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Previous studies of the so-called frontier production function have not utilized an adequate 
characterization of the disturbance term for such a model. In this paper we provide an ap- 
propriate specification, by defining the disturbance term as the sum of symmetric normal and 
(negative) half-normal random variables. Various aspects of maximum-likelihood estimation 
for the coefficients of a production function with an additive disturbance term of this sort are 
then considered. 

1. Introduction 

The theoretical definition of a production function expressing the maximum 
amount of output obtainable from given input bundles with fixed technology 
has been accepted for many decades. And for almost as long, econometricians 
have been estimating average production functions. It has only been since the 
pioneering work of Farrell (1957) that serious consideration has been given to 
the possibility of estimating so-called frontier production functions, in an effort 
to bridge the gap between theory and empirical work. For a variety of reasons 
these efforts have not been completely successful. In this paper we suggest a 
new approach to the estimation of frontier production functions. This involves 
the specification of the error term as being made up of two components, one 
normal and the other from a one-sided distribution. This approach enables us 
to overcome some of the major shortcomings of previous work in the area. 

*This work was supported in part by NSF Grant GS-39995 (DJA). We are indebted to 
Takeshi Amemiya, Forrest Nelson, and Dale J. Poirier for helpful advice at various stages of 
the research, and to Chinbang Chung for research assistance. None of them should be held 
responsible for any errors that remain. 
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The outline of the paper is as follows. In section 2 we review previous app- 
roaches to the estimation of parametric frontier production functions, and in 
section 3 we propose a new approach. The statistical properties of our model 
are discussed in section 4. Some Monte Carlo experiments are reported in section 
5, and empirical examples are given in section 6. Section 7 concludes. 

2. Previous parametric frontier models 

Previous work on the estimation of parametric frontier production functions, 
as characterized by the work of Aigner and Chu (1968), Afriat (1972) and 
Richmond (1974), begins by assuming a function giving maximum possible 
output as a function of certain inputs. For a given firm, say the ith, we write 

Yi = Axi i PI* (1) 

Here yi is the maximum output obtainable from xi, a vector of (non-stochastic) 
inputs, and 1 is an unknown parameter vector to be estimated. 

Aigner and Chu (1968) suggest the estimation of /I by mathematical program- 
ming methods based on a cross-section of N firms within a given industry. 
Specifically, they suggest minimization of 

subject to yi 6 f(xi; p), which is a linear programming problem if f(xi; p) is 
linear in 1. Alternatively, they suggest minimization of 

subject to the same constraint, which is a quadratic programming problem if 
f(Xi; fl) is linear. 

Obviously, something magical has happened in moving from (1) to either of 
these ‘estimation’ methods: In order to characterize differences in output among 
firms with identical input vectors or to explain how a given firm’s output lies 
below the ‘frontier’, f(ni, fi), a disturbance term has been implicitly assumed. 

One problem with these approaches is extreme sensitivity to outliers. This has 
led to the development of so-called ‘probabilistic’ frontiers [Timmer (1971), 
Dugger (1974)] which are estimated by the same types of mathematical pro- 
gramming techniques discussed above, except that some specified proportion 
of the observations is allowed to lie above the frontier. The selection of this 
proportion is essentially arbitrary, lacking explicit economic or statistical justifi- 
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cation. Another problem involves reconciling the observations above the frontier 

with the concept of the frontier as maximum possible output. Typically this is 
accomplished by appealing to measurement error in the extreme observations. 
However, it seems preferable to incorporate the possibility of measurement 
error, and of other unobservable shocks, in a less arbitrary fashion. 

As they have been applied previously, therefore, the mathematical program- 
ming techniques do not lead to estimates with known statistical properties. 
In an attempt to give them a statistical basis, Schmidt (1976) explicitly added a 
one-sided disturbance to (1) above, which yields the model 

Yi =.fXxi; B)+&i, i= l,...,N, 

where si 5 0. Given a distribution assumption for the disturbance term, the 
model can then be estimated by maximum-likelihood techniques. In particular, 
the assumption that -.si has an exponential distribution leads to the linear 
programming technique, while the assumption that - si has a half-normal distri- 
bution leads to the quadratic programming technique. Therefore, Aigner and 
Chu’s estimates can be viewed as maximum-likelihood estimates under particular 
error specifications. 

