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1. Introduction

The developments reported in this paper were motivated by a study undertaken by
the author with the World Health Organization based on their year 2000 World
Health Report (WHR) (see Tandon et al., 2001; Hollingsworth and Wildman, 2002;
Greene, 2004). The WHR study is a panel data analysis of health care outcomes in
191 countries for the years 1993-1997. A fixed effects ‘frontier’ model was fit, and
countries were ranked on the basis of the Schmidt and Sickles (1984) suggested
corrected effects. Readers of the study argued that with a sample as disparate as this
one surely is, the ‘fixed effects’ must be picking up a great deal of unmeasured cross
country heterogeneity as well as any ‘inefficiency’ in the provision of health care
services. One would expect that the confounding of the two effects has the potential
seriously to distort the inefficiency measures of interest in the study. Ideally, it is
appropriate to model inefficiency and heterogeneity separately in the same model to
segregate the two effects. The stochastic frontiers literature that deals with panel data
is diffuse (and not particularly verbose) on this issue. Many of the models in
common use provide little or no mechanism for disentangling these two effects.!
Most of the received applications have effectively blended these two characteristics in
a single term in the model. This paper will examine several alternative forms of the
stochastic frontier model that take different approaches to incorporating hetero-
geneity. Not surprisingly, they produce markedly different results.

Aigner, Lovell and Schmidt (ALS) proposed the normal-half normal stochastic
frontier in their pioneering work in 1977. A stream of research over the succeeding
25 years has produced many innovations in the specification and estimation
of their model (see Greene, 1997 and Kumbhakar and Lovell, 2000, for
recent surveys). Panel data applications have kept pace with other types of
developments in the literature. Many of these estimators have been patterned
on familiar fixed and random effects formulations of the linear regression
model. This paper will examine several alternative approaches to modeling
heterogeneity in panel data in the stochastic frontier model. We propose
specifications which can isolate firm heterogeneity while better preserving the
mechanism in the stochastic frontier model that produces estimates of technical or
cost inefficiency.

This study is organized as follows: Section 2 will lay out the basic platform for all
of the specifications of the stochastic frontier model. We will be presenting a large
number of empirical applications in the text. These are based on a study of the U.S.
banking industry. The data set to be used and the specific cost frontier model that
will be used are also presented in Section 2. The succeeding sections will formalize
and apply three classes of models, fixed effects, random effects and varying

'One might ask—one of our referees did—precisely how one can make a meaningful distinction between
unmeasured heterogeneity and inefficiency in the context of a completely specified production model. The
possibility that the true, underlying production function might contain unmeasured firm specific
characteristics that reflect the technology in use, not inefficiency, that is, that the model estimated by the
analyst is actually incomplete or misspecified in this regard, is precisely the point of this paper.



W. Greene | Journal of Econometrics 126 (2005) 269-303 271

parameter models. In each case, unmeasured heterogeneity makes a different
appearance in the model. Section 3 considers fixed effects estimation. This section
considers two issues, the practical problem of computing the fixed effects estimator,
and the bias and inconsistency of the fixed effects estimator due to the incidental
parameters problem. A Monte Carlo study based on the panel from the U.S.
banking industry is used to study the incidental parameters problem and its influence
on inefficiency estimation. Section 4 presents results for random effects models. We
first reconsider the familiar random effects model that has already appeared in the
literature, observing once again that familiar approaches have forced one ‘effect’ to
carry both heterogeneity and inefficiency. We then propose a modification of the
random effects model which disentangles these terms. The fixed and random effects
models treat heterogeneity as a firm specific additive constant. Section 5 will present
two extensions of the model that allow for more general types of variation. This
section will include development of a simulation based random parameters estimator
that is a more flexible, general specification than the simple random effects model.
We then turn to a latent class specification. Section 5 will develop the model, then
apply it to the data on the banking industry considered in the preceding two sections.
Finally, Bayesian estimators for fixed and random effects and for random
parameters specifications have been proposed for the stochastic frontier model.
We will also consider some of these specifications in Section 5. Some conclusions are
drawn in Section 6.

2. The stochastic frontier model

The stochastic frontier model may be written

Vi =fXiyz) + v iy, i=1,...,N, t=1,...,T
= o+ B'x; + 'z + vip £ uig, 1 =0, )

where y;, is the performance of firm 7 in period ¢ (output, profits, costs), x;, is the
vector of inputs or input prices, and z; is a vector of firm specific characteristics. The
sign of the last term depends on whether the frontier describes costs (positive) or
production or profits (negative). The base case stochastic frontier model as originally
proposed by ALS adds the distributional assumptions to create an empirical model;
the “composed error” is the sum of a symmetric, normally distributed variable (the
idiosyncrasy) and the absolute value of a normally distributed variable (the
inefficiency):

vie ~ N[0, 7],
Uy = |Uy| where U;; ~ N[0, 02] L v;,. 2

The output or cost measure is usually specified in natural logs, so at least for small
deviations, the inefficiency term, u;,, can be interpreted as the percentage deviation of
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observed performance, y;, from the firm’s own frontier; u; = y;, — yi, where’
Vi = o+ BXi + 12 + vir. 3)

It will be convenient in what follows simply to include the time invariant term, t'z;, in
B'x;; and write

Yiyp=o0o+ B'Xir + vir = uy 4)
to denote the full model.

