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1. Introduction 

Economic relationships based on optimization behavior define efficient 

frontiers of minimum (e.g. cost) or maximum (e.g. production) attainment for 
any set of relevant conditions. Traditional econometric methods for 
estimating stochastic economic relationships have implicitly assumed that all 

economic agents are successful in reaching the efficient frontier. If, however, 
the economic agents are not equally efficient, then the average relationships 

estimated by ordinary least squares methods might not reflect the frontier 
relationships. Our purpose here is to develop a specification for a stochastic 

frontier model. We seek to create a model which is reasonably general 
without regard to the pattern of efficiency distribution throughout the sample 
- a model which subsumes both the special cases of zero and non-zero 

modes for the distribution of efficiency levels among the economic agents. 

Early efforts at specifying frontiers [e.g. Aigner and Chu (1968), Timmer 
(1971), Afriat (1972), Richmond (1974), or Schmidt (19731 were either non- 

stochastic, of questionable economic and statistical justification, or contrary 
to the usual maximum likelihood regularity conditions. More recently 
Aigner, Amemiya, and Poirier (1976), Aigner, Lovell, and Schmidt (1977) 
(ALS), and Meensen and van den Broeck (1977) have suggested stochastic 

error specifications which are consistent with a stochastic frontier (or random 
measurement error on the dependent variable) and variable efficiency among 
the economic agents. While the existence of efficiency variation can be 
inferred from the Aigner, Amemiya, and Poirier specification, ALS and 
others explicitly set forth a joint destiny function based on an error form .Z 

=u+ u where u is the error associated with interagent efficiency differences 

*This research was supported by the National Science Foundation (Grant no. DAR77-16084- 
AOl). I am indebted to Lane Bishop, Thomas Cowing, William Greene, David Reifschneider, 
and Donald Waldman for their valuable advice at various stages of the research. However all 
errors are of my own making. 
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and u is the error reflecting the stochastic characteristic of the frontier or the 

measurement error with respect to the dependent variable. ALS assume u to 
be distributed normally with zero mean and variance of CJ~ while assuming 
that u is distributed either with a ‘half normal’ density or with an exponential 

density. Thus for the production case, ALS have (see fig. 1) 

ALS, : f(u) = 42 pexp [1/2(u/a,)‘] for u<O, 
6 

=o otherwise; 

ALS,: f(U)=eexp(Bu) 

=o 

for u<O, 

otherwise. 

u 0 ll 0 

Fig. 1. Left: ALS, ,f(u), and right: ALS, f(u). 

Both of these specifications assume a distribution of u which has a mode 
at u=O. It is not clear, however, why the mode of u should be expected to 
occur at u=O. If the error term u represents the level of inefficiency, the ALS 
specifications are based on an implicit assumption that the ‘likelihood’ of 
inefficient behavior monotonically decreases for increasing levels of 

inefficiency. However, characteristics such as degree of educational training, 
intelligence, persuasiveness, etc. (factors which relate to managerial efficiency) 
are not likely distributed with such a monotonically declining density 
function over the population. Since the economic agents are humans or 
human institutions, the possibility of a non-zero mode for the density 
function of u would seem a more tenable presumption. Both of the ALS 
specifications can be generalised to permit a non-zero mode for the density 
function of u as well as to enable the testing of the special case of a zero 
mode, as follows. 
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2. Stochastic specification for cost functions 

2.1. Normal-truncated normal 

Let us assume that the frontier relationship we seek to estimate is the dual 
cost function. We assume the error of the cost function is 

&=ll+v, (2) 

where u and v are independently distributed. Given cost minimization 

behavior, u will be non-negative. Let us further assume that u and v are 
distributed as 

-k(u)= 
1 

(1 -F*(-P/a,))&% 
exp[-k(y)J for u>O, 

(3) 

=o otherwise; 

and 

for all 0, 

where F*( . ) is the distribution function for a standard normal random 
variable. Simply stated, u is assumed to be distributed as a truncated normal 
with mode p, and u is assumed to be distributed as a normal with zero mean 
and variance 0%. The joint density function for E =u+u is given as 

x exp[-;((?)2 +r$)2)]du, 

which integrates to 

(4) 

h(&)=c-‘f* ~~)[l-~*(-~-a)][l-~*(-~)]~l, (5) 

where rs= (ai +oi)‘/*, i =(T,/cJ, and f* IS the standard normal density 
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evaluated at ((E-p)/~). Note that at p =O, h(e) becomes 

which is the cost function analog to the ALS formulation. 