Unfortunately, the observation that the model can be estimated by maximum- 
likelihood techniques, and that under appropriate assumptions linear and 
quadratic programming are maximum-likelihood techniques, is of little practical 
value. This is so because the usual ‘regularity conditions’ for the application of 
maximum likelihood are violated. In particular, since yi 5 f(xi; p), the range 
of the random variable y depends on the parameters to be estimated. Therefore, 
the usual theorems cannot be invoked to determine the asymptotic distributions 

of parameter estimates. Under these circumstances it is not clear just how much 
we know about the frontier after having estimated it. 

In another recent paper, Aigner, Amemiya, and Poirier (1976) construct a 
more reasonable error structure than a purely one-sided one. Specifically, they 
assume 

Ei = 

i 

$/VT1 - a if E” > 0, i = 1, . . ., N, 

&Tlz/e if ET 5 0, 
(3) 

where the errors, ~7, are independent normally distributed random variables 
with zero means and variance c2 for 0 < 8 < 1; otherwise, E: has either the 
negative or positive truncated normal distribution, when 0 = 1 or 0 = 0, 
respectively. 

Their justification for this error specification is that firms are presumed to 
differ in their ‘production’ of y for a given set of values for the ‘inputs’ according 
to random variation in (1) their ability to utilize ‘best practice’ technology, 
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a source of error that is one-sided (si 5 0), and/or (2) an input quantity or 
measurement error in y, a symmetric error. The parameter f3 is interpreted as the 
measure of ‘relative variability’ in these two error sources, its values circum- 
scribing the ‘full’ frontier function (0 = l), the ‘average’ function (0 = $), 
and intermediate cases of some interest.’ 

A primary contribution of this error structure to the literature is that it allows 
the placement of the fitted function to be estimated along with the usual para- 
meters of interest through the parameter 8. Thus, the criticism levied at the 
average function by proponents of the frontier [e.g., Aigner and Chu (1968)] 
and criticisms that accompany strict use of the frontier or envelope function 
as the ‘appropriate’ industry production function [cf., Timmer (1971)] are 
ameliorated by this more accommodating specification. 

Nevertheless, the interpretation of 6 as a measure of the relative variability 
of error sources is only implicit in the Aigner, Amemiya, Poirier formulation 
A more direct approach is to specifically model the error process implied by the 
behavioral considerations mentioned above. 

3. A stochastic frontier 

We now return to the model as given in eq. (2), but under the error structure 

Ei = Ui+Ui, i= )..., 1 N. (4) 

The error component z)~ represents the symmetric disturbance: the {pi> are 
assumed to be independently and identically distributed as N(0, 0,“). The error 
component U, is assumed to be distributed independently of vi, and to satisfy 
ui 5 0. We will be particularly concerned with the case in which ui is derived 
from a N(0, rr,“) distribution truncated above at zero. However, other one-sided 
distributions are tenable, and we will also briefly consider the case in which 
- ui has an exponential distribution. 

This model collapses to a deterministic frontier model when 01 = 0, and it 
collapses to the Zellner, Kmenta, and Dreze (1966) stochastic production func- 
tion model when 0: = 0. Note that yi 5 f(Xi; p) +vi, so that the frontier itself 
is now clearly stochastic. 

The economic logic behind this specification is that the production process is 
subject to two economically distinguishable random disturbances, with different 
characteristics. We believe that there is ample precedent in the literature for 

IAs 0 --f 1, the positive error component has a large variance (hence small influence in the 
likelihood function), and the negative error dominates. This gives rise to the ‘full’ frontier as 
the limiting case (0 = 1). A similar interpretation follows for the case of 0 -P 0, a!though a 
behavioral explanation for this situation is lacking. When 0 = 3, the likelihood function has 
the form of a mixture of two half-normals, each with equal influence. 



