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This paper uses a panel-data framework and models firm-specific technical inefficiency which is 
allowed to vary over time. The specification is flexible enough to accommodate increasing, 
decreasing, and time-invariant behavior of technical inefficiency. Time-varying firm- and input- 
specific allocative inefficiency is also incorporated. The estimation method suggested uses a 
parametric production function and cost-minimization hypothesis. 

1. Introduction 

One of the major objectives of studying production and cost frontiers is to 
estimate economic efficiency of the production units (firms). A cost-minimiz- 
ing firm may be inefficient due to (i) technical inefficiency and/or (ii) 
allocative inefficiency. In estimating technical inefficiency using a cross-sec- 
tion of firms, one has to assume technical inefficiency to be random and 
specific distributional assumptions are required [see Aigner et al. (197711. 
But, if panel data are available one can estimate technical inefficiency 
without specifying distributional assumptions, provided it is time-invariant 
[see Schmidt and Sickles (1984), Kumbhakar (1987a)l. However, maximum- 
likelihood estimators given appropriate distributional assumptions can be 
more efficient.’ 

The assumption of time-invariant technical inefficiency may not be as 
innocuous as it appears. Imposing this restriction without formally testing its 
appropriateness may result in inconsistency of estimators for the parameters 
of the model as well as for technical and allocative inefficiency. There are two 
important papers in which the time-invariant assumption of technical and 
allocative inefficiency has been relaxed. Sickles et al. (1986) modelled alloca- 
tive inefficiency where firms adjust output supplies and input demands to the 
wrong price ratios. These price distortions are allowed to vary over time 
which makes allocative inefficiency time-dependent. However, these are two 
problems. First, allocative inefficiency is input-specific but not firm-specific. 

*I would like to thank three anonymous referees of this journal for their constructive 
comments. 

‘See Kumbhakar (1988) for a case where both technical and allocative inefficiency are 
time-invariant. 
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Second, the model does not allow for technical inefficiency. The model 
developed by Cornwall et al. (1990), on the other hand, does allow technical 
inefficiency to vary over time by specifying it as a quadratic function of time. 
But, since this model is a single-equation framework, in which only the 
production function is used, allocative inefficiency is not captured by the 
model. This may result in inconsistent estimators if the inputs are endoge- 
nous. However, one major advantage of both these models is that no ‘special’ 
distributional assumptions are needed for technical or allocative inefficiency. 

In contrast to these formulations, we present a model that accommodates 
both technical and allocative ine~cien~. Using the cost-minimization frame- 
work, we model (i) time-varying technical inefficiency and (ii) allocative 
inefficiency that varies over time and across firms. The model also accommo- 
dates exogenous inputs. The maximum-likelihood method is suggested, based 
on the usual distributional assumptions on technical and allocative ineffi- 
ciency. Thus the present model overcomes the limitations of the Sickles et al. 
(1986) and Cornwell et al. (1990) formulations. The only disadvantage is its 
dependence on distributional assumptions. 

The paper is organized as follows. The model is formulated in section 2. 
Estimation techniques are discussed in section 3. Section 4 generalizes some 
results and section 5 summarizes the paper. 

2. The model 

We start with a somewhat restricted form of the translog production 
function2 namely, 

(1) 

where u (5 0) contributes to technical inefficiency, u is a white noise random 
error, xi (i = 1,. . . , n) are variable inputs and zj (j = 1,. . . , m) are exogenous 
shift variables. We assume that the firm’s objective is to minimize cost subject 
to the stochastic production function (1). A cost-minimizing firm is said to be 
allocatively inefficient if fj/f, # wi/wl, where f, is the marginal product of 
input xi and wi is its price. Following Schmidt and Love11 (1979), allocative 
inefficiency can be modelled as 

In x1 - In xi - ln( wi/wl) + In ai + CSij In Zj 

i 

i 

1 

-1n 
( 

~yr + ES,, In zj = ti, 
1 

i=2 t***, n2, 
i 

(2) 

‘The production function is assumed to satisfy monotonicjty and convexity conditions 
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where ti represents allocative inefficiency for the input pair (j, I). The 
parameters of the model outlined in (1) and (2) can be estimated by the 
maximum-likelihood (ML) method, given suitable distributional assumptions 
on u, v, and t2,. . . , 5,. Once the parameters are estimated, allocative 
ine~ciency &, . . . , tj,, can be estimated from (2). Technical inefficiency, U, 
can then be estimated from the mean or mode of the conditional distribution 
of u given (U + v), as proposed by Jondrow et al. (1982). One can also 
estimate technical efficiency, exp(u) given (u + v). 

