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Abstract 

Frontier production functions are important for the prediction of technical efficiencies of individual firms in an 
industry. A stochastic frontier production function model for panel data is presented, for which the firm effects 
are an exponential function of time. The best predictor for the technical efficiency of an individual firm at a 
particular time period is presented for this time-varying model. An empirical example is presented using agricultural 
data for paddy farmers in a village in India. 

1. Introduction 

The stochastic frontier production function, which was independently proposed by Aigner, 
Lovell, and Schmidt [1977] and Meeusen and van den Broeck [1977], has been a significant 
contribution to the econometric modeling of production and the estimation of technical 
efficiency of firms. The stochastic frontier involved two random components, one associated 
with the presence of technical inefficiency and the other being a traditional random error. 
Prior to the introduction of this model, Aigner and Chu [1968], Timmer [1971] , Afriat [1972], 
Richmond [1974], and Schmidt [1976] considered the estimation of deterministic frontier 
models whose values were defined to be greater than or equal to observed values of pro- 
duction for different levels of inputs in the production process. 

Applications of frontier functions have involved both cross-sectional and panel data. These 
studies have made a number of distributional assumptions for the random variables involved 
and have considered various estimators for the parameters of these models. Survey papers 
on frontier functions have been presented by Fdrsund, Lovell, and Schmidt [1980], Schmidt 
[1986], Bauer [1990] and Battese [1992], the latter article giving particular attention to appli- 
cations in agricultural economics. Beck [1991] and Ley [1990] have compiled extensive bib- 
liographies on empirical applications of frontier functions and efficiency analysis. 

The concept of the technical efficiency of firms has been pivotal for the development 
and application of econometric models of frontier functions. Although technical efficiency 
may be defined in different ways (see, e.g., Fare, Grosskopf, and Love11 [1985]), we consider 

YThis article is a revision of the Invited Paper presented by the senior author in the “Productivity and Efficiency 
Analysis” sessions at the ORSA/TIMS 30th Joint National Meeting, Philadelphia, Pennsylvania, 29-31 October 
1990. We have appreciated comments from Martin Beck, Phil Dawson, Knox Love11 and three anonymous referees. 
We gratefully acknowledge the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) for 
making available to us the data obtained from the Village Level Studies in India. 

149 



154 G.E. BATTESE AND T.J. COELLI 

the definition of the technical efficiency of a given firm (at a given time period) as the 
ratio of its mean production (conditional on its levels of factor inputs and firm effects) to 
the corresponding mean production if the firm utilized its levels of inputs most efficiently, 
(see Battese and Coelli [1988]). We do not consider allocative efficiency of firms in this 
article. Allocative and economic efficiencies have been investigated in a number of papers, 
including Schmidt and Lovell [1979, 19801, Kalirajan [1985], Kumbhakar [1988], Kumbhakar, 
Biswas, and Bailey [1989] and Bailey, et al. [I989]. We define a stochastic frontier production 
function model for panel data, in which technical efficiencies of firms may vary over time. 

2. Time-varying model for unbalanced panel data 

We consider a stochastic frontier production function with a simple exponential specifica- 
tion of time-varying firm effects which incorporates unbalanced panel data associated with 
observations on a sample of N firms over T time periods. The model is defined by 

Yit = f(xit; P)eXP(Vit - UiJ (1) 

and 

Uit = Tit Ui = {exp[-v(t - ‘UI}Ui, t E 9(i); i = 1, 2, . . ., N; (2) 

where Yit represents the production for the ith firm at the tth period of observation; 
f(x,; p) is a suitable function of a vector, xit, of factor inputs (and firm-specific variables), 

associated with the production of the ith firm in the tth period of observation, and a 
vector, /3, of unknown parameters; 

the Vit’s are assumed to be independent and identically distributed N(0, &) random errors; 
the Ui’s are assumed to be independent and identically distributed non-negative truncations 

of the N(p, 2) distribution; 
n is an unknown scalar parameter; 
and 9(i) represents the set of Ti time periods among the T periods involved for which 

observations for the ith firm are obtained.’ 

This model is such that the non-negative firm effects, Uit, decrease, remain constant or 
increase as t increases, if n > 0, r] = 0 or 7 < 0, respectively. The case in which q is 
positive is likely to be appropriate when firms tend to improve their level of technical efti- 
ciency over time. Further, if the Tth time period is observed for the i th firm then Uir = 
Ui, i = 1, 2, . . . , N. Thus the parameters, p and 2, define the statistical properties of 
the firm effects associated with the last period for which observations are obtained. The 
model assumed for the firm effects, Ui, was originally proposed by Stevenson [1980] and 
is a generalization of the half-normal distribution which has been frequently applied in 
empirical studies. 

