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The error term in the stochastic frontier model is of the form (C-U), where u is a normal error 
term representing pure randomness, and u is a non-negative error term representing technical 
inefficiency. The entire (U-U) is easily estimated for each observation, but a previously unsolved 
problem is how to separate it into its two components, tl and U. This paper suggests a solution 
to this problem, by considering the expected value of IL, conditional on (U-U). An explicit 
formula is given for the half-normal and exponential cases. 

1. Introduction 

Consider a production function yi =g(xi, fl) + ,Q (i = 1,2,. ., N), where ,yi = 
output for observation i, .q=vector of inputs for observation i, /I= vector of 
parameters, ~=error term for observation i. The ‘stochastic frontier’ (also 
called ‘composed error’) model, introduced by Aigner, Love11 and Schmidt 
(1977) and Meeusen and van den Broeck (1977), postulates that the error 
term .zi is made up of two independent components, 

&i=vi-ll. L2 (1) 
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where t+ -N(O, c,“) is a two-sided error term representing the usual statistical 
noise found in any relationship, and ui >=O is a one-sided error term 
representing technical inefficiency. Note that ui measures technical 
inefficiency in the sense that it measures the shortfall of output (y,) from its 
maximal possible value given by the stochastic frontier [g(x,, 8) + vi]. 

When a model of this form is estimated, one readily obtains residuals 
6;=y-g(xi, fl), which can be regarded as estimates of the error terms si. 
However the problem of decomposing these estimates into separate estimates 
of the components vi and ui has remained unsolved for some time. Of course, 
the auerage technical inefficiency - the mean of the distribution of the ui - 
is easily calculated. For example, in the half-normal case [ui distributed as 
the absolute value of a N(O,CJ~) variable], the mean technical inefficiency is 
0,,/(2/z), and th is can be evaluated given one’s estimate of cur as in Aigner, 
Love11 and Schmidt (1977) or Schmidt and Love11 (1979). Or average 
technical inefficiency can be estimated by the average of the & But it is also 
clearly desirable to be able to estimate the technical inefficiency ui for each 
observation. Indeed this was Farrell’s (1957) original motivation for 
introducing production frontiers, and the ability to compare levels of 
efficiency across observations remains the most compelling reason for 
estimating frontiers. 

Intuitively, this should be possible because ci= ui-ui can be estimated and 
it obviously contains information on ui. In this paper, we proceed by 
considering the conditional distribution of ui given si. This distribution 
contains whatever information si yields about up Either the mean or the 
mode of this distribution can be used as a point estimate of ui. For the 
commonly assumed cases of half-normal and exponential ui, these 
expressions are easily evaluated. 

2. The half-normal case 

We consider the two-part disturbance given in (1) above, with vi- N(0, of) 
and ui-lN(O, a:)). For notational simplicity, we drop the observation 

subscript (i) in this and the following section. We define 

u2=u2+u2 ” “2 U, = -U,” E/U2, u; = CT,’ C&T’. 

Then our main result (proved in the appendix) is the following: 

Theorem I. The conditional distribution of u given E is that of a iV&..o~) 
variable truncated at zero. 

We can use this distribution to draw inferences about U. For example, 
confidence intervals for u are easily constructed. As a point estimate of u, we 
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can use either the mean or the mode of its conditional distribution. The 
mean is 

where f and F represent the standard normal density and cdf, respectively. 
We can also note that -&a, = EA/~, where 2 = IJ,,/G”; this is the same point 
at which f and F are evaluated in calculating the likelihood function. Thus 

we obtain 

The second point estimator for u, the mode of the conditional distribution, is 
the minimum of ,LL* and zero, which we can write as 

M(u 1 E) = - &(fJ,‘/cJ’) if E 5 0, 

=o if E>O. (4) 

The mode M(u 1 E) can be given an appealing interpretation as a maximum 
likelihood estimator; it can be derived by maximizing the joint density of u 
and u with respect to u and c, subject to the constraint that v--u=&, as in 
Materov (198 1). 

Incidentally, it is easily verified that the expressions in (3) and (4) are non- 
negative, and monotonic in E. Also, the more general truncated normal case 
of Stevenson (1980) yields similar results, with minor algebraic complications. 

Of course, ,u* and o.+ are unknown, and thus in using any of the above 
results we will have to replace /_L* and o* by their estimates, say fi, and 8,. 

[For example, in place of E(u 1 E) we must use _!?(u 1 E), the difference being 
evaluation at &, r?* in place of p*, o*; and so forth.] In principle, the 

variability due to this sampling error should be taken into account. However. 
this would be very difficult to do. Furthermore, it is clear that the sampling 
error disappears asymptotically, and thus can be ignored for large enough 
samples. This is in contrast to the variability intrinsic to the conditional 
distribution of u given E, which is independent of sample size, being just a 
reflection of the obvious fact that E contains only imperfect information 

about U. 

