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Abstract

Received stochastic frontier analyses with panel data have relied on traditional
fixed and random effects models. We propose extensions that circumvent two
shortcomings of these approaches. The conventional panel data estimators assume
that technical or cost inefficiency is time invariant. Second, the fixed and random
effects estimators force any time invariant cross unit heterogeneity into the same
term that is being used to capture the inefficiency. Inefficiency measures in these
models may be picking up heterogeneity in addition to or even instead of ineffi-
ciency. A fixed effects model is extended to the stochastic frontier model using
results that specifically employ the nonlinear specification. The random effects
model is reformulated as a special case of the random parameters model. The
techniques are illustrated in applications to the U.S. banking industry and a cross
country comparison of the efficiency of health care delivery.
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1. Introduction

The literature on stochastic frontier estimation of technical and cost (in)efficiency
is voluminous and growing rapidly. [See Kumbhakar and Lovell (2000) for a recent
survey.] An increasing number of these studies are based on large, high quality
panel data sets. Most of these have used long standing extensions of the stochastic
frontier model to fixed effects and random effects specifications. [See Schmidt and
Sickles (1984) and Pitt and Lee (1981), respectively, for the canonical references
and Kumbhakar and Lovell (2000) for a detailed survey.] These extensions, which
are the standard approaches, are patterned on familiar counterparts for the linear
regression model. This paper presents modifications of these models that overcome
two shared shortcomings. Both models assume that the technical (or cost) inefficiency
is time invariant. This is likely to be a questionable assumption in a long panel. Our
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application to the banking industry, which is changing rapidly, spans 5 years. Second,
the treatment of the ‘effect’ in these models as the inefficiency per se neglects the possi-
bility of other time invariant, unmeasured heterogeneity that is unrelated to inefficiency.
To the extent that any such heterogeneity is present, it will show up blended with, or, at
worst, masquerading as the inefficiency that the analyst seeks to measure. This consid-
eration was motivated by a study of health care delivery [Greene (2003a, 2000b)] based
on a world panel of aggregate data from 140 countries in which the cross unit latent
heterogeneity would almost certainly be large or even dominant. We will note below
several proposals to incorporate time variation in the inefficiency component of the
model. Kumbhakar and Lovell (2000, 115), citing Heshmati and Kumbhakar (1994)
and Kumbhakar and Heshmati (1995) note that a problem with some approaches is
that time invariant aspects of inefficiency will be treated as if they were heterogene-
ity. This is precisely the opposite of the point made above, and highlights the utility of
reconsidering the issue.

The paper proceeds as follows: Section 2 will present the general formulations of
the fixed and random effects models and lay out the proposed modifications. The
general forms of both of these treatments are taken from existing literatures, though
our extensions to the stochastic frontier model are new. Section 3 presents an analy-
sis of the fixed effects estimator. There are two generic fixed effects modeling issues
considered here. The first is computational. The fixed effects estimator is widely
viewed as impractical in large panels because of the large number of parameters. In
fact, using an established but apparently not widely known result, fixed effects in
large panels are quite practical. We will demonstrate in a panel data set with 500
banks as observations. The second question is the incidental parameters problem.
[See Neyman and Scott (1948) and Lancaster (2000).] This is a collection of issues
that is generally viewed as including a persistent bias of the fixed effects estimator
in ‘short’ panels. Existing results that form the basis of this view are all based on
binary choice models and, it appears, are not useful for understanding the behavior
of the fixed effects stochastic frontier model. Section 4 presents results for a random
effects estimator. This is a straightforward extension of the hierarchical, or random
parameters model. Once again, this is a model that has seen use elsewhere, but has
not been applied in the stochastic frontier literature. The application to the banking
industry is continued to illustrate. Its relationship to the existing results is shown as
well. Some conclusions and directions for further work are suggested in Section 5.

2. Effects Models for Stochastic Frontiers

The stochastic frontier model is written

yit =f (xit , zi )+vit −Suit =β ′xit +µ′zi +vit −Suit , i =1, . . . ,N;
t =1, . . . , T , (2.1)

vit ∼ N[0, σ 2
v ], (2.2)

uit =|Uit | where Uit ∼ N[0, σ 2
u ], (2.3)
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where the sign of the inefficiency term, S, depends on whether the frontier
describes production or profit (+1) or cost (−1). The assumption of fixed T is
purely for convenience; T may vary by group with no change in any results. We
do assume throughout that asymptotics are only with respect to N ; T (or Ti) is
viewed as fixed. The time varying part, β ′xit , contains the terms in the produc-
tion or cost function which are functions of input quantities or outputs and input
prices, and possibly functions of a time trend to account for technical change. The
time invariant component, µ′zi , represents observable heterogeneity not related to
the production structure, but which captures firm or unit specific effects. Cultural
differences or different forms of government in the health care application men-
tioned in the introduction might be examples. [See Greene (2003a, 2000b).] Heter-
ogeneity in the mean of Uit and/or heteroscedasticity in either vit or uit or both
have also been considered, but extend beyond the scope of this analysis.

Interest usually centers on measures of firm efficiency or inefficiency. Within the
framework of the normal-half normal stochastic frontier model, Jondrow et al.
(1982) (JLMS) conditional estimator of uit is often used for estimation of uit ;

ûit =E[uit |εit ]= σλ

1+λ2

[
φ(ait )

1−�(ait )
−ait

]
, (2.4)

where σ = [σ 2
v +σ 2

u ]1/2, λ=σu/σv, ait =Sεitλ/σ,φ(ait ) is the standard normal den-
sity evaluated at ait and �(ait ) is the standard normal CDF evaluated at ait .
(Authors sometimes study the efficiency, exp(−uit ), instead.)

Save for the explicit recognition of the unit specific heterogeneity, µ′zi , the
foregoing does not embody any of the formalities of the received panel data treat-
ments. Kumbhakar and Lovell (2000) and Kim and Schmidt (2000) present con-
venient summaries of these. Kim and Schmidt suggest a semiparametric treatment
of inefficiency in this model by recasting it as a fixed effects formulation,

yit =α +β ′xit −Sui +vit

=αi +β ′xit +vit , (2.5)

where αi = α − Sui . Any latent heterogeneity is either absent or contained in the
production function (or absorbed in αi , a point to which we shall return later).
Without a distributional assumption, but allowing for correlation between αi and
xit , the model can be analyzed as a fixed effects linear regression as suggested by
Schmidt and Sickles (1984). The slope parameters can be consistently estimated by
the within groups (dummy variables) least squares estimator. The unit specific con-
stants are estimated by the mean within group deviation of yit from b′xit . Obser-
vations are then compared not to an absolute yardstick of zero, but to each other.
Schmidt et al. proposed the relative inefficiency estimator

u∗
i =max(ai)−ai for the production frontier

or u∗
i =ai −min(ai) for a cost frontier. (2.6)

Cornwell et al. (1994) and Kumbhakar (1990) addressed the issue of time
invariance noted above. Their proposal, was to replace the constant αi in (2.5) with



10 GREENE

a quadratic, αi0 + αi1t + αi2t
2. Lee and Schmidt (1993) proposed a similar mod-

ification, αit = αiθt . Each of these allows an impact of technical change as well,
though it will remain difficult to disentangle any time variation in efficiency from
technical change.