The exponential specification of the behavior of the firm effects over time (equation (2)) 
is a rigid parameterization in that technical efficiency must either increase at a decreasing 
rate (q > 0), decrease at an increasing rate (q < 0) or remain constant (11 = 0). In order 

150 



FRONTIER PRODUCTION FUNCTIONS, TECHNICAL EFFICIENCY AND PANEL DATA 155 

to permmit greater flexibility in the nature of technical efficiency, a two-parameter specifica- 
tion would be required. An alternative two-parameter specification, which is being investi- 
gated, is defined by 

Vit = 1 + Vl(t - T) + tJ2(t - V2, 

where nr and n2 are unknown parameters. This model permits firm effects to be convex 
or concave, but the time-invariant model is the special case in which ql = r12 = 0. 

Alternative time-varying models for firm effects have been proposed by Cornwell, Schmidt, 
and Sickles [1990] and Kumbhakar [1990]. Cornwell, Schmidt, and Sickles [1990] assumed 
that the firm effects were a quadratic function of time, in which the coefficients varied 
over firms according to the specifications of a multivariate distribution. Kumbhakar [1990] 
assumed that the non-negative firm effects, Uir, were the product of deterministic function 
of time, y(t), and non-negative time-invariant firm effects, Ui. The time function, y(t), 
was assumed to be defined by, 

y(t) = [l + exp(bt + ct2)]-I, t = 1, 2, . . . , T. 

This model has values for y(t) between zero and one and could be monotone decreasing 
(or increasing) or convex (or concave) depending on the values of the parameters, b and c. 
Kumbhakar [1990] noted that, if b + ct was negative (or positive), the simpler function, 
-y(t) = (1 + ebt)-‘, may be appropriate? The more general model of Kumbhakar [1990] 
would be considerably more difficult to estimate than that of the simpler exponential model 
of equation (2). 

Given the model (l)-(2), it can be shown [see the Appendix] that the minimum-mean- 
squared-error predictor of the technical efficiency of the ith firm at the tth time period, 
TEit = exp(-UiJ is 

E[exp( -UiJ (Ei] = 
1 - +[r]itU,T - (/Lr/0:)] 1 

1 - *<-/L;/u;:) 
-?jit/$ + 2 T7gUT2 1 (3) 

where Ei represents the (Ti x 1) vector of Eit’S associated with the time periods observed 
for the ith firm, where E, E Vi, - Uit; 

(4) 

where vi represents the (Ti X 1) vector of Vit’S associated with the time periods observed 
for the ith firm; and 

‘PC) represents the distribution function for the standard normal random variable. 
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If the stochastic frontier production function (1) is of Cobb-Douglas or transcendental 
logarithmic type, then Ei, is a linear function of the vector, 0. 

The result of equation (3) yields the special cases given in the literature. Although Jondrow, 
Lovell, Materov, and Schmidt [1982] only derived E[UilVi - Ui], the more appropriate 
result for cross-sectional data, E[exp(-Ui)lVi - Ui], is obtained from equations (3)-(5) 
by substituting qit = 1 = ni and p = 0. The special cases given in Battese and Coelli 
[1988] and Battese, Coelli, and Colby 119891 are obtained by substituting v/vi = T and 
q[qi = Ti, respectively, where nit = 1 (i.e., n = 0) in both cases. 

Kumbhakar [1990] derived the conditional expectation of Ui, given the value of the ran- 
dom variables, Eit 3 Vi, - y(t)Ui, t = 1, 2, . . . , T, under the assumptions that the Ui’S 

had half-normal distribution. Kumbhakar’s [1990] model also accounted for the presence 
of allocative inefficiency, but gave no empirical application. 

The mean technical efficiency of firms at the tth time period, 

TE, E E[expC-~tWl, where qt = exp[-q(t - T)], 

obtained by straightforward integration with the density function of Ui, is 

TEr = 

If the firm effects are time invariant, then the mean technical efficiency of firms in the 
industry is obtained from equation (6) by substitution of nt = 1. This gives the result pre- 
sented in equation (8) of Battese and Coelli [1988]. 

