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Production Frontiers and Panel Data 
Peter Schmidt 

Department of Economics, Michigan State University, East Lansing, MI 48824 

Robin C. Sickles 
Department of Economics, University of Pennsylvania, Philadelphia, PA 191 04 

1. INTRODUCTION consistently. We can consistently estimate the (whole) 
error term for a given observation, but it contains 

This article considers estimation ofa  stochasticfion- statistical noise as well as technical inefficiency. The 
tier production function-the type introduced by Aig- variance of the distribution of technical inefficiency, 
ner, Lovell, and Schmidt (1977) and Meeusen and van conditional on the whole error term, does not vanish 
den Broeck (1977). Such a production frontier model when the sample size increases (see Jondrow et al. 1982 
consists of a production function of the usual regression for a discussion of this point). Second, the estimation 
type but with an error term equal to the sum of two ofthe model and the separation oftechnical inefficiency 
parts. The first part is typically assumed to be normally from statistical noise require specific assumptions about 
distributed and represents the usual statistical noise, the distribution of technical inefficiency (e.g., half-nor- 
such as luck, weather, machine breakdown, and other mal) and statistical noise (e.g., normal). It is not clear 
events beyond the control of the firm. The second part how robust one's results are to these assumptions. An- 
is nonpositive and represents technical inefficiency- other way to emphasize this point is to note that the 
that is, failure to produce maximal output, given the evidence of technical inefficiency is skewness of the 
set of inputs used. Realized output is bounded from production-function error, and not everyone will agree 
above by a frontier that includes the deterministic part that skewness should be regarded as evidence of ineffi- 
of the regression, plus the part of the error representing ciency. Third, it may be incorrect to assume that inef- 
noise; so the frontier is stochastic. There also exist so- ficiency is independent ofthe regressors. Ifa firm knows 
called deterministicfiontier models, whose error term its level of technical inefficiency, for example, this 
contains only the nonpositive component, but we will should affect its input choices. 
not consider them here (e.g., see Greene 1980). Frontier All three of these problems are potentially avoidable 
models arise naturally in the problem of efficiency if one has panel data, say T observations on each of N 
measurement, since one needs a bound on output to firms. The technical inefficiency of a particular firm 
measure efficiency. A good survey of such production can be estimated consistently at T + oo; adding more 
functions and their relationship to the measurement of observations on the same firm yields information not 
productive efficiency was given by Ffirsund, Lovell, and attainable by adding more firms. Second, with a panel 
Schmidt ( 1980). one need not make such strong distributional assump 

Previous work on production frontiers, with the ex- tions as are necessary with a single cross section. Essen- 
ception of Pitt and Lee (198 l ) ,  has assumed error terms tially, evidence of inefficiency can be found in con- 
that are independently distributed across observations; stancy over time as well as in skewness. Finally, esti- 
this assumption is reasonable only in a (single) cross mates of the parameters and of the firms' inefficiency 
section. Thus previous empirical implementations of levels can be obtained without assuming that technical 
frontier models have used cross-sectional data. There inefficiency is uncorrelated with the regressors. There- 
are great potential advantages to modifying existing fore, we will consider a variety of different estimators, 
frontier models to allow the use of panel data. In this depending on what one is willing to assume about the 
article we exploit these advantages using a unique panel distribution of technical inefficiency and its potential 
data set of U.S. domestic,airlines and identify firm- correlation with the regressors. 
specific productive efficiency. The model to be analyzed is presented in Section 2 

Stochastic-frontier models currently suffer from three of this article. Section 3 discusses estimation of the 
serious difficulties. First, the technical inefficiency of a model by ordinary least squares. The within estimator 
particular firm (observation) can be estimated but not is presented in Section 4. Section 5 presents the GLS 
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estimator, whereas Section 6 discusses an estimator due 
to Hausman and Taylor (198 1). Section 7 discusses 
MLE, given a distributional assumption on the effects. 
Section 8 discusses some tests of the assumptions that 
lead to the different estimators. Section 9 illustrates 
these methods using a new and fairly lengthy panel of 
U.S. domestic airlines, and Section 10 is the conclusion. 