3. The exponential case 

This case is identical to the half-normal case, except that now the technical 
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inefficiency error term u is assumed to follow the one-parameter exponential 
distribution with density f(u) = exp( -U/C,)/ rrU. Our results are similar to those 
for the half-normal case. Define A =E/(T,+cJ,/cJ,. Then we have the following 
result: 

Theorem 2. The conditional distribution of u given E is that of a N( - IT”A, a:) 

variable truncated at zero. 

The mean and mode of this distribution are 

wI&)=Q” & [ 
M(uI&)= -&-u;/u” 

=o 

-A > I (5) 

(6) 

4. An example 

Schmidt and Love11 (1980) estimated a system consisting of a stochastic 
frontier production function and first-order conditions for cost minimization, 

based on a sample of 111 steam-electric generating plants. The estimates on 
which our calculations are based are those reported in the first column 
of table 1 of Schmidt and Lovell. In particular, note that c?,” =0.01445, 
6: =0.00326, and that the estimated average technical inefficiency (mean of u) 
is 0.0959, indicating about 9.6 percent technical inefficiency. 

We have calculated (our estimate of) the conditional distribution of u given 
E, for each observation, based on the results of section 2 since estimation 
assumed half-normal u. We do not present results for all 111 observations, 
but rather point out some interesting aspects of these results. 

(1) The mean of @u 1 E) is 0.0939, which is in the same ballpark as the 0.0959 
reported above, and as the mean of 0.0943 of the -t?. The mean of 

fi(u 1 E) is 0.0687. 

(2) The most positive E^ (most technically efficient observation) in the sample 
is 0.1589 (a modest outlier, about 2.75 standard deviations from the 
mean of the E^). This yields ,ii* = -0.1296, 8, =0.0516, so that the 
conditional distribution of u given E is the extreme right tail of a normal 
- only about 0.006 of the area of N( - 0.1296, 0.051 52) lies to the right 
of zero. We have ii?(u ( E) =O, J!$U ( ~)=0.0166; a 95% confidence interval 
for u is [0.00046, 0.05681. 



(3) 

(4) 

(5) 
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Twenty observations (including the one just cited) have I\/j(u ) E) =O; each 
of these also has a fairly small value of fi(u 1 E). The most technically 
efficient observations can be characterized as having relatively high 
outputs, low capital stocks, and high levels of fuel consumption and 
labor usage. They also represent plants of fairly recent vintage, the mean 
year of plant installation being 1959. Their level of allocative inefficiency 
[see Schmidt and Love11 (1979)] is below average, though not strongly 

SO. 

The most technically inefficient observation in the sample had E^= 
-0.4554 (a large outlier, about 4 standard deviations from the mean). 
This yields ,&=0.3716, 6,=0.0516, so that the conditional distribution 
of u given E is basically an untruncated normal distribution. We have 
A?(u ( E) = i?(u ( E) =0.3716, with a 95% conlidence interval for u being 
CO.2705 0.47271. 

Five observations (including the one just cited) have estimated rates of 
technical inefficiency in excess of 20%. These five most technically 
inefficient observations are more difficult to characterize than are the 20 
most technically efficient observations. They have rather average outputs 

and (naturally) above average input usage, and they also have slightly 
above average levels of allocative inefficiency. They represent plants of 

relatively early vintage, their mean year of plant installation being 1951. 

5. Conclusions 

In this paper, we have proposed a method of separating the error term of 
the stochastic frontier model into its two components for each observation. 
This enables one to estimate the level of technically inefficiency for each 
observation in the sample, and largely removes what had been viewed as a 
considerable disadvantage of the stochastic frontier model relative to other 
models (so-called deterministic frontiers) for which technical inefficiency is 

readily measured for each observation. 

Appendix 

In the half-normal case, u-N(0, oi), u is distributed as the absolute value 
of N(0, oi), v and u are independent, and E = v- u. We wish to find the 
distribution of u conditional on E. 

The joint density of u and u is the product of their individual densities; 
since they are independent, 

(A.11 
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Making the transformation E = v - u, the joint density of u and E is 

1 
f(u, 8) = __ *fJIP, exp 

[ 
-&2-&(U2+CZ+2UE) . ” ” 1 

The density of E is given by eq. (8) of Aigner, Love11 

A 

and Schmidt (1977), 

f(e)= 2 ---(l-F)exp 
1 

&a [ 1 
--Ed , 

202 

where a* = a,f + ai, A= au/a,,, and F is the standard 
#a. Therefore, the conditional density of u given 
(A.3), which we can write as 

64.2) 

(A.3) 

normal cdf, evaluated at 
E is the ratio of (A.2) to 

~~ f(uIE)=ia* llFexp ~u~--$u,-$, , 1 ~10, (A.4) 

where af = a,’ az/a2. With a little algebra, this simplifies to 

f(u)&)=11 
1 -F &a, exp 

-l(u + at E/a2)2 
2a: 1 , u 2 0. (A.51 

Except for the term involving 1 -F, this looks like the density of N(p*,az), 
with ,u* = -a,‘&/a*. Finally, note that F is evluated at d/a= -&/a,, and 
thus (1 -F) is just the probability that a IV@*, a:) variable be positive. Thus, 
(A.5) is indeed the density of a AJ(p*,a:) variable truncated at zero. 
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