The estimates of technical inefficiency are not consistent if the model is 
estimated using data from a cross-section of firms. This problem can poten- 
tially be avoided by using panel data. However, some additional assumptions 
are required regarding the time behavior of technical and aIlocative inefh- 
ciency. The usual assumptions in the literature are [see Battese and Coelli 
(1988), Kumbhakar (1987b, 1988) Pitt and Lee (1981), Schmidt (1986), and 
Schmidt and Sickles (1984)1: 

(i) gft are time-invariant and distributed as i.i.d. N(0, aT2) truncated at zero 
from above, 

(ii) t,.;-t N i.i.d. N(0, Z) for all f and t, where tf, = (fZft,. . . , C,,?, 
(iii) uft N i.i.d. N(O,a,f) for ail f and t, 

(iv) ufl, uf,, and c,fl are independent for all f and t, 

where f indexes firm (f= 1,2,. . . , F) and t indexes time (t = 1,2,. . . ,Z’>. 

The most serious of these assumptions is (i), especially if u is assumed to 
be known to the firm. If so, how can a firm do nothing over time knowing that 
it is technically inefficient? Empirically it would be advantageous to test 
whether u is time-invariant. Simply imposing it in the model without testing 
may cause inconsistent estimators of the parameters, and of technical ineffi- 
ciency. Assumptions (ii) and (iii) are standard and reasonable. But assump- 
tion (iv) may require some justification, It is reasonable to assume that 
technical and allocative inefficiency (U and 5) are independent of random 
statistical error (v), since c’ is not under the control of any firm while u and 5 
are. On the other hand, the assumption of independence of u and 5 is 
questionable. Schmidt and Love11 (1980) have developed a technique to test 
this independence assumption. However, the introduction of correlated in- 
efficiencies requires some additional distributional assumptions which may be 
arbitrary. But, even apart from these, the model becomes very complicated, 
and so we have retained the independence assumption. 

In this paper we consider a formulation of technical inefficiency which is 
flexible enough to handle different types of time behavior. Time-invariant 
inefficiency becomes a special case that can be statistically tested by a t-test 
or by a generalized Iikelihood-ratio (LR) test. 

Let ufr = Y(t)rf, where y(t) is a well defined function of t and rr is 
time-invariant but varies across firms. We assume TV to be random, dis- 
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tributed as i.i.d. N(0, al21 and truncated at zero TV I 0. There can be a wide 
range of choices for y(f). We consider the following: 

y(t) = (1 + exp(bt + cl’))-‘. (3) 

This particuIar form of y(t) has the following features: 

6) r(t > 2 0 for all t, which implies uft I 0 since 7f I 0. 
(ii> y(t) is bounded between (0,l). 
(iii) y(t) can be monotonically increasing (decreasing) or concave (convex) 

depending on the signs and magnitude of b and c. 

Thus (iii) allows the data to determine the time behavior of y(t) and hence 
ufi, instead of imposing it a priori. If b + ct < 0 ( > 0) for all I, a simpler 
functional form can serve the purpose. For example, 

y(t) = (1+ exp(bt))-’ (4) 

can show either monotonically increasing (b < 0) or decreasing (b > 0) be- 
havior of technical inefficiency. The time-invariance assumption on ufr is 
equivalent to b = 0, which may be tested with an asymptotic t-test or a LR 
test. On the other hand, if specification (3) is used, then uft will be 
time-invariant if b = c = 0, which can be tested by using a LR test. 

3. Estimation 

Rewriting (1) in logarithmic form and introducing firm and time subscripts 
yields 

In yf, = cyo + t: LYE In Xift + C pj In Zjft + C C 6ij In Xifr In zjft + oft 

i i i j 

where 

It is inappropriate to estimate (5) with Ordinary Least-Squares (OLS) if y is 
exogenous and xi endogenous, as is the case in a cost-minimization problem. 
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On the other hand, if y is endogenous and everything else is exogenous, OLS 
may seem appropriate. However, in fact, OLS parameter estimates will be 
biased and inconsistent because of the following. 