D. Aigner et al., Stochastic frontier production function models 25 

such a view, although our interpretation is clearly new.2 And from a practical 

standpoint, such a distinction greatly facilitates the estimation and interpreta- 
tion of a frontier. The non-positive disturbance ui reflects the fact that each firm’s 
output must lie on or below its frontier [f(xi; p) + vi]. Any such deviation is the 
result of factors under the firm’s control, such as technical and economic 
inefficiency, the will and effort of the producer and his employees, and perhaps 
such factors as defective and damaged product. But the frontier itself can vary 
randomly across firms, or over time for the same firm. On this interpretation, 
the frontier is stochastic, with random disturbance vi $ 0 being the result of 
favorable as well as unfavorable external events such as luck, climate, topo- 
graphy, and machine performance. Errors of observation and measurement on y 
constitute another source of vi 5 0. 

One interesting byproduct of this approach is that we can estimate the 
variances of Vi and Ui, so as to get evidence on their relative sizes. Another 
implication of this approach is that productive efficiency should, in principle, 
be measured by the ratio 

YilLfCxi; B> + 21i13 (5) 

rather than by the ratio 

This simply distinguishes productive inefficiency from other sources of disturb- 
ance that are beyond the firm’s control. For example, the farmer whose crop is 
decimated by drought or storm is unlucky on our measure (5), but inefficient 
by the usual measure (6).3 

Our discussion of estimation will be simplified somewhat if we consider a 
linear model. We therefore write, in obvious matrix form, 

y = xg+s, (7) 

in place of (2), where now a = v+u. 

‘Marschak and Andrews (1944) suggest that the sum (vi + ui) reflects the ‘technical efficiency’ 
and the ‘will, effort and luck’ of a producer. Zellner, Kmenta, and Dreze (1966) suggest that it 
reflects ‘factors such as weather, unpredictable variations in machine or labor performance, 
and so on’, and they were perhaps the first to propose a stochastic production function, 
although they clearly did not have a frontier in mind. Other characterizations of the error 
term exist: Aigner and Chu (1968) explain it by reason of technical and economic inefficiencies, 
as well as by pure random shocks in the production process that might be due to careless 
handling and defective or damaged output. Timmer (1971) cites technical and economic 
inefficiency, as well as ‘definitional and measurement problems in the variables’. And, agri- 
cultural economists frequently cite variation across farms in such environmental conditions 
as climate, topography and soil type as indicative of a random production function. 

3As defined, (5) is a strange efficiency measure, since it is stochastic and depends on an 
unobservable, vi. It is offered here only to support the argument. 
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4. Estimation of the stochastic frontier model 

The distribution function of the sum of a symmetric normal random variable 
and a truncated normal random variable was apparently first derived by M.A. 
Weinstein (1964). The derivation of the density function of E is straight- 
forward, so we shall not include it here. The result is 

2 
f(E) = -f* E [l-F*(dC+)], - 

0 0 
cos&E+fCo, 

Cr 

where IS’ = 0: +og, 1 = c,/c~, and f*(* ) and F*(. ) are the standard normal 
density and distribution functions, respectively. This density is asymmetric 
around zero, with its mean and variance given by 

42 
E(E) = E(u) = - -JJ b” 

V(E) = V(u)+ V(u) 

n-2 
= (6) n 

D: + U,“, 

as can be easily ascertained from elementary considerations and calculation of 
the moments of U. 

The particular parameterization in (8) is convenient because A is thereby 
interpreted to be an indicator of the relative variability of the two sources of 
random error that distinguish firms from one another.4 A2 --) 0 implies 03 + co 
and/or 0,” --f 0, i.e. that the symmetric error dominates in the determination of E. 
Eq. (8) then becomes the density of a N(0, 02) random variable, as can be seen 
by inspection. Similarly, when C% + 0, the one-sided error becomes the domi- 
nant source of random variation in the model and (5) takes on the form of a 
negative half-normal. 5 

“We prefer to use this interpretation of I even though aU2 is not the variance of 
(UT-- 2)/n) UUZ is. Another useful parameterization is to use oz along with c( = a,,*jo*. 

‘For oVz = 0 and thus 1 = 03, (5) becomes 

J2 
f (4 = ~no; exp ( 

1 
-----E2 , 2a,2 1 for E j 0, 

zz 0, otherwise. 
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The estimation problem is posed by assuming we have available a random 
sample of N observations and then forming the relevant log-likelihood function, 

1/2 In 9 (y]jI, A, 02) = N lndT + N In C-I 

+ 2 In [l-F*(&&-l)] - (10) 
i=l 

which is almost exactly the form of the 
Amemiya (1973, p. 1015, eq. (10.2)). 