The mean and variance of E are 

(7) 

where a = (1 -F* ( -p/a,))- I. At p = 0, the mean and variance of E becomes 

Noting that cU can be written as a(Am2 + l))“, the logged likelihood function 

for the cost function frontier model is 

In L = In (YIP, 1, G2, p) 

= -51n02-~ln2a-&,$ ((Y-/?‘Xi)-p)2 
I-1 

+$Iln[l-F*(~-l(-~-(~-fl’Xi);))] 

-nln l-F* 
[ ( 

-; (A-‘+ 1)’ )I , (9) 

where Y = P’X, + gi with p and Xi being [ 1 xK] vectors. 
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Taking derivatives, we have 

alnL 1 n 
-=$, (K-B’X,-p)X,-1 i sz*ixi, 

8B Di=r (l-F,*,) 

ah5 

an 
__ i fZi 

i=l (l-F:i) ( Qy-b’xJ ; 
/I2 > 

fT +$(~-2+l)-+(l_FT)’ 

+np(P+ l)+ f? 

2a3 (1 -FT) ’ 

and 

n(ar2+ l)+ f’T 

cr (1 -FT) ’ 

(10) 

(11) 

(12) 

(13) 

where f‘: and FT are the standard normal density and distribution functions, 
respectively, evaluated at- (- (p/a)(n- 2 + l)*) and f$ and FTi are the standard 
normal density and distribution functions evaluated at (a- ‘( -p/A - (F 

-B’xiP)). 

The first-order derivatives can be used in a nonlinear optimization 
algorithm to derive the MLE estimates of 8, 2, c2, ,u, and the associated 
variances. 

The model described above can be compared to the OLS model predicated 
on a single error (-N(O,C,~)) using the standard likelihood ratio test where 
the restricted model is computed with p=A=O. Alternatively, the adequacy 
of the ALS specification can be determined by computing the t-statistic for p. 

2.2. Normal-gamma 

An alternative specification of the stochastic frontier model, and a 
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generalization of the second model suggested by ALS, can be derived by 
assuming that U-N(0, 0,“) and that the density function for f(u) is the 

gamma density, 

f(u)= l 
T(m+ 1) 

B”+‘u”exp(-0u) for u>O, f3>0, WI>-1, 

=o otherwise. (16) 

Given g(u)= g(E---U) from above, the joint density function for E =U + u is 
given by 

which simplifies to 

1 ea2u m+ lumexp -_ 
[ ( 

---+ (E-U)’ du, 
24 2 )I 

(17) 

h(E)= a’ 
T(m+ l,JK 

exp( -&+y)P’+’ 1 (Iw)“exp[ -g]dt, 

(18) 

where w = ( -E/D, + fh,). The mean and variance of E are given by 

m+l 
E(~)=E(u)=~, 

mfl 
V(c)= V(u)+ v(u,=~+c7;. (19) 

Assuming that m takes on only integer values, we derive the following: 

For m=O, 

h(r)=Oexp( -&+F)[l-F*( -k+&Jt,)]. (20) 

For w, 

h(s)=n,.gexp( -i:H+y)[&(l-exp(:( -k+Q(il.)I)) 

-( -~+Bo,;)(l -F*( -,,+t+)] (21) 
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For m=2, 

h,,,=~~~exp(-Eo+~)[;(l-G*((-~+on”)2)) 

-$( -~+og”)(l-exp(;( -;+th”)J) 

+( -~+Onu)l[I--F*( -;)]I, etc. (22) 

F*( * ) is the distribution function for a standard normal, and G*( . ) is the 

chi-square distribution with three degrees of freedom. We note that at m=O, 

the joint density function is the cost function analog of the ALS formulation. 

For each integer value of m, the ‘conditional’ logged likelihood function can 
be formed, and MLE estimates of /I, at, and D can be derived along with the 

associated variances. M can be selected by comparing the value of the 
likelihood functions evaluated at the various optimal values of p, of, and 0. 

Thus, it is possible to test the adequacy of an exponential specification for 
the efficiency error term. 

3. Empirical analysis 

To test the empirical significance of the generalized stochastic frontier 
model, estimation routines were run on two separate data sets.’ With each 
data set OLS, ALS, and generalized frontier parameter estimates are derived. 

For the frontier models, we restrict our empirical analysis to the estimation 
of the normal-truncated normal cases. 

