information 121

application in example 6.5, we assumed that we have only observed o1
1. Given

the positive result from that one diagnostic test alone, we may decide against
treatment. However, it may be beneficial to administer additional diagnostic tests
to reduce the risk of not treating a disease that is really present.

In computing the value of information, we will use EU∗(o) to denote the
expected utility of an optimal action, given observation o. The value of information
about variable O′, given o, is

VOI(O′ | o) =

(

∑
o′

P(o′ | o)EU∗(o, o′)

)

− EU∗(o) (6.9)

In otherwords, the value of information about a variable is the increase in expected
utility if that variable is observed. Algorithm 6.2 provides an implementation of
this.

function value_of_information(𝒫, query, evidence, M)
ϕ = infer(M, 𝒫.bn, query, evidence)
voi = -solve(𝒫, evidence, M).u
query_vars = filter(v->v.name ∈ query, 𝒫.chance_vars)
for o′ in assignments(query_vars)

oo′ = merge(evidence, o′)
p = ϕ.table[o′]
voi += p*solve(𝒫, oo′, M).u

end
return voi

end

Algorithm 6.2. A method for com-
puting the value of information
of a query query given observed
chance variables and their values
evidence. The method addition-
ally takes a simple problem 𝒫 and
an inference strategy M.

The value of information is never negative. The expected utility can increase
only if additional observations can lead to different optimal decisions. If observing
a new variable O′ makes no difference in the choice of action, then EU∗(o, o′) =
EU∗(o) for all o′, in which case equation (6.9) evaluates to 0. For example, if the
optimal decision is to treat the disease regardless of the outcome of the diagnostic
test, then the value of observing the outcome of the test is 0.

The value of information only captures the increase in expected utility from
making an observation. A cost may be associated with making a particular obser-
vation. Some diagnostic tests may be inexpensive, such as a temperature reading;
other diagnostic tests are more costly and invasive, such as a lumbar puncture.
The value of information obtained by a lumbar puncture may be much greater
than that of a temperature reading, but the costs of the tests should be taken into
consideration.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

122 chapter 6. s imple decis ions

Value of information is an important and often-used metric for choosing what
to observe. Sometimes the value of information metric is used to determine an
appropriate sequence of observations. After each observation, the value of infor-
mation is determined for the remaining unobserved variables. The unobserved
variable with the greatest value of information is then selected for observation. If
there are costs associated with making different observations, then these costs are
subtracted from the value of information when determining which variable to
observe. The process continues until it is no longer beneficial to observe any more
variables. The optimal action is then chosen. This greedy selection of observations
is only a heuristic; it may not represent the truly optimal sequence of observations.
The optimal selection of observations can be determined by using the techniques
for sequential decision making introduced in later chapters.

6.7 Irrationality

Decision theory is a normative theory, which is prescriptive, not a descriptive theory,
which is predictive of human behavior. Human judgment and preference often do
not follow the rules of rationality outlined in section 6.1.13 Even human experts 13 Kahneman and Tversky provide

a critique of expected utility the-
ory and introduce an alternative
model called prospect theory, which
appears to be more consistent with
human behavior. D. Kahneman
and A. Tversky, “Prospect Theory:
An Analysis of Decision Under
Risk,” Econometrica, vol. 47, no. 2,
pp. 263–292, 1979.

may have an inconsistent set of preferences, which can be problematic when
designing a decision support system that attempts to maximize expected utility.

Example 6.6 shows that certainty often exaggerates losses that are certain
compared to losses that are merely probable. This certainty effect works with gains
as well. A smaller gain that is certain is often preferred over a much greater
gain that is only probable, in a way that the axioms of rationality are necessarily
violated.

Example 6.7 demonstrates the framing effect, where people decide on options
based on whether they are presented as a loss or as a gain. Many other cognitive
biases can lead to deviations from what is prescribed by utility theory.14 Special 14 Several recent books discuss

apparent human irrationality. D.
Ariely, Predictably Irrational: The
Hidden Forces That Shape Our Deci-
sions. Harper, 2008. J. Lehrer, How
We Decide. Houghton Mifflin, 2009.

care must be given when trying to elicit utility functions from human experts to
build decision support systems. Although the recommendations of the decision
support system may be rational, they may not exactly reflect human preferences
in certain situations.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

6.7. irrationality 123

Tversky and Kahneman studied the preferences of university students who
answered questionnaires in a classroom setting. They presented students
with questions dealing with the response to an epidemic. The students were
to reveal their preference between the following two outcomes:

• A: 100 % chance of losing 75 lives

• B: 80 % chance of losing 100 lives

Most preferred B over A. From equation (6.2), we know

U(lose 75) < 0.8U(lose 100) (6.10)

They were then asked to choose between the following two outcomes:

• C: 10 % chance of losing 75 lives

• D: 8 % chance of losing 100 lives

Most preferred C over D. Hence, 0.1U(lose 75) > 0.08U(lose 100). We mul-
tiply both sides by 10 and get

U(lose 75) > 0.8U(lose 100) (6.11)

Of course, equations (6.10) and (6.11) result in a contradiction.We havemade
no assumption about the actual value of U(lose 75) and U(lose 100)—we did
not even assume that losing 100 lives was worse than losing 75 lives. Because
equation (6.2) follows directly from the von Neumann–Morgenstern axioms
given in section 6.1, theremust be a violation of at least one of the axioms, even
though many people who select B and C seem to find the axioms agreeable.

Example 6.6. An experiment
demonstrating that certainty often
exaggerates losses that are certain
relative to losses that are merely
probable. A. Tversky and D. Kah-
neman, “The Framing of Decisions
and the Psychology of Choice,” Sci-
ence, vol. 211, no. 4481, pp. 453–458,
1981.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

124 chapter 6. s imple decis ions

Tversky and Kahneman demonstrated the framing effect using a hypothetical
scenario in which an epidemic is expected to kill 600 people. They presented
students with the following two outcomes:

• E: 200 people will be saved.

• F: 1/3 chance that 600 people will be saved and 2/3 chance that no people
will be saved.

The majority of students chose E over F. They then asked them to choose
between the following:

• G: 400 people will die.

• H: 1/3 chance that nobody will die and 2/3 chance that 600 people will
die.

The majority of students chose H over G, even though E is equivalent to G

and F is equivalent to H. This inconsistency is due to how the question is
framed.

Example 6.7. An experiment
demonstrating the framing effect.
A. Tversky and D. Kahneman,
“The Framing of Decisions and
the Psychology of Choice,” Science,
vol. 211, no. 4481, pp. 453–458,
1981.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

6.8. summary 125

6.8 Summary

• Rational decision making combines probability and utility theory.

• The existence of a utility function follows from constraints on rational prefer-
ences.

• A rational decision is one that maximizes expected utility.

• Decision problems can be modeled using decision networks, which are exten-
sions of Bayesian networks that include actions and utilities.

• Solving a simple decision involves inference in Bayesian networks and is thus
NP-hard.

• The value of information measures the gain in expected utility should a new
variable be observed.

• Humans are not always rational.

6.9 Exercises
Exercise 6.1. Suppose that we have a utility function U(s) with a finite maximum value
U and a finite minimum value U. What is the corresponding normalized utility function
Û(s) that preserves the same preferences?

Solution: A normalized utility function has a maximum value of 1 and a minimum value of
0. Preferences are preserved under affine transforms, so we determine the affine transform
of U(s) that matches the unit bounds. This transform is

Û(s) =
U(s)−U

U −U
=

1

U −U
U(s)− U

U −U

Exercise 6.2. If A � C � B and the utilities of each outcome are U(A) = 450, U(B) =

−150, and U(C) = 60, what is the lottery over A and B that will make us indifferent
between the lottery and C?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

126 chapter 6. s imple decis ions

Solution:A lottery over A and B is defined as [A : p; B : 1− p]. To satisfy indifference between
the lottery and C ([A : p; B : 1− p] ∼ C), we must have U([A : p; B : 1− p]) = U(C). Thus,
we must compute p that satisfies the equality

U([A : p; B : 1− p]) = U(C)

pU(A) + (1− p)U(B) = U(C)

p =
U(C)−U(B)

U(A)−U(B)

p =
60− (−150)

450− (−150)
= 0.35

This implies that the lottery [A : 0.35; B : 0.65] is equally as desired as C.

Exercise 6.3. Suppose that for a utility function U over three outcomes A, B, and C, that
U(A) = 5, U(B) = 20, and U(C) = 0. We are given a choice between a lottery that gives
us a 50 % probability of B and a 50 % probability of C and a lottery that guarantees A.
Compute the preferred lottery and show that, under the positive affine transformation
with m = 2 and b = 30, that we maintain a preference for the same lottery.

Solution: The first lottery is given by [A : 0.0; B : 0.5; C : 0.5], and the second lottery is given
by [A : 1.0; B : 0.0; C : 0.0]. The original utilities for each lottery are given by

U([A : 0.0; B : 0.5; C : 0.5]) = 0.0U(A) + 0.5U(B) + 0.5U(C) = 10

U([A : 1.0; B : 0.0; C : 0.0]) = 1.0U(A) + 0.0U(B) + 0.0U(C) = 5

Thus, since U([A : 0.0; B : 0.5; C : 0.5]) > U([A : 1.0; B : 0.0; C : 0.0]), we prefer the first
lottery. Under the positive affine transformation m = 2 and b = 30, our new utilities can
be computed as U′ = 2U + 30. The new utilities are then U′(A) = 40, U′(B) = 70, and
U′(C) = 30. The new utilities for each lottery are

U′([A : 0.0; B : 0.5; C : 0.5]) = 0.0U′(A) + 0.5U′(B) + 0.5U′(C) = 50

U′([A : 1.0; B : 0.0; C : 0.0]) = 1.0U′(A) + 0.0U′(B) + 0.0U′(C) = 40

Since U′([A : 0.0; B : 0.5; C : 0.5]) > U′([A : 1.0; B : 0.0; C : 0.0]), we maintain a preference for
the first lottery.

Exercise 6.4. Prove that the power utility function in equation (6.5) is risk averse for all
x > 0 and λ > 0 with λ 6= 1.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

6.9. exercises 127

Solution: Risk aversion implies that the utility function is concave, which requires that the
second derivative of the utility function is negative. The utility function and its derivatives
are computed as follows:

U(x) =
x1−λ − 1

1− λ
dU

dx
=

1

xλ

d2U

dx2
=
−λ

xλ+1

For x > 0 and λ > 0, λ 6= 1, xλ+1 is a positive number raised to a positive exponent, which
is guaranteed to be positive. Multiplying this by −λ guarantees that the second derivative
is negative. Thus, for all x > 0 and λ > 0, λ 6= 1, the power utility function is risk averse.

Exercise 6.5. Using the parameters given in example 6.3, compute the expected utility of
bringing our umbrella if we forecast sun and the expected utility of leaving our umbrella
behind if we forecast sun. What is the action that maximizes our expected utility, given
that we forecast sun?

Solution:

EU(bring umbrella | forecast sun) = 0.2×−0.1 + 0.8× 0.9 = 0.7

EU(leave umbrella | forecast sun) = 0.2×−1.0 + 0.8× 1.0 = 0.6

The action that maximizes our expected utility if we forecast sun is to bring our umbrella!

Exercise 6.6. Suppose that we are trying to optimally decide whether or not to feed (F)
our new puppy based on the likelihood that the puppy is hungry (H). We can observe
whether the puppy is whining (W) and whether someone else has recently fed the puppy
(R). The utilities of each combination of feeding and hunger and the decision network
representation are provided here:

F H U(F, H)

0 0 0.0

0 1 −1.0

1 0 −0.5

1 1 −0.1

F

H U

W R

Feed?

Hungry?

Whining? Recently Fed?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

128 chapter 6. s imple decis ions

Given that P(h1 | w1) = 0.78, if we observe the puppywhining (w1), what are the expected
utilities of not feeding the puppy (f 0) and feeding the puppy (f 1)? What is the optimal
action?

Solution: We start with the definition of expected utility and recognize that the utility
depends only on H and F:

EU(f 0 | w1) = ∑
h

P(h | w1)U(f 0, h)

Now, we can compute the expected utility of feeding the puppy given that it is whining
and, in a similar fashion as before, the expected utility of not feeding the puppy given that
it is whining:

EU(f 0 | w1) = 0.22× 0.0 + 0.78×−1.0 = −0.78

EU(f 1 | w1) = 0.22×−0.5 + 0.78×−0.1 = −0.188

Thus, the optimal action is to feed the puppy (f 1) since this maximizes our expected utility
EU∗(w1) = −0.188.

Exercise 6.7. Using the results from exercise 6.6, if P(r1 | w1) = 0.2, P(h1 | w1, r0) = 0.9,
and P(h1 | w1, r1) = 0.3, what is the value of information of asking someone else if the
puppy has recently been fed, given that we observe the puppy to be whining (w1)?

Solution: We are interested in computing

VOI(R | w1) =

(

∑
r

P(r | w1)EU∗(w1, r)

)

− EU∗(w1)

We start by computing EU(f | w1, r) for all f and r. Following a similar derivation as in
exercise 6.6, we have

EU(f 0 | w1, r0) = ∑
h

P(h | w1, r0)U(f 0, h)

So, for each combination of F and R, we have the following expected utilities:

EU(f 0 | w1, r0) = ∑
h

P(h | w1, r0)U(f 0, h) = 0.1× 0.0 + 0.9×−1.0 = −0.9

EU(f 1 | w1, r0) = ∑
h

P(h | w1, r0)U(f 1, h) = 0.1×−0.5 + 0.9×−0.1 = −0.14

EU(f 0 | w1, r1) = ∑
h

P(h | w1, r1)U(f 0, h) = 0.7× 0.0 + 0.3×−1.0 = −0.3

EU(f 1 | w1, r1) = ∑
h

P(h | w1, r1)U(f 1, h) = 0.7×−0.5 + 0.3×−0.1 = −0.38

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

6.9. exercises 129

The optimal expected utilities are

EU∗(w1, r0) = −0.14

EU∗(w1, r1) = −0.3

Now, we can compute the value of information:

VOI(R | w1) = 0.8(−0.14) + 0.2(−0.3)− (−0.188) = 0.016

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

part i i
sequential problems

Up to this point, we have assumed that we make a single decision at one point in
time, butmany important problems require that wemake a series of decisions. The
same principle of maximum expected utility still applies, but optimal decision
making in a sequential context requires reasoning about future sequences of
actions and observations. This part of the book will discuss sequential decision
problems in stochastic environments. We will focus on a general formulation of
sequential decision problems under the assumption that the model is known and
that the environment is fully observable. We will relax both of these assumptions
later. Our discussion will begin with the introduction of theMarkov decision process
(MDP), the standard mathematical model for sequential decision problems. We
will discuss several approaches for finding exact solutions. Because large problems
sometimes do not permit exact solutions to be efficiently found, we will discuss a
collection of both offline and online approximate solution methods, along with
a type of method that involves directly searching the space of parameterized
decision policies. Finally, we will discuss approaches for validating that our
decision strategies will perform as expected when deployed in the real world.

7 Exact Solution Methods

This chapter introduces a model known as a Markov decision process (MDP) to
represent sequential decision problems where the effects of our actions are uncer-
tain.1 We beginwith a description of themodel, which specifies both the stochastic

1 Such models were originally stud-
ied in the 1950s. R. E. Bellman, Dy-
namic Programming. Princeton Uni-
versity Press, 1957. Amodern treat-
ment can be found in M.L. Put-
erman, Markov Decision Processes:
Discrete Stochastic Dynamic Program-
ming. Wiley, 2005.

dynamics of the system as well as the utility associated with its evolution. Dif-
ferent algorithms can be used to compute the utility associated with a decision
strategy and to search for an optimal strategy. Under certain assumptions, we can
find exact solutions to MDPs. Later chapters will discuss approximation methods
that tend to scale better to larger problems.

7.1 Markov Decision Processes

In an MDP (algorithm 7.1), we choose action at at time t based on observing state
st. We then receive a reward rt. The action space A is the set of possible actions,
and the state space S is the set of possible states. Some of the algorithms assume
that these sets are finite, but this is not required in general. The state evolves
probabilistically based on the current state and action we take. The assumption
that the next state depends only on the current state and action and not on any
prior state or action is known as the Markov assumption.

A1 A2 A3

R1 R2 R3

S1 S2 S3

Figure 7.1. MDP decision network
diagram.

At

Rt

St St+1

Figure 7.2. Stationary MDP deci-
sion network diagram. All MDPs
have this general structure.

An MDP can be represented using a decision network as shown in figure 7.1.
There are informational edges (not shown here) from A1:t−1 and S1:t to At. The
utility function is decomposed into rewards R1:t. We focus on stationary MDPs
in which P(St+1 | St, At) and P(Rt | St, At) do not vary with time. Stationary
MDPs can be compactly represented by a dynamic decision diagram as shown
in figure 7.2. The state transition model T(s′ | s, a) represents the probability of
transitioning from state s to s′ after executing action a. The reward function R(s, a)

represents the expected reward received when executing action a from state s.

134 chapter 7. exact solution methods

The reward function is a deterministic function of s and a because it represents
an expectation, but rewards may be generated stochastically in the environment
or even depend on the resulting next state.2 Example 7.1 shows how to frame a

2 For example, if the reward de-
pends on the next state as given
by R(s, a, s′), then the expected re-
ward function would be

R(s, a) = ∑
s′

T(s′ | s, a)R(s, a, s′)collision avoidance problem as an MDP.

The problem of aircraft collision avoidance can be formulated as anMDP. The
states represent the positions and velocities of our aircraft and the intruder
aircraft, and the actions represent whether we climb, descend, or stay level.
We receive a large negative reward for colliding with the other aircraft and a
small negative reward for climbing or descending.

Given knowledge of the current state, we must decide whether an avoid-
ance maneuver is required. The problem is challenging because the positions
of the aircraft evolve probabilistically, and we want to make sure that we
start our maneuver early enough to avoid collision, but late enough so that
we avoid unnecessary maneuvering.

Example 7.1. Aircraft collision
avoidance framed as an MDP.
Many other real-world applica-
tions are discussed in D. J. White,
“A Survey of Applications of
Markov Decision Processes,” Jour-
nal of the Operational Research Soci-
ety, vol. 44, no. 11, pp. 1073–1096,
1993.

struct MDP
γ # discount factor
𝒮 # state space
𝒜 # action space
T # transition function
R # reward function
TR # sample transition and reward

end

Algorithm 7.1. Data structure for
an MDP. We will use the TR field
later to sample the next state and
reward given the current state
and action: s′, r = TR(s, a). In
mathematical writing, MDPs are
sometimes defined in terms of
a tuple consisting of the various
components of the MDP, written
(S ,A, T, R, γ).

The rewards in anMDP are treated as components in an additively decomposed
utility function. In a finite horizon problem with n decisions, the utility associated
with a sequence of rewards r1:n is simply

n

∑
t=1

rt (7.1)

The sum of rewards is sometimes called the return.
In an infinite horizon problem in which the number of decisions is unbounded,

the sum of rewards can become infinite.3 There are several ways to define utility

3 Suppose that strategy A results
in a reward of 1 per time step and
strategy B results in a reward of 100
per time step. Intuitively, a rational
agent should prefer strategy B over
strategy A, but both provide the
same infinite expected utility.in terms of individual rewards in infinite horizon problems. One way is to impose

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

7.1 . markov decis ion processes 135

a discount factor γ between 0 and 1. The utility is then given by
∞

∑
t=1

γt−1rt (7.2)

This value is sometimes called the discounted return. So long as 0 ≤ γ < 1 and the
rewards are finite, the utility will be finite. The discount factor makes it so that
rewards in the present are worth more than rewards in the future, a concept that
also appears in economics.

Another way to define utility in infinite horizon problems is to use the average
reward, also called the average return, given by

lim
n→∞

1

n

n

∑
t=1

rt (7.3)

This formulation can be attractive because we do not have to choose a discount
factor, but there is often no practical difference between this formulation and a
discounted return with a discount factor close to 1. Because the discounted return
is often computationally simpler to work with, we will focus on the discounted
formulation.

A policy tells us what action to select given the past history of states and
actions. The action to select at time t, given the history ht = (s1:t, a1:t−1), is written
πt(ht). Because the future states and rewards depend only on the current state
and action (as made apparent in the conditional independence assumptions in
figure 7.1), we can restrict our attention to policies that depend only on the current
state. In addition, we will primarily focus on deterministic policies because there is
guaranteed to exist inMDPs an optimal policy that is deterministic. Later chapters
discuss stochastic policies, where πt(at | st) denotes the probability that the policy
assigns to taking action at in state st at time t.

In infinite horizon problems with stationary transitions and rewards, we can
further restrict our attention to stationary policies, which do not depend on time.We
will write the action associated with stationary policy π in state s as π(s), without
the temporal subscript. In finite horizon problems, however, it may be beneficial
to select a different action depending on how many time steps are remaining. For
example, when playing basketball, it is generally not a good strategy to attempt a
half-court shot unless there are only a couple of seconds remaining in the game.
We can make stationary policies account for time by incorporating time as a state
variable.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

136 chapter 7. exact solution methods

The expected utility of executing π from state s is denoted as Uπ(s). In the
context of MDPs, Uπ is often referred to as the value function. An optimal policy π∗

is a policy that maximizes expected utility:4 4 Doing so is consistent with the
maximum expected utility princi-
ple introduced in section 6.4.π∗(s) = arg max

π
Uπ(s) (7.4)

for all states s. Depending on the model, there may be multiple policies that are
optimal. The value function associated with an optimal policy π∗ is called the
optimal value function and is denoted as U∗.

An optimal policy can be found by using a computational technique called
dynamic programming,5 which involves simplifying a complicated problem by

5 The term ‘‘dynamic program-
ming’’ was coined by theAmerican
mathematician Richard Ernest Bell-
man (1920–1984). Dynamic refers
to the fact that the problem is time-
varying and programming refers
to a methodology to find an opti-
mal program or decision strategy.
R. Bellman, Eye of the Hurricane:
An Autobiography. World Scientific,
1984.

breaking it down into simpler subproblems in a recursive manner. Although
we will focus on dynamic programming algorithms for MDPs, dynamic pro-
gramming is a general technique that can be applied to a wide variety of other
problems. For example, dynamic programming can be used in computing a Fi-
bonacci sequence and finding the longest common subsequence between two
strings.6 In general, algorithms that use dynamic programming for solving MDPs 6 T.H. Cormen, C. E. Leiserson,

R. L. Rivest, and C. Stein, Intro-
duction to Algorithms, 3rd ed. MIT
Press, 2009.

are much more efficient than brute force methods.

7.2 Policy Evaluation

Before we discuss how to go about computing an optimal policy, we will discuss
policy evaluation, where we compute the value function Uπ . Policy evaluation
can be done iteratively. If the policy is executed for a single step, the utility is
Uπ

1 (s) = R(s, π(s)). Further steps can be obtained from the lookahead equation:

Uπ
k+1(s) = R(s, π(s)) + γ ∑

s′
T(s′ | s, π(s))Uπ

k (s
′) (7.5)

This equation is implemented in algorithm 7.2. Iterative policy evaluation is
implemented in algorithm 7.3. Several iterations are shown in figure 7.3.

The value function Uπ can be computed to an arbitrary precision given suffi-
cient iterations of the lookahead equation. Convergence is guaranteed because the
update in equation (7.5) is a contraction mapping (reviewed in appendix A.15).7 7 See exercise 7.12.
At convergence, the following equality holds:

Uπ(s) = R(s, π(s)) + γ ∑
s′

T(s′ | s, π(s))Uπ(s′) (7.6)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

7.2. policy evaluation 137

function lookahead(𝒫::MDP, U, s, a)
𝒮, T, R, γ = 𝒫.𝒮, 𝒫.T, 𝒫.R, 𝒫.γ
return R(s,a) + γ*sum(T(s,a,s′)*U(s′) for s′ in 𝒮)

end
function lookahead(𝒫::MDP, U::Vector, s, a)

𝒮, T, R, γ = 𝒫.𝒮, 𝒫.T, 𝒫.R, 𝒫.γ
return R(s,a) + γ*sum(T(s,a,s′)*U[i] for (i,s′) in enumerate(𝒮))

end

Algorithm 7.2. Functions for com-
puting the lookahead state-action
value from a state s given an action
a using an estimate of the value
function U for the MDP 𝒫. The sec-
ond version handles the case when
U is a vector.

function iterative_policy_evaluation(𝒫::MDP, π, k_max)
𝒮, T, R, γ = 𝒫.𝒮, 𝒫.T, 𝒫.R, 𝒫.γ
U = [0.0 for s in 𝒮]
for k in 1:k_max

U = [lookahead(𝒫, U, s, π(s)) for s in 𝒮]
end
return U

end

Algorithm 7.3. Iterative policy
evaluation, which iteratively com-
putes the value function for a pol-
icy π for MDP 𝒫 with discrete state
and action spaces using k_max iter-
ations.

iteration 1 iteration 2

iteration 3 iteration 4

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 7.3. Iterative policy eval-
uation used to evaluate an east-
moving policy on the hex world
problem (see appendix F.1). The
arrows indicate the direction rec-
ommended by the policy (i.e., al-
ways move east), and the colors in-
dicate the values associated with
the states. The values change with
each iteration.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

138 chapter 7. exact solution methods

This equality is called the Bellman expectation equation.8 8 This equation is named for
Richard E. Bellman, one of the
pioneers of dynamic program-
ming. R. E. Bellman, Dynamic
Programming. Princeton University
Press, 1957.

Policy evaluation can be done without iteration by solving the system of equa-
tions in the Bellman expectation equation directly. Equation (7.6) defines a set of
|S| linear equations with |S| unknowns corresponding to the values at each state.
One way to solve this system of equations is to first convert it into matrix form:

Uπ = Rπ + γTπUπ (7.7)

where Uπ and Rπ are the utility and reward functions represented in vector
form with |S| components. The |S| × |S| matrix Tπ contains state transition
probabilities where Tπ

ij is the probability of transitioning from the ith state to the
jth state.

The value function is obtained as follows:

Uπ − γTπUπ = Rπ (7.8)
(I− γTπ)Uπ = Rπ (7.9)

Uπ = (I− γTπ)−1
Rπ (7.10)

This method is implemented in algorithm 7.4. Solving for Uπ in this way
requires O(|S|3) time. The method is used to evaluate a policy in figure 7.4.

function policy_evaluation(𝒫::MDP, π)
𝒮, R, T, γ = 𝒫.𝒮, 𝒫.R, 𝒫.T, 𝒫.γ
R′ = [R(s, π(s)) for s in 𝒮]
T′ = [T(s, π(s), s′) for s in 𝒮, s′ in 𝒮]
return (I - γ*T′)\R′

end

Algorithm 7.4. Exact policy eval-
uation, which computes the value
function for a policy π for an MDP
𝒫 with discrete state and action
spaces.

Figure 7.4. Exact policy evaluation
used to evaluate an east-moving
policy for the hex world problem.
The exact solution contains lower
values than what was contained in
the first few steps of iterative pol-
icy evaluation in figure 7.3. If we
ran iterative policy evaluation for
more iterations, it would converge
to the same value function.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

7.3. value function policies 139

7.3 Value Function Policies

The previous section showed how to compute a value function associated with a
policy. This section shows how to extract a policy from a value function, which
we later use when generating optimal policies. Given a value function U, which
may or may not correspond to the optimal value function, we can construct a
policy π that maximizes the lookahead equation introduced in equation (7.5):

π(s) = arg max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)U(s′)

)

(7.11)

We refer to this policy as a greedy policy with respect to U. If U is the optimal
value function, then the extracted policy is optimal. Algorithm 7.5 implements
this idea.

An alternative way to represent a policy is to use the action value function,
sometimes called the Q-function. The action value function represents the expected
return when starting in state s, taking action a, and then continuing with the
greedy policy with respect to Q:

Q(s, a) = R(s, a) + γ ∑
s′

T(s′ | s, a)U(s′) (7.12)

From this action value function, we can obtain the value function,

U(s) = max
a

Q(s, a) (7.13)

as well as the policy,
π(s) = arg max

a
Q(s, a) (7.14)

Storing Q explicitly for discrete problems requires O(|S| × |A|) storage instead
of O(|S|) storage for U, but we do not have to use R and T to extract the policy.

Policies can also be represented using the advantage function, which quantifies
the advantage of taking an action in comparison to the greedy action. It is defined
in terms of the difference between Q and U:

A(s, a) = Q(s, a)−U(s) (7.15)

Greedy actions have zero advantage, and nongreedy actions have negative advan-
tage. Some algorithms that we will discuss later in the book use U representations,
but others will use Q or A.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

140 chapter 7. exact solution methods

struct ValueFunctionPolicy
𝒫 # problem
U # utility function

end

function greedy(𝒫::MDP, U, s)
u, a = findmax(a->lookahead(𝒫, U, s, a), 𝒫.𝒜)
return (a=a, u=u)

end

(π::ValueFunctionPolicy)(s) = greedy(π.𝒫, π.U, s).a

Algorithm 7.5. A value function
policy extracted from a value func-
tion U for an MDP 𝒫. The greedy
function will be used in other algo-
rithms.

7.4 Policy Iteration

Policy iteration (algorithm 7.6) is one way to compute an optimal policy. It involves
iterating between policy evaluation (section 7.2) and policy improvement through
a greedy policy (algorithm 7.5). Policy iteration is guaranteed to converge given
any initial policy. It converges in a finite number of iterations because there are
finitelymany policies and every iteration improves the policy if it can be improved.
Although the number of possible policies is exponential in the number of states,
policy iteration often converges quickly. Figure 7.5 demonstrates policy iteration
on the hex world problem.

struct PolicyIteration
π # initial policy
k_max # maximum number of iterations

end

function solve(M::PolicyIteration, 𝒫::MDP)
π, 𝒮 = M.π, 𝒫.𝒮
for k = 1:M.k_max

U = policy_evaluation(𝒫, π)
π′ = ValueFunctionPolicy(𝒫, U)
if all(π(s) == π′(s) for s in 𝒮)

break
end
π = π′

end
return π

end

Algorithm 7.6. Policy iteration,
which iteratively improves an ini-
tial policy π to obtain an optimal
policy for an MDP 𝒫 with discrete
state and action spaces.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

7.5. value iteration 141

iteration 1 iteration 2

iteration 3 iteration 4

Figure 7.5. Policy iteration used to
iteratively improve an initially east-
moving policy in the hex world
problem to obtain an optimal pol-
icy. In the first iteration, we see the
value function associated with the
east-moving policy and arrows in-
dicating the policy that is greedy
with respect to that value function.
Policy iteration converges in four
iterations; if we ran for a fifth or
more iterations, we would get the
same policy.

Policy iteration tends to be expensive because we must evaluate the policy
in each iteration. A variation of policy iteration called modified policy iteration9 9 M.L. Puterman and M.C. Shin,

“Modified Policy Iteration Algo-
rithms for Discounted Markov De-
cision Problems,” Management Sci-
ence, vol. 24, no. 11, pp. 1127–1137,
1978.

approximates the value function using iterative policy evaluation instead of exact
policy evaluation. We can choose the number of policy evaluation iterations
between steps of policy improvement. If we use only one iteration between steps,
then this approach is identical to value iteration.

7.5 Value Iteration

Value iteration is an alternative to policy iteration that is often used because of its
simplicity. Unlike policy improvement, value iteration updates the value function
directly. It begins with any bounded value function U, meaning that |U(s)| < ∞

for all s. One common initialization is U(s) = 0 for all s.
The value function can be improved by applying the Bellman backup, also called

the Bellman update:10 10 It is referred to as a backup oper-
ation because it transfers informa-
tion back to a state from its future
states.Uk+1(s) = max

a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)Uk(s
′)

)

(7.16)

This backup procedure is implemented in algorithm 7.7.

function backup(𝒫::MDP, U, s)
return maximum(lookahead(𝒫, U, s, a) for a in 𝒫.𝒜)

end

Algorithm 7.7. The backup proce-
dure applied to an MDP 𝒫, which
improves a value function U at state
s.

Repeated application of this update is guaranteed to converge to the optimal
value function. Like iterative policy evaluation, we can use the fact that the update

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

142 chapter 7. exact solution methods

is a contractionmapping to prove convergence.11 This optimal policy is guaranteed 11 See exercise 7.13.
to satisfy the Bellman optimality equation:

U∗(s) = max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)U∗(s′)

)

(7.17)

Further applications of the Bellman backup once this equality holds do not change
the value function. An optimal policy can be extracted from U∗ using equa-
tion (7.11). Value iteration is implemented in algorithm 7.8 and is applied to the
hex world problem in figure 7.6.

The implementation in algorithm 7.8 stops after a fixed number of iterations,
but it is also common to terminate the iterations early based on the maximum
change in value ‖Uk+1−Uk‖∞, called the Bellman residual. If the Bellman residual
drops below a threshold δ, then the iterations terminate. A Bellman residual
of δ guarantees that the optimal value function obtained by value iteration is
within ǫ = δγ/(1− γ) of U∗.12 Discount factors closer to 1 significantly inflate 12 See exercise 7.8.
this error, leading to slower convergence. If we heavily discount future reward (γ

closer to 0), then we do not need to iterate as much into the future. This effect is
demonstrated in example 7.2.

Knowing the maximum deviation of the estimated value function from the
optimal value function, ‖Uk − U∗‖∞ < ǫ, allows us to bound the maximum
deviation of reward obtained under the extracted policy π from an optimal policy
π∗. This policy loss ‖Uπ −U∗‖∞ is bounded by 2ǫγ/(1− γ).13

13 S. P. Singh and R.C. Yee, “An
Upper Bound on the Loss from
Approximate Optimal-Value Func-
tions,” Machine Learning, vol. 16,
no. 3, pp. 227–233, 1994.

struct ValueIteration
k_max # maximum number of iterations

end

function solve(M::ValueIteration, 𝒫::MDP)
U = [0.0 for s in 𝒫.𝒮]
for k = 1:M.k_max

U = [backup(𝒫, U, s) for s in 𝒫.𝒮]
end
return ValueFunctionPolicy(𝒫, U)

end

Algorithm 7.8. Value iteration,
which iteratively improves a value
function U to obtain an optimal pol-
icy for anMDP 𝒫with discrete state
and action spaces. The method ter-
minates after k_max iterations.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

7.5. value iteration 143

iteration 0 iteration 1

iteration 2 iteration 3

iteration 4 iteration 5

iteration 6 iteration 7

Figure 7.6. Value iteration in the
hex world problem to obtain an op-
timal policy. Each hex is colored ac-
cording to the value function, and
arrows indicate the policy that is
greedy with respect to that value
function.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

144 chapter 7. exact solution methods

Consider a simple variation of the hex world problem, consisting of a straight
line of tiles with a single consuming tile at the end producing a reward of
10. The discount factor directly affects the rate at which reward from the
consuming tile propagates down the line to the other tiles, and thus how
quickly value iteration converges.

γ = 0.9 γ = 0.5

Example 7.2. The effect of the
discount factor on convergence of
value iteration. In each case, value
iteration was run until the Bellman
residual was less than 1.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

7.6. asynchronous value iteration 145

7.6 Asynchronous Value Iteration

Value iteration tends to be computationally intensive, as every entry in the value
function Uk is updated in each iteration to obtain Uk+1. In asynchronous value
iteration, only a subset of the states are updated with each iteration. Asynchronous
value iteration is still guaranteed to converge on the optimal value function,
provided that each state is updated an infinite number of times.

One common asynchronous value iteration method, Gauss-Seidel value iteration
(algorithm 7.9), sweeps through an ordering of the states and applies the Bellman
update in place:

U(s)← max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)U(s′)

)

(7.18)

The computational savings lies in not having to construct a second value function
in memory with each iteration. Gauss-Seidel value iteration can converge more
quickly than standard value iteration, depending on the ordering chosen.14 In 14 A poor ordering in Gauss-Seidel

value iteration cannot cause the al-
gorithm to be slower than standard
value iteration.

some problems, the state contains a time index that increments deterministically
forward in time. If we apply Gauss-Seidel value iteration starting at the last time
index and work our way backward, this process is sometimes called backward
induction value iteration. An example of the impact of the state ordering is given in
example 7.3.

struct GaussSeidelValueIteration
k_max # maximum number of iterations

end

function solve(M::GaussSeidelValueIteration, 𝒫::MDP)
U = [0.0 for s in 𝒫.𝒮]
for k = 1:M.k_max

for (i, s) in enumerate(𝒫.𝒮)
U[i] = backup(𝒫, U, s)

end
end
return ValueFunctionPolicy(𝒫, U)

end

Algorithm 7.9. Asynchronous
value iteration, which updates
states in a different manner than
value iteration, often saving com-
putation time. The method termi-
nates after k_max iterations.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

146 chapter 7. exact solution methods

Consider the linear variation of the hex world problem from example 7.2. We
can solve the same problem using asynchronous value iteration. The ordering
of the states directly affects the rate at which reward from the consuming
tile propagates down the line to the other tiles, and thus how quickly the
method converges.

left to right right to left

Example 7.3. The effect of the state
ordering on convergence of asyn-
chronous value iteration. In this
case, evaluating right to left allows
convergence to occur in far fewer
iterations.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

7.7. linear program formulation 147

7.7 Linear Program Formulation

The problem of finding an optimal policy can be formulated as a linear program,
which is an optimization problem with a linear objective function and a set of
linear equality or inequality constraints. Once a problem is represented as a linear
program, we can use one of many linear programming solvers.15 15 For an overview of linear pro-

gramming, see R. Vanderbei, Lin-
ear Programming, Foundations and
Extensions, 4th ed. Springer, 2014.

To show how we can convert the Bellman optimality equation into a linear
program, we begin by replacing the equality in the Bellman optimality equation
with a set of inequality constraints while minimizing U(s) at each state s:16 16 Intuitively, we want to push the

value U(s) at all states s down in
order to convert the inequality con-
straints into equality constraints.
Hence, we minimize the sum of all
utilities.

minimize ∑
s

U(s)

subject to U(s) ≥ max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)U(s′)

)

for all s
(7.19)

The variables in the optimization are the utilities at each state. Once we know
those utilities, we can extract an optimal policy using equation (7.11).

The maximization in the inequality constraints can be replaced by a set of
linear constraints, making it a linear program:

minimize ∑
s

U(s)

subject to U(s) ≥ R(s, a) + γ ∑
s′

T(s′ | s, a)U(s′) for all s and a
(7.20)

In the linear program shown in equation (7.20), the number of variables is
equal to the number of states and the number of constraints is equal to the number
of states times the number of actions. Because linear programs can be solved in
polynomial time,17 MDPs can be solved in polynomial time as well. Although a

17 This was proved by L.G.
Khachiyan, “Polynomial Algo-
rithms in Linear Programming,”
USSR Computational Mathematics
and Mathematical Physics, vol. 20,
no. 1, pp. 53–72, 1980. Modern
algorithms tend to be more
efficient in practice.

linear programming approach provides this asymptotic complexity guarantee, it
is often more efficient in practice to simply use value iteration. Algorithm 7.10
provides an implementation of this.

7.8 Linear Systems with Quadratic Reward

So far, we have assumed discrete state and action spaces. This section relaxes
this assumption, allowing for continuous, vector-valued states and actions. The
Bellman optimality equation for discrete problems can be modified as follows:18

18 This section assumes that the
problem is undiscounted and finite
horizon, but these equations can be
easily generalized.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

148 chapter 7. exact solution methods

struct LinearProgramFormulation end

function tensorform(𝒫::MDP)
𝒮, 𝒜, R, T = 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.T
𝒮′ = eachindex(𝒮)
𝒜′ = eachindex(𝒜)
R′ = [R(s,a) for s in 𝒮, a in 𝒜]
T′ = [T(s,a,s′) for s in 𝒮, a in 𝒜, s′ in 𝒮]
return 𝒮′, 𝒜′, R′, T′

end

solve(𝒫::MDP) = solve(LinearProgramFormulation(), 𝒫)

function solve(M::LinearProgramFormulation, 𝒫::MDP)
𝒮, 𝒜, R, T = tensorform(𝒫)
model = Model(GLPK.Optimizer)
@variable(model, U[𝒮])
@objective(model, Min, sum(U))
@constraint(model, [s=𝒮,a=𝒜], U[s] ≥ R[s,a] + 𝒫.γ*T[s,a,:]⋅U)
optimize!(model)
return ValueFunctionPolicy(𝒫, value.(U))

end

Algorithm 7.10. A method for
solving a discrete MDP using a
linear program formulation. For
convenience in specifying the lin-
ear program, we define a func-
tion for converting an MDP into
its tensor form, where the states
and actions consist of integer in-
dices, the reward function is a ma-
trix, and the transition function is
a three-dimensional tensor. It uses
the JuMP.jlpackage formathemat-
ical programming. The optimizer
is set to use GLPK.jl, but others can
be used instead. We also define the
default solve behavior for MDPs to
use this formulation.

Uh+1(s) = max
a

(

R(s, a) +
∫

T(s′ | s, a)Uh(s
′)ds′

)

(7.21)

where s and a in equation (7.16) are replaced with their vector equivalents, the
summation is replaced with an integral, and T provides a probability density
rather than a probability mass. Computing equation (7.21) is not straightforward
for an arbitrary continuous transition distribution and reward function.

In some cases, exact solution methods do exist for MDPs with continuous
state and action spaces.19 In particular, if a problem has linear dynamics and has 19 For a detailed overview, see chap-

ter 4 of volume I of D. P. Bertsekas,
Dynamic Programming and Optimal
Control. Athena Scientific, 2007.

quadratic reward, then the optimal policy can be efficiently found in closed form.
Such a system is known in control theory as a linear quadratic regulator (LQR) and
has been well studied.20 20 For a compact summary of LQR

and other related control problems,
see A. Shaiju and I. R. Petersen,
“Formulas for Discrete Time LQR,
LQG, LEQG and Minimax LQG
Optimal Control Problems,” IFAC
Proceedings Volumes, vol. 41, no. 2,
pp. 8773–8778, 2008.

A problem has linear dynamics if the next state s′ after taking action a from
state s is determined by an equation of the form:

s′ = Tss + Taa + w (7.22)

where Ts and Ta are matrices and w is a random disturbance drawn from a zero
mean, finite variance distribution that does not depend on s and a. One common
choice is the multivariate Gaussian.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

7.8. l inear systems with quadratic reward 149

A reward function is quadratic if it can be written in the form:21 21 A third term, 2s⊤Rsaa, can also
be included. For an example, see
Shaiju and Petersen (2008).R(s, a) = s⊤Rss + a⊤Raa (7.23)

where Rs and Ra are matrices that determine how state and action component
combinations contribute reward. We additionally require that Rs be negative
semidefinite and Ra be negative definite. Such a reward function penalizes states
and actions that deviate from 0.

Problems with linear dynamics and quadratic reward are common in control
theory where one often seeks to regulate a process such that it does not deviate
far from a desired value. The quadratic cost assigns a much higher cost to states
far from the origin than to those near it. The optimal policy for a problem with
linear dynamics and quadratic reward has an analytic, closed-form solution.
Many MDPs can be approximated with linear quadratic MDPs and solved, often
yielding reasonable policies for the original problem.

Substituting the transition and reward functions into equation (7.21) produces

Uh+1(s) = max
a

(

s⊤Rss + a⊤Raa +
∫

p(w)Uh(Tss + Taa + w)dw

)

(7.24)

where p(w) is the probability density of the random, zero-mean disturbance w.
The optimal one-step value function is

U1(s) = max
a

(

s⊤Rss + a⊤Raa
)

= s⊤Rss (7.25)

for which the optimal action is a = 0.
We will show through induction that Uh(s) has a quadratic form, s⊤Vhs + qh,

with symmetric matrices Vh. For the one-step value function, V1 = Rs and q1 = 0.
Substituting this quadratic form into equation (7.24) yields

Uh+1(s) = s⊤Rss + max
a

(

a⊤Raa +
∫

p(w)
(

(Tss + Taa + w)⊤Vh(Tss + Taa + w) + qh

)

dw

)

(7.26)

This can be simplified by expanding and using the fact that
∫

p(w)dw = 1

and
∫

wp(w)dw = 0:

Uh+1(s) = s⊤Rss + s⊤T⊤s VhTss

+ max
a

(

a⊤Raa + 2s⊤T⊤s VhTaa + a⊤T⊤a VhTaa
)

+
∫

p(w)
(

w⊤Vhw
)

dw + qh

(7.27)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

150 chapter 7. exact solution methods

We can obtain the optimal action by differentiating with respect to a and setting
it to 0:22 22 Recall that

∇xAx = A⊤

∇xx⊤Ax = (A + A⊤)x
0 =

(

Ra + R⊤a
)

a + 2T⊤a VhTss +

(

T⊤a VhTa +
(

T⊤a VhTa

)⊤)
a

= 2Raa + 2T⊤a VhTss + 2T⊤a VhTaa

(7.28)

Solving for the optimal action yields23 23 The matrix Ra + T⊤a VhTa is neg-
ative definite, and thus invertible.

a = −
(

Ra + T⊤a VhTa

)−1
T⊤a VhTss (7.29)

Substituting the optimal action into Uh+1(s) yields the quadratic form that we
were seeking, Uh+1(s) = s⊤Vh+1s + qh+1, with24 24 This equation is sometimes re-

ferred to as the discrete-time Ric-
cati equation, named after the Vene-
tian mathematician Jacopo Riccati
(1676–1754).

Vh+1 = Rs + T⊤s V⊤h Ts −
(

T⊤a VhTs

)⊤(
Ra + T⊤a VhTa

)−1(

T⊤a VhTs

)

(7.30)

and
qh+1 =

h

∑
i=1

Ew

[

w⊤Viw
]

(7.31)

If w ∼ N (0, Σ), then

qh+1 =
h

∑
i=1

Tr(ΣVi) (7.32)

We can compute Vh and qh up to any horizon h starting from V1 = Rs and
q1 = 0 and iterating using equations (7.30) and (7.31). The optimal action for an
h-step policy comes directly from equation (7.29):

πh(s) = −
(

T⊤a Vh−1Ta + Ra

)−1
T⊤a Vh−1Tss (7.33)

Note that the optimal action is independent of the zero-mean disturbance
distribution.25 The variance of the disturbance, however, does affect the expected 25 In this case, we can replace the

random disturbances with its ex-
pected value without changing the
optimal policy. This property is
known as certainty equivalence.

utility. Algorithm 7.11 provides an implementation. Example 7.4 demonstrates
this process on a simple problem with linear Gaussian dynamics.

7.9 Summary

• Discrete MDPs with bounded rewards can be solved exactly through dynamic
programming.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

7.10. exercises 151

struct LinearQuadraticProblem
Ts # transition matrix with respect to state
Ta # transition matrix with respect to action
Rs # reward matrix with respect to state (negative semidefinite)
Ra # reward matrix with respect to action (negative definite)
h_max # horizon

end

function solve(𝒫::LinearQuadraticProblem)
Ts, Ta, Rs, Ra, h_max = 𝒫.Ts, 𝒫.Ta, 𝒫.Rs, 𝒫.Ra, 𝒫.h_max
V = zeros(size(Rs))
πs = Any[s -> zeros(size(Ta, 2))]
for h in 2:h_max

V = Ts'*(V - V*Ta*((Ta'*V*Ta + Ra) \ Ta'*V))*Ts + Rs
L = -(Ta'*V*Ta + Ra) \ Ta' * V * Ts
push!(πs, s -> L*s)

end
return πs

end

Algorithm 7.11. A method that
computes an optimal policy for
an h_max-step horizon MDP with
stochastic linear dynamics param-
eterized by matrices Ts and Ta and
quadratic reward parameterized
by matrices Rs and Ra. The method
returns a vector of policies where
entry h produces the optimal first
action in an h-step policy.

• Policy evaluation for such problems can be done exactly through matrix inver-
sion or can be approximated by an iterative algorithm.

• Policy iteration can be used to solve for optimal policies by iterating between
policy evaluation and policy improvement.

• Value iteration and asynchronous value iteration save computation by directly
iterating the value function.

• The problem of finding an optimal policy can be framed as a linear program
and solved in polynomial time.

• Continuous problems with linear transition functions and quadratic rewards
can be solved exactly.

7.10 Exercises
Exercise 7.1. Show that for an infinite sequence of constant rewards (rt = r for all t), the
infinite horizon discounted return converges to r/(1− γ).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

152 chapter 7. exact solution methods

Consider a continuous MDP where the state is composed of a scalar posi-
tion and velocity s = [x, v]. Actions are scalar accelerations a that are each
executed over a time step ∆t = 1. Find an optimal five-step policy from
s0 = [−10, 0], given a quadratic reward:

R(s, a) = −x2 − v2 − 0.5a2

such that the system tends toward rest at s = 0.
The transition dynamics are
[

x′

v′

]

=

[

x + v∆t + 1
2 a∆t2 + w1

v + a∆t + w2

]

=

[

1 ∆t

0 1

] [

x

v

]

+

[

0.5∆t2

∆t

]

[a] + w

where w is drawn from a zero-mean multivariate Gaussian distribution with
covariance 0.1I.

The reward matrices are Rs = −I and Ra = −[0.5].
The resulting optimal policies are:

π1(s) =
[

0 0
]

s

π2(s) =
[

−0.286 −0.857
]

s

π3(s) =
[

−0.462 −1.077
]

s

π4(s) =
[

−0.499 −1.118
]

s

π5(s) =
[

−0.504 −1.124
]

s

−12 −10 −8 −6 −4 −2 0 2 4

0

2

4

6

position x

sp
ee

d
v

Example 7.4. Solving a finite hori-
zon MDP with a linear transi-
tion function and quadratic reward.
The illustration shows the progres-
sion of the system from [−10, 0].
The blue contour lines show the
Gaussian distributions over the
state at each iteration. The initial be-
lief is circular, but it gets distorted
to a noncircular shape as we prop-
agate the belief forward using the
Kalman filter.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

7.10. exercises 153

Solution:We can prove that the infinite sequence of discounted constant rewards converges
to r/(1− γ) in the following steps:

∞

∑
t=1

γt−1rt = r + γ1r + γ2r + · · ·

= r + γ
∞

∑
t=1

γt−1rt

We can move the summation to the left side and factor out (1− γ):

(1− γ)
∞

∑
t=1

γt−1r = r

∞

∑
t=1

γt−1r =
r

1− γ

Exercise 7.2. Suppose we have an MDP consisting of five states, s1:5, and two actions, to
stay (aS) and continue (aC). We have the following:

T(si | si, aS) = 1 for i ∈ {1, 2, 3, 4}
T(si+1 | si, aC) = 1 for i ∈ {1, 2, 3, 4}

T(s5 | s5, a) = 1 for all actions a

R(si, a) = 0 for i ∈ {1, 2, 3, 5} and for all actions a

R(s4, aS) = 0

R(s4, aC) = 10

What is the discount factor γ if the optimal value U∗(s1) = 1?

Solution: The optimal value of U∗(s1) is associated with following the optimal policy π∗

starting from s1. Given the transition model, the optimal policy from s1 is to continue until
reaching s5, which is a terminal state where we can no longer transition to another state or
accumulate additional reward. Thus, the optimal value of s1 can be computed as

U∗(s1) =
∞

∑
t=1

γt−1rt

U∗(s1) = R(s1, aC) + γ1R(s2, aC) + γ2R(s3, aC) + γ3R(s4, aC) + γ4R(s5, aC) + · · ·
U∗(s1) = 0 + γ1 × 0 + γ2 × 0 + γ3 × 10 + γ4 × 0 + 0

1 = 10γ3

Thus, the discount factor is γ = 0.11/3 ≈ 0.464.

Exercise 7.3. What is the time complexity of performing k steps of iterative policy evalua-
tion?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

154 chapter 7. exact solution methods

Solution: Iterative policy evaluation requires computing the lookahead equation:

Uπ
k+1(s) = R(s, π(s)) + γ ∑

s′
T(s′ | s, π(s))Uπ

k (s
′)

Updating the value at a single state requires summing over all |S| states. For a single
iteration over all states, we must do this operation |S| times. Thus, the time complexity of
k steps of iterative policy evaluation is O(k|S|2).

Exercise 7.4. Suppose that we have an MDP with six states, s1:6, and four actions, a1:4.
Using the following tabular form of the action value function Q(s, a), compute U(s), π(s),
and A(s, a).

Q(s, a) a1 a2 a3 a4

s1 0.41 0.46 0.37 0.37
s2 0.50 0.55 0.46 0.37
s3 0.60 0.50 0.38 0.44
s4 0.41 0.50 0.33 0.41
s5 0.50 0.60 0.41 0.39
s6 0.71 0.70 0.61 0.59

Solution: We can compute U(s), π(s), and A(s, a) using the following equations:

U(s) = max
a

Q(s, a) π(s) = arg max
a

Q(s, a) A(s, a) = Q(s, a)−U(s)

s U(s) π(s) A(s, a1) A(s, a2) A(s, a3) A(s, a4)

s1 0.46 a2 −0.05 0.00 −0.09 −0.09
s2 0.55 a2 −0.05 0.00 −0.09 −0.18
s3 0.60 a1 0.00 −0.10 −0.22 −0.16
s4 0.50 a2 −0.09 0.00 −0.17 −0.09
s5 0.60 a2 −0.10 0.00 −0.19 −0.21
s6 0.71 a1 0.00 −0.01 −0.10 −0.12

Exercise 7.5. Suppose that we have a three-tile, straight-line hex world (appendix F.1)
where the rightmost tile is an absorbing state. When we take any action in the rightmost
state, we get a reward of 10 and we are transported to a fourth terminal state where we no
longer receive any reward. Use a discount factor of γ = 0.9, and perform a single step of
policy iteration where the initial policy π has us move east in the first tile, northeast in the
second tile, and southwest in the third tile. For the policy evaluation step, write out the
transition matrix Tπ and the reward vector Rπ , and then solve the infinite horizon value
function Uπ directly using matrix inversion. For the policy improvement step, compute
the updated policy π′ by maximizing the lookahead equation.

Solution: For the policy evaluation step, we use equation (7.10), repeated here:

Uπ = (I− γTπ)−1
Rπ

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

7.10. exercises 155

Forming the transition matrix Tπ and reward vector Rπ with an additional state for the
terminal state, we can solve for the infinite horizon value function Uπ :26 26 The hex world problem defines

R(s, a, s′), so in order to produce
entries for Rπ , we must compute

R(s, a) = ∑
s′

T(s′ | s, a)R(s, a, s′)

For example, −0.3 comes from
the 30 % chance that moving east
causes a collision with the border,
with cost −1.

Uπ =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

− (0.9)

0.3 0.7 0 0

0 0.85 0.15 0

0 0 0 1

0 0 0 1

−1

−0.3

−0.85

10

0

≈

1.425

2.128

10

0

For the policy improvement step, we apply equation (7.11) using the updated value
function. The actions in the arg max term correspond to aE, aNE, aNW , aW , aSW , and aSE:

π(s1) = arg max(1.425, 0.527, 0.283, 0.283, 0.283, 0.527) = aE

π(s2) = arg max(6.575, 2.128, 0.970, 1.172, 0.970, 2.128) = aE

π(s3) = arg max(10, 10, 10, 10, 10, 10) (all actions are equally desirable)

Exercise 7.6. Perform two steps of value iteration to the problem in exercise 7.5, starting
with an initial value function U0(s) = 0 for all s.

Solution: We need to use the Bellman backup (equation (7.16)) to iteratively update the
value function. The actions in the max term correspond to aE, aNE, aNW , aW , aSW , and aSE.
For our first iteration, the value function is zero for all states, so we only need to consider
the reward component:

U1(s1) = max(−0.3,−0.85,−1,−1,−1,−0.85) = −0.3

U1(s2) = max(−0.3,−0.85,−0.85,−0.3,−0.85,−0.85) = −0.3

U1(s3) = max(10, 10, 10, 10, 10, 10) = 10

For the second iteration,

U2(s1) = max(−0.57,−1.12,−1.27,−1.27,−1.27,−1.12) = −0.57

U2(s2) = max(5.919, 0.271,−1.12,−0.57,−1.12, 0.271) = 5.919

U2(s3) = max(10, 10, 10, 10, 10, 10) = 10

Exercise 7.7. Apply one sweep of asynchronous value iteration to the problem in exer-
cise 7.5, starting with an initial value function U0(s) = 0 for all s. Update the states from
right to left.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

156 chapter 7. exact solution methods

Solution: We use the Bellman backup (equation (7.16)) to iteratively update the value
function over each state following our ordering. The actions in the max term correspond
to aE, aNE, aNW , aW , aSW , and aSE:

U(s3) = max(10, 10, 10, 10, 10, 10) = 10

U(s2) = max(6, 0.5,−0.85,−0.3,−0.85, 0.5) = 6

U(s1) = max(3.48,−0.04,−1,−1,−1,−0.04) = 3.48

Exercise 7.8. Prove that a Bellman residual of δ guarantees that the value function obtained
by value iteration is within δγ/(1− γ) of U∗(s) at every state s.

Solution: For a given Uk, suppose we know that ‖Uk −Uk−1‖∞ < δ. Then we bound the
improvement in the next iteration:

Uk+1(s)−Uk(s) = max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)Uk(s
′)

)

−max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)Uk−1(s
′)

)

< max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)Uk(s
′)

)

−max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)
(

Uk(s
′)− δ

)

)

= δγ

Similarly,

Uk+1(s)−Uk(s) > max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)Uk(s
′)

)

−max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)
(

Uk(s
′) + δ

)

)

= −δγ

The accumulated improvement after infinite iterations is thus bounded by

‖U∗(s)−Uk(s)‖∞ <

∞

∑
i=1

δγi =
δγ

1− γ

A Bellman residual of δ thus guarantees that the optimal value function obtained by
value iteration is within δγ/(1− γ) of U∗.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

7.10. exercises 157

Exercise 7.9. Suppose that we run policy evaluation on an expert policy to obtain a value
function. If acting greedily with respect to that value function is equivalent to the expert
policy, what can we deduce about the expert policy?

Solution: We know from the Bellman optimality equation that greedy lookahead on an
optimal value function is stationary. If the greedy policy matches the expert policy, then
both policies are optimal.

Exercise 7.10. Show how an LQR problem with a quadratic reward function R(s, a) =

s⊤Rss + a⊤Raa can be reformulated so that the reward function includes linear terms in s

and a.

Solution: We can introduce an additional state dimension that is always equal to 1, yielding
a new system with linear dynamics:

[

s′

1

]

=

[

Ts 0

0⊤ 1

] [

s

1

]

+ Taa

The reward function of the augmented system can now have linear state reward terms:
[

s

1

]⊤
Raugmented

[

s

1

]

= s⊤Rss + 2r⊤s,linears + rs,scalar

Similarly, we can include an additional action dimension that is always 1 in order to obtain
linear action reward terms.

Exercise 7.11. Why does the optimal policy obtained in example 7.4 produce actions with
greater magnitude when the horizon is greater?

Solution: The problem in example 7.4 has quadratic reward that penalizes deviations from
the origin. The longer the horizon, the greater the negative reward that can be accumulated,
making it more worthwhile to reach the origin sooner.

Exercise 7.12. Prove that iterative policy evaluation converges to the solution of equa-
tion (7.6).

Solution: Consider iterative policy evaluation applied to a policy π as given in equa-
tion (7.5):

Uπ
k+1(s) = R(s, π(s)) + γ ∑

s′
T(s′ | s, π(s))Uπ

k (s
′)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

158 chapter 7. exact solution methods

Let us define an operator Bπ and rewrite this as Uπ
k+1 = BπUπ

k . We can show that Bπ is a
contraction mapping:

BπUπ(s) = R(s, π(s)) + γ ∑
s′

T(s′ | s, π(s))Uπ(s′)

= R(s, π(s)) + γ ∑
s′

T(s′ | s, π(s))
(

Uπ(s′)− Ûπ(s′) + Ûπ(s′)
)

= BπÛπ(s) + γ ∑
s′

T(s′ | s, π(s))
(

Uπ(s′)− Ûπ(s′)
)

≤ BπÛπ(s) + γ‖Uπ − Ûπ‖∞

Hence, ‖BπUπ − BπÛπ‖∞ ≤ α‖Uπ − Ûπ‖∞ for α = γ, implying that Bπ is a contraction
mapping. As discussed in appendix A.15, limt→∞ Bt

πUπ
1 converges to a unique fixed point

Uπ , for which Uπ = BπUπ .
Exercise 7.13. Prove that value iteration converges to a unique solution.
Solution: The value iteration update (equation (7.16)) is

Uk+1(s) = max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)Uk(s
′)

)

Wewill denote the Bellman operator as B and rewrite an application of the Bellman backup
as Uk+1 = BUk. As with the previous problem, if B is a contractionmapping, then repeated
application of B to U will converge to a unique fixed point.

We can show that B is a contraction mapping:

BU(s) = max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)U(s′)

)

= max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)
(

U(s′)− Û(s′) + Û(s′)
)

)

≤ BÛ(s) + γ max
a

∑
s′

T(s′ | s, a)
(

U(s′)− Û(s′)
)

≤ BÛ(s) + α‖U − Û‖∞

for α = γ maxs maxa ∑s′ T(s′ | s, a), with 0 ≤ α < 1. Hence, ‖BU − BÛ‖∞ ≤ α‖U − Û‖∞,
which implies that B is a contraction mapping.
Exercise 7.14. Show that the point to which value iteration converges corresponds to the
optimal value function.
Solution: Let U be the value function produced by value iteration. We want to show that
U = U∗. At convergence, we have BU = U. Let U0 be a value function that maps all states
to 0. For any policy π, it follows from the definition of Bπ that BπU0 ≤ BU0. Similarly,
Bt

πU0 ≤ BtU0. Because Bt
π∗U0 → U∗ and BtU0 → U as t → ∞, it follows that U∗ ≤ U,

which can be the case only if U = U∗.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

7.10. exercises 159

Exercise 7.15. Suppose that we have a linear Gaussian problem with disturbance w ∼
N (0, Σ) and quadratic reward. Show that the scalar term in the utility function has the
form:

qh+1 =
h

∑
i=1

Ew

[

w⊤Viw
]

=
h

∑
i=1

Tr(ΣVi)

You may want to use the trace trick:

x⊤Ax = Tr
(

x⊤Ax
)

= Tr
(

Axx⊤
)

Solution: This equation is true if Ew

[

w⊤Viw
]

= Tr(ΣVi). Our derivation is

E
w∼N (0,Σ)

[

w⊤Viw
]

= E
w∼N (0,Σ)

[

Tr
(

w⊤Viw
)]

= E
w∼N (0,Σ)

[

Tr
(

Viww⊤
)]

= Tr

(

E
w∼N (0,Σ)

[

Viww⊤
]

)

= Tr

(

Vi E
w∼N (0,Σ)

[

ww⊤
]

)

= Tr(ViΣ)

= Tr(ΣVi)

Exercise 7.16. What is the role of the scalar term q in the LQR optimal value function, as
given in equation (7.31)?

qh+1 =
h

∑
i=1

Ew

[

w⊤Viw
]

Solution: A matrix M is positive definite if, for all nonzero x, x⊤Mx > 0. In equation (7.31),
every Vi is negative semidefinite, so w⊤Vw ≤ 0 for all w. Thus, these q terms are guar-
anteed to be nonpositive. This should be expected, as it is impossible to obtain positive
reward in LQR problems, and we seek instead to minimize cost.

The q scalars are offsets in the quadratic optimal value function:

U(s) = s⊤Vs + q

Each q represents the baseline reward around which the s⊤Vs term fluctuates. We
know that V is negative definite, so s⊤Vs ≤ 0, and q thus represents the expected reward
that one could obtain if one were at the origin, s = 0.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

8 Approximate Value Functions

Up to this point, we have assumed that the value function can be represented as a
table. Tables are useful representations only for small, discrete problems. Problems
with larger state spaces may require an infeasible amount of memory, and the
exactmethods discussed in the previous chaptermay require an infeasible amount
of computation. For such problems, we often have to resort to approximate dynamic
programming, where the solution may not be exact.1 One way to approximate

1 A deeper treatment of this topic is
provided by W.B. Powell, Approxi-
mate Dynamic Programming: Solving
the Curses of Dimensionality, 2nd ed.
Wiley, 2011. Relevant insights can
be drawn from a variety of fields
as discussed by W.B. Powell, Re-
inforcement Learning and Stochastic
Optimization. Wiley, 2022.solutions is to use value function approximation, which is the subject of this chapter.

Wewill discuss different approaches to approximating the value function and how
to incorporate dynamic programming to derive approximately optimal policies.

8.1 Parametric Representations

We will use Uθ(s) to denote our parametric representation of the value function,
where θ is the vector of parameters. There are many ways to represent Uθ(s),
several of which will be mentioned later in this chapter. Assuming that we have
such an approximation, we can extract an action according to

π(s) = arg max
a

(

R(s, a) + γ ∑
s′

T(s′ | s, a)Uθ(s
′)

)

(8.1)

Value function approximations are often used in problems with continuous state
spaces, in which case the summation above may be replaced with an integral. The
integral can be approximated using transition model samples.

An alternative to the computation in equation (8.1) is to approximate the
action value function Q(s, a). If we use Qθ(s, a) to represent our parametric

162 chapter 8. approximate value functions

approximation, we can obtain an action according to

π(s) = arg max
a

Qθ(s, a) (8.2)

This chapter discusses how we can apply dynamic programming at a finite set
of states S = s1:m to arrive at a parametric approximation of the value function over
the full state space. Different schemes can be used to generate this set. If the state
space is relatively low-dimensional, we can define a grid. Another approach is to
use random sampling from the state space. However, some states aremore likely to
be encountered than others and are therefore more important in constructing the
value function.We can bias the sampling towardmore important states by running
simulations with some policy (perhaps initially random), from a plausible set of
initial states.

An iterative approach can be used to enhance our approximation of the value
function at the states in S. We alternate between improving our value estimates at
S through dynamic programming and refitting our approximation at those states.
Algorithm 8.1 provides an implementation where the dynamic programming
step consists of Bellman backups as done in value iteration (see section 7.5). A
similar algorithm can be created for action value approximations Qθ.2

2 Several other categories of ap-
proaches for optimizing value func-
tion approximations are surveyed
by A. Geramifard, T. J. Walsh, S.
Tellex, G. Chowdhary, N. Roy, and
J. P. How, “A Tutorial on Linear
Function Approximators for Dy-
namic Programming and Rein-
forcement Learning,” Foundations
and Trends in Machine Learning,
vol. 6, no. 4, pp. 375–451, 2013.

struct ApproximateValueIteration
Uθ # initial parameterized value function that supports fit!
S # set of discrete states for performing backups
k_max # maximum number of iterations

end

function solve(M::ApproximateValueIteration, 𝒫::MDP)
Uθ, S, k_max = M.Uθ, M.S, M.k_max
for k in 1:k_max

U = [backup(𝒫, Uθ, s) for s in S]
fit!(Uθ, S, U)

end
return ValueFunctionPolicy(𝒫, Uθ)

end

Algorithm 8.1. Approximate value
iteration for an MDP with the
parameterized value function ap-
proximation Uθ. We perform back-
ups (defined in algorithm 7.7) at
the states in S to obtain a vec-
tor of utilities U. We then call
fit!(Uθ, S, U), which modifies
the parametric representation Uθ
to better match the value of the
states in S to the utilities in U. Dif-
ferent parametric approximations
have different implementations for
fit!.

All of the parametric representations discussed in this chapter can be used
with algorithm 8.1. To be used with that algorithm, a representation needs to
support the evaluation of Uθ and the fitting of Uθ to estimates of the utilities at
the points in S.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

8.2. nearest neighbor 163

We can group the parametric representations into two categories. The first
category includes local approximation methods, where θ corresponds to the values
at the states in S. To evaluate Uθ(s) at an arbitrary state s, we take a weighted
sum of the values stored in S. The second category includes global approximation
methods, where θ is not directly related to the values at the states in S. In fact, θ
may have far fewer or even far more components than there are states in S.

Both local approximation and many global approximations can be viewed as a
linear function approximation Uθ(s) = θ

⊤β(s), where methods differ in how they
define the vector function β. In local approximation methods, β(s) determines
how toweight the utilities of the states in S to approximate the utility at state s. The
weights are generally nonnegative and sum to 1. In many global approximation
methods, β(s) is viewed as a set of basis functions that are combined in a linear
fashion to obtain an approximation for an arbitrary s.

We can also approximate the action value function using a linear function,
Qθ(s, a) = θ⊤β(s, a). In the context of local approximations, we can provide
approximations over continuous action spaces by choosing a finite set of actions
A ⊂ A. Our parameter vector θwould then consist of |S| × |A| components, each
corresponding to a state-action value. Our function β(s, a) would return a vector
with the same number of components that specifies how to weight together our
finite set of state-action values to obtain an estimate of the utility associated with
state s and action a.

8.2 Nearest Neighbor

A simple approach to local approximation is to use the value of the state in S

that is the nearest neighbor of s. In order to use this approach, we need a distance
metric (see appendix A.3). We use d(s, s′) to denote the distance between two
states s and s′. The approximate value function is then Uθ(s) = θi, where i =

arg minj∈1:m d(sj, s). Figure 8.1 shows an example of a value function represented
using the nearest neighbor scheme.

1

−1

2

0
1

−2
1

nearest neighbor (k = 1)

1

−1

2

0
1

−2
1

k = 2

1

−1

2

0
1

−2
1

k = 3

1

−1

2

0
1

−2
1

k = 4

Figure 8.1. Approximating the val-
ues of states in a two-dimensional,
continuous state space using the
mean of the utility values of their
k-nearest neighbors according to
Euclidean distance. The resulting
value function is piecewise con-
stant.

We can generalize this approach to average together the values of the k-nearest
neighbors. This approach still results in piecewise constant value functions, but
different values for k can result in better approximations. Figure 8.1 shows exam-
ples of value functions approximated with different values for k. Algorithm 8.2
provides an implementation of this.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

164 chapter 8. approximate value functions

mutable struct NearestNeighborValueFunction
k # number of neighbors
d # distance function d(s, s′)
S # set of discrete states
θ # vector of values at states in S

end

function (Uθ::NearestNeighborValueFunction)(s)
dists = [Uθ.d(s,s′) for s′ in Uθ.S]
ind = sortperm(dists)[1:Uθ.k]
return mean(Uθ.θ[i] for i in ind)

end

function fit!(Uθ::NearestNeighborValueFunction, S, U)
Uθ.θ = U
return Uθ

end

Algorithm 8.2. The k-nearest
neighbors method, which approxi-
mates the value of a state s based
on the k closest states in S, as deter-
mined by a distance function d. The
vector θ contains the values of the
states in S. Greater efficiency can be
achieved by using specialized data
structures, such as kd-trees, imple-
mented in NearestNeighbors.jl.

8.3 Kernel Smoothing

Another local approximation method is kernel smoothing, where the utilities of
the states in S are smoothed over the entire state space. This method requires
defining a kernel function k(s, s′) that relates pairs of states s and s′. We generally
want k(s, s′) to be higher for states that are closer together because those values
tell us how to weight together the utilities associated with the states in S. This
method results in the following linear approximation:

Uθ(s) =
m

∑
i=1

θiβi(s) = θ
⊤β(s) (8.3)

where
βi(s) =

k(s, si)

∑
m
j=1 k(s, sj)

(8.4)

Algorithm 8.3 provides an implementation of this.
There are many ways that we can define a kernel function. We can define our

kernel to simply be the inverse of the distance between states:

k(s, s′) = max(d(s, s′), ǫ)−1 (8.5)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

8.3. kernel smoothing 165

where ǫ is a small positive constant in order to avoid dividing by zero when s = s′.
Figure 8.2 shows value approximations using several distance functions. As we
can see, kernel smoothing can result in smooth value function approximations, in
contrast with k-nearest neighbors. Figure 8.3 applies this kernel to a discrete hex
world problem and shows the outcome of a few iterations of approximate value
iteration (algorithm 8.1). Figure 8.4 shows a value function and policy learned
for the mountain car problem (appendix F.4) with a continuous state space.

1

−1

2

0
1

−2
1

d(s, s′) = ‖s− s′‖1

1

−1

2

0
1

−2
1

d(s, s′) = ‖s− s′‖2
2

1

−1

2

0
1

−2
1

d(s, s′) = exp(‖s− s′‖2
2)

Figure 8.2. Approximating the val-
ues of states in a two-dimensional
continuous state space by assign-
ing values based on proximity to
several states with known values.
Approximations are constructed
using several distance functions.

Another common kernel is the Gaussian kernel:

k(s, s′) = exp

(

−d(s, s′)2

2σ2

)

(8.6)

where σ controls the degree of smoothing.

mutable struct LocallyWeightedValueFunction
k # kernel function k(s, s′)
S # set of discrete states
θ # vector of values at states in S

end

function (Uθ::LocallyWeightedValueFunction)(s)
w = normalize([Uθ.k(s,s′) for s′ in Uθ.S], 1)
return Uθ.θ ⋅ w

end

function fit!(Uθ::LocallyWeightedValueFunction, S, U)
Uθ.θ = U
return Uθ

end

Algorithm 8.3. Locally weighted
value function approximation de-
fined by a kernel function k and a
vector of utilities θ at states in S.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

166 chapter 8. approximate value functions

Initial value function U(1)

Iteration 2

Iteration 3

Figure 8.3. Local approximation
value iteration used to iteratively
improve an approximate value
function on the hex world problem.
The five outlined states are used
to approximate the value function.
The value of the remaining states
are approximated using the dis-
tance function ‖s− s′‖2

2. The result-
ing policy is reasonable but nev-
ertheless suboptimal. Positive re-
ward is shown in blue, and nega-
tive reward is shown in red.

−1 −0.5 0 0.5

−5

0

5

×10−2

position

sp
ee

d

Value Function

−300

−280

−260

−1 −0.5 0 0.5

position

Acceleration
accel right
coast
accel left

Figure 8.4. A utility function and
policy obtained by learning the ac-
tion values for a finite set of states
(white) in the mountain car prob-
lem using the distance function
‖s− s′‖2 + 0.1.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

8.4. linear interpolation 167

8.4 Linear Interpolation

0 1 2 3

1

2

3

s

U
(s
)

Figure 8.5. One-dimensional lin-
ear interpolation produces interpo-
lated values along the line segment
connecting two points.

Linear interpolation is another common approach to local approximation. The
one-dimensional case is straightforward, in which the approximated value for a
state s between two states s1 and s2 is

Uθ(s) = αθ1 + (1− α)θ2 (8.7)

with α = (s2 − s)/(s2 − s1). This case is shown in figures 8.5 and 8.6.

s1 s2s

Weight for θ2: 1− α Weight for θ1: α

Figure 8.6. The weight assigned
to each point in one dimension is
proportional to the length of the
segment on the opposite side of the
interpolation state.

Linear interpolation can be extended to a multidimensional grid. In the two-
dimensional case, called bilinear interpolation, we interpolate among four vertices.
Bilinear interpolation is done through single-dimensional linear interpolation,
once in each axis, requiring the utility of four states at the grid vertices. This
interpolation is shown in figure 8.7.

θ1

θ2

θ3

θ4

Uθ(s)θ12 θ34

θ24

θ13

θ12 = 1D interpolation between θ1 and θ2 along the vertical axis
θ24 = 1D interpolation between θ2 and θ4 along the horizontal axis
θ13 = 1D interpolation between θ1 and θ3 along the horizontal axis
θ34 = 1D interpolation between θ3 and θ4 along the vertical axis

Uθ(s) =

1D interpolation between θ12 and θ34 along the horizontal axis
or

1D interpolation between θ13 and θ24 along the vertical axis

Figure 8.7. Linear interpolation on
a two-dimensional grid is achieved
through linear interpolation on
each axis in turn, in either order.

Given four vertices with coordinates s1 = [x1, y1], s2 = [x1, y2], s3 = [x2, y1],
and s4 = [x2, y2], and a sample state s = [x, y], the interpolated value is

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

168 chapter 8. approximate value functions

Uθ(s) = αθ12 + (1− α)θ34 (8.8)

=
x2 − x

x2 − x1
θ12 +

x− x1

x2 − x1
θ34 (8.9)

=
x2 − x

x2 − x1
(αθ1 + (1− α)θ2) +

x− x1

x2 − x1
(αθ3 + (1− α)θ4) (8.10)

=
x2 − x

x2 − x1

(

y2 − y

y2 − y1
θ1 +

y− y1

y2 − y1
θ2

)

+
x− x1

x2 − x1

(

y2 − y

y2 − y1
θ3 +

y− y1

y2 − y1
θ4

)

(8.11)

=
(x2 − x)(y2 − y)

(x2 − x1)(y2 − y1)
θ1 +

(x2 − x)(y− y1)

(x2 − x1)(y2 − y1)
θ2 +

(x− x1)(y2 − y)

(x2 − x1)(y2 − y1)
θ3 +

(x− x1)(y− y1)

(x2 − x1)(y2 − y1)
θ4 (8.12)

The resulting interpolationweighs each vertex according to the area of its opposing
quadrant, as shown in figure 8.8.

s1

s2

s3

s4

s

α3

α4

α1

α2

Figure 8.8. Linear interpolation on
a two-dimensional grid results in
a contribution of each vertex equal
to the relative area of its opposing
quadrant: Uθ(s) = α1θ1 + α2θ2 +
α3θ3 + α4θ4.

Multilinear interpolation in d dimensions is similarly achieved by linearly inter-
polating along each axis, requiring 2d vertices. Here too, the utility of each vertex
is weighted according to the volume of the opposing hyperrectangle. Multilin-
ear interpolation is implemented in algorithm 8.4. Figure 8.9 demonstrates this
approach on a two-dimensional state space.

Figure 8.9. Two-dimensional linear
interpolation over a 3× 7 grid.

8.5 Simplex Interpolation

Multilinear interpolation can be inefficient in high dimensions. Rather than
weighting the contributions of 2d points, simplex interpolation considers only d + 1

points in the neighborhood of a given state to produce a continuous surface that
matches the known sample points.

We start with a multidimensional grid and divide each cell into d! simplexes,
which are multidimensional generalizations of triangles defined by the convex hull
of d + 1 vertices. This process is known as Coxeter-Freudenthal-Kuhn triangulation,3

3 A.W. Moore, “Simplicial Mesh
Generation with Applications,”
Ph.D. dissertation, Cornell Univer-
sity, 1992.

and it ensures that any two simplexes that share a face will produce equivalent
values across the face, thus producing continuity when interpolating, as shown
in figure 8.10.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

8.5. s implex interpolation 169

mutable struct MultilinearValueFunction
o # position of lower-left corner
δ # vector of widths
θ # vector of values at states in S

end

function (Uθ::MultilinearValueFunction)(s)
o, δ, θ = Uθ.o, Uθ.δ, Uθ.θ
Δ = (s - o)./δ
Multidimensional index of lower-left cell
i = min.(floor.(Int, Δ) .+ 1, size(θ) .- 1)
vertex_index = similar(i)
d = length(s)
u = 0.0
for vertex in 0:2^d-1

weight = 1.0
for j in 1:d

Check whether jth bit is set
if vertex & (1 << (j-1)) > 0

vertex_index[j] = i[j] + 1
weight *= Δ[j] - i[j] + 1

else
vertex_index[j] = i[j]
weight *= i[j] - Δ[j]

end
end
u += θ[vertex_index...]*weight

end
return u

end

function fit!(Uθ::MultilinearValueFunction, S, U)
Uθ.θ = U
return Uθ

end

Algorithm 8.4. A method for con-
ducting multilinear interpolation
to estimate the value of state vec-
tor s for known state values θ over
a grid defined by a lower-left ver-
tex o and vector of widths δ. Ver-
tices of the grid can all be writ-
ten o + δ.*i for some nonnega-
tive integral vector i. The package
Interpolations.jl also provides
multilinear and other interpolation
methods.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

170 chapter 8. approximate value functions

Figure 8.10. Two-dimensional sim-
plex interpolation over a 3× 7 grid.

To illustrate, suppose that we have translated and scaled the cell containing a
state such that the lowest vertex is 0 and the diagonally opposite vertex is 1. There
is a simplex for each permutation of 1 : d. The simplex given by permutation p is
the set of points x satisfying

0 ≤ xp1
≤ xp2 ≤ · · · ≤ xpd

≤ 1 (8.13)

Figure 8.11 shows the simplexes obtained for the unit cube.

(0, 0, 0)

(1, 1, 1)

Figure 8.11. A triangulation of
a unit cube. Based on figure 2.1
of A.W. Moore, “Simplicial Mesh
Generation with Applications,”
Ph.D. dissertation, Cornell Univer-
sity, 1992.

Simplex interpolation first translates and scales a state vector s to the unit
hypercube of its corresponding cell to obtain s′. It then sorts the entries in s′ to
determine which simplex contains s′. The utility at s′ can then be expressed by a
unique linear combination of the vertices of that simplex.

Example 8.1 provides an example of simplex interpolation. The process is
implemented in algorithm 8.5.

Consider a three-dimensional simplex given by the permutation p = [3, 1, 2]

such that points within the simplex satisfy 0 ≤ x3 ≤ x1 ≤ x2 ≤ 1. This
simplex has vertices (0, 0, 0), (0, 1, 0), (1, 1, 0), and (1, 1, 1).

Any point s belonging to the simplex can thus be expressed by a weighting
of the vertices:

s1

s2

s3

= w1

0

0

0

+ w2

0

1

0

+ w3

1

1

0

+ w4

1

1

1

We can determine the values of the last three weights in succession:

w4 = s3 w3 = s1 − w4 w2 = s2 − w3 − w4

We obtain w1 by enforcing that the weights sum to 1.
If s = [0.3, 0.7, 0.2], then the weights are

w4 = 0.2 w3 = 0.1 w2 = 0.4 w1 = 0.3

Example 8.1. Simplex interpola-
tion in three dimensions.

(0, 0, 0)

(0, 1, 0)

(1, 1, 0)

(1, 1, 1)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

8.5. s implex interpolation 171

mutable struct SimplexValueFunction
o # position of lower-left corner
δ # vector of widths
θ # vector of values at states in S

end

function (Uθ::SimplexValueFunction)(s)
Δ = (s - Uθ.o)./Uθ.δ
Multidimensional index of upper-right cell
i = min.(floor.(Int, Δ) .+ 1, size(Uθ.θ) .- 1) .+ 1
u = 0.0
s′ = (s - (Uθ.o + Uθ.δ.*(i.-2))) ./ Uθ.δ
p = sortperm(s′) # increasing order
w_tot = 0.0
for j in p

w = s′[j] - w_tot
u += w*Uθ.θ[i...]
i[j] -= 1
w_tot += w

end
u += (1 - w_tot)*Uθ.θ[i...]
return u

end

function fit!(Uθ::SimplexValueFunction, S, U)
Uθ.θ = U
return Uθ

end

Algorithm 8.5. A method for con-
ducting simplex interpolation to
estimate the value of state vector
s for known state values θ over a
grid defined by a lower-left vertex
o and a vector of widths δ. Ver-
tices of the grid can all be written
o + δ.*i for some nonnegative in-
tegral vector i. Simplex interpola-
tion is also implemented in the gen-
eral GridInterpolations.jl pack-
age.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

172 chapter 8. approximate value functions

8.6 Linear Regression

A simple global approximation approach is linear regression, where Uθ(s) is a
linear combination of basis functions, also commonly referred to as features. These
basis functions are generally a nonlinear function of the state s and are combined
into a vector function β(s) or β(s, a), resulting in the approximations

Uθ(s) = θ
⊤β(s) Qθ(s, a) = θ⊤β(s, a) (8.14)

Although our approximation is linear with respect to the basis functions, the
resulting approximation may be nonlinear with respect to the underlying state
variables. Figure 8.12 illustrates this concept. Example 8.2 provides an exam-
ple of global linear value approximation using polynomial basis functions for
the continuous mountain car problem, resulting in a nonlinear value function
approximation with respect to the state variables.

s

U
θ
(s
)

s s2

U
θ
(s
)

Figure 8.12. Linear regressionwith
nonlinear basis functions is linear
in higher dimensions. Here, poly-
nomial regression can be seen as
linear in a three-dimensional space.
The function exists in the plane
formed from its bases, but it does
not occupy the entire plane be-
cause the terms are not indepen-
dent.

Adding more basis functions generally improves the ability to match the target
utilities at the states in S, but too many basis functions can lead to poor approxi-
mations at other states. Principled methods exist for choosing an appropriate set
of basis functions for our regression model.4 4 See chapter 14 of M. J. Kochender-

fer and T.A. Wheeler, Algorithms
for Optimization. MIT Press, 2019.
or chapter 7 of T. Hastie, R. Tibshi-
rani, and J. Friedman, The Elements
of Statistical Learning: Data Mining,
Inference, and Prediction, 2nd ed.
Springer Series in Statistics, 2001.

Fitting linear models involves determining the vector θ that minimizes the
squared error of the predictions at the states in S = s1:m. If the utilities associated
with those states are denoted as u1:m, then we want to find the θ that minimizes

m

∑
i=1

(Ûθ(si)− ui)
2 =

m

∑
i=1

(θ⊤β(si)− ui)
2 (8.15)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

8.6. l inear regression 173

We can approximate the value function for the mountain car problem using
a linear approximation. The problem has a continuous state space with two
dimensions consisting of position x and speed v. Here are the basis functions
up to degree six:

β(s) =

[1,

x, v,

x2, xv, v2,

x3, x2v, xv2, v3,

x4, x3v, x2v2, xv3, v4,

x5, x4v, x3v2, x2v3, xv4, v5,

x6, x5v, x4v2, x3v3, x2v4, xv5, v6]

Here is a plot of an approximate value function fit to state-value pairs
from an expert policy:

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−6

−4

−2

0

2

4

6

×10−2

position

sp
ee

d

−120

−100

−80

−60

−40

−20

0

20

Uθ(s)

Example 8.2. Using a linear ap-
proximation to the mountain car
value function. The choice of ba-
sis functions makes a big differ-
ence. The optimal value function
for the mountain car is nonlinear,
with a spiral shape and discontinu-
ities. Even sixth-degree polynomi-
als do not produce a perfect fit.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

174 chapter 8. approximate value functions

The optimal θ can be computed through some simple matrix operations. We
first construct a matrix X where each of the m rows Xi,: contains β(si)

⊤.5 It can 5 For an overview of the mathemat-
ics involved in linear regression as
well as more advanced techniques,
see T. Hastie, R. Tibshirani, and J.
Friedman, The Elements of Statisti-
cal Learning: Data Mining, Inference,
and Prediction, 2nd ed. Springer Se-
ries in Statistics, 2001.

be shown that the value of θ that minimizes the squared error is

θ =
(

X⊤X
)−1

X⊤u1:m = X+u1:m (8.16)

where X+ is the Moore-Penrose pseudoinverse of matrix X. The pseudoinverse is
often implemented by first computing the singular value decomposition, X = UΣU∗.
We then have

X+ = UΣ+U∗ (8.17)
The pseudoinverse of the diagonal matrix Σ is obtained by taking the reciprocal
of each nonzero element of the diagonal and then transposing the result.

Figure 8.13 shows how the utilities of states in S are fit with several basis
function families. Different choices of basis functions result in different errors.

s

U
θ
(s
)

linear

s

quadratic

s

cubic

s

sinusoidal

Figure 8.13. Linear regressionwith
different basis function families.Algorithm 8.6 provides an implementation for evaluating and fitting linear

regression models of the value function. Example 8.3 demonstrates this approach
with the mountain car problem.

8.7 Neural Network Regression

Neural network regression relieves us of having to construct an appropriate set of
basis functions as required in linear regression. Instead, a neural network is used
to represent our value function. For a review of neural networks, see appendix D.
The input to the neural network would be the state variables, and the output
would be the utility estimate. The parameters θ would correspond to the weights
in the neural network.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

8.8. summary 175

mutable struct LinearRegressionValueFunction
β # basis vector function
θ # vector of parameters

end

function (Uθ::LinearRegressionValueFunction)(s)
return Uθ.β(s) ⋅ Uθ.θ

end

function fit!(Uθ::LinearRegressionValueFunction, S, U)
X = hcat([Uθ.β(s) for s in S]...)'
Uθ.θ = pinv(X)*U
return Uθ

end

Algorithm 8.6. Linear regression
value function approximation, de-
fined by a basis vector function
β and a vector of parameters θ.
The function pinv implements the
psuedoinverse. Julia and other lan-
guages support the backslash opera-
tor, which allows us to write X \ U
in place of pinv(X)*U in the fit!
function.

As discussed in appendix D, we can optimize the network weights to achieve
a particular objective. In the context of approximate dynamic programming, we
wouldwant tominimize the error of our predictions, just as we did in the previous
section. However, minimizing the squared error cannot be done through simple
matrix operations. Instead, we generally have to rely on optimization techniques
such as gradient descent. Fortunately, computing the gradient of neural networks
can be done exactly through straightforward application of the derivative chain
rule.

8.8 Summary

• For large or continuous problems, we can attempt to find approximate policies
represented by parameterized models of the value function.

• The approaches taken in this chapter involve iteratively applying steps of
dynamic programming at a finite set of states and refining our parametric
approximation.

• Local approximation techniques approximate the value function based on the
values of nearby states with known values.

• A variety of local approximation techniques include nearest neighbor, kernel
smoothing, linear interpolation, and simplex interpolation.

• Global approximation techniques include linear regression and neural network
regression.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

176 chapter 8. approximate value functions

We can apply linear regression to learn a value function for the mountain car
problem. The optimal value function has the form of a spiral, which can be
difficult to approximate with polynomial basis functions (see example 8.2).
We use Fourier basis functions whose components take the following form:

b0(x) = 1/2

bs,i(x) = sin(2πix/T) for i = 1, 2, . . .

bc,i(x) = cos(2πix/T) for i = 1, 2, . . .

where T is the width of the component’s domain. The multidimensional
Fourier basis functions are all combinations of the one-dimensional compo-
nents across the state-space axes. Herewe use an eighth-order approximation,
so i ranges up to 8. The expert policy is to accelerate in the direction of motion.

−5

0

5

×10−2

sp
ee

d
[m

/
s]

expert approximate

−200

−100

0

−1 −0.5 0 0.5

−5

0

5

×10−2

position [m]

sp
ee

d
[m

/
s]

−1 −0.5 0 0.5

position [m]

accel right
coast
accel left

Example 8.3. Linear regression
using Fourier bases used to ap-
proximate the value function for
the mountain car problem (ap-
pendix F.4). Value functions (top
row) and resulting policies (bot-
tom row) are shown. The globally
approximated value function is a
poor fit despite using eighth-order
Fourier basis functions. The result-
ing approximate policy is not a
close approximation to the expert
policy. The small time step in the
mountain car problem causes even
small changes in the value function
landscape to affect the policy. Op-
timal utility functions often have
complex geometries that can be dif-
ficult to capture with global basis
functions.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

8.9. exercises 177

• Nonlinear utility functions can be obtained when using linear regression when
combined with an appropriate selection of nonlinear basis functions.

• Neural network regression relieves us of having to specify basis functions, but
fitting them is more complex and generally requires us to use gradient descent
to tune our parametric approximation of the value function.

8.9 Exercises
Exercise 8.1. The value function approximation methods presented in this chapter have
mostly assumed continuous state spaces. The hex world problem, appendix F.1, is discrete,
but most of its states can be mapped to two-dimensional locations. It does, however,
have an additional terminal state that produces zero reward, which does not have a two-
dimensional location. How can one modify the continuous value function approximation
methods in this chapter to handle such a state?
Solution: The hex world problem has the agent navigate through a two-dimensional hexag-
onal grid. However, the agent can enter a single terminal state from one of several grid
hexes. This single terminal state presents a challenge for value function approximation
methods, which often rely on proximity to infer a state’s value.

While the terminal state could be projected to the same state space as the other states,
perhaps far away, this hack would nevertheless force a form of proximity into the terminal
state’s value calculation. Selecting a single position for a state that should be equidistant
to multiple predecessor states introduces bias.

One alternative is to treat the terminal state as a special case. The kernel function could
be modified to produce infinite distance between the terminal state and any other states.

Another option is to adjust the problem to have a terminal state for every hex that
produces a terminal reward. Each terminal state can be coincident with its predecessor
state, but offset in an additional dimension. This transformation maintains proximity at
the expense of additional states.
Exercise 8.2. A tabular representation is a special case of linear approximate value func-
tions. Show how, for any discrete problem, a tabular representation can be framed as a
linear approximate value function.
Solution: Consider a discrete MDP with m states s1:m and n actions a1:n. A tabular repre-
sentation associates a value with each state or state-action pair. We can recover the same
behavior using a linear approximate value function. We associate an indicator function
with each state or state-action pair, whose value is 1 when the input is the given state or
state-action pair and 0 otherwise:

βi(s) = (s = si) =

{

1 if s = si

0 otherwise

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

178 chapter 8. approximate value functions

or
βij(s, a) = ((s, a) = (si, aj)) =

{

1 if (s, a) = (si, aj)

0 otherwise

Exercise 8.3. Suppose that we have a problem with continuous state and action spaces
and we would like to construct both a local approximation and a global approximation of
the action value function Q(s, a) = θ⊤β(s, a). For global approximation, we choose the
basis functions

β(s, a) =
[

1, s, a, s2, sa, a2
]

Given a set of 100 states S = s1:100 and a set of five actions A = a1:5, how many parameters
are in θ for a local approximation method? Howmany parameters are in θ for the specified
global approximation method?

Solution: In local approximation methods, the state-action values are the parameters. We
will have |S| × |A| = 100× 5 = 500 parameters in θ. In global approximation methods,
the coefficients of the basis functions are the parameters. Since there are six components
in β(s, a), we will have six parameters in θ.

Exercise 8.4. We are given the states s1 = (4, 5), s2 = (2, 6), and s3 = (−1,−1), and their
corresponding values, U(s1) = 2, U(s2) = 10, and U(s3) = 30. Compute the value at state
s = (1, 2) using 2-nearest neighbor local approximation with an L1 distance metric, with
an L2 distance metric, and with an L∞ distance metric.

Solution: We tabulate the distances from s to the points s′ ∈ S as given here:

s′ ∈ S L1 L2 L∞

s1 = (4, 5) 6
√

18 3

s2 = (2, 6) 5
√

17 4

s3 = (−1,−1) 5
√

13 3

Using the L1 norm, we estimate U(s) = (10+ 30)/2 = 20. Using the L2 norm, we estimate
U(s) = (10 + 30)/2 = 20. Using the L∞ norm, we estimate U(s) = (2 + 30)/2 = 16.

Exercise 8.5. We would like to estimate the value at a state s given the values at a set of
two states S = {s1, s2}. If we want to use local approximation value iteration, which of
the following weighting functions are valid? If they are invalid, how could the weighting
functions be modified to make them valid?
• β(s) = [1, 1]

• β(s) = [1− λ, λ] where λ ∈ [0, 1]

• β(s) =
[

e(s−s1)2
, e(s−s2)2

]

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

8.9. exercises 179

Solution: The first set of weighting functions is not valid, as it violates the constraint
∑i βi(s) = 1. We can modify the weighting functions by normalizing them by their sum:

β(s) =
[

1
1+1 , 1

1+1

]

=
[

1
2 , 1

2

]

The second set of weighting functions is valid. The third set of weighting functions is not
valid, as it violates the constraint ∑i βi(s) = 1. We can modify the weighting functions by
normalizing them by their sum:

β(s) =

[

e(s−s1)
2

e(s−s1)
2
+e(s−s2)

2 , e(s−s2)
2

e(s−s1)
2
+e(s−s2)

2

]

Exercise 8.6. Prove that bilinear interpolation is invariant under (nonzero) linear grid
scaling.

Solution: It is straightforward to show that the interpolated value is invariant to a linear
scaling on one or both axes, such as, Ũθ(s̃) = Uθ(s). We show this by substituting all
x- and y-values by their scaled versions x̃ = βx and ỹ = γy, and showing that the grid
scalings cancel out:

Ũθ(s̃) =
(x̃2 − x̃)(ỹ2 − ỹ)

(x̃2 − x̃1)(ỹ2 − ỹ1)
θ1 +

(x̃2 − x̃)(ỹ− ỹ1)

(x̃2 − x̃1)(ỹ2 − ỹ1)
θ2 +

(x̃− x̃1)(ỹ2 − ỹ)

(x̃2 − x̃1)(ỹ2 − ỹ1)
θ3 +

(x̃− x̃1)(ỹ− ỹ1)

(x̃2 − x̃1)(ỹ2 − ỹ1)
θ4

Ũθ(s̃) =
β(x2 − x)γ(y2 − y)

β(x2 − x1)γ(y2 − y1)
θ1 +

β(x2 − x)γ(y− y1)

β(x2 − x1)γ(y2 − y1)
θ2 +

β(x− x1)γ(y2 − y)

β(x2 − x1)γ(y2 − y1)
θ3 +

β(x− x1)γ(y− y1)

β(x2 − x1)γ(y2 − y1)
θ4

Ũθ(s̃) =
(x2 − x)(y2 − y)

(x2 − x1)(y2 − y1)
θ1 +

(x2 − x)(y− y1)

(x2 − x1)(y2 − y1)
θ2 +

(x− x1)(y2 − y)

(x2 − x1)(y2 − y1)
θ3 +

(x− x1)(y− y1)

(x2 − x1)(y2 − y1)
θ4

Ũθ(s̃) = Uθ(s)

Exercise 8.7. Given the four states s1 = [0, 5], s2 = [0, 25], s3 = [1, 5], and s4 = [1, 25], and
a sample state s = [0.7, 10], generate the interpolant equation Uθ(s) for arbitrary θ.

Solution: The general form for bilinear interpolation is given in equation (8.12) and repro-
duced here. To generate the interpolant, we substitute our values into the equation and
simplify:

Uθ(s) =
(x2 − x)(y2 − y)

(x2 − x1)(y2 − y1)
θ1 +

(x2 − x)(y− y1)

(x2 − x1)(y2 − y1)
θ2 +

(x− x1)(y2 − y)

(x2 − x1)(y2 − y1)
θ3 +

(x− x1)(y− y1)

(x2 − x1)(y2 − y1)
θ4

Uθ(s) =
(1− 0.7)(25− 10)

(1− 0)(25− 5)
θ1 +

(1− 0.7)(10− 5)

(1− 0)(25− 5)
θ2 +

(0.7− 0)(25− 10)

(1− 0)(25− 5)
θ3 +

(0.7− 0)(10− 5)

(1− 0)(25− 5)
θ4

Uθ(s) =
9

40
θ1 +

3

40
θ2 +

21

40
θ3 +

7

40
θ4

Exercise 8.8. Following example 8.1, what are the simplex interpolant weights for a state
s = [0.4, 0.95, 0.6]?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

180 chapter 8. approximate value functions

Solution: For the given state s, we have 0 ≤ x1 ≤ x3 ≤ x2 ≤ 1, and so our permutation
vector is p = [1, 3, 2]. The vertices of our simplex can be generated by starting from (0, 0, 0)

and changing each 0 to a 1 in reverse order of the permutation vector. Thus, the vertices of
the simplex are (0, 0, 0), (0, 1, 0), (0, 1, 1), and (1, 1, 1).

Any point s belonging to the simplex can thus be expressed by a weighting of the
vertices:

s1

s2

s3

= w1

0

0

0

+ w2

0

1

0

+ w3

0

1

1

+ w4

1

1

1

We can determine the values of the weights in reverse order, finally solving for w1 by
applying the constraint that the weights must sum to 1. We can then compute the weights
for s = [0.4, 0.95, 0.6]:

w4 = s1 w3 = s3 − w4 w2 = s2 − w3 − w4 w1 = 1− w2 − w3 − w4

w4 = 0.4 w3 = 0.2 w2 = 0.35 w1 = 0.05

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

9 Online Planning

The solution methods we have discussed so far compute policies offline, before
any actions are executed in the real problem. Even offline approximation methods
can be intractable in many high-dimensional problems. This chapter discusses
online planning methods that find actions based on reasoning about states that
are reachable from the current state. The reachable state space is often orders of
magnitude smaller than the full state space, which can significantly reduce storage
and computational requirements compared to offline methods. We will discuss
a variety of algorithms that aim to make online planning efficient, including
pruning the state space, sampling, and planning more deeply along trajectories
that appear more promising.

9.1 Receding Horizon Planning

In receding horizon planning, we plan from the current state to a maximum fixed
horizon or depth d. We then execute the action from our current state, transition to
the next state, and replan. The online planning methods discussed in this chapter
follow this receding horizon planning scheme. They differ in how they explore
different courses of action.

A challenge in applying receding horizon planning is determining the appro-
priate depth. Deeper planning generally requires more computation. For some
problems, a shallow depth can be quite effective; the fact that we replan at each
step can compensate for our lack of longer-term modeling. In other problems,
greater planning depths may be necessary so that our planner can be driven
toward goals or away from unsafe states, as illustrated in example 9.1.

182 chapter 9. online planning

Suppose we want to apply receding horizon planning to aircraft collision
avoidance. The objective is to provide descend or climb advisories when
necessary to avoid collision. A collision occurs when our altitude relative
to the intruder h is within ±50 m and the time to potential collision tcol is
zero. We want to plan deeply enough so that we can provide an advisory
sufficiently early to avoid collisionwith a high degree of confidence. The plots
here show the actions that would be taken by a receding horizon planner
with different depths.

0 10 20 30 40
−200

−100

0

100

200

tcol (s)

h
(m

)

Horizon 10

climb
descend

0 10 20 30 40

tcol (s)

Horizon 20

0 10 20 30 40

tcol (s)

Horizon 40

If the depth is d = 10, we provide advisories only within 10 s of collision. Due
to the limitations of the vehicle dynamics and the uncertainty of the behavior
of the other aircraft, providing advisories this late compromises safety. With
d = 20, we can do better, but there are cases where we would want to alert a
little earlier to further reduce collision risk. There is no motivation to plan
deeper than d = 40 because we do not need to advise any maneuvers that
far ahead of potential collision.

Example 9.1. Receding horizon
planning for collision avoidance to
different planning depths. In this
problem, there are four state vari-
ables. These plots show slices of the
state space under the assumption
that the aircraft is currently level
and there has not yet been an ad-
visory. The horizontal axis is the
time to collision tcol, and the ver-
tical axis is our altitude h relative
to the intruder. Appendix F.6 pro-
vides additional details about this
problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

9.2. lookahead with rollouts 183

9.2 Lookahead with Rollouts

Chapter 8 involved extracting policies that are greedy with respect to an approxi-
mate value function U through the use of one-step lookahead.1 A simple online 1 The lookahead strategy was orig-

inally introduced in algorithm 7.2
as part of our discussion of exact
solution methods.

strategy involves acting greedily with respect to values estimated through simu-
lation to depth d. To run a simulation, we need a policy to simulate. Of course,
we do not know the optimal policy, but we can use what is called a rollout policy
instead. Rollout policies are typically stochastic, with actions drawn from a distri-
bution a ∼ π(s). To produce these rollout simulations, we use a generative model
s′ ∼ T(s, a) to generate successor states s′ from the distribution T(s′ | s, a). This
generative model can be implemented through draws from a random number
generator, which can be easier to implement in practice compared to explicitly
representing the distribution T(s′ | s, a).

Algorithm 9.1 combines one-step lookahead with values estimated through
rollout. This approach often results in better behavior than that of the original
rollout policy, but optimality is not guaranteed. It can be viewed as an approximate
form of policy improvement used in the policy iteration algorithm (section 7.4).
A simple variation of this algorithm is to use multiple rollouts to arrive at a better
estimate of the expected discounted return. If we run m simulations for each
action and resulting state, the time complexity is O(m× |A| × |S| × d).

9.3 Forward Search

Forward search determines the best action to take from an initial state s by ex-
panding all possible transitions up to depth d. These expansions form a search
tree.2 Such search trees have a worst-case branching factor of |S| × |A|, yielding 2 The exploration of the tree oc-

curs as a depth-first search. Ap-
pendix E reviews depth-first search
and other standard search algo-
rithms in the deterministic context.

a computational complexity of O((|S| × |A|)d). Figure 9.1 shows a search tree
applied to a problem with three states and two actions. Figure 9.2 visualizes the
states visited during forward search on the hex world problem.

Algorithm 9.2 calls itself recursively to the specified depth. Once reaching the
specified depth, it uses an estimate of the utility provided by the function U. If
we simply want to plan to the specified horizon, we set U(s) = 0. If our problem
requires planning beyond the depth that we can afford to compute online, we can
use an estimate of the value function obtained offline using, for example, one of
the value function approximations described in the previous chapter. Combining

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

184 chapter 9. online planning

struct RolloutLookahead
𝒫 # problem
π # rollout policy
d # depth

end

randstep(𝒫::MDP, s, a) = 𝒫.TR(s, a)

function rollout(𝒫, s, π, d)
ret = 0.0
for t in 1:d

a = π(s)
s, r = randstep(𝒫, s, a)
ret += 𝒫.γ^(t-1) * r

end
return ret

end

function (π::RolloutLookahead)(s)
U(s) = rollout(π.𝒫, s, π.π, π.d)
return greedy(π.𝒫, U, s).a

end

Algorithm 9.1. A function that
runs a rollout of policy π in prob-
lem 𝒫 from state s to depth d. It re-
turns the total discounted reward.
This function can be used with
the greedy function (introduced in
algorithm 7.5) to generate an ac-
tion that is likely to be an improve-
ment over the original rollout pol-
icy. Wewill use this algorithm later
for problems other than MDPs, re-
quiring us to only have to modify
randstep appropriately.

s

a1

s1 s2 s3

a1

s1 s2 s3

a2

s1 s2 s3

a1

s1 s2 s3

a2

s1 s2 s3

a1

s1 s2 s3

a2

s1 s2 s3

a2

s1 s2 s3

a1

s1 s2 s3

a2

s1 s2 s3

a1

s1 s2 s3

a2

s1 s2 s3

a1

s1 s2 s3

a2

s1 s2 s3depth 2:

depth 1:

Figure 9.1. A forward search tree
for a problem with three states and
two actions.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

9.4. branch and bound 185

online and offline approaches in this way is sometimes referred to as hybrid
planning.

struct ForwardSearch
𝒫 # problem
d # depth
U # value function at depth d

end

function forward_search(𝒫, s, d, U)
if d ≤ 0

return (a=nothing, u=U(s))
end
best = (a=nothing, u=-Inf)
U′(s) = forward_search(𝒫, s, d-1, U).u
for a in 𝒫.𝒜

u = lookahead(𝒫, U′, s, a)
if u > best.u

best = (a=a, u=u)
end

end
return best

end

(π::ForwardSearch)(s) = forward_search(π.𝒫, s, π.d, π.U).a

Algorithm 9.2. The forward search
algorithm for finding an approxi-
mately optimal action online for a
problem 𝒫 from a current state s.
The search is performed to depth d,
at which point the terminal value
is estimated with an approximate
value function U. The returned
named tuple consists of the best
action a and its finite-horizon ex-
pected value u. The problem type is
not constrained to be an MDP; sec-
tion 22.2 uses this same algorithm
in the context of partially observ-
able problems with a different im-
plementation for lookahead.

9.4 Branch and Bound

Branch and bound (algorithm 9.3) attempts to avoid the exponential computational
complexity of forward search. It prunes branches by reasoning about bounds
on the value function. The algorithm requires knowing a lower bound on the
value function U(s) and an upper bound on the action value function Q(s, a).
The lower bound is used to evaluate the states at the maximum depth. This lower
bound is propagated upward through the tree through Bellman updates. If we
find that the upper bound of an action at a state is lower than the lower bound
of a previously explored action from that state, then we need not explore that
action, allowing us to prune the associated subtree from consideration.

Branch and bound will give the same result as forward search, but it can be
more efficient depending on how many branches are pruned. The worst-case
complexity of branch and bound is still the same as forward search. To facilitate

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

186 chapter 9. online planning

Depth 1 Depth 2

Depth 3 Depth 4

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 9.2. Forward search applied
to the hex world problemwith four
maximum depths. The search can
visit a node multiple times. The ac-
tions and colors for visited states
were chosen according to the shal-
lowest, highest-value node in the
search tree for that state. The initial
state has an additional black bor-
der.

struct BranchAndBound
𝒫 # problem
d # depth
Ulo # lower bound on value function at depth d
Qhi # upper bound on action value function

end

function branch_and_bound(𝒫, s, d, Ulo, Qhi)
if d ≤ 0

return (a=nothing, u=Ulo(s))
end
U′(s) = branch_and_bound(𝒫, s, d-1, Ulo, Qhi).u
best = (a=nothing, u=-Inf)
for a in sort(𝒫.𝒜, by=a->Qhi(s,a), rev=true)

if Qhi(s, a) < best.u
return best # safe to prune

end
u = lookahead(𝒫, U′, s, a)
if u > best.u

best = (a=a, u=u)
end

end
return best

end

(π::BranchAndBound)(s) = branch_and_bound(π.𝒫, s, π.d, π.Ulo, π.Qhi).a

Algorithm 9.3. The branch and
bound algorithm for finding an
approximately optimal action on-
line for a discrete MDP 𝒫 from a
current state s. The search is per-
formed to depth d with value func-
tion lower bound Ulo and action
value function upper bound Qhi.
The returned named tuple consists
of the best action a and its finite-
horizon expected value u. This al-
gorithm is also used for POMDPs.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

9.5. sparse sampling 187

pruning, actions are traversed in descending order by upper bound. Tighter
bounds will generally result in more pruning, as shown in example 9.2.

Consider applying branch and bound to the mountain car problem. We can
use the value function of a heuristic policy for the lower bound U(s), such as
a heuristic policy that always accelerates in the direction of motion. For our
upper bound Q([x, v], a), we can use the return expected when accelerating
toward the goal with no hill. Branch and bound visits about a third as many
states as forward search.

Example 9.2. Branch and bound
applied to the mountain car prob-
lem (appendix F.4). Branch and
bound can achieve a significant
speedup over forward search.

9.5 Sparse Sampling

A method known as sparse sampling3 (algorithm 9.4) attempts to reduce the 3 M. J. Kearns, Y. Mansour, and
A.Y. Ng, “A Sparse Sampling Al-
gorithm for Near-Optimal Plan-
ning in LargeMarkovDecision Pro-
cesses,” Machine Learning, vol. 49,
no. 2–3, pp. 193–208, 2002.

branching factor of forward search and branch and bound. Instead of branching
on all possible next states, we consider only a limited number of samples of the
next state. Although the sampling of the next state results in an approximation,
this method can work well in practice and can significantly reduce computation.
If we draw m samples of the next state for each action node in the search tree,
the computational complexity is O

(

(m× |A|)d
)

, which is still exponential in the
depth but no longer depends on the size of the state space. Figure 9.3 shows an
example.

9.6 Monte Carlo Tree Search

Monte Carlo tree search (algorithm 9.5) avoids the exponential complexity in the
horizon by running m simulations from the current state.4 During these simula-

4 For a survey, see C. B. Browne, E.
Powley, D. Whitehouse, S.M. Lu-
cas, P. I. Cowling, P. Rohlfshagen, S.
Tavener, D. Perez, S. Samothrakis,
and S. Colton, “A Survey of Monte
Carlo Tree Search Methods,” IEEE
Transactions on Computational Intel-
ligence and AI in Games, vol. 4, no. 1,
pp. 1–43, 2012.tions, the algorithm updates estimates of the action value function Q(s, a) and

a record of the number of times a particular state-action pair has been selected,
N(s, a). After running these m simulations from our current state s, we simply
choose the action that maximizes our estimate of Q(s, a).

A simulation (algorithm 9.6) begins by traversing the explored state space,
consisting of the states for which we have estimates of Q and N. We follow
an exploration strategy to choose actions from the various states. A common
approach is to select the action that maximizes the UCB1 exploration heuristic:5

5 UCB stands for upper confidence
bound. This is one of many strate-
gies discussed by P. Auer, N. Cesa-
Bianchi, and P. Fischer, “Finite-
Time Analysis of the Multiarmed
Bandit Problem,”Machine Learning,
vol. 47, no. 2–3, pp. 235–256, 2002.
The equation is derived from the
Chernoff-Hoeffding bound.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

188 chapter 9. online planning

struct SparseSampling
𝒫 # problem
d # depth
m # number of samples
U # value function at depth d

end

function sparse_sampling(𝒫, s, d, m, U)
if d ≤ 0

return (a=nothing, u=U(s))
end
best = (a=nothing, u=-Inf)
for a in 𝒫.𝒜

u = 0.0
for i in 1:m

s′, r = randstep(𝒫, s, a)
a′, u′ = sparse_sampling(𝒫, s′, d-1, m, U)
u += (r + 𝒫.γ*u′) / m

end
if u > best.u

best = (a=a, u=u)
end

end
return best

end

(π::SparseSampling)(s) = sparse_sampling(π.𝒫, s, π.d, π.m, π.U).a

Algorithm 9.4. The sparse sam-
pling algorithm for finding an ap-
proximately optimal action online
for a discrete problem 𝒫 from a
current state s to depth d with m
samples per action. The returned
named tuple consists of the best
action a and its finite-horizon ex-
pected value u.

Depth 1 Depth 2

Depth 3 Depth 4

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 9.3. Sparse sampling with
m = 10 applied to the hex world
problem. Visited tiles are colored
according to their estimated value.
The bordered tile is the initial state.
Compare to forward search in fig-
ure 9.2.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

9.6. monte carlo tree search 189

struct MonteCarloTreeSearch
𝒫 # problem
N # visit counts
Q # action value estimates
d # depth
m # number of simulations
c # exploration constant
U # value function estimate

end

function (π::MonteCarloTreeSearch)(s)
for k in 1:π.m

simulate!(π, s)
end
return argmax(a->π.Q[(s,a)], π.𝒫.𝒜)

end

Algorithm 9.5. The Monte Carlo
tree search policy for finding an ap-
proximately optimal action from a
current state s.

Q(s, a) + c

√

log N(s)

N(s, a)
(9.1)

where N(s) = ∑a N(s, a) is the total visit count to s and c is an exploration pa-
rameter that scales the value of unexplored actions. The second term corresponds
to an exploration bonus. If N(s, a) = 0, the bonus is defined to be infinity. With
N(s, a) in the denominator, the exploration bonus is higher for actions that have
not been tried as frequently. Algorithm 9.7 implements this exploration strategy.
We will discuss many other exploration strategies later in chapter 15.

As we take actions specified by algorithm 9.7, we step into new states sampled
from the generative model T(s, a), similar to the sparse sampling method. We
increment the visit count N(s, a) and update Q(s, a) to maintain the mean value.

At some point, we will either reach the maximum depth or a state that we
have not yet explored. If we reach an unexplored state s, we initialize N(s, a) and
Q(s, a) to zero for each action a. We may modify algorithm 9.6 to initialize these
counts and value estimates to some other values based on prior expert knowledge
of the problem. After initializing N and Q, we then return a value estimate at the
state s. It is common to estimate this value through a rollout of some policy using
the process outlined in section 9.2.

Examples 9.3 to 9.7 work through an illustration of Monte Carlo tree search
applied to the 2048 problem. Figure 9.4 shows a search tree generated by running
Monte Carlo tree search on 2048. Example 9.8 discusses the impact of using
different strategies for estimating values.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

190 chapter 9. online planning

function simulate!(π::MonteCarloTreeSearch, s, d=π.d)
if d ≤ 0

return π.U(s)
end
𝒫, N, Q, c = π.𝒫, π.N, π.Q, π.c
𝒜, TR, γ = 𝒫.𝒜, 𝒫.TR, 𝒫.γ
if !haskey(N, (s, first(𝒜)))

for a in 𝒜
N[(s,a)] = 0
Q[(s,a)] = 0.0

end
return π.U(s)

end
a = explore(π, s)
s′, r = TR(s,a)
q = r + γ*simulate!(π, s′, d-1)
N[(s,a)] += 1
Q[(s,a)] += (q-Q[(s,a)])/N[(s,a)]
return q

end

Algorithm 9.6. A method for run-
ning a Monte Carlo tree search
simulation starting from state s to
depth d.

bonus(Nsa, Ns) = Nsa == 0 ? Inf : sqrt(log(Ns)/Nsa)

function explore(π::MonteCarloTreeSearch, s)
𝒜, N, Q, c = π.𝒫.𝒜, π.N, π.Q, π.c
Ns = sum(N[(s,a)] for a in 𝒜)
return argmax(a->Q[(s,a)] + c*bonus(N[(s,a)], Ns), 𝒜)

end

Algorithm 9.7. An exploration pol-
icy used inMonte Carlo tree search
when determining which nodes to
traverse through the search tree.
The policy is determined by a dic-
tionary of state-action visitation
counts N and values Q, as well as
an exploration parameter c. When
N[(s,a)] = 0, the policy returns
infinity.

Consider using Monte Carlo tree search to play 2048 (appendix F.2) with
a maximum depth d = 10, an exploration parameter c = 100, and a 10-step
random rollout to estimate U(s). Our first simulation expands the starting
state. The count and value are initialized for each action from the initial state:

2
4

N = 0 Q = 0
left

N = 0 Q = 0
down

N = 0 Q = 0
right

N = 0 Q = 0
up

Example 9.3. An example of solv-
ing 2048 with Monte Carlo tree
search.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

9.6. monte carlo tree search 191

The second simulation begins by selecting the best action from the initial
state according to our exploration strategy in equation (9.1). Because all
states have the same value, we arbitrarily choose the first action, left. We
then sample a new successor state and expand it, initializing the associated
counts and value estimates. A rollout is run from the successor state and its
value is used to update the value of left:

2
4

N = 1 Q = 72
left

2
4

2

N = 0 Q = 0
left

N = 0 Q = 0
down

N = 0 Q = 0
right

N = 0 Q = 0
up

16 2 8 4

4U(s) = 72

N = 0 Q = 0
down

N = 0 Q = 0
right

N = 0 Q = 0
up

Example 9.4. A (continued) ex-
ample of solving 2048 with Monte
Carlo tree search.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

192 chapter 9. online planning

The third simulation begins by selecting the second action, down, because it
has infinite value due to the exploration bonus given for unexplored actions.
The first action has finite value:

Q(s0, left) + c

√

log N(s0)

N(s0, left) = 72 + 100

√

log 1

1
= 72

We take the down action and sample a new successor state, which is expanded.
A rollout is run from the successor state and its value is used to update the
value of down:

2
4

N = 1 Q = 72
left

2
4

2

left
N = 0
Q = 0

down
N = 0
Q = 0

right
N = 0
Q = 0

up
N = 0
Q = 0

N = 1 Q = 44
down

2 4
4

left
N = 0
Q = 0

down
N = 0
Q = 0

right
N = 0
Q = 0

up
N = 0
Q = 0

8 8 4 4
2 2

4
U(s) = 44

N = 0 Q = 0
right

N = 0 Q = 0
up

Example 9.5. A (continued) ex-
ample of solving 2048 with Monte
Carlo tree search.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

9.6. monte carlo tree search 193

The next two simulations select right and up, respectively. This results in
the following:

2
4

N = 1 Q = 72
left

2
4

2

left
N = 0
Q = 0

down
N = 0
Q = 0

right
N = 0
Q = 0

up
N = 0
Q = 0

N = 1 Q = 44
down

2 4
4

left
N = 0
Q = 0

down
N = 0
Q = 0

right
N = 0
Q = 0

up
N = 0
Q = 0

N = 1 Q = 36
right

4
4
2

left
N = 0
Q = 0

down
N = 0
Q = 0

right
N = 0
Q = 0

up
N = 0
Q = 0

N = 1 Q = 88
up

2

2

4

left
N = 0
Q = 0

down
N = 0
Q = 0

right
N = 0
Q = 0

up
N = 0
Q = 0

Example 9.6. A (continued) ex-
ample of solving 2048 with Monte
Carlo tree search.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

194 chapter 9. online planning

In the fifth simulation, up has the highest value. The successor state after
taking up in the source state will not necessarily be the same as the first time
up was selected. We evaluate U(s) = 44 and update our visitation count to
2 and our estimated value to Q← 88 + (44− 88)/2 = 66. A new successor
node is created:

2
4

N = 1 Q = 72
left

2
4

2

N = 1 Q = 44
down

2 4
4

N = 1 Q = 36
right

4
4
2

N = 2 Q = 66
up

2

2

4

2

2 4

Example 9.7. A (continued) ex-
ample of solving 2048 with Monte
Carlo tree search.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

9.6. monte carlo tree search 195

a(1) s(1) a(2) s(2) a(3) s(3)

s

Figure 9.4. A Monte Carlo tree
search tree on 2048 after 100 sim-
ulations. In general, Monte Carlo
tree search for MDPs produces a
search graph because there can be
multiple ways to reach the same
state. The colors in the tree indicate
the estimated values at the nodes,
with high values in blue and low
values in red. The tree is shallow,
with a fairly high branching factor,
because 2048 has many reachable
states for each action.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

196 chapter 9. online planning

Rollouts are not the only means by which we can estimate utilities in Monte
Carlo tree search. Custom evaluation functions can often be crafted for spe-
cific problems to help guide the algorithm. For example, we can encourage
Monte Carlo tree search to order its tiles in 2048 using evaluation functions
that return the weighted sum across tile values:

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

0 1 2 3

7 6 5 4

8 9 10 11

15 14 13 12

heuristic A weights heuristic B weights

The plot here compares Monte Carlo tree search on 2048 using rollouts
with a uniform random policy, rollouts with a one-step lookahead policy, the
two evaluation functions, and using the current board score:

102 103 104

104

104.5

number of simulations, m

m
ea

n
re
wa

rd

random rollout
lookahead
weights A
weights B
board score

Rollouts perform well but require more execution time. Here we plot
the average execution time relative to random rollouts for m = 100 from a
starting state:

0 1 2 3 4 5 6

board score
weights B
weights A
lookahead

random rollout

mean relative execution time

Example 9.8. The performance
of Monte Carlo tree search varies
with the number of simulations
and as the board evaluation
method is changed. Heuristic
board evaluations tend to be
efficient and can more effectively
guide the search when run
counts are low. Lookahead rollout
evaluations take about 18 times
longer than heuristic evaluations.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

9.7. heuristic search 197

There are variations of this basic Monte Carlo tree search algorithm that can
better handle large action and state spaces. Instead of expanding all the actions,
we can use progressive widening. The number of actions considered from state s is
limited to θ1N(s)θ2 , where θ1 and θ2 are hyperparameters. Similarly, we can limit
the number of states that result from taking action a from state s in the same way,
using what is called double progressive widening. If the number of states that have
been simulated from state s after action a is below θ3N(s, a)θ4 , then we sample
a new state; otherwise, we sample one of the previously sampled states with
probability proportional to the number of times it has been visited. This strategy
can be used to handle large as well as continuous action and state spaces.6

6 A. Couëtoux, J.-B. Hoock, N.
Sokolovska, O. Teytaud, and N.
Bonnard, “Continuous Upper Con-
fidence Trees,” in Learning and In-
telligent Optimization (LION), 2011.