Taking derivatives, 

1: ikelihood function considered by 

a In 2 
-j$yr= 

a In 8 
- = - i iI &) (Yi--B’xi)9 an 

alns 1 N 
- = ;;i iFI (Yi-P’+i)ri+~ i (+) xi, 

afi il -i 

(11) 

(12) 

where a (k x 1) vector consisting of elements in the ith row of X, and 
f? and FT are, respectively, the standard normal density and distribution func- 
tions evaluated at (yi- /?‘xi) lo-‘. 

Given (12), we have that 

N .fi” 
ill (1 -FT) 

- (Yi-B’Xi) = 0, 

at the optimum. Inserting this result into (ll), the ML estimator for CJ’ is 
determined through 

N -- 
-t-f_ 2a4 ,$ (Yi-B’xi) = O, 2a2 r-l 

(14) 

which yields 

A.2 
0 = $ iil (Yi-B’xi)2, (15) 
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the basis for the usual ML estimator of residual variance in a regression model. 
But the determination of fi is not independent of 8’ from other equations. 
In any event, this result can be used as a basis for an iterative solution scheme. 

/I’ premultiplied into (13) gives 

Adding to this -j2 times eq. (12) and simplifying, we get 

(16) 

(17) 

which, in conjunction with (13) gives a system of (k+ 1) equations that cor- 
responds very closely to the system of first-order equations encountered in the 
so-called ‘Tobit’ model.6 Since our density function is continuous in the range 
of E, it is not anticipated that the difficulties encountered in the Tobit model 
will occur here, and therefore we claim all the usual maximum-likelihood 
properties for the values of p, ;1 and a2 which simultaneously equate (ll), (IZ), 
and (13) to zero. Formal proof of this claim and an examination of the regularity 
conditions that support it follow the analysis in Amemiya (1973). 

Various solution algorithms are available for finding the optimizing values 
of /?, R, and u’. Most of these (the Fletcher-Powell algorithm, for examp?e) 
require analytical first- or second-order derivatives in addition to the likelihood 
function itself for their best performance at reasonable cost in computer time. 
Since such algorithms are now readily availabIe,7 we will not devote any space 
to a discussion of the ML computational problem, except to note that this 
likelihood function seems to be well-behaved, based on our experience. Second- 
order derivatives are presented in the appendix to this paper, for that use and 
as a basis for calculating asymptotic standard errors of the ML estimates. 

We note in passing that if estimation of p alone is desired, all but the coefficient 
in /3 corresp.onding to a column of ones in X is estimated unbiasedly and con- 
sistently by least squares. Moreover, the components of C? can be extracted 
(i.e., consistent estimators for them can be found) based on the least squares 
results by utilizing eq. (9) for V(E) in terms of 0: and C: and a similar relation- 
ship for a higher-order moment of e, since V(E) and higher order mean-corrected 

‘?See Amemiya (1973, p. 1011, eqs. (7.2), (7.3)). 
7For a good discussion of the available algorithms as of a few years ago. see Goldfeld- 

Quandt (1971). 
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moments of E are themselves consistently estimable from the computed least- 
squares residuals.8 

Similar comments andderivations would applyunder alternative distributional 
assumptions for ui. For example, we could choose the simple one-parameter 
exponential distribution for -u, 

(lf9 

where 4 2 0 is the mean of -ui. (The variance is 4”.) A little algebra reveals 
that the distribution of ei = vi+ui is given by the density 

,)=+[IF*(c+z)]expb+$], (19) 

where again F*( *) represents the cumulative distribution function of the standard 
normal distribution. The likelihood function for the model follows immediately. 

5. Monte Carlo results 

In order to discover some specific information about the small sample be- 
havior of the ML estimators discussed in the previous section, we constructed 
two limited Monte Carlo experiments which rest entirely on artificial data. 

Study 1. The model considered here is yi = ei (i = 1, . . ., N) where Ei is 
generated by eq. (8) with various values of 0,” and 0:. The results and further 
details about the range of parameter values considered are reported in table 1. 
So, no regression is involved in this instance (indeed, not even a mean is esti- 
mated) and we assume that the conventionally unobservable Ei is observable. 