Operational predictors for equations (3) and (6) may be obtained by substituting the relevant 
parameters by their maximum-likelihood estimators. The maximum-likelihood estimates 
for the parameters of the model and the predictors for the technical efficiencies of firms 
can be approximated by the use of the computer program, FRONTIER, which was written 
by Tim Coelli? The likelihood function for the sample observations, given the parameteriza- 
tion of the model (l)-(2) used in FRONTIER, is presented in the Appendix. 

3. Empirical example 

Battese, Coelli, and Colby [1989] used a set of panel data on 38 farmers from an Indian 
village to estimate the parameters of a stochastic frontier production function for which 
the technical efficiencies of individual farmers were assumed to be time invariant. We con- 
sider a subset of these data for those farmers, who had access to irrigation and grew paddy, 
to estimate a stochastic frontier production frontier with time-varying firm effects, as speci- 
tied by equations (l)-(2) in Section 2 _ The data were collected by the International Crops 
Research Institute for the Semi-Arid Tropics (ICRISAT) from farmers in the village of 
Aurepalle. We consider the data for fifteen farmers who engaged in growing paddy for 
between four and ten years during the period, 1975-1976 through 1984-1985. Nine of the 
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fifteen farmers were observed for all the ten years involved. A total of 129 observations 
were used, so 21 observations were missing from the panel. 

The stochastic frontier production function for the panel data on the paddy farmers in 
Aurepalle which we estimate is defined by 

log(Yit) = PO + PI log(LandiJ + &(ILdL~dd + 03 log(Labord 

+ /34 lOg(BullOCkiJ + 0s lOg(COStSiJ + Vi, - Uit, (7) 

where the subscripts i and t refer to the ith farmer and the ,tth observation, respectively; 
Y represents the total value of output (in Rupees) from paddy and any other crops which 

might be grown; 
Lund represents the total area (in hectares) of irrigated and unirrigated land, denoted by 

ILi, and ULit, respectively; 
Labor represents the total number of hours of human labor (in male equivalent units)4 for 

family members and hired laborers; 
Bullock represents the total number of hours of bullock labor for owned or hired bullocks 

(in pairs); 
Costs represents the total value of input costs involved (fertilizer, manure, pesticides, 

machinery, etc.); and 
Vi, and Uit are the random variables whose distributional properties are defined in Sec- 

tion 2. 

A summary of the data on the different variables in the frontier production function is 
given in table 1. It is noted that about 30 percent of the total land operated by the paddy 
farmers in Aurepalle was irrigated. Thus the farmers involved were generally also engaged 
in dryland farming. The mirdmum value of irrigated land was zero because not all the farmers 
involved grew paddy (irrigated rice) in all the years involved. 

The production function, defined by equation (7), is related to the function which was 
estimated in Battese, Coelli, and Colby [1989, p. 3331, but family and hired labor are aggre- 
gated (i.e., added)? The justification for the functional form considered in Battese, Coelli, 
and Colby [1989] is based on the work of Bardhan [1973] and Deolalikar and Vijverberg 

Table 1. S ummary statistics for variables in the stochastic frontier production function for paddy farmets in Aurepalle.’ 

Variable Sample Mean 

Value of Output (Rupees) 6939 
Total Land (hectares) 6.70 
Irrigated Land (hectares) 1.99 
Human Labor (hours) 4126 
Bullock Labor (hours) 900.4 
Input Costs (Rupees) 1273 

Sample Standard 
Deviation 

4802 
4.24 
1.47 

2947 
678.2 

1131 

Minimum Value Maximum Value 

36 18094 
0.30 20.97 
0.00 7.09 

92 6205 
56 4316 

0.7 6205 

‘The data, consisting of 129 observations for each variable, collected from 15 paddy farmers in Aurepalle over 
the ten-year period, 1975-1976 to 1984-1985, were collected by the International Crops Research Institute for the 
Semi-Arid Tropics (ICRISAT) as part of its Village Level Studies (see Binswanger and Jodha [1978]). 
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[1983] with Indian data on hired and family labor and irrigated and unirrigated land. The 
production function of equation (7) is a linearized version of that which was directly estimated 
in Battese, Coelli, and Colby [198916 (see the model in Defourny, Lovell, and N’gbo [1990]). 

The original values of output and input costs used in Batese, Coelli, and Colby [1989] are 
deflated by a price index for the analyses in this article. The price index used was constructed 
using data, supplied by ICRISAT, on prices and quantities of crops grown in Aurepalle. 