2. PRESENTATION OF THE MODEL 

We begin with a single-equation production function. 
(Alternatively, with a change in the sign of the one- 
sided error, it could be a cost function.) The model to 
be analyzed is of the form 

Here i indexes firms and t indexes time periods. The 
value y;, is output (for firm i in time t), whereas XI, is 
a vector of K inputs. The v,, are uncorrelated with the 
regressors Xi,-for example, by the Zellner, Krnenta, 
and Dreze (1966) argument. The u; represent technical 
inefficiency and, correspondingly, u; r 0 for all i. We 
assume the u; to be iid with mean p and variance a: 
and independent of the v;,. A particular distribution 
(e.g., half-normal) may or may not be assumed for the 
u;. Furthermore, the u; may or may not be assumed to 
be uncorrelated with the regressors (Xi,); presumably 
this depends on whether u; is known to firm i or not. 

For T = 1 (pure cross section of N firms), the model 
in ( 1 )  is exactly the stochastic frontier of Aigner, Lovell, 
and Schmidt (1  977). For T > 1, it is a straightforward 
generalization of that model, and it fits exactly the 
usual framework in the panel-data literature, with a 
firm efect but no time efect. The only difference from 
the standard panel-data literature is that our firm effects 
are one-sided, and we will in some cases assume a 
(nonnormal) distribution for them. 

It may also be profitable to rewrite the model slightly 
in two ways. First, let E(u;) = p > 0 (as before), and 
define 

so that the u: are iid with mean 0. Then in the model 

the error terms v,, and u: have zero mean, and most of 
the results of the panel data literature apply directly, 
except of course those that hinge on normality. Second, 
define 

a, = a - u, = a* - u:, (4) 

and the model becomes 

This is useful because we will have occasion to refer to 
the a,  shortly. 

3. ESTIMATION BY ORDINARY 
LEAST SQUARES 

Ordinary least squares may be applied to (3), treating 
(v;, - u t )  as the disturbance. The resulting estimates of 
a* and fl will be consistent as N + w (though not as T 
--, m for fixed N )  if the individual effects (u;) are 
uncorrelated with the regressors (X,,). Under these cir- 
cumstances, however, a better alternative exists (see 
Section 5) ,  so ordinary least squares estimation is not 
recommended. 

4. DUMMY VARIABLES (WITHIN ESTIMATOR) 

The so-called within estimator treats the u; as fixed- 
that is, it estimates a separate intercept for every firm, 
as in (5). This can be done by suppressing the constant 
term and adding a dummy variable for each of the N 
firms or, equivalently, by keeping the constant term 
and adding (N - 1) dummies. Another equivalent 
procedure is to apply the within transformation-that 
is, to apply OLS after expressing all data in terms of 
deviations from 'the firm means (e.g., replace y,, by y,, 
- J;, etc.). In the latter case, the N intercepts are 
recovered as the means of the residuals by firm. 

The chief advantage of the within estimator is that 
its consistency does not hinge on uncorrelatedness of 
the regressors and the individual effects. It also does 
not depend on the distribution of the effects, since in 
treating them as fixed it simply proceeds conditionally 
from whatever their realizations may be. The within 
estimate of ,!? is consistent as either N or T --, w. 

Consistency of the individual estimated intercepts (a,), 
however, requires T --, w. 