2.1. Efficiency and heterogeneity

The analysis of inefficiency in this modeling framework consists of two (or three
steps). At the first, we will obtain estimates of the technology parameters, , B, o, and
g,. These structural parameters may or may not hold any interest for the analyst.
With the parameter estimates in hand, it is possible to estimate the composed
deviation,

&ir = Vig & Uy = Yy — o0 — B'Xyq (5)
by ‘plugging in’ the observed data for a given firm in year ¢ and the estimated
parameters. But, the objective is usually estimation of u;, not ¢;, which contains the

firm specific heterogeneity. Jondrow et al. (1982) (JLMS) have devised a method of
disentangling these effects. Their estimator of u; is

ol i { Pai) an}, ©)
1427 [1— P(a;y)

where ¢ = [6,2 + 6,2]1/2, 2 = 0,/0,, a; = e, A/, and P(a;) and P(a;,) denote the
standard normal density and CDF evaluated at a;;, respectively.

The JLMS estimator, u; = E[uit|s,-,] of u; might seem to lend itself to further
regression analysis on other interesting covariates in order to ‘explain’ the
inefficiency. Arguably, there should be no explanatory power in such regres-
sions—the original model specifies u;, as the absolute value of a draw from a normal
population with zero mean and constant variance, and uncorrelated with x;,. If there
are other variables, g;, which do ‘explain’ u;, then they should have appeared in the
model at the first stage, and estimates computed without them are biased in
unknown directions (the ‘left out variable’ problem) (see Wang and Schmidt, 2002).
There are two motivations for proceeding in this fashion nonetheless. First, one
might not have used the ALS form of the frontier model in the first instance to
estimate u;;. Thus, some fixed effects treatments based on least squares at the first
step leave this third step for analysis of the firm specific ‘effects’ which are identified
with inefficiency. Second, the received models provide relatively little in the way of
effective ways to incorporate these important effects in the first step estimation.

Stevenson (1980) suggested that the model could be enhanced by allowing the
mean of the underlying normal distribution of the inefficiency to be nonzero. The

Elujleiq] =

2Authors often examine the efficiency measure, E;, = exp(—u;,) rather than u;,. We will focus on u;, in
this study, purely for convenience.
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specification modifies the earlier formulation to

wi = |Uy| where U, ~ N[u, a2]. (7)

u

Stevenson’s extension of the model allows it to overcome a major shortcoming of the
ALS formulation. The mean of the distribution can now be allowed to vary with the
inputs and/or other covariates. Thus, the truncation model allows the analyst
formally to begin modeling the inefficiency in the model. We suppose, for example,
that

W= Wz (®)
(In order to avoid proliferating symbols, we will associate u with the underlying
mean of the truncated normal variable. The scalar u or y; will denote the mean. The
boldface vector, p, when used, will denote the parameters that enter computation of
u; = W'z;.) The counterpart to E[u;|e;] with this model extension is obtained by
replacing a;, in (6) with
o M ik

g ) 9
alt O'j. o ()

Thus we now have, within the “first stage’ of the model, that E[u;|¢;] depends on the
covariates. Thus, there may be no need for a third stage analysis to assess the impact
of the covariates on the inefficiencies.

All this leaves unspecified how unmeasured heterogeneity in panel data should be
handled. Many treatments allow it to be captured in a time invariant, firm specific
constant term. This would produce an ‘effects’ style model

Vie = o+ B'Xi + vi £ uyy. 47

Clearly, models such as the Schmidt and Sickles (1984) fixed effects formulation or
Pitt and Lee’s (1981) random effects model, which treat the inefficiency term as time
invariant as well, will encounter a fundamental identification problem. Not only
must the modeler distinguish the ‘noise,’ v;; from the inefficiency effects, but now, the
time invariant term is o; &+ #;, which will remain indecomposable. A more elaborate
specification will allow the heterogeneity to enter the production relationship;

Yig =0 + ﬁ;xit + v & Uy, (4r)

Since u;; 1s not assumed to be time invariant, observed panel data that have within
group variation may allow analysis of both inefficiency and heterogeneity. On the
other hand, to the extent that inefficiency is time persistent, this extension will only
partially solve the problem. The models to be explored below will accommodate
these effects in various forms and degrees.

2.2. Banking application

We will examine a variety of formulations of the stochastic frontier model in the
sections to follow. In each case, we will apply the proposed estimator to a panel data
set on the U.S. banking industry. Data for the study are taken from the Commercial
Bank Holding Company Database maintained by the Chicago Federal Reserve
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Bank. Data are based on the Report of Condition and Income (Call Report) for all
U.S. commercial banks that report to the Federal Reserve banks and the FDIC. A
random sample of 500 banks from a total of over 5000 was used.’ Observations
consist of total costs, Cy, five outputs, Y,,;, and the unit prices of five inputs, X ;.
The unit prices are denoted W ;. The measured variables are as follows:

Ci; = total cost of transformation of financial and physical resources into loans
and investments = the sum of the five cost items described below;

Y1 = installment loans to individuals for personal and household expenses;

Y, = real estate loans;

Y3i; = business loans;

Y4 = federal funds sold and securities purchased under agreements to resell;

Ys; = other assets;

Wi: = price of labor, average wage per employee;

Wi = price of capital =expenses on premises and fixed assets divided by the dollar
value of premises and fixed assets;

Wi = price of purchased funds=interest expense on money market deposits plus
expense of federal funds purchased and securities sold under agreements to
repurchase plus interest expense on demand notes issued by the U.S.
Treasury divided by the dollar value of purchased funds;

W4 = price of interest-bearing deposits in total transaction accounts=interest
expense on interest-bearing categories of total transaction accounts;

Wi = price of interest-bearing deposits in total nontransaction accounts = interest
expense on total deposits minus interest expense on money market deposit
accounts divided by the dollar value of interest-bearing deposits in total
nontransaction accounts;

t= trend variable, t = 1,2, 3,4, 5 for years 1996, 1997, 1998, 1999, 2000.