Some easily distinguished patterns of bias and precision in estimation emerge. 
Considering table la, 1 is apparently biased upward. ol, a:, and a2 seems to 
be estimated very well in all cases, both with regard to small bias and MSE. 

Moving to table lb, increasing sample size to N = 100 for the one set of 
results reported shows little (if any) basis for alteration of the qualitative con- 
clusions reached above, but also gives to indication of the reduction in bias 
and increase in precision promised by the asymptotic properties of ML. 

sFor instance, the third-order moment of E is 

20.3 
Er&---(&)13 = 2/2jZj 1 - ; . ( > 

In the Monte Carlo results that follow, no attempt is made to evaluate the properties of these 
estimators. 

C 
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Table la 
Monte Carlo results for the model yi = si; number of replications = 100, sample size = 50, 

value of A = 1.66, 1.24, 0.83.” 

1.66 1.24 0.83 

(1.41) b= = 1.36 (0.08) (1.22) (i2 = 1.22 (0.06) (1.01) CP = 1.02 (0.04) 
1 = 1.77 (0.28) li = 1.31 (0.20) x = 0.93 (0.13) 

(1.03)6,* = 1.01 (0.07) (0.74) 8.2 = 0.75 (0.07) (0.41) B,Z = 0.47 (0.05) 
(0.38) 8,’ = 0.36 (0.02) (0.48) BUZ = 0.47 (0.02) (0.60) 8u2 = 0.55 (0.03) 

(1.88) a2 = 1.81 (0.14) (1.63) tP = 1.64 (0.11) (1.35) 8’ = 1.36 (0.08) 
^n = 1.80 (0.33) i = 1.35 (0.17) t = 0.94 (0.13) 

(1.38) aU2 = 1.34 (0.16) (0.99) 8,2 = 1.03 (0.11) (0.55) aU2 = 0.62 (0.09) 
(0.50) b”2 = 0.47 (0.03) (0.64) 6,’ = 0.61 (0.04) (0.80) 8”2 = 0.74 (0.04) 

(2.81) Bz = 2.81 (0.33) (2.45) bZ = 2.46 (0.30) (2.03) 6’ = 2.05 (0.19) 
;z = 1.76 (0.35) 1 = 1.34 (0.22) ;z = 0.84 (0.08) 

(2.06) 6u2 = 2.06 (0.42) (1.49) a”2 = 1.53 (0.30) (0.83) 6.* = 0.85 (0.18) 
(0.75) 8.2 = 0.75 (0.07) (0.96) BUZ = 0.93 (0.10) (1.20) B”2 = 1.20 (0.09) 

“Values in parentheses to the right of estimates are MSE’s. Values in parentheses to the left 
of&2 b 2 , u and 8,’ are the true values for these parameters used in the simulations. 

Table lb 
Monte Car10 results for the model yt = cl; number of replications = 100, sample size = 100, 

value of Iz = 1.66, 1.24, 0.83.8 

1.66 1.24 0.83 

(1.88) a2 = 1.88 (0.14) (1.63) 82 = 1.70 (0.12) (1.35) 6’ = 1.32 (0.08) 
;z = 1.81 (0.37) 5 = 1.34 (0.23) x = 0.90 (0.12) 

(1.38) 8u2 = 1.40 (0.15) (0.99) 6,2 = 1.06 (0.14) (0.55) a”2 = 0.57 (0.07) 

(0.50) 802 = 0.48 (0.03) (0.64) &,2 = 0.64 (0.04) (0.80) 8,’ = 0.75 (0.05) 

“Values in parentheses to the right of estimates are MSE’s. Values in parentheses to the left 
of @, I?,~ and B,* are the true values for these parameters used in the simulations. 