All of this is well known and requires basically no 
adaptation to the frontier case (e.g., see the usual panel 
data literature, Mundlak 1978 and Hausman and Tay- 
lor 198 1). In the frontier case, however, we can use the 
fact that u, r 0 to appropriately normalize the effects 
(u;) and the overall constant (a), at least if N is large. If 
the N estimated intercepts are G I ,  . . . , &, simply 
define 

6 = max(&) and 

This definition amounts to counting the most efficient 
firm in the sample as 100% efficient. Provided only 
that the density of u is nonzero in some neighborhood 
(0, t) for some c > 0, the efficiency of the most efficient 
firm in the sample will indeed approach 100% as N + 

w. (This is essentially the argument of Greene 1980 in 
the single cross-section case.) Thus the estimates in (6) 
are consistent for a and the u, as Nand T + w. 

To summarize, we can estimate the individual inter- 
cepts (one for each firm) consistently as T --, w. Thus 
we can compare efficiency across firms. In addition, as 
N +  w we can consistently separate the overall intercept 
from the one-sided individual effects, which allows us 
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to measure efficiency relative to an absolute standard 
( 100%). 

The distributional properties of the estimators de- 
fined in (6) are not trivial; that is, if we wish to assign 
standard errors, compute confidence intervals, and so 
forth, some unsolved problems arise. 

When N is large relative to T, these problems are 
essentially avoided. In this case, the variability of the 
&, as estimates of the a; is large relative to the variability 
of min(u;) as an estimate of zero; that is, we can ignore 
the variability involved in the "max" operation. Then 
treating 2 and the t, as simple linear functions of the 
hi, the distribution of & and the zi; is easily calculated. 

When T is large relative to N, we can do the converse 
and ignore the variability of the &,. Then essentially & 
= max(a,) = a - min(ui), and we have the problem of 
the distribution of the smallest observation in a random 
sample of size N from the distribution of u. For mod- 
erately large N, and for reasonable distributions of u, 
min(ui) will follow an extreme-value (double-exponen- 
tial) distribution. Hence standard results apply (e.g., see 
Galambos 1978). Alternatively, if we assume a partic- 
ular distribution for the u;, we can obtain more precise 
results. For example, if the u, are iid exponential with 
parameter 8, then min(u,) is exponential with param- 
eter 8 / N  (e.g., see Johnson and Kotz 1970, pp. 21 1- 
2 12). Thus & = max(a,) = a - min(q) would have a 
mean equal to a - 8 / N  and a variance equal to e2/ 
N2. Given that the MLE of 8 ,  say 8, has a mean equal 
to 8 ( N  - 1)/N, an unbiased estimator of a is & + 
@/(N - l) ,  whereas an unbiased predictor of u, is ic; + 
8 / (N  - 1); furthermore, confidence intervals are easily 
constructed. (Of course, distributions other than expo- 
nential will not give such simple results.) 

When we are not satisfied with ignoring either kind 
of variability, things are more complicated. The esti- 
mator 6 in (6) is actually & = a + max[(&, - a,) - u,]. 
The terms [(&, - a,) - u,] are mixtures of a normal and 
a one-sided distribution. Worse, they are not independ- 
ent over i, so standard results do not apply. Just what 
can be done here remains to be seen. 

A considerable disadvantage of the within estimator 
is that it is impossible to include in the specification 
regressors that are invariant over time, even though 
they vary across firms. In this case our estimated firm 
effects will include the effects of all variables that are 
fixed within the sample at the firm level, possibly 
including some (e.g., capital stock) that are not in any 
sense a representation of inefficiency. To avoid this 
problem one must make assumptions about uncorre- 
Iatedness of effects and regressors and/or about the 
distribution of the effects. - 

5. GENERALIZED LEAST 
SQUARES ESTIMATION 

We now treat the effects (ui) as random, and we make 
the assumption that they are uncorrelated with the 

regressors. At this point, however, we still do not make 
any distributional assumption for the effects. This leads 
to the generalized least squares estimation of (3), exactly 
as in the paneldata literature, the covariance of the 
error (v,,  - u?) being of the usual form. This covariance 
matrix depends on at and of,, and we distinguish the 
case in which these are known from the (realistic) case 
in which they are not known and must be estimated 
with a *  and 8. 