For purposes of the study, we will analyze a Cobb—Douglas cost function. To
impose linear homogeneity in the input prices, the variables employed are
costyy = 10g(Cit/ Wsit), wiir = log(W it/ Wsi), j = 1,2,3,4, and y,,;, = log(Y ;). The
platform empirical model is a five input, five output, Cobb—Douglas cost frontier
model with constant rate of technical change (cost diminution),

4 5
costy = o+ )y Biwi + Z VnVmie + Ot + Vi + Uy (10)
j=1 m=1

The various models fit below will be modifications of this basic formulation.
Maximum likelihood estimates of the stochastic cost frontier obtained from the
pooled data set, ignoring any commonalities or panel data effects, appear in column
(3) in Table 1. The estimated function is monotonic in prices and outputs, displays

some economies of scale (about 7.75%), and suggests a moderate degree of technical

3The data were gathered and assembled by Mike Tsionas, whose assistance is gratefully acknowledged.
A full description of the data and the methodology underlying their construction appears in Kumbhakar
and Tsionas (2002).



Table 1

Estimated stochastic frontier models, (Estimated standard errors in parentheses)

(1) OLS dummy
variables

(2) True fixed
effects

(3) Pooled

(4) Random effects (5) Battese and

stochastic frontier Pitt and Lee

Coelli*

(6) Pooled OLS

(7) Random constant

a; Not shown

&; Not shown

0.02061 (0.00581) 0.02234 (0.006336) 0.03317 (0.007385) 0.03383 (0.007376)

0.05328 (0.00379) 0.05127 (0.003538) 0.05452 (0.003245) 0.05473 (0.003368)

0.1784 (0.09869)

0.5346 (0.1062)
0.4229 (0.01626)

0.1809 (0.01391)

0.3762 (0.005581)

0.4689 (0.1131)
0.4243 (0.01635)

0.1819 (0.01393)
0.08846 (0.01183)
0.1028 (0.006230)
0.3768 (0.005720)

0.1359 (0.007891) 0.09949 (0.006656) 0.1004 (0.006796)

0.2881 (0.008507)

—0.02863 (0.003633) —0.01276 (0.007819)

0.3962 (0.04714)
0.8166°

0.09517 (0.01081)
0.8110

n/a

0.0858

0.0756
0.0293
0.0355

I 0.4128 (0.01924) 0.4101 (0.0167)°  0.4199 (0.01442)

B 0.03820 (0.008830)

b3 0.1842 (0.0163) 0.1745 (0.0105) 0.1732 (0.01173)

Ba 0.09072 (0.01305)  0.09717 (0.00903) 0.09409 (0.009834) 0.08790 (0.01190)

7 0.1052 (0.00809) 0.09966 (0.00671) 0.1023 (0.006647) 0.1027 (0.006144)

72 0.3773 (0.00774) 0.4048 (0.0151) 0.4034 (0.006363)

73 0.1020 (0.01056) 0.1327 (0.00928)

Va 0.05353 (0.00435)

Vs 0.2839 (0.01074) 0.2363 (0.00278)  0.2352 (0.009113)

1) —0.02802 (0.00373) —0.02863 —0.02881
(0.00278) (0.003459)

A n/a 2.2781 (0.102) 2.1280 (0.09279)

a 0.24306 0.4798 (0.0161) 0.3551 (0.006821)

oy n/a 0.4393° 0.3514°

oy n/a 0.1928° 0.1510°

[ n/a n/a n/a

Economies of scale = [1/(y; + 7, + 73 + 74 + p5)] — 1

ES 0.0846 0.0790 0.0775

Estimated cost inefficiencies, #;;

Mean 0.2611 0.2979 0.2524

SD 0.1186 0.1496 0.1629

Min. 0.0000 0.0796 0.0398

Max 0.8413 1.7642 1.7098

0.2855

0.2867 (0.008835)

0.5009 (0.06887)
0.2679°

0.1120 (0.001391)
0.23953

n/a

0.0853

0.1044
0.0498
0.0341
0.5612

0.6018 (0.1221)
0.4260 (0.0175)
0.03179 (0.00802)
0.1805 (0.01481)
0.08718 (0.01187)
0.1019 (0.00737)
0.3755 (0.00701)
0.09769 (0.00954)
0.05471 (0.00396)
0.2909 (0.00960)
—0.0287 (0.00376)

0.2476
n/a
n/a
n/a

0.0861

n/a
n/a
n/a
n/a

0.1779 (0.05954)
0.4194 (0.008871)
0.02266 (0.003868)
0.1738 (0.006928)
0.09398 (0.006003)
0.1025 (0.003771)
0.4033 (0.003622)
0.1371 (0.004502)
0.05077 (0.002135)
0.2347 (0.004987)
—0.02888 (0.001967)

2.2075 (0.05803)
0.3531 (0.003053)
0.3216°

0.1457°

0.03937 (0.003025)

0.0772

0.2531
0.1665
0.0374
1.7335

“Time variation terms: 1,997 = 0.08414 (0.1365), 17,995 = —0.2459(0.2079), 1,999 = —0.4023 (0.2684), 115990 = —0.9140 (0.4855).
bStandard error not computed.
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_— Kernel Density Based on Pooled Data Frontier Model
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Fig. 1. Estimated inefficiencies based on pooled data stochastic frontier model.

change of roughly 2.9% per year. These values are consistent with other studies of
the banking industry (e.g., Berger and Mester, 1997). The different formulations of
the model discussed below produce fairly minor variations in these technology
parameters. Our interest at this point will focus, instead, on estimates of technical
inefficiency. The overall level of inefficiency in the sample is suggested by the values
at the bottom of column (3), where the average inefficiency estimate for the full
sample based on this model is roughly 0.2524, or 25%, with a standard deviation of
0.1629. Fig. 1 suggests the form of the distribution.