Study 2. Here the experiments of table 1 are repeated using the model 
yi = jLL+&i (i = 1, . . ., IV). Since si already possesses a non-zero mean, the 
question is, what effect does the extraction of an explicit intercept term have 
on the previous case? From table 2a we see that qualitatively the results for 1 
are altered somewhat, with some cases of negative bias occurring. Moreover, 
the additional parameter to be estimated has a deleterious effect on 8: and 
(hence) a2. Whereas in the previous cases these estimators provided sharp results, 
now there is a tendency for them both to be biased downward. /I is also biased 
downward, but without any apparent pattern of relationship with the values 
of other parameters. Again, increasing sample size to N = 100 has no perceptible 
effect on our results and conclusions from the N = 50 case. 
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Table 2a 
Monte Carlo results for the model y, = p + cl; number of replications = 100, sample size = 50 

fl = 1.0, value of 1 = 1.66, 1.24, O.83.8 

1.66 1.24 0.83 

(1.41) P = 1.34 (0.22) (1.22)6’ = 1.11 (0.25) - (1.01) r? = 0.82 (0.13) 
^n = 1.72 (1.22) a = 1.04 (1.20) 1 = 0.23 (0.66) 
- = 0.88 (0.11) 

(1.03) :,2 = 0.95 (0.34) 
0.75 (0.21) 

(0.74) :,2 
0.55 (0.25) 

0.58 (0.44) (0.41) euz 0.12 (0.23) 
(0.38) Boz 0.39 (0.04) (0.48) a”2 0.53 (0.05) (0.60) 6’ = 0.70 (0.04) 

(1.88) 82 = 1.75 (0.39) (1.63) a2 = 1.61 (0.51) (1.35) a2 = 1.30 (0.30) 

;z = 1.93 (2.99) 1.45 (2.73) 0.70 (0.91) 
0.84 (0.18) 

(1.38) “au2 1.25 (0.65) 
0.82 (0.25) 

(0.99) z,z .oo (0.83) 

0.71 (0.23) 
(0.55) 0.50 (0.52) 

(0.50) B,Z 0.50 (0.07) (0.64) 8,’ 0.61 (0.09) (0.80) a”2 0.80 (0.10) 

.81) 8’ = 2.56 (0.89) (2.45) 8’ = 2.40 (0.93) (2.03) s2 = 2.02 (0.48) 

;z = 1.84 (2.39) 1.46 (1.32) ;2 = 0.81 (0.79) 
0.83 (0.23) 

(2.06) zU2 1.80 (1.35) 
0.85 (0.29) 

(1.49)$ 1.55 (1.48) 

0.78 (0.25) 
(0.83) zU2 0.86 (1.05) 

(0.75) 8,’ 0.76 (0.14) (0.96) 8,’ 0.86 (0.18) (1.20) 8,2 1.16 (0.22) 

BValues in to the of estimates in parentheses to the 
of > are the true values for these parameters used in the simulations. 

Table 2b 
Monte Carlo results for the model y, = ~t-8~; number of replications = 100, sample size = 

100, p = 1.0, value of 1 = 1.66, 1.24, 0.83.” 

1.66 1.24 0.83 

(1.88) B2 = 1.90 (0.47) (1.63) a2 = 1.79 (0.55) (1.35) a2 = 1.17 (0.22) 

i = 2.03 (2.48) ;z = 1.57 (1.55) a = 0.43 (0.61) 

” = 0.88 (0.17) 
(1.38) :,2 = 1.40 (0.79) 

^ = 0.93 (0.19) 
(0.99) zUz = 1.22 (0.87) 

- = 0.62 (0.24) 

(0.55) :.z = 0.29 (0.39) 
(0.50) a,* = 0.50 (0.08) (0.64) B,* = 0.57 (0.08) (0.80) 802 = 0.87 (0.07) 

“Values in parentheses to the right of estimates are MSE’s. Values in parentheses to the left 
ofbZ B 2andbZ t ” ” are the true values for these parameters used in the simulations. 

Contrasting these results to similar experiments conducted by the Aigner, 
Amemiya, and Poirier (1976), the overall performance of common estimators 
(/2 and S2) is roughly comparable.’ We note that their measure of the relative 
variability in error sources is generally overstated, but has small MSE compared 
to 1. 

9Cf. their table 5 on page 20. The disturbance variance, V(E), is set at 0.5 in their results, 
whereas it varies in our table 2a and is generally much larger than 0.5. 
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6. Empirical examples 

In this section we present some examples of estimates of the stochastic frontier 
model, and compare these estimates to other earlier results. 

The first example uses 1957-58 data on the U.S. primary metals industry 
(SIC 33), consisting of observations across 28 states. This data set was previously 
analyzed by Hildebrand and Liu (1965) and by Aigner and Chu (1968). The 
production function to be estimated is of the form 

In Y = pe+/?r lnZ,+P, (In R~lnK)+(v+u), 

where Y is value added per establishment, 1, is a measure of labor input per 
establishment, K is the gross book value of plant and equipment per establish- 
ment, and R is the ratio of net to gross book value of plant and equipment. 