We begin by summarizing some well-known results 
from the panel-data literature. With a t  and of, known, 
the GLS estimator (of a *  and 8) is consistent as either 
N or T + a. It is more efficient than the within 
estimator, but this difference in efficiencies disappears 
as T --, m. (It remains as N --, w for fixed T, the usual 
panel case.) When u? and ad are not known (i.e., the 
realistic case), GLS is based on their consistent esti- 
mates, say i t  requires if,. Consistent estimation of of, 
requires N + a. Thus the strongest case for GLS is 
when N is large and T is small; the assumption of 
uncorrelatedness of effects and regressors buys extra 
efficiency. If T is large and N is small, GLS is useless 
(unless of, were known a priori). If N and T are both 
large, GLS is feasible but not more e f i ien t  than within. 

Given our estimate of 8, say 6, we can recover esti- 
mates of the individual firm intercepts (a,) from the 
residuals. If we define the residuals as ill = y,, - x:,& 
we can estimate a, by the mean (over time) of the 
residuals for firm i: 

These estimates are consistent as T-+ m, provided that 
p is consistent (which requires N + w or a: known). 
We can also decompose the &, into estimates of & and 
the ic,, as in (7), for which consistency requires N +  03 

plus consistency of the 6,. Thus consistent estimation 
of technical inefficiency requires both N -+ and T -, 
m, just as for within. (Another possibility is to use the 
best linear unbiased predictor (BLUP) of Taub 1979 
and Lee and Griffiths 1979. After (3) is estimated, the 
BLUP of u: is -2; C,(y,, - &*  - ~ : , 6 ) / ( ~ 2 f ,  + Gt), and 
the resulting estimate of a, is &* - ic?. For large T, this 
is equivalent to (7).) 

The important advantage of the GLS estimator rela- 
tive to the within estimator, in the present context, is 
not efficiency but rather the ability to include time- 
invariant regressors. In cases in which time-invariant 
regressors are relevant, this is important so that their 
effects do not contaminate measured efficiency. 

6. THE HAUSMAN-TAYLOR ESTIMATOR 

The GLS estimator hinges on the assumption that 
the effects and regressors are uncorrelated, whereas the 
within estimator does not. In a recent paper, Hausman 
and Taylor (1981) proposed an estimator.that is a 
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hybrid of the two, in the sense that one may assume 
the effects to be uncorrelated with some but not all of 
the regressors. 

This estimator may be motivated in terms of the 
efficiency gains in imposing such (uncorrelatedness) 
restrictions. In the present context, however, a more 
compelling motivation is the potential to include time- 
invariant regressors. Hausman and Taylor gave an ele- 
gant and complete statement of the conditions for the 
coefficients of time-invariant regressors to be identified. 
Basically, the number of time-varying regressors that 
are uncorrelated with the effects must be at least as 
large as the number of time-invariant regressors that 
are correlated with the effects. 

Individual effects can be estimated consistently from 
the residuals if T is large and separated from the inter- 
cept if N is large, exactly as for GLS. 

7. MAXIMUM LIKELIHOOD, GIVEN 
INDEPENDENCE AND A DISTRIBUTION 

In the previous frontier literature, the effects have 
been assumed independent of regressors, and specific 
distributional assumptions have been made for v and u 
(usually normal for v and half-normal for u). As we 
have seen, these strong assumptions can be avoided 
when one has panel data. Nevertheless, it is still possible 
to make these assumptions, in which case a maximum- 
likelihood estimator is feasible. 

We therefore assume that the v,, are iid with density 
f(v), known up to some parameters, that the u, are iid 
with density g(u), also known up to some parameters, 
and that u and v are independent of each other and of 
the regressors. If we define ti, = v;, - U, and note that 
these are independent over i, then the likelihood func- 
tion follows easily from the joint density of (ti,, . . . , 
tlT), which is given by 

Given this density, the likelihood function is 
N 

L = n h(y;l - a - X/IB, . . . , Yir - a - X;T@). (9 )  
i- l 

Its maximization yields the MLE's of the parameters 
(a, P, and the parameters in the densities of u and v). 