3. Fixed effects modeling

Most applications of the fixed effects model in the frontier modeling framework
have been based on Schmidt and Sickles’s (1984) interpretation of the linear
regression model. The basic framework is a linear model,

Vie =% + B/Xit + vy, (11)
which can be estimated consistently by ‘within groups’ ordinary least squares (i.e.,
with dummy variables). The model is reinterpreted by treating o; as the firm specific

inefficiency term. The authors suggest that the productive efficiency of the firms in
the sample be compared on the basis of

&* = max; 6(,' — &j. 12
i

For the cost model studied here, we would use

Ak

o = o; —min; &. (127)

This approach has formed the basis of several recent applications of the fixed effects
model in this literature, such as Tandon et al. (2001) and Hollingsworth and
Wildman (2002). Some extensions that have been suggested include models with time
varying effects suggested by Cornwell et al. (1990), Lee and Schmidt (1993) and Han
et al. (2002). Notwithstanding the practical complication of the possibly huge
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number of parameters—in one of our applications, the full sample involves over
5000 observational units—all these models have a common shortcoming. By
interpreting the firm specific term as ‘inefficiency,” any unmeasured time invariant
cross firm heterogeneity must be assumed away. The use of deviations from the
maximum does not remedy this problem—indeed, if the sample does contain such
heterogeneity, the comparison approach compounds it. A second problem is that in
this formulation, the inefficiency must be assumed to be time invariant. For panels
which involve more than a very small number of periods, this is a significant and
possibly unreasonable assumption. Finally, since these approaches all preclude
covariates that do not vary through time, features such as income distribution (see
Greene, 2004) or industry characteristics cannot appear in this model.

3.1. A true fixed effects stochastic frontier model

Surprisingly, a true fixed effects formulation,
Vie =% + B/Xit + vir + Uy (13)

has made only scant appearance in this literature, in spite of the fact that many
applications involve only a modest number of firms, and the model could be
produced from the stochastic frontier model simply by creating the dummy
variables—a ‘brute force’ approach. The brute force approach will become
impractical, however, as the number of firms in the sample, and the number of
parameters (and variables) in the model, becomes large.* For example, the
application considered here involves 500 firms, sampled from 5000.° The fixed
effects model has the virtue that the effects may be correlated with the included
variables (see Greene, 2003a, p. 285). There remain two problems that must be
confronted. The first is the practical one just mentioned. This model may involve
many, perhaps thousands of parameters that must be estimated. Unlike, e.g., the
Poisson or binary logit models, the effects cannot be conditioned out of the
likelihood function. The second, more difficult problem is the incidental parameters
problem. With small 7" (group size—in our applications, 7 is 5), many fixed effects
estimators of model parameters are inconsistent and are subject to a small sample
bias as well. Beyond the theoretical and methodological results (see Neyman and
Scott, 1948; Lancaster, 2000) and numerous studies of the binomial probit and logit
models (see Hsiao, 1996; Heckman and MaCurdy, 1981; Greene, 2002) there is
almost no empirical econometric evidence on the severity of this problem. To date,
there has been no systematic analysis of the estimator for the stochastic frontier

“Polachek and Yoon (1996) specified and estimated a fixed effects stochastic frontier model that is
essentially identical to the one proposed here. Their ‘N’ was fairly large, 838 individuals observed in 16
periods, which they assessed as ‘impractical’ (p. 173).

5The increased capacity of contemporary hardware and software continue to raise these limits.
Nonetheless, even the most powerful software balks at some point. Within our experience, probably the
best known and widely used (unnamed) econometrics package will allow the user to specify a dummy
variable model with as many units as desired, but will ‘crash’ without warning well inside the dimensions
of the application in this paper.
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model (nor any others for continuous dependent variables). The analysis has an
additional layer of complication here because unlike any other familiar setting, it is
not parameter estimation that is of central interest in fitting stochastic frontiers. No
results have yet been obtained for how any systematic biases (if they exist) in the
parameter estimates are transmitted to the JLMS estimates of the inefficiency scores.

3.2. Computing the true fixed effects estimator

In the linear case, regression using group mean deviations sweeps out the fixed
effects. The slope estimator is not a function of the fixed effects which implies that it
(unlike the estimator of the fixed effect) is consistent. The literature contains a few
analogous cases of nonlinear models in which there are minimal sufficient statistics
for the individual effects, including the binomial logit model (see Chamberlain (1980)
for the result and Greene (2003a, Chapter 21) for discussion), the Poisson model and
Hausman et al. (1984) variant of the negative binomial regressions for count data,
the exponential regression model for a continuous nonnegative variable (see Munkin
and Trivedi, 2000) and the Weibull and Gamma duration models (see Chamberlain,
1985). In all these cases, the log likelihood conditioned on sufficient statistics or
otherwise transformed is a function of B that is free of the fixed effects. In other cases
of interest to practitioners, including the stochastic frontier model, this method will
be unusable. The log likelihood function for the fixed effects stochastic frontier
model is

log L = ) Tl LQD -2 Vi = % = X Vi — o — B'Xy ”
b= 2 e . o= a4

No transformation or conditioning operation will produce a likelihood function that
is free of the fixed effects, so it is necessary to estimate all N + K + 2 parameters
simultaneously.

Heckman and MaCurdy (1981) suggested a ‘zig-zag’ approach to maximization of
the log likelihood function, dummy variable coefficients and all, for the probit
model. For known set of fixed effect coefficients, a0 = («, ..., oy) , estimation of B is
straightforward. With a given estimate of B, maximizing the conditional log
likelihood function for each o; is also straightforward. Heckman and MaCurdy
suggested iterating back and forth between these two estimators until convergence is
achieved. In principle, this approach could be adopted with any model. However,
there is no guarantee that this back and forth procedure will converge to the true
joint maximum of the log likelihood function because the Hessian is not block
diagonal. Whether the estimator is even consistent in the dimension of N even if T is
large depends on the initial estimator being consistent, and in most cases, it is unclear
how one should obtain that consistent initial estimator. Polachek and Yoon (1994,
1996) applied essentially this approach to a fixed effects stochastic frontier model, for
N =834 individuals and T = 17 periods. This study represents the only full
implementation of a ‘true’ fixed effects estimator in the stochastic frontier setting.
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However, the authors stopped short of analyzing technical inefficiency—their results
focused on the structural parameters.