The stochastic frontier model, defined by equation (7), contains six P-parameters and 
the four additional parameters associated with the distributions of the Vi,- and Ui+ndom 
variables. Maximum-likelihood estimates for these parameters were obtained by using the 
computer program, FRONTIER. The frontier function (7) is estimated for five basic models: 

Model 1.0 involves all parameters being estimated; 
Model 1.1 assumes that p = 0; 
Model 1.2 assumes that q = 0; 
Model 1.3 assumes that p = 7 = 0; and 
Model 1.4 assumes that y = p = 7 = 0. 

Model 1.0 is the stochastic frontier production function (7) in which the farm effects, 
IJir, have the time-varying structure defined in Section 2 (i.e., q is an unknown parameter 
and the Ui’s of equation (2) are non-negative truncations of the N(p, 02) distribution). 
Model 1.1 is the special case of Model 1.0 in which the Ui’s have half-normal distribution 
(i.e., p is assumed to be zero). Model 1.2 is the time-invariant model considered by Battese, 
Coelli, and Colby [1989]. Model 1.3 is the time-invariant model in which the farm effects, 
Ui, have half-normal distribution. Finally, Model 1.4 is the traditional average response 
function in which farms are assumed to be fully technically efficient (i.e., the farm effects, 
IJit, are absent from the model). 

Empirical results for these five models are presented in table 2. Tests of hypotheses in- 
volving the parameters of the distributions of the Ui,-random variables (farm effects) are 
obtained by using the generalized likelihood-ratio statistic. Several hypotheses are considered 
for different distributional assumptions and the relevant statistics are presented in table 3. 

Given the specifications of the stochastic frontier with time-varying farm effects (Model 
l.O), it is evident that the traditional average production function is not an adequate represen- 
tation of the data (i.e., the null hypothesis, Ha: y = p = 77 = 0, is rejected). Further, 
the hypotheses that time-invariant models for farm effects apply are also rejected (i.e., both 
Ha: p = q = 0 and Ho: 7 = 0 would be rejected). However, the hypothesis that the half- 
normal distribution is an adequate representation for the distribution of the farm effects 
is not rejected using these data. Given that the half-normal distribution is assumed appropri- 
ate to define the distribution of the farm effects, the hypothesis that the yearly farm effects 
are time invariant is also rejected by the data. 

On the basis of these results it is evident that the hypothesis of time-invariant technical 
efficiencies of paddy farmers in Aurepalle would be rejected. Given the specifications of 
Model 1.1 (involving the half-normal distribution), the technical efficiencies of the individual 
paddy farmers are calculated using the predictor, defined by equation (3). The values ob- 
tained, together with the estimated mean technical efficiencies (obtained using equation 
(6)) in the ten years involved, are presented in table 4. 
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Table 2. Maximum-likelihood estimates for parameters of stochastic frontier production functions for Aurepalle 
paddy farmers. 

MLE Estimates for Models 

Variable Parameter Model 1.0 Model 1.1 Model 1.2 Model 1.3 Model 1.4 

Constant PO 3.74 3.86 
(0.96) (0.94) 

log(Land) PI 0.61 
(0.23) 

0.63 
(0.20) 

IL/Land P2 0.81 
(0.43) 

1.05 
(0.33) 

log(Labor) 63 0.76 
(0.21) 

0.74 
(0.18) 

lo&Bullocks) P.4 -0.45 
(0.16) 

-0.43 
(0.11) 

log(Costs) 05 0.079 
(0.048) 

0.058 
(0.038) 

3.90 
(0.73) 

0.63 
(0.15) 

0.90 
(0.30) 

0.74 
(0.15) 

-0.44 
(0.11) 

0.052 
(0.042) 

3.87 
(0.68) 

0.63 
(0.15) 

0.89 
(0.29) 

0.74 
(0.14) 

-0.44 
(0.11) 

0.052 
(0.042) 

3.71 
(0.66) 

0.62 
(0.15) 

0.80 
(0.27) 

0.74 
(0.14) 

-0.43 
(0.12) 

0.053 
(0.043) 

c+= a: + a2 0.129 
(0.048) 

y = a%; 0.22 
(0.21) 

P -0.77 
(1.79) 

9 0.27 
(0.97) 

0.104 0.136 0.142 0.135 
(0.010) (0.040) (0.028) (0.019) 

0.056 0.11 0.14 0 
(0.012) (0.26) (0.17) 

0 -0.07 0 0 
(0.43) 

0.138 0 0 0 
(0.047) 

Log (likelihood) -40.788 -40.798 -50.408 -50.416 -50.806 

‘The estimated standard errors for the parameter estimators are presented below the corresponding estimates. 
These values are generated by the computer program, FRONTIER. 