The fixed effects approach is distribution free, which is a desirable characteris-
tic, and it allows for correlation between effects and the time varying regressors.
However, this robustness is obtained at the cost of losing the underlying identity
of ui . Efficiency estimation in this model is only with respect to the ‘best’ firm in
the sample. The random effects approach, in contrast, maintains the original dis-
tributional assumption

yit =β ′xit +vit −Sui, (2.7)

where vit and the time invariant ui satisfy the original stochastic specification of
the model. Maximum likelihood estimation of the model is described by Pitt and
Lee’s (1981). The corresponding expression for estimating uit is obtained by replac-
ing ait with ai = ST ε̄iλ/σ where σ 2 = σ 2

v + T σ 2
u . Once again, the time invariance

issue has attracted attention. Lee and Schmidt (1993) suggested that the ineffi-
ciency be parameterized using uit = δ(t)ui where δ(t)=∑

t δt dt and dt is a dummy
variable for period t. (One of the coefficients is normalized at 1.0.) Other for-
mulations with similar structures were suggested by Kumbhakar (1990), δ(t) =
[1 + exp(δ1t + δ2t

2)]−1, Battese and Coelli (1992, 1995), δ(t) = exp[−δ(t − T )] and
recently by Han et al. (2002). The Battese and Coelli formulation is frequently
used in recent applications.

In the framework of the effects models above, the fixed and random effects
approaches each have virtues and shortcomings. The fixed effects estimator is dis-
tribution free, requiring only the statement of the conditional mean. However, it
achieves this level of generality at the cost of obscuring the individual identity of
the estimated inefficiency. The ‘effects’ can only be estimated relative to the ‘best.’
Time invariant effects in the model are also treated ambiguously in this frame-
work. The random effects model has a tighter parameterization which allows direct
individual specific estimates of the inefficiency term in the model. However, the
random effects model rests on the strong assumptions that the effects are time
invariant and uncorrelated with the variables included in the model. The latter is
often an unreasonable assumption, and it more likely than usual to be so in the
stochastic frontier model, particularly when any of the production variables relate
to capital or its cost. [In Greene (2003a, 2000b), this is partly remedied by allow-
ing the mean of uit to be an explicit function of several covariates that also appear
elsewhere in the model.]

The fixed and random effects models share two shortcomings. First, each
assumes that the inefficiency is time invariant. If the time series is long, this is
likely to be problematic. The literature contains several attempts to relax this
assumption. The models of Lee and Schmidt (1993) and Kumbhakar (1990) are
examples. Each of these relaxes the assumption of time invariant inefficiency, but
retains a rigid structure. In general, there is no reason to expect the firm specific
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deviations to be time invariant or, as in the models above, all to obey the same
trajectory. A second problem is equally likely to influence estimation of uit . If
there is any latent cross firm heterogeneity in the data that is not related to ineffi-
ciency, it is forced into the firm specific term ui or δ(t)ui . This is a potentially
large impact, as we find in the first application below.

In the sections to follow, we will reformulate the stochastic frontier specifically
to explore these aspects. Section 3 will treat the stochastic frontier model in a ‘true’
(our term) fixed effects formulation,

yit =αi +β ′xit +vit −Suit ,

where αi is the group specific constant. This form retains the distributional
assumptions of the stochastic frontier model, allows for freely time varying
inefficiency, and allows the heterogeneity term to be correlated with the included
variables. Within groups least squares estimation of this model still produces con-
sistent estimates of β, but loses the important information in the model about uit .
We consider maximum likelihood estimation instead. An alternative specification
discussed in Section 4 is a ‘true’ random effects form,

yit = (α +wi)+β ′xit −Suit +vit , (2.8)

which is a stochastic frontier model with a random (across firms) constant
term. Once again, this retains the essential characteristics of the stochastic fron-
tier model while relaxing the two problematic assumptions discussed earlier.
This model also has a predecessor in the received literature. The model of
Kumbhakar and Hjalmarsson (1993) is essentially that in (2.8), however, their
interpretation and estimation method differ substantially from that suggested
below. Each of our formulations reinterprets the time invariant term as firm spe-
cific heterogeneity, rather than as the inefficiency. Whether it is reasonable to shift
all the invariant content of uit into a heterogeneity term is a question that we will
return to below and in the conclusions.

3. Fixed Effects Models

Superficially, the fixed effects model is a trivial extension of the basic stochastic
frontier model. In principle, one can simply replace the overall constant term with
a complete set of firm dummy variables, and estimate it by the now conventional
means. Given that many applications have been based on quite moderate sample
sizes – for examples the three examined by Kim and Schmidt have N = 171, 10 and
22 respectively – it is surprising that this approach has not been used much here-
tofore.1 Though perhaps near the capacity limit for most programs, even Kim and
Schmidt’s largest sample is well within reach of most contemporary software. How-
ever, three issues remain. First, this form of the model is not a simple reparameter-
ization, it is a substantive reinterpretation of the model components and produces
surprisingly different results. Second, at some point, the proliferation of parameters
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in the fixed effects model will exceed the limits of any available software. For
example, our second application is based on a sample of 500 banks taken from
a larger sample of 5000. Third, irrespective of the physical problem of computa-
tion, estimators of the stochastic frontier model with fixed effects may be persis-
tently biased by dint of the incidental parameters problem when T is small, as it
is in most applications (five in both of ours). Existing evidence on how serious
the biases are in fixed effects models comes only from studies of probit and logit
binary choice models, and is thus not useful here. In this section, we will recon-
sider the computation issue, then use the health care application to illustrate the
impact on estimates of uit of using the linear regression approach instead of the
true fixed effects estimator. Finally, a Monte Carlo study based on the banking
data will be used to study the incidental parameters problem.