Maximization of the unconditional log likelihood function can, in fact, be done by
‘brute force,” even in the presence of possibly thousands of nuisance parameters by
using Newton’s method and some well-known results from matrix algebra (see
Sueyoshi, 1993; Greene, 2001, 2002, for details). Using these results, it is possible to
compute directly both the joint maximizers of the log likelihood and the appropriate
submatrix of the inverse of the analytic second derivatives for estimating asymptotic
standard errors.® The statistical behavior of the estimator is a separate issue, but it
turns out that the practical complications, which have long been viewed as a
practical barrier to use of the true fixed effects estimator, are actually easily
surmountable in many cases of interest to researchers including the stochastic
frontier model.”

3.3. Statistical behavior of the fixed effects estimator and an application

The small T bias of the MLE in the fixed effects estimator of binary choice models
has been widely documented and explored (see Greene, 2002, for a survey). But,
there is almost no evidence available for other models (nor for 7" greater than 2), and,
in particular, little to suggest that the widely accepted results extend to models with
continuous dependent variables. Greene (2002) studied several other models and
sample sizes and found that for the tobit model, the force of the small sample bias
appears to be exerted not on the slope parameters in the model, but on the
disturbance variance estimator. This would seem to be the more relevant case for the
stochastic frontier model. There are no comparable results for this model and,
moreover, as noted earlier, in this context, it is not the parameters, themselves, that
are of primary interest; it is the inefficiency estimates, E[u;|v;; + u;], which combine
both the slopes and the variance estimators, as well as the data. How any biases in
the estimated parameters are transmitted to these secondary results remains to be
examined.

We will analyze the behavior of the estimator through the following Monte Carlo
analysis: The actual banking industry data are employed to obtain a realistic
configuration of the right-hand side of the estimated equation, rather than simply
simulating some small number of artificial regressors. The first step in the analysis is

The results in Greene (2002) are cast in general terms, and can be applied to a large variety of models
including, as shown below, the normal-half normal stochastic frontier model. Extension to the normal-
exponential model would be a minor modification. Given the motivation for the estimator in the first
instance, greater payoff would seem to follow from incorporating this extension in the normal-truncated
normal model (see Stevenson, 1980; Kumbhakar and Lovell, 2000, for details).

"The result is suggested at several points in the literature, including Prentice and Gloeckler (1978), Rao
(1973) and Chamberlain (1980). Sueyoshi (1993) first formalized it in the econometrics literature, and
expressed some surprise that it was not more widely known nor incorporated into contemporary software.
On the latter point, as of this writing, it appears that Version 8.0 LIMDEP remains the only program to
have done so.
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to fit a Cobb—Douglas ‘true’ fixed effects stochastic frontier cost function

4
costy = o; +

5
Biwjic + Z VmYmir + O + Vg + (15)
Jj=1 m=1

using the method discussed earlier. These initial estimation results are shown in
column (2) of Table 1 above. In order to generate the replications for the Monte
Carlo study, we now use the estimated right-hand side of this equation as follows:
The estimated parameters for this model, ; = by, §,, = ¢, and 6 = d that are given
in Table 1 are taken as the true values for the structural parameters in the model. The
500 estimated fixed effects parameters, &; = aq;, were also used—these are not
reported in the table.® One set of five ‘true’ values for u; is generated for each firm,
and reused in every replication. These ‘inefficiencies’ are also maintained as part of
the data for each firm for the replications. To emphasize that these have been
simulated, we denote these draws u}. The firm specific values of u, used in the
simulations are produced using u, = |U},| where U}, is a random draw from the
normal distribution with mean zero and standard deviation s, = 0.43931, that is, the
estimated value of o, (again, see Table 1).” Thus, for each firm, the fixed data consist
of the raw data wj;, y,,, and ¢, the firm specific constant term, a;, the inefficiencies,

u}, and the structural cost data, cost},, produced using

4 5
cos[;.kt =a; + Z bjo,'t =+ Z CmYmir + dt + M?} (16)
j=1 m=1

By this device, the underlying data to which we will fit the Cobb-Douglas fixed
effects model actually are generated by an underlying mechanism that exactly
satisfies the assumptions of the true fixed effects stochastic frontier model and, in
addition, is based on a realistic configuration of the right-hand side variables. Each
replication, r, is then produced by generating a set of disturbances, v;(r),
t=1,...,5 i=1,..., 500, from the normal distribution with mean 0 and standard
deviation 0.19284 (the value estimated with the underlying stochastic frontier
model—see the results in Table 1). The data that enter each replication of the
simulation are, then cost;(r) = cost}, + v;(r). The estimation was replicated 100 times
to produce the sampling distributions reported below. Results of this part of the
study are summarized in the summary statistics given in Table 2. The summary
statistics for the model parameters are computed for the 100 values of the percentage

8Note, the fixed effects are not part of the simulation. The firm specific constants, @;, are being
maintained as invariant characteristics of the firm, in the same fashion as the other firm specific data. The
signature feature of the ‘fixed effects’ model is correlation between the individual effects and the other
variables in the model. We have not imposed any prior on this in our simulation; the fixed effects used in
the simulations are simply those estimated with the rest of the model using the original raw data. The
sample correlations between the fixed effects and the group means of the regressors ranged from zero to
roughly 0.3.