Various sets of parameter estimates are given in table 3. The first three sets 
of entries correspond to our results running OLS, and using the maximum- 

Table 3 

Estimates of eq. (20) by various methods. 

Method /%I 81 82 

OLS 

Stochastic frontier 
(exponential) 

Stochastic frontier 
(half-normal) 

Hildebrand-Liu OLS 

Aigner-Chu OLS 

Aigner-Chu LP 

Aigner-Chu QPl 

Aigner-Chu QP2 

0.9146 0.9168 0.04164 
(2.04) (7.31) (2.19) 

0.9601 0.9144 0.04125 
(2.20) (7.71) (2.29) 

0.9600 0.9105 0.04208 
(2.06) (7.68) (2.34) 

0.988 0.04208 

0.908 0.0333 

0.873 0.0031 

1.071 0.0269 

0.822 0.0219 

likelihood technique of section 4 (with the one-sided disturbance assumed to be 
half-normal and exponential, respectively). The numbers in parentheses under 
the OLS estimates are t ratios. The numbers in parentheses under the stochastic 
frontier maximum-likelihood estimates are ‘asymptotic t ratios’. That is, they 
are the ratio of the coefficient estimate to the square root of the appropriate 
diagonal element of the inverse of the information matrix. These are asymp- 
totically distributed as N(0, 1) under the null hypothesis that the associated 
coefficient is zero. 
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The remaining entries are taken from Aigner and Chu (1968, p. 836). They 
consist of the OLS results of Hildebrand and Liu and of Aigner and Chu, the 
linear programming results of Aigner and Chu, and the results of two variants 
of the quadratic programming technique of Aigner and Chu. We did not succeed 
in duplicating exactly the OLS results of either Hildebrand and Liu or Aigner 
and Chu, although the discrepancies are not large. 

What is most interesting is the extremely close agreement between our OLS 
estimates and both sets of stochastic frontier maximum-likelihood estimates. 
In particular, the stochastic frontier estimates are much closer to the OLS 
estimates than they are to Aigner and Chu’s programming results. 

The reason for this is clear if we look at the estimates of the parameters of the 
distributions of the disturbances. lo In the OLS case the estimated variance of 
the disturbances is 0.077640. In the half-normal case we have 

A2 
0,‘ = 0.000686, ‘asymptotic t ratio’ = 0.05, 
A2 
C” = 0.0692, ‘asymptotic t ratio’ = 3.64; 

and in the exponential case we have 

f$ = 0.0180, ‘asymptotic t ratio’ = 0.16, 
A2 
0” = 0.0691, ‘asymptotic t ratio’ = 3.68. 

In both cases the symmetric component of the disturbance effectively swamps 
the one-sided component. In the exponential case the mean of the one-sided 
component is 0.018 and its variance is 0.000325, which is only 0.468 percent 
of the total disturbance variance of 0.000325+0.0691 = 0.0694. Similarly, 
in the half-normal case, the mean of the one-sided component is 0.021 and its 
variance is 0.000251, which is only 0.361 percent of the total disturbance vari- 
ance. Therefore, the picture that emerges is one of substantial variation in the 
frontier across states, but relatively little variation of observed output beneath 
the frontier. 

As a final note, the maximized value of the logarithm of the likelihood func- 
tion is -2.372 in the exponential case, and -2.368 in the half-normal case, 
indicating a marginally better fit by the half-normal distribution. 

Our second example uses U.S. agricultural data for six years (1960-65) and 
the 48 contiguous states. The data set is the one used by Timmer (1971), exclud- 
ing the years 1966 and 1967. The function to be estimated is 

Y = p,,+pl Labor+/?, Capital+p, Land+P, Fertilizer 

+/Is Livestock+P, Seed + (v + u), 

(21) 

“In the empirical examples used here, the likelihood function was explicitly parameterized 
in terms of the parameters of the two error component distributions, oU2 and uV2, rather than 
in the (equivalent) way discussed in section 4. 
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where Y is gross agricultural output and the remaining variables are (more or 
less) self-explanatory; see Timmer (1971) for details. All variables are in loga- 
rithms, and are on a per-farm basis. 