3.1. Computation of the Fixed Effects Estimator

The fixed effects stochastic frontier model is defined by the density,

f (yit |xi1,xi2, . . . ,xi,T i)= 2
σ

φ
(εit

σ

)
�

(−Sλεit

σ

)
, εit =yit −αi −β ′xit . (3.1)

In a few cases such as the Poisson and binary logit models, it is possible to con-
dition the possibly large number of constants out of the likelihood function, and
base estimation of β and any ancillary parameters such as σ on a conditional like-
lihood. But, in most cases, including the stochastic frontier, this is not possible. All
parameters including the constant terms must be estimated simultaneously. Though
it appears not to be widely known, in most cases, it is actually possible to estimate
simultaneously the full parameter vector even in extremely large models for which
there is no conditional likelihood which is free of the nuisance parameters.

Received treatments, with the exception of Polachek and Yoon (1996) discussed
below, have estimated the fixed effects stochastic frontier model by treating it as
a fixed effects linear regression model. Under the assumptions made so far, β can
be estimated consistently, if not fully efficiently, by the within groups least squares
estimator, b. From this departure point, the fixed effects are estimable by regres-
sion of the group specific vectors of deviations, ei , on either a simple constant
term in the time invariant case or on a constant, time and its square for the qua-
dratic form. The firm specific inefficiency is then measured relative to the best
firm in the sample by computing deviations of the fixed effects from the largest
or smallest in the sample.

Polachek and Yoon (1994, 1996) is the only received likelihood based applica-
tion of the fixed effects stochastic frontier model in (3.1). They estimated a labor
supply model for N = 834 individuals and T = 17 periods. They constructed the
likelihood function from the exponential distribution rather than the half normal.2

The large N rendered direct estimation “impractical.” Their alternative approach
was a two step method patterned after Heckman and MaCurdy’s (1981) estimator
of a fixed effects probit model. A first step estimation by the within group (mean
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deviation) least squares regression produced a consistent estimator of β. The fixed
effects were then estimated by the within groups residuals. The second step is to
replace the true fixed effects in the log likelihood function with these estimates, âi ,
and maximize the resulting function with respect to the small number of remain-
ing model parameters, β and the variance parameters. This two step estimator does
not actually maximize the full likelihood function because the Hessian is not block
diagonal and because the estimates of the constant terms are obtained by least
squares. How close this method is likely to be as an approximation remains to be
examined. Ultimately, their two step estimates differed only slightly from the least
squares estimates. The motivation for the second step rather than stopping with
the least squares estimates was estimation of the other parameters of the frontier
function; however, the authors stopped short of directly examining inefficiency in
their sample. Their results focused on the structural parameters, particularly the
variances of the underlying inefficiency distributions.

Maximization of the full log likelihood function can, in fact, be done by ‘brute
force,’ even in the presence of possibly thousands of nuisance parameters. The
strategy, which appears not to be well known, uses some results from matrix alge-
bra suggested in Prentice and Gloeckler (1978) [who attribute it to Rao (1973)],
Chamberlain (1980, p. 227), Sueyoshi (1993) and Greene (2001, 2003a, 2000b). Let
the (K +2)×1 structural parameter vector be γ = [β ′, λ, σ ]′. (There might be other
or different ancillary parameters if the exponential distribution were used instead,
if the truncated normal rather than the half normal model were used, or if the
two level model of Polachek and Yoon were specified.) Denote the gradient and
Hessian of the log likelihood by

gγ = ∂ log L

∂γ
=

∑N

i=1

∑Ti

t=1

∂ log f (yit ,γ ,xit , αi)

∂γ
, (3.2)

gαi = ∂ log L

∂αi

=
∑Ti

t=1

∂ log f (yit ,γ ,xit , αi)

∂αi

, (3.3)

gα = [gα1, . . . ,gαN ]′,
g= [g′

γ ,g′
α]′

and

H =




Hγ γ hγ 1 hγ 2 . . . hγN

h′
γ 1 h11 0 . . . 0

h′
γ 2 0 h22 . . . 0

...
...

...
. . . 0

h′
γN 0 0 0 hNN




(3.4)

where

Hγ γ =
∑N

i=1

∑Ti

t=1

∂2 log f (yit ,γ ,xit , αi)

∂γ ∂γ ′ , (3.5)



14 GREENE

hγ i =
∑Ti

t=1

∂2 log f (yit ,γ ,xit , αi)

∂γ ∂αi

, (3.6)

hii =
∑Ti

t=1

∂2 log f (yit ,γ ,xit , αi)

∂α2
i

. (3.7)

[These functions and derivatives are detailed in various sources, including Aigner
et al. (1997).]

Denote the results at the kth iteration with subscript ‘k.’ Newton’s method for
computation of the parameters will use the iteration(

γ̂

α̂

)
k

=
(

γ̂

α̂

)
k−1

−H−1
k−1gk−1 =

(
γ̂

α̂

)
k−1

+
(

�γ

�α

)
. (3.8)

By partitioning the inverse and taking advantage of the sparse nature of the Hes-
sian, this can be reduced to a computation that involves only K × 1 vectors and
K ×K matrices;

�γ =−Hγ γ (gγ −HγαH−1
αα gα)

=−
{[

Hγ γ −
∑N

i=1

(
1

hii

)
hγ ih′

γ i

]−1 (
gγ −

∑N

i=1

gαi

hii

hγ i

)}
k−1

(3.9)

�αi =− 1
hii,k−1

(
gαi,k−1 +h′

γ i,k−1�γ

)
. (3.10)

The estimator of the asymptotic covariance matrix for the slope parameters in the
MLE is

Est.Asy.Var[γ̂ MLE ]=−
[

Hγ γ −
∑N

i=1

(
1

hii

)
hγ ih′

γ i

]−1

=−Hγ γ . (3.11)

For the separate constant terms,

Est.Asy.Cov[ai, aj ]= −1(i = j)

hii

−
(

h′
γ i

hii

)
Hγ γ

(
hγ i

hjj

)
. (3.12)

Finally,

Est.Asy.Cov[γ̂ MLE, ai ]=Est.Asy.V ar[γ̂ MLE ]×
(

hγ i

hii

)
. (3.13)

These can easily be computed with existing software and computations that are
linear in N and K. Neither update vector requires storage or inversion of a
(K +N)× (K +N) matrix; each is a function of sums of scalars and K ×1 vectors
of first derivatives and mixed second derivatives. Storage requirements for α and
�α are linear in N , not quadratic. Even for panels of tens of thousands of units,
this is well within the capacity of the current vintage of even modest desktop com-
puters.3 We have employed this technique to compute the fixed effects estimator
for our applications which involve N equal to 140 for the health care study and
500 for the banking industry data (and in other models, such as the tobit, with
over 10,000 individual effects).
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3.2. Applications

