# Evaluating Ecosystem Service Trade-offs in Boreal Forest

by using a distance function approach

#### Shuyi Wang<sup>1</sup> Prof. Dr. Tommy Lundgren<sup>2</sup>

<sup>1</sup>Ph.D. Candidate Department of Forest Economics Swedish University of Agricultural Sciences

<sup>2</sup>Research Director of CERE Department of Forest Economics Swedish University of Agricultural Sciences

July 30, 2023









#### 1 Ecosystem Service Trade-offs in Boreal Forests

#### 2 Distance Function Approach



Shuyi, Wang (SLU, CERE)

July 30, 2023 3 / 16

• Provisioning Service: timber production, bio-energy production, non-timber good production (such as berry, mushroom and etc.);



- Provisioning Service: timber production, bio-energy production, non-timber good production (such as berry, mushroom and etc.);
- Regulation Service: water regulation, air regulation, i.e. carbon sequestration;



- Provisioning Service: timber production, bio-energy production, non-timber good production (such as berry, mushroom and etc.);
- Regulation Service: water regulation, air regulation, i.e. carbon sequestration;
- Supporting Service: biodiversity preservation, habitat protection;



- Provisioning Service: timber production, bio-energy production, non-timber good production (such as berry, mushroom and etc.);
- Regulation Service: water regulation, air regulation, i.e. carbon sequestration;
- Supporting Service: biodiversity preservation, habitat protection;
- Cultural Service: Recreational hiking, fishing, picking and etc.



# Categories of Ecosystem Services

| Service                     | Explanation                              |
|-----------------------------|------------------------------------------|
| Production and Provisioning |                                          |
| Timber Production           | Paper and Board                          |
|                             | Sawn Wood                                |
|                             | Pulp, Recovered Paper                    |
|                             | Paper Products                           |
|                             | Veneer, Plywood, Wood Products           |
|                             | Roundwood, Chips, Sawdust                |
| Biomass & Fuel              | Branches & Tops(GROT)                    |
|                             | Fuelwood                                 |
| Non-timber Production       | Fish & Berry & Mushroom & Herbs & Fruits |
| Regulation and Regulating   |                                          |
| Air Quality                 | Aerosols & Chemicals Extraction          |
| Water Quality               | Water Infiltration & Storage             |
|                             | Water Recharge & Discharge               |
|                             | Water Purification                       |
| Climate Regulation          | Greenhouse Gas Absorption                |
| 0                           | Carbon Sequestration & Storage           |
| Erosion Protection          | Soil Maintenance & Fertility             |
|                             | Soil Formation & Regeneration            |
| Biological Regulation       | Pest Control                             |
|                             | Disease Control                          |
| Habitat and Supporting      |                                          |
| Biodiversity & Habitat      | Nursery Habitat                          |
| -                           | Genepool Protection                      |
| Information and Cultural    |                                          |
| Spiritual & Inspirational   | Referred as "Forest Spirituality"        |
|                             | Religious attachment                     |
| Recreational                | Hiking & Camping & Wildlife Observations |
|                             | Hunting & Fishing                        |
|                             | Berry & Mushroom Picking                 |
| Aesthetic&Educational       | Aesthetic Values with Sightseein         |
|                             | Educational and Athlata Training at 11   |

Source: Adapted from R. S. De Groot et al. (2010)

▶ ৰ ≣ ▶ ঊ ∽ ৭.ে July 30, 2023 5 / 16

• • • • • • • • • • • •

• Timber and bio-energy are marketed and priced goods, however, other services are non-marketed and have no easily determined value.



- Timber and bio-energy are marketed and priced goods, however, other services are non-marketed and have no easily determined value.
- We aim to evaluate the trade-offs between marketed goods and non-marketed services, since it is seemingly inevitable to reduce wood production to preserve some level of other services.



- Timber and bio-energy are marketed and priced goods, however, other services are non-marketed and have no easily determined value.
- We aim to evaluate the trade-offs between marketed goods and non-marketed services, since it is seemingly inevitable to reduce wood production to preserve some level of other services.
- Production economics provide a framework to evaluate trade-offs between inputs or outputs, known as shadow pricing.