Table 3. Tests of hypotheses for parameters of the distribution of the farm effects, Ui,. 

Assumptions Null Hypothesis Hu x*-statistic Decision 

Model 1.0 y’p’q=O 20.04 7.81 Reject Ha 

Model 1.0 JL=11=0 19.26 5.99 Reject Hc 

Model 1.0 p=o 0.02 3.84 Accept Hc 

Model 1.0 ?j=o 19.24 3.84 Reject Ho 

Model 1.1 (CL = 0) y=)1=0 20.02 5.99 Reject Hc 

Model 1.1 (cc = 0) y=o 19.24 3.84 Reject Ha 
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Table 4. Predicted technical efficiencies of paddy farmers in Aurepalle for the years 1975-1976 through 1984-1985.’ 

Farmer 
Number 75-76 76-77 77-78 78-79 79-80 SO-81 81-82 82-83 83-84 84-85 

1 .861 ,878 ,892 ,905 .916 .927 .936 ,944 .951 ,957 
2 ,841 ,859 .876 ,891 .904 .915 ,926 ,935 .943 ,950 
3 ,569 ,611 ,651 ,687 .721 .752 - - - 

4 ,549 .593 ,633 ,671 ,706 .738 ,767 .794 ,818 ,839 
5 ,711 .743 ,771 .797 ,820 .841 ,860 ,876 ,891 ,904 
6 ,798 ,821 ,842 .860 ,877 -891 .905 .916 ,926 ,935 
7 ,576 .618 ,657 ,693 ,726 -756 .784 .808 ,831 - 
8 .776 .801 .823 .862 -878 .893 .906 .917 ,927 
9 ,575 ,617 ,656 ,692 .725 .756 ,783 .808 ,830 ,850 

10 .862 ,878 .892 ,905 .917 .927 ,936 .944 ,951 ,957 
11 ,778 .803 ,825 .846 ,864 .880 ,894 ,907 .918 .928 
12 ,712 ,743 ,771 ,797 ,820 .841 ,860 ,876 ,891 .904 
13 .601 ,678 .712 ,743 .772 .798 ,821 - - 
14 ,789 ,813 .834 .853 - - - - 

15 - ,908 ,919 .929 ,938 

Mean ,821 ,841 ,859 .875 ,890 .903 ,915 .925 ,934 ,942 

*In years when particular farmers were not observed, no values of technical efficiencies are calculated. 

The technical efficiencies range between 0.549 and 0.862 in 1975-1976 and, between 0.839 
and 0.957 in 1984-1985. Because the estimate for the parameter, q, is positive (< = 0.138) 
the technical efficiencies increase over time, according to the assumed exponential model, 
defined by equation (2). These predicted technical efficiencies of the 15 paddy farmers 
are graphed against year of observation in figure 1. These data indicate that there exist 
considerable variation in the efficiencies of the paddy farmers, particularly at the beginning 
of the sample period. Given the assumption that the farm effects change exponentially over 
time, it is expected that the predicted efficiencies converge over a period of generally in- 
creasing levels of technical efficiency. 

The above results are, however, based on the stochastic frontier production function (7), 
which assumes that the parameters are time invariant. In particular, the presence of technical 
progress is not accounted for in the model. Given that year of observation is included as 
an additional explanatory variable, then the estimated stochastic frontier production func- 
tion is 

log Y = 2.80 + 0.50 log(Land) + 0.53 (IL/Land) + 0..91 log(Labor) 
(1.75) (0.37) (0.47) (0.32) 

- 0.489 log(Bullocks) + 0.051 log(Costs) + 0.050 Year 
(0.098) (0.040) (0.019) 

where 6: = 0.130, T = 0.21, ji = -0.69, r^ = 0.11 
(0.084) (0.44) (0.98) (0.65) 

(8) 

and log (likelihood) = - 38.504. 
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Figure 1. Predicted technical efficiencies. 

Generalized likelihood-ratio tests of the hypotheses that the parameters, CL, r] and y, are 
zero (individually or jointly) yield insignificant results. Thus the inclusion of the year of 
observation in the model (i.e., Hicksian neutral technological change), leads not only to 
the conclusion that technical efficiency of the paddy farmers is time invariant, but that the 
stochastic frontier production function is not significantly different from the traditional 
average response model. This response function is estimated by 
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log Y = 2.73 + 0.51 log(Land) + 0.50 (IL/Land) + 0.91 log(Labor) 
(0.63) (0.13) (0.26) (0.14) 

- 0.48 log(Bullocks) + 0.048 log(Costs) + 0.054 Year 
(0.11) (0.040) (0.011) 

(9) 

where GG = 0.113 and log (likelihood) = -38.719. 
The estimated response function in equation (9) is such that the returns-to-scale parameter 

is estimated by 0.990 which is not significantly different from one, because the estimated 
standard error of the estimator is 0.065. Thus, the hypothesis of constant returns to scale 
for the paddy farmers would not be rejected using these data. 