The data set used in the first application is a panel observed for 191 member
countries of the World Health Organization. For purposes of our illustration, we
have used only the groups with five complete observations, which leaves 140 coun-
tries, or 700 observations in total. The data are more fully described in the World
Health Report [WHO (2000)], Greene (2002, 2003a, 2003b), Hollingsworth and
Wildman (2002) and in numerous publications that can be obtained from the
WHO website. The output variable is COMP, a composite measure of success in
five health goals, by year, health, health distribution, responsiveness, responsiveness
in distribution, fairness in financing. There are two inputs, HEXP is health expen-
diture per capita in 1997 ppp$. EDUC is average years of schooling. [Numerous
other variables in the data set are not used. See Greene (2002).] The log of COMP
is modeled as the output of an aggregate production process for producing health
care. The aggregate frontier production function is then

LogCOMPit =αi +β1 log HEXPit +β2 log EDUCit +vit −uit

Table 1 lists the two sets of parameter estimates, least squares and maximum likeli-
hood. The estimates are rather different. The difference between the two estimators
becomes even more stark when the inefficiency estimates are computed with the two
estimated models. The Schmidt and Sickles estimates are computed using (2.6). The
same value is used in each period for each country. The frontier estimates are com-
puted using (2.4). The simple correlation between the two sets of estimates is only
about 0.1. The two kernel density estimators for the Sickles and Schmidt estimator
and for the maximum likelihood estimators show completely different assessments,
both in the pattern and in the magnitudes of the estimated values.

It is difficult to conclude that these are simply two estimates of the same quanti-
ties which differ because of sampling variation. Consider, once again, the assump-
tions underlying the two approaches. For the Schmidt and Sickles estimator, the
underlying model holds:

yit =α +β ′xit +vit −ui (3.14)

and in addition, (a) vit and xit are uncorrelated (b) ui and [xit ] need not
be uncorrelated, (c) no specific distribution is assumed for vit or ui , (d) ui is

Table 1. Estimated fixed effects models.

Dummy variable model Fixed effects model

Estimate Standard Error Estimate Standard Error

LogHEXP 0.007164 0.001853 0.069199 0.0008678
logEduc 0.10188 0.0093127 0.086231 0.00178655
R2 0.998786 σ 0.12246 λ 5.80463
σ 0.00664 σu 0.12068 σv 0.02079
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time invariant with constant mean and variance, The ‘true’ fixed effects model
assumes that

yit =α +β ′xit +vit −uit (3.15)

and (a) [xit , ui, vit ] are all mutually uncorrelated, (b) vit and uit have normal and
half normal distributions, respectively, (c) uit is not necessarily time invariant. The
relationship between the two sets of assumptions is not a simple reparameteriza-
tion. It is a difference in interpretation of the time invariant component in the
model, as noted in Section 2. In the second formulation, αi contains the cross unit
heterogeneity. The inefficiency is already contained in uit , which is allowed to vary
through time. Note, though, it does not follow that (3.15) is the less restrictive
of the two, since (3.14) relaxes the distributional assumption. In general, it is not
obvious which is likely to be the more appropriate approach or which restrictions
should be less palatable. But, this particular data set should contain a greater than
average amount of latent heterogeneity and, as discussed in Gravelle et al. (2002)
and Greene (2003a, 2000b), almost no within group variation. These should weigh
in favor of the true fixed effects model. That is, for these data, it is arguable that
the measured “inefficiency” is picking up latent cross country variation that is not
necessarily related to inefficiency at all. (Again, see the discussion in Kumbhakar
and Lovell (2000, p. 115) and references cited, where this issue is raised. What is
clear at this point is that latent time invariant effects do dramatically affect the
results. Whether they should represent latent effects of inefficiency or they are het-
erogeneity is an important, but unresolved question (Figures 1 and 2).

3.3. The Incidental Parameters Problem

It is widely accepted that in the presence of fixed effects, maximum likelihood esti-
mators of the parameters of nonlinear models are inconsistent (though, in fact,
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Figure 1. Inefficiency estimates from maximum likelihood.
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Figure 2. Inefficiency estimates from fixed effects regression.

this has only been formally verified for the binomial logit model.)4 There may also
be a small sample bias. Andersen (1970) and Hsiao (1996) showed analytically that
in a binary logit model with a single dummy variable regressor and a panel in
which T = 2, the small sample bias in the MLE of β is +100%. Abrevaya (1997)
showed that Hsiao’s result extends to more general binomial logit models as long
as T continues to equal two. No general analytic results exist for the ‘small T ’ bias
if T exceeds 2 or for any other model. Generally accepted results are based on
Heckman (1981) Monte Carlo study of the probit model with T =8 and N =100 in
which the bias of the slope estimator was toward zero (in contrast to Hsiao) and
on the order of only 10%. On this basis, it is often suggested that in samples at
least this large, the small sample bias is probably not too severe. In Greene (2003a,
2000b), we find that that Heckman’s result for the probit models appears to be too
optimistic and in the wrong direction. Either way, however, the results for binary
choice models are not useful here. The stochastic frontier model has a continuous
dependent variable and in any event, estimation of the model parameters is not
the primary objective. We are interested in the estimates of inefficiency, uit . None
of the received results are related to prediction of individual observations.

To date, there has been no systematic analysis of the fixed effects estimator for
the stochastic frontier model (nor for other models with continuous dependent
variables). The maximum likelihood estimators in models with continuous depen-
dent variables appear to behave quite differently from binary (or other discrete)
choice models. [See Greene (2003a, 2000b).] No results have yet been obtained for
how any systematic biases (if they exist) in the parameter estimates are transmit-
ted to estimates of the inefficiency scores. We will consider this issue in the study
below.

We will analyze the behavior of the estimator through the following Monte
Carlo analysis: Data for the study are taken from the Commercial Bank Hold-
ing Company Database maintained by the Chicago Federal Reserve Bank. Data
are based on the Report of Condition and Income (Call Report) for all U.S.
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commercial banks that report to the Federal Reserve banks and the FDIC. A ran-
dom sample of 500 banks from a total of over 5000 was used.5 Observations con-
sist of total costs, Cit , five outputs, Ymit , and the unit prices of five inputs, Xjit .
The unit prices are denoted Wjit . The measured variables are as follows:

Cit = total cost of transformation of financial and physical resources into
loans and investments = the sum of the five cost items described below;

Y1it = installment loans to individuals for personal and household expenses;
Y2it = real estate loans;
Y3it = business loans;
Y4it = federal funds sold and securities purchased under agreements to resell;
Y5it = other assets;
W1it = price of labor, average wage per employee;
W2it = price of capital = expenses on premises and fixed assets divided by the

dollar value of of premises and fixed assets;
W3it = price of purchased funds = interest expense on money market deposits

plus expense of federal funds purchased and securities sold under
agreements to repurchase plus interest expense on demand notes issued
the U.S. Treasure divided by the dollar value of purchased funds;

W4it = price of interest-bearing deposits in total transaction accounts =
interest expense on interest-bearing categories of total transaction
accounts;

W5it = price of interest-bearing deposits in total nontransaction accounts =
interest expense on total deposits minus interest expense on money
market deposit accounts divided by the dollar value of interest-bearing
deposits in total nontransaction accounts;

t = trend variable, t = 1,2,3,4,5 for years 1996, 1997, 1998, 1999, 2000.