“Doing the replications with a fresh set of values of u}, generated in each simulation produced virtually
the same results. Retaining the fixed set as done here facilitates the analysis of the results in terms of
estimation of a set of invariant quantities.
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Table 2

Summary statistics for Monte Carlo replications®

Estimated Mean Standard dev. Minimum Maximum
I -2.39 5.37 —22.53 10.20
i) —2.58 36.24 —97.53 87.09
b3 12.43 9.47 -9.72 36.61
Ba —13.30 13.84 —46.22 19.16
7 —6.54 6.92 —19.64 9.98
V2 2.71 1.58 —1.25 6.38
73 13.13 6.89 —5.60 30.42
Va —4.19 7.04 —20.01 12.22
Vs —8.44 4.33 —17.73 7.18
0 11.43 12.30 —14.96 45.16
o —4.53 3.57 —13.00 5.78
A —27.28 6.71 —41.70 —8.24
Scale® 0.48 6.96 —22.30 15.42
it 5.02 7.31 —9.86 25.44

4Table values are computed for the percentage error of the estimates from the true values in column (2)
of Table 1.
PEconomies of scale estimated by 1/(y; + 7, + 73 + 74 + v5) — .

error of the estimated parameter from the assumed true value (the estimates obtained
at the first step where (15) is estimated using the sample data). For the structural
coefficients in the models, the biases in the slope estimators are actually fairly
moderate in comparison to the 30% to 50% biases in the probit, logit and ordered
probit estimates obtained for comparable sample sizes in Greene (2002). Moreover,
unlike the cases of the probit, logit and other models analyzed elsewhere, there is no
systematic pattern in the signs of the biases in the estimated parameters. (No other
study that we have seen reports this sort of result—the small T bias is generally
assumed uniformly to be away from zero.) The economies of scale parameter is
estimated with a bias of only 0.48%; that is far smaller than the estimated sampling
variation of the estimator itself (roughly +7%). Overall the deviations of the
regression parameters are surprisingly small given the small 7. Moreover, in several
cases, the bias appears be toward zero, not away from it, as in the more familiar
cases.'®

In view of the widely accepted results (see Hsiao, 1996; Lancaster, 2000; Greene,
2002), it may seem surprising that, in this setting, the fixed effects estimator should
perform so well. However, the same effect was observed for the tobit model in
Greene (2002). The force of the incidental parameters problem appears to show up in

1%One might wonder whether the assumed distribution of v; has any influence in these results. The
normality assumption is part of the structure of the model and, indeed, the literature on stochastic
frontiers has focused sharply on variations in the distribution of u; while maintaining this assumption
about v;. In view of this, we have left this analysis for other work.
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the variance estimators, not in the slope estimators.'' Since A and ¢ are crucial
parameters in the computation of the inefficiency estimates, this leads us to expect
some large biases in these estimators. We computed the sampling error in the
computation of the inefficiency for each of the 2500 observations in each replication,
duj(r) = estimated u;(r) — u,. (Recall, in the simulations, u}, is the ‘true’ inefficiency
for firm 7 in period ¢. The estimate is computed using the JLMS estimator defined in
(6).) The value was not scaled, as these are already measured as percentages (changes
in log cost); we have analyzed the raw deviations, du;(r). The mean of these 2500
deviations is computed for each of the 100 replications. Table 2 reports the sample
statistics for these 100 means. On average, the estimated model overestimates the
‘true’ values by about 0.05. Since the overall mean is about 0.25, this is an
overestimation error of about 25%. We also computed the sample correlations of the
estimated residuals, u;(r) with the true values, u}, and the rank correlations of the
ranks of these two variables for the 2500 observations in each of the 100 replications.
In both cases, the average of the 100 correlations was about 0.60, suggesting a
reasonable degree of agreement.

We conclude this analysis of fixed effects estimation with a somewhat perplexing
result. Figs. 2a and b show the sample distribution of the two sets of inefficiency
estimates based on the fixed effects estimators computed for the actual data. The
descriptive statistics for the two sets are similar, with means of roughly 0.26 and 0.30
and standard deviations of roughly 0.12 and 0.15 (see the first two columns in the
lower part of Table 1). The true fixed effects estimates are slightly more disperse. But,
the scatter plot of the two series at the upper right in Fig. 3 reveals how misleading
the simple statistics can be. The simple correlation between them is only about 0.05.
(Note that the each regression-based estimate appears five times in the sample,
whereas the true fixed effects estimate is unique for each period for each firm.) We
conclude that in spite of superficial similarities, the relationship between these two
sets of estimates is truly unclear.

4. Random effects models

The random effects specification is likewise motivated by the familiar linear model.
It is assumed that the firm specific inefficiency (in proportional terms) is the same
every year. Thus, the model becomes

Vie = o0+ BXie + vi £ uj, (17)

where u; and v, t = 1,..., T are independent and, moreover, u; is independent of x;;.
The idiosyncratic term in (17) is specified as NJ0, ¢,2] exactly as before, while the
inefficiency term, u; has the original half normal distribution. Note that the
inefficiency term is now time invariant. In terms of our original proposition, this

""This result was suggested to the author in correspondence from Manual Arellano, who has also
examined some limited dependent variable estimators in the context of panel data estimators (see Arellano,
2000).
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Fig. 2. Estimated inefficiencies based on: (a) true fixed effects frontier model; (b) fixed effects linear
regression model.

model not only absorbs all unmeasured heterogeneity in u;, but also assumes that it is
uncorrelated with the included variables. This model, proposed by Pitt and Lee
(1981) can be fit by maximum likelihood. The model was also extended to the
exponential case. In addition, it is straightforward to layer in the important
extensions noted earlier, nonzero mean in the distribution of u; and heteroscedas-
ticity in either or both of the underlying normal distributions.