9.7 Heuristic Search

Heuristic search (algorithm 9.8) uses m simulations of a greedy policy with respect
to a value function U from the current state s.7 The value function U is initialized

7 A.G. Barto, S. J. Bradtke, and S. P.
Singh, “Learning toAct Using Real-
Time Dynamic Programming,” Ar-
tificial Intelligence, vol. 72, no. 1–2,
pp. 81–138, 1995. Other forms of
heuristic search are discussed by
Mausam and A. Kolobov, Planning
with Markov Decision Processes: An
AI Perspective. Morgan & Claypool,
2012.

to an upper bound of the value function U, which is referred to as a heuristic. As
we run these simulations, we update our estimate of U through lookahead. After
running these simulations, we simply select the greedy action from s with respect
to U. Figure 9.5 shows how U and the greedy policy changes with the number of
simulations.

Heuristic search is guaranteed to converge to the optimal utility function so long
as the heuristic U is indeed an upper bound on the value function.8 The efficiency 8 Such a heuristic is referred to as

an admissible heuristic.of the search depends on the tightness of the upper bound. Unfortunately, tight
bounds can be difficult to obtain in practice. While a heuristic that is not a true
upper bound may not converge to the optimal policy, it may still converge to a
policy that performs well. The time complexity is O(m× d× |S| × |A|).

9.8 Labeled Heuristic Search

Labeled heuristic search (algorithm 9.9) is a variation of heuristic search that runs
simulations with value updates while labeling states based on whether their
value is solved.9 We say that a state s is solved if its utility residual falls below a

9 B. Bonet and H. Geffner, “Labeled
RTDP: Improving the Convergence
of Real-Time Dynamic Program-
ming,” in International Conference
on Automated Planning and Schedul-
ing (ICAPS), 2003.

threshold δ > 0:
|Uk+1(s)−Uk(s)| < δ (9.2)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

198 chapter 9. online planning

struct HeuristicSearch
𝒫 # problem
Uhi # upper bound on value function
d # depth
m # number of simulations

end

function simulate!(π::HeuristicSearch, U, s)
𝒫 = π.𝒫
for d in 1:π.d

a, u = greedy(𝒫, U, s)
U[s] = u
s = rand(𝒫.T(s, a))

end
end

function (π::HeuristicSearch)(s)
U = [π.Uhi(s) for s in π.𝒫.𝒮]
for i in 1:π.m

simulate!(π, U, s)
end
return greedy(π.𝒫, U, s).a

end

Algorithm 9.8. Heuristic search
runs m simulations starting from
an initial state s to a depth d. The
search is guided by a heuristic ini-
tial value function Uhi, which leads
to optimality in the limit of simula-
tions if it is an upper bound on the
optimal value function.

5 simulations 10 simulations

20 simulations 50 simulations

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 9.5. Heuristic search runs
simulations with Bellman updates
to improve a value function on the
hex world problem to obtain a pol-
icy froman initial state, shownhere
with an additional black border.
These simulations are run to depth
8 with heuristic U(s) = 10. Each
hex is colored according to the util-
ity function value in that iteration.
We see that the algorithm eventu-
ally finds an optimal policy.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

9.8. labeled heuristic search 199

We run simulations with value updates until the current state is solved. In contrast
with the heuristic search in the previous section, which runs a fixed number of
iterations, this labeling process focuses computational effort on themost important
areas of the state space.

struct LabeledHeuristicSearch
𝒫 # problem
Uhi # upper bound on value function
d # depth
δ # gap threshold

end

function (π::LabeledHeuristicSearch)(s)
U, solved = [π.Uhi(s) for s in π.𝒫.𝒮], Set()
while s ∉ solved

simulate!(π, U, solved, s)
end
return greedy(π.𝒫, U, s).a

end

Algorithm 9.9. Labeled heuris-
tic search, which runs simulations
starting from the current state to
depth d until the current state is
solved. The search is guided by a
heuristic upper bound on the value
function Uhi andmaintains a grow-
ing set of solved states. States are
considered solved when their util-
ity residuals fall below δ. A value
function policy is returned.

Simulations in labeled heuristic search (algorithm 9.10) begin by running to
a maximum depth of d by following a policy that is greedy with respect to our
estimated value function U, similar to the heuristic search in the previous section.
We may stop a simulation before a depth of d if we reach a state that has been
labeled as solved in a prior simulation.

function simulate!(π::LabeledHeuristicSearch, U, solved, s)
visited = []
for d in 1:π.d

if s ∈ solved
break

end
push!(visited, s)
a, u = greedy(π.𝒫, U, s)
U[s] = u
s = rand(π.𝒫.T(s, a))

end
while !isempty(visited)

if label!(π, U, solved, pop!(visited))
break

end
end

end

Algorithm 9.10. Simulations are
run from the current state to a max-
imum depth d. We stop a simula-
tion at depth d or if we encounter a
state that is in the set solved. After
a simulation, we call label! on the
states we visited in reverse order.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

200 chapter 9. online planning

After each simulation, we iterate over the states we visited during that simula-
tion in reverse order, performing a labeling routine on each state and stopping if a
state is found that is not solved. The labeling routine (algorithm 9.11) searches the
states in the greedy envelope of s, which is defined to be the states reachable from s

under a greedy policy with respect to U. The state s is considered not solved if
there is a state in the greedy envelope of s whose utility residual is greater than
threshold δ. If no such state is found, then s is marked as solved—as well as all
states in the greedy envelope of s because they must have converged as well. If
a state with a sufficiently large utility residual is found, then the utilities of all
states traversed during the search of the greedy enveloped are updated.

Figure 9.6 shows several different greedy envelopes. Figure 9.7 shows the states
traversed in a single iteration of labeled heuristic search. Figure 9.8 shows the
progression of heuristic search on the hex world problem.

9.9 Open-Loop Planning

The online methods discussed in this chapter, as well as the offline methods
discussed in the previous chapters, are examples of closed-loop planning, which
involves accounting for future state information in the planning process.10 Often, 10 The loop in this context refers to

the observe-act loop introduced in
section 1.1.open-loop planning can provide a satisfactory approximation of an optimal closed-

loop plan while greatly enhancing computational efficiency by avoiding having
to reason about the acquisition of future information. Sometimes this open-loop
planning approach is referred to as model predictive control.11 As with receding 11 F. Borrelli, A. Bemporad, and M.

Morari, Predictive Control for Lin-
ear and Hybrid Systems. Cambridge
University Press, 2019.

horizon control, model predictive control solves the open-loop problem, executes
the action from our current state, transitions to the next state, and then replans.

Open-loop plans can be represented as a sequence of actions up to a depth d.
The planning process reduces to an optimization problem:

maximize
a1:d

U(a1:d) (9.3)

where U(a1:d) is the expected return when executing the sequence of actions a1:d.
Depending on the application, this optimization problem may be convex or lend
itself to a convex approximation, meaning that it can be solved quickly using
a variety of algorithms.12 Later in this section, we will discuss a few different

12 Appendix A.6 reviews convex-
ity. An introduction to convex op-
timization is provided by S. Boyd
and L. Vandenberghe, Convex Op-
timization. Cambridge University
Press, 2004.

formulations that can be used to transform equation (9.3) into a convex problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

9.9. open-loop planning 201

function expand(π::LabeledHeuristicSearch, U, solved, s)
𝒫, δ = π.𝒫, π.δ
𝒮, 𝒜, T = 𝒫.𝒮, 𝒫.𝒜, 𝒫.T
found, toexpand, envelope = false, Set(s), []
while !isempty(toexpand)

s = pop!(toexpand)
push!(envelope, s)
a, u = greedy(𝒫, U, s)
if abs(U[s] - u) > δ

found = true
else

for s′ in 𝒮
if T(s,a,s′) > 0 && s′ ∉ (solved ∪ envelope)

push!(toexpand, s′)
end

end
end

end
return (found, envelope)

end

function label!(π::LabeledHeuristicSearch, U, solved, s)
if s ∈ solved

return false
end
found, envelope = expand(π, U, solved, s)
if found

for s ∈ reverse(envelope)
U[s] = greedy(π.𝒫, U, s).u

end
else

union!(solved, envelope)
end
return found

end

Algorithm 9.11. The label! func-
tion will attempt to find a state in
the greedy envelope of s whose
utility residual exceeds a thresh-
old δ. The function expand com-
putes the greedy envelope of s and
determines whether any of those
states have utility residuals above
the threshold. If a state has a resid-
ual that exceeds the threshold, then
we update the utilities of the states
in the envelope. Otherwise, we add
that envelope to the set of solved
states.

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 9.6. The greedy envelope
for δ = 1 for several states visu-
alized for a value function on the
hexworld problem. The value func-
tion was obtained by running ba-
sic heuristic search for 10 iterations
from an initial state, shown with
a white hex center, to a maximum
depth of 8. We find that the size
of the greedy envelope, outlined in
gray, can vary widely depending
on the state.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

202 chapter 9. online planning

Figure 9.7. A single iteration of
labeled heuristic search conducts
an exploratory run (arrows), fol-
lowed by labeling (hexagonal bor-
der). Only two states are labeled in
this iteration: the hidden terminal
state and the state with a hexag-
onal border. Both the exploratory
run and the labeling step update
the value function.

1 simulation 2 simulations

3 simulations 4 simulations

5 simulations (solved)

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 9.8. A progression of heuris-
tic search on the hex world prob-
lem using δ = 1 and a heuris-
tic U(s) = 10. The solved states
in each iteration are covered in a
gray wash. The set of solved states
grows from the terminal reward
state back toward the initial state
with the dark border.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

9.9. open-loop planning 203

Open-loop planning can often allow us to devise effective decision strategies
in high-dimensional spaces where closed-loop planning is computationally in-
feasible. This type of planning gains this efficiency by not accounting for future
information. Example 9.9 provides a simple instance of where open-loop planning
can result in poor decisions, even when we account for stochasticity.

Consider a problem with nine states, as shown in the margin, with two
decision steps starting from the initial state s1. In our decisions, we must
decide between going up (blue arrows) and going down (green arrows).
The effects of these actions are deterministic, except that if we go up from
s1, then we end up in state s2 half the time and in state s3 half the time. We
receive a reward of 30 in states s5 and s7 and a reward of 20 in states s8 and
s9, as indicated in the illustration.

There are exactly four open-loop plans: (up, up), (up, down), (down,
up), and (down, down). In this simple example, it is easy to compute their
expected utilities:

• U(up, up) = 0.5× 30 + 0.5× 0 = 15

• U(up, down) = 0.5× 0 + 0.5× 30 = 15

• U(down, up) = 20

• U(down, down) = 20

According to the set of open-loop plans, it is best to choose down from s1

because our expected reward is 20 instead of 15.
Closed-loop planning, in contrast, takes into account the fact that we can

base our next decision on the observed outcome of our first action. If we
choose to go up from s1, then we can choose to go down or up depending on
whether we end up in s2 or s3, thereby guaranteeing a reward of 30.

Example 9.9. Suboptimality of
open-loop planning.

s1

s2

s3

s4

s5

s6

s7

s8

s9

(0.5)

(0.5)

30

0

30

20

20

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

204 chapter 9. online planning

9.9.1 Deterministic Model Predictive Control
A common approximation to make U(a1:d) amenable to optimization is to assume
deterministic dynamics:

maximize
a1:d ,s2:d

d

∑
t=1

γtR(st, at)

subject to st+1 = T(st, at), t ∈ 1 : d− 1

(9.4)

where s1 is the current state and T(s, a) is a deterministic transition function that
returns the state that results from taking action a from state s. A common strategy
for producing a suitable deterministic transition function from a stochastic transi-
tion function is to use the most likely transition. If the dynamics in equation (9.4)
are linear and the reward function is convex, then the problem is convex.

Example 9.10 provides an instance involving navigating to a goal state while
avoiding an obstacle and minimizing acceleration effort. Both the state space and
action space are continuous, and we can find a solution in well under a second.
Replanning after every step can help compensate for stochasticity or unexpected
events. For example, if the obstacle moves, we can readjust our plan, as illustrated
in figure 9.9.

9.9.2 Robust Model Predictive Control
We can change the problem formulation to provide robustness to outcome un-
certainty. There are many robust model predictive control formulations,13 but one 13 A. Bemporad andM.Morari, “Ro-

bust Model Predictive Control: A
Survey,” in Robustness in Identifica-
tion and Control, A. Garulli, A. Tesi,
and A. Vicino, eds., Springer, 1999,
pp. 207–226.

involves choosing the best open-loop plan given the worst-case state transitions.
This formulation defines T(s, a) to be an uncertainty set consisting of all possible
states that can result from taking action a in state s. In other words, the uncer-
tainty set is the support of the distribution T(· | s, a). Optimizing with respect to
worst-case state transitions requires transforming the optimization problem in
equation (9.4) into a minimax problem:

maximize
a1:d

minimize
s2:d

d

∑
t=1

γtR(st, at)

subject to st+1 ∈ T(st, at), t ∈ 1 : d− 1

(9.5)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

9.9. open-loop planning 205

In this problem, our state s represents our agent’s two-dimensional position
concatenated with its two-dimensional velocity vector, with s initially set to
[0, 0, 0, 0]. Our action a is an acceleration vector, where each component must
be between ±1. At each step, we use our action to update our velocity, and
we use our velocity to update our position. Our objective is to reach a goal
state of sgoal = [10, 10, 0, 0]. We plan up to d = 10 steps with no discounting.
With each step, we accumulate a cost of ‖at‖2

2 to minimize acceleration effort.
At the last step, we want to be as close to the goal state as possible, with a
penalty of 100‖sd − sgoal‖2

2. We also have to ensure that we avoid a circular
obstacle with radius 2 centered at [3, 4]. We can formulate this problem as
follows and extract the first action from the plan:
model = Model(Ipopt.Optimizer)
d = 10
current_state = zeros(4)
goal = [10,10,0,0]
obstacle = [3,4]
@variables model begin

s[1:4, 1:d]
-1 ≤ a[1:2,1:d] ≤ 1

end
velocity update
@constraint(model, [i=2:d,j=1:2], s[2+j,i] == s[2+j,i-1] + a[j,i-1])
position update
@constraint(model, [i=2:d,j=1:2], s[j,i] == s[j,i-1] + s[2+j,i-1])
initial condition
@constraint(model, s[:,1] .== current_state)
obstacle
@constraint(model, [i=1:d], sum((s[1:2,i] - obstacle).^2) ≥ 4)
@objective(model, Min, 100*sum((s[:,d] - goal).^2) + sum(a.^2))
optimize!(model)
action = value.(a[:,1])

Example 9.10. Open-loop planning
in a deterministic environment.We
attempt to find a path around a
circular obstacle. This implemen-
tation uses the JuMP.jl interface to
the Ipopt solver. A. Wächter and
L. T. Biegler, “On the Implementa-
tion of an Interior-Point Filter Line-
Search Algorithm for Large-Scale
Nonlinear Programming,” Mathe-
matical Programming, vol. 106, no. 1,
pp. 25–57, 2005.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

206 chapter 9. online planning

0

2

4

6

8

10

0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10 0 2 4 6 8 10

Figure 9.9. Model predictive con-
trol applied to the problem in ex-
ample 9.10, with the addition of
a moving obstacle. The sequence
progresses left-to-right, and top-to-
bottom. Initially, we have a plan
that passes to the right of the ob-
stacle, but in the third cell, we see
that we must change our mind and
pass to the left. We have to maneu-
ver around a little to adjust our
velocity vector appropriately with
minimal effort. Of course, we could
have created a better path (in terms
of our utility function) if our plan-
ning process had known that the
obstacle wasmoving in a particular
direction.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

9.9. open-loop planning 207

Unfortunately, this formulation can result in extremely conservative behavior. If
we adapt example 9.10 to model the uncertainty in the motion of the obstacle, the
accumulation of uncertainty may become quite large, even when planning with
a relatively short horizon. One way to reduce the accumulation of uncertainty
is to restrict the uncertainty set output by T(s, a) to contain only, say, 95 % of
the probability mass. Another issue with this approach is that the minimax
optimization problem is often not convex and difficult to solve.

9.9.3 Multiforecast Model Predictive Control
One way to address the computational challenge within the minimax problem
in equation (9.5) is to use m forecast scenarios, each of which follows its own
deterministic transition function.14 There are various formulations of this kind of

14 S. Garatti and M.C. Campi,
“Modulating Robustness in Con-
trol Design: Principles and Algo-
rithms,” IEEE Control Systems Mag-
azine, vol. 33, no. 2, pp. 36–51, 2013.multiforecast model predictive control, which is a type of hindsight optimization.15 One
15 It is called hindsight optimiza-
tion because it represents a solu-
tion that is optimizing using knowl-
edge about action outcomes that
can only be known in hindsight.
E.K. P. Chong, R. L. Givan, and
H. S. Chang, “A Framework for
Simulation-Based Network Con-
trol via Hindsight Optimization,”
in IEEE Conference on Decision and
Control (CDC), 2000.

common approach is to have the deterministic transition functions depend on
the step k, Ti(s, a, k), which is the same as augmenting the state space to include
depth. Example 9.11 demonstrates how this might be done for a linear Gaussian
model.

Suppose we have a problem with linear Gaussian dynamics:

T(s′ | s, a) = N (Tss + Taa, Σ)

The problem in figure 9.9 is linear, with no uncertainty, but if we allow the
obstacle to move according to a Gaussian distribution at each step, then the
dynamics become linear Gaussian. We can approximate the dynamics using
a set of m forecast scenarios, each consisting of d steps. We can pull m× d

samples ǫik ∼ N (0, Σ) and define the deterministic transition functions:

Ti(s, a, k) = Tss + Taa + ǫik

Example 9.11. Modeling linear
Gaussian transition dynamics in
multiforecastmodel predictive con-
trol.

We try to find the best sequence of actions for the worst sampled scenario:

maximize
a1:d

minimize
i, s2:d

d

∑
k=1

γkR(sk, ak)

subject to sk+1 = Ti(sk, ak, k), k ∈ 1 : d− 1

(9.6)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

208 chapter 9. online planning

This problem can be much easier to solve than the original robust problem.
We can also use a multiforecast approach to optimize the average case.16 The 16 This approach was applied to op-

timizing power flow policies by N.
Moehle, E. Busseti, S. Boyd, and M.
Wytock, “Dynamic Energy Man-
agement,” in Large Scale Optimiza-
tion in Supply Chains and SmartMan-
ufacturing, Springer, 2019, pp. 69–
126.

formulation is similar to equation (9.6), except that we replace the minimization
with an expectation and allow different action sequences to be taken for different
scenarios, with the constraint that the first action must agree:

maximize
a
(1:m)
1:d ,s

(i)
2:d

1

m

m

∑
i=1

d

∑
k=1

γkR(s
(i)
k , a

(i)
k)

subject to s
(i)
k+1 = Ti(s

(i)
k , a

(i)
k , k), k ∈ 1 : d− 1, i ∈ 1 : m

a
(i)
1 = a

(j)
1 , i ∈ 1 : m, j ∈ 1 : m

(9.7)

This formulation can result in robust behavior without being overly conservative,
while still maintaining computational tractability. Both formulations in equa-
tions (9.6) and (9.7) can be made more robust by increasing the number of
forecast scenarios m at the expense of additional computation.

9.10 Summary

• Online methods plan from the current state, focusing computation on states
that are reachable.

• Receding horizon planning involves planning to a certain horizon and then
replanning with each step.

• Lookahead with rollouts involves acting greedily with respect to values es-
timated using simulations of a rollout policy; it is computationally efficient
compared to other algorithms, but there are no guarantees on performance.

• Forward search considers all state-action transitions up to a certain depth,
resulting in computational complexity that grows exponentially in both the
number of states and the number of actions.

• Branch and bound uses upper and lower bound functions to prune portions of
the search tree that will not lead to a better outcome in expectation.

• Sparse sampling avoids the exponential complexity in the number of states by
limiting the number of sampled transitions from every search node.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

9.11. exercises 209

• Monte Carlo tree search guides search to promising areas of the search space
by taking actions that balance exploration with exploitation.

• Heuristic search runs simulations of a policy that is greedy with respect to a
value function that is updated along the way using lookahead.

• Labeled heuristic search reduces computation by not reevaluating states whose
values have converged.

• Open-loop planning aims to find the best possible sequence of actions and can
be computationally efficient if the optimization problem is convex.

9.11 Exercises
Exercise 9.1. Why does branch and bound have the same worst-case computational
complexity as forward search?

Solution: In the worst case, branch and bound will never prune, resulting in a traversal of
the same search tree as forward search with the same complexity.

Exercise 9.2. Given two admissible heuristics h1 and h2, how can we use both of them in
heuristic search?

Solution: Create a new heuristic h(s) = min{h1(s), h2(s)} and use it instead. This new
heuristic is guaranteed to be admissible and cannot be a worse bound than either h1 or h2.
Both h1(s) ≥ U∗(s) and h2(s) ≥ U∗(s) imply that h(s) ≥ U∗(s).

Exercise 9.3. Given two inadmissible heuristics h1 and h2, describe a way we can use both
of them in heuristic search.

Solution: We could define a new heuristic h3(s) = max(h1(s), h2(s)) to get a potentially
admissible, or ‘‘less-inadmissible,’’ heuristic. It may be slower to converge, but it may be
more likely to not miss out on a better solution.

Exercise 9.4. Suppose we have a discrete MDP with state space S and action space A and
we want to perform forward search to depth d. Due to computational constraints and the
requirement that wemust simulate to depth d, we decide to generate new, smaller state and
action spaces by re-discretizing the original state and action spaces on a coarser scale with
|S ′| < |S| and |A′| < |A|. In terms of the original state and action spaces, what would
the size of the new state and action spaces need to be in order to make the computational
complexity of forward search approximately depth-invariant with respect to the size of
our original state and action spaces, that is, O (|S||A|)?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

210 chapter 9. online planning

Solution: We need
|S ′| = |S| 1

d and |A′| = |A| 1
d

This results in the following complexity:

O
(

|S ′|d|A′|d
)

= O

(

(

|S| 1
d

)d (

|A| 1
d

)d
)

= O(|S||A|)

Exercise 9.5. Building on the previous exercise, suppose now that we want to keep all the
original actions in our action space and only re-discretize the state space. What would the
size of the new state space need to be to make the computational complexity of forward
search approximately depth-invariant with respect to the size of our original state and
action spaces?

Solution: The computational complexity of forward search is given by O
(

(|S||A|)d
)

, which
can also be written as O

(

|S|d|A|d
)

. Thus, in order for our coarser state space to lead to
forward search that is approximately depth-invariant with respect to the size of our original
state and action spaces, we need

|S ′| =
(|S|
|A|d−1

)
1
d

This gives us:

O
(

|S ′|d|A′|d
)

= O

[

(|S|
|A|d−1

)
1
d

]d

|A|d

 = O

(

|S| |A|
d

|A|d−1

)

= O(|S||A|)

Exercise 9.6. Will changing the ordering of the action space cause forward search to take
different actions? Will changing the ordering of the action space cause branch and bound
to take different actions? Can the ordering of the action space affect how many states are
visited by branch and bound?

Solution: Forward search enumerates over all possible future actions. It may return different
actions if there are ties in their expected utilities. Branch and bound maintains the same
optimality guarantee over the horizon as forward search by sorting by upper bound. The
ordering of the action space can affect branch and bound’s visitation rate when the upper
bound produces the same expected value for two or more actions. Below we show this
effect on the modified mountain car problem from example 9.2. The plot compares the
number of states visited in forward search to that of branch and bound for different action
orderings to depth 6. Branch and bound consistently visits far fewer states than forward
search, but action ordering can still affect state visitation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

9.11. exercises 211

0 50 100 150 200 250 300 350

order: [−1, 0, 1]
order: [−1, 1, 0]
order: [0,−1, 1]
order: [0, 1,−1]
order: [1,−1, 0]
order: [1, 0,−1]
forward search

mean visitation count

Exercise 9.7. Is sparse sampling with m = |S| equivalent to forward search?

Solution: No. While the computational complexities are identical at O
(

|S|d|A|d
)

, forward
search will branch on all states in the state space, while sparse sampling will branch on
|S| randomly sampled states.

Exercise 9.8. Given an MDP with |S| = 10, |A| = 3, and a uniform transition distribution
T(s′ | s, a) = 1/|S| for all s and a, what is the probability that sparse sampling with
m = |S| samples and depth d = 1 yields the exact same search tree produced by forward
search with depth d = 1?

Solution: For both forward search and sparse sampling, we branch on all actions from
the current state node. For forward search, at each of these action nodes, we branch on
all states, while for sparse sampling, we will branch on m = |S| sampled states. If these
sampled states are exactly equal to the state space, that action branch is equivalent to the
branch produced in forward search. Thus, for a single action branch we have:

the probability the first state is unique 10

10

the probability the second state is unique (not equal to the first state) 9

10

the probability the third state is unique (not equal to the first or second state) 8

10
...

...

Since each of these sampled states is independent, this leads to the probability of all unique
states in the state space being selected with probability

10× 9× 8× · · ·
10× 10× 10× · · · =

10!

1010
≈ 0.000363

Since each of the sampled states across different action branches is independent, the
probability that all three action branches sample the unique states in the state space is

(

10!

1010

)3

≈ (0.000363)3 ≈ 4.78× 10−11

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

212 chapter 9. online planning

Exercise 9.9. Given the following tables of Q(s, a) and N(s, a), use the upper confidence
bound in equation (9.1) to compute the MCTS traversal action for each state with an
exploration parameter of c1 = 10 and again for c2 = 20.

Q(s, a1) Q(s, a2)

s1 10 −5

s2 12 10

N(s, a1) N(s, a2)

s1 27 4

s2 32 18

Solution: For the first exploration parameter c1 = 10, we tabulate the upper confidence
bound of each state-action pair and select the action maximizing the bound for each state:

UCB(s, a1) UCB(s, a2) arg maxa UCB(s, a)

s1 10 + 10

√

log 31
27 ≈ 13.566 −5 + 10

√

log 31
4 ≈ 4.266 a1

s2 12 + 10

√

log 50
32 ≈ 15.496 10 + 10

√

log 50
18 ≈ 14.662 a1

And for c2 = 20, we have:

UCB(s, a1) UCB(s, a2) arg maxa UCB(s, a)

s1 10 + 20

√

log 31
27 ≈ 17.133 −5 + 20

√

log 31
4 ≈ 13.531 a1

s2 12 + 20

√

log 50
32 ≈ 18.993 10 + 20

√

log 50
18 ≈ 19.324 a2

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

10 Policy Search

Policy search involves searching the space of policies without directly computing a
value function. The policy space is often lower-dimensional than the state space
and can often be searched more efficiently. Policy optimization optimizes the
parameters in a parameterized policy in order to maximize utility. This parameter-
ized policy can take many forms, such as neural networks, decision trees, and
computer programs. This chapter begins by discussing a way to estimate the value
of a policy given an initial state distribution. We will then discuss search methods
that do not use estimates of the gradient of the policy, saving gradient methods
for the next chapter. Although local search can be quite effective in practice, we
will also discuss a few alternative optimization approaches that can avoid local
optima.1 1 There are many other optimiza-

tion approaches, as discussed
by M. J. Kochenderfer and
T.A. Wheeler, Algorithms for
Optimization. MIT Press, 2019.

10.1 Approximate Policy Evaluation

As introduced in section 7.2, we can compute the expected discounted return
when following a policy π from a state s. This expected discounted return Uπ(s)

can be computed iteratively (algorithm 7.3) or through matrix operations (algo-
rithm 7.4) when the state space is discrete and relatively small. We can use these
results to compute the expected discounted return of π:

U(π) = ∑
s

b(s)Uπ(s) (10.1)

assuming an initial state distribution b(s).
We will use this definition of U(π) throughout this chapter. However, we often

cannot compute U(π) exactly when the state space is large or continuous. Instead,
we can approximate U(π) by sampling trajectories, consisting of states, actions,

214 chapter 10. policy search

and rewards when following π. The definition of U(π) can be rewritten as

U(π) = Eτ [R(τ)] =
∫

pπ(τ)R(τ)dτ (10.2)

where pπ(τ) is the probability density associatedwith trajectory τ when following
policy π, starting from initial state distribution b. The trajectory reward R(τ) is the
discounted return associated with τ. Figure 10.1 illustrates the computation of
U(π) in terms of trajectories sampled from an initial state distribution.

U(π)

Figure 10.1. The utility associated
with a policy from an initial state
distribution is computed from the
return associated with all possible
trajectories under the given policy,
weighted according to their likeli-
hood.

Monte Carlo policy evaluation (algorithm 10.1) involves approximating equa-
tion (10.2) with m trajectory rollouts of π:

U(π) ≈ 1

m

m

∑
i=1

R(τ(i)) (10.3)

where τ(i) is the ith trajectory sample.

struct MonteCarloPolicyEvaluation
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples

end

function (U::MonteCarloPolicyEvaluation)(π)
R(π) = rollout(U.𝒫, rand(U.b), π, U.d)
return mean(R(π) for i = 1:U.m)

end

(U::MonteCarloPolicyEvaluation)(π, θ) = U(s->π(θ, s))

Algorithm 10.1. Monte Carlo pol-
icy evaluation of a policy π. The
method runs m rollouts to depth d
according to the dynamics speci-
fied by the problem 𝒫. Each rollout
is run from an initial state sampled
from state distribution b. The final
line in this algorithm block evalu-
ates a policy π parameterized by
θ, which will be useful in the algo-
rithms in this chapter that attempt
to find a value of θ that maximizes
U.

Monte Carlo policy evaluation is stochastic. Multiple evaluations of equa-
tion (10.1) with the same policy can give different estimates. Increasing the
number of rollouts decreases the variance of the evaluation, as demonstrated in
figure 10.2.

100 101 102

20
30
40
50

number of samples

U
(π

)

Figure 10.2. The effect of the depth
and sample count for Monte Carlo
policy evaluation of a uniform ran-
dom policy on the cart-pole prob-
lem (appendix F.3). The variance
decreases as the number of sam-
ples increases. The blue regions in-
dicate the 5 % to 95 % and 25 % to
75 % empirical quantiles of U(π).

We will use πθ to denote a policy parameterized by θ. For convenience, we
will use U(θ) as shorthand for U(πθ) in cases where it is not ambiguous. The
parameter θ may be a vector or some other more complex representation. For
example, we may want to represent our policy using a neural network with a
particular structure. We would use θ to represent the weights in the network.
Many optimization algorithms assume that θ is a vector with a fixed number of

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

10.2. local search 215

components. Other optimization algorithms allow more flexible representations,
including representations like decision trees or computational expressions.2 2 We will not be discussing

those representations here,
but some are implemented in
ExprOptimization.jl.10.2 Local Search

A common approach to optimization is local search, where we begin with an
initial parameterization and incrementally move from neighbor to neighbor in
the search space until convergence occurs. We discussed this type of approach in
chapter 5, in the context of optimizing Bayesian network structures with respect
to the Bayesian score. Here, we are optimizing policies parameterized by θ. We
are trying to find a value of θ that maximizes U(θ).

There are many local search algorithms, but this section will focus on the
Hooke-Jeeves method (algorithm 10.2).3 This algorithm assumes that our policy 3 R. Hooke and T.A. Jeeves, “Direct

Search Solution of Numerical and
Statistical Problems,” Journal of the
ACM (JACM), vol. 8, no. 2, pp. 212–
229, 1961.

is parameterized by an n-dimensional vector θ. The algorithm takes a step of
size ±α in each of the coordinate directions from the current θ. These 2n points
correspond to the neighborhood of θ. If no improvements to the policy are found,
then the step size α is decreased by some factor. If an improvement is found, it
moves to the best point. The process continues until α drops below some threshold
ǫ > 0. An example involving policy optimization is provided in example 10.1,
and figure 10.3 illustrates this process.

10.3 Genetic Algorithms

A potential issue with local search algorithms like the Hooke-Jeeves method is
that the optimization can get stuck in a local optimum. There are a wide variety of
approaches that involve maintaining a population consisting of samples of points
in the parameter space, evaluating them in parallel with respect to our objective,
and then recombining them in some way to drive the population toward a global
optimum. A genetic algorithm4 is one such approach, which derives inspiration

4 D. E. Goldberg,Genetic Algorithms
in Search, Optimization, and Machine
Learning. Addison-Wesley, 1989.

from biological evolution. It is a general optimization method, but it has been
successful in the context of optimizing policies. For example, this approach has
been used to optimize policies for Atari video games, where the policy parameters
correspond to weights in a neural network.5

5 F. P. Such, V. Madhavan, E. Conti,
J. Lehman, K.O. Stanley, and J.
Clune, “Deep Neuroevolution: Ge-
netic Algorithms Are a Competi-
tive Alternative for Training Deep
Neural Networks for Reinforce-
ment Learning,” 2017. arXiv: 171
2.06567v3. The implementation in
this section follows their relatively
simple formulation. Their formu-
lation does not include crossover,
which is typically used to mix pa-
rameterizations across a popula-
tion.

A simple version of this approach (algorithm 10.3) begins with a population of
m random parameterizations, θ(1), . . . ,θ(m). We compute U(θ(i)) for each sample

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1712.06567v3
https://arxiv.org/abs/1712.06567v3

216 chapter 10. policy search

struct HookeJeevesPolicySearch
θ # initial parameterization
α # step size
c # step size reduction factor
ϵ # termination step size

end

function optimize(M::HookeJeevesPolicySearch, π, U)
θ, θ′, α, c, ϵ = copy(M.θ), similar(M.θ), M.α, M.c, M.ϵ
u, n = U(π, θ), length(θ)
while α > ϵ

copyto!(θ′, θ)
best = (i=0, sgn=0, u=u)
for i in 1:n

for sgn in (-1,1)
θ′[i] = θ[i] + sgn*α
u′ = U(π, θ′)
if u′ > best.u

best = (i=i, sgn=sgn, u=u′)
end

end
θ′[i] = θ[i]

end
if best.i != 0

θ[best.i] += best.sgn*α
u = best.u

else
α *= c

end
end
return θ

end

Algorithm 10.2. Policy search
using the Hooke-Jeeves method,
which returns a θ that has been op-
timized with respect to U. The pol-
icy π takes as input a parameter θ
and state s. This implementation
starts with an initial value of θ. The
step size α is reduced by a factor of
c if no neighbor improves the ob-
jective. Iterations are run until the
step size is less than ϵ.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

10.3. genetic algorithms 217

Suppose we want to optimize a policy for the simple regulator problem
described in appendix F.5. We define a stochastic policy π parameterized by
θ such that the action is generated according to

a ∼ N (θ1s, (|θ2|+ 10−5)2) (10.4)

The following code defines the parameterized stochastic policy π, evaluation
function U, and method M. It then calls optimize(M, π, U), which returns
an optimized value for θ. In this case, we use the Hooke-Jeeves method, but
the other methods discussed in this chapter can be passed in as M instead:
function π(θ, s)

return rand(Normal(θ[1]*s, abs(θ[2]) + 0.00001))
end
b, d, n_rollouts = Normal(0.3,0.1), 10, 3
U = MonteCarloPolicyEvaluation(𝒫, b, d, n_rollouts)
θ, α, c, ϵ = [0.0,1.0], 0.75, 0.75, 0.01
M = HookeJeevesPolicySearch(θ, α, c, ϵ)
θ = optimize(M, π, U)

Example 10.1. Using a policy opti-
mization algorithm to optimize the
parameters of a stochastic policy.

1

3

5

θ 2

−2 0 2

1

3

5

θ1

θ 2

−2 0 2

θ1

−2 0 2

θ1

−2 0 2

θ1

Figure 10.3. The Hooke-Jeeves
method applied to optimizing a
policy in the simple regulator prob-
lem discussed in example 10.1. The
evaluations at each iteration are
shown as white points. Iterations
proceed left to right and top to bot-
tom, and the background is colored
according to the expected utility,
with yellow indicating lower util-
ity and dark blue indicating higher
utility.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

218 chapter 10. policy search

i in the population. Since these evaluations potentially involve many rollout
simulations and are therefore computationally expensive, they are often run in
parallel. These evaluations help us identify the elite samples, which are the top
melite samples according to U.

The population at the next iteration is generated by producing m− 1 new pa-
rameterizations by repeatedly selecting a random elite sample θ and perturbing
it with isotropic Gaussian noise, θ+ σǫ, where ǫ ∼ N (0, I). The best parame-
terization, unperturbed, is included as the mth sample. Because the evaluations
involve stochastic rollouts, a variation of this algorithm could involve running
additional rollouts to help identify which of the elite samples is truly the best.
Figure 10.4 shows several iterations, or generations, of this approach in a sample
problem.

struct GeneticPolicySearch
θs # initial population
σ # initial standard deviation
m_elite # number of elite samples
k_max # number of iterations

end

function optimize(M::GeneticPolicySearch, π, U)
θs, σ = M.θs, M.σ
n, m = length(first(θs)), length(θs)
for k in 1:M.k_max

us = [U(π, θ) for θ in θs]
sp = sortperm(us, rev=true)
θ_best = θs[sp[1]]
rand_elite() = θs[sp[rand(1:M.m_elite)]]
θs = [rand_elite() + σ.*randn(n) for i in 1:(m-1)]
push!(θs, θ_best)

end
return last(θs)

end

Algorithm 10.3. A genetic policy
search method for iteratively up-
dating a population of policy pa-
rameterizations θs, which takes a
policy evaluation function U, a pol-
icy π(θ, s), a perturbation stan-
dard deviation σ, an elite sample
count m_elite, and an iteration
count k_max. The best m_elite sam-
ples from each iteration are used to
generate the samples for the subse-
quent iteration.

10.4 Cross Entropy Method

The cross entropy method (algorithm 10.4) involves updating a search distribution
over the parameterized space of policies at each iteration.6 We parameterize this

6 S. Mannor, R. Y. Rubinstein, and Y.
Gat, “The Cross Entropy Method
for Fast Policy Search,” in Interna-
tional Conference on Machine Learn-
ing (ICML), 2003.

search distribution p(θ | ψ) with ψ.7 This distribution can belong to any family, 7 Often, θ and ψ are vectors, but
because this assumption is not re-
quired for this method, we will not
bold them in this section.

but a Gaussian distribution is a common choice, where ψ represents the mean and

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

10.5. evolution strategies 219

−2 0 2

1

3

5

θ1

θ 2

−2 0 2

θ1

−2 0 2

θ1

−2 0 2

θ1

Figure 10.4. Genetic policy search
with σ = 0.25 applied to the simple
regulator problem using 25 sam-
ples per iteration. The five elite
samples in each generation are
shown in red, with the best sam-
ple indicated by a larger dot.

covariance of the distribution. The objective is to find a value of ψ∗ that maximizes
the expectation of U(θ) when θ is drawn from the search distribution:

ψ∗ = arg max
ψ

E
θ∼p(·|ψ)

[U(θ)] = arg max
ψ

∫

U(θ)p(θ | ψ)dθ (10.5)

Directly maximizing equation (10.5) is typically computationally infeasible.
The approach taken in the cross entropy method is to start with an initial value of
ψ, typically chosen so that the distribution is spread over the relevant parameter
space. At each iteration, we draw m samples from the associated distribution and
then update ψ to fit the elite samples. For the fit, we typically use the maximum
likelihood estimate (section 4.1).8 We stop after a fixed number of iterations, or

8 The maximum likelihood esti-
mate corresponds to the choice of
ψ that minimizes the cross entropy
(see appendix A.9) between the
search distribution and the elite
samples.

until the search distribution becomes highly focused on an optimum. Figure 10.5
demonstrates the algorithm on a simple problem.

10.5 Evolution Strategies

Evolution strategies9 update a search distribution parameterized by a vector ψ at 9 D. Wierstra, T. Schaul, T. Glas-
machers, Y. Sun, J. Peters, and
J. Schmidhuber, “Natural Evolu-
tion Strategies,” Journal of Machine
Learning Research, vol. 15, pp. 949–
980, 2014.

each iteration. However, instead of fitting the distribution to a set of elite samples,
they update the distribution by taking a step in the direction of the gradient.10

10 We are effectively doing gradi-
ent ascent, which is reviewed in ap-
pendix A.11.

The gradient of the objective in equation (10.5) can be computed as follows:11

11 The policy parameter θ is not
bolded here because it is not re-
quired to be a vector. However, ψ
is in bold because we require it to
be a vector when we work with the
gradient of the objective.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

220 chapter 10. policy search

struct CrossEntropyPolicySearch
p # initial distribution
m # number of samples
m_elite # number of elite samples
k_max # number of iterations

end

function optimize_dist(M::CrossEntropyPolicySearch, π, U)
p, m, m_elite, k_max = M.p, M.m, M.m_elite, M.k_max
for k in 1:k_max

θs = rand(p, m)
us = [U(π, θs[:,i]) for i in 1:m]
θ_elite = θs[:,sortperm(us)[(m-m_elite+1):m]]
p = Distributions.fit(typeof(p), θ_elite)

end
return p

end

function optimize(M, π, U)
return Distributions.mode(optimize_dist(M, π, U))

end

Algorithm 10.4. Cross entropy pol-
icy search, which iteratively im-
proves a search distribution ini-
tially set to p. This algorithm takes
as input a parameterized policy
π(θ, s) and a policy evaluation
function U. In each iteration, m
samples are drawn and the top
m_elite are used to refit the dis-
tribution. The algorithm termi-
nates after k_max iterations. The
distribution p can be defined us-
ing the Distributions.jl pack-
age. For example, we might define
μ = [0.0,1.0]
Σ = [1.0 0.0; 0.0 1.0]
p = MvNormal(μ,Σ)

−2 0 2

1

3

5

θ1

θ 2

−2 0 2

θ1

−2 0 2

θ1

−2 0 2

θ1

Figure 10.5. The cross entropy
method applied to the simple regu-
lator problem using a multivariate
Gaussian search distribution. The
five elite samples in each iteration
are shown in red. The initial distri-
bution is set to N ([0, 3], 2I).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

10.5. evolution strategies 221

∇ψ E
θ∼p(·|ψ)

[U(θ)] = ∇ψ
∫

U(θ)p(θ | ψ)dθ (10.6)

=
∫

U(θ)∇ψp(θ | ψ)dθ (10.7)

=
∫

U(θ)∇ψp(θ | ψ) p(θ | ψ)
p(θ | ψ) dθ (10.8)

=
∫

(

U(θ)∇ψ log p(θ | ψ)
)

p(θ | ψ)dθ (10.9)

= E
θ∼p(·|ψ)

[

U(θ)∇ψ log p(θ | ψ)
] (10.10)

The introduction of the logarithm above comes from what is called the log deriva-
tive trick, which observes that ∇ψ log p(θ | ψ) = ∇ψp(θ | ψ)/p(θ | ψ). This
computation requires knowing ∇ψ log p(θ | ψ), but we can often compute this
analytically, as discussed in example 10.2.

The search gradient can be estimated from m samples: θ(1), . . . , θ(m) ∼ p(· | ψ):

∇ψ E
θ∼p(·|ψ)

[U(θ)] ≈ 1

m

m

∑
i=1

U(θ(i))∇ψ log p(θ(i) | ψ) (10.11)

This estimate depends on the evaluated expected utility, which itself can vary
widely. We can make our gradient estimate more resilient with rank shaping,
which replaces the utility values with weights based on the relative performance
of each sample to the other samples in its iteration. The m samples are sorted in
descending order of expected utility. Weight w(i) is assigned to sample i according
to a weighting scheme with w(1) ≥ · · · ≥ w(m). The search gradient becomes

∇ψ E
θ∼p(·|ψ)

[U(θ)] ≈
m

∑
i=1

w(i)∇ψ log p(θ(i) | ψ) (10.12)

A common weighting scheme is12 12 N. Hansen and A. Ostermeier,
“Adapting Arbitrary Normal Mu-
tation Distributions in Evolution
Strategies: The Covariance Matrix
Adaptation,” in IEEE International
Conference on Evolutionary Computa-
tion, 1996.

w(i) =
max

(

0, log
(

m
2 + 1

)

− log(i)
)

∑
m
j=1 max

(

0, log
(

m
2 + 1

)

− log(j)
) − 1

m
(10.13)

These weights, shown in figure 10.6, favor better samples and give most samples
a small negative weight. Rank-shaping reduces the influence of outliers.

Algorithm 10.5 provides an implementation of the evolution strategies method.
Figure 10.7 shows an example of a search progression.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

222 chapter 10. policy search

The multivariate normal distribution N (µ, Σ), with mean µ and covariance
Σ, is a common distribution family. The likelihood in d dimensions takes the
form

p(x | µ, Σ) = (2π)−
d
2 |Σ|− 1

2 exp

(

−1

2
(x− µ)⊤Σ

−1(x− µ)
)

where |Σ| is the determinant of Σ. The log likelihood is

log p(x | µ, Σ) = −d

2
log(2π)− 1

2
log |Σ| − 1

2
(x− µ)⊤Σ

−1(x− µ)

The parameters can be updated using their log likelihood gradients:

∇µ log p(x | µ, Σ) = Σ
−1(x− µ)

∇Σ log p(x | µ, Σ) =
1

2
Σ
−1(x− µ)(x− µ)⊤Σ

−1 − 1

2
Σ
−1

The term ∇Σ contains the partial derivative of each entry of Σ with respect
to the log likelihood.

Directly updating Σ may not result in a positive definite matrix, as is
required for covariance matrices. One solution is to represent Σ as a product
A⊤A, which guarantees that Σ remains positive semidefinite, and then to
update A instead. Replacing Σ by A⊤A and taking the gradient with respect
to A yields

∇(A) log p(x | µ, A) = A
[

∇Σ log p(x | µ, Σ) +∇Σ log p(x | µ, Σ)⊤
]

Example 10.2. A derivation of the
log likelihood gradient equations
for the multivariate Gaussian dis-
tribution. For the original deriva-
tion and severalmore sophisticated
solutions for handling the positive
definite covariance matrix, see D.
Wierstra, T. Schaul, T. Glasmach-
ers, Y. Sun, J. Peters, and J. Schmid-
huber, “Natural Evolution Strate-
gies,” Journal of Machine Learning
Research, vol. 15, pp. 949–980, 2014.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

10.5. evolution strategies 223

1 2 3 4 5 6 7 8 9 10

−0.5

0

0.5

index in order by decreasing expected utility, i

we
ig
ht

,w
(i
)

m = 2

m = 4

m = 7

m = 10

Figure 10.6. Several weight-
ings constructed using equa-
tion (10.13).

struct EvolutionStrategies
D # distribution constructor
ψ # initial distribution parameterization
∇logp # log search likelihood gradient
m # number of samples
α # step factor
k_max # number of iterations

end

function evolution_strategy_weights(m)
ws = [max(0, log(m/2+1) - log(i)) for i in 1:m]
ws ./= sum(ws)
ws .-= 1/m
return ws

end

function optimize_dist(M::EvolutionStrategies, π, U)
D, ψ, m, ∇logp, α = M.D, M.ψ, M.m, M.∇logp, M.α
ws = evolution_strategy_weights(m)
for k in 1:M.k_max

θs = rand(D(ψ), m)
us = [U(π, θs[:,i]) for i in 1:m]
sp = sortperm(us, rev=true)
∇ = sum(w.*∇logp(ψ, θs[:,i]) for (w,i) in zip(ws,sp))
ψ += α.*∇

end
return D(ψ)

end

Algorithm 10.5. An evolution
strategies method for updating a
search distribution D(ψ) over pol-
icy parameterizations for policy
π(θ, s). This implementation also
takes an initial search distribution
parameterization ψ, the log search
likelihood gradient ∇logp(ψ, θ),
a policy evaluation function U,
and an iteration count k_max. In
each iteration, m parameteriza-
tion samples are drawn and are
used to estimate the search gradi-
ent. This gradient is then applied
with a step factor α. We can use
Distributions.jl to define D(ψ).
For example, if we want to define
D to construct a Gaussian with a
given mean ψ and fixed covariance
Σ, we can use
D(ψ) = MvNormal(ψ, Σ).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

224 chapter 10. policy search

−2 0 2

1

3

5

θ1

θ 2

−2 0 2

θ1

−2 0 2

θ1

−2 0 2

θ1

Figure 10.7. Evolution strategies
(algorithm 10.5) applied to the sim-
ple regulator problem using a mul-
tivariate Gaussian search distribu-
tion. Samples are shown in white,
along with their search gradient
contributions, w∇ log p.

10.6 Isotropic Evolutionary Strategies

The previous section introduced evolutionary strategies that can work with gen-
eral search distributions. This section will make the assumption that the search
distribution is a spherical or isotropic Gaussian, where the covariance matrix takes
the form σ2I.13 Under this assumption, the expected utility of the distribution

13 An example of this approach ap-
plied to policy search is explored
by T. Salimans, J. Ho, X. Chen, S.
Sidor, and I. Sutskever, “Evolution
Strategies as a Scalable Alternative
to Reinforcement Learning,” 2017.
arXiv: 1703.03864v2.

introduced in equation (10.5) simplifies to14

14 In general, if A⊤A = Σ, thenθ =
µ + A⊤ǫ transforms ǫ ∼ N (0, I)
into a sample θ ∼ N (µ, Σ).

E
θ∼N (ψ,σ2I)

[U(θ)] = E
ǫ∼N (0,I)

[U(ψ+ σǫ)] (10.14)

The search gradient reduces to

∇ψ E
θ∼N (ψ,σ2I)

[U(θ)] = E
θ∼N (ψ,σ2I)

[

U(θ)∇ψ log p(θ | ψ, σ2I)
]

(10.15)

= E
θ∼N (ψ,σ2I)

[

U(θ)
1

σ2
(θ−ψ)

]

(10.16)

= E
ǫ∼N (0,I)

[

U(ψ+ σǫ)
1

σ2
(σǫ)

]

(10.17)

=
1

σ
E

ǫ∼N (0,I)
[U(ψ+ σǫ)ǫ] (10.18)

Algorithm 10.6 provides an implementation of this strategy. This implemen-
tation incorporates mirrored sampling.15 We sample m/2 values from the search

15 D. Brockhoff, A. Auger, N.
Hansen, D. Arnold, and T.
Hohm, “Mirrored Sampling and
Sequential Selection for Evolution
Strategies,” in International Confer-
ence on Parallel Problem Solving from
Nature, 2010.

distribution and then generate the other m/2 samples by mirroring them about
the mean. Mirrored samples reduce the variance of the gradient estimate.16 The

16 This technique was implemented
by T. Salimans, J. Ho, X. Chen, S.
Sidor, and I. Sutskever, “Evolution
Strategies as a Scalable Alterna-
tive to Reinforcement Learning,”
2017. arXiv: 1703 . 03864v2. They
included other techniques as well,
including weight decay.benefit of using this technique is shown in figure 10.8.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1703.03864v2
https://arxiv.org/abs/1703.03864v2

10.6. isotropic evolutionary strategies 225

struct IsotropicEvolutionStrategies
ψ # initial mean
σ # initial standard deviation
m # number of samples
α # step factor
k_max # number of iterations

end

function optimize_dist(M::IsotropicEvolutionStrategies, π, U)
ψ, σ, m, α, k_max = M.ψ, M.σ, M.m, M.α, M.k_max
n = length(ψ)
ws = evolution_strategy_weights(2*div(m,2))
for k in 1:k_max

ϵs = [randn(n) for i in 1:div(m,2)]
append!(ϵs, -ϵs) # weight mirroring
us = [U(π, ψ + σ.*ϵ) for ϵ in ϵs]
sp = sortperm(us, rev=true)
∇ = sum(w.*ϵs[i] for (w,i) in zip(ws,sp)) / σ
ψ += α.*∇

end
return MvNormal(ψ, σ)

end

Algorithm 10.6. An evolution
strategies method for updating
an isotropic multivariate Gaus-
sian search distribution with mean
ψ and covariance σ2I over pol-
icy parameterizations for a policy
π(θ, s). This implementation also
takes a policy evaluation function
U, a step factor α, and an itera-
tion count k_max. In each iteration,
m/2 parameterization samples are
drawn and mirrored and are then
used to estimate the search gradi-
ent.

0 10 20 30 40 50 60

0

200

400

600

800

iteration

ex
pe

cte
d
ut

ili
ty

without mirroring
with mirroring

Figure 10.8. A demonstration of
the effect that mirrored sampling
has on isotropic evolution strate-
gies. Two-layer neural network
policies were trained on the cart-
pole problem (appendix F.3) us-
ing m = 10, and σ = 0.25, with six
rollouts per evaluation. Mirrored
sampling significantly speeds and
stabilizes learning.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

226 chapter 10. policy search

10.7 Summary

• Monte Carlo policy evaluation involves computing the expected utility associ-
ated with a policy using a large number of rollouts from states sampled from
an initial state distribution.

• Local search methods, such as the Hooke-Jeeves method, improve a policy
based on small, local changes.

• Genetic algorithms maintain a population of points in the parameter space,
recombining them in different ways in attempt to drive the population toward
a global optimum.

• The cross entropymethod iteratively improves a search distribution over policy
parameters by refitting the distribution to elite samples at each iteration.

• Evolutionary strategies attempt to improve the search distribution using gradi-
ent information from samples from that distribution.

• Isotropic evolutionary strategies make the assumption that the search distribu-
tion is an isotropic Gaussian.

10.8 Exercises
Exercise 10.1. In Monte Carlo policy evaluation, how is the variance of the utility estimate
affected by the number of samples?

Solution: The variance of Monte Carlo policy evaluation is the variance of the mean of m

samples. These samples are assumed to be independent, and so the variance of the mean
is the variance of a single rollout evaluation divided by the sample size:

Var[Û(π)] = Var

[

1

m

m

∑
i=1

R(τ(i))

]

=
1

m2
Var

[

m

∑
i=1

R(τ(i))

]

=
1

m2

(

m

∑
i=1

Var
[

R(τ(i))
]

)

=
1

m
Varτ [R(τ)]

where Û(π) is the utility from Monte Carlo policy evaluation and R(τ) is the trajectory
reward for a sampled trajectory τ. The sample variance, therefore, decreases with 1/m.

Exercise 10.2. What effect does varying the number of samples m and the number of elite
samples melite have on cross entropy policy search?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

10.8. exercises 227

Solution: The computational cost per iteration scales linearly with the number of samples.
More samples will better cover the search space, resulting in a better chance of identifying
better elite samples to improve the policy. The number of elite samples also has an effect.
Making all samples elite provides no feedback to the improvement process. Having too
few elite samples can lead to premature convergence to a suboptimal solution.

Exercise 10.3. Consider using evolution strategies with a univariate Gaussian distribution,
θ ∼ N (µ, ν). What is the search gradient with respect to the variance ν? What issue arises
as the variance becomes small?

Solution: The search gradient is the gradient of the log-likelihood:

∂

∂ν
log p(x | µ, ν) =

∂

∂ν
log

1√
2πν

exp

(

− (x− µ)2

2ν

)

=
∂

∂ν

(

−1

2
log(2π)− 1

2
log(ν)− (x− µ)2

2ν

)

= − 1

2ν
+

(x− µ)2

2ν2

1 2 3 4 5

0

0.2

0.4

ν

∂ ∂
ν

lo
g

p
(1
|0

,ν
)

We find that the gradient goes to infinity as the variance approaches zero. This is a
problem because the variance should be small when the search distribution converges.
Very large gradients can cause simple ascent methods to overshoot optima.

Exercise 10.4. Equation (10.14) defines the objective in terms of a search distribution
θ ∼ N (ψ, Σ). What advantage does this objective have over directly optimizing θ using
the expected utility objective in equation (10.1)?

Solution: The added Gaussian noise around the policy parameters can smooth discontinu-
ities in the original objective, which can make optimization more reliable.

Exercise 10.5. Which of the methods in this chapter are best suited to the fact that multiple
types of policies could perform well in a given problem?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

228 chapter 10. policy search

Solution: The Hooke-Jeeves method improves a single policy parameterization, so it cannot
retain multiple policies. Both the cross entropy method and evolution strategies use search
distributions. In order to successfully represent multiple types of policies, a multimodal
distribution would have to be used. One common multimodal distribution is a mixture of
Gaussians. A mixture of Gaussians cannot be fit analytically, but they can be reliably fit
using expectationmaximization (EM), as demonstrated in example 4.4. Genetic algorithms
can retain multiple policies if the population size is sufficiently large.

Exercise 10.6. Suppose we have a parameterized policy πθ that we would like to optimize
using theHooke-Jeevesmethod. If we initialize our parameter θ = 0 and the utility function
is U(θ) = −3θ2 + 4θ + 1, what is the largest step size α that would still guarantee policy
improvement in the first iteration of the Hooke-Jeeves method?

Solution: The Hooke-Jeeves method evaluates the objective function at the center point ±α

along each coordinate direction. In order to guarantee improvement in the first iteration of
Hooke-Jeeves search, at least one of the objective function values at the new points must
improve the objective function value. For our policy optimization problem, this means
that we are searching for the largest step size α such that either U(θ + α) or U(θ − α) is
greater than U(θ).

Since the underlying utility function is parabolic and concave, the largest step size that
would still lead to improvement is slightly less than the width of the parabola at the current
point. Thus, we compute the point on the parabola opposite the current point, θ′ at which
U(θ′) = U(θ):

U(θ) = −3θ2 + 4θ + 1 = −3(0)2 + 4(0) + 1 = 1

U(θ) = U(θ′)

1 = −3θ′2 + 4θ′ + 1

0 = −3θ′2 + 4θ′ + 0

θ′ =
−4±

√

42 − 4(−3)(0)

2(−3)
=
−4± 4

−6
=

2± 2

3
=
{

0, 4
3

}

The point on the parabola opposite the current point is thus θ′ = 4
3 . The distance be-

tween θ and θ′ is 4
3 − 0 = 4

3 . Thus, the maximal step size we can take and still guarantee
improvement in the first iteration is just under 4

3 .

Exercise 10.7. Suppose we have a policy parameterized by a single parameter θ. We
take an evolution strategies approach with a search distribution that follows a Bernoulli
distribution p(θ | ψ) = ψθ(1− ψ)1−θ . Compute the log-likelihood gradient ∇ψ log p(θ |
ψ).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

10.8. exercises 229

Solution: The log-likelihood gradient can be computed as follows:

p(θ | ψ) = ψθ(1− ψ)1−θ

log p(θ | ψ) = log
(

ψθ(1− ψ)1−θ
)

log p(θ | ψ) = θ log ψ + (1− θ) log(1− ψ)

∇ψ log p(θ | ψ) =
d

dψ
[θ log ψ + (1− θ) log(1− ψ)]

∇ψ log p(θ | ψ) =
θ

ψ
− 1− θ

1− ψ

Exercise 10.8. Compute the sample weights for search gradient estimation with rank
shaping given m = 3 samples.

Solution: We first compute the numerator of the first term from equation (10.13), for all i:

i = 1 max
(

0, log
(

3
2 + 1

)

− log 1
)

= log 5
2

i = 2 max
(

0, log
(

3
2 + 1

)

− log 2
)

= log 5
4

i = 3 max
(

0, log
(

3
2 + 1

)

− log 3
)

= 0

Now, we compute the weights:

w(1) =
log 5

2

log 5
2 + log 5

4 + 0
− 1

3
= 0.47

w(2) =
log 5

4

log 5
2 + log 5

4 + 0
− 1

3
= −0.14

w(3) =
0

log 5
2 + log 5

4 + 0
− 1

3
= −0.33

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

11 Policy Gradient Estimation

The previous chapter discussed several ways to go about directly optimizing the
parameters of a policy to maximize expected utility. In many applications, it is
often useful to use the gradient of the utility with respect to the policy parameters
to guide the optimization process. This chapter discusses several approaches
to estimating this gradient from trajectory rollouts.1 A major challenge with

1 An additional resource on this
topic is M.C. Fu, “Gradient Estima-
tion,” in Simulation, S. G. Hender-
son and B. L. Nelson, eds., Elsevier,
2006, pp. 575–616.

this approach is the variance of the estimate due to the stochastic nature of the
trajectories arising from both the environment and our exploration of it. The next
chapter will discuss how to use these algorithms to estimate gradients for the
purpose of policy optimization.

11.1 Finite Difference

Finite difference methods estimate the gradient of a function from small changes in
its evaluation. Recall that the derivative of a univariate function f is

d f

dx
(x) = lim

δ→0

f (x + δ)− f (x)

δ
(11.1)

The derivative at x can be approximated by a sufficiently small step δ > 0:
d f

dx
(x) ≈ f (x + δ)− f (x)

δ
(11.2)

This approximation is illustrated in figure 11.1.

f (x)

x

Figure 11.1. The finite difference
method approximates the deriva-
tive of f (x) using an evaluation of
a point near x. The finite-difference
approximation, in red, is not a per-
fect match for the true derivative,
in blue.

The gradient of a multivariate function f with an input of length n is

∇ f (x) =

[

∂ f

∂x1
(x), . . . ,

∂ f

∂xn
(x)

]

(11.3)

Finite differences can be applied to each dimension to estimate the gradient.

232 chapter 11. policy gradient estimation

In the context of policy optimization, we want to estimate the gradient of the
utility expected from following a policy parameterized by θ:

∇U(θ) =

[

∂U

∂θ1
(θ), . . . ,

∂U

∂θn
(θ)

]

(11.4)

≈
[

U(θ+ δe(1))−U(θ)

δ
, . . . ,

U(θ+ δe(n))−U(θ)

δ

]

(11.5)

where e(i) is the ith standard basis vector, consisting of zeros except for the ith
component, which is set to 1.

As discussed in section 10.1, we need to simulate policy rollouts to estimate
U(θ). We can use algorithm 11.1 to generate trajectories. From these trajectories,
we can compute their return and estimate the utility associated with the policy.
Algorithm 11.2 implements the gradient estimate in equation (11.5) by simulating
m rollouts for each component and averaging the returns.

function simulate(𝒫::MDP, s, π, d)
τ = []
for i = 1:d

a = π(s)
s′, r = 𝒫.TR(s,a)
push!(τ, (s,a,r))
s = s′

end
return τ

end

Algorithm 11.1. A method for gen-
erating a trajectory associated with
problem 𝒫 starting in state s and
executing policy π to depth d. It
creates a vector τ containing state-
action-reward tuples.

A major challenge in arriving at accurate estimates of the policy gradient is the
fact that the variance of the trajectory rewards can be quite high. One approach to
reduce the resulting variance in the gradient estimate is to have each rollout share
the same random generator seeds.2 This approach can be helpful, for example, 2 This random seed sharing is used

in the PEGASUS algorithm. A.Y.
Ng and M. Jordan, “A Policy
Search Method for Large MDPs
and POMDPs,” in Conference on
Uncertainty in Artificial Intelligence
(UAI), 2000.

in cases where one rollout happens to hit a low-probability transition early on.
Other rollouts will have the same tendency due to the shared random generator,
and their rewards will tend to be biased in the same way.

Policy representations have a significant effect on the policy gradient. Exam-
ple 11.1 demonstrates the sensitivity of the policy gradient to the policy parame-
terization. Finite differences for policy optimization can perform poorly when the
parameters differ in scale.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

11.1 . f inite difference 233

struct FiniteDifferenceGradient
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
δ # step size

end

function gradient(M::FiniteDifferenceGradient, π, θ)
𝒫, b, d, m, δ, γ, n = M.𝒫, M.b, M.d, M.m, M.δ, M.𝒫.γ, length(θ)
Δθ(i) = [i == k ? δ : 0.0 for k in 1:n]
R(τ) = sum(r*γ^(k-1) for (k, (s,a,r)) in enumerate(τ))
U(θ) = mean(R(simulate(𝒫, rand(b), s->π(θ, s), d)) for i in 1:m)
ΔU = [U(θ + Δθ(i)) - U(θ) for i in 1:n]
return ΔU ./ δ

end

Algorithm 11.2. A method for es-
timating a policy gradient using fi-
nite differences for a problem 𝒫, a
parameterized policy π(θ, s), and
a policy parameterization vector θ.
Utility estimates are made from m
rollouts to depth d. The step size is
given by δ.

Consider a single-state, single-step MDP with a one-dimensional continuous
action space and a reward function R(s, a) = a. In this case, larger actions
produce higher rewards.

Suppose we have a stochastic policy πθ that samples its action according
to a uniform distribution between θ1 and θ2 for θ2 > θ1. The expected value
is

U(θ) = E[a] =
∫ θ2

θ1

a
1

θ2 − θ1
da =

θ1 + θ2

2

The policy gradient is

∇U(θ) = [1/2, 1/2]

The policy could be reparameterized to draw actions from a uniform
distribution between θ′1 and 100θ′2, for 100θ′2 > θ′1. Now the expected reward
is (θ′1 + 100θ′2)/2 and the policy gradient is [1/2, 50].

The two parameterizations can represent the same policies, but they have
very different gradients. Finding a suitable perturbation scalar for the second
policy is much more difficult because the parameters vary widely in scale.

Example 11.1. An example of how
policy parameterization has a sig-
nificant impact on the policy gradi-
ent.

θ1 = θ′1 θ2 = 100θ′2

0

0.2

0.4

a

π
(a
|s
)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

234 chapter 11. policy gradient estimation

11.2 Regression Gradient

Instead of estimating the gradient at θ by taking a fixed step along each coordinate
axis, as done in the previous section, we can use linear regression3 to estimate the 3 Linear regression is covered in

section 8.6.gradient from the results of random perturbations from θ. These perturbations
are stored in a matrix as follows:4 4 This general approach is some-

times referred to as simultaneous
perturbation stochastic approximation
by J. C. Spall, Introduction to Stochas-
tic Search and Optimization. Wiley,
2003. The general connection to
linear regression is provided by J.
Peters and S. Schaal, “Reinforce-
ment Learning ofMotor Skills with
Policy Gradients,” Neural Networks,
vol. 21, no. 4, pp. 682–697, 2008.

∆Θ =

(∆θ(1))⊤
...

(∆θ(m))⊤

(11.6)

More policy parameter perturbations will tend to produce better gradient esti-
mates.5

5 A recommended rule of thumb is
to use about twice as many pertur-
bations as the number of parame-
ters.

For each of these perturbations, we perform a rollout and estimate the change
in utility:6

6 This equation shows the forward
difference. Other finite-difference
formulations, such as the central
difference, can also be used.

∆U =
[

U(θ+ ∆θ(1))−U(θ), . . . , U(θ+ ∆θ(m))−U(θ)
]

(11.7)

The policy gradient estimate using linear regression is then7

7 As discussed in section 8.6, X+ de-
notes the pseudoinverse of X.

∇U(θ) ≈ ∆Θ
+∆U (11.8)

Algorithm 11.3 provides an implementation of this approach in which the per-
turbations are drawn uniformly from a hypersphere with radius δ. Example 11.2
demonstrates this approach with a simple function.

11.3 Likelihood Ratio

The likelihood ratio approach8 to gradient estimation uses an analytical form of 8 P.W. Glynn, “Likelihood Ratio
Gradient Estimation for Stochas-
tic Systems,” Communications of the
ACM, vol. 33, no. 10, pp. 75–84,
1990.

∇πθ to improve our estimate of ∇U(θ). Recall from equation (10.2) that

U(θ) =
∫

pθ(τ)R(τ)dτ (11.9)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

11.3. l ikelihood ratio 235

struct RegressionGradient
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
δ # step size

end

function gradient(M::RegressionGradient, π, θ)
𝒫, b, d, m, δ, γ = M.𝒫, M.b, M.d, M.m, M.δ, M.𝒫.γ
ΔΘ = [δ.*normalize(randn(length(θ)), 2) for i = 1:m]
R(τ) = sum(r*γ^(k-1) for (k, (s,a,r)) in enumerate(τ))
U(θ) = R(simulate(𝒫, rand(b), s->π(θ,s), d))
ΔU = [U(θ + Δθ) - U(θ) for Δθ in ΔΘ]
return pinv(reduce(hcat, ΔΘ)') * ΔU

end

Algorithm 11.3. A method for es-
timating a policy gradient using
finite differences for an MDP 𝒫,
a stochastic parameterized policy
π(θ, s), and a policy parameter-
ization vector θ. Policy variation
vectors are generated by normal-
izing normally distributed sam-
ples and scaling by a perturbation
scalar δ. A total of m parameter per-
turbations are generated, and each
is evaluated in a rollout from an
initial state drawn from b to depth
d and compared to the original pol-
icy parameterization.

Hence,

∇U(θ) = ∇θ
∫

pθ(τ)R(τ)dτ (11.10)

=
∫

∇θpθ(τ)R(τ)dτ (11.11)

=
∫

pθ(τ)
∇θpθ(τ)

pθ(τ)
R(τ)dτ (11.12)

= Eτ

[∇θpθ(τ)

pθ(τ)
R(τ)

]

(11.13)

The name for this method comes from this trajectory likelihood ratio. This likeli-
hood ratio can be seen as a weight in likelihood weighted sampling (section 3.7)
over trajectory rewards.

Applying the log derivative trick,9 we have 9 The log derivative trick was intro-
duced in section 10.5. It uses the
following equality:
∇θ log pθ(τ) = ∇θpθ(τ)/pθ(τ)

∇U(θ) = Eτ [∇θ log pθ(τ)R(τ)] (11.14)

We can estimate this expectation using trajectory rollouts. For each trajectory
τ, we need to compute the product ∇θ log pθ(τ)R(τ). Recall that R(τ) is the
return associated with trajectory τ. If we have a stochastic policy,10 the gradient 10 We use πθ(a | s) to represent

the probability (either density or
mass) the policy πθ assigns to tak-
ing action a from state s.

∇θ log pθ(τ) is

∇θ log pθ(τ) =
d

∑
k=1

∇θ log πθ(a(k) | s(k)) (11.15)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

236 chapter 11. policy gradient estimation

We would like to apply the regression gradient to estimate the gradient of
a simple, one-dimensional function f (x) = x2, evaluated at x0 = 2 from
m = 20 samples. To imitate the stochasticity inherent in policy evaluation, we
add noise to the function evaluations. We generate a set of disturbances ∆X,
sampled fromN (0, δ2), and evaluate f (x0 +∆x)− f (x0) for each disturbance
∆x in ∆X. We can then estimate the one-dimensional gradient (or derivative)
∆X+∆F with this code:
f(x) = x^2 + 1e-2*randn()
m = 20
δ = 1e-2
ΔX = [δ.*randn() for i = 1:m]
x0 = 2.0
ΔF = [f(x0 + Δx) - f(x0) for Δx in ΔX]
pinv(ΔX) * ΔF

The samples and linear regression are shown here. The slope of the regression
line is close to the exact solution of 4:

−2 −1 0 1 2

×10−2

−0.10

−0.05

0.00

0.05

0.10

∆x

∆
f

∆ f = 4.832× ∆x

Example 11.2. Using the regres-
sion gradient method on a one-
dimensional function.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

11.4. reward-to-go 237

because pθ(τ) takes the form

pθ(τ) = p(s(1))
d

∏
k=1

T(s(k+1) | s(k), a(k))πθ(a(k) | s(k)) (11.16)

where s(k) and a(k) are the kth state and action, respectively, in trajectory τ. Al-
gorithm 11.4 provides an implementation in which m trajectories are sampled to
arrive at a gradient estimate. Example 11.3 illustrates the process.

If we have a deterministic policy, the gradient requires computing:11 11 Many problems have vector-
valued actions a ∈ R

n. In this
case, ∇θπθ(s

(k)) is replaced with
a Jacobian matrix whose jth col-
umn is the gradient with respect
to the jth action component, and
the ∂

∂a(k)
log T(s(k+1) | s(k), a(k)) is

replaced with an action gradient.

∇θ log pθ(τ) = ∇θ log

[

p(s(1))
d

∏
k=1

T(s(k+1) | s(k), πθ(s
(k)))

]

(11.17)

=
d

∑
k=1

∇θπθ(s
(k))

∂

∂a(k)
log T(s(k+1) | s(k), a(k)) (11.18)

Equations (11.17) and (11.18) require knowing the transition likelihood, which is
in contrast with equation (11.15) for stochastic policies.

struct LikelihoodRatioGradient
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
∇logπ # gradient of log likelihood

end

function gradient(M::LikelihoodRatioGradient, π, θ)
𝒫, b, d, m, ∇logπ, γ = M.𝒫, M.b, M.d, M.m, M.∇logπ, M.𝒫.γ
πθ(s) = π(θ, s)
R(τ) = sum(r*γ^(k-1) for (k, (s,a,r)) in enumerate(τ))
∇U(τ) = sum(∇logπ(θ, a, s) for (s,a) in τ)*R(τ)
return mean(∇U(simulate(𝒫, rand(b), πθ, d)) for i in 1:m)

end

Algorithm 11.4. A method for esti-
mating a policy gradient of a pol-
icy π(s) for an MDP 𝒫 with initial
state distribution b using the likeli-
hood ratio trick. The gradient with
respect to the parameterization vec-
tor θ is estimated from m rollouts to
depth d using the log policy gradi-
ents ∇logπ.

11.4 Reward-to-Go

The likelihood ratio policy gradient method is unbiased but has high variance.
Example 11.4 reviews bias and variance. The variance generally increases sig-
nificantly with rollout depth due to the correlation between actions, states, and

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

238 chapter 11. policy gradient estimation

Consider the single-step, single-state problem from example 11.1. Suppose
we have a stochastic policy πθ that samples its action according to a Gaussian
distribution N (θ1, θ2

2), where θ2
2 is the variance.

log πθ(a | s) = log

1
√

2πθ2
2

exp

(

− (a− θ1)
2

2θ2
2

)

= − (a− θ1)
2

2θ2
2

− 1

2
log
(

2πθ2
2

)

The gradient of the log policy likelihood is

∂

∂θ1
log πθ(a | s) =

a− θ1

θ2
2

∂

∂θ2
log πθ(a | s) =

(a− θ1)
2 − θ2

2

θ3
2

Suppose we run three rollouts with θ = [0, 1], taking actions {0.5,−1, 0.7}
and receiving the same rewards (R(s, a) = a). The estimated policy gradient
is

∇U(θ) ≈ 1

m

m

∑
i=1

∇θ log pθ(τ
(i))R(τ(i))

=
1

3

([

0.5

−0.75

]

0.5 +

[

−1.0

0.0

]

(−1) +

[

0.7

−0.51

]

0.7

)

= [0.58,−0.244]

Example 11.3. Applying the likeli-
hood ratio trick to estimate a policy
gradient in a simple problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

11.4. reward-to-go 239

When estimating a quantity of interest from a collection of simulations, we
generally want to use a scheme that has both low bias and low variance. In
this chapter, we want to estimate ∇U(θ). Generally, with more simulation
samples, we can arrive at a better estimate. Some methods can lead to bias,
where—even with infinitely many samples—it does not lead to an accurate
estimate. Sometimes methods with nonzero bias may still be attractive if they
also have low variance, meaning that they require fewer samples to converge.

Here are plots of the estimates from four notional methods for estimating
∇U(θ). The true value is 17.5, as indicated by the red lines. We ran 100

simulations 100 times for eachmethod. The variance decreases as the number
of samples increases. The blue regions indicate the 5 % to 95 % and 25 % to
75 % empirical quantiles of the estimates.

10

15

20

25

hi
gh

bi
as

∇
U
(θ
)

high variance low variance

100 101 102
10

15

20

25

number of samples

low
bi
as

∇
U
(θ
)

100 101 102

number of samples

Example 11.4. An empirical
demonstration of bias and
variance when estimating ∇U(θ).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

240 chapter 11. policy gradient estimation

rewards across time steps. The reward-to-go approach attempts to reduce the
variance in the estimate.

To derive this approach, we begin by expanding equation (11.14):

∇U(θ) = Eτ

[(

d

∑
k=1

∇θ log πθ(a(k) | s(k))

)(

d

∑
k=1

r(k)γk−1

)]

(11.19)

Let f (k) replace ∇θ log πθ(a(k) | s(k)) for convenience. We then expand as
follows:

∇U(θ) = Eτ

[(

d

∑
k=1

f (k)

)(

d

∑
k=1

r(k)γk−1

)]

(11.20)

= Eτ

[(

f (1) + f (2) + f (3) + · · ·+ f (d)
)(

r(1) + r(2)γ + r(3)γ2 + · · ·+ r(d)γd−1
)]

(11.21)

= Eτ

f (1)r(1) + f (1)r(2)γ + f (1)r(3)γ2 + · · ·+ f (1)r(d)γd−1

+ f (2)r(1) + f (2)r(2)γ + f (2)r(3)γ2 + · · ·+ f (2)r(d)γd−1

+ f (3)r(1) + f (3)r(2)γ + f (3)r(3)γ2 + · · ·+ f (3)r(d)γd−1

...
+ f (d)r(1) + f (d)r(2)γ + f (d)r(3)γ2 + · · ·+ f (d)r(d)γd−1

(11.22)

The first reward, r(1), is affected only by the first action. Thus, its contribution to
the policy gradient should not depend on subsequent time steps. We can remove
other such causality-violating terms as follows:12 12 The term ∑

d
ℓ=k r(ℓ)γℓ−k is often

called the reward-to-go from step k.

∇U(θ) = Eτ

f (1)r(1) + f (1)r(2)γ + f (1)r(3)γ2 + · · ·+ f (1)r(d)γd−1

+ f (2)r(2)γ + f (2)r(3)γ2 + · · ·+ f (2)r(d)γd−1

+ f (3)r(3)γ2 + · · ·+ f (3)r(d)γd−1

...
+ f (d)r(d)γd−1

(11.23)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))

(

d

∑
ℓ=k

r(ℓ)γℓ−1

)]

(11.24)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))

(

γk−1
d

∑
ℓ=k

r(ℓ)γℓ−k

)]

(11.25)

= Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1r
(k)
to-go

]

(11.26)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

11.5. baseline subtraction 241

Algorithm 11.5 provides an implementation of this.
Notice that the reward-to-go for a state-action pair (s, a) under a policy param-

eterized by θ is really an approximation of the state-action value from that state,
Qθ(s, a). The action value function, if known, can be used to obtain the policy
gradient:

∇U(θ) = Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1Qθ

(

s(k), a(k)
)

]

(11.27)

struct RewardToGoGradient
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
∇logπ # gradient of log likelihood

end

function gradient(M::RewardToGoGradient, π, θ)
𝒫, b, d, m, ∇logπ, γ = M.𝒫, M.b, M.d, M.m, M.∇logπ, M.𝒫.γ
πθ(s) = π(θ, s)
R(τ, j) = sum(r*γ^(k-1) for (k,(s,a,r)) in zip(j:d, τ[j:end]))
∇U(τ) = sum(∇logπ(θ, a, s)*R(τ,j) for (j, (s,a,r)) in enumerate(τ))
return mean(∇U(simulate(𝒫, rand(b), πθ, d)) for i in 1:m)

end

Algorithm 11.5. A method that
uses reward-to-go for estimating
a policy gradient of a policy π(s)
for an MDP 𝒫 with initial state dis-
tribution b. The gradient with re-
spect to the parameterization vec-
tor θ is estimated from m rollouts to
depth d using the log policy gradi-
ent ∇logπ.

11.5 Baseline Subtraction

We can further build on the approach presented in the previous section by sub-
tracting a baseline value from the reward-to-go13 to reduce the variance of the 13 We could also subtract a baseline

from a state-action value.gradient estimate. This subtraction does not bias the gradient.
We now subtract a baseline rbase(s(k)):

∇U(θ) = Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1
(

r
(k)
to-go − rbase(s

(k))
)

]

(11.28)

To show that baseline subtraction does not bias the gradient, we first expand:

∇U(θ) = Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1r
(k)
to-go −

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1rbase(s
(k))

]

(11.29)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

242 chapter 11. policy gradient estimation

The linearity of expectation states that E[a + b] = E[a] + E[b], so it is sufficient
to prove that equation (11.29) is equivalent to equation (11.26), if for each step k,
the expected associated baseline term is 0:

Eτ

[

∇θ log πθ(a(k) | s(k))γk−1rbase(s
(k))
]

= 0 (11.30)
We begin by converting the expectation into nested expectations, as illustrated

in figure 11.2:

Eτ

[

∇θ log πθ(a(k) | s(k))γk−1rbase(s
(k))
]

= Eτ1:k

[

Eτk+1:d

[

∇θ log πθ(a(k) | s(k))γk−1rbase(s
(k))
]]

(11.31)

Eτ [f (τ)] Eτ1:k

[

Eτk+1:d
[f (τ)]

]

=

Figure 11.2. The expectation of
a function of trajectories sampled
from a policy can be viewed as
an expectation over a nested ex-
pectation of subtrajectories. For a
mathematical derivation, see exer-
cise 11.4.

We continue with our derivation, using the same log derivative trick from
section 11.3:

Eτ1:k

[

Eτk+1:d

[

∇θ log πθ(a(k) | s(k))γk−1rbase(s
(k))
]]

= Eτ1:k

[

γk−1rbase(s
(k)) Eτk+1:d

[

∇θ log πθ(a(k) | s(k))
]]

(11.32)

= Eτ1:k

[

γk−1rbase(s
(k)) Ea(k)

[

∇θ log πθ(a(k) | s(k))
]]

(11.33)

= Eτ1:k

[

γk−1rbase(s
(k))

∫

∇θ log πθ(a(k) | s(k))πθ(a(k) | s(k))da(k)
]

(11.34)

= Eτ1:k

[

γk−1rbase(s
(k))

∫ ∇θπθ(a(k) | s(k))

πθ(a(k) | s(k))
πθ(a(k) | s(k))da(k)

]

(11.35)

= Eτ1:k

[

γk−1rbase(s
(k))∇θ

∫

πθ(a(k) | s(k))da(k)
]

(11.36)

= Eτ1:k

[

γk−1rbase(s
(k))∇θ1

]

(11.37)

= Eτ1:k

[

γk−1rbase(s
(k)) 0

]

(11.38)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

11.5. baseline subtraction 243

Therefore, subtracting a term rbase(s(k)) does not bias the estimate. This derivation
assumed continuous state and action spaces. The same result applies to discrete
spaces.

We can choose a different rbase(s) for every component of the gradient, and
we will select them to minimize the variance. For simplicity, we will drop the de-
pendence on s and treat each baseline component as constant.14 For compactness

14 Some methods approximate a
state-dependent baseline using
rbase(s(k)) = φ(s(k))⊤w. Selecting
appropriate baseline functions
tends to be difficult. J. Peters
and S. Schaal, “Reinforcement
Learning of Motor Skills with
Policy Gradients,” Neural Networks,
vol. 21, no. 4, pp. 682–697, 2008.

in writing the equations in our derivation, we define

ℓi(a, s, k) = γk−1 ∂

∂θi
log πθ(a | s) (11.39)

The variance of the ith component of our gradient estimate in equation (11.28) is

E
a,s,rto-go,k

[

(

ℓi(a, s, k)
(

rto-go − rbase,i

))2
]

− E
a,s,rto-go,k

[

ℓi(a, s, k)
(

rto-go − rbase,i

)]2 (11.40)

where the expectation is over the (a, s, rto-go) tuples in our trajectory samples, and
k is each tuple’s depth.

We have just shown that the second term is zero. Hence, we can focus on
choosing rbase,i to minimize the first term by taking the derivative with respect to
the baseline and setting it to zero:

∂

∂rbase,i
E

a,s,rto-go,k

[

(

ℓi(a, s, k)
(

rto-go − rbase,i

))2
]

=
∂

∂rbase,i

(

E
a,s,rto-go,k

[

ℓi(a, s, k)2r2
to-go

]

− 2 E
a,s,rto-go,k

[

ℓi(a, s, k)2rto-gorbase,i

]

+ r2
base,i E

a,s,k

[

ℓi(a, s, k)2
]

)

(11.41)
= −2 E

a,s,rto-go,k

[

ℓi(a, s, k)2rto-go
]

+ 2rbase,i E
a,s,k

[

ℓi(a, s, k)2
]

= 0 (11.42)

Solving for rbase,i yields the baseline component that minimizes the variance:

rbase,i =
Ea,s,rto-go,k

[

ℓi(a, s, k)2rto-go
]

Ea,s,k

[

ℓi(a, s, k)2
] (11.43)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

244 chapter 11. policy gradient estimation

struct BaselineSubtractionGradient
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
∇logπ # gradient of log likelihood

end

function gradient(M::BaselineSubtractionGradient, π, θ)
𝒫, b, d, m, ∇logπ, γ = M.𝒫, M.b, M.d, M.m, M.∇logπ, M.𝒫.γ
πθ(s) = π(θ, s)
ℓ(a, s, k) = ∇logπ(θ, a, s)*γ^(k-1)
R(τ, k) = sum(r*γ^(j-1) for (j,(s,a,r)) in enumerate(τ[k:end]))
numer(τ) = sum(ℓ(a,s,k).^2*R(τ,k) for (k,(s,a,r)) in enumerate(τ))
denom(τ) = sum(ℓ(a,s,k).^2 for (k,(s,a)) in enumerate(τ))
base(τ) = numer(τ) ./ denom(τ)
trajs = [simulate(𝒫, rand(b), πθ, d) for i in 1:m]
rbase = mean(base(τ) for τ in trajs)
∇U(τ) = sum(ℓ(a,s,k).*(R(τ,k).-rbase) for (k,(s,a,r)) in enumerate(τ))
return mean(∇U(τ) for τ in trajs)

end

Algorithm 11.6. Likelihood ratio
gradient estimation with reward-
to-go and baseline subtraction for
anMDP 𝒫, policy π, and initial state
distribution b. The gradient with
respect to the parameterization vec-
tor θ is estimated from m rollouts to
depth d using the log policy gradi-
ents ∇logπ.

θ⋆

−1 −0.5 0

0

0.5

1

θ1

θ 2

0 10 20

−40

−20

0

iteration

ex
pe

cte
d
re
wa

rd

likelihood ratio
reward-to-go
baseline subtraction

Figure 11.3. Several policy gradient
methods used to optimize policies
for the simple regulator problem
from the same initial parameteriza-
tion. Each gradient evaluation ran
six rollouts to depth 10. The magni-
tude of the gradient was limited to
1, and step updates were applied
with step size 0.2. The optimal pol-
icy parameterization is shown in
black.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

11.6. summary 245

It is common to use likelihood ratio policy gradient estimation with this base-
line subtraction (algorithm 11.6).15. Figure 11.3 compares the methods discussed 15 This combination is used in

the class of algorithms called
REINFORCE as introduced by
R. J. Williams, “Simple Statistical
Gradient-Following Algorithms
for Connectionist Reinforcement
Learning,”Machine Learning, vol. 8,
pp. 229–256, 1992.

here.
Qualitatively, when considering the gradient contribution of state-action pairs,

what we really care about is the relative value of one action over another. If all
actions in a particular state produce the same high value, there is no real signal
in the gradient, and baseline subtraction can zero that out. We want to identify
the actions that produce a higher value than others, regardless of the mean value
across actions.

An alternative to the action value is the advantage, A(s, a) = Q(s, a)−U(s).
Using the state value function in baseline subtraction produces the advantage.
The policy gradient using the advantage is unbiased and typically has much lower
variance. The gradient computation takes the following form:

∇U(θ) = Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1 Aθ

(

s(k), a(k)
)

]

(11.44)

As with the state and action value functions, the advantage function is typically
unknown. Other methods, covered in chapter 13, are needed to approximate it.

11.6 Summary

• A gradient can be estimated using finite differences.

• Linear regression can also be used to provide more robust estimates of the
policy gradient.

• The likelihood ratio can be used to derive a form of the policy gradient that
does not depend on the transition model for stochastic policies.

• The variance of the policy gradient can be significantly reduced using the
reward-to-go and baseline subtraction.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

246 chapter 11. policy gradient estimation

11.7 Exercises
Exercise 11.1. If we estimate the expected discounted return of a given parameterized
policy πθ defined by an n-dimensional vector of parameters θ using m rollouts, how many
total rollouts dowe need to perform to compute the policy gradient using a finite difference
approach?

Solution: In order to estimate the policy gradient using a finite difference approach, we
need to estimate the utility of the policy given the current parameter vector U(θ), as well as
all n variations of the current parameter vector U(θ+ δe(i)) for i = 1 : n. Since we estimate
each of these using m rollouts, we need to perform a total of m(n + 1) rollouts.

Exercise 11.2. Suppose we have a robotic arm with which we are able to run experiments
manipulating a wide variety of objects. We would like to use the likelihood ratio policy
gradient or one of its extensions to train a policy that is efficient at picking up and moving
these objects. Would it be more straightforward to use a deterministic or a stochastic policy,
and why?

Solution: The likelihood ratio policy gradient requires an explicit representation of the
transition likelihood when used with deterministic policies. Specifying an accurate explicit
transition model for a real-world robotic arm manipulation task would be challenging.
Computing the policy gradient for a stochastic policy does not require having an explicit
representation of the transition likelihood, making the use of a stochastic policy more
straightforward.

Exercise 11.3. Consider policy gradients of the form

∇θU(θ) = Eτ

[

d

∑
k=1

γk−1y∇θ log πθ(a(k) | s(k))

]

Which of the following values of y result in a valid policy gradient? Explain why.
(a) γ1−k ∑

∞
ℓ=1 r(ℓ)γℓ−1

(b) ∑
∞
ℓ=k r(ℓ)γℓ−k

(c)
(

∑
∞
ℓ=k r(ℓ)γℓ−k

)

− rbase(s(k))

(d) U(s(k))

(e) Q(s(k), a(k))

(f) A(s(k), a(k))

(g) r(k) + γU(s(k+1))−U(s(k))

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

11.7. exercises 247

Solution:
(a) ∑

∞
ℓ=1 r(ℓ) results in the total discounted reward, as

γk−1γ1−k
∞

∑
ℓ=1

r(ℓ)γℓ−1 =
∞

∑
ℓ=1

r(ℓ)γℓ−1

and produces a valid policy gradient, as given in equation (11.19).
(b) ∑

∞
ℓ=k r(ℓ)γℓ−k is the reward-to-go and produces a valid policy gradient, as given in

equation (11.26).
(c)

(

∑
∞
ℓ=k r(ℓ)

)

− rbase(s(k)) is the baseline subtracted reward-to-go and produces a
valid policy gradient, as given in equation (11.28).

(d) U(s(k)) is the state value function and does not produce a valid policy gradient.
(e) Q(s(k), a(k)) is the state-action value function and produces a valid policy gradient,

as given in equation (11.27).
(f) A(s(k), a(k)) is the advantage function and produces a valid policy gradient, as given

in equation (11.44).
(g) r(k) + γU(s(k+1)) − U(s(k)) is the temporal difference residual (to be discussed

further in chapter 13) and produces a valid policy gradient because it is an unbiased
approximation of the advantage function.

Exercise 11.4. Show that Eτ∼π [f (τ)] = Eτ1:k∼π [Eτk:d∼π [f (τ)]] for step k.
Solution: The nested expectations can be proven by writing the expectation in integral form
and then converting back:

Eτ∼π [f (τ)] =

=
∫

p(τ) f (τ)dτ

=
∫

(

p(s(1))
d

∏
k=1

p(s(k+1) | s(k), a(k))π(a(k) | s(k))

)

f (τ)dτ

=
∫ ∫ ∫ ∫

· · ·
∫

(

p(s(1))
d

∏
k=1

p(s(k+1) | s(k), a(k))π(a(k) | s(k))

)

f (τ)ds(d) · · ·da(2) ds(2) da(1) ds(1)

= E
τ1:k∼π

∫ ∫ ∫ ∫

· · ·
∫

d

∏
q=k

p(s(q+1) | s(q), a(q))π(a(q) | s(q))

 f (τ)ds(d) · · ·da(k+1) ds(k+1) da(k) ds(k)

= Eτ1:k∼π [Eτk:d∼π [f (τ)]]

Exercise 11.5. Our implementation of the regression gradient (algorithm 11.3) fits a
linear mapping from perturbations to the difference in returns, U(θ+ ∆θ(i))−U(θ). We
evaluate U(θ+ ∆θ(i)) and U(θ) for each of the m perturbations, thus reevaluating U(θ)

a total of m times. How might we reallocate the samples in a more effective manner?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

248 chapter 11. policy gradient estimation

Solution: One approach is to evaluate U(θ) once and use the same value for each perturba-
tion, thereby conducting only m + 1 evaluations. Having an accurate estimate of U(θ) is
particularly important for an accurate regression gradient estimate. An alternative is to
still compute U(θ) once, but use m rollouts, thus preserving the total number of rollouts
per iteration. This approach uses the same amount of computation as algorithm 11.3, but
it can produce a more reliable gradient estimate.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

12 Policy Gradient Optimization

We can use estimates of the policy gradient to drive the search of the parameter
space toward an optimal policy. The previous chapter outlined methods for
estimating this gradient. This chapter explains how to use these estimates to
guide the optimization. We begin with gradient ascent, which simply takes steps
in the direction of the gradient at each iteration. Determining the step size is a
major challenge. Large steps can lead to faster progress to the optimum, but they
can overshoot. The natural policy gradient modifies the direction of the gradient
to better handle variable levels of sensitivity across parameter components. We
conclude with the trust region method, which starts in exactly the same way as
the natural gradient method to obtain a candidate policy. It then searches along
the line segment in policy space connecting the original policy to this candidate
to find a better policy.

12.1 Gradient Ascent Update

We can use gradient ascent (reviewed in appendix A.11) to find a policy parame-
terized by θ that maximizes the expected utility U(θ). Gradient ascent is a type
of iterated ascent method, which involves taking steps in the parameter space at
each iteration in an attempt to improve the quality of the associated policy. All
the methods discussed in this chapter are iterated ascent methods, but they differ
in how they take steps. The gradient ascent method discussed in this section
takes steps in the direction of ∇U(θ), which may be estimated using one of the
methods discussed in the previous chapter. The update of θ is

θ← θ+ α∇U(θ) (12.1)

250 chapter 12. policy gradient optimization

where the step length is equal to a step factor α > 0 times the magnitude of the
gradient.

Algorithm 12.1 implements a method that takes such a step. This method can
be called for either a fixed number of iterations or until θ or U(θ) converges.
Gradient ascent, as well as the other algorithms discussed in this chapter, is not
guaranteed to converge to the optimal policy. However, there are techniques to
encourage convergence to a locally optimal policy, inwhich taking an infinitesimally
small step in parameter space cannot result in a better policy. One approach is to
decay the step factor with each step.1

1 This approach, as well as many
others, are covered in detail byM. J.
Kochenderfer and T.A. Wheeler,
Algorithms for Optimization. MIT
Press, 2019.

struct PolicyGradientUpdate
∇U # policy gradient estimate
α # step factor

end

function update(M::PolicyGradientUpdate, θ)
return θ + M.α * M.∇U(θ)

end

Algorithm 12.1. The gradient as-
cent method for policy optimiza-
tion. It takes a step from a point
θ in the direction of the gradient
∇U with step factor α. We can use
one of the methods in the previous
chapter to compute ∇U.

Very large gradients tend to overshoot the optimum and may occur due to a
variety of reasons. Rewards for some problems, such as for the 2048 problem
(appendix F.2), can vary by orders of magnitude. One approach for keeping the
gradients manageable is to use gradient scaling, which limits the magnitude of a
gradient estimate before using it to update the policy parameterization. Gradients
are commonly limited to having an L2-norm of 1. Another approach is gradient
clipping, which conducts elementwise clamping of the gradient before using it to
update the policy. Clipping commonly limits the entries to lie between ±1. Both
techniques are implemented in algorithm 12.2.

scale_gradient(∇, L2_max) = min(L2_max/norm(∇), 1)*∇
clip_gradient(∇, a, b) = clamp.(∇, a, b)

Algorithm 12.2. Methods for gra-
dient scaling and clipping. Gradi-
ent scaling limits the magnitude
of the provided gradient vector ∇
to L2_max. Gradient clipping pro-
vides elementwise clamping of the
provided gradient vector ∇ to be-
tween a and b.

Scaling and clipping differ in how they affect the final gradient direction, as
demonstrated in figure 12.1. Scaling will leave the direction unaffected, whereas
clipping affects each component individually. Whether this difference is advanta-
geous depends on the problem. For example, if a single component dominates
the gradient vector, scaling will zero out the other components.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

12.2. restricted gradient update 251

θ⋆

−1 −0.5 0
−0.5

0

0.5

1

θ1

θ 2

0 2 4

−500

0

iteration

ex
pe

cte
d
re
wa

rd

no modification
scale gradient to 2

scale gradient to 1

scale gradient to 1/2

clip gradient to ±2

clip gradient to ±1

clip gradient to ±1/2

Figure 12.1. The effect of gradi-
ent scaling and clipping applied to
the simple regulator problem. Each
gradient evaluation ran 10 rollouts
to depth 10. Step updates were ap-
plied with a step size of 0.2. The
optimal policy parameterization is
shown in black.

12.2 Restricted Gradient Update

The remaining algorithms in this chapter attempt to optimize an approximation
of the objective function U(θ), subject to a constraint that the policy parameters at
the next step θ′ are not too far from θ at the current step. The constraint takes the
form g(θ,θ′) ≤ ǫ, where ǫ > 0 is a free parameter in the algorithm. The methods
differ in their approximation of U(θ) and the form of g. This section describes a
simple restricted step method.

We use the first-order Taylor approximation (appendix A.12) obtained from
our gradient estimate at θ to approximate U:

U(θ′) ≈ U(θ) +∇U(θ)⊤(θ′ − θ) (12.2)

For the constraint, we use

g(θ,θ′) =
1

2
(θ′ − θ)⊤I(θ′ − θ) = 1

2
‖θ′ − θ‖2

2 (12.3)

We can view this constraint as limiting the step length to no more than
√

2ǫ.
In other words, the feasible region in our optimization is a ball of radius

√
2ǫ

centered at θ.
The optimization problem is, then,

maximize
θ′

U(θ) +∇U(θ)⊤(θ′ − θ)

subject to
1

2
(θ′ − θ)⊤I(θ′ − θ) ≤ ǫ

(12.4)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

252 chapter 12. policy gradient optimization

We can drop U(θ) from the objective since it does not depend on θ′. In addition,
we can change the inequality to an equality in the constraint because the linear
objective forces the optimal solution to be on the boundary of the feasible region.
These changes result in an equivalent optimization problem:

maximize
θ′

∇U(θ)⊤(θ′ − θ)

subject to
1

2
(θ′ − θ)⊤I(θ′ − θ) = ǫ

(12.5)

This optimization problem can be solved analytically:

θ′ = θ+ u

√

2ǫ

u⊤u
= θ+

√
2ǫ

u

‖u‖ (12.6)

where the unnormalized search direction u is simply ∇U(θ). Of course, we do
not know ∇U(θ) exactly, but we can use any of the methods described in the
previous chapter to estimate it. Algorithm 12.3 provides an implementation.

struct RestrictedPolicyUpdate
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
∇logπ # gradient of log likelihood
π # policy
ϵ # divergence bound

end

function update(M::RestrictedPolicyUpdate, θ)
𝒫, b, d, m, ∇logπ, π, γ = M.𝒫, M.b, M.d, M.m, M.∇logπ, M.π, M.𝒫.γ
πθ(s) = π(θ, s)
R(τ) = sum(r*γ^(k-1) for (k, (s,a,r)) in enumerate(τ))
τs = [simulate(𝒫, rand(b), πθ, d) for i in 1:m]
∇log(τ) = sum(∇logπ(θ, a, s) for (s,a) in τ)
∇U(τ) = ∇log(τ)*R(τ)
u = mean(∇U(τ) for τ in τs)
return θ + u*sqrt(2*M.ϵ/dot(u,u))

end

Algorithm 12.3. The update func-
tion for the restricted policy gra-
dient method at θ for a problem
𝒫 with initial state distribution b.
The gradient is estimated from an
initial state distribution b to depth
d with m simulations of parameter-
ized policy π(θ, s)with log policy
gradient ∇logπ.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

12.3. natural gradient update 253

12.3 Natural Gradient Update

The natural gradientmethod2 is a variation of the restricted step method discussed 2 S. Amari, “Natural Gradient
Works Efficiently in Learning,”
Neural Computation, vol. 10, no. 2,
pp. 251–276, 1998.

in the previous section to better handle situations when some components of the
parameter space are more sensitive than others. Sensitivity in this context refers
to how much the utility of a policy varies with respect to small changes in one of
the parameters. The sensitivity in gradient methods is largely determined by the
choice of scaling of the policy parameters. The natural policy gradient method
makes the search direction u invariant to parameter scaling. Figure 12.2 illustrates
the differences between the true gradient and the natural gradient.

−2 −1 0

0

0.2

0.4

θ1

θ 2

true gradient

−2 −1 0

θ1

natural gradient Figure 12.2. A comparison of
the true gradient and the natu-
ral gradient on the simple regu-
lator problem (see appendix F.5).
The true gradient generally points
strongly in the negative θ2 direc-
tion, whereas the natural gradient
generally points toward the opti-
mum (black dot) at [−1, 0]. A sim-
ilar figure is presented in J. Pe-
ters and S. Schaal, “Reinforcement
Learning of Motor Skills with Pol-
icy Gradients,” Neural Networks,
vol. 21, no. 4, pp. 682–697, 2008.

The natural policy gradient method uses the same first-order approximation of
the objective as in the previous section. The constraint, however, is different. The
intuition is that we want to restrict changes in θ that result in large changes in the
distribution over trajectories. A way to measure how much a distribution changes
is to use the Kullback-Leibler divergence, or KL divergence (appendix A.10). We
could impose the constraint

g(θ,θ′) = DKL
(

p(· | θ)
∣

∣

∣

∣ p(· | θ′)
)

≤ ǫ (12.7)

but instead we will use a second-order Taylor approximation:

g(θ,θ′) =
1

2
(θ′ − θ)⊤Fθ(θ

′ − θ) ≤ ǫ (12.8)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

254 chapter 12. policy gradient optimization

where the Fisher information matrix has the following form:

Fθ =
∫

p(τ | θ)∇ log p(τ | θ)∇ log p(τ | θ)⊤ dτ (12.9)

= Eτ

[

∇ log p(τ | θ)∇ log p(τ | θ)⊤
]

(12.10)

The resulting optimization problem is

maximize
θ′

∇U(θ)⊤(θ′ − θ)

subject to
1

2
(θ′ − θ)⊤Fθ(θ

′ − θ) = ǫ
(12.11)

which looks identical to equation (12.5) except that instead of the identity matrix
I, we have the Fisher matrix Fθ. This difference results in an ellipsoid feasible set.
Figure 12.3 shows an example in two dimensions.

∇U(θ)

F−1∇U(θ)

1
2 ∆θ⊤Fθ∆θ = ǫ

Figure 12.3. The natural policy gra-
dient places a constraint on the
approximated Kullback-Leibler di-
vergence. This constraint takes the
form of an ellipse. The ellipse may
be elongated in certain directions,
allowing larger steps if the gradi-
ent is rotated.

This optimization problem can be solved analytically and has the same form
as the update in the previous section:

θ′ = θ+ u

√

2ǫ

∇U(θ)⊤u
(12.12)

except that we now have3

3 This computation can be done
using conjugate gradient descent,
which reduces computation when
the dimension of θ is large. S.M.
Kakade, “A Natural Policy Gradi-
ent,” in Advances in Neural Infor-
mation Processing Systems (NIPS),
2001.

u = F−1
θ
∇U(θ) (12.13)

We can use sampled trajectories to estimate Fθ and ∇U(θ). Algorithm 12.4 pro-
vides an implementation.

12.4 Trust Region Update

This section discusses a method for searching within the trust region, defined by
the elliptical feasible region from the previous section. This category of approach
is referred to as trust region policy optimization (TRPO).4 It works by computing 4 J. Schulman, S. Levine, P. Moritz,

M. Jordan, and P. Abbeel, “Trust
Region Policy Optimization,” in In-
ternational Conference on Machine
Learning (ICML), 2015.

the next evaluation point θ′ that would be taken by the natural policy gradient
and then conducting a line search along the line segment connecting θ to θ′. A key
property of this line search phase is that evaluations of the approximate objective
and constraint do not require any additional rollout simulations.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

12.4. trust region update 255

struct NaturalPolicyUpdate
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
∇logπ # gradient of log likelihood
π # policy
ϵ # divergence bound

end

function natural_update(θ, ∇f, F, ϵ, τs)
∇fθ = mean(∇f(τ) for τ in τs)
u = mean(F(τ) for τ in τs) \ ∇fθ
return θ + u*sqrt(2ϵ/dot(∇fθ,u))

end

function update(M::NaturalPolicyUpdate, θ)
𝒫, b, d, m, ∇logπ, π, γ = M.𝒫, M.b, M.d, M.m, M.∇logπ, M.π, M.𝒫.γ
πθ(s) = π(θ, s)
R(τ) = sum(r*γ^(k-1) for (k, (s,a,r)) in enumerate(τ))
∇log(τ) = sum(∇logπ(θ, a, s) for (s,a) in τ)
∇U(τ) = ∇log(τ)*R(τ)
F(τ) = ∇log(τ)*∇log(τ)'
τs = [simulate(𝒫, rand(b), πθ, d) for i in 1:m]
return natural_update(θ, ∇U, F, M.ϵ, τs)

end

Algorithm 12.4. The update func-
tion for the natural policy gradi-
ent, given policy π(θ, s), for an
MDP 𝒫 with initial state distribu-
tion b. The natural gradient with
respect to the parameter vector θ is
estimated from m rollouts to depth
d using the log policy gradients
∇logπ. The natural_update helper
method conducts an update ac-
cording to equation (12.12), given
an objective gradient ∇f(τ) and a
Fisher matrix F(τ) for a list of tra-
jectories.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

256 chapter 12. policy gradient optimization

During the line search phase, we no longer use a first-order approximation. In-
stead, we use an approximation derived from an equality involving the advantage
function5 5 A variation of this equality is

proven in lemma 6.1 of S.M.
Kakade and J. Langford, “Approx-
imately Optimal Approximate Re-
inforcement Learning,” in Interna-
tional Conference on Machine Learn-
ing (ICML), 2002.

U(θ′) = U(θ) + E
τ∼π

θ′

[

d

∑
k=1

Aθ(s
(k), a(k))

]

(12.14)

Anotherway towrite this is to use bγ,θ, which is the discounted visitation distribution
of state s under policy πθ, where

bγ,θ(s) ∝ P(s(1) = s) + γP(s(2) = s) + γ2P(s(3) = s) + · · · (12.15)

Using the discounted visitation distribution, the objective becomes

U(θ′) = U(θ) + E
s∼bγ,θ′

[

E
a∼π

θ′ (·|s)
[Aθ(s, a)]

]

(12.16)

We would like to pull our samples from our policy parameterized by θ instead
of θ′ so that we do not have to run more simulations during the line search. The
samples associated with the inner expectation can be replaced with samples from
our original policy so long as we appropriately weight the advantage:6 6 This weighting comes from impor-

tance sampling, which is reviewed
in appendix A.14.

U(θ′) = U(θ) + E
s∼bγ,θ′

[

E
a∼πθ(·|s)

[

πθ′(a | s)

πθ(a | s)
Aθ(s, a)

]]

(12.17)

The next step involves replacing the state distribution with bγ,θ. The quality of
the approximation degrades as θ′ gets further from θ, but it is hypothesized that
it is acceptable within the trust region. Since U(θ) does not depend on θ′, we can
drop it from the objective. We can also drop the state value function from the
advantage function, leaving us with the action value function. What remains is
referred to as the surrogate objective:

f (θ,θ′) = E
s∼bγ,θ

[

E
a∼πθ(·|s)

[

πθ′(a | s)

πθ(a | s)
Qθ(s, a)

]]

(12.18)

This equation can be estimated from the same set of trajectories that was used to
estimate the natural gradient update. We can estimate Qθ(s, a) using the reward-
to-go in the sampled trajectories.7

7 Algorithm 12.5 instead uses
∑ℓ=k r(ℓ)γℓ−1, which effectively
discounts the reward-to-go by
γk−1. This discount is needed to
weight each sample’s contribution
to match the discounted visitation
distribution. The surrogate
constraint is similarly discounted.

The surrogate constraint in the line search is given by

g(θ,θ′) = E
s∼bγ,θ

[DKL(πθ(· | s) || πθ′(· | s))] ≤ ǫ (12.19)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

12.5. clamped surrogate objective 257

Line search involves iteratively evaluating our surrogate objective f and sur-
rogate constraint g for different points in the policy space. We begin with the θ′
obtained from the same process as the natural gradient update.We then iteratively
apply

θ′ ← θ+ α(θ′ − θ) (12.20)
until we have an improvement in our objective with f (θ,θ′) > f (θ,θ) and our
constraint is met with g(θ,θ′) ≤ ǫ. The step factor 0 < α < 1 shrinks the distance
between θ and θ′ at each iteration, with α typically set to 0.5.

Algorithm 12.5 provides an implementation of this approach. Figure 12.4
illustrates the relationship between the feasible regions associatedwith the natural
gradient and the line search. Figure 12.5 demonstrates the approach on a regulator
problem, and example 12.1 shows an update for a simple problem.

12.5 Clamped Surrogate Objective

We can avoid detrimental policy updates from overly optimistic estimates of
the trust region surrogate objective by clamping.8 The surrogate objective from 8 Clamping is a key idea in what is

known as proximal policy optimiza-
tion (PPO) as discussed by J. Schul-
man, F. Wolski, P. Dhariwal, A.
Radford, andO. Klimov, “Proximal
Policy Optimization Algorithms,”
2017. arXiv: 1707.06347v2.

equation (12.18), after exchanging the action value advantage, is

E
s∼bγ,θ

[

E
a∼πθ(·|s)

[

πθ′(a | s)

πθ(a | s)
Aθ(s, a)

]]

(12.21)

The probability ratio πθ′(a | s)/πθ(a | s) can be overly optimistic. A pessimistic
lower bound on the objective can significantly improve performance:

E
s∼bγ,θ

[

E
a∼πθ(·|s)

[

min

(

πθ′(a | s)

πθ(a | s)
Aθ(s, a), clamp

(

πθ′(a | s)

πθ(a | s)
, 1− ǫ, 1 + ǫ

)

Aθ(s, a)

)]]

(12.22)

where ǫ is a small positive value9 and clamp(x, a, b) forces x to be between a and 9 While this ǫ does not directly act
as a threshold on divergence, as it
did in previous algorithms, its role
is similar. A typical value is 0.2.

b. By definition, clamp(x, a, b) = min{max{x, a}, b}.
Clamping the probability ratio alone does not produce a lower bound; we must

also take the minimum of the clamped and original objectives. The lower bound
is shown in figure 12.6, together with the original and clamped objectives. The
end result of the lower bound is that the change in probability ratio is ignored
when it would cause the objective to improve significantly. Using the lower bound
thus prevents large, often detrimental, updates in these situations and removes
the need for the trust region surrogate constraint equation (12.19). Without the

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1707.06347v2

258 chapter 12. policy gradient optimization

struct TrustRegionUpdate
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
π # policy π(s)
p # policy likelihood p(θ, a, s)
∇logπ # log likelihood gradient
KL # KL divergence KL(θ, θ′, s)
ϵ # divergence bound
α # line search reduction factor (e.g., 0.5)

end

function surrogate_objective(M::TrustRegionUpdate, θ, θ′, τs)
d, p, γ = M.d, M.p, M.𝒫.γ
R(τ, j) = sum(r*γ^(k-1) for (k,(s,a,r)) in zip(j:d, τ[j:end]))
w(a,s) = p(θ′,a,s) / p(θ,a,s)
f(τ) = mean(w(a,s)*R(τ,k) for (k,(s,a,r)) in enumerate(τ))
return mean(f(τ) for τ in τs)

end

function surrogate_constraint(M::TrustRegionUpdate, θ, θ′, τs)
γ = M.𝒫.γ
KL(τ) = mean(M.KL(θ, θ′, s)*γ^(k-1) for (k,(s,a,r)) in enumerate(τ))
return mean(KL(τ) for τ in τs)

end

function linesearch(M::TrustRegionUpdate, f, g, θ, θ′)
fθ = f(θ)
while g(θ′) > M.ϵ || f(θ′) ≤ fθ

θ′ = θ + M.α*(θ′ - θ)
end
return θ′

end

function update(M::TrustRegionUpdate, θ)
𝒫, b, d, m, ∇logπ, π, γ = M.𝒫, M.b, M.d, M.m, M.∇logπ, M.π, M.𝒫.γ
πθ(s) = π(θ, s)
R(τ) = sum(r*γ^(k-1) for (k, (s,a,r)) in enumerate(τ))
∇log(τ) = sum(∇logπ(θ, a, s) for (s,a) in τ)
∇U(τ) = ∇log(τ)*R(τ)
F(τ) = ∇log(τ)*∇log(τ)'
τs = [simulate(𝒫, rand(b), πθ, d) for i in 1:m]
θ′ = natural_update(θ, ∇U, F, M.ϵ, τs)
f(θ′) = surrogate_objective(M, θ, θ′, τs)
g(θ′) = surrogate_constraint(M, θ, θ′, τs)
return linesearch(M, f, g, θ, θ′)

end

Algorithm 12.5. The update pro-
cedure for trust region policy opti-
mization, which augments the nat-
ural gradient with a line search. It
generates m trajectories using pol-
icy π in problem 𝒫 with initial state
distribution b and depth d. To ob-
tain the starting point of the line
search, we need the gradient of the
log-probability of the policy gener-
ating a particular action from the
current state, which we denote as
∇logπ. For the surrogate objective,
we need the probability function
p, which gives the probability that
our policy generates a particular
action from the current state. For
the surrogate constraint, we need
the divergence between the action
distributions generated by πθ and
πθ′ . At each step of the line search,
we shrink the distance between the
considered point θ′ and θ while
maintaining the search direction.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

12.5. clamped surrogate objective 259

∇Uπθ

F−1
θ
∇U(θ)

1
2 (θ

′ − θ)⊤Fθ(θ
′ − θ) = ǫ

g(θ,θ′) = ǫ

θ

θ′

Figure 12.4. Trust region policy op-
timization searches within the el-
liptical constraint generated by a
second-order approximation of the
Kullback-Leibler divergence. After
computing the natural policy gra-
dient ascent direction, a line search
is conducted to ensure that the up-
dated policy improves the policy
reward and adheres to the diver-
gence constraint. The line search
starts from the estimated maxi-
mum step size and reduces the step
size along the ascent direction until
a satisfactory point is found.

θ⋆

−1 −0.5 0

0

0.5

1

θ1

θ 2

0 2 4 6 8

−40

−20

0

iteration

ex
pe

cte
d
re
wa

rd

Figure 12.5. Trust region policy op-
timization applied to the simple
regulator problem with rollouts to
depth 10 with ǫ = 1 and c = 2. The
optimal policy parameterization is
shown in black.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

260 chapter 12. policy gradient optimization

Consider applying TRPO to the Gaussian policyN (θ1, θ2
2) from example 11.3

to the single-stateMDP from example 11.1 with γ = 1. Recall that the gradient
of the log policy likelihood is

∂

∂θ1
log πθ(a | s) =

a− θ1

θ2
2

∂

∂θ2
log πθ(a | s) =

(a− θ1)
2 − θ2

2

θ3
2

Suppose that we run two rollouts with θ = [0, 1] (this problem only has
one state):

τ1 = {(a = r = −0.532), (a = r = 0.597), (a = r = 1.947)}
τ2 = {(a = r = −0.263), (a = r = −2.212), (a = r = 2.364)}

The estimated Fisher information matrix is

Fθ =
1

2

(

∇ log p(τ(1))∇ log p(τ(1))⊤ +∇ log p(τ(2))∇ log p(τ(2))⊤
)

=
1

2

([

4.048 2.878

2.878 2.046

]

+

[

0.012 − 0.838

−0.838 57.012

])

=

[

2.030 1.020

1.019 29.529

]

The objective function gradient is [2.030, 1.020]. The resulting descent di-
rection u is [1, 0]. Setting ǫ = 0.1, we compute our updated parameterization
vector and obtain θ′ = [0.314, 1].

The surrogate objective function value at θ is 1.485. Line search begins at
θ′, where the surrogate objective function value is 2.110 and the constraint
yields 0.049. This satisfies our constraint (as 0.049 < ǫ), so we return the
new parameterization.

Example 12.1. An example of one
iteration of trust region policy op-
timization.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

12.5. clamped surrogate objective 261

constraint, we can also eliminate line search and use standard gradient ascent
methods.

0 1− ǫ 1 1 + ǫ

probability ratio

ob
jec

tiv
ef

un
cti

on

A > 0

0 1− ǫ 1 1 + ǫ

probability ratio

A < 0

original objective clamped objective lower-bound objective

Figure 12.6. A visualization of
the lower-bound objective for posi-
tive and negative advantages com-
pared to the original objective and
the clamped objective. The black
point shows the baseline around
which the optimization is per-
formed, πθ′ (a | s)/πθ(a | s) = 1.
The three line plots in each axis are
vertically separated for clarity.

The gradient of the unclamped objective equation (12.21) with action values is

∇θ′ f (θ,θ′) = E
s∼bγ,θ

[

E
a∼πθ(·|s)

[∇θ′πθ′(a | s)

πθ(a | s)
Qθ(s, a)

]]

(12.23)

where Qθ(s, a) can be estimated from reward-to-go. The gradient of the lower-
bound objective equation (12.22) (with clamping), is the same, except there is no
contribution from experience tuples for which the objective is actively clamped.
That is, if either the reward-to-go is positive and the probability ratio is greater
than 1 + ǫ, or if the reward-to-go is negative and the probability ratio is less than
1− ǫ, the gradient contribution is zero.

Like TRPO, the gradient can be computed for a parameterization θ′ from
experience generated from θ. Hence, several gradient updates can be run in
a row using the same set of sampled trajectories. Algorithm 12.6 provides an
implementation of this.

The clamped surrogate objective is compared to several other surrogate ob-
jectives in figure 12.7, which includes a line plot for the effective objective for
TRPO:

E
s∼bγ,θ

a∼πθ(·|s)

[

πθ′(a | s)

πθ(a | s)
Aθ(s, a)− βDKL(πθ(· | s) || πθ′(· | s))

]

(12.24)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

262 chapter 12. policy gradient optimization

struct ClampedSurrogateUpdate
𝒫 # problem
b # initial state distribution
d # depth
m # number of trajectories
π # policy
p # policy likelihood
∇π # policy likelihood gradient
ϵ # divergence bound
α # step size
k_max # number of iterations per update

end

function clamped_gradient(M::ClampedSurrogateUpdate, θ, θ′, τs)
d, p, ∇π, ϵ, γ = M.d, M.p, M.∇π, M.ϵ, M.𝒫.γ
R(τ, j) = sum(r*γ^(k-1) for (k,(s,a,r)) in zip(j:d, τ[j:end]))
∇f(a,s,r_togo) = begin

P = p(θ, a,s)
w = p(θ′,a,s) / P
if (r_togo > 0 && w > 1+ϵ) || (r_togo < 0 && w < 1-ϵ)

return zeros(length(θ))
end
return ∇π(θ′, a, s) * r_togo / P

end
∇f(τ) = mean(∇f(a,s,R(τ,k)) for (k,(s,a,r)) in enumerate(τ))
return mean(∇f(τ) for τ in τs)

end

function update(M::ClampedSurrogateUpdate, θ)
𝒫, b, d, m, π, α, k_max= M.𝒫, M.b, M.d, M.m, M.π, M.α, M.k_max
πθ(s) = π(θ, s)
τs = [simulate(𝒫, rand(b), πθ, d) for i in 1:m]
θ′ = copy(θ)
for k in 1:k_max

θ′ += α*clamped_gradient(M, θ, θ′, τs)
end
return θ′

end

Algorithm 12.6. An implementa-
tion of clamped surrogate policy
optimization, which returns a new
policy parameterization for policy
π(s) of an MDP 𝒫 with initial state
distribution b. This implementa-
tion samples m trajectories to depth
d, and then uses them to estimate
the policy gradient in k_max subse-
quent updates. The policy gradient
using the clamped objective is con-
structed using the policy gradients
∇p with clamping parameter ϵ.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

12.6. summary 263

which is the trust region policy objective where the constraint is implemented
as a penalty for some coefficient β. TRPO typically uses a hard constraint rather
than a penalty because it is difficult to choose a value of β that performs well
within a single problem, let alone across multiple problems.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

0

2

4

linear interpolation factor

surrogate objective
surrogate constraint
TRPO effective objective
clamped surrogate objective

Figure 12.7. A comparison of surro-
gate objectives related to clamped
surrogate policy optimization us-
ing the linear quadratic regulator
problem. The x-axis shows surro-
gate objectives as we travel from
θ at 0 toward θ′, given a natural
policy update at 1. The surrogate
objectives were centered at 0 by
subtracting the surrogate objective
function value for θ. We see that
the clamped surrogate objective be-
haves very similarly to the effective
TRPO objective without needing a
constraint. Note that ǫ and β can
be adjusted for both algorithms,
which would affect where the max-
imum is in each case.

12.6 Summary

• The gradient ascent algorithm can use the gradient estimates obtained from the
methods discussed in the previous chapter to iteratively improve our policy.

• Gradient ascent can be made more robust by scaling, clipping, or forcing the
size of the improvement steps to be uniform.

• The natural gradient approach uses a first-order approximation of the objective
function with a constraint on the divergence between the trajectory distribution
at each step, approximated using an estimate of the Fisher information matrix.

• Trust region policy optimization involves augmenting the natural gradient
method with a line search to further improve the policy without additional
trajectory simulations.