We will fit a Cobb–Douglas cost function. To impose linear homogeneity in the
input prices, the variables employed are

cit = log(Cit /W5it ),

wjit = log(Wjit /W5it ), j =1,2,3,4, (3.16)

ymit = log(Ymit ), m=1,2,3,4,5.

Actual data are employed, as described below, to obtain a realistic configuration
of the right hand side of the estimated equation. The first step in the analysis is
to fit a Cobb–Douglas fixed effects stochastic frontier cost function

cit =αi +
∑4

j=1
βjwjit +

∑5

m=1
γmymit + δt +vit +uit . (3.17)

The initial estimation results are shown in the next to rightmost column in Table 2
below. In order to generate the replications for the Monte Carlo study, we now use
the estimated right hand side of this equation as follows: The estimated parameters
ai, bj , cm and d that are given in the last column of Table 2 are taken as the true
values for the structural parameters in the model. A set of ‘true’ values for uit is
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Table 2. Summary statistics for replications and estimated modela.

Estimated Modelb

Standard
Estimated Mean Dev. of Minimum Maximum
parameter % error % error % error % error ‘True FE’ Linear regression

b1 =β1 −2.39 5.37 −22.53 10.20 0.41014 (0.0167) 0.41283 (0.0192)
b2 =β2 −2.58 36.24 −97.53 87.09 0.020608 (0.00581) 0.03821 (0.00883)
b3 =β3 12.43 9.47 −9.72 36.61 0.17445 (0.0105) 0.18421 (0.01630)
b4 =β4 −13.30 13.84 −46.22 19.16 0.097167 (0.00903) 0.09072 (0.01305)
c1 =γ1 −6.54 6.92 −19.64 9.98 0.099657 (0.00671) 0.10520 (0.00810)
c2 =γ2 2.71 1.58 −1.25 6.38 0.40480 (0.0151) 0.37729 (0.00774)
c3 =γ3 13.13 6.89 −5.60 30.42 0.13273 (0.00928) 0.10197 (0.01056)
c4 =γ4 −4.19 7.04 −20.01 12.22 0.053276 (0.00379) 0.05353 (0.00435)
c5 =γ5 −8.44 4.33 −17.73 7.18 0.23630 (0.00278) 0.28390 (0.01074)
d = δ 11.43 12.30 −14.96 45.16 −0.028634 (0.00278) −0.02802 (0.00373)
s =σ −4.53 3.57 −13.00 5.78 0.47977 (0.0161) 0.24307
l =λ −27.28 6.71 −41.70 −8.24 2.27805 (0.102)
Scale 0.48 6.96 −22.30 15.42 0.079035 (0.0364)
σu 0.43931d

σv 0.19284d

a Table values are computed for the average percentage error of the estimates from the assumed true
value.
b Estimated standard errors in parentheses.
c Economies of scale estimated by 1/(γ1 + γ2 + γ3 + γ4 + γ5) − 1. The estimated standard error is
computed by the delta method.
d Standard error not computed.

generated for each firm, and reused in every replication. These ‘inefficiencies’ are
maintained as part of the data for each firm for the replications. The firm specific
values are produced using u∗

it = |U∗
it | where U∗

it is a random draw from the nor-
mal distribution with mean zero and standard deviation su = 0.43931.6 Thus, for
each firm, the fixed data consist of the raw data wjit , ymit and t, the firm specific
constant term, ai , the inefficiencies, u∗

it , and the structural cost data, c∗
it , produced

using

c∗
it =ai +

∑4

j=1
bjwjit +

∑5

m=1
cmymit +dt +u∗

it . (3.18)

By this device, the underlying data to which we will fit the Cobb–Douglas fixed
effects model actually are generated by an underlying mechanism that exactly sat-
isfies the assumptions of the fixed effects stochastic frontier model and, in addi-
tion, is based on a realistic configuration of the right hand side variables.7 Each
replication, r, is produced by generating a set of disturbances, vit (r), t = 1, . . . ,5,
i =1, . . . ,500. The estimation was replicated R=100 times to produce the sampling
distributions reported below.

Results of this part of the study are summarized in Table 2. The summary statis-
tics for the model parameters are computed for the 100 values of the percentage
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error of the estimated parameter from the assumed true value. That specific true
value is given in the second to rightmost column of Table 2. For the structural
coefficients in the models, the biases in the slope estimators seem actually quite
modest in comparison to the probit, logit and ordered probit estimates examined
elsewhere. (In Greene (2002), we found typical biases in probit and logit models
with T = 5 on the order of +40%.) Moreover, in contrast, there is no systematic
pattern in the signs of the biases. It is noteworthy, as well, that the economies of
scale parameter,

SCE=
(

1
/∑

m
γm

)
−1,

is estimated with virtually no bias; the average error of only 0.48% is far smaller
than the estimated sampling variation of the estimator itself (roughly ±7%). Over-
all, the deviations of the regression parameters are surprisingly small given the
small T . Moreover, in several cases, the bias appears be toward zero, not away
from it, as in the more familiar cases.

In view of the well established theoretical results, it may seem contradictory that
in this setting, the fixed effects estimator should perform so well. In Greene (2002),
it was found that the tobit estimator produces the same effect. The force of the
incidental parameters problem in these models with continuous dependent vari-
ables actually shows up in the variance estimators, not in the slope estimators. The
statistics for the estimator of σ in our model suggests little bias. The estimator of
λ appears to absorb the force of the inconsistency. Since λ is a crucial parame-
ter in the computation of the inefficiency estimates, this leads us to expect at least
some biases in these as well. In order to construct the description in Figure 4, we
computed the sampling error in the computation of the inefficiency for each of the
2500 observations in each replication, duit (r) = estimated uit (r)− true uit (r). The
value was not scaled, as these are already measured as percentages (changes in log
cost). The mean of these deviations is computed for each of the 100 replications,
then Figure 3 shows the sample distribution of the 100 means. On average, the esti-
mated model overestimates the ‘true’ values by only about 0.05. Since the overall
mean is about 0.25, this is an overestimation error of about 20%.

The final column of results in Table 2 gives the within groups, linear regression
estimates for the Schmidt and Sickles estimator. The coefficient estimates are sim-
ilar, as might be expected. Figures 4 and 5 present kernel density estimates for
the stochastic frontier and regression based estimates, respectively, using the actual
data, not the simulation. In contrast to the previous estimates, these bear some
similarity.