Pitt and Lee ( 198 1 )  derived the likelihood function 
(9) for the case in which the v,, are normal and the u, 
are half-normal, and they calculated maximum-like- 
lihood estimates for a sample of Indonesian weaving 
firms. 

The asymptotic properties of the MLE's in this model 
require further work, since they have not yet been 
worked out carefully. We conjecture that (given suitable 
regularity conditions) the MLE's are consistent and 

asymptotically efficient as N--+ m, regardless of T. What 
happens as T --, m for fixed N is less clear. Certainly 
consistent estimation of the parameters of the distri- 
bution of u must require N + m, but results for the 
other parameters are less obvious. As far as efficiency 
is concerned, we conjecture that the MLE's are gener- 
ally more efficient (asymptotically) than the estimators 
previously considered, since they exploit distributional 
information that the other estimators do not exploit. 
But it is conceivable that at least for some distributional 
choices, this information is useless asymptotically. For 
example, if both v and u are normal, then within, GLS, 
and MLE are all asymptotically equivalent (as both N 
and T+ a).  Whether one-sided distributions of u exist, 
such that this equivalence occurs, is not yet clear. 

The preceding estimator assumes both independence 
of effects and regressors and specific distributions for v 
and u. If we relax the distributional assumptions but 
maintain independence, we are led to GLS, as discussed 
in Section 5. On the other hand, if we maintain the 
distributional assumptions but relax independence, 
things are less clear. As discussed in Section 4, we can 
estimate by within and then use the distributional as- 
sumption in normalizing the effects; but this is not 
entirely satisfactory, since the distributional assumption 
may be useful in estimating the parameters. A more 
promising possibility is to follow Mundlak (1978) and 
Chamberlain (1980) by modeling the correlation be- 
tween X and tc. When this is done, GLS = within. For 
nonnormal u, however, GLS may not be the optimal 
estimator, and the optimal estimator may not equal 
within. 

8. TESTS OF UNCORRELATEDNESS AND 
DISTRIBUTIONAL FORM 

The estimators that have been presented differ in the 
extent to which they depend on the effects being un- 
correlated with the regressors and/or on a distributional 
assumption for the effects. These assumptions can in 
turn be tested using Hausman-type (1978) tests, based 
on the differences between the various estimators. 

Testing the null hypothesis that effects and regressors 
are uncorrelated was discussed in detail by Hausman 
and Taylor (1981, Sect. 2.2 and 3.3). The test they 
proposed is a Hausman-type test of the significance of 
the difference between the within estimator and the 
GLS estimator (to test the hypothesis that the effects 
are uncorrelated with all regressors) or of the signifi- 
cance of the difference between the within estimator 
and the Hausman-Taylor estimator (to test the hypoth- 
esis that the effects are uncorrelated with a specified 
subset of the regressors). This requires N to be large, 
since the GLS and Hausman-Taylor estimators require 
large N to estimate at. Indeed, since only N realizations 
of u exist in the data, any asymptotic test about u must, 
of necessity, require N -, 03, SO this is not surprising. 
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Given that the effects are uncorrelated with the re- 
gressors, a distributional assumption (e.g., normal v, 
half-normal u) can be tested by a Hausman test of the 
difference between the GLS estimator and the MLE. 
Similarly, the joint hypothesis that the effects are un- 
correlated with the regressors and that the distributional 
assumptions are correct could be based on the differ- 
ence between the MLE and the within estimator. 

Since we have not provided an estimator that exploits 
a distributional assumption without assuming effects to 
be independent of regressors, no Hausman-type test is 
available of the distributional assumptions only. If both 
N  and T are large, however, we could use standard 
goodness-of-fit tests to see whether the estimated effects 
from within follow the hypothesized distribution, and 
this test would not depend on the correlation between 
effects and regressors. A distributional assumption (e.g., 
normality) about the error terms v could also be tested 
by standard methods using within residuals, and such 
asymptotic tests would require only that either N o r  T 
be large. 