The coefficient of the ratio of irrigated land to total land operated, IL/Land, is significantly 
different from zero. Using the estimates for the elasticity of land and the coefficient of 
the land ratio, one hectare of irrigated land is estimated to be equivalent to about 1.98 hec- 
tares of unirrigated land for Aurepalle farmers who grow paddy and other crops? This 
compares with 3.50 hectares obtained by Battese, Coelli, and Colby [1989] using data on 
all 38 farmers in Aurepalle. The smaller value obtained using only data on paddy farmers 
is probably due to the smaller number of unirrigated hectares in this study than in the earlier 
study involving all farmers in the village. 

The estimated elasticity for bullock labor on paddy farms is negative. This result was 
also observed in Saini [1979] and Battese, Coelli, and Colby [1989]. A plausible argument 
for this result is that paddy farmers may use bullocks more in years of poor production 
(associated with low rainfall) for the purpose of weed control, levy bank maintenance, etc., 
which are difficult to conduct in years of higher rainfall and higher output. Hence, the 
bullock-labor variable may be acting as an inverse proxy for rainfall. 

The coefficient, 0.054, of the variable, year of observation, in the estimated response func- 
tion, given by equation (9), implies that value of output (in real terms) is estimated to have 
increased by about 5.4 percent over the ten-year period for the paddy farmers in Aurepalle. 

4. Conclusions 

The empirical application of the stochastic frontier production function model with time- 
varying firm effects (l)-(2), in the analysis of data from paddy farmers in an Indian village, 
revealed that the technical efficiencies of the farmers were not time invariant when year 
of observation was excluded from the stochastic frontier. However, the inclusion of year 
of observation in the frontier model led to the finding that the corresponding technical 
efficiencies were time invariant. In addition, the stochastic frontier was not significantly 
different from the traditional average response function. This implies that, given the state 
of technology among paddy farmers in the Indian village involved, technical inefficiency 
is not an issue of significance provided technical change is accounted for in the empirical 
analysis. However, in other empirical applications of the time-varying model which we 
have conducted (see Battese and Tessema [1992]), the inclusion of time-varying parameters 
in the stochastic frontier has not necessarily resulted in time-invariant technical efficiencies 
or the conclusion that technical inefficiency does not exist. 
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The stochastic frontier production function estimated in Section 3 did not involve farmer- 
specific variables. To the extent that farmer- (and km-) specific variables influence technical 
efficiencies, the empirical analysis presented in Section 3 does not appropriately predict 
technical efficiencies. More detailed modeling of the variables influencing production and 
the statistical distribution of the random variables involved will lead to improved analysis 
of production and better policy decisions concerning productive activity. We are confident 
that further theoretical developments in stochastic frontier modeling and the prediction 
of technical efficiencies of firms will assist such practical decision making. 

Appendix 

Consider the frontier production functions 

Yit = XitP + Ei, (A. 1) 

where 

Ei, = Vi, - nitUi (-4.2) 

qit = e-V(‘-T) t E 9(i); i = 1, 2, . . . , N. (A.3) 

It is assumed that the Vit’s are iid N(0, 2”) random variables, independent of the Ui’s, 
which are assumed to be non-negative truncations of the N(p, a2) distribution. 

The density function for Ui is 

ev 
[ 

- ; (q - p)2/a2 1 fdQ = (25p@[l - #)(-p/@)] ’ Ui 2 0, (A.41 

where at) represents the distribution function for the standard normal random variable. 
It can be shown that the mean and variance of Ui are9 