The means and standard deviations for the two sets of estimates are 0.298
(0.150) and 0.261 (0.119), respectively. In this instance, the differences, such as they
are, seem more likely to be due to the assumption of time invariance of the ineffi-
ciency estimates and less to cross bank heterogeneity. The similarity of these broad
descriptive statistics, however, masks a complete underlying disagreement between
the two sets of estimates. Figure 6 shows the lack of relationship between the esti-
mates. (The same regression based estimate is used for all 5 years for each bank.)
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Figure 3. Average estimation errors for cost inefficiencies from fixed effects stochastic frontier function.
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Figure 4. Stochastic frontier inefficiency estimates.
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Figure 5. Regression based inefficiency estimates.
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The simple correlation between the two sets of estimates (using the group means
for the stochastic frontier results) is only 0.052. We conclude, once again, that in
spite of superficial appearances, the relationship between these two sets of esti-
mates is truly unclear.

As always, Monte Carlo results are not definitive. The evidence here, coupled
with our findings elsewhere, however, strongly suggests that the familiar assess-
ment of fixed effects estimators (upwardly biased in all cases) is much too nar-
row. The behavior of the estimates in this analysis seems to be much more benign.
The coefficients do appear to be somewhat biased, but far less so than the received
results for binary choice models might lead one to expect. The estimated inefficien-
cies appear to be slightly biased as well, but, again, surprisingly so given the small
value of T .

4. Random Effects Models

The simplest form of the ‘random effects’ model in the recent literature parallels
the linear regression model,

yit =α +β ′xit +vit −Sui (4.1)

where, at the outset, only the means 0 and µ and constant variances, σ 2
v and σ 2

u

of vit and ui are specified, and it is assumed that both are uncorrelated with xit

and with each other. Under the assumptions made so far, [(α −µ),β] can be esti-
mated OLS or by two step feasible GLS, then, at least in principle, u∗

i = ui − µ

can be estimated by the within groups residuals. Mimicking Schmidt and Sickles’s
approach for the fixed effects model, we might then estimate the inefficiency with

ûi =max
{
û∗

i

}− û∗
i . (4.2)

This is a semiparametric formulation that can proceed with no distributional
assumptions. Pitt and Lee’s (1981) parametric specification of the random effects
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Figure 6. Fixed effects regression and frontier based inefficiency estimates.
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model adds the normality and half normality assumptions for vit and ui . [The
counterpart for the normal-exponential model has been derived as well. See, for
example, Greene (1997).] In this case, the preferred estimator is maximum likeli-
hood rather than least squares. [See, as well, Kumbhakar and Lovell (2000) for
some of the technical details.] The JLMS estimator of ui is obtained by a sim-
ple modification based on the group mean residual; ait is (2.4) is replaced with

ai =Sε̄iλ/σT , where σT =
√

σ 2
v +T σ 2

u .
As in the fixed effects specifications, a number of treatments have suggested ways

to relax the assumption of time invariant inefficiency in this model. For example,
Lee and Schmidt (1993) suggested uit = δ(t)ui . The model is fit by feasible (two
step) GLS or by instrumental variables. In either case, the recommended estimator
of uit is based on a comparison of each firm with the ‘best’ in the sample. In each
of the formulations, however, the stochastic component is time invariant. The time-
wise evolution in these cases is an ad hoc structure that is assumed to be common
across firms. Each of these is less restrictive than the unadorned random effects
model, but it is unclear how much latitude is actually achieved in this fashion.

Consider, instead, a ‘true’ random effects specification (our term again),

yit =α +β ′xit +vit −Suit +wi (4.3)

where wi is a time invariant, firm specific random term meant, as before, to cap-
ture cross firm heterogeneity. The difference between this formulation and the fixed
effects model is the additional assumption that wi and all other terms in the model
are uncorrelated. As stated, this model is largely the same as that of Kumbhakar
and Hjalmarsson (1993), who suggested the random effects form

uit =wi +ψit (4.4)

They suggest that wi be interpreted as ‘producer heterogeneity due perhaps to
omitted time invariant inputs’ and ψit represent technical inefficiency. Thus, this
model is a precursor to our proposal here. Their proposed estimator has two steps:
within groups (LSDV) OLS or feasible (two step) GLS to estimate β followed
by maximum likelihood estimation of the variances of vit and ψit . Kumbhakar
and Lovell observe “The virtue of this approach is that it avoids imposing distri-
butional assumptions until the second step.” The problem with this approach is
that any time-invariant component of technical inefficiency is captured by the fixed
effects, rather than by the one sided error component, where it belongs. This issue
is discussed by Heshmati and Kumbhakar (1994) and Kumbhakar and Heshmati
(1995). (Page 115.) Of course, this is the core of the issue in this paper. Whether
those time invariant effects really belong in the inefficiency is debatable. In our first
application, it certainly seems not. Once again, this is a methodological issue that
deserves closer scrutiny.

As noted, Kumbhakar and Hjalmarsson (1993) used least squares to fit the
model in (4.3)–(4.4). We now consider maximum likelihood estimation instead.
Before proceeding, we note at the outset that that the preceding observations
include an aversion to specific distributional assumptions. The method about
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to be described allows a variety of distributional assumptions – indeed, it is
straightforward with the technique to choose from a cornucopia of distributions.
We have found in general, that the major influence on the results is rarely if
ever the distributional assumptions; variations at this level produce only marginal
changes in the estimates. The primary determinant of the outcomes is the underly-
ing formulation of the model and its theoretical underpinnings. As we have already
seen (and will see below), these are crucial.