• We can use a pessimistic lower bound of the TRPO objective to obtain a clamped
surrogate objective that performs similarly without the need for line search.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

264 chapter 12. policy gradient optimization

12.7 Exercises
Exercise 12.1. TRPO starts its line search from a new parameterization given by a natural
policy gradient update. However, TRPO conducts the line search using a different objec-
tive than the natural policy gradient. Show that the gradient of the surrogate objective
equation (12.18) used in TRPO is actually the same as the reward-to-go policy gradient
equation (11.26).

Solution: The gradient of TRPO’s surrogate objective is

∇θ′UTRPO = E
s∼bγ,θ

[

E
a∼πθ(·|s)

[∇θ′πθ′ (a | s)

πθ(a | s)
Qθ(s, a)

]]

When conducting the initial natural policy gradient update, the search direction is
evaluated at θ′ = θ. Furthermore, the action value is approximated with the reward-to-go:

∇θ′UTRPO = E
s∼bγ,θ

[

E
a∼πθ(·|s)

[∇θπθ(a | s)

πθ(a | s)
rto-go

]]

Recall that the derivative of log f (x) is f ′(x)/ f (x). It thus follows that

∇θ′UTRPO = E
s∼bγ,θ

[

E
a∼πθ(·|s)

[

∇θ log πθ(a | s)rto-go
]

]

which takes the same form as the reward-to-go policy gradient equation (11.26).

Exercise 12.2. Perform the calculations of example 12.1. First, compute the inverse of the
Fisher information matrix F−1

θ
, compute u, and compute the updated parameters θ′.

Solution: We start by computing the inverse of the Fisher information matrix:

F−1
θ
≈ 1

0.341(29.529)− 0.332(0.332)

[

29.529 −0.332

−0.332 0.341

]

≈
[

0.501 −0.017

−0.017 0.034

]

Now, we update u as follows:

u = F−1
θ
∇U(θ) ≈

[

0.501 −0.017

−0.017 0.034

] [

2.030

1.020

]

≈
[

1

0

]

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

12.7. exercises 265

Finally, we estimate the updated parameters θ:

θ′ = θ+ u

√

2ǫ

∇U(θ)⊤u

≈
[

0

1

]

+

[

1

0

]√

√

√

√

√

√

2(0.1)
[

2.030 1.020
]

[

1

0

]

≈
[

0

1

]

+

[

1

0

]

√

0.2

2.030

≈
[

0.314

1

]

Exercise 12.3. Suppose we have the parameterized policies πθ and πθ′ given in the
following table:

a1 a2 a3 a4

πθ(a | s1) 0.1 0.2 0.3 0.4

πθ′ (a | s1) 0.4 0.3 0.2 0.1

πθ(a | s2) 0.1 0.1 0.6 0.2

πθ′ (a | s2) 0.1 0.1 0.5 0.3

Given thatwe sample the followingfive states, s1, s2, s1, s1, s2, approximateEs [DKL(πθ(· | s) || πθ′ (· | s))]

using the definition
DKL(P || Q) = ∑

x
P(x) log

P(x)

Q(x)

Solution: First, we compute the KL divergence for a state sample s1:

DKL(πθ(· | s1) || πθ′ (· | s1)) = 0.1 log
(

0.1
0.4

)

+ 0.2 log
(

0.2
0.3

)

+ 0.3 log
(

0.3
0.3

)

+ 0.4 log
(

0.4
0.1

)

≈ 0.456

Now, we compute the KL divergence for a state sample s2:

DKL(πθ(· | s2) || πθ′ (· | s2)) = 0.1 log
(

0.1
0.1

)

+ 0.1 log
(

0.1
0.1

)

+ 0.6 log
(

0.6
0.5

)

+ 0.2 log
(

0.2
0.3

)

≈ 0.0283

Finally, we compute the approximation of the expectation, which is the average KL diver-
gence of the parameterized policies over the n state samples:

Es[DKL(πθ(· | s) || πθ′ (· | s))] ≈ 1

n

n

∑
i=1

DKL
(

πθ(· | s(i))
∣

∣

∣

∣

∣

∣
πθ′ (· | s(i))

)

≈ 1

5
(0.456 + 0.0283 + 0.456 + 0.456 + 0.0283)

≈ 0.285

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

13 Actor-Critic Methods

The previous chapter discussed ways to improve a parameterized policy through
gradient information estimated from rollouts. This chapter introduces actor-critic
methods, which use an estimate of a value function to help direct the optimization.
The actor, in this context, is the policy, and the critic is the value function. Both
are trained in parallel. We will discuss several methods that differ in whether
they approximate the value function, advantage function, or action value func-
tion. Most focus on stochastic policies, but we will also discuss one method that
supports deterministic policies that output continuous actions. Finally, we will
discuss a way to incorporate an online method for generating more informative
trajectories for training the actor and critic.

13.1 Actor-Critic

In actor-critic methods, we have an actor represented by a policy πθ, param-
eterized by θ with the help of a critic that provides an estimate of the value
function Uφ(s), Qφ(s, a), or Aφ(s, a) parameterized by φ. We will start this
chapter with a simple actor-critic approach in which the optimization of πθ is
done through gradient ascent, with the gradient of our objective being the same
as in equation (11.44):

∇U(θ) = Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1 Aθ

(

s(k), a(k)
)

]

(13.1)

The advantage when following a policy parameterized by θ can be estimated
using a set of observed transitions from s to s′ with reward r:

Aθ(s, a) = Er,s′
[

r + γUπθ(s′)−Uπθ(s)
] (13.2)

268 chapter 13. actor-critic methods

The r + γUπθ(s′)−Uπθ(s) inside the expectation is referred to as the temporal
difference residual.

The critic allows us to estimate the true value function Uπθ when following
πθ, resulting in the following gradient for the actor:

∇U(θ) ≈ Eτ

[

d

∑
k=1

∇θ log πθ(a(k) | s(k))γk−1
(

r(k) + γUφ(s(k+1))−Uφ(s(k))
)

]

(13.3)

This expectation can be estimated through rollout trajectories, as done in chap-
ter 11.

The critic is also updated through gradient optimization. We want to find aφ
that minimizes our loss function:

ℓ(φ) =
1

2
Es

[

(

Uφ(s)−Uπθ(s)
)2
]

(13.4)

To minimize this objective, we can take steps in the opposite direction of the
gradient:

∇ℓ(φ) = Es

[(

Uφ(s)−Uπθ(s)
)

∇φUφ(s)
] (13.5)

Of course, we do not know Uπθ exactly, but it can be estimated using the reward-
to-go along rollout trajectories, resulting in

∇ℓ(φ) = Eτ

[

d

∑
k=1

(

Uφ(s(k))− r
(k)
to-go

)

∇φUφ(s(k))

]

(13.6)

where r
(k)
to-go is the reward-to-go at step k in a particular trajectory τ.

Algorithm 13.1 shows how to estimate ∇U(θ) and ∇ℓ(φ) from rollouts. With
each iteration, we step θ in the direction of ∇U(θ) to maximize utility, and we
stepφ in the opposite direction of ∇ℓ(φ) to minimize our loss. This approach
can become unstable due to the dependency between the estimation of θ and
φ, but this approach has worked well for a variety of problems. It is a common
practice to update the policy more frequently than the value function to improve
stability. The implementations in this chapter can easily be adapted to update the
value function only for a subset of the iterations that the policy is updated.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

13.2. generalized advantage estimation 269

struct ActorCritic
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
∇logπ # gradient of log likelihood ∇logπ(θ,a,s)
U # parameterized value function U(ϕ, s)
∇U # gradient of value function ∇U(ϕ,s)

end

function gradient(M::ActorCritic, π, θ, ϕ)
𝒫, b, d, m, ∇logπ = M.𝒫, M.b, M.d, M.m, M.∇logπ
U, ∇U, γ = M.U, M.∇U, M.𝒫.γ
πθ(s) = π(θ, s)
R(τ,j) = sum(r*γ^(k-1) for (k,(s,a,r)) in enumerate(τ[j:end]))
A(τ,j) = τ[j][3] + γ*U(ϕ,τ[j+1][1]) - U(ϕ,τ[j][1])
∇Uθ(τ) = sum(∇logπ(θ,a,s)*A(τ,j)*γ^(j-1) for (j, (s,a,r))

in enumerate(τ[1:end-1]))
∇ℓϕ(τ) = sum((U(ϕ,s) - R(τ,j))*∇U(ϕ,s) for (j, (s,a,r))

in enumerate(τ))
trajs = [simulate(𝒫, rand(b), πθ, d) for i in 1:m]
return mean(∇Uθ(τ) for τ in trajs), mean(∇ℓϕ(τ) for τ in trajs)

end

Algorithm 13.1. A basic actor-critic
method for computing both a pol-
icy gradient and a value function
gradient for an MDP 𝒫 with initial
state distribution b. The policy π
is parameterized by θ and has a
log-gradient ∇logπ. The value func-
tion U is parameterized by ϕ and the
gradient of its objective function is
∇U. This method runs m rollouts to
depth d. The results are used to up-
date θ and ϕ. The policy parame-
terization is updated in the direc-
tion of ∇θ tomaximize the expected
value, whereas the value function
parameterization is updated in the
negative direction of ∇ϕ to mini-
mize the value loss.

13.2 Generalized Advantage Estimation

Generalized advantage estimation (algorithm 13.2) is an actor-critic method that
uses a more general version of the advantage estimate shown in equation (13.2)
that allows us to balance between bias and variance.1 Approximation with the 1 J. Schulman, P. Moritz, S. Levine,

M. Jordan, and P. Abbeel, “High-
Dimensional Continuous Control
Using Generalized Advantage Esti-
mation,” in International Conference
on Learning Representations (ICLR),
2016. arXiv: 1506.02438v6.

temporal difference residual has low variance, but it introduces bias due to a
potentially inaccurate Uφ used to approximate Uπθ . An alternative is to replace
r + γUπθ(s′) with the sequence of rollout rewards r1, . . . , rd:

Aθ(s, a) = Er1,...,rd

[

r1 + γr2 + γ2r3 + · · ·+ γd−1rd −Uπθ(s)
]

(13.7)

= Er1,...,rd

[

−Uπθ(s) +
d

∑
ℓ=1

γℓ−1rℓ

]

(13.8)

We can obtain an unbiased estimate of this expectation through rollout trajectories,
as done in the policy gradient estimation methods (chapter 11). However, the
estimate is high variance, meaning that we need many samples to arrive at an
accurate estimate.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1506.02438v6

270 chapter 13. actor-critic methods

The approach taken by generalized advantage estimation is to balance between
these two extremes of using temporal difference residuals and full rollouts. We
define Â(k) to be the advantage estimate obtained from k steps of a rollout and
the utility associated with the resulting state s′:

Â(k)(s, a) = Er1,...,rk ,s′
[

r1 + γr2 + · · ·+ γk−1rk + γkUπθ(s′)−Uπθ(s)
]

(13.9)

= Er1,...,rk ,s′

[

−Uπθ(s) + γkUπθ(s′) +
k

∑
ℓ=1

γℓ−1rℓ

]

(13.10)

An alternative way to write Â(k) is in terms of an expectation over temporal
difference residuals. We can define

δt = rt + γU(st+1)−U(st) (13.11)

where st, rt, and st+1 are the state, reward, and subsequent state along a sampled
trajectory and U is our value function estimate. Then,

Â(k)(s, a) = E

[

k

∑
ℓ=1

γℓ−1δℓ

]

(13.12)

Instead of committing to a particular value for k, generalized advantage esti-
mation introduces a parameter λ ∈ [0, 1] that provides an exponentially weighted
average of Â(k) for k ranging from 1 to d:2

2 The exponentially weighted aver-
age of a series x1, x2, . . . is
(1− λ)(x1 + λx2 + λ2x3 + · · ·).

ÂGAE(s, a) |d=1 = Â(1) (13.13)
ÂGAE(s, a) |d=2 = (1− λ)Â(1) + λÂ(2) (13.14)
ÂGAE(s, a) |d=3 = (1− λ)Â(1) + λ

(

(1− λ)Â(2) + λÂ(3)
)

(13.15)

= (1− λ)Â(1) + λ(1− λ)Â(2) + λ2 Â(3) (13.16)
...

ÂGAE(s, a) = (1− λ)
(

Â(1) + λÂ(2) + λ2 Â(3) + · · ·+ λd−2 Â(d−1)
)

+ λd−1 Â(d) (13.17)

For an infinite horizon, the generalized advantage estimate simplifies to

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

13.2. generalized advantage estimation 271

ÂGAE(s, a) = (1− λ)
(

Â(1) + λÂ(2) + λ2 Â(3) + · · ·
)

(13.18)

= (1− λ)
(

δ1

(

1 + λ + λ2 + · · ·
)

+ γδ2

(

λ + λ2 + · · ·
)

+ γ2δ3

(

λ2 + · · ·
)

+ · · ·
)

(13.19)

= (1− λ)

(

δ1
1

1− λ
+ γδ2

λ

1− λ
+ γ2δ3

λ2

1− λ
+ · · ·

)

(13.20)

= E

[

∞

∑
k=1

(γλ)k−1δk

]

(13.21)

We can tune parameter λ to balance between bias and variance. If λ = 0,
then we have the high-bias, low-variance estimate for the temporal difference
residual from the previous section. If λ = 1, we have the unbiased full rollout
with increased variance. Figure 13.1 demonstrates the algorithm with different
values for λ.

struct GeneralizedAdvantageEstimation
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
∇logπ # gradient of log likelihood ∇logπ(θ,a,s)
U # parameterized value function U(ϕ, s)
∇U # gradient of value function ∇U(ϕ,s)
λ # weight ∈ [0,1]

end

function gradient(M::GeneralizedAdvantageEstimation, π, θ, ϕ)
𝒫, b, d, m, ∇logπ = M.𝒫, M.b, M.d, M.m, M.∇logπ
U, ∇U, γ, λ = M.U, M.∇U, M.𝒫.γ, M.λ
πθ(s) = π(θ, s)
R(τ,j) = sum(r*γ^(k-1) for (k,(s,a,r)) in enumerate(τ[j:end]))
δ(τ,j) = τ[j][3] + γ*U(ϕ,τ[j+1][1]) - U(ϕ,τ[j][1])
A(τ,j) = sum((γ*λ)^(ℓ-1)*δ(τ, j+ℓ-1) for ℓ in 1:d-j)
∇Uθ(τ) = sum(∇logπ(θ,a,s)*A(τ,j)*γ^(j-1)

for (j, (s,a,r)) in enumerate(τ[1:end-1]))
∇ℓϕ(τ) = sum((U(ϕ,s) - R(τ,j))*∇U(ϕ,s)

for (j, (s,a,r)) in enumerate(τ))
trajs = [simulate(𝒫, rand(b), πθ, d) for i in 1:m]
return mean(∇Uθ(τ) for τ in trajs), mean(∇ℓϕ(τ) for τ in trajs)

end

Algorithm 13.2. Generalized ad-
vantage estimation for computing
both a policy gradient and a value
function gradient for an MDP 𝒫
with initial state distribution b. The
policy is parameterized by θ and
has a log-gradient ∇logπ. The value
function U is parameterized by ϕ
and has gradient ∇U. This method
runs m rollouts to depth d. The gen-
eralized advantage is computed
with exponential weighting λ using
equation (13.21) with a finite hori-
zon. The implementation here is a
simplified version of what was pre-
sented in the original paper, which
included aspects of trust regions
when taking steps.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

272 chapter 13. actor-critic methods

−0.4 −0.2 0 0.2

0

0.5

1

θ1

θ 2

policy parameterization

0 0.5 1
−1

−0.5

0

φ1

φ
2

value function parameterization

actor-critic generalized advantage estimation, λ = 0.5

generalized advantage estimation, λ = 0.7 generalized advantage estimation, λ = 0.9

Figure 13.1. A comparison of basic
actor-critic to generalized advan-
tage estimation on the simple regu-
lator problemwith γ = 0.9, a Gaus-
sian policy πθ(s) = N (θ1s, θ2

2),
and an approximate value func-
tion Uφ(s) = φ1s + φ2s2. We find
that generalized advantage estima-
tion is more efficiently able to ap-
proachwell-performing policy and
value function parameterizations.
(Recall that the optimal policy pa-
rameterization is [−1, 0] and the
optimal value function parameteri-
zation is near [0,−0.7].)

13.3 Deterministic Policy Gradient

The deterministic policy gradient approach3 involves optimizing a deterministic pol- 3 D. Silver, G. Lever, N. Heess,
T. Degris, D. Wierstra, and M.
Riedmiller, “Deterministic Policy
Gradient Algorithms,” in Interna-
tional Conference on Machine Learn-
ing (ICML), 2014.

icy πθ(s) that produces continuous actions with the help of a critic in the form of
a parameterized action value function Qφ(s, a). As with the actor-critic methods
discussed so far, we define a loss function with respect to the parameterizationφ:

ℓ(φ) =
1

2
E

s,a,r,s′

[

(

r + γQφ(s′, πθ(s
′))−Qφ(s, a)

)2
]

(13.22)

where the expectation is over the experience tuples generated by rollouts of πθ.
This loss function attempts to minimize the residual of Qφ, similar to how the
actor-critic method in the first section tried to minimize the residual of Uφ.

Similar to the other methods, we update φ by taking a step in the opposite
direction of the gradient:

∇ℓ(φ) = E
s,a,r,s′

[(

r + γQφ(s′, πθ(s
′))−Qφ(s, a)

)(

γ∇φQφ(s′, πθ(s
′))−∇φQφ(s, a)

)] (13.23)

We thus need a differentiable parameterized action value function from which
we can compute ∇φQφ(s, a), such as a neural network.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

13.3. deterministic policy gradient 273

For the actor, we want to find a value of θ that maximizes

U(θ) = E
s∼bγ,θ

[

Qφ(s, πθ(s))
] (13.24)

where the expectation is over the states from the discounted visitation frequency
when following πθ. Again, we can use gradient ascent to optimize θ with the
gradient given by

∇U(θ) = Es

[

∇θQφ(s, πθ(s))
] (13.25)

= Es

[

∇θπθ(s)∇aQφ(s, a)|a=πθ(s)

]

(13.26)

Here,∇θπθ(s) is a Jacobianmatrix whose ith column is the gradient with respect
to the ith action dimension of the policy under parameterization θ. An example
for this term is given in example 13.1. The gradient∇aQφ(s, a)|a=πθ(s)

is a vector
that indicates how much our estimated action value changes as we perturb the
action given by our policy at state s. In addition to the Jacobian, we need to supply
this gradient to use this method.

Consider the following deterministic policy for a two-dimensional action
space and a one-dimensional state space:

πθ(s) =

[

θ1 + θ2s + θ3s2

θ1 + sin(θ4s) + cos(θ5s)

]

The matrix ∇θπθ(s) then takes the following form:

∇θπθ(s) =
[

∇θπθ(s) |a1
∇θπθ(s) |a2

]

=

1 1

s 0

s2 0

0 cos(θ4s)s

0 − sin(θ5s)s

Example 13.1. An example of the
Jacobian in the deterministic policy
gradient.

As with the other actor-critic methods, we perform gradient descent on ℓ(φ)

and gradient ascent on U(θ). For this approach to work in practice, a few addi-
tional techniques are needed. One is to generate experiences from a stochastic
policy to allow better exploration. It is often adequate to simply add zero-mean

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

274 chapter 13. actor-critic methods

Gaussian noise to actions generated by our deterministic policy πθ, as done
in algorithm 13.3. To encourage stability when learning θ and φ, we can use
experience replay.4

4 We will discuss experience re-
play in section 17.7 in the context
of reinforcement learning. Other
techniques for stabilizing learn-
ing include using target parameter-
izations, described in the context
of neural representations by T. P.
Lillicrap, J. J. Hunt, A. Pritzel, N.
Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continu-
ous Control with Deep Reinforce-
ment Learning,” in International
Conference on Learning Representa-
tions (ICLR), 2016. arXiv: 1509.029
71v6.

An example of this method and the effect of σ on performance is given in
example 13.2.

struct DeterministicPolicyGradient
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
∇π # gradient of deterministic policy π(θ, s)
Q # parameterized value function Q(ϕ,s,a)
∇Qϕ # gradient of value function with respect to ϕ
∇Qa # gradient of value function with respect to a
σ # policy noise

end

function gradient(M::DeterministicPolicyGradient, π, θ, ϕ)
𝒫, b, d, m, ∇π = M.𝒫, M.b, M.d, M.m, M.∇π
Q, ∇Qϕ, ∇Qa, σ, γ = M.Q, M.∇Qϕ, M.∇Qa, M.σ, M.𝒫.γ
π_rand(s) = π(θ, s) + σ*randn()*I
∇Uθ(τ) = sum(∇π(θ,s)*∇Qa(ϕ,s,π(θ,s))*γ^(j-1) for (j,(s,a,r))

in enumerate(τ))
∇ℓϕ(τ,j) = begin

s, a, r = τ[j]
s′ = τ[j+1][1]
a′ = π(θ,s′)
δ = r + γ*Q(ϕ,s′,a′) - Q(ϕ,s,a)
return δ*(γ*∇Qϕ(ϕ,s′,a′) - ∇Qϕ(ϕ,s,a))

end
∇ℓϕ(τ) = sum(∇ℓϕ(τ,j) for j in 1:length(τ)-1)
trajs = [simulate(𝒫, rand(b), π_rand, d) for i in 1:m]
return mean(∇Uθ(τ) for τ in trajs), mean(∇ℓϕ(τ) for τ in trajs)

end

Algorithm 13.3. The deterministic
policy gradient method for com-
puting a policy gradient ∇θ for a
deterministic policy π and a value
function gradient ∇ϕ for a continu-
ous action MDP 𝒫 with initial state
distribution b. The policy is param-
eterized by θ and has a gradient
∇π that produces a matrix where
each column is the gradient with
respect to that continuous action
component. The value function Q is
parameterized by ϕ and has a gradi-
ent ∇Qϕ with respect to the param-
eterization and gradient ∇Qa with
respect to the action. This method
runs m rollouts to depth d, and per-
forms exploration using 0-mean
Gaussian noise with standard de-
viation σ.

13.4 Actor-Critic with Monte Carlo Tree Search

We can extend concepts from online planning (chapter 9) to the actor-critic setting
in which we improve a parameterized policy πθ(a | s) and a parameterized value
function Uφ(s).5 This section discusses the application of Monte Carlo tree search

5 Deterministic policy gradient
used Qφ, but this approach uses
Uφ like the other actor-critic
methods discussed in this chapter.(section 9.6) to learning a stochastic policy with a discrete action space. We use

our parameterized policy and value function to guide Monte Carlo tree search,

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1509.02971v6
https://arxiv.org/abs/1509.02971v6

13.4. actor-critic with monte carlo tree search 275

Consider applying the deterministic policy gradient algorithm to the simple
regulator problem. Suppose we use a simple parameterized deterministic
policy πθ(s) = θ1 and the parameterized state-action value function:

Qφ(s, a) = φ1 + φ2s + φ3s2 + φ4(s + a)2

Here, we plot a progression of the deterministic policy gradient algorithm
starting with θ = [0] and φ = [0, 1, 0,−1] for different values of σ. Each
iteration was run with five rollouts to depth 10 with γ = 0.9.

−0.4

−0.2

po
lic

yp
er
fo
rm

an
ce

0 5 10 15 20 25 30 35 40 45 50

10−4

10−3

10−2

iteration

va
lu

ef
un

cti
on

lo
ss

σ = 0.1 σ = 0.5 σ = 1.0 σ = 2.0

For this simple problem, the policy quickly converges to optimality almost
regardless of σ. However, if σ is either too small or too large, the value
function takes longer to improve. In the case of very small values of σ, our
policy conducts insufficient exploration from which to effectively learn the
value function. For larger values of σ, we explore more, but we also tend to
make poor move choices more frequently.

Example 13.2. An application of
the deterministic policy gradient
method to the simple regulator
problem and an exploration of the
impact of the policy stochasticity
parameter σ.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

276 chapter 13. actor-critic methods

and we use the results from Monte Carlo tree search to refine our parameterized
policy and value function. As with the other actor critic methods, we apply
gradient-based optimization of θ andφ.6

6 This general approach was intro-
duced by D. Silver, J. Schrittwieser,
K. Simonyan, I. Antonoglou, A.
Huang, A. Guez, T. Hubert, L.
Baker, M. Lai, A. Bolton, et al.,
“Mastering the Game of Go With-
out Human Knowledge,” Nature,
vol. 550, pp. 354–359, 2017. The
discussion here loosely follows
their AlphaGo Zero algorithm, but
instead of trying to solve the game
of Go, we are trying to solve a
general MDP. Both the fact that
Alpha Zero plays as both Go
players and that games tend to
have a winner and a loser allow the
original method to reinforce the
winning behavior and punish the
losing behavior. The generalized
MDP formulation will tend to
suffer from sparse rewards when
applied to similar problems.

As we perform Monte Carlo tree search, we want to direct our exploration to
some extent by our parameterized policy πθ(a | s). One approach is to use an
action that maximizes the probabilistic upper confidence bound:

a = arg max
a

Q(s, a) + cπθ(a | s)

√

N(s)

1 + N(s, a)
(13.27)

where Q(s, a) is the action value estimated through the tree search, N(s, a) is the
visit count as discussed in section 9.6, and N(s) = ∑a N(s, a).7

7 There are some notable differ-
ences from the upper confidence
bound presented in equation (9.1);
for example, there is no logarithm
in equation (13.27) and we add 1
to the denominator to follow the
form used by AlphaGo Zero.

After running tree search, we can use the statistics that we collect to obtain
πMCTS(a | s). One way to define this is in terms of the counts:8

8 In algorithm 9.5, we select the
greedy action with respect to Q.
Other strategies are surveyed by
C. B. Browne, E. Powley, D. White-
house, S.M. Lucas, P. I. Cowling, P.
Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton, “A
Survey of Monte Carlo Tree Search
Methods,” IEEE Transactions on
Computational Intelligence and AI in
Games, vol. 4, no. 1, pp. 1–43, 2012.
The approach suggested here fol-
lows AlphaGo Zero.

πMCTS(a | s) ∝ N(s, a)η (13.28)

where η ≥ 0 is a hyperparameter that controls the greediness of the policy. If
η = 0, then πMCTS will generate actions at random. As η → ∞, it will select the
action that was selected the most from that state.

In our optimization of θ, we want our model πθ to match what we obtain
through Monte Carlo tree search. One loss function that we can define is the
expected cross entropy of πθ(· | s) relative to πMCTS(· | s):

ℓ(θ) = −Es

[

∑
a

πMCTS(a | s) log πθ(a | s)

]

(13.29)

where the expectation is over states experienced during the tree exploration. The
gradient is

∇ℓ(θ) = −Es

[

∑
a

πMCTS(a | s)

πθ(a | s)
∇θπθ(a | s)

]

(13.30)

To learnφ, we define a loss function in terms of a value function generated
during the tree search:

UMCTS(s) = max
a

Q(s, a) (13.31)
which is defined at least at the states that we explore during tree search. The loss
function aims to make Uφ agree with the estimates from the tree search:

ℓ(φ) =
1

2
Es

[

(

Uφ(s)−UMCTS(s)
)2
]

(13.32)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

13.5. summary 277

The gradient is

∇ℓ(φ) = Es

[(

Uφ(s)−UMCTS(s)
)

∇φUφ(s)
] (13.33)

Like the actor-critic method in the first section, we need to be able to compute the
gradient of our parameterized value function.

After performing some number of Monte Carlo tree search simulations, we
update θ by stepping in the direction opposite to ∇ℓ(θ) and φ by stepping in
the direction opposite to ∇ℓ(φ).9 9 The AlphaGo Zero implementa-

tion uses a single neural network
to represent both the value func-
tion and the policy instead of inde-
pendent parameterizations as dis-
cussed in this section. The gradi-
ent used to update the network
parameters is a mixture of equa-
tions (13.30) and (13.33). This en-
hancement significantly reduces
evaluation time and feature learn-
ing time.

13.5 Summary

• In actor-critic methods, an actor attempts to optimize a parameterized policy
with the help of a critic that provides a parameterized estimate of the value
function.

• Generally, actor-critic methods use gradient-based optimization to learn the
parameters of both the policy and value function approximation.

• The basic actor-critic method uses a policy gradient for the actor andminimizes
the squared temporal difference residual for the critic.

• The generalized advantage estimate attempts to reduce the variance of its policy
gradient at the expense of some bias by accumulating temporal difference
residuals across multiple time steps.

• The deterministic policy gradient can be applied to problems with continuous
action spaces and uses a deterministic policy actor and an action value critic.

• Online methods, such as Monte Carlo tree search, can be used to direct the
optimization of the policy and value function estimate.

13.6 Exercises
Exercise 13.1. Would the actor-critic method with Monte Carlo tree search, as presented
in section 13.4, be a good method for solving the cart-pole problem (appendix F.3)?
Solution: The Monte Carlo tree search expands a tree based on visited states. The cart-pole
problem has a continuous state space, leading to a search tree with an infinite branching
factor. Use of this algorithm would require adjusting the problem, such as discretizing the
state space.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

278 chapter 13. actor-critic methods

Exercise 13.2. In the following expressions of advantage functions, determine which ones
are correct and explain what they are referring to:

(a) Er,s′
[

r + γUπθ (s)−Uπθ (s′)
]

(b) Er,s′
[

r + γUπθ (s′)−Uπθ (s)
]

(c) Er1:d ,s′

[

−Uπθ (s) + γkUπθ (s′) +
k

∑
ℓ=1

γl−1rl

]

(d) Er1:d ,s′

[

−Uπθ (s) + γUπθ (s′) +
k

∑
ℓ=1

γl−1rl

]

(e) E

[

−Uπθ (s) +
d

∑
ℓ=1

γl−1rl

]

(f) E

[

−γUπθ (s′) +
d+1

∑
ℓ=1

γl−1rl

]

(g) E

[

k

∑
ℓ=1

γl−1δl−1

]

(h) E

[

k

∑
ℓ=1

γl−1δl

]

(i) E

[

∞

∑
k=1

(γλ)k−1δk

]

(j) E

[

∞

∑
k=1

(λ)k−1δk

]

Solution: The following table lists the correct expressions:

(b) Advantage with temporal difference residual
(c) Advantage estimate after k-step rollouts
(e) Advantage with the sequence of rollout rewards
(h) Advantage estimate with temporal difference residuals
(i) Generalized advantage estimate

Exercise 13.3. What are the benefits of using a temporal difference residual over a sequence
of rollout rewards and vice versa?

Solution: Approximation using a temporal difference residual is more computationally
efficient than using a sequence of rollouts. Temporal difference residual approximation has
low variance but high bias due to using the critic value function Uφ as an approximator of
the true value function Uπθ . On the other hand, rollout approximation has high variance

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

13.6. exercises 279

but is unbiased. Obtaining an accurate estimate using a temporal difference residual ap-
proximation typically requires far fewer samples than when using a rollout approximation,
at the cost of introducing bias into our estimate.

Exercise 13.4. Consider the action value function given in example 13.2, Qφ(s, a) =

φ1 + φ2s + φ3s2 + φ4(s + a)2. Calculate the gradients required for the deterministic policy
gradient approach.

Solution:Weneed to calculate two gradients. For the actor,we need to compute∇φQφ(s, a),
while for the critic, we need to compute ∇aQφ(s, a).

∇φQ(s, a) =
[

1, s, s2, (s + a)2
]

∇aQ(s, a) = 2φ4(s + a)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

14 Policy Validation

The methods presented in the earlier chapters show how to construct an optimal
or approximately optimal solution with respect to a model of the dynamics and
reward. However, before deploying a decision-making system in the real world,
it is generally desirable to validate in simulation that the behavior of the resulting
policy is consistent with what is actually desired. This chapter discusses various
analytical tools for validating decision strategies.1 We will start by discussing how 1 A more extensive discussion is

provided by A. Corso, R. J. Moss,
M. Koren, R. Lee, andM. J. Kochen-
derfer, “A Survey ofAlgorithms for
Black-Box Safety Validation,” Jour-
nal of Artificial Intelligence Research,
vol. 72, pp. 377–428, 2021.

to go about evaluating performance metrics. Accurately computing such metrics
can be computationally challenging, especially when they pertain to rare events
such as failures. We will discuss methods that can help address computational
efficiency. It is important that our systems be robust to differences between the
models that we use for analysis and the real world. This chapter suggests methods
for analyzing robustness. Fundamental to the design of many decision-making
systems is the trade-off between multiple objectives, and we will outline ways of
analyzing these trade-offs. The chapter concludes with a discussion of adversarial
analysis, which can be used for finding the most likely failure trajectory.

14.1 Performance Metric Evaluation

Once we have a policy, we are often interested in evaluating it with respect to
various performance metrics. For example, suppose that we constructed a collision
avoidance system—either through some form of optimization of a scalar reward
function or just heuristically, as discussed in example 14.1—and we want to
assess its safety by computing the probability of collision when following our
policy.2 Or, if we created a policy for constructing investment portfolios, we might

2 Other safety risk metrics are
discussed by I. L. Johansen and
M. Rausand, “Foundations and
Choice of Risk Metrics,” Safety Sci-
ence, vol. 62, pp. 386–399, 2014.be interested in understanding the probability that our policy will result in an

extreme loss or what the expected return may be.

282 chapter 14. policy validation

For the moment, we will consider a single metric f , evaluated on a policy π.
Often, this metric is defined as the expectation of a trajectorymetric ftraj, evaluated
on trajectories τ = (s1, a1, . . .) produced by following the policy:

f (π) = Eτ [ftraj(τ)] (14.1)

This expectation is over the trajectory distribution. To define a trajectory distribu-
tion associated with an MDP, we need to specify an initial state distribution b. The
probability of generating a trajectory τ is

P(τ) = P(s1, a1, . . .) = b(s1)∏
t

T(st+1 | st, at) (14.2)

In the collision avoidance context, ftraj may be 1 if the trajectory led to a collision,
and 0 otherwise. The expectation would correspond to the collision probability.

0 500 1,000
0

1

2

×10−3

miss distance

p
(m

iss
di

sta
nc

e)

Figure 14.1. Distribution over the
miss distance estimated from 104

simulations when following a sim-
ple collision avoidance policy from
initial states with
h ∼ U (−10, 10) (m)
ḣ ∼ U (−200, 200) (m/s)
aprev = 0 m/s
tcol = 40 s

In some cases, we are interested in studying the distribution over the output
of ftraj. Figure 14.1 shows an example of such a distribution. The expectation in
equation (14.1) is just one of many ways to convert a distribution over trajectory
metrics to a single value. We will focus primarily on this expectation in our discus-
sion, but examples of other transformations of the distribution to a value include
variance, fifth percentile, and mean of the values below the fifth percentile.3

3 Various risk measures have
been discussed in the literature.
An overview of some of these
that have been used in the
context of MDPs is provided by
A. Ruszczyński, “Risk-Averse
Dynamic Programming for
Markov Decision Processes,”
Mathematical Programming, vol. 125,
no. 2, pp. 235–261, 2010.

The trajectory metric can sometimes be written in this form:

ftraj(τ) = ftraj(s1, a1, . . .) = ∑
t

fstep(st, at) (14.3)

where fstep is a function that depends on the current state and action, much
like the reward function in MDPs. If f (π) is defined as the expectation of ftraj,
the objective is the same as when solving an MDP, where fstep is simply the
reward function. We can thus use the policy evaluation algorithms introduced in
section 7.2 to evaluate our policy with respect to any performance metric of the
form in equation (14.3).

Policy evaluation will output a value function that is a function of the state,4 4 We used Uπ to represent the
value function associated with pol-
icy π in previous chapters.corresponding to the expected value of the performance metric when starting

from that state. Example 14.2 shows slices of this value function for the collision
avoidance problem. The overall performance is given by

f (π) = ∑
s

fstate(s)b(s) (14.4)

where fstate is the value function obtained through policy evaluation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

14.1 . performance metric evaluation 283

In the aircraft collision avoidance problem, we need to decide when to issue
a climb or descend advisory to our aircraft to avoid an intruder aircraft. The
intruder is approaching us head on, with a constant horizontal closing speed.
The state is specified by the altitude h of our aircraft measured relative to the
intruder aircraft, our vertical rate ḣ, the previous action aprev, and the time
to potential collision tcol. There is a penalty of 1 when there is a collision,
defined as when the intruder comes within 50 m when tcol = 0. In addition,
there is a penalty of 0.01 when a 6= aprev to discourage advisory changes.

We can use dynamic programming with linear interpolation (section 8.4)
to derive an optimal policy. Alternatively, we can define a simple heuristic
policy parameterized by thresholds on tcol and h that works as follows. If
|h| < hthresh and tcol < tthresh, then an advisory is generated. This advisory is
to climb if h > 0 and to descend otherwise. By default, we use hthresh = 50 m

and tthresh = 30 s. The following are plots of both the optimal and simple
policies for two slices through the state space:

−200

−100

0

100

200

Op
tim

al
h
(m

)

ḣ = 0.0 m/s ḣ = 5.0 m/s

no advisory
descend
climb

0 10 20 30 40
−200

−100

0

100

200

tcol (s)

Sim
pl

e
h
(m

)

0 10 20 30 40

tcol (s)

Example 14.1. Optimal and simple
collision avoidance policies. Addi-
tional details of the problem are
given in appendix F.6.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

284 chapter 14. policy validation

Here is the result of applying policy evaluation to both an optimal policy
and the simple policy introduced in example 14.1. Each point in the plot
corresponds to the value of the metric, conditioned on starting from the
associated state. We define fstate(s, a) = 1 if s is a collision, and 0 otherwise.
This plot shows where in the state space there is significant collision risk,
indicated by ‘‘hotter’’ colors, when following the policy. We can see that the
optimal policy is quite safe, especially if tcol > 20 s. When tcol is low, even
the optimal policy cannot avoid collision due to the physical acceleration
constraints of the vehicle. The simple policy has a much higher level of risk
compared to the optimal policy, especially when tcol > 20 s, ḣ = 5 m/s, and
the intruder is below us—in part because the choice to produce an advisory
in the simple strategy does not take ḣ into account.

−200

−100

0

100

200

Op
tim

al
h
(m

)

ḣ = 0.0 m/s ḣ = 5.0 m/s

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40
−200

−100

0

100

200

tcol (s)

Sim
pl

e
h
(m

)

0 10 20 30 40

tcol (s)

Example 14.2. Probability of a
collision when following the opti-
mal and simple collision avoidance
policies.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

14.2. rare event simulation 285

If the state space is discrete, then equation (14.4) can be computed analytically.
However, if the state space is large or continuous, we may want to estimate f (π)

through sampling. We can pull a sample from the initial state distribution and
then roll out the policy and compute the trajectory metric. We can then estimate
the value of the overall metric from the mean of the trajectory metrics. The quality
of the estimate generally improves with more samples. Example 14.3 illustrates
this process for estimating various metrics associated with collision avoidance
policies.

We often use the standard error to measure the quality of our estimate:

SE = σ̂/
√

n (14.5)

where σ̂ is the standard deviation of our samples and n is the number of samples.
In example 14.3, the standard deviation of our collision metric is 0.0173, making
the standard error of our collision probability metric 0.000173.

We can convert the standard error to a confidence interval. For example, a 95 %

confidence interval would be µ̂± 1.96 SE, where µ̂ is the mean of our samples.
For our collision avoidance example, this interval is (−3.94× 10−5, 6.39× 10−4).
Alternatively, we can take a Bayesian approach and represent our posterior as a
beta distribution, as discussed in section 4.2.

For small probabilities, such as failure probabilities in a relatively safe system,
we are often interested in the relative standard error, which is given by

σ̂

µ̂
√

n
(14.6)

This is equivalent to dividing the standard error by the mean. In our collision
avoidance problem, our relative error is 0.578. Although the absolute error might
be small, the relative error is quite high since we are trying to estimate a small
probability.

14.2 Rare Event Simulation

As we see in example 14.3, we may need many samples to accurately estimate
metrics where rare events are very influential, such as estimating collision proba-
bility. In the collision avoidance example, our 104 samples contained only three
collisions, as indicated by the three spikes in the plot. When we are designing al-
gorithms for high-stakes systems, such as systems that trade money or drive cars,

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

286 chapter 14. policy validation

We want to estimate the probability of collision and the probability of gen-
erating an advisory. Here, we will consider the optimal and simple policies
introduced in example 14.1. To evaluate these metrics, we use 104 samples
from the initial state distribution used in figure 14.1 and then perform rollouts.
The plots here show the convergence curves:

0

1

2

3

×10−4

Op
tim

al
m
etr

ic
es

tim
at
e

Collision

0.00

0.20

0.40

Advisory

0 0.2 0.4 0.6 0.8 1

×104

0

5× 10−2

0.1

samples

Sim
pl

e
m
etr

ic
es

tim
at
e

0 0.2 0.4 0.6 0.8 1

×104

0.00

0.20

0.40

samples

What we can see is that the optimal policy is much safer than the simple
policy, while producing advisories at approximately the same frequency. The
advisory metric estimate converges much more quickly than the collision
estimates. The reason for the faster convergence for the advisory metric is
that advisories are more common than collisions. Collisions involving the
optimal policy are so rare that even 104 samples appear inadequate for an
accurate estimate. The curve is very jagged, with large spikes at samples
involving collisions, followed by a decay in the collision probability estimate
as collision-free samples are simulated.

Example 14.3. Probability of a col-
lision and an advisory when fol-
lowing the optimal and simple col-
lision avoidance policies.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

14.2. rare event simulation 287

accurately estimating failure probabilities through direct sampling and simulation
can be computationally challenging.

A common approach to improve efficiency is called importance sampling, which
involves sampling from an alternative distribution and weighting the results
appropriately to arrive at an unbiased estimate.5 We used this same kind of ap- 5 A more elaborate introduction

to importance sampling and other
techniques for rare event simula-
tion is provided by J.A. Bucklew,
Introduction to Rare Event Simula-
tion. Springer, 2004.

proach in the context of inference in Bayesian networks by the name of likelihood
weighted sampling (section 3.7). The alternative sampling distribution is often
called a proposal distribution, and we will use P′(τ) to represent the probability
our proposal distribution assigns to trajectory τ.

We will derive the appropriate way to weight samples from P′. If we have
τ(1), . . . , τ(n) drawn from the true distribution P, then we have

f (π) = Eτ [ftraj(τ)] (14.7)
= ∑

τ

ftraj(τ)P(τ) (14.8)

≈ 1

n ∑
i

ftraj(τ(i)) with τ(i) ∼ P (14.9)

We can multiply equation (14.8) by P′(τ)/P′(τ) and obtain the following:

f (π) = ∑
τ

ftraj(τ)P(τ)
P′(τ)
P′(τ)

(14.10)

= ∑
τ

ftraj(τ)P′(τ)
P(τ)

P′(τ)
(14.11)

≈ 1

n ∑
i

ftraj(τ(i))
P(τ(i))

P′(τ(i))
with τ(i) ∼ P′ (14.12)

In other words, we need to weight the outcomes of the samples from the proposal
distribution, where the weight6 given to sample i is P(τ(i))/P′(τ(i)). 6 Importantly, P′ must not assign

zero likelihood to any trajectory
to which P assigns positive likeli-
hood.

We want to choose the proposal distribution P′ to focus the generation of
samples on those that are ‘‘important,’’ in the sense that they are more likely to
contribute to the overall performance estimate. In the case of collision avoidance,
we will want this proposal distribution to encourage collisions so that we have
more than just a few collision situations to estimate collision risk. However, we
do not want all of our samples to result in collision. In general, assuming that the
space of histories is discrete, the optimal proposal distribution is

P∗(τ) =
| ftraj(τ)|P(τ)

∑τ′ | ftraj(τ′)|P(τ′)
(14.13)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

288 chapter 14. policy validation

If ftraj is nonnegative, then the denominator is exactly the same as the metric that
we are trying to estimate in equation (14.1).

Although equation (14.13) is generally not practical to compute exactly (this
is why we are using importance sampling in the first place), it can provide some
intuition as to how to use our domain expertise to construct a proposal distribution.
It is common to bias the initial state distribution or the transition model slightly
toward more important trajectories, such as toward collision.

−200 −100 0 100 200
−10

−5

0

5

10

h (m)

ḣ
(m

/
s)

Figure 14.2. Proposal distribution
generated from the probability of
collision when following the op-
timal collision avoidance policies
from different initial states with
tcol = 20 s and aprev = 0 m/s.
Yellow indicates higher probability
density.

To illustrate the construction of an importance distribution, we will use the
optimal policy for the collision avoidance problem in example 14.1. Instead
of starting at tcol = 40 s, we will start the aircraft closer, with tcol = 20 s, to
make the collision avoidance problem more challenging. The true distribution
has h ∼ U (−10, 10) (m) and ḣ ∼ U (−200, 200) (m/s). However, certain combi-
nations of h and ḣ are more challenging for the optimal policy to resolve. We
used dynamic programming on a discrete version of the problem to determine
the probability of collision for different values of h and ḣ. We can take these
results and normalize them to turn them into the proposal distribution shown in
figure 14.2.

0 2 4

×104

0

0.2

0.4

0.6

0.8

1
×10−2

samples

Co
lli
sio

n
pr

ob
ab

ili
ty

importance sampling
direct sampling

Figure 14.3. Collision probability
when following the optimal policy
as estimated by importance sam-
pling and direct sampling.

Using the proposal distribution shown in figure 14.2 results in better estimates
of the collision probability than direct sampling with the same number of samples.
Figure 14.3 shows the convergence curves. By 5× 104 samples, both sampling
methods converge to the same estimate. However, importance sampling converges
closely to the true value within 104 samples. Using our proposal distribution,
importance sampling generated 939 collisions, while direct sampling generated
only 246. Even more collisions could be generated if we also biased the transition
distribution, rather than solely the initial state distribution.

14.3 Robustness Analysis

Before deploying a system in the real world, it is important to study its robustness
to modeling errors. We can use the tools mentioned in the previous sections,
such as policy evaluation and importance sampling, but evaluate our policies on
environments that deviate from the model assumed when optimizing the policy.
Figure 14.4 shows how performance varies as the true model deviates from the
one used for optimization. We can also study the sensitivity of our metrics to
modeling assumptions over the state space (example 14.4). If performance on
the relevant metrics appears to be preserved under plausible perturbations of the

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

14.4. trade analysis 289

environment model, then we can have greater confidence that our system will
behave as planned when deployed.

0 0.5 1 1.5 2

10−4

10−3

10−2

10−1

ḧlimit (m/s2)

Co
lli
sio

n
pr

ob
ab

ili
ty

Figure 14.4. Analysis of robustness
of a policy optimized for ḧlimit =
1 m/s2 but evaluated in environ-
ments with different values for
ḧlimit.

We typically want our planning model, the model we use for optimizing our
policies, to be relatively simple to prevent overfitting to potentially erroneous
modeling assumptions that are not representative of the real world. A side benefit
of simpler planning models is that they can make planning more computation-
ally efficient. However, our evaluation model can be as complex as we can justify.
For example, we may use a simple, low-dimensional, discrete model of aircraft
dynamics when generating a collision avoidance policy, but then evaluate that
policy in a continuous, high-fidelity simulation. A simpler planning model is
often more robust to perturbations in the evaluation model.

The process of evaluating our policies on a variety of evaluation models is
sometimes referred to as stress testing, especially if the spectrum of evaluation
models includes fairly extreme scenarios. In collision avoidance, extreme scenarios
might include those where the aircraft are converging on each other with extreme
climb rates that may not be physically achievable. Understanding what categories
of scenarios can lead to system failure can be useful during the design phase,
even if we choose not to optimize the behavior of the system for these scenarios
because they are deemed unrealistic.

If we find that our policies are overly sensitive to ourmodeling assumptions, we
may consider using a method known as robust dynamic programming.7 Instead of 7 G.N. Iyengar, “Robust Dynamic

Programming,” Mathematics of Op-
erations Research, vol. 30, no. 2,
pp. 257–280, 2005. This approach
can improve robustness in the con-
text of collision avoidance. M. J.
Kochenderfer, J. P. Chryssantha-
copoulos, and P. Radecki, “Robust-
ness of Optimized Collision Avoid-
ance Logic to Modeling Errors,” in
Digital Avionics Systems Conference
(DASC), 2010.

committing to a particular transition model, we have a suite of transition models
T1:n and reward models R1:n. We can revise the Bellman update equation from
equation (7.16) to provide robustness to different models as follows:

Uk+1(s) = max
a

min
i

(

Ri(s, a) + γ ∑
s′

Ti(s
′ | s, a)Uk(s

′)

)

(14.14)

The update uses the action that maximizes expected utility when using the model
that minimizes our utility.

14.4 Trade Analysis

Many interesting tasks involve multiple, often competing, objectives. For au-
tonomous systems, there is often a trade-off between safety and efficiency. In
designing a collision avoidance system, we want to be very safe without making

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

290 chapter 14. policy validation

We can plot collision probability when starting from different initial states,
similar to example 14.2. Here, we use a policy optimized for the parameters
in appendix F.6, but we vary the limit ḧlimit in the evaluation model.

−200

−100

0

100

200

ḧ
lim

it
=

0.
25

(m
/

s2
)

h
(m

)

ḣ = 0.0 m/s ḣ = 5.0 m/s

0

0.2

0.4

0.6

0.8

1

−200

−100

0

100

200

ḧ
lim

it
=

1.
0
(m

/
s2
)

h
(m

)

0 10 20 30 40
−200

−100

0

100

200

tcol (s)

ḧ
lim

it
=

1.
25

(m
/

s2
)

h
(m

)

0 10 20 30 40

tcol (s)

We optimized the policy with ḧlimit = 1 m/s2. If it was actually 0.25 m/s2,
then the policy performs poorly in some states since it takes longer to achieve
a target vertical rate. If the limit was 1.25 m/s2, we are a bit safer.

Example 14.4. Probability of a col-
lision when following the optimal
collision avoidance policies when
there is a mismatch between the
model used for planning and the
model used for evaluation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

14.5. adversarial analysis 291

too many unnecessary avoidance maneuvers. A trade analysis studies how the
various performance metrics are traded as the design parameters are changed.

If we consider only two performance metrics, we can plot a trade-off curve like
the one discussed in example 14.5. By varying parameters in the policy, we obtain
different values for the two metrics. These curves are useful when comparing
different methodologies for generating policies. For example, the curves in exam-
ple 14.5 suggest that a dynamic programming approach to generating policies
can bring significant benefit over simple threshold-based policies—at least in the
way we defined them. 0 0.5 1 1.5 2

0.00

0.05

0.10

0.15

Advisory changes

Co
lli
sio

n
pr

ob
ab

ili
ty

Figure 14.5. Performance of poli-
cies generated by varying the pa-
rameters of the simple policy from
example 14.1. The approximate
Pareto curve is highlighted in blue.

For each of the curves in example 14.5, we vary only one parameter at a time,
but to arrive at a satisfactory system, we may need to study the effects of varying
multiple parameters. As we vary multiple parameters, we obtain a space of
possible policies. Some of those policies may perform worse on all performance
metrics relative to at least one other policy in that space. We can often eliminate
from consideration those policies that are dominated by others. A policy is called
Pareto optimal8 or Pareto efficient if it is not dominated by any other policy in that 8 Named after the Italian economist

Vilfredo Federico Damaso Pareto
(1848–1923).space. The set of Pareto optimal policies is called the Pareto frontier or (in two

dimensions) the Pareto curve. Figure 14.5 shows an example of a Pareto curve.

14.5 Adversarial Analysis

It can be useful to study the robustness of a policy from the perspective of an
adversarial analysis. At each time step, an adversary selects the state that results
from applying the action specified by the policy from the current state. The
adversary has two objectives to balance: minimizing our return and maximizing
the likelihood of the resulting trajectory according to our transition model. We
can transform our original problem into an adversarial problem. The adversarial
state space is the same as in the original problem, but the adversarial action space
is the state space of the original problem. The adversarial reward is

R′(s, a) = −R(s, π(s)) + λ log(T(a | s, π(s))) (14.15)

where π is our policy, R is our original reward function, T is our original transition
model, and λ ≥ 0 is a parameter that controls the importance of maximizing the
resulting likelihood of the trajectory. Since an adversary attempts to maximize the
sum of adversarial reward, it is maximizing our expected negative return plus λ

times the log probability of the resulting trajectory.9 The adversarial transition

9 The log probability of a trajectory
is equal to the sum of the log of the
individual state transition proba-
bilities.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

292 chapter 14. policy validation

In our aircraft collision avoidance problem, we must balance safety in terms
of collision probability with other metrics, such as the expected number of
advisory changes. Both of these can be implemented using trajectory metrics
that are additively decomposed by steps as done in equation (14.3), allowing
us to compute them using exact policy evaluation.

The plot here shows three curves associated with different parameterized
versions of the simple and optimal policies. The first curve shows the per-
formance of the simple policy on the two metrics as the hthresh parameter
(defined in example 14.1) is varied. The second curve shows the performance
of the simple policy as tthresh is varied. The third curve shows the optimal
policy as the parameter θ is varied, where the cost of collision is −θ and the
cost of changing advisories is −(1− θ).

0 0.5 1 1.5
0.00

0.05

0.10

0.15

Advisory changes

Co
lli
sio

n
pr

ob
ab

ili
ty

Simple(hthresh)
Simple(tthresh)
Optimal(θ)

We can see that the optimal policy dominates the curves generated by the
parameterized simple policies. When θ is close to 1, then we are very safe, but
we have to tolerate more advisory changes. As θ goes to 0, we are less safe
but do not produce advisories. Given a particular threshold level of safety,
we are able to create an optimized policy that has fewer advisory changes in
expectation than either of the simple parametric policies.

Example 14.5. An analysis of the
trade-off between safety and op-
erational efficiency when varying
parameters of different collision
avoidance systems.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

14.5. adversarial analysis 293

model is deterministic; the state transitions to exactly what the adversary specifies
as its action.

Algorithm 14.1 implements this conversion to an adversarial problem. It as-
sumes a discrete state and action space, which can then be solved using one of
the dynamic programming algorithms in chapter 7. The solution is an adversarial
policy that maps states to states. Given an initial state, we can generate a trajectory
that minimizes our reward given some level of probability. Since the problem
is deterministic, it is actually a search problem, and any of the algorithms in
appendix E can be used. If our problem is high-dimensional or continuous, we
may use one of the approximate solution techniques discussed in chapters 8 and 9.

function adversarial(𝒫::MDP, π, λ)
𝒮, 𝒜, T, R, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.T, 𝒫.R, 𝒫.γ
𝒮′ = 𝒜′ = 𝒮
R′ = zeros(length(𝒮′), length(𝒜′))
T′ = zeros(length(𝒮′), length(𝒜′), length(𝒮′))
for s in 𝒮′

for a in 𝒜′
R′[s,a] = -R(s, π(s)) + λ*log(T(s, π(s), a))
T′[s,a,a] = 1

end
end
return MDP(T′, R′, γ)

end

Algorithm 14.1. Conversion to an
adversarial problem, given a pol-
icy π. An adversarial agent tries to
change the outcomes of our policy
actions so as to balance minimiz-
ing our original utility and max-
imizing the likelihood of the tra-
jectory. The parameter λ controls
how important it is to maximize
the likelihood of the resulting tra-
jectory. It returns an MDP whose
transition and reward models are
represented as matrices.

Sometimes we are interested in finding the most likely failure associated with
a policy for a particular definition of failure. In some problems, failure can be
defined as entering a particular state. For example, a collision may be considered
a failure in our collision avoidance problem. Other problems may require a more
complicated definition of failure that goes beyond just entering a subset of the
state space. For example, we may want to specify failure using a temporal logic,
which is a way to represent and reason about propositions qualified in terms of
time. In many cases, however, we can use these failure specifications to create an
augmented state space that we can then solve.10

10 M. Bouton, J. Tumova, and M. J.
Kochenderfer, “Point-Based Meth-
ods forModel Checking in Partially
Observable Markov Decision Pro-
cesses,” in AAAI Conference on Arti-
ficial Intelligence (AAAI), 2020.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

294 chapter 14. policy validation

With the failure states defined, we can solve for the most likely failure trajectory
by changing the reward function in equation (14.15) to

R′(s, a) =

−∞ if s is terminal and not a failure
0 if s is terminal and a failure
log(T(a | s, π(s))) otherwise

(14.16)

We can find these most likely failures using a variety of approximation methods.
Depending on the approximationmethod, it may be important to relax the infinite
penalty for not reaching a failure at termination so that the search can be guided
to failures. If applying Monte Carlo tree search to collision avoidance, the penalty
could be related to the miss distance.11 11 This strategy was used by R.

Lee, M. J. Kochenderfer, O. J. Meng-
shoel, G. P. Brat, and M.P. Owen,
“Adaptive Stress Testing of Air-
borne Collision Avoidance Sys-
tems,” in Digital Avionics Systems
Conference (DASC), 2015.

We can play back the most likely failure trajectory and gauge whether that
trajectory merits concern. If the trajectory is deemed extremely implausible, then
we can feel more confident that our policy is safe. If the failure trajectory does
merit concern, however, then we might have a few options:

1. Change the action space. We may add more extreme maneuvers to our action set
for our collision avoidance problem.

2. Change the reward function. We may decrease the cost for changing advisories
with the aim of lowering collision risk, as illustrated in the trade-off curve in
example 14.5.

3. Change the transition function. We may increase the acceleration limit so that the
aircraft can achieve the target vertical rates more quickly when directed by our
policy.

4. Improve the solver. We may have used a discretization of the state space that is
too coarse to capture important features of the optimal policy. In exchange for
additional computation time, we may be able to refine the discretization to
obtain a better policy. Alternatively, we may adopt a different approximation
technique.

5. Do not deploy the system. If the policy is unsafe, it may be better not to deploy it
in the real world.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

14.6. summary 295

14.6 Summary

• Performance metrics for policies may be evaluated using the dynamic program-
ming techniques discussed in earlier chapters or through sampling rollouts.

• We can assess our confidence in our performance metric evaluations using stan-
dard error, confidence intervals, or one of the Bayesian approaches discussed
earlier.

• Estimating the probability of rare events can be done more efficiently using a
method called importance sampling.

• Importance sampling involves sampling from an alternative distribution and
weighting the results appropriately.

• Because themodel used for optimizationmay be an inaccurate representation of
the real world, it is important to study the sensitivity of our policy to modeling
assumptions.

• Robust dynamic programming can help improve robustness to model uncer-
tainty by optimizing with respect to a set of different transition and reward
models.

• Trade analysis can help us determine how to balance multiple performance
objectives when optimizing a policy.

• Adversarial analyses involve an adversary that chooses the state to which we
transition at each step so as to minimize our objective while maximizing the
likelihood of the trajectory.

14.7 Exercises
Exercise 14.1. We have a trajectory τ with

s1 a1 s2 a2 s3

6.0 2.2 1.4 0.7 6.0

Our dynamics are linear Gaussian, with T(s′ | s, a) = N (s′ | 2s + a, 52), and our initial
state distribution is given by N (5, 62). What is the log-likelihood of the trajectory τ?
Solution: The log-likelihood of the trajectory is
logN (6.0 | 5, 62) + logN (1.4 | 2 · 6.0 + 2.2, 52) + logN (6.0 | 2 · 1.4 + 0.7, 52) ≈ −11.183

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

296 chapter 14. policy validation

Exercise 14.2. We ran a million simulations and found that our collision avoidance system
resulted in 10 collisions.What is our collision probability estimate and the relative standard
error?

Solution: The collision probability estimate is

µ̂ = 10/106 = 10−5

The ith sample xi is 1 if there is a collision, and 0 otherwise. The standard deviation is

σ̂ =

√

1

106 − 1

n

∑
i=1

(xi − µ̂)2 =

√

1

106 − 1

(

10(1− µ̂)2 + (106 − 10)µ̂2
)

≈ 0.00316

The relative error is
σ̂

µ̂
√

n
≈ 0.00316

10−5
√

106
= 0.316

Exercise 14.3. We want to compute the expectation Ex∼U (0,5)[f (x)], where f (x) is −1 if
|x| ≤ 1, and 0 otherwise. What is the optimal proposal distribution?

Solution: The optimal proposal distribution is

p∗(x) =
| f (x)|p(x)

∫

| f (x)|p(x)dx

which is equivalent to U (0, 1) because f (x) is only nonzero for x ∈ [−1, 1], U (0, 5) only
has support for x ∈ [0, 5], and both f (x) and p(x) produce constant values when nonzero.

Exercise 14.4. Suppose we draw the sample 0.3 from the proposal distribution in the
previous exercise. What is its weight? What is the estimate of Ex∼U (0,5)[f (x)]?

Solution: The weight is p(x)/p∗(x) = 0.2/1. Since f (0.3) = −1, the estimate is−0.2, which
is the exact answer.

Exercise 14.5. Suppose we have the following four policies, which have been evaluated
on three metrics that we want to maximize:

System f1 f2 f3

π1 2.7 1.1 2.8

π2 1.8 2.8 4.5

π3 9.0 4.5 2.3

π4 5.3 6.0 2.8

Which policies are on the Pareto frontier?

Solution: Only π1 is dominated by other policies. Hence, π2, π3, and π4 are on the Pareto
frontier.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

part i i i
model uncertainty

In our discussion of sequential decision problems thus far, we have assumed that
the transition and reward models are known. In many problems, however, these
models are not known exactly, and the agent must learn to act through experience.
By observing the outcomes of its actions in the form of state transitions and
rewards, the agent is to choose actions that maximize its long-term accumulation
of rewards. Solving such problems in which there is model uncertainty is the
subject of the field of reinforcement learning, which is the focus of this part of
the book. We will discuss several challenges in addressing model uncertainty.
First, the agent must carefully balance exploration of the environment with the
exploitation of that knowledge gained through experience. Second, rewards may
be received long after the important decisions have been made, so credit for later
rewards must be assigned to earlier decisions. Third, the agent must generalize
from limited experience.Wewill review the theory and some of the key algorithms
for addressing these challenges.

15 Exploration and Exploitation

Reinforcement learning agents1 must balance exploration of the environment with 1 A review of the field of reinforce-
ment learning is provided in M.
Wiering and M. van Otterlo, eds.,
Reinforcement Learning: State of the
Art. Springer, 2012.

exploitation of knowledge obtained through its interactions.2 Pure exploration will

2 In some applications, we want
to optimize a policy given a fixed
set of trajectories. This context is
known as batch reinforcement learn-
ing. This chapter assumes that
we have to collect our own data
through interaction, which makes
choosing an appropriate explo-
ration strategy important.

allow the agent to build a comprehensive model, but the agent will likely have
to sacrifice the gathering of reward. Pure exploitation has the agent continually
choosing the action it thinks best to accumulate reward, but there may be other,
better actions that could be taken. This chapter introduces the challenges associ-
ated with the exploration-exploitation trade-off by focusing on a problem with
a single state. We conclude by introducing exploration in MDPs with multiple
states.

15.1 Bandit Problems

Early analyses of the exploration-exploitation trade-off were focused on slot
machines, also called one-armed bandits.3 The name comes fromolder slotmachines

3 These bandit problems were ex-
plored during World War II and
proved exceptionally challenging
to solve. According to Peter Whit-
tle, ‘‘efforts to solve [bandit prob-
lems] so sapped the energies and
minds of Allied analysts that the
suggestionwasmade that the prob-
lem be dropped over Germany as
the ultimate instrument of intellec-
tual sabotage.’’ J. C. Gittins, “Ban-
dit Processes and Dynamic Allo-
cation Indices,” Journal of the Royal
Statistical Society. Series B (Method-
ological), vol. 41, no. 2, pp. 148–177,
1979.

having a single pull lever, as well as the fact that the machine tends to take the
gambler’s money. Many real-world problems can be framed as multiarmed bandit
problems,4 such as the allocation of clinical trials and adaptive network routing.

4 C. Szepesvári and T. Lattimore,
Bandit Algorithms. Cambridge Uni-
versity Press, 2020.

Many bandit problem formulations exist in the literature, but this chapter will
focus on what is called a binary bandit, Bernoulli bandit, or binomial bandit. In these
problems, arm a pays off 1 with probability θa, and 0 otherwise. Pulling an arm
costs nothing, but we have only h pulls.

A bandit problem can be framed as an h-stepMDPwith a single state, n actions,
and an unknown, stochastic reward function R(s, a), as shown in figure 15.1.
Recall that R(s, a) is the expected reward when taking action a in s, but individual
rewards realized in the environment may come from a probability distribution.

300 chapter 15. exploration and exploitation

s

pull arm 1
+1 reward with probability θ1

+0 reward with probability 1− θ1

pull arm 2
+1 reward with probability θ2

+0 reward with probability 1− θ2

pull arm 3
+1 reward with probability θ3

+0 reward with probability 1− θ3

…

pull arm n

Figure 15.1. The multiarmed ban-
dit problem is a single-state MDP
where actions can differ only in
the likelihood that they produce
reward.

Algorithm 15.1 defines the simulation loop for a bandit problem. At each step,
we evaluate our exploration policy π on our current model of the payoff probabil-
ities to generate an action a. The next section will discuss a way to model payoff
probabilities, and the remainder of the chapter will outline several exploration
strategies. After obtaining a, we simulate a pull of that arm, returning binary
reward r. The model is then updated using the observed a and r. The simulation
loop is repeated to horizon h.

struct BanditProblem
θ # vector of payoff probabilities
R # reward sampler

end

function BanditProblem(θ)
R(a) = rand() < θ[a] ? 1 : 0
return BanditProblem(θ, R)

end

function simulate(𝒫::BanditProblem, model, π, h)
for i in 1:h

a = π(model)
r = 𝒫.R(a)
update!(model, a, r)

end
end

Algorithm 15.1. Simulation of a
bandit problem. A bandit problem
is defined by a vector θ of payoff
probabilities, one per action. We
also define a function R that simu-
lates the generation of a stochastic
binary reward in response to the se-
lection of an action. Each step of a
simulation involves generating an
action a from the exploration pol-
icy π. The exploration policy gener-
ally consults the model in the selec-
tion of the action. The selection of
that action results in a randomly
generated reward, which is then
used to update the model. Simu-
lations are run to horizon h.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

15.2. bayesian model estimation 301

15.2 Bayesian Model Estimation

We would like to track our belief over the win probability θa for arm a. The beta
distribution (section 4.2) is often used for representing such a belief. Assuming
a uniform prior of Beta(1, 1), the posterior for θa after wa wins and ℓa losses is
Beta(wa + 1, ℓa + 1). The posterior probability of winning is

ρa = P(wina | wa, ℓa) =
∫ 1

0
θ×Beta(θ | wa + 1, ℓa + 1)dθ =

wa + 1

wa + ℓa + 2
(15.1)

Algorithm 15.2 provides an implementation of this. Example 15.1 illustrates how
to compute these posterior distributions from counts of wins and losses.

struct BanditModel
B # vector of beta distributions

end

function update!(model::BanditModel, a, r)
α, β = StatsBase.params(model.B[a])
model.B[a] = Beta(α + r, β + (1-r))
return model

end

Algorithm 15.2. The Bayesian up-
date function for bandit models.
After observing reward r after tak-
ing action a, we update the beta dis-
tribution associated with that ac-
tion by incrementing the appropri-
ate parameter.

A greedy action is one that maximizes our expected immediate reward—or, in
other words, the posterior probability of winning in the context of our binary
bandit problem. There may be multiple greedy actions. We do not always want to
select a greedy action because wemaymiss out on discovering another action that
may actually provide higher reward in expectation. We can use the information
from the beta distributions associated with the different actions to drive our
exploration of nongreedy actions.

15.3 Undirected Exploration Strategies

There are several ad hoc exploration strategies that are commonly used to balance
exploration with exploitation. This section discusses a type of ad hoc exploration
called undirected exploration, where we do not use information from previous
outcomes to guide exploration of nongreedy actions.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

302 chapter 15. exploration and exploitation

Suppose we have a two-armed bandit that we have played six times. The
first arm has 1 win and 0 losses, and the other arm has 4 wins and 1 loss.
Assuming a uniform prior, the posterior distribution for θ1 is Beta(2, 1), and
the posterior distribution for θ2 is Beta(5, 2).

ρ1 = 2/3 ρ2 = 5/7

0 0.2 0.4 0.6 0.8 1
0

1

2

3

θ

p
(θ
)

Beta(2, 1)

Beta(5, 2)

These posteriors assign nonzero likelihood to the win probabilities be-
tween 0 and 1. The density at 0 is 0 for both arms because they both received
at least one win. Similarly, the density at 1 for arm 2 is 0 because it received
at least one loss. The payoff probabilities ρ1 = 2/3 and ρ2 = 5/7 are shown
with vertical lines. We believe that the second arm has the best chance of
producing a payout.

Example 15.1. Posterior probability
distributions and expected payouts
for a multiarmed bandit.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

15.4. directed exploration strategies 303

One of the most common undirected exploration strategies is ǫ-greedy explo-
ration (algorithm 15.3). This strategy chooses a random arm with probability ǫ.
Otherwise, we choose a greedy arm, arg maxa ρa. This ρa is the posterior prob-
ability of a win with action a using the Bayesian model given in the previous
section. Alternatively, we can use the maximum likelihood estimate, but with
enough pulls, the difference between the two approaches is small. Larger values
of ǫ lead to more exploration, thereby resulting in faster identification of the best
arm, but more pulls are wasted on suboptimal arms. Example 15.2 demonstrates
this exploration strategy and the evolution of our beliefs.

The ǫ-greedy method maintains a constant amount of exploration, despite
there being far more uncertainty earlier in the interaction with the bandit than
later. One common adjustment is to decay ǫ over time, such as with an exponential
decay schedule with the following update:

ǫ← αǫ (15.2)
for an α ∈ (0, 1) typically close to 1.

mutable struct EpsilonGreedyExploration
ϵ # probability of random arm

end

function (π::EpsilonGreedyExploration)(model::BanditModel)
if rand() < π.ϵ

return rand(eachindex(model.B))
else

return argmax(mean.(model.B))
end

end

Algorithm 15.3. The ǫ-greedy ex-
ploration strategy. With probabil-
ity ϵ, it will return a random action.
Otherwise, it will return a greedy
action.

Another strategy is explore-then-commit exploration (algorithm 15.4), where we
select actions uniformly at random for the first k time steps. From that point on,
we choose a greedy action.5 Large values for k reduce the risk of committing to 5 A. Garivier, T. Lattimore, and

E. Kaufmann, “On Explore-Then-
Commit Strategies,” in Advances in
Neural Information Processing Sys-
tems (NIPS), 2016.

a suboptimal action, but we waste more time exploring potentially suboptimal
actions.

15.4 Directed Exploration Strategies

Directed exploration uses information gathered from previous pulls to guide explo-
ration of the nongreedy actions. For example, the softmax strategy (algorithm 15.5)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

304 chapter 15. exploration and exploitation

We would like to apply the ǫ-greedy exploration strategy to a two-armed
bandit. We can construct the model with a uniform prior and the exploration
policy with ǫ = 0.3:
model(fill(Beta(),2))
π = EpsilonGreedyExploration(0.3)

To obtain our first action, we call π(model), which returns 1 based on the
current state of the random number generator. We observe a loss, with r = 0,
and then call
update!(model, 1, 0)

which updates the beta distributions within the model to reflect that we took
action 1 and received a reward of 0.

The plots here show the evolution of the payoff beliefs after each of six
steps of execution using our exploration strategy. Blue corresponds to the
first arm, and red corresponds to the second arm:

0

0.5

1

1.5

2

p
(θ
)

t = 1, a = 1, r = 1

(2, 1) (1, 1)

t = 2, a = 1, r = 1

(3, 1) (1, 1)

t = 3, a = 1, r = 1

(4, 1) (1, 1)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

θ

p
(θ
)

t = 4, a = 2, r = 1

(4, 1) (2, 1)

0 0.2 0.4 0.6 0.8 1

θ

t = 5, a = 2, r = 0

(4, 1) (2, 2)

0 0.2 0.4 0.6 0.8 1

θ

t = 6, a = 1, r = 1

(5, 1) (2, 2)

Example 15.2. Application of the
ǫ-greedy exploration strategy to a
two-armed bandit problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

15.4. directed exploration strategies 305

mutable struct ExploreThenCommitExploration
k # pulls remaining until commitment

end

function (π::ExploreThenCommitExploration)(model::BanditModel)
if π.k > 0

π.k -= 1
return rand(eachindex(model.B))

end
return argmax(mean.(model.B))

end

Algorithm 15.4. The explore-then-
commit exploration strategy. If k is
strictly positive, it will return a ran-
dom action after decrementing k.
Otherwise, it will return a greedy
action.

pulls arm a with probability proportional to exp(λρa), where the precision parame-
ter λ ≥ 0 controls the amount of exploration. We have uniform random selection
as λ→ 0 and greedy selection as λ→ ∞. As more data is accumulated, we may
want to increase λ by a multiplicative factor to reduce exploration.

mutable struct SoftmaxExploration
λ # precision parameter
α # precision factor

end

function (π::SoftmaxExploration)(model::BanditModel)
weights = exp.(π.λ * mean.(model.B))
π.λ *= π.α
return rand(Categorical(normalize(weights, 1)))

end

Algorithm 15.5. The softmax ex-
ploration strategy. It selects action
a with probability proportional to
exp(λρa). The precision parameter
λ is scaled by a factor α at each step.

A variety of exploration strategies are grounded in the idea of optimism under
uncertainty. If we are optimistic about the outcomes of our actions to the extent that
our data statistically allows, we will be implicitly driven to balance exploration
and exploitation. One such approach is quantile exploration (algorithm 15.6),6

6 This general strategy is related to
upper confidence bound exploration,
interval exploration, and interval es-
timation, referring to the upper
bound of a confidence interval.
L. P. Kaelbling, Learning in Embed-
ded Systems. MIT Press, 1993. See
also E. Kaufmann, “On Bayesian
Index Policies for Sequential Re-
source Allocation,” Annals of Statis-
tics, vol. 46, no. 2, pp. 842–865,
2018.

where we choose the arm with the highest α-quantile (section 2.2.2) for the payoff
probability. Values for α > 0.5 result in optimism under uncertainty, incentivizing
the exploration of actions that have not been tried as often. Larger values of α

result in more exploration. Example 15.3 shows quantile estimation and compares
it with the other exploration strategies.

An alternative to computing the upper confidence bound for our posterior
distribution exactly is to use UCB1 exploration (algorithm 15.7), originally intro-
duced in section 9.6 for exploration in Monte Carlo tree search. In this strategy,

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

306 chapter 15. exploration and exploitation

mutable struct QuantileExploration
α # quantile (e.g., 0.95)

end

function (π::QuantileExploration)(model::BanditModel)
return argmax([quantile(B, π.α) for B in model.B])

end

Algorithm 15.6. Quantile explo-
ration, which returns the action
with the highest α quantile.

we select the action a that maximizes

ρa + c

√

log N

N(a)
(15.3)

where N(a) is the number of times that we have taken action a, and N = ∑a N(a).
The parameter c ≥ 0 controls the amount of exploration that is encouraged
through the second term. Larger values of c lead tomore exploration. This strategy
is often used with maximum likelihood estimates of the payoff probabilities, but
we can adapt it to the Bayesian context by having N(a) be the sum of the beta
distribution parameters associated with a.

Another general approach to exploration is to use posterior sampling (algo-
rithm 15.8), also referred to as randomized probability matching or Thompson sam-
pling.7 It is simple to implement and does not require careful parameter tuning. 7 W.R. Thompson, “On the Like-

lihood That One Unknown Prob-
ability Exceeds Another in View
of the Evidence of Two Samples,”
Biometrika, vol. 25, no. 3/4, pp. 285–
294, 1933. For a recent tutorial, see
D. Russo, B.V. Roy, A. Kazerouni,
I. Osband, and Z. Wen, “A Tutorial
on Thompson Sampling,” Founda-
tions and Trends inMachine Learning,
vol. 11, no. 1, pp. 1–96, 2018.

The idea is to sample from the posterior distribution over the rewards associated
with the various actions. The action with the largest sampled value is selected.

15.5 Optimal Exploration Strategies

The beta distribution associated with arm a is parameterized by counts (wa, ℓa).
Together, these counts w1, ℓ1, . . . , wn, ℓn represent our belief about payoffs, and
thus represent a belief state. These 2n numbers can describe n continuous proba-
bility distributions over possible payoff probabilities.

We can construct an MDP whose states are vectors of length 2n that represent
the agent’s belief over the n-armed bandit problem. Dynamic programming can
be used to solve this MDP to obtain an optimal policy π∗ that specifies which
arm to pull given the counts.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

15.5. optimal exploration strategies 307

Consider using exploration strategies given the information obtained in the
two-armed bandit problem of example 15.1, where the posterior distribution
for θ1 is Beta(2, 1), and the posterior distribution for θ2 is Beta(5, 2). The
second arm has the higher payoff probability.

An ǫ-greedy strategywith ǫ = 0.2 has a 20 % chance of choosing randomly
between the arms and an 80 % chance of choosing the second arm. Hence,
the overall probability of choosing the first arm is 0.1, and the probability of
choosing the second arm is 0.9.

A softmax strategy with λ = 1 assigns a weight of exp(ρ1) = exp(2/3) ≈
1.948 to the first arm and a weight of exp(ρ2) = exp(5/7) ≈ 2.043 to the
second. The probability of choosing the first arm is 1.948/(1.948 + 2.043) ≈
0.488, and the probability of choosing the second arm is 0.512. The plot here
shows how the probability of choosing the first arm varies with λ:

0 2 4 6 8 10

0.4

0.45

0.5

λ

pr
ob

ab
ili
ty

of
ch

oo
sin

ga
rm

1

Quantile exploration with α = 0.9 computes the payoff probability that
is greater than 90 % of the probability mass associated with each posterior
distribution. The 0.9 quantile for θ1 is 0.949 and for θ2 is 0.907, as shown here.
The first arm (blue) has the higher quantile and would be pulled next.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

θ

P
(θ
) Beta(2, 1)

Beta(5, 2)

Example 15.3. Exploration strate-
gies used with the two-armed ban-
dit problem from example 15.1.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

308 chapter 15. exploration and exploitation

mutable struct UCB1Exploration
c # exploration constant

end

function bonus(π::UCB1Exploration, B, a)
N = sum(b.α + b.β for b in B)
Na = B[a].α + B[a].β
return π.c * sqrt(log(N)/Na)

end

function (π::UCB1Exploration)(model::BanditModel)
B = model.B
ρ = mean.(B)
u = ρ .+ [bonus(π, B, a) for a in eachindex(B)]
return argmax(u)

end

Algorithm 15.7. The UCB1 explo-
ration strategy with exploration
constant c. We compute equa-
tion (15.3) for each action from the
pseudocount parameters in B. We
then return the action that maxi-
mizes that quantity.

struct PosteriorSamplingExploration end

(π::PosteriorSamplingExploration)(model::BanditModel) =
argmax(rand.(model.B))

Algorithm 15.8. The posterior sam-
pling exploration strategy. It has no
free parameters. It simply samples
from the beta distributions associ-
ated with each action and then re-
turns the action associatedwith the
largest sample.

Let Q∗(w1, ℓ1, . . . , wn, ℓn, a) represent the expected payoff after pulling arm a

and thereafter acting optimally. The optimal utility function and optimal policy
can be written in terms of Q∗:

U∗(w1, ℓ1, . . . , wn, ℓn) = max
a

Q∗(w1, ℓ1, . . . , wn, ℓn, a) (15.4)

π∗(w1, ℓ1, . . . , wn, ℓn) = arg max
a

Q∗(w1, ℓ1, . . . , wn, ℓn, a) (15.5)

We can decompose Q∗ into two terms:

Q∗(w1, ℓ1, . . . , wn, ℓn, a) =
wa + 1

wa + ℓa + 2
(1 + U∗(. . . , wa + 1, ℓa, . . .))

+

(

1− wa + 1

wa + ℓa + 2

)

U∗(. . . , wa, ℓa + 1, . . .)

(15.6)

The first term is associated with a win for arm a, and the second term is associ-
ated with a loss. The value (wa + 1)/(wa + ℓa + 2) is the posterior probability of
a win, which comes from equation (15.1).8 The first U∗ in equation (15.6) records 8 This probability can be adjusted

if we have a nonuniform prior.a win, whereas the second U∗ records a loss.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

15.6. exploration with multiple states 309

We can compute Q∗ for the entire belief space, as we have assumed a finite
horizon h. We start with all terminal belief states with ∑a(wa + ℓa) = h, where
U∗ = 0. We can then work backward to states with ∑a(wa + ℓa) = h − 1 and
apply equation (15.6). This process is repeated until we reach our initial state.
Such an optimal policy is computed in example 15.4.

Although this dynamic programming solution is optimal, the number of belief
states is O(h2n). We can formulate an infinite horizon, discounted version of the
problem that can be solved efficiently using the Gittins allocation index,9 which 9 J. C. Gittins, “Bandit Processes

and Dynamic Allocation Indices,”
Journal of the Royal Statistical Society.
Series B (Methodological), vol. 41,
no. 2, pp. 148–177, 1979. J. Git-
tins, K. Glazebrook, and R. Weber,
Multi-Armed Bandit Allocation In-
dices, 2nd ed. Wiley, 2011.

can be stored as a lookup table that specifies a scalar allocation index value, given
the number of pulls and the number of wins associated with an arm.10 The arm

10 A survey of algorithms for com-
puting this lookup table are pro-
vided in J. Chakravorty and A. Ma-
hajan, “Multi-Armed Bandits, Git-
tins Index, and Its Calculation,” in
Methods and Applications of Statistics
in Clinical Trials, N. Balakrishnan,
ed., vol. 2, Wiley, 2014, pp. 416–435.

that has the highest allocation index is the one that should be pulled next.

15.6 Exploration with Multiple States

In the general reinforcement learning context with multiple states, we must use
observations about state transitions to inform our decisions. We can modify the
simulation process in algorithm 15.1 to account for state transitions and update
our model appropriately. Algorithm 15.9 provides an implementation of this.
There are many ways to model the problem and perform exploration, as we will
discuss over the next few chapters, but the simulation structure is exactly the
same.

15.7 Summary

• The exploration-exploitation trade-off is a balance between exploring the state-
action space for higher rewards and exploiting the already-known favorable
state actions.

• Multiarmed bandit problems involve a single state where the agent receives
stochastic rewards for taking different actions.

• A beta distribution can be used to maintain a belief over multiarmed bandit
rewards.

• Undirected exploration strategies, including ǫ-greedy and explore-then-commit,
are simple to implement but do not use information from previous outcomes
to guide the exploration of nongreedy actions.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

310 chapter 15. exploration and exploitation

Next, we have constructed the state-action tree for a two-armed bandit prob-
lem with a two-step horizon. State vectors are shown as [w1, ℓ1, w2, ℓ2]; blue
arrows indicate wins and red arrows indicate losses.

[0, 0, 0, 0], U∗ = 1.083

pull 1

[1, 0, 0, 0], U∗ = 2/3 [0, 1, 0, 0], U∗ = 1/2

pull 1

[2, 0, 0, 0] [1, 1, 0, 0]

pull 2

[1, 0, 0, 1]

pull 1

[0, 2, 0, 0]

pull 2

[0, 1, 0, 1]

pull 2

[0, 0, 1, 0], U∗ = 2/3 [0, 0, 0, 1], U∗ = 1/2

pull 1

[1, 0, 1, 0] [0, 1, 1, 0]

pull 2

[0, 0, 2, 0]

pull 1 pull 2

[0, 0, 1, 1] [0, 0, 0, 2]

Unsurprisingly, the policy is symmetric with respect to arms 1 and 2. We
find that the first arm does not matter, and it is best to pull a winning arm
twice and not to pull a losing arm twice.

The optimal value functions were computed using

Q∗([1, 0, 0, 0], 1) =
2

3
(1 + 0) +

1

3
(0) = 2/3

Q∗([1, 0, 0, 0], 2) =
1

2
(1 + 0) +

1

2
(0) = 1/2

Q∗([0, 1, 0, 0], 1) =
1

3
(1 + 0) +

2

3
(0) = 1/3

Q∗([0, 1, 0, 0], 2) =
1

2
(1 + 0) +

1

2
(0) = 1/2

Q∗([0, 0, 0, 0], 1) =
1

2
(1 + 2/3) +

1

2
(1/2) = 1.083

Example 15.4. Computing the op-
timal policy for a two-armed, two-
step horizon bandit problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

15.8. exercises 311

function simulate(𝒫::MDP, model, π, h, s)
for i in 1:h

a = π(model, s)
s′, r = 𝒫.TR(s, a)
update!(model, s, a, r, s′)
s = s′

end
end

Algorithm 15.9. The simulation
loop for reinforcement learning
problems. The exploration policy π
generates the next action based on
information in the model and the
current state s. The MDP problem
𝒫 is treated as the ground truth and
is used to sample the next state and
reward. The state transition and re-
ward are used to update the model.
The simulation is run to horizon h.

• Directed exploration strategies, including softmax, quantile, UCB1, and poste-
rior sampling exploration, use information from past actions to better explore
promising actions.

• Dynamic programming can be used to derive optimal exploration strategies
for finite horizons, but these strategies can be expensive to compute.

15.8 Exercises
Exercise 15.1. Consider again the three-armed bandit problems in which each arm has a
win probability drawn uniformly between 0 and 1. Compare the softmax, quantile, and
UCB1 exploration strategies. Qualitatively, what values for λ, α, and c produce the highest
expected reward on randomly generated bandit problems?

Solution: Here we plot the expected reward per step for each of the three strategies. Again,
the effectiveness of the parameterization depends on the problem horizon, so several
different depths are shown as well.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

312 chapter 15. exploration and exploitation

0 10 20 30 40 50

0.5

0.6

0.7

λ

m
ea

n
re
wa

rd

softmax exploration with constant precision

horizon = 10

horizon = 100

horizon = 200

0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

α

m
ea

n
re
wa

rd

quantile exploration

horizon = 10

horizon = 100

horizon = 200

0 2 4 6 8 10

0.5

0.6

0.7

c

m
ea

n
re
wa

rd

UCB1

horizon = 10

horizon = 100

horizon = 200

The softmax strategy performs best for large values of λ, which prioritize pulling arms
with higher expected reward according to the current belief. Quantile exploration performs
better with longer horizons, independent of its parameterization. The size of the confidence
bound α does not significantly affect performance except for values very close to 0 or 1.
The UCB1 strategy performs best with small positive values of the exploration scalar c. The
expected reward decays as c increases. All three policies can be tuned to produce similar
maximal expected rewards.
Exercise 15.2. Give an example of a practical application of a multiarmed bandit problem.
Solution: There are many multiarmed bandit problems. Consider, for example, a news
company that would like to maximize interaction (clicks) on articles on its website. The

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

15.8. exercises 313

company may have several articles to display, but it must select one article to display at any
given time. This problem is a multiarmed bandit problem because a user will either click
article i with probability θi or not click with probability 1− θi. Exploration would consist
of displaying articles on the website and observing the number of clicks, and exploitation
would consist of displaying the article likely to lead to the highest number of clicks. This
problem is related to A/B testing, where companies test different versions of a website to
determine which version yields the most interactions.

Exercise 15.3. Given a one-armed bandit with a prior of θ ∼ Beta(7, 2), provide bounds
on the posterior probability of winning after 10 additional pulls.

Solution: A lower bound on our posterior probability of winning ρ can be computed
assuming that all pulls result in a loss, (e.g., ℓ = 10 and w = 0). We can similarly compute
an upper bound ρ, assuming that all pulls result in a win (e.g., w = 10 and ℓ = 0). The
bounds are thus

ρ =
w + 7

w + ℓ+ 9
=

0 + 7

0 + 10 + 9
=

7

19

ρ =
w + 7

w + ℓ+ 9
=

10 + 7

10 + 0 + 9
=

17

19

Exercise 15.4. Suppose that we have a bandit with arms a and b, and we use an ǫ-greedy
exploration strategy with ǫ = 0.3 and an exploration decay factor of α = 0.9. We generate
a random number x between 0 and 1 to determine if we explore (x < ǫ) or exploit (x > ǫ).
Given we have ρa > ρb, which arm is selected if x = 0.2914 in the first iteration? Which
arm is selected if x = 0.1773 in the ninth iteration?

Solution: Since x < ǫ1 in the first iteration, we explore and choose a with probability 0.5

and b with probability 0.5. At the ninth iteration, ǫ9 = α8ǫ1 ≈ 0.129. Since x > ǫ9, we
exploit and select a.

Exercise 15.5. We have a four-armed bandit, and we want to use a softmax exploration
strategy with precision parameter λ = 2 and a prior belief θa ∼ Beta(2, 2) for each arm a.
Suppose that we pull each arm four times, with the result that arms 1, 2, 3, and 4 pay off
1, 2, 3, and 4 times, respectively. List the posterior distributions over θa and calculate the
probability that we select arm 2.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

314 chapter 15. exploration and exploitation

Solution: The posterior distributions for each arm are: Beta(3, 5), Beta(4, 4), Beta(5, 3), and
Beta(6, 2), respectively. The probability of selecting arm 2 can be computed in the following
steps:

P(a = i) ∝ exp (λρi)

P(a = i) =
exp (λρi)

∑a exp (λρa)

P(a = 2) =
exp (2× 4

8)

exp (2× 3
8) + exp (2× 4

8) + exp (2× 5
8) + exp (2× 6

8)

P(a = 2) ≈ 0.2122

Exercise 15.6. Rewrite equation (15.6) for an arbitrary Beta(α, β) prior.

Solution: We can rewrite the equation more generally as follows:

Q∗(w1, ℓ1, . . . , wn, ℓn, a) =
wa + α

wa + ℓa + α + β
(1 + U∗(. . . , wa + 1, ℓa, . . .))

+

(

1− wa + α

wa + ℓa + α + β

)

U∗(. . . , wa, ℓa + 1, . . .)

Exercise 15.7. Recall example 15.4. Instead of having a payoff of 1 for each arm, let us
assume that arm 1 gives a payoff of 1, while arm 2 gives a payoff of 2. Calculate the new
action value functions for both arms.

Solution: For arm 1, we have

Q∗([1, 0, 0, 0], 1) =
2

3
(1 + 0) +

1

3
(0) = 2/3

Q∗([1, 0, 0, 0], 2) =
1

2
(2 + 0) +

1

2
(0) = 1

Q∗([0, 1, 0, 0], 1) =
1

3
(1 + 0) +

2

3
(0) = 1/3

Q∗([0, 1, 0, 0], 2) =
1

2
(2 + 0) +

1

2
(0) = 1

Q∗([0, 0, 0, 0], 1) =
1

2
(1 + 1) +

1

2
(1) = 1.5

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

15.8. exercises 315

And for arm 2, we have

Q∗([0, 0, 1, 0], 1) =
1

2
(1 + 0) +

1

2
(0) = 1/2

Q∗([0, 0, 1, 0], 2) =
2

3
(2 + 0) +

1

3
(0) = 4/3

Q∗([0, 0, 0, 1], 1) =
1

2
(1 + 0) +

1

2
(0) = 1/2

Q∗([0, 0, 0, 1], 2) =
1

3
(2 + 0) +

2

3
(0) = 2/3

Q∗([0, 0, 0, 0], 2) =
1

2
(2 + 4/3) +

1

2
(2/3) = 2

Exercise 15.8. Prove that the number of belief states in an n-armed bandit problem with a
horizon of h is O(h2n).

Solution: We begin by counting the number of solutions to w1 + ℓ1 + · · ·+ wn + ℓn = k,
where 0 ≤ k ≤ h. If n = 2 and k = 6, one solution is 2 + 0 + 3 + 1 = 6. For our counting
argument, we will use tally marks to represent integers. For example, we can write a
solution like 2+ 0+ 3+ 1 = ||++|||+| = 6. For general values for n and k, we would have
k tally marks and 2n− 1 plus signs. Given that many tally marks and plus signs, we can
arrange them in any order we want. We can represent a solution as a string of k + 2n− 1

characters, where a character is either | or +, with k of those characters being |. To obtain
the number of solutions, we count the number of ways we can choose k positions for |
from the set of k + 2n− 1 positions, resulting in

(k + 2n− 1)!

(2n− 1)!k!
= O(h2n−1)

solutions. The number of belief states is this expression summed for k from 0 to h, which
is O(h× h2n−1) = O(h2n).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

16 Model-Based Methods

This chapter discusses both maximum likelihood and Bayesian approaches for
learning the underlying dynamics and reward through interaction with the envi-
ronment. Maximum likelihood methods involve counting state transitions and
recording the amount of reward received to estimate the model parameters. We
will discuss a few approaches for planning using models that are continuously
updated. Even if we solve the estimated problem exactly, we generally have to
rely on heuristic exploration strategies to arrive at a suitable solution. Bayesian
methods involve computing a posterior distribution over model parameters. Solv-
ing for the optimal exploration strategy is generally intractable, but we can often
obtain a sensible approximation through posterior sampling.

16.1 Maximum Likelihood Models

As introduced in section 15.6 and implemented in algorithm 15.9, reinforcement
learning involves using information about past state transitions and rewards
to inform decisions. This section describes how to obtain a maximum likelihood
estimate of the underlying problem. This maximum likelihood estimate can be
used to generate a value function estimate that can be used with an exploration
strategy to generate actions.

We record the transition counts N(s, a, s′), indicating the number of times a
transition from s to s′ was observed when taking action a. The maximum likeli-
hood estimate of the transition function given these transition counts is

T(s′ | s, a) ≈ N(s, a, s′)/N(s, a) (16.1)

where N(s, a) = ∑s′ N(s, a, s′). If N(s, a) = 0, then the estimate of the transition
probability is 0.

318 chapter 16. model-based methods

The reward function can also be estimated. As we receive rewards, we update
ρ(s, a), the sum of all rewards obtained when taking action a in state s. The
maximum likelihood estimate of the reward function is the mean reward:

R(s, a) ≈ ρ(s, a)/N(s, a) (16.2)

If N(s, a) = 0, then our estimate of R(s, a) is 0. If we have prior knowledge about
the transition probabilities or rewards, then we can initialize N(s, a, s′) and ρ(s, a)

to values other than 0.
Algorithm 16.1 updates N and ρ after observing the transition from s to s′ after

taking action a and receiving reward r. Algorithm 16.2 converts the maximum
likelihoodmodel into anMDP representation. Example 16.1 illustrates this process.
We can use this maximum likelihood model to select actions while interacting
with the environment and improving the model.

16.2 Update Schemes

As we update our maximum likelihood estimate of the model, we also need to
update our plan. This section discusses several update schemes in response to our
continuously changing model. A major consideration is computational efficiency
because we will want to perform these updates fairly frequently while interacting
with the environment.

16.2.1 Full Updates
Algorithm 16.3 solves the maximum likelihood model using the linear program-
ming formulation from section 7.7, though we could have used value iteration
or some other algorithm. After each step, we obtain a new model estimate and
re-solve.

16.2.2 Randomized Updates
Recomputing an optimal policy with each state transition is typically computa-
tionally expensive. An alternative is to perform a Bellman update on the estimated
model at the previously visited state, as well as a few randomly chosen states.1

1 This approach is related to the
Dyna approach suggested by R. S.
Sutton, “Dyna, an Integrated Ar-
chitecture for Learning, Planning,
and Reacting,” SIGART Bulletin,
vol. 2, no. 4, pp. 160–163, 1991.Algorithm 16.4 implements this approach.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

16.2. update schemes 319

mutable struct MaximumLikelihoodMDP
𝒮 # state space (assumes 1:nstates)
𝒜 # action space (assumes 1:nactions)
N # transition count N(s,a,s′)
ρ # reward sum ρ(s, a)
γ # discount
U # value function
planner

end

function lookahead(model::MaximumLikelihoodMDP, s, a)
𝒮, U, γ = model.𝒮, model.U, model.γ
n = sum(model.N[s,a,:])
if n == 0

return 0.0
end
r = model.ρ[s, a] / n
T(s,a,s′) = model.N[s,a,s′] / n
return r + γ * sum(T(s,a,s′)*U[s′] for s′ in 𝒮)

end

function backup(model::MaximumLikelihoodMDP, U, s)
return maximum(lookahead(model, s, a) for a in model.𝒜)

end

function update!(model::MaximumLikelihoodMDP, s, a, r, s′)
model.N[s,a,s′] += 1
model.ρ[s,a] += r
update!(model.planner, model, s, a, r, s′)
return model

end

Algorithm 16.1. A method for up-
dating the transition and reward
model for maximum likelihood re-
inforcement learning with discrete
state and action spaces. We incre-
ment N[s,a,s′] after observing a
transition from s to s′ after taking
action a, and we add r to ρ[s,a].
The model also contains an esti-
mate of the value function U and
a planner. This algorithm block
also includes methods for perform-
ing backup and lookahead with re-
spect to this model.

function MDP(model::MaximumLikelihoodMDP)
N, ρ, 𝒮, 𝒜, γ = model.N, model.ρ, model.𝒮, model.𝒜, model.γ
T, R = similar(N), similar(ρ)
for s in 𝒮

for a in 𝒜
n = sum(N[s,a,:])
if n == 0

T[s,a,:] .= 0.0
R[s,a] = 0.0

else
T[s,a,:] = N[s,a,:] / n
R[s,a] = ρ[s,a] / n

end
end

end
return MDP(T, R, γ)

end

Algorithm 16.2. A method for
converting a maximum likelihood
model to an MDP problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

320 chapter 16. model-based methods

We would like to apply maximum likelihood model estimation to the hex
world problem. The true transition matrices look like this:

0
0.2
0.4
0.6
0.8
1

There are six transition matrices, one for each action. The rows correspond
to the current state, and the columns correspond to the next state. There
are 26 states. The intensity in the images relate to the probability of making
the corresponding transition. In a reinforcement learning context, we do
not know these transition probabilities ahead of time. However, we can
interact with the environment and record the transitions we observe. After 10

simulations of 10 steps each from random initial states, maximum likelihood
estimation results in the following matrices:

0
0.2
0.4
0.6
0.8
1

After 1000 simulations, our estimate becomes

0
0.2
0.4
0.6
0.8
1

Example 16.1. Applyingmaximum
likelihood estimation to the hex
world problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

16.3. exploration 321

struct FullUpdate end

function update!(planner::FullUpdate, model, s, a, r, s′)
𝒫 = MDP(model)
U = solve(𝒫).U
copy!(model.U, U)
return planner

end

Algorithm 16.3. Amethod that per-
forms a full update of the value
function of U using the linear pro-
gramming formulation from sec-
tion 7.7.

struct RandomizedUpdate
m # number of updates

end

function update!(planner::RandomizedUpdate, model, s, a, r, s′)
U = model.U
U[s] = backup(model, U, s)
for i in 1:planner.m

s = rand(model.𝒮)
U[s] = backup(model, U, s)

end
return planner

end

Algorithm 16.4. Maximum likeli-
hood model-based reinforcement
learning with updates at random-
ized states. This approach per-
forms a Bellman update at the pre-
viously visited state, as well as at m
additional states chosen randomly.

16.2.3 Prioritized Updates
An approach called prioritized sweeping2 (algorithm 16.5) uses a priority queue to 2 A.W. Moore and C.G. Atkeson,

“Prioritized Sweeping: Reinforce-
ment Learning with Less Data
and Less Time,” Machine Learning,
vol. 13, no. 1, pp. 103–130, 1993.

help identify which states are most in need of updating. A transition from s to s′ is
followed by anupdate ofU(s) based on our updated transition and rewardmodels.
We then iterate over all state-action pairs (s−, a−) that can immediately transition
into s. The priority of any such s− is increased to T(s | s−, a−)× |U(s)− u|, where
u was the value of U(s) before the update. Hence, the larger the change in U(s)

and the more likely the transition to s, the higher the priority of states leading to
s. The process of updating the highest-priority state in the queue continues for a
fixed number of iterations or until the queue becomes empty.

16.3 Exploration

Regardless of the update scheme, some form of exploration strategy generally
must be followed to avoid the pitfalls of pure exploitation mentioned in the pre-
vious chapter. We can adapt the exploration algorithms presented in that chapter

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

322 chapter 16. model-based methods

struct PrioritizedUpdate
m # number of updates
pq # priority queue

end

function update!(planner::PrioritizedUpdate, model, s)
N, U, pq = model.N, model.U, planner.pq
𝒮, 𝒜 = model.𝒮, model.𝒜
u = U[s]
U[s] = backup(model, U, s)
for s⁻ in 𝒮

for a⁻ in 𝒜
n_sa = sum(N[s⁻,a⁻,s′] for s′ in 𝒮)
if n_sa > 0

T = N[s⁻,a⁻,s] / n_sa
priority = T * abs(U[s] - u)
if priority > 0

pq[s⁻] = max(get(pq, s⁻, 0.0), priority)
end

end
end

end
return planner

end

function update!(planner::PrioritizedUpdate, model, s, a, r, s′)
planner.pq[s] = Inf
for i in 1:planner.m

if isempty(planner.pq)
break

end
update!(planner, model, dequeue!(planner.pq))

end
return planner

end

Algorithm 16.5. The prioritized
sweeping algorithm maintains a
priority queue pq of states that de-
termines which are to be updated.
With each update, we set the pre-
vious state to have infinite prior-
ity. We then perform m Bellman up-
dates of the value function U at the
highest-priority states.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

16.3. exploration 323

for use in multistate problems. Algorithm 16.6 provides an implementation of
the ǫ-greedy exploration strategy.

function (π::EpsilonGreedyExploration)(model, s)
𝒜, ϵ = model.𝒜, π.ϵ
if rand() < ϵ

return rand(𝒜)
end
Q(s,a) = lookahead(model, s, a)
return argmax(a->Q(s,a), 𝒜)

end

Algorithm 16.6. The ǫ-greedy
exploration strategy for maximum
likelihood model estimates. It
chooses a random action with
probability ϵ; otherwise, it uses
the model to extract the greedy
action.

A limitation of the exploration strategies discussed in the previous chapter is
that they do not reason about exploring actions from states besides the current
one. For instance, we might want to take actions that bring ourselves into an
area of the state space that has not been explored. Several algorithms have been
suggested for addressing this issue, which also provide probabilistic bounds on
the quality of the resulting policy after a finite number of interactions.3 3 M. Kearns and S. Singh, “Near-

Optimal Reinforcement Learning
in Polynomial Time,” Machine
Learning, vol. 49, no. 2/3, pp. 209–
232, 2002.

One such algorithm is known as R-MAX (algorithm 16.7).4 Its name comes

4 R. I. Brafman andM. Tennenholtz,
“R-MAX—A General Polynomial
Time Algorithm for Near-Optimal
Reinforcement Learning,” Journal
of Machine Learning Research, vol. 3,
pp. 213–231, 2002.

from assigning maximal reward to underexplored state-action pairs. State-action
pairs with fewer than m visitations are considered underexplored. Instead of
using the maximum likelihood estimate for the reward (equation (16.2)), we use

R(s, a) =

rmax if N(s, a) < m

ρ(s, a)/N(s, a) otherwise
(16.3)

where rmax is the maximum achievable reward.
The transition model in R-MAX is also modified so that underexplored state-

action pairs result in staying in the same state:

T(s′ | s, a) =

(s′ = s) if N(s, a) < m

N(s, a, s′)/N(s, a) otherwise
(16.4)

Hence, underexplored states have value rmax/(1− γ), providing an incentive
to explore them. This exploration incentive relieves us of needing a separate
exploration mechanism. We simply choose our actions greedily with respect to
the value function derived from our transition and reward estimates. Example 16.2
demonstrates ǫ-greedy and R-MAX exploration.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

324 chapter 16. model-based methods

mutable struct RmaxMDP
𝒮 # state space (assumes 1:nstates)
𝒜 # action space (assumes 1:nactions)
N # transition count N(s,a,s′)
ρ # reward sum ρ(s, a)
γ # discount
U # value function
planner
m # count threshold
rmax # maximum reward

end

function lookahead(model::RmaxMDP, s, a)
𝒮, U, γ = model.𝒮, model.U, model.γ
n = sum(model.N[s,a,:])
if n < model.m

return model.rmax / (1-γ)
end
r = model.ρ[s, a] / n
T(s,a,s′) = model.N[s,a,s′] / n
return r + γ * sum(T(s,a,s′)*U[s′] for s′ in 𝒮)

end

function backup(model::RmaxMDP, U, s)
return maximum(lookahead(model, s, a) for a in model.𝒜)

end

function update!(model::RmaxMDP, s, a, r, s′)
model.N[s,a,s′] += 1
model.ρ[s,a] += r
update!(model.planner, model, s, a, r, s′)
return model

end

function MDP(model::RmaxMDP)
N, ρ, 𝒮, 𝒜, γ = model.N, model.ρ, model.𝒮, model.𝒜, model.γ
T, R, m, rmax = similar(N), similar(ρ), model.m, model.rmax
for s in 𝒮

for a in 𝒜
n = sum(N[s,a,:])
if n < m

T[s,a,:] .= 0.0
T[s,a,s] = 1.0
R[s,a] = rmax

else
T[s,a,:] = N[s,a,:] / n
R[s,a] = ρ[s,a] / n

end
end

end
return MDP(T, R, γ)

end

Algorithm 16.7. The R-MAX
exploration strategy modifies the
transition and reward model from
maximum likelihood estimation.
It assigns the maximum reward
rmax to any underexplored
state-action pair, defined as being
those that have been tried fewer
than m times. In addition, all
underexplored state-action pairs
are modeled as transitioning
to the same state. This RmaxMDP
can be used as a replacement
for the MaximumLikelihoodMDP
introduced in algorithm 16.1.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

16.3. exploration 325

We can apply ǫ-greedy exploration to maximum likelihood model estimates
constructed while interacting with the environment. The code that follows
initializes the counts, rewards, and utilities to zero. It uses full updates to
the value function with each step. For exploration, we choose a random
action with probability 0.1. The last line runs a simulation (algorithm 15.9)
of problem 𝒫 for 100 steps starting in a random initial state:
N = zeros(length(𝒮), length(𝒜), length(𝒮))
ρ = zeros(length(𝒮), length(𝒜))
U = zeros(length(𝒮))
planner = FullUpdate()
model = MaximumLikelihoodMDP(𝒮, 𝒜, N, ρ, γ, U, planner)
π = EpsilonGreedyExploration(0.1)
simulate(𝒫, model, π, 100, rand(𝒮))

Alternatively, we can use R-MAX with an exploration threshold of m = 3.
We can act greedily with respect to the R-MAX model:
rmax = maximum(𝒫.R(s,a) for s in 𝒮, a in 𝒜)
m = 3
model = RmaxMDP(𝒮, 𝒜, N, ρ, γ, U, planner, m, rmax)
π = EpsilonGreedyExploration(0)
simulate(𝒫, model, π, 100, rand(𝒮))

Example 16.2. Demonstration of
ǫ-greedy and R-MAX exploration.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

326 chapter 16. model-based methods

16.4 Bayesian Methods

In contrast with the maximum likelihood methods discussed so far, Bayesian
methods balance exploration and exploitation without having to rely on heuris-
tic exploration policies. This section describes a generalization of the Bayesian
methods covered in section 15.5. In Bayesian reinforcement learning, we specify a
prior distribution over all model parameters θ.5 These model parameters may

5 A survey of this topic is provided
by M. Ghavamzadeh, S. Mannor, J.
Pineau, and A. Tamar, “Bayesian
Reinforcement Learning: A Sur-
vey,” Foundations and Trends in
Machine Learning, vol. 8, no. 5–6,
pp. 359–483, 2015. It covers meth-
ods for incorporating priors over
reward functions, which are not
discussed here.

include the parameters governing the distribution over immediate rewards, but
this section focuses on the parameters governing the state transition probabilities.

st st+1

θt

rt

at

θt+1

Figure 16.1. A dynamic decision
network for an MDP with model
uncertainty.

The structure of the problem can be represented using the dynamic decision
network shown in figure 16.1, wherein the model parameters are made explicit.
The shaded nodes indicate that the states are observed but the model parameters
are not. We generally assume that the model parameters are time invariant with
θt+1 = θt. However, our belief about θ evolves with time as we transition to new
states.

The belief over transition probabilities can be represented using a collection
of Dirichlet distributions, one for each source state and action. Each Dirichlet
distribution represents the distribution over s′ for a given s and a. If θ(s,a) is an
|S|-element vector representing the distribution over the next state, then the prior
distribution is given by

Dir(θ(s,a) | N(s, a)) (16.5)
where N(s, a) is the vector of counts associated with transitions starting in state s

taking action a. It is common to use a uniform prior with all components set to 1,
but prior knowledge of the transition dynamics can be used to initialize the counts
differently. Example 16.3 illustrates how these counts are used by the Dirichlet
distribution to represent the distribution over possible transition probabilities.

The distribution over θ is the result of the product of the Dirichlet distributions:

b(θ) = ∏
s

∏
a

Dir
(

θ(s,a) | N(s, a)
)

(16.6)

Algorithm 16.8 provides an implementation of the Bayesian update for this type
of posterior model. For problems with larger or continuous spaces, we can use
other posterior representations.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

16.4. bayesian methods 327

Suppose our agent randomly explores an environment with three states. The
agent takes action a1 from state s1 five times. It transitions to s3 four times
and remains in s1 once. The counts associated with s1 and a1 are N(s1, a1) =

[1, 0, 4]. If we want to assume a uniform prior over resulting states, we would
increment the counts by 1 to get N(s1, a1) = [2, 1, 5]. The transition function
from s1 taking action a1 is a three-valued categorical distribution because
there are three possible successor states. Each successor state has an unknown
transition probability. The space of possible transition probabilities is the set
of three-element vectors that sum to 1. The Dirichlet distribution represents
a probability distribution over these possible transition probabilities. Here is
a plot of the density function:

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

T(s1 | s1, a1)T(s2 | s1, a1)

T(s3 | s1, a1)

0

5

10

15

Example 16.3. AposteriorDirichlet
distribution over transition proba-
bilities fromaparticular statewhen
taking a particular action. An agent
learning the transition function in
an unknown MDP may choose to
maintain such a distribution over
each state-action pair.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

328 chapter 16. model-based methods

mutable struct BayesianMDP
𝒮 # state space (assumes 1:nstates)
𝒜 # action space (assumes 1:nactions)
D # Dirichlet distributions D[s,a]
R # reward function as matrix (not estimated)
γ # discount
U # value function
planner

end

function lookahead(model::BayesianMDP, s, a)
𝒮, U, γ = model.𝒮, model.U, model.γ
n = sum(model.D[s,a].alpha)
if n == 0

return 0.0
end
r = model.R(s,a)
T(s,a,s′) = model.D[s,a].alpha[s′] / n
return r + γ * sum(T(s,a,s′)*U[s′] for s′ in 𝒮)

end

function update!(model::BayesianMDP, s, a, r, s′)
α = model.D[s,a].alpha
α[s′] += 1
model.D[s,a] = Dirichlet(α)
update!(model.planner, model, s, a, r, s′)
return model

end

Algorithm 16.8. A Bayesian up-
date method when the posterior
distribution over transition mod-
els is represented as a product of
Dirichlet distributions. We assume
in this implementation that the re-
ward model R is known, though
we can use Bayesian methods to
estimate expected reward from ex-
perience. The matrix D associates
Dirichlet distributions with every
state-action pair to model uncer-
tainty in the transition to their suc-
cessor states.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

16.5. bayes-adaptive markov decis ion processes 329

16.5 Bayes-Adaptive Markov Decision Processes

We can formulate the problem of acting optimally in an MDP with an unknown
model as a higher-dimensional MDPwith a knownmodel. This MDP is known as
a Bayes-adaptive Markov decision process, which is related to the partially observable
Markov decision process discussed in part IV.

The state space in the Bayes-adaptive MDP is the Cartesian product S × B,
where B is the space of possible beliefs over the model parameters θ. Although
S is discrete, B is often a high-dimensional continuous state space.6 A state in a 6 It is continuous in the case of

Dirichlet distributions over transi-
tion probabilities, as shown in ex-
ample 16.3.

Bayes-adaptive MDP is a pair (s, b) consisting of the current state s in the base
MDP and a belief state b. The action space and reward function are the same as
in the base MDP.

The transition function in a Bayes-adaptive MDP is T(s′, b′ | s, b, a), which is
the probability of transitioning to a state s′ with a belief state b′, given that the
agent starts in s with belief b and takes action a. The new belief state b′ can be
deterministically computed according to Bayes’ rule. If we let this deterministic
function be denoted as τ so that b′ = τ(s, b, a, s′), then we can decompose the
Bayes-adaptive MDP transition function as

T(s′, b′ | s, b, a) = δτ(s,b,a,s′)(b
′) P(s′ | s, b, a) (16.7)

where δx(y) is the Kronecker delta function7 such that δx(y) = 1 if x = y, and 0 7 This function is named after the
German mathematician Leopold
Kronecker (1823–1891).otherwise.

The second term can be computed using integration:

P(s′ | s, b, a) =
∫

θ
b(θ)P(s′ | s, θ, a)dθ =

∫

θ
b(θ)θ(s,a,s′) dθ (16.8)

This equation can be evaluated analytically in a manner similar to equation (15.1).
In the case where our belief b is represented by the factored Dirichlet in equa-
tion (16.6), we have

P(s′ | s, b, a) = N(s, a, s′)/ ∑
s′′

N(s, a, s′′) (16.9)

We can generalize the Bellman optimality equation (equation (7.16)) for MDPs
with a known model to the case in which the model is unknown:

U∗(s, b) = max
a

(

R(s, a) + γ ∑
s′

P(s′ | s, b, a)U∗
(

s′, τ
(

s, b, a, s′
))

)

(16.10)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

330 chapter 16. model-based methods

Unfortunately, we cannot simply directly apply policy iteration or value itera-
tion because b is continuous. We can, however use the approximation methods
of chapter 8 or the online methods of chapter 9. Part IV presents methods that
better use the structure of the Bayes-adaptive MDP.

16.6 Posterior Sampling

An alternative to solving for the optimal value function over the belief space
is to use posterior sampling,8 which was originally introduced in the context of 8 M. J.A. Strens, “A Bayesian

Framework for Reinforcement
Learning,” in International Confer-
ence on Machine Learning (ICML),
2000.

exploration in bandit problems in section 15.4.9 Here, we draw a sample θ from the

9 In that section, we sampled from
a posterior distribution over the
probability of payoffs and then as-
sumed that the sampled probabili-
ties were correct when selecting an
action.

current belief b and then solve for the best action, assuming that θ is the truemodel.
We then update our belief, draw a new sample, and solve the corresponding MDP.
Example 16.4 provides an example instance of this.

An advantage of posterior sampling is thatwe do not have to decide on heuristic
exploration parameters. However, solving theMDP at every step can be expensive.
A method for sampling a discrete MDP from the posterior is implemented in
algorithm 16.9.

struct PosteriorSamplingUpdate end

function Base.rand(model::BayesianMDP)
𝒮, 𝒜 = model.𝒮, model.𝒜
T = zeros(length(𝒮), length(𝒜), length(𝒮))
for s in 𝒮

for a in 𝒜
T[s,a,:] = rand(model.D[s,a])

end
end
return MDP(T, model.R, model.γ)

end

function update!(planner::PosteriorSamplingUpdate, model, s, a, r, s′)
𝒫 = rand(model)
U = solve(𝒫).U
copy!(model.U, U)

end

Algorithm 16.9. The update
method for posterior sampling.
After updating the parameters
of the Bayesian posterior, we
sample anMDP problem from that
posterior. This implementation
assumes a discrete state and
action space with a Dirichlet
modeling our uncertainty in the
transition probabilities from each
state-action pair. To generate the
transition model, we iterate over
every state and action and sample
from the associated Dirichlet
distribution. Once we have a
sampled problem 𝒫, we solve it
using the linear programming
formulation and store the resulting
value function U.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

16.6. posterior sampling 331

We want to apply Bayesian model estimation to hex world. We start with
associating uniform Dirichlet priors with every state-action pair. After 100

simulations of length 10 and adding our transition counts to our pseudo-
counts in our prior, the parameters of our posterior distributions over our
successor states appear as follows:

0

2

4

We can sample from this distribution to produce the model shown here. No-
tice that it hasmanymore nonzero transition probabilities than themaximum
likelihood models shown in example 16.1.

0

0.05

0.1

0.15

0.2

Example 16.4. Application of
Bayesian model estimation and
posterior sampling to the hex
world problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

332 chapter 16. model-based methods

16.7 Summary

• Model-based methods learn the transition and reward models through inter-
action with the environment.

• Maximum likelihood models use transition counts to maintain an estimate of
the transition probabilities to successor states and to track the mean reward
associated with state-action pairs.

• Maximum likelihoodmodels must be paired with an exploration strategy, such
as those introduced in the previous chapter in the context of bandits.

• Although we can replan with each step of experience, doing so exactly can be
costly.

• Prioritized sweeping can focus replanning by updating the values of states
that appear to need it the most in our evolving model of the environment.

• Bayesian model-based methods maintain a probability distribution over possi-
ble problems, allowing principled reasoning about exploration.

• In Bayes-adaptive MDPs, their states augment the original MDP with the
probability distribution over the possible MDP models.

• Posterior sampling reduces the high computational complexity of solving a
Bayes-adaptive MDP by solving an MDP sampled from the belief state rather
than reasoning about all possible MDPs.

16.8 Exercises
Exercise 16.1. Suppose we have an agent interacting in an environment with three states
and two actions with unknown transition and reward models. We perform one sequence
of direct interaction with the environment. Table 16.1 tabulates the state, action, reward,
and resulting state. Use maximum likelihood estimation to estimate the transition and
reward functions from this data.

Table 16.1. Transition data.

s a r s′

s2 a1 2 s1

s1 a2 1 s2

s2 a2 1 s1

s1 a2 1 s2

s2 a2 1 s3

s3 a2 2 s2

s2 a2 1 s3

s3 a2 2 s3

s3 a1 2 s2

s2 a1 2 s3

Solution: We first tabulate the number of transitions from each state and action N(s, a), the
rewards received ρ(s, a), and the maximum likelihood estimate of the reward function
R̂(s, a) = ρ(s, a)/N(s, a) as follows:

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

16.8. exercises 333

s a N(s, a) ρ(s, a) R̂(s, a) =
ρ(s,a)
N(s,a)

s1 a1 0 0 0

s1 a2 2 2 1

s2 a1 2 4 2

s2 a2 3 3 1

s3 a1 1 2 2

s3 a2 2 4 2

In the next set of tables, we compute the number of observed transitions N(s, a, s′) and
the maximum likelihood estimate of the transition model T̂(s′ | s, a) = N(s, a, s′)/N(s, a).
When N(s, a) = 0, we use a uniform distribution over the resulting states.

s a s′ N(s, a, s′) T̂(s′ | s, a) = N(s,a,s′)
N(s,a)

s1 a1 s1 0 1/3

s1 a1 s2 0 1/3

s1 a1 s3 0 1/3

s1 a2 s1 0 0

s1 a2 s2 2 1

s1 a2 s3 0 0

s2 a1 s1 1 1/2

s2 a1 s2 0 0

s2 a1 s3 1 1/2

s2 a2 s1 1 1/3

s2 a2 s2 0 0

s2 a2 s3 2 2/3

s3 a1 s1 0 0

s3 a1 s2 1 1

s3 a1 s3 0 0

s3 a2 s1 0 0

s3 a2 s2 1 1/2

s3 a2 s3 1 1/2

Exercise 16.2. Provide a lower bound and an upper bound on the number of updates that
could be performed during an iteration of prioritized sweeping.

Solution: A lower bound on the number of updates performed in an iteration of prioritized
sweeping is 1. This could occur during our first iteration using a maximum likelihood
model, where the only nonzero entry in our transition model is T(s′ | s, a). Since no

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

334 chapter 16. model-based methods

state-action pairs (s−, a−) transition to s, our priority queue would be empty, and thus the
only update performed would be for U(s).

An upper bound on the number of updates performed in an iteration of prioritized
sweeping is |S|. Suppose that we just transitioned to s′, and T̂(s′ | s, a) > 0 for all s and a.
If we do not provide a maximum number of updates, we will perform |S| updates. If we
provide a maximum number of updates m < |S|, the upper bound is reduced to m.

Exercise 16.3. In performing Bayesian reinforcement learning of the transition model
parameters for a discrete MDP with state space S and action space A, how many indepen-
dent parameters are there when using Dirichlet distributions to represent uncertainty over
the transition model?

Solution: For each state and action, we specify a Dirichlet distribution over the transition
probability parameters, so we will have |S||A| Dirichlet distributions. Each Dirichlet
is specified using |S| independent parameters. In total, we have |S|2|A| independent
parameters.

Exercise 16.4. Consider the problem statement in exercise 16.1, but this time we want to
use Bayesian reinforcement learning with a prior distribution represented by a Dirichlet
distribution. Assuming a uniform prior, what is the posterior distribution over the next
state, given that we are in state s2 and take action a1?

Solution: Dir(θ(s2,a1) | [2, 1, 2])

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

17 Model-Free Methods

In contrast with model-based methods, model-free reinforcement learning does not
require building explicit representations of the transition and reward models.1

1 Many of the topics in this chap-
ter are covered in greater depth by
R. S. Sutton and A.G. Barto, Rein-
forcement Learning: An Introduction,
2nd ed. MIT Press, 2018. See also
D. P. Bertsekas, Reinforcement Learn-
ing and Optimal Control. Athena Sci-
entific, 2019.

The model-free methods discussed in this chapter model the action value func-
tion directly. Avoiding explicit representations is attractive, especially when the
problem is high dimensional. This chapter begins by introducing incremental
estimation of the mean of a distribution, which plays an important role in estimat-
ing the mean of returns. We then discuss some common model-free algorithms
and methods for handling delayed reward more efficiently. Finally, we discuss
how to use function approximation to generalize from our experience.2 2 Although this part of the book has

been focusing on problems where
the model of the environment is
unknown, reinforcement learning
is often used for problems with
known models. The model-free
methods discussed in this chapter
can be especially useful in complex
environments as a form of approxi-
mate dynamic programming. They
can be used to produce policies off-
line, or as a means to generate the
next action in an online context.