E(UJ = /L + a(~(-~/~)/[1 - +(-/.~/a)]) 64.5) 

and 

Var(Ui) = 2 1 1 H--d4 - 1 - @(--/L/G) [ CL+ 4(-d@) c 1 - @(-p/u) I> ’ G4.6) 

where +c) represents the density function for the standard normal distribution. 
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From the joint density function for Ui and Vi, where Vi represents the (Ti X 1) vector 
of the Vit’s associated with the Ti observations for the ith firm, it follows readily that the 
joint density function for Ui and Ei, where Ei is the (Ti X 1) vector of the values of 
Ei, E Vi, - Tit Ui, is 

fUi,E,(Ui, %> = 
exp - i {[(Ui - p>2/U21 + [(ei + QUi)‘(ei + 77iuiY~~lI 

(2a)(Ti+‘)‘2a ~$[l - ‘P( --/JfJ)] (A.7) 

where ei is a possible value for the random vector, Ei. 
The density function for Ei, obtained by integrating fui,+i (Ui, eJ with respect to the 

range for Ui, namely Ui 2 0, is 

fEi(ei) = 

[l - a( -$/a:)] exp - i {(e,le,/c+) + (~Cc/u)~ - ($/a;)*} 

(27r)Ti’2u~-‘)[2v + 9il?li$]112[1 - *(-/L/U)] 
(A-8) 

where 

and 

(A.9) 

(A. 10) 

From the above results, it follows that the conditional density function of Ui, given that 
the random vector, Ei, has value, q, is 

exp - i [(h - $)/$I’ 

fUi/Ei=ei(Ui) = (2a)~/2ar[l _ ~(--p~/u~)~ 7 Ui L O* (A.ll) 

This is the density function of the positive truncation of the N&, a”) distribution. 
Since the conditional expectation of exp(-VitUi), given Ei = q, is defined by 

E{exp(-vitUi/Ei = Q} = Jam exp(-ritUi>fuilEi=,i(Ui)dUi, 

the result of equation (3) of the text of this article is obtained by straightforward integral 
calculus. 

If the frontier production function (A.l)-(A.3) is appropriate for production, expressed 
in the original units of output, then the prediction of the technical efficiency of the ith 
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firm at the time of the tth observation, TEi, = 1 - (qitUi/Xi,fi), requires the conditional 
expectation of Ui, given Ei = ei. This can be shown to be 

E(UiIEi = ei) = /$ + a”(~(-~~/~~)/[1 - @(-/$/UT)]} (A. 12) 

where pr and D;” are defined by equations (A.9) and (A.lO), respectively. 
The density function for Yi, the (Ti X 1) random vector of Yir’s for the ith firm, is ob- 

tained from (A.8) by substituting (yi - Xi@ for ei, where xi is the (Ti X k) matrix of xit’s 
for the ith firm, where k is the dimension of the vector, 0. The logarithm of the likelihood 
function for the sample observations, y = (y[, yi, . . , yl;)‘, is thus 

L*(k)*; Y) = - k Zn(2r) - i 5 (Ti - l)!n(o$> - i 5 en(o$ + nisi2) 
1=1 3=1 

- N Pn[l - @(-p/a)] +k 4?n[l - @(-~~/a~)] 
i=l 

where 19* = (/3 ‘, &, 2, ~1, 7): 

(A. 13) 

Using the reparameterization of the model, suggested by Bat&e and Corm [1977], where 
u$ + 2 = 4 and y = gi<, the logarithm of the likelihood function is expressed by 

L*(0; y) = - i (en(2a) + en(<)> - Jj $ (Ti - l)en(l - 7) 
1=1 

- i 5 en[l + (q/vi - 1)-y] - Nen[l - a( -z)] - k Nz’ 
1=1 

+g !n[l - a(-~:)] + 5 $ z:” 
i=l I=1 

- 5 $ (Yi - xiP)‘(Yi - xiP)l(l - +f)a2,3 
1=1 

(A. 14) 

where B = (P’, u$, y, p, 7) ‘, z = p/(-&)‘* and 

A1 - Y) - Yrl:(Yi - xiP) 
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The partial derivations of the loglikelihood function (A.14) with respect to the parameters, 

P, 4, Y, F and rl, are given by 

$ = 5 X'i(yi - Xi@[(l - ~)O$-l 
i=l 

+2 [ cb(-z3 
i=l l - ~(-‘T) + ZT 

1 
Y Xi’rlilY(l - Y>Of$l + (Vi’% - 1hll-1’2 

aL* L -&-N 1 [ 1 “‘;;lz) + z3 1 [ z +$l 
N-z?) T&g = - 20; i=l 1 - Cj5(_z;) + z: zr 

i=l 1 
-2 (Yi - xiP)'(Yi - xiP)[(l - Y)@’ 

i=l 
i 

aL* (1 - $1 N 
ay= 2 C Vi - 1) - t $ (TilTi - 1)El + (Vhi - lhl-’ 

i=l 1=1 

N 

[ 
H-z) + 7 1 - +(-z) + z 

1 
zy -l +g +<-zr> a2? 