- Timber and bio-energy are marketed and priced goods, however, other services are non-marketed and have no easily determined value.
- We aim to evaluate the trade-offs between marketed goods and non-marketed services, since it is seemingly inevitable to reduce wood production to preserve some level of other services.
- Production economics provide a framework to evaluate trade-offs between inputs or outputs, known as shadow pricing.
- To the best of our knowledge, there are none considering the problem in a production economic framework.



#### D Ecosystem Service Trade-offs in Boreal Forests

#### 2 Distance Function Approach



To describe the production technology of a forest:

$$T = \{(x, y) : x \text{ can produce } y\}, \text{ the technology set}$$

To involve non-marketed outputs:

$$T = \{(x, y, b) : x \text{ can produce } (y, b)\}$$

where b are non-marketed outputs (e.g. carbon sequestration, water filtration, biodiversity, recreation).



• We can conveniently impose conventional and standard economic assumptions to the output set P(x) = (y, b), such as closedness, boundness, convexity.



- We can conveniently impose conventional and standard economic assumptions to the output set P(x) = (y, b), such as closedness, boundness, convexity.
- Another important assumption is disposability. The marketed outputs by themselves are free (strong) disposable, meaning that a producer can freely choose not to produce given the undesirable market value of the outputs. The weak disposability models the idea that it is costly to increase non-marketed outputs. For instance, increasing carbon sequestration by harvesting fewer trees (profit loss).



- We use a distance function to specify a case of a multiple inputs and/or outputs. The distance function is a complete representation of the production technology.
- For example, an output distance function solves for a maximum proportional expansion of outputs, with given inputs.
- By estimating a distance function, we can calculate trade-offs of non-marketed goods, or the opportunity cost in production of a certain ecosystem service.



# Trade-offs between Marketed and Non-marketed Goods



Figure: Trade-offs between Marketed and Non-marketed Goods

The shadow price implicitly values non-marketed good(y1) in terms of its corresponding trade-offs with marketed good(y2).

## (Directional) Distance Function and Shadow Pricing

• Since a production involves multiple inputs and/or outputs, we introduce distance function to describe the frontier:

$$D_o(x, y, b; g_x, g_y, g_b) = \sup\{eta > 0 : (y + eta g_y, b \pm eta g_b) \in P(x)\}$$

• If we are solving a revenue maximization problem, the distance function is the constraint. We can write down its Lagrangian form:

$$R(x,p) = \max_{y} py - \mu D_o(x, y, b; g_y, g_b)$$

• FOC shows that:

$$p - \mu \nabla_y D_o(x, y, b; g_y, g_b) = 0$$

• Shadow price of any outputs:

$$p_{i} = p_{j} \frac{\partial D_{o}(x, y; g_{y}) / \partial y_{i}}{\partial D_{o}(x, y; g_{y}) / \partial y_{j}}, i \neq j.$$

• Typical functional form for distance function:

| Function      | Translog                                                                                                                     | Quadratic                                                                                                                                                                                                                                                                                                                                                       |
|---------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Form          | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                         | $\begin{array}{l} D_q(x,y,b;g_x,g_y,g_y) &= \alpha_0 + \sum_{n=1}^N \alpha_n x_n \ + \\ \sum_{j=1}^{M} \beta_n y_m + \sum_{j=1}^{j-1} \gamma_j b_j + \frac{1}{2} \sum_{m=1}^{N} \sum_{m'=1}^{M'} \alpha_m y' \pi_n x_n' \ + \\ \frac{1}{2} \sum_{m=1}^{M} \sum_{m'=1}^{M} \beta_{mn} y_m y_m' \ + \ \sum_{n=1}^{N} \sum_{j=1}^{M} \mu_{nj} y_m b_j \end{array}$ |
| Feasibility   | $  lnD_o(x, y, b) \leq 0$                                                                                                    | $D_T(x, y, b; g_x, g_y, g_b) \ge 0$                                                                                                                                                                                                                                                                                                                             |
| Disposability | $\partial_y D_o(x, y, b) \ge 0$                                                                                              | $\partial_y D_o(x, y, b; g_x, g_y, g_b) \leq 0$                                                                                                                                                                                                                                                                                                                 |
|               | $\partial_x D_o(x, y, b) \leq 0$                                                                                             | $\partial_x D_o(x, y, b; g_x, g_y, g_b) \ge 0$                                                                                                                                                                                                                                                                                                                  |
|               | $\partial_b D_o(x, y, b) \leq 0$                                                                                             | $\partial_b D_o(x, y, b; g_x, g_y, g_b) \ge 0$                                                                                                                                                                                                                                                                                                                  |
| Homogeneity   | $\sum_{m}^{M} \beta_{m} + \sum_{i}^{J} \gamma_{i} = 1$                                                                       | -                                                                                                                                                                                                                                                                                                                                                               |
|               | $\sum_{m}^{M} \sum_{m'}^{M} \beta_{mm'} + \sum_{j}^{J} \sum_{j'}^{J} \gamma_{jj'} + \sum_{m}^{J} \sum_{j'}^{J} \mu_{mj} = 0$ |                                                                                                                                                                                                                                                                                                                                                                 |
|               | $\sum_{n}^{N} \sum_{m}^{M} \delta_{nm} + \sum_{n}^{N} \sum_{j}^{J} \nu_{nj} = 0$                                             |                                                                                                                                                                                                                                                                                                                                                                 |
| Translation   |                                                                                                                              | $-g_x \sum_{n=1}^{N} \alpha_n + g_y \sum_{m=1}^{M} \beta_n - g_j \sum_{j=1}^{J} \gamma_j = -1$                                                                                                                                                                                                                                                                  |
|               | -                                                                                                                            | $-g_x \sum_{n=1}^{N} \delta_{nm} + g_y \sum_{m'=1}^{M} \beta_{mm'} - g_j \sum_{j=1}^{J} \mu_{mj} = 0$                                                                                                                                                                                                                                                           |
|               | -                                                                                                                            | $ -g_x \sum_{n=1}^{N} \nu_{nj} + g_y \sum_{m=1}^{M} \mu_{mj} - g_j \sum_{j'=1}^{J} \gamma_{jj'} = 0 $                                                                                                                                                                                                                                                           |
|               | -                                                                                                                            | $-g_x \sum_{n'=1}^{N} \alpha_{nn'} + g_y \sum_{m=1}^{M} \delta_{nm} - g_j \sum_{j=1}^{J} \nu_{nj} = 0$                                                                                                                                                                                                                                                          |
| Symmetry      | $\alpha_{nn'} = \alpha_{n'n}, \beta_{mm'} = \beta_{m'm}, \gamma_{jj'} = \gamma_{jj'}$                                        | $\alpha_{nn'} = \alpha_{n'n}, \beta_{mm'} = \beta_{m'm}, \gamma_{jj'} = \gamma_{jj'}$                                                                                                                                                                                                                                                                           |



• Typical functional form for distance function:

| Function      | Translog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quadratic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Form          | $\begin{array}{l} ln D_a(x,y,b) &= \alpha_0 + \sum_{m=1}^{N} \alpha_n (nx_n + \sum_{m=1}^{M} \beta_m (ny_m + \sum_{j=1}^{M} \gamma_j nb_j + \frac{1}{2} \sum_{m=1}^{N} \sum_{m=1}^{M} \sum_{m=1}^{M} \alpha_n (nx_n nx_n + \frac{1}{2} \sum_{m=1}^{M} \sum_{j=1}^{M} \beta_m (ny_m ny_m ny_m + \sum_{j=1}^{M} \sum_{j=1}^{M} \gamma_j (nb_j nb_j + \sum_{m=1}^{M} \sum_{j=1}^{M} \beta_m nx_n (ny_m + \sum_{m=1}^{M} \sum_{j=1}^{M} \beta_m nx_m ny_m + \sum_{m=1}^{M} \sum_{j=1}^{M} \beta_m nx_m ny_m + \sum_{m=1}^{M} \sum_{j=1}^{M} \beta_m nx_m ny_m + \sum_{m=1}^{M} \beta_m nx_m ny_m nx_m ny_m + \sum_{m=1}^{M} \beta_m nx_m ny_m + \sum_{m=1}^{M} \beta_m nx_m ny_m nx_m ny_m + \sum_{m=1}^{M} \beta_m nx_m ny_m nx_m ny_m + \sum_{m=1}^{M} \beta_m nx_m ny_m ny_m ny_m ny_m ny_m ny_m ny_m ny$ | $\begin{array}{l} D_{a}(x,y,b;g_{x},g_{y},g_{0}) &= \alpha_{0} + \sum_{n=1}^{N} \alpha_{n}x_{n} + \\ \sum_{j=1}^{M} \beta_{n}y_{m} + \sum_{j=1}^{j} \gamma_{j}b_{j} + \frac{1}{2} \sum_{n=1}^{N} \sum_{j=1}^{N} \alpha_{n}x_{n}x_{n}x_{n}' + \\ \frac{1}{2} \sum_{m=1}^{M} \sum_{m=1}^{M} \beta_{m}x_{m}y_{m}y_{m}' + \sum_{n=1}^{N} \sum_{j=1}^{M} \delta_{n}x_{n}y_{m} + \\ \sum_{n=1}^{N} \sum_{j=1}^{j} \nu_{nj}x_{n}b_{j} + \sum_{m=1}^{M} \sum_{j=1}^{j} \mu_{mj}y_{m}b_{j} \end{array}$ |
| Feasibility   | $  lnD_o(x, y, b) \leq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ D_T(x, y, b; q_x, q_y, q_b) \ge 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Disposability | $\partial_y D_o(x, y, b) \ge 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\partial_y D_o(x, y, b; g_x, g_y, g_b) \leq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | $\partial_x D_o(x, y, b) \leq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\partial_x D_o(x, y, b; g_x, g_y, g_b) \ge 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | $\partial_b D_o(x, y, b) \leq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\partial_b D_o(x, y, b; g_x, g_y, g_b) \ge 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Homogeneity   | $\sum_{m}^{M} \beta_{m} + \sum_{j}^{J} \gamma_{j} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | $\sum_{im}^{M} \sum_{m'}^{M} \beta_{mm'} + \sum_{ij}^{J} \sum_{ij'}^{J} \gamma_{ij'} + \sum_{im}^{J} \sum_{ij'}^{J} \mu_{mi} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | $\sum_{n=1}^{N} \sum_{m=1}^{M} \delta_{nm} + \sum_{n=1}^{N} \sum_{j=1}^{J} \nu_{nj} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Translation   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-g_x \sum_{n=1}^{N} \alpha_n + g_y \sum_{m=1}^{M} \beta_n - g_j \sum_{i=1}^{J} \gamma_i = -1$                                                                                                                                                                                                                                                                                                                                                                                                 |
|               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-g_x \sum_{n=1}^{N} \delta_{nm} + g_y \sum_{m'=1}^{M} \beta_{mm'} - g_j \sum_{i=1}^{J} \mu_{mj} = 0$                                                                                                                                                                                                                                                                                                                                                                                          |
|               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-g_x \sum_{n=1}^{N} \nu_{nj} + g_y \sum_{m=1}^{M} \mu_{mj} - g_j \sum_{j'=1}^{J'} \gamma_{jj'} = 0$                                                                                                                                                                                                                                                                                                                                                                                           |
|               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-g_x \sum_{n'=1}^{N} \alpha_{nn'} + g_y \sum_{m=1}^{M} \delta_{nm} - g_j \sum_{j=1}^{J} \nu_{nj} = 0$                                                                                                                                                                                                                                                                                                                                                                                         |
| Symmetry      | $ \mid \alpha_{nn'} = \alpha_{n'n}, \beta_{mm'} = \beta_{m'm}, \gamma_{jj'} = \gamma_{jj'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\alpha_{nn'} = \alpha_{n'n}, \beta_{mm'} = \beta_{m'm}, \gamma_{jj'} = \gamma_{jj'}$                                                                                                                                                                                                                                                                                                                                                                                                          |

• The parameters can be estimated by optimization techniques (linear programming) or econometrically (stochastic frontier alysis)

- Distance function is a complete representation of multiple-output production frontier used to evaluate trade-offs between wood production and ecosystem services.
- The shadow pricing recovers the value of non-marketed goods (ecosystem services) in terms of opportunity costs of wood production.
- Thank you for the patience!



- By the basic setting, we can conveniently assume that the output set P(x) = (y, b) is:
- *Closed and Bounded*: Given a fixed level inputs, it is not possible to produce unlimited outputs.
- *Convex*: Any combination of two outputs can be produced by *x*, given each of the outputs can be produced by *x*.
- *Weakly Disposable*: Bad outputs is not freely disposable, the producer must endure a cost to reduce bad outputs.
- Null-jointness of (y, b) indicates that if no bad output is produced, it must be the case no good output is produced, i.e. bad output is a by-product.



### Directional Distance Function and Shadow Pricing





July 30, 2023 16 / 16