17.1 Incremental Estimation of the Mean

Many model-free methods incrementally estimate the action value function Q(s, a)

from samples. For the moment, suppose that we are only concerned with the
expectation of a single variable X from m samples:

x̂m =
1

m

m

∑
i=1

x(i) (17.1)

where x(1), . . . x(m) are the samples. We can derive an incremental update:

x̂m =
1

m

(

x(m) +
m−1

∑
i=1

x(i)

)

(17.2)

=
1

m

(

x(m) + (m− 1)x̂m−1

)

(17.3)

= x̂m−1 +
1

m

(

x(m) − x̂m−1

)

(17.4)

336 chapter 17. model-free methods

We can rewrite this equation with the introduction of a learning rate function
α(m):

x̂m = x̂m−1 + α(m)
(

x(m) − x̂m−1

)

(17.5)
The learning rate can be a function other than 1/m. To ensure convergence, we
generally select α(m) such that we have ∑

∞
m=1 α(m) = ∞ and ∑

∞
m=1 α2(m) < ∞.

The first condition ensures that the steps are sufficiently large, and the second
condition ensures that the steps are sufficiently small.3 3 For a discussion of convergence

and its application to some of the
other algorithms discussed in this
chapter, see T. Jaakkola, M. I. Jor-
dan, and S. P. Singh, “On the Con-
vergence of Stochastic Iterative Dy-
namic Programming Algorithms,”
Neural Computation, vol. 6, no. 6,
pp. 1185–1201, 1994.

If the learning rate is constant, which is common in reinforcement learning
applications, then the weights of older samples decay exponentially at the rate
(1− α). With a constant learning rate, we can update our estimate after observing
x using the following rule:

x̂ ← x̂ + α(x− x̂) (17.6)
Algorithm 17.1 provides an implementation of this. An example of several learning
rates is shown in example 17.1.

The update rule discussed here will appear again in later sections and is related
to stochastic gradient descent. The magnitude of the update is proportional to the
difference between the sample and the previous estimate. The difference between
the sample and previous estimate is called the temporal difference error.

17.2 Q-Learning

Q-learning (algorithm 17.2) involves applying incremental estimation of the action
value function Q(s, a).4 The update is derived from the action value form of the 4 C. J. C.H. Watkins, “Learning

from Delayed Rewards,” Ph.D. dis-
sertation, University of Cambridge,
1989.

Bellman expectation equation:

Q(s, a) = R(s, a) + γ ∑
s′

T(s′ | s, a)U(s′) (17.7)

= R(s, a) + γ ∑
s′

T(s′ | s, a)max
a′

Q(s′, a′) (17.8)

Instead of using T and R, we can rewrite the equation above in terms of an
expectation over samples of reward r and the next state s′:

Q(s, a) = Er,s′ [r + γ max
a′

Q(s′, a′)] (17.9)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

17.2. q-learning 337

Consider estimating the expected value obtainedwhen rolling a fair six-sided
die. What follows are learning curves that show the incremental estimates
over 100 trials associated with different learning rate functions. As we can
see, convergence is not guaranteed if α(m) decays too quickly, and it is slow
if α(m) does not decay quickly enough.

For constant values of α ∈ (0, 1], the mean estimate will continue to
fluctuate. Larger values of constant α fluctuate wildly, whereas lower values
take longer to converge.

2

4

6

trial

va
lu

e

trial die value
α(m) = 1/m0.1

α(m) = 1/m0.5

α(m) = 1/m0.75

α(m) = 1/m

α(m) = 1/m1.5

20 40 60 80 100

2

4

6

trial

va
lu

e

trial die value
α(m) = 0.05

α(m) = 0.1

α(m) = 0.2

α(m) = 0.5

α(m) = 1

Example 17.1. The effect of decay-
ing the learning rate with different
functions for α(m).

mutable struct IncrementalEstimate
μ # mean estimate
α # learning rate function
m # number of updates

end

function update!(model::IncrementalEstimate, x)
model.m += 1
model.μ += model.α(model.m) * (x - model.μ)
return model

end

Algorithm 17.1. A type for main-
taining an incremental estimate of
themean of a randomvariable. The
associated type maintains a cur-
rent mean value μ, a learning rate
function α, and an iteration count m.
Calling update! with a new value
x updates the estimate.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

338 chapter 17. model-free methods

We can use equation (17.6) to produce an incremental update rule to estimate
the action value function:5 5 The maximization in this equa-

tion can introduce a bias. Algo-
rithms like double Q-learning at-
tempt to correct for this bias and
can lead to better performance. H.
vanHasselt, “Double Q-Learning,”
in Advances in Neural Information
Processing Systems (NIPS), 2010.

Q(s, a)← Q(s, a) + α

(

r + γ max
a′

Q(s′, a′)−Q(s, a)

)

(17.10)

Our choice of actions affects which states we end up in, and therefore our
ability to estimate Q(s, a) accurately. To guarantee convergence of our action
value function, we need to adopt some form of exploration policy, such as ǫ-
greedy or softmax, just as we did for our model-based methods in the previous
chapter. Example 17.2 shows how to run a simulation with the Q-learning update
rule and an exploration policy. Figure 17.1 illustrates this process on the hex world
problem.

mutable struct QLearning
𝒮 # state space (assumes 1:nstates)
𝒜 # action space (assumes 1:nactions)
γ # discount
Q # action value function
α # learning rate

end

lookahead(model::QLearning, s, a) = model.Q[s,a]

function update!(model::QLearning, s, a, r, s′)
γ, Q, α = model.γ, model.Q, model.α
Q[s,a] += α*(r + γ*maximum(Q[s′,:]) - Q[s,a])
return model

end

Algorithm 17.2. The Q-learning
update for model-free reinforce-
ment learning, which can be ap-
plied to problems with unknown
transition and reward functions.
The update modifies Q, which is a
matrix of state-action values. This
update function can be used to-
gether with an exploration strategy,
such as ǫ-greedy, in the simulate
function of algorithm 15.9. That
simulate function calls the update
function with s′, though this Q-
learning implementation does not
use it.

17.3 Sarsa

Sarsa (algorithm 17.3) is an alternative to Q-learning.6 It derives its name from 6 This approach was suggested
with a different name in G.A. Rum-
mery and M. Niranjan, “On-Line
Q-Learning Using Connectionist
Systems,” Cambridge University,
Tech. Rep. CUED/F-INFENG/TR
166, 1994.

the fact that it uses (s, a, r, s′, a′) to update the Q function at each step. It uses the
actual next action a′ to update Q instead of maximizing over all possible actions:

Q(s, a)← Q(s, a) + α
(

r + γQ(s′, a′)−Q(s, a)
) (17.11)

With a suitable exploration strategy, the a′ will converge to arg maxa′ Q(s′, a′),
which is what is used in the Q-learning update.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

17.3. sarsa 339

50 rollouts 100 rollouts

150 rollouts 200 rollouts

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 17.1. Q-learning used to it-
eratively learn an action value func-
tion for the hex world problem.
Each state is colored according to
the expected value of the best ac-
tion in that state according to Q.
Actions are similarly the best ex-
pected actions. Q-learning was run
with α = 0.1 and 10 steps per roll-
out.

Suppose we want to apply Q-learning to an MDP problem 𝒫. We can con-
struct an exploration policy, such as the ǫ-greedy policy implemented in
algorithm 16.6 from the previous chapter. The Q-learning model comes from
algorithm 17.2, and the simulate function is implemented in algorithm 15.9.
Q = zeros(length(𝒫.𝒮), length(𝒫.𝒜))
α = 0.2 # learning rate
model = QLearning(𝒫.𝒮, 𝒫.𝒜, 𝒫.γ, Q, α)
ϵ = 0.1 # probability of random action
π = EpsilonGreedyExploration(ϵ)
k = 20 # number of steps to simulate
s = 1 # initial state
simulate(𝒫, model, π, k, s)

Example 17.2. How to use an ex-
ploration strategy with Q-learning
in simulation. The parameter set-
tings are notional.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

340 chapter 17. model-free methods

Sarsa is referred to as a type of on-policy reinforcement learningmethod because
it attempts to directly estimate the value of the exploration policy as it follows it. In
contrast, Q-learning is an off-policymethod because it attempts to find the value of
the optimal policy while following the exploration strategy. Although Q-learning
and Sarsa both converge to an optimal strategy, the speed of convergence depends
on the application. Sarsa is run on the hex world problem in figure 17.2.

mutable struct Sarsa
𝒮 # state space (assumes 1:nstates)
𝒜 # action space (assumes 1:nactions)
γ # discount
Q # action value function
α # learning rate
ℓ # most recent experience tuple (s,a,r)

end

lookahead(model::Sarsa, s, a) = model.Q[s,a]

function update!(model::Sarsa, s, a, r, s′)
if model.ℓ != nothing

γ, Q, α, ℓ = model.γ, model.Q, model.α, model.ℓ
model.Q[ℓ.s,ℓ.a] += α*(ℓ.r + γ*Q[s,a] - Q[ℓ.s,ℓ.a])

end
model.ℓ = (s=s, a=a, r=r)
return model

end

Algorithm 17.3. The Sarsa update
for model-free reinforcement learn-
ing. We update the matrix Q con-
taining the state-action values, α
is a constant learning rate, and ℓ
is the most recent experience tu-
ple. As with the Q-learning imple-
mentation, the update function can
be used in the simulator in algo-
rithm 15.9.

50 rollouts 100 rollouts

150 rollouts 200 rollouts

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 17.2. Sarsa used to itera-
tively learn an action value func-
tion for the hex world problem in
a manner otherwise identical to
figure 17.1. We find that Sarsa is
slower to converge to the true ac-
tion value function.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

17.4. eligibil ity traces 341

17.4 Eligibility Traces

One of the disadvantages of Q-learning and Sarsa is that learning can be very
slow, especially with sparse rewards. For example, suppose that the environment
has a single goal state that provides a large reward, and the reward is zero at
all other states. After an amount of random exploration in the environment, we
reach the goal state. Regardless of whether we use Q-learning or Sarsa, we only
update the action value of the state immediately preceding the goal state. The
values at all other states leading up to the goal remain at zero. A large amount of
exploration is required to slowly propagate nonzero values to the remainder of
the state space.

Q-learning and Sarsa can be modified to propagate reward backward to the
states and actions leading to the source of the reward using eligibility traces.7 The 7 Eligibility traces were proposed

in the context of temporal differ-
ence learning by R. Sutton, “Learn-
ing to Predict by the Methods
of Temporal Differences,” Machine
Learning, vol. 3, no. 1, pp. 9–44,
1988.

credit is decayed exponentially so that states closer to the reward are assigned
larger values. It is common to use 0 < λ < 1 as the exponential decay parameter.
Versions of Q-learning and Sarsa with eligibility traces are often called Q(λ) and
Sarsa(λ).8

8 These algorithms were in-
troduced by C. J. C.H. Watkins,
“Learning fromDelayed Rewards,”
Ph.D. dissertation, University of
Cambridge, 1989. and J. Peng
and R. J. Williams, “Incremental
Multi-Step Q-Learning,” Machine
Learning, vol. 22, no. 1–3, pp. 283–
290, 1996.

A version of Sarsa(λ) is implemented in algorithm 17.4, which maintains an
exponentially decaying visit count N(s, a) for all state-action pairs. When action
a is taken in state s, N(s, a) is incremented by 1. The Sarsa temporal difference up-
date is then partially applied to every state-action pair according to this decaying
visit count.

Let δ denote the Sarsa temporal difference update:

δ = r + γQ(s′, a′)−Q(s, a) (17.12)

Every entry in the action value function is then updated according to

Q(s, a)← Q(s, a) + αδN(s, a) (17.13)

The visit counts are then decayed using both the discount factor and the
exponential decay parameter:

N(s, a)← γλN(s, a) (17.14)

Although the impact of eligibility traces is especially pronounced in environ-
ments with sparse reward, the algorithm can speed learning in general environ-
ments where reward is more distributed.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

342 chapter 17. model-free methods

mutable struct SarsaLambda
𝒮 # state space (assumes 1:nstates)
𝒜 # action space (assumes 1:nactions)
γ # discount
Q # action value function
N # trace
α # learning rate
λ # trace decay rate
ℓ # most recent experience tuple (s,a,r)

end

lookahead(model::SarsaLambda, s, a) = model.Q[s,a]

function update!(model::SarsaLambda, s, a, r, s′)
if model.ℓ != nothing

γ, λ, Q, α, ℓ = model.γ, model.λ, model.Q, model.α, model.ℓ
model.N[ℓ.s,ℓ.a] += 1
δ = ℓ.r + γ*Q[s,a] - Q[ℓ.s,ℓ.a]
for s in model.𝒮

for a in model.𝒜
model.Q[s,a] += α*δ*model.N[s,a]
model.N[s,a] *= γ*λ

end
end

else
model.N[:,:] .= 0.0

end
model.ℓ = (s=s, a=a, r=r)
return model

end

Algorithm 17.4. The Sarsa(λ) up-
date,which uses eligibility traces to
propagate reward back in time to
speed learning of sparse rewards.
The matrix Q contains the state-
action values, the matrix N con-
tains exponentially decaying state-
action visit counts, α is a constant
learning rate, λ is an exponential
decay parameter, and ℓ is the most
recent experience tuple.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

17.5. reward shaping 343

Special care must be taken when applying eligibility traces to an off-policy
algorithm like Q-learning that attempts to learn the value of the optimal policy.9 9 For an overview of this problem

and a potential solution, see A.
Harutyunyan, M.G. Bellemare, T.
Stepleton, and R. Munos, “Q(λ)
with Off-Policy Corrections,” in In-
ternational Conference on Algorithmic
Learning Theory (ALT), 2016.

Eligibility traces propagate back values obtained from an exploration policy. This
mismatch can result in learning instabilities.

17.5 Reward Shaping

Reward function augmentation can also improve learning, especially in problems
with sparse rewards. For example, if we are trying to reach a single goal state, we
could supplement the reward function by an amount that is inversely proportional
to the distance to the goal. Alternatively, we could add another penalty based
on how far we are from the goal. If we are playing chess, for instance, we might
add a penalty to our reward function when we lose a piece, even though we only
care about winning or losing the game at the end, not about winning or losing
individual pieces.

Modifying the reward function during training by incorporating domain knowl-
edge to speed training is known as reward shaping. Suppose that rewards in our
problem are generated according to R(s, a, s′), allowing rewards to depend on
the resulting state. We will use F(s, a, s′) to represent our shaping function. During
training, instead of using R(s, a, s′) as our reward, we use R(s, a, s′) + F(s, a, s′).

Adding F(s, a, s′) to our reward can change the optimal policy, of course. We
are often interested in shaping reward without changing what is optimal. It turns
out that a policy that is optimal under the original reward remains optimal under
the shaped reward if and only if

F(s, a, s′) = γβ(s′)− β(s) (17.15)

for some potential function β(s).10 10 A.Y. Ng, D. Harada, and S. Rus-
sell, “Policy Invariance Under Re-
ward Transformations: Theory and
Application to Reward Shaping,”
in International Conference on Ma-
chine Learning (ICML), 1999.

17.6 Action Value Function Approximation

The algorithms discussed so far in this chapter have assumed discrete state and
action spaces where the action value function can be stored in a lookup table. We
can adapt our algorithms to use value function approximation, allowing us to
apply them to problems with large or continuous spaces and generalize from
limited experience. Similar to the approach taken in chapter 8 in the context of a

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

344 chapter 17. model-free methods

known model, we will use Qθ(s, a) to represent a parametric approximation of
our action value function when the model is unknown.11 11 In recent years, a major focus has

been on deep reinforcement learning,
where deep neural networks are
used for this parametric approxi-
mation. A discussion of practical
implementations is provided by L.
Graesser and W.L. Keng, Founda-
tions of Deep Reinforcement Learning.
Addison Wesley, 2020.

To illustrate this concept, we will derive a version of Q-learning that uses
our parametric approximation. We want to minimize the loss between our ap-
proximation and the optimal action value function Q∗(s, a), which we define to
be12

12 The 1/2 in the front is for con-
venience because we will later be
computing the derivative of this
quadratic.

ℓ(θ) =
1

2
E

(s,a)∼π∗

[

(Q∗(s, a)−Qθ(s, a))2
]

(17.16)

The expectation is over the state-action pairs that are experienced when following
the optimal policy π∗.

A common approach to minimizing this loss is to use some form of gradient
descent. The gradient of the loss is

∇ℓ(θ) = − E
(s,a)∼π∗

[(Q∗(s, a)−Qθ(s, a))∇θQθ(s, a)] (17.17)

We typically choose parametric representations of the action value function that
are differentiable and where ∇θQθ(s, a) is easy to compute, such as linear or
neural network representations. If we apply gradient descent,13 our update rule 13 We want to descend rather than

ascend because we are trying to
minimize our loss.is

θ← θ+ α E
(s,a)∼π∗

[(Q∗(s, a)−Qθ(s, a))∇θQθ(s, a)] (17.18)

where α is our step factor or learning rate. We can approximate the update rule
above using samples of our state-action pairs (s, a) as we experience them:

θ← θ+ α(Q∗(s, a)−Qθ(s, a))∇θQθ(s, a) (17.19)

Of course, we cannot compute equation (17.19) directly because that would
require knowing the optimal policy, which is precisely what we are attempting
to find. Instead, we attempt to estimate it from our observed transition and our
action value approximation:

Q∗(s, a) ≈ r + γ max
a′

Qθ(s
′, a′) (17.20)

which results in the following update rule:

θ← θ+ α(r + γ max
a′

Qθ(s
′, a′)−Qθ(s, a))∇θQθ(s, a) (17.21)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

17.7. experience replay 345

This update is implemented in algorithm 17.5 with the addition of a scaled gra-
dient step (algorithm 12.2), which is often needed to ensure that the gradient
steps do not become too large. Example 17.3 shows how to use this update with a
linear action value approximation. Figure 17.3 demonstrates this algorithm with
the mountain car problem.

struct GradientQLearning
𝒜 # action space (assumes 1:nactions)
γ # discount
Q # parameterized action value function Q(θ,s,a)
∇Q # gradient of action value function
θ # action value function parameter
α # learning rate

end

function lookahead(model::GradientQLearning, s, a)
return model.Q(model.θ, s,a)

end

function update!(model::GradientQLearning, s, a, r, s′)
𝒜, γ, Q, θ, α = model.𝒜, model.γ, model.Q, model.θ, model.α
u = maximum(Q(θ,s′,a′) for a′ in 𝒜)
Δ = (r + γ*u - Q(θ,s,a))*model.∇Q(θ,s,a)
θ[:] += α*scale_gradient(Δ, 1)
return model

end

Algorithm 17.5. The Q-learning
update with action value function
approximation. With each new ex-
perience tuple s, a, r, s′, we up-
date our vector θ with constant
learning rate α. Our parameter-
ized action value function is given
by Q(θ,s,a) and its gradient is
∇Q(θ,s,a).

17.7 Experience Replay

A major challenge of using global function approximation with reinforcement
learning is catastrophic forgetting. For example, we might initially discover that
our particular policy brings us to a low-reward region of the state space. We then
refine our policy to avoid that area. However, after some amount of time, we may
forget why it was important to avoid that region of the state space, and we may
risk reverting to a poorly performing policy.

Catastrophic forgetting can be mitigated with experience replay,14 where a fixed

14 Experience replay played an im-
portant role in the work of V.
Mnih, K. Kavukcuoglu, D. Silver, A.
Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing Atari
with Deep Reinforcement Learn-
ing,” 2013. arXiv: 1312 . 5602v1
. This concept was explored ear-
lier by L.-J. Lin, “Reinforcement
Learning for Robots Using Neu-
ral Networks,” Ph.D. dissertation,
Carnegie Mellon University, 1993.

number of the most recent experience tuples are stored across training iterations.
A batch of tuples are sampled uniformly from this replay memory to remind us to
avoid strategies that we have already discovered are poor.15 The update equation

15 Variations of this approach in-
clude prioritizing experiences. T.
Schaul, J. Quan, I. Antonoglou, and
D. Silver, “Prioritized Experience
Replay,” in International Conference
on Learning Representations (ICLR),
2016.

from equation (17.21) is modified to become

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1312.5602v1
https://arxiv.org/abs/1312.5602v1

346 chapter 17. model-free methods

We are interested in applying Q-learning with a linear action value approx-
imation to the simple regulator problem with γ = 1. Our action value ap-
proximation is Qθ(s, a) = θ⊤β(s, a), where our basis function is

β(s, a) = [s, s2, a, a2, 1]

With this linear model,

∇θQθ(s, a) = β(s, a)

We can implement this as follows for problem 𝒫:
β(s,a) = [s,s^2,a,a^2,1]
Q(θ,s,a) = dot(θ,β(s,a))
∇Q(θ,s,a) = β(s,a)
θ = [0.1,0.2,0.3,0.4,0.5] # initial parameter vector
α = 0.5 # learning rate
model = GradientQLearning(𝒫.𝒜, 𝒫.γ, Q, ∇Q, θ, α)
ϵ = 0.1 # probability of random action
π = EpsilonGreedyExploration(ϵ)
k = 20 # number of steps to simulate
s = 0.0 # initial state
simulate(𝒫, model, π, k, s)

Example 17.3. How to use an ex-
ploration strategy with Q-learning
with action value function approx-
imation in simulation. The param-
eter settings are notional.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

17.7. experience replay 347

−5

0

5

×10−2

sp
ee

d

value function

2,000

2,200

2,400

2,600

position

policy

−1 −0.5 0 0.5

−5

0

5

×10−2

position

sp
ee

d

received reward

−1,000

−500

0

accel right
coast
accel left

Figure 17.3. A utility function
and policy obtained using linear
approximation Q-learning applied
to the mountain car problem (ap-
pendix F.4). The basis functions are
polynomials over position and ve-
locity up to degree eight and are
each duplicated three times for the
three actions. ‘‘Received reward’’
refers to the reward received by
an agent when run using a greedy
policy with the approximate value
function.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

348 chapter 17. model-free methods

θ← θ+ α
1

mgrad
∑

i

(r(i) + γ max
a′

Qθ(s
′(i), a′)−Qθ(s

(i), a(i)))∇θQθ(s
(i), a(i)) (17.22)

where s(i), a(i), r(i), and s′(i) is the ith experience tuple in a random batch of size
mgrad.

Experience replay allows experience tuples to contribute to learning multiple
times, thereby increasing data efficiency. Furthermore, sampling uniformly at
random from the replaymemory breaks apart otherwise correlated sequences that
are obtained from rollouts, thereby reducing the variance of the gradient estimate.
Experience replay stabilizes the learning process by retaining information from
previous policy parameterizations.

Algorithm 17.6 shows how to incorporate experience replay into Q-learning
with action value function approximation. Example 17.4 shows how to apply this
approach to a simple regulator problem.

17.8 Summary

• Model-free methods seek to directly learn an action value function rather than
transition and reward models.

• Simple techniques can be used to incrementally learn a mean from sequential
updates.

• The Q-learning algorithm incrementally learns an action value function using
an approximation of the Bellman equation.

• In contrast with Q-learning, Sarsa uses the action taken by the exploration
policy rather than maximizing over all subsequent actions in its update.

• Eligibility traces can speed learning by propagating sparse rewards through
the state-action space.

• Q-learning can be applied to approximate value functions using stochastic
gradient descent.

• The catastrophic forgetting experienced by Q-learning and Sarsa can be miti-
gated using experience replay, which reuses past experience tuples.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

17.8. summary 349

struct ReplayGradientQLearning
𝒜 # action space (assumes 1:nactions)
γ # discount
Q # parameterized action value function Q(θ,s,a)
∇Q # gradient of action value function
θ # action value function parameter
α # learning rate
buffer # circular memory buffer
m # number of steps between gradient updates
m_grad # batch size

end

function lookahead(model::ReplayGradientQLearning, s, a)
return model.Q(model.θ, s,a)

end

function update!(model::ReplayGradientQLearning, s, a, r, s′)
𝒜, γ, Q, θ, α = model.𝒜, model.γ, model.Q, model.θ, model.α
buffer, m, m_grad = model.buffer, model.m, model.m_grad
if isfull(buffer)

U(s) = maximum(Q(θ,s,a) for a in 𝒜)
∇Q(s,a,r,s′) = (r + γ*U(s′) - Q(θ,s,a))*model.∇Q(θ,s,a)
Δ = mean(∇Q(s,a,r,s′) for (s,a,r,s′) in rand(buffer, m_grad))
θ[:] += α*scale_gradient(Δ, 1)
for i in 1:m # discard oldest experiences

popfirst!(buffer)
end

else
push!(buffer, (s,a,r,s′))

end
return model

end

Algorithm 17.6. Q-learning with
function approximation and ex-
perience replay. The update de-
pends on a parameterized policy
Q(θ,s,a) and gradient ∇Q(θ,s,a).
It updates the parameter vector θ
and the circular memory buffer
provided by DataStructures.jl.
It updates θ every m steps using
a gradient estimated from m_grad
samples from the buffer.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

350 chapter 17. model-free methods

Suppose we want to add experience replay to example 17.3. When construct-
ing the model, we need to provide a replay buffer with the desired capacity:
capacity = 100 # maximum size of the replay buffer
ExperienceTuple = Tuple{Float64,Float64,Float64,Float64}
M = CircularBuffer{ExperienceTuple}(capacity) # replay buffer
m_grad = 20 # batch size
model = ReplayGradientQLearning(𝒫.𝒜, 𝒫.γ, Q, ∇Q, θ, α, M, m, m_grad)

We can vary the number of steps between gradient updates m and the
depth of each simulation d. In the plot shown here, we limit all training runs
to md = 30 experience tuples with each iteration. It indicates that rollouts to
a sufficient depth are necessary for training to succeed. In addition, very few
rollouts to an excessive depth do not perform as well as a moderate number
of rollouts to a moderate depth.

0 20 40 60 80 100

−100

−80

−60

−40

−20

0

iteration

ex
pe

cte
d
va

lu
e

m = 1, d = 30

m = 2, d = 15

m = 3, d = 10

m = 5, d = 6

m = 10, d = 3

Example 17.4. An application of ex-
perience replay to the simple regu-
lator problem with Q-learning and
action value approximation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

17.9. exercises 351

17.9 Exercises
Exercise 17.1. Given the following set of samples, perform incremental estimation of the
mean twice: once using a learning rate of α = 0.1 and once using a learning rate of α = 0.5.
In both, use an initial mean equal to the first sample:

x(1:5) = {1.0, 1.8, 2.0, 1.6, 2.2}

Solution: We set the mean at the first iteration equal to the first sample and proceed to
incrementally estimate the mean using equation (17.6):

x̂1 = 1.0 x̂1 = 1.0

x̂2 = 1.0 + 0.1(1.8− 1.0) = 1.08 x̂2 = 1.0 + 0.5(1.8− 1.0) = 1.4

x̂3 = 1.08 + 0.1(2.0− 1.08) = 1.172 x̂3 = 1.4 + 0.5(2.0− 1.4) = 1.7

x̂4 = 1.172 + 0.1(1.6− 1.172) ≈ 1.215 x̂4 = 1.7 + 0.5(1.6− 1.7) = 1.65

x̂5 = 1.215 + 0.1(2.2− 1.215) ≈ 1.313 x̂5 = 1.65 + 0.5(2.2− 1.65) = 1.925

Exercise 17.2. Following the previous exercise, suppose that once we have estimated
the mean with five samples for both methods, we are provided with a single additional
sample, x(6), that we will use as the final sample in estimating our mean. Which of the
two incremental estimation methods (i.e., α = 0.1 or α = 0.5) would be preferable?
Solution: While we do not know what the sample would be or what the underlying mean
of the process is, we would likely prefer the second incrementally estimated mean that
uses α = 0.5. Since we only have one sample left, the first learning rate is too small
to considerably change the mean, while the second learning rate is large enough to be
responsive, without neglecting the past samples. Consider two cases:
1. If we assume that the next sample is approximately equal to the incremental mean of all

previous samples, then we have x(6) ≈ x̂5. Thus, performing an incremental update of
the mean yields no change to our estimate. We have x̂6 ≈ 1.313 for a learning rate of
0.1, and we have x̂6 = 1.925 for a learning rate of 0.5.

2. If we assume the next sample is approximately equal to the exact mean of all previous
samples, then we have x(6) ≈ 1.72. The update using a learning rate of 0.1 yields
x̂6 ≈ 1.354, while the update using a learning rate of 0.5 yields x̂6 ≈ 1.823.

In both of these cases, supposing that the next sample is equal to the mean of all previous
samples, then the estimate using a learning rate of 0.5 is more accurate.
Exercise 17.3. Consider applying Q-learning with function approximation to a problem
with a continuous action space by discretizing the action space. Suppose that the con-
tinuous action space is in R

n, such as a robot with n actuators, and each dimension is
discretized into m intervals. Howmany actions are in the resulting discrete action space? Is
Q-learning with function approximation well suited for continuous problems with many
dimensions?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

352 chapter 17. model-free methods

Solution: An action space with n dimensions and m intervals per dimension results in mn

discrete actions. The number of discrete actions increases exponentially in n. Even if m is
small, larger values of n can quickly result in very high action counts. Hence, Q-learning
with function approximation is not well suited for use on continuous problems with many
action dimensions.

Exercise 17.4. What is the complexity of Q-learning if we interact with the environment
for d time steps? What is the complexity of Sarsa if we interact with the environment for d

time steps?

Solution: For Q-learning, our update rule is

Q(s, a)← Q(s, a) + α

(

r + γ max
a′

Q(s′, a′)−Q(s, a)

)

At each time step, we must perform a maximization over actions, so for d time steps, the
complexity of Q-learning is O(d|A|). For Sarsa, our update rule is

Q(s, a)← Q(s, a) + α
(

r + γQ(s′, a′)−Q(s, a)
) (17.23)

At each time step, unlike Q-learning, we do not have to perform a maximization over
actions, so for d time steps, the complexity of Sarsa is simply O(d).

Exercise 17.5. Is the computational complexity of Sarsa per experience tuple (st, at, rt, st+1)

more or less than that of Sarsa(λ)?

Solution: For Sarsa, our update rule is

Q(s, a)← Q(s, a) + α
(

r + γQ(s′, a′)−Q(s, a)
) (17.24)

So, for each experience tuple, we have O(1) complexity. For Sarsa(λ), our update rules are

δ← rt + γQ(st+1, at+1)−Q(st, at)

N(st, at)← N(st, at) + 1

Q(s, a)← Q(s, a) + αδN(s, a) for all s, a

N(s, a)← γλN(s, a) for all s, a

For each experience tuple, we need to compute δ and increment the visit count at (st, at),
which are both O(1). However, we need to update both the action value function and the
visit counts for all states and actions, which are both O(|S||A|). Thus, the computational
complexity per experience tuple is greater for Sarsa(λ). However, Sarsa(λ) often converges
using fewer experience tuples.

Exercise 17.6. What is the behavior of Q(λ) in the limit as λ→ 0? What is the behavior of
Q(λ) in the limit as λ→ 1?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

17.9. exercises 353

Solution: For Q(λ), we perform the following update rules:

δ← rt + γ max
a′

Q(st+1, a′)−Q(st, at)

N(st, at)← N(st, at) + 1

Q(s, a)← Q(s, a) + αδN(s, a) for all s, a

N(s, a)← γλN(s, a) for all s, a

In the limit as λ → 0, for our first iteration, we compute the temporal difference error δ

and we increment the visit count N(st, at). In the action value function update, the only
nonzero N(s, a) is at N(st, at), so we perform Q(st, at) ← Q(st, at) + αδN(st, at). Finally,
we reset all the visit counts to zero. From this, we can see that in the limit as λ → 0, we
have no eligibility traces and we are performing a straightforward Q-learning update.

In the limit as λ→ 1, our visit counts will accumulate and we have full eligibility traces,
which will spread the reward over all previously visited state-action pairs.

Exercise 17.7. Compute Q(s, a) using Sarsa(λ) after following the trajectory

(s1, aR, 0, s2, aR, 0, s3, aL, 10, s2, aR, 4, s1, aR)

Use α = 0.5, λ = 1, γ = 0.9, and initial action value function and visit counts equal to zero
everywhere. Assume that S = {s1, s2, s3, s4} and A = {aL, aR}.

Solution: The Sarsa(λ) update rules are

δ← rt + γQ(st+1, at+1)−Q(st, at)

N(st, at)← N(st, at) + 1

Q(s, a)← Q(s, a) + αδN(s, a) for all s, a

N(s, a)← γλN(s, a) for all s, a

For the first experience tuple, we have δ = 0 + 0.9× 0− 0 = 0, we increment the visit
count at N(s1, aR), the action value function does not change since δ = 0, and we update
our counts. After this, we have

Q(s, a) s1 s2 s3 s4

aL 0 0 0 0

aR 0 0 0 0

N(s, a) s1 s2 s3 s4

aL 0 0 0 0

aR 0.9 0 0 0

For the second experience tuple, we have δ = 0, we increment the visit count at N(s2, aR),
the action value function does not change since δ = 0, and we update our counts. After
this, we have

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

354 chapter 17. model-free methods

Q(s, a) s1 s2 s3 s4

aL 0 0 0 0

aR 0 0 0 0

N(s, a) s1 s2 s3 s4

aL 0 0 0 0

aR 0.81 0.9 0 0

For the third experience tuple, we have δ = 10, we increment the visit count at N(s3, aL),
we update the action value function, and we update our counts. After this, we have

Q(s, a) s1 s2 s3 s4

aL 0 0 5 0

aR 4.05 4.5 0 0

N(s, a) s1 s2 s3 s4

aL 0 0 0.9 0

aR 0.729 0.81 0 0

For the fourth experience tuple, we have δ = 4 + 0.9× 4.05− 4.5 = 3.145, we increment
the visit count at N(s2, aR) = 0.81 + 1 = 1.81, we update the action value function, and
we update our counts. After this, we have

Q(s, a) s1 s2 s3 s4

aL 0 0 6.415 0

aR 5.196 7.346 0 0

N(s, a) s1 s2 s3 s4

aL 0 0 0.81 0

aR 0.656 1.629 0 0

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

18 Imitation Learning

Previous chapters have assumed either that a reward function is known or that re-
wards are received while interacting with the environment. For some applications,
it may be easier for an expert to demonstrate the desired behavior rather than
specify a reward function. This chapter discusses algorithms for imitation learning,
where the desired behavior is learned from expert demonstration. We will cover
a variety of methods ranging from very simple likelihood-maximization methods
to more complicated iterative methods that involve reinforcement learning.1 1 Additional methods and applica-

tions are surveyed by A. Hussein,
M.M.Gaber, E. Elyan, andC. Jayne,
“Imitation Learning: A Survey of
Learning Methods,” ACM Comput-
ing Surveys, vol. 50, no. 2, pp. 1–35,
2017.

18.1 Behavioral Cloning

A simple form of imitation learning is to treat it as a supervised learning problem.
This method, called behavioral cloning,2 trains a stochastic policy πθ parameterized 2 D.A. Pomerleau, “Efficient Train-

ing of Artificial Neural Networks
for Autonomous Navigation,” Neu-
ral Computation, vol. 3, no. 1, pp. 88–
97, 1991.

by θ to maximize the likelihood of actions from a data set D of expert state-action
pairs:

maximize
θ

∏
(s,a)∈D

πθ(a | s) (18.1)

As done in earlier chapters, we can transform the maximization over the product
over πθ(a | s) to a sum over log πθ(a | s).

Depending on howwe want to represent the conditional distribution πθ(a | s),
we may compute the maximum likelihood estimate of θ analytically. For example,
if we use a discrete conditional model (section 2.4), θwould consist of the counts
N(s, a) from D and πθ(a | s) = N(s, a)/ ∑a N(s, a). Example 18.1 applies a
discrete conditional model to data from the mountain car problem.

If we have a factored representation of our policy, we can use a Bayesian
network to represent the joint distribution over our state and action variables.
Figure 18.1 shows an example. We can learn both the structure (chapter 5) and

356 chapter 18. imitation learning

Consider using behavioral cloning on expert demonstrations for the moun-
tain car problem (appendix F.4). We are given 10 rollouts from an expert
policy. We fit a conditional distribution and plot the results. The continuous
trajectories were discretized with 10 bins each for position and for speed.

−0.05

0.00

0.05

sp
ee

d

P(a = −1 | s) P(a = 0 | s)

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5

−0.05

0.00

0.05

position

sp
ee

d

P(a = 1 | s)

−1 −0.5 0 0.5

position

expert demonstrations

accel right
coast
accel left

The state space is not fully covered by expert demonstrations, which is
typical of imitation learning problems. The resulting policymay performwell
when used in regions with coverage, but it assigns a uniform distribution
to actions in regions without coverage. Even if we start in a region with
coverage, we may transition to regions without coverage due to stochasticity
in the environment.

Example 18.1. A demonstration
of behavioral cloning applied to
the mountain car problem. The
light blue regions are areaswithout
training data, resulting in poor pol-
icy performancewhen the agent en-
counters those states.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

18.1 . behavioral cloning 357

the parameters (chapter 4) from the data D. Given the current state, we can then
infer the distribution over actions using one of the inference algorithms discussed
earlier (chapter 3).

s1 s2 s3

a1 a2

P(s1) P(s2) P(s3)

P(a1 | s1, s2) P(a2 | s1, s2, s3)

Figure 18.1. Bayesian networks can
be used to represent a joint distribu-
tion over the state and action vari-
ables. We can apply an inference al-
gorithm to generate a distribution
over actions, given the current val-
ues of the state variables.

We can use many other representations for πθ. For example, we might want
to use a neural network, where the input corresponds to the values of the state
variables and the output corresponds to parameters of a distribution over the
action space. If our representation is differentiable, which is the case with neural
networks, we can attempt to optimize equation (18.1) using gradient ascent. This
approach is implemented in algorithm 18.1.

struct BehavioralCloning
α # step size
k_max # number of iterations
∇logπ # log likelihood gradient

end

function optimize(M::BehavioralCloning, D, θ)
α, k_max, ∇logπ = M.α, M.k_max, M.∇logπ
for k in 1:k_max

∇ = mean(∇logπ(θ, a, s) for (s,a) in D)
θ += α*∇

end
return θ

end

Algorithm 18.1. A method for
learning a parameterized stochas-
tic policy from expert demonstra-
tions in the form of a set of state-
action tuples D. The policy param-
eterization vector θ is iteratively
improved by maximizing the log
likelihood of the actions given the
states. Behavioral cloning requires
a step size α, an iteration count
k_max, and a log likelihood gradi-
ent ∇logπ.

The closer the expert demonstrations are to optimal, the better the resulting
behavioral cloning policy will perform.3 However, behavioral cloning suffers 3 U. Syed and R. E. Schapire, “A

Reduction from Apprenticeship
Learning to Classification,” in Ad-
vances in Neural Information Process-
ing Systems (NIPS), 2010.

from cascading errors. As discussed in example 18.2, small inaccuracies compound
during a rollout and eventually lead to states that are poorly represented in the
training data, thereby leading to worse decisions, and ultimately to invalid or
unseen situations. Although behavioral cloning is attractive due to its simplic-
ity, cascading errors cause the method to perform poorly on many problems,
especially when policies must be used for long time horizons.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

358 chapter 18. imitation learning

Consider applying behavioral cloning to train a policy for driving an au-
tonomous race car. A human race car driver provides expert demonstrations.
Being an expert, the driver never drifts onto the grass or too close to a railing.
A model trained with behavioral cloning would have no information to use
when near a railing or when drifting onto the grass, and thus it would not
know how to recover.

Example 18.2. A brief example of
the generalization issue inherent to
behavioral cloning approaches.

18.2 Data Set Aggregation

One way to address the problem of cascading errors is to correct a trained policy
using additional expert input. Sequential interactive demonstration methods alter-
nate between collecting data from an expert in situations generated by a trained
policy and using this data to improve this policy.

One type of sequential interactive demonstration method is called data set
aggregation (DAgger) (algorithm 18.2).4 It starts by training a stochastic policy 4 S. Ross, G. J. Gordon, and J.A.

Bagnell, “A Reduction of Imitation
Learning and Structured Predic-
tion to No-Regret Online Learn-
ing,” in International Conference on
Artificial Intelligence and Statistics
(AISTATS), vol. 15, 2011.

using behavioral cloning. The policy is then used to run several rollouts from an
initial state distribution b, which are then given to an expert to provide the correct
actions for each state. The new data is aggregated with the previous data set and
a new policy is trained. Example 18.3 illustrates this process.

These interactive demonstrations iteratively build a data set covering the re-
gions of the state space that the agent is likely to encounter, based on previous
learning iterations. With each iteration, newly added examples compose a smaller
fraction of the data set, thereby leading to smaller policy changes. While sequen-
tial interactive demonstration can work well in practice, it is not guaranteed to
converge. It can be shown that mixing in influence from the expert policy can
guarantee convergence, which is the subject of the next section.

18.3 Stochastic Mixing Iterative Learning

Sequential interactive methods can also iteratively build up a policy by stochas-
tically mixing in newly trained policies. One such method is stochastic mixing
iterative learning (SMILe) (algorithm 18.3).5 It uses behavioral cloning in every

5 S. Ross and J.A. Bagnell, “Ef-
ficient Reductions for Imitation
Learning,” in International Confer-
ence on Artificial Intelligence and
Statistics (AISTATS), 2010.

iteration but mixes the newly trained policy with the previous ones.
We start with the expert policy, π(1) = πE.6 In each iteration, we execute the

6 We do not have an explicit rep-
resentation of πE. Evaluating πE

requires interactively querying the
expert, as done in the previous sec-
tion.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

18.3. stochastic mixing iterative learning 359

struct DataSetAggregation
𝒫 # problem with unknown reward function
bc # behavioral cloning struct
k_max # number of iterations
m # number of rollouts per iteration
d # rollout depth
b # initial state distribution
πE # expert
πθ # parameterized policy

end

function optimize(M::DataSetAggregation, D, θ)
𝒫, bc, k_max, m = M.𝒫, M.bc, M.k_max, M.m
d, b, πE, πθ = M.d, M.b, M.πE, M.πθ
θ = optimize(bc, D, θ)
for k in 2:k_max

for i in 1:m
s = rand(b)
for j in 1:d

push!(D, (s, πE(s)))
a = rand(πθ(θ, s))
s = rand(𝒫.T(s, a))

end
end
θ = optimize(bc, D, θ)

end
return θ

end

Algorithm 18.2. The DAgger
method of data set aggregation
for learning a stochastic parame-
terized policy from expert demon-
strations. This method takes an ini-
tial data set of state-action tuples D,
a stochastic parameterized policy
πθ(θ, s), an MDP 𝒫 that defines
a transition function, and an ini-
tial state distribution b. Behavioral
cloning (algorithm 18.1) is used in
each iteration to improve the pol-
icy.

An expert policy πE labels tra-
jectories sampled from the latest
learned policy to augment the data
set. The original paper generated
trajectories by stochastically mix-
ing in the expert policy. This imple-
mentation is thus the original DAg-
ger with an extreme mixing value
of zero.

In practice, an expert policy
would not exist, and calls to this
policy would be replaced with
queries to a human expert.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

360 chapter 18. imitation learning

Consider using DAgger to train a policy on the mountain car problem where
the reward is not observed. We use an expert policy that accelerates in the
direction of travel. In this example, we train a policy using the following
features:

f(s) = [1[v > 0], 1[v < 0], x, x2, v, v2, xv]

where x and v are the position and speed of the car.

−5

0

5

×10−2

sp
ee

d

rollouts P(a = −1 | s) P(a = 1 | s)

0

0.2

0.4

0.6

0.8

1

−5

0

5

×10−2

sp
ee

d

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5

−5

0

5

×10−2

position

sp
ee

d

−1 −0.5 0 0.5

position
−1 −0.5 0 0.5

position

0

0.2

0.4

0.6

0.8

1

accel right coast accel left

Trajectories are colored according to the action. In the first iteration, the
agent behaves randomly, unable to make progress toward the goal (x ≥
0.6). With additional iterations, the agent learns to mimic the expert policy
of accelerating in the direction of travel. This behavior is apparent in the
new trajectories, which spiral outward, and the policy, which assigns high
likelihood to a = 1 when v > 0 and a = −1 when v < 0.

Example 18.3. DAgger applied to
the mountain car problem, with it-
erations running from top to bot-
tom. Trajectories accumulate in the
data set over time. The behavior of
the agent improves with each itera-
tion.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

18.4. maximum margin inverse reinforcement learning 361

latest policy π(k) to generate a new data set, querying the expert to provide the
correct actions. Behavioral cloning is applied only to this new data set to train
a new component policy π̂(k). This component policy is mixed with component
policies from the previous iterations to produce a new policy π(k+1).

The mixing of component policies to generate π(k+1) is governed by a mixing
scalar β ∈ (0, 1). The probability of acting according to the expert policy is (1− β)k,
and the probability of acting according to π̂(i) is β(1− β)i−1. This scheme assigns
more weight to older policies under the hypothesis that older policy components
were trained on the states most likely to be encountered.7 With each iteration, the 7 In SMILe, we are acting accord-

ing to our latest learned policy. We
expect that this learned policy will
match the expert fairlywell and pri-
marilymispredictwhenwedeviate
from the expert policy. The learned
component policies generally only
need to make smaller and smaller
contributionswith each iteration to
make up the difference in what has
not already been learned.

probability of acting according to the original expert policy decays to zero. The
mixing scalar is typically small, such that the agent does not abandon the expert’s
policy too quickly. Example 18.4 demonstrates this approach with the mountain
car problem.

18.4 Maximum Margin Inverse Reinforcement Learning

In many application settings, we have no expert that can be interactively queried;
but instead we have a batch of expert demonstration trajectories. We will assume
that the expert demonstration data D consists of m trajectories. Each trajectory τ

in D involves a rollout to depth d. In inverse reinforcement learning, we assume that
the expert is optimizing an unknown reward function. From D, we attempt to
derive that reward function. With that reward function, we can use the methods
discussed in prior chapters to derive an optimal policy.

There are different approaches to inverse reinforcement learning. We generally
need to define a parameterization of the reward function. A common assumption
is that this parameterization is linear, with Rφ(s, a) = φ⊤β(s, a), where β(s, a)

is a feature vector andφ is a vector of weightings. In this section, we will focus
on an approach known as maximum margin inverse reinforcement learning,8 where 8 P. Abbeel and A.Y. Ng, “Appren-

ticeship Learning via Inverse Re-
inforcement Learning,” in Interna-
tional Conference on Machine Learn-
ing (ICML), 2004.

the features are assumed to be binary. Since optimal policies remain optimal with
positive scaling of the reward function, this method additionally constrains the
weight vector such that ‖φ‖2 ≤ 1. The expert data activates each binary feature
with different frequencies, perhaps pursuing some and avoiding others. This
approach attempts to learn this pattern of activation and trains an agent to mimic
these activation frequencies.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

362 chapter 18. imitation learning

struct SMILe
𝒫 # problem with unknown reward
bc # Behavioral cloning struct
k_max # number of iterations
m # number of rollouts per iteration
d # rollout depth
b # initial state distribution
β # mixing scalar (e.g., d^-3)
πE # expert policy
πθ # parameterized policy

end

function optimize(M::SMILe, θ)
𝒫, bc, k_max, m = M.𝒫, M.bc, M.k_max, M.m
d, b, β, πE, πθ = M.d, M.b, M.β, M.πE, M.πθ
𝒜, T = 𝒫.𝒜, 𝒫.T
θs = []
π = s -> πE(s)
for k in 1:k_max

execute latest π to get new data set D
D = []
for i in 1:m

s = rand(b)
for j in 1:d

push!(D, (s, πE(s)))
a = π(s)
s = rand(T(s, a))

end
end
train new policy classifier
θ = optimize(bc, D, θ)
push!(θs, θ)
compute a new policy mixture
Pπ = Categorical(normalize([(1-β)^(i-1) for i in 1:k],1))
π = s -> begin

if rand() < (1-β)^(k-1)
return πE(s)

else
return rand(Categorical(πθ(θs[rand(Pπ)], s)))

end
end

end
Ps = normalize([(1-β)^(i-1) for i in 1:k_max],1)
return Ps, θs

end

Algorithm 18.3. The SMILe al-
gorithm for training a stochastic
parameterized policy from expert
demonstrations for an MDP 𝒫. It
successively mixes in new com-
ponent policies with smaller and
smaller weights, while simultane-
ously reducing the probability of
acting according to the expert pol-
icy. The method returns the prob-
abilities Ps and parameterizations
θs for the component policies.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

18.4. maximum margin inverse reinforcement learning 363

Consider using SMILe to train a policy on the mountain car problem where
the reward is not observed. We use the same features that were used for
DAgger in example 18.3. Both DAgger and SMILe receive a new expert-
labeled data set with each iteration. Instead of accumulating a larger data
set of expert-labeled data, SMILe trains a new policy component using only
the most recent data, mixing the new policy component with the previous
policy components.

−5

0

5

×10−2

sp
ee

d

rollouts P(a = −1 | s) P(a = 1 | s)

0

0.2

0.4

0.6

0.8

1

−5

0

5

×10−2

sp
ee

d

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5

−5

0

5

×10−2

position

sp
ee

d

−1 −0.5 0 0.5

position
−1 −0.5 0 0.5

position

0

0.2

0.4

0.6

0.8

1

accel right coast accel left

Example 18.4. Using SMILe to
learn a policy for the mountain
car problem. In contrast with DAg-
ger in example 18.3, SMILe mixes
the expert into the policy during
rollouts. This expert component,
whose influence wanes with each
iteration, causes the initial rollouts
to better progress toward the goal.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

364 chapter 18. imitation learning

An important part of this algorithm involves reasoning about the expected
return under a policy π for a weightingφ and initial state distribution b:

E
s∼b

[U(s)] = Eτ

[

d

∑
k=1

γk−1Rφ(s(k), a(k))

]

(18.2)

= Eτ

[

d

∑
k=1

γk−1φ⊤β(s(k), a(k))

]

(18.3)

= φ⊤
(

Eτ

[

d

∑
k=1

γk−1β(s(k), a(k))

])

(18.4)

= φ⊤µπ (18.5)

where τ corresponds to trajectories generated by π to depth d. Here, we introduce
the feature expectations vector µπ , which is the expected discounted accumulated
feature values. These feature expectations can be estimated from m rollouts, as
implemented in algorithm 18.4.

struct InverseReinforcementLearning
𝒫 # problem
b # initial state distribution
d # depth
m # number of samples
π # parameterized policy
β # binary feature mapping
μE # expert feature expectations
RL # reinforcement learning method
ϵ # tolerance

end

function feature_expectations(M::InverseReinforcementLearning, π)
𝒫, b, m, d, β, γ = M.𝒫, M.b, M.m, M.d, M.β, M.𝒫.γ
μ(τ) = sum(γ^(k-1)*β(s, a) for (k,(s,a)) in enumerate(τ))
τs = [simulate(𝒫, rand(b), π, d) for i in 1:m]
return mean(μ(τ) for τ in τs)

end

Algorithm 18.4. A structure for in-
verse reinforcement learning and
a method for estimating a feature
expectations vector from rollouts.

We can use the expert demonstrations to estimate the expert feature expecta-
tions µE, and we want to find a policy that matches these feature expectations
as closely as possible. At the first iteration, we begin with a randomized policy
π(1) and estimate its feature expectations, denoted as µ(1). At iteration k, we find
a newφ(k) corresponding to a reward function R

φ(k)(s, a) = φ(k)⊤β(s, a), such

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

18.5. maximum entropy inverse reinforcement learning 365

that the expert outperforms all previously found policies by the greatest margin t:

maximize
t,φ

t

subject to φ⊤µE ≥ φ⊤µ(i) + t for i = 1, . . . , k− 1

‖φ‖2 ≤ 1

(18.6)

Equation (18.6) is a quadratic program that can be easily solved. We then solve
for a new policy π(k) using the reward function R(s, a) = φ(k)⊤β(s, a), and
produce a new vector of feature expectations. Figure 18.2 illustrates this margin
maximization process.

We iterate until the margin is sufficiently small, with t ≤ ǫ. At convergence,
we can solve for a mixed policy that attempts to have feature expectations as close
as possible to that of the expert policy:

minimize
λ

‖µE − µλ‖2

subject to λ ≥ 0

‖λ‖1 = 1

(18.7)

where µλ = ∑i λiµ
(i). The mixture weights λ combine the policies found at each

iteration. With probability λi, we follow policy π(i). Maximum margin inverse
reinforcement learning is implemented in algorithm 18.5.

18.5 Maximum Entropy Inverse Reinforcement Learning

The inverse reinforcement learning approach from the previous section is under-
specified, meaning that there are often multiple policies that can produce the
same feature expectations as the expert demonstrations. This section introduces
maximum entropy inverse reinforcement learning, which avoids this ambiguity by
preferring the policy that results in the distribution over trajectories that has
maximum entropy (appendix A.8).9 The problem can be transformed into one of

9 B.D. Ziebart, A. Maas, J. A. Bag-
nell, and A.K. Dey, “Maximum En-
tropy Inverse Reinforcement Learn-
ing,” in AAAI Conference on Artifi-
cial Intelligence (AAAI), 2008.

finding the best reward function parametersφ in a maximum likelihood estima-
tion problem, given the expert data D.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

366 chapter 18. imitation learning

µ(1)

µE

φ(2)
t(1)

µ(1)

µ(2)

µE

φ(3)

t(2)

µ(1)

µ(2)
µ(3)

µE φ(4)
t(3)

Figure 18.2. A geometric visual-
ization of three example iterations
of the maximum-margin inverse
reinforcement learning algorithm,
going top to bottom. In each itera-
tion, the new weight vector points
in the direction perpendicular to
the hyperplane that separates the
expert feature expectation vector
from that of the previous policy
with the largest possible margin.
The margin decreases with each it-
eration.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

18.5. maximum entropy inverse reinforcement learning 367

function calc_weighting(M::InverseReinforcementLearning, μs)
μE = M.μE
k = length(μE)
model = Model(Ipopt.Optimizer)
@variable(model, t)
@variable(model, ϕ[1:k] ≥ 0)
@objective(model, Max, t)
for μ in μs

@constraint(model, ϕ⋅μE ≥ ϕ⋅μ + t)
end
@constraint(model, ϕ⋅ϕ ≤ 1)
optimize!(model)
return (value(t), value.(ϕ))

end

function calc_policy_mixture(M::InverseReinforcementLearning, μs)
μE = M.μE
k = length(μs)
model = Model(Ipopt.Optimizer)
@variable(model, λ[1:k] ≥ 0)
@objective(model, Min, (μE - sum(λ[i]*μs[i] for i in 1:k))⋅

(μE - sum(λ[i]*μs[i] for i in 1:k)))
@constraint(model, sum(λ) == 1)
optimize!(model)
return value.(λ)

end

function optimize(M::InverseReinforcementLearning, θ)
π, ϵ, RL = M.π, M.ϵ, M.RL
θs = [θ]
μs = [feature_expectations(M, s->π(θ,s))]
while true

t, ϕ = calc_weighting(M, μs)
if t ≤ ϵ

break
end
copyto!(RL.ϕ, ϕ) # R(s,a) = ϕ⋅β(s,a)
θ = optimize(RL, π, θ)
push!(θs, θ)
push!(μs, feature_expectations(M, s->π(θ,s)))

end
λ = calc_policy_mixture(M, μs)
return λ, θs

end

Algorithm 18.5. Maximum mar-
gin inverse reinforcement learning,
which computes a mixed policy
whose feature expectations match
those of given expert demonstra-
tions. We use JuMP.jl to solve con-
strained optimization problems.
This implementation requires that
the provided reinforcement learn-
ing struct has a weight vector ϕ that
can be updated with new values.
The method returns the stochas-
tic weightings λ and parameteriza-
tions θs for the component policies.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

368 chapter 18. imitation learning

Any policy π induces a distribution over trajectories10 Pπ(τ). Different policies
10 For simplicity, this section as-
sumes a finite horizon and that the
state and action spaces are discrete,
making Pφ(τ) a probability mass.
To extend maximum entropy in-
verse reinforcement learning both
to problems with continuous state
and action spaces where the dy-
namics may be unknown, consider
guided cost learning. C. Finn, S.
Levine, and P. Abbeel, “Guided
Cost Learning: Deep Inverse Op-
timal Control via Policy Optimiza-
tion,” in International Conference on
Machine Learning (ICML), 2016.

produce different trajectory distributions. We are free to choose any of these
distributions over trajectories that match the expert feature expectations. The
principle of maximum entropy chooses the least informative distribution, which
corresponds to the one with maximum entropy.11 It can be shown that the least

11 For an introduction to this prin-
ciple, see E. T. Jaynes, “Informa-
tion Theory and StatisticalMechan-
ics,” Physical Review, vol. 106, no. 4,
pp. 620–630, 1957.

informative trajectory distribution takes the following form:

Pφ(τ) =
1

Z(φ)
exp(Rφ(τ)) (18.8)

where Pφ(τ) is the likelihood of a trajectory τ given reward parameterφ, and

Rφ(τ) =
d

∑
k=1

γk−1Rφ(s(k), a(k)) (18.9)

is the discounted trajectory reward. We make no assumption on the parameteriza-
tion of Rφ(s(k), a(k)) other than that it is differentiable, allowing representations
such as neural networks. The normalization scalar Z(φ) ensures that the proba-
bilities sum to 1:

Z(φ) = ∑
τ

exp(Rφ(τ)) (18.10)

The summation is over all possible trajectories.
We have chosen a particular class of trajectory distributions for our policy.

We now fit that class to our trajectories using maximum likelihood to obtain the
parameters that best describe our data:

max
φ

f (φ) = max
φ

∑
τ∈D

log Pφ(τ) (18.11)

We can rewrite the objective function f (φ) from equation (18.11):

f (φ) = ∑
τ∈D

log
1

Z(φ)
exp(Rφ(τ)) (18.12)

=

(

∑
τ∈D

Rφ(τ)

)

− |D| log Z(φ) (18.13)

=

(

∑
τ∈D

Rφ(τ)

)

− |D| log ∑
τ

exp(Rφ(τ)) (18.14)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

18.6. generative adversarial imitation learning 369

We can attempt to optimize this objective function through gradient ascent.
The gradient of f is

∇φ f =

(

∑
τ∈D
∇φRφ(τ)

)

− |D|
∑τ exp(Rφ(τ)) ∑

τ

exp(Rφ(τ))∇φRφ(τ)

(18.15)

=

(

∑
τ∈D
∇φRφ(τ)

)

− |D|∑
τ

Pφ(τ)∇φRφ(τ) (18.16)

=

(

∑
τ∈D
∇φRφ(τ)

)

− |D|∑
s

bγ,φ(s)∑
a

πφ(a | s)∇φRφ(s, a) (18.17)

If the reward function is linear, with Rφ(s, a) = φ⊤β(s, a), as in the previous
section, then ∇φRφ(s, a) is simply β(s, a).

Updating the parameter vector φ thus requires both the discounted state
visitation frequency bγ,φ and the optimal policy under the current parameter
vector, πφ(a | s). We can obtain the optimal policy by running reinforcement
learning. To compute the discounted state visitation frequencies, we can use
rollouts or take a dynamic programming approach.

If we take a dynamic programming approach to compute the discounted state
visitation frequencies, we can start with the initial state distribution b

(1)
γφ = b(s)

and iteratively work forward in time:

b
(k+1)
γ,φ (s) = γ ∑

a
∑
s′

b
(k)
γ,φ(s)π(a | s)T(s′ | s, a) (18.18)

This version of maximum entropy inverse reinforcement learning is implemented
in algorithm 18.6.

18.6 Generative Adversarial Imitation Learning

In generative adversarial imitation learning (GAIL),12 we optimize a differentiable 12 J. Ho and S. Ermon, “Generative
Adversarial Imitation Learning,” in
Advances in Neural Information Pro-
cessing Systems (NIPS), 2016.

parameterized policy πθ, often represented by a neural network. Rather than
provide a reward function, we use adversarial learning (appendix D.7). We also
train a discriminator Cφ(s, a), typically also a neural network, to return the proba-
bility that it assigns to the state-action pair coming from the learned policy. The
process involves alternating between training this discriminator to become better

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

370 chapter 18. imitation learning

struct MaximumEntropyIRL
𝒫 # problem
b # initial state distribution
d # depth
π # parameterized policy π(θ,s)
Pπ # parameterized policy likelihood π(θ, a, s)
∇R # reward function gradient
RL # reinforcement learning method
α # step size
k_max # number of iterations

end

function discounted_state_visitations(M::MaximumEntropyIRL, θ)
𝒫, b, d, Pπ = M.𝒫, M.b, M.d, M.Pπ
𝒮, 𝒜, T, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.T, 𝒫.γ
b_sk = zeros(length(𝒫.𝒮), d)
b_sk[:,1] = [pdf(b, s) for s in 𝒮]
for k in 2:d

for (si′, s′) in enumerate(𝒮)
b_sk[si′,k] = γ*sum(sum(b_sk[si,k-1]*Pπ(θ, a, s)*T(s, a, s′)

for (si,s) in enumerate(𝒮))
for a in 𝒜)

end
end
return normalize!(vec(mean(b_sk, dims=2)),1)

end

function optimize(M::MaximumEntropyIRL, D, ϕ, θ)
𝒫, π, Pπ, ∇R, RL, α, k_max = M.𝒫, M.π, M.Pπ, M.∇R, M.RL, M.α, M.k_max
𝒮, 𝒜, γ, nD = 𝒫.𝒮, 𝒫.𝒜, 𝒫.γ, length(D)
for k in 1:k_max

copyto!(RL.ϕ, ϕ) # update parameters
θ = optimize(RL, π, θ)
b = discounted_state_visitations(M, θ)
∇Rτ = τ -> sum(γ^(i-1)*∇R(ϕ,s,a) for (i,(s,a)) in enumerate(τ))
∇f = sum(∇Rτ(τ) for τ in D) - nD*sum(b[si]*sum(Pπ(θ,a,s)*∇R(ϕ,s,a)

for (ai,a) in enumerate(𝒜))
for (si, s) in enumerate(𝒮))

ϕ += α*∇f
end
return ϕ, θ

end

Algorithm 18.6. Maximum en-
tropy inverse reinforcement learn-
ing, which finds a stochastic pol-
icy that maximizes the likelihood
of the expert demonstrations un-
der a maximum-entropy trajectory
distribution. This implementation
computes the expected visitations
using dynamic programming over
all states, which requires that the
problem be discrete.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

18.7. summary 371

at distinguishing between simulated and expert state-action pairs, and training
the policy to look indistinguishable from the expert demonstrations. The process
is sketched in figure 18.3.

state

policy

π(a | s)

simulated state-action pairs expert state-action pairs

discriminator

P(simulated | s, a)

Figure 18.3. Instead of inferring a
reward function, generative adver-
sarial imitation learning optimizes
a discriminator to distinguish be-
tween simulated and expert state-
action pairs, and it optimizes a pol-
icy to appear indistinguishable to
the discriminator. The aim is to
eventually produce a policy that re-
sembles the expert.

The discriminator and policy have opposing objectives. GAIL seeks to find a
saddle point (θ,φ) of the negative log loss of the discriminator’s binary classifi-
cation problem:13 13 The original paper also includes

the following entropy term:
−λ E(s,a)∼D [− log πθ(a | s)]max

φ
min
θ

E(s,a)∼πθ

[

log(Cφ(s, a))
]

+ E(s,a)∼D
[

log(1− Cφ(s, a))
] (18.19)

wherewe use (s, a) ∼ D to represent samples from the distribution represented by
the expert data set D. We can alternate between gradient ascent onφ to increase
the objective and trust region policy optimization (section 12.4) on θ to reduce the
objective, generating the necessary trajectory samples from the policy to conduct
each of these steps. The discriminator provides a learning signal to the policy
similar to the way that a reward signal would if it were known.

18.7 Summary

• Imitation learning involves learning the desired behavior from expert demon-
stration without the use of a reward function.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

372 chapter 18. imitation learning

• One type of imitation learning is behavioral cloning, which produces a stochas-
tic policy that maximizes the conditional likelihood of the actions in the data
set.

• When an expert can be queried multiple times, we can use iterative approaches
like data set aggregation or stochastic mixing iterative learning.

• Inverse reinforcement learning involves inferring a reward function from expert
data and then using traditional methods for finding an optimal policy.

• Maximum margin inverse reinforcement learning attempts to find a policy that
matches the frequency of binary features found in the expert data set.

• Maximum entropy inverse reinforcement learning frames the problem of find-
ing the best reward parameter as a maximum likelihood estimation problem,
which it tries to solve using gradient ascent.

• Generative adversarial imitation learning iteratively optimizes a discriminator
and a policy; the discriminator tries to discriminate between decisions made
by the policy and decisions made by the expert, and the policy attempts to
deceive the discriminator.

18.8 Exercises
Exercise 18.1. Consider applying behavioral cloning to a discrete problem where we have
been given expert demonstrations. We could define a feature function β(s) and represent
the policy with a softmax distribution:

π(a | s) ∝ exp(θ⊤a β(s))

We would then learn the parameters θa for each action from the expert data. Why might
we want to use this approach over one where we directly estimate a discrete distribution
for each state, with one parameter per state-action pair?

Solution: In imitation learning, we are generally limited to a relatively small set of expert
demonstrations. The distribution P(a | s) has (|A| − 1)|S| independent parameters that
must be learned, which is often prohibitively large. Expert demonstrations typically cover
only a small portion of the state space. Even if P(a | s) can be reliably trained for the states
covered in the provided data set, the resulting policy would be untrained in other states.
Using a feature function allows generalization to unseen states.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

18.8. exercises 373

Exercise 18.2. Section 18.1 suggested using a maximum likelihood approach for training a
policy from expert data. This approach attempts to find the parameters of the policy that
maximizes the likelihood assigned to the training examples. In some problems, however,
we know that assigning high probability to one incorrect action is not as bad as assigning
high probability to another incorrect action. For example, predicting an acceleration of
−1 in the mountain car problem when the expert dictates an acceleration of 1 is worse
than predicting an acceleration of 0. How might behavioral cloning be modified to allow
different penalties to be given to different misclassifications?

Solution: We can instead supply a cost function C(s, atrue, apred) that defines the cost of
predicting action apred for state s when the expert’s action is atrue. For example, with the
mountain car problem, we might use

C(s, atrue, apred) = −|atrue − apred|

which penalizes greater deviations more than smaller deviations. The cost associated with
the expert’s action is typically zero.

If we have a stochastic policy π(a | s), we then seek to minimize the cost over our data
set:

minimize
θ

∑
(s,atrue)∈D

∑
apred

C
(

s, atrue, apred
)

π
(

apred | s
)

This technique is called cost-sensitive classification.14 One benefit of cost-sensitive classi- 14 C. Elkan, “The Foundations of
Cost-Sensitive Learning,” in Inter-
national Joint Conference on Artificial
Intelligence (IJCAI), 2001.

fication is that we can use a wide variety of off-the-shelf classification models, such as
k-nearest neighbors, support vector machines, or decision trees, to train a policy.

Exercise 18.3. Provide an example of where maximum margin inverse reinforcement
learning does not uniquely define an optimal policy.

Solution: Maximum margin inverse reinforcement learning extracts binary features from
the expert data and seeks a reward function whose optimal policy produces trajectories
with the same frequencies of these binary features. There is no guarantee that multiple
policies do not produce the same feature expectations. For example, an autonomous car
that makes only left lane changes could have the same lane change frequencies as an
autonomous car that makes only right lane changes.

Exercise 18.4. Maximum margin inverse reinforcement learning measures how similar
a policy is to expert demonstrations using feature expectations. How is this similarity
measure affected if nonbinary features are used?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

374 chapter 18. imitation learning

Solution: If we use nonbinary features, then it is possible that some features can get larger
than others, incentivizing the agent to match those features rather than those that tend
to be smaller. Scale is not the only issue. Even if all features are constrained to lie within
[0, 1], then a policy that consistently produces φ(s, a)1 = 0.5 will have the same feature
expectations as one that produces φ(s, a)1 = 0 half the time and φ(s, a)1 = 1 half the time.
Depending on what the feature encodes, this can result in very different policies. Any
set of continuous features can be discretized, and thus approximated by a set of binary
features.

Exercise 18.5. Suppose we are building a system in a high-rise that must choose which
floor to send an elevator. We have trained several policies to match the feature expectations
of expert demonstrations, such as how long customers must wait for an elevator or how
long they have to wait to get to their destinations. We run multiple rollouts for each policy
and plot the relative duration spent on each floor. Which policy should we prefer according
to the principle of maximum entropy, assuming that each policy matches the feature
expectations equally?

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

floor

re
lat

ive
du

ra
tio

n

policy A

1 2 3 4 5 6 7 8 9 10
floor

policy B

1 2 3 4 5 6 7 8 9 10
floor

policy C

Solution: These distributions over relative duration are analogous to distributions over
trajectories for this elevator problem. In applying the principle of maximum entropy, we
prefer the distribution with most entropy. Hence, we would choose policy B, which, in
being most uniform, has the greatest entropy.

Exercise 18.6. Consider the policy optimization step in generative adversarial imitation
learning. Rewrite the objective in the form of a reward function so that traditional rein-
forcement learning techniques can be applied.

Solution: We rewrite equation (18.19), dropping the terms dependent on the expert data
set, and flip the sign to change from minimization over θ to a maximization over θ of the
reward, producing the surrogate reward function:

R̃φ(s, a) = − log Cφ(s, a)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

18.8. exercises 375

Although R̃φ(s, a) may be quite different from the unknown true reward function, it can
be used to drive the learned policy into regions of the state-action space similar to those
covered by the expert.

Exercise 18.7. Explain how generative adversarial imitation learning could be changed
such that the discriminator takes in trajectories rather than state-action pairs. Why might
this be useful?

Solution: Changing generative adversarial imitation learning such that the discriminator
takes trajectories is straightforward, especially if the trajectories are of fixed length. The
expert data set is split into trajectories, and the learned policy is used to produce trajectories,
just as it was before. Rather than operating on state-action pairs, the discriminator takes in
trajectories using a representation such as a recurrent neural network (appendix D.5) and
produces a classification probability. The objective function remains largely unchanged:

max
φ

min
θ

Eτ∼πθ

[

log(Cφ(τ))
]

+ Eτ∼D
[

log(1− Cφ(τ))
]

The advantage of running the discriminator over entire trajectories is that it can help
the discriminator capture features that are not apparent from individual state-action pairs,
which can result in better policies. For example, when looking at individual accelerations
and turn rates for an autonomous driving policy, there is very little for a discriminator to
learn. A discriminator trained to look at longer trajectories can see more of the vehicle’s
behavior, such as lane change aggressiveness and smoothness, to better match expert
driving demonstrations.15

15 This approach was used in A.
Kuefler, J. Morton, T.A. Wheeler,
and M. J. Kochenderfer, “Imitating
Driver Behavior with Generative
Adversarial Networks,” in IEEE In-
telligent Vehicles Symposium (IV),
2017.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

part iv
state uncertainty

Previous chapters have included uncertainty in the transition function, in terms
of the uncertainty both in the resulting state and in the model. In this part, we
extend uncertainty to include the state. Instead of observing the state exactly, we
receive observations that have only a probabilistic relationship with the state.
Such problems can be modeled as a partially observable Markov decision process
(POMDP). A common approach to solving POMDPs involves inferring a belief
distribution over the underlying state at the current time step and then applying
a policy that maps beliefs to actions. We will show how to update our belief
distribution, given a past sequence of observations and actions. This enables
us to devise exact solution methods for optimizing these belief-based policies.
Unfortunately, POMDPs are intractable to optimally solve for all but the smallest
of problems. We review a variety of offline approximation methods that tend
to scale much better than exact methods to larger problems. We also show how
to extend some of the online approximations discussed earlier in this book to
accommodate partial observability. Finally, we introduce finite state controllers
as an alternative policy representation and discuss methods that optimize them
to solve POMDPs.

19 Beliefs

A POMDP is an MDP with state uncertainty. The agent receives a potentially
imperfect observation of the current state rather than the true state. From the past
sequence of observations and actions, the agent develops an understanding of
the world. This chapter discusses how the belief of the agent can be represented
by a probability distribution over the underlying state. Various algorithms are
presented for updating our belief based on the observation and action taken by
the agent.1 We can perform exact belief updates if the state space is discrete or if 1 Different methods for belief up-

dating are discussed in the context
of robotic applications by S. Thrun,
W. Burgard, and D. Fox, Probabilis-
tic Robotics. MIT Press, 2006.

certain linear Gaussian assumptions are met. In cases where these assumptions
do not hold, we can use approximations based on linearization or sampling.

19.1 Belief Initialization

There are different ways to represent our beliefs. In this chapter, we will discuss
parametric representations, where the belief distribution is represented by a set of
parameters of a fixed distribution family, such as the categorical or multivariate
normal distribution. We will also discuss nonparametric representations, where
the belief distribution is represented by particles, or points sampled from the state
space. Associated with the different representations are different procedures for
updating the belief based on the action taken by the agent and the observation.

Before the agent takes any actions or makes any observations, we start with
an initial belief distribution. If we have some prior information about where the
agent might be in the state space, we can encode this in the initial belief. We
generally want to use diffuse initial beliefs in the absence of information to avoid
being overly confident in the agent being in a region of the state space where it
might not actually be. A strong initial belief focused on states that are far from
the true state can lead to poor state estimates, even after many observations.

380 chapter 19. beliefs

A diffuse initial belief can cause difficulties, especially for nonparametric repre-
sentations of the belief, where the state space can be only very sparsely sampled.
In some cases, it may be useful to wait to initialize our beliefs until an informative
observation is made. For example, in robot navigation problems, we might want
to wait until the sensors detect a known landmark, and then initialize the belief
appropriately. The landmark can help narrow down the relevant region of the
state space so that we can focus our sampling of the space in the area consistent
with the landmark observation. Example 19.1 illustrates this concept.

Consider an autonomous car equipped with a localization system that uses
camera, radar, and lidar data to track its position. The car is able to identify a
unique landmark at a range r and bearing θ from its current pose:

car
landmark

r
θ

The range and bearing measurements have zero-mean Gaussian noise with
variance νr and νθ , respectively, and the landmark is known to be at (x, y).
Given a measurement r and θ, we can produce a distribution over the car’s
position (x̂, ŷ) and orientation ψ̂:

r̂ ∼ N (r, νr) θ̂ ∼ N (θ, νθ) φ̂ ∼ U (0, 2π)

x̂ ← x + r̂ cos φ̂ ŷ← y + r̂ sin φ̂ ψ̂← φ̂− θ̂ − π

where φ̂ is the angle of the car from the landmark in the global frame.

Example 19.1. Generating an initial
nonparametric belief based on a
landmark observation. In this case,
the autonomous car could be any-
where in a ring around the land-
mark:

landmark

19.2 Discrete State Filter

st st+1

ot

rt

atat−1

rt−1

st−1

ot−1

at+1

rt+1

ot+1

Figure 19.1. A dynamic decision
network for the POMDP problem
formulation. As with figure 7.1, in-
formational edges into the action
nodes are not shown.

In a POMDP, the agent does not directly observe the underlying state of the
environment. Instead, the agent receives an observation, which belongs to some
observation space O, at each time step. The probability of observing o, given that
the agent took action a and transitioned to state s′, is given by O(o | a, s′). If O

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

19.2. discrete state filter 381

is continuous, then O(o | a, s′) is a probability density. Figure 19.1 shows the
dynamic decision network associated with POMDPs. Algorithm 19.1 provides an
implementation of the POMDP data structure.

struct POMDP
γ # discount factor
𝒮 # state space
𝒜 # action space
𝒪 # observation space
T # transition function
R # reward function
O # observation function
TRO # sample transition, reward, and observation

end

Algorithm 19.1. A data struc-
ture for POMDPs. We will use
the TRO field to sample the next
state, reward, and observation
given the current state and action:
s′, r, o = TRO(s, a). A compre-
hensive package for specifying and
solving POMDPs is provided by
M. Egorov, Z.N. Sunberg, E. Bala-
ban, T.A. Wheeler, J. K. Gupta, and
M. J. Kochenderfer, “POMDPs.jl: A
Framework for Sequential Decision
Making Under Uncertainty,” Jour-
nal of Machine Learning Research,
vol. 18, no. 26, pp. 1–5, 2017. In
mathematical writing, POMDPs
are sometimes defined in terms of
a tuple consisting of the various
components of the MDP, written
as (S ,A,O, T, R, O, γ).

A kind of inference known as recursive Bayesian estimation can be used to update
our belief distribution over the current state, given the most recent action and
observation. We use b(s) to represent the probability (or probability density for
continuous state spaces) assigned to state s. A particular belief b belongs to a
belief space B, which contains all possible beliefs.

When the state and observation spaces are finite, we can use a discrete state filter
to perform this inference exactly. Beliefs for problems with discrete state spaces
can be represented using categorical distributions, where a probability mass is
assigned to each state. This categorical distribution can be represented as a vector
of length |S| and is often called a belief vector. In cases where b can be treated as
a vector, we will use b. In this case, B ⊂ R

|S|. Sometimes B is referred to as a
probability simplex or belief simplex.

Because a belief vector represents a probability distribution, the elements must
be strictly nonnegative and must sum to 1:

b(s) ≥ 0 for all s ∈ S ∑
s

b(s) = 1 (19.1)

In vector form, we have
b ≥ 0 1⊤b = 1 (19.2)

The belief space for a POMDP with three states is given in figure 19.2. A discrete
POMDP problem is given in example 19.2.

1

1

1

b1

b2

b3

Figure 19.2. The set of valid be-
lief vectors for problems with three
states. Although the state space is
discrete, the belief space is contin-
uous.

If an agent with belief b takes an action a and receives an observation o, the
new belief b′ can be calculated as follows due to the independence assumptions

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

382 chapter 19. beliefs

The crying baby problem is a simple POMDPwith two states, three actions, and
two observations. Our goal is to care for a baby, and we do so by choosing at
each time step whether to feed the baby, sing to it, or ignore it.

The baby becomes hungry over time. One does not directly observe
whether the baby is hungry, but instead receives a noisy observation in
the form of whether the baby is crying. A hungry baby cries 80 % of the time,
whereas a sated baby cries 10 % of the time. Singing to the baby yields a
perfect observation. The state, action, and observation spaces are:

S = {sated,hungry}
A = {feed, sing, ignore}
O = {crying,quiet}

The transition dynamics are:

T(sated | hungry, feed) = 100 %

T(hungry | hungry, sing) = 100 %

T(hungry | hungry, ignore) = 100 %

T(sated | sated, feed) = 100 %

T(hungry | sated, sing) = 10 %

T(hungry | sated, ignore) = 10 %

The reward function assigns −10 reward if the baby is hungry and an
additional −5 reward for feeding the baby because of the effort required.
Thus, feeding a hungry baby results in −15 reward. Singing to a baby takes
extra effort, and incurs a further −0.5 reward. As baby caretakers, we seek
the optimal infinite horizon policy with discount factor γ = 0.9.

Example 19.2. The crying baby
problem is a simple POMDP used
to demonstrate decision making
with state uncertainty.

st st+1

ot

rt

at
feed / sing
/ ignore

reward

hungry

crying

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

19.3. kalman filter 383

in figure 19.1:

b′(s′) = P(s′ | b, a, o) (19.3)
∝ P(o | b, a, s′)P(s′ | b, a) (19.4)
= O(o | a, s′)P(s′ | b, a) (19.5)
= O(o | a, s′)∑

s

P(s′ | a, b, s)P(s | b, a) (19.6)

= O(o | a, s′)∑
s

T(s′ | s, a)b(s) (19.7)

An instance of updating discrete beliefs is given in example 19.3, and the
belief update is implemented in algorithm 19.2. The success of the belief update
depends on having accurate observation and transition models. In cases where
thesemodels are not well known, it is generally advisable to use simplifiedmodels
with more diffuse distributions to help prevent overconfidence, which leads to
brittleness in the state estimates.

19.3 Kalman Filter

We can adapt equation (19.7) to handle continuous state spaces as follows:

b′(s′) ∝ O(o | a, s′)
∫

T(s′ | s, a)b(s)ds (19.8)

The integration above can be challenging unless we make some assumptions
about the form of T, O, and b. A special type of filter, known as a Kalman filter
(algorithm 19.3),2 provides an exact update under the assumption that T and O 2 Named after the Hungarian-

American electrical engineer
Rudolf E. Kálmán (1930–2016)
who was involved in the early
development of this filter.

are linear Gaussian and b is Gaussian:3

3 R. E. Kálmán, “A New Approach
to Linear Filtering and Prediction
Problems,” ASME Journal of Ba-
sic Engineering, vol. 82, pp. 35–45,
1960. A comprehensive overview
of the Kalman filter and its vari-
ants is provided by Y. Bar-Shalom,
X. R. Li, and T. Kirubarajan, Estima-
tion with Applications to Tracking and
Navigation. Wiley, 2001.

T(s′ | s, a) = N (s′ | Tss + Taa, Σs) (19.9)
O(o | s′) = N (o | Oss

′, Σo) (19.10)
b(s) = N (s | µb, Σb) (19.11)

The Kalman filter begins with a predict step, which uses the transition dynamics
to get a predicted distribution with the following mean and covariance:

µp ← Tsµb + Taa (19.12)
Σp ← TsΣbT⊤s + Σs (19.13)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

384 chapter 19. beliefs

The crying baby problem (example 19.2) assumes a uniform initial belief
state: [b(sated), b(hungry)] = [0.5, 0.5].

Suppose we ignore the baby and the baby cries. We update our belief
according to equation (19.7) as follows:

b′(sated) ∝ O(crying | ignore, sated)∑
s

T(sated | s, ignore)b(s)

∝ 0.1(0.0 · 0.5 + 0.9 · 0.5)

∝ 0.045

b′(hungry) ∝ O(crying | ignore, hungry)∑
s

T(hungry | s, ignore)b(s)

∝ 0.8(1.0 · 0.5 + 0.1 · 0.5)

∝ 0.440

After normalizing, our new belief is approximately [0.0928, 0.9072]. A crying
baby is likely to be hungry.

Suppose we then feed the baby and the crying stops. Feeding determinis-
tically caused the baby to be sated, so the new belief is [1, 0].

Finally, we sing to the baby, and the baby is quiet. Equation (19.7) is used
again to update the belief, resulting in [0.9890, 0.0110]. A sated baby only
becomes hungry 10 % of the time, and this percentage is further reduced by
not observing any crying.

Example 19.3. Discrete belief up-
dating in the crying baby problem.

function update(b::Vector{Float64}, 𝒫, a, o)
𝒮, T, O = 𝒫.𝒮, 𝒫.T, 𝒫.O
b′ = similar(b)
for (i′, s′) in enumerate(𝒮)

po = O(a, s′, o)
b′[i′] = po * sum(T(s, a, s′) * b[i] for (i, s) in enumerate(𝒮))

end
if sum(b′) ≈ 0.0

fill!(b′, 1)
end
return normalize!(b′, 1)

end

Algorithm 19.2. A method that
updates a discrete belief based on
equation (19.7), where b is a vec-
tor and 𝒫 is the POMDP model. If
the given observation has a zero
likelihood, a uniform distribution
is returned.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

19.4. extended kalman filter 385

In the update step, we use this predicted distribution with the current observa-
tion to update our belief:

K← ΣpO⊤s
(

OsΣpO⊤s + Σo

)−1
(19.14)

µb ← µp + K
(

o−Osµp

)

(19.15)
Σb ← (I−KOs)Σp (19.16)

where K is called the Kalman gain.

struct KalmanFilter
μb # mean vector
Σb # covariance matrix

end

function update(b::KalmanFilter, 𝒫, a, o)
μb, Σb = b.μb, b.Σb
Ts, Ta, Os = 𝒫.Ts, 𝒫.Ta, 𝒫.Os
Σs, Σo = 𝒫.Σs, 𝒫.Σo
predict
μp = Ts*μb + Ta*a
Σp = Ts*Σb*Ts' + Σs
update
Σpo = Σp*Os'
K = Σpo/(Os*Σp*Os' + Σo)
μb′ = μp + K*(o - Os*μp)
Σb′ = (I - K*Os)*Σp
return KalmanFilter(μb′, Σb′)

end

Algorithm 19.3. The Kalman filter,
which updates beliefs in the form
of Gaussian distributions. The cur-
rent belief is represented by μb and
Σb, and 𝒫 contains the matrices that
define linear Gaussian dynamics
and observation model. This 𝒫 can
be defined using a composite type
or a named tuple.

Kalman filters are often applied to systems that do not actually have linear
Gaussian dynamics and observations. A variety of modifications to the basic
Kalman filter have been proposed to better accommodate such systems.4 4 S. Thrun, W. Burgard, and D. Fox,

Probabilistic Robotics. MIT Press,
2006.

19.4 Extended Kalman Filter

The extended Kalman filter (EKF) is a simple extension of the Kalman filter to
problems whose dynamics are nonlinear with Gaussian noise:

T(s′ | s, a) = N (s′ | fT(s, a), Σs) (19.17)
O(o | s′) = N (o | fO(s

′), Σo) (19.18)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

386 chapter 19. beliefs

where fT(s, a) and fO(s
′) are differentiable functions.

Exact belief updates through nonlinear dynamics are not guaranteed to pro-
duce new Gaussian beliefs, as shown in figure 19.3. The extended Kalman filter
uses a local linear approximation to the nonlinear dynamics, thereby producing
a new Gaussian belief that approximates the true updated belief. We can use
similar update equations as the Kalman filter, but we must compute the matrices
Ts and Os at every iteration based on the current belief.

The local linear approximation to the dynamics, or linearization, is given by first-
order Taylor expansions in the form of Jacobians.5 For the state matrix, the Taylor 5 The Jacobian of a multivariate

function f with n inputs and m out-
puts is an m× n matrix where the
(i, j)th entry is ∂ fi/∂xj.

expansion is conducted at µb and the current action, whereas for the observation
matrix, it is computed at the predicted mean, µp = fT(µb).

The extended Kalman filter is implemented in algorithm 19.4. Although it is
an approximation, it is fast and performs well on a variety of real-world problems.
The EKF does not generally preserve the true mean and variance of the posterior,
and it does not model multimodal posterior distributions.

struct ExtendedKalmanFilter
μb # mean vector
Σb # covariance matrix

end

import ForwardDiff: jacobian
function update(b::ExtendedKalmanFilter, 𝒫, a, o)

μb, Σb = b.μb, b.Σb
fT, fO = 𝒫.fT, 𝒫.fO
Σs, Σo = 𝒫.Σs, 𝒫.Σo
predict
μp = fT(μb, a)
Ts = jacobian(s->fT(s, a), μb)
Os = jacobian(fO, μp)
Σp = Ts*Σb*Ts' + Σs
update
Σpo = Σp*Os'
K = Σpo/(Os*Σp*Os' + Σo)
μb′ = μp + K*(o - fO(μp))
Σb′ = (I - K*Os)*Σp
return ExtendedKalmanFilter(μb′, Σb′)

end

Algorithm 19.4. The extended
Kalman filter, an extension of the
Kalman filter to problems with
nonlinear Gaussian dynamics. The
current belief is represented by
mean μb and covariance Σb. The
problem 𝒫 specifies the nonlinear
dynamics using the mean tran-
sition dynamics function fT and
mean observation dynamics func-
tion fO. The Jacobians are obtained
using the ForwardDiff.jl pack-
age.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

19.5. unscented kalman filter 387

mx+
b

linear dynamics nonlinear dynamics
f̃ (x)

=
f (µ) +

f ′(µ)(x−
µ)

linear approximation

Figure 19.3. Updating a Gaussian
belief with a linear transform (left)
produces another Gaussian distri-
bution. Updating a Gaussian belief
with a nonlinear transform (cen-
ter) does not in general produce
a Gaussian distribution. The ex-
tended Kalman filter uses a lin-
ear approximation of the transform
(right), thereby producing another
Gaussian distribution that approx-
imates the posterior.

19.5 Unscented Kalman Filter

The unscented Kalman filter (UKF)6 is another extension to the Kalman filter to 6 S. J. Julier and J. K. Uhlmann, “Un-
scented Filtering and Nonlinear Es-
timation,” Proceedings of the IEEE,
vol. 92, no. 3, pp. 401–422, 2004.

problems that are nonlinear with Gaussian noise.7 Unlike the extended Kalman

7 According to Jeffrey K. Uhlmann,
the term ‘‘unscented’’ comes from
a label on a deodorant container
that he saw on someone’s desk.
He used that term to avoid call-
ing it the ‘‘Uhlmann filter.’’ IEEE
History Center Staff, “Proceedings
of the IEEE Through 100 Years:
2000–2009,” Proceedings of the IEEE,
vol. 100, no. 11, pp. 3131–3145, 2012.

filter, the unscented Kalman filter is derivative free, and relies on a determinis-
tic sampling strategy to approximate the effect of a distribution undergoing a
(typically nonlinear) transformation.

The unscented Kalman filter was developed to estimate the effect of transform-
ing a distribution over x with a nonlinear function f(x), producing a distribution
over x′. We would like to estimate the mean µ′ and covariance Σ

′ of the distribu-
tion over x′. The unscented transform allows for more information of p(x) to be
used than the mean µ and covariance Σ of the distribution over x.8

8 We need not necessarily assume
that the prior distribution is Gaus-
sian.

An unscented transform passes a set of sigma points S through f and uses the
transformed points to approximate the transformed mean µ′ and covariance Σ

′.
The original mean and covariance are constructed using the sigma points and a
vector of weights w:

µ = ∑
i

wisi (19.19)

Σ = ∑
i

wi(si − µ)(si − µ)⊤ (19.20)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

388 chapter 19. beliefs

where the ith sigma point si has weight wi. These weights must sum to 1 in order
to provide an unbiased estimate, but they need not all be positive.

The updated mean and covariance matrix given by the unscented transform
through f are thus:

µ′ = ∑
i

wif(si) (19.21)

Σ
′ = ∑

i

wi

(

f(si)− µ′
)(

f(si)− µ′
)⊤ (19.22)

A common set of sigma points include the mean µ ∈ R
n and an additional 2n

points formed from perturbations of µ in directions determined by the covariance
matrix Σ:9 9 The square root of a matrix A is

a matrix B such that BB⊤ = A. In
Julia, the sqrt method produces a
matrix C such that CC = A, which
is not the same. One common
square root matrix can be obtained
from the Cholesky decomposition.

s1 = µ (19.23)

s2i = µ+

(

√

(n + λ)Σ

)

i

for i in 1 : n (19.24)

s2i+1 = µ−
(

√

(n + λ)Σ

)

i

for i in 1 : n (19.25)

These sigma points are associated with the weights:

wi =

λ
n+λ for i = 1

1
2(n+λ)

otherwise
(19.26)

The scalar spread parameter λ determines how far the sigma points are spread
from the mean.10 Several sigma point sets for different values of λ are shown in

10 It is common to use λ = 2,
which is optimal for matching the
fourth moment of Gaussian distri-
butions. Motivations for choosing
sigma point sets of this form are
provided in exercise 19.13 and ex-
ercise 19.14.figure 19.4.

−4 −2 0 2 4

−4

−2

0

2

4

x1

x
2

λ = −0.5

−4 −2 0 2 4

x1

λ = 0.0

−4 −2 0 2 4

x1

λ = 2.0

−4 −2 0 2 4

x1

λ = 4.0 Figure 19.4. The effect of varying
λ on the sigma points from equa-
tion (19.23) generated for a Gaus-
sian distribution with zero mean
and covariance:
Σ = [1 1/2; 1/2 2].

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

19.5. unscented kalman filter 389

The unscented Kalman filter performs two unscented transformations: one for
the prediction step and one for the observation update. Algorithm 19.5 provides
an implementation of this.

struct UnscentedKalmanFilter
μb # mean vector
Σb # covariance matrix
λ # spread parameter

end

function unscented_transform(μ, Σ, f, λ, ws)
n = length(μ)
Δ = cholesky((n + λ) * Σ).L
S = [μ]
for i in 1:n

push!(S, μ + Δ[:,i])
push!(S, μ - Δ[:,i])

end
S′ = f.(S)
μ′ = sum(w*s for (w,s) in zip(ws, S′))
Σ′ = sum(w*(s - μ′)*(s - μ′)' for (w,s) in zip(ws, S′))
return (μ′, Σ′, S, S′)

end

function update(b::UnscentedKalmanFilter, 𝒫, a, o)
μb, Σb, λ = b.μb, b.Σb, b.λ
fT, fO = 𝒫.fT, 𝒫.fO
n = length(μb)
ws = [λ / (n + λ); fill(1/(2(n + λ)), 2n)]
predict
μp, Σp, Sp, Sp′ = unscented_transform(μb, Σb, s->fT(s,a), λ, ws)
Σp += 𝒫.Σs
update
μo, Σo, So, So′ = unscented_transform(μp, Σp, fO, λ, ws)
Σo += 𝒫.Σo
Σpo = sum(w*(s - μp)*(s′ - μo)' for (w,s,s′) in zip(ws, So, So′))
K = Σpo / Σo
μb′ = μp + K*(o - μo)
Σb′ = Σp - K*Σo*K'
return UnscentedKalmanFilter(μb′, Σb′, λ)

end

Algorithm 19.5. The unscented
Kalman filter, an extension of the
Kalman filter to problems with
nonlinear Gaussian dynamics. The
current belief is represented by
mean μb and covariance Σb. The
problem 𝒫 specifies the nonlinear
dynamics using the mean tran-
sition dynamics function fT and
mean observation dynamics func-
tion fO. The sigma points used in
the unscented transforms are con-
trolled by the spread parameter λ.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

390 chapter 19. beliefs

19.6 Particle Filter

Discrete problems with large state spaces or continuous problems with dynamics
that are not well approximated by the linear Gaussian assumption of the Kalman
filter must often resort to approximation techniques to represent the belief and to
perform the belief update. One common approach is to use a particle filter, which
represents the belief state as a collection of states.11 Each state in the approximate 11 A tutorial on particle filters is

provided by M. S. Arulampalam, S.
Maskell, N. Gordon, and T. Clapp,
“A Tutorial on Particle Filters for
Online Nonlinear / Non-Gaussian
Bayesian Tracking,” IEEE Transac-
tions on Signal Processing, vol. 50,
no. 2, pp. 174–188, 2002.

belief is called a particle.
A particle filter is initialized by selecting or randomly sampling a collection

of particles that represent the initial belief. The belief update for a particle filter
with m particles begins by propagating each state si by sampling from the tran-
sition distribution to obtain a new state s′i with probability T(s′i | si, a). The new
belief is constructed by drawing m particles from the propagated states weighted
according to the observation function wi = O(o | a, s′). This procedure is given
in algorithm 19.6. Example 19.4 illustrates an application of a particle filter.

In problems with discrete observations, we can also perform particle belief
updates with rejection. We repeat the following process m times to generate
the set of next state samples. First, we randomly select some state si in the filter
and then sample a next state s′i according to our transition model. Second, we
generate a random observation oi according to our observation model. If oi does
not equal the true observation o, it is rejected, and we generate a new s′i and oi

until the observations match. This particle filter with rejection is implemented in
algorithm 19.7.

As the number of particles in a particle filter increases, the distribution repre-
sented by the particles approaches the true posterior distribution. Unfortunately,
particle filters can fail in practice. Low particle coverage and the stochastic nature
of the resampling procedure can cause there to be no particles near the true
state. This problem of particle deprivation can be somewhat mitigated by several
strategies. A motivational example is given in example 19.5.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

19.6. particle filter 391

Suppose that we want to determine our position based on imperfect distance
measurements to radio beacons whose locations are known. We remain
approximately still for a few steps to collect independent measurements. The
particle filter states are our potential locations. We can compare the ranges
that we would expect to measure for each particle to the observed ranges.

We assume that individual range observations from each beacon are ob-
served with zero-mean Gaussian noise. Our particle transition function adds
zero-mean Gaussian noise since we remain only approximately still.

The images here show the evolution of the particle filter. The rows cor-
respond to different numbers of beacons. The red dots indicate our true
location, and the blue dots are particles. The circles indicate the positions
consistent with noiseless distance measurements from each sensor.

y

t = 1 t = 2 t = 3 t = 4

y

x

y

x x x

Three beacons are required to identify our location accurately. A strength
of the particle filter is that it is able to represent the multimodal distributions
that are especially apparent when there are only one or two beacons.

Example 19.4. A particle filter ap-
plied to different beacon configura-
tions.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

392 chapter 19. beliefs

struct ParticleFilter
states # vector of state samples

end

function update(b::ParticleFilter, 𝒫, a, o)
T, O = 𝒫.T, 𝒫.O
states = [rand(T(s, a)) for s in b.states]
weights = [O(a, s′, o) for s′ in states]
D = SetCategorical(states, weights)
return ParticleFilter(rand(D, length(states)))

end

Algorithm 19.6. A belief updater
for particle filters, which updates
a vector of states representing the
belief based on the agent’s ac-
tion a and its observation o. Ap-
pendix G.5 provides an implemen-
tation of SetCategorical for defin-
ing distributions over discrete sets.

struct RejectionParticleFilter
states # vector of state samples

end

function update(b::RejectionParticleFilter, 𝒫, a, o)
T, O = 𝒫.T, 𝒫.O
states = similar(b.states)
i = 1
while i ≤ length(states)

s = rand(b.states)
s′ = rand(T(s,a))
if rand(O(a,s′)) == o

states[i] = s′
i += 1

end
end
return RejectionParticleFilter(states)

end

Algorithm 19.7. Updating a par-
ticle filter with rejection, which
forces sampled states to match the
input observation o.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

19.6. particle filter 393

Spelunker Joe is lost in a grid-based maze. He lost his lantern, so he can
observe his surroundings only by touch. At any given moment, Joe can tell
whether his location in the maze has walls in each cardinal direction. Joe is
fairly confident in his ability to feel walls, so he assumes that his observations
are perfect.

Joe uses a particle filter to track his belief over time. At some point, he
stops to rest. He continues to run his particle filter to update his belief. The
figures below show his belief over time, with dots indicating belief particles
in his particle filter corresponding to those locations in the maze.

The initial belief has one particle in each grid location that matches his
current observation of a wall to the north and south. Spelunker Joe does not
move and does not gain new information, so his belief should not change
over time. Due to the stochastic nature of resampling, subsequent beliefs may
not contain all the initial states. Over time, his belief will continue to lose
states until it only contains a single state. It is possible that this state is not
where Spelunker Joe is located.

Example 19.5. A particle filter
run for enough time can lose par-
ticles in relevant regions of the
state space due to the stochastic na-
ture of resampling. The problem is
more pronounced when there are
fewer particles or when the parti-
cles are spread over a large state
space.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

394 chapter 19. beliefs

19.7 Particle Injection

Particle injection involves injecting random particles to protect against particle
deprivation. Algorithm 19.8 injects a fixed number of particles from a broader
distribution, such as a uniform distribution over the state space.12 While particle

12 For robotic localization problems,
it is a common practice to inject
particles from a uniform distribu-
tion over all possible robot poses,
weighted by the current observa-
tion.

injection can help prevent particle deprivation, it also reduces the accuracy of the
posterior belief represented by the particle filter.

struct InjectionParticleFilter
states # vector of state samples
m_inject # number of samples to inject
D_inject # injection distribution

end

function update(b::InjectionParticleFilter, 𝒫, a, o)
T, O, m_inject, D_inject = 𝒫.T, 𝒫.O, b.m_inject, b.D_inject
states = [rand(T(s, a)) for s in b.states]
weights = [O(a, s′, o) for s′ in states]
D = SetCategorical(states, weights)
m = length(states)
states = vcat(rand(D, m - m_inject), rand(D_inject, m_inject))
return InjectionParticleFilter(states, m_inject, D_inject)

end

Algorithm 19.8. Particle filter
update with injection, in which
m_inject particles are sampled
from the injection distribution
D_inject to reduce the risk of par-
ticle deprivation.

Instead of using a fixed number of injected particles at each update, we can
take a more adaptive approach. When the particles are all being given very low
weights, we generally want to inject more particles. It might be tempting to choose
the number of injected particles based solely on the mean weight of the current
set of particles. However, doing so can make the success of the filter sensitive to
naturally low observation probabilities in the early periods when the filter is still
converging or in moments of high sensor noise.13 13 S. Thrun,W. Burgard, and D. Fox,

Probabilistic Robotics. MIT Press,
2006.Algorithm 19.9 presents an adaptive injection algorithm that keeps track of two

exponential moving averages of the mean particle weight and bases the number
of injections on their ratio.14 If wmean is the current mean particle weight, the two 14 D.E. Goldberg and J. Richard-

son, “An Experimental Compari-
son of Localization Methods,” in
International Conference on Genetic
Algorithms, 1987.

moving averages are updated according to

wfast ← wfast + αfast(wmean − wfast) (19.27)
wslow ← wslow + αslow(wmean − wslow) (19.28)

where 0 ≤ αslow < αfast ≤ 1.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

19.8. summary 395

The number of injected samples in a given iteration is obtained by comparing
the fast and slow mean particle weights:15 15 Note that ⌊x⌉ denotes the integer

nearest to x.

minject =
⌊

m max

(

0, 1− ν
wfast
wslow

)⌉

(19.29)

The scalar ν ≥ 1 allows us to tune the injection rate.

mutable struct AdaptiveInjectionParticleFilter
states # vector of state samples
w_slow # slow moving average
w_fast # fast moving average
α_slow # slow moving average parameter
α_fast # fast moving average parameter
ν # injection parameter
D_inject # injection distribution

end

function update(b::AdaptiveInjectionParticleFilter, 𝒫, a, o)
T, O = 𝒫.T, 𝒫.O
w_slow, w_fast, α_slow, α_fast, ν, D_inject =

b.w_slow, b.w_fast, b.α_slow, b.α_fast, b.ν, b.D_inject
states = [rand(T(s, a)) for s in b.states]
weights = [O(a, s′, o) for s′ in states]
w_mean = mean(weights)
w_slow += α_slow*(w_mean - w_slow)
w_fast += α_fast*(w_mean - w_fast)
m = length(states)
m_inject = round(Int, m * max(0, 1.0 - ν*w_fast / w_slow))
D = SetCategorical(states, weights)
states = vcat(rand(D, m - m_inject), rand(D_inject, m_inject))
b.w_slow, b.w_fast = w_slow, w_fast
return AdaptiveInjectionParticleFilter(states,

w_slow, w_fast, α_slow, α_fast, ν, D_inject)
end

Algorithm 19.9. A particle fil-
ter with adaptive injection, which
maintains fast and slow expo-
nential moving averages w_fast
and w_slow of the mean parti-
cle weight with smoothness fac-
tors α_fast and α_slow, respec-
tively. Particles are injected only
if the fast moving average of the
mean particle weight is less than
1/ν of the slow moving average.
Recommended values from the
original paper are α_fast = 0.1,
α_slow = 0.001, and ν = 2.

19.8 Summary

• Partially observable Markov decision processes (POMDPs) extend MDPs to
include state uncertainty.

• The uncertainty requires agents in a POMDP to maintain a belief over their
state.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

396 chapter 19. beliefs

Spelunker Joe from example 19.6 now moves one tile to the east and moves
all particles in his particle filter one tile east as well. He now senses walls
only to the north and east, and unfortunately, this observation does not agree
with any of the updated particles in his filter. He decides to use adaptive
injection to fix his particle deprivation problem. Here, we see how his filter
injects particles from a uniform random distribution, along with the values
for the fast and slow filters:

wslow = 1.0

w f ast = 1.0

wslow = 0.99

w f ast = 0.7

wslow = 0.98

w f ast = 0.49

wslow = 0.97

w f ast = 0.34

wslow = 0.96

w f ast = 0.24

wslow = 0.95

w f ast = 0.17

wslow = 0.94

w f ast = 0.12

wslow = 0.93

w f ast = 0.1

Iterations proceed left to right and top to bottom. Each blue dot represents
a particle in the particle filter, corresponding to a partial belief in being in
that location of the grid.

Example 19.6. A particle filter with
adaptive injection α_slow = 0.01,
α_fast = 0.3, and ν = 2.0, start-
ing from a deprived state with 16
identical particles. The moving av-
erages are initialized to 1 to reflect
a long period of observations that
perfectly match every particle in
the filter. Over the next iterations,
these moving averages change at
different rates based on the quan-
tity of particles that match the ob-
servation. The iterations proceed
left to right and top to bottom.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

19.9. exercises 397

• Beliefs for POMDPs with discrete state spaces can be represented using cate-
gorical distributions and can be updated analytically.

• Beliefs for linear Gaussian POMDPs can be represented using Gaussian distri-
butions and can also be updated analytically.

• Beliefs for nonlinear, continuous POMDPs can also be represented using Gaus-
sian distributions, but they cannot typically be updated analytically. In this
case, the extended Kalman filter and the unscented Kalman filter can be used.

• Continuous problems can sometimes be modeled under the assumption that
they are linear Gaussian.

• Particle filters approximate the belief with a large collection of state particles.

19.9 Exercises
Exercise 19.1. Can every MDP be framed as a POMDP?

Solution: Yes. The POMDP formulation extends the MDP formulation by introducing state
uncertainty in the form of the observation distribution. Any MDP can be framed as a
POMDP with O = S and O(o | a, s′) = (o = s′).

Exercise 19.2. What is the belief update for a discrete POMDP with no observation? What
is the belief update for a POMDP with linear Gaussian dynamics with no observation?

Solution: If an agent in a POMDP without an observation with belief b takes an action a,
the new belief b′ can be calculated as follows:

b′(s′) = P(s′ | b, a) = ∑
s

P(s′ | a, b, s)P(s | b, a) = ∑
s

T(s′ | s, a)b(s)

This belief update is equivalent to having a uniform observation distribution. A POMDP
with linear Gaussian dynamics that has no observation will update its belief using only
the Kalman filter predict step in equation (19.12).

Exercise 19.3. An autonomous vehicle represents its belief over its position using a mul-
tivariate normal distribution. It comes to a rest at a traffic light, and the belief updater
continues to run while it sits. Over time, the belief concentrates and becomes extremely
confident in a particular location. Why might this be a problem? How might this extreme
confidence be avoided?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

398 chapter 19. beliefs

Solution: Overconfidence in a belief can be a problem when the models or belief updates
do not perfectly represent reality. The overconfident belief may have converged on a state
that does not match the true state. Once the vehicle moves again, new observations may
be inconsistent with the belief and result in poor estimates. To help address this issue, we
can require that the values of the diagonal elements of the covariance matrix be above
threshold.

Exercise 19.4. Consider tracking our belief over the dud rate for widgets produced at a
factory. We use a Poisson distribution to model the probability that k duds are produced
in one day of factory operation given that the factory has a dud rate of λ:

P(k | λ) =
1

k!
λke−λ

Suppose that our initial belief over the dud rate follows a gamma distribution:

p(λ | α, β) =
βα

Γ(α)
λα−1e−βλ

where λ ∈ (0, ∞), and the belief is parameterized by the shape α > 0 and the rate β > 0.
After a day of factory operation, we observe that d ≥ 0 duds were produced. Show that
our updated belief over the dud rate is also a gamma distribution.16 16 The gamma distribution is a con-

jugate prior to the Poisson distri-
bution. A conjugate prior is a family
of probability distributions that re-
main within the same family when
updated with an observation. Con-
jugate priors are useful for model-
ing beliefs because their form re-
mains constant.

Solution: We seek the posterior distribution p(λ | d, α, β), which we can obtain through
Bayes’ rule:

p(λ | d, α, β) ∝ p(d | λ)p(λ | α, β)

∝
1

d!
λde−λ βα

Γ(α)
λα−1e−βλ

∝ λα+d−1e−(β+1)λ

This is a gamma distribution:

p(λ | α + d, β + 1) =
(β + 1)α+d

Γ(α + d)
λα+d−1e−(β+1)λ

∝ λα+d−1e−(β+1)λ

Exercise 19.5. Why are particle filters with rejection not used for updating beliefs in
POMDPs with continuous observations?

Solution: Rejection sampling requires repeatedly sampling the transition and observation
functions until the sampled observation matches the true observation. The probability
of sampling any particular value in a continuous probability distribution is zero, making
rejection sampling run forever. In practice, we would use a finite representation for contin-
uous values, such as 64-bit floating point numbers, but rejection sampling can run for an
extremely long time for each particle.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

19.9. exercises 399

Exercise 19.6. Explain why Spelunker Joe would not benefit from switching to a particle
filter with adaptive injection with ν ≥ 1 in example 19.5.

Solution: Adaptive injection injects new particles when νwfast/wslow < 1. Spelunker Joe
assumes perfect observations and has a belief with particles that match his current obser-
vation. Thus, every particle has a weight of 1, and both wfast and wslow are 1. It follows
that wfast/wslow is always 1, leading to no new particles.

Exercise 19.7. Why is the injection rate scalar ν in a particle filter with adaptive injection
typically not set to a value less than 1?

Solution: Particle injection was designed to inject particles when the current observations
have lower likelihood than a historic trend over the observation likelihood. Thus, injection
typically occurs only when the short-term estimate of the mean particle weight wfast is less
than the long-term estimate of the mean particle weight wslow. If ν < 1, then particles can
still be generated even if wfast ≥ wslow, despite indicating that current observations have a
higher likelihood than the past average.

Exercise 19.8. Suppose we are dropped into a rectangular forest at an initial location
chosen uniformly at random. We do not know which direction we are facing. Fortunately,
we do know the dimensions of the forest (it has width w and length ℓ ≫ w).17 We can

17 This problem was motivated by
Richard Bellman’s ‘‘Lost in a For-
est Problem,’’ in which we start at
a random location and orientation
in a forest with a known geometry
and must find a policy that mini-
mizes the average (or maximum)
time to exit. R. Bellman, “Minimiza-
tion Problem,” Bulletin of the Amer-
ican Mathematical Society, vol. 62,
no. 3, p. 270, 1956.

move in a continuous path, continuously observing whether we are still in the forest.
How can we apply belief updating to this problem? Here are three possible policies, each
defining a different path. Which of these policies are guaranteed to escape the forest?
Which policy is best?

w

A straight path of length 2w Two perpendicular segments,
each of length

√
2w

Two legs of an equilateral trian-
gle, each of length 2

√
3

3 w

Solution: Our initial belief is a uniform distribution over all two-dimensional locations and
orientations (states) in the forest. We can represent an updated belief using the path that
we have traveled thus far. If we are still in the forest, our belief consists of all states that can
be reached from a state within the forest by following our path while remaining entirely
in the forest. As soon as we exit the forest, our belief consists of all states that reach the
edge by following our path while remaining entirely in the forest.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

400 chapter 19. beliefs

Of the given policies, only the last two are guaranteed to escape the forest. The path
formed by the two perpendicular segments and by the two sides of the equilateral triangle
will always intersect with the forest’s border. The straight segment, however, may not
leave the forest. We prefer the shorter of the two escaping policies, which is the equilateral
triangle.

Exercise 19.9. Algorithm 19.2 checks whether the updated belief is a zero vector. When
can a belief update yield a zero vector? Why might this arise in real-world applications?

Solution:A zero belief vector can result from an observation o that is considered impossible.
This situation can arise after taking action a from belief b when O(o | a, s′) = 0 for all
possible next states s′ according to b and our transition model. Algorithm 19.2 handles
this case by returning a uniform belief. In practical applications, there may be a mismatch
between the model and the real world. We generally want to be careful to avoid assigning
zero probability to observations, just in case our belief, transition, or observations models
are incorrect.

Exercise 19.10. Suppose we are performing in-flight monitoring of an aircraft. The aircraft
is either in a state of normal operation s0 or a state of malfunction s1. We receive observa-
tions through the absence of a warning w0 or the presence of a warning w1. We can choose
to allow the plane to continue to fly m0 or send the plane in for maintenance m1. We have
the following transition and observation dynamics, where we assume that the warnings
are independent of the actions, given the status of the plane:

T(s0 | s0, m0) = 0.95 O(w0 | s0) = 0.99

T(s0 | s0, m1) = 1 O(w1 | s1) = 0.7

T(s1 | s1, m0) = 1

T(s0 | s1, m1) = 0.98

Given the initial belief b = [0.95, 0.05], compute the updated belief b′, given that we allow
the plane to continue to fly and we observe a warning.

Solution: Using equation (19.7), we update the belief for s0:

b′(s0) ∝ O(w1 | s0)∑
s

T(s0 | s, m0)b(s)

b′(s0) ∝ O(w1 | s0)(T(s0 | s0, m0)b(s0) + T(s0 | s1, m0)b(s1))

b′(s0) ∝ (1− 0.99)(0.95× 0.95 + (1− 1)× 0.05) = 0.009025

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

19.9. exercises 401

We repeat the update for s1:

b′(s1) ∝ O(w1 | s1)∑
s

T(s1 | s, m0)b(s)

b′(s1) ∝ O(w1 | s1)(T(s1 | s0, m0)b(s0) + T(s1 | s1, m0)b(s1))

b′(s1) ∝ 0.7((1− 0.95)× 0.95 + 1× 0.05) = 0.06825

After normalization, we obtain the following updated belief:

b′(s0) =
b′(s0)

b′(s0) + b′(s1)
≈ 0.117

b′(s1) =
b′(s1)

b′(s0) + b′(s1)
≈ 0.883

b′ ≈ [0.117, 0.883]

Exercise 19.11. Consider a robot moving along a line with position x, velocity v, and
acceleration a. At each time step, we directly control the acceleration and observe the
velocity. The equations of motion for the robot are

x′ = x + v∆t + 1
2 a∆t2

v′ = v + a∆t

where ∆t is the duration of each step. Suppose we would like to implement a Kalman filter
to update our belief. The state vector is s = [x, v]. Determine Ts, Ta, and Os.

Solution: The transition and observation dynamics can be written in linear form as follows:
[

x′

v′

]

=

[

1 ∆t

0 1

] [

x

v

]

+

[

1
2 ∆t2

∆t

]

a

o =
[

0 1
]

[

x′

v′

]

Through these equations, we can identify Ts, Ta, and Os:

Ts =

[

1 ∆t

0 1

]

Ta =

[

1
2 ∆t2

∆t

]

Os =
[

0 1
]

Exercise 19.12. Consider a robot with a differential drive moving in two dimensions at
a constant speed v. The robot’s state is its position (x, y) and its heading θ. At each time
step, we control the robot’s turn rate ω. The equations of motion for the robot are

x′ = x + v cos(θ)∆t

y′ = y + v sin(θ)∆t

θ′ = θ + ω∆t

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

402 chapter 19. beliefs

This transition function is nonlinear. What is its linearization, Ts, as a function of the state
s = [x, y, θ]?

Solution: The linearization is given by the Jacobian as follows:

Ts =

∂x′
∂x

∂x′
∂y

∂x′
∂θ

∂y′

∂x
∂y′

∂y
∂y′

∂θ
∂θ′
∂x

∂θ′
∂y

∂θ′
∂θ

=

1 0 −v sin(θ)∆t

0 1 v cos(θ)∆t

0 0 1

This linearization can be used in an extended Kalman filter to maintain a belief.

Exercise 19.13. Suppose we choose the following 2n sigma points for an n-dimensional
distribution:

s2i = µ+
√

nΣi for i in 1 : n

s2i−1 = µ−
√

nΣi for i in 1 : n

Show that we can reconstruct the mean and the covariance from these sigma points using
the weights wi = 1/(2n).

Solution: If we use the weights wi = 1/(2n), the reconstructed mean is

∑
i

wisi =
n

∑
i=1

1

2n

(

µ+
√

nΣi

)

+
1

2n

(

µ−
√

nΣi

)

=
n

∑
i=1

1

n
µ = µ

and the reconstructed covariance is

∑
i

wi(si − µ′)(si − µ′)⊤ = 2
n

∑
i=1

1

2n

(√
nΣi

)(√
nΣi

)⊤

=
1

n

n

∑
i=1

(√
nΣi

)(√
nΣi

)⊤

=
√

Σ

√
Σ
⊤

= Σ

Exercise 19.14. Recall the 2n sigma points and weights from the previous problem that
represent a mean µ and covariance Σ. We would like to parameterize the sigma points and
weights in order to control the concentration of the points about the mean. Show that we
can construct a new set of sigma points by uniformly down-weighting the original sigma
points and then including the mean µ as an additional sigma point. Show that this new
set of 2n + 1 sigma points matches the form in equation (19.23).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

19.9. exercises 403

Solution: We can include the mean µ in the sigma points from exercise 19.13 to obtain a
new set of 2n + 1 sigma points:

s1 = µ

s2i = µ+

(√

n

1− w1
Σ

)

i

for i in 1 : n

s2i+1 = µ−
(√

n

1− w1
Σ

)

i

for i in 1 : n

where w1 is the weight of the first sigma point. The weights of the remaining sigma points
are uniformly reduced from 1/(2n) to (1− w1)/(2n). The reconstructed mean is still µ,
and the reconstructed covariance is still Σ.

We can vary w1 to produce different sets of sigma points. Setting w1 > 0 causes the
sigma points to spread away from the mean; setting w1 < 0 moves the sigma points
closer to the mean. This results in a scaled set of sigma points with different higher-order
moments, but it preserves the same mean and covariance.

We can match equation (19.23) by substituting w1 = λ/(n + λ). It follows that (1−
w1)/2n = 1/(2(n + λ)) and n/(1− w1) = n + λ.

Exercise 19.15. Compute the set of sigma points and weights with λ = 2 for a multivariate
Gaussian distribution with

µ =

[

1

2

]

Σ =

[

4 0

0 2.25

]

Solution: Since we have a two-dimensional Gaussian distribution and we are given λ = 2,
we need to compute 2n + 1 = 5 sigma points. We need to compute the square-root matrix
B =

√

(n + λ)Σ, such that BB⊤ = (n+λ)Σ. Since the scaled covariancematrix is diagonal,
the square-root matrix is simply the elementwise square root of (n + λ)Σ:

√

(n + λ)Σ =

√

√

√

√(2 + 2)

[

4 0

0 2.25

]

=

[

4 0

0 3

]

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

404 chapter 19. beliefs

Now, we can compute the sigma points and weights:

s1 =

[

1

2

]

w1 =
2

2 + 2
=

1

2

s2 =

[

1

2

]

+

[

4

0

]

=

[

5

2

]

w2 =
1

2(2 + 2)
=

1

8

s3 =

[

1

2

]

−
[

4

0

]

=

[

−3

2

]

w3 =
1

2(2 + 2)
=

1

8

s4 =

[

1

2

]

+

[

0

3

]

=

[

1

5

]

w4 =
1

2(2 + 2)
=

1

8

s5 =

[

1

2

]

−
[

0

3

]

=

[

1

−1

]

w5 =
1

2(2 + 2)
=

1

8

Exercise 19.16. Using the sigma points and weights from the previous exercise, compute
the updated mean and covariance given by the unscented transform through f(x) =

[2x1, x1x2].

Solution: The transformed sigma points are

f(s1) =

[

2

2

]

f(s2) =

[

10

10

]

f(s3) =

[

−6

−6

]

f(s4) =

[

2

5

]

f(s5) =

[

2

−1

]

We can reconstruct the mean as the weighted sum of transformed sigma points:

µ′ = ∑
i

wif(si)

µ′ =
1

2

[

2

2

]

+
1

8

[

10

10

]

+
1

8

[

−6

−6

]

+
1

8

[

2

5

]

+
1

8

[

2

−1

]

=

[

2

2

]

The covariance matrix can be reconstructed from the weighted sum of point-wise covari-
ance matrices:

Σ
′ = ∑

i

wi

(

f(si)− µ′
) (

f(si)− µ′
)⊤

Σ
′ =

1

2

[

0 0

0 0

]

+
1

8

[

64 64

64 64

]

+
1

8

[

64 64

64 64

]

+
1

8

[

0 0

0 9

]

+
1

8

[

0 0

0 9

]

=

[

16 16

16 18.25

]

Exercise 19.17. Both the Kalman filter and the extended Kalman filter compute the cross-
covariance matrix Σpo using the observation covariance Os. The unscented Kalman filter
does not directly compute this observationmatrix, but instead computes Σpo directly. Show
that the covariance update for the unscented Kalman filter, Σb′ ← Σp −KΣoK⊤, matches
the covariance update for theKalmanfilter and extendedKalmanfilter, Σb′ ← (I−KOs)Σp.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

19.9. exercises 405

Solution: We can use the relations K = ΣpoΣ
−1
o and Σpo = ΣpO⊤s to show that the two

updates are equivalent. Note also that a symmetric matrix is its own transpose, and that
covariance matrices are symmetric.

Σb′ = Σp −KΣoK⊤

= Σp −KΣo

(

ΣpoΣ
−1
o

)⊤

= Σp −KΣo

(

Σ
−1
o

)⊤
Σ
⊤
po

= Σp −KΣ
⊤
po

= Σp −K
(

ΣpO⊤s
)⊤

= Σp −KOsΣ⊤p

= Σp −KOsΣp

= (I−KOs)Σp

Exercise 19.18. What are some advantages and disadvantages of using a particle filter
instead of a Kalman filter?

Solution: A Kalman filter can provide an exact belief update when the system is linear
Gaussian. Particle filters can work better when the system is nonlinear and the uncertainty
is multimodal. Particle filters are generally more computationally expensive andmay suffer
from particle deprivation.

Exercise 19.19. Consider using a particle filter to maintain a belief in a problem where
observations are very reliable, with observations having either high or low likelihood.
For example, in the Spelunker Joe problem, we can reliably determine which of the four
walls are present, allowing us to immediately discount any states that do not match the
observation. Why might a particle filter with rejection be a better match than a traditional
particle filter for such problems?

Solution:A traditional particle filter produces a set of particles and assigns weights to them
according to their observation likelihoods. In problems like the one with Spelunker Joe,
many particles may end upwith little to no weight. Havingmany particles with lowweight
makes the belief vulnerable to particle deprivation. A particle filter with rejection ensures
that each particle’s successor state is compatible with the observation, thus mitigating the
issue of particle deprivation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

20 Exact Belief State Planning

The objective in a POMDP is to choose actions that maximize the accumulation
of reward while interacting with the environment. In contrast with MDPs, states
are not directly observable, requiring the agent to use its past history of actions
and observations to inform a belief. As discussed in the previous chapter, beliefs
can be represented as probability distributions over states. There are different
approaches for computing an optimal policy that maps beliefs to actions given
models of the transitions, observations, and rewards.1 One approach is to convert 1 A discussion of exact solution

methods is provided by L. P. Kael-
bling, M. L. Littman, and A.R.
Cassandra, “Planning and Acting
in Partially Observable Stochas-
tic Domains,” Artificial Intelligence,
vol. 101, no. 1–2, pp. 99–134, 1998.

a POMDP into an MDP and apply dynamic programming. Other approaches
include representing policies as conditional plans or as piecewise linear value
functions over the belief space. The chapter concludes with an algorithm for
computing an optimal policy that is analogous to value iteration for MDPs.