Various sets of parameter estimates are given in table 4. The first two sets of 
estimates are our OLS and stochastic frontier results, based on an exponential 
distribution for --u. The other four sets are taken from Timmer (1971, p. 785). 
They represent, respectively, his OLS results, his linear programming results, 
and his linear programming results using 98 percent and 97 percent of the 
observations. 

Table 4 

Estimates of eq. (21) by various methods. 

Method 

OLS 1.8072 0.1149 0.2976 0.06061 0.1411 0.2581 0.1956 
(3.67) (8.85) (4.81) (12.40) (16.72) (6.44) 

Stochastic frontier 1.8143 0.1148 0.2776 0.06061 0.1411 0.2581 0.1956 
(exponential) (42.9) (3.71) (8.96) (4.87) (12.56) (16.93) (6.52) 

Timmer OLS 1.7350 0.1919 0.3726 0.0458 0.1484 0.2510 0.1579 
(53.8) (6.7) (11.7) (4.2) (16.0) (19.5) (5.4) 

Timmer LPI 0 0 1.6693 0.6015 0.4887 - 0.1334 0.2347 0.1043 

Timmer LPg 8 1.8578 0.3287 0.3689 0.0298 0.1428 0.2045 0.2243 

Timmer LPg7 1.8828 0.2679 0.4842 0.0099 0.1693 0.1885 0.1712 

Our OLS results are probably as close as can be expected to Timmer’s OLS 
results, given that we are missing 96 of his observations. Our stochastic frontier 
estimates approximate the OLS estimates, as in the previous example. They are 
also reasonably close to Timmer’s OLS, LP,, and LP,, estimates. It would 
appear that the linear programming (LP,,,e) estimates are the only ones very 
unlike the others. 

Our estimates of the parameters of the distributions of the disturbances are 

f$ = 0.00710, ‘asymptotic t ratio’ = 0.30, 

a; = 0.01005, ‘asymptotic t ratio’ = 11.2 

Once again the symmetric component of the disturbance completely swamps 
the exponential component; the variance of the exponential component 
(0.0000504) is only about one half of one percent of the total variance. 

7. Conclusions 

We have described a linear model with an error specification that is con- 
sidered appropriate for the estimation of an industry production function using 
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cross-section data. The specification does not prejudge the placement of the 
function, as if an ‘average’ function or a ‘frontier’ function were to be fitted to 
the data. Indeed, the interesting feature of the framework discussed herein is 
precisely that placement of the function is estimated along with other model 
parameters. This is also the contribution of the model presented in Aigner, 
Amemiya, and Poirier (1976), but that model is not capable of direct interpreta- 
tion in terms of the sources of random error that may cause firms with identical 
input vectors to differ. 

Whether, from an applications viewpoint, one model dominates the other is 
as yet not clear, since the empirical evidence from both studies is limited. What 
we find in the Monte Carlo results of the present paper is not particularly 
encouraging: In the presence of an intercept, the ‘placement’ parameter, A, 
and the intercept itself are apparently difficult to estimate by the ML technique 
even when sample size is as large as 100. Further small-sample studies would 
help in forming a more definite opinion about the relative merits of the alter- 
native specifications for t?ie placement and estimation of the industry production 
studied by Aigner, Amemiya, and Poirier, and in the present paper. Additional 
research is also required to evaluate the performance of the ‘moment’ estimators 
based on least-squares residuals mentioned at the end of section 4. 

Tests of our model on two real-world data sets indicated relatively small 
one-sided components of the disturbance. This in turn suggests high levels of 
efficiency relative to a stochastic frontier. Whether this finding, based on state- 
wide per-establishment aggregates, would continue to hold for the individual 
establishments themselves is yet another interesting question to be answered. 

Appendix 

Below are reproduced the second-order derivatives of In _fZ with respect to 
fi, 2, and o2 for use in computational algorithms and as a basis for estimating 
asymptotic standard errors, 

a’ln2 1 iv 
(32 = 7 i=l (1_32 (~i-fi’xi)2 

c fl? 

I 

-f:+f (l-f;T)(yj-B’Xi) 
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