9. EMPIRICAL ILLUSTRATION 

In this section we illustrate the methods outlined 
before by estimating a production function for the U.S. 
domestic airline industry. The source of the data was 
the Civil Aeronautics Board Form 41 data base pro- 
vided by the Air Transport Association of America and 
maintained by the Boeing Computer Services, Inc. A 
detailed description of the accounts in the Form 41 
from which expense and quantity indexes were com- 
piled is available on request. The data are by airline by 
quarter from 1970 I to 1978 111. The airlines used in 
the study are American, Allegheny, Braniff, Continen- 
tal, Delta, Eastern, Frontier, North Central, Ozark, 
Piedmont, United, and Western. Each observation on 
the calculated Divisia indexes of price and quantity 
required information on 230 separate accounts. Appen- 
dix A contains a discussion of the broad categories of 
inputs and output and the main contents of these 
categories. For a lengthier discussion, see Sickles ( 1  983). 

The input categories are capital, labor, energy, and 
materials, and the output is capacity ton miles (CTM). 
We implicitly assume that any unfilled space is wastage. 
On the other hand, it is obviously cheaper to fly an 
airplane from one point to another if it is empty and if 
it does not make intermediate stops. We therefore 
controlled for differences in the airlines' networks by 
including, as arguments in the production function, 
load factor, average stage length (miles between each 
takeoff and landing), and their interaction. We also 
included quarterly seasonal dummy variables. The Di- 
visia indexes were constructed using industry price 
weights so that the major pofiion of estimated ineffi- 
ciencies should be due to inefficient use of inputs 
instead of being purchased at suboptimal prices. We 

assume Cobb-Douglas technology and Hicks-neutral 
technological change. We also abstract from the com- 
plications that would be introduced by a more plausible 
treatment of the dynamics of production (e.g., by allow- 
ing for quasi-fixed factors of production or sluggish 
adjustment to desired production levels). 

Appendix B reports the within, GLS, and MLE esti- 
mates of the production function. The estimated factor- 
productivity growth of between 1.5% and 2% per year 
for each of the models is close to the 2.5% growth rate 
calculated directly from the data as the difference in 
the Divisia indexes of output and of the inputs. All 
three sets of results are close in terms of R2, estimated 
output elasticities, and significance of coefficients. 

Given the considerable differences in the sizes of the 
firms, one might suspect heteroscedasticity to be a 
problem. We, however, did not find it to be so. Running 
separate regressions for each airline, estimated error 
variances were not very different. For example, we have 
s2 = .00015 for the largest airline in the sample and s2 
= .000 13 for the smallest; this difference is insignificant. 

Table 1 displays the estimated technical efficiency of 
the 12 airlines and their average output. The efficiencies 
are close for all three models, and the rankings are 
almost identical. Two comments about these efficien- 
cies are in order. First, because of the small number of 
firms in the sample ( N  = 12), the normalization of the 
most efficient firm as 100% technically efficient is 
questionable. We have a reasonably long sample (T = 
35), however, so we can have some faith in the relative 
efficiency rankings. (In other words, we should have 
more faith in the statement that Delta is 12% more 
efficient than Eastern than we should in the specific 
technical efficiencies of95.253 and 83.2%, respectively.) 
Second, our efficiency rankings for the period 1970- 
1978 do not seem to do a good job of predicting post- 
1978 financial success; some of our most efficient firms 
are now bankrupt or nearly so. An obvious explanation 
(which we believe) is that this is simply due to the 
difference between regulated and unregulated environ- 
ments. An airline may have been very good at flying 

Table 1. Technical Efficiencies 
Average Capacity Firm Efficiency ('YO) 

Output 
Firm (thousands) Within GLS MLE 

American 1.1 38.244 89.2 83.3 85.6 
Allegheny 
Braniff 
Continental 
Delta 
Eastern 
Frontier 
North Central 
Ozark 
Piedmont 
United 
Western 
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from point A to point B but poor at choosing A and B 
or the fare to change. 