20.1 Belief-State Markov Decision Processes

Any POMDP can be viewed as an MDP that uses beliefs as states, also called a
belief-state MDP.2 The state space of a belief-state MDP is the set of all beliefs B. 2 K. J. Åström, “Optimal Control of

Markov Processes with Incomplete
State Information,” Journal of Math-
ematical Analysis and Applications,
vol. 10, no. 1, pp. 174–205, 1965.

The action space is identical to that of the POMDP.
The reward function for a belief-state MDP depends on the belief and action

taken. It is simply the expected value of the reward. For a discrete state-space, it
is given by

R(b, a) = ∑
s

R(s, a)b(s) (20.1)

408 chapter 20. exact belief state planning

If the state and observation spaces are discrete, the belief-state transition func-
tion for a belief-state MDP is given by

T(b′ | b, a) = P(b′ | b, a) (20.2)
= ∑

o

P(b′ | b, a, o)P(o | b, a) (20.3)

= ∑
o

P(b′ | b, a, o)∑
s

P(o | b, a, s)P(s | b, a) (20.4)

= ∑
o

P(b′ | b, a, o)∑
s

P(o | b, a, s)b(s) (20.5)

= ∑
o

P(b′ | b, a, o)∑
s′

∑
s

P(o | b, a, s, s′)P(s′ | b, s, a)b(s) (20.6)

= ∑
o

(

b′ = Update(b, a, o)
)

∑
s′

O(o | a, s′)∑
s

T(s′ | s, a)b(s) (20.7)

In equation (20.7), Update(b, a, o) returns the updated belief using the determin-
istic process discussed in the previous chapter.3 For continuous problems, we 3 As a reminder, we use the conven-

tion where a logical statement in
parentheses is treated numerically
as 1 when true and 0 when false.

replace the summations with integrals.
Solving belief-state MDPs is challenging because the state space is continuous.

We can use the approximate dynamic programming techniques presented in
earlier chapters, but we can often do better by taking advantage of the structure
of the belief-state MDP, as will be discussed in the remainder of this chapter.

20.2 Conditional Plans

a0

a0

a0

o0

a1

o1

o0

a1

a0

o0

a1

o1

o1

Figure 20.1. A three-step condi-
tional plan.

There are a number of ways to represent policies for POMDPs. One approach
is to use a conditional plan represented as a tree. Figure 20.1 shows an example
of a three-step conditional plan with binary action and observation spaces. The
nodes correspond to belief states. The edges are annotated with observations, and
the nodes are annotated with actions. If we have a plan π, the action associated
with the root is denoted as π() and the subplan associated with observation o is
denoted as π(o). Algorithm 20.1 provides an implementation of this.

A conditional plan tells us what to do in response to our observations up to
the horizon represented by the tree. To execute a conditional plan, we start with
the root node and execute the action associated with it. We proceed down the
tree according to our observations, taking the actions associated with the nodes
through which we pass.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

20.2. conditional plans 409

struct ConditionalPlan
a # action to take at root
subplans # dictionary mapping observations to subplans

end

ConditionalPlan(a) = ConditionalPlan(a, Dict())

(π::ConditionalPlan)() = π.a
(π::ConditionalPlan)(o) = π.subplans[o]

Algorithm 20.1. The conditional
plan data structure consisting of an
action and a mapping from obser-
vations to subplans. The subplans
field is a Dict from observations to
conditional plans. For convenience,
we have created a special construc-
tor for plans that consist of a single
node.

Suppose we have a conditional plan π, and we want to compute its expected
utility when starting from state s. This computation can be done recursively:

Uπ(s) = R(s, π()) + γ

[

∑
s′

T
(

s′ | s, π()
)

∑
o

O
(

o | π(), s′
)

Uπ(o)(s′)

]

(20.8)

An implementation for this procedure is given in algorithm 20.2.

function lookahead(𝒫::POMDP, U, s, a)
𝒮, 𝒪, T, O, R, γ = 𝒫.𝒮, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
u′ = sum(T(s,a,s′)*sum(O(a,s′,o)*U(o,s′) for o in 𝒪) for s′ in 𝒮)
return R(s,a) + γ*u′

end

function evaluate_plan(𝒫::POMDP, π::ConditionalPlan, s)
U(o,s′) = evaluate_plan(𝒫, π(o), s′)
return isempty(π.subplans) ? 𝒫.R(s,π()) : lookahead(𝒫, U, s, π())

end

Algorithm 20.2. A method for
evaluating a conditional plan π for
MDP 𝒫 starting at state s. Plans are
represented as tuples consisting of
an action and a dictionary map-
ping observations to subplans.

We can compute the utility of our belief b as follows:

Uπ(b) = ∑
s

b(s)Uπ(s) (20.9)

Example 20.1 shows how to compute the utility associated with a three-step
conditional plan.

Now that we have a way to evaluate conditional plans up to a horizon h, we
can compute the optimal h-step value function:

U∗(b) = max
π

Uπ(b) (20.10)

An optimal action can be generated from the action associated with the root of a
maximizing π.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

410 chapter 20. exact belief state planning

Consider the following three-step conditional plan for the crying baby prob-
lem:

ignore

feed

ignore

feed

ignore

feed

ignore

cryi
ng

quiet

crying

quiet

crying

quiet

In this plan, we begin by ignoring the baby. If we observe any crying, we
feed the baby. If we do not observe any crying, we ignore the baby. Our third
action again feeds if there is crying.

The expected utility for this plan in belief space is plotted alongside a
three-step plan that always feeds the baby and one that always ignores the
baby.

0 0.2 0.4 0.6 0.8 1

−20

−10

0

P(hungry)

U
(b
)

given plan
always ignore
always feed

We find that the given plan is not universally better than either always
ignoring or always feeding the baby.

Example 20.1. A conditional plan
for the three-step crying baby prob-
lem (appendix F.7), evaluated and
compared to two simpler condi-
tional plans.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

20.3. alpha vectors 411

Solving an h-step POMDP by directly enumerating all h-step conditional plans
is generally computationally intractable, as shown in figure 20.2. There are (|O|h−
1)/(|O| − 1) nodes in an h-step plan. In general, any action can be inserted into
any node, resulting in |A|(|O|h−1)/(|O|−1) possible h-step plans. This exponential
growth means that enumerating over all plans is intractable even for modest
values of h. As will be discussed later in this chapter, there are alternatives to
explicitly enumerating over all possible plans. 5 10

100

10154

10338

horizon h

nu
m
be

ro
fp

lan
s

Figure 20.2. Even for small
POMDPs with only two actions
and two observations, the number
of possible plans grows extremely
quickly with the planning horizon.
We can often significantly prune
the set of alpha vectors at each
iteration and only consider far
fewer plans.

20.3 Alpha Vectors

We can rewrite equation (20.9) in vector form:

Uπ(b) = ∑
s

b(s)Uπ(s) = α⊤π b (20.11)

The vector απ , called an alpha vector, contains the expected utility under plan π

for each state. As with belief vectors, alpha vectors have dimension |S|. Unlike
beliefs, the components in alpha vectors represent utilities, not probability masses.
Algorithm 20.3 shows how to compute an alpha vector.

function alphavector(𝒫::POMDP, π::ConditionalPlan)
return [evaluate_plan(𝒫, π, s) for s in 𝒫.𝒮]

end

Algorithm 20.3. We can generate
an alpha vector from a conditional
plan by calling evaluate_plan
from all possible initial states.

Each alpha vector defines a hyperplane in belief space. The optimal value
function given in equation (20.11) is the maximum over these hyperplanes:

U∗(b) = max
π
α⊤π b (20.12)

making the value function piecewise-linear and convex.4 4 The optimal value function for
continuous-state POMDPs is also
convex, as can be seen by approxi-
mating the POMDP through state
space discretization and taking the
limit as the number of discrete
states approaches infinity.

An alternative to using a conditional plan to represent a policy is to use a set
of alpha vectors Γ, each annotated with an action. Although it is not practical,
one way to generate set Γ is to enumerate the set of h-step conditional plans and
then compute their alpha vectors. The action associated with an alpha vector
is the action at the root of the associated conditional plan. We execute a policy
represented by Γ by updating our belief state and performing the action associated
with the dominating alpha vector at the new belief b. The dominating alpha vector
α at b is the one that maximizes α⊤b. This strategy can be used to select actions

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

412 chapter 20. exact belief state planning

beyond the horizon of the original conditional plans. Algorithm 20.4 provides an
implementation.

struct AlphaVectorPolicy
𝒫 # POMDP problem
Γ # alpha vectors
a # actions associated with alpha vectors

end

function utility(π::AlphaVectorPolicy, b)
return maximum(α⋅b for α in π.Γ)

end

function (π::AlphaVectorPolicy)(b)
i = argmax([α⋅b for α in π.Γ])
return π.a[i]

end

Algorithm 20.4. An alpha vector
policy is defined in terms of a set
of alpha vectors Γ and an array of
associated actions a. Given the cur-
rent belief b, it will find the alpha
vector that gives the highest value
at that belief point. It will return
the associated action.

Ifwe use one-step lookahead, we do not have to keep track of the actions associated
with the alpha vectors in Γ. The one-step lookahead action from belief b using
the value function represented by Γ, denoted as UΓ, is

πΓ(b) = arg max
a

[

R(b, a) + γ ∑
o

P(o | b, a)UΓ(Update(b, a, o))

]

(20.13)

where

P(o | b, a) = ∑
s

P(o | s, a)b(s) (20.14)

P(o | s, a) = ∑
s′

T(s′ | s, a)O(o | s′, a) (20.15)

Algorithm 20.5 provides an implementation of this. Example 20.2 demonstrates
using one-step lookahead on the crying baby problem.

20.4 Pruning

If we have a collection of alpha vectors Γ, we may want to prune alpha vectors
that do not contribute to our representation of the value function or plans that
are not optimal for any belief. Removing such alpha vectors or plans can improve
computational efficiency. We can check whether an alpha vector α is dominated by

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

20.4. pruning 413

function lookahead(𝒫::POMDP, U, b::Vector, a)
𝒮, 𝒪, T, O, R, γ = 𝒫.𝒮, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
r = sum(R(s,a)*b[i] for (i,s) in enumerate(𝒮))
Posa(o,s,a) = sum(O(a,s′,o)*T(s,a,s′) for s′ in 𝒮)
Poba(o,b,a) = sum(b[i]*Posa(o,s,a) for (i,s) in enumerate(𝒮))
return r + γ*sum(Poba(o,b,a)*U(update(b, 𝒫, a, o)) for o in 𝒪)

end

function greedy(𝒫::POMDP, U, b::Vector)
u, a = findmax(a->lookahead(𝒫, U, b, a), 𝒫.𝒜)
return (a=a, u=u)

end

struct LookaheadAlphaVectorPolicy
𝒫 # POMDP problem
Γ # alpha vectors

end

function utility(π::LookaheadAlphaVectorPolicy, b)
return maximum(α⋅b for α in π.Γ)

end

function greedy(π, b)
U(b) = utility(π, b)
return greedy(π.𝒫, U, b)

end

(π::LookaheadAlphaVectorPolicy)(b) = greedy(π, b).a

Algorithm 20.5. A policy repre-
sented by a set of alpha vectors Γ.
It uses one-step lookahead to pro-
duce an optimal action and asso-
ciated utility. Equation (20.13) is
used to compute the lookahead.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

414 chapter 20. exact belief state planning

Consider using one-step lookahead on the crying baby problem with a value
function given by the alpha vectors [−3.7,−15] and [−2,−21]. Suppose that
our current belief is b = [0.5, 0.5], meaning that we believe it is equally likely
the baby is hungry as not hungry. We apply equation (20.13)

b

γP(crying | b, feed)U(Update(b, feed, crying)) = −0.18

γP(quiet | b, feed)U(Update(b, feed,quiet)) = −1.62

R(b, feed) = −10

→ Q(b, feed) = −11.8

γP(crying | b, ignore)U(Update(b, ignore, crying)) = −6.09

γP(quiet | b, ignore)U(Update(b, ignore,quiet)) = −2.81

R(b, ignore) = −5

→ Q(b, ignore) = −13.9

γP(crying | b, sing)U(Update(b, sing, crying)) = −6.68

γP(quiet | b, sing)U(Update(b, sing,quiet)) = −1.85

R(b, sing) = −5.5

→ Q(b, sing) = −14.0

We use Q(b, a) to represent the action value function from a belief state.
The policy predicts that feeding the baby will result in the highest expected
utility, so it takes that action.

Example 20.2. Applying a looka-
head policy to the crying baby
problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

20.4. pruning 415

the alpha vectors in a set Γ by solving a linear program to maximize the utility
gap δ that vector achieves over all other vectors:5 5 Constraints of the form a ≥ b are

elementwise. That is, wemean ai ≥
bi for all i.maximize

δ, b
δ

subject to b ≥ 0

1⊤b = 1

α⊤b ≥ α′⊤b + δ, α′ ∈ Γ

(20.16)

The first two constraints ensure that b is a categorical distribution, and the final
set of constraints ensures that we find a belief vector for which α has a higher
expected reward than all alpha vectors in Γ. If, after solving the linear program,
the utility gap δ is negative, then α is dominated. If δ is positive, then α is not
dominated and b is a belief at which α is not dominated. Algorithm 20.6 provides
an implementation for solving equation (20.16) to determine a belief, if one exists,
where δ is most positive.

function find_maximal_belief(α, Γ)
m = length(α)
if isempty(Γ)

return fill(1/m, m) # arbitrary belief
end
model = Model(GLPK.Optimizer)
@variable(model, δ)
@variable(model, b[i=1:m] ≥ 0)
@constraint(model, sum(b) == 1.0)
for a in Γ

@constraint(model, (α-a)⋅b ≥ δ)
end
@objective(model, Max, δ)
optimize!(model)
return value(δ) > 0 ? value.(b) : nothing

end

Algorithm 20.6. Amethod for find-
ing the belief vector b for which
the alpha vector α improves the
most compared to the set of alpha
vectors Γ. Nothing is returned if
no such belief exists. The packages
JuMP.jl and GLPK.jl provide a
mathematical optimization frame-
work and a solver for linear pro-
grams, respectively.

Algorithm 20.7 shows a procedure that uses algorithm 20.6 to find the domi-
nating alpha vectors in a set Γ. Initially, all the alpha vectors are candidates for
being dominating. We then choose one of these candidates and determine the
belief b where the candidate leads to the greatest improvement in value compared
to all other alpha vectors in the dominating set. If the candidate does not bring
improvement, we remove it from the set. If it does bring improvement, we move
an alpha vector from the candidate set that brings the greatest improvement

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

416 chapter 20. exact belief state planning

at b to the dominating set. The process continues until there are no longer any
candidates. We can prune away any alpha vectors and associated conditional
plans that are not dominating at any belief point. Example 20.3 demonstrates
pruning on the crying baby problem.

function find_dominating(Γ)
n = length(Γ)
candidates, dominating = trues(n), falses(n)
while any(candidates)

i = findfirst(candidates)
b = find_maximal_belief(Γ[i], Γ[dominating])
if b === nothing

candidates[i] = false
else

k = argmax([candidates[j] ? b⋅Γ[j] : -Inf for j in 1:n])
candidates[k], dominating[k] = false, true

end
end
return dominating

end

function prune(plans, Γ)
d = find_dominating(Γ)
return (plans[d], Γ[d])

end

Algorithm 20.7. A method for
pruning dominated alpha vec-
tors and associated plans. The
find_dominating function identi-
fies all the dominating alpha vec-
tors in set Γ. It uses binary vec-
tors candidates and dominating
to track which alpha vectors are
candidates for inclusion in the
dominating set and which are cur-
rently in the dominating set, re-
spectively.

20.5 Value Iteration

The value iteration algorithm for MDPs can be adapted for POMDPs.6 POMDP 6 This section describes a version
of value iteration in terms of con-
ditional plans and alpha vectors.
For a version that only uses alpha
vectors, see A.R. Cassandra, M. L.
Littman, and N. L. Zhang, “Incre-
mental Pruning: A Simple, Fast, Ex-
act Method for Partially Observ-
able Markov Decision Processes,”
in Conference on Uncertainty in Arti-
ficial Intelligence (UAI), 1997.

value iteration (algorithm 20.8) begins by constructing all one-step plans. We
prune any plans that are never optimal for any initial belief. Then, we expand all
combinations of one-step plans to produce two-step plans. Again, we prune any
suboptimal plans from consideration. This procedure of alternating between ex-
pansion and pruning is repeated until the desired horizon is reached. Figure 20.3
demonstrates value iteration on the crying baby problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

20.5. value iteration 417

We can construct all two-step plans for the crying baby problem. There are
33 = 27 such plans.

The expected utility for each plan in belief space is plotted below. We find
that two plans dominate all others. These dominating plans are the only ones
that need to be considered as subplans for optimal three-step plans.

0 0.2 0.4 0.6 0.8 1

−25

−20

−15

−10

−5

0

P(hungry)

U
(b
)

Example 20.3. The expected util-
ity over the belief space for all
two-step plans for the crying baby
problem (appendix F.7). The thick
lines are optimal for some beliefs,
whereas the thin lines are domi-
nated.

function value_iteration(𝒫::POMDP, k_max)
𝒮, 𝒜, R = 𝒫.𝒮, 𝒫.𝒜, 𝒫.R
plans = [ConditionalPlan(a) for a in 𝒜]
Γ = [[R(s,a) for s in 𝒮] for a in 𝒜]
plans, Γ = prune(plans, Γ)
for k in 2:k_max

plans, Γ = expand(plans, Γ, 𝒫)
plans, Γ = prune(plans, Γ)

end
return (plans, Γ)

end

function solve(M::ValueIteration, 𝒫::POMDP)
plans, Γ = value_iteration(𝒫, M.k_max)
return LookaheadAlphaVectorPolicy(𝒫, Γ)

end

Algorithm 20.8. Value iteration for
POMDPs, which finds the domi-
nating h-step plans for a finite hori-
zon POMDP of horizon k_max by it-
eratively constructing optimal sub-
plans. The ValueIteration struc-
ture is the same as what was de-
fined in algorithm 7.8 in the con-
text of MDPs.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

418 chapter 20. exact belief state planning

0 0.2 0.4 0.6 0.8 1

−20

−10

0

U
(b
)

1-step plans

0 0.2 0.4 0.6 0.8 1

−20

−10

0

2-step plans

0 0.2 0.4 0.6 0.8 1

−20

−10

0

3-step plans

0 0.2 0.4 0.6 0.8 1

−20

−10

0

P(hungry)

U
(b
)

4-step plans

0 0.2 0.4 0.6 0.8 1

−20

−10

0

P(hungry)

5-step plans

ignore sing feed

0 0.2 0.4 0.6 0.8 1

−20

−10

0

P(hungry)

6-step plans

Figure 20.3. POMDP value itera-
tion used to find the optimal value
function for the crying baby prob-
lem to various horizons.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

20.6. l inear policies 419

a

subplan

subplan

...
subplan

o1

o2

o|O|

Figure 20.4. A (k + 1)-step plan
can be constructed using a new ini-
tial action leading to any combina-
tion of k-step subplans.

The expansion step (algorithm 20.9) in this process constructs all possible
(k + 1)-step plans from a set of k-step plans. New plans can be constructed using
a new first action and all possible combinations of the k-step plans as subplans, as
shown in figure 20.4. While plans can also be extended by adding actions to the
ends of subplans, top-level expansion allows alpha vectors constructed for the
k-step plans to be used to efficiently construct alpha vectors for the (k + 1)-step
plans.

Computing the alpha vector associatedwith a plan π from a set of alpha vectors
associated with its subplans can be done as follows. We use αo to represent the
alpha vector associated with subplan π(o). The alpha vector associated with π is
then

α(s) = R(s, π()) + γ ∑
s′

T(s′ | s, π())∑
o

O(o | π(), s′)αo(s
′) (20.17)

Even for relatively simple problems to shallow depths, computing alpha vectors
from subplans in this way is much more efficient than computing them from
scratch, as in algorithm 20.2.

20.6 Linear Policies

As discussed in section 19.3, the belief state in a problem with linear Gaussian
dynamics can be represented by a Gaussian distribution,N (µb, Σb). If the reward
function is quadratic, then it can be shown that the optimal policy can be computed
exactly offline using a process that is often called linear quadratic Gaussian (LQG)
control. The optimal action is obtained in an identical manner as in section 7.8,
but the µb computed using the linear Gaussian filter is treated as the true state.7 7 Our ability to simply use the

mean of the distribution is another
instance of the certainty equivalence
principle, originally introduced in
section 7.8.

With each observation, we simply use the filter to update our µb and obtain an
optimal action by multiplying µb with the policy matrix from algorithm 7.11.
Example 20.4 demonstrates this process.

20.7 Summary

• Exact solutions for POMDPs typically can be obtained only for finite horizon
discrete POMDPs.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

420 chapter 20. exact belief state planning

function ConditionalPlan(𝒫::POMDP, a, plans)
subplans = Dict(o=>π for (o, π) in zip(𝒫.𝒪, plans))
return ConditionalPlan(a, subplans)

end

function combine_lookahead(𝒫::POMDP, s, a, Γo)
𝒮, 𝒪, T, O, R, γ = 𝒫.𝒮, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
U′(s′,i) = sum(O(a,s′,o)*α[i] for (o,α) in zip(𝒪,Γo))
return R(s,a) + γ*sum(T(s,a,s′)*U′(s′,i) for (i,s′) in enumerate(𝒮))

end

function combine_alphavector(𝒫::POMDP, a, Γo)
return [combine_lookahead(𝒫, s, a, Γo) for s in 𝒫.𝒮]

end

function expand(plans, Γ, 𝒫)
𝒮, 𝒜, 𝒪, T, O, R = 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R
plans′, Γ′ = [], []
for a in 𝒜

iterate over all possible mappings from observations to plans
for inds in product([eachindex(plans) for o in 𝒪]...)

πo = plans[[inds...]]
Γo = Γ[[inds...]]
π = ConditionalPlan(𝒫, a, πo)
α = combine_alphavector(𝒫, a, Γo)
push!(plans′, π)
push!(Γ′, α)

end
end
return (plans′, Γ′)

end

Algorithm 20.9. The expansion
step in value iteration, which con-
structs all (k + 1)–step conditional
plans and associated alpha vectors
from a set of k-step conditional
plans and alpha vectors. The way
that we combine alpha vectors of
subplans follows equation (20.17).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

20.7. summary 421

Consider a satellite navigating in two dimensions, neglecting gravity, drag,
and other external forces. The satellite can use its thrusters to accelerate in
any direction with linear dynamics:

x

y

ẋ

ẏ

←

1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

x

y

ẋ

ẏ

+

1
2 ∆t2 0

0 1
2 ∆t2

∆t 0

0 ∆t

[

ẍ

ÿ

]

+ ǫ

where ∆t is the duration of a time step and ǫ is zero-mean Gaussian noise
with covariance ∆t/20I.

We seek to place the satellite in its orbital slot at the origin, while mini-
mizing fuel use. Our quadratic reward function is

R(s, a) = −s⊤
[

I2×2 02×2

02×2 02×2

]

s− 2a⊤a

The satellite’s sensors measure its position according to:

o =
[

I2×2 02×2

]

s + ε

where ε is zero-mean Gaussian noise with covariance ∆t/10I.
Here are 50 trajectories from 10-step rollouts using the optimal policy for

∆t = 1 and a Kalman filter to track the belief. In each case, the satellite was
started at s = µb = [−5, 2, 0, 1] with Σb = [I 0; 0 0.25I].

−4 −2 0 2

0

2

x

y

Example 20.4. An optimal pol-
icy used for a POMDP with linear
Gaussian dynamics and quadratic
reward.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

422 chapter 20. exact belief state planning

• Policies for these problems can be represented as conditional plans, which are
trees that describe the actions to take based on the observations.

• Alpha vectors contain the expected utility when starting from different states
and following a particular conditional plan.

• Alpha vectors can also serve as an alternative representation of a POMDP
policy.

• POMDP value iteration can avoid the computational burden of enumerating
all conditional plans by iteratively computing subplans and pruning those that
are suboptimal.

• Linear Gaussian problems with quadratic reward can be solved exactly using
methods very similar to those derived for the fully observable case.

20.8 Exercises
Exercise 20.1. Can every POMDP be framed as an MDP?

Solution: Yes. Any POMDP can equivalently be viewed as a belief-state MDP whose state
space is the space of beliefs in the POMDP, whose action space is the same as that of the
POMDP and whose transition function is given by equation (20.2).

Exercise 20.2. What are the alpha vectors for the one-step crying baby problem (ap-
pendix F.7)? Are all the available actions dominant?

Solution: There are three one-step conditional plans, one for each action, resulting in three
alpha vectors. The optimal one-step policy must choose between these actions, given the
current belief. The one-step alpha vectors for a POMDP can be obtained from the optimal
one-step belief value function:

U∗(b) = max
a

∑
s

b(s)R(s, a)

Feeding the baby yields an expected reward:

R(hungry, feed)P(hungry) + R(sated, feed)P(sated)
= −15P(hungry)− 5(1− P(hungry))

= −10P(hungry)− 5

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

20.8. exercises 423

Singing to the baby yields an expected reward:

R(hungry, sing)P(hungry) + R(sated, sing)P(sated)
= −10.5P(hungry)− 0.5(1− P(hungry))

= −10P(hungry)− 0.5

Ignoring the baby yields an expected reward:

R(hungry, ignore)P(hungry) + R(sated, ignore)P(sated)
= −10P(hungry)

The expected reward for each action is plotted as follows over the belief space:

feed

sing

ignore

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

P(hungry)

U
(b
)

We find that under a one-step horizon, it is never optimal to feed or sing to the baby. The
ignore action is dominant.

Exercise 20.3. Why does the implementation of value iteration in algorithm 20.8 call
expand in algorithm 20.9 rather than evaluating the plan in algorithm 20.2 to obtain alpha
vectors for each new conditional plan?

Solution: The plan evaluation method applies equation (20.8) recursively to evaluate the
expected utility for a conditional plan. Conditional plans grow very large as the horizon
increases. POMDP value iteration can save computation by using the alpha vectors for the
subplans from the previous iteration:

Uπ(s) = R(s, π()) + γ

[

∑
s′

T
(

s′ | s, π()
)

∑
o

O
(

o | π(), s′
)

α
π(o)
s′

]

Exercise 20.4. Does the number of conditional plans increase faster with the number of
actions or with the number of observations?

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

424 chapter 20. exact belief state planning

Solution: Recall that there are |A|(|O|h−1)/(|O|−1) possible h-step plans. Exponential growth
(nx) is faster than polynomial growth (xn), and we have better-than exponential growth
in |O| and polynomial growth in |A|. The number of plans thus increases faster with
respect to the number of observations. To demonstrate, let us use |A| = 3, |O| = 3, and
h = 3 as a baseline. The baseline has 1,594,323 plans. Incrementing the number of actions
results in 67,108,864 plans, whereas incrementing the number of observations results in
10,460,353,203 plans.

Exercise 20.5. Suppose that we have a patient and we are unsure whether they have a
particular disease. We do have three diagnostic tests, each with different probabilities that
they will correctly indicate whether the disease is present. While the patient is in our office,
we have the option to administer multiple diagnostic tests in sequence. We observe the
outcome of each diagnostic test immediately. In addition, we can repeat any diagnostic
test multiple times, with the outcomes of all tests being conditionally independent of each
other, given the presence or absence of the disease. When we are done with the tests, we
decide whether to treat the disease or send the patient home without treatment. Explain
how you would define the various components of a POMDP formulation.

Solution: We have three states:
1. sno-disease: the patient does not have the disease
2. sdisease: the patient has the disease
3. sterminal: the interaction is over (terminal state)
We have five actions:
1. a1: administer test 1

2. a2: administer test 2

3. a3: administer test 3

4. atreat: administer treatment and send patient home
5. astop: send patient home without treatment
We have three observations:
1. ono-disease: the outcome of the test (if administered) indicates the patient does not have the disease
2. odisease: the outcome of the test (if administered) indicates the patient has the disease
3. oterminal: a test was not administered
The transition model would be deterministic, with

T(s′ | s, a) =

1 if a ∈ {atreat, astop} ∧ s′ = sterminal
1 if s = s′

0 otherwise

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

20.8. exercises 425

The reward function would be a function of the cost of administering treatment and each
test, as well as the cost of not treating the disease if it is indeed present. The reward available
from sterminal is 0. The observation model assigns probabilities to correct and incorrect
observations of the disease state as a result of a diagnostic test from one of the nonterminal
states. The initial belief would assign our prior probability to whether the patient has the
disease, with zero probability assigned to the terminal state.

Exercise 20.6. Why might we want to perform the same test multiple times in the previous
exercise?

Solution: Depending on the probability of incorrect results, we may want to perform the
same test multiple times to improve our confidence in whether the patient has the disease.
The results of the tests are independent given the disease state.

Exercise 20.7. Suppose we have three alpha vectors, [1, 0], [0, 1], and [θ, θ], for a constant
θ. Under what conditions on θ can we prune alpha vectors?

Solution: We can prune alpha vectors if θ < 0.5 or θ > 1. If θ < 0.5, then [θ, θ] is dominated
by the other two alpha vectors. If θ > 1, then [θ, θ] dominates the other two alpha vectors.

Exercise 20.8. We have Γ = {[1, 0], [0, 1]} and α = [0.7, 0.7]. What belief b maximizes the
utility gap δ, as defined by the linear program in equation (20.16)?

Solution: The alpha vectors in Γ are shown in blue and the alpha vector α is shown in red.
We care only about the region where 0.3 ≤ b2 ≤ 0.7, where α dominates the alpha vectors
in Γ; in other words, where the red line is above the blue lines. The point where the gap
between the red line and the maximum of the blue lines occurs at b2 = 0.5, with a gap of
δ = 0.2. Hence, the belief that maximizes this gap is b = [0.5, 0.5].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

b2

U
(b

2
)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

21 Offline Belief State Planning

In the worst case, an exact solution for a general finite-horizon POMDP is PSPACE-
complete, which is a complexity class that includes NP-complete problems and
is suspected to include problems that are even more difficult.1 General infinite-

1 C. Papadimitriou and J. Tsitsik-
lis, “The Complexity ofMarkovDe-
cision Processes,” Mathematics of
Operation Research, vol. 12, no. 3,
pp. 441–450, 1987.horizon POMDPs have been shown to be uncomputable.2 Hence, there has been a
2 O. Madani, S. Hanks, and A.
Condon, “On the Undecidability
of Probabilistic Planning and Re-
lated Stochastic Optimization Prob-
lems,”Artificial Intelligence, vol. 147,
no. 1–2, pp. 5–34, 2003.

tremendous amount of research recently on approximationmethods. This chapter
discusses various offline POMDP solution methods, which involve performing
all or most of the computation prior to execution. We focus on methods that
represent the value function as alpha vectors and different forms of interpolation.

21.1 Fully Observable Value Approximation

One of the simplest offline approximation techniques is QMDP, which derives its
name from the action value function associated with a fully observed MDP.3 This

3 M.L. Littman, A.R. Cassandra,
and L. P. Kaelbling, “Learning Poli-
cies for Partially Observable Envi-
ronments: Scaling Up,” in Interna-
tional Conference on Machine Learn-
ing (ICML), 1995. A proof that
QMDP provides an upper bound
on the optimal value function is
given by M. Hauskrecht, “Value-
Function Approximations for Par-
tially Observable Markov Decision
Processes,” Journal of Artificial Intel-
ligence Research, vol. 13, pp. 33–94,
2000.

approach, as well as several others discussed in this chapter, involve iteratively
updating a set Γ of alpha vectors, as shown in algorithm 21.1. The resulting set Γ

defines a value function and a policy that can be used directly or with one-step
lookahead as discussed in the previous chapter, though the resulting policy will
only be an approximation of the optimal solution.

function alphavector_iteration(𝒫::POMDP, M, Γ)
for k in 1:M.k_max

Γ = update(𝒫, M, Γ)
end
return Γ

end

Algorithm 21.1. Iteration structure
for updating a set of alpha vec-
tors Γ used by several of the meth-
ods in this chapter. The various
methods, including QMDP, differ
in their implementation of update.
After k_max iterations, this function
returns a policy represented by the
alpha vectors in Γ.

428 chapter 21. offline belief state planning

QMDP (algorithm 21.2) constructs a single alpha vector αa for each action a

using value iteration. Each alpha vector is initialized to zero, and then we iterate:

α
(k+1)
a (s) = R(s, a) + γ ∑

s′
T(s′ | s, a)max

a′
α
(k)
a′ (s

′) (21.1)

Each iteration requires O(|A|2|S|2) operations. Figure 21.1 illustrates the process.

struct QMDP
k_max # maximum number of iterations

end

function update(𝒫::POMDP, M::QMDP, Γ)
𝒮, 𝒜, R, T, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.T, 𝒫.γ
Γ′ = [[R(s,a) + γ*sum(T(s,a,s′)*maximum(α′[j] for α′ in Γ)

for (j,s′) in enumerate(𝒮)) for s in 𝒮] for a in 𝒜]
return Γ′

end

function solve(M::QMDP, 𝒫::POMDP)
Γ = [zeros(length(𝒫.𝒮)) for a in 𝒫.𝒜]
Γ = alphavector_iteration(𝒫, M, Γ)
return AlphaVectorPolicy(𝒫, Γ, 𝒫.𝒜)

end

Algorithm 21.2. The QMDP al-
gorithm, which finds an approx-
imately optimal policy for an
infinite-horizon POMDP with a
discrete state and action space,
where k_max is the number of it-
erations. QMDP assumes perfect
observability.

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

P(hungry)

U
(b
)

1 iterations
2 iterations
3 iterations
4 iterations
5 iterations
6 iterations
7 iterations
8 iterations
9 iterations
10 iterations
100 iterations
optimal value function

Figure 21.1. Value functions ob-
tained for the crying baby problem
(appendix F.7) using QMDP. In the
first iteration, a single alpha vec-
tor dominates. In subsequent itera-
tions, two alpha vectors dominate.

When QMDP is run to the horizon in finite horizon problems or to convergence
for infinite-horizon problems, the resulting policy is equivalent to assuming that
there will be full observability after taking the first step. Because we can do better

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

21.2. fast informed bound 429

only if we have full observability, QMDP will produce an upper bound on the
true optimal value function U∗(b). In other words, maxa α

⊤
a b ≥ U∗(b) for all b.4 4 Although the value function rep-

resented by the QMDP alpha vec-
tors upper-bounds the optimal
value function, the utility realized
by a QMDP policy will not exceed
that of an optimal policy in expec-
tation, of course.

If QMDP is not run to convergence for infinite-horizon problems, it might
not provide an upper bound. One way to guarantee that QMDP will provide an
upper bound after a finite number of iterations is to initialize the value function
to some upper bound. One rather loose upper bound is the best-action best-state
upper bound, which is the utility obtained from taking the best action from the
best state forever:

U(b) = max
s,a

R(s, a)

1− γ
(21.2)

The assumption of full observability after the first step can cause QMDP to
poorly approximate the value of information-gathering actions, which are actions
that significantly reduce the uncertainty in the state. For example, looking over
one’s shoulder before changing lanes when driving is an information-gathering
action. QMDP can perform well in problems where the optimal policy does not
include costly information gathering.

We can generalize the QMDP approach to problems that may not have a small,
discrete state space. In such problems, the iteration in equation (21.1) may not be
feasible, but wemay use one of themanymethods discussed in earlier chapters for
obtaining an approximate action value function Q(s, a). This value function might
be defined over a high-dimensional, continuous state space using, for example, a
neural network representation. The value function evaluated at a belief point is,
then,

U(b) = max
a

∫

Q(s, a)b(s)ds (21.3)

The integral above may be approximated through sampling.

21.2 Fast Informed Bound

As with QMDP, the fast informed bound computes one alpha vector for each ac-
tion. However, the fast informed bound takes into account, to some extent, the
observation model.5 The iteration is

5 The relationship between QMDP
and the fast informed bound,
together with empirical results,
are discussed by M. Hauskrecht,
“Value-Function Approximations
for Partially Observable Markov
Decision Processes,” Journal of Ar-
tificial Intelligence Research, vol. 13,
pp. 33–94, 2000.

α
(k+1)
a (s) = R(s, a) + γ ∑

o

max
a′

∑
s′

O(o | a, s′)T(s′ | s, a)α
(k)
a′ (s

′) (21.4)

which requires O(|A|2|S|2|O|) operations per iteration.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

430 chapter 21. offline belief state planning

The fast informed bound provides an upper bound on the optimal value
function. That upper bound is guaranteed to be no looser than that provided by
QMDP, and it also tends to be tighter. The fast informed bound is implemented
in algorithm 21.3 and is used in figure 21.2 to compute optimal value functions.

struct FastInformedBound
k_max # maximum number of iterations

end

function update(𝒫::POMDP, M::FastInformedBound, Γ)
𝒮, 𝒜, 𝒪, R, T, O, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.R, 𝒫.T, 𝒫.O, 𝒫.γ
Γ′ = [[R(s, a) + γ*sum(maximum(sum(O(a,s′,o)*T(s,a,s′)*α′[j]

for (j,s′) in enumerate(𝒮)) for α′ in Γ) for o in 𝒪)
for s in 𝒮] for a in 𝒜]

return Γ′
end

function solve(M::FastInformedBound, 𝒫::POMDP)
Γ = [zeros(length(𝒫.𝒮)) for a in 𝒫.𝒜]
Γ = alphavector_iteration(𝒫, M, Γ)
return AlphaVectorPolicy(𝒫, Γ, 𝒫.𝒜)

end

Algorithm 21.3. The fast informed
bound algorithm, which finds an
approximately optimal policy for
an infinite-horizon POMDP with
discrete state, action, and obser-
vation spaces, where k_max is the
number of iterations.

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

P(hungry)

U
(b
)

1 iterations
2 iterations
3 iterations
4 iterations
5 iterations
6 iterations
7 iterations
8 iterations
9 iterations
10 iterations
100 iterations
optimal value function

Figure 21.2. Value functions ob-
tained for the crying baby problem
using the fast informed bound. The
value function after 10 iterations is
noticeably lower than that of the
QMDP algorithm.

21.3 Fast Lower Bounds

The previous two sections introduced methods that can be used to produce upper
bounds on the value function represented as alpha vectors. This section introduces

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

21.4. point-based value iteration 431

a couple of methods for quickly producing lower bounds represented as alpha
vectors without any planning in the belief space. Although the upper-bound
methods can often be used directly to produce sensible policies, the lower bounds
discussed in this section are generally only used to seed other planning algorithms.
Figure 21.3 plots the two lower-bound methods discussed in this section.

0 0.2 0.4 0.6 0.8 1

−100

−50

0

P(hungry)

U
(b
)

blind 1 blind 5

blind 10 blind 15

blind 20 optimal
BAWS

Figure 21.3. Blind lower bounds
with different numbers of itera-
tions and the BAWS lower bound
applied to the crying baby prob-
lem.

A common lower bound is the best-action worst-state (BAWS) lower bound (algo-
rithm 21.4). It is the discounted reward obtained by taking the best action in the
worst state forever:

rbaws = max
a

∞

∑
k=1

γk−1 min
s

R(s, a) =
1

1− γ
max

a
min

s
R(s, a) (21.5)

This lower bound is represented by a single alpha vector. This bound is typically
very loose, but it can be used to seed other algorithms that can tighten the bound,
as we will discuss shortly.

function baws_lowerbound(𝒫::POMDP)
𝒮, 𝒜, R, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.γ
r = maximum(minimum(R(s, a) for s in 𝒮) for a in 𝒜) / (1-γ)
α = fill(r, length(𝒮))
return α

end

Algorithm 21.4. Implementation
of the best-action worst-state lower
bound from equation (21.5) repre-
sented as an alpha vector.

The blind lower bound (algorithm 21.5) represents a lower boundwith one alpha
vector per action. It makes the assumption that we are forced to commit to a single
action forever, blind to what we observe in the future. To compute these alpha
vectors, we start with another lower bound (typically the best-action worst-state
lower bound) and then perform a number of iterations:

α
(k+1)
a (s) = R(s, a) + γ ∑

s′
T(s′ | s, a)α

(k)
a (s′) (21.6)

This iteration is similar to the QMDP update in equation (21.1), except that it
does not have a maximization over the alpha vectors on the right-hand side.

21.4 Point-Based Value Iteration

QMDP and the fast informed bound generate one alpha vector for each action,
but the optimal value function is often better approximated by many more

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

432 chapter 21. offline belief state planning

function blind_lowerbound(𝒫, k_max)
𝒮, 𝒜, T, R, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.T, 𝒫.R, 𝒫.γ
Q(s,a,α) = R(s,a) + γ*sum(T(s,a,s′)*α[j] for (j,s′) in enumerate(𝒮))
Γ = [baws_lowerbound(𝒫) for a in 𝒜]
for k in 1:k_max

Γ = [[Q(s,a,α) for s in 𝒮] for (α,a) in zip(Γ, 𝒜)]
end
return Γ

end

Algorithm 21.5. Implementation of
the blind lower bound represented
as a set of alpha vectors.

alpha vectors. Point-based value iteration6 computes m different alpha vectors 6 A survey of point-based value it-
eration methods are provided by
G. Shani, J. Pineau, and R. Kaplow,
“A Survey of Point-Based POMDP
Solvers,” Autonomous Agents and
Multi-Agent Systems, vol. 27, pp. 1–
51, 2012. That reference provides a
slightly different way to compute a
belief backup, though the result is
the same.

Γ = {α1, . . . ,αm}, each associated with different belief points B = {b1, . . . , bm}.
Methods for selecting these beliefs will be discussed in section 21.7. As before,
these alpha vectors define an approximately optimal value function:

UΓ(b) = max
α∈Γ

α⊤b (21.7)

The algorithmmaintains a lower bound on the optimal value function,UΓ(b) ≤
U∗(b) for all b. We initialize our alpha vectors to start with a lower bound and
then perform a backup to update the alpha vectors at each point in B. The backup
operation (algorithm 21.6) takes a belief b and a set of alpha vectors Γ and
constructs a new alpha vector. The algorithm iterates through every possible
action a and observation o and extracts the alpha vector from Γ that is maximal at
the resulting belief state:

αa,o = arg max
α∈Γ

α⊤Update(b, a, o) (21.8)

Then, for each available action a, we construct a new alpha vector based on these
αa,o vectors:

αa(s) = R(s, a) + γ ∑
s′ ,o

O(o | a, s′)T(s′ | s, a)αa,o(s
′) (21.9)

The alpha vector that is ultimately produced by the backup operation is

α = arg max
αa

α⊤a b (21.10)

If Γ is a lower bound, the backup operation will produce only alpha vectors that
are also a lower bound.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

21.5. randomized point-based value iteration 433

Repeated application of the backup operation over the beliefs in B gradually
increases the lower bound on the value function represented by the alpha vectors
until convergence. The converged value function will not necessarily be optimal
because B typically does not include all beliefs reachable from the initial belief.
However, so long as the beliefs in B are well distributed across the reachable belief
space, the approximation may be acceptable. In any case, the resulting value
function is guaranteed to provide a lower bound that can be used with other
algorithms, potentially online, to further improve the policy.

Point-based value iteration is implemented in algorithm 21.7. Figure 21.4 shows
several iterations on an example problem.

function backup(𝒫::POMDP, Γ, b)
𝒮, 𝒜, 𝒪, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.γ
R, T, O = 𝒫.R, 𝒫.T, 𝒫.O
Γa = []
for a in 𝒜

Γao = []
for o in 𝒪

b′ = update(b, 𝒫, a, o)
push!(Γao, argmax(α->α⋅b′, Γ))

end
α = [R(s, a) + γ*sum(sum(T(s, a, s′)*O(a, s′, o)*Γao[i][j]

for (j,s′) in enumerate(𝒮)) for (i,o) in enumerate(𝒪))
for s in 𝒮]

push!(Γa, α)
end
return argmax(α->α⋅b, Γa)

end

Algorithm 21.6. A method for
backing up a belief for a POMDP
with discrete state and action
spaces, where Γ is a vector of al-
pha vectors and b is a belief vector
at which to apply the backup. The
update method for vector beliefs is
defined in algorithm 19.2.

21.5 Randomized Point-Based Value Iteration

Randomized point-based value iteration (algorithm 21.8) is a variation of the point-
based value iteration approach from the previous section.7 The primary difference 7 M.T. J. Spaan and N.A. Vlassis,

“Perseus: Randomized Point-Based
Value Iteration for POMDPs,” Jour-
nal of Artificial Intelligence Research,
vol. 24, pp. 195–220, 2005.

is the fact that we are not forced to maintain an alpha vector at every belief in B.
We initialize the algorithm with a single alpha vector in Γ, and then update Γ at
every iteration, potentially increasing or decreasing the number of alpha vectors
in Γ as appropriate. This modification of the update step can improve efficiency.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

434 chapter 21. offline belief state planning

struct PointBasedValueIteration
B # set of belief points
k_max # maximum number of iterations

end

function update(𝒫::POMDP, M::PointBasedValueIteration, Γ)
return [backup(𝒫, Γ, b) for b in M.B]

end

function solve(M::PointBasedValueIteration, 𝒫)
Γ = fill(baws_lowerbound(𝒫), length(𝒫.𝒜))
Γ = alphavector_iteration(𝒫, M, Γ)
return LookaheadAlphaVectorPolicy(𝒫, Γ)

end

Algorithm 21.7. Point-based value
iteration, which finds an approx-
imately optimal policy for an
infinite-horizon POMDP with dis-
crete state, action, and observation
spaces, where B is a vector of be-
liefs and k_max is the number of it-
erations.

0 0.2 0.4 0.6 0.8 1

−100

−50

0

P(hungry)

U
(b
)

0 iterations
5 iterations
10 iterations
15 iterations
20 iterations
25 iterations
30 iterations
35 iterations
40 iterations
optimal value function

Figure 21.4. Approximate value
functions obtained using point-
based value iteration on the cry-
ing baby problem with belief vec-
tors [1/4, 3/4] and [3/4, 1/4]. Un-
like QMDP and the fast informed
bound, the value function of point-
based value iteration is always a
lower bound of the true value func-
tion.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

21.5. randomized point-based value iteration 435

Each update takes a set of alpha vectors Γ as input and outputs a set of alpha
vectors Γ′ that improve on the value function represented by Γ at the beliefs in B.
In other words, it outputs Γ′ such that UΓ′(b) ≥ UΓ(b) for all b ∈ B. We begin
by initializing Γ′ to the empty set and initializing B′ to B. We then remove a point
b randomly from B′ and perform a belief backup (algorithm 21.6) on b, using
Γ to get a new alpha vector, α. We then find the alpha vector in Γ ∪ {α} that
dominates at b and add it to Γ′. All belief points in B′ whose value is improved
with this alpha vector is then removed from B′. As the algorithm progresses, B′

becomes smaller and contains the set of points that have not been improved by
Γ′. The update finishes when B′ is empty. Figure 21.5 illustrates this process with
the crying baby problem.

struct RandomizedPointBasedValueIteration
B # set of belief points
k_max # maximum number of iterations

end

function update(𝒫::POMDP, M::RandomizedPointBasedValueIteration, Γ)
Γ′, B′ = [], copy(M.B)
while !isempty(B′)

b = rand(B′)
α = argmax(α->α⋅b, Γ)
α′ = backup(𝒫, Γ, b)
if α′⋅b ≥ α⋅b

push!(Γ′, α′)
else

push!(Γ′, α)
end
filter!(b->maximum(α⋅b for α in Γ′) <

maximum(α⋅b for α in Γ), B′)
end
return Γ′

end

function solve(M::RandomizedPointBasedValueIteration, 𝒫)
Γ = [baws_lowerbound(𝒫)]
Γ = alphavector_iteration(𝒫, M, Γ)
return LookaheadAlphaVectorPolicy(𝒫, Γ)

end

Algorithm 21.8. Randomized
point-based value iteration, which
finds an approximately optimal
policy for an infinite-horizon
POMDP with discrete state, action,
and observation spaces, where B is
a vector of beliefs and k_max is the
number of iterations.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

436 chapter 21. offline belief state planning

0 0.2 0.4 0.6 0.8 1

−100

−50

0

P(hungry)

U
(b
)

0 iterations
5 iterations
10 iterations
15 iterations
20 iterations
25 iterations
30 iterations
35 iterations
40 iterations
optimal value function

Figure 21.5. Approximate value
functions obtained using random-
ized point-based value iteration
on the crying baby problem with
belief points at [1/4, 3/4] and
[3/4, 1/4].

21.6 Sawtooth Upper Bound

The sawtooth upper bound is an alternative way to represent the value function.
Instead of storing a set of alpha vectors Γ, we store a set of belief-utility pairs:

V = {(b1, U(b1)), . . . , (bm, U(bm))} (21.11)

with the requirement that V contains all the standard basis beliefs:

E = {e1 = [1, 0, . . . , 0], . . . , en = [0, 0, . . . , 1]} (21.12)

such that
{(e1, U(e1)), . . . , (en, U(en))} ⊆ V (21.13)

If these utilities are upper bounds (e.g., as obtained from the fast informed bound),
then the way that we use V to estimate U(b) at arbitrary beliefs b will result in an
upper bound.8 8 The relationship between saw-

tooth and other bounds are dis-
cussed by M. Hauskrecht, “Value-
Function Approximations for Par-
tially Observable Markov Decision
Processes,” Journal of Artificial Intel-
ligence Research, vol. 13, pp. 33–94,
2000.

The ‘‘sawtooth’’ name comes from the way that we estimate U(b) by interpo-
lating points in V. For each belief-utility pair (b, U(b)) in V, we form a single,
pointed ‘‘tooth.’’ If the belief space is n-dimensional, each tooth is an inverted,
n-dimensional pyramid. When multiple pairs are considered, it forms a ‘‘saw-
tooth’’ shape. The bases of the pyramids are formed by the standard basis beliefs
(ei, U(ei). The apex point of each tooth corresponds to each belief-utility pair
(b, U(b)) ∈ V. Since these are pyramids in general, each tooth has walls equiva-
lently defined by n-hyperplanes with bounded regions. These hyperplanes can
also be interpreted as alpha vectors that act over a bounded region of the belief

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

21.6. sawtooth upper bound 437

space, not the entire belief space as with normal alpha vectors. The combination
of multiple pyramids forms the n-dimensional sawtooth. The sawtooth upper
bound at any belief is similarly the minimum value among these pyramids at that
belief.

Consider the sawtooth representation in a two-state POMDP, such as in the
crying baby problem as shown in figure 21.6. The corners of each tooth are the
values U(e1) and U(e2) for each standard basis belief ei. The sharp lower point
of each tooth is the value U(b), since each tooth is a point-set pair (b, U(b)). The
linear interpolation from U(e1) to U(b), and again from U(b) to U(e2), form
the tooth. To combine multiple teeth and form the upper bound, we take the
minimum interpolated value at any belief, creating the distinctive sawtooth shape.

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

P(hungry)

U
(b
)

Figure 21.6. The sawtooth upper
bound representation applied to
the crying baby problem.

To compute the sawtooth at any belief b, we iterate over each belief-utility pair
(b′, U(b′)) in V. The key idea is to compute the utility U′(b) for this hyperpyramid,
first by finding the farthest basis point, then using this to determine the matching
hyperplane from the hyperpyramid, and finally computing a utility using a
rescaled version of the hyperplane. The farthest basis belief ei is computed using
L1 distances from b and b′:

i← arg max
j

‖b− ej‖1 − ‖b′ − ej‖1 (21.14)

This ei uniquely identifies the particular hyperplane among those forming the
hyperpyramid for U(b′). Specifically, this hyperplane is defined by all corners
ej 6= ei and using b′ as a replacement for ei. At this point, we know that this
is the hyperplane for the region of the utility that b is contained within. The
hyperplane’s utilities are U(ej) for ej 6= ei and U(b′) as a replacement for U(ei).
However, we cannot directly compute the desired utility U′(b) using a dot product
because this is not the standard simplex. We instead compute the weight w of b in
terms of the weighted distance from the hyperplane’s corners, ej 6= ei and b′. This
allows us to be able to compute U′(b), essentially creating a simplex amenable to
a dot product with U(ej) and U(b′):

U′(b) = wiU(b′) + ∑
j 6=i

wjU(ej) (21.15)

This entire process is done among all (b′, U(b′)), resulting in

U(b) = min
(b′ ,U(b′))∈V

U′(b) (21.16)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

438 chapter 21. offline belief state planning

Algorithm 21.9 provides an implementation. We can also derive a policy using
greedy one-step lookahead.

struct SawtoothPolicy
𝒫 # POMDP problem
V # dictionary mapping beliefs to utilities

end

function basis(𝒫)
n = length(𝒫.𝒮)
e(i) = [j == i ? 1.0 : 0.0 for j in 1:n]
return [e(i) for i in 1:n]

end

function utility(π::SawtoothPolicy, b)
𝒫, V = π.𝒫, π.V
if haskey(V, b)

return V[b]
end
n = length(𝒫.𝒮)
E = basis(𝒫)
u = sum(V[E[i]] * b[i] for i in 1:n)
for (b′, u′) in V

if b′ ∉ E
i = argmax([norm(b-e, 1) - norm(b′-e, 1) for e in E])
w = [norm(b - e, 1) for e in E]
w[i] = norm(b - b′, 1)
w /= sum(w)
w = [1 - wi for wi in w]
α = [V[e] for e in E]
α[i] = u′
u = min(u, w⋅α)

end
end
return u

end

(π::SawtoothPolicy)(b) = greedy(π, b).a

Algorithm 21.9. The sawtooth up-
per bound representation for value
functions and policies. It is defined
using a dictionary V that maps be-
lief vectors to upper bounds on
their utility obtained, such as, from
the fast informed bound. A require-
ment of this representation is that
V contain belief-utility pairs at the
standard basis beliefs, which can
be obtained from the basis func-
tion. We can use one-step looka-
head to obtain greedy action-utility
pairs from arbitrary beliefs b.

We can iteratively apply greedy one-step lookahead at a set of beliefs B to
tighten our estimates of the upper bound. The beliefs in B can be a superset of the
beliefs in V. Algorithm 21.10 provides an implementation of this. Example 21.1
shows the effect of multiple iterations of the sawtooth approximation on the
crying baby problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

21.6. sawtooth upper bound 439

struct SawtoothIteration
V # initial mapping from beliefs to utilities
B # beliefs to compute values including those in V map
k_max # maximum number of iterations

end

function solve(M::SawtoothIteration, 𝒫::POMDP)
E = basis(𝒫)
π = SawtoothPolicy(𝒫, M.V)
for k in 1:M.k_max

V = Dict(b => (b ∈ E ? M.V[b] : greedy(π, b).u) for b in M.B)
π = SawtoothPolicy(𝒫, V)

end
return π

end

Algorithm 21.10. Sawtooth iter-
ation iteratively applies one-step
lookahead at points in B to improve
the utility estimates at the points in
V. The beliefs in B are a superset of
those contained in V. To preserve
the upper bound at each iteration,
updates are not made at the stan-
dard basis beliefs stored in E. We
run k_max iterations.

Suppose that we want to maintain an upper bound of the value for the crying
baby problem with regularly spaced belief points with a step size of 0.2. To
obtain an initial upper bound, we use the fast informed bound. We can then
run sawtooth iteration for three steps as follows:
n = length(𝒫.𝒮)
πfib = solve(FastInformedBound(1), 𝒫)
V = Dict(e => utility(πfib, e) for e in basis(𝒫))
B = [[p, 1 - p] for p in 0.0:0.2:1.0]
π = solve(SawtoothIteration(V, B, 2), 𝒫)

The sawtooth upper bound improves as follows:

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

P(hungry)

U
(b
)

iteration 1 bound

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

P(hungry)

iteration 2 bound

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

P(hungry)

iteration 3 bound

Example 21.1. An illustration of
sawtooth’s ability to maintain an
upper bound at regularly spaced
beliefs for the crying baby prob-
lem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

440 chapter 21. offline belief state planning

21.7 Point Selection

Algorithms like point-based value iteration and sawtooth iteration require a set
of beliefs B. We want to choose B so that there are more points in the relevant
areas of the belief space; we do not want to waste computation on beliefs that
we are not likely to reach under our (hopefully approximately optimal) policy.
One way to explore the potentially reachable space is to take steps in the belief
space (algorithm 21.11). The outcome of the step will be random because the
observation is generated according to our probability model.

function randstep(𝒫::POMDP, b, a)
s = rand(SetCategorical(𝒫.𝒮, b))
s′, r, o = 𝒫.TRO(s, a)
b′ = update(b, 𝒫, a, o)
return b′, r

end

Algorithm 21.11. A function for
randomly sampling the next belief
b′ and reward r, given the current
belief b and action a in problem 𝒫.

We can create B from the belief states reachable from some initial belief under
a random policy. This random belief expansion procedure (algorithm 21.12) may
explore much more of the belief space than might be necessary; the belief space
reachable by a random policy can be much larger than the space reachable by
an optimal policy. Of course, computing the belief space that is reachable by an
optimal policy generally requires knowing the optimal policy, which is what
we want to compute in the first place. One approach that can be taken is to use
successive approximations of the optimal policy to iteratively generate B.9 9 This is the intuition behind the

algorithm known as Successive Ap-
proximations of the Reachable Space
under Optimal Policies (SARSOP).
H. Kurniawati, D. Hsu, and W. S.
Lee, “SARSOP: Efficient Point-
Based POMDP Planning by Ap-
proximating Optimally Reachable
Belief Spaces,” in Robotics: Science
and Systems, 2008.

In addition to wanting our belief points to be focused on the reachable belief
space, we want those points to be spread out to allow better value function
approximation. The quality of the approximation provided by the alpha vectors
associated with the points in B degrades as we evaluate points farther from B.
We can take an exploratory belief expansion approach (algorithm 21.13), where
we try every action for every belief in B and add the resulting belief states that
are farthest from the beliefs already in the set. Distance in belief space can be
measured in different ways. This algorithm uses the L1-norm.10 Figure 21.7 shows

10 The L1 distance between b and b′

is ∑s |b(s)− b′(s)| and is denoted
as ‖b− b′‖1. See appendix A.4.an example of the belief points added to B using this approach.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

21.7. point selection 441

function random_belief_expansion(𝒫, B)
B′ = copy(B)
for b in B

a = rand(𝒫.𝒜)
b′, r = randstep(𝒫, b, a)
push!(B′, b′)

end
return unique!(B′)

end

Algorithm 21.12. Randomly ex-
panding a finite set of beliefs B
used in point-based value iteration
based on reachable beliefs.

function exploratory_belief_expansion(𝒫, B)
B′ = copy(B)
for b in B

best = (b=copy(b), d=0.0)
for a in 𝒫.𝒜

b′, r = randstep(𝒫, b, a)
d = minimum(norm(b - b′, 1) for b in B′)
if d > best.d

best = (b=b′, d=d)
end

end
push!(B′, best.b)

end
return unique!(B′)

end

Algorithm 21.13. Expanding a fi-
nite set of beliefs B used in point-
based value iteration by exploring
the reachable beliefs and adding
those that are farthest from the cur-
rent beliefs.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

442 chapter 21. offline belief state planning

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P
(0 failed components)P

(1
fai

led
co
mp

on
en

t)

P(2 failed components)

Figure 21.7. Exploratory belief ex-
pansion run on the three-state ma-
chine replacement problem, start-
ing with an initial uniform be-
lief b = [1/3, 1/3, 1/3]. New be-
liefs were added if the distance to
any previous belief was at least
0.05.

21.8 Sawtooth Heuristic Search

Chapter 9 introduced the concept of heuristic search as an online method in the
fully observable context. This section discusses sawtooth heuristic search (algo-
rithm 21.14) as an offline method that produces a set of alpha vectors that can be
used to represent an offline policy. However, like the online POMDP methods
discussed in the next chapter, the computational effort is focused on beliefs that
are reachable from some specified initial belief. The heuristic that drives the ex-
ploration of the reachable belief space is the gap between the upper and lower
bounds of the value function.11

11 The heuristic search value iteration
(HSVI) algorithm introduced the
concept of using the sawtooth-
based action heuristic and
gap-based observation heuristic.
T. Smith and R.G. Simmons,
“Heuristic Search Value Iteration
for POMDPs,” in Conference on
Uncertainty in Artificial Intelli-
gence (UAI), 2004. The SARSOP
algorithm built on this work. H.
Kurniawati, D. Hsu, and W. S. Lee,
“SARSOP: Efficient Point-Based
POMDP Planning by Approximat-
ing Optimally Reachable Belief
Spaces,” in Robotics: Science and
Systems, 2008.

The algorithm is initialized with an upper bound on the value function rep-
resented by a set of sawtooth belief-utility pairs V, together with a lower bound
on the value function represented by a set of alpha vectors Γ. The belief-utility
pairs defining the sawtooth upper bound can be obtained from the fast informed
bound. The lower bound can be obtained from the best-action worst-state bound,
as shown in algorithm 21.14, or some other method, such as point-based value
iteration.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

21.8. sawtooth heuristic search 443

struct SawtoothHeuristicSearch
b # initial belief
δ # gap threshold
d # depth
k_max # maximum number of iterations
k_fib # number of iterations for fast informed bound

end

function explore!(M::SawtoothHeuristicSearch, 𝒫, πhi, πlo, b, d=0)
𝒮, 𝒜, 𝒪, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.γ
ϵ(b′) = utility(πhi, b′) - utility(πlo, b′)
if d ≥ M.d || ϵ(b) ≤ M.δ / γ^d

return
end
a = πhi(b)
o = argmax(o -> ϵ(update(b, 𝒫, a, o)), 𝒪)
b′ = update(b, 𝒫, a, o)
explore!(M, 𝒫, πhi, πlo, b′, d+1)
if b′ ∉ basis(𝒫)

πhi.V[b′] = greedy(πhi, b′).u
end
push!(πlo.Γ, backup(𝒫, πlo.Γ, b′))

end

function solve(M::SawtoothHeuristicSearch, 𝒫::POMDP)
πfib = solve(FastInformedBound(M.k_fib), 𝒫)
Vhi = Dict(e => utility(πfib, e) for e in basis(𝒫))
πhi = SawtoothPolicy(𝒫, Vhi)
πlo = LookaheadAlphaVectorPolicy(𝒫, [baws_lowerbound(𝒫)])
for i in 1:M.k_max

explore!(M, 𝒫, πhi, πlo, M.b)
if utility(πhi, M.b) - utility(πlo, M.b) < M.δ

break
end

end
return πlo

end

Algorithm 21.14. The sawtooth
heuristic search policy. The solver
starts from belief b and explores to
a depth d for no more than k_max
iterations. It uses an upper bound
obtained through the fast informed
bound computed with k_fib it-
erations. The lower bound is ob-
tained from the best-action worst-
state bound. The gap threshold is
δ.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

444 chapter 21. offline belief state planning

At each iteration, we explore beliefs that are reachable from our initial belief
to a maximum depth. As we explore, we update the set of belief-action pairs
forming our sawtooth upper bound and the set of alpha vectors forming our
lower bound. We stop exploring after a certain number of iterations or until the
gap at our initial state is below a threshold δ > 0.

When we encounter a belief b along our path from the initial node during our
exploration, we check whether the gap at b is below a threshold δ/γd, where d

is our current depth. If we are below that threshold, then we can stop exploring
along that branch. We want the threshold to increase as d increases because the
gap at b after an update is at most γ times the weighted average of the gap at the
beliefs that are immediately reachable.

If the gap at b is above the threshold and we have not reached our maximum
depth, then we can explore the next belief, b′. First, we determine the action a

recommended by our sawtooth policy. Then, we choose the observation o that
maximizes the gap at the resulting belief.12 We recursively explore down the tree. 12 Some variants simply sample the

next observations. Others select
the observation that maximizes the
gap weighted by its likelihood.

After exploring the descendants of b′, we add (b′, u) to V, where u is the one-step
lookahead value of b′. We add to Γ the alpha vector that results from a backup at
b′. Figure 21.8 shows the tightening of the bounds.

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

U
(b
)

iteration 1

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

iteration 2

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

iteration 3

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

P(hungry)

U
(b
)

iteration 4

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

P(hungry)

iteration 5

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

P(hungry)

iteration 6

Figure 21.8. The evolution of the
upper bound, represented by saw-
tooth pairs, and the lower bound,
represented by alpha vectors for
the crying baby problem. The op-
timal value function is shown in
black.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

21.9. triangulated value functions 445

21.9 Triangulated Value Functions

As discussed in section 20.1, a POMDP can be converted to a belief-state MDP.
The state space in that belief-state MDP is continuous, corresponding to the
space of possible beliefs in the original POMDP. We can approximate the value
function in a way similar to what was described in chapter 8 and then apply a
dynamic programming algorithm such as value iteration to the approximation.
This section discusses a particular kind of local value function approximation
that involves Freudenthal triangulation13 over a discrete set of belief points B. This

13 H. Freudenthal, “Simplizialzer-
legungen von Beschränkter Flach-
heit,”Annals of Mathematics, vol. 43,
pp. 580–582, 1942. This triangu-
lation method was applied to
POMDPs in W. S. Lovejoy, “Com-
putationally Feasible Bounds for
Partially Observed Markov De-
cision Processes,” Operations Re-
search, vol. 39, no. 1, pp. 162–175,
1991.triangulation allows us to interpolate the value function at arbitrary points in the

belief space. As with the sawtooth representation, we use a set of belief-utility
pairs V = {(b, U(b)) | b ∈ B} to represent our value function. This approach can
be used to obtain an upper bound on the value function.

Freudenthal interpolation in belief space involves spreading the belief points
in B evenly over the space, as shown in figure 21.9. The number of beliefs in B

depends on the dimensionality n and granularity m of the Freudenthal triangula-
tion:14

14 FreudenthalTriangulations.jl
provides an implementation for
generating these beliefs.

|B| = (m + n− 1)!

m!(n− 1)!
(21.17)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
(s 1

)P
(s

2)

P(s3)

Figure 21.9. A belief state dis-
cretization using Freudenthal trian-
gulation in n = 3-dimensional be-
lief space with granularity m = 10.

We can estimate U(b) at an arbitrary point b by interpolating values at the
discrete points in B. Similar to the simplex interpolation introduced in section 8.5,
we find the set of belief points in B that form a simplex that encloses b and weight
their values together. In n-dimensional belief spaces, there are up to n + 1 vertices
whose values need to be weighted together. If b(1), . . . , b(n+1) are the enclosing
points and λ1, . . . , λn+1 are their weights, then the estimate of the value at b is

U(b) = ∑
i

λiU(b(i)) (21.18)

Algorithm 21.15 extracts this utility function and policy from the pairs in V.
Algorithm 21.16 applies a variation of approximate value iteration (introduced

in algorithm 8.1) to our triangulated policy representation. We simply iteratively
apply backups over our beliefs in B using one-step lookahead with our value
function interpolation. If U is initialized with an upper bound, value iteration will
result in an upper bound even after a finite number of iterations. This property
holds because value functions are convex and the linear interpolation between ver-
tices on the value function must lie on or above the underlying convex function.15

15 See lemma 4 of W. S. Lovejoy,
“Computationally Feasible Bounds
for Partially Observed Markov De-
cision Processes,” Operations Re-
search, vol. 39, no. 1, pp. 162–175,
1991.Figure 21.10 shows an example of a policy and utility function.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

446 chapter 21. offline belief state planning

struct TriangulatedPolicy
𝒫 # POMDP problem
V # dictionary mapping beliefs to utilities
B # beliefs
T # Freudenthal triangulation

end

function TriangulatedPolicy(𝒫::POMDP, m)
T = FreudenthalTriangulation(length(𝒫.𝒮), m)
B = belief_vertices(T)
V = Dict(b => 0.0 for b in B)
return TriangulatedPolicy(𝒫, V, B, T)

end

function utility(π::TriangulatedPolicy, b)
B, λ = belief_simplex(π.T, b)
return sum(λi*π.V[b] for (λi, b) in zip(λ, B))

end

(π::TriangulatedPolicy)(b) = greedy(π, b).a

Algorithm 21.15. A policy rep-
resentation using Freudenthal
triangulation with granularity m.
As with the sawtooth method,
we maintain a dictionary that
maps belief vectors to utilities.
This implementation initializes
the utilities to 0, but if we want to
represent an upper bound, then
we would need to initialize those
utilities appropriately. We define a
function to estimate the utility of
a given belief using interpolation.
We can extract a policy using
greedy lookahead. The Freuden-
thal triangulation structure is
passed the dimensionality and
granularity at construction. The
FreudenthalTriangulations.jl
package provides the function
belief_vertices, which returns
B, given a particular triangulation.
It also provides belief_simplex,
which returns the set of enclosing
points and weights for a belief.

struct TriangulatedIteration
m # granularity
k_max # maximum number of iterations

end

function solve(M::TriangulatedIteration, 𝒫)
π = TriangulatedPolicy(𝒫, M.m)
U(b) = utility(π, b)
for k in 1:M.k_max

U′ = [greedy(𝒫, U, b).u for b in π.B]
for (b, u′) in zip(π.B, U′)

π.V[b] = u′
end

end
return π

end

Algorithm 21.16. Approximate
value iteration with k_max itera-
tions using a triangulated policy
with granularity m. At each itera-
tion, we update the utilities asso-
ciated with the beliefs in B using
greedy one-step lookahead with
triangulated utilities.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

21.10. summary 447

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P
(0 failed components)P

(1
fai

led
co
mp

on
en

t)

P(2 failed components)

Policy

manufacture
examine
interrupt
replace

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P
(0 failed components)P

(1
fai

led
co
mp

on
en

t)

P(2 failed components)

Value Function

5

6

7

Figure 21.10. The policy and value
function for the maintenance prob-
lem with granularity m = 10 af-
ter 11 iterations. The value func-
tion plot shows the discrete belief
points aswhite dots. This policy ap-
proximates the exact policy given
in appendix F.8.

21.10 Summary

• TheQMDPalgorithmassumes perfect observability after the first step, resulting
in an upper bound on the true value function.

• The fast informed bound provides a tighter upper bound on the value function
than QMDP by accounting for the observation model.

• Point-based value iteration provides a lower bound on the value function using
alpha vectors at a finite set of beliefs.

• Randomized point-based value iteration performs updates at randomly se-
lected points in the belief set until the values at all points in the set are improved.

• The sawtooth upper bound allows iterative improvement of the fast informed
bound using an efficient point-set representation.

• Carefully selecting which belief points to use in point-based value iteration
can improve the quality of the resulting policies.

• Sawtooth heuristic search attempts to tighten the upper and lower bounds of the
value function represented by sawtooth pairs and alpha vectors, respectively.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

448 chapter 21. offline belief state planning

• One approach to approximately solving POMDPs is to discretize the belief
space, and then to apply dynamic programming to extract an upper bound on
the value function and a policy.

21.11 Exercises
Exercise 21.1. Suppose that we are in a variation of the straight-line hex world problem
(appendix F.1) consisting of four cells corresponding to states s1:4. There are two actions:
move left (ℓ) and move right (r). The effects of those actions are deterministic. Moving
left in s1 or moving right in s4 gives a reward of 100 and ends the game. With a discount
factor of 0.9, compute alpha vectors using QMDP. Then, using the alpha vectors, compute
the approximately optimal action, given the belief b = [0.3, 0.1, 0.5, 0.1].

Solution:We denote the alpha vector associated with moving left as αℓ and the alpha vector
associated with moving right as αr. We initialize the alpha vectors to zero:

α
(1)
ℓ

= [R(s1, ℓ), R(s2, ℓ), R(s3, ℓ), R(s4, ℓ)] = [0, 0, 0, 0]

α
(1)
r = [R(s1, r), R(s2, r), R(s3, r), R(s4, r)] = [0, 0, 0, 0]

In the first iteration, since all the entries in the alpha vectors are zero, only the reward term
contributes to the QMDP update (equation (21.1)):

α
(2)
ℓ

= [100, 0, 0, 0]

α
(2)
r = [0, 0, 0, 100]

In the next iteration, we apply the update, which leads to new values for s2 for the left
alpha vector and for s3 for the right alpha vector. The updates for the left alpha vector are
as follows (with the right alpha vector updates being symmetric):

α
(3)
ℓ

(s1) = 100 (terminal state)
α
(3)
ℓ

(s2) = 0 + 0.9×max(α
(2)
ℓ

(s1), α
(2)
r (s1)) = 90

α
(3)
ℓ

(s3) = 0 + 0.9×max(α
(2)
ℓ

(s2), α
(2)
r (s2)) = 0

α
(3)
ℓ

(s4) = 0 + 0.9×max(α
(2)
ℓ

(s3), α
(2)
r (s3)) = 0

This leads to the following:

α
(3)
ℓ

= [100, 90, 0, 0]

α
(3)
r = [0, 0, 90, 100]

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

21.11. exercises 449

In the third iteration, the updates for the left alpha vector are

α
(4)
ℓ

(s1) = 100 (terminal state)
α
(4)
ℓ

(s2) = 0 + 0.9×max(α
(3)
ℓ

(s1), α
(3)
r (s1)) = 90

α
(4)
ℓ

(s3) = 0 + 0.9×max(α
(3)
ℓ

(s2), α
(3)
r (s2)) = 81

α
(4)
ℓ

(s4) = 0 + 0.9×max(α
(3)
ℓ

(s3), α
(3)
r (s3)) = 81

Our alpha vectors are, then,

α
(4)
ℓ

= [100, 90, 81, 81]

α
(4)
r = [81, 81, 90, 100]

At this point, our alpha vector estimates have converged. We now determine the optimal
action by maximizing the utility associated with our belief over all actions:

α⊤
ℓ

b = 100× 0.3 + 90× 0.1 + 81× 0.5 + 81× 0.1 = 87.6

α⊤r b = 81× 0.3 + 81× 0.1 + 90× 0.5 + 100× 0.1 = 87.4

Thus, we find that moving left is the optimal action for this belief state, despite a higher
probability of being on the right half of the grid world. This is due to the relatively high
likelihood that we assign to being in state s1, where we would receive a large, immediate
reward by moving left.

Exercise 21.2. Recall the simplified hex world problem from exercise 21.1. Compute alpha
vectors for each action using the blind lower bound. Then, using the alpha vectors, compute
the value at the belief b = [0.3, 0.1, 0.5, 0.1].

Solution: The blind lower bound, shown in equation (21.6), is like the QMDP update, but
it lacks the maximization. We initialize the components of the alpha vectors to zero and
run to convergence as follows:

α
(2)
ℓ

= [100, 0, 0, 0]

α
(2)
r = [0, 0, 0, 100]

α
(3)
ℓ

= [100, 90, 0, 0]

α
(3)
r = [0, 0, 90, 100]

α
(4)
ℓ

= [100, 90, 81, 0]

α
(4)
r = [0, 81, 90, 100]

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

450 chapter 21. offline belief state planning

α
(5)
ℓ

= [100, 90, 81, 72.9]

α
(5)
r = [72.9, 81, 90, 100]

At this point, our alpha vector estimates have converged. We now determine the value by
maximizing the utility associated with our belief over all actions:

α⊤
ℓ

b = 100× 0.3 + 90× 0.1 + 81× 0.5 + 72.9× 0.1 = 86.79

α⊤r b = 72.9× 0.3 + 81× 0.1 + 90× 0.5 + 100× 0.1 = 84.97

Thus, the lower bound at b is 86.79.

Exercise 21.3. What is the complexity of a backup at a single belief point in point-based
value iteration assuming that |Γ| > |S|?

Solution: In the process of doing a backup, we compute an αa,o for every action a and
observation o. Computing αa,o in equation (21.8) requires finding the alpha vector α
in Γ that maximizes α⊤Update(b, a, o). A belief update, as shown in equation (19.7), is
O(|S|2) because it iterates over all initial and successor states. Hence, computing αa,o

requires O(|Γ||S|+ |S|2) = O(|Γ||S|) operations for a specific a and o, resulting in a total
of O(|Γ||S||A||O|) operations. We then compute αa in equation (21.9) for every action a

using these values forαa,o, requiring in a total of O(|S|2|A||O|). Finding the alpha vectorαa

that maximizes α⊤a b requires O(|S||A|) operations once we have the αa values. Together,
we have O(|Γ||S||A||O|) operations for a backup at belief b.

Exercise 21.4. Consider the set of belief-utility pairs given by

V = {([1, 0], 0), ([0, 1],−10), ([0.8, 0.2],−4), ([0.4, 0.6],−6)}

Using weights wi = 0.5 for all i, determine the utility for belief b = [0.5, 0.5] using the
sawtooth upper bound.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

21.11. exercises 451

Solution: We interpolate with the belief-utility pairs. For each nonbasis belief, we start by
finding the farthest basis belief, ei. Starting with b3, we compute as follows:

i3 = arg max
j

∥

∥

∥b− ej

∥

∥

∥

1
−
∥

∥

∥b3 − ej

∥

∥

∥

1

‖b− e1‖1 − ‖b3 − e1‖1 =

∥

∥

∥

∥

∥

[

0.5

0.5

]

−
[

1

0

]∥

∥

∥

∥

∥

1

−
∥

∥

∥

∥

∥

[

0.8

0.2

]

−
[

1

0

]∥

∥

∥

∥

∥

1

=

∥

∥

∥

∥

∥

[

−0.5

0.5

]∥

∥

∥

∥

∥

1

−
∥

∥

∥

∥

∥

[

−0.2

0.2

]∥

∥

∥

∥

∥

1

= 0.6

‖b− e2‖1 − ‖b3 − e2‖1 =

∥

∥

∥

∥

∥

[

0.5

0.5

]

−
[

0

1

]∥

∥

∥

∥

∥

1

−
∥

∥

∥

∥

∥

[

0.8

0.2

]

−
[

0

1

]∥

∥

∥

∥

∥

1

=

∥

∥

∥

∥

∥

[

0.5

−0.5

]∥

∥

∥

∥

∥

1

−
∥

∥

∥

∥

∥

[

0.8

−0.8

]∥

∥

∥

∥

∥

1

= −0.6

i3 = 1

Thus, e1 is the farthest basis belief from b3.
For b4, we compute the following:

i4 = arg max
j

∥

∥

∥b− ej

∥

∥

∥

1
−
∥

∥

∥b4 − ej

∥

∥

∥

1

‖b− e1‖1 − ‖b3 − e1‖1 =

∥

∥

∥

∥

∥

[

0.5

0.5

]

−
[

1

0

]∥

∥

∥

∥

∥

1

−
∥

∥

∥

∥

∥

[

0.4

0.6

]

−
[

1

0

]∥

∥

∥

∥

∥

1

=

∥

∥

∥

∥

∥

[

−0.5

0.5

]∥

∥

∥

∥

∥

1

−
∥

∥

∥

∥

∥

[

−0.6

0.6

]∥

∥

∥

∥

∥

1

= −0.2

‖b− e2‖1 − ‖b3 − e2‖1 =

∥

∥

∥

∥

∥

[

0.5

0.5

]

−
[

0

1

]∥

∥

∥

∥

∥

1

−
∥

∥

∥

∥

∥

[

0.4

0.6

]

−
[

0

1

]∥

∥

∥

∥

∥

1

=

∥

∥

∥

∥

∥

[

0.5

−0.5

]∥

∥

∥

∥

∥

1

−
∥

∥

∥

∥

∥

[

0.4

−0.4

]∥

∥

∥

∥

∥

1

= 0.2

i4 = 2

Thus, e2 is the farthest basis belief from b4.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

452 chapter 21. offline belief state planning

We can compute U(b) using our weights, along with the appropriate corners and utility
pairs (e2, b3) and (e1, b4):

U3(b) = 0.5×−4 + 0.5× (−10) = −7

U4(b) = 0.5×−6 + 0.5× 0 = −3

Finally, we compute U(b) by taking the minimum of U3(b) and U4(b). Thus, U(b) = −7.

Exercise 21.5. Suppose that we have a valid lower bound represented as a set of alpha
vectors Γ. Is it possible for a backup at a belief state b to result in an alpha vector α′, such
that α′⊤b is lower than the utility function represented by Γ? In other words, can a backup
at a belief b result in an alpha vector that assigns a lower utility to b than the value function
represented by Γ?

0 0.5 1
−2

−1

0

1

2

P(s1)

U
(b
)

Figure 21.11. An example of how
a backup at a belief can result in
an alpha vector that, on its own,
lowers the value at that belief com-
pared to the original value func-
tion. The belief b where we do the
update corresponds to P(s1) = 0.5.
The original value function, repre-
sented by Γ, is shown in red. The al-
pha vector resulting from a backup
at b is shown in blue.

Solution: It is possible. Suppose we have only one action, observations are perfect, there is
no discounting, and the state space is {s0, s1}. The reward is R(si) = i for all i, and states
transition deterministically to s0. We start with a valid lower bound, Γ = {[−1,+1]}, as
shown in red in figure 21.11. We choose b = [0.5, 0.5] for the belief where we do the backup.
Using equation (21.9), we obtain

α(s0) = R(s0) + UΓ(s0) = 0 + (−1) = −1

α(s1) = R(s1) + UΓ(s0) = 1 + (−1) = 0

Hence, the alpha vector that we get after a backup is [−1, 0], shown in blue in figure 21.11.
The utility at b with that alpha vector is −0.5. However, UΓ(b) = 0, showing that backing
up a belief can result in an alpha vector that represents a lower utility at that belief.
This fact motivates the use of the if statement in randomized point-based value iteration
(algorithm 21.8). That if statement will use either the alpha vector from the backup or the
dominating alpha vector in Γ at belief b, whichever gives the greatest utility estimate.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

22 Online Belief State Planning

Online methods determine the optimal policy by planning from the current belief
state. The belief space reachable from the current state is typically small compared
with the full belief space. As introduced in the fully observable context, many
online methods use variations of tree-based search up to some horizon.1 Various 1 A survey is provided by S.

Ross, J. Pineau, S. Paquet, and
B. Chaib-draa, “Online Planning
Algorithms for POMDPs,” Journal
of Artificial Intelligence Research,
vol. 32, pp. 663–704, 2008.

strategies can be used to try to avoid the exponential computational growth with
the tree depth. Although online methods require more computation per decision
step during execution than offline approaches, online methods are sometimes
easier to apply to high-dimensional problems.

22.1 Lookahead with Rollouts

Algorithm 9.1 introduced lookahead with rollouts as an online method in fully
observed problems. The algorithm can be used directly for partially observed
problems. It uses a function for randomly sampling the next state, which corre-
sponds to a belief state in the context of partial observability. This function was
already introduced in algorithm 21.11. Because we can use a generative model
rather than an explicit model for transitions, rewards, and observations, we can
accommodate problems with high-dimensional state and observation spaces.

22.2 Forward Search

b

......

a(1) o(1) a(2) o(2)

Figure 22.1. Forward search
searches the action-observation-
belief graph to an arbitrary finite
depth in order to select the action
that produces the highest expected
reward. This illustration shows a
search to depth 2.

We can apply the forward search strategy from algorithm 9.2 to partially observed
problems without modification. The difference between MDPs and POMDPs is
encapsulated by one-step lookahead, which branches on actions and observations,
as shown in figure 22.1. The value of taking action a from belief b can be defined

454 chapter 22. online belief state planning

recursively to a depth d:

Qd(b, a) =

R(b, a) + γ ∑o P(o | b, a)Ud−1(Update(b, a, o)) if d > 0

U(b) otherwise
(22.1)

where Ud(b) = maxa Qd(b, a). When d = 0, we have reached maximum depth
and return the utility using the approximate value function U(b), which may be
obtained from one of the methods discussed in the previous chapter, heuristically
chosen, or estimated from one or more rollouts. When d > 0, we continue to
search deeper, recursing down another level. Example 22.1 shows how to combine
QMDP with forward search for the machine replacement problem. Example 22.2
demonstrates forward search on the crying baby problem.

Consider applying forward search to the machine replacement problem.
We can first obtain an approximate value function through QMDP (algo-
rithm 21.2). We can then construct a ForwardSearch object, which was orig-
inally defined in algorithm 9.2. The call to lookahead within that function
will use the one defined for POMDPs in algorithm 20.5. The following code
applies forward search to the problem 𝒫 from belief state [0.5, 0.2, 0.3] to
depth 5 using our estimate of the utility obtained from QMDP at the leaf
nodes:
k_max = 10 # maximum number of iterations of QMDP
πQMDP = solve(QMDP(k_max), 𝒫)
d = 5 # depth
U(b) = utility(πQMDP, b)
π = ForwardSearch(𝒫, d, U)
π([0.5,0.2,0.3])

Example 22.1. Applying forward
search to the machine replacement
problem (appendix F.8).

The computation associated with the recursion in equation (22.1) grows expo-
nentially with depth, O(|A|d|O|d). Hence, forward search is generally limited to
a relatively shallow depth. To go deeper, we can limit the action or observation
branching. For example, if we have some domain knowledge, we may restrict the
action set either at the root or farther down the tree. For the observation branching,
we may restrict our consideration to a small set of likely observations—or even
just the most likely observation.2 Branching can be avoided entirely by adopting

2 R. Platt Jr., R. Tedrake, L. P. Kael-
bling, and T. Lozano-Pérez, “Belief
Space Planning Assuming Maxi-
mum Likelihood Observations,” in
Robotics: Science and Systems, 2010.

the open loop or hindsight optimization methods described in section 9.9.3 with
states sampled from the current belief.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

22.2. forward search 455

Consider forward search with the crying baby problem with an approximate
value function given by the alpha vectors [−3.7,−15] and [−2,−21]. Running
forward search to depth 2 from the initial belief b = [0.5, 0.5] proceeds as
follows:

Q2(b, afeed) = R(b, afeed) + γ(P(crying | b, feed)U1([1.0, 0.0])

+ P(quiet | b, feed)U1([1.0, 0.0]))

= −10 + 0.9(0.1×−3.2157 + 0.9×−3.2157)

= −12.894

Q2(b, aignore) = R(b, aignore) + γ(P(crying | b, ignore)U1([0.093, 0.907])

+ P(quiet | b, ignore)U1([0.786, 0.214]))

= −5 + 0.9(0.485×−15.872 + 0.515×−7.779)

= −15.534

Q2(b, asing) = R(b, asing) + γ(P(crying | b, sing)U1([0.0, 1.0])

+ P(quiet | b, sing)U1([0.891, 0.109]))

= −5.5 + 0.9(0.495×−16.8 + 0.505×−5.543)

= −15.503

Recall that feeding the baby always results in a sated baby (b = [1, 0]), and
singing to the baby ensures that it cries only if it is hungry (b = [0, 1]).
Each U1 value is evaluated by recursing one level deeper in equa-
tion (22.1) using Ud(b) = maxa Qd(b, a). At maximum depth, we use
the approximate value function given by the alpha vectors, Q0(b, a) =

max
(

b⊤[−3.7,−15], b⊤[−2,−21]
).

The policy predicts that feeding the babywill result in the highest expected
utility, so it recommends that action.

Example 22.2. Forward search ap-
plied to the crying baby problem
(appendix F.7).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

456 chapter 22. online belief state planning

22.3 Branch and Bound

The branch and bound technique originally introduced in the context of MDPs can
be extended to POMDPs as well. The same algorithm in section 9.4 can be used
without modification (see example 22.3), relying on the appropriate lookahead
implementation to update beliefs and account for the observations. The efficiency
of the algorithm still depends on the quality of the upper and lower bounds for
pruning.

Although we can use domain-specific heuristics for the upper and lower
bounds, as we did in the fully observed case, we can alternatively use one of
the methods introduced in the previous chapter for discrete state spaces. For
example, we can use the fast informed bound for the upper bound and point-
based value iteration for the lower bound. So long as the lower bound U and
upper bound Q are true lower and upper bounds, the result of the branch and
bound algorithm will be the same as the forward search algorithm with U as the
approximate value function.

In this example, we apply branch and bound to the crying baby problem
with a depth of 5. The upper bound comes from the fast informed bound,
and the lower bound comes from point-based value iteration. We compute
the action from belief [0.4, 0.6] as follows:
k_max = 10 # maximum number of iterations for bounds
πFIB = solve(FastInformedBound(k_max), 𝒫)
d = 5 # depth
Uhi(b) = utility(πFIB, b)
Qhi(b,a) = lookahead(𝒫, Uhi, b, a)
B = [[p, 1 - p] for p in 0.0:0.2:1.0]
πPBVI = solve(PointBasedValueIteration(B, k_max), 𝒫)
Ulo(b) = utility(πPBVI, b)
π = BranchAndBound(𝒫, d, Ulo, Qhi)
π([0.4,0.6])

Example 22.3. An application of
branch and bound to the crying
baby problem.

22.4 Sparse Sampling

Forward search sums over all possible observations, resulting in a runtime ex-
ponential in |O|. As introduced in section 9.5, we can use sampling to avoid
exhaustive summation. We can generate m observations for each action and then

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

22.5. monte carlo tree search 457

compute

Qd(b, a) =

1
m ∑

m
i=1

(

r
(i)
a + γUd−1

(

Update(b, a, o
(i)
a)
))

if d > 0

U(b) otherwise
(22.2)

where r
(i)
a and o

(i)
a are the ith-sampled observation and reward associated with

action a from belief b, and U(b) is the value function estimate at maximum depth.
We may use algorithm 9.4 without modification. The resulting complexity is
O(|A|dmd).

22.5 Monte Carlo Tree Search

The Monte Carlo tree search approach for MDPs can be extended to POMDPs,
though we cannot use the same exact implementation.3 The input to the algo- 3 Silver andVeness present aMonte

Carlo tree search algorithm for
POMDPs called Partially Observ-
ableMonte Carlo Planning (POMCP)
and show its convergence. D. Sil-
ver and J. Veness, “Monte-Carlo
Planning in Large POMDPs,” in
Advances in Neural Information Pro-
cessing Systems (NIPS), 2010.

rithm is a belief state b, depth d, exploration factor c, and rollout policy π.4 The

4 MonteCarlo tree search can be im-
plemented with a POMDP rollout
policy that operates on beliefs, or
on an MDP rollout policy that op-
erates on states. Random policies
are commonly used.

main difference between the POMDP algorithm (algorithm 22.1) and the MDP
algorithm is that the counts and values are associated with histories instead of
states. A history is a sequence of past actions and observations. For example, if
we have two actions a1 and a2 and two observations o1 and o2, then a possible
history could be the sequence h = a1o2a2o2a1o1. During the execution of the
algorithm, we update the value estimates Q(h, a) and counts N(h, a) for a set of
history-action pairs.5

5 There are many variations of the
basic algorithm introduced here,
including some that incorporate as-
pects of double progressive widen-
ing, discussed in section 9.6. Z.N.
Sunberg and M. J. Kochenderfer,
“Online Algorithms for POMDPs
with Continuous State, Action, and
Observation Spaces,” in Interna-
tional Conference on Automated Plan-
ning and Scheduling (ICAPS), 2018.

The histories associated with Q and N may be organized in a tree similar to
the one in figure 22.2. The root node represents the empty history starting from
the initial belief state b. During the execution of the algorithm, the tree structure
expands. The layers of the tree alternate between action nodes and observation
nodes. Associatedwith each action node are values Q(h, a) and N(h, a), where the
history is determined by the path from the root node. As with the MDP version,
when searching down the tree, the algorithm takes the action that maximizes

Q(h, a) + c

√

log N(h)

N(h, a)
(22.3)

where N(h) = ∑a N(h, a) is the total visit count for history h and c is an explo-
ration parameter. Importantly, c augments the value of actions that are unexplored
and underexplored, thus representing the relative trade-off between exploration
and exploitation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

458 chapter 22. online belief state planning

struct HistoryMonteCarloTreeSearch
𝒫 # problem
N # visit counts
Q # action value estimates
d # depth
m # number of simulations
c # exploration constant
U # value function estimate

end

function explore(π::HistoryMonteCarloTreeSearch, h)
𝒜, N, Q, c = π.𝒫.𝒜, π.N, π.Q, π.c
Nh = sum(get(N, (h,a), 0) for a in 𝒜)
return argmax(a->Q[(h,a)] + c*bonus(N[(h,a)], Nh), 𝒜)

end

function simulate(π::HistoryMonteCarloTreeSearch, s, h, d)
if d ≤ 0

return π.U(s)
end
𝒫, N, Q, c = π.𝒫, π.N, π.Q, π.c
𝒮, 𝒜, TRO, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.TRO, 𝒫.γ
if !haskey(N, (h, first(𝒜)))

for a in 𝒜
N[(h,a)] = 0
Q[(h,a)] = 0.0

end
return π.U(s)

end
a = explore(π, h)
s′, r, o = TRO(s,a)
q = r + γ*simulate(π, s′, vcat(h, (a,o)), d-1)
N[(h,a)] += 1
Q[(h,a)] += (q-Q[(h,a)])/N[(h,a)]
return q

end

function (π::HistoryMonteCarloTreeSearch)(b, h=[])
for i in 1:π.m

s = rand(SetCategorical(π.𝒫.𝒮, b))
simulate(π, s, h, π.d)

end
return argmax(a->π.Q[(h,a)], π.𝒫.𝒜)

end

Algorithm 22.1. Monte Carlo tree
search for POMDPs from belief
b. The initial history h is optional.
This implementation is similar to
the one in algorithm 9.5.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

22.6. determinized sparse tree search 459

a(1) o(1) a(2) o(2) a(3) o(3) a(4) o(4) a(5)

1

67
1
2
11

1
1
1
11

1 1
1
1
11

1
1

1
1

1
1
1

Figure 22.2. A search tree con-
taining all the histories covered
when running a Monte Carlo tree
search with 100 samples on the ma-
chine replacement problem. Visi-
tations are given beneath each ac-
tion node, and color indicates node
values with high values in blue
and low values in red. Expanded
nodes with zero visitations are not
shown. This search used an explo-
ration constant c = 0.5, a max-
imum depth d = 5, and a uni-
form random rollout policy. The
initial belief is certainty in a fully
working system. Monte Carlo tree
search is able to avoid certain ac-
tions and instead focus samples on
more promising paths.As with the MDP version, the Monte Carlo tree search algorithm is an anytime

algorithm. The loop in algorithm 22.1 can be terminated at any time, and the
best solution found up to that point will be returned. With a sufficient number of
iterations, the algorithm converges to the optimal action.

Prior knowledge can be incorporated into Monte Carlo tree search in how we
initialize N and Q. Our implementation uses zero, but other choices are possible,
including having the initialization of the action values be a function of history.
The value estimates can again be obtained from simulations of a rollout policy.

The algorithm does not need to be reinitialized with each decision. The history
tree and associated counts and value estimates can be maintained between calls.
The observation node associated with the selected action and actual observation
becomes the root node at the next time step.

22.6 Determinized Sparse Tree Search

Determinized sparse tree search strives to reduce the overall amount of sampling in
both sparse sampling and Monte Carlo tree search by making the observation
resulting from performing an action deterministic.6 It does so by building a

6 Ye, Somani, Hsu, and Lee present
a determinized sparse tree search
algorithm for POMDPs called De-
terminized Sparse Partially Observ-
able Tree (DESPOT) N. Ye, A.
Somani, D. Hsu, and W. S. Lee,
“DESPOT: Online POMDP Plan-
ning with Regularization,” Jour-
nal of Artificial Intelligence Research,
vol. 58, pp. 231–266, 2017. In addi-
tion, the algorithm includes branch
and bound, heuristic search, and
regularization techniques.

determinized belief tree from a special particle belief representation to form a sparse
approximation of the true belief tree. Each particle refers to one of m scenarios,
each of depth d. A scenario represents a fixed history that the particle will follow
for any given sequence of actions a(1), a(2), . . . , a(d). Every distinct action sequence

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

460 chapter 22. online belief state planning

produces a distinct history under a particular scenario.7 This determinization 7 A similar idea was discussed in
section 9.9.3 and is related to the
PEGASUS algorithm mentioned in
section 11.1.

reduces the size of the search tree to O(|A|dm). An example of a history is given
in example 22.4. A determinized tree is shown in figure 22.3.

Suppose we have two states s1 and s2, two actions a1 and a2, and two ob-
servations o1 and o2. A possible history of depth d = 2 for the particle with
initial state s2 is the sequence h = s2a1o2s1a2o1. If this history is used as a
scenario, then this history is returned every time the belief tree is traversed
from the initial state with the action sequence a(1) = a1 and a(2) = a2.

Example 22.4. A history and a
scenario in the context of deter-
minized sparse tree search.

a(1) o(1) a(2) o(2)

b

Figure 22.3. A determinized
sparse search tree with two scenar-
ios, shown in blue and purple. The
line traces show the possible paths
for each scenario under different
action sequences.

A search tree with m scenarios up to depth d can be fully specified by a compact
m × d determinizing matrix Φ containing probability masses. The element Φij

contains the information needed for a particle following the ith scenario at depth
j to identify its successor state and observation. Specifically, Φij is a uniformly
distributed randomnumber that can generate the successor pair (s′, o) froma state-
action pair (s, a), following the distribution P(s′, o | s, a) = T(s′ | s, a)O(o | a, s′).
We can generate a determinizingmatrix by filling itwith values sampleduniformly
between 0 and 1.

Beliefs are represented as vectors of belief particles. Each belief particle φ con-
tains a state s and indices i and j into the determinizing matrix Φ corresponding
to a scenario i and current depth j. Given a particular action a, Φij is used to
deterministically transition to successor state s′ and observation o. The successor
particle φ′ = (s′, i, j + 1) receives s′ as its state and increments j by 1. Exam-
ple 22.5 demonstrates this tree traversal process. The particle belief representation
is implemented in algorithm 22.2 and is used in forward search in algorithm 22.3.

22.7 Gap Heuristic Search

Similar to the offline heuristic search presented in section 21.8, gap heuristic search
uses the gap between the upper and lower bounds to guide our search toward
beliefs that have uncertainty in their associated value and as an indication of
when we can stop exploring. The gap at a belief b is the difference between the
upper-bound and lower-bound values: U(b)−U(b). Search algorithms with the
gap heuristic select the observation that maximizes the gap because they are more
likely to benefit from a belief backup. Actions are often selected according to a

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

22.7. gap heuristic search 461

Suppose that we generate a determinizing matrix Φ for a problem with four
histories up to depth 3:

Φ =

0.393 0.056 0.369

0.313 0.749 0.273

0.078 0.262 0.009

0.969 0.598 0.095

Suppose that we take action a3 in state s2 when at depth 2 while following
history 3. The corresponding belief particle is φ = (2, 3, 2), and the deter-
minizing value in Φ is Φ3,2 = 0.262.

The deterministic successor action and observation are given by iterating
over all successor state-observation pairs and accumulating their transition
probabilities. We begin with p = 0 and evaluate s′ = s1, o = o1. Suppose we
get T(s1 | s2, a3)O(o1 | a3, s1) = 0.1. We increase p to 0.1, which is less than
Φ3,2, so we continue.

Next, we evaluate s′ = s1, o = o2. Suppose we get T(s1 | s2, a3)O(o2 |
a3, s2) = 0.17. We increase p to 0.27, which is greater than Φ3,2. We thus
deterministically proceed to s′ = s1, o = o2 as our successor state, resulting
in a new particle φ′ = (1, 3, 3).

Example 22.5. Determinized
sparse tree search uses a matrix to
make tree traversal deterministic
for a given particle.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

462 chapter 22. online belief state planning

struct DeterminizedParticle
s # state
i # scenario index
j # depth index

end

function successor(𝒫, Φ, ϕ, a)
𝒮, 𝒪, T, O = 𝒫.𝒮, 𝒫.𝒪, 𝒫.T, 𝒫.O
p = 0.0
for (s′, o) in product(𝒮, 𝒪)

p += T(ϕ.s, a, s′) * O(a, s′, o)
if p ≥ Φ[ϕ.i, ϕ.j]

return (s′, o)
end

end
return last(𝒮), last(𝒪)

end

function possible_observations(𝒫, Φ, b, a)
𝒪 = []
for ϕ in b

s′, o = successor(𝒫, Φ, ϕ, a)
push!(𝒪, o)

end
return unique(𝒪)

end

function update(b, Φ, 𝒫, a, o)
b′ = []
for ϕ in b

s′, o′ = successor(𝒫, Φ, ϕ, a)
if o == o′

push!(b′, DeterminizedParticle(s′, ϕ.i, ϕ.j + 1))
end

end
return b′

end

Algorithm 22.2. The determinized
particle belief update used in de-
terminized sparse tree search for a
POMDP 𝒫. Each belief b consists of
particles ϕ that each encode a par-
ticular scenario and depth along
the scenario. Their scenario’s tra-
jectory is determinized through a
matrix Φ containing random values
in [0, 1]. Each particle ϕ represents
a particular scenario i at a particu-
lar depth j, referring to the ith row
and jth column of Φ.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

22.7. gap heuristic search 463

struct DeterminizedSparseTreeSearch
𝒫 # problem
d # depth
Φ # m×d determinizing matrix
U # value function to use at leaf nodes

end

function determinized_sparse_tree_search(𝒫, b, d, Φ, U)
𝒮, 𝒜, 𝒪, T, R, O, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.R, 𝒫.O, 𝒫.γ
if d == 0

return (a=nothing, u=U(b))
end
best = (a=nothing, u=-Inf)
for a in 𝒜

u = sum(R(ϕ.s, a) for ϕ in b) / length(b)
for o in possible_observations(𝒫, Φ, b, a)

Poba = sum(sum(O(a,s′,o)*T(ϕ.s,a,s′) for s′ in 𝒮)
for ϕ in b) / length(b)

b′ = update(b, Φ, 𝒫, a, o)
u′ = determinized_sparse_tree_search(𝒫,b′,d-1,Φ,U).u
u += γ*Poba*u′

end
if u > best.u

best = (a=a, u=u)
end

end
return best

end

function determinized_belief(b, 𝒫, m)
particles = []
for i in 1:m

s = rand(SetCategorical(𝒫.𝒮, b))
push!(particles, DeterminizedParticle(s, i, 1))

end
return particles

end

function (π::DeterminizedSparseTreeSearch)(b)
particles = determinized_belief(b, π.𝒫, size(π.Φ,1))
return determinized_sparse_tree_search(π.𝒫,particles,π.d,π.Φ,π.U).a

end

Algorithm 22.3. An implemen-
tation of determinized sparse
tree search, a modification of
forward search, for POMDPs.
The policy takes a belief b in the
form of a vector of probabilities,
which is approximated by a vector
of determinized particles by
determinized_belief.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

464 chapter 22. online belief state planning

lookahead using an approximate value function. Algorithm 22.4 provides an
implementation.8 8 There are a variety of differ-

ent heuristic search algorithms for
POMDPs that attempt to mini-
mize the gap. For example, see S.
Ross and B. Chaib-draa, “AEMS:
An Anytime Online Search Algo-
rithm for Approximate Policy Re-
finement in Large POMDPs,” in In-
ternational Joint Conference on Artifi-
cial Intelligence (IJCAI), 2007. This
implementation is similar to the
one used by DESPOT, referenced
in the previous section.

The initial lower- and upper-bound values used in heuristic search play an
important role in the algorithm’s performance. Example 22.6 uses a random
rollout policy for the lower bound U(b). A rollout is not guaranteed to produce a
lower bound, of course, because it is based on a single trial up to a fixed depth.
As the number of samples increases, it will converge to a true lower bound. That
example uses the best-action best-state upper bound from equation (21.2). Many
other forms of upper and lower bounds exist that can provide faster convergence,
but at the cost of run time and implementation complexity. For example, using
the fast informed bound (algorithm 21.3) for the upper bound can improve
exploration and help reduce the gap. For the lower bound, we can use a problem-
specific rollout policy to better guide the search.

22.8 Summary

• A simple online strategy is to perform a one-step lookahead, which considers
each action taken from the current belief and estimates its expected value using
an approximate value function.

• Forward search is a generalization of lookahead to arbitrary horizons, which
can lead to better policies, but its computational complexity grows exponen-
tially with the horizon.

• Branch and bound is a more efficient version of forward search that can avoid
searching certain paths by placing upper and lower bounds on the value
function.

• Sparse sampling is an approximation method that can reduce the computa-
tional burden of iterating over the space of all possible observations.

• Monte Carlo tree search can be adapted to POMDPs by operating over histories
rather than states.

• Determinized sparse tree search uses a special form of particle belief that
ensures that observations are determinized, greatly reducing the search tree.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

22.8. summary 465

struct GapHeuristicSearch
𝒫 # problem
Ulo # lower bound on value function
Uhi # upper bound on value function
δ # gap threshold
k_max # maximum number of simulations
d_max # maximum depth

end

function heuristic_search(π::GapHeuristicSearch, Ulo, Uhi, b, d)
𝒫, δ = π.𝒫, π.δ
𝒮, 𝒜, 𝒪, R, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.R, 𝒫.γ
B = Dict((a,o)=>update(b,𝒫,a,o) for (a,o) in product(𝒜,𝒪))
B = merge(B, Dict(()=>copy(b)))
for (ao, b′) in B

if !haskey(Uhi, b′)
Ulo[b′], Uhi[b′] = π.Ulo(b′), π.Uhi(b′)

end
end
if d == 0 || Uhi[b] - Ulo[b] ≤ δ

return
end
a = argmax(a -> lookahead(𝒫,b′->Uhi[b′],b,a), 𝒜)
o = argmax(o -> Uhi[B[(a, o)]] - Ulo[B[(a, o)]], 𝒪)
b′ = update(b,𝒫,a,o)
heuristic_search(π,Ulo,Uhi,b′,d-1)
Ulo[b] = maximum(lookahead(𝒫,b′->Ulo[b′],b,a) for a in 𝒜)
Uhi[b] = maximum(lookahead(𝒫,b′->Uhi[b′],b,a) for a in 𝒜)

end

function (π::GapHeuristicSearch)(b)
𝒫, k_max, d_max, δ = π.𝒫, π.k_max, π.d_max, π.δ
Ulo = Dict{Vector{Float64}, Float64}()
Uhi = Dict{Vector{Float64}, Float64}()
for i in 1:k_max

heuristic_search(π, Ulo, Uhi, b, d_max)
if Uhi[b] - Ulo[b] < δ

break
end

end
return argmax(a -> lookahead(𝒫,b′->Ulo[b′],b,a), 𝒫.𝒜)

end

Algorithm 22.4. An implementa-
tion of heuristic search that uses
bounds, a gap criterion, and ini-
tial lower and upper bounds on
the value function. We update a
dictionary Ulo and Uhi to main-
tain the lower and upper bounds
on the value function as spe-
cific beliefs. At belief b, the gap
is Uhi[b] - Ulo[b]. Exploration
stops when the gap is smaller than
the threshold δ or the maximum
depth d_max is reached. A maxi-
mum number of iterations k_max
is allotted to search.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

466 chapter 22. online belief state planning

The following code demonstrates how to apply gap heuristic search to the
crying baby problem.
δ = 0.001 # gap threshold
k_max = 5 # maximum number of iterations
d_max = 10 # maximum depth
πrollout(b) = rand(𝒜) # random rollout policy
Ulo(b) = rollout(𝒫, b, πrollout, d_max) # initial lower bound
Rmax = maximum(R(s,a) for (s,a) in product(𝒮,𝒜)) # max reward
Uhi(b) = Rmax / (1.0 - 𝒫.γ) # best action best state upper bound
π = GapHeuristicSearch(𝒫, Ulo, Uhi, δ, k_max, d_max)
π([0.5, 0.5]) # evaluate at initial belief point

Here, we show six iterations of heuristic search with an initial belief b of
[0.5, 0.5]. In each iteration, the upper bound is shown in green and the lower
bound is shown in blue.

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

U
(b
)

iteration 1

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

iteration 2

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

iteration 3

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

P(hungry)

U
(b
)

iteration 4

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

P(hungry)

iteration 5

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

P(hungry)

iteration 6

The jagged bounds are due to some beliefs not being reexplored based on
the action and observation selection. In the bottom row, we see that it has
explored many of the beliefs once, but the bounds are still loose. Heuristic
search seeks to reduce the maximum gap.

Example 22.6. The use of gap
heuristic search lower and upper
bounds for the crying baby prob-
lem over iterations of heuristic
search.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

22.9. exercises 467

• Heuristic search intelligently selects action-observation pairs to explore regions
with a high gap between the upper and lower bounds on the value function
that it maintains.

22.9 Exercises

Exercise 22.1. Suppose we have A = {a1, a2} and a belief b = [0.5, 0.5]. The reward is
always 1. The observation function is given by P(o1 | a1) = 0.8 and P(o1 | a2) = 0.4. We
have an approximate value function represented by an alpha vector α = [−3, 4]. With
γ = 0.9, use forward search to a depth of 1 to compute U(b). Use the following updated
beliefs in the calculation:

a o Update(b, a, o)

a1 o1 [0.3, 0.7]

a2 o1 [0.2, 0.8]

a1 o2 [0.5, 0.5]

a2 o2 [0.8, 0.2]

Solution: We need to calculate the action value function at depth 1 according to equa-
tion (22.1):

Qd(b, a) = R(b, a) + γ ∑
o

P(o | b, a)Ud−1(Update(b, a, o))

First, we calculate the utility for the updated beliefs:

U0(Update(b, a1, o1)) = α⊤b′ = 0.3×−3 + 0.7× 4 = 1.9

U0(Update(b, a2, o1)) = 0.2×−3 + 0.8× 4 = 2.6

U0(Update(b, a1, o2)) = 0.5×−3 + 0.5× 4 = 0.5

U0(Update(b, a2, o2)) = 0.8×−3 + 0.2× 4 = −1.6

Second, we compute the action value function for both actions:

Q1(b, a1) = 1 + 0.9((P(o1 | b, a1)U0(Update(b, a1, o1)) + (P(o2 | b, a1)U0(Update(b, a1, o2)))

= 1 + 0.9(0.8× 1.9 + 0.2× 0.5) = 2.458

Q1(b, a2) = 1 + 0.9((P(o1 | b, a2)U0(Update(b, a2, o1)) + (P(o2 | b, a2)U0(Update(b, a2, o2)))

= 1 + 0.9(0.4× 2.6 + 0.6×−1.6) = 1.072

Finally, we have U1(b) = maxa Q1(b, a) = 2.458.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

468 chapter 22. online belief state planning

Exercise 22.2. Using the following trajectory samples, compute the action value function
for belief b and actions a1 and a2 based on sparse sampling to depth 1. Use the following
updated beliefs, discount factor γ = 0.9, and approximate value function represented by
an alpha vector α = [10, 1].

a o r Update(b, a, o)

1 1 0 [0.47, 0.53]

2 1 1 [0.22, 0.78]

1 2 1 [0.49, 0.51]

2 1 1 [0.22, 0.78]

2 2 1 [0.32, 0.68]

1 2 1 [0.49, 0.51]

Solution: We first calculate the utility for the updated beliefs:

a o r Update(b, a, oa) U0(Update(b, a, o))

1 1 0 [0.47, 0.53] 5.23

2 1 1 [0.22, 0.78] 2.98

1 2 1 [0.49, 0.51] 5.41

2 1 1 [0.22, 0.78] 2.98

2 2 1 [0.32, 0.68] 3.88

1 2 1 [0.49, 0.51] 5.41

Then, we can compute the action value function over all actions using equation (22.2):

Q1(b, a1) =
1

3
(0 + 1 + 1 + 0.9(5.23 + 5.41 + 5.41)) = 5.48

Q1(b, a2) =
1

3
(1 + 1 + 1 + 0.9(2.98 + 2.98 + 3.88)) = 3.95

Exercise 22.3. Consider example 22.5. Suppose we have the following transition functions:
T(s2 | s1, a3) = 0.4

T(s3 | s1, a3) = 0.45

O(o1 | s1, a3) = 0.6

O(o2 | s1, a3) = 0.5

What is the path taken by a particle associated with φ = (1, 4, 2) if we take action a3?
Solution: From the determinizing matrix, our determinizing value is Φ4,2 = 0.598 and we
are in state s1. Then, we calculate p as follows:

p← T(s2 | s1, a3)O(o1 | s1, a3) = 0.4× 0.6 = 0.24

p← p + T(s2 | s1, a3)O(o2 | s1, a3) = 0.24 + 0.4× 0.5 = 0.44

p← p + T(s3 | s1, a3)O(o1 | s1, a3) = 0.44 + 0.45× 0.6 = 0.71

We stop our iteration because p > 0.598. Thus, from our final iteration, we proceed to
(s3, o1).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

22.9. exercises 469

Exercise 22.4. Summarize the techniques covered in this chapter to reduce branching over
actions.

Solution: Branch and bound can reduce action branching by using an upper bound on the
value function. It skips actions that cannot improve on the value obtained from actions that
it explored earlier. Gap heuristic search and Monte Carlo tree search use approximations
of action values to guide the selection of actions during exploration.

Exercise 22.5. Summarize the techniques covered in this chapter to reduce branching over
observations.

Solution: Sparse sampling reduces observation branching by sampling only a small number
of observations. Observations are sampled from P(o | b, a), which means that observations
that have greater probability are more likely to be sampled. Determinized sparse tree
search uses a similar approach, but the sampling occurs once and is then fixed. Branching
over observations can also be reduced based on the lookahead value U(b′). Gap heuristic
search evaluates the gap and avoids branching on observations for which we have high
confidence in the value function.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

23 Controller Abstractions

This chapter introduces controller representations for POMDP policies, which
allow policies to maintain their own internal state. These representations can
improve scalability over previous methods that enumerate over belief points.
This chapter presents algorithms that construct controllers using policy iteration,
nonlinear programming, and gradient ascent.

23.1 Controllers

A controller is a policy representation that maintains its own internal state. It
is represented as a graph consisting of a finite set of nodes X.1 The active node 1 Such a policy representation is

also called a finite state controller.
Wewill refer to the controller states
as ‘‘nodes’’ rather than ‘‘states’’ to
reduce ambiguitywith the environ-
ment state.

changes as actions are taken and new observations are made. Having a finite set
of nodes makes these controllers more computationally tractable than belief-point
methods that must consider the reachable belief space.

Actions are selected according to an action distribution ψ(a | x) that depends
on the current node. When selecting an action, in addition to transitioning to an
unobserved s′ and receiving an observation o, the control state also advances
according to a successor distribution η(x′ | x, a, o). Figure 23.1 shows how these
distributions are used as a controller policy is followed. Algorithm 23.1 provides
an implementation, and example 23.1 shows a controller for the crying baby
problem.

Controllers generalize conditional plans, whichwere introduced in section 20.2.
Conditional plans represent policies as trees, with each node deterministically
assigning an action and each edge specifying a unique successor node. Controllers
represent policies as directed graphs, and actions may have stochastic transitions
to multiple successor nodes. Example 23.2 compares these two representations.

472 chapter 23. controller abstractions

x1

a1

o1

x2

a2

o2

x3

a3

o3

x4

ψ(a | x)

η(x′ | x, a, o)

ψ(a | x)

η(x′ | x, a, o)

ψ(a | x)

η(x′ | x, a, o) Figure 23.1. In a controller rep-
resentation, the action is sampled
from the action selection distribu-
tion. This action, as well as the sub-
sequent observation it produces,
are used alongside the previous
node x to produce the successor
node x′.

We can construct a simple controller for the crying baby problem (ap-
pendix F.7). This example is shown here as a graph with two nodes, x1

and x2. When in x1, the controller always ignores the baby. When in x2, the
controller always feeds the baby. If the baby cries, we always transition to x2,
and if the baby is quiet, we always transition to x1.

x1 x2

o = crying

o = quiet

o = quiet o = crying

ψ(ignore | x1) = 1 ψ(feed | x2) = 1

Example 23.1. A two-node con-
troller for the crying baby problem.
This compact representation cap-
tures a straightforward solution to
the crying baby problem (namely,
to react immediately to the most
recent observation).

mutable struct ControllerPolicy
𝒫 # problem
X # set of controller nodes
ψ # action selection distribution
η # successor selection distribution

end

function (π::ControllerPolicy)(x)
𝒜, ψ = π.𝒫.𝒜, π.ψ
dist = [ψ[x, a] for a in 𝒜]
return rand(SetCategorical(𝒜, dist))

end

function update(π::ControllerPolicy, x, a, o)
X, η = π.X, π.η
dist = [η[x, a, o, x′] for x′ in X]
return rand(SetCategorical(X, dist))

end

Algorithm 23.1. A finite state con-
troller policy representation for a
POMDP 𝒫. The nodes in X are an ab-
stract representation of reachable
beliefs. Actions and controller suc-
cessor nodes are selected stochasti-
cally. Given a node x, actions are se-
lected following the distribution ψ.
The function π(x) implements this
mechanism to stochastically select
actions. After performing action a
in node x and observing observa-
tion o, the successor is selected fol-
lowing the distribution η. The func-
tion update implements this mech-
anism to stochastically select suc-
cessor nodes.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

23.1 . controllers 473

Consider a three-step conditional plan (left) compared with the more gen-
eral, two-node finite state controller (right) from example 23.1. In this case,
actions and successors are selected deterministically. The deterministic ac-
tion is marked in the center of a node, and the outgoing edges represent the
deterministic successor nodes. This problem has two actions (a1 and a2) and
two observations (o1 and o2).

a1

a2

a1

o1

a2

o2

o1

a1

a2

o1

a1

o2

o2

a1 a2

o1

o1

o2 o2

o1 = quiet
o2 = crying
a1 = ignore
a2 = feed

The conditional plan performs action a1 first, toggles the previously cho-
sen action if it observes o1, and preserves the previously chosen action if it
observes o2. The controller performs the same logic, with five fewer controller
nodes. Moreover, the controller represents the described infinite horizon pol-
icy perfectly with only two nodes (compared to seven). The conditional plan
cannot capture this infinite horizon policy because it would require a tree of
infinite depth.

Example 23.2. A comparison of a
simple conditional plan with a sim-
ple deterministic controller.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

474 chapter 23. controller abstractions

Controllers have several advantages over conditional plans. First, controllers
can provide a more compact representation. The number of nodes in a conditional
plan grows exponentially with depth, but this need not be the case with finite state
controllers. The approximation methods from previous chapters might also not
be as efficient because they must maintain a large set of beliefs and corresponding
alpha vectors. Controllers can be much more compact, considering infinitely
many possible reachable beliefs with a small, finite number of nodes. Another
advantage of controllers is that they do not require that a belief be maintained.
Each controller node corresponds to a subset of the belief space. These subsets are
not necessarily mutually exclusive. A controller transitions between these subsets
that together cover the reachable belief space. The controller itself selects a new
node based on each observation rather than relying on a belief update, which can
be expensive for some domains.

The utility of following a controller policy can be computed by forming a
product MDP whose state space is X× S . The value of being in state s with node
x active is

U(x, s) = ∑
a

ψ(a | x)

(

R(s, a) + γ ∑
s′

T(s′ | s, a)∑
o

O(o | a, s′)∑
x′

η(x′ | x, a, o)U(x′, s′)

)

(23.1)

Policy evaluation involves solving the system of linear equations given in equa-
tion (23.1). Alternatively, we can apply iterative policy evaluation as shown in
algorithm 23.2.

If a belief is known, then the current value is

U(x, b) = ∑
s

b(s)U(x, s) (23.2)

We can think of U(x, s) as defining a set of alpha vectors, one for each node x in
X. Each alpha vector αx is defined by αx(s) = U(x, s). The current value for a
given alpha vector is U(x, b) = b⊤αx.

Given a controller and an initial belief, we can select an initial node by maxi-
mizing as follows:

x∗ = arg max
x

U(x, b) = arg max
x

b⊤αx (23.3)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

23.2. policy iteration 475

function utility(π::ControllerPolicy, U, x, s)
𝒮, 𝒜, 𝒪 = π.𝒫.𝒮, π.𝒫.𝒜, π.𝒫.𝒪
T, O, R, γ = π.𝒫.T, π.𝒫.O, π.𝒫.R, π.𝒫.γ
X, ψ, η = π.X, π.ψ, π.η
U′(a,s′,o) = sum(η[x,a,o,x′]*U[x′,s′] for x′ in X)
U′(a,s′) = T(s,a,s′)*sum(O(a,s′,o)*U′(a,s′,o) for o in 𝒪)
U′(a) = R(s,a) + γ*sum(U′(a,s′) for s′ in 𝒮)
return sum(ψ[x,a]*U′(a) for a in 𝒜)

end

function iterative_policy_evaluation(π::ControllerPolicy, k_max)
𝒮, X = π.𝒫.𝒮, π.X
U = Dict((x, s) => 0.0 for x in X, s in 𝒮)
for k in 1:k_max

U = Dict((x, s) => utility(π, U, x, s) for x in X, s in 𝒮)
end
return U

end

Algorithm 23.2. An algorithm for
performing iterative policy evalu-
ation to compute the utility of a fi-
nite state controller π with k_max
iterations. The utility function per-
forms a single-step evaluation for
the current controller node x and
state s following equation (23.1).
This algorithm was adapted from
algorithm 7.3, which applies itera-
tive policy evaluation to MDPs.

23.2 Policy Iteration

Section 20.5 showed how to incrementally add nodes in a conditional plan to
arrive at optimal finite horizon policy (algorithm 20.8). This section shows how to
incrementally add nodes to a controller to optimize for infinite horizon problems.
Although the policy representation is different, the version of policy iteration for
partially observable problems introduced in this section2 has some similarities

2 The policy iterationmethod given
here was given by E.A. Hansen,
“Solving POMDPs by Searching
in Policy Space,” in Conference on
Uncertainty in Artificial Intelligence
(UAI), 1998.with the policy iteration algorithm for fully observed problems (section 7.4).