The time invariance of the inefficiency component of this model has been a
problematic assumption. A number of studies have proposed extensions that provide
for time variation in the inefficiency term, including Kumbhakar (1990) and
Kumbhakar and Heshmati (1988). One form which has appeared in a number of
recent studies is Battese and Coelli’s (1988, 1992, 1995) model, which consists of
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Fig. 3. Scatter plots: estimated inefficiencies based on LSDV (UIT_LSDYV), true FEM (UIT_FEM), true
REM (UIT_RCM) and Battese and Coelli (UIT_BC) estimators.

variations on
Uip=9g@,t, T) x|Uj, (18)

in which z; is vector of firm specific covariates, ¢t and T are as before, and g(-) is a
deterministic, positive function such as exp(-). Battese and Coelli (1988) suggested a
monotonic ‘decay’ model, g(z, T) = exp[—#(t — T)]. (An application to the Spanish
banking system is given in Orea and Kumbhakar (2004).) Though this does relax the
invariance assumption, it appears (based on our results below) that the fact that the
random component is still time invariant remains a substantive and detrimental
restriction.
The estimator of the firm specific inefficiency in the random effects model is

P(uf/o%)
Eluilei, e, . . ., eim] = i + 0* {’ ,
e T ; S o)

where pf = —p*(Z.ei), 6> = p*a?, p* = 2*/(1 + T2%), and i = g,/a,. (The sign on
Wi is positive for a cost frontier.) (see Kumbhakar and Lovell (2000) for extensions to
the truncation and heteroscedasticity models. The extension to the Battese and Coelli
style estimators appears in Greene (2004).)

The random effects model with the proposed extensions has three noteworthy
shortcomings. The first is its implicit assumption that the effects are not correlated
with the included variables. This problem could be reduced through the inclusion of
those effects in the mean and/or variance of the distribution of u; however (see
Greene, 2004, for an application). The second problem with the random effects

(19)
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model is its implicit assumption that the inefficiency is the same in every period. For
a long time series of data, this is likely to be a particularly strong assumption. The
third shortcoming of this model is the same as characterized the fixed effects
regression model. Regardless of how it is formulated, in this model, u; carries both
the inefficiency and, in addition, any time invariant firm specific heterogeneity.

4.1. A true random effects stochastic frontier model

As a first pass at extending the model, we consider the following ‘true’ random
effects specification:

Vie = o+ B'Xir + wi + vie £ Uy, (20)

where w; is the random firm specific effect and v;, and u;; are the symmetric and one
sided components specified earlier. In essence, this would appear to be a regression
model with a three part disturbance, which raises questions of identification.
However, that interpretation would be misleading, as the model actually has a two
part composed error;

Vie = o+ B'Xa + wi + i, Q1)

which is an ordinary random effects model, albeit one in which the time varying
component has the asymmetric distribution in (22). The conditional (on w;) density is
that of the compound disturbance in the stochastic frontier model,

. D(—¢;h/o) 1 Eit
S ==ga" 5 0(5) 22)
where, as before, 1 =o0,/0, and ¢ = \/0o2 + ¢2. Thus, this is actually a random
effects model in which the time varying component does not have a normal
distribution, though w; may. In order to estimate this random effects model by
maximum likelihood, as usual, it is necessary to integrate the common term out of
the likelihood function. There is no closed form for the density of the compound
disturbance in this model. However, the integration can be done by either by
quadrature or by simulation. To set the stage for the treatment to be proposed later,
we can write this model equivalently as a stochastic frontier with a firm specific
random constant term,

Vie = (@4 wi) + B'Xi + vir £ . (23)

This is a special case of the random parameters model discussed in the next section
(see, as well, Greene, 2001; Tsionas, 2002). We note, as before, that this model can be
extended to the normal-truncated normal model and/or to a singly or doubly
heteroscedastic model with only minor modifications.

4.2. Application of random effects to banking industry

Estimates of the Pitt and Lee random effects model and the random constant term
model based on the original (actual) data set are presented in columns (4) and (7) of



286 W. Greene | Journal of Econometrics 126 (2005) 269-303

Table 1. The least restrictive variant of the Battese and Coelli model in (18),
g(t) = exp(p, Year;), where Year, is a set (less one) of year dummy variables, is also
presented, in column (5). Thus, the one sided component of the composed error
moves freely from year to year in this formulation. Descriptive statistics for the
estimated inefficiency distributions are presented in the lower panel of Table 1. Based
on the results for the other specifications already considered, it appears that the
invariance assumption of the random effects model considerably impacts the results.
The average value of the estimated u; is far smaller in the random effects models than
in the others as are the standard deviations. The estimated inefficiencies with this
model are uniformly smaller than those computed with the other forms. Since the
random effects model adds an additional assumption to the model (lack of
correlation between the effects and the included variables), it is a more restrictive
model, so (lacking a statistical test) we conclude that it is this specification, not the
others, which is less plausible. Note, as well, that compared to all the other models,
the estimate of g, is much smaller and the estimate of g, is far larger. It is also clear
how the formulation of ¢(z) in the Battese and Coelli model is impacting the results.
In spite of the quite large estimated values of #, (shown in footnote b of Table 1), the
estimate of o, is essentially the same. The movement of u; in the Pitt and Lee
formulation is not being revealed well by the model—the large value of s, shows that
it is being placed in v;, instead. The extension of the Battese and Coelli formulation
picks up some of this variation; the estimate of o, is now considerably smaller
(falling from 0.8110 to 0.2395), but the estimate of g, does not rise correspondingly,
changing only from 0.09517 to 0.1120. (This is to be expected, since the one sided
term in this model is g(¢)|U;|.) The balance of the movement is being absorbed by
g(1), but, surprisingly, this is not being translated into substantially larger values or
greater dispersion in the estimates of u;. Thus, the random effects formulation
essentially shifts the variation around the frontier away from the inefficiency term
into the symmetric, idiosyncratic term. Looking at the simple pooled least-squares
estimate presented in column (6) suggests another interpretation. The random effects
and Battese and Coelli models show only minor differences from OLS—this is also
to be expected since in this form, OLS is consistent save for the constant term. This
suggests, instead, that the random constants models are not shifting the variation out
of v;, into u; to the extent we might expect (hope). Finally, we note that the random
constants model differs considerably from both the Pitt and Lee and the Battese and
Coelli model. The distribution of inefficiency estimates more nearly resembles those
for the fixed effects estimators, as do the variance components.