Since the error term is Bf, = ~(t)~~-t urr, its expected value, EC@,,> = 
ME = up is nonzero where p is the mean of rr. Thus omission of 
up from (5) (which is the case when OLS is used) will cause bias and 
inconsistency in the coefficients of the variables with which it correlates. 
However, if y(t) is linear in t and if one of the In z variables in the 
regression equation is time, then omission of ~0)s will bias only the 
coefficients of time and the intercept. This is the generalization of 
the familiar result that OLS estimates all of the parameters consistently 
except the intercept in the standard frontier model which corresponds to 
y(t) = constant. Thus OLS is inapplicabIe for obtaining consistent parameter 
estimators of all the parameters especially when technical inefficiency varies 
over time. However, this in~nsisten~ can be avoided by using the ML 
method. 

The system of equations for the ML method consists of (5) and (2). 
Denoting c?,, = uft + uft, the residual vector can be written as Co,,, [$;,,>I, 
where tf, = CEZft,. . . ,5,,Y. Let 6f = C@,,, . . . , OfTI’ and 5f = ftf,, . . . , tf,>‘. 
The joint pdf of of, gf, and rf, f(@,, gf, ~~1 =fC@,, TV) *g(gf), since &, is 
independent of Bf and T,.. g(zJf> is the pdf of 5,. Furthermore, f(@!, TV> = 
f(rQ,? * * * , JJfr, f 7 ) = f(rf> * tl3 J(uftI) = f<r,>lJ, f@,, - Y(tIrf), smce rr 
and vf,, . . . , ufT are independent and ufr is i.i.d. 

Now, 

= j”’ f?f(@,, - Y(t)‘-f) *f(q) ‘fq 
--m I 

2 
= 

(27r) 
(rf 1)/2aTa 

L’ 7 

2a, exp( -af*/2) 
= 

(2r) 
r/2 (T To 

U f 

J.Econ J 
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where 

The log-likelihood function for a sample of F firms observed over T years is 

(f-9 

where 

lJf,I = La; + C CSij In zjfi 

i i j 

is the Jacobian of the transformation from CO,,, Sit>’ to (ln xifi,. . . , In xnft) 
obtained from (5) and (2), and 

s(q) = 
1 

(277) 
T(n - 1)/21x l l/2 exp (-fCS~,~-Ls,). I 

Finally, 0, and 5 in (6) are to be replaced by their observable counterparts 
from (5) and (25. The ML estimates of CQ, q,pj, a,,, b,c,q?, c$ can be 
obtained by maximizing (6). 

3.1. Estimation of r, u, and 6 

To estimate rr we need the pdf of rf, given e,, f(~,le,). It can easily be 
shown that 
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which is the pdf of a normal variable truncated at zero. A point estimator of 
I~ can be found [see Jondrow et al. (1982) and its extension in Kumbhakar 
(1987b)l by the mean or the mode of ~~16~~ viz., 

or 

Ff = Mode( TflOf) = 
i 

FI;: if C@ftyft) 5 0, 
t 

0 otherwise. 
(9) 

It can also be shown that the estimators in (8) and (9) are consistent as 
T + 03. If technical efficiency is to be estimated, then the best predictor is 
E(exp(T~~(~)l~~)). 

Once TV is estimated either by (8) or (9), uft for each firm can be estimated 
from 

“f( = 5(Wf, (10) 
where 

q(t) = (1 +exp(br+h2))-i. (11) 

Since the ML estimates of b and c, 6 and c”, are consistent, so is q(t). Thus 
zSfZ is a consistent estimator of aft. 

Input- and firm-specific allocative inefficiency, ti can be estimated for 
every time period from 

,. 
Eift = In Xlft - In xift + In w,,~ - In Wift + In Lyi + 27 6ij IIl Zjft 

i 
j 

1 

--In “1 + C6*jInZjft , 

i 1 

i=2 ,--*> n. 
j 

(12) 

3.2. Costs of technical and allocative ineficiency 

Since inefficiency increases cost, it is of some interest to compute the 
increase in cost due to technical and allocative inefficiency. To do this, we 
first derive the conditional input demand functions from (1) and (2). These 
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are3 

1 
lnx,=i;;;[lny-cr, - q’K + l,b’K - (7 + U)] , 

Inxi=Inx,+Inmi-ln(wi/w,)-~i, 

where 

K=u’+dlnz, lnwl=(I ,..., l)‘, CL = (0,52,...,5,)‘, 

q={O,lnm,-ln(w,/w,),...,lnm,-ln(w,/w,)}’, 

(13) 

m, = 
f 

cri + csij In zi )I a, + CSlj In zj , 
i j i 

i=2 n. ,*--, 

From the preceding input demand functions we can derive the cost 
function 

ln(C/w,)=~[~“Y-a,-q’K]+ln li-C~2,e-~~ 
1 i 1 1 

+j+‘K-7-U]. 