Policy iteration (algorithm 23.3) begins with any initial controller and then
iterates between policy evaluation and policy improvement. In policy evaluation,
we evaluate the utilities U(x, s) by solving equation (23.1). In policy improvement,
we introduce new nodes to our controller. Specifically, we introduce a new node
x′ for every combination of deterministic action assignments ψ(ai | x′) = 1

and deterministic successor selection distributions η(x | x′, a, o). This process
adds |A||X(k)||O| new controller nodes to the set of nodes X(k) at iteration k.3 An

3 Adding all possible combina-
tions is often not feasible. An
alternative algorithm called
bounded policy iteration adds only
one node. P. Poupart and C.
Boutilier, “Bounded Finite State
Controllers,” in Advances in Neural
Information Processing Systems
(NIPS), 2003. Algorithms can
also add a number in between.
Monte Carlo value iteration, for
example, adds O(n|A||X(k)|)
new nodes at each iteration k,
where n is a parameter. H. Bai,
D. Hsu, W. S. Lee, and V.A. Ngo,
“Monte Carlo Value Iteration
for Continuous-State POMDPs,”
in International Workshop on the
Algorithmic Foundations of Robotics
(WAFR), 2011.

improvement step is demonstrated in example 23.3.
Policy improvement cannot worsen the expected value of the controller policy.

The value of any nodes in X(k) remain unchanged, as they and their reachable
successor nodes remain unchanged. It is guaranteed that if X(k) is not an optimal
controller, then at least one of the new nodes introduced in policy improvement

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

476 chapter 23. controller abstractions

struct ControllerPolicyIteration
k_max # number of iterations
eval_max # number of evaluation iterations

end

function solve(M::ControllerPolicyIteration, 𝒫::POMDP)
𝒜, 𝒪, k_max, eval_max = 𝒫.𝒜, 𝒫.𝒪, M.k_max, M.eval_max
X = [1]
ψ = Dict((x, a) => 1.0 / length(𝒜) for x in X, a in 𝒜)
η = Dict((x, a, o, x′) => 1.0 for x in X, a in 𝒜, o in 𝒪, x′ in X)
π = ControllerPolicy(𝒫, X, ψ, η)
for i in 1:k_max

prevX = copy(π.X)
U = iterative_policy_evaluation(π, eval_max)
policy_improvement!(π, U, prevX)
prune!(π, U, prevX)

end
return π

end

function policy_improvement!(π::ControllerPolicy, U, prevX)
𝒮, 𝒜, 𝒪 = π.𝒫.𝒮, π.𝒫.𝒜, π.𝒫.𝒪
X, ψ, η = π.X, π.ψ, π.η
repeatX𝒪 = fill(X, length(𝒪))
assign𝒜X′ = vec(collect(product(𝒜, repeatX𝒪...)))
for ax′ in assign𝒜X′

x, a = maximum(X) + 1, ax′[1]
push!(X, x)
successor(o) = ax′[findfirst(isequal(o), 𝒪) + 1]
U′(o,s′) = U[successor(o), s′]
for s in 𝒮

U[x, s] = lookahead(π.𝒫, U′, s, a)
end
for a′ in 𝒜

ψ[x, a′] = a′ == a ? 1.0 : 0.0
for (o, x′) in product(𝒪, prevX)

η[x, a′, o, x′] = x′ == successor(o) ? 1.0 : 0.0
end

end
end
for (x, a, o, x′) in product(X, 𝒜, 𝒪, X)

if !haskey(η, (x, a, o, x′))
η[x, a, o, x′] = 0.0

end
end

end

Algorithm 23.3. Policy iteration
for a POMDP 𝒫 given a fixed
number of iterations k_max and
number of policy evaluation it-
erations eval_max. The algorithm
iteratively applies policy evalua-
tion (algorithm 23.2) and policy
improvement. Pruning is imple-
mented in algorithm 23.4.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

23.2. policy iteration 477

We can apply policy improvement to the crying baby controller from ex-
ample 23.1. The actions are A = {feed, sing, ignore} and observations
are O = {crying,quiet}. The policy improvement backup step results in
|A||X(1)||O| = 3× 22 = 12 new nodes. The new controller policy has nodes
{x1, . . . , x14} and distributions as follows:

Node Action Successors (for all a below)
x3 ψ(feed | x3) = 1 η(x1 | x3, a, crying) = η(x1 | x3, a,quiet) = 1

x4 ψ(feed | x4) = 1 η(x1 | x4, a, crying) = η(x2 | x4, a,quiet) = 1

x5 ψ(feed | x5) = 1 η(x2 | x5, a, crying) = η(x1 | x5, a,quiet) = 1

x6 ψ(feed | x6) = 1 η(x2 | x6, a, crying) = η(x2 | x6, a,quiet) = 1

x7 ψ(sing | x7) = 1 η(x1 | x7, a, crying) = η(x1 | x7, a,quiet) = 1

x8 ψ(sing | x8) = 1 η(x1 | x8, a, crying) = η(x2 | x8, a,quiet) = 1
...

...
...

We have the following controller, with the new nodes in blue and the original
two nodes in black:

feed

feed

feed

feed

sing

sing

...

ignore

feed

quiet

crying

cryingquiet

crying
quiet

crying
quiet

crying
quiet

crying
quiet

crying
quiet

crying
quiet

Example 23.3. An illustration of an
improvement step as part of policy
iteration on the crying baby prob-
lem with a controller policy repre-
sentation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

478 chapter 23. controller abstractions

will have better expected values for some states, and thus the overall controller
must be improved.

Many of the nodes added during policy improvement tend not to improve
the policy. Pruning is conducted after policy evaluation to eliminate unnecessary
nodes. Doing so does not degrade the optimal value function of the controller.
Pruning methods can help reduce the exponential growth in nodes that comes
with the improvement step. In some cases, pruning can enable loops to form,
resulting in compact controllers.

We prune any new nodes that are identical to existing nodes. We also prune
any new nodes that are dominated by other nodes. A node x is dominated by
another node x′ when

U(x, s) ≤ U(x′, s) for all s (23.4)

Existing nodes can be pruned as well. Whenever a new node dominates an
existing node, we prune the existing node from the controller. Any transitions
to the deleted node are instead rerouted to the dominating node. This process is
identical to pruning the new node instead and updating the dominated node’s
action and successor links to those of the new node. Example 23.4 demonstrates
evaluation, expansion, and pruning on the crying baby problem.

23.3 Nonlinear Programming

The policy improvement problem can be framed as a single, large, nonlinear pro-
gramming formulation (algorithm 23.5) that involves simultaneously optimizing
ψ and η across all nodes.4 This formulation allows general-purpose solvers to 4 C. Amato, D. S. Bernstein,

and S. Zilberstein, “Optimizing
Fixed-Size Stochastic Controllers
for POMDPs and Decentralized
POMDPs,” Autonomous Agents and
Multi-Agent Systems, vol. 21, no. 3,
pp. 293–320, 2010.

be applied. The nonlinear programming method directly searches the space of
controllers to maximize the utility of a given initial belief while satisfying the
Bellman expectation equation, equation (23.1). There is no alternating between
policy evaluation and policy improvement steps, and the controller node count
remains fixed.

We use x1 to denote the initial node corresponding to the given initial belief b.
The optimization problem is then

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

23.3. nonlinear programming 479

function prune!(π::ControllerPolicy, U, prevX)
𝒮, 𝒜, 𝒪, X, ψ, η = π.𝒫.𝒮, π.𝒫.𝒜, π.𝒫.𝒪, π.X, π.ψ, π.η
newX, removeX = setdiff(X, prevX), []
prune dominated from previous nodes
dominated(x,x′) = all(U[x,s] ≤ U[x′,s] for s in 𝒮)
for (x,x′) in product(prevX, newX)

if x′ ∉ removeX && dominated(x, x′)
for s in 𝒮

U[x,s] = U[x′,s]
end
for a in 𝒜

ψ[x,a] = ψ[x′,a]
for (o,x′′) in product(𝒪, X)

η[x,a,o,x′′] = η[x′,a,o,x′′]
end

end
push!(removeX, x′)

end
end
prune identical from previous nodes
identical_action(x,x′) = all(ψ[x,a] ≈ ψ[x′,a] for a in 𝒜)
identical_successor(x,x′) = all(η[x,a,o,x′′] ≈ η[x′,a,o,x′′]

for a in 𝒜, o in 𝒪, x′′ in X)
identical(x,x′) = identical_action(x,x′) && identical_successor(x,x′)
for (x,x′) in product(prevX, newX)

if x′ ∉ removeX && identical(x,x′)
push!(removeX, x′)

end
end
prune dominated from new nodes
for (x,x′) in product(X, newX)

if x′ ∉ removeX && dominated(x′,x) && x ≠ x′
push!(removeX, x′)

end
end
update controller
π.X = setdiff(X, removeX)
π.ψ = Dict(k => v for (k,v) in ψ if k[1] ∉ removeX)
π.η = Dict(k => v for (k,v) in η if k[1] ∉ removeX)

end

Algorithm 23.4. The pruning step
of policy iteration. It reduces the
number of nodes in the current
policy π, using the utilities U com-
puted by policy evaluation and
the previous node list, prevX. Its
first step replaces any point-wise
dominated previous nodes by their
improved nodes, marking the re-
dundant node as now dominated.
The second step marks any newly
added nodes that are identical to
previous nodes. The third step
marks any point-wise dominated
new nodes. Finally, all marked
nodes are pruned.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

480 chapter 23. controller abstractions

Recall example 23.3. Here, we show the first iteration of policy iteration using
the same initial controller. It consists of the two main steps: policy evaluation
(left) and policy improvement (center), as well as the optional pruning step
(right).

0 0.2 0.4 0.6 0.8 1
−50

−40

−30

−20

−10

P(hungry)

U
(x

,s
)

policy evaluation 1

0 0.2 0.4 0.6 0.8 1
−50

−40

−30

−20

−10

P(hungry)

policy improvement 1

0 0.2 0.4 0.6 0.8 1
−50

−40

−30

−20

−10

P(hungry)

pruning 1

The second iteration of policy iteration follows the same pattern:

0 0.2 0.4 0.6 0.8 1
−50

−40

−30

−20

−10

P(hungry)

U
(x

,s
)

policy evaluation 2

0 0.2 0.4 0.6 0.8 1
−50

−40

−30

−20

−10

P(hungry)

policy improvement 2

0 0.2 0.4 0.6 0.8 1
−50

−40

−30

−20

−10

P(hungry)

pruning 2

The utility has greatly improved after the second iteration, to near-optimal
values. We see that the prune step removes dominated and duplicate nodes
from previous iterations, as well as the current iteration’s new nodes.

Example 23.4. Policy iteration, il-
lustrating the evaluation, improve-
ment, and pruning steps on the cry-
ing baby domain with a controller
policy representation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

23.4. gradient ascent 481

maximize
U,ψ,η

∑
s

b(s)U(x1, s)

subject to U(x, s) = ∑
a

ψ(a | x)

(

R(s, a) + γ ∑
s′

T(s′ | s, a)∑
o

O(o | a, s′)∑
x′

η(x′ | x, a, o)U(x′, s′)

)

for all x, s

ψ(a | x) ≥ 0 for all x, a

∑
a

ψ(a | x) = 1 for all x

η(x′ | x, a, o) ≥ 0 for all x, a, o, x′

∑
x′

η(x′ | x, a, o) = 1 for all x, a, o

(23.5)

This problem can be written as a quadratically constrained linear program (QCLP),
which can be solved effectively using a dedicated solver.5 Example 23.5 demon- 5 Solving a general QCLP is NP-

hard, but dedicated solvers offer
efficient approximations.strates this approach.

23.4 Gradient Ascent

A fixed-size controller policy can be iteratively improved using gradient ascent
(covered in appendix A.11).6 Although the gradient is challenging to compute, 6 N. Meuleau, K.-E. Kim, L. P. Kael-

bling, and A.R. Cassandra, “Solv-
ing POMDPs by Searching the
Space of Finite Policies,” in Confer-
ence on Uncertainty in Artificial Intel-
ligence (UAI), 1999.

this opens up controller optimization to a wide variety of gradient-based opti-
mization techniques. Algorithm 23.6 implements controller gradient ascent using
algorithm 23.7.

Consider an explicit description of the nonlinear problem from section 23.3.
For initial belief b and an arbitrary initial controller node x1, we seek to maximize
as follows:

∑
s

b(s)U(x1, s) (23.6)

with the utility U(x, s) defined by the Bellman optimality equation for all x and s:

U(x, s) = ∑
a

ψ(a | x)

(

R(s, a) + γ ∑
s′

T(s′ | s, a)∑
o

O(o | a, s′)∑
x′

η(x′ | x, a, o)U(x′, s′)

)

(23.7)

In addition, ψ and η must be proper probability distributions. To apply gradient
ascent, it is more convenient to rewrite this problem using linear algebra.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

482 chapter 23. controller abstractions

struct NonlinearProgramming
b # initial belief
ℓ # number of nodes

end

function tensorform(𝒫::POMDP)
𝒮, 𝒜, 𝒪, R, T, O = 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.R, 𝒫.T, 𝒫.O
𝒮′ = eachindex(𝒮)
𝒜′ = eachindex(𝒜)
𝒪′ = eachindex(𝒪)
R′ = [R(s,a) for s in 𝒮, a in 𝒜]
T′ = [T(s,a,s′) for s in 𝒮, a in 𝒜, s′ in 𝒮]
O′ = [O(a,s′,o) for a in 𝒜, s′ in 𝒮, o in 𝒪]
return 𝒮′, 𝒜′, 𝒪′, R′, T′, O′

end

function solve(M::NonlinearProgramming, 𝒫::POMDP)
x1, X = 1, collect(1:M.ℓ)
𝒫, γ, b = 𝒫, 𝒫.γ, M.b
𝒮, 𝒜, 𝒪, R, T, O = tensorform(𝒫)
model = Model(Ipopt.Optimizer)
@variable(model, U[X,𝒮])
@variable(model, ψ[X,𝒜] ≥ 0)
@variable(model, η[X,𝒜,𝒪,X] ≥ 0)
@objective(model, Max, b⋅U[x1,:])
@NLconstraint(model, [x=X,s=𝒮],

U[x,s] == (sum(ψ[x,a]*(R[s,a] + γ*sum(T[s,a,s′]*sum(O[a,s′,o]
*sum(η[x,a,o,x′]*U[x′,s′] for x′ in X)
for o in 𝒪) for s′ in 𝒮)) for a in 𝒜)))

@constraint(model, [x=X], sum(ψ[x,:]) == 1)
@constraint(model, [x=X,a=𝒜,o=𝒪], sum(η[x,a,o,:]) == 1)
optimize!(model)
ψ′, η′ = value.(ψ), value.(η)
return ControllerPolicy(𝒫, X,

Dict((x, 𝒫.𝒜[a]) => ψ′[x, a] for x in X, a in 𝒜),
Dict((x, 𝒫.𝒜[a], 𝒫.𝒪[o], x′) => η′[x, a, o, x′]

for x in X, a in 𝒜, o in 𝒪, x′ in X))
end

Algorithm 23.5. A nonlinear pro-
gramming approach to compute
the optimal fixed-size controller
policy for POMDP 𝒫 starting at ini-
tial belief b. The size of the finite
state controller is specified by the
number of nodes ℓ.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

23.4. gradient ascent 483

Here are optimal fixed-size controllers computed using nonlinear program-
ming for the crying baby problem with b0 = [0.5, 0.5]. The top node is x1.

ignorecrying, quiet

0 0.2 0.4 0.6 0.8 1

−60

−40

−20

P(hungry)

U
(x

,s
)

controller utility (k = 1)

ignore

feed

quiet

crying crying, quiet

0 0.2 0.4 0.6 0.8 1

−60

−40

−20

P(hungry)

U
(x

,s
)

controller utility (k = 2)

ignore

feed

feedquiet

crying crying, quiet

crying, quiet

0 0.2 0.4 0.6 0.8 1

−60

−40

−20

P(hungry)

U
(x

,s
)

controller utility (k = 3)

With k = 1, the optimal policy is to simply ignore forever. With k = 2, the
optimal policy is to ignore until crying is observed, at which point the best
action is to feed the baby, and then return to ignoring. This policy is close to
optimal for the infinite horizon crying baby POMDP. With k = 3, the optimal
policy essentially remains unchanged from when k = 2.

Example 23.5. The nonlinear
programming algorithm for con-
trollers with a fixed size of k set
to 1, 2, and 3. Each row shows the
policy and its corresponding utili-
ties (alpha vectors) on the left and
right, respectively. The stochastic
controllers are shown as circles,
with the most likely action in the
middle. The outgoing edges show
successor node selections given an
observation. The stochasticity in
node actions and successors are
shown as opacity (more opaque is
higher probability, more transpar-
ent is lower probability).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

484 chapter 23. controller abstractions

We define the transition function with a controller, which has a state space
X × S . For any fixed-size controller policy parameterized by θ = (ψ, η), the
transition matrix Tθ ∈ R

|X×S|×|X×S| is

Tθ((x, s), (x′, s′)) = ∑
a

ψ(x, a)T(s, a, s′)∑
o

O(a, s′, o)η(x, a, o, x′) (23.8)

The reward for a parameterized policy is represented as vector rθ ∈ R
|X×S|:

rθ((x, s)) = ∑
a

ψ(x, a)R(s, a) (23.9)

The Bellman expectation equation for utility uθ ∈ R
|X×S| is then

uθ = rθ + γTθuθ (23.10)

We can consider an initial node-belief vector β ∈ R
|X×S| with βxs = b(s) if

x = x1, and βxs = 0 otherwise. A utility vector uθ ∈ R
|X×S| is also defined over

the nodes X and states S for any of these fixed-size parameterized controller
policies θ = (ψ, η). We now seek to maximize as follows:

β⊤uθ (23.11)

We begin by rewriting equation (23.10):

uθ = rθ + γTθuθ (23.12)
(I− γTθ)uθ = rθ (23.13)

uθ = (I− γTθ)
−1rθ (23.14)

uθ = Z−1rθ (23.15)

with Z = I− γTθ for convenience. To perform gradient ascent, we need to know
the partial derivatives of equation (23.15) with respect to the policy parameters:

∂uθ
∂θ

=
∂Z−1

∂θ
rθ + Z−1 ∂rθ

∂θ
(23.16)

= −Z−1 ∂Z

∂θ
Z−1rθ + Z−1 ∂rθ

∂θ
(23.17)

= Z−1

(

∂rθ
∂θ
− ∂Z

∂θ
Z−1rθ

)

(23.18)

with ∂θ referring to both ∂ψ(x̂, â) and ∂η(x̂, â, ô, x̂′) for convenience.
Computing the partial derivatives of Z and rθ results in four equations:

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

23.4. gradient ascent 485

∂rθ((x, s))

∂ψ(x̂, â)
=

{

R(s, a) if x = x̂

0 otherwise (23.19)

∂rθ((x, s))

∂η(x̂, â, ô, x̂′)
= 0 (23.20)

∂Z((x, s), (x′, s′))
∂ψ(x̂, â)

=

{

−γT(s, â, s′)∑o O(â, s′, o)η(x̂, â, o, x′) if x = x̂

0 otherwise (23.21)

∂Z((x, s), (x′, s′))
∂η(x̂, â, ô, x̂′)

=

{

−γψ(x̂, â)T(s, â, s′)O(â, s′, ô)η(x̂, â, ô, x′) if x = x̂ and x′ = x̂′

0 otherwise (23.22)

Finally, these four gradients are substituted into equation (23.18) as follows:
∂uθ

∂ψ(x̂, â)
= Z−1

(

∂rθ
∂ψ(x̂, â)

− ∂Z

∂ψ(x̂, â)
Z−1rθ

)

(23.23)

∂uθ
∂η(x̂, â, ô, x̂′)

= Z−1

(

∂rθ
∂η(x̂, â, ô, x̂′)

− ∂Z

∂η(x̂, â, ô, x̂′)
Z−1rθ

)

(23.24)

We finally can return to the original objective in equation (23.11). Controller
gradient ascent starts with a fixed number of nodes in X and an arbitrary policy
ψ and η. At iteration k, it updates these parameters as follows:

ψk+1(x, a) = ψk(x, a) + αβ⊤
∂u
θk

∂ψk(x̂, â)
(23.25)

ηk+1(x, a, o, x′) = ηk(x, a, o, x′) + αβ⊤
∂u
θk

∂ηk(x̂, â, ô, x̂′)
(23.26)

with gradient step size α > 0. After this update, ψk+1 and ηk+1 may no longer
be valid distributions. To make them valid, we project them onto the probability
simplex. One approach to projecting a vector y onto the probability simplex is to
find the closest distribution according to the L2-norm:

minimize
b

1

2
‖y− b‖2

2

subject to b ≥ 0

1⊤b = 1

(23.27)

This optimization can be solved exactly through a simple algorithm included
in algorithm 23.6.7 Example 23.6 demonstrates the process of updating the con-

7 J. Duchi, S. Shalev-Shwartz, Y.
Singer, and T. Chandra, “Efficient
Projections onto the ℓ1-Ball for
Learning in High Dimensions,” in
International Conference on Machine
Learning (ICML), 2008.troller.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

486 chapter 23. controller abstractions

The optimization objective in equation (23.6) is not necessarily convex.8 Hence, 8 This objective is distinct from the
utility U(x, b) = ∑s b(s)U(x, s),
which is guaranteed to be piece-
wise linear and convex with re-
spect to the belief state b, as dis-
cussed in section 20.3.

normal gradient ascent can converge to a local optimum depending on the initial
controller. Adaptive gradient algorithms can be applied to help smooth and speed
convergence.

23.5 Summary

• Controllers are policy representations that do not rely on exploring or main-
taining beliefs.

• Controllers consist of nodes, an action selection function, and a successor
selection function.

• Nodes and the controller graph are abstract; however, they can be interpreted
as sets of the countably infinite reachable beliefs.

• The value function for a controller node can be interpreted as an alpha vector.

• Policy iteration alternates between policy evaluation, which computes the
utilities for each node, and policy improvement, which adds new nodes.

• Pruning during policy iteration can help reduce the exponential growth in
nodes with each improvement step.

• Nonlinear programming reformulates finding the optimal fixed-sized con-
troller as a general optimization problem, allowing off-the-shelf solvers and
techniques to be used.

• Controller gradient ascent climbs in the space of policies to improve the value
function directly, benefiting from an explicit, POMDP-based gradient step.

23.6 Exercises
Exercise 23.1. List any advantages that a controller policy representation has over tree-
based conditional plan and belief-based representations.
Solution: Unlike tree-based conditional plans, controllers can represent policies that can be
executed indefinitely. They do not have to grow exponentially in size with the horizon.

Compared to belief-based representations, the number of parameters in a controller
representation tends to be far less than the number of alpha vectors for larger problems.
We can also optimize controllers more easily for a fixed amount of memory.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

23.6. exercises 487

struct ControllerGradient
b # initial belief
ℓ # number of nodes
α # gradient step
k_max # maximum iterations

end

function solve(M::ControllerGradient, 𝒫::POMDP)
𝒜, 𝒪, ℓ, k_max = 𝒫.𝒜, 𝒫.𝒪, M.ℓ, M.k_max
X = collect(1:ℓ)
ψ = Dict((x, a) => rand() for x in X, a in 𝒜)
η = Dict((x, a, o, x′) => rand() for x in X, a in 𝒜, o in 𝒪, x′ in X)
π = ControllerPolicy(𝒫, X, ψ, η)
for i in 1:k_max

improve!(π, M, 𝒫)
end
return π

end

function improve!(π::ControllerPolicy, M::ControllerGradient, 𝒫::POMDP)
𝒮, 𝒜, 𝒪, X, x1, ψ, η = 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, π.X, 1, π.ψ, π.η
n, m, z, b, ℓ, α = length(𝒮), length(𝒜), length(𝒪), M.b, M.ℓ, M.α
∂U′∂ψ, ∂U′∂η = gradient(π, M, 𝒫)
UIndex(x, s) = (s - 1) * ℓ + (x - 1) + 1
E(U, x1, b) = sum(b[s]*U[UIndex(x1,s)] for s in 1:n)
ψ′ = Dict((x, a) => 0.0 for x in X, a in 𝒜)
η′ = Dict((x, a, o, x′) => 0.0 for x in X, a in 𝒜, o in 𝒪, x′ in X)
for x in X

ψ′x = [ψ[x, a] + α * E(∂U′∂ψ(x, a), x1, b) for a in 𝒜]
ψ′x = project_to_simplex(ψ′x)
for (aIndex, a) in enumerate(𝒜)

ψ′[x, a] = ψ′x[aIndex]
end
for (a, o) in product(𝒜, 𝒪)

η′x = [(η[x, a, o, x′] +
α * E(∂U′∂η(x, a, o, x′), x1, b)) for x′ in X]

η′x = project_to_simplex(η′x)
for (x′Index, x′) in enumerate(X)

η′[x, a, o, x′] = η′x[x′Index]
end

end
end
π.ψ, π.η = ψ′, η′

end

function project_to_simplex(y)
u = sort(copy(y), rev=true)
i = maximum([j for j in eachindex(u)

if u[j] + (1 - sum(u[1:j])) / j > 0.0])
δ = (1 - sum(u[j] for j = 1:i)) / i
return [max(y[j] + δ, 0.0) for j in eachindex(u)]

end

Algorithm 23.6. An implementa-
tion of a controller gradient ascent
algorithm for POMDP 𝒫 at initial
belief b. The controller itself has a
fixed size of ℓ nodes. It is improved
over k_max iterations by following
the gradient of the controller, with
a step size of α, to maximally im-
prove the value of the initial belief.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

488 chapter 23. controller abstractions

function gradient(π::ControllerPolicy, M::ControllerGradient, 𝒫::POMDP)
𝒮, 𝒜, 𝒪, T, O, R, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
X, x1, ψ, η = π.X, 1, π.ψ, π.η
n, m, z = length(𝒮), length(𝒜), length(𝒪)
X𝒮 = vec(collect(product(X, 𝒮)))
T′ = [sum(ψ[x, a] * T(s, a, s′) * sum(O(a, s′, o) * η[x, a, o, x′]

for o in 𝒪) for a in 𝒜) for (x, s) in X𝒮, (x′, s′) in X𝒮]
R′ = [sum(ψ[x, a] * R(s, a) for a in 𝒜) for (x, s) in X𝒮]
Z = 1.0I(length(X𝒮)) - γ * T′
invZ = inv(Z)
∂Z∂ψ(hx, ha) = [x == hx ? (-γ * T(s, ha, s′)

* sum(O(ha, s′, o) * η[hx, ha, o, x′]
for o in 𝒪)) : 0.0

for (x, s) in X𝒮, (x′, s′) in X𝒮]
∂Z∂η(hx, ha, ho, hx′) = [x == hx && x′ == hx′ ? (-γ * ψ[hx, ha]

* T(s, ha, s′) * O(ha, s′, ho)) : 0.0
for (x, s) in X𝒮, (x′, s′) in X𝒮]

∂R′∂ψ(hx, ha) = [x == hx ? R(s, ha) : 0.0 for (x, s) in X𝒮]
∂R′∂η(hx, ha, ho, hx′) = [0.0 for (x, s) in X𝒮]
∂U′∂ψ(hx, ha) = invZ * (∂R′∂ψ(hx, ha) - ∂Z∂ψ(hx, ha) * invZ * R′)
∂U′∂η(hx, ha, ho, hx′) = invZ * (∂R′∂η(hx, ha, ho, hx′)

- ∂Z∂η(hx, ha, ho, hx′) * invZ * R′)
return ∂U′∂ψ, ∂U′∂η

end

Algorithm 23.7. The gradient step
of the controller gradient ascent
method. It constructs the gradients
of the utility U with respect to the
policy gradients ∂U′∂ψ and ∂U′∂η.

During execution, controllers will never divide by zero in the way that belief-based
policies can. Belief-based methods require maintaining a belief. The discrete state filter
from equation (19.7) will divide by zero if an impossible observation is made. This can
happen when a noisy observation from a sensor returns an observation that the models of
T(s, a, s′) and O(o | a, s′) does not accurately capture.

Exercise 23.2. Controller policy iteration only adds nodes with deterministic action selec-
tion functions and successor distributions. Does this mean that the resulting controller is
necessarily suboptimal?

Solution: Controller policy iteration is guaranteed to converge on an optimal policy in
the limit. However, the method cannot find more compact representations of optimal
controller policies that may require stochastic nodes.

Exercise 23.3. Prove that node pruning in policy iteration does not affect the utility.

Solution: Let x′ be the new node from some iteration i, and x be a previous node from
iteration i− 1.

By construction, η(x′, a, o, x) defines all new nodes x′ to only have a successor x from
the previous iteration. Thus, for each state s, U(i)(x′, s) only sums over the successors
U(i−1)(x, s′) in equation (23.1). This means that the other utilities in iteration i, including

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

23.6. exercises 489

Consider the catch problem (appendix F.9) with a uniform initial belief b1.
The diagrams here show the utility of the policy over gradient ascent iteration
applied to the catch problem with k = 3 nodes. The left node is x1.

At iteration 1, the policy is essentially random, both in action selection
and successor selection:

60 10 10

catch, drop

catch, drop

catch, drop
drop

catch, drop

drop
catch, drop

catch, drop

At iteration 50, the agent has determined a reasonable distance to throw
the ball (50) but still has not used its three nodes to remember anything
useful:

50 50 50

catch, drop

catch, drop
catch, drop

catch, drop
drop

catch, drop

catch, drop
catch, drop

catch, drop

At iteration 500, the policy has constructed a reasonable plan, given its
fixed three nodes of memory:

40 50 50

catch, drop

catch

drop
catch

catch

drop
catch, drop

It first tries throwing the ball at a distance of 40. If the child catches the
ball, then it increases the range to 50. It uses the final node to remember how
many times the child caught the ball (up to twice) to choose the distance.

Example 23.6. A demonstration of
the controller gradient algorithm
for controllers with a fixed size of
ℓ = 3. The policy is shown to re-
fine itself over the algorithm’s it-
erations. The agent incrementally
determines how to best use its fixed
number of nodes, resulting in a
reasonable and interpretable pol-
icy on convergence. The stochas-
tic controllers are shown as circles,
with the most likely action in the
middle. The outgoing edges show
successor node selections given an
observation. The stochasticity in
node actions and successors are
shown as opacity (more opaque is
higher probability, more transpar-
ent is lower probability).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

490 chapter 23. controller abstractions

a self-loop to x itself, do not affect the utility U(i)(x′, s). Since the initial node is chosen by
equation (23.3), we must ensure that the utility with and without the pruned node at all
beliefs is the same. A node is pruned in one of two ways.

First, x′ obtains a higher utility over all states than its pruned successor x. Formally,
U(i)(x, s) ≤ U(i−1)(x′, s) for all s. The pruning step replaces x with x′, including U, ψ, and
η. By construction, U has not decreased at any state s.

Second, x is identical to an existing previous node x′. Note that this means the transition
η(x, a, o, x′) = η(x′, a, o, x′). This means that the utility is identical except that x is reduced
by γ; in other words, γU(i)(x, s) = U(i−1)(x, s) by equation (23.1). Pruning x does not
affect the final utility.

Exercise 23.4. Devise an algorithm that uses the nonlinear program algorithm to find the
minimum fixed-sized controller required to obtain the optimality of a large fixed-sized
controller of size ℓ. You can assume that the nonlinear optimizer returns the optimal policy
in this case.

Solution: The idea is to create an outer loop that increments the fixed size of the controller,
after knowing the utility of the large fixed-sized controller. First, we must compute the
large fixed-sized controller’s utility U∗ = ∑s b1(s)U(x1, s) at initial node x1 and initial
belief b1. Next, we create a loop that increments the size ℓ of the controller. At each step, we
evaluate the policy and compute the utility Uℓ. By our assumption, the returned controller
produces a globally optimal utility for the fixed size ℓ. Once we arrive at a utility Uℓ, if we
see that Uℓ = U∗, then we stop and return the policy.

Exercise 23.5. Analyze the controller gradient ascent algorithm’s gradient step. Assume
that |S| is larger than |A| and |O|. What is the most computationally expensive part of the
gradient step? How might this be improved?

Solution: Computing the inverse Z−1 = (I− γTθ) is the most computationally expensive
part of the gradient step, as well as the entire gradient algorithm. The matrix Z is of size
|X× S|. Gauss–Jordan elimination requires O(|X× S|3) operations, though the 3 in the
exponent can be reduced to 2.3728639 using a state-of-the-art matrix inversion algorithm.9

9 F. L. Gall, “Powers of Tensors and
Fast Matrix Multiplication,” in In-
ternational Symposium on Symbolic
and Algebraic Computation (ISSAC),
2014.

The creation of the temporary matrix Tθ also requires O(|X× S|2|A ×O|) operations to
support computing the inverse. All other loops and other temporary array creations require
far fewer operations. This can be improved using an approximate inverse technique.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

part v
multiagent systems

Up to this point, we have focused on decision making from the perspective of
a single agent. We now extend the core concepts that we have discussed so far
to problems involving multiple agents. In multiagent systems, we can model
other agents as potential allies or adversaries and adapt accordingly over time.
These problems are inherently challenging due to complexities surrounding
agent interactions and agents reasoning about other agents who reason about
the agent, and so on. We begin by introducing multiagent reasoning in games
and outline how to compute equilibria from simple interactions. We then discuss
how to design algorithms for multiple agents interacting over time, describing
learning algorithms that favor rational adaptation over convergence to equilibria.
Introducing state uncertainty significantly increases problem complexity, and this
part emphasizes the resulting challenges. The final chapter focuses on the various
models and algorithms for collaborative agents that strive to work together with
a common objective.

24 Multiagent Reasoning

So far, we have focused on making rational decisions for a single agent. These
models have natural extensions to multiple agents. New challenges emerge as
agents interact; agents can aid each other or act in their own best interests. Multi-
agent reasoning is a subject of game theory.1 This chapter builds on the concepts

1 Game theory is a broad field. Sev-
eral standard introductory books
include D. Fudenberg and J. Tirole,
Game Theory. MIT Press, 1991. R. B.
Myerson, Game Theory: Analysis of
Conflict. Harvard University Press,
1997. Y. Shoham and K. Leyton-
Brown, Multiagent Systems: Algo-
rithmic, Game Theoretic, and Logical
Foundations. Cambridge University
Press, 2009.

introduced earlier, extending them to multiagent contexts. We will discuss the
foundational game theoretic approaches to compute decision strategies and mul-
tiagent equilibria.

24.1 Simple Games

A simple game (algorithm 24.1) is a fundamental model for multiagent reasoning.2 2 Simple games encompass normal
form games (also called standard
form games or matrix games),
finite-horizon repeated games,
and infinite-horizon discounted
repeated games. Y. Shoham and K.
Leyton-Brown, Multiagent Systems:
Algorithmic, Game Theoretic, and
Logical Foundations. Cambridge
University Press, 2009.

Each agent i ∈ I selects an action ai tomaximize their own accumulation of reward
ri. The joint action spaceA = A1 × · · · × Ak consists of all possible combinations of
the actions Ai available to each agent. The actions selected simultaneously across
agents can be combined to form a joint action a = (a1, . . . , ak) from this joint action
space.3 The joint reward function R(a) = (R1(a), . . . , Rk(a)) represents the reward

3 A joint action is also called an ac-
tion profile.

produced by the joint action a. The joint reward is written r = (r1, . . . , rk). Simple
games do not include states or transition functions. Example 24.1 introduces a
simple game.

struct SimpleGame
γ # discount factor
ℐ # agents
𝒜 # joint action space
R # joint reward function

end

Algorithm 24.1. Data structure for
a simple game.

494 chapter 24. multiagent reasoning

The prisoner’s dilemma is a two-agent, two-action game involving two pris-
oners that are on trial. They can choose to cooperate and remain silent about
their shared crime, or defect and blame the other for their crime. If they both
cooperate, they both serve a sentence of one year. If agent i cooperates and
the other agent defects, then i serves four years and the other serves no time.
If both defect, then they both serve three years.

Two-agent simple games can be represented by a table. Rows represent
actions for agent 1. Columns represent actions for agent 2. The rewards for
agent 1 and 2 are shown in each cell.

Example 24.1. A simple game
known as the prisoner’s dilemma.
Additional detail is provided in ap-
pendix F.10.

−1,−1 −4, 0

0,−4 −3,−3

co
op

er
at
e

de
fec

t

defectcooperate

ag
en

t1

agent 2

A joint policy π specifies a probability distribution over joint actions taken
by the agents. Joint policies can be decomposed into individual agent policies.
The probability that agent i selects action a is given by πi(a). In game theory, a
deterministic policy is called a pure strategy and a stochastic policy is called a
mixed strategy. The utility of a joint policy π from the perspective of agent i is

Ui(π) = ∑
a∈A

Ri(a) ∏
j∈I

π j(aj) (24.1)

Algorithm 24.2 implements routines for representing policies and computing
their utility.

A zero-sum game is a type of simple game where the sum of rewards across
agents is zero. Here, any gain of an agent results as a loss to the other agents.
A zero-sum game with two agents I = {1, 2} has opposing reward functions
R1(a) = −R2(a). They are typically solved with algorithms specialized for this
reward structure. Example 24.2 describes such a game.

24.2 Response Models

Before exploring different concepts for solving for a joint policy, we will begin by
discussing how tomodel the response of a single agent i, given fixed policies for the
other agents.Wewill use the notation−i as shorthand for (1, . . . , i− 1, i+ 1, . . . , k).
Using this notation, a joint action is written as a = (ai, a−i), a joint reward is
written as R(ai, a−i), and a joint policy is written as π = (πi,π−i). This section
discusses various approaches for computing a response to a known π−i.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

24.2. response models 495

Rock-paper-scissors is a zero-sum game for two agents. Each agent selects
rock, paper, or scissors. Rock wins against scissors, paper wins against rock,
and scissors wins against paper, with a reward of 1 for the winner and −1

for the loser. If the agents select the same action, both receive 0 reward.
Generally, two-agent repeated games can be represented as a sequence of
payoff matrices, as shown here:

t = 1 t = 2 · · ·

0, 0 −1, 1 1,−1

1,−1 0, 0 −1, 1

−1, 1 1,−1 0, 0

ro
ck

pa
pe

r
sc
iss

or
s

rock paper scissors

ag
en

t1

agent 2

0, 0 −1, 1 1,−1

1,−1 0, 0 −1, 1

−1, 1 1,−1 0, 0

ro
ck

pa
pe

r
sc
iss

or
s

rock paper scissors

ag
en

t1

agent 2

· · ·

Example 24.2. The well-known
game of rock-paper-scissors is an
example of a zero-sum game. Ap-
pendix F.11 provides additional de-
tails.

24.2.1 Best Response
A best response of agent i to the policies of the other agents π−i is a policy πi that
satisfies

Ui(πi,π−i) ≥ Ui(πi ′,π−i) (24.2)
for all other policies πi ′ 6= πi. In other words, a best response for an agent is a
policy where there is no incentive for them to change their policy, given a fixed
set of policies for the other agents. There may be multiple best responses.

If we restrict ourselves to deterministic policies, a deterministic best response to
opponent policies π−i is straightforward to compute. We simply iterate over all
of agent i’s actions and return the one that maximizes the utility as follows:

arg max
ai∈Ai

Ui(ai,π−i) (24.3)

Algorithm 24.3 provides an implementation of this.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

496 chapter 24. multiagent reasoning

struct SimpleGamePolicy
p # dictionary mapping actions to probabilities

function SimpleGamePolicy(p::Base.Generator)
return SimpleGamePolicy(Dict(p))

end

function SimpleGamePolicy(p::Dict)
vs = collect(values(p))
vs ./= sum(vs)
return new(Dict(k => v for (k,v) in zip(keys(p), vs)))

end

SimpleGamePolicy(ai) = new(Dict(ai => 1.0))
end

(πi::SimpleGamePolicy)(ai) = get(πi.p, ai, 0.0)

function (πi::SimpleGamePolicy)()
D = SetCategorical(collect(keys(πi.p)), collect(values(πi.p)))
return rand(D)

end

joint(X) = vec(collect(product(X...)))

joint(π, πi, i) = [i == j ? πi : πj for (j, πj) in enumerate(π)]

function utility(𝒫::SimpleGame, π, i)
𝒜, R = 𝒫.𝒜, 𝒫.R
p(a) = prod(πj(aj) for (πj, aj) in zip(π, a))
return sum(R(a)[i]*p(a) for a in joint(𝒜))

end

Algorithm 24.2. A policy associ-
ated with an agent is represented
by a dictionary that maps actions
to probabilities. There are differ-
ent ways to construct a policy. One
way is to pass in a dictionary direc-
tory, inwhich case the probabilities
are normalized. Another way is to
pass in a generator that creates this
dictionary. We can also construct a
policy by passing in an action, in
which case it assigns probability 1
to that action. If we have an individ-
ual policy πi, we can call πi(ai)
to compute the probability the pol-
icy associates with action ai. If we
call πi(), then it will return a ran-
dom action according to that policy.
We can use joint(𝒜) to construct
the joint action space from 𝒜. We
can use utility(𝒫, π, i) to com-
pute the utility associated with ex-
ecuting joint policy π in the game
𝒫 from the perspective of agent i.

function best_response(𝒫::SimpleGame, π, i)
U(ai) = utility(𝒫, joint(π, SimpleGamePolicy(ai), i), i)
ai = argmax(U, 𝒫.𝒜[i])
return SimpleGamePolicy(ai)

end

Algorithm 24.3. For a simple game
𝒫, we can compute a determinis-
tic best response for agent i, given
that the other agents are playing
the policies in π.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

24.3. dominant strategy equilibrium 497

24.2.2 Softmax Response
We can use a softmax response to model how agent i will select their action.4 As 4 This kind of model is sometimes

referred to as a logit response or
quantal response. We introduced
similar softmax models earlier in
this book, in the context of directed
exploration strategies for reinforce-
ment learning (section 15.4).

discussed in section 6.7, humans are often not perfectly rational optimizers of
expected utility. The principle underlying the softmax response model is that
(typically human) agents are more likely to make errors in their optimization
when those errors are less costly. Given a precision parameter λ ≥ 0, this model
selects action ai according to

πi(ai) ∝ exp(λUi(ai,π−i)) (24.4)

As λ → 0, the agent is insensitive to differences in utility, and selects actions
uniformly at random. As λ → ∞, the policy converges to a deterministic best
response. We can treat λ as a parameter that can be learned from data using,
for example, maximum likelihood estimation (section 4.1). This learning-based
approach aims to be predictive of behavior rather than prescriptive of behav-
ior, though having a predictive model of other human agents can be useful in
building a system that prescribes optimal behavior. Algorithm 24.4 provides an
implementation of a softmax response.

function softmax_response(𝒫::SimpleGame, π, i, λ)
𝒜i = 𝒫.𝒜[i]
U(ai) = utility(𝒫, joint(π, SimpleGamePolicy(ai), i), i)
return SimpleGamePolicy(ai => exp(λ*U(ai)) for ai in 𝒜i)

end

Algorithm 24.4. For a simple game
𝒫 and a particular agent i, we can
compute the softmax response pol-
icy πi, given that the other agents
are playing the policies in π. This
computation requires specifying
the precision parameter λ.

24.3 Dominant Strategy Equilibrium

In some games, an agent has a dominant strategy, which is a policy that is a best
response against all other possible agent policies. For example, in the prisoner’s
dilemma (example 24.1), the best response of agent 1 is to defect regardless of
the policy of agent 2, making defect a dominant strategy for agent 1. A joint
policy where all the agents use dominant strategies is called a dominant strategy
equilibrium. In the prisoner’s dilemma, a joint policy where both agents defect is a
dominant strategy equilibrium.5 Many games do not have a dominant strategy

5 Interestingly, having both agents
act greedily with respect to their
own utility function results in a
worse outcome for both of them.
If they had both cooperated, then
they would both get a sentence of
one year instead of three years.

equilibrium. For example, in rock-paper-scissors (example 24.2), the best response
of agent 1 depends on the strategy of agent 2.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

498 chapter 24. multiagent reasoning

24.4 Nash Equilibrium

In contrast with the dominant strategy equilibrium concept, a Nash equilibrium6 6 Named for the American math-
ematician John Forbes Nash, Jr.
(1928–2015) who formalized
the concept. J. Nash, “Non-
Cooperative Games,” Annals of
Mathematics, pp. 286–295, 1951.

always exists for games with a finite action space.7 A Nash equilibrium is a joint

7 Exercise 24.1 explores the case
where the action space is infinite.

policy π in which all agents are following a best response. In other words, a Nash
equilibrium is a joint policy in which no agents have an incentive to unilaterally
switch their policy.

Multiple Nash equilibria can exist in a single game (exercise 24.2). Sometimes
Nash equilibria may involve deterministic policies, but this is not always the case
(see example 24.3). Computing a Nash equilibrium is PPAD-complete, a class that
is distinct from NP-complete (appendix C.2) but also has no known polynomial
time algorithm.8

8 C. Daskalakis, P.W. Goldberg,
and C.H. Papadimitriou, “The
Complexity of Computing a Nash
Equilibrium,” Communications of
the ACM, vol. 52, no. 2, pp. 89–97,
2009.The problem of finding a Nash equilibrium can be framed as an optimization

problem:
minimize
π,U

∑
i

(

Ui −Ui(π)
)

subject to Ui ≥ Ui(ai,π−i) for all i, ai

∑
ai

πi(ai) = 1 for all i

πi(ai) ≥ 0 for all i, ai

(24.5)

The optimization variables correspond to the parameters of π and U. At conver-
gence, the objective will be 0, with Ui matching the utilities associated with policy
π as computed in equation (24.1) for each agent i. The first constraint ensures that
no agent will do better by unilaterally changing their action. Like the objective,
this first constraint is nonlinear because it involves a product of the parameters in
the optimization variable π. The last two constraints are linear, ensuring that π
represents a valid set of probability distributions over actions. Algorithm 24.5
implements this optimization procedure.

24.5 Correlated Equilibrium

The correlated equilibrium generalizes the Nash equilibrium concept by relaxing the
assumption that the agents act independently. The joint action in this case comes
from a full joint distribution. A correlated joint policy π(a) is a single distribution
over the joint actions of all agents. Consequently, the actions of the various agents

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

24.5. correlated equilibrium 499

Suppose that we wish to find a Nash equilibrium for the prisoner’s dilemma
from example 24.1. If both agents always defect, both receive −3 reward.
Any deviation by any agent will result in a −4 reward for that agent; hence,
there is no incentive to deviate. Having both agents defect is thus a Nash
equilibrium for the prisoner’s dilemma.

Suppose that we now wish to find a Nash equilibrium for the rock-paper-
scissors scenario from example 24.2. Any deterministic strategy by one agent
can be easily countered by the other agent. For example, if agent 1 plays
rock, then agent 2’s best response is paper. Because there is no deterministic
Nash equilibrium for rock-paper-scissors, we know that there must be one
involving stochastic policies. Suppose that each agent selects from the actions
uniformly at random. This solution produces an expected utility of 0 for both
agents:

Ui(π) = 0
1

3

1

3
− 1

1

3

1

3
+ 1

1

3

1

3

+ 1
1

3

1

3
+ 0

1

3

1

3
− 1

1

3

1

3

− 1
1

3

1

3
+ 1

1

3

1

3
+ 0

1

3

1

3

= 0

Any deviation by an agent would decrease their expected payoff, meaning
that we have found a Nash equilibrium.

Example 24.3. Deterministic and
stochastic Nash equilibria.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

500 chapter 24. multiagent reasoning

struct NashEquilibrium end

function tensorform(𝒫::SimpleGame)
ℐ, 𝒜, R = 𝒫.ℐ, 𝒫.𝒜, 𝒫.R
ℐ′ = eachindex(ℐ)
𝒜′ = [eachindex(𝒜[i]) for i in ℐ]
R′ = [R(a) for a in joint(𝒜)]
return ℐ′, 𝒜′, R′

end

function solve(M::NashEquilibrium, 𝒫::SimpleGame)
ℐ, 𝒜, R = tensorform(𝒫)
model = Model(Ipopt.Optimizer)
@variable(model, U[ℐ])
@variable(model, π[i=ℐ, 𝒜[i]] ≥ 0)
@NLobjective(model, Min,

sum(U[i] - sum(prod(π[j,a[j]] for j in ℐ) * R[y][i]
for (y,a) in enumerate(joint(𝒜))) for i in ℐ))

@NLconstraint(model, [i=ℐ, ai=𝒜[i]],
U[i] ≥ sum(

prod(j==i ? (a[j]==ai ? 1.0 : 0.0) : π[j,a[j]] for j in ℐ)
* R[y][i] for (y,a) in enumerate(joint(𝒜))))

@constraint(model, [i=ℐ], sum(π[i,ai] for ai in 𝒜[i]) == 1)
optimize!(model)
πi′(i) = SimpleGamePolicy(𝒫.𝒜[i][ai] => value(π[i,ai]) for ai in 𝒜[i])
return [πi′(i) for i in ℐ]

end

Algorithm 24.5. This nonlinear
program computes a Nash equilib-
rium for a simple game 𝒫.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

24.5. correlated equilibrium 501

may be correlated, preventing the policies from being decoupled into individual
policies πi(ai). Algorithm 24.6 shows how to represent such a policy.

mutable struct JointCorrelatedPolicy
p # dictionary mapping from joint actions to probabilities
JointCorrelatedPolicy(p::Base.Generator) = new(Dict(p))

end

(π::JointCorrelatedPolicy)(a) = get(π.p, a, 0.0)

function (π::JointCorrelatedPolicy)()
D = SetCategorical(collect(keys(π.p)), collect(values(π.p)))
return rand(D)

end

Algorithm 24.6. A joint correlated
policy is represented by a dictio-
nary that maps joint actions to
probabilities. If π is a joint corre-
lated policy, evaluating π(a) will
return the probability associated
with the joint action a.

A correlated equilibrium is a correlated joint policy where no agent i can increase
their expected utility by deviating from their current action ai to another action
ai ′:

∑
a−i

Ri(ai, a−i)π(ai, a−i) ≥∑
a−i

Ri(ai ′, a−i)π(ai, a−i) (24.6)

Example 24.4 demonstrates this concept.
Every Nash equilibrium is a correlated equilibrium because we can always

form a joint policy from independent policies:

π(a) =
k

∏
i=1

πi(ai) (24.7)

If the individual policies satisfy equation (24.2), then the joint policy will satisfy
equation (24.6). Not all correlated equilibria, however, are Nash equilibria.

A correlated equilibrium can be computed using linear programming (algo-
rithm 24.7):

maximize
π

∑
i

∑
a

Ri(a)π(a)

subject to ∑
a−i

Ri(ai, a−i)π(ai, a−i) ≥∑
a−i

Ri(ai ′, a−i)π(ai, a−i) for all i, ai, ai ′

∑
a

π(a) = 1

π(a) ≥ 0 for all a

(24.8)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

502 chapter 24. multiagent reasoning

Consider again the rock-paper-scissors scenario from example 24.2. In exam-
ple 24.3, we found that a Nash equilibrium involves both agents selecting
their actions uniformly at random. In correlated equilibria, we use a cor-
related joint policy π(a), meaning that we need to find a distribution over
(rock, rock), (rock, paper), (rock, scissors), (paper, rock), and so on. There
are nine possible joint actions.

First, consider the joint policy in which agent 1 selects rock and agent 2

selects scissors. The utilities are

U1(π) = 0
0

9
− 1

0

9
+ 1

9

9
+ 1

0

9
+ · · · = 1

U2(π) = 0
0

9
+ 1

0

9
− 1

9

9
− 1

0

9
+ · · · = −1

If agent 2 switched to paper, it would receive a utility of 1. Hence, this is not
a correlated equilibrium.

Consider instead a correlated joint policy in which the joint action was
chosen uniformly at random, with π(a) = 1/9:

U1(π) = 0
1

9
− 1

1

9
+ 1

1

9
+ 1

1

9
+ · · · = 0

U2(π) = 0
1

9
+ 1

1

9
− 1

1

9
− 1

1

9
+ · · · = 0

Any deviation from this results in one agent gaining utility and the other
losing utility. This is a correlated equilibrium for rock-paper-scissors.

Example 24.4. Computing cor-
related equilibria in rock-paper-
scissors.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

24.6. iterated best response 503

Although linear programs can be solved in polynomial time, the size of the joint
action space grows exponentially with the number of agents. The constraints
enforce a correlated equilibrium. The objective, however, can be used to select
among different valid correlated equilibria. Table 24.1 provides several common
choices for the objective function.

struct CorrelatedEquilibrium end

function solve(M::CorrelatedEquilibrium, 𝒫::SimpleGame)
ℐ, 𝒜, R = 𝒫.ℐ, 𝒫.𝒜, 𝒫.R
model = Model(Ipopt.Optimizer)
@variable(model, π[joint(𝒜)] ≥ 0)
@objective(model, Max, sum(sum(π[a]*R(a) for a in joint(𝒜))))
@constraint(model, [i=ℐ, ai=𝒜[i], ai′=𝒜[i]],

sum(R(a)[i]*π[a] for a in joint(𝒜) if a[i]==ai)
≥ sum(R(joint(a,ai′,i))[i]*π[a] for a in joint(𝒜) if a[i]==ai))

@constraint(model, sum(π) == 1)
optimize!(model)
return JointCorrelatedPolicy(a => value(π[a]) for a in joint(𝒜))

end

Algorithm 24.7. Correlated equi-
libria are a more general notion
of optimality for a simple game 𝒫
than a Nash equilibrium. They can
be computed using a linear pro-
gram. The resulting policies are
correlated,meaning that the agents
stochastically select their joint ac-
tions.

Name Description Objective Function
Utilitarian Maximize the net utility. maximizeπ ∑i ∑a Ri(a)π(a)

Egalitarian Maximize the minimum
of all agents’ utilities.

maximizeπ minimizei ∑a Ri(a)π(a)

Plutocratic Maximize the maximum
of all agents’ utilities.

maximizeπ maximizei ∑a Ri(a)π(a)

Dictatorial Maximize agent i’s util-
ity.

maximizeπ ∑a Ri(a)π(a)

Table 24.1. Alternative objec-
tive functions for equation (24.8),
which select for various correlated
equilibria. These descriptions were
adapted from A. Greenwald and K.
Hall, “Correlated Q-Learning,” in
International Conference on Machine
Learning (ICML), 2003.

24.6 Iterated Best Response

Because computing a Nash equilibrium can be computationally expensive, an
alternative approach is to iteratively apply best responses in a series of repeated
games. In iterated best response (algorithm 24.8), we randomly cycle between
agents, solving for each agent’s best response policy in turn. This process may
converge to a Nash equilibrium, but there are guarantees only for certain classes
of games.9 In many problems, it is common to observe cycles.

9 Iterated best response will con-
verge, for example, for a class
known as potential games, as dis-
cussed in Theorem 19.12 of the text-
book by N. Nisan, T. Roughgar-
den, É. Tardos, and V.V. Vazirani,
eds.,Algorithmic Game Theory. Cam-
bridge University Press, 2007.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

504 chapter 24. multiagent reasoning

struct IteratedBestResponse
k_max # number of iterations
π # initial policy

end

function IteratedBestResponse(𝒫::SimpleGame, k_max)
π = [SimpleGamePolicy(ai => 1.0 for ai in 𝒜i) for 𝒜i in 𝒫.𝒜]
return IteratedBestResponse(k_max, π)

end

function solve(M::IteratedBestResponse, 𝒫)
π = M.π
for k in 1:M.k_max

π = [best_response(𝒫, π, i) for i in 𝒫.ℐ]
end
return π

end

Algorithm 24.8. Iterated best re-
sponse involves cycling through
the agents and applying their best
response to the other agents. The
algorithm starts with some initial
policy and stops after k_max iter-
ations. For convenience, we have
a constructor that takes as input a
simple game and creates an initial
policy that has each agent select
actions uniformly at random. The
same solve function will be reused
in the next chapter in the context of
more complicated forms of games.

24.7 Hierarchical Softmax

An area known as behavioral game theory aims to model human agents. When
building decision-making systems that must interact with humans, computing
the Nash equilibrium is not always helpful. Humans often do not play a Nash
equilibrium strategy. First, it may be unclear which equilibrium to adopt if there
are many different equilibria in the game. For games with only one equilibrium,
it may be difficult for a human to compute the Nash equilibrium because of
cognitive limitations. Even if human agents can compute the Nash equilibrium,
they may doubt that their opponents can perform that computation.

There are many behavioral models in the literature,10 but one approach is to 10 C. F. Camerer, Behavioral Game
Theory: Experiments in Strategic
Interaction. Princeton University
Press, 2003.

combine the iterated approach from the previous section with a softmax model.
This hierarchical softmax approach (algorithm 24.9)11 models the depth of rationality

11 This approach is sometimes
called quantal-level-k or logit-level-k.
D.O. Stahl and P.W. Wilson, “Ex-
perimental Evidence on Players’
Models of Other Players,” Journal
of Economic Behavior & Organization,
vol. 25, no. 3, pp. 309–327, 1994.

of an agent by a level of k ≥ 0. A level 0 agent plays its actions uniformly at
random. A level 1 agent assumes the other players adopt level 0 strategies and
selects actions according to a softmax response with precision λ. A level k agent
selects actions according to a softmax model of the other players playing level
k− 1. Figure 24.1 illustrates this approach for a simple game.

We can learn the k and λ parameters of this behavioral model from data. If
we have a collection of joint actions played by different agents, we can compute
the associated likelihood for a given k and λ. We can then use an optimization
algorithm to attempt to find values of k and λ that maximize likelihood. This

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

24.8. f ictit ious play 505

struct HierarchicalSoftmax
λ # precision parameter
k # level
π # initial policy

end

function HierarchicalSoftmax(𝒫::SimpleGame, λ, k)
π = [SimpleGamePolicy(ai => 1.0 for ai in 𝒜i) for 𝒜i in 𝒫.𝒜]
return HierarchicalSoftmax(λ, k, π)

end

function solve(M::HierarchicalSoftmax, 𝒫)
π = M.π
for k in 1:M.k

π = [softmax_response(𝒫, π, i, M.λ) for i in 𝒫.ℐ]
end
return π

end

Algorithm 24.9. The hierarchical
softmax model with precision pa-
rameter λ and level k. By default,
it starts with an initial joint policy
that assigns uniform probability to
all individual actions.

optimization typically cannot be done analytically, but we can use numerical
methods to perform this optimization.12 Alternatively, we can use a Bayesian

12 J. R. Wright and K. Leyton-
Brown, “Beyond Equilibrium:
Predicting Human Behavior in
Normal Form Games,” in AAAI
Conference on Artificial Intelligence
(AAAI), 2010.

approach to parameter learning.13

13 J. R. Wright and K. Leyton-
Brown, “Behavioral Game
Theoretic Models: A Bayesian
Framework for Parameter Analy-
sis,” in International Conference on
Autonomous Agents and Multiagent
Systems (AAMAS), 2012.

24.8 Fictitious Play

An alternative approach for computing policies for different agents is to have them
play each other in simulation and learn how to best respond. Algorithm 24.10
provides an implementation of the simulation loop. At each iteration, we evaluate
the various policies to obtain a joint action, and then this joint action is used by the
agents to update their policies.We can use a number of ways to update the policies
in response to observed joint actions. This section focuses on fictitious play, where
the agents use maximum likelihood estimates (as described in section 16.1) of the
policies followed by the other agents. Each agent follows its own best response,
assuming that the other agents act according to those estimates.14 14 G.W. Brown, “Iterative Solution

of Games by Fictitious Play,” Activ-
ity Analysis of Production and Alloca-
tion, vol. 13, no. 1, pp. 374–376, 1951.
J. Robinson, “An Iterative Method
of Solving a Game,”Annals of Math-
ematics, pp. 296–301, 1951.

To compute a maximum likelihood estimate, agent i tracks the number of
times that agent j takes action aj, storing it in table Ni(j, aj). These counts can be
initialized to any value, but they are often initialized to 1 to create initial uniform
uncertainty. Agent i computes its best response, assuming that each agent j follows
the stochastic policy:

π j(aj) ∝ Ni(j, aj) (24.9)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

506 chapter 24. multiagent reasoning

0.00

0.05

0.10

0.15

k
=

0
P
(a

i)
λ = 0.3 λ = 0.5

0.00

0.05

0.10

0.15

k
=

1
P
(a

i)

0.00

0.05

0.10

0.15

k
=

2
P
(a

i)

0.00

0.05

0.10

0.15

k
=

3
P
(a

i)

0 50 100
0.00

0.05

0.10

0.15

ai

k
=

4
P
(a

i)

0 50 100

ai

Figure 24.1. The hierarchical soft-
max model applied to the trav-
eler’s dilemma (described in ap-
pendix F.12) for various depths of
rationality k and precision param-
eters λ. People tend to select ac-
tions between $97 and $100, even
though the Nash equilibrium is
only $2.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

24.8. f ictit ious play 507

function simulate(𝒫::SimpleGame, π, k_max)
for k = 1:k_max

a = [πi() for πi in π]
for πi in π

update!(πi, a)
end

end
return π

end

Algorithm 24.10. A simulation of
a joint policy in simple game 𝒫 for
k_max iterations. The joint policy π
is a vector of policies that can be
individually updated through calls
to update!(πi, a).

At each iteration, we have each agent act according to a best response, assuming
these stochastic count-based policies for the other agents. We then update the
action counts for the actions taken. Algorithm 24.11 implements this simple
adaptive procedure. Figures 24.2 and 24.3 show how the policies evolve over
time using fictitious play. Fictitious play is not guaranteed to converge to a Nash
equilibrium.15

15 A concise background is pro-
vided by U. Berger, “Brown’s Orig-
inal Fictitious Play,” Journal of
Economic Theory, vol. 135, no. 1,
pp. 572–578, 2007.

mutable struct FictitiousPlay
𝒫 # simple game
i # agent index
N # array of action count dictionaries
πi # current policy

end

function FictitiousPlay(𝒫::SimpleGame, i)
N = [Dict(aj => 1 for aj in 𝒫.𝒜[j]) for j in 𝒫.ℐ]
πi = SimpleGamePolicy(ai => 1.0 for ai in 𝒫.𝒜[i])
return FictitiousPlay(𝒫, i, N, πi)

end

(πi::FictitiousPlay)() = πi.πi()

(πi::FictitiousPlay)(ai) = πi.πi(ai)

function update!(πi::FictitiousPlay, a)
N, 𝒫, ℐ, i = πi.N, πi.𝒫, πi.𝒫.ℐ, πi.i
for (j, aj) in enumerate(a)

N[j][aj] += 1
end
p(j) = SimpleGamePolicy(aj => u/sum(values(N[j])) for (aj, u) in N[j])
π = [p(j) for j in ℐ]
πi.πi = best_response(𝒫, π, i)

end

Algorithm 24.11. Fictitious play is
a simple learning algorithm for an
agent i of a simple game 𝒫 that
maintains counts of other agent ac-
tion selections over time and aver-
ages them, assuming that this is
their stochastic policy. It then com-
putes a best response to this pol-
icy and performs the correspond-
ing utility-maximizing action.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

508 chapter 24. multiagent reasoning

0

0.5

1

ag
en

t1
P
(a

cti
on

)

opponent model policy

cooperate
defect

0 20 40 60

0

0.5

1

iteration

ag
en

t2
P
(a

cti
on

)

0 20 40 60

iteration

Figure 24.2. Two fictitious play
agents learning and adapting to
one another in a prisoner’s dilem-
ma game. The first row illustrates
agent 1’s learned model of 2 (left)
and agent 1’s policy (right) over
iteration. The second row follows
the same pattern, but for agent
2. To illustrate variation in learn-
ing behavior, the initial counts for
each agent’s model over the other
agent’s action were assigned to a
random number between 1 and 10.

0

0.5

1

ag
en

t1
P
(a

cti
on

)

opponent model policy

rock
paper
scissors

0 20 40 60

0

0.5

1

iteration

ag
en

t2
P
(a

cti
on

)

0 20 40 60

iteration

Figure 24.3. A visualization of
two fictitious play agents learning
and adapting to one another in a
rock-paper-scissors game. The first
row illustrates agent 1’s learned
model of 2 (left) and agent 1’s
policy (right) over time. The sec-
ond row follows the same pat-
tern, but for agent 2. To illus-
trate variation in learning behavior,
the initial counts for each agent’s
model over the other agent’s ac-
tion were assigned to a random
number between 1 and 10. In
this zero-sum game, fictitious play
agents approach convergence to
their stochastic policy Nash equi-
librium.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

24.9. gradient ascent 509

There are many variants of fictitious play. One variant, called smooth fictitious
play,16 selects a best response using expected utility plus a smoothing function, 16 D. Fudenberg and D. Levine,

“Consistency and Cautious Ficti-
tious Play,” Journal of Economic Dy-
namics and Control, vol. 19, no. 5–7,
pp. 1065–1089, 1995.

such as the entropy of the policy. Another variant is called rational learning or
Bayesian learning. Rational learning expands the model of fictitious play to be any
belief over other agents’ actions, formulated as a Bayesian prior. Bayes’ rule is then
used to update the beliefs, given the history of joint actions. Traditional fictitious
play can be seen as rational learning with a Dirichlet prior (section 4.2.2).

24.9 Gradient Ascent

Gradient ascent (algorithm 24.12) incrementally adjusts the agent’s policy in the
gradient with respect to its utility. At time t, the gradient for agent i is

∂Ui(πt)

∂πi
t(ai)

=
∂

∂πi
t

(

∑
a

Ri(a)∏
j

π
j
t(aj)

)

= ∑
a−i

Ri(ai, a−i)∏
j 6=i

π
j
t(aj) (24.10)

We can then use standard gradient ascent with

πi
t+1(ai) = πi

t(ai) + αi
t
∂Ui(πt)

∂πi
t(ai)

(24.11)

with learning rate αi
t.17 This πi

t+1 may need to be projected back to a valid proba-

17 The infinitesimal gradient ascent
method uses an inverse square root
learning rate of αi

t = 1/
√

t. It is re-
ferred to as infinitesimal because
αi

t → 0 as t→ ∞. We use this learn-
ing rate in our implementation.
S. Singh, M. Kearns, and Y. Man-
sour, “Nash Convergence of Gra-
dient Dynamics in General-Sum
Games,” in Conference on Uncer-
tainty in Artificial Intelligence (UAI),
2000.

bility distribution, just as in section 23.4 for POMDP policies.
In practice, however, an agent i knows only its own policy πi

t, not the policies
of the others, making the computation of the gradient difficult. But agents do
observe the joint actions at that are performed. Although we could try to estimate
their policies as done in fictitious play, one simple approach is to assume the
policy of the other agents is to replay their most recent action.18 The gradient

18 This approach is used in gener-
alized infinitesimal gradient ascent
(GIGA). M. Zinkevich, “Online
Convex Programming and Gener-
alized Infinitesimal Gradient As-
cent,” in International Conference on
Machine Learning (ICML), 2003. A
variation of the gradient update
rule to encourage convergence is
proposed by M. Bowling, “Con-
vergence and No-Regret in Multia-
gent Learning,” in Advances in Neu-
ral Information Processing Systems
(NIPS), 2005.

then simplifies to
∂Ui(πt)

∂πi
t(ai)

= Ri(ai, a−i) (24.12)

Figure 24.4 demonstrates this approach for a simple rock-paper-scissors game.

24.10 Summary

• In simple games, multiple agents compete to maximize expected reward.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

510 chapter 24. multiagent reasoning

mutable struct GradientAscent
𝒫 # simple game
i # agent index
t # time step
πi # current policy

end

function GradientAscent(𝒫::SimpleGame, i)
uniform() = SimpleGamePolicy(ai => 1.0 for ai in 𝒫.𝒜[i])
return GradientAscent(𝒫, i, 1, uniform())

end

(πi::GradientAscent)() = πi.πi()

(πi::GradientAscent)(ai) = πi.πi(ai)

function update!(πi::GradientAscent, a)
𝒫, ℐ, 𝒜i, i, t = πi.𝒫, πi.𝒫.ℐ, πi.𝒫.𝒜[πi.i], πi.i, πi.t
jointπ(ai) = [SimpleGamePolicy(j == i ? ai : a[j]) for j in ℐ]
r = [utility(𝒫, jointπ(ai), i) for ai in 𝒜i]
π′ = [πi.πi(ai) for ai in 𝒜i]
π = project_to_simplex(π′ + r / sqrt(t))
πi.t = t + 1
πi.πi = SimpleGamePolicy(ai => p for (ai, p) in zip(𝒜i, π))

end

Algorithm 24.12. An implementa-
tion of gradient ascent for an agent
i of a simple game 𝒫. The algorithm
updates its distribution over ac-
tions incrementally following gra-
dient ascent to improve the ex-
pected utility. The projection func-
tion from algorithm 23.6 is used
to ensure that the resulting policy
remains a valid probability distri-
bution.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P
(rock)P

(p
ap

er)

P(scissors)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P
(rock)P

(p
ap

er)

P(scissors)

Figure 24.4. Two gradient ascent
agents with randomly initialized
policies in a rock-paper-scissors
game. We use a variation of algo-
rithm 24.12 with a learning rate of
0.1/
√

t. Shown here are 20 policy
updates. Although different simu-
lation traces will converge because
the step size goes to 0, different
samples from the stochastic poli-
cies may result in convergence to
different policies.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

24.11. exercises 511

• Optimality is not as straightforward in the multiagent setting, with multiple
possible solution concepts for extracting policies from a reward specification.

• A best response of an agent to a fixed set of policies of the other agents is one
where there is no incentive to deviate.

• A Nash equilibrium is a joint policy where all agents follow a best response.

• A correlated equilibrium is the same as a Nash equilibrium, except that all the
agents follow a single joint action distribution that allows correlation between
agents.

• Iterated best response can quickly optimize a joint policy by iteratively applying
best responses, but there are no general guarantees of convergence.

• Hierarchical softmax attempts to model agents in terms of their depth of
rationality and precision, which can be learned from past joint actions.

• Fictitious play is a learning algorithm that uses maximum-likelihood action
models for other agents to find best response policies, with the potential to
converge to a Nash equilibrium.

• Gradient ascent, followed by projection onto the probability simplex, can be
used to learn policies.

24.11 Exercises
Exercise 24.1. Give an example of a game with two agents and an infinite number of
actions such that a Nash equilibrium does not exist.

Solution: Suppose that the action space of each agent consists of the negative real numbers
and their reward is equal to their action. Since no greatest negative number exists, a Nash
equilibrium cannot exist.

Exercise 24.2. Give an example of a game with two agents, two actions, and two Nash
equilibria involving deterministic policies.

Solution: Here is one example.19 Suppose that we have two aircraft on a collision course, 19 This example comes from M. J.
Kochenderfer, Decision Making Un-
der Uncertainty: Theory and Applica-
tion. MIT Press, 2015.

and the pilots of each aircraft must choose between climb or descend to avoid collision. If
the pilots both choose the same maneuver, then there is a crash, with utility −4 to both
pilots. Because climbing requires more fuel than descending, there is an additional penalty
of −1 to any pilot who decides to climb.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

512 chapter 24. multiagent reasoning

−5,−5 −1, 0

0,−1 −4,−4
cli

m
b

de
sc
en

d

descendclimb

ag
en

t1

agent 2

Exercise 24.3. Given a stationary joint policy π that is a Nash equilibrium for a simple
game with a horizon of 1, prove that it is also a Nash equilibrium for the same simple
game repeated to any finite or infinite horizon.

Solution: By definition of a Nash equilibrium, all agents i are performing a best response
πi to all other policies πi ′ 6= πi following equation (24.2):

Ui(πi,π−i) ≥ Ui(πi ′,π−i)

By definition of Ui, we have

Ui(π) = ∑
a∈A

Ri(a)
k

∏
j=1

π j(aj)

The joint policy remains constant over time for all agents. Apply any horizon n, with
any discount factor (γ = 1 for n < ∞; γ < 1 for n→ ∞). The utility of agent i after n steps
is

Ui,n(π) =
n

∑
t=1

γt−1 ∑
a∈A

Ri(a)
k

∏
j=1

π j(aj)

= ∑
a∈A

Ri(a)
k

∏
j=1

π j(aj)
n

∑
t=1

γt−1

= Ui(π)
n

∑
t=1

γt−1

= Ui(π)c

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

24.11. exercises 513

The discount factor becomes a constant multiplier c > 0. Therefore, any constant multi-
plication of equation (24.2) on both sides results in the same inequality, completing the
proof:

Ui(πi,π−i) ≥ Ui(πi ′,π−i)

Ui(πi,π−i)c ≥ Ui(πi ′,π−i)c

Ui(πi,π−i)
n

∑
t=1

γt−1 ≥ Ui(πi ′,π−i)
n

∑
t=1

γt−1

n

∑
t=1

γt−1Ui(πi,π−i) ≥
n

∑
t=1

γt−1Ui(πi ′,π−i)

Ui,n(πi,π−i) ≥ Ui,n(πi ′,π−i)

Exercise 24.4. Prove that a Nash equilibrium is a correlated equilibrium.

Solution: Consider any uncorrelated joint policy π(a). For any agent i:

π(a) =
k

∏
j=1

π j(aj) = πi(ai)∏
j 6=i

π j(aj) (24.13)

It is sufficient to show that a correlated equilibrium under this constraint forms the exact
definition of Nash equilibrium. Begin by applying equation (24.13) to the definition of a
correlated equilibrium. For all i, any ai with nonzero probability20 in π, and all ai ′: 20 That is, ∑a−i π(ai , a−i) > 0. If it

is zero, then the inequality trivially
becomes true with 0 ≥ 0.∑

a−i

Ri(ai, a−i)π(ai, a−i) ≥∑
a−i

Ri(ai ′, a−i)π(ai, a−i)

∑
a−i

Ri(ai, a−i)πi(ai)∏
j 6=i

π j(aj) ≥∑
a−i

Ri(ai ′, a−i)πi(ai)∏
j 6=i

π j(aj)

∑
a−i

Ri(ai, a−i)∏
j 6=i

π j(aj) ≥∑
a−i

Ri(ai ′, a−i)∏
j 6=i

π j(aj) (24.14)

Now consider the definition of utility:

Ui(πi,π−i) = ∑
a

Ri(ai, a−i)
k

∏
j=1

π j(aj) = ∑
ai

πi(ai)

∑
a−i

Ri(ai, a−i)∏
j 6=i

π j(aj)

Next apply equation (24.14) to the terms inside the parentheses:

Ui(πi,π−i) ≥∑
ai

πi(ai)

∑
a−i

Ri(ai ′, a−i)∏
j 6=i

π j(aj)

 =

∑
a−i

Ri(ai ′, a−i)∏
j 6=i

π j(aj)

∑
ai

πi(ai) = ∑
a−i

Ri(ai ′, a−i)∏
j 6=i

π j(aj)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

514 chapter 24. multiagent reasoning

This equation holds for any action ai ′. Consequently, applying any probability weighting
preserves the right side of this inequality. Consider any other policy πi ′ as a weighting:

Ui(πi,π−i) ≥∑
ai

πi ′(ai)∑
a−i

Ri(ai, a−i)∏
j 6=i

π j(aj) = Ui(πi ′,π−i)

This inequality is the definition of a best response. It must hold for all agents i and thus
forms the definition of a Nash equilibrium. In summary, a Nash equilibrium is a special
kind of correlated equilibrium that is constrained to an uncorrelated joint policy.

Exercise 24.5. Give an example of a two-agent game, each with two actions, for which the
correlated equilibria cannot be represented as a Nash equilibrium.

Solution: Consider the following game, in which two people want to go on a date but have
a conflicting preference on what kind of date (in this case, a dinner or a movie):

2, 1 0, 0

0, 0 1, 2

di
nn

er
m
ov

ie

dinner movie

ag
en

t1

agent 2

There is a stochasticNash equilibrium.Agent 1 follows π1(dinner) = 2/3 and π1(movie) =
1/3. Agent 2 follows π2(dinner) = 1/3 and π2(movie) = 2/3. The utilities are:

U1(π) =
2

3
· 1

3
· 2 + 2

3
· 2

3
· 0 + 1

3
· 1

3
· 0 + 1

3
· 2

3
· 1 =

2

9
· 2 + 2

9
· 1 =

2

3

U2(π) =
2

3
· 1

3
· 1 + 2

3
· 2

3
· 0 + 1

3
· 1

3
· 0 + 1

3
· 2

3
· 2 =

2

9
· 1 + 2

9
· 2 =

2

3

However, if the two agents correlated their actions on a fair coin flip π(movie,movie) =
π(dinner,dinner) = 0.5, then they could coordinate either both going to dinner or both
going to the movie. The utilities are:

U1(π) = 0.5 · 2 + 0.0 · 0 + 0.0 · 0 + 0.5 · 1 = 0.5 · 2 + 0.5 · 1 =
3

2

U2(π) = 0.5 · 1 + 0.0 · 0 + 0.0 · 0 + 0.5 · 2 = 0.5 · 1 + 0.5 · 2 =
3

2

This is not possible with a Nash equilibrium. Intuitively, in this example, this is because the
probabilistic weight is spread out over each row independently for each player. Conversely,
a correlated equilibrium can be targeted toward a specific cell (in this case, with a higher
payoff).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

24.11. exercises 515

Exercise 24.6. Algorithms such as iterated best response and fictitious play do not converge
in every game. Construct a game that demonstrates this nonconvergence.

Solution: Iterated best response diverges in rock-paper-scissors. Here is an example of the
first 10 iterations with random initialization:

Iteration Agent 1’s Action Agent 2’s Action Rewards
1 paper rock 1.0, −1.0

2 paper scissors −1.0, 1.0

3 rock scissors 1.0, −1.0

4 rock paper −1.0, 1.0

5 scissors paper 1.0, −1.0

6 scissors rock −1.0, 1.0

7 paper rock 1.0, −1.0

8 paper scissors −1.0, 1.0

9 rock scissors 1.0, −1.0

10 rock paper −1.0, 1.0

Fictitious play also will not converge in almost-rock-paper-scissors:21

21 This game and many others
are discussed in greater detail
by Y. Shoham and K. Leyton-
Brown, Multiagent Systems: Algo-
rithmic, Game Theoretic, and Logical
Foundations. Cambridge University
Press, 2009.

0, 0 0, 1 1, 0

1, 0 0, 0 0, 1

0, 1 1, 0 0, 0

ro
ck

pa
pe

r
sc
iss

or
s

rock paper scissors

ag
en

t1

agent 2

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

516 chapter 24. multiagent reasoning

Here is an example of fictitious play agents playing this game for 60 iterations:

0

0.5

1

ag
en

t1
P
(a

cti
on

)

opponent model policy

rock
paper
scissors

0 20 40 60

0

0.5

1

iteration

ag
en

t2
P
(a

cti
on

)

0 20 40 60

iteration

Exercise 24.7. What does iterated best response converge to in the traveler’s dilemma
(appendix F.12)?

Solution: It converges to the Nash equilibrium of $2.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

25 Sequential Problems

This chapter extends simple games to a sequential context with multiple states.
A Markov game (MG) can be viewed as a Markov decision process involving
multiple agents with their own reward functions.1 In this formulation, transitions

1 MGs, also called stochastic games,
were originally studied in the 1950s
around the same time as MDPs.
L. S. Shapley, “Stochastic Games,”
Proceedings of the National Academy
of Sciences, vol. 39, no. 10, pp. 1095–
1100, 1953. They were introduced
into the multiagent artificial intel-
ligence community decades later.
M. L. Littman, “Markov Games as
a Framework for Multi-Agent Re-
inforcement Learning,” in Interna-
tional Conference on Machine Learn-
ing (ICML), 1994.

depend on the joint action and all agents seek to maximize their own reward. We
generalize the response models and the Nash equilibrium solution concept from
simple games to take into account the state transition model. The last part of this
chapter discusses learning-based models, where the agents adapt their policies
based on information from observed interactions and knowledge of the reward
and transition functions.

25.1 Markov Games

An MG (algorithm 25.1) extends a simple game to include a shared state s ∈ S .
The likelihood of transitioning from a state s to a state s′ under a joint action a

is given by the transition distribution T(s′ | s, a). Each agent i receives a reward
according to its own reward function Ri(s, a), which now also depends on the
state. Example 25.1 sketches out how traffic routing can be framed as an MG.

struct MG
γ # discount factor
ℐ # agents
𝒮 # state space
𝒜 # joint action space
T # transition function
R # joint reward function

end

Algorithm 25.1. Data structure for
an MG.

518 chapter 25. sequential problems

Consider commuters headed to work by car. Each car has a starting position
and a destination. Each car can take any of several available roads to get to
their destination, but these roads vary in the time it takes to drive them. The
more cars that drive on a given road, the slower they all move.

This problem is an MG. The agents are the commuters in their cars, the
states are the locations of all the cars on the roads, and the actions corre-
spond to decisions of which road to take next. The state transition moves
all car agents forward following their joint action. The negative reward is
proportional to the time spent driving on a road.

Example 25.1. Traffic routing as an
MG. The problem cannot be mod-
eled using a single agentmodel like
an MDP because we do not know
the behavior of other agents, only
their rewards. We can try to find
equilibria or learn policies through
interaction, similar to what we did
for simple games.

The joint policy π in an MG specifies a probability distribution over joint
actions, given the current state. As with MDPs, we will focus on policies that
depend on the current state rather than the past history because future states and
rewards are conditionally independent of the history, given the current state. In
addition, we will focus on stationary policies, which do not depend on time. The
probability that agent i selects action a at state s is given by πi(a | s). We will
often use π(s) to represent a distribution over joint actions.

The utility of a joint policy π from the perspective of agent i can be computed
using a variation of policy evaluation introduced in section 7.2 for MDPs. The
reward to agent i from state s when following joint policy π is

Ri(s,π(s)) = ∑
a

Ri(s, a) ∏
j∈I

π j(aj | s) (25.1)

The probability of transitioning from state s to s′ when following π is

T(s′ | s,π(s)) = ∑
a

T(s′ | s, a) ∏
j∈I

π j(aj | s) (25.2)

In an infinite-horizon discounted game, the utility for agent i from state s is

Uπ,i(s) = Ri(s,π(s)) + γ ∑
s′

T(s′ | s,π(s))Uπ,i(s′) (25.3)

which can be solved exactly (algorithm 25.2).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

25.2. response models 519

struct MGPolicy
p # dictionary mapping states to simple game policies
MGPolicy(p::Base.Generator) = new(Dict(p))

end

(πi::MGPolicy)(s, ai) = πi.p[s](ai)
(πi::SimpleGamePolicy)(s, ai) = πi(ai)

probability(𝒫::MG, s, π, a) = prod(πj(s, aj) for (πj, aj) in zip(π, a))
reward(𝒫::MG, s, π, i) =

sum(𝒫.R(s,a)[i]*probability(𝒫,s,π,a) for a in joint(𝒫.𝒜))
transition(𝒫::MG, s, π, s′) =

sum(𝒫.T(s,a,s′)*probability(𝒫,s,π,a) for a in joint(𝒫.𝒜))

function policy_evaluation(𝒫::MG, π, i)
𝒮, 𝒜, R, T, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.T, 𝒫.γ
p(s,a) = prod(πj(s, aj) for (πj, aj) in zip(π, a))
R′ = [sum(R(s,a)[i]*p(s,a) for a in joint(𝒜)) for s in 𝒮]
T′ = [sum(T(s,a,s′)*p(s,a) for a in joint(𝒜)) for s in 𝒮, s′ in 𝒮]
return (I - γ*T′)\R′

end

Algorithm 25.2. An MG policy
is a mapping from states to sim-
ple game policies, introduced in
the previous chapter. We can con-
struct it by passing in a genera-
tor to construct the dictionary. The
probability that a policy (either
for an MG or a simple game) as-
signs to taking action ai from state
s is πi(s, ai). Functions are also
provided for computing Ri(s,π(s))
and T(s′ | s,π(s)). The policy eval-
uation function will compute a vec-
tor representing Uπ,i .

25.2 Response Models

We can generalize the response models introduced in the previous chapter to
MGs. Doing so requires taking into account the state transition model.

25.2.1 Best Response
A response policy for agent i is a policy πi that maximizes expected utility, given
the fixed policies of other agents π−i. If the policies of the other agents are fixed,
then the problem reduces to an MDP. This MDP has state space S and action
space Ai. We can define the transition and reward functions as follows:

T′(s′ | s, ai) = T(s′ | s, ai,π−i(s)) (25.4)
R′(s, ai) = Ri(s, ai,π−i(s)) (25.5)

Because this is a best response for agent i, the MDP only uses reward Ri. Solving
this MDP results in a best response policy for agent i. Algorithm 25.3 provides an
implementation of this.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

520 chapter 25. sequential problems

function best_response(𝒫::MG, π, i)
𝒮, 𝒜, R, T, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.T, 𝒫.γ
T′(s,ai,s′) = transition(𝒫, s, joint(π, SimpleGamePolicy(ai), i), s′)
R′(s,ai) = reward(𝒫, s, joint(π, SimpleGamePolicy(ai), i), i)
πi = solve(MDP(γ, 𝒮, 𝒜[i], T′, R′))
return MGPolicy(s => SimpleGamePolicy(πi(s)) for s in 𝒮)

end

Algorithm 25.3. For an MG 𝒫, we
can compute a deterministic best
response policy for agent i, given
that the other agents are playing
policies in π. We can solve theMDP
exactly using one of the methods
from chapter 7.

25.2.2 Softmax Response
Similar to what was done in the previous chapter, we can define a softmax response
policy, which assigns a stochastic response to the policies of the other agents at
each state. As we did in the construction of a deterministic best response policy,
we solve an MDP where the agents with the fixed policies π−i are folded into the
environment. We then extract the action value function Q(s, a) using one-step
lookahead. The softmax response is

πi(ai | s) ∝ exp(λQ(s, ai)) (25.6)

with precision parameter λ ≥ 0. Algorithm 25.4 provides an implementation. This
approach can be used to generate hierarchical softmax solutions (section 24.7).
In fact, we can use algorithm 24.9 directly.

function softmax_response(𝒫::MG, π, i, λ)
𝒮, 𝒜, R, T, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.T, 𝒫.γ
T′(s,ai,s′) = transition(𝒫, s, joint(π, SimpleGamePolicy(ai), i), s′)
R′(s,ai) = reward(𝒫, s, joint(π, SimpleGamePolicy(ai), i), i)
mdp = MDP(γ, 𝒮, joint(𝒜), T′, R′)
πi = solve(mdp)
Q(s,a) = lookahead(mdp, πi.U, s, a)
p(s) = SimpleGamePolicy(a => exp(λ*Q(s,a)) for a in 𝒜[i])
return MGPolicy(s => p(s) for s in 𝒮)

end

Algorithm 25.4. The softmax re-
sponse of agent i to joint policy π
with precision parameter λ.

25.3 Nash Equilibrium

The Nash equilibrium concept can be generalized to MGs.2 As with simple games,

2 Because we assume that policies
are stationary, in that they do not
vary over time, the Nash equilibria
covered here are stationary Markov
perfect equilibria.

all agents perform a best response to one another and have no incentive to deviate.
All finite MGs with a discounted infinite horizon have a Nash equilibrium.3

3 A.M. Fink, “Equilibrium in a
Stochastic n-Person Game,” Journal
of Science of the Hiroshima University,
Series A-I, vol. 28, no. 1, pp. 89–93,
1964.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

25.4. f ictit ious play 521

We can find a Nash equilibrium by solving a nonlinear optimization problem
similar to the one that we solved in the context of simple games. This problem
minimizes the sum of the lookahead utility deviations and constrains the policies
to be valid distributions:

minimize
π,U

∑
i∈I

∑
s

(

Ui(s)−Qi(s,π(s))
)

subject to Ui(s) ≥ Qi(s, ai,π−i(s)) for all i, s, ai

∑
ai

πi(ai | s) = 1 for all i, s

πi(ai | s) ≥ 0 for all i, s, ai

(25.7)

where
Qi(s,π(s)) = Ri(s,π(s)) + γ ∑

s′
T(s′ | s,π(s))Ui(s′) (25.8)

This nonlinear optimization problem is implemented and solved in algorithm25.5.4 4 J. A. Filar, T.A. Schultz, F. Thui-
jsman, and O. Vrieze, “Nonlin-
ear Programming and Stationary
Equilibria in Stochastic Games,”
Mathematical Programming, vol. 50,
no. 1–3, pp. 227–237, 1991.

25.4 Fictitious Play

Aswedid in the context of simple games,we can take a learning-based approach to
arrive at joint policies by running agents in simulation. Algorithm 25.6 generalizes
the simulation loop introduced in the previous chapter to handle state transitions.
The various policies run in simulation update themselves based on the state
transitions and the actions taken by the various agents.

One approach for updating policies is to use a generalization of fictitious
play (algorithm 25.7) from the previous chapter,5 which involves maintaining 5 W. Uther and M. Veloso, “Adver-

sarial Reinforcement Learning,”
Carnegie Mellon University, Tech.
Rep. CMU-CS-03-107, 1997. M.
Bowling and M. Veloso, “An Anal-
ysis of Stochastic Game Theory for
Multiagent Reinforcement Learn-
ing,” Carnegie Mellon University,
Tech. Rep. CMU-CS-00-165, 2000.

a maximum-likelihood model over the policies of the other agents. The maxi-
mum likelihood model tracks the state in addition to the action being taken by
each agent. We track the number of times that agent j takes action aj in state s,
storing it in table N(j, aj, s), typically initialized to 1. Then, we can compute the
best response, assuming that each agent j follows the state-dependent stochastic
policy:

π j(aj | s) ∝ N(j, aj, s) (25.9)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

522 chapter 25. sequential problems

function tensorform(𝒫::MG)
ℐ, 𝒮, 𝒜, R, T = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.T
ℐ′ = eachindex(ℐ)
𝒮′ = eachindex(𝒮)
𝒜′ = [eachindex(𝒜[i]) for i in ℐ]
R′ = [R(s,a) for s in 𝒮, a in joint(𝒜)]
T′ = [T(s,a,s′) for s in 𝒮, a in joint(𝒜), s′ in 𝒮]
return ℐ′, 𝒮′, 𝒜′, R′, T′

end

function solve(M::NashEquilibrium, 𝒫::MG)
ℐ, 𝒮, 𝒜, R, T = tensorform(𝒫)
𝒮′, 𝒜′, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.γ
model = Model(Ipopt.Optimizer)
@variable(model, U[ℐ, 𝒮])
@variable(model, π[i=ℐ, 𝒮, ai=𝒜[i]] ≥ 0)
@NLobjective(model, Min,

sum(U[i,s] - sum(prod(π[j,s,a[j]] for j in ℐ)
* (R[s,y][i] + γ*sum(T[s,y,s′]*U[i,s′] for s′ in 𝒮))
for (y,a) in enumerate(joint(𝒜))) for i in ℐ, s in 𝒮))

@NLconstraint(model, [i=ℐ, s=𝒮, ai=𝒜[i]],
U[i,s] ≥ sum(

prod(j==i ? (a[j]==ai ? 1.0 : 0.0) : π[j,s,a[j]] for j in ℐ)
* (R[s,y][i] + γ*sum(T[s,y,s′]*U[i,s′] for s′ in 𝒮))
for (y,a) in enumerate(joint(𝒜))))

@constraint(model, [i=ℐ, s=𝒮], sum(π[i,s,ai] for ai in 𝒜[i]) == 1)
optimize!(model)
π′ = value.(π)
πi′(i,s) = SimpleGamePolicy(𝒜′[i][ai] => π′[i,s,ai] for ai in 𝒜[i])
πi′(i) = MGPolicy(𝒮′[s] => πi′(i,s) for s in 𝒮)
return [πi′(i) for i in ℐ]

end

Algorithm 25.5. This nonlinear
program computes a Nash equilib-
rium for an MG 𝒫.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

25.4. f ictit ious play 523

function randstep(𝒫::MG, s, a)
s′ = rand(SetCategorical(𝒫.𝒮, [𝒫.T(s, a, s′) for s′ in 𝒫.𝒮]))
r = 𝒫.R(s,a)
return s′, r

end

function simulate(𝒫::MG, π, k_max, b)
s = rand(b)
for k = 1:k_max

a = Tuple(πi(s)() for πi in π)
s′, r = randstep(𝒫, s, a)
for πi in π

update!(πi, s, a, s′)
end
s = s′

end
return π

end

Algorithm 25.6. Functions for tak-
ing a random step and running full
simulations in MGs. The simulate
function will simulate the joint pol-
icy π for k_max steps starting from
a state randomly sampled from b.

After observing joint action a in states s, we update

N(j, aj, s)← N(j, aj, s) + 1 (25.10)

for each agent j.
As the distributions of the other agents’ actions change, we must update the

utilities. The utilities in MGs are significantly more difficult to compute than
simple games because of the state dependency. As described in section 25.2.1, any
assignment of fixed policies of others π−i induces an MDP. In fictitious play, π−i

is determined by equation (25.9). Instead of solving an MDP at each update, it is
common to apply the update periodically, a strategy adopted from asynchronous
value iteration. An example of fictitious play is given in example 25.2.

Our policy πi(s) for a state s is derived from a given opponent model π−i and
computed utility Ui. We then select a best response:

arg max
a

Qi(s, a,π−i) (25.11)

In the implementation here, we use the property that each state of an MG policy
is a simple game policy whose reward is the corresponding Qi.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

524 chapter 25. sequential problems

mutable struct MGFictitiousPlay
𝒫 # Markov game
i # agent index
Qi # state-action value estimates
Ni # state-action counts

end

function MGFictitiousPlay(𝒫::MG, i)
ℐ, 𝒮, 𝒜, R = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.R
Qi = Dict((s, a) => R(s, a)[i] for s in 𝒮 for a in joint(𝒜))
Ni = Dict((j, s, aj) => 1.0 for j in ℐ for s in 𝒮 for aj in 𝒜[j])
return MGFictitiousPlay(𝒫, i, Qi, Ni)

end

function (πi::MGFictitiousPlay)(s)
𝒫, i, Qi = πi.𝒫, πi.i, πi.Qi
ℐ, 𝒮, 𝒜, T, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.T, 𝒫.R, 𝒫.γ
πi′(i,s) = SimpleGamePolicy(ai => πi.Ni[i,s,ai] for ai in 𝒜[i])
πi′(i) = MGPolicy(s => πi′(i,s) for s in 𝒮)
π = [πi′(i) for i in ℐ]
U(s,π) = sum(πi.Qi[s,a]*probability(𝒫,s,π,a) for a in joint(𝒜))
Q(s,π) = reward(𝒫,s,π,i) + γ*sum(transition(𝒫,s,π,s′)*U(s′,π)

for s′ in 𝒮)
Q(ai) = Q(s, joint(π, SimpleGamePolicy(ai), i))
ai = argmax(Q, 𝒫.𝒜[πi.i])
return SimpleGamePolicy(ai)

end

function update!(πi::MGFictitiousPlay, s, a, s′)
𝒫, i, Qi = πi.𝒫, πi.i, πi.Qi
ℐ, 𝒮, 𝒜, T, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.T, 𝒫.R, 𝒫.γ
for (j,aj) in enumerate(a)

πi.Ni[j,s,aj] += 1
end
πi′(i,s) = SimpleGamePolicy(ai => πi.Ni[i,s,ai] for ai in 𝒜[i])
πi′(i) = MGPolicy(s => πi′(i,s) for s in 𝒮)
π = [πi′(i) for i in ℐ]
U(π,s) = sum(πi.Qi[s,a]*probability(𝒫,s,π,a) for a in joint(𝒜))
Q(s,a) = R(s,a)[i] + γ*sum(T(s,a,s′)*U(π,s′) for s′ in 𝒮)
for a in joint(𝒜)

πi.Qi[s,a] = Q(s,a)
end

end

Algorithm 25.7. Fictitious play for
agent i in an MG 𝒫 that main-
tains counts Ni of other agent ac-
tion selections over time for each
state and averages them, assuming
that this is their stochastic policy.
It then computes a best response
to this policy and performs the cor-
responding utility-maximizing ac-
tion.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

25.4. f ictit ious play 525

The predator-prey hex world MG (appendix F.13) has one predator (red)
and one prey (blue). If the predator catches the prey, it receives a reward of
10 and the prey receives a reward of −100. Otherwise, both agents receive a
−1 reward. The agents move simultaneously. We apply fictitious play with
resets to the initial state every 10 steps.

We observe that the predator learns to chase the prey and the prey learns
to flee. Interestingly, the predator also learns that the prey runs to the east
corner and waits. The prey learns that if it waits at this corner, it can flee
from the predator immediately as it jumps toward the prey. Here, the prey
evades the predator by moving west when the predator moves north east.

Here is a plot of the learned opponent model of the highlighted state (both
predator and prey hex locations) for both the predator and the prey:

0

0.5

1

pr
ed

at
or

P
(a

cti
on

)

opponent model

east
north east
north west
west
south west
south eastP

(n
or

th
ea

st)

policy

0 100 200 300

0

0.5

1

iteration

pr
ey

P
(a

cti
on

)

0 100 200 300

iteration

P
(w

es
t)

Example 25.2. Fictitious play on
the predator-prey hex world prob-
lem. Stochasticity was introduced
when initializing the policies to bet-
ter show learning trends.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

526 chapter 25. sequential problems

25.5 Gradient Ascent

We can use gradient ascent (algorithm 25.8) to learn policies in a way similar to
what was done in the previous chapter for simple games. The state must now be
considered and requires learning the action value function. At each time step t,
all agents perform joint actions at in a state st. As in gradient ascent for simple
games, an agent i assumes that the agents’ policies π−i

t are the observed actions
a−i

t . The gradient is

∂Uπt ,i(st)

∂πi
t(ai | st)

=
∂

∂πi(ai | st)

(

∑
a

∏
j

π j(aj | st)Q
πt ,i(st, at)

)

(25.12)

= Qπt ,i(st, ai, a−i
t) (25.13)

The gradient step follows a similar pattern as in the previous chapter, except the
state s is included and the expected utility estimate Qi

t is used:

πi
t+1(ai | st) = πi

t(ai | st) + αi
tQ

i(st, ai, a−i) (25.14)

Again, this update may require projection to ensure that the policy πi
t+1 at st is a

valid probability distribution.
As with fictitious play in the previous section, we must estimate Qi

t. We can
use Q-learning:

Qi
t+1(st, at) = Qi

t(st, at) + αt

(

Ri(st, at) + γ max
ai ′

Qi
t(st+1, ai ′, a−i

t)−Qi
t(st, at)

)

(25.15)

We can use the inverse square root learning rate αt = 1/
√

t. Exploration is also
necessary. We can use an ǫ-greedy strategy, perhaps also with ǫt = 1/

√
t.

25.6 Nash Q-Learning

Another learning-based approach is Nash Q-learning (algorithm 25.9), which
borrows inspiration from Q-learning (section 17.2).6 The method maintains an 6 J. Hu and M.P. Wellman, “Nash

Q-Learning for General-Sum
Stochastic Games,” Journal of
Machine Learning Research, vol. 4,
pp. 1039–1069, 2003.

estimate of the action value function, which is adapted as the agents react to each
other’s changing policies. In the process of updating the action value function, it
computes a Nash equilibrium to model the behavior of the other agents.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

25.6. nash q-learning 527

mutable struct MGGradientAscent
𝒫 # Markov game
i # agent index
t # time step
Qi # state-action value estimates
πi # current policy

end

function MGGradientAscent(𝒫::MG, i)
ℐ, 𝒮, 𝒜 = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜
Qi = Dict((s, a) => 0.0 for s in 𝒮, a in joint(𝒜))
uniform() = Dict(s => SimpleGamePolicy(ai => 1.0 for ai in 𝒫.𝒜[i])

for s in 𝒮)
return MGGradientAscent(𝒫, i, 1, Qi, uniform())

end

function (πi::MGGradientAscent)(s)
𝒜i, t = πi.𝒫.𝒜[πi.i], πi.t
ϵ = 1 / sqrt(t)
πi′(ai) = ϵ/length(𝒜i) + (1-ϵ)*πi.πi[s](ai)
return SimpleGamePolicy(ai => πi′(ai) for ai in 𝒜i)

end

function update!(πi::MGGradientAscent, s, a, s′)
𝒫, i, t, Qi = πi.𝒫, πi.i, πi.t, πi.Qi
ℐ, 𝒮, 𝒜i, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜[πi.i], 𝒫.R, 𝒫.γ
jointπ(ai) = Tuple(j == i ? ai : a[j] for j in ℐ)
α = 1 / sqrt(t)
Qmax = maximum(Qi[s′, jointπ(ai)] for ai in 𝒜i)
πi.Qi[s, a] += α * (R(s, a)[i] + γ * Qmax - Qi[s, a])
u = [Qi[s, jointπ(ai)] for ai in 𝒜i]
π′ = [πi.πi[s](ai) for ai in 𝒜i]
π = project_to_simplex(π′ + u / sqrt(t))
πi.t = t + 1
πi.πi[s] = SimpleGamePolicy(ai => p for (ai, p) in zip(𝒜i, π))

end

Algorithm 25.8. Gradient ascent
for an agent i of an MG 𝒫. The
algorithm incrementally updates
its distributions of actions at vis-
ited states following gradient as-
cent to improve the expected utility.
The projection function from algo-
rithm 23.6 is used to ensure that
the resulting policy remains a valid
probability distribution.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

528 chapter 25. sequential problems

An agent following Nash Q-learning maintains an estimate of a joint action
value function Q(s, a). This action value function is updated after every state
transition using a Nash equilibrium computed from a simple game constructed
from this value function. After a transition from s to s′ following the joint action
a, we construct a simple game with the same number of agents and the same joint
action space, but the reward function is equal to the estimated value of s′ such
that R(a′) = Q(s′, a′). The agent computes a Nash equilibrium policy π′ over the
next action a′. Under the derived policy, the expected utility of the successor state
is

U(s′) = ∑
a′

Q(s′, a′) ∏
j∈I

π j ′(aj ′) (25.16)

The agent then updates its value function:

Q(s, a)← Q(s, a) + α
(

R(s, a) + γU(s′)−Q(s, a)
) (25.17)

where the learning rate α is typically a function of the state-action count α =

1/
√

N(s, a).
As with regular Q-learning, we need to adopt an exploration strategy to ensure

that all states and actions are tried often enough. In algorithm 25.9, the agent
follows an ǫ-greedy policy. With probability ǫ = 1/ ∑a(N(s, a)), it selects an
action uniformly at random. Otherwise, it will use the result from the Nash
equilibrium.

25.7 Summary

• MGs are an extension of MDPs to multiple agents or an extension of simple
games to sequential problems. In these problems, multiple agents compete
and individually receive rewards over time.

• The Nash equilibrium can be formulated for MGs, but it must now consider
all actions for all agents in all states.

• The problem of finding a Nash equilibrium can be formulated as a nonlinear
optimization problem.

• We can generalize fictitious play to MGs by using a known transition function
and incorporating estimates of action values.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

25.7. summary 529

mutable struct NashQLearning
𝒫 # Markov game
i # agent index
Q # state-action value estimates
N # history of actions performed

end

function NashQLearning(𝒫::MG, i)
ℐ, 𝒮, 𝒜 = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜
Q = Dict((j, s, a) => 0.0 for j in ℐ, s in 𝒮, a in joint(𝒜))
N = Dict((s, a) => 1.0 for s in 𝒮, a in joint(𝒜))
return NashQLearning(𝒫, i, Q, N)

end

function (πi::NashQLearning)(s)
𝒫, i, Q, N = πi.𝒫, πi.i, πi.Q, πi.N
ℐ, 𝒮, 𝒜, 𝒜i, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒜[πi.i], 𝒫.γ
M = NashEquilibrium()
𝒢 = SimpleGame(γ, ℐ, 𝒜, a -> [Q[j, s, a] for j in ℐ])
π = solve(M, 𝒢)
ϵ = 1 / sum(N[s, a] for a in joint(𝒜))
πi′(ai) = ϵ/length(𝒜i) + (1-ϵ)*π[i](ai)
return SimpleGamePolicy(ai => πi′(ai) for ai in 𝒜i)

end

function update!(πi::NashQLearning, s, a, s′)
𝒫, ℐ, 𝒮, 𝒜, R, γ = πi.𝒫, πi.𝒫.ℐ, πi.𝒫.𝒮, πi.𝒫.𝒜, πi.𝒫.R, πi.𝒫.γ
i, Q, N = πi.i, πi.Q, πi.N
M = NashEquilibrium()
𝒢 = SimpleGame(γ, ℐ, 𝒜, a′ -> [Q[j, s′, a′] for j in ℐ])
π = solve(M, 𝒢)
πi.N[s, a] += 1
α = 1 / sqrt(N[s, a])
for j in ℐ

πi.Q[j,s,a] += α*(R(s,a)[j] + γ*utility(𝒢,π,j) - Q[j,s,a])
end

end

Algorithm 25.9. Nash Q-learning
for an agent i in an MG 𝒫. The al-
gorithm performs joint-action Q-
learning to learn a state-action
value function for all agents. A sim-
ple game is built with Q, and we
compute a Nash equilibrium using
algorithm 24.5. The equilibrium
is then used to update the value
function. This implementation also
uses a variable learning rate pro-
portional to the number of times
state-joint-action pairs are visited,
which is stored in N. In addition,
it uses ǫ-greedy exploration to en-
sure that all states and actions are
explored.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

530 chapter 25. sequential problems

• Gradient ascent approaches iteratively improve a stochastic policy, and they
do not need to assume a model.

• Nash Q-learning adapts traditional Q-learning to multiagent problems and
involves solving for a Nash equilibrium of a simple game constructed from
models of the other players.

25.8 Exercises
Exercise 25.1. Show that MGs are extensions of both MDPs and simple games. Show this
by formulating an MDP as an MG and by formulating a simple game as an MG.

Solution: MGs generalize simple games. For any simple game with I , A, and R, we can
construct an MG by just having a single state that self-loops. In other words, this MG has
S = {s1}, T(s1 | s1, a) = 1, and R(s1, a) = R(a).

MGs generalize MDPs. For any MDP with S , A, T, and R, we can construct an MG
by just assigning the agents to be this single agent. In other words, this MG has I = {1},
A1 = A, T(s′ | s, a) = T(s′ | s′, a), and R(s, a) = R(s, a).

Exercise 25.2. For an agent i, given the fixed policies of other agents π−i, can there be a
stochastic best response that yields a greater utility than a deterministic best response?
Why do we consider stochastic policies in a Nash equilibrium?

Solution: No, if given fixed policies of other agents π−i, a deterministic best response is
sufficient to obtain the highest utility. The best response can be formulated as solving an
MDP, as described in section 25.2. It has been shown that deterministic policies are sufficient
to provide optimal utility maximization. Hence, the same is true for a best response in an
MG.

In a Nash equilibrium, a best response has to hold for all agents. Although a determin-
istic best response might be equal in utility to a stochastic one, an equilibrium may require
stochastic responses in order to prevent other agents from wanting to deviate.

Exercise 25.3. This chapter discussed only stationary Markov policies. What other cate-
gories of policies are there?

Solution: A so-called behavioral policy πi(ht) is one that has a dependence on the complete
history ht = (s1:t, a1:t−1). Such policies depend on the history of play of other agents. A
nonstationary Markov policy πi(s, t) is one that depends on the time step t, but not on the
complete history. For example, in the predator-prey hex world domain, for the first 10 time
steps, the action at a hex might be to go east, and after 10 time steps, to go west.

There can be Nash equilibria that are in the space of nonstationary, non-Markov joint
policies; stationary, non-Markov joint policies; and so forth. However, it has been proven
that every stationary MG has a stationary Markov Nash equilibrium.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

25.8. exercises 531

Exercise 25.4. In MGs, fictitious play requires the utilities to be estimated. List different
approaches to compute utilities, with their benefits and drawbacks.

Solution:Algorithm 25.7 performs a single backup for the visited state s and all joint actions
a. This approach has the benefit of being relatively efficient because it is a single backup.
Updating all joint actions at that state results in exploring actions that were not observed.
The drawback of this approach is that we may need to do this update at all states many
times to obtain a suitable policy.

An alternative is only to update the visited state and the joint action that was actually
taken, which results in a faster update step. The drawback is that it requires many more
steps to explore the full range of joint actions.

Another alternative is to perform value iteration at all states s until convergence at every
update step. Recall that the model of the opponent changes on each update. This induces a
new MDP, as described for deterministic best response in section 25.2.1. Consequently, we
would need to rerun value iteration after each update. The benefit of this approach is that
it can result in the most informed decision at each step because the utilities Qi consider all
states over time. The drawback is that the update step is very computationally expensive.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

26 State Uncertainty

The multiagent models discussed so far in this part of the book have assumed that
all agents can observe the true state. Just as an MDP can be extended to include
partial observability, so can an MG be extended to produce a partially observable
Markov game (POMG).1 In fact, a POMG generalizes all the other problems pre-

1 A POMG is also called a partially
observable stochastic game (POSG).
POMGs are closely related to the
extensive form game with imper-
fect information. H. Kuhn, “Exten-
sive Games and the Problem of In-
formation,” in Contributions to the
Theory of Games II, H. Kuhn and A.
Tucker, eds., Princeton University
Press, 1953, pp. 193–216. Themodel
was later introduced to the artifi-
cial intelligence community. E.A.
Hansen, D. S. Bernstein, and S. Zil-
berstein, “Dynamic Programming
for Partially Observable Stochastic
Games,” in AAAI Conference on Ar-
tificial Intelligence (AAAI), 2004.

sented in this book. These complex problems can be used to represent domains
in which multiple agents receive partial or noisy observations of the environment.
This generality makes modeling and solving POMGs computationally challeng-
ing. This chapter defines the POMG, outlines policy representations, and presents
solution methods.

26.1 Partially Observable Markov Games

A POMG (algorithm 26.1) can be seen as either an extension of MGs to partial
observability or as an extension of POMDPs to multiple agents. Each agent i ∈ I
selects an action ai ∈ Ai based only on local observations oi made of a shared
state s. The true state of the system s ∈ S is shared by all agents, but it is not
necessarily fully observed. The initial state is drawn from a known initial state
distribution b. The likelihood of transitioning from state s to state s′ under their
joint action a follows T(s′ | s, a). A joint reward r is generated following Ri(s, a),
as in MGs. Each agent strives to maximize its own accumulated reward. After all
agents perform their joint action a, a joint observation is emitted by the environment
o = (o1, . . . , ok) from a joint observation spaceO = O1× · · · ×Ok. Each agent then
receives an individual observation oi from this joint observation. The crying baby
problem is extended to multiple agents in example 26.1.

In POMDPs, we were able to maintain a belief state, as discussed in chapter 19,
but this approach is not possible in POMGs. Individual agents cannot perform

534 chapter 26. state uncertainty

the same kind of belief updates as in POMDPs because the joint actions and
joint observations are not observed. Inferring a probability distribution over joint
actions requires that each agent reason about the other agents reasoning about
each other, who are in turn reasoning about each other, and so on. Inferring
a distribution over the other observations is just as complicated because the
observations depend on the actions of the other agents.2

2 The Interactive POMDP (I-
POMDP) model attempts to
capture this infinite regression.
P. J. Gmytrasiewicz and P. Doshi,
“A Framework for Sequential
Planning in Multi-Agent Settings,”
Journal of Artificial Intelligence
Research, vol. 24, no. 1, pp. 49–79,
2005. While this is a compu-
tationally complex framework
because it reasons in both time and
depth, algorithms for such models
have advanced tremendously
toward the goal of pragmatic
use cases. E. Sonu, Y. Chen, and
P. Doshi, “Decision-Theoretic
Planning Under Anonymity in
Agent Populations,” Journal of
Artificial Intelligence Research,
vol. 59, pp. 725–770, 2017.

Because of the difficulty of explicitly modeling beliefs in POMGs, we will focus
on policy representations that do not require a belief to determine an action.
We can use the tree-based conditional plan representation and the graph-based
controller representation introduced in the earlier chapters on POMDPs. As in
MGs, each agent in a POMG acts according to a policy πi, or equivalently, the
agents act together according to a joint policy π = (π1, . . . , πk).

struct POMG
γ # discount factor
ℐ # agents
𝒮 # state space
𝒜 # joint action space
𝒪 # joint observation space
T # transition function
O # joint observation function
R # joint reward function

end

Algorithm 26.1. Data structure for
a POMG.

Consider a multiagent POMG generalization of the crying baby problem.
We have two caregivers taking care of a baby. As in the POMDP version, the
states are the baby being hungry or sated. Each caregiver’s actions are to feed,
sing, or ignore the baby. If both caregivers choose to perform the same action,
the cost is halved. For example, if both caregivers feed the baby, then the
reward is only −2.5 instead of −5. However, the caregivers do not perfectly
observe the state of the baby. Instead, they rely on the noisy observations
of the baby crying, both with the same observation. As a consequence of
the reward structure, there is a trade-off between helping each other and
greedily choosing a less costly action.

Example 26.1. The multicaregiver
crying baby problem as a POMG.
Appendix F.14 provides additional
details.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

26.2. policy evaluation 535

26.2 Policy Evaluation

This section discusses how to evaluate joint policies represented as either tree-
based conditional plans or graph-based controllers. As in the context of POMDPs,
we use conditional plans to represent deterministic policies and controllers to
represent stochastic policies.

26.2.1 Evaluating Conditional Plans
Recall that a conditional plan (section 20.2) is a tree where actions are associated
with nodes and observations are associated with edges. Each agent has its own
tree and initially selects the action associated with its root. After making an
observation, each agent proceeds down the tree, taking the edge associated with
their observation. The process of taking actions and selecting edges based on
observations continues until reaching the end of the tree. Example 26.2 shows a
joint policy consisting of a conditional plan for each agent.

Here is a joint policy π = (π1, π2) represented as two-step conditional plans
for the multicaregiver crying baby problem:

a1
1

a1
2

a1
1

o1
1

a1
2

o1
2

o1
1

a1
1

a1
2

o1
1

a1
1

o1
2

o1
2

a2
1

a2
1

a2
2

o2
1

a2
2

o2
2

o2
1

a2
1

a2
1

o2
1

a2
2

o2
2

o2
2

agent 1’s policy π1 agent 2’s policy π2

o1
1 = quiet a1

1 = ignore
o1

2 = crying a1
2 = feed

o2
1 = quiet a2

1 = ignore
o2

2 = crying a2
2 = feed

Example 26.2. A two-agent, two-
step joint policy using conditional
plans for the multicaregiver crying
baby problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

536 chapter 26. state uncertainty

We can compute the joint utility function Uπ recursively, similar to what was
done in equation (20.8) for POMDPs when starting in state s:

Uπ(s) = R(s,π()) + γ

[

∑
s′

T
(

s′ | s,π()
)

∑
o

O
(

o | π(), s′
)

Uπ(o)(s′)

]

(26.1)

where π() is the vector of actions at the root of the tree associated with π and
π(o) is the vector of subplans associated with the various agents observing their
components of the joint observation o.

The utility associated with policy π from initial state distribution b is given by

Uπ(b) = ∑
s

b(s)Uπ(s) (26.2)

Algorithm 26.2 provides an implementation of this.

function lookahead(𝒫::POMG, U, s, a)
𝒮, 𝒪, T, O, R, γ = 𝒫.𝒮, joint(𝒫.𝒪), 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
u′ = sum(T(s,a,s′)*sum(O(a,s′,o)*U(o,s′) for o in 𝒪) for s′ in 𝒮)
return R(s,a) + γ*u′

end

function evaluate_plan(𝒫::POMG, π, s)
a = Tuple(πi() for πi in π)
U(o,s′) = evaluate_plan(𝒫, [πi(oi) for (πi, oi) in zip(π,o)], s′)
return isempty(first(π).subplans) ? 𝒫.R(s,a) : lookahead(𝒫, U, s, a)

end

function utility(𝒫::POMG, b, π)
u = [evaluate_plan(𝒫, π, s) for s in 𝒫.𝒮]
return sum(bs * us for (bs, us) in zip(b, u))

end

Algorithm 26.2. Conditional
plans represent policies in a
finite-horizon POMG. They are
defined for a single agent in algo-
rithm 20.1. We can compute the
utility associated with executing a
joint policy π represented by con-
ditional plans when starting from
a state s. Computing the utility
from an initial state distribution b
involves taking a weighted average
of utilities when starting from
different states.

26.2.2 Evaluating Stochastic Controllers
A controller (section 23.1) is represented as a stochastic graph. The controller
associated with agent i is defined by the action distribution ψi(ai | xi) and succes-
sor distribution ηi(xi ′ | xi, ai, oi). The utility of being in state s with joint node x

active and following joint policy π is

Uπ(x, s) = ∑
a

∏
i

ψi(ai | xi)

(

R(s, a) + γ ∑
s′

T(s′ | s, a)∑
o

O(o | a, s′)∑
x′

∏
i

ηi(xi ′ | xi, ai, oi)Uπ(x′, s′)

)

(26.3)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

26.3. nash equilibrium 537

Policy evaluation in this context involves solving this system of linear equations.
Alternatively, we can use iterative policy evaluation similar to algorithm 23.2 for
POMDPs. The utility when starting from an initial state distribution b and joint
controller state x is

Uπ(x, b) = ∑
s

b(s)U(x, s) (26.4)

Example 26.3 shows a joint stochastic controller.

Here is a joint controller policy π = (π1, π2) for the two caregivers in the
crying baby problem. Each controller has two nodes, Xi = {xi

1, xi
2}:

a2 a1

o1

o1, o2

o2 a1 a2

o2

o1

o1 o2

agent 1’s policy π1 agent 2’s policy π2

o1 = quiet a1 = ignore
o1 = hungry a1 = feed

Example 26.3. A two-agent joint
policy using controllers for the
multicaregiver crying baby prob-
lem.

26.3 Nash Equilibrium

As with simple games and MGs, aNash equilibrium for a POMG is when all agents
act according to a best response policy to each other, such that no agents have
an incentive to deviate from their policy. Nash equilibria for POMGs tend to
be incredibly computationally difficult to solve. Algorithm 26.3 computes a d-
step Nash equilibrium for a POMG. It enumerates all of its possible d-step joint
conditional plans to construct a simple game, as shown in example 26.4. A Nash
equilibrium for this simple game is also a Nash equilibrium for the POMG.

The simple game has the same agents as the POMG. There is a joint action
in the simple game for every joint conditional plan in the POMG. The reward
received for each action is equal to the utilities under the joint conditional plan in
the POMG. A Nash equilibrium of this constructed simple game can directly be
applied as a Nash equilibrium of the POMG.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

538 chapter 26. state uncertainty

struct POMGNashEquilibrium
b # initial belief
d # depth of conditional plans

end

function create_conditional_plans(𝒫, d)
ℐ, 𝒜, 𝒪 = 𝒫.ℐ, 𝒫.𝒜, 𝒫.𝒪
Π = [[ConditionalPlan(ai) for ai in 𝒜[i]] for i in ℐ]
for t in 1:d

Π = expand_conditional_plans(𝒫, Π)
end
return Π

end

function expand_conditional_plans(𝒫, Π)
ℐ, 𝒜, 𝒪 = 𝒫.ℐ, 𝒫.𝒜, 𝒫.𝒪
return [[ConditionalPlan(ai, Dict(oi => πi for oi in 𝒪[i]))

for πi in Π[i] for ai in 𝒜[i]] for i in ℐ]
end

function solve(M::POMGNashEquilibrium, 𝒫::POMG)
ℐ, γ, b, d = 𝒫.ℐ, 𝒫.γ, M.b, M.d
Π = create_conditional_plans(𝒫, d)
U = Dict(π => utility(𝒫, b, π) for π in joint(Π))
𝒢 = SimpleGame(γ, ℐ, Π, π -> U[π])
π = solve(NashEquilibrium(), 𝒢)
return Tuple(argmax(πi.p) for πi in π)

end

Algorithm 26.3. A Nash equilib-
rium is computed for a POMG 𝒫
with initial state distribution b by
creating a simple game of all con-
ditional plans to some depth d. We
solve for a Nash equilibrium in this
simple game using algorithm 24.5.
For simplicity, we select the most
probable joint policy. Alternatively,
we can randomly select the joint
policy at the start of execution.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

26.3. nash equilibrium 539

Consider the multicaregiver crying baby problem with a two-step horizon.
Recall that for each agent i, there are three actions

Ai = {ai
1, ai

2, ai
3} = {feed, sing, ignore}

and two observations

Oi = {oi
1, oi

2} = {cry, silent}

Converting this POMG to a simple game results in the following game table.
Each caregiver selects simple game actions that correspond to a complete con-
ditional plan. The simple game reward for each agent is the utility associated
with the joint policy.

Uπ1
1 ,π2

1 ,1(b),

Uπ1
1 ,π2

1 ,2(b)
· · ·

Uπ1
1 ,π2

c ,1(b),

Uπ1
1 ,π2

c ,2(b)

...

Uπ1
r ,π2

1 ,1(b),

Uπ1
r ,π2

1 ,2(b)
· · ·

Uπ1
r ,π2

c ,1(b),

Uπ1
r ,π2

c ,2(b)

π
1 1

a1
1

a1
1 a1

1

o1
1 o1

2

··
·

π
1 r

a1
3

a1
3 a1

3

o1
1 o1

2

π2
1

a2
1

a2
1 a2

1

o2
1 o2

2
· · ·

π2
c

a2
3

a2
3 a2

3

o2
1 o2

2

ag
en

t1

agent 2

Example 26.4. Computing a Nash
equilibrium for the multicaregiver
crying baby problem by convert-
ing it into a simple game where the
actions correspond to conditional
plans.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

540 chapter 26. state uncertainty

26.4 Dynamic Programming

The approach taken in the previous section for computing a Nash equilibrium is
typically extremely computationally expensive because the actions correspond
to all possible conditional plans to some depth. We can adapt the value iteration
approach for POMDPs (section 20.5), where we iterated between expanding the
depth of the set of considered conditional plans and pruning suboptimal plans.
While the worst-case computational complexity is the same as that of the full
expansion of all policy trees, this incremental approach can lead to significant
savings.

Algorithm 26.4 implements this dynamic programming approach. It begins
by constructing all one-step plans. We prune any plans that are dominated by
another plan, and we then expand all combinations of one-step plans to produce
two-step plans. This procedure of alternating between expansion and pruning is
repeated until the desired horizon is reached.

The pruning step eliminates all dominated policies. A policy πi belonging to
an agent i can be pruned if there exists another policy πi ′ that always performs at
least as well as πi. Although computationally expensive, this condition can be
checked by solving a linear program. This process is related to controller node
pruning in POMDPs (algorithm 23.4).