In order to construct an estimator for the model in (4.3)–(4.4), we recast it as a
random parameters model;

yit = (α +wi)+β ′xit +vit −Suit (4.5)

[See Tsionas (2002) for a Bayesian analysis of random parameters stochastic fron-
tier models.] As it stands, the model appears to have a three part disturbance,
which immediately raises questions of identification. To construct the likelihood
function, we use the following approach:

f (yit |wi)= 2
σ

φ
(εit

σ

)
�

(−Sλεit

σ

)
, εit =yit − (α +wi)−β ′xit (4.6)

where the remaining parts are as defined earlier. Conditioned on wi , the T obser-
vations for firm i are independent, so the joint density for the T observations is

f (yi1, . . . , yiT |wi)=
∏T

t=1

2
σ

φ
(εit

σ

)
�

(−Sλεit

σ

)
(4.7)

The unconditional joint density is obtained by integrating the heterogeneity out of
the density,

Li =f (yi1, . . . , yiT )=
∫

wi

∏T

t=1

2
σ

φ
(εit

σ

)
�

(−Sλεit

σ

)
g(wi)dwi. (4.8)

The log likelihood,
∑

i log Li , is then maximized with respect to α,β, σ, λ and any
additional parameters that appear in the distribution of wi that will now appear in
the maximand. The integral will in any conceivable case be intractable. However,
by writing it in the equivalent form,

Li =f (yi1, . . . , yiT )=Ewi

[∏T

t=1

2
σ

φ
(εit

σ

)
�

(−Sλεit

σ

)]
(4.9)

we propose to compute the log likelihood by simulation. Averaging the function
in (4.9) over sufficient draws from the distribution of wi will produce a sufficiently
accurate estimate of the integral in 4.8 to allow estimation of the parameters. [See
Gourieroux and Monfort (1996) and Train (2002).] The simulated log likelihood is

log Ls(β, λ, σ, θ)

=
∑N

i=1
log

1
R

∑R

r=1

[∏T

t=1

2
σ

φ

(
εit |wir

σ

)
�

(−Sλεit |wir

σ

)]
(4.10)
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where we have used θ for the parameters in the distribution of wi and wir is
the rth simulated draw for observation i. [See Greene (2001, 2003a, 2000b) for
details.]8 In order to incorporate θ transparently in the likelihood function, we
might write wi = θwi0 where the parameters of the distribution of wi0 are known.
Thus, if wi is normally distributed, then θ is its standard deviation and wi0 ∼
N[0.1]. The function is smooth and smoothly and continuously differentiable in the
parameters. Conditions for the appropriateness of the technique (again, see Gou-
rieroux and Monfort) are certainly met. Since the actual integration need not be
carried out, the computation can be based on any distribution for wi that can be
simulated.9 [See Greene and Misra (2002) for some alternatives - this is precisely
the model suggested there, though the authors in that paper confine attention to
cross sectional analysis.] The (simulated) derivatives and Hessian of the log likeli-
hood are tedious but quite tractable and inference procedures follow conventional
methods. [See Greene (2001).]

Table 3 presents parameter estimates for the basic stochastic frontier model,
Pitt and Lee’s random effects model, and the random constant term model above.
As before, the primary parameter estimates are similar. But, again, these superfi-
cial similarities mask large differences in the estimated inefficiencies. The random
effects based estimates are far smaller and less dispersed than those based on any
of the earlier formulations.. Those estimates are similar to estimates obtained in
other studies with these banking data, such as Kumbhakar and Tsionas (2002) and
Berger and Mester (1997). Moreover, as can be seen in Figure 9, the correlation
between these two sets of random effects estimates is nearly zero.

Figures 7 and 8 show kernel density estimates for the inefficiency estimates from
the Pitt and Lee random effects model and the true random effects model. As in
the fixed effects cases, it seems unlikely that these two models are estimating the
same quantity. Figure 9 is the counterpart to Figure 6 for the random effects mod-
els. From the loose scatter, it appears that the assumption of time invariant ineffi-
ciency has substantially affected these results. Also, the extremely small range of
the Pitt and Lee estimates seems improbable compared to all the other estimates
obtained so far and below.

It appears that the assumption of time invariance of the inefficiency term exerts
a significant influence on the estimated values. A number of recent applications
have employed Battese and Coelli’s (1995) model, uit = g(t, T )|Ui |. One com-
mon form employs g(t, T )= exp(−η(t −T )). This allows the inefficiency to evolve
smoothly through time, though with a single parameter, that movement is assumed
to be monotonic and the same for all firms. Nonetheless, in principle, it does relax
the invariance assumption. We have refit the model with this specification. The
results are shown in the penultimate column of Table 3. Even with this extension,
the results are nearly identical to those with the Pitt and Lee model. We have also
extended this model to replace g(t, T ) with exp[ρtdt ] where ρt is a free parameter
and dt is a time specific dummy variable. This allows the shift to be nonmono-
tonic, but nonetheless, had almost no impact on the results. As before, the crucial
assumption seems to be the invariance of the random component.
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Figure 7. Inefficiency estimates from Pitt and Lee Model.
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Figure 8. Inefficiency estimates from random constants model.
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Figure 9. Inefficiency estimates from random effects models.
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Table 3. Estimated random effects models (Standard errors in parentheses).

Pitt and Random Battese and True fixed
Parameter Pooled lee constant Coelli effect

α 0.1784 0.5346 0.1814 0.5076
(0.0987) (0.106) (0.0595) (0.1123)

β1 0.4199 0.4229 0.4193 0.4225 0.4101
(0.0144) (0.0153) (0.00888) (0.0163) (0.01672)

β2 0.02235 0.03317 0.02289 0.03323 0.02061
(0.00634) (0.00739) (0.00387) (0.00738) (0.00582)

β3 0.1732 0.1809 0.1737 0.1799 0.1744
(0.0117) (0.0139) (0.00694) (0.0139) (0.0105)

β4 0.09409 0.08790 0.09443 0.08789 0.09717
(0.009834) (0.0119) (0.00604) (0.0118) (0.00903)

γ1 0.1024 0.1027 0.1028 0.1027 0.09966
(0.00665) (0.00614) (0.00377) (0.00620) (0.00677)

γ2 0.4034 0.3762 0.4033 0.3767 0.4048
(0.00636) (0.00558) (0.00362) (0.005732) (0.0151)

γ3 0.1359 0.09949 0.1360 0.09983 0.1327
(0.00789) (0.00666) (0.00450) (0.00667) (0.009286)

γ4 0.05127 0.05452 0.05086 0.05455 0.05327
(0.00354) (0.00325) (0.00213) (0.003242) (0.0.00379)

γ5 0.2352 0.2881 0.2353 0.2876 0.2363
(0.00911) (0.00851) (0.00499) (0.00864) (0.01029)

δ −0.0288 −0.0286 −0.0288 −0.0210 −0.0286
(0.00346) (0.00363) (0.00197) (0.00737) (0.002777)

λ 2.1280 0.3962 2.1892 0.3233 2.2781
σ 0.3551 0.25835 0.3522 0.25213 0.4798
σu 0.3213 0.09517 0.3204 0.07756 0.4393
σv 0.1510 0.24019 0.1463 0.23991 0.1928
Addl. model σw0.0400 η=0.1017
parameter (0.0030) (0.0753)

5. Conclusions

There are numerous directions in which the models described above can be
expanded. Some of these are explored in Greene (2003a, 2000b, 2004). The ran-
dom parameters models are particularly versatile and have great potential to
enhance the frontier model. The fixed effects model may, at least in some cases,
be the preferable model. We have not examined in detail moving the fixed effects
to the inefficiency distribution, itself, such as in the mean of the truncated nor-
mal distribution. [See Habib and Ljungqvist (2002).] There does not appear to be
a technological obstacle to doing so. In addition, semiparametric (finite mixture)
approaches to modeling the heterogeneity have been suggested in Kumbhakar and
Orea (2003) and Greene (2004).