i=l [ 1 - qpz;) + zT 1 ay 

- k 2 (Yi - xiP>‘(Yi - xiP>[(l - Y)aSl-2 
1=1 

aL* N -=-- 
ap (Y~$Y’* [ 

1 !qlz) + z] +g [ 1 !‘;fi’,:, + zf] 
’ {r(l - ,)Cgi: T z;?ji - l)y}1’2 

aL* N -= CL rb( 4) 
a7 i=l i - q-z;) + zr 1 

y N ar+ az; 
ar 3 as 11 [l + (qhi - l)r]-’ 

1=1 

where 

x_ [Cc + Tir(Yi - xiP)1 

87 - - QS{T(l - 7111 + (Vi’% - 1h111’2 

1 [P(l - r> - YT[(Yi - xiP)l[(l - 2Y) + (T/Vi - lM2 - 3Y)l -- 
2 @s{Cr(l - ?)[I + (V/Vi - 1)Yl)3’2 
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y c (t - T)e-q(t-T) O’it - xitP) 
d2: KS(i) 

a7 - {Y(l - T>u$[1 + (rli’rli - 1h1)“2 

C/-d1 - r> - YBil(Yi - xi@1 i r’<l - T>g y 
- 

{T(l - Y)$J1 + (rlir?% - 1h113’2 

and 

h3h _ 

aq 
-2 c (t - T)e-2’d--T) if17 # 0. 

Es(i) 

Notes 

1. If the ith firm is observed in all the T time periods involved, then ‘J(i) = {1, 2, , T}. However, if the 
ith firm was continuously involved in production, but observations were only obtained at discrete intervals, 
then 9(i) would consist of a subset of the integers, 1,2, . , T, representing the periods of observations involved. 

2. It is somewhat unusual that the value of y(t) for the period before the first observation, t = 0, is 0.5. 
3. The original version of FRONTIER (see Coelli [1989]) was written to estimate the time-invariant panel data 

model presented in Battese and Coelli [19988]. It was amended to account for unbalanced panel data and applied 
in Battese, Coelli, and Colby [1989]. Recently, FRONTIER was updated to estimate the time-varying model 
defined by equations (1) and (Z), (see Coelli [1991, 19921). FRONTIER Version 2.0 is written in Fortran 77 
for use on IBM compatible PC’s, The source code and executable program are available from Tim Coelli on 
a 5.25 inch disk. 

4. Labor hours were converted to male equivalent units according to the rule that female and child hours were 
considered equivalent to 0.75 and 0.50 male hours, respectively. These ratios were obtained from ICRISAT. 

5. The hypothesis that family and hired labor were equally productive was tested and accepted in Battese, Coelli, 
and Colby [1989]. Hence only total labor hours are considered in this paper. 

6. The deterministic component of the stochastic frontier production function estimated in Battese, Coelli, and 
Colby [1989], considering only the land variable (consisting of a weighted average of unirrigated land and 
irrigated land), is defined by, 

Y = aJa,UL + (1 - a,)IL]B1. 

This model is expressed in terms of Land = UL + IL and IL/Land, as follows 

Y = a, X aft (Land)B’[l + (b, - l)(IL/Land)]sl, where b, = (1 - a,)/a,. 

By taking logarithms of both sides and considering only the first term of the infinite series expansions of the 
function involving the land ratio, IL/Land, we obtain 

log Y = constant + fl, log(Land) + flz (IL/Land), where & = fir@, - 1). 

7. The calculations involved are: fi, = 0.512, p, - p,(b, - 1) = 0.501 implies b, = 1.98, where b, is the value 
of one hectare of irrigated land in terms of unirrigated land for farmers who grow paddy and other crops. 

8. In the frontier model (2), the notation, Yi,, represented the actual production at the time of the tth observation 
for the ith firm. However, given that (2) involves a Cobb-Douglas or transcendental logarithmic model, then 
Yi, and xit in this Appendix would represent logarithms of output and input values, respectively. 
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* 9. We prefer not to use the notation, ou, for the variance of the normal distribution which is truncated (at zero) 
to obtain the distribution of the non-negative firm effects, because this variance is not the variance of U,. For 
the case of the half-normal distribution the variance of U, is +(rr - 2)/r. This fact needs to be kept in mind 
in the interpretation of empirical results for the stochastic frontier model. 
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