Given the similarities in the results, it is not surprising 
that the null hypothesis of no correlation between ef- 
fects and regressors is accepted. The Hausman test x:~ 
is 3.74, Given the uncorrelatedness of the effects and 
regressors, the distributional test can be camed out by 
comparing the GLS estimator with the MLE estimator. 
For this test the x:, is 13.73. The joint hypothesis of 
uncorrelated regressors and correct distribution is tested 
by comparing the within with the MLE estimates. In 
this case the X:r was 13.64. All of these are well within 
the acceptance region at the .05 level. 

It is also interesting to examine the within inefficien- 
cies directly. They do not look too different from draw- 
ings from a half-normal distribution, though of course, 
with only 12 observations this is hard to tell. If we split 
their possible range into the three cells u 5 . l o ,  .10 < u 
5 .20, and .20 < tc, the observed counts are 5, 3, and 
4. Treating the inefficiencies as half-normal data, the 
MLE of a; is .03208, which leads to expected cell counts 
of 5.08, 3.17, and 3.75; these are surprisingly close to 
those observed. Presumably other tests of fit would also 
fail to reject half-normality, given the small sample size. 

10. CONCLUSIONS AND FURTHER DIRECTIONS 

In this article we have considered estimation of a 
stochastic frontier production function model, given 
panel data. We have provided a variety of estimators, 
depending on whether or not one is willing to assume 
that technical inefficiency (the individual effect, in 
panel-data jargon) is uncorrelated with the regressors 
and on whether or not one is willing to make specific 
distributional assumptions for the errors (e.g., normal 
for the general error term and half-normal for technical 
inefficiency). We have also indicated how to test these 
assumptions. 

Since we rely here on asymptotics, it is important 
that either N or T(or both) be large. The most favorable 
case is naturally when both Nand Tare large, since we 
can then estimate the parameters of the model and the 
technical efficiency of each firm consistently, regardless 
of which of the preceding sets of assumptions we 
choose; all of the methods discussed in this article are 
potentially applicable. 

If T is large but N is small, we are restricted to using 
the within estimator, which exploits neither a distribu- 
tional assumption nor uncorrelatedness of effects and 
regressors and which does not allow time-invariant 
regressors. We can consistently estimate the intercept 
for each firm, but there is no consistent way of separat- 
ing the overall intercept from the one-sided effects. 
Thus we can compare efficiencies across firms but not 
relative to an absolute standard. 

If N is large but T is small, we are closest in spirit to 
both the usual panel-data literature and the usual fron- 

tier literature. We can choose any of the estimators 
described before, depending on what we are willing to 
assume, and we can test our assumptions. Although we 
can estimate the intercept of each firm (or the technical 
efficiency of each firm, if we use MLE), we cannot do 
so consistently; consistency of estimated-firm effects 
inherently requires T + a. 
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APPENDIX A: DATA 

The source of data was the Civil Aeronautics Board 
Form 41 data base provided to Sickles by the Air 
Transport Association of America and maintained by 
the Boeing Computer Services, Inc., from 1970 I to 
1978 111. Mergers during this time were handled by 
combining accounts for the relevant parties at the time 
of merger. The airlines in the study are American, 
Allegheny, Braniff, Continental, Delta, Eastern, Fron- 
tier, North Central, Ozark, Piedmont, United, and 
Western. Each observation on the calculated indexes of 
price and quantity required information on 230 sepa- 
rate accounts. 