The first example uses U.S. primary metals industry (SIC33) 197551958 
data. This data has been previously analyzed by Hildebrand and Liu (1965) 
Aigner and Chu (1968) Aigner, Love11 and Schmidt (1977)’ We estimate two 
models. First we estimate a simple CobbPDouglas function, 

In Y=&+P1lnL+p,lnK+e, (23) 

‘The frontier estimation routines used in this paper are based on a computer program 
developed by Donald Waldman. Adaptation of the Waldman program to the generalized ALS 
case and estimation of the specific equations reported here were done by David Reifschneider. 

‘Data for the estimation of eqs. (21) and (22) were kindly provided by William Greene. As 
Greene noted m his correspondence to the author, ambiguities in the original description of the 
Hildebrand-Liu data have made an exact duplication of the original data set quite difficult. As 
noted in the estimates of eq. (22) we have not been able to replicate the original Hildebrand and 
Liu results. 
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where Y is value added per establishment, L is labor input per establishment, 
and K is the ratio of the gross book value of plant and equipment per 

establishment. 
The second model is that employed by Hildebrand and Liu (1965) i.e., 

lnY=~,+~11nL+~2(lnR~lnK)+&, (24) 

where R is the ratio of net book value to gross book value of plant and 

equipment. 
Parameter estimates for eqs. (23) and (24) are given in tables 1 and 2, 

respectively. As indicated in the tables, ,U is estimated to be negative and, by 
an asymptotic t-test, significant. 

Table 1 

Estimates of eq. (23). 

OLS ALS 
Generalized 
ALS 

0.234” - 0.0002 0.503” 

0.694” 0.694” 0.687” 

Pz 0.328” 0.328” 0.333” 

;+ 
0.174” 0.175” 
0.009 456.5 

P - 0.502” 

“Significant at 99 % level 

Table 2 

Estimates of eq. (24) 

OLS ALS 
Generalized 
ALS 

1: 0.862” 1.212” 0.862 1.030 0.805” 1.380” 

2 0.052” 0.052” 0.063” 

s 
0.168” 0.189” 
0.014 66.5 

P -0.318” 

“Significant at 99 7” level. 
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For our second example, we estimated a cost function premised on the 

cost minimizing behavior of electrical utility firms. Utilizing a trans-log 
flexible form specification and assuming linear homogeneity in factor prices, 

our estimating equation for a firm employing capital, 
electricity generation is 

labor, and fuel for 

1/2a,,(ln P,)’ 

(25) 

where C = normalized costs, P, = normalized price of labor, P, = normalized 
price of fuel, and Q =kilowatt hours of electricity generated. In accordance 

with the assumed constraint of linear homogeneity in prices, C, P,, and P, 
are normalized by the price of capital.3 The sample is based upon firm level 
observations for 81 electrical utilities in 1970. 

OLS ALS 

% 18.250” 17.930 

a1 0.768” 0.788” 

% 0.300” 0.227” 
Ull - 0.493 -0.217 
a22 0.104 0.158 
x12 0.377 0.146 

;: 0.915 0.032 0.903” 0.014” 

k 0.08 0.174 1 0.131” 0.115” 
0 0.233” 
l+ 3.030 

P 

“Significant at 99 % level. 

Table 3 

Estimates of eq. (25). 

- 

Generalized 
ALS 

17.850” 
0.760” 
0.218” 
0.206 
0.276 
0.019 
0.908 
0.048” 
0.123” 
0.130” 
0.191” 
2.103” 
0.187” 

Comparative estimates of eq. (25) are contained in table 3. As indicated in 
that table the estimate of p is positive and, as indicated by an asymptotic t- 
test, significant. 

3A description of the data IS provided in Stevension (1980). 
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4. Conclusions 

Our purpose has been to present a more general error specification for a 
stochastic frontier estimation model. Our model is more general than those 

previously presented in the literature in that the specifications presented here 
are appropriate both for efficiency distributions (i.e., the distribution of U) 

which have modes at u=O (the ALS cases) and for those with non-zero 
modes. While the normal-gamma distribution case which we presented here 
utilized an integer specification of one of the parameters (m), no such 
restrictions were imposed for the normal-truncated normal case. The costs 
for the generalized specifications presented here are slightly more 
complicated first order derivatives of the likelihood function and one 
additional parameter to be estimated. 

Finally, it is worth noting that p in the normal-truncated normal case is 

not constrained to be positive (e.g., for a cost function) or negative (e.g., for a 
production). Thus estimates generated from the normal-truncated normal 

case (e.g., with a satisfactory negative ,Y in the cost function case) might 
reveal a distribution pattern for u which would be quite similar to an 
exponential distribution. 
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