The cost frontier is obtained by setting T = ei = 0, namely, 

(14) 

In( P/w,) = & [In y - ffa -~fK]+h(l+~+i:/([IK). (15) 

Increase in cost due to only allocative inefficiency, In CA, can therefore be 
calculated from 

In C, = In( C/w,) - In( C/w, with li = 0) 

where 

e= (l,e+ , * . * , e-rn)‘. 

3For notational convenience we have dropped the firm and time subscripts f and t in this 
subsection. 



Similarly, the increase in cost due only to technical inefficiency, In C,, can be 
calculated from 

In C, = ln( C/w,) - In( C/ w 1 with T = 0) = - r/( f’K). (17) 

It is to be noted that in CA and In C, are firm-specific and vary over time. 

4. Some generalizations 

The basic mode1 of this paper can be modi~ed to ac~mmodate a wide 
class of situations. First, the methodology can accommodate any parametric 
production function. For example, it is quite straightfo~ard to derive the 
system of equations similar to (5) and (2) from a translog production 
fun~tion.4 The log-likelihood function, as well as estimates of technical and 
allocative inefficiency can also be similarly derived. However, one cannot 
derive estimates of increase in cost due to technical and allocative inefli- 
ciency since the conditional input demand functions cannot be analytically 
derived for the translog production function. 

Second, if output is endogenous and inputs are all exogenous, one can 
focus only on technical ine~ciency and use a single-equation method. Any 
parametric production function can be used. The likelihood function for a 
single firm is simply the pdf of ef, f(@,>. Technical inefficient can be 
estimated by using the formulas in (8) or (9). 

On the other hand, if the objective is to estimate the cost of technical and 
allocative inefficiency and the underlying behavioral assumption is cost mini- 
mization, one can start with the cost function. Flexible functional forms, such 
as translog, Generalized Leontief, Symmetric Generalized McFadden [see 
Diewert and Wales (198711, etc., can be accommodated. 

Third, the distributional assumptions on technical inefficiency may be 
restrictive. This is especially true when panel data are used, since the 
principal advantage of panel data in the estimation of frontier functions is 
that distributional assumptions which are necessary in a cross-section can be 
avoided. Distributional assumptions can be avoided by considering a fixed 
effects treatment of technical inefficiency. For example, consider 

Uft = Yof+ Yl# + Y&*9 (18) 

where yo, yl, and yz are firm-specific [Cornwell et al. (1990)1. Substituting 

4See Kumbhakar (1989) for a discussion on the estimation of technical and allocative 
inefficiencies under the behavioral assumption of profit maximization. The analysis can be 
extended to a panel data model where technical inefficiency varies over time. 
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(18) in (5) yields 

where 

(19) 

j3, is the coefficient of time’ (which represents exogenous technical progress). 
The system of equations in (19) and (2) can be used to estimate all of the 
parameters. Finally, technical inefficiency relative to the most efficient firm 
(ICI) can be estimated from 

RTff, = (So,+ if,ft + S;,t’) - rn? [ &+ Sllft + 32ft2], (20) 

f=l,..., F, t=l,..., T. 

Fourth, allocative inefhciency, (,,.*, is assumed to be independent over time 
with mean zero. This assumption can be relaxed somewhat by introducing a 
nonzero mean so that part of allocative inefficiency is constant over time [see 
Kumbhakar (1988) and Schmidt (198811. 

5. Summary 

This paper presents an estimable model in which technical inefficiency is 
allowed to vary across firms and over time. The specification used is quite 
flexible. It can accommodate increasing, decreasing, and time-invariant be- 
havior of technical inefficiency. And, based on the assumption of cost 
minimization, time-varying firm- and input-specific allocative inefficiency is 
also incorporated. The ML estimation method, based on a parametric pro- 
duction function, is developed to estimate the parameters. Estimates of 
technical and allocative inefficiency based on the ML parameter estimates 
are also suggested. Finally, formulas for calculating costs of technical and 
allocative inefficiency are derived. 

The results of this paper are applicable to a wide class of models. Any 
flexible production/cost function can be accommodated in the framework, 
with inputs treated as endogenous or exogenous. Similarly, technical ineffi- 
ciency can be specified as fixed effects without the necessity of any distribu- 

51t is assumed that one of the In z variables is time which is separated out. 
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tional assumptions, and allocative inefficiency can have nonzero mean 
constant over time. 
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