The labor input was composed of 55 separate labor 
accounts aggregated into five major employment 
classes. They are pilots, flight attendants, machinists, 
passenger/cargo and aircraft handlers, and other per- 
sonnel. Labor-related expenses such as insurance, pen- 
sions, and payroll taxes were allocated to each class on 
the basis of the expense share of the class. Expense/ 
person quarters in 1972 I11 were normalized to 1.0 
before the Divisia indexes for price and quantity were 
calculated. 

The capital input was developed by constructing four 
categories of expenses that were directly or indirectly 
identified with capital. These expense categories were 
flight equipment purchased and rented, ground equip 
ment purchased, ground equipment rented, and land- 
ing fees. Quantity indexes for flight equipment pur- 
chased and rented were calculated by imputing to pur- 
chased aircraft the rental price of a comparably config- 
ured aircraft. This assumes of course that depreciation 
of the aircraft is negligible. Because of the strict Federal 
Aviation Administration maintenance requirements, 
this assumption seems quite reasonable. It is one that 
was adopted in a previous study by Caves, Christensen, 
and Tretheway ( 1  98 1). We adjusted for differing aircraft 
utilization rates by scaling the capital quantity on the 
basis of average hours ramp to ramp during the day 
relative to the maximum average quarterly usage during 
the period. Ground-equipment rental expenses and the 
implicit deflator for nonresidential fixed investment 
were used for the second category. Ground-equipment 
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rental expenses were calculated using the perpetual 
inventory approach, a 1955 benchmark, and the J'or- 
gensen-Hall user price for capital formula. A 15-year 
replacement rate and accelerated or straight-line (de- 
pending on the firm's current profitability) depreciation 
schedules were assumed. The fourth capital category is 
landing fees or the rental cost of the airport facilities. A 
price deflator for landing fee expenses was cost/capacity 
ton landed. 

The energy input was developed by combining infor- 
mation on aircraft gallons used with expense data per 
period. Furthermore, we transformed the gallons used 
into the BTU equivalent using the conversion rate for 
turbo fuel, the predominant fuel used by the camers 
since the mid- 1960's. 

The fourth input, materials, is comprised of many 
broad classes of materials, whicb were themselves ag- 
gregates of 56 different accounts. These categories in- 
cluded advertising, communications, insurance, outside 
services, supplies, passenger food, commissions, and 
other operating and nonoperating expenses. 

The capacity ton mile quantity index was generated 
from data on total capacity ton miles for first class and 
coach. Price deflators for the three categories were 
derived from the revenue output accounts. Thus our 
measure of output is transferred space. We are im- 
plicitly assuming that unused space is wastage and is a 
demand consideration that is outside the scope of this 
study. 

APPENDIX B: ESTIMATION RESULTS 

Within: R2 = .992 and ot = .00142 

In C T M  = .675AA + .533AL + .675BN 
(1.25) (1.05) (1.30) 

+ .605E + .148M - .00566 Winter 
(16.12) (5.30) (- 1.05) 

+ .0 179 Spring + .0346 Summer 
(3.33) (6.07) 

- 1.33 Load F - .000418 STGL 
(-12.6) (-2.64) 

+ .00149 Load F * STGL. 
(7.34) 

GLS: R2 = .986, at = .00142, and at = .0259 

In C T M  = .345 + .00352t + .154K 
(.077) (9.26) (6.1 1) 

- .00597 Winter + .0 180 Spring 
(-1.1 1) (3.35) 

+ .0344 Summer - 1.356 Load F 
(6.02) (-12.96) 

- .000303 STGL 
(-2.05) 

+ .OO 15 1 Load F * STGL. 
(7.50) 

MLE: R2 = .985, at = .00129, and 02, = .I990 

In C T M  = -.0957 + .00294t + .201K 
(-2.22) (12.26) (31.8) 

- .00548 Winter + .0184 Spring 
(- 1.24) (3.99) 

+ .0386 Summer 
(8.64) 

- 1.412 Load F - .00345 STGL 
(-18.8) (-22.3) 

+ .OO 147 Load F * STGL. 
(1 1.4) 
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