The literature contains several comparisons of fixed and random effects estimators
to each other. Kumbhakar and Lovell (2000, pp. 106-107) describe Gong and
Sickles’ (1989) comparison of the Pitt and Lee and the Schmidt and Sickles
approaches, where it is found that they give similar answers. Note the near perfect
concordance between the LSDV and the Battese and Coelli estimates at the lower
right in Fig. 3 below. Bauer et al. (1993) likewise find consistent similarity between
fixed and random effects estimators based on regression, but notable differences
between these and estimates produced using Pitt and Lee’s approach. We have found
the same consistency in our fixed and random effects estimates, as can be seen in the
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upper left graph in Fig. 3. What is striking here and has not been documented
previously, however, is the absolute divergence between the results produced by the
‘true’ fixed and random effects models and the time invariant approaches that these
other authors have documented. Fig. 3 underscores the point. Once again, it suggests
that the issue that merits much greater scrutiny is not whether use of a fixed effects or
random effects is a determinant of the results, but the extent to which the
specification platform on which the model is placed is driving the results. The two off
diagonal scatters below strongly suggest that the different estimation platforms
considered here are producing very different results. Certainly some of the
explanation of this can be laid to the lack of handling of any type of unmeasured
heterogeneity in the time invariant formats.

5. Parameter heterogeneity—random parameter models

The preceding has explored several specifications of the stochastic frontier model
that effectively treat firm and time specific ‘noise,” cost inefficiency, and unmeasured
heterogeneity all as constants that collectively compose the ‘disturbance’ in

Yy=o+ B/Xiz + Wit + vip £ uy, (24)

which of the first and third components (if either) can reasonably be treated as time
invariant has been examined in Sections 3 and 4. We now consider some alternative
formulations of the stochastic frontier model that allow the function to vary more
generally across firms. This section begins with a random parameters formulation
that models cross firm heterogeneity in the form of continuous parameter variation.
The latent class model can be viewed as an approximation to this, in which the
variation is treated as generated by a discrete distribution instead. Bayesian
formulations of the stochastic frontier model can be viewed as random parameter
models as well. We will examine some Bayesian treatments at the end of this section.

5.1. Specifying and estimating a random parameters stochastic frontier model

A general form of the random parameters stochastic frontier model may be
written as
(1) Stochastic frontier : Vie = o + BiXie + vip & iy,
v ~ NJO, ag], vy Loy
(2) Inefficiency distribution : i = |Uyl, Ui ~ N[y;,02.],
1 = Wizi,
0ut = G exp(Uhy). 2
(3) Parameter heterogeneity : (%, B;) = (&, B) + Aupq; + TopWepis
B =n+ Aug; + Lpwy,
0, = 0+ Agq; + Towo:.
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Each subvector of the full parameter vector, («;B;), p; or 0;, is allowed to vary
randomly with mean vector (z, p) + A, pq; and likewise for the others, where A; is a
conformable matrix of parameters to be estimated and q; is a set of related variables
which enters the distribution of the random parameters. Random variation is
parameterized in the random vector wj, j = (o, p), p,0, which is assumed to have
mean vector zero and known diagonal covariance matrix X;. An unrestricted
covariance matrix is produced by allowing I'; to be a free, lower triangular matrix.
The Cholesky factorization is used for convenience in formulating and manipulating
the likelihood function. The random vectors w; will usually be assumed to be
normally distributed, in which case, ¥; = I. Other distributions can be assumed in
this framework, such as logistic in Wthh case X; = (n2/3)I or uniform [—1,1] in
which case X; = (1/3)I and so on. (If appropriate, the methodology to be described
can allow the components of w;; to have different distributions.) (Some dynamics can
also be accommodated by an autoregressive formulation,

Wi = ij,tfl + m;;, (26)

where the simulation is now over m;.) The underlying covariance matrix for the
parameter vector conditioned on the data would then be Var(o;, B;] = Uy p(Xop)l,p
and likewise for p; and 0;. Since the elements of I'; are unrestricted, the assumption of
known X is only a normalization, not a restriction, equivalent to writing the
disturbance in a regression model as ¢; = ou;, where u; has mean zero and standard
deviation one.

Many of the models already considered and elsewhere in the literature are special
cases. The random constants model of Section 4.2 results if «; is the only random
component in the model. (Placing o first in the parameter vector and using the
Cholesky factorization makes the true random effects model a convenient special
case.) This hierarchical model also includes Chamberlain’s (1984, p. 1250) suggestion
for modeling fixed effects—precisely his model results if the only random component
in the model is o; = a + A,q; + I';w,;. Obviously, with other components allowed to
vary randomly, much greater generality can be produced. For example, with
nonstochastic parameters (I';=0), nonzero elements in A provide a method of
constructing a ‘hierarchical,” or ‘mixed’ model. This formulation of the random
parameters model greatly expands the random coefficients model generally
associated with the linear regression model. (Swamy and Tavlas (2001) label this a
‘second generation’ random parameters model in contrast to the familiar ‘first
generation’ linear model’ (see Hildreth and H