Our results do raise some general questions about fixed and random effects anal-
ysis in the stochastic frontier setting. In the first application, we found that the
treatment, or at least the interpretation of heterogeneity in a data set brings a major
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change in the results of estimation. Clearly it is not obvious on inspection how one
should interpret the time invariant effects in a data set. We do find that how this
issue is handled has a large influence on the findings that will result. At least for
the application considered here, the fixed effects regression based estimates of the
inefficiencies were considerably impacted compared to the stochastic frontier.

The second application suggests two implications. First, it appears from this
and from our other application to the tobit model, that the conventional wisdom
about the incidental parameters based on two binary choice models is essentially
irrelevant to these two models. In both cases, we find evidence that suggests the
accepted pessimism about the fixed effects estimator may be greatly overstated.

We find that the regression and likelihood based treatments of inefficiency bring
striking differences in the results. In this second application, those differences
might be undetected if one focused, as is often the case, on summary, descriptive
statistics. The summaries in Table 4 do not reveal the substantial differences in the
underlying estimates. What remains for future research, is to discern what is the
nature and source of these differences.

The literature contains several comparisons of fixed and random effects esti-
mators to each other. Kumbhakar and Lovell (2000, pp. 106–107) describe Gong
and Sickles (1989) comparison of the Pitt and Lee and the Schmidt and Sickles
approaches, where it is found that they give similar answers. We found similar
agreement between the true fixed and random effects estimates. Bauer et al. (1993)
likewise find consistent similarity between fixed and random effects estimators
based on regression, but notable differences between these and estimates produced
using Pitt and Lee’s approach. Several others are cited as well; all find appealing
internal consistency. What differs here, however, is the absolute divergence between
the results produced by the ‘true’ fixed and random effects models and the time
invariant approaches that these other authors have documented. This suggests that
the issue that merits much greater scrutiny is not whether use of a fixed effects or
random effects is a determinant of the results, but the extent to which the specifi-
cation platform on which the model is placed is driving the results.10

In the most general terms, one can view the stochastic component of the
frontier model as containing both heterogeneity and inefficiency. Whether the
time invariant parts of these can be successfully disentangled at all remains a

Table 4. Descriptive statistics for estimated inefficiencies.

Mean Std. Dev. Skewness Kurtosis Minimum Maximum

Pooled 0.252 0.163 2.240 11.776 0.0400 1.7098
Fixed effects models
Stochastic Frontier 0.298 0.150 2.204 12.076 0.0796 1.7642
Regression 0.261 0.119 0.654 4.506 0.0000 0.8413
Random effects models
Random Constant 0.249 0.152 1.436 5.193 0.0375 0.7970
Battese-Coelli 0.0762 0.0323 2.133 11.631 0.0273 0.338
Pitt and Lee 0.0918 0.0640 1.073 6.179 0.0792 0.1284
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question. Our models have considered the two extremes. The Schmidt and Sick-
les/Pitt and Lee models treat all time invariant effects as inefficiency. (Though, in
Greene (2003a, 2000b), the Pitt and Lee model is extended specifically to include
observable indicators of time invariant heterogeneity in the function.) Our true
fixed and random effects models have treated the time invariant components (how-
ever blended) as only unobserved heterogeneity. Neither formulation is completely
satisfactory. It seems reasonable to assert that if nothing else, there is some iner-
tia (autocorrelation) in inefficiency; treating it as a new uit in every period ignores
that fact. However, it is clear that ignoring the possibility of unit specific hetero-
geneity in ui is likewise restrictive. We conclude that the results here have raised
some questions, but that as always, further research is merited.
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Notes

1. Cornwell et al. (1990) did suggest a ‘brute force’ approach to estimating their quadratic model,
however, their proposal was based on least squares estimation, not maximum likelihood.

2. Their model also included some additional parameters for the mean of uit .
3. Sueyoshi (1993) after deriving these results expressed some surprise that they had not been incor-

porated in any commercial software. As of this writing, it appears that LIMDEP [Econometric
Software (2002)] is still the only package that has done so.

4. For example, Wooldridge (2002, pp. 10–11) states, in reference to a tobit model, “More impor-
tantly, with fixed T , it suffers from an incidental parameters problem: except in very special cases,
the estimator of θ0 is inconsistent.” This has never been established analytically for the tobit
model, and Monte Carlo results in Greene (2000b) suggest it may well be untrue. It is, however, as
the language here suggests, a generally accepted result nonetheless.

5. The data were gathered and assembled by Mike Tsionas, whose assistance is gratefully acknowl-
edged. A full description of the data and the methodology underlying their construction appears
in Kumbhakar and Tsionas (2002).

6. Doing the replications with a fresh set of values of u∗
it generated in each iteration produced virtu-

ally the same results. Retaining the fixed set as done here facilitates the analysis of the results in
terms of estimation of a set of invariant quantities.

7. Monte Carlo studies are justifiably criticized for their specificity to the underlying data assumed. It
is hoped that by the construction used here which is based on a ‘live’ data set, we can, at least to
some degree, overcome that objection.

8. Note that for the basic, random constants form suggested here, if normality is assumed for wi , then the
integral in (4.8) could also be approximated quite accurately by Gauss–Hermite Quadrature. We have
not chosen this method in order to avoid forcing the normal distribution on the problem (though we do
assume normality) and because the extension of (4.8) to a full randomly distributed parameter vector
is quite minor when handled by simulation, but impossible to manage by quadrature.
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9. Simulation of random variables is typically done by the inverse probability transform, beginning
with a primitive draw from the standard continuous uniform [0,1] distribution. In order to speed
up the simulations, we have used Halton sequences of primitive draws, rather than pseudorandom
numbers. For integrating over a single dimension, using Halton sequences rather than pseudoran-
dom draws speeds up the process by a factor of as much as 10. That is, 100 Halton draws is as
effective as 1000 pseudorandom draws. See Bhat (1999), Train (2002) and Greene (2001) for discus-
sion.

10. We note for completeness, we did subject the model to a Hausman test for fixed effects vs. ran-
dom effects. The test statistic was not nearly significant, suggesting that (assuming the conditions
for the test are valid) the random effects model is a reasonable general framework for the banking
data. Quite the opposite was found for the health performance data. In the latter case, an extended
model with a number of time invariant covariates was constructed specifically in response to the
finding. See Greene (2003a, 2000b).
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