It would be computationally intractable to solve a separate linear program for
every possible combination of the other agent’s policies π−i. Instead, we can take
a much more efficient approach that will never prune an optimal policy but may
not be able to prune all suboptimal policies. A policy πi is dominated by πi ′ if
there is no b(π−i, s) between other joint policies π−i and states s such that

∑
π−i

∑
s

b(π−i, s)Uπi ′ ,π−i ,i(s) ≥ ∑
π−i

∑
s

b(π−i, s)Uπi ,π−i ,i(s) (26.5)

Here, b is a joint distribution over the policies of other agents and the state. As
mentioned at the start of this chapter, it is generally infeasible to compute a
belief state, but equation (26.5) checks the space of beliefs for individual policy
domination.

We can construct a single linear program to check equation (26.5).3 If the linear 3 A similar linear program was
created to prune alpha vectors in
POMDPs in equation (20.16).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

26.4. dynamic programming 541

struct POMGDynamicProgramming
b # initial belief
d # depth of conditional plans

end

function solve(M::POMGDynamicProgramming, 𝒫::POMG)
ℐ, 𝒮, 𝒜, R, γ, b, d = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.γ, M.b, M.d
Π = [[ConditionalPlan(ai) for ai in 𝒜[i]] for i in ℐ]
for t in 1:d

Π = expand_conditional_plans(𝒫, Π)
prune_dominated!(Π, 𝒫)

end
𝒢 = SimpleGame(γ, ℐ, Π, π -> utility(𝒫, b, π))
π = solve(NashEquilibrium(), 𝒢)
return Tuple(argmax(πi.p) for πi in π)

end

function prune_dominated!(Π, 𝒫::POMG)
done = false
while !done

done = true
for i in shuffle(𝒫.ℐ)

for πi in shuffle(Π[i])
if length(Π[i]) > 1 && is_dominated(𝒫, Π, i, πi)

filter!(πi′ -> πi′ ≠ πi, Π[i])
done = false
break

end
end

end
end

end

function is_dominated(𝒫::POMG, Π, i, πi)
ℐ, 𝒮 = 𝒫.ℐ, 𝒫.𝒮
jointΠnoti = joint([Π[j] for j in ℐ if j ≠ i])
π(πi′, πnoti) = [j==i ? πi′ : πnoti[j>i ? j-1 : j] for j in ℐ]
Ui = Dict((πi′, πnoti, s) => evaluate_plan(𝒫, π(πi′, πnoti), s)[i]

for πi′ in Π[i], πnoti in jointΠnoti, s in 𝒮)
model = Model(Ipopt.Optimizer)
@variable(model, δ)
@variable(model, b[jointΠnoti, 𝒮] ≥ 0)
@objective(model, Max, δ)
@constraint(model, [πi′=Π[i]],

sum(b[πnoti, s] * (Ui[πi′, πnoti, s] - Ui[πi, πnoti, s])
for πnoti in jointΠnoti for s in 𝒮) ≥ δ)

@constraint(model, sum(b) == 1)
optimize!(model)
return value(δ) ≥ 0

end

Algorithm 26.4. Dynamic pro-
gramming computes a Nash equi-
librium π for a POMG 𝒫, given an
initial belief b and horizon depth
d. It iteratively computes the pol-
icy trees and their expected utilities
at each step. The pruning phase
at each iteration removes domi-
nated policies, which are policy
trees that result in lower expected
utility than at least one other avail-
able policy tree.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

542 chapter 26. state uncertainty

program is feasible, then that means πi is not dominated by any other πi ′:

maximize
δ,b

δ

subject to b(π−i, s) ≥ 0 for all π−i, s

∑
π−i

∑
s

b(π−i, s) = 1

∑
π−i

∑
s

b(π−i, s)
(

Uπi ′ ,π−i ,i(s)−Uπi ,π−i ,i(s)
)

≥ δ for all πi ′

(26.6)

The pruning step removes dominated policies by randomly selecting an agent i

and checking for domination of each of its policies. This process repeats until a
pass over all agents fails to find any dominated policies. Example 26.5 shows this
process on the multicaregiver crying baby problem.

26.5 Summary

• POMGs generalize POMDPs to multiple agents and MGs to partial observabil-
ity.

• Because agents generally cannot maintain beliefs in POMGs, policies typically
take the form of conditional plans or finite state controllers.

• Nash equilibria, in the form of d-step conditional plans for POMGs, can be
obtained by finding Nash equilibria for simple games whose joint actions
consist of all possible POMG joint policies.

• Dynamic programming approaches can be used to compute Nash equilibria
more efficiently by iteratively constructing sets of deeper conditional plans
while pruning dominated plans to restrict the search space.

26.6 Exercises
Exercise 26.1. Show that a POMG generalizes both a POMDP and an MG.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

26.6. exercises 543

Consider the multicaregiver crying baby problem solved by dynamic pro-
gramming. Initially, the policies at depth d = 2 are

a1
1

a1
2

a1
2

o1
1

a1
2

o1
2

o1
1

a1
2

a1
2

o1
1

a1
2

o1
2

o1
2

a1
2

a1
2

a1
2

o1
1

a1
2

o1
2

o1
1

a1
2

a1
2

o1
1

a1
2

o1
2

o1
2

a1
3

a1
2

a1
2

o1
1

a1
2

o1
2

o1
1

a1
2

a1
2

o1
1

a1
2

o1
2

o1
2

ag
en

t1
po

lic
ies

a2
1

a2
1

a2
2

o2
1

a2
2

o2
2

o2
1

a2
1

a2
2

o2
1

a2
2

o2
2

o2
2

a2
2

a2
1

a2
2

o2
1

a2
2

o2
2

o2
1

a2
1

a2
2

o2
1

a2
2

o2
2

o2
2

a2
3

a2
1

a2
2

o2
1

a2
2

o2
2

o2
1

a2
1

a2
2

o2
1

a2
2

o2
2

o2
2

ag
en

t2
po

lic
ies

After the pruning step, the agent policies are

a1
1

a1
2

a1
2

o1
1

a1
2

o1
2

o1
1

a1
2

a1
2

o1
1

a1
2

o1
2

o1
2

ag
en

t1
po

lic
ies

a2
2

a2
1

a2
2

o2
1

a2
2

o2
2

o2
1

a2
1

a2
2

o2
1

a2
2

o2
2

o2
2

ag
en

t2
po

lic
ies

In this case, the pruning step finds the best joint policy. This approach signif-
icantly reduces the number of possible joint policies that the next iteration of
the algorithm needs to consider.

Example 26.5. Dynamic program-
ming and a single pruning step
for the multicaregiver crying baby
problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

544 chapter 26. state uncertainty

Solution: For any POMDP, we can define a POMG with one agent I = {1}. States S are
identical, as are actions A = (A1) and observations O = (O1). Thus, the state transition,
observation function, and rewards of the POMG directly follow. The Nash equilibrium
optimization has only one agent, so it results in a simple maximization of expected value,
which is identical to a POMDP.

For any MG, we can define a POMG with the same agents I , states S , joint actions A,
transitions T, and joint rewards R. The individual observations are assigned to be states
Oi = S . The observation function then deterministically provides each agent with the true
state O(o | a, s′) = 1 if o = (s′, . . . , s′), and 0 otherwise.

Exercise 26.2. How can we incorporate communication between agents into the POMG
framework?

Solution: The action space for the agents can be augmented to include communication
actions. The other agents can observe these communication actions according to their
observation model.

Exercise 26.3. Do agents always have an incentive to communicate?

Solution:Agents in POMGs are often competitive, in which case there would be no incentive
to communicate with others. If their rewards are aligned to some degree, they may be
inclined to communicate.

Exercise 26.4. How many possible joint conditional plans are there of depth d?

Solution: Recall that there are |A|(|O|d−1)/(|O|−1) possible d-step single-agent conditional
plans. We can construct a joint policy of conditional plans using every combination of these
single-agent conditional plans across agents. The number of d-step multiagent conditional
plans is

∏
i∈I
|Ai|(|Oi |d−1)/(|Oi |−1)

Exercise 26.5. Define the best response for a POMG in terms of an agent i’s utilities Uπ,i.
Propose the iterated best response for POMGs.

Solution: The best response πi of agent i to other agents’ policies π−i is defined following
equation (24.2) for an initial belief b:

Uπi ,π−i ,i(b) ≥ Uπi ′ ,π−i ,i(b)

with any other policy πi ′. For conditional plans, Uπ,i is defined by equations (26.1)
and (26.2).

The implementation of iterated best response follows from section 24.2.1. First, the
conditional plans and simple game can be created, as in algorithm 26.3. Then, we can
iterate best response using algorithm 24.8.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

27 Collaborative Agents

Manymultiagent domains are collaborative, where all agents act independently in
an environment while working toward a common shared objective. Applications
range from robotic search and rescue to interplanetary exploration rovers. The
decentralized partially observable Markov decision process (Dec-POMDP) captures
the generality of POMGs while focusing on such collaborative agent settings.1

1 D. S. Bernstein, R. Givan, N.
Immerman, and S. Zilberstein,
“The Complexity of Decentralized
Control of Markov Decision Pro-
cesses,” Mathematics of Operation
Research, vol. 27, no. 4, pp. 819–840,
2002. A more comprehensive
introduction is provided by
F.A. Oliehoek and C. Amato, A
Concise Introduction to Decentralized
POMDPs. Springer, 2016.

The model is more amenable to scalable approximate algorithms because of its
single shared objective, as opposed to finding an equilibrium among multiple
individual agent objectives. This chapter presents the Dec-POMDP model, high-
lights its subclasses, and describes algorithms that solve them optimally and
approximately.

27.1 Decentralized Partially Observable Markov Decision Processes

A Dec-POMDP (algorithm 27.1) is a POMG where all agents share the same
objective. Each agent i ∈ I selects a local action ai ∈ Ai based on a history of
local observations oi ∈ Oi. The true state of the system s ∈ S is shared by all
agents. A single reward is generated by R(s, a) based on state s and joint action a.
The goal of all agents is to maximize the shared expected reward over time under
local partial observability. Example 27.1 describes a Dec-POMDP version of the
predator-prey problem.

Consider a predator-prey hex world problem in which a team of predators I
strives to capture a single fleeing prey. The predators move independently.
The prey moves randomly to a neighboring cell not occupied by a predator.
The predators must work together to capture the prey.

Example 27.1. The collaborative
predator-prey problem as a Dec-
POMDP. Additional detail is pro-
vided in appendix F.15.

546 chapter 27. collaborative agents

Many of the same challenges of POMGs persist in Dec-POMDPs, such as
the general inability of agents to maintain a belief state. We focus on policies
represented as conditional plans or controllers. The same algorithms introduced
in the previous chapter can be used to evaluate policies. All that is required is
to create a POMG with Ri(s, a) for each agent i equal to the R(s, a) from the
Dec-POMDP.

struct DecPOMDP
γ # discount factor
ℐ # agents
𝒮 # state space
𝒜 # joint action space
𝒪 # joint observation space
T # transition function
O # joint observation function
R # reward function

end

Algorithm 27.1. Data structure
for a Dec-POMDP. The joint func-
tion from algorithm 24.2 allows the
creation of all combinations of a
set provided, such as 𝒜 or 𝒪. The
tensorform function converts the
Dec-POMDP 𝒫 to a tensor represen-
tation.

27.2 Subclasses

There aremany notable subclasses of Dec-POMDPs. Categorizing these subclasses
is useful when designing algorithms that take advantage of their specific structure.

One attribute of interest is joint full observability, which is when each agent
observes an aspect of the state, such that if theywere to combine their observations,
it would uniquely reveal the true state. The agents, however, do not share their
observations. This property ensures that if O(o | a, s′) > 0 then P(s′ | o) = 1. A
Dec-POMDP with joint full observability is called a decentralized Markov decision
process (Dec-MDP). BothDec-POMDP andDec-MDPproblems areNEXP-complete
when the number of steps in the horizon is fewer than the number of states.2

2 In contrast with the complex-
ity classes NP and PSPACE, it
is known that NEXP is not in P.
Hence, we can prove that Dec-
MDPs and Dec-POMDPs do not
allow for polynomial time algo-
rithms. D. S. Bernstein, R. Givan,
N. Immerman, and S. Zilberstein,
“The Complexity of Decentralized
Control of Markov Decision Pro-
cesses,” Mathematics of Operation
Research, vol. 27, no. 4, pp. 819–840,
2002.

In many settings, the state space of a Dec-POMDP is factored, one for each
agent and one for the environment. This is called a factored Dec-POMDP. We have
S = S0×S1×Sk, where S i is the factored state component associatedwith agent
i and S0 is the factored state component associated with the general environment.
For example, in the collaborative predator-prey problem, each agent has its own
state factor for their location, and the position of the prey is associated with the
environment component of the state space.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

27.2. subclasses 547

In some problems, a factored Dec-POMDP may have one or more of the fol-
lowing properties:

• Transition independence, where agents may not affect each other’s state:

T(s′ | s, a) = T0(s0′ | s0)∏
i

Ti(si ′ | si, ai) (27.1)

• Observation independence, where the observations of agents depend only on
their local state and actions:

O(o | a, s′) = ∏
i

Oi(oi | ai, si ′) (27.2)

• Reward independence, where the reward can be decomposed into multiple inde-
pendent pieces:3 3 Here, we show the combination

of the reward components as a
summation, but any monotoni-
cally nondecreasing function can
be used instead and preserve re-
ward independence.

R(s, a) = R0(s0) + ∑
i

Ri(si, ai) (27.3)

The computational complexity can vary significantly depending on which of
these independence properties are satisfied, as summarized in table 27.1. It is
important to take these independences into account when modeling a problem to
improve scalability.

Independence Complexity
Transitions, observations, and rewards P-complete
Transitions and observations NP-complete
Any other subset NEXP-complete

Table 27.1. The complexity of fac-
tored Dec-POMDPs with different
independence assumptions.

A network distributed partially observable Markov decision process (ND-POMDP)
is a Dec-POMDP with transition and observation independence and a special
reward structure. The reward structure is represented by a coordination graph. In
contrast with the graphs used earlier in this book, a coordination graph is a type of
hypergraph, which allows edges to connect any number of nodes. The nodes in
the ND-POMDP hypergraph correspond to the various agents. The edges relate to
interactions between the agents in the reward function. AnND-POMDP associates
with each edge j in the hypergraph a reward component Rj that depends on the
state and action components to which the edge connects. The reward function in

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

548 chapter 27. collaborative agents

an ND-POMDP is simply the sum of the reward components associated with the
edges. Figure 27.1 shows a coordination graph resulting in a reward function that
can be decomposed as follows:

R123(s1, s2, s3, a1, a2, a3) + R34(s3, s4, a3, a4) + R5(s5, a5) (27.4)

Sensor network and target tracking problems are often framed as ND-POMDPs.

1 2

3

4 5

Figure 27.1. An ND-POMDP struc-
ture with five agents. There are
three hyperedges: one involving
agents 1, 2, and 3; another involv-
ing agents 3 and 4; and another in-
volving agent 5 on its own.

The ND-POMDP model is similar to the transition and observation indepen-
dent Dec-MDPmodel, but it does not make the joint full observability assumption.
Even if all observations are shared, the true state of the world may not be known.
Furthermore, even with factored transitions and observations, a policy in an ND-
POMDP is a mapping from observation histories to actions, unlike the transition
and observation Dec-MDP case, in which policies are mappings from local states
to actions. The worst-case complexity remains the same as for a Dec-POMDP, but
algorithms for ND-POMDPs are typically much more scalable in the number of
agents. Scalability can increase as the coordination graph becomes less connected.

If the agents are able to communicate their actions and observations perfectly
without penalty, then they are able to maintain a collective belief state. This
model is called a multiagent MDP (MMDP) or a multiagent POMDP (MPOMDP).
MMDPs and MPOMDPs can also result when there is transition, observation,
and reward independence. Any MDP or POMDP algorithm discussed in earlier
chapters can be applied to solve these problems.

Table 27.2 summarizes some of these subclasses. Figure 27.2 illustrates the
relationships among the models discussed in this book.

Agents Observability Communication Model
Single Full — MDP
Single Partial — POMDP
Multiple Full Free MMDP
Multiple Full General MMDP
Multiple Joint full Free MMDP
Multiple Joint full General Dec-MDP
Multiple Partial Free MPOMDP
Multiple Partial General Dec-POMDP

Table 27.2. Dec-POMDP sub-
classes categorized by type and
computational complexity. ‘‘Ob-
servability’’ refers to the degree to
which the shared state is observ-
able. ‘‘Communication’’ refers to
whether the cooperative agents can
freely share all observations with
each other. Free communication
happens outside the model (e.g., a
high-speed wireless connection in
robots). General communication is
when agents do not have this avail-
able and must communicate (typi-
cally imperfectly) via their actions.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

27.3. dynamic programming 549

POMG

I-POMDP Dec-POMDP

ND-POMDPDec-MDP MPOMDP

MMDPMG

Simple Game

POMDP

MDP

Simple Decision
P PSPACE NEXP PPAD or worse

Figure 27.2. A taxonomy for the
models discussed in this book. Par-
ents generalize their children in
this diagram. For example, Dec-
POMDPs generalize POMDPs by
supporting multiple agents. The
color of the nodes indicate compu-
tational complexity, as indicated in
the key at the bottom left of the fig-
ure. The complexities listed here
are for the common model, pol-
icy, and objective formulations pre-
sented in this book. For a more de-
tailed treatment, see C. Papadim-
itriou and J. Tsitsiklis, “The Com-
plexity of Markov Decision Pro-
cesses,” Mathematics of Operation
Research, vol. 12, no. 3, pp. 441–450,
1987. Also, see S. Seuken and S. Zil-
berstein, “Formal Models and Al-
gorithms for Decentralized Deci-
sion Making Under Uncertainty,”
Autonomous Agents and Multi-Agent
Systems, vol. 17, no. 2, pp. 190–250,
2008.

27.3 Dynamic Programming

The dynamic programming algorithm for Dec-POMDPs applies the Bellman backup
at each step and prunes dominated policies. This process is identical to dynamic
programming for POMGs except that each agent shares the same reward. Algo-
rithm 27.2 implements this procedure.

struct DecPOMDPDynamicProgramming
b # initial belief
d # depth of conditional plans

end

function solve(M::DecPOMDPDynamicProgramming, 𝒫::DecPOMDP)
ℐ, 𝒮, 𝒜, 𝒪, T, O, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
R′(s, a) = [R(s, a) for i in ℐ]
𝒫′ = POMG(γ, ℐ, 𝒮, 𝒜, 𝒪, T, O, R′)
M′ = POMGDynamicProgramming(M.b, M.d)
return solve(M′, 𝒫′)

end

Algorithm 27.2. Dynamic pro-
gramming computes the optimal
joint policy π for a Dec-POMDP
𝒫, given an initial belief b and
horizon depth d. We can directly
use the POMG algorithm, as Dec-
POMDPs are a special collabora-
tive class of POMGs.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

550 chapter 27. collaborative agents

27.4 Iterated Best Response

Instead of exploring joint policies directly, we can perform a form of iterated best
response (algorithm 27.3). In this approach, we iteratively select an agent and
compute a best response policy, assuming that the other agents are following a
fixed policy.4 This approximate algorithm is typically fast because it is choosing 4 This type of algorithm is also

called joint equilibrium-based search
for policies (JESP). R. Nair, M.
Tambe, M. Yokoo, D. Pynadath,
and S. Marsella, “Taming Decen-
tralized POMDPs: Towards Effi-
cient Policy Computation for Mul-
tiagent Settings,” in International
Joint Conference on Artificial Intelli-
gence (IJCAI), 2003. It can be im-
proved further by performing dy-
namic programming.

the best policy for only one agent at a time. Moreover, since all agents share the
same reward, it tends to terminate after relatively few iterations.

Iterated best response begins with a random initial joint policy π1. The process
randomly iterates over the agents. If agent i is selected, its policy πi is updated
with a best response to the other agents’ fixed policies π−i with initial belief
distribution b:

πi ← arg max
πi ′

Uπi ′ ,π−i
(b) (27.5)

with ties favoring the current policy. This process can terminate when agents stop
changing their policies.

While this algorithm is fast and guaranteed to converge, it does not always find
the best joint policy. It relies on iterated best response to find a Nash equilibrium,
but there may be many Nash equilibria, with different utilities associated with
them. This approach will find only one of them.

27.5 Heuristic Search

Instead of expanding all joint policies, heuristic search (algorithm 27.4) explores
a fixed number of policies,5 which, stored over iterations, prevents exponential 5 This approach is also known

as memory-bounded dynamic pro-
gramming (MBDP). S. Seuken and
S. Zilberstein, “Memory-Bounded
Dynamic Programming for Dec-
POMDPs,” in International Joint
Conference on Artificial Intelligence
(IJCAI), 2007. There are other
heuristic search algorithms as well,
such as multiagent A∗ (MMA∗). D.
Szer, F. Charpillet, and S. Zilber-
stein, “MAA*: A Heuristic Search
Algorithm for Solving Decentral-
ized POMDPs,” in Conference on
Uncertainty in Artificial Intelligence
(UAI), 2005.

growth. The heuristic exploration guides the search by attempting to expand the
best joint policies only until depth d is reached.

Each iteration k of the algorithm keeps a set of joint policies Πk. This set initially
consists of all one-step conditional plans. Subsequent iterations begin by fully
expanding the conditional plans. The goal is to add a fixed number of these for
the next iteration.

We prioritize the policies that are more likely to maximize the utility when
deciding among the conditional plans to add to the set. However, since we expand
the conditional plans from the bottom up, we cannot simply evaluate the policies
from the initial belief state b. Instead, we need an estimate of the belief d− k steps
into the future, which we compute by taking random actions and simulating state

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

27.6. nonlinear programming 551

struct DecPOMDPIteratedBestResponse
b # initial belief
d # depth of conditional plans
k_max # number of iterations

end

function solve(M::DecPOMDPIteratedBestResponse, 𝒫::DecPOMDP)
ℐ, 𝒮, 𝒜, 𝒪, T, O, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
b, d, k_max = M.b, M.d, M.k_max
R′(s, a) = [R(s, a) for i in ℐ]
𝒫′ = POMG(γ, ℐ, 𝒮, 𝒜, 𝒪, T, O, R′)
Π = create_conditional_plans(𝒫, d)
π = [rand(Π[i]) for i in ℐ]
for k in 1:k_max

for i in shuffle(ℐ)
π′(πi) = Tuple(j == i ? πi : π[j] for j in ℐ)
Ui(πi) = utility(𝒫′, b, π′(πi))[i]
π[i] = argmax(Ui, Π[i])

end
end
return Tuple(π)

end

Algorithm 27.3. Iterated best re-
sponse for a collaborative Dec-
POMDP 𝒫 performs a determin-
istic best response for each agent
to rapidly search the space of con-
ditional plan policies. The solve
function executes this procedure
for up to k_max steps, maximizing
the value at an initial belief b for
conditional plans of depth d.

transitions and observations, updating the belief along the way. This belief at
iteration k is denoted as bk. For each available joint policy π ∈ Πk, the utility
Uπ(bk) is examined to find a utility-maximizing joint policy to add. Example 27.2
demonstrates the process.

27.6 Nonlinear Programming

We can use nonlinear programming (NLP) (algorithm 27.5) to find an optimal joint
controller policy representation of a fixed size.6 This method generalizes the NLP

6 C. Amato, D. S. Bernstein,
and S. Zilberstein, “Optimizing
Fixed-Size Stochastic Controllers
for POMDPs and Decentralized
POMDPs,” Autonomous Agents and
Multi-Agent Systems, vol. 21, no. 3,
pp. 293–320, 2010.

approach for POMDPs from section 23.3.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

552 chapter 27. collaborative agents

struct DecPOMDPHeuristicSearch
b # initial belief
d # depth of conditional plans
π_max # number of policies

end

function solve(M::DecPOMDPHeuristicSearch, 𝒫::DecPOMDP)
ℐ, 𝒮, 𝒜, 𝒪, T, O, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
b, d, π_max = M.b, M.d, M.π_max
R′(s, a) = [R(s, a) for i in ℐ]
𝒫′ = POMG(γ, ℐ, 𝒮, 𝒜, 𝒪, T, O, R′)
Π = [[ConditionalPlan(ai) for ai in 𝒜[i]] for i in ℐ]
for t in 1:d

allΠ = expand_conditional_plans(𝒫, Π)
Π = [[] for i in ℐ]
for z in 1:π_max

b′ = explore(M, 𝒫, t)
π = argmax(π -> first(utility(𝒫′, b′, π)), joint(allΠ))
for i in ℐ

push!(Π[i], π[i])
filter!(πi -> πi != π[i], allΠ[i])

end
end

end
return argmax(π -> first(utility(𝒫′, b, π)), joint(Π))

end

function explore(M::DecPOMDPHeuristicSearch, 𝒫::DecPOMDP, t)
ℐ, 𝒮, 𝒜, 𝒪, T, O, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.T, 𝒫.O, 𝒫.R, 𝒫.γ
b = copy(M.b)
b′ = similar(b)
s = rand(SetCategorical(𝒮, b))
for τ in 1:t

a = Tuple(rand(𝒜i) for 𝒜i in 𝒜)
s′ = rand(SetCategorical(𝒮, [T(s,a,s′) for s′ in 𝒮]))
o = rand(SetCategorical(joint(𝒪), [O(a,s′,o) for o in joint(𝒪)]))
for (i′, s′) in enumerate(𝒮)

po = O(a, s′, o)
b′[i′] = po*sum(T(s,a,s′)*b[i] for (i,s) in enumerate(𝒮))

end
normalize!(b′, 1)
b, s = b′, s′

end
return b′

end

Algorithm 27.4. Memory-
bounded heuristic search uses
a heuristic function to search
the space of conditional plans
for a Dec-POMDP 𝒫. The solve
function tries to maximize the
value at an initial belief b for joint
conditional plans of depth d. The
explore function generates a belief
t steps into the future by taking
random actions and simulating
actions and observations. The
algorithm is memory-bounded,
keeping only π_max conditional
plans per agent.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

27.6. nonlinear programming 553

Consider the collaborative predator-prey problem shown at right. We apply
heuristic search to a depth of d = 3, with three policies retained at each
iteration. After iteration k = 1, the policies are

a1
6

a1
1

o1
1

a1
1

o1
2

a1
6

a1
2

o1
1

a1
2

o1
2

a1
6

a1
3

o1
1

a1
3

o1
2

ag
en

t1
po

lic
ies

a2
1

a2
1

o2
1

a2
1

o2
2

a2
1

a2
2

o2
1

a2
2

o2
2

a2
1

a2
3

o2
1

a2
3

o2
2

ag
en

t2
po

lic
ies

At the next iteration k = 2, heuristic search again starts at the initial belief
and takes d− k = 3− 2 = 1 steps following the heuristic exploration. The
explored beliefs used to select the next three conditional plans are

b1 = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.17

0.0, 0.03, 0.01, 0.0, 0.0, 0.05, 0.0

0.01, 0.23, 0.0, 0.08, 0.01, 0.0, 0.0

0.14, 0.0, 0.03, 0.22, 0.0, 0.01]

b2 = [0.0, 0.21, 0.03, 0.0, 0.04, 0.01, 0.0

0.05, 0.01, 0.0, 0.08, 0.03, 0.0, 0.0

0.01, 0.0, 0.0, 0.01, 0.08, 0.34, 0.03

0.02, 0.05, 0.01, 0.0, 0.01, 0.0]

b3 = [0.0, 0.03, 0.01, 0.0, 0.03, 0.01, 0.0

0.15, 0.05, 0.0, 0.01, 0.0, 0.0, 0.0

0.0, 0.0, 0.0, 0.03, 0.06, 0.11, 0.32

0.06, 0.03, 0.01, 0.01, 0.04, 0.06]

The policies after iteration k = 2 are
a1

3

a1
6

a1
1

o1
1

a1
1

o1
2

o1
1

a1
6

a1
1

o1
1

a1
1

o1
2

o1
2

a1
1

a1
6

a1
1

o1
1

a1
1

o1
2

o1
1

a1
6

a1
1

o1
1

a1
1

o1
2

o1
2

a1
1

a1
6

a1
2

o1
1

a1
2

o1
2

o1
1

a1
6

a1
2

o1
1

a1
2

o1
2

o1
2

ag
en

t1
po

lic
ies

a2
4

a2
1

a2
1

o2
1

a2
1

o2
2

o2
1

a2
1

a2
1

o2
1

a2
1

o2
2

o2
2

a2
3

a2
1

a2
1

o2
1

a2
1

o2
2

o2
1

a2
1

a2
1

o2
1

a2
1

o2
2

o2
2

a2
3

a2
1

a2
2

o2
1

a2
2

o2
2

o2
1

a2
1

a2
2

o2
1

a2
2

o2
2

o2
2

ag
en

t2
po

lic
ies

The beliefswere used to determine the root node’s action and the two subtrees
below it. These subtrees are built from the prior iteration’s trees.

Example 27.2. Heuristic search
exploration and conditional plan
expansion for the collaborative
predator-prey hex world problem
shown here. The predators are red
and green. The prey is blue.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

554 chapter 27. collaborative agents

Given a fixed set of nodes Xi for each agent i, initial belief b, and initial joint
nodes x1, the optimization problem is

maximize
U,ψ,η

∑
s

b(s)U(x1, s)

subject to U(x, s) = ∑
a

∏
i

ψi(ai | xi)

(

R(s, a) + γ ∑
s′

T(s′ | s, a)∑
o

O(o | a, s′)∑
x′

∏
i

ηi(xi ′ | xi, ai, oi)U(x′, s′)

)

for all x, s

ψi(ai | xi) ≥ 0 for all i, xi, ai

∑
a

ψi(ai | xi) = 1 for all i, xi

ηi(xi ′ | xi, ai, oi) ≥ 0 for all i, xi, ai, oi, xi ′

∑
xi ′

ηi(xi ′ | xi, ai, oi) = 1 for all i, xi, ai, oi

(27.6)

27.7 Summary

• Dec-POMDPs are fully cooperative POMGs that model a team of agents work-
ing together toward a shared goal, each acting individually using only local
information.

• Because determining a belief state is infeasible, as in POMGs, policies are
generally represented as conditional plans or controllers, allowing each agent
to map individual sequences of observations to individual actions.

• Many subclasses of Dec-POMDPs exist, with different degrees of computa-
tional complexity.

• Dynamic programming computes the value function iteratively, pruning dom-
inated policies as it iterates using a linear program.

• Iterated best response computes a best utility-maximizing response policy for
a single agent at a time, iteratively converging to a joint equilibrium.

• Heuristic search searches a fixed subset of policies at each iteration, guided by
a heuristic.

• Nonlinear programming can be used to generate controllers of a fixed size.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

27.7. summary 555

struct DecPOMDPNonlinearProgramming
b # initial belief
ℓ # number of nodes for each agent

end

function tensorform(𝒫::DecPOMDP)
ℐ, 𝒮, 𝒜, 𝒪, R, T, O = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒪, 𝒫.R, 𝒫.T, 𝒫.O
ℐ′ = eachindex(ℐ)
𝒮′ = eachindex(𝒮)
𝒜′ = [eachindex(𝒜i) for 𝒜i in 𝒜]
𝒪′ = [eachindex(𝒪i) for 𝒪i in 𝒪]
R′ = [R(s,a) for s in 𝒮, a in joint(𝒜)]
T′ = [T(s,a,s′) for s in 𝒮, a in joint(𝒜), s′ in 𝒮]
O′ = [O(a,s′,o) for a in joint(𝒜), s′ in 𝒮, o in joint(𝒪)]
return ℐ′, 𝒮′, 𝒜′, 𝒪′, R′, T′, O′

end

function solve(M::DecPOMDPNonlinearProgramming, 𝒫::DecPOMDP)
𝒫, γ, b = 𝒫, 𝒫.γ, M.b
ℐ, 𝒮, 𝒜, 𝒪, R, T, O = tensorform(𝒫)
X = [collect(1:M.ℓ) for i in ℐ]
jointX, joint𝒜, joint𝒪 = joint(X), joint(𝒜), joint(𝒪)
x1 = jointX[1]
model = Model(Ipopt.Optimizer)
@variable(model, U[jointX,𝒮])
@variable(model, ψ[i=ℐ,X[i],𝒜[i]] ≥ 0)
@variable(model, η[i=ℐ,X[i],𝒜[i],𝒪[i],X[i]] ≥ 0)
@objective(model, Max, b⋅U[x1,:])
@NLconstraint(model, [x=jointX,s=𝒮],

U[x,s] == (sum(prod(ψ[i,x[i],a[i]] for i in ℐ)
*(R[s,y] + γ*sum(T[s,y,s′]*sum(O[y,s′,z]

*sum(prod(η[i,x[i],a[i],o[i],x′[i]] for i in ℐ)
*U[x′,s′] for x′ in jointX)

for (z, o) in enumerate(joint𝒪)) for s′ in 𝒮))
for (y, a) in enumerate(joint𝒜))))

@constraint(model, [i=ℐ,xi=X[i]],
sum(ψ[i,xi,ai] for ai in 𝒜[i]) == 1)

@constraint(model, [i=ℐ,xi=X[i],ai=𝒜[i],oi=𝒪[i]],
sum(η[i,xi,ai,oi,xi′] for xi′ in X[i]) == 1)

optimize!(model)
ψ′, η′ = value.(ψ), value.(η)
return [ControllerPolicy(𝒫, X[i],

Dict((xi,𝒫.𝒜[i][ai]) => ψ′[i,xi,ai]
for xi in X[i], ai in 𝒜[i]),

Dict((xi,𝒫.𝒜[i][ai],𝒫.𝒪[i][oi],xi′) => η′[i,xi,ai,oi,xi′]
for xi in X[i], ai in 𝒜[i], oi in 𝒪[i], xi′ in X[i]))

for i in ℐ]
end

Algorithm27.5. NLP computes the
optimal joint controller policy π for
a Dec-POMDP 𝒫, given an initial
belief b and number of controller
nodes ℓ for each agent. This gen-
eralizes the NLP solution in algo-
rithm 23.5.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

556 chapter 27. collaborative agents

27.8 Exercises
Exercise 27.1. Why is a Dec-MDP with joint full observability different from agents
knowing the state?

Solution: Full joint observability means if agents were to share their individual observations,
then the team would know the true state. This can be done offline during planning. Thus
in Dec-MDPs, the true state is essentially known during planning. The issue is that it
requires agents to share their individual observations, which cannot be done online during
execution. Therefore, planning still needs to reason about the uncertain observations made
by the other agents.

Exercise 27.2. Propose a fast algorithm for a Dec-MDP with transition, observation, and
reward independence. Prove that it is correct.

Solution: If a factored Dec-MDP satisfies all three independence assumptions, then we can
solve it as |I| separate MDPs. The resulting policy πi for each agent i’s MDP can then be
combined to form the optimal joint policy. To prove this fact, consider the utility of each
agent’s individual MDP:

Uπi
(si) = R

(

si, πi()
)

+ γ

[

∑
si ′

Ti
(

si ′ | si, πi()
)

∑
oi

Oi
(

oi | πi(), si ′
)

Uπi(oi)(si ′)

]

As in equation (26.1), πi() refers to the root action of i’s conditional plan, and πi(oi)

refers to i’s subplans after making observation oi. We sum up each of their individual
contributions as follows:

∑
i

Uπi
(s) = ∑

i

[

R
(

si, πi()
)

+ γ

[

∑
si ′

Ti
(

si ′ | si, πi()
)

∑
oi

Oi
(

oi | πi(), si ′
)

Uπi(oi)(si ′)

]]

We can combine Ti and Oi into a single probability distribution P, move the summation,
and apply the definition of reward independence:

∑
i

Uπi
(s) = ∑

i

[

R
(

si, πi()
)

+ γ

[

∑
si ′

P
(

si ′ | si, πi()
)

∑
oi

P
(

oi | πi(), si ′
)

Uπi(oi)(si ′)

]]

= ∑
i

R
(

si, πi()
)

+ ∑
i

[

γ

[

∑
si ′

P
(

si ′ | si, πi()
)

∑
oi

P
(

oi | πi(), si ′
)

Uπi(oi)(si ′)

]]

= R(s, π()) + ∑
i

[

γ

[

∑
si ′

P
(

si ′ | si, πi()
)

∑
oi

P
(

oi | πi(), si ′
)

Uπi(oi)(si ′)

]]

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

27.8. exercises 557

Now, we marginalize over all successors s and observations o. Because of the transition
and observation independence, we can freely condition the distributions on these other
non-i state and observation factors, which is the same as conditioning on s and o. We can
then apply the definition of transition and observation independence. Finally, we can move
the summation in and recognize Uπ(s) results:

∑
i

Uπi
(s) = R(s,π()) + ∑

i

[

γ

[

∑
s′

P
(

s′ | si, πi()
)

∑
o

P
(

o | πi(), si ′
)

Uπi(oi)(si ′)

]]

= R(s,π()) + ∑
i

γ

∑
s′

P
(

s0′ | s0
)

∏
j

P
(

sj ′ | si, πi()
)

∑
o

∏
j

P
(

oj | πi(), si ′
)

Uπi(oi)(si ′)

= R(s,π()) + ∑
i

γ

∑
s′

P
(

s0′ | s0
)

∏
j

P
(

sj ′ | s, π()
)

∑
o

∏
j

P
(

oj | π(), s′
)

Uπi(oi)(si ′)

= R(s,π()) + ∑
i

[

γ

[

∑
s′

T
(

s′ | s,π()
)

∑
o

O
(

o | π(), s′
)

Uπi(oi)(si ′)

]]

= R(s,π()) + γ

[

∑
s′

T
(

s′ | s,π()
)

∑
o

O
(

o | π(), s′
)

[

∑
i

Uπi(oi)(si ′)

]]

= R(s,π()) + γ

[

∑
s′

T
(

s′ | s,π()
)

∑
o

O
(

o | π(), s′
)

Uπ(o)(s′)

]

= Uπ(s)

This is the Dec-MDP utility function derived from equation (26.1), completing the proof.

Exercise 27.3. How can we use an MMDP or MPOMDP as a heuristic in Dec-POMDP
heuristic search?

Solution: We can assume free communication for planning. At each time step t, all agents
know at and ot, allowing us to maintain a multiagent belief bt, resulting in an MPOMDP.
This MPOMDP solution can be used as a heuristic to guide the search of policy trees.
Alternatively, we create a heuristic where we assume that the true state and joint actions
are known. This results in an MMDP, and it can also be used as a heuristic. These assump-
tions are used only for planning. Execution is still a Dec-POMDP wherein agents receive
individual observations without free communication. Either heuristic results in a joint
policy π̂ for heuristic exploration.

Exercise 27.4. How can we compute a best response controller? Describe how this could
be used in an iterated best response.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

558 chapter 27. collaborative agents

Solution: For an agent i, the best response controller Xi, ψi, and ηi can be computed by
solving a nonlinear program. The program is similar to what is given in section 27.6, except
that X−i, ψ−i, and η−i are now given and are no longer variables:

maximize
U,ψi ,ηi

∑
s

b(s)U(x1, s)

subject to U(x, s) = ∑
a

∏
i

ψi(ai | xi)

(

R(s, a) + γ ∑
s′

T(s′ | s, a)∑
o

O(o | a, s′)∑
x′

∏
i

ηi(xi ′ | xi, ai, oi)U(x′, s′)

)

for all x, s

ψi(ai | xi) ≥ 0 for all xi, ai

∑
a

ψi(ai | xi) = 1 for all xi

ηi(xi ′ | xi, ai, oi) ≥ 0 for all xi, ai, oi, xi ′

∑
xi ′

ηi(xi ′ | xi, ai, oi) = 1 for all xi, ai, oi

Adapting algorithm 27.3 for controller policies, this program replaces the inner best
response operation.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

appendices

A Mathematical Concepts

This appendix provides a brief overview of some of the mathematical concepts
used in this book.

A.1 Measure Spaces

Before introducing the definition of a measure space, we will first discuss the
notion of a sigma-algebra over a set Ω. A sigma-algebra is a collection Σ of subsets
of Ω such that

1. Ω ∈ Σ.

2. If E ∈ Σ, then Ω \ E ∈ Σ (closed under complementation).

3. If E1, E2, E3, . . . ∈ Σ, then E1 ∪ E2 ∪ E3 . . . ∈ Σ (closed under countable unions).

An element E ∈ Σ is called a measurable set.
A measure space is defined by a set Ω, a sigma-algebra Σ, and a measure µ : Ω→

R ∪ {∞}. For µ to be a measure, the following properties must hold:

1. If E ∈ Σ, then µ(E) ≥ 0 (nonnegativity).

2. µ(∅) = 0.

3. If E1, E2, E3, . . . ∈ Σ are pairwise disjoint, then µ(E1 ∪ E2 ∪ E3 . . .) = µ(E1) +

µ(E2) + µ(E3) + · · · (countable additivity).

562 appendix a. mathematical concepts

A.2 Probability Spaces

A probability space is ameasure space (Ω, Σ, µ)with the requirement that µ(Ω) = 1.
In the context of probability spaces, Ω is called the sample space, Σ is called the
event space, and µ (or, more commonly, P) is the probability measure. The probability
axioms1 refer to the nonnegativity and countable additivity properties of measure

1 These axioms are sometimes
called the Kolmorogov axioms.
A. Kolmogorov, Foundations of
the Theory of Probability, 2nd ed.
Chelsea, 1956.

spaces, together with the requirement that µ(Ω) = 1.

A.3 Metric Spaces

A set with a metric is called a metric space. A metric d, sometimes called a distance
metric, is a function that maps pairs of elements in X to nonnegative real numbers
such that for all x, y, z ∈ X:
1. d(x, y) = 0 if and only if x = y (identity of indiscernibles).
2. d(x, y) = d(y, x) (symmetry).
3. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

A.4 Normed Vector Spaces

A normed vector space consists of a vector space X and a norm ‖·‖ thatmaps elements
of X to nonnegative real numbers such that for all scalars α and vectors x, y ∈ X:
1. ‖x‖ = 0 if and only if x = 0.
2. ‖αx‖ = |α|‖x‖ (absolutely homogeneous).
3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

The Lp norms are a commonly used set of norms parameterized by a scalar
p ≥ 1. The Lp norm of vector x is

‖x‖p = lim
ρ→p

(|x1|ρ + |x2|ρ + · · ·+ |xn|ρ)
1
ρ (A.1)

where the limit is necessary for defining the infinity norm, L∞. Several Lp norms
are shown in figure A.1.

Norms can be used to induce distance metrics in vector spaces by defining the
metric d(x, y) = ‖x− y‖. We can then, for example, use an Lp norm to define
distances.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

a.4. normed vector spaces 563

L1: ‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|
This metric is often referred to as the taxicab
norm.

L2: ‖x‖2 =
√

x2
1 + x2

2 + · · ·+ x2
n

This metric is often referred to as the
Euclidean norm.

L∞: ‖x‖∞ = max(|x1|, |x2|, · · · , |xn|)
This metric is often referred to as the max
norm, Chebyshev norm, or chessboard norm.
The latter name comes from the minimum
number of moves that a king needs to move
between two squares in chess.

Figure A.1. Common Lp norms.
The illustrations show the shape of
the norm contours in two dimen-
sions. All points on the contour are
equidistant from the origin under
that norm.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

564 appendix a. mathematical concepts

A.5 Positive Definiteness

A symmetric matrix A is positive definite if x⊤Ax is positive for all points other than
the origin. In otherwords, x⊤Ax > 0 for all x 6= 0. A symmetricmatrixA is positive
semidefinite if x⊤Ax is always nonnegative. In other words, x⊤Ax ≥ 0 for all x.

A.6 Convexity

A convex combination of two vectors x and y is the result of

αx + (1− α)y (A.2)

for some α ∈ [0, 1]. Convex combinations can be made from m vectors:

w1v(1) + w2v(2) + · · ·+ wmv(m) (A.3)

with nonnegative weights w that sum to 1.
A convex set is a set for which a line drawn between any two points in the set is

entirely within the set. Mathematically, a set S is convex if we have

αx + (1− α)y ∈ S (A.4)

for all x, y in S and for all α in [0, 1]. A convex and a nonconvex set are shown in
figure A.2.

a convex set a nonconvex set

FigureA.2. Convex and nonconvex
sets.

A convex function is a bowl-shaped function whose domain is a convex set. By
‘‘bowl-shaped,’’ we mean that it is a function such that any line drawn between
two points in its domain does not lie below the function. A function f is convex
over a convex set S if, for all x, y in S and for all α in [0, 1],

f (αx + (1− α)y) ≤ α f (x) + (1− α) f (y) (A.5)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

a.7. information content 565

Convex
Concave

x

f(
x
)

FigureA.3. Convex and nonconvex
portions of a function.

Convex and concave regions of a function are shown in figure A.3.
A function f is strictly convex over a convex set S if, for all x, y in S and α in

(0, 1),
f (αx + (1− α)y) < α f (x) + (1− α) f (y) (A.6)

Strictly convex functions have at most one minimum, whereas a convex function
can have flat regions.2 Examples of strict and nonstrict convexity are shown in

2 Optimization of convex functions
is the subject of the textbook by S.
Boyd and L. Vandenberghe, Con-
vex Optimization. Cambridge Uni-
versity Press, 2004.

figure A.4.

x∗
ex

strictly convex function with
one global minimum

convex function without a
unique global minimum

strictly convex function
without a global minimum

Figure A.4. Not all convex func-
tions have single global minima.A function f is concave if − f is convex. Furthermore, f is strictly concave if − f

is strictly convex.

A.7 Information Content

If we have a discrete distribution that assigns probability P(x) to value x, the
information content3 of observing x is given by

3 Sometimes information content is
referred to as Shannon information,
in honor of Claude Shannon, the
founder of the field of information
theory. C. E. Shannon, “A Math-
ematical Theory of Communica-
tion,” Bell System Technical Journal,
vol. 27, no. 4, pp. 623–656, 1948.I(x) = − log P(x) (A.7)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

566 appendix a. mathematical concepts

The unit of information content depends on the base of the logarithm. We
generally assume natural logarithms (with base e), making the unit nat, which is
short for natural. In information theoretic contexts, the base is often 2, making the
unit bit. We can think of this quantity as the number of bits required to transmit
the value x according to an optimal message encoding when the distribution over
messages follows the specified distribution.

A.8 Entropy

Entropy is an information theoretic measure of uncertainty. The entropy associated
with a discrete random variable X is the expected information content:

H(X) = Ex[I(x)] = ∑
x

P(x)I(x) = −∑
x

P(x) log P(x) (A.8)

where P(x) is the mass assigned to x.
For a continuous distribution where p(x) is the density assigned to x, the

differential entropy (also known as continuous entropy) is defined to be

h(X) =
∫

p(x)I(x) dx = −
∫

p(x) log p(x)dx (A.9)

A.9 Cross Entropy

The cross entropy of one distribution relative to another can be defined in terms
of expected information content. If we have one discrete distribution with mass
function P(x) and another with mass function Q(x), then the cross entropy of P

relative to Q is given by

H(P, Q) = −Ex∼P[log Q(x)] = −∑
x

P(x) log Q(x) (A.10)

For continuous distributions with density functions p(x) and q(x), we have

H(p, q) = −
∫

p(x) log q(x)dx (A.11)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

a.10. relative entropy 567

A.10 Relative Entropy

Relative entropy, also called the Kullback-Leibler (KL) divergence, is a measure of
how one probability distribution is different from a reference distribution.4 If 4 Named for the two American

mathematicians who introduced
this measure, Solomon Kullback
(1907–1994) and Richard A.
Leibler (1914–2003). S. Kullback
and R.A. Leibler, “On Informa-
tion and Sufficiency,” Annals of
Mathematical Statistics, vol. 22,
no. 1, pp. 79–86, 1951. S. Kullback,
Information Theory and Statistics.
Wiley, 1959.

P(x) and Q(x) are mass functions, then the KL divergence from Q to P is the
expectation of the logarithmic differences, with the expectation using P:

DKL(P || Q) = ∑
x

P(x) log
P(x)

Q(x)
= −∑

x

P(x) log
Q(x)

P(x)
(A.12)

This quantity is defined only if the support of P is a subset of that of Q. The
summation is over the support of P to avoid division by zero.

For continuous distributions with density functions p(x) and q(x), we have

DKL(p || q) =
∫

p(x) log
p(x)

q(x)
dx = −

∫

p(x) log
q(x)

p(x)
dx (A.13)

Similarly, this quantity is defined only if the support of p is a subset of that of q.
The integral is over the support of p to avoid division by zero.

A.11 Gradient Ascent

Gradient ascent is a general approach for attempting to maximize a function f (x)

when f is a differentiable function. We begin at a point x and iteratively apply
the following update rule:

x← x + α∇ f (x) (A.14)
where α > 0 is called a step factor. The idea of this optimization approach is that
we take steps in the direction of the gradient until reaching a local maximum.
There is no guarantee that we will find a global maximum using this method.
Small values for α will generally require more iterations to come close to a local
maximum. Large values for α will often result in bouncing around the local
optimum without quite reaching it. If α is constant over iterations, it is sometimes
called a learning rate. Many applications involve a decaying step factor, where, in
addition to updating x at each iteration, we update α according to

α← γα (A.15)

where 0 < γ < 1 is the decay factor.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

568 appendix a. mathematical concepts

A.12 Taylor Expansion

The Taylor expansion,5 also called the Taylor series, of a function is important to 5 Named for the English mathe-
matician Brook Taylor (1685–1731)
who introduced the concept.many approximations used in this book. From the first fundamental theorem of

calculus,6 we know that 6 The first fundamental theorem of
calculus relates a function to the
integral of its derivative:

f (b)− f (a) =
∫ b

a
f ′(x)dx

f (x + h) = f (x) +
∫ h

0
f ′(x + a)da (A.16)

Nesting this definition produces the Taylor expansion of f about x:

f (x + h) = f (x) +
∫ h

0

(

f ′(x) +
∫ a

0
f ′′(x + b)db

)

da (A.17)

= f (x) + f ′(x)h +
∫ h

0

∫ a

0
f ′′(x + b)db da (A.18)

= f (x) + f ′(x)h +
∫ h

0

∫ a

0

(

f ′′(x) +
∫ b

0
f ′′′(x + c)dc

)

db da (A.19)

= f (x) + f ′(x)h +
f ′′(x)

2!
h2 +

∫ h

0

∫ a

0

∫ b

0
f ′′′(x + c)dc db da (A.20)

... (A.21)

= f (x) +
f ′(x)

1!
h +

f ′′(x)

2!
h2 +

f ′′′(x)

3!
h3 + . . . (A.22)

=
∞

∑
n=0

f (n)(x)

n!
hn (A.23)

In the formulation given here, x is typically fixed and the function is evaluated
in terms of h. It is often more convenient to write the Taylor expansion of f (x)

about a point a such that it remains a function of x:

f (x) =
∞

∑
n=0

f (n)(a)

n!
(x− a)n (A.24)

The Taylor expansion represents a function as an infinite sum of polynomial
terms based on repeated derivatives at a single point. Any analytic function can
be represented by its Taylor expansion within a local neighborhood.

A function can be locally approximated by using the first few terms of the Taylor
expansion. Figure A.5 shows increasingly better approximations for cos(x) about
x = 1. Including more terms increases the accuracy of the local approximation,
but error still accumulates as one moves away from the expansion point.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

a.13. monte carlo estimation 569

−4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

x

cos(x)

0th degree
1st degree
2nd degree
3rd degree
4th degree
5th degree

Figure A.5. Successive approxima-
tions of cos(x) about 1 based on
the first n terms of the Taylor ex-
pansion.

A linear Taylor approximation uses the first two terms of the Taylor expansion:
f (x) ≈ f (a) + f ′(a)(x− a) (A.25)

A quadratic Taylor approximation uses the first three terms:

f (x) ≈ f (a) + f ′(a)(x− a) +
1

2
f ”(a)(x− a)2 (A.26)

and so on.
In multiple dimensions, the Taylor expansion about a generalizes to

f (x) = f (a) +∇ f (a)⊤(x− a) +
1

2
(x− a)⊤∇2 f (a)(x− a) + . . . (A.27)

The first two terms form the tangent plane at a. The third term incorporates
local curvature. This book will use only the first three terms shown here.

A.13 Monte Carlo Estimation

Monte Carlo estimation allows us to evaluate the expectation of a function f when
its input x follows a probability density function p:

Ex∼p[f (x)] =
∫

f (x)p(x)dx ≈ 1

n ∑
i

f (x(i)) (A.28)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

570 appendix a. mathematical concepts

where x(1), . . . , x(n) are drawn from p. The variance of the estimate is equal to
Varx∼p[f (x)]/n.

A.14 Importance Sampling

Importance sampling allows us to compute Ex∼p[f (x)] from samples drawn from
a different distribution q:

Ex∼p[f (x)] =
∫

f (x)p(x)dx (A.29)

=
∫

f (x)p(x)
q(x)

q(x)
dx (A.30)

=
∫

f (x)
p(x)

q(x)
q(x)dx (A.31)

= Ex∼q

[

f (x)
p(x)

q(x)

]

(A.32)

The equation above can be approximated using samples x(1), . . . , x(n) drawn from
q:

Ex∼p[f (x)] = Ex∼q

[

f (x)
p(x)

q(x)

]

≈ 1

n ∑
i

f (x(i))
p(x(i))

q(x(i))
(A.33)

A.15 Contraction Mappings

A contraction mapping f is defined with respect to a function over a metric space
such that

d(f (x), f (y)) ≤ αd(x, y) (A.34)
where d is the distance metric associated with the metric space and 0 ≤ α < 1. A
contraction mapping thus reduces the distance between any two members of a
set. Such a function is sometimes referred to as a contraction or contractor.

A consequence of repeatedly applying a contraction mapping is that the dis-
tance between any two members of the set is driven to 0. The contraction mapping
theorem or the Banach fixed-point theorem7 states that every contraction mapping

7 Named for the Polish mathemati-
cian Stefan Banach (1892–1945)
who first stated the theorem.

on a complete,8 nonempty metric space has a unique fixed point. Furthermore,

8 A complete metric space is one
where every Cauchy sequence in
that space converges to a point in
that space. A sequence x1, x2, . . . is
Cauchy if, for every positive real
number ǫ > 0, there is a positive in-
teger n such that for all positive in-
tegers i, j > n, we have d(xi , xj) <
ǫ.

for any element x in that set, repeated application of a contraction mapping to
that element results in convergence to that fixed point.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

a.15. contraction mappings 571

Showing that a function f is a contraction mapping on a metric space is useful
in various convergence proofs associated with the concepts presented earlier. For
example, we can show that the Bellman operator is a contraction mapping on
the space of value functions with the max-norm. Application of the contraction
mapping theorem allows us to prove that repeated application of the Bellman
operator results in convergence to a unique value function. Example A.1 shows a
simple contraction mapping.

Consider the function f(x) = [x2/2 + 1, x1/2 + 1/2]. We can show that f is a
contraction mapping for the set R

2 and the Euclidean distance function:

d(f(x), f(y)) = ‖f(x)− f(y)‖2

= ‖[x2/2 + 1, x1/2 + 1/2]− [y2/2 + 1, y1/2 + 1/2]‖2

= ‖[1
2
(x2 − y2),

1

2
(x1 − y1)]‖2

=
1

2
‖[(x2 − y2), (x1 − y1)]‖2

=
1

2
d(x, y)

We can plot the effect of repeated applications of f to points in R
2 and

show how they converge toward [5/3, 4/3]:

−2 0 2

−2

0

2

x1

x
2

−2 0 2

x1

−2 0 2

x1

Example A.1. A contraction map-
ping for R

2.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

572 appendix a. mathematical concepts

A.16 Graphs

A graph G = (V, E) is defined by a set of nodes (also called vertices) V and edges E.
Figure A.6 shows an example of a graph. An edge e ∈ E is a pair of nodes (vi, vj).
We focus primarily on directed graphs, where the edges are directed and define
parent-child relationships. An edge e = (vi, vj) is often represented graphically
as an arrow from vi to vj with vi as the parent and vj as the child. If there is an
edge connecting vi and vj, then we say that vi and vj are neighbors. The set of all
parents of a node vi is denoted as Pa(vi).

A

E

F

D C

B

Figure A.6. An example of a graph.
Here, Pa(C) = {A, B}. The se-
quence (A, C, E, F) is a directed
path, and (A, C, B) is an undi-
rected path. Node A is a parent of
C and D. Node E is a descendant
of B. Neighbors of C include A, B,
and E.

A path from node vi to node vj is a sequence of edges connecting vi to vj. If this
path can be followed from node to node along the direction of the edges, then we
call it a directed path. An undirected path is a path without regard to the direction
of the edges. A node vj is a descendant of vi if a directed path exists from vi to vj.
A cycle is a directed path from a node to itself. If a graph does not contain any
cycles, it is acyclic.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

B Probability Distributions

This appendix summarizes several families of probability distributions relevant
to the topics introduced in this book.1 The distributions are represented by either 1 These distributions are imple-

mented in Distributions.jl. M.
Besançon, T. Papamarkou, D. An-
thoff, A. Arslan, S. Byrne, D. Lin,
and J. Pearson, “Distributions.jl:
Definition and Modeling of Proba-
bility Distributions in the JuliaStats
Ecosystem,” 2019. arXiv: 1907.0861
1v1.

probability mass functions or probability density functions, and the relevant
functions are provided, along with the parameters that govern each distribution.
Plots show how the various parameters influence the distribution. The index
includes page references to where these distributions are used in the body of the
book. Some distributions are univariate, meaning that they are distributions over
a scalar variable; others are multivariate, meaning that they are distributions over
multiple variables.

Name Parameters Distribution Function
Uniform
U (a, b)

a lower bound
b upper bound

p(x) = 1
b−a

with x ∈ [a, b]

−10 −5 0 5 10
0

0.5

1

x

p
(x
)

a = −1, b = 1

a = 0, b = 3

a = −6, b = −5

a = 5, b = 8

Gaussian
(univariate)
N (µ, σ2)

µ mean
σ2 variance

p(x) = 1
σ φ
(

x−µ
σ

)

where φ(x) = 1√
2π

exp(−x2/2)

with x ∈ R

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

x

p
(x
)

µ = 0, σ = 1

µ = 0, σ = 3

µ = 5, σ = 4

µ = −3, σ = 2

https://arxiv.org/abs/1907.08611v1
https://arxiv.org/abs/1907.08611v1

574 appendix b. probability distributions

Beta
Beta(α, β)

α > 0 shape
β > 0 shape

p(x) = Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1

with x ∈ (0, 1)

0 0.2 0.4 0.6 0.8 1
0

1

2

x

p
(x
)

α = 1, β = 1

α = 5, β = 5

α = 2, β = 5

α = 1, β = 2

Gaussian
(multivariate)
N (µ, Σ)

µ mean
Σ covariance

p(x) = 1
(2π)n/2 |Σ|1/2 exp

(

− 1
2 (x− µ)⊤Σ

−1(x− µ)
)

where n = dim(x)

with x ∈ R
n

−10 −5 0 5 10
−10

−5

0

5

10

x1

x
2

µ = [0, 0], Σ = [1 0; 0 1]

−10 −5 0 5 10

x1

µ = [0, 5], Σ = [3 0; 0 3]

−10 −5 0 5 10

x1

µ = [3, 3], Σ = [4 2; 2 4]

0.00

0.02

0.04

Dirichlet
Dir(α)

α > 0 concentration p(x) = Γ(α0)
∏

n
i=1 Γ(αi)

∏
n
i=1 x

αi−1
i where α0 = ∑i αi

with xi ∈ (0, 1) and ∑i xi = 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1x2

x3

α = [1, 1, 1]

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1x2

x3

α = [5, 5, 5]

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1x2

x3

α = [2, 1, 5]

0

2

4

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

C Computational Complexity

When discussing various algorithms, it is useful to analyze their computational
complexity, which refers to the resources required to run them to completion.1 We 1 The analysis of algorithms rep-

resents a large field within com-
puter science. For an introductory
textbook, see O. Goldreich, Com-
putational Complexity: A Conceptual
Perspective. Cambridge University
Press, 2008. A rigorous treatment
requires the introduction of con-
cepts and computational models,
such as Turing machines, which we
will bypass in our discussion here.

are generally interested in either time or space complexity. This appendix reviews
asymptotic notation, which is what is generally used to characterize complexity.
We then review a few of the complexity classes that are relevant to the algorithms
in the book and discuss the problem of decidability.

C.1 Asymptotic Notation

Asymptotic notation is often used to characterize the growth of a function. This
notation is sometimes called big-Oh notation, since the letter O is used because
the growth rate of a function is often called its order. This notation can be used
to describe the error associated with a numerical method or the time or space
complexity of an algorithm. This notation provides an upper bound on a function
as its argument approaches a certain value.

Mathematically, if f (x) = O(g(x)) as x → a, then the absolute value of f (x) is
bounded by the absolute value of g(x) times some positive and finite c for values
of x sufficiently close to a:

| f (x)| ≤ c|g(x)| for x → a (C.1)

Writing f (x) = O(g(x)) is a common abuse of the equal sign. For example,
x2 = O(x2) and 2x2 = O(x2), but, of course, x2 6= 2x2. In some mathematical
texts, O(g(x)) represents the set of all functions that do not grow faster than g(x).
For example, 5x2 ∈ O(x2). Example C.1 demonstrates asymptotic notation.

If f (x) is a linear combination2 of terms, then O(f) corresponds to the order of

2 A linear combination is a
weighted sum of terms. If
the terms are in a vector x,
then the linear combination is
w1x1 + w2x2 + · · · = w⊤x.the fastest-growing term. Example C.2 compares the orders of several terms.

576 appendix c. computational complexity

Consider f (x) = 106ex as x → ∞. Here, f is a product of the constant 106

and ex. The constant can simply be incorporated into the bounding constant
c as follows:

| f (x)| ≤ c|g(x)|
106|ex| ≤ c|g(x)|
|ex| ≤ c|g(x)|

Thus, f = O(ex) as x → ∞.

Example C.1. Asymptotic notation
for a constant times a function.

Consider f (x) = cos(x) + x + 10x3/2 + 3x2. Here, f is a linear combination
of terms. The terms cos(x), x, x3/2, x2 are arranged in order of increasing
value as x approaches infinity. We plot f (x) along with c|g(x)|, where c has
been chosen for each term such that c|g(x = 2)| exceeds f (x = 2).

0 0.5 1 1.5 2

0

20

40

x
100 101 102 103

100

105

1010

x

f (x) 16x3/2 12x2 6x3

There is no constant c such that f (x) is always less than c|x3/2| for suffi-
ciently large values of x. The same is true for cos(x) and x.

We find that f (x) = O(x3), and in general, f (x) = O(xm) for m ≥ 2, along
with other function classes like f (x) = ex. We typically discuss the order that
provides the tightest upper bound. Thus, f = O(x2) as x → ∞.

Example C.2. Finding the order of
a linear combination of terms.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

c.2. t ime complexity classes 577

C.2 Time Complexity Classes

The difficulty of solving certain problems can be grouped into different time
complexity classes. Important classes that appear frequently throughout this
book include

• P: problems that can be solved in polynomial time,

• NP: problems whose solutions can be verified in polynomial time,

• NP-hard: problems that are at least as hard as the hardest problems in NP, and

• NP-complete: problems that are both NP-hard and in NP.

The formal definitions of these complexity classes are rather involved. It is
generally believed that P 6= NP, but it has not been proven and remains one of
the most important open problems in mathematics. In fact, modern cryptography
depends on the fact that there are no known efficient (i.e., polynomial time)
algorithms for solving NP-hard problems. Figure C.1 illustrates the relationships
among the complexity classes, under the assumption that P 6= NP.

NP

P

NP-hard

NP-complete

Figure C.1. Complexity classes.

A common approach to proving whether a particular problem Q is NP-hard is
to come upwith a polynomial transformation from a knownNP-complete problem3

3 There are many well-known NP-
complete problems, as surveyed by
R.M. Karp, “Reducibility Among
Combinatorial Problems,” in Com-
plexity of Computer Computations,
R. E. Miller and J.W. Thatcher, eds.,
Plenum, 1972, pp. 85–103.

Q′ to an instance of Q. The 3SAT problem is the first knownNP-complete problem
and is discussed in example C.3.

C.3 Space Complexity Classes

Another set of complexity classes pertain to space, referring to the amount of
memory required to execute an algorithm to completion. The complexity class
PSPACE contains the set of all problems that can be solved with a polynomial
amount of space, without any considerations about time. There is a fundamental
difference between time and space complexity, in that time cannot be reused, but
space can be. We know that P and NP are subsets of PSPACE. It is not yet known,
but it is suspected, that PSPACE includes problems not inNP. Through polynomial
time transformations, we can define PSPACE-hard and PSPACE-complete classes,
just as we did with NP-hard and NP-complete classes.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

578 appendix c. computational complexity

The problem of Boolean satisfiability involves determining whether a Boolean
formula is satisfiable. The Boolean formula consists of conjunctions (∧), dis-
junctions (∨), and negations (¬) involving n Boolean variables x1, . . . xn. A
literal is a variable xi or its negation ¬xi. A 3SAT clause is a disjunction of
up to three literals (e.g., x3 ∨ ¬x5 ∨ x6). A 3SAT formula is a conjunction of
3SAT clauses like

F(x1, x2, x3, x4) =

(x1 ∨ x2 ∨ x3) ∧
(¬x1 ∨ ¬x2 ∨ x3) ∧
(x2 ∨ ¬x3 ∨ x4)

The challenge in 3SAT is to determine whether a possible assignment of truth
values to variables exists that makes the formula true. In the formula above,

F(true, false, false, true) = true

Hence, the formula is satisfiable. Although a satisfying assignment can be
easily found for some 3SAT problems, sometimes just by quick inspection,
they are difficult to solve in general. One way to determine whether a satisfy-
ing assignment can be made is to enumerate the 2n possible truth values of
all the variables. Although determining whether a satisfying truth assign-
ment exists is difficult, verification of whether a truth assignment leads to
satisfaction can be done in linear time.

Example C.3. The 3SAT prob-
lem, which is the first known NP-
complete problem.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

c.4. decidability 579

C.4 Decidability

An undecidable problem cannot always be solved in finite time. Perhaps one of
the most famous undecidable problems is the halting problem, which involves
taking any program written in a sufficiently expressive language4 as input and 4 The technical requirement is that

the language is Turing complete or
computationally universal, meaning
that it can be used to simulate any
Turing machine.

deciding whether it will terminate. It was proved that there is no algorithm that
can perform such an analysis in general. Although algorithms exist that can
correctly determine whether some programs terminate, there is no algorithm that
can determine whether any arbitrary program will terminate.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

D Neural Representations

Neural networks are parametric representations of nonlinear functions.1 The func- 1 The name derives from the loose
inspiration of networks of neurons
in biological brains.Wewill not dis-
cuss these biological connections,
but an overview and historical per-
spective is provided by B. Müller,
J. Reinhardt, and M.T. Strickland,
Neural Networks. Springer, 1995.

tion represented by a neural network is differentiable, allowing gradient-based
optimization algorithms such as stochastic gradient descent to optimize their
parameters to better approximate desired input-output relationships.2 Neural

2 This optimization process when
applied to neural networks with
many layers, as we will discuss
shortly, is often called deep learn-
ing. Several textbooks are dedi-
cated entirely to these techniques,
including I. Goodfellow, Y. Bengio,
and A. Courville, Deep Learning.
MIT Press, 2016. The Julia package
Flux.jl provides efficient imple-
mentations of various learning al-
gorithms.

representations can be helpful in a variety of contexts related to decision making,
such as representing probabilistic models, utility functions, and decision policies.
This appendix outlines several relevant architectures.

D.1 Neural Networks

A neural network is a differentiable function y = fθ(x) that maps inputs x to
produce outputs y and is parameterized by θ. Modern neural networks may
have millions of parameters and can be used to convert inputs in the form of
high-dimensional images or video into high-dimensional outputs like multidi-
mensional classifications or speech.

The parameters of the network θ are generally tuned to minimize a scalar loss
function ℓ(fθ(x), y) that is related to how far the network output is from the desired
output. Both the loss function and the neural network are differentiable, allowing
us to use the gradient of the loss function with respect to the parameterization
∇θℓ to iteratively improve the parameterization. This process is often referred to
as neural network training or parameter tuning. It is demonstrated in example D.1.

Neural networks are typically trained on a data set of input-output pairs D. In
this case, we tune the parameters to minimize the aggregate loss over the data
set:

arg min
θ

∑
(x,y)∈D

ℓ(fθ(x), y) (D.1)

582 appendix d. neural representations

Consider a very simple neural network, fθ(x) = θ1 + θ2x. We wish our
neural network to take the square footage x of a home and predict its price
ypred. We want to minimize the square deviation between the predicted
housing price and the true housing price by the loss function ℓ(ypred, ytrue) =
(ypred − ytrue)2. Given a training pair, we can compute the gradient:

∇θℓ(f (x), ytrue) = ∇θ(θ1 + θ2x− ytrue)2

=

[

2(θ1 + θ2x− ytrue)
2(θ1 + θ2x− ytrue)x

]

If our initial parameterizationwereθ = [10,000, 123] andwe had the input-
output pair (x = 2,500, ytrue = 360,000), then the loss gradient would be
∇θℓ = [−85,000,−2.125× 108]. We would take a small step in the opposite
direction to improve our function approximation.

Example D.1. The fundamentals
of neural networks and parameter
tuning.

Data sets for modern problems tend to be very large, making the gradient of
equation (D.1) expensive to evaluate. It is common to sample random subsets of
the training data in each iteration, using these batches to compute the loss gradient.
In addition to reducing computation, computing gradients with smaller batch
sizes introduces some stochasticity to the gradient, which helps training to avoid
getting stuck in local minima.

D.2 Feedforward Networks

Neural networks are typically constructed to pass the input through a series of
layers.3 Networks with many layers are often called deep. In feedforward networks,

3 A sufficiently large, single-layer
neural network can, in theory, ap-
proximate any function. See A.
Pinkus, “Approximation Theory
of the MLP Model in Neural
Networks,” Acta Numerica, vol. 8,
pp. 143–195, 1999.

each layer applies an affine transform, followed by a nonlinear activation function
applied elementwise:4

4 The nonlinearity introduced by
the activation function provides
something analogous to the acti-
vation behavior of biological neu-
rons, in which input buildup even-
tually causes a neuron to fire. A. L.
Hodgkin and A. F. Huxley, “A
Quantitative Description of Mem-
brane Current and Its Applica-
tion to Conduction and Excitation
in Nerve,” Journal of Physiology,
vol. 117, no. 4, pp. 500–544, 1952.

x′ = φ.(Wx + b) (D.2)
where matrix W and vector b are parameters associated with the layer. A fully
connected layer is shown in figure D.1. The dimension of the output layer is
different from that of the input layer when W is nonsquare. Figure D.2 shows a
more compact depiction of the same network.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

d.2. feedforward networks 583

x1

x2

x3

x′3

x′4

x′5

x′2

x′1 = φ(w1,1x1 + w1,2x2 + w1,3x3 + b1)

= φ(w2,1x1 + w2,2x2 + w2,3x3 + b2)

= φ(w3,1x1 + w3,2x2 + w3,3x3 + b3)

= φ(w4,1x1 + w4,2x2 + w4,3x3 + b4)

= φ(w5,1x1 + w5,2x2 + w5,3x3 + b5)

Figure D.1. A fully connected layer
with a three-component input and
a five-component output.

x ∈ R
3

fully connected + φ

x′ ∈ R
5

Figure D.2. A more compact de-
piction of figure D.1. Neural net-
work layers are often represented
as blocks or slices for simplicity.

If there are no activation functions between them, multiple successive affine
transformations can be collapsed into a single, equivalent affine transform:

W2(W1x + b1) + b2 = W2W1x + (W2b1 + b2) (D.3)

These nonlinearities are necessary to allow neural networks to adapt to fit arbitrary
target functions. To illustrate, figure D.3 shows the output of a neural network
trained to approximate a nonlinear function.

0 2 4 6 8 10

−2

−1

0

1
true function
training samples
learned model

Figure D.3. A deep neural net-
work fit to samples from a nonlin-
ear function so as to minimize the
squared error. This neural network
has four affine layers, with 10 neu-
rons in each intermediate represen-
tation.

There are many types of activation functions that are commonly used. Similar
to their biological inspiration, they tend to be close to zero when their input is
low and large when their input is high. Some common activation functions are
shown in figure D.5.

Sometimes special layers are incorporated to achieve certain effects. For ex-
ample, in figure D.4, we used a softmax layer at the end to force the output to
represent a two-element categorical distribution. The softmax function applies

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

584 appendix d. neural representations

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1

x
3

0

0.2

0.4

0.6

0.8

1

x ∈ R
2

fully connected + sigmoid

fully connected + softmax

ypred ∈ R
2

∈ R
5

Figure D.4. A simple, two-layer,
fully connected network trained
to classify whether a given coor-
dinate lies within a circle (shown
in white). The nonlinearities
allow neural networks to form
complicated, nonlinear decision
boundaries.

−1

0

1

2

φ
(x
)

sigmoid
1/(1 + exp(−x))

tanh
tanh(x)

softplus
log(1 + exp(x))

−2 −1 0 1 2
−1

0

1

2

x

φ
(x
)

relu
max(0, x)

−2 −1 0 1 2

x

leaky relu
max(αx, x)

−2 −1 0 1 2

x

swish
x sigmoid(x)

Figure D.5. Several common acti-
vation functions.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

d.3. parameter regularization 585

the exponential function to each element, which ensures that they are positive
and then renormalizes the resulting values:

softmax(x)i =
exp(xi)

∑j exp(xj)
(D.4)

Gradients for neural networks are typically computed using reverse accumu-
lation.5 The method begins with a forward step, in which the neural network is 5 This process is commonly called

backpropagation, which specifically
refers to reverse accumulation ap-
plied to a scalar loss function. D. E.
Rumelhart, G. E. Hinton, and R. J.
Williams, “Learning Representa-
tions by Back-Propagating Errors,”
Nature, vol. 323, pp. 533–536, 1986.

evaluated using all input parameters. In the backward step, the gradient of each
term of interest is computed working from the output back to the input. Reverse
accumulation uses the chain rule for derivatives:

∂f(g(h(x)))

∂x
=

∂f(g(h))

∂h

∂h(x)

∂x
=

(

∂f(g)

∂g

∂g(h)

∂h

)

∂h(x)

∂x
(D.5)

Example D.2 demonstrates this process. Many deep learning packages compute
gradients using such automatic differentiation techniques.6 Users rarely have to 6 A. Griewank and A.Walther, Eval-

uating Derivatives: Principles and
Techniques of Algorithmic Differentia-
tion, 2nd ed. SIAM, 2008.

provide their own gradients.

D.3 Parameter Regularization

Neural networks are typically underdetermined, meaning that there are multiple
parameter instantiations that can result in the same optimal training loss.7 It 7 For example, suppose that we

have a neural network with a final
softmax layer. The inputs to that
layer can be scaled while produc-
ing the same output, and therefore
the same loss.

is common to use parameter regularization, also called weight regularization, to
introduce an additional term to the loss function that penalizes large parameter
values. Regularization also helps prevent overfitting, which occurs when a network
over-specializes to the training data but fails to generalize to unseen data.

Regularization often takes the form of an L2-norm of the parameterization
vector:

arg min
θ

∑
(x,y)∈D

ℓ(fθ(x), y)− β‖θ‖2 (D.6)

where the positive scalar β controls the strength of the parameter regularization.
The scalar is often quite small, with values as low as 10−6, to minimize the degree
to which matching the training set is sacrificed by introducing regularization.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

586 appendix d. neural representations

Recall the neural network and loss function from example D.1. Here we have
drawn the computational graph for the loss calculation:

x

θ2

θ1

× c1

+ ypred

− c2

ytrue
c2

2 ℓ

Reverse accumulation begins with a forward pass, in which the compu-
tational graph is evaluated. We will again use θ = [10,000, 123] and the
input-output pair (x = 2,500, ytrue = 360,000) as follows:

x

θ2

θ1

× c1

+ ypred

− c2

ytrue
c2

2 ℓ

2,500

123

10,000

307,500

317,500

360,000

−42,500 1.81× 109

The gradient is then computed by working back up the tree:
x

θ2

θ1

× c1

+ ypred

− c2

ytrue

c2
2 ℓ

2,500

123

10,000

307,500

317,500

360,000

−42,500 1.81× 109

∂ℓ/∂c2 = −85,000

∂c2/∂ypred = 1

∂ypred/∂c1 = 1

∂ypred/∂θ1 = 1

∂c1/∂θ2 = 2,500

Finally, we compute:

∂ℓ
∂θ1

= ∂ℓ
∂c2

∂c2
∂ypred

∂ypred
∂θ1

= −85,000 · 1 · 1 = −85,000

∂ℓ
∂θ2

= ∂ℓ
∂c2

∂c2
∂ypred

∂ypred
∂c1

∂c1
∂θ2

= −85,000 · 1 · 1 · 2500 = −2.125× 108

Example D.2. How reverse accu-
mulation is used to compute pa-
rameter gradients given training
data.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

d.4. convolutional neural networks 587

D.4 Convolutional Neural Networks

Figure D.6. Multidimensional in-
puts like images generalize vectors
to tensors. Here, we show a three-
layer RGB image. Such inputs can
have very many entries.

Neural networks may have images or other multidimensional structures such
as lidar scans as inputs. Even a relatively small 256× 256 RGB image (similar to
figure D.6) has 256× 256× 3 = 196,608 entries. Any fully connected layer taking
an m×m× 3 image as input and producing a vector of n outputs would have
a weight matrix with 3m2n values. The large number of parameters to learn is
not only computationally expensive, it is also wasteful. Information in images
is typically translation-invariant; an object in an image that is shifted right by 1

pixel should produce a similar, if not identical, output.
Convolutional layers8 both significantly reduce the amount of computation and 8 Y. LeCun, L. Bottou, Y. Bengio,

and P. Haffner, “Gradient-Based
Learning Applied to Document
Recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

support translation invariance by sliding a smaller, fully connected window to
produce their output. Significantly fewer parameters need to be learned. These
parameters tend to be receptive to local textures in much the same way that the
neurons in the visual cortex respond to stimuli in their receptive fields.

input tensor

receptive field

filter
filter output

Figure D.7. A convolutional layer
repeatedly applies filters across an
input tensor, such as an image, to
produce an output tensor. This il-
lustration shows how each applica-
tion of the filter acts like a small,
fully connected layer applied to
a small receptive field to produce
a single entry in the output ten-
sor. Each filter is shifted across
the input according to a prescribed
stride. The resulting output has as
many layers as there are filters.

The convolutional layer consists of a set of features, or kernels, each of which is
equivalent to a fully connected layer into which one can input a smaller region
of the input tensor. A single kernel is being applied once in figure D.7. These
features have full depth, meaning that if an input tensor is n×m× d, the features
will also have a third dimension of d. The features are applied many times by
sliding them over the input in both the first and second dimensions. If the stride
is 1× 1, then all k filters are applied to every possible position and the output
dimension will be n×m× k. If the stride is 2× 2, then the filters are shifted by 2

in the first and second dimensions with every application, resulting in an output
of size n/2×m/2× k. It is common for convolutional neural networks to increase
in the third dimension and reduce in the first two dimensions with each layer.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

588 appendix d. neural representations

Convolutional layers are translation-invariant because each filter behaves the
same regardless of where in the input is applied. This property is especially useful
in spatial processing because shifts in an input image can yield similar outputs,
making it easier for neural networks to extract common features. Individual
features tend to learn how to recognize local attributes such as colors and textures.

conv 5× 5 stride 2 + relu

conv 3× 3 stride 2 + relu

conv 3× 3 stride 2 + relu

conv 3× 3 stride 2 + relu

conv 2× 2 stride 1 + relu

flatten

fully connected + softmax

ypred

28× 28× 1

14× 14× 8

7× 7× 16

4× 4× 32

2× 2× 32

1× 1× 32

32

10

The MNIST data set contains handwritten dig-
its in the form of 28× 28 monochromatic im-
ages. It is a often used to test image classifi-
cation networks. To the right, we have a sam-
ple convolutional neural network that takes an
MNIST image as input and produces a cate-
gorical probability distribution over the 10 pos-
sible digits. Convolutional layers are used to
efficiently extract features. The model shrinks
in the first two dimensions and expands in the
third dimension (the number of features) as
the network depth increases. Eventually reach-
ing a first and second dimension of 1 ensures
that information from across the entire image
can affect every feature. The flatten operation
takes the 1× 1× 32 input and flattens it into
a 32-component output. Such operations are
common when transitioning between convolu-
tional and fully connected layers. This model
has 19,722 parameters. The parameters can be
tuned to maximize the likelihood of the train-
ing data.

Example D.3. A convolutional neu-
ral network for the MNIST data set.
Y. LeCun, L. Bottou, Y. Bengio, and
P. Haffner, “Gradient-Based Learn-
ing Applied to Document Recog-
nition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

D.5 Recurrent Networks

The neural network architectures discussed so far are ill suited for temporal
or sequential inputs. Operations on sequences occur when processing images

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

d.5. recurrent networks 589

from videos, when translating a sequence of words, or when tracking time-series
data. In such cases, the outputs depend on more than just the most recent input.
In addition, the neural network architectures discussed so far do not naturally
produce variable-length outputs. For example, a neural network that writes an
essay would be difficult to train using a conventional, fully connected neural
network.

neural network

{x1, x2, x3, . . .}

y

many-to-one

neural network

x

{y1, y2, y3, . . .}

one-to-many

neural network

{x1, x2, x3, . . .}

{y1, y2, y3, . . .}

many-to-many

Figure D.8. Traditional neural
networks do not naturally accept
variable-length inputs or produce
variable-length outputs.

When a neural network has sequential input, sequential output, or both (fig-
ure D.8), we can use a recurrent neural network to act over multiple iterations.
These neural networks maintain a recurrent state r, sometimes called its memory,
to retain information over time. For example, in translation, a word used early in
a sentence may be relevant to the proper translation of words later in the sentence.
Figure D.9 shows the structure of a basic recurrent neural network and how the
same neural network can be understood to be a larger network unrolled in time.

neural network

x

y

r neural networkxk−1

rk−2

yk−1

neural networkxk yk

rk−1

neural networkxk+1 yk+1

rk

rk+1

Figure D.9. A recurrent neural net-
work (left) and the same recurrent
neural network unrolled in time
(right). These networks maintain a
recurrent state r that allows the net-
work to develop a sort of memory,
transferring information across it-
erations.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

590 appendix d. neural representations

This unrolled structure can be used to produce a rich diversity of sequential
neural networks, as shown in figure D.10. Many-to-many structures come in mul-
tiple forms. In one form, the output sequence begins with the input sequence. In
another form, the output sequence does not begin with the input sequence. When
using variable-length outputs, the neural network output itself often indicates
when a sequence begins or ends. The recurrent state is often initialized to zero, as
are extra inputs after the input sequence has been passed in, but this need not be
the case.

xx

0

y1

x0 y2

r1

x0 y3

r2

r3

xx1

0

y

xx2 y

r1

xx3 y

r2

r3

xx1

0

y1

xx2 y2

r1

xx3 y3

r2

r3

xx1

0

y1

xx2 y2

r1

xx3 y3

r2

x0 y4

r3

x0 y5

r4

r5

many-to-manyone-to-many many-to-one many-to-many

Figure D.10. A recurrent neural
network can be unrolled in time
to produce different relationships.
Unused or default inputs and out-
puts are grayed out.

Recurrent neural networks with many layers, unrolled over multiple time steps,
effectively produce a very deep neural network. During training, gradients are
computedwith respect to the loss function. The contribution of layers farther from
the loss function tends to be smaller than that of layers close to the loss function.
This leads to the vanishing gradient problem, in which deep neural networks have
vanishingly small gradients in their upper layers. These small gradients slow
training.

Very deep neural networks can also suffer from exploding gradients, in which
successive gradient contributions through the layers combine to produce very
large values. Such large values make learning unstable. Example D.4 shows both
exploding and vanishing gradients.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

d.5. recurrent networks 591

To illustrate vanishing and exploding gradients, consider a deep neural net-
work made of one-dimensional, fully connected layers with relu activations.
For example, if the network has three layers, its output is

fθ(x) = relu(w3 relu(w2 relu(w1x1 + b1) + b2) + b3)

The gradient with respect to a loss function depends on the gradient of
fθ.

We can get vanishing gradients in the parameters of the first layer, w1

and b1, if the gradient contributions in successive layers are less than 1. For
example, if any of the layers has a negative input to its relu function, the
gradient of its inputs will be zero, so the gradient vanishes entirely. In a less
extreme case, suppose that the weights are all w = 0.5 1, the offsets are all
b = 0, and the input x is positive. In this case, the gradient with respect to
w1 is

∂ f

∂w1

= x1 · w2 · w3 · w4 · w5 . . .

The deeper the network, the smaller the gradient will be.
We can get exploding gradients in the parameters of the first layer if the

gradient contributions in successive layers are greater than 1. If we merely
increase our weights to w = 2 1, the very same gradient is suddenly doubling
every layer.

Example D.4. A demonstration
of how vanishing and exploding
gradients arise in deep neural net-
works. This example uses a very
simple neural network. In larger,
fully connected layers, the same
principles apply.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

592 appendix d. neural representations

While exploding gradients can often be handled with gradient clipping, regu-
larization, and initializing parameters to small values, these solutions merely shift
the problem toward that of vanishing gradients. Recurrent neural networks often
use layers specifically constructed to mitigate the vanishing gradients problem.
They function by selectively choosing whether to retain memory, and these gates
help regulate the memory and the gradient. Two common recurrent layers are
long short-term memory (LSTM)9 and gated recurrent units (GRU).10

9 S. Hochreiter and J. Schmidhuber,
“Long Short-TermMemory,”Neural
Computation, vol. 9, no. 8, pp. 1735–
1780, 1997.
10 K. Cho, B. van Merriënboer,
C. Gulcehre, D. Bahdanau, F.
Bougares, H. Schwenk, and
Y. Bengio, “Learning Phrase
Representations Using RNN
Encoder-Decoder for Statistical
Machine Translation,” in Confer-
ence on Empirical Methods in Natural
Language Processing (EMNLP),
2014.

D.6 Autoencoder Networks

Neural networks are often used to process high-dimensional inputs such as im-
ages or point clouds. These high-dimensional inputs are often highly structured,
with the actual information content being much lower-dimensional than the high-
dimensional space in which it is presented. Pixels in images tend to be highly
correlated with their neighbors, and point clouds often have many regions of
continuity. Sometimes we wish to build an understanding of the information
content of our data sets by converting them to a much smaller set of features,
or an embedding. This compression, or representation learning, has many advan-
tages.11 Lower-dimensional representations can help facilitate the application of

11 Such dimensionality reduction
can also be done using traditional
machine learning techniques, such
as principal component analysis.
Neural models allow more flexibil-
ity and can handle nonlinear rep-
resentations.

traditional machine learning techniques like Bayesian networks to what would
have otherwise been intractable. The features can be inspected to develop an
understanding of the information content of the data set, and these features can
be used as inputs to other models.

encoding z

x

x′

en
co

de
r

de
co

de
r

Figure D.11. An autoencoder
passes a high-dimensional input
through a low-dimensional bot-
tleneck and then reconstructs the
original input. Minimizing recon-
struction loss can result in an effi-
cient low-dimensional encoding.

An autoencoder is a neural network trained to discover a low-dimensional fea-
ture representation of a higher-level input. An autoencoder network takes in a
high-dimensional input x and produces an output x′ with the same dimension-
ality. We design the network architecture to pass through a lower-dimensional
intermediate representation called a bottleneck. The activations z at this bottleneck
are our low-dimensional features, which exist in a latent space that is not explicitly
observed. Such an architecture is shown in figure D.11.

We train the autoencoder to reproduce its input. For example, to encourage the
output x′ to match x as closely as possible, we may simply minimize the L2-norm,

minimize
θ

E
x∈D

[‖ fθ(x)− x‖2] (D.7)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

d.6. autoencoder networks 593

Noise is often added to the input to produce a more robust feature embedding:

minimize
θ

E
x∈D

[‖ fθ(x + ǫ)− x‖2] (D.8)

Training to minimize the reconstruction loss forces the autoencoder to find the
most efficient low-dimensional encoding that is sufficient to accurately reconstruct
the original input. Furthermore, training is unsupervised, in that we do not need
to guide the training to a particular feature set.

After training, the upper portion of the autoencoder above the bottleneck can
be used as an encoder that transforms an input into the feature representation.
The lower portion of the autoencoder can be used as a decoder that transforms the
feature representation into the input representation. Decoding is useful when
training neural networks to generate images or other high-dimensional outputs.
Example D.5 shows an embedding learned for handwritten digits.

encoding distribution P(z)

z ∼ P(z)

x

x′

en
co

de
r

de
co

de
r

Figure D.12. A variational autoen-
coder passes a high-dimensional
input through a low-dimensional
bottleneck that produces a prob-
ability distribution over the en-
coding. The decoder reconstructs
samples from this encoding to re-
construct the original input. Varia-
tional autoencoders can therefore
assign confidence to each encoded
feature. The decoder can thereafter
be used as a generative model.

A variational autoencoder, shown in figure D.12, extends the autoencoder frame-
work to learn a probabilistic encoder.12 Rather than outputting a deterministic

12 D. Kingma and M. Welling,
“Auto-Encoding Variational
Bayes,” in International Conference
on Learning Representations (ICLR),
2013.

sample, the encoder produces a distribution over the encoding, which allows the
model to assign confidence to its encoding. Multivariate Gaussian distributions
with diagonal covariance matrices are often used for their mathematical conve-
nience. In such a case, the encoder outputs both an encoding mean and diagonal
covariance matrix.

Variational autoencoders are trained to both minimize the expected reconstruc-
tion loss while keeping the encoding components close to unit Gaussian. The
former is achieved by taking a single sample from the encoding distribution with
each passthrough, z ∼ N

(

µ,σ⊤Iσ
). For backpropagation to work, we typically

include random noise w ∼ N (0, I) as an additional input to the neural network
and obtain our sample according to z = µ+ w⊙σ.

The components are kept close to unit Gaussian by also minimizing the KL
divergence (appendix A.10).13 This objective encourages smooth latent space

13 The KL divergence for two unit
Gaussians is

log

(

σ2

σ1

)

+
σ2

1 + (µ1 − µ2)
2

2σ2
2

− 1

2

representations. The network is penalized for spreading out the latent representa-
tions (large values for ‖µ‖) and for focusing each representation into a very small
encoding space (small values for ‖σ‖), ensuring better coverage of the latent
space. As a result, smooth variations into the decoder can result in smoothly
varying outputs. This property allows decoders to be used as generative models,
where samples from a unit multivariate Gaussian can be input to the decoder to

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

594 appendix d. neural representations

produce realistic samples in the original space. The combined loss function is

minimize
θ

E
x∈D

[

‖x′ − x‖2 + c
|µ|
∑
i=1

DKL
(

N
(

µi, σ2
i ,
)∣

∣

∣

∣

∣

∣ N (0, 1)
)

]

subject to µ,σ = encoder(x + ǫ)
x′ = decoder(µ+ w⊙σ)

(D.9)

where the trade-off between the two losses is tuned by the scalar c > 0. Exam-
ple D.6 demonstrates this process on a latent space learned from handwritten
digits.

Variational autoencoders are derived by representing the encoder as a condi-
tional distribution q(z | x), where x belongs to the observed input space and z

is in the unobserved embedding space. The decoder performs inference in the
other direction, representing p(x | z), in which case it also outputs a probability
distribution.We seek tominimize the KL divergence between q(z | x) and p(z | x),
which is the same as minimizing E[log p(x | z)]− DKL(q(z | x) || p(z)), where
p(z) is our prior, the unit multivariate Gaussian to which we bias our encoding
distribution. We thus obtain our reconstruction loss and our KL divergence.

D.7 Adversarial Networks

We often want to train neural networks to produce high-dimensional outputs,
such as images or sequences of helicopter control inputs.When the output space is
large, the training datamay cover only a very small region of the state space.Hence,
training purely on the available data can cause unrealistic results or overfitting.
We generally want the neural network to produce plausible outputs. For example,
when producing images, we want the images to look realistic. When mimicking
human driving, such as in imitation learning (chapter 18), we want the vehicle to
typically stay in its lane and to react appropriately to other vehicles.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

d.7. adversarial networks 595

We can use an autoencoder to train an embedding for the MNIST data set.
In this example, we use an encoder similar to the convolutional network in
example D.3, except with a two-dimensional output and no softmax layer.
We construct a decoder that mirrors the encoder and train the full network to
minimize the reconstruction loss. Here are the encodings for 10,000 images
from the MNIST data set after training. Each encoding is colored according
to the corresponding digit:

−6 −4 −2 0 2 4 6 8

−2

0

2

4

6

8

10

z1

z 2

0
1
2
3
4
5
6
7
8
9

We find that the digits tend to be clustered into regions that are roughly
radially distributed from the origin. Note how the encodings for 1 and 7 are
similar, as the two digits look alike. Recall that training is unsupervised, and
the network is not given any information about the digit values. Nevertheless,
these clusterings are produced.

Example D.5. A visualization
of a two-dimensional embedding
learned for the MNIST digits.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

596 appendix d. neural representations

In example D.5, we trained an autoencoder on the MNIST data set. We can
adapt the same network to produce two-dimensional mean and variance
vectors at the bottleneck instead of a two-dimensional embedding, and then
train it to minimize both the reconstruction loss and the KL divergence. Here,
we show the mean encodings for the same 10,000 images for the MNIST data
set. Each encoding is again colored according to the corresponding digit:

−2 0 2 4
−4

−2

0

2

z1

z 2

0
1
2
3
4
5
6
7
8
9

The variational autoencoder also produces clusters in the embedding
space for each digit, but this time they are roughly distributed according to
a zero-mean, unit variance Gaussian distribution. We again see how some
encodings are similar, such as the significant overlap for 4 and 9.

Example D.6. A visualization of
a two-dimensional embedding
learned using a variational
autoencoder for the MNIST digits.
Here, we show decoded outputs
from inputs panned over the
encoding space:

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

d.7. adversarial networks 597

x

primary network

y

discriminator

ytrue

P(true)
FigureD.13. A generative adversar-
ial network causes a primary net-
work’s output to be more realistic
by using a discriminator to force
the primary network to produce
more realistic output.

One common approach to penalize off-nominal outputs or behavior is to use
adversarial learning by including a discriminator, as shown in figure D.13.14 A

14 These techniques were intro-
duced by I. Goodfellow, J. Pouget-
Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative Adversarial
Nets,” in Advances in Neural Infor-
mation Processing Systems (NIPS),
2014.

discriminator is a neural network that acts as a binary classifier that takes in
neural network outputs and learns to distinguish between real outputs from
the training set and the outputs from the primary neural network. The primary
neural network, also called a generator, is then trained to deceive the discriminator,
thereby naturally producing outputs that are more difficult to distinguish from
the data set. The primary advantage of this technique is that we do not need
to design special features to identify or quantify how the output fails to match
the training data, but we can allow the discriminator to naturally learn such
differences.

Learning is adversarial in the sense that we have two neural networks: the
primary neural network that we would like to produce realistic outputs and the
discriminator network that distinguishes between primary network outputs and
real examples. They are each training to outperform the other. Training is an
iterative process in which each network is improved in turn. It can sometimes be
challenging to balance their relative performance; if one network becomes too
good, the other can become stuck.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

E Search Algorithms

A search problem is concerned with finding an appropriate sequence of actions to
maximize the obtained reward over subsequent deterministic transitions. Search
problems are Markov decision processes (covered in part II) with determinis-
tic transition functions. Some well-known search problems include sliding tile
puzzles, the Rubik’s Cube, Sokoban, and finding the shortest path to a destination.

E.1 Search Problems

In a search problem, we choose action at at time t based on observing state st

and then receive a reward rt. The action space A is the set of possible actions,
and the state space S is the set of possible states. Some of the algorithms assume
that these sets are finite, but this is not required in general. The state evolves
deterministically and depends only on the current state and action taken. We
use A(s) to denote the set of valid actions from state s. When there are no valid
actions, the state is considered to be absorbing and yields zero reward for all future
time steps. Goal states, for example, are typically absorbing.

The deterministic state transition function T(s, a) gives the successor state s′.
The reward function R(s, a) gives the reward received when executing action a

from state s. Search problems typically do not include a discount factor γ that
penalizes future rewards. The objective is to choose a sequence of actions that
maximizes the sum of rewards, or return. Algorithm E.1 provides a data structure
for representing search problems.

600 appendix e. search algorithms

struct Search
𝒮 # state space
𝒜 # valid action function
T # transition function
R # reward function

end

AlgorithmE.1. The search problem
data structure.

E.2 Search Graphs

A search problem with finite state and action spaces can be represented as a
search graph. The nodes correspond to states, and edges correspond to transitions
between states. Associated with each edge from a source to a destination state
are both an action that results in that state transition and the expected reward
when taking that action from the source state. Figure E.1 depicts a subset of such
a search graph for a 3× 3 sliding tile puzzle.

1 2 3
4

5 67 8

1 2 3
4 5 67 8

1 2 3
4 5 67 8

1 2 3
4
5 67 8

1
2

3
4

5 67 8

1 2 3
4

567 8

−1

−1 −1

−1 0

initial state terminal state

Figure E.1. A few states in a sliding
tile puzzle, portrayed as a graph.
Two transitions can be taken from
the initial state to arrive at the ter-
minal solution state. The numbers
on the edges represent rewards.

Many graph search algorithms conduct a search from an initial state and fan
out from there. In so doing, these algorithms trace out a search tree. The initial
state is the root node, and any time we transition from s to s′ during search, an
edge from s to a new node s′ is added to the search tree. A search tree for the
same sliding tile puzzle is shown in figure E.2.

E.3 Forward Search

Perhaps the simplest graph search algorithm is forward search (algorithm E.2),
which determines the best action to take from an initial state s by looking at all
possible action-state transitions up to a depth (or horizon) d. At depth d, the
algorithm uses an estimate of the value of the state U(s).1 The algorithm calls

1 The approximate value functions
in this chapter are expected to re-
turn 0 when in a state with no avail-
able actions.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

e.4. branch and bound 601

1 2 3
4

5 67 8

1 2 3
4 5 67 8

1 2 3
4 5 67 8

1 2 3
4
5 67 8

1
2

3
4

5 67 8

1 2 3
4

567 8

−1 −1 −1−1

0

Figure E.2. The graph for the 3× 3
sliding tile puzzle in figure E.1 can
be represented as a tree search
problem. The search begins at the
root node and flows down the tree.
In this case, a path can be traversed
to the desired terminal state.

itself recursively in a depth-first manner, resulting in a search tree and returning
a tuple with an optimal action a and its finite-horizon expected value u.

function forward_search(𝒫::Search, s, d, U)
𝒜, T, R = 𝒫.𝒜(s), 𝒫.T, 𝒫.R
if isempty(𝒜) || d ≤ 0

return (a=nothing, u=U(s))
end
best = (a=nothing, u=-Inf)
for a in 𝒜

s′ = T(s,a)
u = R(s,a) + forward_search(𝒫, s′, d-1, U).u
if u > best.u

best = (a=a, u=u)
end

end
return best

end

Algorithm E.2. The forward search
algorithm for finding an approxi-
mately optimal action for a discrete
search problem 𝒫 from a current
state s. The search is performed to
depth d, at which point the termi-
nal value is estimated with an ap-
proximate value function U. The re-
turned named tuple consists of the
best action a and its finite-horizon
expected value u.

Figure E.3 shows an example of a search tree obtained by running forward
search on a sliding tile puzzle. Depth-first search can be wasteful; all reachable
states for the given depth are visited. Searching to depth d will result in a search
tree with O(|A|d) nodes for a problem with |A| actions.

E.4 Branch and Bound

A general method known as branch and bound (algorithm E.3) can significantly
reduce computation by using domain information about the upper and lower

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

602 appendix e. search algorithms

1 2 3
4

5 67 8

1 2 3
4 5 67 8

1 2 3
4 5 67 8

1 2 3
4

5 67 8

1 2 3
4 5 67 8

1 2 3
4
5 67 8

1 2 3
4
5 67

8
1

2 3
4
5 67 8

1 2 3
4

5 67 8

1
2

3
4

5 67 8

1 2 3
4

5 67 8

1
2

3
4

5 67 8

1
2
3

4
5 67 8

1 2 3
4

567 8

1 2 3
4

567 8
1 2 3
4

5 67 8

1 2
34

567 8

−1 −1 −1 −1

−1 −1 0 −1 −1 −1 −1 −1 −1 −1 −1 −1

Figure E.3. A search tree arising
from running forward search to
depth 2 on a sliding tile puzzle. All
states reachable in two steps are
visited, and some are visited more
than once. We find that there is
one path to the terminal node. That
path has a return of −1, whereas
all other paths have a return of −2.

bounds on expected reward. The upper bound on the return from taking action a

from state s is Q(s, a). The lower bound on the return from state s is U(s). Branch
and bound follows the same procedure as depth-first-search, but it iterates over
the actions according to their upper bound, and proceeds to a successor node
only if the best possible value it could return is higher than what has already been
discovered by following an earlier action. Branch and bound search is compared
to forward search in example E.1.

function branch_and_bound(𝒫::Search, s, d, Ulo, Qhi)
𝒜, T, R = 𝒫.𝒜(s), 𝒫.T, 𝒫.R
if isempty(𝒜) || d ≤ 0

return (a=nothing, u=Ulo(s))
end
best = (a=nothing, u=-Inf)
for a in sort(𝒜, by=a->Qhi(s,a), rev=true)

if Qhi(s,a) ≤ best.u
return best # safe to prune

end
u = R(s,a) + branch_and_bound(𝒫,T(s,a),d-1,Ulo,Qhi).u
if u > best.u

best = (a=a, u=u)
end

end
return best

end

Algorithm E.3. The branch and
bound search algorithm for find-
ing an approximately optimal ac-
tion for a discrete search problem
𝒫 from a current state s. The search
is performed to depth d with a
value function lower bound Ulo
and an action value function upper
bound Qhi. The returned named tu-
ple consists of the best action a and
its finite-horizon expected value u.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

e.4. branch and bound 603

Consider using branch and bound on a hex world search problem. Actions
in search problems cause deterministic transitions, so unlike the hex-world
MDP, we always correctly transition between neighboring tiles when the
corresponding action is taken.

The circle indicates the start state. All transitions incur a reward of −1.
The blue tile is terminal and produces reward 5 when entered.

Here, we show the search trees for both forward search and branch and
bound to depth 4. For branch and bound, we used a lower bound U(s) = −6

and an upper bound Q(s, a) = 5− δ(T(s, a)), where the function δ(s) is the
minimum number of steps from the given state to the terminal reward state.
The search tree of branch and bound is a subset of that of forward search
because branch and bound can ignore portions it knows are not optimal.

Due to the upper bound, branch and bound evaluates moving right first,
and because that happens to be optimal, it is able to immediately identify the
optimal sequence of actions and avoid exploring other actions. If the start
and goal states were reversed, the search tree would be larger. In the worst
case, it can be as large as forward search.

forward search branch and bound

Example E.1. A comparison of the
savings that branch and bound can
have over forward search. Branch
and bound can be significantly
more efficient with appropriate
bounds.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

604 appendix e. search algorithms

Branch and bound is not guaranteed to reduce computation over forward
search. Both approaches have the same worst-case time complexity. The efficiency
of the algorithm greatly depends on the heuristic.

E.5 Dynamic Programming

Neither forward search nor branch and bound remembers whether a state has
been previously visited; each wastes computational resources by evaluating these
states multiple times. Dynamic programming (algorithm E.4) avoids duplicate
effort by remembering when a particular subproblem has been previously solved.
Dynamic programming can be applied to problems in which an optimal solution
can be constructed from optimal solutions of its subproblems, a property called
optimal substructure. For example, if the optimal sequence of actions from s1 to s3

goes through s2, then the subpaths from s1 to s2 and from s2 to s3 are also optimal.
This substructure is shown in figure E.4.

1
2

3
4

5 67 8

1
2

3
4

5 67 8

1 2 3
4

5 67 8

1 2 3
4 5 67 8

1 2 3
4 5 67 8

initial state intermediate state terminal state

Figure E.4. The sequence of states
on the left form an optimal path
from the initial state to the termi-
nal state. Shortest path problems
have optimal substructure, mean-
ing that the sequence from the ini-
tial state to the intermediate state
is also optimal, as is the sequence
from the intermediate state to the
terminal state.

In the case of graph search,when evaluating a state, we first check a transposition
table to see whether the state has been previously visited, and if it has, we return
its stored value.2 Otherwise, we evaluate the state as normal and store the result

2 Caching the results of expen-
sive computations so that they can
be retrieved rather than being re-
computed in the future is called
memoization.

in the transposition table. A comparison to forward search is shown in figure E.5.

E.6 Heuristic Search

Heuristic search3 (algorithm E.5) improves on branch and bound by ordering its 3 Heuristic search is also known as
informed search or best-first search.actions based on a provided heuristic function U(s), which is an upper bound

of the return. Like dynamic programming, heuristic search has a mechanism by
which state evaluations can be cached to avoid redundant computation. Further-
more, heuristic search does not require the lower bound value function needed
by branch and bound.4

4 Our implementation does use two
value functions: the heuristic for
guiding the search and an approxi-
mate value function for evaluating
terminal states.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

e.6. heuristic search 605

function dynamic_programming(𝒫::Search, s, d, U, M=Dict())
if haskey(M, (d,s))

return M[(d,s)]
end
𝒜, T, R = 𝒫.𝒜(s), 𝒫.T, 𝒫.R
if isempty(𝒜) || d ≤ 0

best = (a=nothing, u=U(s))
else

best = (a=first(𝒜), u=-Inf)
for a in 𝒜

s′ = T(s,a)
u = R(s,a) + dynamic_programming(𝒫, s′, d-1, U, M).u
if u > best.u

best = (a=a, u=u)
end

end
end
M[(d,s)] = best
return best

end

Algorithm E.4. Dynamic program-
ming applied to forward search,
which includes a transposition ta-
ble M. Here, M is a dictionary that
stores depth-state tuples from pre-
vious evaluations, allowing the
method to return previously com-
puted results. The search is per-
formed to depth d, at which point
the terminal value is estimated
with an approximate value func-
tion U. The returned named tuple
consists of the best action a and its
finite-horizon expected value u.

1 2 3 4 5

101

102

103

104

depth

nu
m
be

ro
fs

ta
te

ev
alu

at
io
ns forward search

with DP

Figure E.5. A comparison of the
number of state evaluations for
pure forward search and forward
search augmented with dynamic
programming on the hex-world
search problem of example E.1.
Dynamic programming is able to
avoid the exponential growth in
state visitation by caching results.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

606 appendix e. search algorithms

function heuristic_search(𝒫::Search, s, d, Uhi, U, M)
if haskey(M, (d,s))

return M[(d,s)]
end
𝒜, T, R = 𝒫.𝒜(s), 𝒫.T, 𝒫.R
if isempty(𝒜) || d ≤ 0

best = (a=nothing, u=U(s))
else

best = (a=first(𝒜), u=-Inf)
for a in sort(𝒜, by=a->R(s,a) + Uhi(T(s,a)), rev=true)

if R(s,a) + Uhi(T(s,a)) ≤ best.u
break

end
s′ = T(s,a)
u = R(s,a) + heuristic_search(𝒫, s′, d-1, Uhi, U, M).u
if u > best.u

best = (a=a, u=u)
end

end
end
M[(d,s)] = best
return best

end

Algorithm E.5. The heuristic
search algorithm for solving a
search problem 𝒫 starting from
state s and searching to a maxi-
mum depth d. A heuristic Uhi is
used to guide the search, the ap-
proximate value function U is evalu-
ated at terminal states, and a trans-
position table M in the form of a dic-
tionary containing depth-state tu-
ples allows the algorithm to cache
values from previously explored
states.

Actions are sorted based on the immediate reward plus a heuristic estimate of
the future return:

R(s, a) + U(T(s, a)) (E.1)
To guarantee optimality, the heuristic must be both admissible and consistent. An
admissible heuristic is an upper bound of the true value function. A consistent
heuristic is never less than the expected reward gained by transitioning to a
neighboring state:

U(s) ≥ R(s, a) + U(T(s, a)) (E.2)
The method is compared to branch and bound search in example E.2.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

e.6. heuristic search 607

We can apply heuristic search to the same hex world search problem as in
example E.1. We use the heuristic U(s) = 5− δ(s), where δ(s) is the number
of steps from the given state to the terminal reward state. Here, we show the
number of states visited when running either branch and bound (left) or
heuristic search (right) from each starting state. Branch and bound is just
as efficient in states near and to the left of the goal state, whereas heuristic
search is able to search efficiently from any initial state.

12 8 4 6
12 9 6 3 4

10 8 6 4 2 2
6 5 4 3 2 1 2
10 8 6 4 2 2

12 9 6 3 4
12 8 4 6

branch and bound
6 5 4 4

6 5 4 3 3

6 5 4 3 2 2
6 5 4 3 2 1 2

6 5 4 3 2 2
6 5 4 3 3

6 5 4 4

heuristic search

Example E.2. A comparison of
the savings that heuristic search
can have over branch and bound
search. Heuristic search automat-
ically orders actions according to
their lookahead heuristic value.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

F Problems

This section covers some of the decision problems used throughout this book.
Table F.1 summarizes some of the important properties of these problems.

Problem |I| |S| |A| |O| γ

Hex world — varies 6 — 0.9
2048 — ∞ 4 — 1

Cart-pole — (⊂ R
4) 2 — 1

Mountain car — (⊂ R
2) 3 — 1

Simple regulator — (⊂ R) (⊂ R) — 1 or 0.9
Aircraft collision avoidance — (⊂ R

3) 3 — 1
Crying baby — 2 3 2 0.9
Machine replacement — 3 4 2 1
Catch — 4 10 2 0.9
Prisoner’s dilemma 2 — 2 per agent — 1
Rock-paper-scissors 2 — 3 per agent — 1
Traveler’s dilemma 2 — 99 per agent — 1
Predator-prey hex world varies varies 6 per agent — 0.9
Multicaregiver crying baby 2 2 3 per agent 2 per agent 0.9
Collaborative predator-prey hex world varies varies 6 per agent 2 per agent 0.9

Table F.1. Problem summary.
The DecisionMakingProblems.jl
package implements these prob-
lems.

F.1 Hex World

The hex world problem is a simple MDP in which we must traverse a tile map to
reach a goal state. Each cell in the tile map represents a state in the MDP. We
can attempt to move in any of the six directions. The effects of these actions are
stochastic. As shown in figure F.1, we move 1 step in the specified direction with a
probability of 0.7, and we move 1 step in one of the neighboring directions, each
with a probability of 0.15. If we bump against the outer border of the grid, then
we do not move at all, at a cost of 1.0.

P = 0.7

P = 0.15

P = 0.15

Figure F.1. Actions in the hexworld
problem have probabilistic effects.

610 appendix f. problems

Taking any action in certain cells gives us a specified reward and then transports
us to a terminal state. No further reward is received in the terminal state. The total
number of states in the hex world problem is thus the number of tiles plus 1, for
the terminal state. Figure F.2 shows an optimal policy for two hex world problem
configurations used throughout this book. We refer to the larger instance as ‘‘hex
world’’ and to the smaller, simpler instance as ‘‘straight-line hex world.’’1 The

1 The straight-line formulation is
similar to the hall problem, a com-
mon benchmark MDP. See, for ex-
ample, L. Baird, “Residual Algo-
rithms: Reinforcement Learning
with Function Approximation,” in
International Conference on Machine
Learning (ICML), 1995.

straight-line hex world formulation is used to illustrate how reward is propagated
from its single reward-bearing state on the rightmost cell.

standard hex world straight-line hex world

-10
5

10 10

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure F.2. The standard hexworld
and straight-line hex world prob-
lems. The top row shows the base
problem setup and colors hexes
that have terminal rewards. The
bottom row shows an optimal pol-
icy for each problem, colored ac-
cording to the expected value, with
arrows indicating the action to take
in each state.

F.2 2048

The 2048 problem is based on a popular tile game played on a 4× 4 board.2 It has 2 This game was developed by
Gabriele Cirulli in 2014.discrete state and action spaces. The board is initially empty except for two tiles,

each of which can have value 2 or 4. A randomly selected starting state is shown
in figure F.3.

2
4

Figure F.3. A random starting state
in the 2048 problem consists of two
tiles, each with value 2 or 4.

The agent can move all tiles left, down, right, or up. Choosing a direction
pushes all the tiles in that direction. A tile stops when it hits a wall or another tile
of a different value. A tile that hits another tile of the same value merges with that
tile, forming a new tile with their combined value. After shifting and merging, a
new tile of value 2 or 4 is spawned in a random open space. This process is shown
in figure F.4.

The game ends when we can no longer shift tiles to produce an empty space.
Rewards are obtained only when merging two tiles, and they are equal to the

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

f.3. cart-pole 611

2
4 4

2
4
2

4shift tiles spawn tile Figure F.4. An action in 2048 shifts
all tiles in the chosen direction and
then spawns a new tile in an empty
space.

merged tile’s value. An example state-action transition with a merge is shown in
figure F.5.

2 4

4

2 8 2 8

2shift & merge spawn tile

+8 reward Figure F.5. Here, the down action is
used to shift all tiles, resulting in
the merging of two 4 tiles to pro-
duce an 8 tile and receive a reward
of 8.

A common strategy is to choose a corner and alternate between the two actions
that lead in that direction. This tends to stratify the tiles such that the larger-valued
ones are in the corner and the newly spawned tiles are in the periphery.

F.3 Cart-Pole

The cart-pole problem,3 also sometimes called the pole balancing problem, has the 3 A.G. Barto, R. S. Sutton, and C.W.
Anderson, “Neuronlike Adaptive
Elements That Can Solve Diffi-
cult Learning Control Problems,”
IEEE Transactions on Systems, Man,
and Cybernetics, vol. SMC-13, no. 5,
pp. 834–846, 1983.

agent move a cart back and forth. As shown in figure F.6, this cart has a rigid pole
attached to it by a swivel, so that as the cart moves back and forth, the pole begins
to rotate. The objective is to keep the pole vertically balanced while keeping the
cart within the allowed lateral bounds. As such, 1 reward is obtained each time
step in which these conditions are met, and transition to a terminal zero-reward
state occurs whenever they are not.

The actions are to either apply a left or right force F to the cart. The state
space is defined by four continuous variables: the lateral position of the cart x, its
lateral velocity v, the angle of the pole θ, and the pole’s angular velocity ω. The
problem involves a variety of parameters, including the mass of the cart mcart, the
mass of the pole mpole, the pole length ℓ, the force magnitude |F|, gravitational
acceleration g, the time step ∆t, the maximum x deviation, the maximum angular
deviation, and friction losses between the cart and the pole or between the cart
and its track.4

4 We use the parameters imple-
mented in the OpenAI Gym. G.
Brockman, V. Cheung, L. Petters-
son, J. Schneider, J. Schulman, J.
Tang, and W. Zaremba, “OpenAI
Gym,” 2016. arXiv: 1606.01540v1.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1606.01540v1

612 appendix f. problems

x

θ

F
gravity

Figure F.6. In the cart-pole prob-
lem, a vehicle must alternate be-
tween accelerating left and right in
order to balance a pole. The pole
is not allowed to fall past a given
angle, and the cart is not allowed
to travel outside of given limits.

Given an input force F, the angular acceleration of the pole is

α =
g sin(θ)− τ cos(θ)

ℓ

2

(

4
3 −

mpole
mcart+mpole

cos(θ)2
) (F.1)

where
τ =

F + ω2ℓ sin θ/2

mcart + mpole
(F.2)

and the lateral cart acceleration is

a = τ − ℓ

2
α cos(θ)

mpole
mcart + mpole

(F.3)

The state is updated with Euler integration:
x ← x + v∆t

v← v + a∆t

θ ← θ + ω∆t

ω ← ω + α∆t

(F.4)

The cart-pole problem is typically initialized with each random value drawn
from U(−0.05, 0.05). Rollouts are run until the lateral or angular deviations are
exceeded.

F.4 Mountain Car

In the mountain car problem,5 a vehicle must drive to the right, out of a valley.

5 This problem was introduced
in A. Moore, “Efficient Memory-
Based Learning for Robot Control,”
Ph.D. dissertation, University of
Cambridge, 1990. Its popular, sim-
pler form, with a discrete action
space, was first given in S. P. Singh
and R. S. Sutton, “Reinforcement
Learningwith Replacing Eligibility
Traces,” Machine Learning, vol. 22,
pp. 123–158, 1996.

The valley walls are steep enough that blindly accelerating toward the goal with
insufficient speed causes the vehicle to come to a halt and slide back down. The
agent must learn to accelerate left first in order to gain enough momentum on
the return to make it up the hill.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

f.5 . s imple regulator 613

The state is the vehicle’s horizontal position x ∈ [−1.2, 0.6] and speed v ∈
[−0.07, 0.07]. At any given time step, the vehicle can accelerate left (a = −1),
accelerate right (a = 1), or coast (a = 0). We receive −1 reward every turn, and
terminate when the vehicle makes it up the right side of the valley past x = 0.6.
A visualization of the problem is given in figure F.7.

x

goal

gravity

Figure F.7. In the mountain car
problem, a vehicle must alternate
between accelerating left and right
in order to power itself up a hill.
The goal region is shown in blue.

Transitions in the mountain car problem are deterministic:

v′ ← v + 0.001a− 0.0025 cos(3x)

x′ ← x + v′

The gravitational term in the speed update is what drives the underpowered
vehicle back toward the valley floor. Transitions are clamped to the bounds of the
state space.

The mountain car problem is a good example of a problem with delayed
return. Many actions are required to get to the goal state, making it difficult for an
untrained agent to receive anything other than consistent unit penalties. The best
learning algorithms are able to efficiently propagate knowledge from trajectories
that reach the goal back to the rest of the state space.

F.5 Simple Regulator

The simple regulator problem is a simple linear quadratic regulator problem with a
single state. It is an MDP with a single real-valued state and a single real-valued

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

614 appendix f. problems

action. Transitions are linear Gaussian, such that a successor state s′ is drawn from
the Gaussian distribution N (s + a, 0.12

). Rewards are quadratic, R(s, a) = −s2,
and do not depend on the action. The examples in this book use the initial state
distribution N (0.3, 0.12

).
Optimal finite horizon policies cannot be derived using the methods from

section 7.8. In this case, Ts = [1], Ta = [1], Rs = [−1], Ra = [0], and w is drawn
from N (0, 0.12

). Applications of the Riccati equation require that Ra be negative
definite, which it is not.

The optimal policy is π(s) = −s, resulting in a successor state distribution
centered at the origin. In the policy gradient chapters, we learned parameterized
policies of the form πθ(s) = N

(

θ1s, θ2
2

). In such cases, the optimal parameteriza-
tion for the simple regulator problem is θ1 = −1 and θ2 is asymptotically close to
zero.

The optimal value function for the simple regulator problem is also centered
about the origin, with reward decreasing quadratically:

U(s) = −s2 +
γ

1− γ
Es∼N (0,0.12)

[

−s2
]

≈ −s2 − 0.010
γ

1− γ

F.6 Aircraft Collision Avoidance

The aircraft collision avoidance problem involves deciding when to issue a climb or
descend advisory to an aircraft to avoid an intruder aircraft.6 There are three 6 This formulation is a highly sim-

plified version of the problem de-
scribed by M. J. Kochenderfer and
J. P. Chryssanthacopoulos, “Ro-
bust Airborne Collision Avoidance
Through Dynamic Programming,”
Massachusetts Institute of Technol-
ogy, Lincoln Laboratory, Project Re-
port ATC-371, 2011.

actions corresponding to no advisory, commanding a 5 m/s descend, and com-
manding a 5 m/s climb. The intruder is approaching us head on, with a constant
horizontal closing speed. The state is specified by the altitude h of our aircraft
measured relative to the intruder aircraft, our vertical rate ḣ, the previous action
aprev, and the time to potential collision tcol. Figure F.8 illustrates the problem
scenario.

Given action a, the state variables are updated as follows:
h← h + ḣ∆t (F.5)
ḣ← ḣ + (ḧ + ν)∆t (F.6)

aprev ← a (F.7)
tcol ← tcol − ∆t (F.8)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

f.7. crying baby 615

our aircraft

intruder

tcol (s)
ḣ (m/s)

h (m)

Figure F.8. State variables for
the aircraft collision avoidance
problem.

where ∆t = 1 s and ν is selected from a discrete distribution over−2, 0, or 2 m/s2

with associated probabilities 0.25, 0.5, and 0.25. The value ḧ is given by

ḧ =

0 if a = no advisory
a/∆t if |a− ḣ|/∆t < ḧlimit
sign(a− ḣ)ḧlimit otherwise

(F.9)

where ḧlimit = 1 m/s2.
The episode terminates when taking an action when tcol < 0. There is a penalty

of 1 when the intruder comes within 50 m when tcol = 0, and there is a penalty
of 0.01 when a 6= aprev.

The aircraft collision avoidance problem can be efficiently solved over a dis-
cretized grid using backward induction value iteration (section 7.6) because the
dynamics deterministically reduce tcol. Slices of the optimal value function and
policy are depicted in figure F.9.

F.7 Crying Baby

The crying baby problem7 is a simple POMDP with two states, three actions, and

7 The version of the crying baby
problem presented in this text is
an extension of the original, sim-
pler crying baby problem in M. J.
Kochenderfer, Decision Making Un-
der Uncertainty: Theory and Applica-
tion. MIT Press, 2015.

two observations. Our goal is to care for a baby, and we do so by choosing at each
time step whether to feed the baby, sing to the baby, or ignore the baby.

