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1 The Method of Moments

The method of moments (MOM) is merely the following proposal:

Proposition 1.1 (MOM)
To estimate a population moment (or a function of population moments)

merely use the corresponding sample moment (or a function of sample mo-
ments).

A population moment γ can be defined as the expectation of some continuous
function g of a random variable x:

γ = E[g(x)] (1)

On the other hand, a sample moment is the sample version of the population
moment in a particular sample:

γ̂ =
1

n

∑

[g(x)] (2)

2 OLS as a moment problem

Consider the simple linear regression

y = Xβ + u, u ∼ IID(0, σ2). (3)

If the model is correctly specified, then

E(X′u) = 0. (4)

The MOM principle suggests that we replace the left-hand side with its
sample analog 1

n
X′(y − Xβ).

Since we know that the true β sets the population moment equal to zero in
expectation, it seems reasonable to assume that a good choice of β̂ would be
one that sets the sample moment to zero. The MOM procedure suggests an
estimate of β that solves

1

n
X′(y − Xβ̂) = 0. (5)
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The MOM estimator is

β̂ = (X′X)−1X′y, (6)

which is the same as the OLS estimator.

3 IV as a moment problem

Consider the simple linear regression

y = Xβ + u, u ∼ IID(0, σ2). (7)

If the model is mis-specified, then

E(X′u) 6= 0. (8)

We have to find an instrumental variable Z which is

E(Z′u) = 0. (9)

Or,
E(Z′(y − Xβ)) = 0. (10)

The sample analogy of this is

1

n
Z′(y − Xβ̂) = 0. (11)

That gives us the IV estimator

β̂ = (Z′X)−1Z′y. (12)

4 The Generalized Method of Moments

4.1 Moments

The expectation E(Y r) for any r = 1, 2, . . . is called the rth (raw) moment of
Y . The expectation E[(Y − E(Y ))r] is called the rth centered moment of Y .

The mean is the first raw moment.
The variance is the second centered moment.
The third centered moment measures the skewness of the distribution.
The fourth centered moment measures the kurtosis of the distribution. In-

terpreted as a measure of ”fatness of tails”.
The standardized kurtosis is

k =
E[(Y − E(Y ))4]

E[(Y − E(Y ))2]2
.

For a normal distribution, k = 3.

2



For a t distribution with v ≥ 5 degrees of freedom, k = 3 + 6/(v − 4) > 4.
i.e., the t distribution has fatter tails than a normal distribution.

The distribution function of a random variable captures all information
about the random variable. It can be shown using all moments also captures
all information.

This distinction underlies the relative strengths and weaknesses of ML and
GMM.

4.2 GMM

The statistical model takes the general form

E[m(Yi; θ0)] = 0 (13)

where

• Y1, · · · , Y2 are random variables from which the sample y1, · · · , yn is drawn,

• m(Y, θ) is a function specifying the model,

• θ0 is the ”true value” of the parameter.

E[m(Yi; θ0)] = 0 are called the population moment conditions.

Two ideas behind GMM:

1. Replace the population mean E[.] with the sample mean calculated from
the observed sample y1, · · · , yn.

2. Since E[m(Yi; θ0)] = 0, choose θ̂GMM to make 1

n

∑n

i=1
m(yi; θ̂GMM ) as

close to zero as possible.

Define the notation

m̄(θ) =
1

n

n
∑

i=1

m(yi; θ). (14)

θ̂GMM is chosen to make m̄(θ)′m̄(θ) as close to zero as possible.

More generally, θ̂GMM is chosen to minimize m̄(θ)′Wm̄(θ) for some weight-
ing matrix W .

4.3 A GMM example

Suppose we have people’s income data, which are non-negative, highly skewed
and contain large outliers.

Consider the gamma distribution with pdf

f(y;α, β) =
yα−1exp(−y/β)

Γ(α)βα
, y, α, β > 0. (15)
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If Yi has a γ(α0, β0) distribution then

E(Yi) =
α0

β0

, E(Y 2

i ) =
α0 + α2

β2

0

. (16)

So the two moment conditions are

E[m(Yi; θ0)] = 0 (17)

where θ = (α, β) and

m(Yi; θ) =

[

Yi − α/β
Y 2

i − (α + α2)/β2

]

(18)

The sample moment conditions are

1

n
m(yi; θ̂GMM ) = 0, (19)

i.e.
[

1

n

∑n

i=1
yi − α̂GMM/β̂GMM

1

n

∑n

i=1
y2

i − (α̂GMM + α̂2

GMM )/β̂2

GMM

]

= 0. (20)

The solution is
[

α̂GMM

β̂GMM

]

=

[

ȳ2

s2

ȳ
s2

]

. (21)

4.4 Conditioning

Independence

If X and Y are independent then

f(x, y) = f(x)f(y) (22)

and hence
f(y|x) = f(y). (23)

If X and Y are independent then

E[g(X)h(Y )] = E[g(X)] · E[h(Y )] (24)

and hence
Cov[g(X), h(Y )] = 0. (25)

i.e. all functions of X and Y are uncorrelated.
Law of Iterated Expectations

E[Y ] = E[E(Y |X)]. (26)

Dependence Concepts
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• X, Y independent:
Cov[g(X), h(Y )] = 0 (27)

• X, Y uncorrelated:
Cov[X,Y ] = 0 (28)

• E[Y |X] = 0:
Cov[g(X), Y ] = 0 (29)

4.5 Regression

A regression model is a model of E[Yi|Xi]. For example,

Yi = β0 + β1Xi + ui (30)

where E[ui|Xi] = 0.

GMM regression

The regression model

Yi = β0 + β1Xi + ui, E[ui|Xi] = 0 (31)

implies the moment condition

E[ui] = 0 and E[Xiui] = 0 (32)

That is,
E[Yi − β0 − β1Xi] = 0 (33)

E[Xi(Yi − β0 − β1Xi)] = 0 (34)

The sample moment conditions are

1

n

∑

i=1

n(yi − β̂0 − β̂1xi) = 0 (35)

1

n

∑

i=1

nxi(yi − β̂0 − β̂1xi) = 0 (36)

These are just normal equations for OLS.
A characteristic of GMM: the specification of the model generates the esti-

mator. i.e. only E[Yi|Xi] = β0 + β1Xi is assumed.
Note there are no assumptions that ui is homoscedastic, not autocorrelated

or normally distributed. These properties affect the statistical properties of the
GMM estimator, not its definition.
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