The baby becomes hungry over time. We do not directly observe whether the
baby is hungry; instead, we receive a noisy observation in the form of whether
the baby is crying. The state, action, and observation spaces are as follows:

S = {sated,hungry}
A = {feed, sing, ignore}
O = {crying,quiet}

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

616 appendix f. problems

−200

−100

0

100

200

h
(m

)

ḣ = 0.0(m/s) ḣ = 5.0(m/s)

−1

−0.8

−0.6

−0.4

−0.2

0

0 10 20 30 40
−200

−100

0

100

200

tcol(s)

h
(m

)

0 10 20 30 40

tcol(s)

no advisory
descend
climb

Figure F.9. Optimal value function
slices (top) and policy slices (bot-
tom) for the aircraft collision avoid-
ance problem. The value function
and policy are symmetric about 0
when the vertical separation rate is
0, but are skewedwhen the vertical
separation rate is nonzero. Overall,
our aircraft need not take action un-
til the intruder aircraft is close.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

f.8. machine replacement 617

Feeding will always sate the baby. Ignoring the baby risks a sated baby be-
coming hungry, and ensures that a hungry baby remains hungry. Singing to the
baby is an information-gathering action with the same transition dynamics as
ignoring, but without the potential for crying when sated (not hungry) and with
an increased chance of crying when hungry.

The transition dynamics are as follows:

T(sated | hungry, feed) = 100 %

T(hungry | hungry, sing) = 100 %

T(hungry | hungry, ignore) = 100 %

T(sated | sated, feed) = 100 %

T(hungry | sated, sing) = 10 %

T(hungry | sated, ignore) = 10 %

The observation dynamics are as follows:

O(cry | feed,hungry) = 80 %

O(cry | sing,hungry) = 90 %

O(cry | ignore,hungry) = 80 %

O(cry | feed, sated) = 10 %

O(cry | sing, sated) = 0 %

O(cry | ignore, sated) = 10 %

The reward function assigns −10 reward if the baby is hungry, independent
of the action taken. The effort of feeding the baby adds a further −5 reward,
whereas singing adds −0.5 reward. As baby caregivers, we seek the optimal
infinite-horizon policywith discount factor γ = 0.9. Figure F.10 shows the optimal
value function and associated policy.

0 0.2 0.4 0.6 0.8 1

−20

−15

−10

P(hungry)

U
(b
)

ignore
feed

Figure F.10. The optimal policy
for the crying baby problem. This
infinite horizon solution does not
recommend singing for any belief
state. As shown in figure 20.3, it
is optimal to sing in some finite-
horizon versions of this problem.

F.8 Machine Replacement

The machine replacement problem is a discrete POMDP in which we maintain a
machine that creates products.8 This problem is used for its relative simplicity

8 R.D. Smallwood and E. J. Sondik,
“The Optimal Control of Partially
Observable Markov Processes over
a Finite Horizon,” Operations Re-
search, vol. 21, no. 5, pp. 1071–1088,
1973. The original problem formu-
lation includes salvage values, or ter-
minal rewards that are equal to the
number of working parts. We do
not model terminal rewards sep-
arately in this book. Terminal re-
wards could be included in our
framework by explicitly including
the horizon in the problem state.

and the varied size and shape of the optimal policy regions. The optimal policy
for certain horizons even has disjoint regions in which the same action is optimal,
as shown in figure F.11.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

618 appendix f. problems

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P
(0 failed components)P

(1
fai

led
co
mp

on
en

t)

P(2 failed components)

manufacture
examine
interrupt
replace

Figure F.11. The 14-step optimal
policy for themachine replacement
problemhas disjoint regionswhere
manufacturing is optimal. Each
polygon corresponds to the region
in which a particular alpha vector
dominates.

The machine produces products for us when it is working properly. Over
time, the two primary components in the machine may break down, together or
individually, leading to defective products. We can indirectly observe whether
the machine is faulty by examining the products, or by directly examining the
components in the machine.

The problem has states S = {0, 1, 2}, corresponding to the number of faulty
internal components. There are four actions, used prior to each production cycle:

1. manufacture, manufacture product and do not examine the product,

2. examine, manufacture product and examine the product,

3. interrupt, interrupt production, inspect, and replace failed components, and

4. replace, replace both components after interrupting production.

When we examine the product, we can observe whether it is defective. All
other actions observe only nondefective products.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

f.9. catch 619

The components in the machine independently have a 10 % chance of break-
ing down with each production cycle. Each failed component contributes a 50 %

chance of creating a defective product. A nondefective product nets 1 reward,
whereas a defective product nets 0 reward. The transition dynamics assume that
component breakdown is determined before a product is made, so the manu-
facture action on a fully-functional machine does not have a 100 % chance of
producing 1 reward.

The manufacture action incurs no penalty. Examining the product costs 0.25.
Interrupting the line costs 0.5 to inspect the machine, causes no product to be
made, and incurs a cost of 1 for each broken component. Simply replacing both
components always incurs a cost of 2, but it does not have an inspection cost.

The transition, observation, and reward functions are given in table F.2. Optimal
policies for increasing horizons are shown in figure F.12.

Action T(s′ | s, a) O(o | a, s′) R(s, a)

manufacture
s′

s

0.81 0.18 0.01
0 0.9 0.1
0 0 1

o

s′

1 0
1 0
1 0

 s

0.9025
0.475
0.25

examine s

0.81 0.18 0.01
0 0.9 0.1
0 0 1

 s′

1 0
0.5 0.5
0.25 0.75

 s

0.6525
0.225
0

interrupt s

1 0 0
1 0 0
1 0 0

 s′

1 0
1 0
1 0

 s

−0.5
−1.5
−2.5

replace s

1 0 0
1 0 0
1 0 0

 s′

1 0
1 0
1 0

 s

−2
−2
−2

Table F.2. The transition, observa-
tion, and reward functions for the
machine replacement problem.

F.9 Catch

In the catch problem, Johnny would like to successfully catch throws from his
father, and he prefers catching longer-distance throws. However, he is uncertain
about the relationship between the distances of a throw and the probability of
a successful catch. He does know that the probability of a successful catch is
the same, regardless of whether he is throwing or catching; and he has a finite
number of attempted catches to maximize his expected utility before he has to go
home.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

620 appendix f. problems

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P
(1

fai
led

co
mp

on
en

t)
5-step plan

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

6-step plan
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P
(0 failed components)

7-step plan

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

8-step plan
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

9-step plan
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

10-step plan

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P(2 failed components)

11-step plan
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

12-step plan
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

13-step plan

manufacture
examine
interrupt
replace

Figure F.12. Optimal policies for
the machine replacement problem
for increasing horizons. Each poly-
gon corresponds to the region in
which a particular alpha vector
dominates.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

f.10. prisoner’s dilemma 621

As shown in figure F.13, Johnny models the probability of successfully catching
a ball thrown a distance d as

P(catch | d) = 1− 1

1 + exp
(

− d−s
15

) (F.10)

where the proficiency s is unknown and does not change over time. To keep things
manageable, he assumes that s belongs to the discrete set S = {20, 40, 60, 80}. 0 20 40 60 80 100

0

0.5

1

d

P
(c
at
ch
|d

)

s = 20 s = 40

s = 60 s = 80

Figure F.13. The catch probability
as a function of throw distance d
for the four proficiencies in S .

The reward for a successful catch is equal to the distance. If the catch is un-
successful, then the reward is zero. Johnny wants to maximize the reward over a
finite number of attempted throws. With each throw, Johnny chooses a distance
from a discrete set A = {10, 20, . . . , 100}. He begins with a uniform distribution
over S .

F.10 Prisoner’s Dilemma

The prisoner’s dilemma is a classic problem in game theory involving agents with
conflicting objectives. There are two prisoners that are on trial. They can choose
to cooperate, remaining silent about their shared crime, or defect, blaming the
other for their crime. If they both cooperate, they both serve time for one year. If
agent i cooperates and the other agent −i defects, then i serves four years and −i

serves no time. If both defect, then they both serve three years.9 9 A.W. Tucker gave the name to this
game and formulated the story. It
was based on the original problem
formulation of Merrill Flood and
Melvin Dresher at RAND in 1950.
A history is provided by W. Pound-
stone, Prisoner’s Dilemma. Double-
day, 1992.

The game has two agents, I = {1, 2} and A = A1 × A2, with each Ai =

{cooperate,defect}. The table in figure F.14 expresses the individual rewards.
Rows represent actions for agent 1. Columns represent actions for agent 2. The
rewards for agent 1 and 2 are shown in each cell: R1(a1, a2), R2(a1, a2). The game
can be played once or repeated any number of times. In the infinite horizon case,
we use a discount factor of γ = 0.9.

F.11 Rock-Paper-Scissors

One common game played around the world is rock-paper-scissors. There are two
agents who can each choose either rock, paper, or scissors. Rock beats scissors,
resulting in a unit reward for the agent playing rock and a unit penalty for the
agent playing scissors. Scissors beats paper, resulting in a unit reward for the
agent playing scissors and a unit penalty for the agent playing paper. Finally,

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

622 appendix f. problems

−1,−1 −4, 0

0,−4 −3,−3
co

op
er
at
e

de
fec

t

defectcooperate

ag
en

t1

agent 2 Figure F.14. The rewards associ-
ated with the prisoner’s dilemma.

paper beats rock, resulting in a unit reward for the agent playing paper and a
unit penalty for the agent playing rock.

We have I = {1, 2} and A = A1 ×A2 with each Ai = {rock,paper, scissors}.
Figure F.15 shows the rewards associated with the game, with each cell denoting
R1(a1, a2), R2(a1, a2). The game can be played once or repeated any number of
times. In the infinite horizon case, we use a discount factor of γ = 0.9.

0, 0 −1, 1 1,−1

1,−1 0, 0 −1, 1

−1, 1 1,−1 0, 0

ro
ck

pa
pe

r
sc
iss

or
s

rock paper scissors

ag
en

t1

agent 2 Figure F.15. The rewards associ-
ated with the rock-paper-scissors
game.

F.12 Traveler’s Dilemma

The traveler’s dilemma is a game where an airline loses two identical suitcases from
two travelers.10 The airline asks the travelers to write down the value of their

10 K. Basu, “The Traveler’s Dilem-
ma: Paradoxes of Rationality in
Game Theory,” American Economic
Review, vol. 84, no. 2, pp. 391–395,
1994.

suitcases, which can be between $2 and $100, inclusive. If both put down the

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

f.13. predator-prey hex world 623

same value, then they both get that value. Otherwise, the traveler with the lower
value gets their value plus $2 and the traveler with the higher value gets the lower
value minus $2. In other words, the reward function is as follows:

Ri(ai, a−i) =

ai if ai = a−i

ai + 2 if ai < a−i

a−i − 2 otherwise
(F.11)

Most people tend to put down between $97 and $100. However, somewhat coun-
terintuitively, there is a unique Nash equilibrium of only $2.

F.13 Predator-Prey Hex World

The predator-prey hex world problem expands the hex world dynamics to include
multiple agents consisting of predators and prey. A predator tries to capture a
prey as quickly as possible, and a prey tries to escape the predators as long as
possible. The initial state of the hex world is shown in figure F.16. There are no
terminal states in this game.

Figure F.16. The initial state in
the predator-prey hex world. The
predator is red and the prey is
blue. The arrows indicate poten-
tial actions taken by the individual
agents from their initial cells.

There is a set of predators Ipred and a set of prey Iprey, with I = Ipred ∪ Iprey.
The states contain the locations of each agent: S = S1 × · · · × S |I|, with each S i

equal to all hex locations. The joint action space is A = A1 × · · · × A|I|, where
each Ai consists of all six hex directions of movement.

If a predator i ∈ Ipred and prey j ∈ Iprey share the same hex with si = sj,
then the prey is devoured. The prey j is then transported to a random hex cell,
representing its offspring appearing in the world. Otherwise, the state transitions
are independent and are as described in the original hex world.

One or more predators can capture one or more prey if they all happen to be
in the same cell. If n predators and m prey all share the same cell, the predators
receive a reward of m/n. For example, if two predators capture one prey together,
they each get a reward of 1/2. If three predators capture five prey together, they
each get a reward of 5/3. Moving predators receive unit penalty. Prey can move
with no penalty, but they receive a penalty of 100 for being devoured.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

624 appendix f. problems

F.14 Multicaregiver Crying Baby

The multicaregiver crying baby problem is a multiagent extension of the crying baby
problem. For each caregiver i ∈ I = {1, 2}, the states, actions, and observations
are as follows:

S = {hungry, sated} (F.12)
Ai = {feed, sing, ignore} (F.13)
Oi = {crying,quiet} (F.14)

The transition dynamics are similar to the original crying baby problem, except
that either caregiver can feed to satisfy the baby:

T(sated | hungry, (feed, ⋆)) = T(sated | hungry, (⋆, feed)) = 100 % (F.15)

where ⋆ indicates all possible other variable assignments. Otherwise, if the actions
are not feed, then the baby transitions between sated to hungry as before:

T(hungry | hungry, (⋆, ⋆)) = 100 % (F.16)
T(sated | sated, (⋆, ⋆)) = 50 % (F.17)

The observation dynamics are also similar to the single-agent version, but the
model ensures that both caregivers make the same observation of the baby, but
not necessarily of each other’s choice of caregiving action:

O((cry, cry) | (sing, ⋆),hungry) = O((cry, cry) | (⋆, sing),hungry) = 90 % (F.18)
O((quiet,quiet) | (sing, ⋆),hungry) = O((quiet,quiet) | (⋆, sing),hungry) = 10 % (F.19)

O((cry, cry) | (sing, ⋆), sated) = O((cry, cry) | (⋆, sing), sated) = 0 % (F.20)

If the actions are not to sing, then the observations are as follows:

O((cry, cry) | (⋆, ⋆),hungry) = O((cry, cry) | (⋆, ⋆),hungry) = 90 % (F.21)
O((quiet,quiet) | (⋆, ⋆),hungry) = O((quiet,quiet) | (⋆, ⋆),hungry) = 10 % (F.22)

O((cry, cry) | (⋆, ⋆), sated) = O((cry, cry) | (⋆, ⋆), sated) = 0 % (F.23)
O((quiet,quiet) | (⋆, ⋆), sated) = O((quiet,quiet) | (⋆, ⋆), sated) = 100 % (F.24)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

f.15. collaborative predator-prey hex world 625

Both caregivers want to help the baby when the baby is hungry, assigning the
same penalty of −10.0 for both. However, the first caregiver favors feeding and
the second caregiver favors singing. For feeding, the first caregiver receives an
extra penalty of only −2.5, while the second caregiver receives an extra penalty
of −5.0. For singing, the first caregiver is penalized by −0.5, while the second
caregiver is penalized by only −0.25.

F.15 Collaborative Predator-Prey Hex World

The collaborative predator-prey hex world is a variant of the predator-prey hex world
in which a team of predators chase a single, moving prey. The predators must
work together to capture a prey. The prey moves randomly to a neighboring cell
that is not occupied by a predator.

Predators also only make noisy local observations of the environment. Each
predator i detectswhether a prey iswithin a neighboring cellOi = {prey,nothing}.
The predators are penalized with a −1 reward for movement. They receive a re-
ward of 10 if one or more of them capture the prey, meaning that they are in the
same cell as the prey. At this point, the prey is randomly assigned a new cell,
signifying the arrival of a new prey for the predators to begin hunting again.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

G Julia

Julia is a scientific programming language that is free and open source.1 It is a 1 Julia may be obtained from
http://julialang.org.relatively new language that borrows inspiration from languages like Python,

MATLAB, and R. It was selected for use in this book because it is sufficiently
high level2 so that the algorithms can be compactly expressed and readable while 2 In contrast with languages like

C++, Julia does not require pro-
grammers to worry about memory
management and other lower-level
details, yet it allows low-level con-
trol when needed.

also being fast. This book is compatible with Julia version 1.7. This appendix
introduces the concepts necessary for understanding the included code, omitting
many of the advanced features of the language.

G.1 Types

Julia has a variety of basic types that can represent data given as truth values,
numbers, strings, arrays, tuples, and dictionaries. Users can also define their own
types. This section explains how to use some of the basic types and how to define
new types.

G.1.1 Booleans
The Boolean type in Julia, written as Bool, includes the values true and false. We
can assign these values to variables. Variable names can be any string of characters,
including Unicode, with a few restrictions.
α = true
done = false

The variable name appears on the left side of the equal sign; the value that variable
is to be assigned is on the right side.

http://julialang.org

628 appendix g. julia

We can make assignments in the Julia console. The console, or REPL (for read,
eval, print, loop), will return a response to the expression being evaluated. The #
symbol indicates that the rest of the line is a comment.
julia> x = true
true
julia> y = false; # semicolon suppresses the console output
julia> typeof(x)
Bool
julia> x == y # test for equality
false

The standard Boolean operators are supported:
julia> !x # not
false
julia> x && y # and
false
julia> x || y # or
true

G.1.2 Numbers
Julia supports integer and floating-point numbers, as shown here:
julia> typeof(42)
Int64
julia> typeof(42.0)
Float64

Here, Int64 denotes a 64-bit integer, and Float64 denotes a 64-bit floating-point
value.3 We can perform the standard mathematical operations: 3 On 32-bit machines, an integer

literal like 42 is interpreted as an
Int32.julia> x = 4

4
julia> y = 2
2
julia> x + y
6
julia> x - y
2
julia> x * y
8
julia> x / y
2.0

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

g.1. types 629

julia> x ^ y # exponentiation
16
julia> x % y # remainder from division
0
julia> div(x, y) # truncated division returns an integer
2

Note that the result of x / y is a Float64, even when x and y are integers. We
can also perform these operations at the same time as an assignment. For example,
x += 1 is shorthand for x = x + 1.

We can also make comparisons:
julia> 3 > 4
false
julia> 3 >= 4
false
julia> 3 ≥ 4 # unicode also works, use \ge[tab] in console
false
julia> 3 < 4
true
julia> 3 <= 4
true
julia> 3 ≤ 4 # unicode also works, use \le[tab] in console
true
julia> 3 == 4
false
julia> 3 < 4 < 5
true

G.1.3 Strings
A string is an array of characters. Strings are not used very much in this textbook
except to report certain errors. An object of type String can be constructed using
" characters. For example:
julia> x = "optimal"
"optimal"
julia> typeof(x)
String

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

630 appendix g. julia

G.1.4 Symbols
A symbol represents an identifier. It can be written using the : operator or con-
structed from strings:
julia> :A
:A
julia> :Battery
:Battery
julia> Symbol("Failure")
:Failure

G.1.5 Vectors
A vector is a one-dimensional array that stores a sequence of values. We can
construct a vector using square brackets, separating elements by commas:
julia> x = []; # empty vector
julia> x = trues(3); # Boolean vector containing three trues
julia> x = ones(3); # vector of three ones
julia> x = zeros(3); # vector of three zeros
julia> x = rand(3); # vector of three random numbers between 0 and 1
julia> x = [3, 1, 4]; # vector of integers
julia> x = [3.1415, 1.618, 2.7182]; # vector of floats

An array comprehension can be used to create vectors:
julia> [sin(x) for x in 1:5]
5-element Vector{Float64}:

0.8414709848078965
0.9092974268256817
0.1411200080598672

-0.7568024953079282
-0.9589242746631385

We can inspect the type of a vector:
julia> typeof([3, 1, 4]) # 1-dimensional array of Int64s
Vector{Int64} (alias for Array{Int64, 1})
julia> typeof([3.1415, 1.618, 2.7182]) # 1-dimensional array of Float64s
Vector{Float64} (alias for Array{Float64, 1})
julia> Vector{Float64} # alias for a 1-dimensional array
Vector{Float64} (alias for Array{Float64, 1})

We index into vectors using square brackets:

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

g.1. types 631

julia> x[1] # first element is indexed by 1
3.1415
julia> x[3] # third element
2.7182
julia> x[end] # use end to reference the end of the array
2.7182
julia> x[end-1] # this returns the second to last element
1.618

We can pull out a range of elements from an array. Ranges are specified using
a colon notation:
julia> x = [1, 2, 5, 3, 1]
5-element Vector{Int64}:
1
2
5
3
1
julia> x[1:3] # pull out the first three elements
3-element Vector{Int64}:
1
2
5
julia> x[1:2:end] # pull out every other element
3-element Vector{Int64}:
1
5
1
julia> x[end:-1:1] # pull out all the elements in reverse order
5-element Vector{Int64}:
1
3
5
2
1

We can perform a variety of operations on arrays. The exclamation mark at the
end of function names is used to indicate that the function mutates (i.e., changes)
the input:
julia> length(x)
5
julia> [x, x] # concatenation
2-element Vector{Vector{Int64}}:

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

632 appendix g. julia

[1, 2, 5, 3, 1]
[1, 2, 5, 3, 1]
julia> push!(x, -1) # add an element to the end
6-element Vector{Int64}:

1
2
5
3
1

-1
julia> pop!(x) # remove an element from the end
-1
julia> append!(x, [2, 3]) # append [2, 3] to the end of x
7-element Vector{Int64}:
1
2
5
3
1
2
3
julia> sort!(x) # sort the elements, altering the same vector
7-element Vector{Int64}:
1
1
2
2
3
3
5
julia> sort(x); # sort the elements as a new vector
julia> x[1] = 2; print(x) # change the first element to 2
[2, 1, 2, 2, 3, 3, 5]
julia> x = [1, 2];
julia> y = [3, 4];
julia> x + y # add vectors
2-element Vector{Int64}:
4
6
julia> 3x - [1, 2] # multiply by a scalar and subtract
2-element Vector{Int64}:
2
4
julia> using LinearAlgebra

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

g.1. types 633

julia> dot(x, y) # dot product available after using LinearAlgebra
11
julia> x⋅y # dot product using unicode character, use \cdot[tab] in console
11
julia> prod(y) # product of all the elements in y
12

It is often useful to apply various functions elementwise to vectors. This is a
form of broadcasting. With infix operators (e.g., +, *, and ^), a dot is prefixed to
indicate elementwise broadcasting. With functions like sqrt and sin, the dot is
postfixed:
julia> x .* y # elementwise multiplication
2-element Vector{Int64}:
3
8
julia> x .^ 2 # elementwise squaring
2-element Vector{Int64}:
1
4
julia> sin.(x) # elementwise application of sin
2-element Vector{Float64}:
0.8414709848078965
0.9092974268256817
julia> sqrt.(x) # elementwise application of sqrt
2-element Vector{Float64}:
1.0
1.4142135623730951

G.1.6 Matrices
A matrix is a two-dimensional array. Like a vector, it is constructed using square
brackets. We use spaces to delimit elements in the same row and semicolons to
delimit rows. We can also index into the matrix and output submatrices using
ranges:
julia> X = [1 2 3; 4 5 6; 7 8 9; 10 11 12];
julia> typeof(X) # a 2-dimensional array of Int64s
Matrix{Int64} (alias for Array{Int64, 2})
julia> X[2] # second element using column-major ordering
4
julia> X[3,2] # element in third row and second column
8

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

634 appendix g. julia

julia> X[1,:] # extract the first row
3-element Vector{Int64}:
1
2
3
julia> X[:,2] # extract the second column
4-element Vector{Int64}:

2
5
8

11
julia> X[:,1:2] # extract the first two columns
4×2 Matrix{Int64}:

1 2
4 5
7 8

10 11
julia> X[1:2,1:2] # extract a 2x2 submatrix from the top left of x
2×2 Matrix{Int64}:
1 2
4 5
julia> Matrix{Float64} # alias for a 2-dimensional array
Matrix{Float64} (alias for Array{Float64, 2})

We can also construct a variety of special matrices and use array comprehen-
sions:
julia> Matrix(1.0I, 3, 3) # 3x3 identity matrix
3×3 Matrix{Float64}:
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
julia> Matrix(Diagonal([3, 2, 1])) # 3x3 diagonal matrix with 3, 2, 1 on diagonal
3×3 Matrix{Int64}:
3 0 0
0 2 0
0 0 1
julia> zeros(3,2) # 3x2 matrix of zeros
3×2 Matrix{Float64}:
0.0 0.0
0.0 0.0
0.0 0.0
julia> rand(3,2) # 3x2 random matrix
3×2 Matrix{Float64}:
0.41794 0.881486

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

g.1. types 635

0.14916 0.534639
0.736357 0.850574
julia> [sin(x + y) for x in 1:3, y in 1:2] # array comprehension
3×2 Matrix{Float64}:
0.909297 0.14112
0.14112 -0.756802
-0.756802 -0.958924

Matrix operations include the following:
julia> X' # complex conjugate transpose
3×4 adjoint(::Matrix{Int64}) with eltype Int64:
1 4 7 10
2 5 8 11
3 6 9 12
julia> 3X .+ 2 # multiplying by scalar and adding scalar
4×3 Matrix{Int64}:
5 8 11
14 17 20
23 26 29
32 35 38
julia> X = [1 3; 3 1]; # create an invertible matrix
julia> inv(X) # inversion
2×2 Matrix{Float64}:
-0.125 0.375
0.375 -0.125

julia> pinv(X) # pseudoinverse (requires LinearAlgebra)
2×2 Matrix{Float64}:
-0.125 0.375
0.375 -0.125

julia> det(X) # determinant (requires LinearAlgebra)
-8.0
julia> [X X] # horizontal concatenation, same as hcat(X, X)
2×4 Matrix{Int64}:
1 3 1 3
3 1 3 1
julia> [X; X] # vertical concatenation, same as vcat(X, X)
4×2 Matrix{Int64}:
1 3
3 1
1 3
3 1
julia> sin.(X) # elementwise application of sin
2×2 Matrix{Float64}:
0.841471 0.14112

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

636 appendix g. julia

0.14112 0.841471
julia> map(sin, X) # elementwise application of sin
2×2 Matrix{Float64}:
0.841471 0.14112
0.14112 0.841471
julia> vec(X) # reshape an array as a vector
4-element Vector{Int64}:
1
3
3
1

G.1.7 Tuples
A tuple is an ordered list of values, potentially of different types. They are con-
structedwith parentheses. They are similar to vectors, but they cannot bemutated:
julia> x = () # the empty tuple
()
julia> isempty(x)
true
julia> x = (1,) # tuples of one element need the trailing comma
(1,)
julia> typeof(x)
Tuple{Int64}
julia> x = (1, 0, [1, 2], 2.5029, 4.6692) # third element is a vector
(1, 0, [1, 2], 2.5029, 4.6692)
julia> typeof(x)
Tuple{Int64, Int64, Vector{Int64}, Float64, Float64}
julia> x[2]
0
julia> x[end]
4.6692
julia> x[4:end]
(2.5029, 4.6692)
julia> length(x)
5
julia> x = (1, 2)
(1, 2)
julia> a, b = x;
julia> a
1
julia> b
2

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

g.1. types 637

G.1.8 Named Tuples
A named tuple is like a tuple, but each entry has its own name:
julia> x = (a=1, b=-Inf)
(a = 1, b = -Inf)
julia> x isa NamedTuple
true
julia> x.a
1
julia> a, b = x;
julia> a
1
julia> (; :a=>10)
(a = 10,)
julia> (; :a=>10, :b=>11)
(a = 10, b = 11)
julia> merge(x, (d=3, e=10)) # merge two named tuples
(a = 1, b = -Inf, d = 3, e = 10)

G.1.9 Dictionaries
A dictionary is a collection of key-value pairs. Key-value pairs are indicated with
a double arrow operator =>. We can index into a dictionary using square brackets,
just as with arrays and tuples:
julia> x = Dict(); # empty dictionary
julia> x[3] = 4 # associate key 3 with value 4
4
julia> x = Dict(3=>4, 5=>1) # create a dictionary with two key-value pairs
Dict{Int64, Int64} with 2 entries:
5 => 1
3 => 4

julia> x[5] # return the value associated with key 5
1
julia> haskey(x, 3) # check whether dictionary has key 3
true
julia> haskey(x, 4) # check whether dictionary has key 4
false

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

638 appendix g. julia

G.1.10 Composite Types
A composite type is a collection of named fields. By default, an instance of a com-
posite type is immutable (i.e., it cannot change). We use the struct keyword and
then give the new type a name and list the names of the fields:
struct A

a
b

end

Adding the keyword mutable makes it so that an instance can change:
mutable struct B

a
b

end

Composite types are constructed using parentheses, between which we pass
in values for each field:
x = A(1.414, 1.732)

The double-colon operator can be used to specify the type for any field:
struct A

a::Int64
b::Float64

end

These type annotations require that we pass in an Int64 for the first field and
a Float64 for the second field. For compactness, this book does not use type
annotations, but it is at the expense of performance. Type annotations allow
Julia to improve runtime performance because the compiler can optimize the
underlying code for specific types.

G.1.11 Abstract Types
So far we have discussed concrete types, which are types that we can construct.
However, concrete types are only part of the type hierarchy. There are also abstract
types, which are supertypes of concrete types and other abstract types.

We can explore the type hierarchy of the Float64 type shown in figure G.1
using the supertype and subtypes functions:

Any

Number
Real

AbstractFloat
Float64
Float32
Float16
BigFloat

...

Figure G.1. The type hierarchy for
the Float64 type.

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

g.1. types 639

julia> supertype(Float64)
AbstractFloat
julia> supertype(AbstractFloat)
Real
julia> supertype(Real)
Number
julia> supertype(Number)
Any
julia> supertype(Any) # Any is at the top of the hierarchy
Any
julia> using InteractiveUtils # required for using subtypes in scripts
julia> subtypes(AbstractFloat) # different types of AbstractFloats
4-element Vector{Any}:
BigFloat
Float16
Float32
Float64
julia> subtypes(Float64) # Float64 does not have any subtypes
Type[]

We can define our own abstract types:
abstract type C end
abstract type D <: C end # D is an abstract subtype of C
struct E <: D # E is a composite type that is a subtype of D

a
end

G.1.12 Parametric Types
Julia supports parametric types, which are types that take parameters. The param-
eters to a parametric type are given within braces and delimited by commas. We
have already seen a parametric type with our dictionary example:
julia> x = Dict(3=>1.4, 1=>5.9)
Dict{Int64, Float64} with 2 entries:
3 => 1.4
1 => 5.9

For dictionaries, the first parameter specifies the key type, and the second param-
eter specifies the value type. The example has Int64 keys and Float64 values,
making the dictionary of type Dict{Int64,Float64}. Julia was able to infer these
types based on the input, but we could have specified it explicitly:

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

640 appendix g. julia

julia> x = Dict{Int64,Float64}(3=>1.4, 1=>5.9);

While it is possible to define our own parametric types, we do not need to do so
in this text.

G.2 Functions

A function maps its arguments, given as a tuple, to a result that is returned.

G.2.1 Named Functions
One way to define a named function is to use the function keyword, followed by
the name of the function and a tuple of names of arguments:
function f(x, y)

return x + y
end

We can also define functions compactly using assignment form:
julia> f(x, y) = x + y;
julia> f(3, 0.1415)
3.1415

G.2.2 Anonymous Functions
An anonymous function is not given a name, though it can be assigned to a named
variable. One way to define an anonymous function is to use the arrow operator:
julia> h = x -> x^2 + 1 # assign anonymous function with input x to a variable h
#1 (generic function with 1 method)
julia> h(3)
10
julia> g(f, a, b) = [f(a), f(b)]; # applies function f to a and b and returns array
julia> g(h, 5, 10)
2-element Vector{Int64}:

26
101
julia> g(x->sin(x)+1, 10, 20)
2-element Vector{Float64}:
0.4559788891106302
1.9129452507276277

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

g.2. functions 641

G.2.3 Callable Objects
We can define a type and associate functions with it, allowing objects of that type
to be callable:

julia> (x::A)() = x.a + x.b # adding a zero-argument function to the type A defined earlier
julia> (x::A)(y) = y*x.a + x.b # adding a single-argument function
julia> x = A(22, 8);
julia> x()
30
julia> x(2)
52

G.2.4 Optional Arguments
We can assign a default value to an argument, making the specification of that
argument optional:
julia> f(x=10) = x^2;
julia> f()
100
julia> f(3)
9
julia> f(x, y, z=1) = x*y + z;
julia> f(1, 2, 3)
5
julia> f(1, 2)
3

G.2.5 Keyword Arguments
Functions may use keyword arguments, which are arguments that are named
when the function is called. Keyword arguments are given after all the positional
arguments. A semicolon is placed before any keywords, separating them from
the other arguments:
julia> f(; x = 0) = x + 1;
julia> f()
1
julia> f(x = 10)
11
julia> f(x, y = 10; z = 2) = (x + y)*z;
julia> f(1)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

642 appendix g. julia

22
julia> f(2, z = 3)
36
julia> f(2, 3)
10
julia> f(2, 3, z = 1)
5

G.2.6 Dispatch
The types of the arguments passed to a function can be specified using the double
colon operator. If multiple methods of the same function are provided, Julia will
execute the appropriate method. The mechanism for choosing which method to
execute is called dispatch:
julia> f(x::Int64) = x + 10;
julia> f(x::Float64) = x + 3.1415;
julia> f(1)
11
julia> f(1.0)
4.141500000000001
julia> f(1.3)
4.4415000000000004

Themethod with a type signature that best matches the types of the arguments
given will be used:
julia> f(x) = 5;
julia> f(x::Float64) = 3.1415;
julia> f([3, 2, 1])
5
julia> f(0.00787499699)
3.1415

G.2.7 Splatting
It is often useful to splat the elements of a vector or a tuple into the arguments to
a function using the ... operator:

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

g.3. control flow 643

julia> f(x,y,z) = x + y - z;
julia> a = [3, 1, 2];
julia> f(a...)
2
julia> b = (2, 2, 0);
julia> f(b...)
4
julia> c = ([0,0],[1,1]);
julia> f([2,2], c...)
2-element Vector{Int64}:
1
1

G.3 Control Flow

We can control the flow of our programs using conditional evaluation and loops.
This section provides some of the syntax used in the book.

G.3.1 Conditional Evaluation
Conditional evaluation will check the value of a Boolean expression and then
evaluate the appropriate block of code. One of the most common ways to do this
is with an if statement:
if x < y

run this if x < y
elseif x > y

run this if x > y
else

run this if x == y
end

We can also use the ternary operator with its question mark and colon syntax.
It checks the Boolean expression before the question mark. If the expression
evaluates to true, then it returns what comes before the colon; otherwise, it
returns what comes after the colon:
julia> f(x) = x > 0 ? x : 0;
julia> f(-10)
0
julia> f(10)
10

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

644 appendix g. julia

G.3.2 Loops
A loop allows for repeated evaluation of expressions. One type of loop is the
while loop, which repeatedly evaluates a block of expressions until the specified
condition after the while keyword is met. The following example sums the values
in the array X:
X = [1, 2, 3, 4, 6, 8, 11, 13, 16, 18]
s = 0
while !isempty(X)

s += pop!(X)
end

Another type of loop is the for loop, which uses the for keyword. The following
example will also sum over the values in the array X but will not modify X:
X = [1, 2, 3, 4, 6, 8, 11, 13, 16, 18]
s = 0
for y in X

s += y
end

The in keyword can be replaced by = or ∈. The following code block is equivalent:
X = [1, 2, 3, 4, 6, 8, 11, 13, 16, 18]
s = 0
for i = 1:length(X)

s += X[i]
end

G.3.3 Iterators
We can iterate over collections in contexts such as for loops and array comprehen-
sions. To demonstrate various iterators, we will use the collect function, which
returns an array of all items generated by an iterator:

julia> X = ["feed", "sing", "ignore"];
julia> collect(enumerate(X)) # return the count and the element
3-element Vector{Tuple{Int64, String}}:
(1, "feed")
(2, "sing")
(3, "ignore")
julia> collect(eachindex(X)) # equivalent to 1:length(X)
3-element Vector{Int64}:

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

g.4. packages 645

1
2
3
julia> Y = [-5, -0.5, 0];
julia> collect(zip(X, Y)) # iterate over multiple iterators simultaneously
3-element Vector{Tuple{String, Float64}}:
("feed", -5.0)
("sing", -0.5)
("ignore", 0.0)
julia> import IterTools: subsets
julia> collect(subsets(X)) # iterate over all subsets
8-element Vector{Vector{String}}:
[]
["feed"]
["sing"]
["feed", "sing"]
["ignore"]
["feed", "ignore"]
["sing", "ignore"]
["feed", "sing", "ignore"]
julia> collect(eachindex(X)) # iterate over indices into a collection
3-element Vector{Int64}:
1
2
3
julia> Z = [1 2; 3 4; 5 6];
julia> import Base.Iterators: product
julia> collect(product(X,Y)) # iterate over Cartesian product of multiple iterators
3×3 Matrix{Tuple{String, Float64}}:
("feed", -5.0) ("feed", -0.5) ("feed", 0.0)
("sing", -5.0) ("sing", -0.5) ("sing", 0.0)
("ignore", -5.0) ("ignore", -0.5) ("ignore", 0.0)

G.4 Packages

A package is a collection of Julia code and possibly other external libraries that
can be imported to provide additional functionality. This section briefly reviews
a few of the key packages that we build upon in this book. To add a registered
package like Distributions.jl, we can run
using Pkg
Pkg.add("Distributions")
To update packages, we use

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

646 appendix g. julia

Pkg.update()

To use a package, we use the keyword using as follows:
using Distributions

G.4.1 Graphs.jl
We use the Graphs.jl package (version 1.4) to represent graphs and perform
operations on them:
julia> using Graphs
julia> G = SimpleDiGraph(3); # create a directed graph with three nodes
julia> add_edge!(G, 1, 3); # add edge from node 1 to 3
julia> add_edge!(G, 1, 2); # add edge from node 1 to 2
julia> rem_edge!(G, 1, 3); # remove edge from node 1 to 3
julia> add_edge!(G, 2, 3); # add edge from node 2 to 3
julia> typeof(G)
Graphs.SimpleGraphs.SimpleDiGraph{Int64}
julia> nv(G) # number of nodes (also called vertices)
3
julia> outneighbors(G, 1) # list of outgoing neighbors for node 1
1-element Vector{Int64}:
2
julia> inneighbors(G, 1) # list of incoming neighbors for node 1
Int64[]

G.4.2 Distributions.jl
Weuse the Distributions.jl package (version 0.24) to represent, fit, and sample
from probability distributions:
julia> using Distributions
julia> dist = Categorical([0.3, 0.5, 0.2]) # create a categorical distribution
Distributions.Categorical{Float64, Vector{Float64}}(support=Base.OneTo(3), p=[0.3, 0.5, 0.2])
julia> data = rand(dist) # generate a sample
2
julia> data = rand(dist, 2) # generate two samples
2-element Vector{Int64}:
2
3
julia> μ, σ = 5.0, 2.5; # define parameters of a normal distribution
julia> dist = Normal(μ, σ) # create a normal distribution
Distributions.Normal{Float64}(μ=5.0, σ=2.5)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

g.4. packages 647

julia> rand(dist) # sample from the distribution
3.173653920282897
julia> data = rand(dist, 3) # generate three samples
3-element Vector{Float64}:
10.860475998911657
1.519358465527894
3.0194180096515186

julia> data = rand(dist, 1000); # generate many samples
julia> Distributions.fit(Normal, data) # fit a normal distribution to the samples
Distributions.Normal{Float64}(μ=5.085987626631449, σ=2.4766229761489367)
julia> μ = [1.0, 2.0];
julia> Σ = [1.0 0.5; 0.5 2.0];
julia> dist = MvNormal(μ, Σ) # create a multivariate normal distribution
FullNormal(
dim: 2
μ: [1.0, 2.0]
Σ: [1.0 0.5; 0.5 2.0]
)
julia> rand(dist, 3) # generate three samples
2×3 Matrix{Float64}:
0.834945 -0.527494 -0.098257
1.25277 -0.246228 0.423922
julia> dist = Dirichlet(ones(3)) # create a Dirichlet distribution Dir(1,1,1)
Distributions.Dirichlet{Float64, Vector{Float64}, Float64}(alpha=[1.0, 1.0, 1.0])
julia> rand(dist) # sample from the distribution
3-element Vector{Float64}:
0.19658106436589923
0.6128478073834874
0.1905711282506134

G.4.3 JuMP.jl
We use the JuMP.jl package (version 0.21) to specify optimization problems that
we can then solve using a variety of solvers, such as those included in GLPK.jl
and Ipopt.jl:
julia> using JuMP
julia> using GLPK
julia> model = Model(GLPK.Optimizer) # create model and use GLPK as solver
A JuMP Model
Feasibility problem with:
Variables: 0
Model mode: AUTOMATIC
CachingOptimizer state: EMPTY_OPTIMIZER

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

648 appendix g. julia

Solver name: GLPK
julia> @variable(model, x[1:3]) # define variables x[1], x[2], and x[3]
3-element Vector{JuMP.VariableRef}:
x[1]
x[2]
x[3]
julia> @objective(model, Max, sum(x) - x[2]) # define maximization objective
x[1] + 0 x[2] + x[3]
julia> @constraint(model, x[1] + x[2] ≤ 3) # add constraint
x[1] + x[2] <= 3.0
julia> @constraint(model, x[2] + x[3] ≤ 2) # add another constraint
x[2] + x[3] <= 2.0
julia> @constraint(model, x[2] ≥ 0) # add another constraint
x[2] >= 0.0
julia> optimize!(model) # solve
julia> value.(x) # extract optimal values for elements in x
3-element Vector{Float64}:
3.0
0.0
2.0

G.5 Convenience Functions

There are a few functions that allow us to specify the algorithms in this bookmore
compactly. The following functions are useful when working with dictionaries
and named tuples:
Base.Dict{Symbol,V}(a::NamedTuple) where V =

Dict{Symbol,V}(n=>v for (n,v) in zip(keys(a), values(a)))
Base.convert(::Type{Dict{Symbol,V}}, a::NamedTuple) where V =

Dict{Symbol,V}(a)
Base.isequal(a::Dict{Symbol,<:Any}, nt::NamedTuple) =

length(a) == length(nt) &&
all(a[n] == v for (n,v) in zip(keys(nt), values(nt)))

julia> a = Dict{Symbol,Integer}((a=1, b=2, c=3))
Dict{Symbol, Integer} with 3 entries:

:a => 1
:b => 2
:c => 3

julia> isequal(a, (a=1, b=2, c=3))
true
julia> isequal(a, (a=1, c=3, b=2))
true

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

g.5. convenience functions 649

julia> Dict{Dict{Symbol,Integer},Float64}((a=1, b=1)=>0.2, (a=1, b=2)=>0.8)
Dict{Dict{Symbol, Integer}, Float64} with 2 entries:
Dict(:a=>1, :b=>1) => 0.2
Dict(:a=>1, :b=>2) => 0.8

We define SetCategorical to represent distributions over discrete sets:
struct SetCategorical{S}

elements::Vector{S} # Set elements (could be repeated)
distr::Categorical # Categorical distribution over set elements

function SetCategorical(elements::AbstractVector{S}) where S
weights = ones(length(elements))
return new{S}(elements, Categorical(normalize(weights, 1)))

end

function SetCategorical(
elements::AbstractVector{S},
weights::AbstractVector{Float64}

) where S

ℓ₁ = norm(weights,1)
if ℓ₁ < 1e-6 || isinf(ℓ₁)

return SetCategorical(elements)
end
distr = Categorical(normalize(weights, 1))
return new{S}(elements, distr)

end
end

Distributions.rand(D::SetCategorical) = D.elements[rand(D.distr)]
Distributions.rand(D::SetCategorical, n::Int) = D.elements[rand(D.distr, n)]
function Distributions.pdf(D::SetCategorical, x)

sum(e == x ? w : 0.0 for (e,w) in zip(D.elements, D.distr.p))
end

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

650 appendix g. julia

julia> D = SetCategorical(["up", "down", "left", "right"],[0.4, 0.2, 0.3, 0.1]);
julia> rand(D)
"up"
julia> rand(D, 5)
5-element Vector{String}:
"left"
"up"
"down"
"up"
"left"
julia> pdf(D, "up")
0.3999999999999999

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

References

1. P. Abbeel and A.Y. Ng, “Apprenticeship Learning via Inverse Reinforcement Learn-
ing,” in International Conference on Machine Learning (ICML), 2004 (cit. on p. 361).

2. J. Agar, Science in the 20th Century and Beyond. Polity, 2012 (cit. on p. 10).
3. S. Amari, “Natural Gradient Works Efficiently in Learning,” Neural Computation,

vol. 10, no. 2, pp. 251–276, 1998 (cit. on p. 253).
4. C. Amato, D. S. Bernstein, and S. Zilberstein, “Optimizing Fixed-Size Stochastic

Controllers for POMDPs and Decentralized POMDPs,” Autonomous Agents and
Multi-Agent Systems, vol. 21, no. 3, pp. 293–320, 2010 (cit. on pp. 478, 551).

5. D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané, “Con-
crete Problems in AI Safety,” 2016. arXiv: 1606.06565v2 (cit. on p. 13).

6. P. Anand, “Are the Preference Axioms Really Rational?” Theory and Decision, vol. 23,
no. 2, pp. 189–214, 1987 (cit. on p. 112).

7. D. Ariely, Predictably Irrational: The Hidden Forces That Shape Our Decisions. Harper,
2008 (cit. on p. 122).

8. S. Arnborg, D.G. Corneil, and A. Proskurowski, “Complexity of Finding Embed-
dings in a k-Tree,” SIAM Journal on Algebraic Discrete Methods, vol. 8, no. 2, pp. 277–
284, 1987 (cit. on p. 52).

9. M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A Tutorial on Particle
Filters for Online Nonlinear / Non-Gaussian Bayesian Tracking,” IEEE Transactions
on Signal Processing, vol. 50, no. 2, pp. 174–188, 2002 (cit. on p. 390).

10. K. J. Åström, “Optimal Control of Markov Processes with Incomplete State Infor-
mation,” Journal of Mathematical Analysis and Applications, vol. 10, no. 1, pp. 174–205,
1965 (cit. on p. 407).

11. P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-Time Analysis of the Multiarmed
Bandit Problem,” Machine Learning, vol. 47, no. 2–3, pp. 235–256, 2002 (cit. on
p. 187).

https://arxiv.org/abs/1606.06565v2

652 references

12. T. Ayer, O. Alagoz, and N.K. Stout, “A POMDP Approach to Personalize Mam-
mography Screening Decisions,” Operations Research, vol. 60, no. 5, pp. 1019–1034,
2012 (cit. on p. 4).

13. H. Bai, D.Hsu,W. S. Lee, andV.A.Ngo, “MonteCarloValue Iteration forContinuous-
State POMDPs,” in International Workshop on the Algorithmic Foundations of Robotics
(WAFR), 2011 (cit. on p. 475).

14. L. Baird, “Residual Algorithms: Reinforcement Learningwith Function Approxima-
tion,” in International Conference on Machine Learning (ICML), 1995 (cit. on p. 610).

15. Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking
and Navigation. Wiley, 2001 (cit. on p. 383).

16. D. Barber, Bayesian Reasoning and Machine Learning. Cambridge University Press,
2012 (cit. on p. 53).

17. A.G. Barto, R. S. Sutton, and C.W. Anderson, “Neuronlike Adaptive Elements That
Can Solve Difficult Learning Control Problems,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. SMC-13, no. 5, pp. 834–846, 1983 (cit. on p. 611).

18. A.G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to Act Using Real-TimeDynamic
Programming,”Artificial Intelligence, vol. 72, no. 1–2, pp. 81–138, 1995 (cit. on p. 197).

19. K. Basu, “The Traveler’s Dilemma: Paradoxes of Rationality in Game Theory,”
American Economic Review, vol. 84, no. 2, pp. 391–395, 1994 (cit. on p. 622).

20. R. Bellman, “Minimization Problem,” Bulletin of the American Mathematical Society,
vol. 62, no. 3, p. 270, 1956 (cit. on p. 399).

21. R. Bellman, Eye of the Hurricane: An Autobiography. World Scientific, 1984 (cit. on
p. 136).

22. R. E. Bellman, Dynamic Programming. Princeton University Press, 1957 (cit. on
pp. 133, 138).

23. A. Bemporad and M. Morari, “Robust Model Predictive Control: A Survey,” in
Robustness in Identification and Control, A. Garulli, A. Tesi, and A. Vicino, eds.,
Springer, 1999, pp. 207–226 (cit. on p. 204).

24. J. Bentham, Theory of Legislation. Trübner & Company, 1887 (cit. on p. 8).
25. U. Berger, “Brown’s Original Fictitious Play,” Journal of Economic Theory, vol. 135,

no. 1, pp. 572–578, 2007 (cit. on p. 507).
26. D. Bernoulli, “Exposition of a New Theory on the Measurement of Risk,” Econo-

metrica, vol. 22, no. 1, pp. 23–36, 1954 (cit. on p. 112).
27. D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The Complexity of

Decentralized Control of Markov Decision Processes,” Mathematics of Operation
Research, vol. 27, no. 4, pp. 819–840, 2002 (cit. on pp. 545, 546).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

references 653

28. D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena Scientific, 2007
(cit. on p. 148).

29. D. P. Bertsekas, Reinforcement Learning and Optimal Control. Athena Scientific, 2019
(cit. on p. 335).

30. D. P. Bertsekas and J.N. Tsitsiklis, Introduction to Probability. Athena Scientific, 2002
(cit. on p. 20).

31. M. Besançon, T. Papamarkou, D. Anthoff, A. Arslan, S. Byrne, D. Lin, and J. Pear-
son, “Distributions.jl: Definition and Modeling of Probability Distributions in the
JuliaStats Ecosystem,” 2019. arXiv: 1907.08611v1 (cit. on p. 573).

32. W.M. Bolstad and J.M. Curran, Introduction to Bayesian Statistics. Wiley, 2016 (cit.
on p. 11).

33. B. Bonet and H. Geffner, “Labeled RTDP: Improving the Convergence of Real-Time
Dynamic Programming,” in International Conference on Automated Planning and
Scheduling (ICAPS), 2003 (cit. on p. 197).

34. F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear and Hybrid
Systems. Cambridge University Press, 2019 (cit. on p. 200).

35. M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer, “Safe Reinforce-
ment Learning with Scene Decomposition for Navigating Complex Urban Environ-
ments,” in IEEE Intelligent Vehicles Symposium (IV), 2019 (cit. on p. 3).

36. M. Bouton, J. Tumova, and M. J. Kochenderfer, “Point-Based Methods for Model
Checking in Partially Observable Markov Decision Processes,” in AAAI Conference
on Artificial Intelligence (AAAI), 2020 (cit. on p. 293).

37. M. Bowling, “Convergence and No-Regret in Multiagent Learning,” in Advances in
Neural Information Processing Systems (NIPS), 2005 (cit. on p. 509).

38. M. Bowling and M. Veloso, “An Analysis of Stochastic Game Theory for Multiagent
Reinforcement Learning,” Carnegie Mellon University, Tech. Rep. CMU-CS-00-165,
2000 (cit. on p. 521).

39. S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2004 (cit. on pp. 200, 565).

40. R. I. Brafman and M. Tennenholtz, “R-MAX—A General Polynomial Time Al-
gorithm for Near-Optimal Reinforcement Learning,” Journal of Machine Learning
Research, vol. 3, pp. 213–231, 2002 (cit. on p. 323).

41. D. Brockhoff, A. Auger, N. Hansen, D. Arnold, and T. Hohm, “Mirrored Sampling
and Sequential Selection for Evolution Strategies,” in International Conference on
Parallel Problem Solving from Nature, 2010 (cit. on p. 224).

42. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W.
Zaremba, “OpenAI Gym,” 2016. arXiv: 1606.01540v1 (cit. on p. 611).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1907.08611v1
https://arxiv.org/abs/1606.01540v1

654 references

43. G.W. Brown, “Iterative Solution of Games by Fictitious Play,” Activity Analysis of
Production and Allocation, vol. 13, no. 1, pp. 374–376, 1951 (cit. on p. 505).

44. C. B. Browne, E. Powley, D. Whitehouse, S.M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A Survey of Monte Carlo Tree
Search Methods,” IEEE Transactions on Computational Intelligence and AI in Games,
vol. 4, no. 1, pp. 1–43, 2012 (cit. on pp. 187, 276).

45. J. A. Bucklew, Introduction to Rare Event Simulation. Springer, 2004 (cit. on p. 287).
46. W. L. Buntine, “Theory Refinement on Bayesian Networks,” in Conference on Uncer-

tainty in Artificial Intelligence (UAI), 1991 (cit. on p. 104).
47. C. F. Camerer, Behavioral Game Theory: Experiments in Strategic Interaction. Princeton

University Press, 2003 (cit. on p. 504).
48. A. R. Cassandra, M. L. Littman, and N.L. Zhang, “Incremental Pruning: A Sim-

ple, Fast, Exact Method for Partially Observable Markov Decision Processes,” in
Conference on Uncertainty in Artificial Intelligence (UAI), 1997 (cit. on p. 416).

49. J. Chakravorty and A. Mahajan, “Multi-Armed Bandits, Gittins Index, and Its Cal-
culation,” in Methods and Applications of Statistics in Clinical Trials, N. Balakrishnan,
ed., vol. 2, Wiley, 2014, pp. 416–435 (cit. on p. 309).

50. D.M. Chickering, “Learning Bayesian Networks is NP-Complete,” in Learning from
Data: Artificial Intelligence and Statistics V, D. Fisher and H.-J. Lenz, eds., Springer,
1996, pp. 121–130 (cit. on p. 97).

51. D.M. Chickering, “Learning Equivalence Classes of Bayesian-Network Structures,”
Journal of Machine Learning Research, vol. 2, pp. 445–498, 2002 (cit. on p. 106).

52. D.M. Chickering, D.Heckerman, andC.Meek, “Large-Sample Learning of Bayesian
Networks is NP-Hard,” Journal of Machine Learning Research, vol. 5, pp. 1287–1330,
2004 (cit. on p. 97).

53. K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning Phrase Representations Using RNN Encoder-Decoder
for Statistical Machine Translation,” in Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014 (cit. on p. 592).

54. E. K. P. Chong, R. L. Givan, and H. S. Chang, “A Framework for Simulation-Based
Network Control via Hindsight Optimization,” in IEEE Conference on Decision and
Control (CDC), 2000 (cit. on p. 207).

55. B. Christian, The Alignment Problem. Norton & Company, 2020 (cit. on p. 13).
56. G. F. Cooper, “The Computational Complexity of Probabilistic Inference Using

Bayesian Belief Networks,” Artificial Intelligence, vol. 42, no. 2–3, pp. 393–405, 1990
(cit. on p. 53).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

references 655

57. G. F. Cooper and E. Herskovits, “A Bayesian Method for the Induction of Proba-
bilistic Networks from Data,” Machine Learning, vol. 4, no. 9, pp. 309–347, 1992 (cit.
on pp. 97, 100).

58. T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
3rd ed. MIT Press, 2009 (cit. on p. 136).

59. A. Corso, R. J. Moss, M. Koren, R. Lee, and M. J. Kochenderfer, “A Survey of Al-
gorithms for Black-Box Safety Validation,” Journal of Artificial Intelligence Research,
vol. 72, pp. 377–428, 2021 (cit. on p. 281).

60. A. Couëtoux, J.-B. Hoock, N. Sokolovska, O. Teytaud, andN. Bonnard, “Continuous
Upper Confidence Trees,” in Learning and Intelligent Optimization (LION), 2011 (cit.
on p. 197).

61. F. Cuzzolin, The Geometry of Uncertainty. Springer, 2021 (cit. on p. 19).
62. G. B. Dantzig, “Linear Programming,” Operations Research, vol. 50, no. 1, pp. 42–47,

2002 (cit. on p. 8).
63. C. Daskalakis, P.W. Goldberg, and C.H. Papadimitriou, “The Complexity of Com-

puting a Nash Equilibrium,” Communications of the ACM, vol. 52, no. 2, pp. 89–97,
2009 (cit. on p. 498).

64. A. P. Dempster, N.M. Laird, and D. B. Rubin, “Maximum Likelihood from Incom-
plete Data via the EM Algorithm,” Journal of the Royal Statistical Society, Series B
(Methodological), vol. 39, no. 1, pp. 1–38, 1977 (cit. on p. 87).

65. S. L. Dittmer and F.V. Jensen, “Myopic Value of Information in InfluenceDiagrams,”
in Conference on Uncertainty in Artificial Intelligence (UAI), 1997 (cit. on p. 119).

66. J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient Projections onto
the ℓ1-Ball for Learning in High Dimensions,” in International Conference on Machine
Learning (ICML), 2008 (cit. on p. 485).

67. M. J. Dupré and F. J. Tipler, “New Axioms for Rigorous Bayesian Probability,”
Bayesian Analysis, vol. 4, no. 3, pp. 599–606, 2009 (cit. on p. 20).

68. M. Egorov, Z.N. Sunberg, E. Balaban, T.A. Wheeler, J. K. Gupta, and M. J. Kochen-
derfer, “POMDPs.jl: A Framework for Sequential Decision Making Under Uncer-
tainty,” Journal of Machine Learning Research, vol. 18, no. 26, pp. 1–5, 2017 (cit. on
p. 381).

69. C. Elkan, “The Foundations of Cost-Sensitive Learning,” in International Joint Con-
ference on Artificial Intelligence (IJCAI), 2001 (cit. on p. 373).

70. P.H. Farquhar, “Utility Assessment Methods,” Management Science, vol. 30, no. 11,
pp. 1283–1300, 1984 (cit. on p. 114).

71. J. A. Filar, T.A. Schultz, F. Thuijsman, and O. Vrieze, “Nonlinear Programming
and Stationary Equilibria in Stochastic Games,” Mathematical Programming, vol. 50,
no. 1–3, pp. 227–237, 1991 (cit. on p. 521).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

656 references

72. A.M. Fink, “Equilibrium in a Stochastic n-Person Game,” Journal of Science of the
Hiroshima University, Series A-I, vol. 28, no. 1, pp. 89–93, 1964 (cit. on p. 520).

73. C. Finn, S. Levine, and P. Abbeel, “Guided Cost Learning: Deep Inverse Optimal
Control via Policy Optimization,” in International Conference on Machine Learning
(ICML), 2016 (cit. on p. 368).

74. P. C. Fishburn, “Utility Theory,” Management Science, vol. 14, no. 5, pp. 335–378,
1968 (cit. on p. 111).

75. P. C. Fishburn, “The Axioms of Subjective Probability,” Statistical Science, vol. 1,
no. 3, pp. 335–345, 1986 (cit. on p. 20).

76. H. Freudenthal, “Simplizialzerlegungen von Beschränkter Flachheit,” Annals of
Mathematics, vol. 43, pp. 580–582, 1942 (cit. on p. 445).

77. M.C. Fu, “Gradient Estimation,” in Simulation, S. G. Henderson and B. L. Nelson,
eds., Elsevier, 2006, pp. 575–616 (cit. on p. 231).

78. D. Fudenberg and D. Levine, “Consistency and Cautious Fictitious Play,” Journal of
Economic Dynamics and Control, vol. 19, no. 5–7, pp. 1065–1089, 1995 (cit. on p. 509).

79. D. Fudenberg and J. Tirole, Game Theory. MIT Press, 1991 (cit. on p. 493).
80. D. Gaines, G. Doran, M. Paton, B. Rothrock, J. Russino, R. Mackey, R. Anderson, R.

Francis, C. Joswig, H. Justice, K. Kolcio, G. Rabideau, S. Schaffer, J. Sawoniewicz, A.
Vasavada, V. Wong, K. Yu, and A.-a. Agha-mohammadi, “Self-Reliant Rovers for
Increased Mission Productivity,” Journal of Field Robotics, vol. 37, no. 7, pp. 1171–
1196, 2020 (cit. on p. 5).

81. F. L. Gall, “Powers of Tensors and Fast Matrix Multiplication,” in International
Symposium on Symbolic and Algebraic Computation (ISSAC), 2014 (cit. on p. 490).

82. S. Garatti and M.C. Campi, “Modulating Robustness in Control Design: Principles
and Algorithms,” IEEE Control Systems Magazine, vol. 33, no. 2, pp. 36–51, 2013 (cit.
on p. 207).

83. A. Garivier, T. Lattimore, and E. Kaufmann, “On Explore-Then-Commit Strategies,”
in Advances in Neural Information Processing Systems (NIPS), 2016 (cit. on p. 303).

84. A. Geramifard, T. J. Walsh, S. Tellex, G. Chowdhary, N. Roy, and J. P. How, “A
Tutorial on Linear Function Approximators for Dynamic Programming and Re-
inforcement Learning,” Foundations and Trends in Machine Learning, vol. 6, no. 4,
pp. 375–451, 2013 (cit. on p. 162).

85. M. Ghavamzadeh, S. Mannor, J. Pineau, and A. Tamar, “Bayesian Reinforcement
Learning: A Survey,” Foundations and Trends in Machine Learning, vol. 8, no. 5–6,
pp. 359–483, 2015 (cit. on p. 326).

86. S. B. Gillispie and M.D. Perlman, “The Size Distribution for Markov Equivalence
Classes of Acyclic Digraph Models,” Artificial Intelligence, vol. 141, no. 1–2, pp. 137–
155, 2002 (cit. on p. 106).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

references 657

87. J. C. Gittins, “Bandit Processes and Dynamic Allocation Indices,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 41, no. 2, pp. 148–177, 1979 (cit. on
pp. 299, 309).

88. J. Gittins, K. Glazebrook, and R.Weber,Multi-Armed Bandit Allocation Indices, 2nd ed.
Wiley, 2011 (cit. on p. 309).

89. P.W. Glynn, “Likelihood Ratio Gradient Estimation for Stochastic Systems,” Com-
munications of the ACM, vol. 33, no. 10, pp. 75–84, 1990 (cit. on p. 234).

90. P. J. Gmytrasiewicz and P. Doshi, “A Framework for Sequential Planning in Multi-
Agent Settings,” Journal of Artificial Intelligence Research, vol. 24, no. 1, pp. 49–79,
2005 (cit. on p. 534).

91. D. E. Goldberg and J. Richardson, “An Experimental Comparison of Localization
Methods,” in International Conference on Genetic Algorithms, 1987 (cit. on p. 394).

92. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989 (cit. on p. 215).

93. O. Goldreich, Computational Complexity: A Conceptual Perspective. Cambridge Uni-
versity Press, 2008 (cit. on p. 575).

94. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016 (cit. on
p. 581).

95. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, “Generative Adversarial Nets,” in Advances in Neural
Information Processing Systems (NIPS), 2014 (cit. on p. 597).

96. L. Graesser and W.L. Keng, Foundations of Deep Reinforcement Learning. Addison
Wesley, 2020 (cit. on p. 344).

97. A. Greenwald and K. Hall, “Correlated Q-Learning,” in International Conference on
Machine Learning (ICML), 2003 (cit. on p. 503).

98. A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation, 2nd ed. SIAM, 2008 (cit. on p. 585).

99. E.A. Hansen, “Solving POMDPs by Searching in Policy Space,” in Conference on
Uncertainty in Artificial Intelligence (UAI), 1998 (cit. on p. 475).

100. E.A. Hansen, D. S. Bernstein, and S. Zilberstein, “Dynamic Programming for Par-
tially Observable Stochastic Games,” in AAAI Conference on Artificial Intelligence
(AAAI), 2004 (cit. on p. 533).

101. N. Hansen and A. Ostermeier, “Adapting Arbitrary Normal Mutation Distributions
in Evolution Strategies: The Covariance Matrix Adaptation,” in IEEE International
Conference on Evolutionary Computation, 1996 (cit. on p. 221).

102. A. Harutyunyan, M.G. Bellemare, T. Stepleton, and R. Munos, “Q(λ) with Off-
Policy Corrections,” in International Conference on Algorithmic Learning Theory (ALT),
2016 (cit. on p. 343).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

658 references

103. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd ed. Springer Series in Statistics, 2001 (cit. on
pp. 172, 174).

104. M. Hauskrecht, “Value-Function Approximations for Partially Observable Markov
Decision Processes,” Journal of Artificial Intelligence Research, vol. 13, pp. 33–94, 2000
(cit. on pp. 427, 429, 436).

105. D. Heckerman, D. Geiger, and D.M. Chickering, “Learning Bayesian Networks:
The Combination of Knowledge and Statistical Data,” Machine Learning, vol. 20,
no. 3, pp. 197–243, 1995 (cit. on p. 104).

106. F. S. Hillier, Introduction to Operations Research. McGraw-Hill, 2012 (cit. on p. 12).
107. J. Ho and S. Ermon, “Generative Adversarial Imitation Learning,” in Advances in

Neural Information Processing Systems (NIPS), 2016 (cit. on p. 369).
108. S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation,

vol. 9, no. 8, pp. 1735–1780, 1997 (cit. on p. 592).
109. A. L. Hodgkin and A. F. Huxley, “A Quantitative Description of Membrane Current

and Its Application to Conduction and Excitation in Nerve,” Journal of Physiology,
vol. 117, no. 4, pp. 500–544, 1952 (cit. on p. 582).

110. R. Hooke and T.A. Jeeves, “Direct Search Solution of Numerical and Statistical
Problems,” Journal of the ACM (JACM), vol. 8, no. 2, pp. 212–229, 1961 (cit. on
p. 215).

111. R.A. Howard, “Information Value Theory,” IEEE Transactions on Systems Science
and Cybernetics, vol. 2, no. 1, pp. 22–26, 1966 (cit. on p. 119).

112. J. Hu and M.P. Wellman, “Nash Q-Learning for General-Sum Stochastic Games,”
Journal of Machine Learning Research, vol. 4, pp. 1039–1069, 2003 (cit. on p. 526).

113. A. Hussein, M.M. Gaber, E. Elyan, and C. Jayne, “Imitation Learning: A Survey of
Learning Methods,” ACM Computing Surveys, vol. 50, no. 2, pp. 1–35, 2017 (cit. on
p. 355).

114. IEEEHistoryCenter Staff, “Proceedings of the IEEEThrough 100Years: 2000–2009,”
Proceedings of the IEEE, vol. 100, no. 11, pp. 3131–3145, 2012 (cit. on p. 387).

115. J. E. Ingersoll, Theory of Financial Decision Making. Rowman and Littlefield Publish-
ers, 1987 (cit. on p. 115).

116. G.N. Iyengar, “Robust Dynamic Programming,” Mathematics of Operations Research,
vol. 30, no. 2, pp. 257–280, 2005 (cit. on p. 289).

117. T. Jaakkola, M. I. Jordan, and S. P. Singh, “On the Convergence of Stochastic Iterative
Dynamic Programming Algorithms,” Neural Computation, vol. 6, no. 6, pp. 1185–
1201, 1994 (cit. on p. 336).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

references 659

118. E. T. Jaynes, “Information Theory and StatisticalMechanics,”Physical Review, vol. 106,
no. 4, pp. 620–630, 1957 (cit. on p. 368).

119. E. T. Jaynes, Probability Theory: The Logic of Science. Cambridge University Press,
2003 (cit. on pp. 19, 20).

120. F. V. Jensen andT.D.Nielsen,BayesianNetworks andDecisionGraphs, 2nd ed. Springer,
2007 (cit. on p. 116).

121. I. L. Johansen and M. Rausand, “Foundations and Choice of Risk Metrics,” Safety
Science, vol. 62, pp. 386–399, 2014 (cit. on p. 281).

122. K.D. Julian and M. J. Kochenderfer, “Distributed Wildfire Surveillance with Au-
tonomous Aircraft Using Deep Reinforcement Learning,” AIAA Journal of Guidance,
Control, and Dynamics, vol. 42, no. 8, pp. 1768–1778, 2019 (cit. on p. 4).

123. S. J. Julier and J. K. Uhlmann, “Unscented Filtering and Nonlinear Estimation,”
Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004 (cit. on p. 387).

124. L. P. Kaelbling, M. L. Littman, and A.R. Cassandra, “Planning and Acting in Par-
tially Observable Stochastic Domains,”Artificial Intelligence, vol. 101, no. 1–2, pp. 99–
134, 1998 (cit. on p. 407).

125. L. P. Kaelbling, Learning in Embedded Systems. MIT Press, 1993 (cit. on p. 305).
126. A. B. Kahn, “Topological Sorting of Large Networks,” Communications of the ACM,

vol. 5, no. 11, pp. 558–562, 1962 (cit. on p. 55).
127. D. Kahneman and A. Tversky, “Prospect Theory: An Analysis of Decision Under

Risk,” Econometrica, vol. 47, no. 2, pp. 263–292, 1979 (cit. on p. 122).
128. S.M. Kakade, “A Natural Policy Gradient,” in Advances in Neural Information Pro-

cessing Systems (NIPS), 2001 (cit. on p. 254).
129. S.M. Kakade and J. Langford, “Approximately Optimal Approximate Reinforce-

ment Learning,” in International Conference on Machine Learning (ICML), 2002 (cit.
on p. 256).

130. R. E. Kálmán, “A New Approach to Linear Filtering and Prediction Problems,”
ASME Journal of Basic Engineering, vol. 82, pp. 35–45, 1960 (cit. on p. 383).

131. R.M. Karp, “Reducibility Among Combinatorial Problems,” in Complexity of Com-
puter Computations, R. E. Miller and J.W. Thatcher, eds., Plenum, 1972, pp. 85–103
(cit. on p. 577).

132. E. Kaufmann, “On Bayesian Index Policies for Sequential Resource Allocation,”
Annals of Statistics, vol. 46, no. 2, pp. 842–865, 2018 (cit. on p. 305).

133. M. Kearns and S. Singh, “Near-Optimal Reinforcement Learning in Polynomial
Time,” Machine Learning, vol. 49, no. 2/3, pp. 209–232, 2002 (cit. on p. 323).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

660 references

134. M. J. Kearns, Y. Mansour, and A.Y. Ng, “A Sparse Sampling Algorithm for Near-
Optimal Planning in Large Markov Decision Processes,” Machine Learning, vol. 49,
no. 2–3, pp. 193–208, 2002 (cit. on p. 187).

135. L.G. Khachiyan, “Polynomial Algorithms in Linear Programming,” USSR Compu-
tational Mathematics and Mathematical Physics, vol. 20, no. 1, pp. 53–72, 1980 (cit. on
p. 147).

136. D. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in International
Conference on Learning Representations (ICLR), 2013 (cit. on p. 593).

137. D. E. Kirk, Optimal Control Theory: An Introduction. Prentice-Hall, 1970 (cit. on p. 2).
138. M. J. Kochenderfer, Decision Making Under Uncertainty: Theory and Application. MIT

Press, 2015 (cit. on pp. 3, 511, 615).
139. M. J. Kochenderfer and T.A. Wheeler, Algorithms for Optimization. MIT Press, 2019

(cit. on pp. 102, 172, 213, 250).
140. M. J. Kochenderfer and J. P. Chryssanthacopoulos, “Robust Airborne Collision

Avoidance Through Dynamic Programming,” Massachusetts Institute of Technol-
ogy, Lincoln Laboratory, Project Report ATC-371, 2011 (cit. on p. 614).

141. M. J. Kochenderfer, J. P. Chryssanthacopoulos, and P. Radecki, “Robustness of Opti-
mized Collision Avoidance Logic to Modeling Errors,” in Digital Avionics Systems
Conference (DASC), 2010 (cit. on p. 289).

142. D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009 (cit. on pp. 32, 36, 97).

143. A. Kolmogorov, Foundations of the Theory of Probability, 2nd ed. Chelsea, 1956 (cit.
on p. 562).

144. H. Koontz, “The Management Theory Jungle,” Academy of Management Journal,
vol. 4, no. 3, pp. 174–188, 1961 (cit. on p. 12).

145. B.O. Koopman, Search and Screening: General Principles with Historical Applications.
Pergamon Press, 1980 (cit. on p. 11).

146. F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor Graphs and the Sum-Product
Algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 498–519,
2001 (cit. on p. 53).

147. A. Kuefler, J. Morton, T.A. Wheeler, and M. J. Kochenderfer, “Imitating Driver
Behavior with Generative Adversarial Networks,” in IEEE Intelligent Vehicles Sym-
posium (IV), 2017 (cit. on p. 375).

148. H. Kuhn, “Extensive Games and the Problem of Information,” in Contributions to
the Theory of Games II, H. Kuhn and A. Tucker, eds., Princeton University Press, 1953,
pp. 193–216 (cit. on p. 533).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

references 661

149. S. Kullback and R.A. Leibler, “On Information and Sufficiency,” Annals of Mathe-
matical Statistics, vol. 22, no. 1, pp. 79–86, 1951 (cit. on p. 567).

150. S. Kullback, Information Theory and Statistics. Wiley, 1959 (cit. on p. 567).
151. H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient Point-Based POMDP

Planning by Approximating Optimally Reachable Belief Spaces,” in Robotics: Science
and Systems, 2008 (cit. on pp. 440, 442).

152. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning Applied
to Document Recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998 (cit. on pp. 587, 588).

153. R. Lee, M. J. Kochenderfer, O. J. Mengshoel, G. P. Brat, and M. P. Owen, “Adaptive
Stress Testing of Airborne Collision Avoidance Systems,” inDigital Avionics Systems
Conference (DASC), 2015 (cit. on p. 294).

154. J. Lehrer, How We Decide. Houghton Mifflin, 2009 (cit. on p. 122).
155. T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D.

Wierstra, “Continuous Control with Deep Reinforcement Learning,” in International
Conference on Learning Representations (ICLR), 2016. arXiv: 1509.02971v6 (cit. on
p. 274).

156. L.-J. Lin, “Reinforcement Learning for Robots Using Neural Networks,” Ph.D.
dissertation, Carnegie Mellon University, 1993 (cit. on p. 345).

157. R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data, 3rd ed. Wiley,
2020 (cit. on p. 84).

158. M. L. Littman, “Markov Games as a Framework for Multi-Agent Reinforcement
Learning,” in International Conference on Machine Learning (ICML), 1994 (cit. on
p. 517).

159. M. L. Littman, A.R. Cassandra, and L. P. Kaelbling, “Learning Policies for Par-
tially Observable Environments: Scaling Up,” in International Conference on Machine
Learning (ICML), 1995 (cit. on p. 427).

160. W. S. Lovejoy, “Computationally Feasible Bounds for Partially Observed Markov
Decision Processes,” Operations Research, vol. 39, no. 1, pp. 162–175, 1991 (cit. on
p. 445).

161. O. Madani, S. Hanks, and A. Condon, “On the Undecidability of Probabilistic
Planning and Related Stochastic Optimization Problems,” Artificial Intelligence,
vol. 147, no. 1–2, pp. 5–34, 2003 (cit. on p. 427).

162. S. Mannor, R. Y. Rubinstein, and Y. Gat, “The Cross Entropy Method for Fast Policy
Search,” in International Conference onMachine Learning (ICML), 2003 (cit. on p. 218).

163. H. Markowitz, “The Utility of Wealth,” Journal of Political Economy, vol. 60, no. 2,
pp. 151–158, 1952 (cit. on p. 114).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1509.02971v6

662 references

164. Mausam and A. Kolobov, Planning with Markov Decision Processes: An AI Perspective.
Morgan & Claypool, 2012 (cit. on p. 197).

165. S. B. McGrayne, The Theory That Would Not Die. Yale University Press, 2011 (cit. on
p. 30).

166. R. C. Merton, “Optimum Consumption and Portfolio Rules in a Continuous-Time
Model,” Journal of Economic Theory, vol. 3, no. 4, pp. 373–413, 1971 (cit. on p. 4).

167. N. Meuleau, K.-E. Kim, L. P. Kaelbling, and A.R. Cassandra, “Solving POMDPs
by Searching the Space of Finite Policies,” in Conference on Uncertainty in Artificial
Intelligence (UAI), 1999 (cit. on p. 481).

168. D.A. Mindell, Between Human and Machine: Feedback, Control, and Computing Before
Cybernetics. JHU Press, 2002 (cit. on p. 11).

169. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,” 2013. arXiv:
1312.5602v1 (cit. on p. 345).

170. N. Moehle, E. Busseti, S. Boyd, and M. Wytock, “Dynamic Energy Management,”
in Large Scale Optimization in Supply Chains and Smart Manufacturing, Springer, 2019,
pp. 69–126 (cit. on p. 208).

171. G. Molenberghs, G. Fitzmaurice, M.G. Kenward, A. Tsiatis, and G. Verbeke, eds.,
Handbook of Missing Data Methodology. CRC Press, 2014 (cit. on p. 82).

172. A.Moore, “EfficientMemory-Based Learning for Robot Control,” Ph.D. dissertation,
University of Cambridge, 1990 (cit. on p. 612).

173. A.W. Moore, “Simplicial Mesh Generation with Applications,” Ph.D. dissertation,
Cornell University, 1992 (cit. on pp. 168, 170).

174. A.W. Moore and C.G. Atkeson, “Prioritized Sweeping: Reinforcement Learning
with Less Data and Less Time,” Machine Learning, vol. 13, no. 1, pp. 103–130, 1993
(cit. on p. 321).

175. G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics,
vol. 38, no. 8, pp. 114–117, 1965 (cit. on p. 11).

176. O. Morgenstern and J. von Neumann, Theory of Games and Economic Behavior. Prince-
ton University Press, 1953 (cit. on p. 8).

177. R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge University Press,
1995 (cit. on p. 54).

178. B. Müller, J. Reinhardt, and M.T. Strickland, Neural Networks. Springer, 1995 (cit.
on p. 581).

179. K. P. Murphy, Probabilistic Machine Learning: An Introduction. MIT Press, 2022 (cit.
on p. 71).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1312.5602v1

references 663

180. R. B. Myerson, Game Theory: Analysis of Conflict. Harvard University Press, 1997 (cit.
on p. 493).

181. R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsella, “Taming Decentral-
ized POMDPs: Towards Efficient Policy Computation for Multiagent Settings,” in
International Joint Conference on Artificial Intelligence (IJCAI), 2003 (cit. on p. 550).

182. J. Nash, “Non-Cooperative Games,” Annals of Mathematics, pp. 286–295, 1951 (cit.
on p. 498).

183. R. E. Neapolitan, Learning Bayesian Networks. Prentice Hall, 2003 (cit. on p. 97).
184. A. Y. Ng, D. Harada, and S. Russell, “Policy Invariance Under Reward Transforma-

tions: Theory and Application to Reward Shaping,” in International Conference on
Machine Learning (ICML), 1999 (cit. on p. 343).

185. A. Y. Ng and M. Jordan, “A Policy Search Method for Large MDPs and POMDPs,”
in Conference on Uncertainty in Artificial Intelligence (UAI), 2000 (cit. on p. 232).

186. N. J. Nilsson, The Quest for Artificial Intelligence. Cambridge University Press, 2009
(cit. on pp. 7, 9).

187. N. Nisan, T. Roughgarden, É. Tardos, and V.V. Vazirani, eds., Algorithmic Game
Theory. Cambridge University Press, 2007 (cit. on p. 503).

188. F.A. Oliehoek and C. Amato, A Concise Introduction to Decentralized POMDPs.
Springer, 2016 (cit. on p. 545).

189. C. Papadimitriou and J. Tsitsiklis, “The Complexity of Markov Decision Processes,”
Mathematics of Operation Research, vol. 12, no. 3, pp. 441–450, 1987 (cit. on pp. 427,
549).

190. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988 (cit. on p. 36).

191. J. Pearl, Causality: Models, Reasoning, and Inference, 2nd ed. Cambridge University
Press, 2009 (cit. on p. 33).

192. J. Peng and R. J. Williams, “Incremental Multi-Step Q-Learning,” Machine Learning,
vol. 22, no. 1–3, pp. 283–290, 1996 (cit. on p. 341).

193. J. Peters and S. Schaal, “Reinforcement Learning of Motor Skills with Policy Gra-
dients,” Neural Networks, vol. 21, no. 4, pp. 682–697, 2008 (cit. on pp. 234, 243,
253).

194. M. Peterson, An Introduction to Decision Theory. Cambridge University Press, 2009
(cit. on p. 111).

195. A. Pinkus, “Approximation Theory of the MLP Model in Neural Networks,” Acta
Numerica, vol. 8, pp. 143–195, 1999 (cit. on p. 582).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

664 references

196. R. Platt Jr., R. Tedrake, L. P. Kaelbling, and T. Lozano-Pérez, “Belief Space Planning
Assuming Maximum Likelihood Observations,” in Robotics: Science and Systems,
2010 (cit. on p. 454).

197. D.A. Pomerleau, “Efficient Training of Artificial Neural Networks for Autonomous
Navigation,” Neural Computation, vol. 3, no. 1, pp. 88–97, 1991 (cit. on p. 355).

198. W. Poundstone, Prisoner’s Dilemma. Doubleday, 1992 (cit. on p. 621).
199. P. Poupart and C. Boutilier, “Bounded Finite State Controllers,” in Advances in

Neural Information Processing Systems (NIPS), 2003 (cit. on p. 475).
200. W. B. Powell, Reinforcement Learning and Stochastic Optimization. Wiley, 2022 (cit. on

p. 161).
201. W. B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimensionality,

2nd ed. Wiley, 2011 (cit. on p. 161).
202. M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley, 2005 (cit. on p. 133).
203. M. L. Puterman and M.C. Shin, “Modified Policy Iteration Algorithms for Dis-

counted Markov Decision Problems,” Management Science, vol. 24, no. 11, pp. 1127–
1137, 1978 (cit. on p. 141).

204. J. Robinson, “An Iterative Method of Solving a Game,” Annals of Mathematics,
pp. 296–301, 1951 (cit. on p. 505).

205. R.W. Robinson, “Counting Labeled Acyclic Digraphs,” in Ann Arbor Conference on
Graph Theory, 1973 (cit. on p. 99).

206. S. Ross and J.A. Bagnell, “Efficient Reductions for Imitation Learning,” in Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS), 2010 (cit. on
p. 358).

207. S. Ross and B. Chaib-draa, “AEMS: An Anytime Online Search Algorithm for
Approximate Policy Refinement in Large POMDPs,” in International Joint Conference
on Artificial Intelligence (IJCAI), 2007 (cit. on p. 464).

208. S. Ross, G. J. Gordon, and J.A. Bagnell, “A Reduction of Imitation Learning and
Structured Prediction to No-Regret Online Learning,” in International Conference on
Artificial Intelligence and Statistics (AISTATS), vol. 15, 2011 (cit. on p. 358).

209. S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, “Online Planning Algorithms for
POMDPs,” Journal of Artificial Intelligence Research, vol. 32, pp. 663–704, 2008 (cit.
on p. 453).

210. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Representations by
Back-Propagating Errors,” Nature, vol. 323, pp. 533–536, 1986 (cit. on p. 585).

211. G.A. Rummery and M. Niranjan, “On-Line Q-Learning Using Connectionist Sys-
tems,” Cambridge University, Tech. Rep. CUED/F-INFENG/TR 166, 1994 (cit. on
p. 338).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

references 665

212. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 4th ed. Pearson,
2021 (cit. on pp. 2, 116).

213. D. Russo, B. V. Roy, A. Kazerouni, I. Osband, and Z. Wen, “A Tutorial on Thompson
Sampling,” Foundations and Trends in Machine Learning, vol. 11, no. 1, pp. 1–96, 2018
(cit. on p. 306).

214. A. Ruszczyński, “Risk-Averse Dynamic Programming for Markov Decision Pro-
cesses,”Mathematical Programming, vol. 125, no. 2, pp. 235–261, 2010 (cit. on p. 282).

215. T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution Strategies as a
Scalable Alternative to Reinforcement Learning,” 2017. arXiv: 1703.03864v2 (cit.
on p. 224).

216. T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized Experience Replay,” in
International Conference on Learning Representations (ICLR), 2016 (cit. on p. 345).

217. P. J.H. Schoemaker, “The Expected Utility Model: Its Variants, Purposes, Evidence
and Limitations,” Journal of Economic Literature, vol. 20, no. 2, pp. 529–563, 1982 (cit.
on p. 111).

218. J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust Region Policy
Optimization,” in International Conference on Machine Learning (ICML), 2015 (cit. on
p. 254).

219. J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-Dimensional
Continuous Control Using Generalized Advantage Estimation,” in International
Conference on Learning Representations (ICLR), 2016. arXiv: 1506.02438v6 (cit. on
p. 269).

220. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy
Optimization Algorithms,” 2017. arXiv: 1707.06347v2 (cit. on p. 257).

221. S. Seuken and S. Zilberstein, “Memory-Bounded Dynamic Programming for Dec-
POMDPs,” in International Joint Conference on Artificial Intelligence (IJCAI), 2007 (cit.
on p. 550).

222. S. Seuken and S. Zilberstein, “Formal Models and Algorithms for Decentralized
Decision Making Under Uncertainty,” Autonomous Agents and Multi-Agent Systems,
vol. 17, no. 2, pp. 190–250, 2008 (cit. on p. 549).

223. R.D. Shachter, “Evaluating Influence Diagrams,” Operations Research, vol. 34, no. 6,
pp. 871–882, 1986 (cit. on p. 119).

224. R.D. Shachter, “Probabilistic Inference and Influence Diagrams,” Operations Re-
search, vol. 36, no. 4, pp. 589–604, 1988 (cit. on p. 119).

225. R.D. Shachter, “Efficient Value of Information Computation,” in Conference on
Uncertainty in Artificial Intelligence (UAI), 1999 (cit. on p. 119).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1703.03864v2
https://arxiv.org/abs/1506.02438v6
https://arxiv.org/abs/1707.06347v2

666 references

226. A. Shaiju and I. R. Petersen, “Formulas for Discrete Time LQR, LQG, LEQG and
Minimax LQG Optimal Control Problems,” IFAC Proceedings Volumes, vol. 41, no. 2,
pp. 8773–8778, 2008 (cit. on pp. 148, 149).

227. G. Shani, J. Pineau, and R. Kaplow, “A Survey of Point-Based POMDP Solvers,”
Autonomous Agents and Multi-Agent Systems, vol. 27, pp. 1–51, 2012 (cit. on p. 432).

228. C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical
Journal, vol. 27, no. 4, pp. 623–656, 1948 (cit. on p. 565).

229. L. S. Shapley, “Stochastic Games,” Proceedings of the National Academy of Sciences,
vol. 39, no. 10, pp. 1095–1100, 1953 (cit. on p. 517).

230. Z. R. Shi, C. Wang, and F. Fang, “Artificial Intelligence for Social Good: A Survey,”
2020. arXiv: 2001.01818v1 (cit. on p. 12).

231. Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic, Game Theoretic,
and Logical Foundations. Cambridge University Press, 2009 (cit. on pp. 493, 515).

232. D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Determin-
istic Policy Gradient Algorithms,” in International Conference on Machine Learning
(ICML), 2014 (cit. on p. 272).

233. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A.Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al., “Mastering the Game of Go Without Human
Knowledge,” Nature, vol. 550, pp. 354–359, 2017 (cit. on p. 276).

234. D. Silver and J. Veness, “Monte-Carlo Planning in Large POMDPs,” in Advances in
Neural Information Processing Systems (NIPS), 2010 (cit. on p. 457).

235. S. Singh, M. Kearns, and Y. Mansour, “Nash Convergence of Gradient Dynamics in
General-Sum Games,” in Conference on Uncertainty in Artificial Intelligence (UAI),
2000 (cit. on p. 509).

236. S. P. Singh and R. S. Sutton, “Reinforcement Learning with Replacing Eligibility
Traces,” Machine Learning, vol. 22, pp. 123–158, 1996 (cit. on p. 612).

237. S. P. Singh and R.C. Yee, “An Upper Bound on the Loss fromApproximate Optimal-
Value Functions,” Machine Learning, vol. 16, no. 3, pp. 227–233, 1994 (cit. on p. 142).

238. R.D. Smallwood and E. J. Sondik, “The Optimal Control of Partially Observable
Markov Processes over a Finite Horizon,”Operations Research, vol. 21, no. 5, pp. 1071–
1088, 1973 (cit. on p. 617).

239. T. Smith and R.G. Simmons, “Heuristic Search Value Iteration for POMDPs,” in
Conference on Uncertainty in Artificial Intelligence (UAI), 2004 (cit. on p. 442).

240. E. Sonu, Y. Chen, and P. Doshi, “Decision-Theoretic Planning Under Anonymity in
Agent Populations,” Journal of Artificial Intelligence Research, vol. 59, pp. 725–770,
2017 (cit. on p. 534).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/2001.01818v1

references 667

241. M. T. J. Spaan and N.A. Vlassis, “Perseus: Randomized Point-Based Value Iteration
for POMDPs,” Journal of Artificial Intelligence Research, vol. 24, pp. 195–220, 2005
(cit. on p. 433).

242. J. C. Spall, Introduction to Stochastic Search and Optimization. Wiley, 2003 (cit. on
p. 234).

243. D.O. Stahl and P.W. Wilson, “Experimental Evidence on Players’ Models of Other
Players,” Journal of Economic Behavior & Organization, vol. 25, no. 3, pp. 309–327,
1994 (cit. on p. 504).

244. G. J. Stigler, “The Development of Utility Theory. I,” Journal of Political Economy,
vol. 58, no. 4, pp. 307–327, 1950 (cit. on p. 8).

245. M. J. A. Strens, “ABayesian Framework for Reinforcement Learning,” in International
Conference on Machine Learning (ICML), 2000 (cit. on p. 330).

246. F. P. Such, V. Madhavan, E. Conti, J. Lehman, K.O. Stanley, and J. Clune, “Deep
Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training
Deep Neural Networks for Reinforcement Learning,” 2017. arXiv: 1712.06567v3
(cit. on p. 215).

247. Z.N. Sunberg and M. J. Kochenderfer, “Online Algorithms for POMDPs with Con-
tinuous State, Action, and Observation Spaces,” in International Conference on Auto-
mated Planning and Scheduling (ICAPS), 2018 (cit. on p. 457).

248. R. Sutton, “Learning to Predict by the Methods of Temporal Differences,” Machine
Learning, vol. 3, no. 1, pp. 9–44, 1988 (cit. on p. 341).

249. R. S. Sutton, “Dyna, an Integrated Architecture for Learning, Planning, and React-
ing,” SIGART Bulletin, vol. 2, no. 4, pp. 160–163, 1991 (cit. on p. 318).

250. R. S. Sutton and A.G. Barto, Reinforcement Learning: An Introduction, 2nd ed. MIT
Press, 2018 (cit. on pp. 9, 335).

251. U. Syed and R. E. Schapire, “A Reduction from Apprenticeship Learning to Classi-
fication,” in Advances in Neural Information Processing Systems (NIPS), 2010 (cit. on
p. 357).

252. C. Szepesvári and T. Lattimore, Bandit Algorithms. Cambridge University Press,
2020 (cit. on p. 299).

253. D. Szer, F. Charpillet, and S. Zilberstein, “MAA*: A Heuristic Search Algorithm for
SolvingDecentralized POMDPs,” inConference on Uncertainty in Artificial Intelligence
(UAI), 2005 (cit. on p. 550).

254. W.R. Thompson, “On the Likelihood That One Unknown Probability Exceeds
Another in View of the Evidence of Two Samples,” Biometrika, vol. 25, no. 3/4,
pp. 285–294, 1933 (cit. on p. 306).

255. S. Thrun, “Probabilistic Robotics,” Communications of the ACM, vol. 45, no. 3, pp. 52–
57, 2002 (cit. on p. 10).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

https://arxiv.org/abs/1712.06567v3

668 references

256. S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press, 2006 (cit. on
pp. 379, 385, 394).

257. K. S. Trivedi and A. Bobbio, Reliability and Availability Engineering. Cambridge
University Press, 2017 (cit. on p. 92).

258. A.M. Turing, “Intelligent Machinery,” National Physical Laboratory, Report, 1948
(cit. on p. 9).

259. A. Tversky and D. Kahneman, “The Framing of Decisions and the Psychology of
Choice,” Science, vol. 211, no. 4481, pp. 453–458, 1981 (cit. on pp. 123, 124).

260. W. Uther and M. Veloso, “Adversarial Reinforcement Learning,” Carnegie Mellon
University, Tech. Rep. CMU-CS-03-107, 1997 (cit. on p. 521).

261. R. Vanderbei, Linear Programming, Foundations and Extensions, 4th ed. Springer, 2014
(cit. on p. 147).

262. H. van Hasselt, “Double Q-Learning,” in Advances in Neural Information Processing
Systems (NIPS), 2010 (cit. on p. 338).

263. S. Vasileiadou, D. Kalligeropoulos, and N. Karcanias, “Systems, Modelling and
Control in Ancient Greece: Part 1: Mythical Automata,” Measurement and Control,
vol. 36, no. 3, pp. 76–80, 2003 (cit. on p. 7).

264. J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior. Prince-
ton University Press, 1944 (cit. on p. 112).

265. A. Wächter and L. T. Biegler, “On the Implementation of an Interior-Point Filter
Line-Search Algorithm for Large-Scale Nonlinear Programming,” Mathematical
Programming, vol. 106, no. 1, pp. 25–57, 2005 (cit. on p. 205).

266. C. J. C.H. Watkins, “Learning from Delayed Rewards,” Ph.D. dissertation, Univer-
sity of Cambridge, 1989 (cit. on pp. 336, 341).

267. D. J. White, “A Survey of Applications of Markov Decision Processes,” Journal of
the Operational Research Society, vol. 44, no. 11, pp. 1073–1096, 1993 (cit. on p. 134).

268. M.Wiering andM. vanOtterlo, eds., Reinforcement Learning: State of the Art. Springer,
2012 (cit. on p. 299).

269. D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber, “Natu-
ral Evolution Strategies,” Journal of Machine Learning Research, vol. 15, pp. 949–980,
2014 (cit. on pp. 219, 222).

270. R. J. Williams, “Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning,”Machine Learning, vol. 8, pp. 229–256, 1992 (cit. on p. 245).

271. B. Wong, “Points of View: Color Blindness,” Nature Methods, vol. 8, no. 6, pp. 441–
442, 2011 (cit. on p. xxi).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

references 669

272. J. R. Wright and K. Leyton-Brown, “Beyond Equilibrium: Predicting Human Behav-
ior in Normal Form Games,” in AAAI Conference on Artificial Intelligence (AAAI),
2010 (cit. on p. 505).

273. J. R. Wright and K. Leyton-Brown, “Behavioral Game Theoretic Models: A Bayesian
Framework for Parameter Analysis,” in International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2012 (cit. on p. 505).

274. N. Ye, A. Somani, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP Planning with
Regularization,” Journal of Artificial Intelligence Research, vol. 58, pp. 231–266, 2017
(cit. on p. 459).

275. B.D. Ziebart, A. Maas, J. A. Bagnell, and A.K. Dey, “Maximum Entropy Inverse
Reinforcement Learning,” in AAAI Conference on Artificial Intelligence (AAAI), 2008
(cit. on p. 365).

276. M. Zinkevich, “Online Convex Programming and Generalized Infinitesimal Gradi-
ent Ascent,” in International Conference on Machine Learning (ICML), 2003 (cit. on
p. 509).

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

Index

2048 problem, 610
3SAT, 577

A/B testing, 313
absolutely homogeneous, 562
absorbing, 599
abstract types, 638
action distribution, 471
action node, 116
action profile, see joint action
action space, 133, 599
action value function, 139
activation function, 582
actor-critic methods, 267
acyclic, 572
ad hoc exploration, 301
adaptive injection, 394
admissible, 606
admissible heuristic, 197
advantage, 245
advantage function, 139
adversarial analysis, 291
adversarial learning, 369, 597
adversary, 291
agent, 1
aircraft collision avoidance problem,

614
almost-rock-paper-scissors, 515
alpha vector, 411

AlphaGo Zero, 276
anonymous function, 640
approximate dynamic programming,

161
array comprehension, 630
artificial intelligence, 2
asymptotic notation, 575
asynchronous value iteration, 145
autoencoder, 592
average return, 135
average reward, 135
axioms of probability, 20

backpropagation, 585
backup, 432
backward induction value iteration, 145
Banach fixed-point theorem, see

contraction mapping theorem
bandwidth, 82
baseline, 241
basis function, 172
batch, 345, 582
batch reinforcement learning, 299
Bayes’ rule, 30
Bayes-adaptive Markov decision

process, 329
Bayesian learning, 509
Bayesian network, 32
Bayesian parameter learning, 75

Bayesian reinforcement learning, 326
Bayesian score, 98
BDe, 104
BDeu, 104
behavioral cloning, 6, 355
behavioral game theory, 504
behavioral policy, 530
belief, 379
belief propagation, 53
belief simplex, 381
belief space, 381
belief state, 306
belief-state Markov decision process,

407
belief vector, 381
Bellman backup, 141
Bellman expectation equation, 138
Bellman optimality equation, 142
Bellman residual, 142
Bellman update, see Bellman backup
Bernoulli bandit, see binary bandit
best response, 495
best-action best-state upper bound, 429
best-action worst-state lower bound,

431
best-first search, 604
beta distribution, 78
bias, 239
big-Oh notation, 575

672 index

bilinear interpolation, 167
binary bandit, 299
binary variable, 20
binomial bandit, see binary bandit
bit, 566
blind lower bound, 431
Boolean, 627
Boolean satisfiability, 578
bottleneck, 592
bounded policy iteration, 475
bowl-shaped, 564
box, 27
branch and bound, 185, 456, 601
broadcasting, 633
burn-in period, 61

callable, 641
cart-pole problem, 611
cascading errors, 357
catastrophic forgetting, 345
catch problem, 619
causal networks, 33
censored data, 92
certainty effect, 122
certainty equivalence, 150, 419
chain rule, 33
chance node, 116
Chebyshev norm, 563
chessboard norm, 563
child, 572
clamping, 257
class-conditional distribution, 48
classification, 48
clauses, 53
closed under complementation, 561
closed under countable unions, 561
closed-loop planning, 200
collaborative predator-prey hex world,

625
colon notation, 20
component policy, 361

composite type, 638
computational complexity, 575
computationally universal, 579
concave, 565
concrete types, 638
conditional distribution, 29
conditional edge, 118
conditional Gaussian, 31
conditional independence, 35
conditional linear Gaussian, 31
conditional plan, 408
conditional probability, 29
confidence interval, 285
conjugate prior, 398
connectionism, 10
consistent, 606
continuous entropy, see differential

entropy
continuous probability distribution, 21
contraction, see contraction mapping
contraction mapping, 136, 570
contraction mapping theorem, 570
contractor, see contraction mapping
control theory, 2
controller, 471
convex combination, 564
convex function, 564
convex hull, 168
convex set, 564
convolutional layers, 587
coordination graph, 547
correlated equilibrium, 498, 501
correlated joint policy, 498
cost-sensitive classification, 373
countable additivity, 561
covariance matrix, 28
Coxeter-Freudenthal-Kuhn

triangulation, 168
cross entropy, 219, 566
cross entropy method, 218
crying baby problem, 382, 615

cumulative distribution function, 21
cycle, 572

d-separation, 35
DAgger, see data set aggregation
data imputation, 84
data set aggregation, 358
Dec-MDP, see decentralized Markov

decision process
Dec-POMDP, see decentralized partially

observable Markov decision
process

decay factor, 567
decaying step factor, 567
decentralized Markov decision process,

546
decentralized partially observable

Markov decision process, 16, 545
decision network, 116
decision networks, 14
decision theory, 111
decision tree, 25
decoder, 593
deep learning, 581
deep neural network, 582
deep reinforcement learning, 344
depth of rationality, 504
depth-first search, 183
descriptive theory, 122
DESPOT, see Determinized Sparse

Partially Observable Tree
deterministic best response, 495
deterministic policy, 135
deterministic policy gradient, 272
deterministic variable, 32
determinized belief tree, 459
Determinized Sparse Partially

Observable Tree, 459
determinized sparse tree search, 459
determinizing matrix, 460
diagnostic test, 121

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

index 673

dictionary, 637
differential entropy, 566
diminishing marginal utility, 115
direct sampling, 54
directed acyclic graph, 32
directed acyclic graph pattern, 104
directed exploration, 303
directed graph, 572
directed graph search, 99
directed path, 572
Dirichlet distribution, 80
discount factor, 135
discounted return, 135
discounted visitation distribution, 256
discrete probability distribution, 20
discrete state filter, 381
discrete-time Riccati equation, 150
discriminator, 369, 597
dispatch, 642
distance metric, 163, 562
dominant strategy, 497
dominant strategy equilibrium, 497
dominate, 291, 478
dominated, 412
double progressive widening, 197
double Q-learning, 338
Dyna, 318
dynamic programming, 136, 549, 604

ǫ-greedy exploration, 303
E-step, see expectation step
edge, 572
EKF, see extended Kalman filter
eligibility traces, 341
elite sample, 218
EM, see expectation-maximization
embedding, 592
encoder, 593
entropy, 365, 566
essential graph, 104
Euclidean norm, 563

evaluation model, 289
event space, 562
evidence, 29
evidence variables, 43
expectation step, 87
expectation-maximization, 87
expected utility, 116
experience replay, 345
explaining away, 36
exploding gradient, 590
exploitation, 299
exploration, 299
exploration bonus, 189
exploratory belief expansion, 440
explore-then-commit exploration, 303
exponential distribution, 38, 92
exponential utility, 115
exponentially weighted average, 270
extended Kalman filter, 385

factor, 25
factor conditioning, 44
factor marginalization, 44
factor product, 44
factored Dec-POMDP, 546
fast informed bound, 429
feature, 587
feature expectations, 364
features, 172
feedforward network, 582
fictitious play, 505, 521
finite difference, 231
finite horizon, 134
finite state controller, 471
first fundamental theorem of calculus,

568
Fisher information matrix, 254
fitting, see learning
forward difference, 234
forward search, 183, 600
framing effect, 122, 124

Freudenthal triangulation, 445
function, 640
functional edge, 118

GAIL, see generative adversarial
imitation learning

game theory, 493
gamma function, 78
gap heuristic search, 460
gated recurrent units, 592
Gauss-Seidel value iteration, 145
Gaussian distribution, 22
Gaussian kernel, 165
Gaussian mixture model, 23
generalized advantage estimation, 269
generalized infinitesimal gradient

ascent, 509
generations, 218
generative adversarial imitation

learning, 369
generative model, 183, 593
generator, 597
genetic algorithm, 103, 215
genetic local search, 103
Gibbs sampling, 60
GIGA, see generalized infinitesimal

gradient ascent
Gittins allocation index, 309
global approximation, 163
gradient ascent, 249, 509, 526, 567
gradient clipping, 250
gradient scaling, 250
graph, 572
greedy action, 301
greedy envelope, 200
greedy policy, 139
GRU, see gated recurrent units

hall problem, 610
halting problem, 579
heuristic, 197
heuristic search, 197, 550, 604

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

674 index

heuristic search value iteration, 442
hex world problem, 609
hidden variables, 43
hierarchical softmax, 504
hill climbing, 100
hindsight optimization, 207
history, 135, 457
history tree, 459
Hooke-Jeeves method, 215
HSVI, see heuristic search value

iteration
hybrid planning, 185

I-POMDP, see Interactive POMDP
identity of indiscernibles, 562
imitation learning, 355
immoral v-structures, 104
importance sampling, 256, 287, 570
incomplete, 82
incremental estimation, 335
independent, 25
independent parameter, 21
independently and identically

distributed, 71
inference, 43
infinite horizon, 134
infinitesimal gradient ascent, 509
influence diagram, see decision network
information content, 565
information-gathering, 429
informational edge, 118
informed search, 604
initial state distribution, 213, 282
interaction uncertainty, 2
Interactive POMDP, 534
interval estimation, see quantile

exploration
interval exploration, see quantile

exploration
inverse cumulative distribution

function, see quantile function

inverse reinforcement learning, 361
isotropic Gaussian, 224
iterated ascent, 249
iterated best response, 503, 550

JESP, see joint equilibrium-based search
for policies

joint action, 493
joint action space, 493
joint distribution, 24
joint equilibrium-based search for

policies, 550
joint full observability, 546
joint observation, 533
joint observation space, 533
joint policy, 494
joint reward, 493
joint reward function, 493
junction tree algorithm, 53

k-nearest neighbors, 163
K2, 100
Kalman filter, 383
Kalman gain, 385
kernel, 587
kernel density estimation, 82
kernel function, 82, 164
kernel smoothing, 164
keyword argument, 641
Kolmorogov axioms, 562
Kronecker delta function, 329
Kullback-Leibler divergence, 253, see

relative entropy

labeled heuristic search, 197
landmark, 380
Laplace distribution, 91
latent space, 592
latent variables, 87
law of total probability, 24
learning, 71
learning curve, 337

learning rate, 336, 567
likelihood ratio, 234
likelihood weighted sampling, 57
line search, 254
linear combination, 575
linear dynamics, 148
linear function approximation, 163
linear Gaussian, 31
linear interpolation, 167
linear program, 147
linear quadratic Gaussian, 419
linear quadratic regulator, 148
linear regression, 172, 234
linearity of expectation, 242
linearization, 386
literals, 53
local approximation, 163
local optima, 102
local search, 100, 215
locally optimal, 250
log derivative trick, 221
log-likelihood, 72
logarithmic utility, 115
logical conjunction, 53
logical disjunction, 53
logical negation, 53
logit model, 32
logit response, see softmax response
logit-level-k, see hierarchical softmax
long short-term memory, 592
lookahead, 136
loop, 644
loopy belief propagation, 53
loss function, 581
lottery, 112
LQG, see linear quadratic Gaussian
LQR, see linear quadratic regulator
LSTM, see long short-term memory

M-step, see maximization step
machine learning, 71

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

index 675

machine replacement problem, 617
margin, 365
marginal, 24
marginal mode, 85
marginalization, 44
Markov assumption, 133
Markov chain Monte Carlo, 60
Markov decision process, 14, 131, 133
Markov equivalence class, 104
Markov equivalent, 104
Markov game, 16, 517
matrix, 633
matrix games, see normal form games
max norm, 563
maximization step, 87
maximum a posteriori, 77
maximum entropy inverse

reinforcement learning, 365
maximum likelihood estimate, 71, 317
maximum likelihood parameter

learning, 71
maximum margin inverse

reinforcement learning, 361
MBDP, see memory-bounded dynamic

programming
MDP, see Markov decision process, see

Markov decision process, see
Markov decision process

mean vector, 28
measurable set, 561
measure, 561
measure space, 561
memetic algorithms, 103
memoization, 604
memory, 589
memory-bounded dynamic

programming, 550
metric, 562
metric space, 562
MG, see Markov game
minimax, 204

mirrored sampling, 224
missing, 82
missing at random, 84
missingness mechanisms, 84
mixed strategy, 494
mixture model, 23
MMA∗, see multiagent A∗
MMDP, see multiagent MDP
mode, 77
model predictive control, 200
model uncertainty, 2
model-free reinforcement learning, 335
modified policy iteration, 141
Monte Carlo estimation, 569
Monte Carlo methods, 11, 54
Monte Carlo policy evaluation, 214
Monte Carlo tree search, 187, 457
Monte Carlo value iteration, 475
most likely failure, 293
mountain car problem, 612
MPOMDP, see multiagent POMDP
multiagent A∗, 550
multiagent MDP, 548
multiagent POMDP, 548
multiarmed bandit problem, 299
multicaregiver crying baby problem,

624
multiforecast model predictive control,

207
multilinear interpolation, 168
multimodal, 23
multivariate, 573
multivariate distribution, 24
multivariate Gaussian distribution, 28
multivariate Gaussian mixture models,

28
multivariate product distribution, 27
multivariate uniform distribution, 27
mutate, 631

naive Bayes, 48

named function, 640
named tuple, 637
Nash equilibrium, 498, 537
Nash Q-learning, 526
nat, 566
natural, 566
natural evolution strategies, 219
natural gradient, 253
ND-POMDP, see network distributed

partially observable Markov
decision process

nearest neighbor, 163
nearest-neighbor imputation, 85
neighbor, 572
network distributed partially

observable Markov decision
process, 547

neural network, 174, 581
neural network regression, 174
NEXP-complete, 546
NLP, see nonlinear programming
node, 471, 572
nonlinear programming, 478, 551
nonnegativity, 561
nonparametric, 82, 379
nonstationary Markov policy, 530
normal distribution, see Gaussian

distribution
normal form games, 493
normalization constant, 49
normalized utility function, 113
normative theory, 122
normed vector space, 562
NP, 577
NP-complete, 577
NP-hard, 52, 577

observation, 1, 379
observation independence, 547
observation space, 380
observe-act cycle, 1

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

676 index

observe-act loop, see observe-act cycle
off-policy, 340
on-policy, 340
one-armed bandit, 299
one-step lookahead, 412
online planning, 181
open-loop planning, 200
operations research, 12
opportunistic, 102
optimal policy, 136
optimal substructure, 604
optimal value function, 136
optimism under uncertainty, 305
order, 575
outcome uncertainty, 2
overfitting, 585

P, 577
package, 645
parameter, 21, 161
parameter regularization, 585
parameter tuning, 581
parameterized policy, 213
parametric, 379
parametric representation, 161
parametric types, 639
parent, 572
Pareto curve, see Pareto frontier
Pareto efficient, see Pareto optimal
Pareto frontier, 291
Pareto optimal, 291
partially directed graph, 104
partially observable Markov decision

process, 15, 377
partially observable Markov game, 16,

533
Partially Observable Monte Carlo

Planning, 457
partially observable stochastic game,

533
particle, 390

particle deprivation, 390
particle filter, 390
particle filter with rejection, 390
particle injection, 394
path, 572
performance metric, 281
piecewise-uniform density, 24
planning, 6
planning model, 289
point-based value iteration, 432
pole balancing problem, 611
policy, 135
policy evaluation, 136
policy iteration, 140
policy loss, 142
policy search, 213
POMCP, see Partially Observable

Monte Carlo Planning
POMDP, see partially observable

Markov decision process
POMG, see partially observable Markov

game
population, 215
POSG, see partially observable

stochastic game
positive affine transformation, 113
positive definite, 28, 564
positive semidefinite, 564
posterior distribution, 43
posterior sampling, 306, 330
potential games, 503
power utility, 115
PPAD-complete, 498
PPO, see proximal policy optimization
precision parameter, 305, 497
predator-prey hex world problem, 623
predict step, 383
preference elicitation, 114
principle of maximum entropy, 368
principle of maximum expected utility,

116

prior, 48
prioritized sweeping, 321
prisoner’s dilemma, 494, 621
probability axioms, 562
probability density function, 21
probability distribution, 20
probability mass function, 20
probability measure, 562
probability simplex, 381
probability space, 562
progressive widening, 197
proportional to, 49
proposal distribution, 287
prospect theory, 122
proximal policy optimization, 257
prune, 185, 412
pseudocounts, 79, 80
pseudoinverse, 174
PSPACE, 577
PSPACE-complete, 427, 577
PSPACE-hard, 577
pure strategy, 494

Q-function, see action value function
Q-learning, 336
QCLP, see quadratically constrained

linear program
QMDP, 427
quadratic reward, 148
quadratic utility, 115
quadratically constrained linear

program, 481
quantal response, see softmax response
quantal-level-k, see hierarchical softmax
quantile, 305
quantile exploration, 305
quantile function, 21
query variables, 43

R-MAX, 323
random belief expansion, 440

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

index 677

randomized point-based value
iteration, 433

randomized probability matching, see
posterior sampling

randomized restart, 102
rank shaping, 221
rational learning, 509
rational preferences, 112
reachable state space, 181
receding horizon planning, 181
recurrent neural network, 589
recursive Bayesian estimation, 381
REINFORCE, 245
reinforcement learning, 7, 15, 297
relative entropy, 567
relative standard error, 285
repeated games, 493
replay memory, 345
representation learning, 592
response, 494
response policy, 519
restricted step, 251
return, 134, 599
reverse accumulation, 585
reward function, 133
reward independence, 547
reward shaping, 343
reward-to-go, 240
robust dynamic programming, 289
robust model predictive control, 204
rock-paper-scissors, 495, 621
rollout policy, 183

salvage values, 617
sample space, 562
Sarsa, 338
SARSOP, see Successive

Approximations of the Reachable
Space under Optimal Policies

satisfiable, 578
sawtooth heuristic search, 442

sawtooth upper bound, 436
scenario, 459
score equivalent, 104
search distribution, 218
search graph, 600
search problem, 599
search tree, 183, 600
sensitivity, 253
sequential interactive demonstrations,

358
Shannon information, 565
shaping function, 343
sigma points, 387
sigmoid, 32
simple decisions, 111
simple game, 493
simple regulator problem, 613
simplex, 168
simplex interpolation, 168
simulated annealing, 102
simultaneous perturbation stochastic

approximation, 234
singular value decomposition, 174
SMILe, see stochastic mixing iterative

learning
smooth fictitious play, 509
soft threshold, 32
softmax, 583
softmax response, 497
softmax response policy, 520
softmax strategy, 303
sparse reward, 341
sparse sampling, 187
spherical Gaussian, see isotropic

Gaussian
splat, 642
spread parameter, 388
standard basis, 232
standard deviation, 22
standard error, 285

standard form games, see normal form
games

state space, 133, 599
state transition model, 133
state uncertainty, 2
stationary, 133, 520
stationary Markov perfect equilibrium,

520
stationary policies, 135
step factor, 567
stochastic game, see Markov game
stochastic mixing iterative learning, 358
stochastic policy, 135
stress testing, 289
strictly concave, 565
strictly convex, 565
stride, 587
string, 629
Successive Approximations of the

Reachable Space under Optimal
Policies, 440

successor distribution, 471
sum-product algorithm, 53
sum-product variable elimination, 49
supervised learning, 6
support, 22, 23
surrogate constraint, 256
surrogate objective, 256
symbol, 630
symmetry, 562

tabu search, 103
target parameterizations, 274
taxicab norm, 563
Taylor approximation, 569
Taylor expansion, 568
Taylor series, 568
temporal difference error, 336
temporal difference residual, 268
temporal logic, 293
terminal reward, 617

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

678 index

ternary operator, 643
thin, 61
Thompson sampling, see posterior

sampling
topological sort, 55
trace trick, 159
trade analysis, 291
trade-off curve, 291
training, 581
trajectory, 213
trajectory reward, 214
transition independence, 547
transitivity, 19
transposition table, 604
traveler’s dilemma, 622
triangle inequality, 562
TRPO, see trust region policy

optimization
truncated Gaussian distribution, 23
trust region, 254
trust region policy optimization, 254
tuple, 636
Turing complete, see computationally

universal

Turing machine, 575

UCB1 exploration, 305
UCB1 exploration heuristic, 187
UKF, see unscented Kalman filter
uncertainty set, 204
undecidable, 579
underdetermined, 585
undirected exploration, 301
undirected path, 572
uniform distribution, 21
unimodal, 23
univariate, 573
univariate distribution, 24
universal comparability, 19
unscented Kalman filter, 387
unscented transform, 387
unsupervised, 593
update step, 385
upper confidence bound exploration,

see quantile exploration
upper confidence bound, probabilistic,

276
utility, 112

utility elicitation, 114
utility node, 116
utility theory, 14, 111

value function, 136
value function approximation, 161
value iteration, 141, 416
value of information, 119
vanishing gradient, 590
variance, 239
variational autoencoder, 593
vector, 630
vector space, 562
vertex, see node
von Neumann–Morgenstern axioms,

112

weight regularization, 585
weights, 174

zero-sum game, 494

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
2023-03-26 14:39:25-07:00, comments to bugs@algorithmsbook.com

	Preface
	Acknowledgments
	Introduction
	Decision Making
	Applications
	Methods
	History
	Societal Impact
	Overview

	I Probabilistic Reasoning
	Representation
	Degrees of Belief and Probability
	Probability Distributions
	Joint Distributions
	Conditional Distributions
	Bayesian Networks
	Conditional Independence
	Summary
	Exercises

	Inference
	Inference in Bayesian Networks
	Inference in Naive Bayes Models
	Sum-Product Variable Elimination
	Belief Propagation
	Computational Complexity
	Direct Sampling
	Likelihood Weighted Sampling
	Gibbs Sampling
	Inference in Gaussian Models
	Summary
	Exercises

	Parameter Learning
	Maximum Likelihood Parameter Learning
	Bayesian Parameter Learning
	Nonparametric Learning
	Learning with Missing Data
	Summary
	Exercises

	Structure Learning
	Bayesian Network Scoring
	Directed Graph Search
	Markov Equivalence Classes
	Partially Directed Graph Search
	Summary
	Exercises

	Simple Decisions
	Constraints on Rational Preferences
	Utility Functions
	Utility Elicitation
	Maximum Expected Utility Principle
	Decision Networks
	Value of Information
	Irrationality
	Summary
	Exercises

	II Sequential Problems
	Exact Solution Methods
	Markov Decision Processes
	Policy Evaluation
	Value Function Policies
	Policy Iteration
	Value Iteration
	Asynchronous Value Iteration
	Linear Program Formulation
	Linear Systems with Quadratic Reward
	Summary
	Exercises

	Approximate Value Functions
	Parametric Representations
	Nearest Neighbor
	Kernel Smoothing
	Linear Interpolation
	Simplex Interpolation
	Linear Regression
	Neural Network Regression
	Summary
	Exercises

	Online Planning
	Receding Horizon Planning
	Lookahead with Rollouts
	Forward Search
	Branch and Bound
	Sparse Sampling
	Monte Carlo Tree Search
	Heuristic Search
	Labeled Heuristic Search
	Open-Loop Planning
	Summary
	Exercises

	Policy Search
	Approximate Policy Evaluation
	Local Search
	Genetic Algorithms
	Cross Entropy Method
	Evolution Strategies
	Isotropic Evolutionary Strategies
	Summary
	Exercises

	Policy Gradient Estimation
	Finite Difference
	Regression Gradient
	Likelihood Ratio
	Reward-to-Go
	Baseline Subtraction
	Summary
	Exercises

	Policy Gradient Optimization
	Gradient Ascent Update
	Restricted Gradient Update
	Natural Gradient Update
	Trust Region Update
	Clamped Surrogate Objective
	Summary
	Exercises

	Actor-Critic Methods
	Actor-Critic
	Generalized Advantage Estimation
	Deterministic Policy Gradient
	Actor-Critic with Monte Carlo Tree Search
	Summary
	Exercises

	Policy Validation
	Performance Metric Evaluation
	Rare Event Simulation
	Robustness Analysis
	Trade Analysis
	Adversarial Analysis
	Summary
	Exercises

	III Model Uncertainty
	Exploration and Exploitation
	Bandit Problems
	Bayesian Model Estimation
	Undirected Exploration Strategies
	Directed Exploration Strategies
	Optimal Exploration Strategies
	Exploration with Multiple States
	Summary
	Exercises

	Model-Based Methods
	Maximum Likelihood Models
	Update Schemes
	Exploration
	Bayesian Methods
	Bayes-Adaptive Markov Decision Processes
	Posterior Sampling
	Summary
	Exercises

	Model-Free Methods
	Incremental Estimation of the Mean
	Q-Learning
	Sarsa
	Eligibility Traces
	Reward Shaping
	Action Value Function Approximation
	Experience Replay
	Summary
	Exercises

	Imitation Learning
	Behavioral Cloning
	Data Set Aggregation
	Stochastic Mixing Iterative Learning
	Maximum Margin Inverse Reinforcement Learning
	Maximum Entropy Inverse Reinforcement Learning
	Generative Adversarial Imitation Learning
	Summary
	Exercises

	IV State Uncertainty
	Beliefs
	Belief Initialization
	Discrete State Filter
	Kalman Filter
	Extended Kalman Filter
	Unscented Kalman Filter
	Particle Filter
	Particle Injection
	Summary
	Exercises

	Exact Belief State Planning
	Belief-State Markov Decision Processes
	Conditional Plans
	Alpha Vectors
	Pruning
	Value Iteration
	Linear Policies
	Summary
	Exercises

	Offline Belief State Planning
	Fully Observable Value Approximation
	Fast Informed Bound
	Fast Lower Bounds
	Point-Based Value Iteration
	Randomized Point-Based Value Iteration
	Sawtooth Upper Bound
	Point Selection
	Sawtooth Heuristic Search
	Triangulated Value Functions
	Summary
	Exercises

	Online Belief State Planning
	Lookahead with Rollouts
	Forward Search
	Branch and Bound
	Sparse Sampling
	Monte Carlo Tree Search
	Determinized Sparse Tree Search
	Gap Heuristic Search
	Summary
	Exercises

	Controller Abstractions
	Controllers
	Policy Iteration
	Nonlinear Programming
	Gradient Ascent
	Summary
	Exercises

	V Multiagent Systems
	Multiagent Reasoning
	Simple Games
	Response Models
	Dominant Strategy Equilibrium
	Nash Equilibrium
	Correlated Equilibrium
	Iterated Best Response
	Hierarchical Softmax
	Fictitious Play
	Gradient Ascent
	Summary
	Exercises

	Sequential Problems
	Markov Games
	Response Models
	Nash Equilibrium
	Fictitious Play
	Gradient Ascent
	Nash Q-Learning
	Summary
	Exercises

	State Uncertainty
	Partially Observable Markov Games
	Policy Evaluation
	Nash Equilibrium
	Dynamic Programming
	Summary
	Exercises

	Collaborative Agents
	Decentralized Partially Observable Markov Decision Processes
	Subclasses
	Dynamic Programming
	Iterated Best Response
	Heuristic Search
	Nonlinear Programming
	Summary
	Exercises

	Appendices
	Mathematical Concepts
	Measure Spaces
	Probability Spaces
	Metric Spaces
	Normed Vector Spaces
	Positive Definiteness
	Convexity
	Information Content
	Entropy
	Cross Entropy
	Relative Entropy
	Gradient Ascent
	Taylor Expansion
	Monte Carlo Estimation
	Importance Sampling
	Contraction Mappings
	Graphs

	Probability Distributions
	Computational Complexity
	Asymptotic Notation
	Time Complexity Classes
	Space Complexity Classes
	Decidability

	Neural Representations
	Neural Networks
	Feedforward Networks
	Parameter Regularization
	Convolutional Neural Networks
	Recurrent Networks
	Autoencoder Networks
	Adversarial Networks

	Search Algorithms
	Search Problems
	Search Graphs
	Forward Search
	Branch and Bound
	Dynamic Programming
	Heuristic Search

	Problems
	Hex World
	2048
	Cart-Pole
	Mountain Car
	Simple Regulator
	Aircraft Collision Avoidance
	Crying Baby
	Machine Replacement
	Catch
	Prisoner's Dilemma
	Rock-Paper-Scissors
	Traveler's Dilemma
	Predator-Prey Hex World
	Multicaregiver Crying Baby
	Collaborative Predator-Prey Hex World

	Julia
	Types
	Functions
	Control Flow
	Packages
	Convenience Functions

	References
	Index

